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Summary 

 

The process of synaptic transmission at neuronal synapses is mediated 

by synaptic vesicle cycle. Synaptotagmins (SYTs) and Synaptic Vesicle 

Protein 2 (SV2), widely studied in animals since the 1990s, are important 

synaptic vesicle proteins that regulate synaptic neurotransmission in animal 

neurons. However, functions of these synaptic vesicle protein homologs in 

plants remain to be elucidated. In order to gain a better understanding of signal 

transmission in plants, this study focuses on the subcellular localizations of 

synaptotagmin 1 and SV2-like in Arabidopsis as well as the functions of these 

proteins. 

Arabidopsis synaptotagmin 1 (SYT1) is localized on the ER-PM contact 

sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 

resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In 

mammals, E-SYTs have been shown to regulate calcium signaling, lipid 

transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for 

maintaining cell integrity by stabilizing the cytoskeleton. Our data provide 

detailed insight into the subcellular localization of SYT1 and VAP27-1, another 

ER-PM tethering protein. SYT1 and VAP27-1 were shown to be located on 

distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites 

(VECSs) were always associated with the SYT1-enriched ER-PM contact sites 

(SECSs), but not vice versa. The VAP27-1-enriched contact sites still existed 

in the leaf epidermal cells of SYT1 null mutant. However, the 

VAP27-1-enriched contact sites in SYT1 null mutant were less stable than that 

in the wild type. The polygonal networks of cortical ER disassembled and the 
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mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells 

of SYT1 null mutant. These results suggest that SYT1 is responsible for 

modulating the stability of ER network and the VAP27-1-enriched contact sites. 

Furthermore, cells of SYT1 mutant line have smaller BFA-induced 

compartments in the transition zone of root apices, indicating that the endocytic 

pathway is modulated by SYT1. 

Arabidopsis Synaptic Vesicle Protein 2-Like (SVL) belongs to the major 

facilitator superfamily and has been shown to be a niacin/trigonelline transporter. 

However, physiological studies of SVL in Arabidopsis still remain scarce. Our 

data have shown that Arabidopsis SVL protein is localized on the trans-Golgi 

network (TGN) and FM-dye stained early endosomes. The subcellular 

localization pattern of Arabidopsis SVL is similar to mammalian Synaptic 

Vesicle Protein 2 (SV2) and SV2-related Protein (SVOP) in neurons. The gene 

expression of SVL is developmental stage-dependent and can be detected in 

roots, hypocotyls, leaves, and anthers. One SVL mutant (svl-1) was identified 

and the transgenic Arabidopsis expressing SVL-GFP fusion protein was 

generated for functional and cytological studies. We have demonstrated that 

the primary root of SVL mutant grew slightly faster than the wild type during the 

early seedling stage in the control condition. The subcellular localization of 

SVL was sensitive to brefeldin A (BFA) treatment. In summary, Arabidopsis 

SVL participates in the endocytotic pathway in roots. Further studies on other 

possible functions of SVL in signal transduction and stress responses are still 

required. These data provide first insights into the sensory functions of SVL in 

Arabidopsis roots. 
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1.  Introduction 

Both plants and animals are sensitive to environmental stimuli and 

respond accordingly. Animals have developed sophisticated nervous systems 

for sensing, hunting, escaping, memory, communication, and learning. The 

rapid electrical signal transduction and synaptic neurotransmission are two 

essential elements for the function of the nervous system. It has been shown 

that plants are able to sense environmental stimuli and response rapidly within 

seconds or store the information for future reactions. Plants are also able to 

recognize, communicate, and interact with organisms, including other 

individual plants, bacteria, and animals. This indicates that plants possess 

systems, which have not yet been fully studied, for information transmission 

and integration. Several types of long-distance electrical signals have been 

identified in plants. These signals mediate movements, growth, and a variety 

of physiological processes in plants. However, the process of converting 

electrical signals into chemical signals in plants is still unclear. This study aims 

at investigating whether synaptic transmission is existent in Arabidopsis. 

 

1.1.  Arabidopsis Synaptotagmin 1 

 

Proteins with multiple C2 domains are often found to participate in 

membrane trafficking or membrane tethering processes in eukaryotic cells 

(Min et al., 2007). These functions are credited to the ability of their C2 domains 

to bind negatively charged phospholipids mostly in a Ca2+-dependent manner 

or interact with other protein partners (Nalefski and Falke, 1996). Arabidopsis 
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HsSYT1 are type I transmembrane protein with the N-terminus facing the 

non-cytosolic space. HsE-SYTs and ScTcbs are inserted in the membrane by 

a hydrophobic hairpin structure with the N-terminus in the cytosol. 

