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Abstract

The behavior of the Allen-Cahn equation

d
dt
uε(x, t) = ∆uε(x, t)− 1

ε2
F ′(uε(x, t)) + ξεt

with an additional stochastic term ξεt is studied for small values of ε. This equation is a reaction
di�usion equation with a particular shape of the reaction term −F ′ which is the negative derivative
of a double-well potential with two wells of equal depth.

In the �rst part the invariant measure for this equation is studied in the case, where x ∈ [−1, 1]
takes values in a compact one-dimensional domain, and where ξεt denotes a space-time white
noise. This measure is absolutely continuous with respect to a Brownian bridge with appropriate
boundary conditions. A scaled version of this measure is transformed to a Gibbs-type measure
on a growing interval. Then it is shown that these transformed measures concentrate around a
one-dimensional curve of minimizers in the in�nite-dimensional space of possible con�gurations.
This implies that in the original scaling the measures concentrate on the set of step functions with
precisely one jump.

In the second part the dynamical system is studied in higher dimensions. Here the noise term
ξεt is constant in space, and smoothened in time, with a correlation length that goes to zero at a
precise rate as ε ↓ 0. In the limit one obtains almost surely con�gurations that are concentrated
on {±1}. The development of the phase boundaries is driven by its mean curvature with an
additional stochastic forcing term.
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Chapter 1

Introduction

The Allen-Cahn equation was introduced in [AC79] to model the growth of grains in crystalline
materials near their melting point. It is one of the simplest models conceivable for phase separation
and the evolution of interfaces between these phases without preservation of mass. Therefore, it
is taken as a simpli�ed model in various contexts. In this work the in�uence of noise on the
Allen-Cahn equation is studied. Some rigorous new results on the invariant measure in the one-
dimensional case and on the dynamics of the higher-dimensional equation are given.

1. Derivation of the model

Let us brie�y recall the main ingredients of Allen and Cahn's model. Imagine a physical system,
which can be described locally by an order parameter u ∈ [−1, 1], which depends on time and
space. The system might, for example, consist of a crystalline material with two possible lattice
structures, which are described by the order parameter taking the values ±1. It might also consist
of a sample of ferromagnetic material with two possible spins ±1. The order parameter taking
values in between 1 and −1 then corresponds to mixtures of the two lattice structures in the model
of the crystal or a local mean magnetization, which may be obtained by a coarse graining in the
case of the ferromagnet. A possible �rst step in modelling such a situation is the derivation of
an energy associated to a con�guration u. In both situations it is more favorable for the sample
to attain values close to ±1 instead of an intermediate value in (−1, 1). In the case of the coarse
grained ferromagnet this is true, because it is energetically favorable for an atom to have the same
spin as its neighbors, in the case of the crystal because the pure lattice structures are the most
favorable. This e�ect is taken into account by a potential energy∫

1
ε
F (u(x))dx.

Here F takes the shape of a double-well potential (see Figure 11). A standard choice for such a
potential is the function F (u) = 1

4 (u2 − 1)2 but most properties are independent of the particular
choice of F . We will work under more general assumptions later, but for simplicity of exposition
let us assume for the moment that F is this particular function. Now this description is purely
local and one needs another term to avoid too rough transitions between the phases. This e�ect
is covered by a second term which mathematically takes the form of a kinetic energy :∫

ε|∇u(x)|2dx,

such that one obtains the energy functional

Hε(u) =
∫
ε|∇u(x)|2 +

1
ε
F (u(x))dx.

The parameter ε is used to calibrate the di�ering strength of the individual terms. We will see
later that it corresponds to the width of the interface between the di�erent phases.
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Figure 1.1: The potential F .

Now in order to give an equation of motion for the phase �eld u one postulates that the system
tends towards con�gurations in which it looses energy quickly. In physicists notation this reads

d
dt
u =

∂Hε(u)
∂u

.

In mathematical formulation this corresponds to the L2-gradient �ow of the energy functional Hε.
We will see later that in order to obtain an interesting phenomenon in the sharp interface limit
ε ↓ 0 one has to accelerate the dynamics by a factor 1

ε . The evolution equation one obtains in this
way is the Allen-Cahn equation

d
dt
u(x, t) = ∆u(x, t)− 1

ε2
F ′(u(x, t)). (1.0.1)

Mathematically there is no reason to restrict this equation to functions u that attain values only
in [−1, 1] although other con�gurations have no physical meaning. Actually it can be shown easily
with a comparison principle that solutions of the Allen-Cahn equation which initially only attain
values in [−1, 1] will preserve this property for all times, whereas solutions with general initial
conditions (say in L∞) will quickly be drawn into the interval [−1− δ, 1 + δ] for every δ > 0. This
behavior seems reasonable, and for convenience, when introducing the noise we will not enforce
that solutions attain values only in [−1, 1].

Furthermore, one should note that the choice of L2-structure for the gradient �ow is deliberate
- one might also choose another metric and obtain a di�erent equation. If for example one takes
the H−1-structure one obtains the Cahn-Hilliard equation, which is another well studied model
for phase separation and evolution of boundaries. The most striking di�erence between these two
models is that in the Allen-Cahn equation the total mass

∫
u(x, t)dx (corresponding to the total

magnetization of the material or the total fraction of atoms within a given lattice structure) is
not preserved, while it is preserved in the Cahn-Hilliard model. Which equation is more suitable,
therefore, depends on the situation one wants to describe. A mathematical di�erence is that the
Cahn-Hilliard equation is a fourth order equation, and that comparison principles, that are very
useful in the study of the Allen-Cahn equation, are not available for the Cahn-Hilliard equation.
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2. Heuristic analysis of the equation

Let us now give an non-rigorous description of the behavior of con�gurations which are favor-
able for the energy functional Hε and for the dynamics given by the Allen-Cahn equation. We
are particularly interested in the case where ε is small. Let us take a look at the one-dimensional
case for ε = 1 �rst. Therefore, we look for minimizers of the functional

H(u) =
∫ ∞
−∞

(u′(x))2 + F (u(x))dx.

Obviously the minimizers are given by the constant functions u(x) = 1 and u(x) = −1. Nontrivial
results can be obtained if one enforces the function to pass from −1 to 1 at least once by demanding
limx→±∞ u(x) = ±1. Under this assumption one can write

H(u) =
∫ ∞
−∞

1
2

(u′(x))2 + F (u(x))dx

=
∫ ∞
−∞

1
2

(
u′(x)−

√
2F (u(x))

)2

+
√

2F (u(x))u′(x) dx

≥G(+1)−G(−1) =: c0, (1.0.2)

where G is an antiderivative of
√

2F (u). In the case of the standard quartic double-well potential

G is given by G(u) =
√

2u
2 −

√
2u3

6 , such that one obtains c0 = 2
√

2
3 . This energy is attained if and

only if u solves
u′(x)−

√
2F (u(x)) = 0, (1.0.3)

which reads u′(x) =
√

2
2 (1− u2) in the quartic case. The only solutions of this equation verifying

the right boundary conditions are the functions (mξ, ξ ∈ R) given as

mξ(x) = tanh
(x− ξ√

2

)
. (1.0.4)

In Chapter 2 an essential idea is, to consider this one-parameter family of minimizers as a one-
dimensional submanifold of the in�nite-dimensional space of possible con�gurations and then to
analyze the behavior of H(u) in terms of the geometry of this submanifold.

In the ε dependent case the minimizers of Hε under the above boundary conditions are given
by a rescaled version of the mξ i.e.

mε
ξ = tanh

(x− ξ√
2ε

)
.

One should note that the minimal energy c0 = H(mξ) = Hε(mε
ξ) does not rescale in ε. It should

be interpreted as the minimal energy required for a transition from −1 to +1. Another interesting
observation is that the functions mξ decay exponentially towards ±1 away from ξ. Therefore,
almost all of the energy is concentrated near ξ. For the rescaled functions mε

ξ this implies that
almost all the energy is concentrated on a region of the order ε. This explains why above ε was
introduced as the width of a typical interface. Another observation is that by rewriting (1.0.3) for
the rescaled functions mε

ξ one sees

1
2
ε(mε

ξ)
′(x)2 =

1
ε
F (mε

ξ(x)),

a relation known as equipartition of energy, which has become crucial for studying the Allen-Cahn
equation in the framework of geometric measure theory.

So far we have concluded that the minimizers of Hε under the condition, that there is at least
one jump, are given by themε

ξ. These pro�les are very close to −1 starting from −∞, then perform
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a quick transition in a precisely known shape in a ε neighborhood of the separation point ξ, and
then remain very close to +1 going to +∞. One can also consider functions that perform several
jumps at positions ξ1, . . . , ξn. Around the transition points these functions will look similar to
the mε

ξ for a transition from −1 to 1 or like −mε
ξ for a transition from 1 to −1, and their energy

is approximately given as nc0. It is a fruitful idea to again think in geometrical terms, and to
interpret this set of con�gurations with precisely n kinks indexed by ξ1, . . . , ξn as an n-dimensional
submanifold of the space of possible con�gurations.

Having this picture of the energy landscape in mind one can quickly get a heuristic explanation
of the behavior of the gradient �ow. Solutions will very quickly be drawn to one of the metastable
multikink con�gurations. Then as the energy is almost constant nc0 on these manifolds the
con�guration remains almost static on this manifold. On the level of functions this means that
functions will quickly be pushed into a con�guration that is almost everywhere close to ±1 with
transitions of width of order ε around points ξ1, . . . , ξn. The motion of these points ξi is extremely
slow until two of them come close. When two such ξi meet the phase boundaries annihilate. Then
the slow dynamics continue on the manifold with two kinks less. By such an annihilation the
con�guration quickly looses an energy of 2c0.

During this procedure the con�guration will eventually have less and less kinks, which means
on the other hand that the domains on which u attains only constant values will grow. This
growth of domains is called coarsening, and much research is devoted to understand how quickly
the growth of a typical domain proceeds in the Allen-Cahn equation but also in other models of
surface dynamics.

In the higher-dimensional case for small ε energetically favorable con�gurations should also
be characterized by regions in which they are almost constant close to either +1 or −1. The
optimal con�gurations will again be constant, but interesting con�gurations should exhibit some
kind of transition between these two phases. A natural candidate for a favorable con�guration
can be constructed as follows: Assume the space to be divided into two regions U+ and U−,
corresponding to the sign of the phase �eld. Let d be the signed distance function to the boundary
∂U+ i.e.

d(x) =

{
+dist(x, ∂U+) if x ∈ U+

−dist(x, ∂U+) if x ∈ U−. (1.0.5)

One would guess that the shape of the pro�le in normal direction of the boundary should be given
by the shape of the one-dimensional transition which yields

u(x) = m0

(d(x)
ε

)
. (1.0.6)

Herem0 denotes the energy minimizer de�ned by (1.0.4) for ξ = 0. Indeed if the radius of curvature
of ∂U+ is much bigger than ε such that one can ignore the curvature e�ects in the integration by
part in tubular coordinates, for such a function the energy is given roughly by

Hε(u) = c0Hn−1(∂U+),

where Hn−1 denotes the (n− 1)-dimensional area of the surface.

On the level of gradient �ows this suggests that solutions should behave like the pro�le u,
de�ned in (1.0.6) with evolving sets U = U(t). The evolution of the sets U(t) can be described
in terms of the normal velocity of the separating surface ∂U+(t). For x ∈ ∂U+(t) this normal
velocity is given by the time derivative of the signed distance function d(x, t) of the surface at
point x. Noting that by derivating (1.0.3) once, one directly obtains that the wave pro�le m0 is a
stationary solution of the one-dimensional Allen-Cahn equation

m′′0(x)− F ′(m(x)) = 0,
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and plugging the ansatz (1.0.6) into the Allen-Cahn equation (1.0.1) one obtains:

1
ε
m′0
(d(x)

ε

)
∂td(x, t) =

1
ε
m′0
(d(x)

ε

)
∆d(x, t).

In this calculation one uses the fact that the gradient of the signed distance function has norm
|∇d(x, t)| = 1. Now for x ∈ ∂U+(t) the term ∆d(x, t) coincides with the sum of the principal
curvatures of ∂U+(t) at point x. Thus we can conclude that the normal velocity is given by
this sum or equivalently (d − 1) times the mean curvature. Actually this behavior was already
conjectured in Allen and Cahn's paper.

This formal argument is reasonable also on the level of gradient �ows: For small values of ε the
energy of a con�guration is given by the surface of the separation layer. Therefore, the dynamics
should tend to decrease the surface. This is indeed true for the mean curvature �ow which can be
interpreted as a gradient �ow of the surface area functional (with respect to the L2-metric given
by the surface measure).

The topic of this work is to study the in�uence of an additional noise term on these dynamics.
An extra noise term may account for inaccuracies in the oversimpli�ed model or for thermal e�ects.
One observes that even a small noise in�uence drastically changes the behavior of the system. In
general it is conjectured that the noise signi�cantly accelerates the coarsening procedure.

Let us illustrate this in the one-dimensional case. Without a noise one observes a quick phase
separation which is followed by a very slow dynamic on the metastable manifolds described above.
Under the in�uence of a small noise term the phase separation which is driven by a strong decay
of energy will take place in the same way. Then on the metastable manifold there is almost
no in�uence of the energy. Therefore, the dynamics will be governed by the noise. As in the
deterministic case one will quickly see a separation into phases on which the pro�le only attains
values close to ±1 with phase separation points ξ1, . . . , ξn. Then these ξi will evolve randomly.
In the case of an additive space-time white noise one expects that this evolution is given by n
independent Brownian motions which annihilate once they meet.

3. Survey of the mathematical literature

In the deterministic case treated above, the Allen-Cahn equation and the related energy func-
tional, as well as the geometrical properties of motion by mean curvature, have been subject to
extensive research and most of the ideas sketched above have been turned into rigorous mathe-
matics. The stochastic case has also been treated but many questions remain open.

The convergence of the energy functional Hε towards the perimeter functional of the boundary
times the constant c0 have been proven in [MM77, M87] on the level of Γ convergence. In fact
the convergence of these functionals was one of the �rst examples for this framework, which is
particular useful if one studies convergence of minimizers.

The one-dimensional dynamics have been considered by many authors, and the dynamics
have been fully described. The idea of n-dimensional manifolds of multi-kink con�gurations was
introduced in the pioneering work of Carr and Pego [CP89] and has been developed further by
many authors. The most complete description available seems to be in a more recent paper of
Chen [Ch04]. In [OR07] an approach based only on energy methods is discussed. There a detailed
description of the energy landscape is given. Some ideas from this analysis will be used in Chapter
2.

The description of the evolution of surfaces according to its mean curvature is a rich math-
ematical topic. First approaches towards a study of the geometric evolution were obtained by
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Brakke [B78] in the framework of geometric measure theory. In particular he introduced a con-
cept of weak solutions to the mean curvature problem showed existence but no uniqueness of such
solutions and proved a remarkable regularity theorem. (See [Ec04] for a more detailed account of
Brakke's work.) In fact the non-uniqueness in Brakke's setup is not a technical inconvenience but
an intrinsic feature of this evolution. There are con�gurations which are known to admit several
weak Brakke solutions. There has been, and there continues to be today, a large interest in the
study of the mean curvature �ow, and we cannot review all of the approaches. Therefore, let us
only discuss those which are most important for this work: In the 90's, starting with [ES91, ES92]
and [CGG91], motion by mean curvature was studied as the level-set of a function Φ. The evolu-
tion of Φ is supposed to be such that each of its level sets evolves according to mean curvature.
This means that Φ solves the following equation:

∂tΦ =
(
δi,j − ∂iΦ∂jΦ

|DΦ|2
)
∂i∂jΦ.

Such nonlinear degenerate parabolic equations were then studied in the context of viscosity solu-
tions ([CIL92]). In particular, existence and uniqueness of solutions Φ was shown for a large class
of initial data. The intrinsic non-uniqueness, observed in Brakke's approach, corresponds to the
fattening phenomenon in the viscosity solutions approach: Level sets of Φ need not remain smooth
surfaces - even if they are smooth initially. In fact, when Brakke's solutions fail to be unique, the
level set �ow of Φ contains all the possible Brakke solutions.

There are several other approaches to study motion by mean curvature. Let us discuss in
more detail the approach developed in [ES92], which yields existence and uniqueness of smooth
evolutions for short times. This idea will be used in Chapter 3 in order to construct a stochastically
perturbed motion by mean curvature. Instead of taking a function Φ in which each level set
evolves according to mean curvature, we study the evolution of the signed distance function d to
the evolving surface.

To derive the right equation, suppose that (Γt)t = (∂Ut)t is a smooth family of surfaces evolving
according to motion by mean curvature, and let d(t, ·) be the signed distance function to Γt de�ned
as above in (1.0.5). Then in a neighborhood of Γt the function d(t, ·) is smooth, and for a point x
in this neighborhood there exists a unique y ∈ Γt such that |x − y| = dist(x,Γt). As seen above
the time derivative of d corresponds to the normal velocity of Γt in y. Therefore, one has

d
dt
d(x, t) = −div νt(y),

where νt = grad d(t, ·) is the unit normal vector �eld pointing in the outside direction of Γt. On
the other hand, the eigenvalues of the matrix D2d(x, t) are

λi = − κi
1− κid 1 ≤ i ≤ (d− 1) λd = 0,

where the λi denote the principal curvatures of Γ(t) in y. Therefore, one can compute

κi =
λi

λid− 1

and with
div ν = −(κ1 + . . . κd−1)

one obtains

d
dt
d(x, t) =

d∑
i=1

λi
1− λi = trace

(
D2d(x, t)(1− d(x, t)D2d(x, t))

)
. (1.0.7)

This equation is fully nonlinear, uniformly parabolic, and admits classical solutions for short
times. Therefore, in this approach the concept of viscosity solutions can be avoided, but solutions
can not be constructed globally in time.
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The convergence of solutions of the Allen-Cahn equation towards phase indicator functions
evolving according to motion by mean curvature was established in these several approaches. In
[MS95] this was shown for classical solutions of the mean curvature evolution. Their proof relies
on a Taylor expansion - very much in the spirit of Allen and Cahn's reasoning - and a spectral
estimate to bound the remainder. See [C94] for a simpli�ed exposition of such estimates. In the
context of viscosity solutions a similar result was shown globally in time in [ESS92]. In [Il93]
Ilmanen showed that such a result can also be obtained in the framework of geometric measure
theory. His analysis relies on a beautiful intuition for the individual terms appearing in the Allen-
Cahn equation as di�use mean curvature and di�use surface etc. On a technical level, the most
di�cult part in his analysis is to prove regularity of the limit of the di�use energy measure, in
order to control the discrepancy - a term introduced to describe how far the mean �eld u is away
from the right shape.

The stochastic case has been treated in the physics literature. See for example [KO82, FV03]
for a more detailed exposition of some ideas. But there are only partial rigorous results. In
[Fu95, BMP95] the one-dimensional system is studied in the case that the system starts in a
con�guration mε

ξ de�ned above. They show that in the right scale the shape is preserved and the
phase separation point performs a dynamic governed by the noise. The multi-kink case has not
yet been treated rigorously.

There have also been approaches to study the evolutions of surfaces, which are driven by its
mean curvature with an additional noise in�uence. The construction of such an object is a highly
nontrivial endeavor. Yip [Y98] proposed a construction via a perturbation of a time-discrete
approximation scheme of motion by mean curvature from [ATW93, LS95] via a stochastic �ow.
He proved energy bounds for this scheme and derived tightness. A characterization of the limiting
dynamics could not be given. In [LS98II, LS98I] a theory for stochastic viscosity solutions was
proposed, which should cover the case of the level set equation for motion by mean curvature
with a noise that is white in time but constant in space. In this way motion by mean curvature
with an additional stochastic forcing might be constructed. In the late nineties some questions
concerning this approach remained open, and there has been progress in this direction only recently
([CFO09, BM02]). Even another approach for the construction was proposed in [DLN01]. Here
the authors perturb equation (1.0.7) with an additive stochastic noise, which is white in time but
constant in space. They rewrite it as a deterministic equation with Hölder continuous data and
solve it pathwisely. In this way they were able to prove existence and uniqueness of the evolution
for short times. This approach will be used below in Chapter 3. This approach is also limited to
the case where the noise is constant in space.

