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Abstract

Few-body effects play an important role for the understanding of ultracold quantum gases.
We make use of an effective field theory approach to investigate various aspects of universal
few-body physics close to a Feshbach resonance. That is the regime where the scattering
length is large compared to all other length scales of the system and thus determines the
observables. It is also the regime where the Efimov effect whose main characteristic is the
occurrence of a sequence of three-body bound states becomes important. At unitarity, i.e.,
for diverging scattering length, the ratio of binding energies of neighboring states approaches
a constant. The existence of those trimers can be captured by a single three-body parameter
and influences observables such as recombination rates.
Starting from adequate Lagrangians, we derive atom-dimer scattering amplitudes that con-
tain all information of interest about the three-particle systems. With this method, we first
investigate the scattering of atoms and dimers at finite temperature in the presence of the
Efimov effect. We calculate the dimer relaxation rate and obtain good agreement with avail-
able experimental data. Furthermore, heteronuclear mixtures exhibiting large interspecies
scattering length are studied in detail. If bosons are the majority species, the Efimov ef-
fect occurs in an S-wave channel and we are able to compute three-body recombination and
dimer relaxation rates. The results are compared to the outcome of two existing experi-
ments. For mainly fermionic systems, the Efimov effect is only present in an overall P -wave
and three-body recombination at threshold vanishes. However, in mixtures of atoms and
dimers, scattering cross sections and dimer relaxation show the typical Efimov behavior of
log-periodicity. We also consider two-dimensional Bose gases, where the Efimov effect does
not occur. For those systems, we derive an equation including the first non-universal correc-
tions and deduce three-body observables such as binding energies and atom-dimer scattering
parameters.
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Notation and Conventions v

Notation and Conventions

Here, we introduce parameters and variables that are important throughout the whole thesis.
This should simplify the reading of the work and serve as reference.

Variable Description

a Scattering length
a0 Bohr radius, a0 = 5.29177209 · 10−11 m
a− (a < 0) Scatt. length for which the Efimov trimer hits the three-atom threshold
a∗ (a > 0) Scatt. length for which the Efimov trimer hits the atom-dimer threshold
a0∗ (a > 0) Scatt. length for which the three-body recombination rate is minimal
a+ (a > 0) Scatt. length for which the three-body recombination rate is maximal
A Atom
A Off-shell scattering amplitude
d Auxiliary dimer field
D Dimer
D Number of spatial dimensions

D(P0, ~P ) Dimer propagator (energy, momentum)
E Total energy, normally: three-body energy
ED/T/4 Binding energies of the two-, three and four-body system

f Scattering amplitude
g2/3 Bare two- and three-body coupling constants
~k, k Wave vector, wave number, k = |~k|
kbr Dimer breakup wave number
kB Boltzmann constant, kB = 1.38065 · 10−23 J/K
` Typical length scale of a system
`vdW Van der Waals length
L Total angular momentum quantum number
m Mass of the particles
mi Mass of the particles of species i
M Mass of the heteronuclear dimer, M = m1 +m2

n Index of Efimov branches
n∗ Index of one Efimov trimer used to fix the other Efimov branches
nA/D Number density of atoms/dimers

NA/D Number of atoms/dimers

r Effective range

sL

Transcendental number determining the scaling factor for general L, de-
pends on δ; for three identical bosons with three resonant interactions:
s0 ≈ 1.00624

T Trimer
T Temperature
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Variable Description

αd Three-body recombination rate into deep dimers
αs Three-body recombination rate into shallow dimers (only for a > 0)
αtot Total three-body recombination rate
β Dimer relaxation rate into deep dimers
δ Mass ratio, δ = m1/m2

ε Small parameter, ε→ 0+ implied
η∗ Width parameter, closely connected to the lifetime of the Efimov trimers
γE Euler-Mascheroni constant, γE = 0.5772156649
κ Binding wave number
κ∗ Binding wave number of the Efimov trimer labeled n∗
Λ Momentum cutoff

Λc Complex momentum cutoff, Λc = Λeiη∗/sL

µ Reduced mass of the heteronuclear two-particle system, µ = m1m2/M
µAD Reduced mass of the atom-dimer system, µAD = m2M/(m2 +M)
σ Scattering cross section

σ
(el/inel/tot)
AD Elastic/inelastic/total atom-dimer scattering cross section
ψi Bosonic or fermionic field of particle i

Note that throughout the whole work, ~ = 1 is used when convenient but restored for the
final results. Therefore, the terms ‘wave number’ and ‘momentum’ are used interchangeably.
Furthermore, as we are interested in applications to ultracold atomic gases, bosons are often
called atoms, except in Chapter 6 where fermionic atoms play a central role. This distinction
will be clearly stated. Two-body bound states are denoted as dimers, three-body bound
states as trimers, and four-body bound states as tetramers.



Chapter 1

Introduction

Since the invention of the laser more than half a century ago, the field of (cold) atomic
gases has advanced in large steps. The laser opened new possibilities for spectroscopy and
allowed for the cooling, trapping and manipulation of atoms, either in large ensembles or on
the single atom level. Quite a few of the newly developed techniques were also honored by
Nobel prizes, e.g., in 1997 for laser cooling and in 2005 for the frequency comb techniques.
One of the most prominent achievements was the realization of a Bose-Einstein condensate
(BEC). The existence of such a condensed state in which the particles occupy exactly the
same quantum state and are thus described by a single wave function was already predicted
in 1924 by Bose and Einstein [Bo24, Ei24]. Such weakly interacting BECs could finally be
realized in 1995 in gases of rubidium by Wieman, Cornell and coworkers [An+95], in sodium
by Ketterle’s group [Da+95], and in lithium by Hulet and colleagues [BSTH95]. Shortly
afterwards, DeMarco and Jin also achieved the formation of a degenerate Fermi gas [DJ99],
and other atomic species were condensed. By now, at least 17 types of atoms, magnons,
phonons, and molecules were used for BECs and at least three elements were brought to
Fermi degeneracy [ucan]. However, the manipulation and investigation of these extreme
quantum states still requires ongoing research.

Bose-Einstein condensation and superfluidity are examples for many-body effects in ultra-
cold atomic gases. For the understanding of these quantum systems, few-body effects play
an equally important role. The scattering of particles, the formation of bound states etc.
influence the behavior of the whole ensemble. It is therefore vital to investigate both aspects
of physics and their interplay. One of the most intriguing facets of few-body physics is the Efi-
mov effect involving three particles. It was already predicted by Vitaly Efimov in 1970 [Ef70],
but it took 35 years until signatures of it could be observed in an ultracold atom experiment
in Grimm’s group [Kr+06]. The effect occurs in systems with large two-body scattering length
a which can be thought of as a measure of the strength of the two-body interaction. For
more than ten years now, it has been experimentally possible to adjust the scattering length
of atoms with the help of a magnetic field via Feshbach resonances [In+98]. This tunability
is crucial for the detection of the Efimov effect. For its most prominent feature is the forma-
tion of a series of three-body bound states, called Efimov trimers. They exhibit a geometric
spectrum, i.e., if a is multiplied by a scaling factor λ, one finds the next trimer state whose
size is a factor of λ larger. At a−1 = 0, the energies of neighboring trimers differ by a factor
of λ2. For three identical bosons, λ ≈ 22.7 was derived. So for diverging scattering length

1



2 1. Introduction

and vanishing energy, there is an accumulation point of, in principle, an infinite number of
such Efimov trimers. It is intuitively clear that the existence of such molecules influences the
behavior of the whole ensemble of cold atoms. They can, e.g., lead to enhanced scattering
rates and therefore expel atoms from the trap. The resulting losses can be large enough to
obstruct the experiments, and apparently did so during the first attempts in creating BECs.

The fact that large scattering lengths are necessary for the Efimov effect to occur might seem
like an obstacle at first. It turns out, however, that this makes it even more interesting from
a theoretical point of view. If a is large, the system enters the so-called universal regime
where the scattering length is the only important length scale present and where the details
of the underlying short-range interaction do not play a role. Therefore, the observed effects
are universal, i.e., they are present in any system exhibiting a large scattering length whether
it is intrinsically large or induced. An example for this is the universal two-body bound state
present in systems with a large positive scattering length. For nuclear physics with naturally
large scattering lengths between the nucleons, the bound state is the deuteron with its very
small binding energy. Helium atoms are an example for atoms that naturally exhibit a large
a, and the helium dimer is also only very slightly bound. Because the Efimov effect is a
three-particle phenomenon, one more parameter is needed beside the scattering length for a
full description of the system. The so-called three-body parameter cannot be easily determined
theoretically, but has to be taken from experiment. In principle, these two parameters then
suffice to describe the trimer bound states or observables such as recombination rates in the
universal regime. By now, the Efimov effect has been seen in ten experiments (for a fairly
recent review, see Ref. [FG10]). Some of those prove the existence of the effect unambiguously,
as they have been able to measure at least two Efimov features showing the universal scaling
by a factor of 22.7.

Around the time of the first experimental confirmation of the Efimov effect [Kr+06], a real
surge of theoretical publications concerning the Efimov effect in general and the descrip-
tion of the data points for temperatures as high as 250 nK set in. For the recombination
rates taken at T = 10 nK, universal predictions at zero temperature could successfully be
used [NM99, EGB99, BBH00, BH04, BH07b]. These were not valid at higher temperature,
however, and the finite-temperature effects had to be included. This was done by various
groups in various ways. D’Incao and coworkers made use of a model with a two-body poten-
tial. This potential contains two parameters that can be tuned to support one or two bound
states [DSE04, DGE09]. Massignan and Stoof investigated scattering states in a model with
four parameters that is valid for atoms close to Feshbach resonances [MS08]. Universal
approaches were also used to calculate the three-body recombination rates for negative scat-
tering length including finite temperature effects. Jonsell derived the rate in the adiabatic
hyperspherical approximation [Jo06] and Yamashita et al. used the resonance approxima-
tion [YFT07]. For the case of positive scattering length, simplifying assumptions could be
made such that some universal scaling functions could be neglected [BKP07, Sh07, PS08].
Most of these approaches were taken further, e.g., for the description of the newer experi-
ments, and are still investigated. However, some of the methods mentioned contain uncon-
trolled approximations.

A tool well suited to describe universal physics and gain control over higher order contri-
butions is effective field theory (EFT). It makes use of the largely different scales that are
present in systems interacting resonantly, i.e., via a large scattering length. The interaction
can then be incorporated as a contact potential. This corresponds to the already mentioned
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principle of universality, that it is not necessary to know the exact underlying short-range po-
tential. Only the long-range part must be reproduced. This requirement can be fulfilled with
the help of a renormalization procedure where the parameters in the potential are matched
to physical quantities. The framework of how to use EFT to describe resonantly interacting
atoms in ultracold quantum gases and derive observables has been known for more than ten
years [BHvK99a, BHvK99b]. In these references, Bedaque and coworkers introduced the in-
corporation of a three-body parameter to obtain a method suitable for the description of the
Efimov effect and implemented it successfully. Next-to-leading order calculations including
effective-range effects have also been conducted in the low-energy EFT for three-body sys-
tems [PJP09, JPP10, JPP11]. Effective field theories are also used throughout various other
domains of physics such as nuclear or condensed matter physics.

As the field of ultracold gases is such an active field of research at the moment, this brings
along an interesting aspect: there is a very fruitful interplay between experiment and theory.
This is true for the many-body community with the investigation of BECs, superfluidity, or
systems similar to condensend matter systems, and also for the few-body community where
a lot of effort goes into the investigation of the Efimov effect. Therefore, the last three years
were a very good time to do research on the Efimov effect with the help of EFTs.

The focus of this work is on the detailed treatment of four slightly different aspects of universal
few-body effects. Two of the projects were directly triggered by experiments whereas the
other two are mainly giving predictions for experiments that are currently being conducted
or at least feasible in the near future. The scattering of atoms and dimers in a gas of atoms
and dimers is calculated for non-vanishing temperatures making use of the Bose-Einstein
distribution that the atoms must obey. For systems consisting of two different atomic species,
heteronuclear mixtures, all relevant observables for the S-wave Efimov effect present in mostly
bosonic systems are derived. If fermions are the majority species, only the P -wave Efimov
effect can occur and manifests itself in the atom-dimer scattering observables. Furthermore,
as the fourth project, universal three-body observables are computed for a two-dimensional
bosonic gas.

The results found in this thesis allow for a more adapted description of systems exhibiting
a large scattering length. We here focus on ultracold atomic gases. The exact knowledge of
few-body processes is important for the understanding of quantum systems, e.g., in many-
body atomic experiments, for the simulation of condensed matter effects with cold gases in
lattices, or for quantum computation. An example for the fruitful interplay between few- and
many-body physics is the calculation by van Stecher and colleagues concerning four fermion
systems [vSG07, vSGB07]. The results can be seen as a first approximation to the BCS–
BEC (Bardeen-Cooper-Schrieffer – Bose-Einstein-condensation) crossover. Furthermore, the
universal nature of our results suggests that a direct application to, e.g., nuclear or hadronic
physics is also possible as long as a large scattering length is present.

The outline of this thesis is as follows: we start by summarizing information necessary for
the understanding of this work in Chapter 2. This includes experimental techniques, an
introduction to two- and three-body scattering, and a more detailed description of the Efimov
effect and its appearance in experiments. In Chapter 3, an introduction to effective field
theories is given together with the explicit application to two- and three-body scattering. In
the three subsequent chapters, we investigate the Efimov effect in various respects. Atom-
dimer scattering at finite temperatures is described in Chapter 4. In Chapters 5 and 6,
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the heteronuclear Efimov effect is investigated, in the S-wave case and for higher angular
momenta, respectively. Then we turn to two-dimensional systems in Chapter 7 with a focus
on three-body observables. We conclude with a summary and an outlook on possible future
projects in Chapter 8.



Chapter 2

Motivation and Physical
Background

To start with, we collect and shortly present the background information that is necessary
for the work described in this thesis. Besides, references for further reading are given. In
Section 2.1, we describe key experimental techniques used in cold atom experiments. Then,
the most important facts about two-body and three-body scattering are given in Sections 2.2
and 2.3. Subsequently, the Efimov effect, which is central to this thesis, is introduced in the
last section.

2.1 Experimental Techniques

It is worthwhile to mention a few experimental techniques that are used in ultracold atomic
physics. However, we cannot give a full theoretical description here but rather concentrate on
reviewing the general concepts. This should allow for an intuitive understanding. For more
details on the historical developments, the techniques, and the experimental realization, see,
for example, the reviews [KDSK99, KZ08].

2.1.1 Cooling Techniques

The first cooling step in an experiment with ultracold neutral atoms is Doppler cooling. It
relies on the fact that atoms can be thought of as two-level systems with a ground state
and an excited state. The principle is quite simple and can be best explained with a sketch,
see Fig. 2.1. The incoming laser light (red wavy lines) has the frequency νL and is slightly
red-detuned from the atom’s (blue circle) resonance frequency νA which is associated with
the transition from ground state to excited state, i.e., νL < νA. If the atom now moves at a
velocity v such that νA = νL(1 + v

c ), it can absorb a photon which transfers its momentum to
the atom. The now excited atom decays back into its ground state by spontaneous emission.
This fluorescent radiation has no preferred direction (see Fig. 2.1 b)) and in this step, on
average, no net momentum is transferred. In total, the atom now has a smaller velocity
in the direction of the laser beam and thus lower temperatures are achieved. If instead of

5



6 2. Motivation and Physical Background

a) b)

v

Figure 2.1: Principle of Doppler cooling. a) Atom before absorption and b) after absorption,
emitting fluorescence.

one laser beam six lasers are used (two for each spatial direction) and the cooling cycle is
repeated successively, this represents a very effective cooling mechanism leading to an optical
molasses. Drawbacks are the necessity to tune the laser frequency such that it can stay on
resonance with the slowing atoms and that the force is velocity dependent. Moreover, there
is a minimal temperature that can be achieved, the Doppler limit. It is usually of the order
of hundreds of µK and is connected to the linewidth of the cooling transition.

In order to further cool the atomic gas, other techniques are available, such as, e.g., Raman
and Sisyphus cooling. With those it is possible to achieve temperatures close to the recoil
limit where the thermal energy equals the energy of an atom with a momentum equal to
the photon momentum. Typical values are of the order of hundreds of nK. To get to the
lowest possible temperatures, evaporative cooling is used. The principle behind this cooling
technique is the same that cools down a cup of coffee. In the steam, the fastest and thus
hottest molecules can escape from the ensemble. The residual molecules rethermalize and
the ensemble thus has a lower temperature than before. In atomic gases, the evaporation
can be achieved by lowering the trap depth which allows the fastest atoms to escape. This is
normally realized as forced evaporation by applying a radio-frequency (rf) pulse such that the
(hyperfine) spin of the hottest atoms is flipped. These atoms are no longer trapped and are
lost to the system (see also Subsection 2.1.2). As with the cup of coffee, the residual atoms
rethermalize via scattering processes and a colder ensemble is obtained. An example of the
Maxwell-Boltzmann distributions before and after the evaporation can be seen in Fig. 2.2.
Pictorially speaking, the tail of the hotter (red) distribution gets cut off in the evaporative
process (shaded area). During rethermalization, the non-shaded area under the curve has to
be preserved and thus the graph is shifted to the cooler (blue) distribution. Temperatures
that can be achieved are of the order of tens of nK. The obvious disadvantage of this cooling
method is that most of the atoms are lost in the process. However, if the particle number is
chosen to be large enough at the beginning of the experiment, sufficient numbers of atoms
can be achieved. Typically, the number of atoms in the experiment is about 1010 before and
only about 105 after the evaporation process.
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Figure 2.2: Example of Maxwell-Boltzmann distributions before (red) and after evaporative
cooling (blue). The shaded area represents the number of particles that are evaporated.

2.1.2 Atom Traps

To investigate atomic gases in detail, they not only need to be cooled down but also trapped.
Generally speaking, atoms can be trapped by electromagnetic fields as they interact with the
atoms. This is realized by magnetic, optic, or combined traps. The principle of magnetic
trapping relies on the Zeeman effect which describes the coupling of atomic levels to an outer
magnetic field. The potential energy of an atom in the hyperfine state F with magnetic
quantum number mF for small magnetic fields is given by

E(F,mF ) = E(F ) +mF gF µBB , (2.1)

where µB is the Bohr magneton, gF the Landé factor, and E(F ) the energy for B = 0.
We picture the situation of an F = 2 state in a harmonic B-field (black) in Fig. 2.3. The
mF = 1, 2 (red) states can be trapped as it is energetically favorable for them to stay at
the center of the trap (low-field seekers) whereas the other (blue) states cannot be trapped
(high-field seekers). It is important to avoid Majorana flops, i.e., spin flips from states that
can be trapped into states which cannot be trapped. They can occur spontaneously when
the magnetic field vanishes at the center of the trap because there is a non-vanishing overlap
of the states. This is fixed by an offset magnetic field or magnetic or optic endcaps. However,
rf induced spin flips can be used in forced evaporation to cool the sample. Such an rf pulse
is indicated in the lower panel of Fig. 2.3 (see also Subsection 2.1.1). Note that this is only
a simplified picture neglecting the fact that one has to consider dressed states of the atoms
with the radiation field for a more precise description of the procedure.

The most important magnetic trap is the magneto-optical trap (MOT). It combines magnetic
trapping due to two coils in an anti-Helmholtz configuration with cooling via six laser beams.
The lasers can be polarized in a way that the atoms get pushed back into the center if
they move outwards. In the experiments, MOTs are often used as the first stage as they



8 2. Motivation and Physical Background

m
ag

n
et

ic
 f

ie
ld

position

p
o

te
n

ti
al

 e
n

er
g

y

m=1

m=0

m=-1

m=-2

m=2

rf

Figure 2.3: Schematic view of the Zeeman effect. The upper panel shows a harmonic
magnetic field vs. position. In the lower panel, the potential energies of the Zeeman-split
levels of an F = 2 state are plotted vs. position. Also indicated is an rf pulse (green)
inducing a spin flip from a trapped (m = 2) to an untrapped (m = −2) state.

have various advantages: they can be loaded with background gas, directly cool the sample
because of their dissipative nature, and are relatively simple to set up. Note that due to the
presence of the magnetic field, typical temperatures achieved in a MOT are hundreds of µK.

However, if further manipulation of the atoms with magnetic fields is planned (see also
Subsection 2.1.4), they have to be transferred into an all-optical dipole trap. Dipole traps are
realized by one or more strongly focused, off-resonant laser beams. The electric field induces
an electric dipole moment in the atoms. The resulting dipole force is proportional to the
gradient of the light intensity, and for red-detuned lasers, the atoms are attracted towards
high intensities. They therefore gather in the focus region. Due to the Gaussian waist of
the beam, they are also transversally trapped. As dipole traps are conservative, no further
cooling is achieved. The trapping frequencies in the different spatial directions are related
to the laser intensity and indirectly proportional to the beam waist. So a tight confinement
corresponds to high laser intensity, high trapping frequency, and small trapping volume.

Sophisticated trapping geometries allow for very specialised experiments, the most prominent
example being optical lattices. Two counterpropagating laser beams create, with their sinu-
soidal interference pattern, a periodic potential for the atoms. Depending on the number of
dimensions that are confined in this way, one-, two-, or three-dimensional lattices can be real-
ized. Two examples are pictured schematically in Fig. 2.4. This is also how lower-dimensional
systems can be created. For example, for a two-dimensional system, a one-dimensional lattice
is needed. The trapped atoms are then in pancake shaped volumes close to each other. By
removing all but one such pancake, it is possible to investigate an essentially two-dimensional
atom gas.
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a)

b)

Figure 2.4: Examples of optical lattices. a) A two-dimensional lattice is realized by four laser
beams (red arrows) and creates one-dimensional tubes, and b) a three-dimensional lattice (six
laser beams) creates essentially crystalline order.

2.1.3 Imaging

Imaging techniques fall into two main categories: destructive and non-destructive. As the
name indicates, the first technique destroys the atomic sample which thus has to be prepared
anew for each shot. The second allows for in-situ observation of the processes of interest but
is in general harder to achieve or has lower contrast.

Many experiments use absorption imaging, a destructive method, combined with time-of-flight
measurements. After the preparation and manipulation of the sample, the trap is switched
off. Gravity drags the atoms downward and, especially after tight confinement, the cloud
expands. It is allowed to do so for a certain amount of time (typically a few ms) and then a
(resonant) probe beam is shone on the atoms. The resulting absorption picture is recorded
with a CCD camera. According to Beer’s law, the transmission is attenuated exponentially
and the “shadow” of the cloud therefore allows for the deduction of the number of atoms
present. Analyzing the resulting pictures also allows for the determination of the sample’s
temperature (see also Subsection 2.1.5). Subsequently, the cycle can be repeated with the
same or changed parameter settings. Note that instead of measuring the absorption behind
the sample, it is also possible to measure fluorescence of the sample on a camera placed at
the side.

There are many mechanisms for obtaining dispersive, non-destructive images. We only men-
tion one of them, the phase-contrast method. To acquire information about the phase of the
transmitted light, the unscattered light has to be manipulated, i.e., phase-shifted. Then one
can make use of the resulting interference of scattered and unscattered signal to deduce the
phase. It is possible to take many sequential shots and thus observe the sample directly and
to obtain the sought-after information from it.
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2.1.4 Feshbach Resonances

Feshbach resonances arise due to the coupling of different interatomic potential channels and
result in a change of the scattering length. It can be pictured as in Fig. 2.5 a). Assume
the black interatomic potential to be the one describing two incoming atoms in the spin
triplet state, whereas the red potential describes the singlet state supporting a bound state
at Ebound. The molecular and the scattering states are coupled by the hyperfine interaction.
They have different magnetic moments, meaning that their relative position can be changed
by an external magnetic field (due to the Zeeman effect, see Eq. (2.1)). The potential can
then be tuned in such a way that the energy of the incoming particles approximately equals
the bound state energy, i.e., Ein ≈ Ebound. That is exactly the resonant situation depicted in
Fig. 2.5 a). The atoms “feel” each other and stay close together (in a quasi-bound state) for
a relatively long time, or in other words, the scattering length becomes large. The resulting
variation of the scattering length with the magnetic field can be seen in Fig. 2.5 b), where
∆ denotes the width and B0 the position of the resonance. The background (intrinsic)
scattering length is given by abg. The magnetic field dependent scattering length can be well
approximated by the empirical formula

a = abg

(
1− ∆

B −B0

)
. (2.2)

For alkali atoms, abg typically is of the order of a hundred a0. For the experimental realization,
broad Feshbach resonances are preferred. They allow for an easier and more controlled tuning
of the scattering length. Theoretically, they can be reduced to a single-channel model and
are easier to handle.