Transmembrane domain (TM); synaptotagmin-like mitochondrial and 

lipid-binding protein domain (SMP); C2 domains (C2A-E). 

 

1.1.1.  Mammalian Synaptotagmins 

 

Mammalian SYTs are integral synaptic vesicle proteins with an N-terminal 

TM, a variable-length linker domain, and two cytoplasmic C2 domains in 

tandem (Südhof, 2002). At least 17 SYT isoforms have been found in 

mammals. Most of these proteins are expressed in neurons or neuroendocrine 

cells, and play essential roles in Ca2+-regulated neurotransmission and 

hormone secretion (Moghadam and Jackson, 2013). The binding of Ca2+ to the 

C2 domains of SYTs is required to trigger vesicle fusion to the plasma 

membrane (PM) in exocytosis (Mackler et al., 2002). Human SYT1, the most 

characterized isoform, is a Ca2+ sensor for fast synchronous neurotransmitter 

release in forebrain neurons (Geppert et al., 1994; Südhof, 2013). Human 

SYT2, with no invertebrate homolog, is the predominant isoform that triggers 

very fast synaptic vesicle exocytosis in the brainstem (Saraswati et al., 2007; 

Südhof, 2013). Human SYT7 is abundant in brain neurons and pancreatic cells, 

functions in slow asynchronous release in neuroendocrine cells and 

Ca2+-induced exocytosis of insulin and glucagon secretion in pancreatic cells 

(Bacaj et al., 2015; Gustavsson et al., 2009; Sugita et al., 2001). Similar to 

SYT1, human SYT9 is also a Ca2+ sensor mediating synchronous 
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neurotransmitter release; however, it exhibits intermediate Ca2+-regulated 

membrane binding in endocrine cells (Zhang et al., 2011b). The tissue 

distribution and the subcellular localization of SYT isoforms are varied in the 

human body (Moghadam and Jackson, 2013; Südhof, 2002). SYT proteins are 

widely studied in neuroscience and medical research because of their 

important functions in regulating the neurotransmission and endocrine 

exocytosis. The domain structure of rat SYT1 is shown in Figure 2 (Lin et al., 

2014). 

 

Figure 2. Domain Structure of Rat SYT1. Ca2+-binding sites of C2A and C2B 

(red dots); Poly-lysine patch (KKKK) of the C2B domain (dark blue dots); 

Clusters of positive and negative charges on the linker domain (+ or - signs). 

Neurotransmitter molecules (bright blue dots); 

phosphatidylinositol(4,5)-bisphosphate (PIP2); transmembrane domain (TMD). 

Adopted from (Lin et al., 2014). 
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1.1.2.  Mammalian Extended Synaptotagmins 

 

Mammalian E-SYTs are endoplasmic reticulum (ER) membrane proteins 

that contain an N-terminal hairpin transmembrane domain, a SMP domain, 

and five (E-SYT1) or three (E-SYT2/3) C-terminal C2 domains (Min et al., 

2007). Human E-SYT1 is expressed almost ubiquitously while human E-SYT2 

and E-SYT3 are expressed mainly in cerebellum (Min et al., 2007). On the 

other hand, mouse E-SYT1 and E-SYT2 are express primarily in spleen and 

lung of adult mice, and mouse E-SYT3 is expressed predominantly in testis 

and lung (Herdman et al., 2014). Mouse E-SYT2 is expressed ubiquitously and 

highest in the neural tube of mouse embryos while mouse E-SYT3 is 

expressed mainly at the midbrain-hindbrain boundary (Herdman et al., 2014). 

Mammalian E-SYTs are known as to participate in the ER-PM tethering 

(Stefan et al., 2013). Human E-SYT2 and E-SYT3 bind PM-enriched 

phospholipid PIP2 at resting Ca2+ levels while the tethering of human E-SYT1 

to the PM is triggered by elevation of cytosolic Ca2+ (Giordano et al., 2013). 