The higher-dimensional Allen-Cahn equation with a stochastic forcing has been studied �rst
by Funaki [Fu99]. In fact he studied the two-dimensional case and derived a description for the
sharp interface limit for a noise which is constant in space and smoothened in time. A similar
result in the stochastic viscosity setting was also announced in [LS98II]. In [KORV07] the limit is
studied on a level of large deviation. In fact the authors study the action functional which arises
when studying the large deviation behavior of a multi-dimensional Allen-Cahn equation with an
additive space time white noise. Note that this functional is well de�ned although the stochastic
evolution is not. Then they study the sharp interface limit on the level of this functional and
propose a possible Γ-limit. The Γ-convergence has been proven rigorously in space-dimensions
d = 2, 3 in [MR08]. Finally in [MR09] a sharp interface limit is studied on the level of geometric
measure theory in the case where the perturbation is a L2 function, that concentrates on the
surface.

4.Contribution of this work

This work consists of two independent parts, which address the one-dimensional and the higher-
dimensional situation, respectively. In the �rst part we study the one-dimensional system in
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equilibrium. The invariant measure of the stochastically perturbed evolution is studied. Due to
the gradient structure of the Allen-Cahn equation this measure can be given very explicitly: It is
absolutely continuous with respect to the distribution of a Brownian bridge. The Radon-Nikodym
density corresponds to the potential energy of the path. The sharp interface limit is then studied
on the level of these measures. To this end the random functions are stretched on an interval that
grows as ε goes to zero, such that the potential energy, corresponding to the reaction term F , and
the covariance of the Brownian Motion, corresponding to the di�usion term, scale with the same
powers of ε. A discretization argument is then used to write the resulting measure as a Gibbs-
type measure on a �nite-dimensional space that is embedded in the in�nite-dimensional space of
con�gurations. Then analytical techniques can be applied to study the energy functional. In the
end it is shown that if the intervals do not grow too fast, the rescaled measures concentrate around
the set of minimizers of the energy functional. On the original �xed interval this corresponds to
con�gurations that attain only the values {±1} with precisely one jump. This jump is distributed
uniformly.

On a �xed interval this can be interpreted as an equilibrium version of the dynamical results
obtained in [Fu95, BMP95]. The results from these works suggest that on a �xed interval with
Dirichlet boundary data that enforces at least one jump in the right scaling one should have
the following behavior for small ε. Solutions should concentrate around con�gurations just as
above. The boundary point should perform a Browian motion with re�ecting boundary condition.
The result mentioned above says that the concentration also holds true on the level of invariant
measures. As the uniform distribution is the unique reversible measure for re�ected Brownian
motion on would expect that the phases boundary is distributed uniformly. Then it should be
possible to obtain dynamical results from our result using the theory of Mosco convergence of
Dirichlet forms. This is subject of future research.

The result concerning the case of a growing interval is closely related to the results from [RV05].
Here the authors study the same kind of measure from a di�erent point of view: They do not use
the Gibbs-type measure interpretation but using Girsanov theorem rewrite the invariant measure
as the distribution of a Markov process conditionned on the right boundary values. Using Freidlin-
Wentzel theory they predict a phase transition in the behavior depending on the growth rate of
the interval: For intervals growing slowly enough they predict con�gurations with one jump, but
if the intervals grow exponentially quickly at the right exponential rate they expect a Poisson
number of jumps. The growth rate we consider is only polynomially fast and much slower than
the exponential growth rate. Nonetheless, it gives a partial proof of their conjectures (by di�erent
means). Furthermore, it gives the precise shape of the minimizers on a scale of order ε.

In a second part we study the geometric problem in higher dimensions. To be more precise we
consider an equation that is perturbed by an additive noise that converges to a white noise as the
interface width goes to zero. The result is that in the limit one sees a phase separation and the
phase boundaries evolve according to a stochastically perturbed motion by mean curvature. Here
the idea is to use the approach from [DLN01] to describe the limiting behavior of the boundaries.
Then sub- and supersolutions can be constructed in a similar way as in [Fu99]. In order to
pass to the limit the crucial ingredient is a stability result for the limiting dynamics obtained
in [DLN01]. This result signi�cantly simpli�es the reasoning from [Fu99] and allows to include
arbitrary dimensions and a more general class of initial surfaces.

A more detailed discussion and a precise statement of the individual results is given at the
beginning of the two parts.
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Chapter 2

Sharp interface limit for invariant

measures

An earlier version of this chapter has appeared as SFB 611 preprint. It has accepted for publication
in Communications on Pure and Applied Mathematics [W09].

The invariant measure of a one-dimensional Allen-Cahn equation with an additive space-time
white noise is studied. This measure is absolutely continuous with respect to a Brownian bridge
with a density which can be interpreted as a potential energy term. We consider the sharp interface
limit in this setup. In the right scaling this corresponds to a Gibbs type measure on a growing
interval with decreasing temperature. Our main result is that in the limit if the interval does not
grow too fast we still see exponential convergence towards a curve of minimizers of the energy. In
the original scaling the limit measure is concentrated on con�gurations with precisely one jump.

2.1 Introduction

Reaction-di�usion equations can be used to model phase separation and boundary evolutions in
various physical contexts. Typically behavior of boundaries or geometric evolution laws are studied
with the help of such equations. Often in such models one includes an extra noise term. This
may happen for various reasons � the noise may be a simpli�ed model for the e�ect of additional
degrees of freedom that are not re�ected in the reaction-di�usion equation. From a numerical
point of view noise may improve stability in the simulations. In some systems there is even a
justi�cation for an extra noise term from a scaling limit of microscopic particle systems.

1. Setup and main result

The system considered here is the case of a symmetric bistable potential with two wells of
equal depth. To be more precise, for a small parameter ε > 0 we are interested in the equation

∂tu(x, t) = ∆u(x, t)− ε−2γF ′(u(x, t)) + ε(1−γ)/2
√

2 ∂x∂tW (x, t)
u(−1, t) = −1 u(1, t) = 1,

(2.1.1)

for (x, t) ∈ (−1, 1)×R+. Here F is supposed to be a smooth (at least C3) symmetric double-well
potential i.e. we assume that F satis�es the following properties:

(a) F (u) ≥ 0 and F (u) = 0 i� u = ±1,
(b) F ′ admits exactly three zeros {±1, 0} and F ′′(0) < 0, F ′′(±1) > 0,
(c) F is symmetric, ∀u ≥ 0 F (u) = F (−u).

(2.1.2)

9
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A typical example is F (u) = 1
2 (u2 − 1)2. The expression ∂x∂tW (x, t) is a formal expression

denoting space-time white noise. Such equation can be given rigorous sense in various ways, for
example in the sense of mild solutions ([Iw87, dPZ92]) or using Dirichlet forms [AR90]. We are
interested in the behavior of the system in the sharp interface limit ε ↓ 0. The parameter γ > 0
is a scaling factor. Our result will be valid for γ < 2

3 .

We study the behavior of the invariant measure of (2.1.1). This measure can be described quite
explicitly as follows ([dPZ96, RV05]): Let ν̃ε be the law of a rescaled Brownian bridge on [−1, 1]
with boundary points ±1. More precisely ν̃ε is the law of a Gaussian process (ũ(s), s ∈ [−1, 1])
with expectations E [ũ(s)] = s ∀s ∈ [−1, 1] and covariance Cov(ũ(s), ũ(s′)) = ε1−γ(s ∧ s′ + 1 −
(s+1)(s′+1)

2

)
. Another equivalent way to characterize ν̃ε is to say that it is a Gaussian measure on

L2[−1, 1] with expectation function s 7→ s and covariance operator ε1−γ(−∆)−1 where ∆ denotes
the one-dimensional Dirichlet Laplacian. Even another equivalent way is to say that ũ(s) is the
solution to the stochastic di�erential equation (SDE)

dũ(s) = ε
1−γ

2 dB(s) ũ(−1) = −1

with some Brownian motion B(s) conditionned on ũ(1) = 1. Then the invariant measure µ̃ε of
(2.1.1) is absolutely continuous with respect to ν̃ε and is given as

µ̃ε(dũ) =
1
Zε

exp
(
− 1
ε1+γ

∫ 1

−1

F (ũ(s)) ds
)
ν̃ε(dũ). (2.1.3)

Here Zε =
∫

exp
(
− 1
ε1+γ

∫ 1

−1
F (ũ(s)) ds

)
ν̃ε(dũ) is the appropriate normalization constant.

Often important intuition on a measure on path space can be gained from considering Feyn-
man's heuristic interpretation. In our context this heuristic interpretation states that ν̃ε(dũ) is
proportional to a measure

exp
(
− 1
ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ

where dũ is a �at reference measure on path space. Of course this picture is non-rigorous: Such a

measure dũ does not exist and the quantity
∫ 1

−1
ũ′(s)2

2 ds is almost surely not �nite under ν̃ε(dũ).
Nonetheless, it is rigorous on the level of �nite-dimensional distributions and various classical
statements about Brownian motion such as Schilder's theorem or Girsanov's theorem have an
interpretation in terms of this heuristic picture. The measure µ̃ε(dũ) can then be interpreted as
proportional to

exp
(
− 1
ε1+γ

∫ 1

−1

F (ũ(s)) ds− 1
ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ.

As one wants to observe an e�ect which results from the interaction of the potential term
1

ε1+γ

∫
F
(
ũ(s)

)
ds and the kinetic energy term 1

ε1−γ

∫ ũ′(s)2

2 ds it seems reasonable to transform
the system in a way that guarantees that these terms scale with the same power of ε. This
transformation is given by stretching the random functions onto a growing interval [−ε−γ , ε−γ ].
More precisely consider the operators

T ε : L2[−1, 1]→ L2[−ε−γ , ε−γ ] T εũ(s) = ũ(εγs).

Then consider the pushforward measures µε = T ε#µ̃
ε. These measures are again absolutely con-

tinuous with respect to Gaussian measures: νε is the Gaussian measure on L2[−ε−γ , ε−γ ] with
expectation function s 7→ εγs and covariance operator ε(−∆)−1. The other equivalent characteri-
zations for ν̃ε can be adapted with the right powers of ε. The measure µε is then given as

µε(du) =
1
Zε

exp
(
−ε−1

∫ ε−γ

−ε−γ
F (u(s)) ds

)
νε(du).
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ξ ξ

−1 1

Figure 2.1: The instanton shape mξ and the function −1[−1,ξ[ + 1[ξ,1].

Note that the normalization constant Zε is the same as above. In the Feynman picture this
suggests that µε(du) is proportional to

exp
(
−1
ε

∫ ε−γ

−ε−γ

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds
)

du.

This motivates to study the energy functional appearing in the exponent: For functions u : R→
R de�ned on the whole line with boundary conditions u(±∞) = ±1 consider the energy functional

E(u) =
∫ ∞
−∞

[ |u′(s)|2
2

+ F (u(s))
]

ds− C∗.

Here C∗ is a constant chosen in a way to guarantee that the minimizers of E with the right
boundary conditions verify E(u) = 0. This is the one-dimensional version of the well known real
Ginzburg-Landau energy functional. There is a unique minimizer m of E subject to the condition
m(0) = 0 and all the other minimizers are obtained via translation of m. More details on the
energy functional and the minimizers can be found in Section 2.2. Denote by M the set of all
these minimizers and by m+L2(R) := {u : R→ R, u−m ∈ L2(R)} and m+H1(R) := {u : R→
R, u − m ∈ H1(R)} the spaces of functions with the right boundary values. Note that every
random function distributed according to µε(du) can be considered as function in m+ L2(R) by
trivial extension with ±1 outside of [−ε−γ , ε−γ ]. In this way µε(du) can be interpreted as measure
on m+ L2(R). We can now state the main result of this work:

Theorem 2.1.1. Assume 0 < γ < 2
3 . Assume p = 2 or p =∞. Then there exist positive constants

c0 and δ0 such that for every 0 < δ ≤ δ0 one has

lim sup
ε↓0

ε logµε
{
distLp(u,M) ≥ δ

}
≤ −c0δ2. (2.1.4)

In particular the measures µε concentrate around the set of minimizers exponentially fast.

The crucial step in the proof is to �nd a bound on the exponential decay of the normalization
constant Zε. This lower bound can be found in Section 2.4. The asymptotic behavior of Zε is
given in Corollary 2.4.15.

On the �xed interval [−1, 1] this bound implies the following:

Corollary 2.1.2. Assume 0 < γ < 2
3 . Then the measures µ̃ε(du) are tight for ε ↓ 0 as measures

on L2[−1, 1]. Every limitting measure µ̃ is concentrated on random functions of the type

ũ(s) = −1[−1,ξ[ + 1[ξ,1],

where ξ ∈ [−1, 1].
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Remark 2.1.3. It is expected that the measures µ̃ε(du) converge toward a measure µ̃. Compar-
ison with the dynamical results (e.g. [Fu95]) suggests that the phase separation point ξ should be
distributed uniformly on [−1, 1] in the limit.

Remark 2.1.4. Note that by Schilder's theorem together with an exponential tilting argument
(such as [dH00] Theorem III.17 on page 34), in the case where γ = 0 the measures µ̃ε concentrate
exponentially fast around the unique minimizer of

u 7→
∫ 1

−1

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds,

under the appropriate boundary conditions. In particular the weak limit is a Dirac measure on
this minimizer, which is not a step function.

Remark 2.1.5. One can remark that by an application of Girsanov's theorem the measure µ̃ε

can be considered as the distribution of the solution of an SDE which is conditioned on the right
boundary values (see [RY99] Chapter VIII �3 and also [HSV07, RV05]). It could be possible to
obtain concentration results such as Theorem 2.1.2 by studying this SDE with the help of large
deviation theory (see for example [S95]). We do not follow such an approach but conclude from
Theorem 2.1.1 which is obtained by a discretization argument.

Remark 2.1.6. The reader might consider it unusual to work with µ̃ε as measure on L2[−1, 1]
instead of C[−1, 1] or the space of càdlàg functions D[−1, 1]. The class of continuous processes is
closed under weak convergence of measures on D[−1, 1] such that tightness on this space cannot
hold. But in fact the tightness holds in every topology τ in which the rescaled pro�les mξ(εγx)
converge to step functions and in which convergence in L∞[−1, 1] implies convergence in τ .

2. Motivation and related works

The Allen-Cahn equation without noise was introduced in [AC79] to model the dynamics of
interfaces between di�erent domains of di�erent lattice structure in crystals and has been studied
since in various contexts. In the one-dimensional case the dynamics of the deterministic equation
are well understood [Ch04, CP89, OR07] and can be described as follows: If one starts with
arbitrary initial data, solutions will quickly tend to con�gurations which are locally constant close
to±1 possibly with many transition layers that roughly look like the instanton shapesm introduced
above. Then these interfaces move extremely slowly until eventually some two transition layers
meet and annihilate. After that the dynamics continue very slowly with less interfaces.

In the two or more dimensions no such metastable behavior occurs. Solutions tend very quickly
towards con�gurations which are locally constant with interfaces of width ε. Then on a slower
scale these interfaces evolve according to motion by mean curvature (see [Il93] and the references
therein).

Stochastic systems which are very similar to (2.1.1) have been studied in the classic paper by
Farris and Jona-Lasinio [FJL82]. In the ninetees Funaki [Fu95] and Brasecco, de Masi, Presutti
[BMP95] studied the one-dimensional equation in the case where the initial data is close to the
instanton shape and showed that in an appropriate scaling the solution will stay close to such a
shape. Then due to the random perturbation a dynamic along the one-parameter family of such
shapes can be observed on a much faster time scale than in the deterministic case. Our result
Theorem 2.1.2 corresponds to this on the level of invariant measures.

If the process does not start in a con�guration with a single interface, it is believed that
these di�erent interfaces also follow a random induced dynamic which is much quicker than in the
deterministic case. Di�erent interfaces should annihilate when they meet [FV03]. More recently
there were also investigations of the same system on a much bigger space interval where due to
entropic e�ects noise induced nucleation should occur. This phenomenon has been studied on the
level of invariant measures [RV05]. The limiting process should be related to the Brownian web
which has recently been investigated e.g. in [FINR06].
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From the point of view of statistical physics Theorem 2.1.1 can be interpreted as quite natural.
In fact the Feynman picture suggests to view µε as a Gibbs measure with energy E and decreasing
temperature ε. On a �xed interval the result of Theorem 2.1.1 would therefore simply state
that with decreasing temperature the Gibbs measure concentrates around the energy minimizers
exponentially fast. On a rigorous level such results follow from standard large deviation theory (see
e.g. [dH00, DS89]). Our result states that the entropic e�ects which originate from considering
growing intervals do not change this picture. In fact also this is not very suprising - analysis of
similar spin systems suggests that even on intervals that grow exponentially in ε−1 one should not
observe more than one jump. But it is not clear if one can say anything about the shape of the
interface in this settings.

3. Structure of the chapter

In Section 2.2 results about the energy landscape of the Ginzburg-Landau energy functional
are summarized. In particular we discuss in some detail the minimizers of E and introduce tubular
coordinates close to the curve of minimizers. The energy landscape is studied in terms of these
tubular coordinates. In Section 2.3 some Gaussian concentration inequalities are discussed. In
particular the discretization of the measure νε is given and some error bounds are proven. The
proof of Theorem 2.1.1 can then be found in Section 2.4. We will follow the convention that C
denotes a generic constant which may change from line to line. Constants that appear several
times will be numbered c1, c2, . . .. Auxiliary scaling factors γ1 to γ3 that are supposed to satisfy a
number of conditions will be introduced. These conditions are satis�ed if γ1 and γ3 are very small
and γ2 < 1 is very close to 1.

2.2 The Energy Functional

In this section we discuss properties of the Ginzburg-Landau energy functional. We introduce the
one parameter family of minimizers which we think of as a one-dimensional submanifold of the
in�nite-dimensional space of possible con�gurations. Then we discuss tubular coordinates of a
neighborhood of this curve as well as a Taylor expansion of the energy landscape in these tubular
coordinates. These ideas are mostly classical and go back to [CP89, Fu95, OR07]. Finally we give
a discretized version of the minimizers and prove some error bounds.

For a function u de�ned on the whole real line consider the following energy functional:

E(u) =
∫
R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds− C∗,

where the constant C∗ is chosen in a way to guarantee that the minimum of E on the set of
functions with the right boundary conditions is 0. In fact let m be the standing wave solution of
the Allen-Cahn equation:

m′′(s)− F ′(m(s)) = 0 ∀s ∈ R, m(±s)→ ±1 for s→∞. (2.2.1)

As (2.2.1) is invariant under translations one can assume m(0) = 0. Then the solution can be
found by solving the system

m′(s)−
√

2F (m(s)) = 0 ∀s ∈ R, m(0) = 0 m(±∞) = ±1. (2.2.2)

Note that the assumptions (2.1.2) on F imply that
√
F is C1 such that the solution to (2.2.2) is

unique. The translations of m will be denoted by mξ(s) = m(s− ξ). Note that the mξ are not the
only solutions to (2.2.1) but that all the other solutions are either periodic or diverge such that
the mξ are the only nonconstant critical points of E with �nite energy. In fact the mξ are global
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minimizers of E subject to its boundary conditions. Completing the squares yields:∫
R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds

=
∫ ∞
−∞

1
2

(
u′(s)−

√
2F (u(s))

)2

+
√

2F
(
u(s)

)
u′(s) ds

≥
∫ u(∞)

u(−∞)

√
2F (u) du.

(2.2.3)

The term in the bracket is nonnegative and it vanishes if and only if u solves (2.2.2). In the sequel
we will write

M = {mξ, ξ ∈ R} and C∗ =
∫
R

1
2
[|m′(s)|2 + F

(
m(s)

)]
ds.

For notational convenience we introduce the functionG(u) =
∫ u

0

√
2F (ũ)dũ. Then equation (2.2.3)

states that
∫
R

1
2 |u′(s)|2 +F (u(s)) ds ≥ G(u(∞)

)−G(u(−∞)
)
. Note that the assumptions (2.1.2)

on F imply that G is a strictly increasing C4 function with G(0) = 0. In the case of the standard
double-well potential F (u) = 1

2 (u2 − 1)2 a calculation yields

m(s) = tanh(s) and C∗ =
4
3
.

Equation (2.2.2) shows that in general m can be given implicitly as

s =
∫ m

0

1√
2F
(
m̃
) dm̃. (2.2.4)

By expanding F around 1 one obtains exponential convergence to ±1 for s → ±∞. To be more
precise there exist positive constants c1 and c2 such that

|1∓m(±s)| ≤ c1 exp(−c2s) s ≥ 0
|m′(±s)| ≤ c1c2 exp(−c2s) s ≥ 0
|m′′(±s)| ≤ c1c22 exp(−c2s) s ≥ 0.

(2.2.5)

Recall that m+ L2(R) = {u : u−m ∈ L2(R)}. Due to (2.2.5) for all ξ one has m−mξ ∈ L2(R)
such that the de�nition of the space m+ L2 is independent of the choice of minimizer.