Feshbach resonances can also be used to create molecules by adiabatically tuning the magnetic
field from the negative scattering length side to the resonance and then lowering the molecular
potential. This association mechanism is especially important for fermions where the BCS–
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Figure 2.5: Principle of a Feshbach resonance. a) The distance between two potentials can
be tuned with the help of a magnetic field, B (blue arrow). If the bound state energy of
the closed (red) potential matches the energy of the incoming particles in the open channel
(black), a coupling occurs. b) Scheme of the variation of the scattering length (black) in the
vicinity of a Feshbach resonance at B0.
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BEC crossover is investigated. In summary, we can state that Feshbach resonances are an
essential tool for experiments in ultracold quantum gases. Without this “knob” to tune the
scattering length, a lot of experiments would not be as interesting and rich in insights as they
are now.

2.1.5 Observables and Other Aspects

For completeness, we quickly mention the typical observables of a cold atom experiment here.
They are derived from pictures of the sample, see also Subsection 2.1.3. Particle numbers
can be directly related to the optical densities of the images. Therefore, particle losses that
occur, for example, close to resonances can be seen in sequential pictures. By also monitoring
the time evolution, loss rates can be obtained. The most important loss rate for this thesis,
the three-body recombination rate, is introduced in Subsection 2.4.1. The spatial expansion
of a cloud during time-of-flight is related to the kinetic energy of the atoms and thus their
temperature. With these observables, the systems of interest can be described in detail.

In real experiments, there are a few other aspects that have to be considered. Some imaging
methods can, for example, induce heating in the samples that has to be taken into account.
Also, as the atoms are not ideal two-level systems, other levels can be populated in the cooling
process which cannot be excited by the cooling laser. Therefore, another laser is needed to
pump the atoms back into the original ground state and thus back into the cooling cycle.

In total, however, the experimental and technical progress of the last two decades has been
enormous and an incredible control of ultracold atoms can be achieved. This is what makes
them the ideal testing ground for universal physics.

2.2 Two-Body Scattering

Scattering in general and two-body scattering in particular plays an important role through-
out this thesis. Therefore, we want to review some of the basics of scattering theory here for
the simplest case of S-wave scattering in three dimensions. More general concepts can be
found in the following chapters.
We consider elastic scattering of two particles interacting via a short-range potential along
the z-axis in the center-of-mass frame. The wave function can be described in the asymptotic
limit by the sum of an incoming plane wave and a scattered spherical wave,

Ψ(~r) = eikz + fk(θ)
eikr

r
, (2.3)

where θ describes the scattering angle. The momenta of the particles are given by ±~~k and
the total energy is given by E = 2~2k2

2m . This asymptotic form defines the scattering amplitude
fk(θ) which encodes all relevant information about the scattering process. For distinguishable
particles, the differential elastic scattering cross section is given by

dσ

dΩ
(E) = |fk(θ)|2 . (2.4)
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In the low-energy limit, the scattering amplitude approaches a constant value, namely the
scattering length,

fk(θ)→ −a for k → 0 . (2.5)

At small enough energies, only the S-wave scattering channel contributes leading to angle-
independent results. The scattering amplitude is related to the S-matrix via

fk =
1

2ik
(S − 1) . (2.6)

To satisfy unitarity (i.e., probability conservation), the scattering amplitude can be written
in terms of the scattering phase shift,

fk =
1

k cot δ(k)− ik
. (2.7)

Together with Eq. (2.5), this leads to the low-energy expansion of the scattering phase shift
known as the effective range expansion,

k cot δ(k) = −1

a
+

1

2
rk2 +

∞∑
i=0

Pik
2i+4 , (2.8)

where r and Pi denote the effective range and various shape parameters, respectively. At
small enough energies, the shape parameters do not have to be taken into account and in
most of the cases we want to consider, even the effective range term can be neglected. If
two-body bound states are present, they can be found as the poles of fk in the upper half-
plane of the complex momentum k. It is then useful to define a real binding momentum κ
as the pole position with κ > 0. Furthermore, the total scattering cross section is linked to
the forward scattering amplitude via the optical theorem, i.e.,

σ(tot)(E) =
8π

k
Imfk(θ = 0) . (2.9)

We want to consider systems exhibiting a large scattering length, i.e., a � ` where ` is the
natural length scale of the system. For atoms, it is typically given by the van der Waals
length

`vdW =
(
mC6/~2

)1/4
, (2.10)

where C6 is the van der Waals coefficient. For alkalis, the van der Waals length is of the
order of a hundred a0. A large scattering length can arise accidentally as it is the case for
helium with aHe = 197+15

−34 a0 [Gri+00] and `vdW = 10.2 a0 [BH06]. Or it can be achieved by
fine-tuning a parameter of the interaction potential, which is the mechanism used in Feshbach
resonances discussed in Subsection 2.1.4.

2.3 Three-Body Scattering

To describe the scattering of three particles of equal mass, it is convenient to introduce
hyperspherical coordinates. We can only give a short outline of the procedure here and we
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closely follow Ref. [BH06], where further details and references can be found. We start by
defining Jacobi coordinates,

~r12 = ~r1 − ~r2 and ~r3,12 = ~r3 −
1

2
(~r1 + ~r2) . (2.11)

This is only one set of Jacobi coordinates using the relative vector between atoms 1 and 2
and the relative vector between the third particle and the center-of-mass of the other two
particles. The other two sets are obtained by a cyclic permutation of the subscripts {1, 2, 3}.
As usual, we do not need to consider the (total) center-of-mass coordinate. The hyperradius
R is given as the root-mean-square radius,

R2 =
1

3

(
r2

12 + r2
23 + r2

13

)
=

1

2
r2

12 +
2

3
r2

3,12 . (2.12)

The hyperradius is only small if all three two-particle separations are small. The Delves
hyperangle α3 is defined as

α3 = arctan

(√
3 r12

2 r3,12

)
, (2.13)

ranging from 0 to π/2. When α3 is close to 0, particle 3 is far away from the other two,
whereas the hyperangle is close to π/2 when the third particle is close to the others. Similar
transformations for the heteronuclear case in momentum space can be found in Appendix B.1.

The Schrödinger equation for three identical particles and an interaction potential V is given
by (

− ~2

2m

3∑
i=1

∇2
i + V (~r1, ~r2, ~r3)

)
Ψ = EΨ . (2.14)

We now make use of several assumptions. The potential is translation invariant and given as
a sum of two-body potentials that depend only on the separation vectors. Then, the wave
function also is decomposed into a sum of three wave functions only depending on the Jacobi
coordinates. This leads to the Faddeev equations. We consider the low-energy case and can
thus concentrate on S-wave scattering. Making use of a hyperspherical expansion of the wave
functions and neglecting off-diagonal coupling terms is known as the adiabatic hyperspherical
approximation. Then, the hyperspherical potentials and boundary conditions can be deduced
and the equations can be solved numerically.

We are interested in the resonant limit, i.e., particles interacting with a very large scattering
length. There, the adiabatic hyperspherical approximation is accurate. Furthermore, we
consider the small-distance region R ∼ ` because for scattering and bound states, all three
particles have to approach each other. The equation corresponding to the lowest hyperspher-
ical potential, which is the only one that can support bound states, is

~2

2m

[
− ∂2

∂R2
− s2

0 + 1/4

R2

]
f(R) = Ef(R) , (2.15)

where s0 is determined by the transcendental equation

cosh
(
s0
π

2

)
− 8√

3s0

sinh
(
s0
π

6

)
= 0 . (2.16)
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This yields s0 ≈ 1.00624. Note that more details on the derivation of s0 can be found in
Section 6.2 and Appendix A.3. If the energy can also be neglected, Eq. (2.15) for s0 ≥ 0
corresponds to the Schrödinger equation describing a particle in a 1/r2 potential and the
“fall to the center” phenomenon [LL85]. It depicts the situation for a particle with a discrete
energy spectrum that is unbounded from below such that for E → −∞, the particle has to
be infinitesimally close to the center of the potential. This corresponds to the situation for
the Efimov effect. The solution to Eq. (2.15) is given by

f(R) = R1/2Kis0(
√

2κR) , (2.17)

where Kis0(z) is a Bessel function with imaginary index and κ is the binding momentum of
an Efimov trimer. In the following section, the Efimov effect and its implications for cold
atom experiments are described more thoroughly. A derivation in the framework of effective
field theory is given in Section 3.4.

2.4 The Efimov Effect

In this section, the Efimov effect, which is a crucial part of this thesis, is introduced in detail.
We first give the theoretical description which can also be found in Refs. [BH06, BH07b].
Note that the derivation of the results is shown in Section 3.4 and Chapters 5 and 6. Then,
we list the experiments that have seen the Efimov effect up to now.

2.4.1 Theoretical Description

As shortly mentioned before, the Efimov effect was already predicted in 1970 by Vitaly
Efimov [Ef70]. Its main feature, also described in the introduction, is the occurrence of a
geometric spectrum of three-body bound states, also called trimers. In the limit of diverging
scattering length, a → ∞, and for identical bosons, the binding energy of the nth trimer is
given by

E
(n)
T =

(
e−2π/s0

)n−n∗
~2κ2
∗/m , (2.18)

where κ∗ is the binding wave number of the state labeled n∗. This leads to an accumulation
point at E = 0 and a discrete scale invariance with a scaling factor of λ = eπ/s0 ≈ 22.7. Away
from unitarity, there is only a finite number of bound states [Ef73],

N ≈ s0

π
ln
|a|
r
. (2.19)

Other corrections due to a non-vanishing effective range are calculated in Refs. [Ef93, HLP07,
PJP09, JPP10, JPP11], but we do not need to consider them in detail here. An illustration
of the binding energies of Efimov trimers is shown in Fig. 2.6, where AAA denotes the en-
ergy region of possible three-atom scattering and AD the region of atom-dimer scattering.

The nth Efimov state appears at the three-particle scattering threshold at a = a
(n)
− , crosses

the unitarity limit at 1/a = 0 with the energy given in Eq. (2.18), and vanishes at a = a
(n)
∗

through the atom-dimer threshold, which for identical bosons is given by −ED = −~2/(ma2),
see also Eq. (3.9). Note that for notational simplicity, we often omit the superscript (n), and
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Figure 2.6: Dependence of the binding energies ET (solid blue lines) of the trimers (T) on
the inverse scattering length 1/a. The parameters a− and a∗ specify where the trimer states
hit the three-atom and atom-dimer thresholds (ED, solid black line), respectively. See text
for more details.

that the quantities in Fig. 2.6 are scaled by a power of 1/4, allowing to show two trimers. At
E = 0 and 1/a = 0, there is an accumulation point of an infinite number of Efimov trimers,
but they are not depicted in the figure. Besides, the exact position of the Efimov trimers and
hence the threshold crossings at a− and a∗ cannot be determined by theory. However, if one
such three-body datum is known, the others are also fixed and can be determined.

The presence of Efimov trimers can be detected with the help of recombination rates. They
are also discussed in Subsection 2.4.2 for the already conducted experiments and especially in
Chapters 4-6. Nevertheless, we here mention a few general properties and show the formulae
for three identical bosons that have been derived previously. They are important for the
following chapters of this thesis. The three-body recombination event rate α is defined via
the rate equation

d

dt
n = −3αn3 , (2.20)

where n denotes the particle density. The equation describes the scattering of three atoms
into a dimer and a third atom. Due to the released binding energy, the dimer and the atom
get expelled from the trap, so in total three atoms are lost. The three-body recombination
rates for positive and negative scattering lengths and atom-dimer scattering cross sections
show a log-periodic dependence on aκ∗ due to the sequence of Efimov states. For the binding
momentum, we know κ∗ ∝ a−1

∗ ∝ a−1
− . So once one of these three-body parameters (e.g., a

resonance position) is fixed (or known from experiment), the others are also fixed. Factors
of eπ/s0 are implicitly included in all statements.
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In cold atomic systems, Efimov trimers are not stable but rather decay into more deeply bound
molecules, also called deep dimers in the following. These deep dimers are always present in
alkali gases. It is not possible to include those states explicitly but we can incorporate the
collective effect of the presence of deep dimers in a single parameter, η∗. It can be included
by the simple replacement [BH04]

κ∗ → κ∗ e
iη∗/s0 , (2.21)

and it is connected to the lifetime and thus the width of the Efimov trimers [BH06],

ΓT ≈
4η∗
s0

(ET + ED) . (2.22)

In the picture of hyperspherical potentials, η∗ is also called the inelasticity parameter and
(1 − e−4η∗) describes the fraction of the probability that flows inelastically into the deep
dimer-atom scattering state [BH06].

For a < 0, only three-body recombination into deep dimers can occur. Overall, the recombi-
nation rate follows an a4 scaling with pronounced peaks at the positions a− [HHP10],

αd =
64π2(4π − 3

√
3) coth(πs0) sinh(2η∗)

sin2[s0 ln(a/a−)] + sinh2 η∗

~a4

m
. (2.23)

For a > 0, the situation is more complex as the three-body recombination can occur into
the shallow, universal dimer and into the deep dimers. The recombination rates again show
an a4 scaling with minima at a0∗. These Stückelberg oscillations are due to an interference
effect between different recombination pathways [NM99, EGB99]. Without deep dimers, the
minima of αs are real zeros which are washed out due to the deep dimers. The formulae are
given by [HHP10],

αs =
128π2(4π − 3

√
3)(sin2[s0 ln(a/a0∗)] + sinh2 η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

~a4

m
, (2.24)

and

αd =
128π2(4π − 3

√
3) coth(πs0) cosh η∗ sinh η∗

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

~a4

m
. (2.25)

Note that the rate αd/a
4 depends only very weakly on a since sinh2 π � 1. Furthermore,

atom-dimer scattering is also present [BH06],

σ
(el)
AD = 84.9

sin2[s0 ln(a/a∗)− 0.97] + sinh2 η∗

sin2[s0 ln(a/a∗)] + sinh2 η∗
a2 . (2.26)

These observables are plotted in Fig. 2.7 for η∗ = 0.05, ~ = 1, and m = 1. The solid
black lines show the three-body recombination rate and the solid blue line the atom-dimer
scattering cross section. The dashed grey lines simply indicate the a4 scaling. Peaks of
the three-body recombination rates (a− and a+) are highlighted with red dash-dotted lines
whereas the green dash-dotted lines show the position of a0∗. Ratios of adjacent minima
or maxima are eπ/s0 ≈ 22.7 and the mixed ratio of a neighboring pair of maximum and
minimum is a+/a0∗ = eπ/(2s0) ≈ 4.76. Across the resonance, the maxima are symmetric, i.e.,
a+/|a−| = 1. Note that for three identical bosons, accidentally a+/a∗ ≈ 1, but this is not
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Figure 2.7: Relation between the different structures due to Efimov states. More details
are explained in the text.

true for general systems, see Chapters 5 and 6. However, all ratios are universal and do not
depend on the three-body parameter. It is also important to note that α and σ are given
for different three-body energy E. The recombination rate is measured for vanishing energy,
E = 0. However, σ is given for E = −ED, i.e., along the atom-dimer scattering threshold.
This should not be confused with the dimer breakup threshold at E = 0. It is also possible
to derive the scattering cross section at E = 0 and for intermediate energies, this is done in
the subsequent chapters. The peak position depends on the energy, and, interestingly, the
atom-dimer cross section at the breakup threshold also peaks at a+.

The inelastic atom-dimer scattering cross section in the presence of deep dimers is directly
related to the dimer relaxation rate. It describes the scattering of a shallow dimer and an
atom into a deep dimer and the atom. Again, due to released binding energy, the scattering
partners are lost from the system. The event rate is defined via

d

dt
nA =

d

dt
nD = −β nA nD , (2.27)

where nA/D denotes the atomic/molecular density, respectively. The dimer relaxation rate
also peaks at a = a∗, further details can be found in Chapter 4.

2.4.2 Experimental Realization

In this subsection, we give a short review of the experiments that have been conducted in the
last five years and that have seen signatures of the Efimov effect. For another review, see,
e.g., [FG10]. Due to the presence of the deep dimers, the signatures mostly were detected in
recombination processes.
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The first experimental evidence of the existence of the Efimov effect in ultracold atoms was
seen in Innsbruck in 2006 [Kr+06]. In a sample of ultracold 133Cs, a resonance in the three-
body recombination rate for negative scattering length was detected. This could be attributed
to an Efimov state hitting the scattering threshold and thus enhancing the process of three
atoms recombining to form a deep dimer and a third atom. Because of the large scaling factor
of 22.7, only one resonance could be seen experimentally.
The same 133Cs system was subsequently used to prepare a mixture of atoms and shallow
dimers [Kn+09]. With this, the atom-dimer scattering for a > 0 could be monitored and an-
other resonance feature was seen. The process of a shallow dimer and a third atom scattering
into a deep dimer and an atom is described by the relaxation rate. It gets enhanced close to
a∗, where the Efimov trimer hits the atom-dimer threshold. This experiment is investigated
in Chapter 4. Unfortunately, the two experiments in Innsbruck were not conducted in the
same universal regime across the divergence of the scattering length. The regions were rather
connected by a zero of a such that a comparison is not practically meaningful [DGE09].

In Florence, 39K atoms were investigated and three Efimov features were detected [Za+09].
One of them is a recombination maximum for a < 0 as in Innsbruck, whereas the other two
are recombination minima for a > 0. The ratio of the two measured minima was close to the
expected 22.7 within 10% and thus gave the first unambiguous evidence of Efimov scaling
in an atomic system. Tuning across the Feshbach resonance, this experiment stayed in the
same universal regime. However, the experimentally found ratios differ by 50% from the
universal prediction of a+/|a−| = 1.0. For a > 0, two more maxima were detected to be
superimposed on the (very broad) maxima of the three-body recombination. They might be
due to enhanced atom-dimer scattering as dimers can form spontaneously in the trap. This
would mean that each of those dimers had to expel approximately ten atoms via secondary
scattering processes. We come back to this issue in Chapter 5.

Using bosonic lithium, signs of the Efimov effect were also seen in two subsequent experiments.
The first one, conducted in Israel, detected one maximum for negative and one minimum for
positive scattering length [GSKK09]. They are connected via a universal region and the ratio
of the positions deviates only by 4% from the universal value. The second experiment in
Houston used a different hyperfine state of 7Li and obtained different results [PDH09]. In
total, they measured eleven features, six of which are connected to four-body processes not of
interest here. From the others, two are maxima for a < 0, two are minima for a > 0, and one
is again a resonance which could be due to secondary atom-dimer processes. On each side
of the unitarity limit, the ratios agree within a few percent with the prediction. However,
across the resonance, a systematic deviation of again 50% is observed. This finding was not
confirmed by a follow-up experiment of the Israel group with the second hyperfine state of
lithium [GSKK10, Gro+11]. They attribute this discrepancy to the fact that the Feshbach
resonance has to be measured very precisely to determine the correct connection between
magnetic field and scattering length as given in Eq. (2.2). This measurement may not have
been carried out precisely enough in the Houston experiment.

A first signature of the heteronuclear Efimov effect was seen in Florence in a mixture of 87Rb
and 41K [Ba+09]. Two recombination maxima, which could be attributed to the two Efimov
channels present in the system, Rb-Rb-K and Rb-K-K, were measured by monitoring the
numbers of the atomic species separately. They also found a resonance for positive scattering
length which might be the sign of residual atom-dimer scattering once again. This experiment
is discussed and investigated in more detail in Chapter 5.
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The case of fermionic lithium in three hyperfine states was investigated in Japan, Heidelberg,
and Pennsylvania. In this system, there are three scattering lengths with Feshbach resonances
close enough to each other such that regions exist where all three are large. Two recombi-
nation maxima for two different universal regions with large negative scattering length were
observed [Ot+08, Wen+09, Hu+09, Wi+09]. Four features in atom-dimer scattering were also
seen. Two of those are loss resonances connected to the crossing of an Efimov trimer with
the atom-dimer threshold at a = a∗ [Lo+10a, Na+10]. The others are interference minima
attributed to suppressed exchange reactions. Furthermore, in Heidelberg the first direct as-
sociation of Efimov trimers was achieved [Lo+10b]. Starting from a gas of dimers and atoms
similar to one of the species inside the dimer, these atoms could be transformed into the
third species required for the formation of trimers by shining an rf pulse of frequency ν0

on the sample. If this pulse was tuned to transmit the energy not only for transforming
the atom but also dissociating the dimer and allowing for the association of the trimer, i.e.,
~ν = ~ν0 + ED − ET , a resonant signal could be measured. Shortly afterwards, this exper-
iment was confirmed by the Japanese group [Na+11]. These promising experiments set the
stage for a more direct investigation of the Efimov trimers and their properties.

The next interesting step would be to measure the heteronuclear Efimov effect more precisely.
In a mixture with heavy bosons, a lot more Efimov features could be seen on each side of the
Feshbach resonance as the scaling factor can be as small as 5.5 for 7Li-133Cs. In a system
with heavy fermions, the P -wave Efimov effect still remains to be measured. These aspects
are described in more detail and observables are calculated in Chapters 5 and 6.





Chapter 3

Effective Field Theory

Effective field theories (EFTs) have proven to be very useful in many areas of physics. We
therefore want to give a short introduction along the lines of an example in the first section.
More general remarks about the concept of EFTs follow in Section 3.2. In Section 3.3, two-
body scattering in EFT is described and is complemented by Section 3.4 about three-body
scattering.

3.1 An Example

The example of Fermi’s theory of the beta decay helps to illustrate the concept of EFTs. For
simplicity, we only consider the decay of a neutron via the process

n −→ p+ e− + ν̄e .

In 1934, Fermi postulated a pointlike interaction with the coupling strength GF between the
four involved fermions: neutron, proton, electron, and antineutrino. With this assumption,
a lot of the phenomenological findings could be explained and the theory hence was very
successful. Only about 30 years later was it realized that Fermi’s theory was in fact an
effective theory valid for small energies. It is the low-energy limit of the underlying theory of
electroweak interactions mediated by the W and Z gauge bosons. The beta decay can then
be pictured as in Fig. 3.1, where the quark content of the nucleons is also shown. The gauge
bosons were finally discovered in 1983, their large masses of 80 and 91 GeV, respectively,
prohibiting an earlier discovery. Besides, the separation of scales typical for EFTs is visible
in the difference between the mass of the gauge bosons and the mass of the four involved
fermions (<∼ 1 GeV) as well as the energy used for probing the process, less than 10 MeV.
The propagator of the W bosons can then be expanded,

1

p2 −M2
W + iε

= − 1

M2
W

(
1 +

p2

M2
W

+O
( p4

M4
W

))
for p�MW , (3.1)

where p is the four-momentum and MW the mass of the W boson. Thinking in terms of
Feynman diagrams, the two weak vertices at the endpoints of the propagator (proportional
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Figure 3.1: Feynman diagram for the beta decay of the neutron.

to g, the weak coupling constant) and the propagator all contract into one single interaction
point for small enough energies. The coupling of this vertex now fulfils

GF ∝
g2

M2
W

. (3.2)

Hence, Fermi’s original theory can be reconstructed from the more general theory of elec-
troweak interaction as its low-momentum approximation. However, in the beginning, it was
not necessary to know the detailed structure of the interaction. Furthermore, there are also
EFTs that have been constructed to simplify calculations (or make them possible at all) after
the more general theory had already been established. Both ways are possible and have been
used, a few examples are given in the next subsection.

3.2 General Remarks

In the above example, the main characteristics of an EFT can already be seen. First, there
is the separation of scales realized by large differences of the masses of the involved particles.
This separation could also be given by different length scales in a system, as we show below for
the case of cold atoms. The scales allow directly for the construction of a small parameter,
necessary for an expansion and the power counting. In the case of the beta decay, the
expansion parameter is given by p2/M2

W. Power counting in general quantifies how important
a term is for a specific calculation. There possibly can be more than one small parameter
contributing to an expansion. The knowledge of the involved parameters leads to a clear
ordering of terms according to their relative importance into leading order, next-to-leading
order, etc. and allows for an error estimate. Secondly, in an EFT, there are usually degrees of
freedom (dofs) which are integrated out. The W bosons in the example above do not occur in
Fermi’s theory. Due to their large mass, even when starting with the full electroweak theory,
they basically do not contribute to the observables and can, in the field theory approach,
be integrated out. Their effect is then incorporated in an effective coupling, also called a
low-energy constant (LEC). If the underlying theory is known, the LECs can be calculated
from it. Otherwise, they have to be fitted to the experiment. The outcome of this process
is that only the dofs of interest have to be built into an EFT and all other physical aspects
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do not play an explicit role. This is in close relation to a third characteristic of EFTs,
universality. As long as the long-range (or equivalently low-energy) physics stays the same,
it does not matter what the underlying dofs of the short-range regime are. The obtained
results are universal, i.e., valid for many different systems. We come back to this issue below
in connection to cold atoms. The last aspect of EFTs important to mention is the question
of the region of validity. As can be seen in Eq. (3.1), the expansion in the beta decay only
holds for momenta p � MW. There always is a region where the used expansion breaks
down and where thus the EFT approach is not valid any more. This is often incorporated
by a momentum or energy cutoff mostly chosen to be at the same order of magnitude as the
high-energy scale, in our example this would be MW. Dimensional regularization is also used
as a gauge-invariant way to obtain finite result for loop integrals. Renormalization in EFTs
is fulfilled order by order.