C2C domain of human E-SYTs is essential for the binding to the PM and the 

binding is not disrupted by depolymerization of actin or microtubule 

cytoskeletons (Giordano et al., 2013; Min et al., 2007). The SMP domain is a 

membrane binding domain belong to the tubular lipid-binding (TULIP) 

superfamily, a group of proteins that often found to bind lipids and mediate lipid 

transfer (Kopec et al., 2010). Proteins containing a SMP domain are found to 

be localized on the membrane contact sites in yeast, such as ER–

mitochondrion encounter structure (ERMES) complex on the ER-mitochondria 

contact sites, nucleus–vacuole junction (Nvj2) on the ER-vacuole contact sites, 

and tricalbins (Tcb1, 2 and 3), the homologs of mammalian E-SYTs, on the 
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ER-PM contact sites (Toulmay and Prinz, 2012). The SMP domain of human 

E-SYT2 has been proposed to function in non-vesicular lipid transfer because 

their ability to form a hydrophobic channel by dimerization and to bind 

glycerophospholipids (Figure 3) (Schauder et al., 2014). 

 

 

Figure 3. Models of Lipid Transfer by Human E-SYT2. (a) A diagram of an 

ER–PM contact site. (b) Tunnel model: The E-SYT2 dimer forms a channel 

between the ER and PM to transfer lipids. (c) Shuttle model. The E-SYT2 

dimer shuttles lipids between the ER and PM. Putative partner proteins 

(question mark). Adopted from (Schauder et al., 2014). 

 

1.1.3.  ER-PM Contact Sites in Mammalian Cells 

 

Membrane contact sites (MCSs) are regions where the membranes of two 

organelles are in close proximity (Helle et al., 2013). The membranes from two 

compartments on the MCSs do not fuse together and require specific tethering 

proteins to maintain the close apposition between the membranes, typically 

within 30 nm (Prinz, 2014). The ER is an expansive and dynamic network 

composed of membrane tubules and sheets that functions in protein synthesis, 
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protein modification, lipid biosynthesis and ion homeostasis. The ER is the 

origin of the secretory pathway that sends proteins and lipids to the PM by 

vesicle budding, sorting and fusion. ER may also form direct contact with the 

PM and other organelles (Friedman and Voeltz, 2011). ER-PM contact sites 

were first reported in 1957 by electron microscopic observation in muscle cells 

(Porter and Palade, 1957), and later on also in neurons (Rosenbluth, 1962). 

Recent studies have revealed the tethering mechanisms of ER-PM contact 

sites, which are now known to be a common feature in the eukaryote cells 

(Friedman and Voeltz, 2011; Henne et al., 2015). 

Until now three groups of proteins have been shown to be involved in the 

formation of ER-PM contact sites in mammals: 1) Extended synaptotagmins 

(E-SYTs); 2) vesicle-associated membrane protein (VAMP)-associated 

proteins (VAPs) and 3) junctophilins (JPHs) (Henne et al., 2015). E-SYT1 

binds to the PM in response to the increased cytosolic Ca2+ and is postulated 

to regulate the Ca2+-dependent PM remodeling in neurons (Giordano et al., 

2013). E-SYT2 binds to the PM without elevation of cytosolic Ca2+ and is 

supposed to function in lipid transfer (Schauder et al., 2014). VAP proteins 

contain an N-terminal major sperm protein (MSP) domain, a coiled-coil domain, 

and an ER-anchored C-terminal transmembrane domain (Han et al., 2012; 

Moriishi and Matsuura, 2012). VAP proteins interact with several proteins 

containing di-phenylalanine in an acidic tract (FFAT) motifs, and the MSP 

domain can bind phospholipids on the PM (Henne et al., 2015). Many of the 

proteins contain FFAT motifs are participated in lipid transfer, such as 

oxysterol-binding protein (OSBP)-related proteins (ORPs) and proline-rich 

tyrosine kinase 2 (PYK2) N-terminal domain-interacting receptors (Nir proteins) 

(Amarilio et al., 2005; Barajas et al., 2014). Junctophilins have a single 
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C-terminal transmembrane domain anchored on the sarcoplasmic reticulum 

(SR), a long cytoplasmic α-helix with multiple membrane occupation and 

recognition nexus (MORN) motifs in the N-terminus (Garbino et al., 2009). 

Junctophilins bind to the PM through their MORN motifs and are important for 

the maintenance of SR-PM contact sites and Ca2+ signaling in muscle cells 

(Takeshima et al., 2000). 