We now introduce the concept of Fermi coordinates which was �rst used in this context in
[CP89, Fu95]: Recall that for a function u ∈ m + L2(R) we write distL2(u,M) := infξ∈R ‖u −
mξ‖L2(R). If distL2(u,M) is small enough there exists a unique ξ ∈ R such that dist(u,M) =
‖u−mξ‖L2(R) and one has

〈u−mξ,m
′
ξ〉L2(R) = 0. (2.2.6)

In fact the last equality (2.2.6) can easily be seen by di�erentiating ξ 7→ ‖u−mξ‖2L2(R). This has

a simple geometric interpretation. The function m′ξ can be seen as tangent vector to the curve
M in mξ and the relation (2.2.6) can be interpreted as v := u−mξ being normal to the tangent
space in mξ. We will denote the space

Nξ := {v ∈ L2(R) : 〈v,m′ξ〉L2(R) = 0}
and interpret it as the normal space to M in mξ. For u = mξ + v with v ∈ Nξ we will call the
pair (ξ, v) Fermi or tubular coordinates of u.

One obtains information about the behavior of the energy functional close toM by considering
the linearized Schrödinger type operators

Aξ = −∆ + F ′′(mξ)
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with domain of de�nition H2(R) ⊂ L2(R). The operator Aξ is selfadjoint and nonnegative (see
e.g. [Fu95]) and the eigenspace corresponding to the eigenvalue 0 is spanned by the function m′ξ.
This can be understood quite easily: The fact that the operator is nonnegative corresponds to the
functional E attaining its minimum atmξ and the fact thatm

′
ξ is an eigenfunction to the eigenvalue

0 corresponds to the translational invariance of E . The following more detailed description of the
spectral behavior of Aξ is taken from [OR07] Proposition 3.2 on page 391:

Lemma 2.2.1. There exists a constant c3 > 0 such that if u ∈ H1(R) satis�es

(i) u(ξ) = 0 or (ii)
∫
R

u(s)m′ξ(s) ds = 0,

then

c3‖u‖2L2(R) ≤
∫
R

[
u′(s)2 + F ′′

(
mξ(s)

)
u(s)2

]
ds. (2.2.7)

This can be used to obtain the following description of the energy landscape. Similar results
were already obtained in [Fu95] and [OR07]:

Proposition 2.2.2. (i) There exist positive constants c0, c4, δ1 such that for u with Fermi co-
ordinates u = mξ + v and ‖v‖H1(R) ≤ δ1 one has:

c0‖v‖2H1(R) ≤ E(u) ≤ c4‖v‖2H1(R). (2.2.8)

(ii) There exists a δ0 > 0 such that for δ ≤ δ0 the relation distH1(u,M) ≥ δ implies

E(u) ≥ c0δ2. (2.2.9)

Here distH1(u,M) = infξ∈R ‖u −mξ‖H1(R). Statement (i) will be used as a local description
of the energy landscape close to the curve of minimizers whereas the statement (ii) will be useful
as a rough lower bound for the energy away from the curve. For the proof of Proposition 2.2.2
one needs the following lemma:

Lemma 2.2.3. For every ε > 0 there exists δ > 0 such that if u ∈ m + L2 with E(u) ≤ δ then
there exists ξ ∈ R such that

‖u−mξ‖L∞(R) ≤ ε.
Furthermore, ξ can be chosen in a such a way that u(ξ) = 0.

Proof. For a small δ > 0 assume E(u) ≤ δ. We want to �nd a ξ ∈ R such that by choosing δ
su�ciently small we can deduce that ‖u − mξ‖L∞(R) becomes arbitrarily small. As E(u) < ∞
we have u ∈ m + H1 and in particular u ∈ C0(R) ∩ L∞(R). Note that a similar calculation as
(2.2.3) implies that E(u) ≥ (G( sups∈R u(s)

)−G( infs∈R u(s)
)) − (G(1)−G(−1)). Therefore by

the properties of G by choosing δ su�ciently small, one can assume that ‖u‖L∞(R) ≤ 2. By the
assumptions (2.1.2) on F there exists a C such that for u ∈ [−2, 2] one has

F (u) ≥ C min (|u− 1|, |u+ 1|)2
,

and in particular we know that for every interval I the H1-norm of min (|u− 1|, |u+ 1|) can be
controlled by the energy. As u is continuous and converges to ±1 as s goes to ±∞, there exists a
ξ with u(ξ) = 0. Without loss of generality one can assume that ξ = 0. We will show that in this
case ‖u−m‖L∞(R) can be made arbitrarily small.

According to (2.2.5) for every ε > 0 there exists T such that for s ≥ T one has |m(s)− 1| ≤ ε
and for s ≤ −T it holds that |m(s) + 1| ≤ ε. We will �rst give a bound on u−m in [−T, T ]. We
consider only the case s ≥ 0 the other one being similar. Note that as according to (2.2.3)

E(u) =
∫
R

1
2

(
u′(s)−

√
2F (u)

)2

ds,
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one can write

u′(s) =
√
F
(
u(s)

)
+ r(s)

u(0) = 0
(2.2.10)

where
∫ T

0
r(s)2ds ≤ 2δ and using Cauchy-Schwarz inequality∫ T

0

|r(s)|ds ≤
√

2Tδ.

Thus using (2.2.2) one obtains for v = |u−m|

v(t) ≤
∫ t

0

∣∣∣∣√F (u(s)
)−√F (m(s)

)∣∣∣∣+ |r(s)|ds ≤ C

∫ t

0

v(s) ds +
∫ t

0

|r(s)|ds, (2.2.11)

where the constant C is given by C = supu∈[−2,2]
d
du

(√
F (u)

)
. Thus Gronwall's Lemma implies

|v(s)| ≤
∫ s

0

|r(t)| eC(s−t) dt,

and so sups∈[0,T ] |v(s)| ≤ √2TδeCT . Thus by choosing δ small enough one can assure that
sups∈[0,T ] |v(s)| ≤ ε

2 .
Now let us focus on the case s ∈ [−T, T ]c. We will again only focus on s ≥ T . Note that by

the above calculations and the choice of T one has u(−T ) ≤ −(1−ε) and u(T ) ≥ 1−ε. Therefore,
using ∫ −T

−∞

u′(s)2

2
+ F (u(s))ds +

∫ T

−T

u′(s)2

2
+ F (u(s))ds +

∫ ∞
T

u′(s)2

2
+ F (u(s))ds

≤ G(1)−G(−1) + δ,

as well as ∫ T

−T

u′(s)2

2
+ F (u(s))ds ≥ G(u(T ))−G(u(−T )),

we get ∫ ∞
T

u′(s)2

2
+ F (u(s))ds ≤ (G(1)−G(u(T )))− (G(−1)−G(u(−T ))) + δ ≤ Cε+ δ,

where C = 2 supu∈[−2,2] F (u). Therefore, by using the fact that
∫∞
T

u′(s)2

2 + F (u(s)) controls the
H1-norm and thus also the L∞ -norm of min (|u− 1|, |u+ 1|) on [T,∞), one can conclude that
possibly by choosing a smaller δ one obtains sups∈[T,∞) v(s) ≤ Cε. Thus by rede�ning ε one
obtains the desired result.

Proof. (Of Proposition 2.2.2): (i) First of all remark that for v ∈ Nξ one has
c̃0‖v‖2H1(R) ≤ 〈v,Aξv〉L2(R) ≤ c̃4‖v‖2H1(R). (2.2.12)

In fact Lemma 2.2.1 (ii) implies that

c3‖v‖2L2(R) ≤ 〈v,Aξv〉L2(R). (2.2.13)

To get the lower bound in (2.2.12) write

〈Av, v〉L2(R) = ‖∇v‖2L2(R) +
∫
R

F ′′(m(s))v2(s) ds

≥ ‖v‖2H1(R) − (c5 + 1)‖v‖2L2(R),

(2.2.14)
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where c5 = max|v|≤1 F
′′(v). Then (2.2.12) follows with c̃0 = c3

c3+c5+1 . In fact if ‖v‖L2 ≤
1

c3+c̃0+1‖v‖H1 one can use (2.2.14) and one can use (2.2.13) else. The upper bound in (2.2.12) is
immediate noting that supu∈[−1,+1] |F ′′(u)| <∞.

In order to obtain (2.2.8) one writes:

E(u) =
1
2
〈Aξv, v〉+

∫
R

U(s, ξ, v)ds, (2.2.15)

where

U(s, ξ, v) = F (mξ(s) + v(s))− F (mξ(s))− F ′(mξ(s))v(s)− 1
2
F ′′(mξ(s))v(s)2.

Here equation (2.2.1) is used. Using the Sobolev embedding ‖v‖L∞(R) ≤ C‖v‖H1(R) one obtains
by Taylor formula∣∣∣∫

R

U
∣∣∣ ≤ 1

6
sup

|v|≤Cδ1+1

|F ′′′(v)|‖v‖3L3(R) ≤ C‖v‖L∞(R)‖v‖2L2(R) ≤ C‖v‖3H1(R). (2.2.16)

This implies the inequality (2.2.8).

(ii) To show the second statement, �rst note that there exists a δ̃0 > 0 such that if E(u) ≤ δ̃0
there exists a ξ such that

c0‖u−mξ‖2H1(R) ≤ E(u). (2.2.17)

In fact choosing ξ as in Lemma 2.2.3 and noting that if one uses the case (i) of Lemma 2.2.1
instead (ii) one sees that inequalities (2.2.12) and (2.2.16) remain valid for v = u − mξ. Then
by using the L∞ bound on v from Lemma 2.2.3 instead of Sobolev embedding in the last step of

(2.2.16) one obtains the above statement. In order to obtain (2.2.9) choose δ0 =
√

δ̃0
c0

and assume

distH1(u,M) ≥ δ for a δ ≤ δ0. If E(u) ≥ δ̃0 the bound (2.2.9) holds automatically. Otherwise
(2.2.17) holds and gives the desired estimate.

We now pass to some bounds on approximated wave shapes. To this end �x γ1 < γ. This
parameter will be �xed throughout the paper. Denote by mε the pro�le m cut o� outside of
[−ε−γ1 , ε−γ1 ]. More precisely assume that mε is a smooth monotone function that coincides with
m on [−ε−γ1 , ε−γ1 ] and that veri�es mε(s) = ±1 for ±s ≥ ε−γ1 + 1. Furthermore, assume that on
the intervals [ε−γ1 , ε−γ1 + 1] (respectively [−ε−γ1 − 1,−ε−γ1 ]) one has m(s) ≤ mε(s) ≤ 1 (resp.

m(s) ≥ mε(s) ≥ −1). Due to (2.2.5) one can also assume that |(mε)′(s)| ≤ 2c1c2e−c2ε
−γ1

on both
of these intermediate intervals. Then de�ne mε

ξ(s) = mε(s− ξ).
Furthermore, for N ∈ N and k ∈ {−N,−(N − 1), . . . , (N − 1), N} set sN,εk = kε−γ

N and de�ne

mN,ε
ξ (s) =

{
mε
ξ(s) if s = sN,εk for k = −(N − 1), . . . , (N − 1)

the linear interpolation between these points.
(2.2.18)

One then gets the following bound:

Lemma 2.2.4. For ε small enough and ξ ∈ [−ε−γ + ε−γ1 + 1, ε−γ − ε−γ1 − 1] one has

(i) ‖mξ −mε
ξ‖L2(R) ≤ C exp(−c2ε−γ1)

‖(mξ)′ − (mε
ξ)
′‖L2(R) ≤ C exp(−c2ε−γ1).

(ii) ‖mξ −mN,ε
ξ ‖L2(R) ≤ Cε−γ1/2 ε

−2γ

N2

‖(mξ)′ − (mN,ε
ξ )′‖L2(R) ≤ Cε−γ1/2 ε

−γ

N .
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ξ−ǫ−γ
ǫ−γ

ξ − ǫ−γ1 ξ + ǫ−γ1

ξ

−ǫ−γ
ǫ−γ

Figure 2.2: The approximated waveshapes mε
ξ and m

N,ε
ξ .

Proof. To see (i) write

‖mξ −mε
ξ‖2L2(R) ≤

∫ ∞
ε−γ1

(
m(s)−mε(s)

)2

ds +
∫ −ε−γ1

−∞

(
m(s)−mε(s)

)2

ds

≤ 2
∫ ∞
ε−γ1

c21 exp(−2c2s)ds ≤ C exp(−2c2ε−γ1)

and

‖m′ξ − (mε
ξ)
′‖2L2(R) ≤

∫ ∞
ε−γ1

(
m′(s)− (mε)′(s)

)2

ds +
∫ ε−γ1

−∞

(
m′(s)− (mε)′(s)

)2

ds

≤ C exp(−2c2ε−γ1).

Here one uses the inequalities (2.2.5) as well as the properties of mε.
To see (ii) write

‖m′ξ − (mN,ε
ξ )′‖L2(R) ≤ ‖m′ξ − (mε

ξ)
′‖L2(R) + ‖(mε

ξ)
′ − (mN,ε

ξ )′‖L2(R). (2.2.19)

To bound the second term assume without loss of generality that ξ = 0 and write

‖(mε)′ − (mN,ε)′‖2L2(R) =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds

=
Nε−1∑
k=−Nε

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds. (2.2.20)

In the second equality Nε = dε−γ1 N
ε−γ e. Here we use the fact that uε is constant outside of

[−ε−γ1 , ε−γ1 ] and therefore coincides with its piecewise linearization. The integrals can be bounded
using the Poincaré inequality:∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε

ξ )′(s)
)2

ds ≤ ε−2γ

N2π2

∫ sN,εk+1

sN,εk

(mε)′′(s)ds ≤ ε−3γ

N3π2
sup
s∈R
|(mε)′′(s)|2. (2.2.21)

Plugging this into (2.2.19) one gets:

‖(mε)′ − (mN,ε)′‖2L2 ≤ ε−γ1
ε−2γ

N2π2
sup
s∈R
|(mε)′′(s)|2.

Due to (i) the term involving |m′ξ − (mε
ξ)
′| can be absorbed in the constant for ε small enough.

This yields the second estimate in (ii). For the bound on ‖m′ξ − (mε
ξ)
′‖L2(R) one proceeds in the

same manner with another use of Poincaré inequality. The details are left to the reader.
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2.3 Gaussian estimates

In this section concentration properties of some discretized Gaussian measures are discussed and
the bounds which are needed in Section 2.4 are provided. To this end we recall a classical Gaussian
concentration inequality. Then we introduce the discretized version of the Gaussian reference
measure νε and give an error bound. We also study another discretized measure which can be
viewed as a discretized massive Gaussian free �eld.

Let E be a separable Banach space equipped with its Borel-σ-�eld F and norm ‖ · ‖. Recall
that a probability measure µ on (E,F) is called Gaussian if for every η in the dual space X∗ the
pushforward measure η#µ is Gaussian. For the moment all Gaussian measures are assumed to be
centered i.e. for all η ∈ X∗ it holds ∫ η(x)µ(dx) = 0. Denote by

σ = sup
η∈X∗,‖η‖X∗≤1

(∫
η(x)2µ(dx)

)1/2

.

Note that σ is �nite [Le96]. Then one has the following classical concentration inequality (see
[Le96] page 203):

µ
(
y; ‖y‖ ≥

∫
‖x‖µ(dx) + r

)
≤ e−r

2/2σ2
.

There are several ways to prove this inequality. It can, for example, be derived as a consequence
of the Gaussian isoperimetric inequality.

The di�culty in applying this inequality to speci�c examples is to evaluate the quantities σ
and

∫ ‖x‖µ(dx). This is easier in the case where E is a Hilbert space. Then a centered Gaussian
measure µ is uniquely characterized by the covariance operator Σ which satis�es∫

〈η1, x〉〈η2, x〉µ(dx) = 〈η1,Ση2〉 ∀η1, η2 ∈ E.

It is known [dPZ92] that Σ must be a nonnegative symmetric trace class operator. Then σ2 is the
spectral radius of Σ and using Jensen's inequality one obtains∫

‖x‖µ(dx) ≤ (∫ ‖x‖2 µ(dx)
)1/2 =

(
TrΣ

)1/2
.

Therefore, one can write

Lemma 2.3.1. Let µ be a centered Gaussian measure on a Hilbert space E with covariance
operator Σ. Then one has

µ
(
x; ‖x‖ ≥ (TrΣ

)1/2 + r
) ≤ e−r2/2σ2

. (2.3.1)

We now want to use this inequality to study the behavior of the measure νε under discretization.
To this end �x an integer N and consider piecewise a�ne functions u ∈ L2[−ε−γ ,−ε−γ ] of the
following type

u(x) =


±1 for x = ±ε−γ
arbitrary for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points,

(2.3.2)

and denote by HN,ε the a�ne space of all such functions. Recall that sN,εk = kε−γ

N . The
space HN,ε can canonically be identi�ed with R2N−1. In particular typical �nite-dimensional
objects such as Lebesgue- and codimension one Hausdor� measures make sense on HN,ε. De-
note these measures by LN,ε and HN,ε. There are several bilinear forms on (the tangential space
of) HN,ε which will be important in the sequel: The H1− and L2−scalar product correspond
to the fact that HN,ε is a subset of m + H1. But there is also the Euclidean scalar product

〈u, v〉 =
∑(N−1)
k=−(N−1) u(sN,εk )v(sN,εk ) which determines the behavior of the measures LN,ε and HN,ε.
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Recall that νε is the distribution of a Gaussian process (u(s), s ∈ [−ε−γ , ε−γ ]) with E[u(s)] =
εγs and Cov(u(s), u(s′)) = ε

(
s ∧ s′ + ε−γ − (s+ε−γ)(s′+ε−γ)

2ε−γ

)
. According to the Kolmogorov-

Chentsov Theorem we can assume that u has continuous paths. Consider now the piecewise
linearization of uN of u:

uN (s) =


±1 for s = ±ε−γ
u(s) for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points.

Lemma 2.3.2. (i) The distribution of uN is absolutely continuous with respect to the Lebesgue
measure LN,ε on HN,ε. The density is given by

1√
(ε2π)2N−1

( N

ε−γ
)N (

2ε−γ
)1/2 exp

(−εγ−1) exp
(
− 1

2ε

∫ ε−γ

−ε−γ
|u′(s)|2ds

)
. (2.3.3)

(ii) The random function u − uN consists of 2N independent rescaled Brownian bridges. To be

more precise for each k ∈ {−N, . . . (N − 1)} the process (u(s)− uN (s) : s ∈ [sN,εk , sN,εk+1]) is a
centered Gaussian process with covariance

Cov(u(s)− uN (s), u(s′)− uN (s′)) = ε
(
s ∧ s′ − sN,εk − N

ε−γ
(s− sN,εk )(s′ − sN,εk )

)
. (2.3.4)

These processes are mutually independent and independent of uN .

Proof. (i) The measure νε can be considered as the distribution of a rescaled Brownian motion
u on [−ε−γ , ε−γ ] starting at u(−ε−γ) = −1 and conditioned on u(ε−γ) = 1. Therefore, the
�nite-dimensional distributions can be obtained by �nite-dimensional conditioning:

νε
(
u(sN,ε−(N−1)) ∈ dx−(N−1), . . . , u(sN,εN−1) ∈ dx(N−1)

)
=

(N−1)∏
i=−N

1√
(ε2π)δ

exp
(
− (xi+1 − xi)2

2εδ

)( 1√
(ε2π)2ε−γ

exp
(
− (1− (−1))2

4ε−γε

))−1

=
1√

(ε2π)2N−1
δ−N
√

2ε−γ exp(εγ−1) exp
(
− 1

2ε

N−1∑
i=−N

δ
(xi+1 − xi)2

δ2

)
Here δ = ε−γ

N and x±N = ±1. By noting that the Riemann sum appearing in the last line is equal
to the integral of the squared derivative of the piecewise linearization one obtains the result.

(ii) Denote for k = −N, . . . , (N − 1) and s ∈ [0, δ] by ũk(s) = u(sN,εk + s) − uN (sN,εk + s) =

u(sN,εk + s) −
(

1 − s
δ

)
u(sN,εk ) − s

δu(sN,εk+1). We want to show that the processes (ũk(s), s ∈ [0, δ])

posses the right covariances and are mutually independent and independent of uN . To this end
calculate for s, s′ ∈ [0, δ] and i = −N, . . . , (N − 1):

Cov(ũk(s), ũk(s′)) = Cov
[
u(sN,εk + s)−

(
1− s

δ

)
u(sN,εk )− s

δ
u(sN,εk+1),

u(sN,εk + s′)−
(

1− s′

δ

)
u(sN,εk )− s′

δ
u(sN,εk+1)

]
.