A few other examples for successful EFTs are also worth mentioning. There is chiral per-
turbation theory describing low-energy quantum chromodynamics (QCD). It makes use of
the approximately realized chiral symmetry and has hadrons such as pions and nucleons as
dofs instead of quarks and gluons which become important only at high energies. General
relativity is often thought of as the effective theory for a quantum theory of gravity. This is
an example for the case where the more fundamental, underlying theory is still unknown but
sought after. Besides, even though they are mostly not referred to as such, many theories in
condensed matter physics are basically EFTs.

Now we discuss a few facts concerning EFTs for ultracold atoms. The main focus of this work
is on atoms with resonant interactions. This strongly interacting regime is generally achieved
with the help of Feshbach resonances, which are described in more detail in Subsection 2.1.4.
In the vicinity of a Feshbach resonance, the atomic scattering length can be tuned to values
a � `vdW, where the van der Waals length is the typical underlying length scale for atoms.
Hence, a momentum cutoff Λ should be chosen to satisfy Λ>∼ 1/`vdW. Another length scale
that has to be considered for next-to-leading order (NLO) calculations is the range of the
potential r. This is discussed in more detail in Chapter 7, where NLO calculations are
performed. Also, physical systems exist in which the scattering length is naturally large
compared to the typical length scale, for example, nucleons. The neutron-neutron scattering
length is ann = −18.7 ± 0.6 fm [Go+99], whereas the range of the potential is an order of
magnitude smaller, rnn = 2.75 ± 0.11 fm [MNS90]. Now, due to universality, a lot of the
results obtained for cold atoms can be applied to nucleons (when Coulomb effects can be
neglected) and vice versa. Originally, the Efimov effect was predicted in nuclear physics but
proves to be of tremendous interest nowadays in the cold atom community (see Section 2.4).

3.3 Two-Body Scattering in EFT

The descriptions in this and the follwing section closely follow Ref. [BH06]. Therein, more
details and further references can be found. Here, we focus on the case of identical parti-
cles. To consider two-body scattering of two identical particles in an EFT, we start with an
adequate Lagrangian which respects Galilean invariance,

L2 = ψ†
(
i
∂

∂t
+
∇2

2m

)
ψ − g2

4

(
ψ†ψ

)2
, (3.3)
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Figure 3.2: Two-body scattering integral equation.

where g2 denotes the bare two-body coupling constant. From this Lagrangian, we can derive
the Feynman rules. The particle propagator is given by i/(k0−~k2/(2m) + iε) and the vertex
factor is ig2. For the calculation of the two-body scattering amplitude, we have to take
into account an infinite series of bubble diagrams as they all contribute to the same order.
Therefore, we have to solve the integral equation shown in Fig. 3.2. Imposing an ultraviolet
cutoff Λ to regulate the loops, the scattering amplitude A2 is determined by the integral
equation

A2(E) = −g2 −
i

2
g2

∫
d3q

(2π)3

∫
dq0

2π

1

q0 − q2/(2m) + iε

1

E − q0 − q2/(2m) + iε
A2(E) . (3.4)

This can be solved to yield the amplitude

A2(E) = −g2

[
1 +

mg2

4π2

(
Λ− π

2

√
−mE − iε

)]−1
. (3.5)

As fk = m
8πA2(E = k2/m), we impose the following constraint on A2,

a = −m
8π
A2(0) . (3.6)

Therefore, the amplitude can be renormalized with the relation

a =
mg2

8π

[
1 +

mg2

4π2
Λ
]−1

⇔ g2 =
8πa

m

[
1− 2a

π
Λ

]−1

. (3.7)

This finally leads to the renormalized amplitude, independent of the ultraviolett cutoff

A2(E) =
8π/m

−1/a+
√
−mE − iε

. (3.8)

For a > 0, the amplitude has a pole for

E = −ED = − ~2

2µa2
= − ~2

ma2
, (3.9)

where powers of ~ were reinserted. The pole indicates the existence of a two-body bound
state whose binding momentum is given by κ = ~/a. This dimer state is always present
in systems with large positive scattering length. A prominent example already mentioned
is the deuteron. With a proton-neutron triplet scattering length of at = 5.42 fm [BP07],
Eq. (3.9) yields ED ≈ 1.4 MeV. This is a good first approximation to the measured value of
Edeuteron = 2.225 MeV [BH06]. The discrepancy of approximately 37% is partly due to the size
of the effective range, rt = 1.8 fm [BP07]. It does not fulfil the condition rt � at. These dimer
states become virtual states for a < 0. Note that instead of solving the integral equation (3.4),
one could have used an analogous approach where the infinite sum of bubbles corresponds to a
geometric series which can be summed. This method is shown in Appendix A.1. Furthermore,
the two-body scattering amplitude is closely connected to the dimer propagator, which plays
an important role in the following section.
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3.4 Three-Body Scattering in EFT

We now want to investigate three-body scattering in the framework of EFT. Again, we closely
follow the description given in [BH06], where further references can be found. To incorporate
three-body effects in the EFT described in the previous section, one can quite generally
include a three-body interaction,

L′3 = L2 −
g3

36

(
ψ†ψ

)3
, (3.10)

where g3 denotes the three-body coupling constant. This leads, however, to diagrams and
equations that are too complicated to be solved analytically or even numerically. Therefore,
it is convenient to introduce an auxiliary dimer field d. It is a local operator that annihilates
two atoms. It can hence be thought of as a dimer consisting of two atoms, having the mass
2m. The corresponding three-body Lagrangian can then be written as

L3 = ψ†
(
i
∂

∂t
+
∇2

2m

)
ψ +

g2

4
d†d− g2

4

(
d†ψ2 + ψ†2d

)
− g3

36
d†dψ†ψ . (3.11)

Deriving an equation for d with the help of the Euler-Lagrange equations and reinserting it
into Eq. (3.11), we can recover the Lagrangian of Eq. (3.10) up to higher-order corrections.
We derive the Feynman rules and present them in Table 3.1.

Description Feynman rule

Atom propagator i/(k0 − k2

2m + iε)

Bare dimer propagator 4i/g2

(A-A → D)–vertex, (D → A-A)–vertex −ig2/2

(A-D → A-D)–vertex −ig3/36

Table 3.1: Feynman rules for L3.

Note that as the dimer field is not dynamical, its bare propagator is simply a constant.
However, we have to take into account that a dimer field can split up into two atoms which
subsequently recombine. This amounts again to a resummation of an infinite sum of bubble
terms. The result can be derived directly from Eq. (3.8) with the replacement E → P0 −
P 2/(4m) with P0 the energy and ~P the momentum of the dimer. One, furthermore, has to
multiply by the inverse vertex factor squared, (−ig2/2)−2, to account for the outer dimer
legs. This yields

iD(P0, P ) = i
32π

mg2
2

[
1

a
−
√
−mP0 + P 2/4− iε

]−1

. (3.12)

The wave function renormalization is given by

Z−1
D = i

∂

∂P0

(
iD(P0, P )

)−1
∣∣∣
P0=−1/(ma2), P=0

=
m2g2

2 a

64π
. (3.13)

For the description of a three-body system, it is now necessary to derive the atom-dimer
scattering amplitude A3. The corresponding integral equation is depicted in Fig. 3.3 and is
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Figure 3.3: Integral equation for the atom-dimer scattering amplitude, known as the STM
equation. Single (double) lines denote the atom (dimer) propagators, respectively.

known as the STM equation, because it was derived by Skorniakov and Ter-Martirosian for
the first time [STM57].

Using the above Feynman rules, setting the outer atom legs on-shell, making use of the residue
theorem, and projecting onto S-waves, the STM equation can be deduced. The details of the
derivation can be found in Appendix A.1 for the heteronuclear case. The STM equation can
be written as

A3(p, k;E) =
16π

am

[
1

2pk
ln

(
p2 + pk + k2 −mE − iε
p2 − pk + k2 −mE − iε

)
+
H(Λ)

Λ2

]
+

4

π

∫ Λ

0
dq q2

[
1

2pk
ln

(
p2 + pq + q2 −mE − iε
p2 − pq + q2 −mE − iε

)
+
H(Λ)

Λ2

]
× A3(q, k;E)

−1/a+
√

3q2/4−mE − iε
, (3.14)

where the incoming (outgoing) momenta are denoted by p (k) and E is the total energy. The
occurring loop integrals have to be regulated as for two-particle scattering. To compensate
for the resulting cutoff dependence, the function H(Λ)/Λ2 = −g3/(9g

2
2m) is introduced. It

corresponds to a cutoff dependent three-body coupling and ensures renormalization. It is
related to the occurrence of a UV renormalization group limit cycle and obeys

H(Λ) ≈ cos [s0 ln(Λ/Λ∗) + arctan s0]

cos [s0 ln(Λ/Λ∗)− arctan s0]
, (3.15)

where s0 is exactly the transcendental number occurring in the Efimov effect and Λ∗ corre-
sponds to a three-body parameter. It is only defined up to factors of eπ/s0 and is related to
the binding momentum κ∗ by s0 lnκ∗ ≈ s0 ln(0.381Λ∗) mod π. Without the cutoff and the
regulating function, the STM equation would not have a unique solution. By fixing the three-
body parameter (fixing Λ∗, κ∗, a∗, or a−), we effectively fix one branch of Efimov trimers (see
also Section 2.4). We can obtain the other branches by multiplication with the appropriate
powers of the scaling factor. The Efimov effect therefore emerges quite naturally in this EFT
treatment for three resonantly interacting particles.

It is now possible to use appropriate kinematics to derive binding energies of three-body
bound states or recombination rates from the STM equation (3.14). Note that in the practical
calculations, we can set the function H(Λ)/Λ2 to zero and directly use the cutoff as the three-
body parameter to deduce the log-periodic behavior of the solutions numerically.
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3.5 Further Applications

So far, we have only shown how to treat identical particles in an EFT framework. It is, how-
ever, straightforward to derive generalizations of this method. The easiest extension consists
in the study of two different atomic species that interact resonantly whereas the interaction
between the like particles is neglected. By adjusting symmetry factors and introducing the
two different masses, a very similar equation can be derived. This is a central part of this
work. Therefore, all calculations shown in Sections 3.3 and 3.4 are carried over to heteronu-
clear systems in Chapters 5 and 6. More detailed derivations can be found in Appendix A.1.

If three different particles with three independent two-body scattering lengths are of interest,
a coupled-channels STM equation has to be investigated. This was done for 6Li [BHKP09,
BHKP10] and in the context of hadronic molecules [HHH11].

Another type of generalization that can be made is the dimensionality of the considered
system. The Lagrangian stays the same and only the subsequently derived equations have to
be adapted to the new number of spatial dimensions. For two dimensions, this was carried
out and can be found in Chapter 7.

Note that the following four chapters are adapted from previous publications in [HH09,
HHP10, HH11a, HH11b].





Chapter 4

Atom-Dimer Scattering at Finite
Temperatures

After having established the preliminaries in the previous chapters, we can now start to
investigate aspects of few-body physics in quantum gases in detail. The first topic we cover
is finite temperature atom-dimer scattering. This chapter has been published previously in
Ref. [HH09].

We consider identical bosons in a single spin state and for positive scattering length. We
especially focus on the Efimov resonance in atom-dimer scattering found in 133Cs [Kn+09].
This process was previously considered in [BH04, BH07a]. We go beyond these earlier studies
in several respects: we use the full effective field theory results for the atom-dimer phase shifts
instead of the effective range expansion and perform a thermal average using the Bose-Einstein
instead of the Boltzmann distribution. Moreover, we correct an error in the calculation
of [BH07a].

The structure of the chapter is as follows: we start by giving a few details on atom-dimer
scattering and on atom-dimer relaxation. Then, the results are shown and discussed. We
end with a short summary and conclusion section.

4.1 Atom-Dimer Scattering

We consider the scattering of an atom with mass mA = m and dimer with mass mD =
2m. The wave numbers ~pA and ~pD of the incoming atom and dimer, respectively, can be
decomposed into the total wave number ~ptot = ~pA + ~pD and the relative wave number ~k =
2
3~pA− 1

3~pD. Because of Galilean invariance, the scattering observables depend on the relative
wave numbers and the collision energy E in the center-of-mass system only, E = 3~2k2/(4m).
The differential cross section for elastic atom-dimer scattering is

dσ
(el)
AD

dΩ
= |fAD(k, θ)|2 , (4.1)

29
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where fAD(k, θ) is the scattering amplitude. The elastic cross section σ
(el)
AD is obtained by

integrating Eq. (4.1) over the full solid angle. The total cross section (including elastic and
inelastic contributions) can be calculated using the optical theorem:

σ
(tot)
AD =

4π

k
ImfAD(k, θ = 0) , (4.2)

such that the inelastic cross section is given by the difference of the total and elastic cross
sections. At low energies, higher partial waves with L > 0 are suppressed and the scattering
amplitude is dominated by S-waves (L = 0):

fAD(k) =
[
k cot δAD

0 (k)− ik
]−1

. (4.3)

For the S-wave atom-dimer phase shift k cot δAD
0 (k), we will use the results from a calculation

using the effective field theory of Ref. [BHvK99a]. A convenient parametrization of these
results was given in [BH03, BH06]:

ka cot δAD
0 (k) = c1(ka) + c2(ka) cot

[
s0 ln

(
0.19 a/a∗

)
+ φ(ka)

]
, (4.4)

where

c1(ka) = −0.22 + 0.39 k2a2 − 0.17 k4a4 ,

c2(ka) = 0.32 + 0.82 k2a2 − 0.14 k4a4 ,

φ(ka) = 2.64− 0.83 k2a2 + 0.23 k4a4 . (4.5)

This parametrization is valid up to the dimer breakup wave number of kbr = 2/(
√

3a). A
parametrization for higher wave numbers beyond the dimer breakup exists [BHKP08] but
will not be required for our purposes as we will demonstrate below.

To leading order in the large scattering length, atom-dimer relaxation can only proceed via
S-waves. For the relaxation into deep dimers to take place, the atom and the dimer have to
approach each other to very short distances. However, because of the angular momentum
barrier this can only happen in the relative S-wave channel. The parametrization of the
S-wave phase shift in Eqs. (4.4, 4.5) is therefore sufficient to calculate atom-dimer relaxation.

4.2 Atom-Dimer Relaxation

To incorporate the effects of deep dimers, we make the simple replacement in the ampli-
tude [BH04]

ln a∗ → ln a∗ − iη∗/s0 , (4.6)

where η∗ determines the probability for an atom and a dimer to scatter into an energetic
atom and deep dimer pair at short distances. This inelastic process generates the width of
the Efimov resonances. The phase shift becomes imaginary even below the dimer breakup
threshold and the released binding energy is converted to the kinetic energy of the recoiling
atom and dimer. Thus, they are lost to the system. The event rate β for this dimer relaxation
process in an ultracold gas of atoms and dimers can be written as

d

dt
nA =

d

dt
nD = −β nA nD , (4.7)
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where nA and nD denote the number density of the atoms and dimers, respectively.

For an ensemble of atoms and dimers at nonzero temperature that are held in a trap, temper-
ature and trap geometry have to be included in the calculation of the observed dimer losses.
The dimer loss rate can be expressed as

d

dt
ND = −

∫
d3r

∏
i=A,D

[∫
d3pi
(2π)3

ni(pi, r)

]
g(k), (4.8)

where ND is the number of dimers and we use the generalized Bose-Einstein distribution
function

ni(pi, r) =

[
exp
{(~2p2

i

2mi
+
miω

2r2

2
− µi

)
/kBT

}
− 1

]−1

, (4.9)

with i = A,D denoting an atom or dimer, respectively. The properties of the trap enter via
the average trap frequency ω, while the function g(k) to be averaged is given by

g(k) =
3~k
2m

σ
(inel)
AD (k) =

3~k
2m

(
σ

(tot)
AD (k)− σ(el)

AD(k)
)
. (4.10)

In the limit k → 0, g(k) reduces to the relaxation rate constant at zero temperature. Note
that the function g(k) introduces an implicit dependence on the angle between ~pA and ~pD.
The chemical potentials µi are fixed via the equation∫

d3r

∫
d3pi
(2π)3

ni(pi, r) = Ni , (4.11)

with Ni being the particle number and i = A,D.

All angular integrations except for one can be carried out immediately and the expression (4.8)
can be rewritten as:

d

dt
ND = − 1

2π3

∫ ∞
0

r2 dr

∫ ∞
0

p2
tot dptot

∫ ∞
0

k2 dk

∫ 1

−1
dxnA(pA, r)nD(pD, r) g(k) , (4.12)

where x is the cosine of the angle between ~ptot and ~k.

In evaluating Eq. (4.12), we will cut off the integral over k at the breakup wave number
kbr = 2/(

√
3a) since the parametrization in Eqs. (4.4, 4.5) is only valid up to kbr. We have

estimated the error from this simplification by using the unitary bound i/k for the S-wave
scattering amplitude fAD(k). For the data of Ref. [Kn+09], the error involved is greatest for
the largest scattering length considered, but even there only adds up to 0.2% for the largest
temperature T = 170 nK. As a consequence, we can simply neglect the contribution from
k > kbr in the analysis of the data.

4.3 Results and Discussion

We now apply our formalism to the experimental data for the atom-dimer relaxation rate of
ultracold Cs atoms as a function of the scattering length obtained by Knoop et al. [Kn+09].
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Figure 4.1: The dimer relaxation coefficient β as a function of a/a0 for T = 170 nK,
a∗ = 397 a0, and different values of η∗. The data points are from [Kn+09]. BO indicates
a Boltzmann average.

Our free parameters are a∗, which determines the position of the resonance, and η∗, which
determines its width. These parameters cannot be calculated in our approach and must be
taken from experiment. We will determine a∗ and η∗ from the data of Knoop et al. and
compare our results with what is known from other experiments. In Ref. [Kn+09], the dimer
relaxation coefficient was extracted from the dimer loss data using a loss model resulting in
the rate equation

d

dt
ND = − 8√

27
β n̄AND − ξ n̄DND , (4.13)

with n̄A = [mω2/(4πkBT )]3/2NA the mean atomic density, n̄D = [mω2/(2πkBT )]3/2ND the
mean molecular density, and ξ the dimer-dimer relaxation rate coefficient. As β NA � ξ ND

was fulfilled for the range of the scattering length that we are interested in, the dimer loss
term can be neglected. In order to compare our calculation with the experiment of Knoop et
al., we extract a value for β from our result for dND/dt (cf. Eq. (4.12)) using

β ≡ −
√

27

8 n̄AND

d

dt
ND . (4.14)

We start with the data at T = 170 nK and fix the chemical potentials as described above.
For atom number NA = 105, dimer number ND = 4 × 103, and an average trap frequency
of ω = 45 Hz [Kn], we obtain the chemical potentials µA = −2.74 × 10−7 kBK and µD =
−8.17 × 10−7 kBK. In Fig. 4.1 the data for the recombination constant β is shown together
with our best fit as the solid blue line. We only take into account data points for a > 300 a0.
This fit yields χ2/dof = 1.2. We obtain for the peak position a∗ = 397 a0 and for the
resonance width parameter η∗ = 0.034. Also shown as a dashed-dotted green line is the
resulting curve for the same resonance position but with η∗ = 0.06. This value of η∗ was
obtained from fitting the three-body recombination resonance in Cs for negative scattering
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length in [Kr+06]. It is also compatible with the three-body recombination data for positive
scattering length presented in the same paper.1 However, the data for a > 0 are not very
sensitive to the precise value of η∗ and values of η∗ as small as 0.01 would also be compatible.
The width parameter η∗ should only be weakly dependent on the magnetic field in a universal
region [BH06]. In a first approximation, it can be assumed to remain constant. A more serious
puzzle is that the resonance position a∗ = 397 a0 extracted from the dimer relaxation data is
not compatible with the value a∗ ≈ 1200 a0 found in [Kr+06]. The three-body recombination
data cannot be satisfactorily described using a∗ = 397 a0. This disagreement requires further
study. However, one has to keep in mind that the atom-dimer resonance is at the border of
the universal region since the van der Waals length scale is `vdW ≈ 200 a0 for Cs atoms.

For temperatures much larger than the Bose-Einstein-condensation temperature, the thermal
average can be replaced by a Boltzmann average.

The critical temperatures are estimated by setting the chemical potential to zero and solving
Eq. (4.11) for the critical temperature. This yields Tc,A ≈ 94 nK for the atoms and Tc,D ≈
32 nK for the dimers. Therefore, it seems justified to use Boltzmann distributions instead of
the Bose-Einstein distribution functions ni. The resulting calculation for β is analogous to
the method of Ref. [BH07a] but uses the parametrization of the scattering phase (4.4) instead
of an effective range expansion. The resulting curve is also shown in Fig. 4.1 as the dashed red
line. We remark that in the numerical evaluation of Eq. (8) in Ref. [BH07a] a factor of k2 in
the thermal average was omitted. This led to a wrong normalization of the curves in Figs. 1
and 2 of this reference. The dashed line also obviously describes the data quite well but yields
η∗ = 0.036. This shows how temperature dependence and averaging methods can partly be
compensated by adjusting the width parameter η∗. Thus, for an accurate determination of
η∗, reliable temperature and particle number measurements are crucial.

Using the effective range expansion for the atom-dimer scattering amplitude as in Ref. [BH07a]
instead of the phase shift parametrization of Eqs. (4.4, 4.5) does not alter the overall shape
or normalization of the dimer relaxation coefficient β. However, the extracted value of a∗
is shifted by about 3% to a higher value, whereas η∗ remains unchanged. The scatter-
ing length approximation with the atom-dimer scattering length given by aAD/a = 1.46 +
2.15 cot[s0 ln(a/a∗) + iη∗] does not lead to an equally good fit. The obtained values for β are
smaller especially for higher values of a. Besides a change in peak position, width and height,
we can only obtain a χ2/dof of 3–4.

We now turn to the data for T = 40 nK [Kn+09] and compare them to our theoretical
results for different values of η∗. Here, the atom and dimer numbers are NA = 3 × 104

and ND = 4 × 103, and the trap frequency is ω = 25.2 Hz [Kn+09] leading to the chemical
potentials µA = −1.21 × 10−8 kBK and µD = −8.87 × 10−8 kBK. The critical temperatures
are estimated as Tc,A ≈ 35 nK for the atoms and Tc,D ≈ 18 nK for the dimers such that the
temperature is only slightly larger than the critical temperature for the atoms. In Fig. 4.2
we show the data for the relaxation coefficient β at T = 40 nK together with our fit results.
The dashed red line gives our prediction for the relaxation coefficient β using the parameters
obtained by fitting the 170 nK data. The prediction is about a factor 2 too large compared to
the data. The dip in the data at the peak position represented by the third and fourth data

1Note that in the Cs experiment of [Kr+06] the regions a > 0 and a < 0 are not required to have the
same parameters since they are separated by a zero in the scattering length rather than a pole. See also the
discussion in [Kn+09].
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Figure 4.2: The dimer relaxation coefficient β as a function of a/a0 for T = 40 nK, a∗ =
397 a0, and different values of η∗. The data points are from [Kn+09].

points cannot be reproduced within our theory. If it is not simply a statistical fluctuation, it
must be due to physics not captured in our theory, such as non-universal effects or four-body
physics [PHM04, HP07, vSDG09]. If we keep the resonance position at a∗ = 397 a0 but fit
the parameter η∗ to the 40 nK data excluding the third and fourth data points, we obtain
the solid blue line. Still excluding the third and fourth data points this gives η∗ = 0.016 with
χ2/dof = 1.5 and describes the data satisfactorily.

4.4 Summary and Conclusions

In summary, we have calculated the atom-dimer relaxation rate for large positive scattering
length in a universal zero-range approach. We have improved on previous studies [BH04,
BH07a] by using a Bose-Einstein distribution for the thermal average and calculations of the
atom-dimer scattering phase shifts from effective field theory. Our results were then applied
to the atom-dimer relaxation data for Cs obtained by Knoop et al. [Kn+09]. Fitting the
resonance position and width parameters a∗ and η∗, we could get a good description of the
170 nK data. Using these parameters, we overpredict the relaxation data at 40 nK by a factor
of two. Moreover, our theory is not able to reproduce the dip in the 40 nK data directly at
the resonance position and the corresponding physics appears to be missing in our theory.
We demonstrated that this discrepancy is neither due to the thermal averaging procedure
nor due to the phase shift parametrization used. The resonance position at the border of
the universal region and the mismatch in the extracted resonance position from atom-dimer
relaxation and the three-body recombination data [Kr+06] suggest that non-universal physics
could be responsible. However, it is also conceivable that four-body losses become important
at the lower temperature. This question deserves further study but lies outside the range of
this thesis.



Chapter 5

Heteronuclear Systems – Bosons in
the S-Wave Channel

In this and in the following chapter, heteronuclear systems involving two species of atoms with
resonant interspecies interaction are investigated. We start in this chapter by considering
bosons as the majority species. For total angular momentum L = 0, the Efimov effect is
always present and can be seen in the observables. This chapter has been published as part
of Ref. [HHP10].