Another well studied ER-PM tethering proteins in yeast is increased 

sodium tolerance protein 2 (lst2), which belongs to the anoctamin (TMEM16) 

family of Ca2+-activated Cl− channels. Yeast Ist2 is anchored on the ER 

through its multi-transmembrane domain and binds to the PM by a C-terminal 

lipid binding polybasic (PB) domain (Schulz and Creutz, 2004). However, 

human TMEM16A, also called anoctamin 1 (ANO1), is a plasma membrane 

channel without a PB domain and may mediate Ca2+ signaling on the ER-PM 

contact sites without a membrane tethering function (Jin et al., 2016). In 

addition, ER-PM contact sites are the regions where the process of 

store-operated Ca2+ entry (SOCE) takes place. When Ca2+ levels in the ER 

lumen are depleted, the ER-resident protein stromal interaction molecule-1 

(STIM1) oligomerizes and accumulates on the pre-existing ER-PM contact 

sites. STIM1 binds phosphoinositides (PIPs) on the PM through the PB domain 

and then activates the PM-localized Ca2+ release-activated Ca2+ (CRAC) 

channel Orai1 by the CRAC activation domain, leading to Ca2+ influx from the 

extracellular space to the ER (Liou et al., 2007; Stathopulos et al., 2006). 

Proteins that function on the ER-PM contact sites are shown in Figure 4 

(Henne et al., 2015). 
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Figure 4. ER-PM Tethering Proteins in Mammals. All the proteins that 

mediate ER-PM tethering are ER membrane-anchored proteins and contain 

cytoplasmic lipid-binding domains. Coiled-coil domain (CC); oxysterol binding 

homology (OSH); phosphoinositide phosphatase (Sac1). Adopted from 

(Henne et al., 2015). 

 

 

1.1.4.  ER-PM Contact Sites in Plant Cells 

 

Five proteins localized on the ER-PM contact sites in Arabidopsis are reported 

recently: Networked 3C (NET3C), VAMP/synaptobrevin-associated protein 27 

(VAP27)-1, -3 and -4 (VAP27-1, VAP27-3 and VAP27-4), and synaptotagmin 1 

(SYT1). NET3C belongs to the plant-specific NET superfamily of actin binding 

proteins. All the 13 members of the Arabidopsis NET family contain a NET 

actin-binding (NAB) domain and various numbers of coiled-coil domains that 

can simultaneously interact with the actin filaments and different membrane 

compartments (Deeks et al., 2012; Hawkins et al., 2014). NET3C contains an 

N-terminal NAB domain that interacts with actin cytoskeleton and a C-terminal 



10 
 

coiled-coil domain for self-oligomerization. The NAB domain is required for 

NET3C to localize on the ER-PM contact sites and a C-terminal lysine residue 

in the polybasic domain is important for the association of NET3C with the PM 

(Wang et al., 2014). Arabidopsis VAP27 proteins belongs to the VAP33-like 

family which are homologs of mammalian VAPs and yeast suppressor of 

choline sensitivity (Scs2) (Sutter et al., 2006; Saravanan et al., 2009). The 

conserved MSP domain is essential for VAP27-1 to anchor on the ER-PM 

contact sites and interaction of VAP27-1 with NET3C. VAP27-1 can form 

dimers or oligomers and interact with microtubules that restrain the turnover of 

VAP27-1 on the ER-PM contact sites (Wang et al., 2014, Wang et al., 2016). 

Furthermore, recent studies have shown that Arabidopsis SYT1 is co-localized 

with VAP27-1 on the ER-PM contact sites (Levy et al., 2015; Perez-Sancho et 

al., 2015). Two possible models for the plant ER-PM contacts are shown in 

Figure 5 (Wang et al., 2014). 

 

 

Figure 5. Schematic Depiction of NET3C, VAP27-1 and Cytoskeleton on 

ER-PM Contact Sites. VAP27-1 binds to the PM directly and interact with 

NET3C and other unknown PM proteins (left panel). NET3C forms the ER-PM 

contact sites with other PM proteins and recruits VAP27-1 to the contact sites 

(right panel). The microtubules and actin associate with VAP27-1 and NET3C, 

respectively. Adopted from (Wang et al., 2014). 