By plugging in the explicit expression for the covariances of the u(s) and some tedious but ele-
mentary calculations one obtains the desired expression. In a similar way one can see that for
i 6= j one has

Cov(ũj(s), ũi(s′)) = 0 and Cov(ũj(s), uN (t)) = 0

for all s, s′ ∈ [0, δ] and t ∈ [−ε−γ , ε−γ ].
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Denote the Gaussian normalization constant by

ZN,ε1 : =

(
1√

(2πε)2N−1

( N

ε−γ
)N√

2ε−γ exp
(−εγ−1)

)−1

.

We de�ne the discrete Dirichlet-Laplace operator ∆N,ε as

∆k,j
N,ε =

N

ε−γ


−2 for k = j

1 for |k − j| = 1
0 else.

(2.3.5)

Then a direct computation shows

ZN,ε1 =
√

(2πε)2N−1 exp
(
εγ−1)

(
det(−∆N,ε)

)−1/2
. (2.3.6)

We now want to apply the Gaussian concentration inequality to obtain a bound on the prob-
ability of large u− uN :
Lemma 2.3.3. The following bounds hold:

1. L2-bound on the whole line:

νε
(
u : ‖u− uN‖L2[−ε−γ ,ε−γ ] ≥

√
ε
ε−2γ

3N
+ r
)
≤ exp

(
−r

2π2N2

ε1−2γ

)
(2.3.7)

2. L2-bound on the short intervals:

νε

(
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥

√
ε
ε−2γ

6N2
+ r

)
≤ exp

(
−r

2π2N2

ε1−2γ

)
. (2.3.8)

3. L∞-bound on the whole line:

νε
(‖u− uN‖L∞[−ε−γ ,ε−γ ] ≥ r

) ≤ 4N exp
(
− r2N

8ε1−γ

)
. (2.3.9)

Proof. Let us consider (2.3.7) �rst. Note that u − uN is a centered Gaussian process such that
Lemma 2.3.1 can be applied. The expected L2-norm can be calculated as follows:

νε
[
‖u− uN‖2L2[−ε−γ ,ε−γ ]

]
=

N−1∑
k=−N

νε‖ũk‖2L2 =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

νε
(
ũ(s)2

)
ds

=
N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

s− sN,εk −
(
s− sN,εk

)2

ε−γ

N

 ds = 2Nε
1
6

(
ε−γ

N

)2

.

Here for the third equality equation (2.3.4) is used.
To get information about the spectral radius of the covariance operator Σ calculate for f, g ∈

L2[−ε−γ , ε−γ ]:

〈 f,Σg 〉 = νε
[〈 f, u− uN 〉〈 g, u− uN 〉]

=
N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

(
s ∧ s′ − (s− sN,εk )(s′ − sN,εk )

ε−γ

N

)
f(s)g(s′) ds.
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Here in the last step the independence of the di�erent bridges is used as well as formula (2.3.3).
Note that the integral kernel in the last line is the Green function of the negative Dirichlet-Laplace
operator on the interval [sN,εk , sN,εk+1]. Denoting this operator by ε(−∆Tk)−1 one can write

〈f,Σg〉 =
N−1∑
k=−N

〈f, ε(−∆Tk)−1g〉L2(Tk).

The spectral decomposition of the inverse Dirichlet-Laplace operator on intervals of length T is
well known. In fact on L2[0, T ] the smallest eigenvalue λ0 and the corresponding eigenfunction
e0(x) are given as:

e0(s) = sin
(πs
T

)
and λ0 =

εT 2

π2
.

The spectral radius of ε
(−∆Tk

)−1
is thus given as

σ2
k = ε

ε−2γ

(Nπ)2
.

Therefore, one can write

σ2 = sup
f,‖f‖=1

〈f,Σf〉 = sup
f,‖f‖=1

N−1∑
k=−N

〈f, ε(∆Tk)−1g〉L2(Tk)

≤ sup
f,‖f‖=1

N−1∑
k=−N

σ2
k〈f, f〉L2(Tk) = ε

(
ε−γ

πN

)2

sup
f,‖f‖=1

〈f, f〉.

On the other hand by taking f as a linear combination of the eigenfunctions on the shorter intervals
one obtains

σ2 = ε

(
ε−γ

πN

)2

.

Thus equation (2.3.1) gives the desired result. The proof of (2.3.8) proceeds in the same manner.
To prove the third statement (2.3.9) note that by Lemma 2.3.2, the deviations of a the random

function u from the piecewise linearizations uN between the points sN,εk are independent Brownian

bridges. Therefore, such a process
(
u(sN,εk + s)− uN (sN,εk + s), 0 ≤ s ≤ ε−γ

N

)
has the same distri-

bution as ε
1
2

(
Bs − sN

ε−γB ε−γ
N

)
for a Brownian motion B de�ned on a probability space (Ω,F ,P).

So one can write

νε
(
‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

)
≤

N−1∑
k=−N

νε

(
max

sN,εk ≤s≤sN,εk+1

|u(s)− uN (s)| ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN

∣∣∣∣ε1/2

(
Bs − sN

ε−γ
B ε−γ

N

)∣∣∣∣ ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN
|Bs| ≥ r

2ε1/2

)
.

Using the exponential version of the maximal inequality for martingales (see Proposition 1.8 in
Chapter II in [RY99]) one can see that

νε
(‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

) ≤ 4N exp
(
− r2N

8ε1−γ

)
.
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We now want to study the properties of another discrete Gaussian measure. In fact denote by
HN,ε

0 the space of a�ne functions de�ned as in 2.3.2 with the only change that they are assumed
to possess zero boundary conditions. The Lebesgue measure on this space is de�ned in the same
manner. For a �xed constant κ consider the centered probability measure % whose density with
respect to LN,ε is proportional to

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

 .

In fact this measure is a version of what is known in the literature as discrete massive free �eld,
discrete Ornstein-Uhlenbeck bridge or pinned ∇φ surface model [S07, HSV05]. The H1-norm in

the exponent can be rewritten in terms of the �nite-dimensional coordinates. In fact for u ∈ HN,ε
0

with u(sN,εk ) = uk for k = −N, . . . , N one has

‖u‖2H1(R) = ‖u‖2L2(R) + ‖u′‖2L2(R)

=
1
3
ε−γ

N

N∑
k=−N

u2
k + u2

k+1 + ukuk+1 +
N

ε−γ

N∑
k=−N

u2
k + u2

k+1 − 2ukuk+1 (2.3.10)

=
N−1∑

k,j=−(N−1)

uk

(
Ik,jN,ε −∆k,j

N,ε

)
uj ,

where the (2N − 1)× (2N − 1) matrix (Ik,jN,ε) is given as

Ik,jN,ε =
1
3
ε−γ

N


2 for k = j
1
2 for |k − j| = 1
0 else,

(2.3.11)

and the discrete Laplace operator ∆N,ε is de�ned as in (2.3.5). Denote the normalization constant

ZN,ε2 =
∫

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

LN,ε(du).

Lemma 2.3.4. (i) ZN,ε2 is given as√(
2επ
κ

)2N−1

det(−∆N,ε + IN,ε)−
1
2 . (2.3.12)

(ii) In the sense of symmetric matrices we have the following Poincaré inequality

IN,ε ≤ Cε−γ(−∆N,ε). (2.3.13)

(iii) We have the following bound: For r ≥ 0

%N,ε

{
u : ‖u‖H1 ≥

√
(2N − 1)ε

κ
+ r

}
≤ exp

(−κr2/2ε
)
. (2.3.14)

Proof. (i) To see this one only has to note that κε−1 (−∆N,ε + IN,ε) is the inverse covariance
matrix of this �nite-dimensional Gaussian measure.
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(ii) Using the usual Poincaré inequality one can write for u ∈ HN,ε
0

−
N−1∑

k,j=−(N−1)

u
(
sN,εk

)
∆k,j
N,εu

(
sN,εj

)
= ‖u′‖2L2[−ε−γ ,ε−γ ]

≥ Cεγ‖u‖2L2[−ε−γ ,ε−γ ] = Cεγ
N−1∑

k,j=−(N−1)

u
(
sN,εk

)
Ik,jN,εu

(
sN,εj

)
.

(iii) To see (2.3.14) write with a �nite-dimensional change of variables:

%N,ε {u : ‖u‖H1 ≥ r} =
1

ZN,ε2

∫
{u : ‖u‖H1≥r}

exp
(
−κ‖u‖

2
H1

2ε

)
LN,ε(du)

=

√( κ

2επ

)2N−1
∫
{PN−1

k=−(N−1) x
2
k≥r}

exp

(
−κ
∑N−1
k=−(N−1) x

2
k

2ε

)
dx−(N−1) . . . dxN−1.

In fact here one uses the linear transformation that transforms a Gaussian random variable on
a �nite-dimensional space to a Gaussian random variable with Id covariance matrix. Therefore,
the problem reduces to considering a vector of 2N − 1 independent centered Gaussian random
variables Xk with variance ε

κ . The expectation

E

 N−1∑
k=−(N−1)

X2
i

 =
(2N − 1)ε

κ

and the spectral radius

σ2 =
ε

κ

are calculated easily such that (2.3.1) gives the desired result.

2.4 Concentration around a curve in in�nite-dimensional space

In this section we give the proof of Theorem 2.1.1. To this end we consider the �nite-dimensional
measure

µN,ε(du) =
1

ZN,ε
exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du),

with the normalization constant ZN,ε =
∫

exp
(− 1

ε

∫
F (u(s))ds

)
νN,ε(du). Note that although

νN,ε is given by the �nite-dimensional marginals of νε, the measure µN,ε does not coincide with
the �nite-dimensional distribution of µε. The strategy is now as follows: In Proposition 2.4.4 a
lower bound on the discrete normalization constant ZN,ε is given. This is achieved by calculating
the integral in a tubular neighborhood of the set of minimizers M . Then in Proposition 2.4.8 the
rough energy bound given in Proposition 2.2.2 is used to conclude concentration of the discretized
measure µN,ε around the curve of minimizers. Finally Lemma 2.4.13 gives a bound on the dis-
cretization error which allows to �nish the proof of concentration around the curve of minimizers
in the continuous case.

Recall the following version of the coarea formula:

Lemma 2.4.1. Let f be a Lipschitz function f : A ⊆ E → I ⊆ R, where E is a n-dimensional
Euclidean space and A is an open subset and I some interval. Denote by Ln,L1 and Hn−1 the
Lebesgue measure on E, on R and the (n− 1)-dimensional Hausdor� measure on E respectively.
Suppose that the gradient (which exists Ln-a.e.) Df does not vanish Ln a.e. in A. Then for every
nonnegative measurable test function ϕ : A→ R one has the following formula:∫

A

ϕ(x)Ln(dx) =
∫
I

L1(dξ)
∫
f−1(ξ)

Hn−1(dx)
1

|Df(x)|E ϕ(x). (2.4.1)
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In order to apply formula (2.4.1) to µN,ε one needs the following:

Lemma 2.4.2. Consider the function f : A→ R, where A := {x ∈ m+L2 : distL2(x,M) < β} is
the open set in which the Fermi coordinates are de�ned, given by

f(x) = f(mξ + s) = ξ,

where x = mξ + s are the Fermi coordinates of x. Then f is Fréchet di�erentiable and one has

Df(x)[h] = Df(mξ + s)[h] =
〈m′ξ, h〉

|m′ξ|2 − 〈s,m′′ξ 〉
. (2.4.2)

Proof. The di�erentiability follows from the implicit function theorem. To calculate the derivative
at x = mξ + s in direction h consider the function

Φ(v, w) = 〈mξ −mw + s+ vh,m′w〉,
de�ned in an environment of (0, ξ) ∈ R2. Noting that one has Φ(v, f(mξ + s + vh)) = 0 one can
write

0 = ∂vΦ(v, f(mξ + s+ vh))|v=0 + ∂wΦ(v, f(mξ + s+ vh))|v=0Df(mξ + s)[h].

Observing that
∂vΦ(v, f(mξ + s+ vh))|v=0 = 〈h,m′ξ〉

and
∂wΦ(v, f(mξ + s+ vh))|v=0 = −〈m′ξ,m′ξ〉+ 〈s,m′′ξ 〉

concludes the proof.

We want to apply the coarea formula to the function f just de�ned, restricted toHN,ε. There is
a slight inconvenience which originates from the fact that the norm of the gradient which appears
in 2.4.1 is the norm in the �nite-dimensional space E whereas the gradient of the function f is a
function in L2(R). To resolve this is the content of the next lemma:

Lemma 2.4.3. Let g : m+ L2(R)→ R be a Fréchet di�erentiable function and denote by ∇g(x)
its L2-gradient at point x. Consider then the function g̃ de�ned on R2N−1 obtained by composition
of the embedding R2N−1 → HN,ε and g. Denote by ∇̃g̃ its gradient. Then one has the following
inequality:

‖∇̃g̃‖R2N−1 ≤ 2

√
ε−γ

N
‖∇g‖L2 .

Proof. We calculate the derivative of g̃ in direction ẽk = (0, . . . , 0, 1, 0, . . . 0) with the 1 on k-th
position. Embedding ẽk into HN,ε gives the hat function

ek(s) =


0 for s /∈ [sN,εk−1, s

N,ε
k+1]

N
ε−γ

(
s− sN,εk−1

)
for s ∈]sN,εk−1, s

N,ε
k ]

N
ε−γ

(
sN,εk+1 − s

)
for s ∈]sN,εk , sN,εk+1].

(2.4.3)

Therefore, one obtains

(∇̃g̃)k =
∫
R

ek(s)∇g(s)ds =
∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds.

Applying Cauchy-Schwarz inequality and using ‖ek‖∞ ≤ 1 one gets:

‖∇̃g̃‖2R2N−1 =
N−1∑

k=−(N−1)

(∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds

)2

≤ 2
ε−γ

N

N−1∑
k=−(N−1)

∫ sN,εk+1

sN,εk−1

(∇g(s))2 ds

≤ 2
ε−γ

N
2‖∇g‖2L2(R).

(2.4.4)
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Now we are ready to derive a lower bound on the normalization constant ZN,ε of the �nite-

dimensional approximation of µε. Recall that µN,ε(du) = 1
ZN,ε

exp
(
− 1
ε

∫ ε−γ
−ε−γ F (u(s))ds

)
νN,ε(du)

where νN,ε is a discretized Brownian bridge. One gets the following bound:

Proposition 2.4.4. Assume N = N(ε) grows like ε−γ2 for ε decreasing to 0. Assume that

0 < γ1 < γ < γ2 < 1. (2.4.5)

Then the following bound holds for ε small enough:

ZN,ε ≥ exp
(
−C∗
ε

)
exp

(
−2C

(
ε−2γ−γ1

εN2

))√
N

ε−γ
(
ε−γ − ε−γ1 − 1

)
(2.4.6)

√
ε

√
ε−1−γ

N
exp

(
−C ε

−4γ−1−γ1

N4

)
exp

(− εγ−1
)
c
− 2N−1

2
4

(
1 + Cε−γ

)− 2N−1
2 .

In particular, if one assumes that

−2γ − γ1 + 2γ2 > 0 (2.4.7)

one obtains
lim inf
ε↓0

ε logZN,ε ≥ −C∗. (2.4.8)

Proof. Using the de�nition of νN,ε one can write

ZN,ε =
∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

− 1
ε

∫ ε−γ

−ε−γ
1
2
|u′(s)|2ds +

C∗
ε

)
LN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε
E(u)

)
LN,ε(du).

(2.4.9)

Recall that ZN,ε1 =
∫

exp
(
− 1
ε

∫ ε−γ
−ε−γ

1
2 |u′(s)|2ds

)
LN,ε(du) is the normalization constant of the dis-

cretized Brownian bridge and LN,ε is the Lebesgue measure on the �nite-dimensional space HN,ε.
In order to �nd a lower bound on ZN,ε we can restrict the integration to a tubular neighborhood
of M . More precisely set Iε := [−ε−γ + ε−γ1 , ε−γ − ε−γ1 ] and

A :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉L2(R) = 0 for some ξ ∈ Iε and ‖v‖H1(R) ≤ δ

}
,

for some δ to be determined later. For the moment we will only assume δ to be small enough to
be able to apply Funaki's estimate (2.2.8) on the energy landscape. Furthermore, denote by

Aξ :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉 = 0 and ‖v‖H1(R) ≤ δ

}
.

Using Funaki's estimate (2.2.8) for u = mξ + v ∈ A one can write

exp
(
−1
ε
E(u)

)
≥ exp

(
−c4
ε
‖v‖2H1(R)

)
.

Note the v is not an element of the discretized space HN,ε but a general function in L2(R)
that needs not vanish outside of [−ε−γ , ε−γ ]. But v can be well approximated by a function

vN,ε = u−mN,ε
ξ ∈ HN,ε

0 . In fact using Lemma 2.2.4 one gets

‖vN,ε − v‖H1(R) = ‖mN,ε
ξ −mξ‖H1(R) ≤ C ε

−γ

N
ε
−γ1

2 .
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Putting this together one gets:

ZN,εZN,ε1 exp
(C∗
ε

)
≥
∫
A

exp
(
−c4
ε
‖v‖2H1(R)

)
LN,ε(du)

≥ exp
(
−2C

(
ε−2γ−γ1

εN2

))∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du).

(2.4.10)

Let us concentrate on the integral term in equation (2.4.10). Using the coarea formula (2.4.1) one
gets:∫

A

exp
(
−2c4

ε
‖vN,ε‖2H1

)
LN,ε(du) =

∫
Iε

dξ
∫
Aξ

1
|∇̃f̃ | exp

(
−2c4

ε
‖vN,ε‖2H1

)
HN,ε(du). (2.4.11)

where HN,ε is the codimension one Hausdor� measure on HN,ε. Using Lemma 2.4.2 and the
observation from Lemma 2.4.3 one knows:

1
|∇̃f̃ | ≥

1
2

√
N

ε−γ
‖m′ξ‖2L2(R) − 〈v,m′′ξ 〉L2(R)

‖m′ξ‖L2(R)
.

By choosing a smaller δ if necessary this can be bounded uniformly from below on A by C
√

N
ε−γ

such that one gets:∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du)

≥ C
√

N

ε−γ

∫
Iε

dξ
∫
Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du).

(2.4.12)

Let us focus on the last integral. By a linear change of coordinates one can write∫
Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du) =

∫
Bξ

exp
(
−2c4

ε
‖v‖2H1(R)

)
HN,ε(dv), (2.4.13)

where Bξ =
{
v ∈ HN,ε

0 : 〈v,m′ξ〉L2(R) = 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) and ‖v‖H1(R) ≤ δ

}
. In order to

conclude, we need the following lemma:

Lemma 2.4.5. Let E be a �nite-dimensional Euclidean space with Lebesgue measure L and codi-
mension 1 Hausdor� measure H. Let a∗ = 〈a, ·〉 ∈ E∗ be a linear form and x 7→ 〈x,Σx〉 be a
symmetric, positive bilinear form. Furthermore, write for b ∈ R and δ > 0

B̃b,δ
2

=
{
x ∈ E : a∗x = b and 〈x,Σx〉 ≤ δ2

}
.

Furthermore, set d2 = infx∈B̃b,∞〈x,Σx〉 and let n be a Σ-unit normal vector on B̃0,∞, i.e.

〈n,Σx〉 = 0 for all x ∈ B̃0,∞ and 〈n,Σn〉 = 1. Then one has for every b∫
〈x,Σx〉≤δ2−d2

exp (−〈x,Σx〉)L(dx) ≤ 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃b,δ2
exp (−〈x,Σx〉)H(dx).

(2.4.14)
Furthermore, one has the following expressions for d2:

d2 =
b2

〈a,Σ−1a〉 , and 〈a,Σ−1a〉 =
(

sup
η : 〈η,Ση〉=1

a∗(η)
)2

. (2.4.15)

The vector n satis�es n = ± Σ−1a√
〈a,Σ−1a〉 such that

〈Σn,Σn〉 =
1

〈a,Σ−1a〉

(
sup

η : 〈η,η〉=1

a∗(η)

)2

. (2.4.16)
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Proof. (Of Lemma 2.4.5): Using the coarea formula one can write:∫
〈x,Σx〉≤δ2−d2

exp (−〈x,Σx〉)L(dx)

≤
∫ δ

−δ

∫
B̃0,δ2−d2

exp (−〈(y + λn),Σ(y + λn)〉)
√

1
〈Σn,Σn〉H(dy)dλ

≤
√

1
〈Σn,Σn〉

∫ δ

−δ

∫
B̃0,δ2−d2

exp (−〈y,Σy〉)H(dy)dλ

= 2δ

√
1

〈Σn,Σn〉
∫
B̃0,δ2−d2

exp (−〈y,Σy〉)H(dy)

= 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃0,δ2−d2
exp (−〈(y + dn),Σ(y + dn)〉)H(dy)

= 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃b,δ2
exp (−〈y,Σy〉)H(dy).