For the considered systems, only the interspecies scattering length is large. Therefore, we
now have only two resonant interactions out of three leading to different scaling factors.
For comparable masses, the scaling factor is quite large (for equal masses eπ/s0 ≈ 1986.1).
However, in the case of two heavy atoms and one light atom, this factor can become sig-
nificantly smaller, even smaller than the value 22.7 for identical bosons with three resonant
interactions [AN72, Ef72, Ef73, BH06]. This should stimulate experimental investigation of
the discrete scaling invariance. Relaxation and recombination losses near an interspecies
resonance have recently been investigated in mixtures of rubidium and potassium. The Bose-
Fermi combination 87Rb-40K has been studied at JILA [Zi+08] and measurements on the
Bose-Bose mixture 41K-87Rb have been carried out in Florence [Ba+09]. We apply our the-
ory to these and other mixtures of interest for ongoing and planned experiments.

The method used for the calculations is presented first of all. Then the numerical results are
given and we compare them subsequently to existing and future experiments. We end with
a summary.

5.1 Method

First, we set up the effective field theory method which provides a convenient implementa-
tion of the universal theory for large scattering length. We consider a system of one boson or
fermion of mass m1 (species 1) and two identical bosons of mass m2 (species 2). We assume
the interspecies interaction to be resonant and characterized by the S-wave scattering length

35
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Figure 5.1: Integral equation for the atom-dimer scattering amplitude A. Solid (dashed)
lines denote atom species 2 (1). Mixed double lines denote the full dimer propagator.

a� `vdW, where `vdW is the van der Waals range of the potential. Nonresonant intraspecies
interaction will be neglected. If species 1 is also bosonic and weakly interacting, all the forth-
coming results directly apply to the other possible (interacting) triple by simply exchanging
the labels 1 and 2. We therefore include only the interaction between the atoms of species 2
and the dimers. Hence, our effective Lagrangian reads

L = ψ†1

(
i∂t +

∇2

2m1

)
ψ1 + ψ†2

(
i∂t +

∇2

2m2

)
ψ2 + g2d

†d

− g2

(
d†ψ1ψ2 + ψ†1ψ

†
2d
)
− g3

4
d†dψ†2ψ2 + · · · , (5.1)

where the dots represent higher-order derivative interactions, and g2 and g3 are the bare two-
and three-body coupling constants.

From the Lagrangian (5.1), we can deduce Feynman rules and obtain the full dimer propagator
and the three-body integral equation (see Appendix A.1 for details on the derivation). For
the full dimer propagator we find

D(P0, ~P ) =
2π

µg2
2

[
1

a
−
√
−2µ

(
P0 −

P 2

2M

)
− iε

]−1

, (5.2)

where P = |~P |, µ = m1m2/(m1 +m2) is the reduced mass, and M = m1 +m2 is the mass of
the dimer. The dimer wave function renormalization is given by Z−1

D = g2
2aµ

2/(2π).

The scattering between a dimer and an atom is described by the integral equation shown in
Fig. 5.1. Using the Feynman rules derived from Eq. (5.1) and given in Appendix A.1 and
projecting onto relative S-waves, we have

A(p, k;E) =
2πm1

aµ2

[
K(p, k)− g3

4m1g2
2

]

+
m1

πµ

∫ Λ

0
dq q2

[
K(p, q)− g3

4m1g2
2

]
A(q, k;E)

− 1
a +

√
−2µ

(
E − q2

2µAD

)
− iε

, (5.3)

where µAD = m2(m1 + m2)/(2m2 + m1) is the reduced mass of an atom and a dimer, the
relative momenta of the incoming and outgoing atom-dimer pair are denoted by p and k,
respectively; and E is the total energy. The contribution of the S-wave projected one-atom
exchange is given by

K(p, q) =
1

2pq
ln

[
p2 + q2 + 2pq µ

m1
− 2µE − iε

p2 + q2 − 2pq µ
m1
− 2µE − iε

]
, (5.4)
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and the contribution of the three-body coupling g3 can be written as

g3

4m1g2
2

= −H(Λ)

Λ2
, (5.5)

where H(Λ) is a dimensionless log-periodic function of the cutoff Λ, which depends on a three-
body parameter Λ∗ [BHvK99a, BHvK99b]. The mass-ratio dependence of the discrete scaling
factor exp(π/s0) follows from the equation for s0 (see Appendix A.3 for the derivation):

s0 cosh(πs0/2)− 2 sinh(φs0)/ sin(2φ) = 0 , (5.6)

where we introduce the parameter

φ = arcsin [1/(1 + δ)] (5.7)

and the notation δ = m1/m2. For particles of equal mass, the solution of Eq. (5.6) is
s0 ≈ 0.4137 leading to the scaling factor exp(π/s0) ≈ 1986.1. Because of the log-periodicity
of H(Λ) one can always find a value of the cutoff Λ with H = 0. In practice, one can therefore
simply omit the three-body coupling in the leading-order calculations and use the cutoff Λ
as a three-body parameter [HM01]. We use this strategy in the following. For fixed δ, the
values of Λ and Λ∗ are related by a multiplicative constant.

The scattering amplitude A has simple poles at the three-body bound-state energies E =
−ET < 0. The energies can be obtained from the solution of the following homogeneous
integral equation for the bound-state amplitude B:

B(p;ET) =
m1

πµ

∫ Λ

0

dq q2K(p, q) B(q;ET)

− 1
a +

√
2µ
(
ET + q2

2µAD

) , (5.8)

which has nontrivial solutions only for three-body binding energies ET > 0. In the following,
we use Eqs. (5.3) and (5.8) to describe three-body properties of heteronuclear mixtures.

5.2 Numerical Results

Few-body loss phenomena offer a unique view on scattering processes in ultracold quantum
gases. In particular, an enhancement of the loss rate can be an evidence of a few-body reso-
nance. The universal theory predicts the relative positions of such resonances as a function
of the scattering length. The universality can thus be tested experimentally by measuring
the lifetime of a cold atomic gas as a function of a. Ideally, in order to see the universal
scaling, one needs to detect more than one resonance in a single universal region, that is, a
region where the three-body parameter can be assumed constant. This is believed to happen
in a narrow vicinity of a Feshbach resonance, where large variations of a are accompanied by
(assumed) much weaker variations of the three-body parameter. We now discuss three-body
loss resonances in a heteronuclear mixture as predicted by the universal theory.
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5.2.1 Resonance Positions

The mechanism of three-body losses and its relation to the positions of Efimov levels in the
heteronuclear case are qualitatively the same as for three identical bosons given in Subsec-
tion 2.4.1. Nevertheless, we here describe it again in some detail to facilitate the reading of
this chapter. The scattering-length dependence of the energy of a generic trimer is illustrated
in Fig. 2.6. On the negative side of a Feshbach resonance, the trimer hits the three-body scat-
tering threshold at a = a− < 0, which leads to an enhanced probability of finding three atoms
at distances of the order of |a|. Such atoms can then approach each other to distances of the
order of `vdW and recombine into a deeply bound dimer and a residual atom. The released
binding energy (of order ~2/(2µ`2vdW)) transforms into the kinetic energy of the recombina-
tion products, which hence leave the trap. On the positive side of the Feshbach resonance,
there exists a weakly bound (shallow) dimer state with binding energy ED = ~2/(2µa2). This
formula, taken with a minus sign, determines the atom-dimer threshold (parabola in Fig. 2.6).
By following the upper blue line in Fig. 2.6 from negative to positive values of a, one can
see that the trimer crosses the atom-dimer threshold at a = a∗ > 0, where one predicts an
elastic atom-dimer resonance. At this point, formation of deep dimer states (in this case
called relaxation) in atom-dimer collisions is also enhanced for the same reason as above.
According to [Za+09], the atom-dimer scattering resonance should be noticeable even in a
purely atomic sample due to rescattering processes. Indeed, before leaving the trap, shallow
dimers formed in the process of three-body recombination can collide with other atoms. The
recombination rate itself is featureless around a = a∗, but the atom-dimer cross section in the
vicinity of this point is highly a dependent. Thus, at a = a∗ the three-body recombination
can be enhanced in the sense that many more than three atoms are expelled from the trap
leading to a measurable trap loss. We come back to this issue in Subsection 5.3.2.

The ratio of the two resonance positions, a∗/|a−|, is of fundamental importance for studies
of the universal three-body physics because in the universal limit, it does not depend on the
three-body parameter. In order to calculate this ratio we solve the bound-state Eq. (5.8) for
ET = 0, a < 0, and for ET = ED, a > 0, with the same (arbitrary) cutoff Λ. The solid red

line in Fig. 5.2 shows a
(n)
∗ /|a(n)

− | as a function of the mass ratio δ. Here we use the index
n introduced in Eq. (2.18) in order to emphasize that the values of a∗ and a− are taken
for one and the same Efimov state (connected by the blue lines in Fig. 2.6). The dashed
black line in Fig. 5.2 differs from the solid one by the scaling factor exp(π/s0) and shows the

ratio a
(n+1)
∗ /|a(n)

− |. Note that the scaling factor rapidly increases with δ for δ >∼ 1 and one
can conclude that a sequence of Efimov resonances is more likely to be seen in systems with
smaller mass ratios.

5.2.2 Three-Body Recombination for a > 0

Let us now discuss the shapes of the inelastic loss resonances and calculate the three-body
rate constants in a heteronuclear system. We first consider the case of positive scattering
length, a > 0, where the atoms can recombine into the shallow dimer and into deep dimers.
The recombination into the shallow dimer can be related to the T-matrix element shown in
Fig. 5.3 a). The event rate constant for inelastic scattering α is defined by the rate equation

d

dt
n2 = 2

d

dt
n1 = −2αn1 n

2
2 , (5.9)
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Figure 5.3: Diagrammatic representation of a) the three-body recombination amplitude and
b) the elastic three-body scattering. Line patterns are the same as in Fig. 5.1.

where ni denotes the atomic number densities of the corresponding species.

The rate constant αs for recombination into the shallow dimer is given by

αs = 4µAD

√
µAD

µ
a2 |A (0, kbr; 0)|2 , (5.10)

with the dimer breakup momentum kbr =
√
µAD/µ a

−1. If deep dimers are present, their
effect on the recombination into the shallow dimer can be incorporated by analytically con-
tinuing the three-body parameter into the complex plane [BHKP09]. We thus make the
substitution

Λ → Λc = Λeiη∗/s0 (5.11)

in Eq. (5.3), where η∗ accounts for the effect of the deep dimers. A nonzero value of η∗ also
generates the width of the Efimov trimers. By evaluating Eq. (5.10) numerically, we find
that the known analytical formula for the three-boson case [BHKP10] simply acquires a new
mass-dependent overall coefficient. The modified analytical formula is hence

αs = C(δ)
B (sin2[s0 ln(a/a0∗)] + sinh2 η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

~a4

m1
, (5.12)
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Figure 5.4: The coefficient C for the different three-body recombination rates as a function
of the mass ratio δ = m1/m2. The inset shows C for larger values of δ.

where B = 128π2(4π − 3
√

3) and the mass-dependent coefficient is denoted by C(δ). The
parameter a0∗ gives the position of the minimum in the three-body recombination. The
coefficient C(δ) is shown in Fig. 5.4. The error in the extraction of C(δ) from fitting Eq. (5.12)
to our numerical results for αs is of order 10−3 for δ ≤ 2. For larger values of δ the numerical
extraction of C becomes difficult because of a very large value of the scaling factor. To depict
C(δ) for δ ≥ 2 we use the analytical formula derived in detail in Section IV of Ref. [HHP10],

C(δ) =
(1 + δ)2 arcsin [1/(1 + δ)]−

√
δ(2 + δ)

2(4π − 3
√

3)
. (5.13)

Although our calculations in this section are conducted by varying the complex three-body
parameter Λc, we present the results in terms of the practically relevant length parameters
a− < 0, a∗ > 0, and a0∗ > 0, and the dimensionless elasticity parameter η∗. The universal
theory predicts that the ratios a∗/|a−| and |a−|/a0∗ depend only on the mass ratio δ. The
former is shown in Fig. 5.2 and the latter is |a−|/a0∗ = exp(π/2s0) as derived in [HHP10].
This fixes the relative positions of all the three-body loss features on both sides of the Feshbach
resonance.

The total rate of three-body recombination into all dimers (shallow and deep) for a > 0 can
be obtained from the optical theorem. It relates the imaginary part of the forward T-matrix
element (shown in part b) of Fig. 5.3) for vanishing momenta to the event rate constant of
inelastic scattering, α. This leads to the total recombination rate constant

αs + αd = ImT122→122 = 8π a3 ImĀ(0, 0; 0) , (5.14)
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where Ā denotes the appropriately infrared subtracted amplitude [BHKP10]:

Ā(p, k;E) = A(p, k;E)− 4π(1 + δ)

m1ap2
+

4π(1 + δ)2

m1p
arcsin [1/(1 + δ)]

+
8a

m1

[
(1 + δ)2 arcsin [1/(1 + δ)]−

√
δ(2 + δ)

]
ln p .

(5.15)

More details on the derivation of Ā can be found in Appendix A.2. By subtracting Eq. (5.12)
from Eq. (5.14) we find the rate constant for the recombination into deep dimers:

αd = C(δ)
B coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

~a4

m1
, (5.16)

where the coefficients C(δ) and B are the same as in Eq. (5.12).

When s0 is not too small, such that exp(2πs0)� 1, the denominators in Eqs. (5.12) and (5.16)
are practically independent of a. In this case the a dependence of αs and αd is simplified,
and the corresponding expressions are known in the case of three identical bosons (see, for
example, Ref. [BH06]).

5.2.3 Atom-Dimer Scattering

On the positive side of the Feshbach resonance (a > 0) it is also possible to prepare an
ultracold mixture of atoms and weakly bound dimers (see, for example, Refs. [Zi+08, Kn+09]).
An important observable in this case is the atom-dimer scattering length. Within our theory,
it is given by

aAD = −µAD

2π
A
(

0, 0;− 1

2µa2

)
, (5.17)

and its universal dependence on a is parametrized by

aAD =
(
C1(δ) + C2(δ) cot[s0 ln(a/a∗)]

)
a , (5.18)

where the coefficients C1(δ) and C2(δ), calculated numerically, are shown in Fig. 5.5. Here,
we estimate the numerical error in the determination of C1(δ) and C2(δ) to be of order 10−3.

Efremov and collaborators have recently derived Eq. (5.18) for the atom-dimer scattering
length in the Born-Oppenheimer approximation valid in the limit δ → 0 [Ef+09]. For δ =
0.081, corresponding to the 7Li-87Rb-87Rb system, our values for the coefficients C1 and C2

agree with the ones given in Ref. [Ef+09] to within 2-3% (see Table 5.1). However, we observe
a stronger discrepancy in between our value, s0 = 1.523, and the Born-Oppenheimer result,
s0 = 1.322, for this system [Ef+09].

The effect of deep dimers on the atom-dimer scattering process can be incorporated by
replacing a∗ → a∗ exp(−iη∗/s0), equivalent to Eq. (5.11). At the scattering threshold, the
atom-dimer relaxation rate constant β, defined by the rate equation

d

dt
nA =

d

dt
nD = −β nA nD , (5.19)
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Figure 5.5: The parameters C1(δ) and C2(δ) in the expression for the atom-dimer scattering
length, Eq. (5.18).

is given by [BH04]

β(E = −ED) = −(4π~/µAD) ImaAD

= 2π C2(δ)
δ(δ + 2)

δ + 1

sinh(2η∗)

sin2[s0 ln(a/a∗)] + sinh2 η∗

~a
m1

. (5.20)

Furthermore, we can calculate the atom-dimer relaxation rate constant above threshold. It
is related to the inelastic atom-dimer scattering cross section by

β(E) =
k

µAD
σ

(inel)
AD (E) , (5.21)

where k =
√

2µAD(E + ED). The energy dependent inelastic cross section is given by the
difference of the total and the elastic cross sections,

σ
(inel)
AD (E) =

2µAD

k
ImA(k, k;E)−

µ2
AD

π
|A(k, k;E)|2 . (5.22)

We can use this formula up to the dimer breakup threshold at k = kbr and thus map out the
trajectory of the resonance peak. It moves from a∗ at the scattering threshold, E = −ED,
to |a−| at the dimer breakup threshold, E = 0. For δ < 3.475 the resonance peak moves to
values a > a∗. Starting at δ = 3.475, where we have exactly a∗/|a−| = 1, it reverses this
behavior and moves to values a < a∗. The peak height diminishes considerably with the
energy. This effect is very large, especially for small values of δ. For example, for η∗ = 0.1
and δ = 0.1, the peak at E = 0 is smaller by a factor of 706 than the peak at E = −ED. For
δ = 10, this factor still is 19.1. At E = 0, we find excellent agreement with the analytical
formula

β(E = 0) = π
[δ(δ + 2)]3/2

(δ + 1)2

sinh(2πs0) sinh(2η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a0∗)]

~a
m1

, (5.23)
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Figure 5.6: The dimer relaxation rate constant β in units of ~a/m1 for η∗ = 0.1 and
δ = 0.471 as function of a/a∗. The solid, short-dashed, long-dashed, and dot-dashed blue
lines show β for E/ED = −1, −0.95, −0.5, and 0, respectively. The double-dot-dashed red
line indicates the trajectory of the resonance maximum as the energy is increased from −ED

to zero.

which is derived in [HHP10]. The peak position of β (E = 0) coincides exactly with the
position of the maximum of the three-body recombination rate at threshold.

In Fig. 5.6, we show numerical results for β for η∗ = 0.1 and δ = 0.471 corresponding to the
K-Rb-Rb system observed in the Florence experiment [Ba+09]. The solid, short-dashed, long-
dashed, and dot-dashed blue lines show β for E/ED = −1, −0.95, −0.5, and 0, respectively.
As the energy is increased toward the breakup threshold, the resonance height decreases
strongly and the resonance becomes less pronounced. The double-dot-dashed red line shows
the trajectory of the resonance maximum as the energy is increased from −ED to zero. As
the energy is increased, the resonance position is shifted from a∗ toward larger values of a
until it reaches its maximum value of 2.04 a∗ for E/ED ≈ −0.25. For larger energies, the
resonance position moves back to smaller values of a and reaches |a−| = 1.89 a∗ at the dimer
breakup threshold.

5.2.4 Three-Body Recombination for a < 0

On the negative side of the Feshbach resonance, shallow dimers are absent and atoms can
only recombine into deep dimers. The corresponding rate constant is again determined by
using the optical theorem

αd = ImT122→122 = 8π a3 ImĀ(0, 0; 0) . (5.24)
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δ s0 exp(π/s0) a∗/|a−| C(δ) C1(δ) C2(δ)

6Li-174Yb-174Yb 0.034 2.249 4.043 0.10 0.077 2.89 2.56
7Li-133Cs-133Cs 0.053 1.850 5.465 0.13 0.072 2.54 2.52
6Li-87Rb-87Rb 0.069 1.635 6.835 0.16 0.068 2.33 2.5
7Li-87Rb-87Rb 0.081 1.523 7.864 0.18 0.066 2.22 2.47
40K-87Rb-87Rb 0.460 0.6536 122.7 0.51 0.037 1.14 2.08
41K-87Rb-87Rb 0.471 0.6444 131.0 0.52 0.037 1.13 2.07
87Rb-174Yb-174Yb 0.5 0.6238 153.8 0.53 0.036 1.11 2.05
87Rb-41K-41K 2.21 0.2462 348000 0.91 0.015 0.94 1.30

Table 5.1: Universal parameters for various heteronuclear mixtures.

We have performed numerical calculations of αd for mass ratios δ ≤ 2, where the numerical
accuracy is better than 0.1%. Our results agree with the formula

αd =
C(δ)

2

B coth(πs0) sinh(2η∗)

sin2[s0 ln(a/a−)] + sinh2(η∗)

~a4

m1
, (5.25)

where the coefficients C(δ) and B are the same as in Eqs. (5.12) and (5.16). Equation (5.25)
is derived in Ref. [HHP10].

5.3 Comparison to Experiments

There are several experiments on heteronuclear Bose-Bose and Bose-Fermi mixtures, to which
our results are directly applicable (in the universal limit). In Table 5.1, we present the uni-
versal predictions for some combinations of alkali isotopes being investigated at the moment
and interesting from the viewpoint of Efimov few-body physics. We sort them by the value
of the scaling factor.

5.3.1 The 40K-87Rb Mixture

Zirbel et al. at JILA recently studied weakly bound fermionic 40K-87Rb molecules and their
stability in collisions with atoms near a wide (open-channel-dominated) heteronuclear Fesh-
bach resonance at B0 = 546.7 G [Zi+08]. In particular, they measured the atom-dimer relax-
ation rate for collisions of these dimers with Rb atoms as a function of a. The corresponding
data can be fit very well with our Eq. (5.20), where the fitting parameters are a∗ = 200±50 a0

and η∗ = 0.05 ± 0.02, see Fig. 5.7. In the same work, the authors also measured the three-
body recombination rate constant on both sides of this Feshbach resonance (i.e., in the same
universal region). We fit their results with Eq. (5.25) on the negative side of the resonance
and with the sum αs + αd given by Eqs. (5.12) and (5.16) on the positive side1. A good

1Note that our rate constant α is half the three-body loss coefficient K3 defined in [Zi+08].
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Figure 5.7: The relaxation rate β as a function of a in units of a0 for the 40K87Rb–87Rb
system assuming a∗ = 200 a0 and η∗ = 0.05. The data points and errors are read off from
Ref. [Zi+08].

agreement is achieved if we choose a∗ = 300± 100 a0 (for this mass ratio a− = −1.96 a∗, see
Table 5.1) and the same η∗ as above. This is shown in Fig. 5.8. These parameter values lead
to a peak of the three-body recombination at a = a− ≈ −600 a0. As the interspecies van der
Waals length in the K-Rb system is `vdW ≈ 70 a0 [Ju09], this resonance should be within the
range of validity of the universal theory. In Fig. 5.8, we show the region a <∼ 3`vdW as grey
shaded area. Although in Ref. [Zi+08] the peak has not been identified, the overall shapes of
β and α measured for this particular Feshbach resonance indicate that it is worth performing
a more detailed measurement of the three-body loss rate around this value of a.

5.3.2 The 41K-87Rb Mixture

The group of Inguscio and Minardi in Florence investigated a Bose-Bose mixture of 87Rb
and 41K [Ba+09]. They observed three loss resonances by scanning the scattering length and
monitoring the population dynamics of the species in the vicinity of each of the resonances.
For negative scattering length, they identified a K-Rb-Rb resonance at a = −246 a0 and
a K-K-Rb resonance at a = −22000 a0. The third resonance is observed at the positive
scattering length a = 667 a0 and attributed to enhanced atom-dimer scattering in the K-Rb-
Rb three-body system. This process is assumed to contribute to three-body losses through
multiple rescattering processes (see also Ref. [Za+09]). An independent confirmation of this
resonance in a system prepared directly out of K-Rb dimers and Rb atoms would be desirable.
Unfortunately, in contrast to the JILA experiment, the dimers are bosonic and their short
lifetime can make such a confirmation difficult [Mi].

With an interspecies van der Waals length of `vdW ≈ 70 a0 [Ju09], these resonances should
be within the range of validity of the universal theory. Assuming that the observed K-Rb-Rb
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Figure 5.8: The recombination rate K3 = 2α as function of a for the 40K-87Rb-87Rb system
assuming a∗ = 300 a0 and η∗ = 0.05. The shaded grey area indicates the region that lies
outside the range of validity of the universal theory. More details are given in the text. The
data points and errors are read off from Ref. [Zi+08].

features are due to Efimov resonances, one can extract the ratio a∗/|a−| = 2.7 from the
Florence experiment, whereas our theory predicts a∗/|a−| = 0.52. The discrepancy can be
attributed to the effective range corrections. In particular, one should be careful with the
feature at a = −246 a0, which is not too large compared to the van der Waals length. Besides,
if we believe in the “rescattering” nature of the positive-a resonance, one should take into
account a finite-energy shift of the position of the atom-dimer scattering resonance. Indeed,
even at zero temperature, dimers formed by three-body recombination collide with stationary
Rb atoms at the finite collision energy [m2

Rb/(mK + 2mRb)2]ED ≈ 0.16ED. In Fig. 5.6, we
have shown numerical results for β for energies from the scattering threshold, E = −ED, up
to the breakup threshold, E = 0, using η∗ = 0.1 and δ = 0.471 corresponding to the K-Rb-Rb
resonance at a = 667 a0. At E = 0, the resonance peak is only 7% higher than the minimum
value of β and the resonance is almost completely washed out. Moreover, the peak value of
β at E = 0 is a factor of 300 smaller than at E = −ED. Of course, the explicit numbers
depend on the value of η∗, but one should not exclude the possibility of other explanations
of this positive-a feature.