11 
 

1.1.5.  Arabidopsis Synaptotagmins 

 

Arabidopsis synaptotagmins (SYT1-5) are a family of type I membrane 

proteins that all contain an N-terminal transmembrane domain, a SMP domain 

and two C-terminal C2 domains. Arabidopsis SYT1 was thought to be a PM 

protein but recent studies and this study have shown that it is an ER-anchored 

protein. Arabidopsis SYT1 is constitutively expressed in all the tissues and the 

mutants are more sensitive to salt, freezing and mechanical stresses (Levy et 

al., 2015; Perez-Sancho et al., 2015; Schapire et al., 2008; Yamazaki et al., 

2008; Yamazaki et al., 2010). In addition, the virus infections are delayed in 

SYT1 null mutant (Lewis and Lazarowitz, 2010; Uchiyama et al., 2014). The 

C2A domain of Arabidopsis SYT1 binds to the liposomes consisted of 

phosphatidylserine (PS)/phosphatidylcholine (PC) in a Ca2+-dependent 

fashion while the C2B domain binds to the liposome in the absence of Ca2+ 

(Schapire et al., 2008). The C2AB domains of Arabidopsis SYT1 bind PIPs 

and PS, but not phosphatidylinositol (PI) and PC, with or without the existence 

of Ca2+; however, the binding of C2AB domains to PS is enhanced by Ca2+ 

(Perez-Sancho et al., 2015). The Ca2+-independent binding of C2AB to PIPs 

indicates that Arabidopsis SYT1 may bind the PM at resting cytosolic Ca2+ 

concentrations in plant cells, a situation similar to E-SYT2/3 in human cells, or 

may function cooperatively in both Ca2+-dependent and Ca2+-independent 

pathways like mammalian SYT1 (Giordano et al., 2013; Südhof, 2012). In 

addition, expression of the truncated Arabidopsis SYT1 lacking the C2B 

domain disrupts the formation of PM-derived early endosomes in the leaves of 

N. benthamiana (Lewis and Lazarowitz, 2010). Arabidopsis SYT2 has been 

shown to be mainly expressed in the pollen and developing embryo sacs by 
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RT-PCR and promoter analyses and play a role in pollen germination and 

pollen tube growth (Wang et al., 2015a). However, Arabidopsis SYT2 protein 

can be detected in the roots of wild type Arabidopsis (Zhang et al., 2011a). 

Arabidopsis SYT2 is localized on the Golgi-apparatus which involved in the 

conventional secretion and regulates the unconventional secretion of 

hygromycin phosphotransferase (Wang et al., 2015a; Zhang et al., 2011a). 

Similar to Arabidopsis SYT1, the binding of the C2A domain of Arabidopsis 

SYT2 to the liposome (PS/PC) is Ca2+-dependent but that of the C2B domain 

is Ca2+-independent (Wang et al., 2015a). Arabidopsis SYT2 has been shown 

to be delivered to the PM (Wang et al., 2015a); however, it is still unclear 

whether Arabidopsis SYT2, and other SYT members, can also function on the 

membrane contact sites. The roles of Arabidopsis SYTs in vesicle trafficking 

and membrane tethering remain to be elucidated. The putative roles of 

Arabidopsis SYT1 in the ER-PM contact sites are illustrated in Figure 6 

(Perez-Sancho et al., 2015). 
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Figure 6. Schematic Depiction of SYT1 on ER-PM Contact Sites. (A) 

Arabidopsis SYT1 binds phosphoinositides (PtdInsPs) on the PM through the 

C2 domains. (B) SYT1 maintains the PM stability by strengthening the ER-PM 

contact sites and distributes the mechanical forces (Left). The microtubules 

are depolymerized and the PM is disrupted by the mechanical stresses in the 

absent of SYT1 (Right). Adopted from (Perez-Sancho et al., 2015). 