(2.4.17)

The other assertions are elementary.

In order to apply this lemma to the case E = HN,ε
0 , a∗(v) = 〈v,m′ξ〉L2(R) b = 〈mξ −

mN,ε
ξ ,m′ξ〉L2(R) and 〈v,Σv〉 = 2c4

ε ‖v‖2H1(R) one needs to evaluate the constants d and 〈Σn,Σn〉
in this context. This is the subject of the next lemma. Note that the scalar product 〈·, ·〉 from
Lemma 2.4.5 corresponds to the Euclidean scalar product on HN,ε

0 .

Lemma 2.4.6. One has for ε small enough:

(i) 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ Cε−γ1/2 ε

−2γ

N2 ,

(ii) d2 ≤ C ε−4γ−1−γ1

N4 ,

(iii) 〈Σn,Σn〉 ≥ C ε−1−γ

N .

Proof. (Of Lemma 2.4.6) (i) Applying Cauchy-Schwarz inequality one gets

〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ ‖mξ −mN,ε

ξ ‖L2(R)‖m′ξ‖L2(R) ≤ Cε−γ1/2
ε−2γ

N2
. (2.4.18)

Here Lemma 2.2.4 was used.
(ii) In order to get a lower bound on 〈a,Σ−1a〉 we use the variational principle given in (2.4.15).

Without loss of generality we may assume that ξ = 0. In the present context (2.4.15) reads:

d2 =
b2

〈a,Σ−1a〉 , and 〈a,Σ−1a〉 =
(

sup
η∈HN,ε0 :

2c4
ε ‖η‖H1=1

〈m′, η〉L2(R)

)2

. (2.4.19)

Thus in order to �nd a lower bound on 〈a,Σ−1a〉 one needs to choose an appropriate test function

η ∈ HN,ε
0 . To this end set k̄ = inf

{
k : sN,εk > 1

}
. Recall that the sN,εk = kε−γ

N de�ne the

discretization of functions in HN,ε
0 . For ε small enough one has 1 ≤ sN,ε

k̄
≤ 2. Set

η̄(s) =



0 for s ≤ −sN,ε
k̄

s+sN,ε
k̄

sN,ε
k̄

for − sN,ε
k̄

< s ≤ 0
sN,ε
k̄
−s

sN,ε
k̄

for 0 < s ≤ sN,ε
k̄

0 for sN,ε
k̄

< s.

(2.4.20)
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Then η̄ ∈ HN,ε
0 and

2c4
ε
‖η̄‖2H1 =

2c4
ε

(
2

sN,ε
k̄

+
2
3
sN,ε
k̄

)
≤ 20 c4

3ε
. (2.4.21)

On the other hand m′ is strictly positive and we can write

〈η̄,m′〉L2(R) =
∫ 2

−2

η̄(s)m′(s)ds ≥ inf
s∈[−2,2]

m′(s)
∫ 2

−2

η̄(s)ds ≥ inf
s∈[−2,2]

m′(s). (2.4.22)

Thus we get 〈a,Σ−1a〉 ≥ Cε. Using (2.4.18) one obtains:

d2 ≤ C ε
−4γ−1−γ1

N4

(iii) To derive a lower bound on 〈Σn,Σn〉 �rst note that

〈a,Σ−1a〉 =

(
sup

〈η,Ση〉=1

〈a, η〉
)2

=

 sup
η∈HN,ε0 :

2c4
ε ‖η‖2H1=1

〈η,m′〉L2(R)

2

(2.4.23)

≤ ‖m′‖2L2(R)

ε

2c4
.

To bound the second factor choose the test function η̄ as above in (2.4.20). Then one gets noting
‖η̄‖∞ ≤ 1

〈η̄, η̄〉 =
k̄∑

k=−k̄

(
η̄(sN,εk )

)2

≤ C N

ε−γ
.

We obtain the desired estimate from (2.4.16) together with (2.4.23) and (2.4.22).

End of proof of Proposition 2.4.4: Applying Lemma 2.4.5 and 2.4.6 to equation (2.4.13) one
gets: ∫

Bξ

exp
(
−2c4

ε
‖v‖2H1(R)

)
HN,ε(dv)

≥ C
√
ε

δ

√
ε−1−γ

N
exp

(
−C ε

−4γ−1−γ1

N4

)∫
B

exp
(
−2c4

ε
‖v‖2H1(R)

)
LN,ε(dv),

(2.4.24)

where B =
{
v ∈ HN,ε

0 : 2c4
ε ‖v‖2H1 ≤ 2c4

ε δ
2 − d2

}
. Due to Lemma 2.4.6 (ii) and (2.4.5) εd2

2c4
↓ 0 as

ε ↓ 0 such that the last integral in (2.4.24) can be bounded from below by∫
‖v‖2

H1≤δ2
exp

(
−2c4

ε
‖v‖2H1(R)

)
LN,ε(dv) = ZN,ε2 %N,ε

(
‖v‖2H1 ≤ δ2

2

)
. (2.4.25)

Here % is the massive Gaussian free �eld discussed in Lemma 2.3.4 for κ = 2c4. Lemma 2.3.4

together with (2.4.5) yields that %N,ε
(
‖v‖2H1 ≤ δ2

2

}
→ 1 for ε ↓ 0. This probability can thus be

bounded from below by 1
2 for ε small enough. Thus the following lemma �nishes the proof.

Lemma 2.4.7. The Gaussian normalization constants ZN,ε1 and ZN,ε2 satisfy the following:

exp
(− εγ−1

)
c
− 2N−1

2
4

(
1 + Cε−γ

)− 2N−1
2 ≤ ZN,ε2

ZN,ε1

≤ exp
(− εγ−1

)
c
− 2N−1

2
4 . (2.4.26)
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Proof. By Lemma 2.3.4 and equation (2.3.6)

ZN,ε2

ZN,ε1

= (2c4)−
2N−1

2 exp
(−εγ−1

)( det (−∆N,ε)
det (IN,ε −∆N,ε)

) 1
2

.

By the Poincaré inequality (2.3.13) one has

−∆N,ε ≤ (IN,ε −∆N,ε) ≤
(
1 + Cε−γ

)
(−∆N,ε)

in the sense of symmetric matrices. This implies

det(−∆N,ε) ≤ det(IN,ε −∆N,ε) ≤
(
1 + Cε−γ

)2N−1 det(−∆N,ε).

This �nishes the proof.

As a next step an upper bound on µN,ε(Ac) is derived:

Proposition 2.4.8. Choosing γ1 and γ2 according to (2.4.5) one has for δ ≤ δ0:

lim sup
ε↓0

ε log
(
ZN,εµN,ε (distH1(u,M) ≥ δ)

)
≤ −(C∗ + c0δ

2). (2.4.27)

In particular, setting δ = 0 one obtains

lim sup
ε↓0

ε log ZN,ε ≤ −C∗. (2.4.28)

Proof. Denote by Aδ := {u : distH1(u,M) ≥ δ}. Then one has

ZN,εµN,ε(Aδ) = exp
(
−C∗
ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε
E(u)

)
LN,ε(du)

≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε

(E(u)− c0δ2
))LN,ε(du).

(2.4.29)

Note that by (2.2.9) E(u)− c0δ2 ≥ 0 on Aδ. So on this set one gets

exp
(
−1
ε

(E(u)− c0δ2
)) ≤ exp

(
− (E(u)− c0δ2

))
.

Therefore, one gets∫
Aδ

exp
(
−1
ε

(E(u)− c0δ2
))LN,ε(du) ≤

∫
Aδ

exp
(
− (E(u)− c0δ2

))LN,ε(du)

≤
∫
Aδ
ZN,ε3 exp

(∫ ε−γ

−ε−γ
−F (u(s)

)
ds + c0δ

2

)
ν1,N (du),

(2.4.30)

where ν1,N is the discretized Brownian bridge without rescaling and

ZN,ε3 =
∫

exp
(
−
∫ ε−γ

−ε−γ
1
2
|u′(s)|2 ds

)
LN,ε(du)

is the appropriate normalization constant. Using the positivity of F the last term in (2.4.30) can
thus be bounded by

ZN,ε3 exp
(
c0δ

2
)
.

Plugging this into (2.4.29) yields

ZN,εµN,ε(Aδ) ≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

ZN,ε3 exp
(
c0δ

2
)
.

This �nishes the proof together with the following bound on the normalization constants ZN,ε1 and

ZN,ε3 .
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Lemma 2.4.9. One has
ZN,ε3

ZN,ε1

= ε−
2N−1

2 .

Proof. This is a direct consequence of the fact that for matrices A ∈ Rn×n and ξ ∈ R

det(ξA) = ξn det(A),

as well as the explicit formula for the Gaussian normalization constants.

One can now summarize the �nite-dimensional calculation in the following:

Corollary 2.4.10. Choosing the constants γ1 and γ2 as in (2.4.5),(2.4.7) one obtains for δ ≤ δ0:

lim sup
ε↓0

ε log
(
µN,ε(distH1(u,M) ≥ δ)) ≤ −c0δ2.

Note that such a choice is possible for all γ < 1.

Proof. Dividing and using the estimates from above yields the result.

Using the continuous embedding of H1 into L∞ one gets:

Corollary 2.4.11. Choosing the constants γ1 and γ2 as in (2.4.5), (2.4.7) one obtains for δ ≤ δ0:

lim sup
ε↓0

ε log
(
µN,ε(distL∞(u,M) ≥ δ)) ≤ −c̃0δ2.

Such a choice is possible for all γ < 1.

As a last step in this section we need to control the deviations from the discretized measure
with the help of the Gaussian estimates derived in Section 2.3. To this end one has to estimate
the deviations of the normalization constant Zε from ZN,ε. In order to proof the following lemma
we will need an additional assumption on the double well potential F .

Assumption 2.4.12.

|F ′(u)| is bounded for u ∈ R . (2.4.31)

In fact one can simply modify the potential F by cutting it o� outside of some compact set,
such that it satis�es (2.4.31). We will proceed now by proving Theorem 2.1.1 under the additional
assumption (2.4.31). The general case will then follow as a corollary.

Proposition 2.4.13. Assume that F satis�es (2.4.31). Then the following holds:

(i) For every γ3 > 0 we have for ε small enough:∫
Hε

exp
(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du) (2.4.32)

≥
(

1
2

)2N

exp

(
−
√

6‖F ′‖∞
3

ε−
1
2− 3

2γ−γ3

N
1
2

)

(ii) For ε small enough we have:∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du) (2.4.33)

≤
(

4‖F ′‖2∞ε1−3γ

πN3

)N
exp

(√
6‖F ′‖∞

3
ε−

1
2− 3

2γ−γ3

N
1
2

+
1

2π2
‖F ′‖2∞

ε−1−3γ

N2

)
.
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(iii) For γ < 2
3 the the normalization constant satis�es:

lim inf
ε↓0

ε logZε = −C∗. (2.4.34)

Recall that uN denotes the discretization of the Brownian bridge as introduced in Section 2.3.

Proof. Applying Cauchy-Schwarz inequality and the independence of the Brownian bridges on the
short intervals derived in Lemma 2.3.2 one gets:∫

Hε
exp

(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)

≥
∫
Hε

exp
(
− 1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞
N−1∑
k=−N

‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du) (2.4.35)

=
N−1∏
k=−N

∫
Hε

exp
(
− 1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du).

In the same way one can see that∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)

≤
N−1∏
k=−N

∫
Hε

exp
(1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du). (2.4.36)

Thus in order to prove (2.4.32) and (2.4.33) we have to bound the integrals over the Brownian
bridges on the short intervals. To simplify the equations we introduce the following notation:

αε =

√
ε
ε−2γ

6N2

βε =
1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞

δε =
π2N2

ε1−2γ
.

In this notation the concentration inequality (2.3.8) reads

νε
(
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥ αε + r

)
≤ exp

(−r2δε
)
. (2.4.37)

Now let us proceed to prove (2.4.32): Using the formula

E[eβX ] = 1 + β

∫ ∞
0

eβxP [X ≥ x] dx, (2.4.38)

which holds for every non-negative random variable X and every β ∈ R one obtains:∫
Hε

exp
(
− βε‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du)

= 1− βε
∫ ∞

0

e−βεxP
[
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥ x

]
dx (2.4.39)

≥ 1− βε
∫ ε−γ3αε

0

e−βεx dx− βε
∫ ∞
ε−γ3αε

e−βεx exp
(
− (x− αε)2δε

)
dx

= e−βεε
−γ3 αε − e−βεε−γ3 αεβε

∫ ∞
0

e−βεx exp
(
− (x+ αε(ε−γ3 − 1)

)2
δε

)
dx.
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Using the elementary inequality∫ ∞
0

exp(−βx− δx2)dx ≤
∫ ∞

0

exp(−βx)dx ≤ 1
β
,

which holds for β, δ > 0 the last integral in (2.4.39) can be bounded by∫ ∞
0

e−βεx exp
(
− (x+ αε(ε−γ3 − 1)

)2
δε

)
dx

≤ exp
(
− δεα2

ε(ε
−γ3 − 1)2

) 1
βε + 2δεαε(ε−γ3 − 1)

Noting that δεα
2
ε is a quantity of order O(1) one sees that this term decays to zero exponentially

in ε. In particular for ε small enough

βε

∫ ∞
0

e−βεx exp
(
− (x+ αε(ε−γ3 − 1)

)2
δε

)
dx ≤ 1

2
.

Plugging this into (2.4.39) and using (2.4.35) �nishes the proof of (2.4.32).
To derive the lower bound in (2.4.34) using (2.4.38) one gets∫

Hε
exp

(
βε‖u− uN‖L2[sN,εk ,sN,εk+1]

)
≤ 1 + βε

∫ αε

0

eβεx dx + βε

∫ ∞
αε

eβεx exp
(
− δε

(
x− αε

)2)dx (2.4.40)

= eβεαε + eβεαεβε

∫ ∞
0

exp
(
βεx− δεx2

)
dx.

Completing the squares the last integral can be bounded by∫ ∞
0

exp
(
βεx− δεx2

)
dx = exp

( β2
ε

4δε

) ∫ ∞
0

exp
(
−δε

(
x− βε

2δε

)2
)

(2.4.41)

≤ exp
( β2

ε

4δε

)√ π

δε
.

Plugging this into (2.4.40) and using (2.4.36) yields the desired result.
To see (2.4.33) write:

Zε =
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du) (2.4.42)

=
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

(
−1
ε

∫ ε−γ

−ε−γ

(
F (u(s))− F (uN (s))

)
ds

)
νε(du)

≥
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du).

Using the independence of the discretized Brownian bridge and the bridges on the small intervals
derived in Lemma 2.3.2 the last term can be rewritten as

ZN,ε
∫
Hε

exp
(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du). (2.4.43)

If one chooses N = N(ε) growing like ε−γ2 according to (2.4.32) the exponent in the error terms
scales like

ε−
1
2− 3

2γ−γ3+
γ2
2 ,
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so that if one chooses the γi such that (2.4.5),(2.4.7) hold and in addition

−1
2
− 3γ

2
− γ3 +

γ2

2
> −1 (2.4.44)

γ3 > 0 (2.4.45)

the result follows from the bound (2.4.8) on the discretized normalization constant. Note that
such a choice is possible for γ < 2

3 .
For the upper bound in (2.4.34) similar to (2.4.42) and (2.4.43) one can write

Zε ≤ ZN,ε
∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du). (2.4.46)

For γ < 2
3 one can chose the parameters γi such that (2.4.7)-(2.4.5) and (2.4.44)-(2.4.45) hold and

in addition
−3γ + 2γ2 > −1. (2.4.47)

Then the bound (2.4.33) implies

lim sup
ε↓0

ε log
∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du) = 0. (2.4.48)

Thus (2.4.28) implies the upper bound in (2.4.34).

In the sequel we will always assume that the γi satisfy (2.4.7)-(2.4.5), (2.4.44)-(2.4.45) and
(2.4.47). Now one can conclude:

Proposition 2.4.14. The statement of Theorem 2.1.1 holds under the additional assumption
(2.4.31).

Proof. One can estimate

µε
(
distL2(u,M) ≥ δ

)
=

1
Zε

∫
{distL2 (u,M)≥δ}

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

≤ 1
Zε

∫
A1

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

+
1
Zε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du),

(2.4.49)

where

A1 =
{
‖u− uN‖L2[−ε−γ ,ε−γ ] ≥ δ

2

}
A2 =

{
distL2(uN ,M) ≥ δ

2

}
.

The concentration inequality (2.3.7) implies together with the lower bound on the normalization
constant (2.4.34) that the �rst integral decays to zero on a quicker exponential scale than ε−1.
For the integral over A2 we can write using the independence of the discretized Brownian bridges
and the bridges on the intermediate intervals again:

1
Zε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

≤ ZN,ε

Zε
1

ZN,ε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (v(s))ds

)
νε(du)×∫

Hε
exp

(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ

∣∣u(s)− uN (s)
∣∣ds
)
νε(du). (2.4.50)
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The fraction ZN,ε

Zε can be bounded using (2.4.32), the integral in the last line is bounded due to
(2.4.48). Thus the statement follows from the result on the discretized measures in Corollary 2.4.10.
This �nishes the proof for the L2-norm. To the see analogue result for the L∞-norm repeat the
same reasoning with Lemma 2.4.10 replaced by Lemma 2.4.11 and the L2 bound (2.3.7) replaced
by the L∞-bound (2.3.9).

Proof. (Of Theorem 2.1.1 in the general case): Denote by dist either distL2 or distL∞ . Assume
that F only satis�es assumptions (2.1.2). By cutting F o� outside of [−2, 2] one can choose a
function F̄ that coincides with F on [−2, 2] that satis�es (2.1.2) and (2.4.31) as well as

F̄ (u) ≤ F (u) for u ∈ R.
Then one can write

µε (dist(u,M) ≥ δ) =

∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

≤
∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

(2.4.51)

The denominator of this fraction coincides with∫
{‖u‖L∞(R)≤2}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du)

and the numerator is bounded from above by∫
{dist(u,M)≥δ}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du),

such that one can write

µε (dist(u,M) ≥ δ) ≤
∫
{dist(u,M)≥δ}} exp

(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

×

×
∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

.

(2.4.52)

Now applying Proposion 2.4.14 shows that the second factor can be bounded by 2 for ε small
enough and thus applying Proposion 2.4.14 to the �rst factor yields the desired result.

With a similar argument one can see that the bounds on the normalization constant in Propo-
sition 2.4.13 also holds without assumption (2.4.31):

Corollary 2.4.15. Suppose γ < 2
3 . Then one has the following bound:

lim inf
ε↓0

ε logZε = −C∗. (2.4.53)

It remains to prove Corollary 2.1.2:

Proposition 2.4.16. The family of measures µ̃ε is tight. All points of accumulation are concen-
trated on functions of the type

m̃ξ(s) = −1[−1,ξ](s) + 1[ξ,1](s). (2.4.54)



36 CHAPTER 2. SHARP INTERFACE LIMIT FOR INVARIANT MEASURES

Proof. Denote by M̃ = {m̃ξ : ξ ∈ [−1, 1]} and dist(ũ, M̃) = infξ∈[−1,1] ‖ũ − m̃ξ‖L2[−1,1]. Further-

more, denote by m̃ε
ξ(s) = m

(
s−ξ
ε

)
. Note that for all ξ ∈ [−1, 1] m̃ε

ξ converges to m̃ξ in L
2. Now

choose δ > 0 and ε0 such that ‖m̃ε
ξ − m̃ξ‖L2 ≤ δ

2 for all ε ≤ ε0. Then Theorem 2.1.1 implies that

µ̃ε
(
distL2(ũ, M̃) ≥ δ

)
≤ µ̃ε

(
inf
ξ
‖ũ− m̃ε

ξ‖L2[−1,1] ≥ δ

2

)
≤ µε

(
distL2(T ε(ũ),M) ≥ δ

2
√
ε−γ

)
↓ 0.