Aside from detecting the positions of the resonances, it is desirable to compare the actual
shapes of the a-dependence of the loss rate with the theoretical predictions, especially on the
positive side of the resonance, where αs +αd is rather smooth. So far, the three-body recom-
bination rate in the 87Rb-41K mixture has been measured for two values of a < 0 [Ba+09, Mi],
and the comparison with our calculation is rather inconclusive. Figure 5.9 shows αd for the
K-Rb-Rb resonance at a = −246 a0 where only the recombination into deep dimers can occur.
The dashed blue curve is calculated using the value η∗ = 0.12 suggested in Ref. [Ba+09]. The
data point close to the resonance is taken from Ref. [Ba+09], whereas the one farther away
from the resonance gives an upper limit of the recombination rate [Mi]. In order to illustrate
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Figure 5.9: The recombination rate αd as a function of a for the 41K-87Rb-87Rb system
assuming a− = −246 a0 and three values of η∗: η∗ = 0.12 (dashed blue line), η∗ = 0.01 (solid
black line), and η∗ = 0.4 (dash-dotted green line). Data points indicated by diamonds are
taken from Refs. [Ba+09, Mi]; see text.

the sensitivity of the result to η∗, we also show curves for η∗ = 0.01 (solid black line) and
η∗ = 0.4 (dash-dotted green line). The discrepancy between the measured recombination rate
at the resonance and our result for η∗ = 0.12 is about one order of magnitude. In order to
understand its origin, more measurements around the resonance position are required. Such
data would allow for a more precise determination of the width parameter η∗ and of the
resonance shape predicted by the universal theory.

5.3.3 Future Experiments

A mixture with nearly the same mass ratio as the two already mentioned experiments is
currently investigated in Düsseldorf: 87Rb-174/176Yb. They already succeeded in creating
heteronuclear molecules [Ne+09] and ultracold mixtures of the two species [Ta+10]. However,
further cooling seems to be necessary for measuring the Efimov effect. The Tübingen group
of Zimmermann recently studied the 7Li-87Rb and 6Li-87Rb mixtures. They identified and
quantified several interspecies Feshbach resonances in both of them [Ma+09, DMZC08] and
have reached quantum degeneracy [Si+05]. These mixtures are characterized by rather small
mass ratios and, therefore, small scaling factors, which is favorable for observing the discrete
scaling invariance. Another very good candidate for studying the Efimov effect with even
smaller scaling factors is a mixture of 133Cs with either isotope of lithium (the 7Li-133Cs
mixture was created in Heidelberg [De+08]). The smallest mass ratio within reach is δ =
0.034 for 6Li-174/176Yb. This heteronuclear system is investigated in Japan [Har+11] and
Seattle [Iv+11, Han+11] at the moment and both groups have already reached quantum
degeneracy. As soon as the interspecies Feshbach resonances are mapped out, a search for
Efimov features can begin. The universal parameters for all of the mentioned mixtures can be
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found in Table 5.1. Predictions for the three-body recombination and atom-dimer relaxation
rates can be obtained from Eqs. (5.12), (5.16), (5.20), (5.23), and (5.25).

5.4 Summary and Conclusions

In this chapter, we have calculated the three-body loss rates in heteronuclear mixtures of
atoms for the case of large scattering length between the unlike atoms. We have analyzed
this problem using an effective field theory framework.

We have formulated a universal EFT for this system and derived momentum-space integral
equations for the trimer energies and the atom-dimer scattering amplitude. From an analysis
of the bound-state equation we have calculated the ratio of the resonance positions a∗/|a−|
as a function of the mass ratio δ. Moreover, we have calculated the three-body recombination
and atom-dimer relaxation rates numerically. We have provided semianalytical expressions
for the rate constants of three-body recombination into shallow and deep dimers as a function
of the interspecies scattering length a and the Efimov width parameter η∗. Furthermore, we
have calculated the atom-dimer relaxation constant from the scattering threshold at E = −ED

up to the dimer breakup threshold at E = 0. We find excellent agreement of our numerical
results from the momentum-space integral equations with the expressions derived analytically
from configuration space in [HHP10].

The expressions in Eqs. (5.12), (5.13), (5.16), and (5.25) fully determine the three-body
recombination rates for heteronuclear bosonic mixtures with resonant scattering between the
unlike atoms in the universal zero-range theory. The atom-dimer relaxation rates at E = −ED

and E = 0 are given by Eqs. (5.18), (5.20), and (5.23). These equations are universal and
can be used to analyze experimental data for any combination of atoms within the range of
applicability of the universal theory.

In Ref. [DE06a], D’Incao and Esry give a general functional dependence of the recombination
rates on the scattering length for all possible combinations of bosons and fermions. This
includes the case of two identical bosons and a third atom with L = 0 which we address
here. We agree with their expressions for αd in the case a < 0 and for β. For αs, our general
form (5.12) does not agree with their result. The proportionality of αs to sin2(s0 ln a + φ3)
where φ3 is a short-range phase [DE06a, DE06b] emerges only if exp(2πs0) � 1 and the
expression (5.12) can be simplified (cf. Ref. [BH06]). This is the case for small mass ratios
δ. Moreover, our prediction for the dependence of αs on δ (see Eqs. (5.12) and (5.13)) differs
from the result αs ∝ [δ(2 + δ)]3/2a4/(1 + δ)2/m1 obtained in Ref. [DE06a].

We have applied our results to some heteronuclear mixtures in ongoing and planned ex-
periments. We find good agreement between theory and the JILA experiment [Zi+08] that
investigated 40K-87Rb molecules and their stability in collisions with atoms near a wide het-
eronuclear Feshbach resonance at B0 = 546.7 G. For the recent experiment by the Florence
group which uses a mixture of 41K and 87Rb atoms [Ba+09], we observe moderate discrep-
ancies between theory and experiment. We obtain a∗/|a−| = 0.52 for the resonance positions
while the experimental ratio is a∗/|a−| = 2.7. Because neither the effective range corrections
nor the experimental errors of the ratio are known accurately, no definite conclusion can be
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drawn at the moment. In particular, our analysis of atom-dimer relaxation suggests that ex-
planations should be considered other than an Efimov resonance for the feature at a = 667 a0

that was used to extract the value of a∗.

Using the value η∗ = 0.12 extracted in Ref. [Ba+09], we find that the calculated recombination
rate at the resonance is about one order of magnitude too small. Using smaller values of η∗,
the size of the experimental rate can be reproduced. In order to resolve this discrepancy,
more measurements around the resonance position are required. Currently, there are only
two data points and η∗ cannot be determined accurately. Additional data would allow for a
more precise determination of η∗ and allow for a test of the resonance shape predicted by the
universal theory.

Finally, we have calculated the universal parameters determining the three-body loss rates
for various other mixtures and have summarized them in Table 5.1. Extending earlier work
by D’Incao and Esry [DE06a, DE06b], our predictions lay the theoretical groundwork for the
experimental observation of Efimov physics in heteronuclear mixtures. They should be useful
for planning and analyzing future experiments.





Chapter 6

Heteronuclear Systems – Fermions
and Higher Angular Momenta

The most prominent case of heteronuclear systems has been demonstrated in the previous
chapter and we now turn to the other possibilities. This includes bosons in higher angular
momentum channels and all systems where fermions are the majority species. The presented
results were previously published in [HH11b].

If the heavy species in a heteronuclear mixture is fermionic, the Efimov effect is only present
in a P -wave channel and only if the masses differ by at least a factor of 13.61 [Ef73]. This
behavior can be generalized to higher partial waves. The parameters sL, determining the
scaling factor for total angular momentum L, can be estimated by [Ef73]

s2
L ≈ s2

0 − L(L+ 1) , (6.1)

where s0 characterizes the corresponding scaling factor for zero angular momentum. s2
L ≥ 0

must be fulfilled for the occurrence of the Efimov effect (also see more detailed discussion in
section 6.1). The necessary mass ratios for the P -wave case (L = 1) could be realized, for ex-
ample, with 6Li-87Sr, 6/7Li-137Ba, 6/7Li-167Er, or 6/7Li-171/173Yb. Higher partial waves would
only become accessible if hydrogen or helium atoms can be used. Dimer-dimer scattering in
heteronuclear mixtures showing a P -wave Efimov effect was investigated in [MKSP08].

The main focus of this chapter is also on such mixtures prepared as atom-dimer systems.
We study in detail how the Efimov effect in higher partial waves affects observables such as
atom-dimer scattering and atom-dimer relaxation. We briefly introduce our effective field
theory framework and derive analytical expressions for the elastic and inelastic atom-dimer
scattering cross sections at the dimer breakup threshold. For the P -wave case, we numerically
calculate the atom-dimer scattering cross sections and relaxation rates as a function of the
scattering length, three-body parameter, and mass ratio away from threshold. Finally, some
quantities for systems without the Efimov effect are also computed.

51
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87Sr 137Ba 167Er 171Yb 173Yb

6Li 14.5 22.8 27.8 28.5 28.8
7Li - 19.6 23.9 24.4 24.7

Table 6.1: Mass ratios δ−1 for possible experimental mixtures showing the P -wave Efimov
effect.

6.1 Framework

In the following, we investigate various heteronuclear atomic systems in detail and closely
follow the formalism and conventions already used in Chapter 5.

We consider systems consisting of two different atomic species, where the occurring trimers,
Efimov or non-Efimov, are built of one atom of type 1 and two atoms of type 2. The unlike
particles have a resonant S-wave interaction which can be tuned using a Feshbach resonance,
whereas the interaction between identical particles can be neglected. The corresponding
Lagrangian is given as in Chapter 5 by

L = Ψ†1

(
i∂t +

∇2

2m1

)
Ψ1 + Ψ†2

(
i∂t +

∇2

2m2

)
Ψ2

+g2d
†d− g2

(
d†Ψ1Ψ2 + Ψ†1Ψ†2d

)
− g3

4
d†dΨ†2Ψ2 + · · · , (6.2)

where m1/2 denotes the mass of particles of species 1 or 2, g2/3 are the bare two-body and
three-body coupling constants, and d is an auxiliary field for a dimer consisting of particle
species 1 and 2. The ellipses represent higher-order terms containing more fields and/or
derivatives. As in Chapter 5, we denote the ratio of the masses of particle species 1 and 2
by δ ≡ m1/m2. In this study, however, we explicitly focus on higher partial waves with total
angular momentum L > 0.

Because of symmetry, the Efimov effect can only occur in even angular momentum channels
if the two like particles are bosons and in odd angular momentum channels if they are
fermions [NFJG01]. In the following, we will refer to the first case as bosonic and the second
case as fermionic for simplicity. The nature of the third particle is not relevant for our
purpose. For inverse mass ratios δ−1 larger than a critical ratio δ−1

c,L, Efimov physics can

be observed [Ef73]. At δ−1
c,L and beyond, the angular momentum barrier is overcome by

the attractive interaction between unlike particles (cf. Eq. (6.1)). The light particle can be
thought of as an exchange particle between the two heavy atoms. In this case, the “fall to the
center” phenomenon typical for the Efimov effect can occur. A (hybrid) Born-Oppenheimer
description has been used in the limit of a very light particle of species 1 [MKSP08, Ef+09].
In the case of L = 1, the mass ratio must satisfy δ−1 >∼ 13.61 = δ−1

c,1 [Ef73, Pe03]. The D-wave

Efimov effect starts at δ−1 >∼ 38.63 = δ−1
c,2 [Ef73, KM07b] and its observation would always be

obscured by the already present S-wave effect. Consequently, the fermionic P -wave case is
the only relevant one in cold atom experiments besides the S-wave bosonic case. The mass
ratios δ−1 for some possible mixtures showing the P -wave Efimov effect are given in Table 6.1.
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It is straightforward to derive Feynman rules and to obtain the full dimer propagator from
the Lagrangian in Eq. (6.2) (for more details, see Chapter 6 or Appendix A.1). In the three-
body system, we obtain an integral equation for the off-shell atom-dimer scattering amplitude
AL(p, k;E) known as the STM equation [STM57]. The amplitude depends on the relative
momenta of the atom and the dimer in the initial state k and in the final state p as well
as on the total energy E. All three-body observables can be obtained from this amplitude
evaluated in appropriate kinematics. Projecting on total angular momentum L, the equation
becomes

AL(p, k;E) = (±1)
2πm1

aµ2

1

pk
(−1)LQL

(
p2 + k2 − 2µE

2pkµ/m1

)
+(±1)

m1

πµ

∫ Λc

0
dq
q

p
(−1)LQL

(
p2 + q2 − 2µE

2pqµ/m1

)
× AL(q, k;E)

−1/a+
√
−2µ(E − q2/(2µAD))

, (6.3)

where the prefactor +1 corresponds to the atoms of species 2 being bosons and −1 to fermions.
Moreover, µ = m1m2/(m1 + m2) is the reduced mass of two unlike atoms, µAD = m2(m1 +
m2)/(m1 + 2m2) is the reduced mass of an atom and a dimer, and

QL(z) =
1

2

∫ 1

−1
dx

PL(x)

z − x
(6.4)

is a Legendre function of the second kind. The log-periodic dependence of the three-body
interaction g3 on the cutoff has been used to absorb the complex three-body parameter
into the momentum cutoff Λc in Eq. (6.3) [BH04]. The absolute value of the cutoff Λc

is proportional to the binding momentum of the deepest Efimov state, whereas the complex
phase determines the lifetime of the Efimov trimers, Λc ∝ eiη∗/sLκ∗. Physically, the parameter
η∗ takes into account the effects of deeply bound dimers which provide decay channels for
the Efimov trimers [BH04]. In the channels without the Efimov effect (odd angular momenta
for bosons, even angular momenta for fermions, or for δ−1 < δ−1

c,L), the absolute value of
the momentum cutoff Λc can be taken to infinity. The three-body interaction in Eq. (6.2)
is higher order in these channels and all observables are to leading order determined by the
scattering length alone.

6.2 Scaling Factor and Resonance Positions

If more than one Efimov resonance feature can be measured in an experiment, the scaling
factor exp(π/sL) can be deduced. The quantity sL can be computed analytically by con-
sidering the large momentum behavior of Eq. (6.3) [Da61, BHvK99a, Gr05]. In this limit
the energies and inverse scattering lengths can be neglected compared to the momenta p
and q, the inhomogeneous term as well as purely polynomial terms in the integral kernel are
suppressed, and the momentum integration can be extended to infinity. This leads to the
equation

ÃL(p) = (±1)(−1)L
m1

πµ

√
µAD

µ

∫ ∞
0

dq

q
PL

(
p2 + q2

2pqµ/m1

)
Q0

(
p2 + q2

2pqµ/m1

)
ÃL(q) , (6.5)
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where we have defined ÃL(p) ≡ pAL(p, k;E). Since the equation is scale invariant, it has
power law solutions. If the Efimov effect is present, the exponent is complex: ÃL(p) ∝
p±isL . Identifying the right hand side of Eq. (6.5) as a Mellin transform, we then obtain a
transcendental equation for sL:

1 = ± (−1)L

sin(2φ)

kmax∑
k=0

(2L− 2k)!

(L− k)! k!

(−1)k

22L−2k(sinφ)L−2k

×
L−2k∑
m=0

1

m! (L− 2k −m)!

2

isL + 2m− L+ 2k

sin [(isL + 2m− L+ 2k)φ]

cos
[
(isL + 2m− L+ 2k)π2

] , (6.6)

where we defined

φ = arcsin
1

δ + 1
, (6.7)

and

kmax =

{
L/2 if L is even
(L− 1)/2 if L is odd

. (6.8)

A few more details on this derivation can be found in Appendix A.3. In the case L = 1,
Eq. (6.6) reduces to

1 =
1

2 sin2 φ cosφ

[
1

is1 − 1

sin[(is1 − 1)φ]

cos[(is1 − 1)π/2]
+

1

is1 + 1

sin[(is1 + 1)φ]

cos[(is1 + 1)π/2]

]
. (6.9)

The corresponding equation for L = 2 is given by

1 =
3

8 sin3 φ cosφ

[
1

is2 − 2

sin[(is2 − 2)φ]

cos[(is2 − 2)π/2]
+

1

is2 + 2

sin[(is2 + 2)φ]

cos[(is2 + 2)π/2]

+
2− 4/3 sin2 φ

is2

sin[is2φ]

cos[is2π/2]

]
. (6.10)

An equivalent equation for general L using hypergeometric functions was derived by Nielsen
and coworkers [NFJG01]. The results of Eqs. (6.9) and (6.10) coincide with the ones obtained
by making use of Eq. (117) in [NFJG01]. The critical mass ratios δc,L are obtained by con-
sidering the case, when sL tends to zero. We find δ−1

c,1 = 13.61 and δ−1
c,2 = 38.63 in agreement

with previous determinations [Pe03, KM07b]. The resulting scaling factors exp(π/sL) are
shown in Fig. 6.1 as a function of the mass ratio δ = m1/m2. The critical mass ratios δc,1

and δc,2 for L = 1, 2 can be read off from the positions where the scaling factor diverges
(indicated by the vertical dotted lines). For L→∞, the critical mass ratio approaches zero.
For δ → 0, all scaling factors approach unity corresponding to the limit sL →∞.

Another important observable is the ratio a∗/|a−|, that compares the values of the scattering
length a∗ and a− at which Efimov trimers cross the atom-dimer and three-particle thresholds,
respectively. This ratio can be measured experimentally if at least one resonance feature is
seen for negative scattering length and one in the atom-dimer system. The calculated ratios
for L = 1 are shown in Fig. 6.2 for following one Efimov state and for comparing neighboring
states, both as a function of the mass ratio δ = m1/m2.
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Figure 6.1: Scaling factors exp(π/sL) for bosons (b) and fermions (f) as a function of the
mass ratio δ = m1/m2 for L = 0, 1, 2, respectively. The vertical dotted lines indicate the
critical mass ratios δc,1 and δc,2 for the Efimov effect with L = 1, 2.

6.3 Analytical Results for Atom-Dimer Scattering

The scattering of atoms and dimers can be directly related to the STM equation (6.3) with
equal incoming and outgoing momenta. The scattering amplitude is given by

fL(k) =
k2L

k2L+1 cot δAD,L(k)− ik2L+1
=
µAD

2π
AL(k, k;E) , (6.11)

where the energy E and center-of-mass momentum k are related by E = k2/(2µAD)−ED. The
dimers are built of two unlike particles and their binding energy is given by ED = 1/(2µa2) .
The dimer breakup threshold at E = 0 corresponds to k =

√
µAD/µ /a ≡ kbr. It is useful to

define an energy dependent scattering length,

ãAD,L(k) =
−1

k2L+1 cot δAD,L(k)
. (6.12)

Note that this quantity does not have the dimension of length for L > 0. We can now
calculate the elastic atom-dimer scattering cross section in the Lth partial wave

σ
(el)
AD,L(k) = (2L+ 1) 4π |fL(k)|2 . (6.13)

The total cross section can be obtained with the help of the optical theorem

σ
(tot)
AD,L(k) = (2L+ 1)

4π

k
ImfL(k) , (6.14)
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Figure 6.2: The ratio a∗/|a−| for following one Efimov state and for comparing neighboring
states as a function of the mass ratio δ = m1/m2 in the case L = 1.

and the inelastic cross section σ
(inel)
AD,L(k) by subtracting Eq. (6.13) from Eq. (6.14).

At E = 0, it is also possible to deduce these quantities analytically using the methods of
Section IV of Ref. [HHP10]. If the Efimov effect is present, the S-matrix element for elastic
atom-dimer scattering can be written as

SL = −e2iσL cosh(πsL + isL ln(a/a0∗)− η∗)/ cosh(πsL − isL ln(a/a0∗) + η∗) , (6.15)

where σL is a real number and a0∗ determines the position of the minima in the elastic atom-
dimer cross section and in the three-body recombination rate for positive scattering length.
Hence, the elastic cross section can be expressed as

σ
(el)
AD,L(E = 0) = (2L+ 1)

π

k2
br

|SL − 1|2

= (2L+ 1) 4πa2 δ(δ + 2)

(δ + 1)2

sinh2(πsL)
{

sinh2(η∗) + sin2[sL ln(a/a0∗)]
}

sinh2(πsL + η∗) + cos2[sL ln(a/a0∗)]
, (6.16)

where kbra = (δ + 1)/
√
δ(δ + 2) was used. The inelastic cross section is given by

σ
(inel)
AD,L(E = 0) = (2L+ 1)

π

k2
br

(
1− |SL|2

)
= (2L+ 1)πa2 δ(δ + 2)

(δ + 1)2

sinh(2πsL) sinh(2η∗)

sinh2(πsL + η∗) + cos2[sL ln(a/a0∗)]
. (6.17)

Atom-dimer relaxation is the process where an atom and a shallow dimer collide and an
energetic deep dimer and atom are ejected. It is one of the main loss processes in mixtures of
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atoms and dimers. The atom-dimer relaxation rate constant β is defined by the rate equation

d

dt
nD =

d

dt
nA = −β nD nA , (6.18)

where nA/D denotes the number densities of atoms and dimers, respectively. The relaxation
rate is directly related to the inelastic scattering cross section,

βL(E) =
k

µAD
σ

(inel)
AD,L(E) . (6.19)

At E = 0, we therefore obtain

βL(E = 0) = (2L+ 1)π

√
δ(δ + 2)

3

(δ + 1)2

sinh(2πsL) sinh(2η∗)

sinh2(πsL + η∗) + cos2[sL ln(a/a0∗)]

~a
m1

. (6.20)

At the atom-dimer threshold, E = −ED, only the S-wave contribution survives. This case
was studied in detail in the previous chapter. For all other angular momenta L > 0, the
atom-dimer scattering amplitude, Eq. (6.11), vanishes for k → 0.

Another important process in cold atom experiments is three-body recombination. This
process can happen in a mixture, as long as some atoms of species 1 are not bound in dimers.
The atom of species 1 and an atom of species 2 form a dimer, shallow or deep, and another
atom of species 2 balances energy and momentum. Typically, all three atoms are lost if this
process occurs in a trap. For angular momenta L > 0, however, the three-body recombination
rate vanishes at E = 0.

In the following, we present numerical results for the atom-dimer observables discussed above
focusing on the experimentally most relevant case L = 1.

6.4 Numerical Results

6.4.1 Atom-Dimer Observables Without Efimov Effect

In this subsection, we only consider the case η∗ = 0 which corresponds to no deeply bound
dimers. As a consequence, the inelastic cross section vanishes below the dimer breakup
threshold. In the P -wave channel, there is no Efimov effect for bosons. The total (=elastic)
atom-dimer scattering cross section for E = 0 (at dimer breakup) is shown as the solid black
line in Fig. 6.3. Note that for increasing δ−1, the cross section does not tend monotonically
to zero but rather oscillates with diminishing amplitude. This oscillation is not due to the
crossing of bound three-body states with the atom-dimer threshold as three-body bound
states are not present in this system (see below for the fermionic case). Using Eq. (6.13), the
elastic cross section at threshold can be written as

σ
(el)
AD,L(kbr) = (2L+ 1) 4π a2 (1 + 2δ−1)

(1 + δ−1)2
sin2 δAD,L(kbr) . (6.21)

The observed oscillation then implies a monotonic dependence of the elastic phase shift at
threshold on δ−1 [KM07a] with δAD,L(kbr) = 0 for δ−1 = 0. For decreasing energy, the
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Figure 6.3: The elastic atom-dimer scattering cross sections for bosons (b) and fermions (f)
in the P -wave channel and for fermions in the S-wave channel at E = 0 as a function of the
mass ratio δ−1. The vertical dotted line indicates the critical mass ratio for fermions in the
P -wave channel, δ−1

c,1 = 13.61.

amplitude of the cross section gets larger and the peaks move toward larger mass ratios δ−1.

A similar behavior is observed for fermions in the S-wave channel. The atom-dimer scattering
length can be determined according to the formula aAD,0 = −A0(0, 0;−ED)µAD/(2π) . This
reproduces the results for the mass dependence found by Petrov [Pe03] that were confirmed
in Refs. [IS08, Is10]. The corresponding total cross section is shown in Fig. 6.3 as the dash-
dotted blue line. Again, the oscillation is not due to bound states and Eq. (6.21) implies a
monotonic dependence of the threshold phase shift on δ−1. However, in this case δAD,L(kbr)
approaches a value slightly below π/2 for δ−1 = 0. As in the case of bosons with L = 1, we
find that the amplitude of the cross section gets larger for decreasing energy and the peaks
move toward larger mass ratios δ−1.

For fermions in the P -wave channel, the Efimov effect only comes into play for mass ratios
δ−1 >∼ 13.61. For the region without the Efimov effect, many observables have already been
calculated [PSS04, PSS05, KM07a, LTWP09, LP11, ENU11]. Kartavtsev and Malykh found
one three-body bound state for the range 8.17260 < δ−1 < 12.91743 and two three-body
bound states for 12.91743 < δ−1 < 13.6069657 [KM07a]. They call these states universal, as
their binding energies only depend on the dimer binding energy, or equivalently, the scattering
length. The occurrence of these states was recently confirmed by Endo et al. [ENU11].
They also demonstrated the divergence of the atom-dimer scattering length at the mass
ratios where the universal trimer states appear and how similar behavior occurs for higher
angular momenta. We have confirmed these results. Kartavtsev and Malykh also found
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energies E = 0,−0.91ED, and − 0.9975ED (blue solid, dashed, dash-dotted lines). The red
dash-double-dotted lines indicate the position of the two peaks for varying energy.

that close to the critical mass ratio, the energies of the universal states follow a square-root

dependence [KM07a], E − Ec ∝
√
δ−1

c,1 − δ−1 . An investigation of the behavior of Efimov

states for δ−1 slightly above δ−1
c,1 would be interesting. The behavior of the energies must

be non-analytic in δ−1 − δ−1
c,1 , since Efimov states can be shifted to any desired energy by

adjusting the three-body parameter. However, such a study is beyond the scope of the
present investigation as our numerical calculations converge only slowly close to the critical
mass ratio.