(2.4.55)

This is su�cient to show the tightness of the measures {µ̃ε}. In fact �x a small constant κ > 0.
Let us construct a precompact set K such that µ̃ε(KC) ≤ κ. For a �xed N ∈ N due to (2.4.55)
there exists εN such that for all ε ≤ εN

µ̃

(
dist(ũ, M̃) ≥ 1

2N

)
≤ κ

2N
.

In particular, there exist �nitely many ξNi ∈ [−1, 1] i = 1, . . . , iN such that for all ε ≤ εN

µ̃ε
(
∪iB

(
m̃ξNi

,
1
N

))
≥ 1− κ

2N
.

Furthermore, due to tightness of the measures (µ̃ε, ε ∈ [εN , 1]) there exist �nitely many balls B̃Ni
of radius 1

N such that for all ε ∈ [εN , 1] one has

µ̃ε (∪iBi) ≥ 1− κ

2N
.

Set KN =
(⋃

iBi

)
∪
(⋃

iB
(
m̃ξNi

, 1
N

))
and K = ∩NKN . Then K is precompact and for all ε

has measure ≥ 1− κ. This shows tightness. The concentration follows from (2.4.55).



Chapter 3

The short time asymptotic of the

stochastic Allen-Cahn equation

This chapter has been accepted for publication in Annales Scienti�que de l'Institut Henri Poincaré
[W08].

A description of the short time behavior of solutions of the Allen-Cahn equation with a
smoothened additive noise is presented. The key result is that in the sharp interface limit so-
lutions move according to motion by mean curvature with an additional stochastic forcing. This
extends a similar result of Funaki [Fu99] in spatial dimension n = 2 to arbitrary dimensions.

3.1 Introduction and main result

1. Setting and main result: For a small parameter ε > 0 consider the following stochastic Allen-
Cahn equation in an open domain D in Rn for some n ≥ 2:

∂

∂t
uε(x, t) = ∆uε(x, t) + ε−2f(u(x, t)) + ε−1ξε(t) (x, t) ∈ D × [0,∞)

∂

∂ν
uε(x, t) = 0 x ∈ ∂D (3.1.1)

uε(x, 0) = uε0(x) x ∈ D.

Here f(u) = −F ′(u) is the negative derivative of a symmetric double-well potential. For �xing

ideas, assume that F (u) = (u2−1)2

4 and f(u) = u− u3. In particular F has two global minima at
±1 and solutions of the dynamical system ẋ = f(x), that start outside of zero, converge to one of
these minima. The expression ξε(t) denotes a noise term de�ned on a probability space (Ω,F ,P).
The noise ξε(t) is constant in space and smooth in time. For ε ↓ 0 the correlation length goes to

zero at a precise rate and
∫ t

0
ξε(s)ds converges to a Brownian motion pathwisely. The details of

the construction and further properties can be found below.

We study the short time evolution of developed surfaces for (3.1.1). More precisely let Σ0 the
boundary of a set U0 be compactly embedded in D of class C2,α for some α > 0. Assume that
the initial con�guration uε(x, t) is close to −1 on U0 and close to +1 on D \ U0 with a transition
layer of order O(ε). We show that for short times there exist two phases and the evolution of the
phase boundary follows two in�uences - the tendency to minimize the boundary and a stochastic
e�ect. The main result is:

Theorem 3.1.1. Consider the problem (3.1.1) with the noise term ξε(t) as constructed below. In
particular suppose that the approximation rate γ veri�es γ < 2

3 . Then for any compactly embedded

37
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hypersurface Σ0 = ∂U0 of class C2,α there exist initial conditions uε, a positive stopping time τ
and randomly evolving closed hypersurfaces (Σ(t))0≤t≤τ such that the following hold:

(i) The surfaces (Σt)0≤t≤τ evolve according to stochastically perturbed motion by mean curva-
ture, e.g. the normal velocity V at each point is given by

V = (n− 1)κ− c0 ˙W (t).

(ii) sup0≤t≤τ ‖uε(x, t)− χΣt‖L2(D) → 0 almost surely as ε goes to zero.

Here κ denotes the mean curvature of the surface at a given point. The constant c0 is given by

c0 =
√

2∫ 1

−1

√
F (u)du

.

The function χΣt is a step function taking the value −1 in the interior and +1 on the exterior.
The precise meaning of the geometric evolution will be given in the next section.

The noise scaling ε−1ξε(t) can be interpreted as follows: Consider the stochastic equation

∂v

∂t
= ∆v + f(v) + εξε(t). (3.1.2)

Equation (3.1.1) can be obtained from this equation by di�usive scaling: u(x, t) = v(ε−1x, ε−2t).
The intuition is that in (3.1.2) surfaces should move with velocity V = (n−1)κ+c(εξε(t)). Here c
is the speed of a travelling wave solution corresponding to a perturbation of the potential through
εξε(t). Then after rescaling one obtains as normal velocity V = κ + ε−2 × ε1c(εξε(t)) such that
the random term becomes a quantity of order O(1). The signi�cant observation is that the noise
term does not rescale. Actually this observation is characteristic for our result. Even in the limit
the Brownian motion can be considered pathwise and there is nowhere any need to work with
stochastic integrals.

2. The white noise approximation: Let (W (t), t ≥ 0) be a Brownian motion de�ned on a
probability space (Ω,F ,P). For technical reasons extend the de�nition of (W (t), t ≥ 0) to negative
times by considering an independent Brownian motion (W̃ (t), t ≥ 0) and setting W (t) = W̃ (−t)
for t < 0. Then (W (t), t ∈ R) is a gaussian process with independent stationary increments and
a distinguished point W (0) = 0 a.s. Let ρ be a mollifying kernel i.e. ρ : R → R+ is smooth and
symmetric with ρ(x) = 0 outside of [−1, 1] and

∫
ρ(x)dx = 1. For γ > 0 set ρε(x) = ε−γρ( xεγ ).

Then the approximated Brownian motion W ε(t) is de�ned as usual as

W ε(t) = W ∗ ρε(t) =
∫ ∞
−∞

ρε(t− s)W (s)ds.

Note that it is only here that the Brownian motion at negative times is needed. So actually
only negative times in (−εγ , 0] will play a role. The parameter γ determines how quickly the
approximations converge to the true integrated white noise. We will always assume

γ <
2
3

in order to have the needed pathwise bounds on the white noise approximations.

Proposition 3.1.2. Let ξε(t) = Ẇ ε(t) denote the derivative of W ε. Then the following properties
hold:

(i) ξε(t) is a stationary centered gaussian process with E[ξε(t)2] = ε−γ |ρ|2L2 .

(ii) The correlation length of ξε(t) is 2εγ i.e. if |s−t| ≥ 2εγ then ξε(t) and ξε(s) are independent.



3.1. INTRODUCTION AND MAIN RESULT 39

(iii) If γ < γ̃ for every positive time T there exists a non-random constant C such that

P
[
∃ε0 s.th. ∀ε ≤ ε0 sup

0≤t≤T
|ξε(t)| ≤ Cε− γ̃2

]
= 1.

In particular for γ < 2
3 for ε small enough

ξε(t) ≤ Cε− 1
3 . (3.1.3)

Proof. One can write

ξε(t) =
∫ ∞
−∞

d
dt
ρε(t− s)W (s)ds =

∫ ∞
−∞

ρε(t− s)dW (s) a.s.,

where the �rst equality follows from di�erentiating under the integral and the second from stochas-
tic integration by parts. Then properties (i) and (ii) follow from standart properties of the stochas-
tic integral. To see (iii) write

|ξε(t)| =
∣∣∣∫ t+εγ

t−εγ
ε−2γρ′

(
t− s
εγ

)
W (s)ds

∣∣∣
≤
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
W (t)ds

∣∣∣+
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣.
The �rst term vanishes due to

∫ t+εγ
t−εγ ρ

′ ( t−s
εγ

)
ds = 0. One obtains

|ξε(t)| ≤
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣
≤
∣∣∣ε−2γ2εγ‖ρ′‖∞oscs∈[t−εγ ,t+εγ ]W (s)

∣∣∣.
The oscillation is de�ned as oscs∈[t−εγ ,t+εγ ]W (s) := sups∈[t−εγ ,t+εγ ]W (s)− infs∈[t−εγ ,t+εγ ]W (s).

Now one can apply Lévy's well known result on the modulus of continuity of Brownian paths
(See e.g. [KS91] Theorem 9.25 on page 114):

P
[
lim sup
δ→0

1
g(δ)

max
0≤s<t≤T
t−s≤δ

|W (t)−W (s)| = 1
]

= 1,

where the modulus of continuity is given by g(δ) =
√

2δ log( 1
δ ). In particular there exists almost

surely a (random!) ε0 such that for ε ≤ ε0 we have supt∈[0,T ] oscs∈[t−εγ ,t+εγ ]W (s) ≤ (2εγ)
1
2− γ̃−γ2γ .

This gives the desired estimate

|ξε(t)| ≤ ε−γ2‖ρ′‖∞(2εγ)
1
2− γ̃−γ2γ ≤ Cε−γ̃/2.

We will need a similar bound on the derivatives of ξε

Proposition 3.1.3. Consider the process ξ̇ε(t). Then if γ < γ̃ for every positive time T there
exists a constant C such that

P
[
∃ε0 ∀ε ≤ ε0 sup

0≤t≤T
|ξ̇ε(t)| ≤ Cε− 3γ̃

2

]
= 1.

In particular for γ < 2
3 and ε small enough

|ξ̇ε(t)| ≤ Cε−1. (3.1.4)
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Proof. The proof is similar to the one above:

|ξ̇ε(t)| ≤
∣∣∣∫ t+εγ

t−εγ
ε−3γρ′′

(
t− s
εγ

)
W (s)ds

∣∣∣
≤
∣∣∣∫ t+εγ

t−εγ
ε−3γρ′′

(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣
≤ 2ε−2γ‖ρ′′‖∞oscs∈[t−εγ ,t+εγ ]W (s) :

Then one applies Lévy's modulus of continuity again to see that almost surely for ε ≤ ε0(ω) one
has oscs∈[a,b]W (s) ≤ (2εγ)

1
2− 3γ̃−3γ

2γ and obtains the desired result:

|ξ̇ε(t)| ≤ 2ε−2γ‖ρ′′‖∞(2εγ)
1
2− 3̃γ−3γ

2γ = Cε
3γ̃
2 .

3. Motivation and related works: Solutions of the Allen-Cahn equation

∂u

∂t
= ∆u+

1
ε2
f(u)

evolve according to the L2 gradient �ow of the real Ginzburg-Landau energy functional:

Hε(u) =
∫
|∇u|2 +

1
ε2
F (u).

There are two di�erent e�ects. The reaction term ε−2f(u) pushes solutions to the two minima
±1 and the di�usion term ∆u tends to smoothen the solution. For small ε there will be two
phases, corresponding to regions where the solution is close to ±1. The width of the transition
layer between those two phases is of the order O(ε). Then the evolution gradually shrinks the
transition layer.

This behavior is the motivation to consider the Allen-Cahn equation as a simple model of a
two phase system which is driven by the surface energy without conservation of mass. Allen and
Cahn [AC79] introduced it to model the interface motion between di�erent crystalline structures
in alloys. In the deterministic setting there were major advances in connection with the improved
understanding of the theory of geometric �ows of surfaces as initiated for example by [ES91,
CGG91] in the early nineties. In particular in [ESS92] it was shown that in the limit ε ↓ 0
solutions only attain the values ±1 and the phase boundary evolves according to motion by mean
curvature. The key di�culty here is to �nd a description of the geometric evolution which is global
in time. A similar result for short times was established in [MS95].

Stochastic perturbations of this e�ect have also been considered. From a modelling point of
view an additional noise term can account for inaccuracies of the simpli�ed model or as e�ects of
thermal perturbations. From a mathematical point of view it is a very interesting and challenging
question to study stochastically perturbed evolutions of surfaces and the Allen-Cahn setup is one
possible point of view. In [Fu95] Funaki considered the case of the Allen-Cahn equation in one
space dimension with a space-time white noise. He showed that in the limit ε ↓ 0 on the right
time-scale solutions only attain values ±1 and the boundary point essentially performs a Brownian
motion. In [Fu99] he studies the two dimensional case with a smoothened noise and shows that for
short times solutions evolve according to a stochastically perturbed motion by mean curvature.
His analysis relies on a comparison theorem which requires the noise to be smooth and a very
subtle analysis of a quasi-linear stochastic PDE which describes the boundary evolution. On the
level of stochastic surface evolution there were advances by Yip [Y98] and Dirr, Luckhaus and
Novaga [DLN01] but a fully satisfactory description is not yet available. Some results based on
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a stochastic version of the concept of viscosity solutions were announced in [LS98II]. Recently
the model has enjoyed an increasing interest in the numerical analysis community. For example
in [KKL07] numerical approximations of the one dimensional equation are studied. Numerical
analysis of this equation is challenging because all the interesting dynamics happen on a very thin
layer which requires to develop adaptive methods which work in the stochastic setting.

Our result is a generalization of Funaki's result to arbitrary dimension. We use the same
comparison technique to study the equation. Therefore, we also need to assume a smoothened
noise with correlation length going to zero as ε goes to zero. The description of the surface and
the convergence result is based on [DLN01] and fully avoids Funaki's result of weak convergence.
In fact this is also a strictly pathwise result so that all results hold almost surely.

4. Structure of the paper: In Section 2 the technique of [DLN01] to describe motion by mean
curvature is brie�y reviewed and the main results are stated. In Section 3 the results about the
geometric �ow are used to proof the behavior of the Allen-Cahn equation.

3.2 Stochastic motion by mean curvature

This section reviews the description of a stochastically perturbed motion by mean curvature
given in [DLN01]. A short time existence result for surfaces moving with normal velocity dV =
(n− 1)κdt + cdW (t), where κ denotes the mean curvature, and a pathwise stability result under
approximations of the integrated noise are given.

Motivated by [ES92] consider the following system

dd(x, t) = g(D2d(x, t), d(x, t))dt + dW (t) (x, t) ∈ O × (0, T )

|∇d|2 = 1 (x, t) ∈ ∂O × (0, T ) (3.2.1)

d(x, 0) = d0(x) x ∈ O,
on some open bounded domainO. HereD2d denotes the Hessian of d and g(A, q) = tr(A(I−qA)−1)
for a symmetric matrix A and q ∈ R. The initial condition d0 is supposed to be of class C2,α and
to verify |∇d| = 1 in O. Furthermore, it is assumed that ∇d is nowhere tangent to the boundary.

In order to solve the above system consider q(x, t) = d(x, t)−W (t). Then q solves the system

dq(x, t) = g(D2q(x, t), q(x, t) +W (t))dt (x, t) ∈ O × (0, T )

|∇q|2 = 1 (x, t) ∈ ∂O × (0, T ) (3.2.2)

q(x, 0) = d0(x) x ∈ O.
Due to maximal regularity of the linearized system ([L95]) and a �x point argument the following
results are obtained:

Theorem 3.2.1. ([DLN01] Section 4) Let t 7→W (t) be α-Hölder continuous for some α ∈ (0, 1).
Then there exists a time T depending only on the Cα/2-norm of W and the C2,α-norm of d0 such
that on O × [0, T ] system (3.2.2) and also (3.2.1) admit a unique solution of class C1+α/2,2+α.
Moreover if t 7→ W̃ (t) is another function of class Cα and q̃ is the solution (3.2.2) with W replaced
by W̃with interval of existence [0, T̃ ] on has

sup
t∈[0,min{T̃ ,T}]

‖q(t, ·)− q̃(t, ·)‖C2,α ≤ C‖W − W̃‖Cα/2([0,min{T̃ ,T}]). (3.2.3)

Now let Σ0 = ∂U0 be as above. In particular Σ0 is assumed to be of class C2,α. De�ne the
signed distance function d0 and the indicator χΣ0 as

d0(x) =

{
−dist(x,Σ0) for x ∈ U0

dist(x,Σ0) for x ∈ D \ U0
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and

χΣ0(x) =

{
−1 for x ∈ U0

1 for x ∈ D \ U0.

There exists an open environment O of Σ0 such that on O the function d0(x) is of class C2,α

and ∇d is nowhere tangent to ∂O. Furthermore, on O it holds |∇d0| = 1. Then for a given
stochastic noise W (t) consider the pathwise solution d(x, t) of (3.2.1) with initial condition d0 on
[0, T (ω)]. De�ne the evolving surfaces (Σ(t), 0 ≤ t ≤ T (ω)) as the zero level sets of d(x, t). Then
the following holds:

Theorem 3.2.2. ( [DLN01] Section 4)

(i) For every t the function x 7→ d(x, t) is the signed distance function of Σ(t) on O.
(ii) If X(0) in Σ(0). Then up to a stopping time there exists a solution X(t) to the stochastic

di�erential equation

dX(t) = (n− 1)ν(X(t), t)κ(X(t), t)dt+ ν(X(t), t)dW (t),

with X(t) ∈ Σ(t) almost surely.

Here ν(x, t) denotes the exterior normal vector to Σ(t) for x ∈ Σ(t). The last observation
justi�es to say that the surfaces Σ(t) evolve according to stochastic motion by mean curvature.

Note that we use the convention that κ = 1
n−1

∑n−1
i=1 κi with the principal curvatures κi such that

the factor (n− 1) appears which is not present in [DLN01].

3.3 Construction of sub- and supersolutions

In this section the link between the boundary dynamic and the Allen-Cahn equation is established.
For a related calculation see [Fu99, CHL97].

In order to construct sub- and supersolutions to (3.1.1) consider the following modi�cation of
the reaction term: f(u, δ) = f(u) + δ. The implicit function theorem implies that there exists
an interval [−δ̃0, δ̃0] such that for δ ∈ [−δ̃0, δ̃0] there exist two solutions m±(δ) of the equation
f(u, δ) = 0 which are close to ±1 and that the mappings δ 7→ m±(δ) are smooth. Consider the
following auxiliary one dimensional problem

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + f(u(x, t)) + δ (3.3.1)

u(±∞) = m±(δ).

A travelling wave solution to (3.3.1) is a solution u(x, t) = m(x − ct) with a �xed wavespeed c.
Finding such a solution is equivalent to �nding an appropriate waveshape m(x, δ) and wavespeed
c(δ) such that

m′′(x) + c(δ)m′(x) + {f(m(x)) + δ} = 0 (3.3.2)

m(±∞) = m±(δ).

The following properties hold:

Lemma 3.3.1. ([CHL97] Lemma 3.3) There exists a constant δ0 such that for δ ∈ [−δ0, δ0]
problem (3.3.2) admits a solution (m(x, δ), c(δ)) where m is increasing in x and this solution is
unique up to translation. Furthermore, m can be chosen smooth in δ. There exist constants A and
β such that the following properties hold:

(i) 0 < ∂xm(x, δ) ≤ A for all (x, δ) ∈ R× [−δ0, δ0].
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(ii) |∂xm(±x, δ)|+ |(∂x)2m(±x, δ)|+ |m(±x, δ)−m±(δ)| ≤ Ae−βx for all (x, δ) ∈ R+× [−δ0, δ0].

(iii) The traveling wave velocity c(δ) is smooth in [−δ0, δ0] and c(0) = 0.

Actually as pointed out in [Fu99] ∂δc(0) = −c0 = −
√

2R 1
−1

√
F (u)du

.

The idea of the construction is the following: We expect the surface to evolve according to two
in�uences - the surface tension and the stochastic perturbation of the potential making one of the
stable states more attractive. Close to the surface the solution should look like a travelling wave
interface which is moving with velocity c(εξ). This means that solution should behave like

u(x, t) ≈ m
(
d(x, t)
ε

, εξε(t)
)
,

where d is the signed distance function of a surface moving with normal velocity V = (n− 1)κ+
ε−1c(εξε). The standard way of making this idea rigorous is to modify it in such a way that such
an approximate solution is a true sub/supersolution and show that the di�erence between the two
cases evolves on a slower time scale than the original dynamic.

Fix some initial surface Σ0 as in Theorem 3.1.1. As Σ0 is compactly embedded one can �x an
N such that all the principle curvatures of Σ0 are bounded by N . As in Section 3.2 one can de�ne
a random evolution (Σ±,ε(t), 0 ≤ t ≤ T±ε,N ) evolving with normal velocity

V = (n− 1)κ+ ε−1c(εξε(t)± εβ).