In Ref. [KM07a], atom-dimer elastic scattering at the dimer breakup threshold was also
calculated. We show this process as the dashed red line in Fig. 6.3 in comparison to the
results for bosons with L = 1 and for fermions with L = 0. In order to elucidate the physics

of the two peaks in the elastic cross section, we show our results for σ
(el)
AD,1 in Fig. 6.4 as a

function of δ−1 for three energies, E = 0,−0.91ED, and − 0.9975ED, i.e., at and below
the dimer breakup threshold. The dash-double-dotted red lines show how the peak positions
move with varying energy. While the first peak moves monotonically to larger values of δ−1

as the energy is decreased, the second peak shows a more complicated behavior. Initially, it
moves to smaller values and reaches a minimum δ−1

min ≈ 12.3 for E/ED ≈ −0.938, before it
moves back to larger values of δ−1 as the atom-dimer threshold is approached. Our results
demonstrate that the two-peak structure is indeed due to the presence of the two universal
three-body bound states. The positions of the two peaks move from δ−1 = 5.63 and 13.31 at
E = 0 to two sharp, δ-function like peaks at δ−1 = 8.17 and 12.9 for E = −0.9999ED, which
are the critical values for the occurrence of the three-body bound states.
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6.4.2 Atom-Dimer Observables With Efimov Effect

In the presence of the Efimov effect, the observables do not only depend on the mass ratio
and the energy, but they also depend log-periodically on the scattering length. From now on,
we focus on the case of fermions with L = 1. We omit the additional subscript 1 indicating
the P -wave channel for notational simplicity. We find the energy-dependent atom-dimer
scattering length for δ−1 > 13.61 calculated with Eq. (6.12) to be very well approximated by
the formula

ãAD(δ, k, a) ≡ −1

k3 cot δAD(δ, k, a)
=
{
c1(δ, k) + c2(δ, k) cot

[
s1 ln(a/a∗) + iη∗

]}
a3 . (6.22)

We show c1/2(δ, k) in Fig. 6.5 for the mass ratios δ = 0.03, 0.04, and 0.06 as functions of the
momentum in units of the breakup momentum kbr from 0.001 kbr up to the dimer breakup
threshold. Interestingly, for all considered mass ratios, c1(δ, k) = −8.7± 0.2 for k → 0. The
coefficient c2(δ, k) also approaches constant values in this limit but this value depends on the
mass ratio: the smaller δ, the larger this approached value.

At the dimer breakup threshold, we find

c2(δ, kbr) ≈ k−3
br and c1(δ, kbr) ≈ 0 (6.23)

to be very good approximations for δ <∼ 0.06. This behavior is similar to the case of spinless
bosons [BH06]. From Eq. (6.15), we can deduce the atom-dimer scattering phase shift δAD

at E = 0. For exp(2πs1)� exp(±2η∗), the expression simplifies to

δAD = σ1 + s1 ln(a/a0∗) + iη∗ , (6.24)
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and the constraints (6.23) follow from Eq. (6.22). Since s1 approaches 0 as δ → δc,1 = 0.07349
from below, this approximation is invalid at larger mass ratios. In this case, we find that
c1(δ, kbr) tends to slightly larger and c2(δ, kbr) to slightly smaller values.

The elastic and inelastic atom-dimer scattering cross sections show the typical log-periodic
dependence on the scattering length. For general momenta, they can be approximated with
Eqs. (6.11)–(6.14), (6.22), and the appropriate coefficients from Fig. 6.5. At E = 0, we can
compare our numerical calculation to the analytical formulae in Eqs. (6.16) and (6.17). For

σ
(inel)
AD (kbr), which shows only a weak dependence on a, we find generally good agreement.

For the elastic cross section σ
(el)
AD(kbr), we find very good agreement in the region δ <∼ 0.06.

For larger δ, the numerical calculation becomes difficult, because of the large scaling factor.

As an example, we show the elastic and inelastic cross sections for δ = 0.04, η∗ = 0.1,
and E = −0.99ED in Fig. 6.6. This mass ratio δ roughly corresponds to the mixtures 7Li-
171/173Yb. The cross sections show the typical log-periodic dependence on the scattering
length. The values of the maximal and minimal cross section depend strongly on the energy
and vary over several orders of magnitude. To demonstrate this dependence, we show the

maximal and minimal values of σ
(el)
AD as a function of the center-of-mass momentum k/kbr for

δ = 0.03, 0.06 and η∗ = 0.2 in Fig. 6.7.

The atom-dimer relaxation rate β which can be measured in cold atom experiments is de-
termined by the inelastic cross section via Eq. (6.19). In the case of P -waves, β vanishes at
the atom-dimer threshold E = −ED. In Fig. 6.8, we show β for δ = 0.04, η∗ = 0.1, above
threshold for E = −0.9999ED,−0.9984ED,−0.96ED, and 0. We also give the positions of
the peak in β for varying energy. The relaxation rate β shows a strong energy dependence as
well. Starting from being zero at the atom-dimer threshold, it develops resonant log-periodic
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structures for larger energies which become less pronounced as the dimer breakup threshold
is approached. The peak position is also strongly energy dependent and varies by a factor of
five.

6.5 Summary and Outlook

In this chapter, we have investigated the Efimov effect for heteronuclear systems of two
identical particles and a third distinguishable particle in higher partial waves. The unlike
particles were assumed to have resonant S-wave interactions while the interaction between
like particles was neglected. For even (odd) angular momentum L, the two identical particles
must be bosons (fermions) for the Efimov effect to occur [Ef73]. Using an effective field
theory framework, we have derived a generalized STM equation which describes the off-shell
atom-dimer scattering amplitude in the total angular momentum channel L. All three-body
observables can be extracted from this amplitude, when taken in appropriate kinematics.

We have derived a transcendental equation for the preferred scaling factor exp(π/sL) for ar-
bitrary L as a function of the mass ratio δ. The numerical results agree well with a previously
derived equation using hypergeometric functions derived by Nielsen and coworkers [NFJG01].
For the experimentally most relevant case of the P -wave Efimov effect, we have predicted
the ratio of the scattering lengths where Efimov states cross the atom-dimer and three-atom
thresholds a∗/|a−|. This ratio is independent of the three-body parameter and can be mea-
sured in experiment. For the S-wave case, Barontini et al. [Ba+09] have measured the value
a∗/|a−| = 2.7 in a K-Rb mixture. The universal prediction for this system is a∗/|a−| = 0.52.
The discrepancy between the two values is at least partly due to effective range corrections
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but there is also a finite energy shift of the rescattering resonance for negative scattering
length that needs to be taken into account, see Chapter 5. For P -waves, no experiment has
been carried out to date.

The measurement of atom loss rates has played a key role for the observation of the S-wave
Efimov effect in cold atoms [FG10] and the P -wave Efimov effect in a Bose-Fermi mixture
could be detected in an analogous way. We have derived analytical expressions for the elastic
and inelastic atom-dimer cross sections as well as the atom-dimer relaxation rate for arbitrary
angular momentum L at the dimer breakup threshold. For energies away from the threshold,
we have laid out a framework to calculate these quantities numerically.

Using this framework, we have explicitly calculated the atom-dimer scattering cross sections
for ED < E ≤ 0 in low angular momentum channels without the Efimov effect, i.e., bosons in
the P -wave and fermions in the S-Wave channel. Furthermore, we have calculated the cross
section for fermions in the P -wave channel below the critical mass ratio δ−1

c,1 . The cross section
shows two peaks due to the appearance of two non-Efimov three-body bound states [KM07a].
We have calculated the position of these peaks as a function of the collision energy E.

Focusing on the P -wave fermionic channel above the critical mass ratio, we have numerically
calculated the atom-dimer cross section up to the dimer breakup threshold. The cross sections
show the typical log-periodic dependence on the scattering length. The maximal and minimal
cross section values depend strongly on the energy, varying over several orders of magnitude.
At the atom-dimer threshold, we found good agreement with our analytical results. The atom-
dimer cross section below the dimer breakup threshold can be parametrized by two universal
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functions c1(δ, k) and c2(δ, k). We have calculated these functions for several mass ratios and
derived simple analytical expressions for their values at the dimer breakup threshold as long
as exp(2πs1) � exp(±2η∗) is satisfied. Finally, we have numerically calculated the atom-
dimer relaxation rate β as a function of the three-body parameter, mass ratio and energy. As
for the bosonic case in the previous chapter, the position of the relaxation maxima is strongly
energy dependent and not a monotonic function of energy.

In summary, our calculation provides a basis for interpreting experimental results on the
Efimov effect in higher partial waves. Due to the fermionic nature of the dimers, the prepa-
ration of the required atom-dimer mixture for the P -wave case should be feasible. A few
experimental groups already study heteronuclear mixtures of interest to this work, e.g., vari-
ous Yb-Li mixtures in the groups of Takahashi [Har+11] and Gupta [Han+11]. Other groups
are investigating heavy species that could be mixed with Li, e.g., fermionic Sr in Grimm’s
group [TSGS10]. A natural extension of this topic would be to calculate the three-body
recombination rate for energies away from the dimer breakup threshold. This could, in prin-
ciple, be done using the methods of Ref. [BHKP08] and Chapter 4.

Note that very recently a study was published considering heteronuclear trimers in fermionic
systems close to a narrow Feshbach resonance [CT11]. Their results seem to agree with our
findings where a comparison is possible.



Chapter 7

Two-Dimensional Systems

This chapter differs in two respects from the preceding ones. First, we consider a two-
dimensional (2D) Bose system where the Efimov effect cannot occur [BT79, NFJ99]. Fur-
thermore, effective range effects are included in the calculations, which are accordingly valid
up to next-to-leading order. However, the bosons still interact resonantly and we can make
use of effective field theory methods similar to those described earlier. This chapter has been
published as [HH11a].

We start with a short introduction on 2D systems and then describe the EFT method in
detail. It is subsequently used to derive three-body observables such as binding energies and
atom-dimer scattering properties. We end with a summary and conclusion.

7.1 Introduction

We have already seen examples of how ultracold quantum gases have become a versatile tool
to investigate few- and many-body phenomena in strongly interacting quantum systems. The
possibility of using optical lattices also makes them interesting for the simulation of condensed
matter problems such as the Hubbard model [Es10]. Special trap geometries allow for the
creation of lower-dimensional systems. These systems can, for example, help to understand
high-temperature superconductivity, which is a 2D problem. Moreover, 2D systems are
interesting on their own, since their behavior can be qualitatively different 3D systems.

Here, we concentrate on the description of few-body phenomena in an expansion around the
unitary limit. This limit refers to an idealized system where the range of the interaction
is taken to zero and the scattering length a is infinite. To leading order in this expansion,
the low-energy observables are universal. They are determined by the scattering length a of
the particles alone. The leading non-universal corrections are due to the effective range of
the interaction. We focus on these corrections. Since there is no Efimov effect [Ef70] in two
dimensions [BT79, NFJ99], three-body interactions are suppressed and enter only at higher
orders.

The definition of the scattering length a in 2D is ambiguous since cot δ diverges logarith-
mically as the wave number k approaches zero and different conventions are used in the

65
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1/asqrt(E)

Figure 7.1: Spectrum of universal two-, three-, and four-body states in two spatial dimen-
sions as a function of the inverse scattering length 1/a.

literature. We follow the conventions of Verhaar et al. [VdGVvdE84], in which the effective
range expansion of the scattering phase shift is given by

cot δ(k) =
2

π

{
γE + ln

(
ka

2

)}
+
r2

2π
k2 +O(k4) , (7.1)

where γE ' 0.577216 is the Euler-Mascheroni constant. Note that the scattering length in
two dimensions is always positive.

In the limit a� |r|, the binding energy of the shallow dimer is universal,

ED = 4e−2γE
~2

ma2
+O(r2/a2) . (7.2)

The binding energies of three- and four-body states in this limit have been calculated by
various groups and are also universal [BT79, NFJ99, HS04, PHM04, Br+06, KM06]. Since
there is no other parameter in the problem, the energies must be multiples of the dimer
energy. There are two three-body bound states, which were first calculated by Bruch and
Tjon [BT79]. Their binding energies are [HS04]

E
(1)
T = 1.2704091(1)ED and E

(0)
T = 16.522688(1)ED , (7.3)

where the number in parentheses indicates the numerical error in the last quoted digit. The
first calculation of four-body bound states in 2D was carried out by Platter et al. [PHM04].
They also found two universal bound states with binding energies

E
(1)
4 = 25.5(1)ED and E

(0)
4 = 197.3(1)ED . (7.4)

These results were later confirmed in Ref. [Br+06]. In Fig. 7.1, we illustrate the scattering
length dependence of this spectrum. The universal few-body states do not cross the con-
tinuum threshold E = 0 for any finite value of the scattering length. In contrast to three
dimensions, the 2D universal states can therefore not be observed as zero-energy resonances
in few-body recombination.

For large values of N � 1, one can derive the universal properties of shallow N -boson ground
states close to the unitary limit [HS04]. In particular, the binding energy EN of the N -boson
ground state increases geometrically with N :

EN+1

EN
≈ 8.567, N � 1 . (7.5)
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Thus, the separation energy for one particle is approximately 88% of the total binding en-
ergy. This is in contrast to most other physical systems, where the ratio of the single-particle
separation energy to the total binding energy decreases to zero as the number of particles

increases. The numbers E
(0)
T /ED = 16.5 and E

(0)
4 /E

(0)
T = 11.9 obtained from the exact 3-

body and 4-body results in Eqs. (7.3) and (7.4) appear to be converging toward the universal
prediction for large N in Eq. (7.5). In Ref. [Le06], EN was explicitly calculated up to N = 10
in lattice effective field theory and found to be consistent with Eq. (7.5). In any real phys-
ical system, however, the relation (7.5) can only be valid up to some maximum value of N
determined by the range of the underlying interaction. When the states become compact
enough that short-distance properties are probed, the binding energy will no longer be uni-
versal. In particular, for Lennard-Jones potentials and realistic Helium-Helium potentials,
effective range effects can be quite large for three and more particles and the universal limit
is approached only slowly [Bl05].

In experiments with cold atoms in a trap, the quasi-2D limit can be reached by special
trap geometries. The influence of a trapping potential on ultracold gases in this limit was
extensively studied by Petrov and collaborators [PS01, PHS00, PBS03]. Although these
works are mainly concerned with many-body effects in two-dimensional systems, they have
applications for few-body aspects as well.

We concentrate on strictly two-dimensional systems of bosons neglecting any trapping effects.
We calculate three-body observables close to unitarity in the framework of an effective field
theory for large scattering length. We are especially interested in the leading non-universal
corrections due to effective range effects. They enter at next-to-leading order in the effective
field theory. Such effects must be under control for the experimental observation of universal
phenomena in 2D.

7.2 Method

In this section, we briefly review the derivation of the three-body equations for D = 2 in
effective field theory. (See, e.g., Refs. [HS04, BH06] for more details.) We include a boson
field Ψ and an auxiliary dimer field d in the Lagrangian. Since we include effective range
effects, the dimer field is dynamical:

L = Ψ†
(
i∂t +

∇2

2m

)
Ψ + d†

(
η

(
i∂t +

∇2

4m

)
+ ∆

)
d− g

4
(d†Ψ2 + Ψ†2d) + . . . , (7.6)

where the dots indicate higher order terms, m is the mass of the particles, η = ±1, and ∆
and g denote the bare coupling constants. The sign η can be used to tune the sign of the
effective range term. Negative η leads to positive values of the effective range r2. In this
case, the dimer kinetic term has a negative sign and the dimer field is a ghost. We will come
back to this issue below. Note that three-body interactions enter only at higher orders and
are not considered in this chapter.

The 2D effective range expansion, Eq. (7.1), can also be written in terms of the binding wave
number κ =

√
mED:

cot δ(k) =
2

π
ln

(
k

κ

)
+
r2

2π
(κ2 + k2) +O(k4) . (7.7)
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Figure 7.2: Integral equation for the full dimer propagator (thick solid line). The bare dimer
propagator and the boson propagator are indicated by double and single lines, respectively.
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Figure 7.3: Integral equation for the boson-dimer scattering amplitude. The boson (full
dimer) propagators are indicated by the solid (thick solid) lines. The external lines are
amputated.

We can deduce the dependence of the binding wave number on the scattering length and the
effective range from Eqs. (7.1) and (7.7),

κ = − i
r

√
2W

(
−2e−2γE

r2

a2

)
≈ 2e−γE

a

√
1 + 2e−2γE

r2

a2
, (7.8)

where the signs are chosen such that κ > 0. The function W is the product logarithm or
Lambert W -function. It is defined as the solution to z = wew, namely W (z) = w. In the
limit r2 → 0, the expression for ED reduces to Eq. (7.2) and κ ≈ 1.1229/a.

The Lagrangian in Eq. (7.6) implies the following Feynman rules: The propagator for a boson
with energy k0 and wave number ~k is given by i [k0−k2/(2m)−iε]−1, where k = |~k|. The bare
dimer propagator is i [η(k0 − k2/(4m)) + ∆]−1 and the boson-dimer vertex coupling is given
by −ig/2. Because the scattering length is large, boson loops are not suppressed and the
bare propagator has to be dressed by boson bubbles to all orders. The full dimer propagator
can be obtained by solving the integral equation in Fig. 7.2. This leads to the expression

iD(p0, p) = −i 32π

mg2

{
ln

[
p2/4−mp0 − iε

κ2

]
+
r2

2

(
κ2 +mp0 − p2/4

)}−1

, (7.9)

where we have already matched g and ∆ to the effective range expansion, Eq. (7.7). The
wave function renormalization constant is given by the residue of the bound state pole in the
propagator (7.9):

Z =
32π

m2g2

2κ2

2− κ2r2
. (7.10)

The boson-dimer scattering amplitude is given by the integral equation in Fig. 7.3, which
iterates the one-boson exchange to all orders. Using the Feynman rules from above and
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projecting onto S-waves, we obtain [BH06, HS04]:

A(p, k;E) =
16π

m

κ2

2− κ2r2

1√
(p2 + k2 −mE)2 − p2k2

+ 4

∫ ∞
0

dq qA(q, k;E)√
(p2 + q2 −mE)2 − p2q2

×

(
ln

[
3
4q

2 −mE − iε
κ2

]
+
r2

2

(
κ2 +mE − 3

4
q2

))−1

, (7.11)

where k (p) are the relative wave numbers of the incoming (outgoing) boson and dimer in the
center-of-mass system and E is the total energy. The amplitude A(p, k;E) has simple poles
at negative energies corresponding to three-body bound states. A more general discussion of
the analytic properties of few-body scattering amplitudes in 2D is given in Ref. [AG92].

The three-body binding energies are most easily obtained from solving the homogeneous
version of Eq. (7.11) for negative energies E = −ET:

B(p;ET) = 4

∫ ∞
0

dq q B(q;ET)√
(p2 + q2 +mET)2 − p2q2

×

(
ln

[
3
4q

2 +mET

κ2

]
+
r2

2

(
κ2 −mET −

3

4
q2

))−1

. (7.12)

In Eqs. (7.11) and (7.12) the effective range r2 is included nonperturbatively in the denom-
inator of the dimer propagator (7.9). Therefore, both equations contain some higher-order
effective range effects but still correspond to next-to-leading order in the effective field theory
expansion. At the next higher order, where terms proportional to (r2)2 enter, there are also
contributions from the k4 term in the effective range expansion, Eqs. (7.1) and (7.7), which
are not included here.1

The integral equations (7.11) and (7.12) can be solved in a straightforward way for negative
effective range (η = 1). For positive effective range (η = −1), an unphysical deep bound state
pole appears in the dimer propagator (7.9). As the effective range is increased, this pole moves
to lower energies. Its appearance is related to a violation of the Wigner causality bound,
which constrains the value of the effective range r2 for short-ranged, energy-independent
interactions. For a detailed discussion of this bound in general dimension d, see Refs. [HL09,
HL10]. This deep pole appears when we circumvent the Wigner bound by introducing a ghost
dimer field (η = −1). It limits the energy range where our approach is applicable. Identifying
the position space cutoff in [HL09] with 1/Λ, the Wigner bound translates to

r2 ≤ 2

Λ2

{
[ln(Λa) + 1/2]2 + 1/4

}
, (7.13)

where Λ is an ultraviolet cutoff on the integration wave numbers in Eqs. (7.11) and (7.12).
In the limit Λ→∞, the constraint becomes r2 ≤ 0 . There are at least two strategies to deal
with this problem:

1Note that in three dimensions the k4 term enters one order higher and the corresponding equation would
be valid to next-to-next-to-leading order. The difference is due to the form of the effective range expansion in
two dimensions.
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1. Expand the full dimer propagator (7.9) to linear order in r2 and treat the range pertur-
batively. This removes the deep pole and includes all terms to next-to-leading order.

2. Keep an explicit wave number cutoff Λ in equations (7.11) and (7.12) such that Eq. (7.13)
is satisfied. The unphysical pole then has no effect on low-energy observables.

Both strategies are applicable for wave numbers |k2r2| � 1. In the following, we make use
of Eqs. (7.11) and (7.12) and use strategy 2 to calculate three-body observables. A brief
description of the perturbative treatment is given in the following paragraph.

In order to achieve a fully perturbative treatment, we expand the boson-dimer scattering
amplitude into a leading order piece A(0)(p, k;E) which satisfies Eq. (7.11) with r2 ≡ 0 and
a correction A(2)(p, k;E) of order r2:

A(p, k;E) = A(0)(p, k;E) +A(2)(p, k;E) + . . . . (7.14)

Next, we insert this expansion (7.14) into Eq. (7.11), expand the r2 dependent terms, and
collect all terms of order r2 in order to obtain an equation for A(2)(p, k;E). The on-shell
scattering amplitude at next-to-leading order can then be written as an integral over the
leading order amplitude and we finally obtain:

A(k, k;E) =

(
1 +

r2κ2

2

)
A(0)(k, k;E)

− mr2

4πκ2

∫ ∞
0

dq q

(
κ2 +mE − 3

4
q2

) [
A(0)(k, q;E)

ln
(
(3

4q
2 −mE − iε)/κ2

)]2

, (7.15)

where E = 3k2/(4m)− ED. The scattering phase shift can be extracted in the same way as
described in the following section.

7.3 Three-Body Observables

In this section, we present our results for the leading non-universal corrections to the three-
boson binding energies, the boson-dimer scattering phase shifts and effective range parame-
ters, and the three-boson recombination rate for finite energy. Since we are mainly interested
in applications to cold atoms, we refer to the bosons as atoms in the remainder of this chapter.

7.3.1 Three-Body Binding Energies

We start with the effective range corrections to the three-body binding energies in Eq. (7.3).
For r2κ2 < 0, the energies can straightforwardly be obtained by solving Eq. (7.12). This is
similar to the three-dimensional case investigated in [Pe04]. For r2κ2 > 0, we have to keep
track of the Wigner bound. We use an explicit wave number cutoff Λ and vary Λ from 1/5 to
4/5 of the maximum value determined by the position of the unphysical pole in Eq. (7.12).
This value agrees within a factor of two with the maximum value given by Eq. (7.13). The
dependence of the three-body energies on the cutoff is monotonic. The smallest cutoff results
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Figure 7.4: Three-body binding energies E
(1)
T and E

(0)
T in units of ~2κ2/m vs. the two-

body effective range r2κ2. The shaded bands are derived with the help of cutoff variation as
described in the text and provide an error estimate. The crosses are Monte Carlo results for
the modified KORONA potential from [Bl05, Bl].

in the smallest energy value whereas the largest cutoff results in the largest energy. This
cutoff variation allows us to check whether the calculation is converged with respect to the
cutoff and gives an error estimate for our results. We note that one still has to be careful
about possible artefacts from the iteration of range terms. In the 3D case, it was shown that
the ultraviolet behavior of the integral-equation kernel is already modified for momenta well
below 1/r [PP06].