Here the stopping time T±ε,N is de�ned as the largest time such that the evolution is well de�ned

and such that on [0, T±ε,N ] the principle curvatures remain bounded by N . The constant β can be
chosen such that 1 < β < 2. The condition β > 1 ensures that in the original time scale the extra
term does not have an e�ect and the condition β < 2 ensures that the e�ect is strong enough for
the solution to remain a sub/supersolution. Furthermore, assume (by shortening the time interval
if necessary) that there exists an open set O such that for all t ∈ [0, T±ε,N ] the η-neighborhood
of Σ±(t) is contained in O for some small η. Then one can extend the signed distance functions
d±(x, t) to a smooth function d̃± on all of [0, T (ω)]×D such that on U(t) \ O the function d̃± is
smaller than −η and on D \ (U(t)∪O) it is larger than η, such that |∇d̃±| ≤ 1 and such that d̃ is
constant close to ∂D.

De�ne

u±(x, t) = m

(
d̃±(x, t)± εaec1t

ε
, εξε(t)± εβ

)
,

where a and c1 are constants that will be chosen below. One gets the following conclusion:

Lemma 3.3.2. If one chooses a and c1 properly, there exists a (random) ε0 > 0 such that for all
ε ≤ ε0 and for 0 ≤ t ≤ T±,εN

uε,−(x, t) ≤ uε(x, t) ≤ uε,+(x, t),

for every solution uε(x, t) of (3.1.1) with initial data verifying uε,−(x, 0) ≤ uε(x, 0) ≤ uε,+(x, 0).

Proof. The conclusion will follow by a PDE-comparison principle. We only show the inequality
involving u+ the other one being similar. Let us calculate

∂tu
ε,+(x, t) =

mx

ε

(
∂td̃(x, t) + εac1e

c1t
)

+ εmδ ξ̇(t)

∆uε(x, t) =
mx

ε
∆d̃(x, t) +

mxx

ε2
|∇d̃(x, t)|2.
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Here mx denotes the partial derivative of m(x, t) with respect to x. Then rewrite the reaction
term using (3.3.2):

ε−2(f(m) + εξε) = ε−2
(
−m′′ −m′c(εξε + εβ)− εβ

)
.

By properly arranging the terms one gets

L(u+) := ∂tu
ε,+(x, t)−∆uε(x, t)− ε−2(f(m(x, t)) + εξε(t)) = I1 + I2 + I3 + εβ−2,

where

I1 =
mx

ε

(
∂td̃(x, t) + εac1e

c1t −∆d̃(x, t) + ε−1c(εξε(t) + εβ)
)

I2 = εmδ ξ̇(t)

I3 =
mxx

ε2

(
1− |∇d̃(x, t)|2

)
.

Here the �rst term accounts for the boundary motion. The statement that this term is small
essentially means that the surface evolves with normal velocity V = (n − 1)κ + ε−1c(εξε + εβ).
The second term corresponds to the change of wave pro�le due to the change of noise. It is here
that we need the pathwise bound (3.1.4) on the derivative of ξε to control this term. The third
term essentially vanishes because close to Σ(t) the function d̃ coincides with d. Consequently,
|∇d|2 = 1. O� the boundary the derivative mxx becomes exponentially small such that we also
control this term. In the end this means that the correction term εβ−2 dominates the dynamic.
Let us make these considerations rigorous:

By (3.1.4) I2 ≤ C for every ε smaller than ε0(ω). For d(x, t) ≤ η ∇d(x, t) = 1. Consequently,
I3 vanishes for such x. For d(x, t) ≥ η Lemma 3.3.1 (ii) implies:

mxx

ε2

(
1− |∇d̃|2

)
≤ 2A

ε2
e−C/ε → 0.

To bound I1 consider points x close to Σ(t). For all other x the reasoning is as for I3. For x with
dist(x,Σ±,ε(t)) ≤ 1

2N the functions d(x, t) and d̃(x, t) coincide and one obtains

∂td(x, t) = ∆d(y, t) + ε−1c(εξε(t) + εβ),

where as before y is the unique point in Σ(t) such that d(x, t) = dist(x, y). Plugging this into I1
gives

I1 =
mx

ε

{
∆dε(y, t)−∆dε(x, t) + εac1e

c1t
}
.

Here one uses the fact that all the principle curvatures κi(t, y) of the Σ±,ε(t) are bounded by N
to obtain

|∆dε(y, t)−∆dε(x, t)| =
∣∣∣∣∣
n−1∑
i=1

κi(y, t)−
n−1∑
i=1

κi(y, t)
1− d(x, t)κi(y, t)

∣∣∣∣∣
=
n−1∑
i=1

|κi(y, t)| d(x, t)|κi(y, t)|
1− d(x, t)|κi(y, t)|

≤ 4N2d(x, t),

because supx∈[0, 12 ] ∂x
x

1−x = 4. Plugging this in yields

|I1| ≤ mx

(
d̃±(x, t)± εaec1t

ε
, εξε ± εβ

)
4N2d(x, t) + εac1e

c1t

ε
.
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Choosing c1 larger than N2 and using supx xmx < ∞ one obtains |I1| ≤ C. Thus altogether if ε
is small enough the term εβ−2 will dominate everything else and one obtains

L(u+) ≥ 0.

On the boundary ∂u+
∂ν = 0 due to the de�nition of d̃. So a standart comparison principle gives the

desired result. The inequality for u− is shown in a similar manner.

To �nish the proof of the main theorem one needs the following Lemma:

Lemma 3.3.3. Fix any time interval [0, T ]. Denote by W±,ε the random functions [0, T ] 3 t 7→
1
c0

∫ t
0
ε−1c(εξε(s)± εβ)ds. Then c0W±,ε converges almost surely to t 7→ c0W (t) in C0,α([0, T ]) for

every α < 1
2 .

Proof. Consider onlyW+,ε(t) the calculation forW−,ε(t) being the same. Fix α < 1
2 and a ϑ with

α < ϑ < 1
2 . Then for P-almost every ω there exists a random constant C such that

sup
−1≤s<t≤T

|W (s)−W (t)|
|s− t|ϑ ≤ C.

Assume that ε is small enough to ensure εξε(t) + εβ ∈ [−δ0, δ0]. (Recall that c is only de�ned on
[−δ0, δ0].) Using Taylor-formula and c(0) = 0 one can write for every t:

ε−1c(εξε(t) + εβ) = c′(0)(ξε(t) + εβ−1) +
1
2
c′′(a(t))ε−1

(
εξε(t) + εβ

)2
,

for some a(t) verifying |a(t)| ≤ |εξε(t) + εβ |. Therefore, one can write

‖c0W − c0W+,ε‖∞ ≤ sup
s∈[0,T ]

|c0W (s)− c0
∫ s

0

ξε(t)dt|+ c0Tε
β−1

+ T sup
δ∈[−δ0,δ0]

|c′′(δ)|
(

sup
s∈[0,T ]

ε(ξε(s))2 + ε2β−1
)
.

Due to (3.1.3) the last terms converge to zero almost surely. Therefore, it remains to consider the
�rst term. Due to Ẇ ε(s) = ξε(s) one obtains:

sup
s∈[0,T ]

|c0W (s)− c0
∫ s

0

ξε(t)dt| ≤ c0 sup
s∈[0,T ]

|W (s)−W (s)ε|+ c0|W (0)ε|

= c0 sup
s∈[0,T ]

∣∣∣∣∣
∫ εγ

−εγ

(
W (s)−W (s− t)

)
ρε(t)dt

∣∣∣∣∣+ c0

∣∣∣∣∣
∫ εγ

−εγ

(
W (0)−W (t)

)
ρε(t)dt

∣∣∣∣∣
≤ 2c0C

(
εγ
)ϑ
→ 0.

Consider now the Hölder-seminorm

sup
0≤s<t≤T

1
(t− s)α

∣∣∣c0W (t)− c0W+,ε(t)− c0W (s) + c0W
+,ε(s)

∣∣∣
= sup

0≤s<t≤T

1
(t− s)α

∣∣∣c0W (t)− c0W (s)−
∫ t

s

ε−1c(εξε(s) + εβ)ds
∣∣∣

≤ sup
0≤s<t≤T

1
(t− s)α |c0W (t)− c0W (s)− c0W ε(t) + c0W

ε(s)|

+ sup
0≤s<t≤T

1
(t− s)α

∣∣∣∣∣
∫ t

s

c0ε
β−1 + sup

δ∈[−δ0,δ0]

|c′′(δ)|
(
ε(ξε(u))2 + ε2β−1

)
du

∣∣∣∣∣ .
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Again the second term converges to zero. For the �rst term one gets:

sup
0≤s<t≤T

1
(t− s)α |c0W (t)− c0W (s)− c0W ε(t) + c0W

ε(s)|

≤ c0 sup
0≤s<t≤T

1
(t− s)α

∫ εγ

−εγ

(
W (t)−W (t− u)−W (s) +W (s− u)

)
ρε(u)du

≤ c0 sup
0≤s<t≤T

(2(W (t)−W (s)))
α
ϑ

(t− s)α
∫ εγ

−εγ

(
W (t)−W (t− u)−W (s) +W (s− u)

)1−αϑ ρε(u)du

≤ c0 (2C)
α
γ
(
2C(2εγ)ϑ

)1−αϑ .
This shows the desired convergence.

Proof. (of Theorem (3.1.1)) Chose the initial con�gurations uε0 such that uε(x, 0) ≤ uε0(x) ≤
uε,+(x, 0). De�ne the stopping time τ(ω) := infε T±ε,N . Remark that τ is almost surely positive

due to the boundedness of the ‖W±,ε‖Cα/2 and the C2,α convergence of dε,± to d.

Then by Lemma 3.3.2 one has for all times 0 ≤ t ≤ T (ω) that uε(x, t) ≤ uε(x, t) ≤ uε,+(x, t).
So one gets:

‖uε(·, t)− χΣ(t)(·, t)‖L2 ≤ ‖uε(·, t)− uε,+(·, t)‖L2(D) + ‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)

+ ‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D)

≤ ‖uε,−(·, t)− uε,+(·, t)‖L2(D) + ‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)+
‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D)

≤ ‖uε,−(·, t)− χΣε,−(t)(·, t)‖L2(D) + 2‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)+

2‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D) + ‖χΣε,−(t)(·, t)− χΣ(t)(·, t)‖L2(D).

The supremum in time of the �rst two terms converges to zero due to the de�nition of uε,±.
Consider ‖χΣε,−(t)(·) − χΣ(t(·)‖L2(D) =

∫
O
(
χΣε,−(t)(x) − χΣ(t)(x)

)
dx. By Lemma 3.3.3 and by

Theorem 3.2.1 the signed distance functions converge in C2,α(O) uniformly in time and this term
converges to zero. The convergence of the term involving χΣε,−(t) can be seen in the same way.



Chapter 4

Appendix

4.1 Outlook

In this section some ideas for possible extensions of the results, which are presented in this thesis,
are given:

• To determine the distribution of the phase separation point in the study of the invariant
measure is an open problem. It should be uniform. Once this is established the results on
the invariant measure should allow to obtain dynamical results using the theory of Dirichlet
forms. Formally the problem of convergence of solutions of the one dimensional Allen-Cahn
equation is very similar to the problem of approximating a graph by tubular neighborhoods
studied for example in the last chapter of [B08]. Here the theory of Mosco-Convergence
of Dirichlet forms on changing Hilbert spaces is used. This theory has been developed in
[KS03, K06]. The generalization of this technique to the in�nite dimensional space should
be possible.

• A very challenging problem remains the rigorous veri�cation of the conjectured behavior of
multi kink con�gurations in the one dimensional case. Here a detailed analysis of the energy
landscape similar to [OR07] might make it possible to extend the techniques used in [Fu95]
to the multi kink case.

• Much remains to be done in a higher dimensional setting. The question of a reasonable
construction of stochastically perturbed boundary evolutions is still wide open. Recently,
a possible approach using the Allen-Cahn approximation has been studied in a joint work
with Matthias Röger [RW09]. In fact we use an Allen-Cahn approximation to the evolution
studied by Yip in [Y98]. Here we do not consider an additive stochastic term but rather a
multiplicative noise which depends on the gradient of the phase �eld u. So far we were able
to prove tightness of the Allen-Cahn approximation, which is similar to the results obtained
in [Y98]. We want to use techniques similar to [MR08, Il93] to extract more information
about the limit process.

47
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4.2 Some results for stochastic reaction di�usion equations

In this section we recall existence and uniqueness results for the Allen-Cahn equation with stochas-
tic forcing considered in Chapter 2. Furthermore, we show that the invariant measure of the one
dimensional equation is indeed the measure considered in Chapter 2. These results are all well
known. Nonetheless, we give the main arguments for the readers convenience. The exposition is
rather sketchy and roughly follows [Z89, dPZ92, dPZ96].

We treat the systems:

d
dt
u(x, t) = ∆u(x, t)− 1

ε2
F ′(u(x, t)) +

√
2Ẇ (x, t) (x, t) ∈ (−1, 1)×R+ (4.2.1)

u(x, 0) =u0(x) u(±1, t) = ±1 x ∈ (−1, 1), t ∈ R+,

where F is as above in (2.1.2). The formal term Ẇ (x, t) denotes space-time white noise. In the
physical literature it is de�ned as a centered space-time Gaussian process with correlation function

E
[
Ẇ (x, t)Ẇ (y, s)

]
= δ0(x− y)δ0(t− s).

In the mathematical literature one de�nes the cylindrical Wiener process W (t) =
∑∞
k=1 ekW

k
t for

an orthonormal basis (ek)k∈N of L2[−1, 1] and independent one dimensional Brownian motionsW k.
Then equation (4.2.1) is interpreted as a stochastic di�erential equation in some function space.
In this particular case one faces the problem that the cylindrical Wiener process does not attain
values in L2[−1, 1] but only in some distribution space, whereas the nonlinearity 1

ε2F
′(u(x, t))

can best be dealt with on the space of continuous functions. This problem can be overcome by
rewriting (4.2.1) in the mild form

u(·, t) = S0(t)u0 +
√

2
∫ t

0

S0(t− s)dW (s)− 1
ε2

∫ t

0

S0(t− s)F ′(u(s))ds. (4.2.2)

Here S0(t) denotes the solution semigroup to the heat equation with the same Dirichlet boundary
conditions as in (4.2.1). This corresponds to the classical variation of constants formula for solving
inhomogeneous equations. It turns out that although the noise takes values in a much rougher
space, due to the smoothing properties of the semigroup S0(t) the stochastic convolution attains
values in the space of continuous functions. The nonlinear equation can then be solved with a
�xed point argument in this space. Note that this argument is strictly restricted to one space
dimension. In higher dimensions the smoothing property of the semigroup does not su�ce to
ensure that the process

∫ t
0
S0(t−s)dW (s) takes values in a function space. Therefore, the solution

of such nonlinear equation in higher space dimensions is in general not possible. We therefore
restrict ourselves to the one dimensional case. The disadvantage of this approach is that solutions
to (4.2.2) only formally correspond to equation (4.2.1). In particular in this setting one has to
be very careful, when one wants to apply the Ito formula. We will now describe this procedure
in some detail and then show that the process one obtains is Markovian, reversible, and that the
unique invariant measure is given by

µε(du) =
1
Zε

exp
(
− 1
ε2

∫ 1

−1

F (u(s)) ds
)
ν(du), (4.2.3)

where ν is the distribution of the Brownian bridge with the same boundary condition as in (4.2.1).
Zε denotes the appropriate normalization constant that ensures that µε is a probability measure.
One should note that also the opposite direction of reasoning is possible. With the measure
(4.2.3) one can write down the in�nite dimensional Dirichlet form corresponding to (4.2.1). Then
the general theory of Dirichlet forms gives the existence of a reversible process, which can be
identi�ed as a solution to (4.2.1). See [AR90] and the references therein for more about this
approach.
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Reversibility of �nite dimensional gradient �ow

To motivate the considerations below, let us consider the case of �nite dimensional gradient
�ows �rst. Consider the equation

dxt = −∇H(xt)dt +
√

2dWt,

where now xt is supposed to be an Rd-valued process, Wt is a d dimensional Brownian motion,
and H : Rd → R is a function. In order to obtain well-posedness of the equation assume that H
is at least of class C1,1 and satis�es a growth condition at ∞, say H(x) ≥ C|x| for |x| su�ciently
large. Then the measure

µ(dx) =
1
Z

exp(−H(x))dx

is the unique reversible measure for the above di�usion. In fact, in order to see that µ is indeed a
reversible measure, denote by

L = ∆−∇H · ∇
the generator of the di�usion and calculate for f, g su�ciently nice:∫

f(x) (Lg(x))µ(dx) =
∫
f(x) (∆g(x))µ(dx)−

∫
f(x) (∇H(x) · ∇g(x))µ(dx)

= −
∫
∇f(x) · ∇g(x)µ(dx)−

∫
f(x)∇g(x) · (−∇H(x))µ(dx)

−
∫
f(x) (∇H(x) · ∇g(x))µ(dx)

= −
∫
∇f(x) · ∇g(x)µ(dx)

=
∫
g(x) (Lf(x))µ(dx). (4.2.4)

In this setting the symmetry of the generator with respect to µ also implies the symmetry of the
semigroup. The stochastic interpretation of this property is, that, if Pµ denotes the distribution
of the process with a random initial condition distributed according to µ, then for every T the
processes (xt, t ∈ [0, T ]) and (xT−t, t ∈ [0, T ]) have the same law. In particular µ is an invariant
measure for the process. Uniqueness of this invariant measure essentially follows from the non-
degeneracy of the noise, which implies that the semigroup of the process has the strong Feller
property.

The in�nite dimensional equation has a similar structure. In fact the Allen-Cahn equation is
given as the accelerated L2-gradient �ow of the real Ginzburg-Landau energy

Hε(u) =
∫
ε
|∇u(x)|2

2
+

1
ε
F (u(x))dx,

i.e. the above equation can formally be written as

d
dt
u = −1

ε
∇L2Hε(u) +

√
2Ẇt,

whereWt is a standard Wiener process on L2[−1, 1]. A formal application of the �nite dimensional
results would suggest that the invariant measure should be proportional to

µ(du) ∼ exp
(
−1
ε
Hε(u)

)
du ∼ exp

(
−
∫ |∇u(x)|2

2
+

1
ε2
F (u(x))dx

)
du,

and, if one accepts Feynman's heuristic that

exp
(
−
∫ |∇u(x)|2

2

)
du
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is proportional to the distribution of a Brownian bridge, one obtains the desired form of the
invariant measure.

Existence and uniqueness for the in�nite dimensional system

We will now sketch how to prove global existence and Markov property for the solution of
(4.2.1). In order to avoid the inhomogeneous boundary data consider v(x) = u(x) − x instead.
Then v solves

d
dt
v(x, t) = ∆v(x, t) + g(v(x), x) +

√
2Ẇ (x, t) (x, t) ∈ (−1, 1)×R+ (4.2.5)

v(x, 0) = v0(x) v(±1, t) = 0 x ∈ (−1, 1), t ∈ R+,

where

g(v, x) = − 1
ε2
F ′(v + x),

and v0(x) = u0(x) − x. We will solve this equation on the space C0[−1, 1] = {u : [−1, 1] →
R : u continuous andu(±1) = 0}.

Before treating the nonlinear equation let us �rst recall some facts about the linear equation

d
dt
z(x, t) = ∆z(x, t) +

√
2Ẇ (x, t) (x, t) ∈ (−1, 1)×R+ (4.2.6)

z(x, 0) = v0(x) z(±1, t) = 0 x ∈ (−1, 1), t ∈ R+.

There are several approaches to study this equation. The easiest approach is probably the decom-
position into a system of in�nitely many independent stochastic ordinary di�erential equations.
To this end for k = 1, 2, . . . de�ne the functions ek as

ek(x) = sin
(
kπ

2
(x+ 1)

)
.

The (ek)k∈N form the basis of eigenfunctions of the Dirichlet-Laplace operator on [−1, 1] and
the associated eigenvalues are given as λk = − (kπ2 )2. Then (4.2.6) can be written as z(x, t) =∑
xk(t)ek(x) where the coe�cients xk solve

dxk(t) = −λkxk(t)dt +
√

2dW k(t), (4.2.7)

for independent Brownian motions W k = 〈W (t), ek〉. Similar to the �nite dimensional case so-
lutions to (4.2.6) are referred to as in�nite dimensional Ornstein-Uhlenbeck process. 1 The con-
vergence of the formal sum u(x, t) =

∑
xk(t)ek(x) in C([0, T ], L2[−1, 1]) follows directly with an

application of the maximal inequality. In order to obtain convergence in C([0, T ], C0[−1, 1]), one
has to apply the Kolmogorov-Chentsov criterion. To be more precise this argument yields that
solutions z(x, t) are locally α-Hölder-continuous for every α < 1

2 as function of the space variable
x for �xed t but only locally β-Hölder continuous for every β < 1

4 as function of the time variable t
for �xed x. In particular for every x ∈ (−1, 1) the process (z(x, t), t ≥ 0) is not a semimartingale2.
As in the �nite dimensional case the process is reversible and the reversible measure is given by
a normal distribution. To be more precise (4.2.7) shows that the k-th mode 〈u(t), ek〉L2 has as

reversible measure N
(

0, 1
λk

)
, such that for the full process one obtains a normal distribution on

1Note that this Ornstein-Uhlenbeck process does not coincide with the Ornstein-Uhlenbeck process usually
treated in Malliavin-Calculus. That process corresponds to the equation

dz(x, t) = −z(x, t)dt +
√

2(−∆)−1/2dW (x, t).