Our results for the three-body binding energies E
(1)
T and E

(0)
T as a function of the effective

range, r2κ2, are summarized in Fig. 7.4. For negative effective range r2κ2, both three-
body states become less bound as |r2κ2| is increased. This behavior is quantitatively similar
to the dimer state, cf. Eq. (7.8). The binding energies are very sensitive to the effective

range. For r2κ2 = −0.01, we find the values E
(1)
T = 1.145(1)ED for the excited state and

E
(0)
T = 10.578(1)ED for the ground state. For this rather small effective range, the ground

state energy has already shifted by about 30%, while the excited state energy is shifted by
about 10%. This sensitivity is partially related to the special nature of the effective range
term in 2D which has units of [length]2. Taking the square root, the leading range correction
of 10 − 30% for |rκ| = 0.1 looks more natural. Our calculation including the leading non-
universal corrections suggests that the three-body states eventually cross the atom-dimer
threshold as the effective range is made more negative. For the excited state this happens
around r2κ2 ≈ −0.4, but higher order corrections are expected to be important. If this
behavior holds true and the effective range could be varied in experiment, the three-body
states in 2D might be observable through zero energy scattering resonances similar to Efimov
states in 3D. For positive values of the effective range, the central value of our error band
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also corresponds to a less strongly bound system but we can not make a definite prediction.
Once the effective range effects become appreciable, the errors in our calculations become too
large. Still, the Monte Carlo results for the modified KORONA potential from [Bl05, Bl] (see
the crosses in Fig. 7.4) are in good agreement with our band. They also give a diminishing
energy for larger positive effective range. Note that we only show the two points from [Bl05]
closest to the unitary limit. All other data points are outside the range of r2κ2 displayed in
Fig. 7.4.

For effective ranges close to zero, the binding energies depend linearly on r2κ2. We can
determine the coefficient of the leading term numerically to about 15% accuracy. For r2κ2 <
0, we find:

E
(0)
T /ED = 16.522688(1) + 28000(5000) r2κ2 +O(r4κ4) ,

E
(1)
T /ED = 1.2704091(1) + 540(80) r2κ2 +O(r4κ4) . (7.16)

For r2κ2 > 0, the coefficient of r2κ2 can not be extracted from our calculation. While the

values of E
(0)
T and E

(1)
T are very insensitive to the cutoff variation at small positive r2κ2, even

the sign of the slope is not well determined. We note that r2κ2 can be quite small in 2D
systems even if the effective range is substantially larger than the range of the interaction (see,
e.g., the explicit example of a circular well potential given in Section 6.1 of Ref. [HL10]). The
large coefficients in Eq. (7.16), however, already cause significant effective range corrections
for |r2κ2| of order 10−4 to 10−3.

7.3.2 Atom-Dimer Scattering

Next, we consider the effective range corrections to elastic atom-dimer scattering. We find
scattering observables in general to be less sensitive to the unphysical deep poles. To obtain
the scattering amplitude, we solve Eq. (7.11) for E = 3

4mk
2 − ED below the dimer breakup

threshold and with the incoming particles on-shell. The elastic scattering phase shift δAD(k)
can then be obtained from the scattering amplitude for p = k using

A
(
k, k;

3

4m
k2 − ED

)
=

3

m
fk =

3

m

1

cot δAD(k)− i
. (7.17)

In Fig. 7.5, we show cot δAD for different values of r2κ2 as a function of the wave number k
up to the dimer breakup threshold k ≈ 1.15κ. For small values of k, cot δAD is almost linear
in ln k but at about half the breakup wave number the behavior becomes more complicated.
For r2κ2 < 0, the non-universal corrections increase cot δAD compared to the universal result,
while for r2κ2 > 0 the behaviour depends on the value of r2κ2.

The atom-dimer effective range parameters can be extracted from our results by fitting the
effective range expansion, Eq. (7.1), to cot δAD. We have performed fits with different orders
in the expansion and different truncations of the data sets to estimate the error in this
extraction. Our results for κaAD and (κrAD)2 in dependence of r2κ2 are summarized in
Fig. 7.6. The effective range r2

AD comes out positive for all values of r2κ2 considered. For
|r2κ2|<∼ 10−4 the curves are nearly symmetric around r2κ2 = 0 and can be approximated by

κaAD = 2.614(1)− 4100(500) r2κ2 +O(r4κ4) . (7.18)
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Figure 7.5: The elastic atom-dimer scattering phase shift cot δAD for r2κ2 = 0,±10−3,±10−2

as a function of the wave number k/κ.

Similar to the bound state case, we find large coefficients in the perturbative expansion
in r2κ2. For larger values of r2κ2, the curves are not symmetric anymore. In the uni-
tary limit, we find the effective range parameters κaAD = 2.614(1) and (κrAD)2 = 4.0(2) .
Converting to units of the scattering length a, our results correspond to aAD = 2.328(1) a
and ln(aAD/a) = 0.845(1). These numbers agree well with the value ln(aAD/a) = 0.8451
obtained by Kartavtsev and Malykh [KM06] and are in qualitative agreement with the
value aAD = 2.95a found by Nielsen et al. [NFJ99]. For r2κ2 of order 0.01, there are
again substantial effective range effects. In particular, we find the values κaAD = 3.540(1)
and (κrAD)2 = 7.4(2) for r2κ2 = −0.01 and κaAD = 2.713(1) and (κrAD)2 = 2.9(2) for
r2κ2 = 0.01.

We have also calculated the atom-dimer scattering phase shifts and effective range parameters
using the fully perturbative treatment discussed at the end of Section 7.2. For sufficiently
small effective range, the two methods agree.

7.3.3 Three-Body Recombination

Finally, we consider three-body recombination into the shallow dimer described by Eq. (7.2).
Cold atoms typically also have a large number of deep dimer states. However, three-body
recombination into the deep dimers is suppressed since the atoms have to approach distances
comparable to the size of the deep dimers. This process enters at the same order as short-
range three-body interactions. It could be calculated by introducing a complex three-body
parameter [BH06].

The three-body recombination into the shallow dimer is strongly influenced by the behavior
of the full dimer propagator, Eq. (7.9). There are three limits in which the propagator
vanishes: (i) a → ∞, (ii) E → 0, and (iii) E → ∞. In these three limits, the three-body
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Figure 7.6: The atom-dimer scattering length κaAD and effective range (κrAD)2 as a function
of the two-body effective range r2κ2.

recombination rate also vanishes. For large but finite scattering length and finite energy,
however, three-body recombination can occur.

The rate can be conveniently calculated using the inelastic atom-dimer scattering cross sec-
tion [BHKP08] which has dimension of length in 2D. The integration measure of the three-
body phase space in two dimensions using hyperspherical variables is given by

d2p1 d
2p2 d

2p3 = m2E sin(2α3) dE dα3 dϕ12 dϕ3,12 d
2ptot . (7.19)

More details on the derivation of this can be found in Appendix B.1. From this, the relation
between the hyperangular average of the recombination rate at finite energy and the inelastic
cross section in two dimensions is obtained as

K(E) =
36π

m2E
k σ

(inel)
AD (E) , (7.20)

where k =
√

4m
3 (E + ED). Intermediate steps of this computation can be found in Ap-

pendix B.2. The inelastic cross section in Eq. (7.20) can be obtained by subtracting the
elastic cross section

σ
(el)
AD(E) =

4

k
|fk|2 , (7.21)

from the total cross section σ
(tot)
AD (E). The latter can be obtained from the optical theorem

which in 2D is given by [Ad86]2

σ
(tot)
AD (E) =

4

k
Imfk(0) . (7.22)

2Note the different normalization factor, our amplitude is
√
π/2 times their amplitude.
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Figure 7.7: The energy-dependent three-body recombination rate K(E) in units of ~/(mκ2)
as a function of the wave number k/κ. The shaded band corresponds to r2κ2 = 10−4 and is
derived with the help of cutoff variation as described in the text.

Using the expression for the elastic scattering amplitude, Eq. (7.17), the three-body recom-
bination rate K(E) can be calculated from Eqs. (7.20), (7.21), and (7.22). Our results for
K(E) as a function of the wave number k are shown in Fig. 7.7. For positive r2κ2, we again
make use of a cutoff variation in the range of 1/5 to 4/5 of the maximum allowed value. The
grey band gives our result for r2κ2 = 10−4. For larger values of r2κ2, the width of the band
increases. As expected, the rate vanishes for large wave numbers and at threshold. Around
k ≈ 3− 4κ, there is a maximum in the recombination rate. The position of the maximum is
weakly dependent on the value of the effective range. It is governed by the behavior of the
full dimer propagator as a function of the energy, Eq. (7.9). The maximum is not related in
a simple way to the energy of the universal three-body states, Eq. (7.3), but our calculation
establishes an implicit relation between the two.

In experiments with cold atoms, one typically uses ensembles of atoms in thermal equilibrium.
The energy-dependent recombination rate K(E) can be converted into an energy averaged
rate by performing a Boltzmann average as described in Ref. [BHKP08]. Taking into account
the energy dependence of the three-body phase space, Eq. (7.19), we have

α(T ) =

∫∞
0 dE E e−E/(kBT )K(E)

3!
∫∞

0 dE E e−E/(kBT )

=
1

6k2
BT

2

∫ ∞
0

dE E e−E/(kBT )K(E) . (7.23)

Our results for α(T ) for different values of the effective range are shown in Fig. 7.8. We do
not give results for r2κ2 > 0, but the shaded band for r2κ2 = 10−4 in Fig. 7.7 translates
into an error band around r2κ2 = 0 here as well. The temperature dependent rate also
has a maximum at temperatures of the order of 5 to 7 times the dimer binding energy. The
recombination rate at the maximum is very sensitive to the value of the effective range. If the
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Figure 7.8: The three-body recombination rate α in units of ~/(mκ2) in dependence of the
temperature T in units of ~2κ2/(mkB).

effective range is changed from zero to r2κ2 = −0.01, the rate at the maximum changes by
a factor of two. For all values of the effective range considered, however, the recombination
rate at the maximum remains of order one in natural units ~/(mκ2). This suggests that
2D Bose gases are stable enough to observe universal few-body phenomena experimentally.
The lifetime of a 2D Bose gas with large scattering length was previously estimated by
Pricoupenko and Olshanii [PO07]. The order of magnitude of our recombination rates is
consistent with their results.

7.4 Summary and Conclusions

In this chapter, we have investigated the three-body properties of identical bosons close to the
unitary limit in two spatial dimensions. Within an effective field theory for resonant interac-
tions, we have calculated the leading non-universal corrections which are due to the two-body
effective range. In particular, we have calculated the leading corrections to the three-body
binding energies, the atom-dimer scattering phase shift and effective range parameters, and
the three-body recombination rate at finite energy.

We have compared our results to previous calculations in the unitary limit, where available,
and generally found good agreement. Our calculations show a large sensitivity of three-body
observables to the effective range. Significant effective range effects can be observed already
for |r2κ2|>∼ 10−4 − 10−3. These corrections are due to large coefficients in the perturbative
expansion of observables in r2κ2 (cf. Eqs. (7.16), (7.18)). It would be interesting to understand
the physics behind these large coefficients. These coefficients could be reduced by an order of

magnitude by renormalizing to the three-body ground state energy E
(0)
T instead of ED [Bi],

but they would still remain unnaturally large. Our results suggest that the convergence to
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the unitary limit in 2D three-body observables is rather slow and effective range corrections
play an important role even close to the unitary limit. This is in agreement with the results
of Blume who investigated the universal properties of N -body droplets using Lennard-Jones
potentials and realistic Helium potentials [Bl05].

Our calculation of the three-body energies including the leading non-universal corrections
suggests that the bound states may eventually cross the atom-dimer threshold as the effective
range is made more negative. If this behavior holds true when higher orders are included,
it opens the possibility to observe three-body states in 2D through a variation of the 2D
effective range. The states would then appear as zero energy scattering resonances similar to
Efimov states in 3D.

Our results are directly applicable to two-dimensional Bose gases with large scattering length
and imply that effective range effects must be under control in experiments exploring universal
properties of 2D Bose gases. Effective field theory provides a powerful tool to calculate these
corrections and our study provides the first step towards accurate calculations of these effects.

On the experimental side, there has been some progress in the study of universal properties
of 2D Bose gases. For example, Chin and coworkers have recently studied scale invariance
and critical behavior near a BKT phase transition in 2D and observed universal behavior
of the thermodynamic functions [HZGC11]. They have also attempted to show how the
Efimov resonance in three-body recombination shifts when the system is tuned towards a
dimensionality of two by increasing one of the trapping frequencies in a 3D experiment [Ch09].

Interesting few-body properties of 2D systems include universal N -body states and a geo-
metric spectrum of N -body ground states [HS04]. Moreover, Nishida and Tan have shown
that a two-species Fermi gas in which one species is confined in 2D or 1D while the other
is free in the three-dimensional space is stable against the Efimov effect and has universal
properties [NT08]. More complicated multispecies Fermi gases with similar properties are
possible as well. They also showed that a purely S-wave resonance in 3D can induce higher
partial wave resonances in mixed dimensions and pointed out that some of the resonances
observed in a recent experiment by the Florence group [La+10] can be interpreted as a P -
wave resonance in mixed 2D-3D dimensions [NT10]. Thus, future experiments considering
few-body phenomena in lower-dimensional ultracold gases will be very interesting. Our cal-
culation of the leading non-universal corrections provides a basis for the interpretation of
such experiments.





Chapter 8

Summary and Outlook

In this thesis, we have used the framework of effective field theory to study few-body physics
in ultracold atomic gases. After an experimental and theoretical introduction to this topic
in Chapters 2 and 3, we concentrated on four major aspects of few-body physics in the
following four main chapters of this work. The first three are mainly concerned with the
Efimov effect in various respects whereas the last chapter investigates three-body observables
in two dimensions. All topics are again specified and summarized here.

Concerning atom-dimer scattering at finite temperatures, we calculated the atom-dimer re-
laxation rate β for large positive scattering length, i.e., in the presence of the Efimov effect.
The atom-dimer phase shifts were taken from a parametrization derived previously in EFT.
To include the temperature dependence of the process, the Bose-Einstein distribution func-
tion was used for thermal averaging. This is only possible with experimental input for atom
and dimer numbers. We therefore used data from the experiment conducted by Knoop and
coworkers [Kn+09] to which our results were also applied.
The two free parameters of our theory, the resonance position a∗ and the width η∗, were used
to find a fit to the data taken at 170 nK. We found very good agreement for a∗ = 397 a0 and
η∗ = 0.034 and subsequently used the same parameter values for the 40 nK data. With these
values, we overpredicted the data by a factor of two. It should be noted, however, that the
40 nK data is much less precisely measured. Especially the dip in the curve that seems to be
present in the data could be due to statistical fluctuations and is not reproduced in our the-
ory. The fitted resonance position could not be used for a good description of the three-body
recombination data obtained earlier [Kr+06, BHKP08]. These discrepancies might be due to
non-universal effects such as effective range corrections as the experiment was conducted at
the very edge of the universal region. Also, the bigger importance of four-body effects at low
temperatures could play a role. This question deserves further study.

For the study of heteronuclear systems for L = 0, we derived an STM equation for the
atom-dimer scattering amplitude in a mixture of two atomic species where the majority
atoms must be bosons. Only the interaction between unlike particles is taken into account;
the intraspecies interaction is neglected. This is justified close to an interspecies Feshbach
resonance. All results additionally depend on the mass ratio δ of the species under considera-
tion. We calculated the ratio a∗/|a−| relating the three-body with the atom-dimer threshold
crossing and derived semi-analytical formulae for three-body recombination and atom-dimer
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relaxation rates at E = 0. They were found to be in excellent agreement with analytical
formulae [HHP10]. Together with the semi-analytical result for the atom-dimer relaxation
rate at E = ED, they can be used to analyze current and future experiments.
We applied our results to a mixture of 40K-87Rb that was investigated by Zirbel et al. [Zi+08].
We found good overall agreement for the atom-dimer relaxation rate in a mixture of rubidium
atoms with K-Rb molecules and for the three-body recombination rate. However, we predict
an Efimov resonance in the three-body recombination rate at a ≈ −600 a0 that has not yet
been seen experimentally.
For the mixture of 41K-87Rb used by Barontini et al. [Ba+09, Mi], only two data points for
three-body recombination close to an Efimov resonance a = −246 a0 are available. The width
parameter η∗ can be adjusted to describe them adequately but no definitive conclusion can
be drawn. One also has to be careful with the threshold ratio a∗/|a−| deduced from the
experiment. The parameter a∗ was taken from the three-body recombination that showed a
peak at positive scattering length. This could be due to atom-dimer collisions from dimers
formed spontaneously in the system and subsequently expelling a few atoms from the trap.
However, we could show that the finite energy has a large influence on the height and posi-
tion of the atom-dimer relaxation peak. Therefore, an independent check in a molecule-atom
mixture is needed. However, this is hard to realize experimentally due to the bosonic nature
and thus the short lifetime of the molecules.
Further experiments using heteronuclear mixtures with heavy bosons are under construction,
for example, in Heidelberg [De+08]. The results derived in Chapter 5 should give a tool to
analyze the outcomes.

A natural extension to the description of heteronuclear systems in a total S-wave was the
investigation of mainly fermionic systems in P -waves. The Efimov effect can only occur in
even (odd) angular momentum channels for bosons (fermions) and the most relevant cases
are the lowest possible angular momentum channels. Nevertheless, we generalized the for-
merly derived STM equation to general L and computed a transcendental equation for the
parameters sL yielding the scaling factor. They again depend on the mass ratio δ.
As three-body recombination vanishes at E = 0 for L > 0, we concentrated on atom-dimer
scattering. We derived analytical expressions for the elastic and inelastic scattering cross
sections and the atom-dimer relaxation rate.
We also calculated the elastic atom-dimer cross section for channels without the Efimov ef-
fect, namely bosons for L = 1 and fermions for L = 0. Besides, for fermions in a P -wave, the
Efimov effect only sets in for δ−1 > 13.61. Below this mass ratio, two non-Efimov three-body
bound states were predicted to appear [KM07a]. We could confirm this by showing how the
atom-dimer cross section behaves close to E = −ED. It develops two very sharp peaks at the
critical mass ratios where the trimers appear.
Subsequently, we concentrated on the case of L = 1 for fermions in the presence of the Efimov
effect. In this case, we calculated the threshold ratio a∗/|a−| and atom-dimer observables for
E < 0. They can be parametrized by an energy-dependent atom-dimer scattering length with
two universal functions c1(δ, k) and c2(δ, k). We found a strong energy dependence, that can
also be seen in the observables, in addition to the log-periodic dependence on the scattering
length typical for Efimov physics. For the example of δ = 0.04 corresponding roughly to
the mass ratio for 171/173Yb-7Li, we explicitly show the atom-dimer cross sections and the
energy dependence of the atom-dimer relaxation rate. The peak position varies non-linearly
by a factor of 5 and the height by a factor of 70 when the energy is changed from E = 0 to
E = −0.9999ED for η∗ = 0.1.
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Up to now, this P -wave Efimov effect has not been seen in experiment but at least two groups
are very likely to investigate it soon [Har+11, Han+11]. Therefore, our predictions can be
used as reference and can hopefully also be validated in these experiments.

Chapter 7, discussing two-dimensional systems, differed from the preceding ones in two re-
spects: Efimov physics does not play a role in 2D and we considered range effects leading
to results that are valid up to next-to-leading order. To this purpose, we derived an integral
equation describing atom-dimer scattering in 2D by including effects of the two-body effective
range. From this, we could deduce three-body binding energies, the atom-dimer phase shift
and effective range parameters, and three-body recombination at finite energy.
We found substantial range effects already for |r2κ2|>∼ 10−4−10−3, showing that the unitary
limit is approached only slowly in 2D. Our result for the variation of the binding energies
of the two trimers in the system suggest that, if it were possible to experimentally tune the
effective range, the excited trimer could perhaps be seen as a scattering resonance. This
would be similar to the variation of the scattering length in 3D, which allows for a detection
of the Efimov states.
There has been a lot of progress on 2D systems experimentally (see, e.g., [HZGC11]) and our
findings should be of use in the understanding of future investigations of few-body effects in
two-dimensional quantum gases.

As mentioned several times above, further comparisons to future experiments will be very
interesting. They might help to solve current disagreement in the 40 nK data for β that
is overpredicted theoretically or for the 40K-87Rb three-body recombination rate where an
Efimov resonance is predicted to lie in the range accessible to experiments. New data on
(other) heteronuclear mixtures should be able to show the scaling factors differing from 22.7
and validate our predictions for observable recombination rates. Specifically, a signature of
the P -wave Efimov effect in atom-dimer systems would be very intriguing.

From a purely theoretical point of view, the calculation of the three-body recombination rate
for L = 1 at finite temperatures should be possible. A similar computation was conducted for
L = 0 in Ref. [BHKP08] deriving universal functions for the atom-dimer phase shifts, which
were subsequently used to calculate the three-body recombination rate. This principle should
carry over to P -waves and could be implemented in existing calculations in a straightforward
way.

The calculations for the three identical particles in two dimensions can also be generalized to
heteronuclear systems. This was done in a zero range universal calculation for the three-body
bound states very recently [Be+11]. Our formalism allows for a calculation of the bound states
up to next-to-leading order and to derive the heteronuclear atom-dimer scattering properties
and three-body recombination rates. This could be beneficial for current experiments in lower
dimensions as are conducted, for example, in Chin’s group [HZGC11].

Also interesting is whether the Efimov effect survives in dipolar systems. It has been posi-
tively answered for bosonic dipoles by Wang and coworkers using hyperspherical model poten-
tials [WDG11a]. Also fermionic dipoles show universal behavior in this approach [WDG11b].
A dipole interaction can also be incorporated into the EFT method used in this thesis. This
would serve as an independent test to the validity of the found results. Besides, dipolar
molecules are currently under experimental investigation (see, e.g., [Zi+08, Web+08]).

It should be relatively straightforward to calculate the range effects to the tetramer binding
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energies in 2D by combining the formulae shown in Chapter 7 with the method used in
Ref. [PHM04]. It would be especially interesting to see if unnaturally large prefactors are
also found in the perturbative expansion for these binding energies.

Furthermore, the field of Efimov physics is still far from being completely explored. Apart
from the three-body effects, which were the main focus of this work, there are two tetramers
associated with each Efimov trimer [HP07, vSDG09]. Their existence has been confirmed ex-
perimentally [Fe+09] and further signatures have been seen in other experiments, e.g., [PDH09].
This sequence of bound states might continue further [vSt11]. Cluster states of Efimov char-
acter have been predicted [vSt10], as well as the equivalent of the heteronuclear Efimov effect
for four particles in a narrow range of the mass ratio [CMP10]. The Efimov effect should
also be present in systems in mixed dimensions such as two-dimensional layers of one atomic
species being immersed in a larger three-dimensional sample of another species [NT11]. It
could also be seen in atom-trimer [De10] or dimer-dimer scattering [PSS05, De11]. This list is
far from complete and even though a few questions were investigated in detail in this thesis,
the field of Efimov physics is constantly growing. It will remain an active field with many
more challenges to be solved in the future.



Appendix A

Heteronuclear Integral Equation

In this appendix, we want to give an extensive derivation of the heteronuclear integral equa-
tions (5.3) and (6.3) used in the Chapters 5 and 6. We also deduce the subtracted equation,
used in Subsections 5.2.2 and 5.2.4, and show more details of the computation of sL from
Section 6.2.