Both processes possess the same reversible measure.
2For a discussion of the regularity of the linear equation the reader is referred to the very motivating lecture

notes [H09]. There the regularity is discussed on a formal level on page 5 and on a rigorous level in section 5.1
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L2 with covariance operator (−∆)−1, which can be identi�ed with the distribution of a Brownian
bridge. In fact, for a Brownian bridge

(
Xt, t ∈ [−1, 1]

)
one has for test functions ϕ and χ:

E
[ ∫ 1

−1

ϕ(s)Xsds
∫ 1

−1

χ(s)Xsds
]

=
∫ 1

−1

∫ 1

−1

ϕ(s)χ(t)E
[
XsXt

]
ds dt

=
∫ 1

−1

∫ 1

−1

ϕ(s)χ(t)
(
s ∧ t+ 1− (s+ 1)(t+ 1)

2

)
ds dt

=
∫ 1

−1

ϕ(s)(−∆)−1χ(s)ds. (4.2.8)

Here in the last line we have used the fact that the integral kernel given by the covariance structure
of the Brownian bridge coincides with the Green function of the Dirichlet-Laplace operator. Note
that the same solutions can also be written as mild solutions:

z(t) = S(t)z(0) +
√

2
∫ t

0

S(t− s)dWs.

Here S(t) denotes the heat semigroup on [−1, 1] with Dirichlet boundary conditions. Rewriting
the semigroup in the eigenbasis (ek)k∈N one can see immediately that this is equivalent to the
approach just discussed.

Let us now deal with the nonlinear equation. The nonlinearity g in (4.2.5) is not continuous
from L2[−1, 1] → L2[−1, 1] but it de�nes a nice continuous operator from C0 into itself. In fact
one has even more: If u and v satisfy ‖u‖∞ ≤ r and ‖v‖∞ ≤ r for some large r one has for all
x ∈ [−1, 1]

|g(u(x), x)− g(v(x), x)| =
1
ε2
|F ′(u(x) + x)− F ′(v(x) + x)|

≤ 1
ε2

sup
|w|≤r+1

|F ′′(w)|‖u− v‖∞, (4.2.9)

such that one can conclude, that the nonlinear operator G : C0[−1, 1] → C0[−1, 1], given by
G(u)(x) = g(u(x), x) is locally Lipschitz. In fact setting Cr = 1

ε2 sup|w|≤r+1 |F ′′(w)|, equation
(4.2.9) can be restated as

‖G(u)−G(v)‖∞ ≤ Cr‖u− v‖∞ (4.2.10)

for ‖u‖∞, ‖v‖∞ ≤ r. Furthermore, de�ning the operatorH : C0[−1, 1]→ R asH(u) =
∫ 1

−1
1
ε2F (u(x)+

x)dx the operator G can be interpreted as L2-gradient of H in the following sense: H is Fréchet
di�erentiable and for every u, h ∈ C0[−1, 1] one has

DH[u](h) := lim
δ↓0

1
δ

(
H(u+ δh)−H(u)

)
=

1
ε2

∫ 1

−1

F ′(u(x) + x)h(x)dx

= − 〈G(u), h〉L2 . (4.2.11)

Now we want to construct global solutions to (4.2.5). We look for mild solutions to the nonlinear
equation, i.e. functions v, that satisfy

v(t) = S(t)v(0) +
√

2
∫ t

0

S(t− s)dWs +
∫ t

0

S(t− s)G(v(s)) ds. (4.2.12)
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To get local existence we will �x the path z(t) = S(t)v(0)+
√

2
∫ t

0
S(t−s)dWs ∈ C([0, T ], C0[−1, 1])

and look for solutions of the mild formulation of the equation pathwisely. To this end note that
the mapping

Θv(t) = z(t) +
∫ t

0

S(t− s)G(v(s))ds

maps C([0, T ], C0[−1, 1]) into itself. As the maximum principle implies ‖S(t)‖C0→C0 ≤ 1, one gets

‖Θv(t)− z(t)‖∞ ≤
∫ t

0

‖G(v(s))‖∞ds.

Therefore, with (4.2.10) one can conclude, that for �xed r and a T = T (r) chosen su�ciently
small Θ maps Br(z) = {u(t) ∈ C([0, T ], C0[−1, 1]) : supt∈[0,T ] ‖u(t)− z(t)‖∞ ≤ r} into itself. In a

similar way for u, v ∈ Br(z) one can see with (4.2.10) that

‖Θu(t)−Θv(t)‖∞ ≤
∫ t

0

‖G(u(s))−G(v(s))‖∞ ds

≤Ct sup
s∈[0,t]

‖u(s)− v(s)‖∞

such that� possibly by choosing a smaller t� the mapping Θ is a contraction. The Banach �xed
point theorem then yields the local existence and uniqueness of mild solutions. In order to get
global existence, due to the local boundedness of G, it is su�cient to prove that on a �nite time
interval [0, T ] the norm ‖u(t)‖∞ cannot explode. To this end for a �xed path z(t) write ṽ = v− z.
Formally we would like to conclude that ṽ solves the (nonstochastic) PDE

d

dt
ṽ(x, t) = ∆ṽ(x, t)− F ′(ṽ(x, t) + x+ z(x, t)). (4.2.13)

Then, using the fact that sign(u)−F ′(u) attains only negative values for |u| su�ciently large, we
could conclude using a comparison principle that ‖ṽ‖∞ cannot explode on a compact time interval
[0, T ].

Unfortunately, equation (4.2.13) is not true, as we only know that the mild formulation of
the nonlinear SPDE holds. In order to make the argument rigorous, one can take the mild
solutions of (4.2.5) with the Laplace operator replaced by its Yoshida approximation. Then one
can prove nonexplosion for these regularized solutions. In this argument the maximum principle
is replaced by the fact that by the Hille-Yoshida Theorem the Yoshida approximation of the
Laplacian generates a contraction semigroup on C0[−1, 1]. Then, using the fact that the solutions
of the approximated equation converge to solutions of the original problem, one can conclude
nonexplosion for the original process. See [dPZ92] page 201 for the detailed calculations. The
Markov property follows from the pathwise uniqueness.

Reversible measure

In order to show that the reversible measure has the right form, we perform a �nite dimensional
approximation: For u ∈ L2[−1, 1] denote by Π̃n(u) the orthogonal projection on the linear space

spanned by e1, . . . , en. For �xed u in C0[−1, 1] the sequence Π̃n(u) converges to u in L2[−1, 1]
but in general it is not true that this convergence holds in C0[−1, 1]. Nonetheless it is possible to
de�ne symmetric projection operators Πn : L2[−1, 1]→ span(e1, . . . en) such that the convergence
alsl holds in C0[−1, 1] (see[Z89], Proposition 3 on page 244). 3 Now instead of the full system

3In the case of usual Fourier polynomials this approximation is given for example by the Césaro mean of the fΠi:

Πnu =
1

n

nX
i=1

fΠi(u).

This result is well known as Fejer's theorem.
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(4.2.5), we �rst treat the following �nite dimensional system:

vn(t) = Π̃nz(t) +
∫ t

0

S(t− s)Πn(G(Πnv(s)))ds. (4.2.14)

As this system is �nite dimensional, the mild solution can rigorously be written as the solution to
an equation of the type (4.2.4) and thus the same reasoning as above yields, that the measure

µn =
1
Zn

exp(−Hn(u))νn(du),

is reversible for (4.2.13). Here νn is the �nite dimensional projection of the Brownian bridge and
Hn(u) = H(Πn(u)). In this last step the symmetry of the projections Πn is used. One can thus
conclude that for ϕ, χ ∈ Cb(C0[−1, 1]) one has∫

C0

ϕ(u)Pnt χ(u)µn(du) =
∫
C0

χ(u)Pnt ϕ(u)µn(du),

where Pnt denotes the semigroup associated to (4.2.14). Then, by passing to the limit n → ∞,
(which requires a little more work and the uniform approximation property of the operators Πn)
one obtains: ∫

C0

ϕ(u)Ptχ(u)µ(du) =
∫
C0

χ(u)Ptϕ(u)µ(du).

This yields the desired result if one inverts the transformation back to the nonhomogeneous bound-
ary data. As in the �nite dimensional case, the nondegeneracy of the noise can be used to show
the strong Feller property and the uniqueness of the invariant measure.



54 CHAPTER 4. APPENDIX



Bibliography

[AR90] Albeverio, S.; Röckner, M. Stochastic di�erential equations in in�nite dimensions:
solutions via Dirichlet forms. Probab. Theory Related Fields 89 (1991), no. 3, 347�386.

[AC79] Allen, S.M., Cahn, J.W. a microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metall. 27 (1979), 1085 �1095.

[ATW93] Almgren, F.; Taylor, J.; Wang, L. Curvature-driven �ows: a variational approach.
SIAM J. Control Optim. 31 (1993), no. 2, 387�438.

[ASZ09] Ambrosio L.,Savaré G.,Zambotti L., Existence and Stability for Fokker-Planck
equations with log-concave reference measure, Prob. Theory and Related Fields, 145 (2009),
no. 3�4, 517�564.

[BM07] Bakhtin, Y.; Mattingly, J. Malliavin calculus for in�nite-dimensional systems with
additive noise, Journal of Functional Analysis, vol. 249 no. 2 (2007), pp. 307�353

[B08] Bonciocat, A. Curvature bounds and heat kernels, Dissertation (2008), Universität Bonn.

[B78] Brakke, K. The motion of a surface by its mean curvature. Mathematical Notes, 20.
Princeton University Press, Princeton, N.J., 1978. i+252 pp.

[BMP95] Brassesco, S.; De Masi, A.; Presutti, E. Brownian �uctuations of the interface in
the D = 1 Ginzburg-Landau equation with noise. Ann. Inst. H. Poincaré Probab. Statist. 31
(1995), no. 1, 81�118.

[BM02] Buckdahn R.; Ma J. Pathwise stochastic Taylor expansions and stochastic viscosity
solutions for fully nonlinear stochastic PDEs. Ann. Probab., 30 (2002), no. 3, 1131 � 1171.

[CP89] Carr, J.; Pego, R. L. Metastable patterns in solutions of ut = ε2uxx − f(u). Comm.
Pure Appl. Math. 42 (1989), no. 5, 523�576.

[CFO09] Caruana, M.; Friz, P.; Oberhauser, H. A (rough) pathwise approach to fully
non-linear stochastic partial di�erential equations preprint (2009) arXiv: 0902.3352.

[Ch04] Chen, X. Generation, propagation, and annihilation of metastable patterns. J. Di�erential
Equations 206 (2004), no. 2, 399�437.

[CGG91] Chen, Y; Giga, Y.; Goto, S. Uniqueness and existence of viscosity solutions of
generalized mean curvature �ow equations. J. Di�erential Geom. 33 , no. 3, 749�786, 1991.

[C94] Chen, X. Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-�eld equations for generic
interfaces. Comm. Partial Di�erential Equations 19 (1994), no. 7-8, 1371�1395.

[CHL97] Chen, X.; Hilhorst, D.; Logak, E. Asymptotic behavior of solutions of an Allen-
Cahn equation with a nonlocal term. Nonlinear Anal. 28, no. 7, 1283�1298, 1997.

[CIL92] Crandall, M.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second
order partial di�erential equations. Bull. Amer. Math. Soc. 27 (1992), no. 1, 1�67.

55



56 BIBLIOGRAPHY

[dPZ92] Da Prato, G.; Zabczyk, J. Stochastic equations in in�nite dimensions. Encyclopedia
of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.

[dPZ96] Da Prato, G.; Zabczyk, J. Ergodicity for in�nite-dimensional systems. London Math-
ematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996.
xii+339 pp.

[DS89] Deuschel, J.-D.; Stroock, D. Large deviations. Pure and Applied Mathematics, 137.
Academic Press, Inc., Boston, MA, 1989.

[DLN01] Dirr, N.; Luckhaus, S.; Novaga, M. A stochastic selection principle in case of
fattening for curvature �ow, Calc. Var. Partial Di�erential Equations 13 no. 4: 405�425,
2001.

[Ec04] Ecker, K. Regularity theory for mean curvature �ow. Progress in Nonlinear Di�erential
Equations and their Applications, 57. Birkhäuser Boston, Inc., Boston, MA, 2004. xiv+165
pp.

[ESS92] Evans, L.; Soner, H.; Souganidis, P. Phase transitions and generalized motion by
mean curvature. Comm. Pure Appl. Math. 45, no. 9: 1097�1123, 1992.

[ES91] Evans, L.; Spruck, J. Motion of level sets by mean curvature. I. J. Di�erential Geom.
33 , no. 3, 635�681, 1991.

[ES92] Evans, L.; Spruck, J. Motion of level sets by mean curvature. II. Trans. Amer. Math.
Soc. 330 , no. 1, 321�332, 1992.

[FJL82] Faris, W.; Jona-Lasinio, G. Large �uctuations for a nonlinear heat equation with
noise. J. Phys. A 15 (1982) , no. 10, 3025�3055.

[FV03] Fatkullin, I.;Vanden-Eijnden, E. Coarsening by di�usion-annihilation in a bistable
system driven by noise. Preprint, 2003.

[FINR06] Fontes, L. R. G.; Isopi, M.; Newman, C. M.; Ravishankar, K. Coarsening,
nucleation, and the marked Brownian web. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006),
no. 1, 37�60.

[Fu95] Funaki, T. The scaling limit for a stochastic PDE and the separation of phases. Probab.
Theory Related Fields 102 (1995), no. 2, 221�288.

[Fu99] Funaki, T. Singular limit for stochastic reaction-di�usion equation and generation of
random interfaces, Acta Math. Sin. (Engl. Ser.) 15, no. 3: 407�438, 1999.

[H09] Hairer, M. An introduction to Stochastic PDEs. Lecture notes (2009),
http://www.hairer.org/notes/SPDEs.pdf.

[HSV05] Hairer, M.; Stuart, A. M.; Voss, J.; Wiberg, P. Analysis of SPDEs arising in
path sampling. I. The Gaussian case. Commun. Math. Sci. 3 (2005), no. 4, 587�603.

[HSV07] Hairer, M.; Stuart, A. M.; Voss, J. Analysis of SPDEs arising in path sampling.
II. The nonlinear case. Ann. Appl. Probab. 17 (2007), no. 5-6, 1657�1706.

[dH00] den Hollander, F. Large deviations. Fields Institute Monographs, 14. American Math-
ematical Society, Providence, RI, 2000. x+143 pp.

[Il93] Ilmanen, T. Convergence of the Allen-Cahn equation to Brakke's motion by mean curva-
ture. J. Di�erential Geom. 38 (1993), no. 2, 417�461.

[Iw87] Iwata, K. An in�nite-dimensional stochastic di�erential equation with state space C(R).
Probab. Theory Related Fields 74 (1987), no. 1, 141�159.



BIBLIOGRAPHY 57

[KS91] Karatzas, I.; Shreve, S. Brownian motion and stochastic calculus. Second edition.
Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991.

[KKL07] Katsoulakis, M; Kossioris, G.; Lakkis, O. Noise regularization and computations
for the 1-dimensional stochastic Allen-Cahn problem. Interfaces Free Bound. 9 (2007) , no.
1, 1�30,.

[KO82] Kawasaki, K.; Ohta, T. Kinetic Drumhead Model of Interface. I Progress of Theoretical
Physics, Vol. 67, No. 1, pp. 147-163

[KORV07] Kohn, R.; Otto, F.; Reznikoff, M.; Vanden-Eijnden, E. Action minimization
and sharp-interface limits for the stochastic Allen-Cahn equation. Comm. Pure Appl. Math.
60 (2007), no. 3, 393�438.

[K06] Kolesnikov, A. Mosco convergence of Dirichlet forms in in�nite dimensions with changing
reference measures. J. Funct. Anal. 230 (2006), no. 2, 382�418.

[KS03] Kuwae, K.; Shioya, T. Convergence of spectral structures: a functional analytic theory
and its applications to spectral geometry. Comm. Anal. Geom. 11 (2003), no. 4, 599�673.

[Le96] Ledoux, M. Isoperimetry and Gaussian analysis. Lectures on probability theory and statis-
tics (Saint-Flour, 1994), 165�294, Lecture Notes in Math., 1648, Springer, Berlin, 1996.

[LS98I] Lions, P.-L.; Souganidis, P. Fully nonlinear stochastic partial di�erential equations.
C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 9, 1085�1092.

[LS98II] Lions, P.; Souganidis, P. Fully nonlinear stochastic partial di�erential equations:
non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) , no.
8, 735�741.

[LS95] Luckhaus, S.; Sturzenhecker, T. Implicit time discretization for the mean curvature
�ow equation. Calc. Var. Partial Di�erential Equations 3 (1995), no. 2, 253�271.

[L95] Lunardi, A. Analytic Semigroups and Optimal regularity in Parabolic Problems, volume
16, Birkhäuser, 1995.

[MM77] Modica L.; Mortola, S. Il limite nella Γ -convergenza di una famiglia di funzionali
ellittici. Boll. Un. Mat. Ital. A 14 (1977), 526 �529.

[M87] Modica, L. The gradient theory of phase transitions and the minimal interface criterion.
Arch. Rational Mech. Anal. 98 (1987), no. 2, 123�142.

[MS95] de Mottoni, P.; Schatzman, M. Geometrical evolution of developed interfaces. Trans.
Amer. Math. Soc. 347 (1995), no. 5: 1533�1589.

[MR08] Mugnai, L.; Röger, M. The Allen-Cahn action functional in higher dimensions. Inter-
faces Free Bound. 10 (2008), no. 1, 45�78.

[MR09] Mugnai, L.; Röger, M. Convergence of perturbed Allen-Cahn equations to forced
mean curvature �ow. preprint (2009) arXiv:0902.1816v1 [math.AP].

[OR07] Otto, F.; Reznikoff, M. G. Slow motion of gradient �ows. J. Di�erential Equations
237 (2007), no. 2, 372�420.

[vRS09] von Renesse, M. ; Es-Sarhir, A. Well-Posednessof Stochastic Curve Shortening Flow
in the Plane preprint (2009).

[RY99] Revuz, D.; Yor, M. Continuous martingales and Brownian motion. Third edition.
Grundlehren der Mathematischen Wissenschaften 293. Springer-Verlag, Berlin, 1999. xiv+602
pp.



58 BIBLIOGRAPHY

[RV05] Reznikoff, M. G.; Vanden-Eijnden, E. Invariant measures of stochastic partial dif-
ferential equations and conditioned di�usions. C. R. Math. Acad. Sci. Paris 340 (2005), no.
4, 305�308.

[RW09] Röger, M; Weber, H Tightness for a stochastic Allen-Cahn equation. preprint
arXiv:0911.5706v1 [math.AP].

[S07] Sheffield, S. Gaussian free �elds for mathematicians. Probab. Theory Related Fields 139
(2007), no. 3-4, 521�541.

[SY04] Souganidis, P. E.; Yip, N. K. Uniqueness of motion by mean curvature perturbed by
stochastic noise. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 1�23.

[S95] Sugiura, M. Metastable behaviors of di�usion processes with small parameter J. Math.
Soc. Japan 47 (1995), no.4, 755�788.

[W08] Weber, H. On the short time asymptotic of the stochastic Allen-Cahn equation. to appear
in Ann. Inst. H. Poincaré Probab. Statist.

[W09] Weber, H. Sharp interface limit for invariant measures of a stochastic Allen-Cahn equa-
tion. to appear in Comm. Pure Appl. Math.

[Y98] Yip, N. Stochastic motion by mean curvature. Arch. Rational Mech. Anal. 144 (1998) , no.
4: 313�355.

[Z89] Zabczyk, J. Symmetric solutions of semilinear stochastic equations. Stochastic partial
di�erential equations and applications, II (Trento, 1988), 237�256, Lecture Notes in Math.,
1390, Springer, Berlin, 1989.