A.1 Derivation

To calculate the STM equation, we start by deriving the full heteronuclear dimer propaga-
tor (5.2). Feynman rules for the heteronuclear case of Lagrangian (5.1) are given in Table A.1.
Note that we first only consider bosons, the fermionic case is discussed at the end of this sec-
tion. The full dimer propagator is shown in Fig. A.1 and is given by

iD(E) = iD(0)(E) + iD(0)(E)
(
−iΣ(E)

)
iD(0)(E) + · · ·

= iD(0)(E)
[
1− Σ(E)iD(0)(E)

]−1
, (A.1)

Description Feynman rule

Propagator for atom i i/(k0 − k2

2mi
+ iε)

Dimer propagator, iD(0) i/g2

(A1-A2 → D)–vertex, (D → A1-A2)–vertex −ig2

(A2-D → A2-D)–vertex −ig3/4

Table A.1: Feynman rules for the heteronuclear case.
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Figure A.1: Infinite bubble sum or integral equation for the dimer propagator. Solid
(dashed) lines denote atom species 2 (1). Mixed double lines denote the bare dimer propa-
gator; thick mixed double lines denote the full dimer propagator.

where iD(0)(E) denotes the bare dimer propagator and iΣ(E) the self-energy. This self-energy
is given by

−iΣ(E) = (−ig2)2

∫
d3q

(2π)3

dq0

2π

i

q0 − q2/(2m1) + iε

i

E − q0 − q2/(2m2) + iε

= −ig2
2

∫
d3q

(2π)3

1

E − q2/2µ+ iε

= −i2µg2
2

∫
dΩ

4π

∫ Λ

0

dq

2π2

q2

2µE − q2 + iε

= −iµg
2
2

π2

(
−Λ +

∫ Λ

0
dq

2µE

2µE − q2 + iε

)

≈ i
µg2

2

π2

(
Λ− π

2

√
−2µE − iε

)
, (A.2)

where we neglected a term proportional to 1/Λ in the very last step. Inserting this into
Eq. (A.1) and multiplying by (−ig2)2 to account for the vertices leads to the two-body
amplitude

A2(E) = −g2

[
1 +

µg2

π2

(
Λ− π

2

√
−2µE − iε

)]−1

. (A.3)

The scattering length and the coupling g2 can now be deduced

a = − µ

2π
A2(0) =

µg2

2π

[
1 +

µg2Λ

π2

]−1

⇐⇒ g2 =
2πa

µ

[
1− 2aΛ

π

]−1

. (A.4)

Substituting E = P0 − P 2

2M and multiplying by (−ig2)−2, we thus can give the full dimer
propagator,

D(P0, ~P ) =
1

g2

[
1 +

µg2

π2

(
Λ− π

2

√
−2µ

(
P0 − P 2/(2M)

)
− iε

)]−1

=
1

g2

[
1 +

µ

π2

2πa

µ

1

1− 2aΛ/π

(
Λ− π

2

√
−2µ

(
P0 − P 2/(2M)

)
− iε

)]−1

=
2π

µg2
2

[
−1/a+

√
−2µ

(
P0 − P 2/(2M)

)
− iε

]−1

, (A.5)
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corresponding to Eq. (5.2). The wave function renormalization is given by

Z−1
D = i

∂

∂P0

(
iD(P0, P )

)−1
∣∣∣
P0=−1/(2µa2),P=0

=
µ2g2

2 a

2π
. (A.6)

Subsequently, we make use of this dimer propagator to derive the atom-dimer amplitude
pictured in Fig. 5.1,

A(p, k;E) = −g2
2

[
1

E − p2/(2m2)− k2/(2m2)− (~p+ ~k)2/(2m1) + iε
+

g3

4g2
2

]

−g2
2

2π

g2
2µ

∫
d3q

(2π)3

∫
dq0

2π

[
1

E − p2/(2m2)− q0 − (~p+ ~q)2/(2m1) + iε
+

g3

4g2
2

]
× i

q0 − q2/(2m2) + iε

A(p, q;E)

−1/a+
√
−2µ(E − q2/(2m2)− q2/(2M))− iε

= −g2
2

[
1

E − p2/(2µ)− k2/(2µ)− ~p · ~k/m1 + iε
+

g3

4g2
2

]

−4π

µ

∫
d3q

(2π)3

[
1

E − p2/(2µ)− q2/(2µ)− ~p · ~q/m1 + iε
+

g3

4g2
2

]
× A(p, q;E)

−1/a+
√
−2µ(E − q2/(2m2)− q2/(2M))− iε

= −g2
2

[
2µ

2µE − p2 − k2 − 2~p · ~k µ
m1

+ iε
+

g3

4g2
2

]

−2π

µ

∫
d3q

(2π)3

[
2µ

2µE − p2 − q2 − 2~p · ~q µ
m1

+ iε
+

g3

4g2
2

]

× A(p, q;E)

−1/a+
√
−2µ(E − q2/(2m2)− q2/(2M))− iε

. (A.7)

We now first concentrate on the S-wave case. Therefore, we average the equation over
x = cos

(
∠(~p,~k)

)
to project the amplitude on its S-wave part,∫ 1

−1

dx

2

2µ

2µE − p2 − k2 − 2pkx µ
m1

+ iε
= −m1

2pk
ln

[
p2 + k2 + 2pk µ

m1
− 2µE − iε

p2 + k2 − 2pk µ
m1
− 2µE − iε

]
. (A.8)

At the same time, we multiply the amplitude with the wave function renomalization fac-
tor (A.6). We thus arrive at Eq. (5.3) which can then be rewritten using H(Λ)/Λ2 =
−g3/(4m1g

2
2) (Eq. (5.5)),

AS(p, k;E) =
2πm1

aµ2

[
1

2pk
ln

[
p2 + k2 + 2pk µ

m1
− 2µE − iε

p2 + k2 − 2pk µ
m1
− 2µE − iε

]
+

g3

4m1g2
2

]

+
m1

πµ

∫ Λ

dq q2

[
1

2pq
ln

[
p2 + q2 + 2pq µ

m1
− 2µE − iε

p2 + q2 − 2pq µ
m1
− 2µE − iε

]
+

g3

4m1g2
2

]

× AS(q, k;E)

−1/a+

√
−2µ

(
E − q2/(2µAD)

)
− iε
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=
2πm1

aµ2

[
1

2pk
ln

[
p2 + k2 + 2pk µ

m1
− 2µE − iε

p2 + k2 − 2pk µ
m1
− 2µE − iε

]
+
H(Λ)

Λ2

]

+
m1
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dq q2

[
1

2pq
ln

[
p2 + q2 + 2pq µ

m1
− 2µE − iε
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m1
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]
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H(Λ)

Λ2

]

× AS(q, k;E)

−1/a+

√
−2µ

(
E − q2/(2µAD)

)
− iε

. (A.9)

As for identical bosons, H(Λ) should fulfill Eq. (3.15) to ensure renormalization but can be
set to zero in the practical calculations.

If instead of considering only S-waves, we want to derive the STM equation for general L,
we project Eq. (A.7) with the help of Legendre polynomials onto the Lth partial wave,

QL(z) =
1

2

∫ 1

−1
dx

PL(x)

z − x
, (A.10)

where QL(z) is a Legendre polynomial of the second kind. Directly neglecting H(Λ), this
yields

AL(p, k;E) =
2πm1

aµ2

1

pk
(−1)LQL

(
p2 + k2 − 2µE

2pkµ/m1

)
+
m1

πµ

∫ Λc

0
dq
q

p
(−1)LQL

(
p2 + q2 − 2µE

2pqµ/m1

)
× AL(q, k;E)

−1/a+
√
−2µ(E − q2/(2µAD))

, (A.11)

as given in Eq. (6.3) for bosons.

If the particles of species 2 are fermionic, both summands on the right hand side acquire an
additional factor of (−1) due to Fermi statistics.

A.2 Subtracted Equation

Here, the subtracted integral equation (5.15) is derived. For k = 0, E = 0, and the three-body
force being zero, the S-wave STM equation (5.3) simplifies to

AS(p) =
4π

aµp2
+

m1

2πµ

∫ Λ

0
dq
q

p
ln

[
p2 + q2 + 2pq µ

m1

p2 + q2 − 2pq µ
m1

]
AS(q)

−1/a+
√

µ
µAD

q
. (A.12)

To obtain the subtracted and hence infrared finite amplitude ĀS , the first three exchange
terms have to be subtracted, as they contain the divergencies.
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1. Tree diagram, S1
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. (A.13)

2. One-loop diagram, S2
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For the integration over l0, we close the contour in the upper half plane and thus include
the pole at l0 = −l2/(2m2) + iε. We insert the on-shell energy −p0 = p2/(2m2) and

expand the dimer propagator a/
(

1− a
√
−2µl2/(2µAD)− iε

)
≈ a

(
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√
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. (A.15)

Now, we make use of a Feynman parameter to further develop the integral. The auxil-
iary calculation is:

1

l2
1
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=
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0
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, (A.16)

where, in the last step, the substitution ~l→ ~l − ~pz µ
m1

was used. This yields
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3. Two-loop diagram, S3
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. (A.18)

For the l0 integration, we close the contour on the upper half plane and have to consider
the poles l0 = −l2/(2m2) + iε and k0 = −k2/(2m2) + iε. We make use of the on-shell
condition−p0 = p2/(2m2) and expand the two dimer propagators, yielding the prefactor
times a2. We obtain
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dk k2

∫ 1

−1
dx1

∫
dl l2

∫ 1

−1
dx2

1

l2
1

l2 + k2 + 2lkx1
µ
m1

× 1

p2 + k2 + 2pkx2
µ
m1

=
2g2

2µa
2

π2

∫
dk k2

∫
dl l2

1

l2
m1

2lkµ
ln

[
l2 + k2 + 2lk µ

m1

l2 + k2 − 2lk µ
m1

]
m1

2pkµ

× ln

[
p2 + k2 + 2pk µ

m1

p2 + k2 − 2pk µ
m1

]

=
g2

2a
2m2

1

2µπ2p

∫
dk ln

[
p2 + k2 + 2pk µ

m1

p2 + k2 − 2pk µ
m1

]∫
dl

1

l
ln

[
l2 + k2 + 2lk µ

m1

l2 + k2 − 2lk µ
m1

]
, (A.19)

where we used Eq. (A.8) twice. First, we consider the l-integral and rewrite it using
l̃ = l/k,∫

dl

l
ln

[
l2 + k2 + 2lk µ

m1

l2 + k2 − 2lk µ
m1

]
=

∫
dl̃

l̃
ln

[
l̃2 + 1 + 2l̃ µm1

l̃2 + 1− 2l̃ µm1

]
= 2π arcsin

(
µ

m1

)
, (A.20)
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which is valid for 0 < µ
m1

= m2
M < 1 being naturally fulfilled. The second integral to be

considered is ∫
dk ln

[
p2 + k2 + 2pk µ

m1

p2 + k2 − 2pk µ
m1

]
= −4

µ

m1
ln(p)p . (A.21)

Therefore, we obtain

S3 = −4g2
2a

2m1

π
arcsin

(
µ

m1

)
ln(p) . (A.22)

The subtracted equation we want to derive is now given by

ĀS(p) = AS(p)− ZD (S1 + S2 + S3)

= AS(p)− 4π

aµp2
+

4πm1

pµ2
arcsin

(
µ

m1

)
+

8a

µ

[
arcsin

(
µ

m1

)
m1

µ
−
√

µ

µAD

]
ln(p) . (A.23)

Solving Eq. (A.23) for AS and inserting this into Eq. (A.12), we find the final equation

ĀS(p) = − 4π

aµp2
+

4πm1

pµ2
arcsin

(
µ

m1

)
+

8a

µ

[
arcsin

(
µ

m1

)
m1

µ
−
√

µ

µAD

]
ln(p)

+
4π

aµp2
+

m1

2πµ

∫ Λ

0
dq
q

p
ln

[
p2 + q2 + 2pq µ

m1

p2 + q2 − 2pq µ
m1

]
ĀS(q)

−1/a+
√

µ
µAD

q

+
m1

2πµ

∫ Λ

0
dq
q

p
ln

[
p2 + q2 + 2pq µ

m1

p2 + q2 − 2pq µ
m1

]
1

−1/a+
√

µ
µAD

q

×
{

4π

aµq2
− 4πm1

qµ2
arcsin

(
µ

m1

)
− 8a

µ

[
arcsin

(
µ

m1

)
m1

µ
−
√

µ

µAD

]
ln(q)

}

= −
∫ Λ

0
dq
q

p
ln

[
p2 + q2 + 2pq µ

m1

p2 + q2 − 2pq µ
m1

]
arcsin

(
µ
m1

)
m1
µ −

√
µ

µAD

−1/a+
√

µ
µAD

q

4am1

πµ2

×
(

ln(q) +

√
µ

µAD

π

2

)

+
2am1

µ2

(
arcsin

(
µ

m1

)
m1

µ
−
√

µ

µAD

){
2

√
1−

(
µ

m1

)2

arctan

 − µ
m1

+ p
Λ√

1−
(
µ
m1
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−2

√
1−

(
µ
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)2
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m1

+ p/Λ√
1−

(
µ
m1

)2

+ 4
µ

m1
ln(Λ)

+

(
µ

m1
+

Λ

p

)
ln
(

1 + 2
µ
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p

Λ
+
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)
+

(
µ
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− Λ

p
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ln
(

1− 2
µ
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−2m1

µ2p

(
Li2

(
−ei arccos( µ

m1
) p

Λ

)
+ Li2

(
−e−i arccos( µ

m1
) p

Λ

)
−Li2

(
e
i arccos( µ

m1
) p

Λ

)
− Li2

(
e
−i arccos( µ

m1
) p

Λ

))
+
m1

2πµ

∫ Λ

0
dq
q

p
ln

[
p2 + q2 + 2pq µ

m1

p2 + q2 − 2pq µ
m1

]
ĀS(q)

−1/a+
√

µ
µAD

q
, (A.24)

where we left out a few calculational details on the very last step. The function Li2(z) is the
dilogarithm defined as

Li2(z) =

∫ z

0
dt

Li1(t)

t
=

∫ z

0
dt
− ln(1− t)

t
. (A.25)

For the numerical evaluation, it can be taken from the GNU Scientific Library where it is
implemented as a special function [gsl].

A.3 Determining sL

In this section, we want to give a few further details on the derivation of Eq. (6.6). We start
directly from Eq. (6.5), which is already simplified for large momenta. It is given by

ÃL(p) = (±1)(−1)L
m1

πµ

√
µAD

µ

∫ ∞
0

dq

q
PL

(
p2 + q2

2pqµ/m1

)
Q0

(
p2 + q2

2pqµ/m1

)
ÃL(q) , (A.26)

where

sinφ =
1

δ + 1
=

µ

m1
⇐⇒ cosφ =

√
δ(δ + 2)

δ + 1
=

√
µ

µAD
, (A.27)

and ÃL(p) = pAL(p, k;E) ∝ p±isL .

Furthermore, we make use of the series representation of PL,

PL(x) =

kmax∑
k=0

(−1)k
(2L− 2k)! xL−2k

(L− k)! (L− 2k)! k! 2L
, (A.28)

where

kmax =

{
L/2 if L is even
(L− 1)/2 if L is odd

. (A.29)

The Mellin transform of a function f(x) is defined as

M[f ; s] :=

∫ ∞
0

dxxs−1 f(x) if

∫ ∞
0

dx

x
|f(x)|2 exists . (A.30)

The Mellin transform of the zeroth order Legendre function of the second kind Q0 is given
by [EMOT54]

M
[
ln

(
1 + x2 + 2x sinφ

1 + x2 − 2x sinφ

)
; s

]
=

2π

s

sin[sφ]

cos[sπ/2]
, (A.31)
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and we know [EMOT54]
M[xaf(x); s] =M[f ; s+ a] . (A.32)

Including the binomial expansion

(x+ x−1)j =

j∑
m

j!

m! (j −m)!
xj−my−m , (A.33)

we have all formulae at hand to obtain

1 = ± (−1)L

sin(2φ)

kmax∑
k=0

(2L− 2k)!

(L− k)! k!

(−1)k

22L−2k(sinφ)L−2k

×
L−2k∑
m=0

1

m! (L− 2k −m)!

2

isL + 2m− L+ 2k

sin [(isL + 2m− L+ 2k)φ]

cos
[
(isL + 2m− L+ 2k)π2

] , (A.34)

corresponding to Eq. (6.6).

Note that there is another method to derive sL. We start with

ÃL(p) = (±1)(−1)L
m1

πµ

√
µAD

µ

∫ ∞
0

dq

q
QL

(
p2 + q2

2pqµ/m1

)
ÃL(q) , (A.35)

and insert the hyperspherical representation ofQL
(
(x+ x−1)/(2 sinφ)

)
along the lines of [Gr05].

This leads to

1 = (±1)(−1)L
2L+1

π

(sinφ)L

cosφ

Γ
(
L+1+isL

2

)
Γ
(
L+1−isL

2

)
Γ
(

3+2L
2

)
×2F1

(
L+ 1 + isL

2
,
L+ 1− isL

2
;
3 + 2L

2
; sin2 φ

)
, (A.36)

which is completely equivalent to Eq. (117) of [NFJG01]. However, both equations, (A.34)
and (A.36) yield the same results for sL up to about 12 digits for all tested values of L and δ.





Appendix B

Integration Elements and Phase
Space Factors

Here, we want to show how to calculate hyperspherical integration elements and phase space
factors in two and three spatial dimensions. The case of 2D is used in Chapter 7. For 3D, the
derived equations are not used in the thesis but could, in principle, be helpful for an extension
to Chapter 6 for the calculation of three-body recombination rates at finite temperatures.

B.1 Integration Elements

For the general hyperspherical integration element, the first coordinate transformations to
Jacobi coordinates are given by

ptot = p1 + p2 + p3 ,

p12 =
m1 +m2

2m1
p1 −

m1 +m2

2m2
p2 ,

p3,12 = p3 −
m2

m1 +m2
(p1 + p2) . (B.1)

Subsequently, the collision energy and the hyperangle are introduced as

E =
2m1m2

(m1 +m2)3
p2

12 +
m1 +m2

2m2(m1 + 2m2)
p2

3,12 ,

α = arctan

(
2
√
m1m2

2(m1 + 2m2)

(m1 +m2)2

p12

p3,12

)
, (B.2)

and we do not need to change the center-of-mass momentum. Calculating the determinants
of the corresponding Jacobi matrices leads to the integration elements. For 3D, we obtain

d3p1 d
3p2 d

3p3 =
m2
√
m1 + 2m2 (m1 +m2)2

4
√
m1

sin2 2αdαE2 dE dΩ12 dΩ3,12 d
3ptot . (B.3)

And for 2D, the result (now for three identical bosons, m1 = m2 = m) is given by

d2p1 d
2p2 d

2p3 = m2 sin(2α3) dα3E dE dϕ12 dϕ3,12 d
2ptot , (B.4)

corresponding to Eq. (7.19).
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B.2 Phase Space Factors

For two different atomic species in 3D, the three-atom phase space is given by

PS
(3D)
AAA =

∫
d3p1

(2π)3

d3p2

(2π)3

d3p3

(2π)3
(2π)4 δ3 (~p1 + ~p2 + ~p3) δ

(
p2

1

2m1
+

p2
2

2m2
+

p2
3

2m2
− E

)
=

m3
2E

2

32π3 (2m2/µ− 1)3/2

∫
dΩ . (B.5)

The atom-dimer phase space is

PS
(3D)
AD =

∫
d3pA

(2π)3

d3pD

(2π)3
(2π)4 δ3 (~pA + ~pD) δ

(
p2

A

2m2
+

p2
D

2M
− E

)
=

µAD

4π2
k

∫
dΩ , (B.6)

and the atom-dimer relative velocity is

v
(3D)
AD =

k

µAD
. (B.7)

The relation between the hyperangular average of the three-body recombination rate and the
atom-dimer inelastic scattering cross section, when no deep dimers are present, is then given
by

K(3D)(E) = 2 v
(3D)
AD

PS
(3D)
AD

PS
(3D)
AAA

σ
(inel,3D)
AD (E)

=
32π~3µAD (E + ED)

(
2m2
µ − 1

)3/2

m3
2E

2
σ

(inel,3D)
AD (E) . (B.8)

where the factor of 2 arises because there are two ways to choose one of the two indistin-
guishable particles to form a dimer.

In 2D, the analogous considerations (now for three identical particles) yield

PS
(3D)
AAA =

∫
d2p1

(2π)2

d2p2

(2π)2

d2p3

(2π)2
(2π)3 δ2 (~p1 + ~p2 + ~p3) δ

(
p2

1

2m
+

p2
2

2m
+

p2
3

2m
− E

)
=

m2E

6π
, (B.9)

PS
(2D)
AD =

∫
d2pA

(2π)2

d2pD

(2π)2
(2π)3 δ3 (~pA + ~pD) δ

(
p2

A

2m2
+

p2
D

2M
− E

)
=

2m

3
, (B.10)

v
(2D)
AD =

3k

2m
, (B.11)
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and

K(2D)(E) = 3! v
(2D)
AD

PS
(2D)
AD

PS
(2D)
AAA

σ
(inel,2D)
AD (E)

=
36π~2

m2E
k σ

(inel,2D)
AD (E) , (B.12)

where 3! = 6 accounts for the three indistinguishable particles and the resulting equation
corresponds to Eq. (7.20).





Appendix C

Numerical Procedure

Most of the results presented in this thesis have been derived numerically. Therefore, we give
a short account on the numerical procedure in this appendix. We start with general remarks
on the discretization followed by two strategies to deal with functions that have poles.

C.1 General Remarks

Quite generally, the integral equation we want to solve is of the form known as a Fredholm
equation of the second kind,

f(p) = h(p) +

∫ Λ

0
dq K(p, q) f(q) , (C.1)

with the kernel K(p, q). The first step for the numerical solution of this equation consists in
discretizing the above equation,

f(pi) = h(pi) +
N∑
j=1

wjK(pi, qj) f(qj)

⇐⇒ fi = hi +

N∑
j=1

wjKij fj , (C.2)

where at the same time the integral is replaced by a weighted sum with wj denoting the
weights. The kernel is now given by the matrix Kij . We make use of the Gauss-Legendre
integration to determine the points pi with the corresponding weights wj . The algorithm for
Gauss-Legendre integration, its implementation, and more details can be found in Chapter 4
of Ref. [PTVF92].

This Fredholm equation can now be rewritten asδij − N∑
j=1

wjKij

 fj = hj . (C.3)
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For a well behaved kernel, it can be solved numerically according to the procedure described
in Chapter 18 of Ref. [PTVF92].

Whenever a scattering amplitude A is computed in the presence of the Efimov effect, it shows
log-periodic behavior. It is therefore very useful to choose the mesh points for the Gaussian
integration on a logarithmic grid. This was done with the help of the following substitution,

p̃ = ln(p+ 1) ⇔ p = ep̃ − 1 . (C.4)

The interval translates from 0 ≤ p ≤ Λ to 0 ≤ p̃ ≤ ln(Λ + 1). The integration element is
given by

dp = ep̃ dp̃ . (C.5)

If an integration should span the interval from zero to infinity for x, we used the following
substitution,

x′ =
x

1 + x
⇔ x =

x′

1− x′
, (C.6)

for 0 ≤ x′ ≤ 1. The integration element is then given by

dx =
1

(1− x′)2
dx′ . (C.7)

C.2 Poles with Direct Procedure

The scattering amplitudes A we are interested in usually contain kernels with a pole. To
treat them adequately, there are two possible strategies and we made use of both for the
derivation of all numerical results, depending on the exact requirements of each case.

To include a pole at q = q0 + iε directly, we rewrite Eq. (C.1),

f(p) = h(p) +

∫ Λ

0
dq

K̃(p, q)

q − q0 − iε
f(q) , (C.8)

and thus separate the pole structure from the kernel, K(p, q) = K̃(p,q)
q−q0−iε . Now, we can make

use of the Sokhatsky-Weierstrass theorem,

lim
ε→0+

∫ b

a

f(x)

x± iε
dx = ∓ iπ f(0) + P

∫ b

a

f(x)

x
dx , (C.9)

where P denotes the principal value. Adding a zero leads to

f(p) = h(p) +

∫ Λ

0
dq
K̃(p, q)f(q)− K̃(p, q0)f(q0)

q − q0
+ K̃(p, q0) f(q0)

(
iπ + P

∫ Λ

0

dq

q − q0

)
.

(C.10)

The last integral is just given by ln
(

Λ−q0
q0

)
. Implementing this equation in the numerical

procedure, we now need one more mesh point to incorporate the pole position, qN+1 ≡ q0.
This yields

fi = hi +
N∑
j=1

wjKij fj + K̃iN+1 fN+1

(
iπ + ln

(
Λ− q0

q0

)
−

N∑
k=1

wk
pk − pN+1

)
. (C.11)
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These are N equations for N+1 unknown functions fi, so we can set up the N+1th equation,

fN+1 = hN+1 +

N∑
j=1

wjKN+1j fj + K̃N+1N+1 fN+1

(
iπ + ln

(
Λ− q0

q0

)
−

N∑
k=1

wk
pk − pN+1

)
.

(C.12)
The equivalent of Eq. (C.3) now looks likeδij − N+1∑

j=1

Mij

 fj = hj , (C.13)

with 1 ≤ i ≤ N + 1 and the matrix M being defined as

Mij =

{
wjKij for j ≤ N
K̃iN+1 fN+1

(
iπ + ln

(
Λ−q0
q0

)
−
∑N

k=1
wk

pk−pN+1

)
for j = N + 1

. (C.14)

C.3 Poles with Contour Deformation

If the kernel has more than one pole or a complicated structure, the procedure described in
the previous section might not be easily applicable. Another way to deal with the singularities
numerically is contour deformation as a rotation into the complex plane. With this procedure,
it is possible to circumvent the pole. The desired result should not depend on the angle of
rotation. However, for the inclusion of deeply bound dimers with the help of a complex
cutoff containing the parameter η∗, it is actually obligatory to use a deformed contour and
the rotation angle then acquires a physical meaning. Therefore, in this case, the rotation has
to be counterclockwise, because this corresponds to a positive value of η∗, using eiη∗/sL as
rotation.

For the implementation, we start again with Eq. (C.1) and rotate the momenta p and q with
a general rotation angle ϕ,

f(peiϕ) = h(peiϕ) +

∫ Λ

0
dq eiϕK(peiϕ, qeiϕ) f(qeiϕ) . (C.15)

If during the rotation no pole is hit (e.g., if the pole lies in the upper half plane and the
rotation uses a negative angle), this equation can be discretized and used along the lines of
Section C.1. In a final step, an interpolation with the help of the now known function f
back onto the real axis is used. If, however, one crosses a pole in the rotation procedure, its
contribution has to be accounted for. This can be done via the residual theorem or a direct
inclusion with the help of Section C.2. Note that we only consider functions where it is not
necessary to close the contour explicitly.
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