 

1.2.  Arabidopsis Synaptic Vesicle Protein 2-Like 

1.2.1.  Synaptic Vesicle Protein 2 and Synaptic Vesicle 
Protein 2-like 

 

Mammalian synaptic vesicle protein 2 (SV2), is a 12-transmembrane 

glycoprotein localized on the synaptic vesicles. There are three characterized 

isoforms in mammals, SV2A, SV2B and SV2C, which are belong to the major 

facilitator superfamily (MFS) of transporters (Feany et al., 1992; Janz and 

Südhof, 1999; Schivell et al., 1996). It has been shown that SV2A knock-out 

mice are prone to having severe seizures and die within a few weeks after birth 

(Crowder et al., 1999). Mammalian SV2A are known to interact with SYT1, and 

modulate Ca2+-induced exocytosis, priming of synaptic vesicles and calcium 

channel current density (Vogl et al., 2015; Xu and Bajjalieh, 2001). Human 
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SV2A has been also shown to be a galactose transporter when expressing in 

yeast cells (Madeo et al., 2014). Furthermore, SV2A is the target for the 

anti-epileptic drug levetiracetam (Lynch et al., 2004), and SV2A and SV2B are 

the receptors for botulinum and tetanus neurotoxins (Dong et al., 2006; Yeh et 

al., 2010). However, the molecular mechanism of SV2 proteins underlying the 

regulation of the synaptic exocytosis remains uncertain. 

 

 

Figure 7. Botulinum Neurotoxins Entry into Neurons via SV2. SV2 and 

synaptotagmin are the receptors of botulinum neurotoxins A and B, respectively. 

The toxins are internalized by clathrin-mediated endocytosis and cleave the 

SNARE proteins. Adapted according Jahn (2006). 

 

Mammalian SV2-like/SVtwO-related Protein (SVOP) is distantly related to 

SV2 and localized also mainly on the synaptic vesicles in brain and endocrine 

cells. Since the first SVOP report was published on the Journal of Neuroscience 

on 1998 (Janz et al., 1998), many scientists have studied the function of SVOP 
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protein in mammals. However, we now only know that SVOP homologs are 

present in all eukaryotes, but SVOP is only detected in the central nervous 

systems in vetebrates (Yao et al., 2013). SVOP is mainly expressed in the 

developing neurons, and its expression declines with aging (Hong et al., 2008; 

Logan et al., 2005). This suggests that SVOP may play roles in neuronal 

development and brain aging. Mouse SVOP has been shown to be the niacin 

transporter in bacteria and bind nucleotides in vitro. However, no measurable 

phenotype can be observed in SVOP knockout mice (Yao et al., 2013). 

Arabidopsis SV2-like (SVL) protein, as well as mouse SV2-like/SVOP 

protein, has been shown to be a niacin transporter when it was 

heterogeneously expressed in lactic acid bacteria (Jeanguenin et al., 2011). 

However, there is no report so far pertaining to the functional study of SV2-like 

in plant cells. 

 

1.2.2.  Endosomal Trafficking Pathways in Plant Cells 

 

The endomembrane system is composed of a variety of membranes-bound 

organelles that functions in the synthesis, sorting, transport, storage and 

degradation of macromolecules in eukaryotic cells. The subcellular compartments 

of the system included the ER, the Golgi apparatus, the trans-Golgi network 

(TGN), endosomes and vacuoles. These compartments can be connected 

either by direct contact or through vesicle trafficking. Endosomes are pivotal 

components of vesicle transport and involved in endocytic, biosynthetic, and 

recycling pathways in plant cells (Reyes et al., 2011). 

Endosomes can be categorized into two groups: early endosomes (EEs) 
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and late endosomes (LEs). Early endosomes are characterized as the first 

endocytic compartments derived from the plasma membrane by endocytosis 

(Bolte et al., 2004). The cargo proteins endocytosed from the cell surface may 

be either recycled back to the PM through the recycling endosomes (REs), or 

may be retained in the EEs, which later on mature into LEs, and then 

transported to the vacuoles for degradation. Late endosomes in plant cells 

normally have a multivesicular structure, which then also termed as the 

multivesicular bodies (MVBs) (Contento and Bassham, 2012). In the 

biosynthetic pathway, the secretory and vacuolar proteins are synthesized in 

the ER lumens and exit the ER via the budding of COPII-coated vesicles. The 

vesicles are fused to the Golgi apparatus and the proteins pass through the 

Golgi complex by cisternal maturation. As the maturation proceeds, the 

trans-most cisternae of the Golgi stacks become the TGN, a dynamic 

compartment where the sorting processes of cargo proteins are active. 

Secretory proteins are exported from the TGN into secretory vesicles and 

delivered to the PM by exocytosis. In addition, the materials internalized by 

endocytosis are first incorporated into the TGN in plant cells, indicating that the 

endocytic pathway and the secretory pathway merge on the TGN (Viotti et al., 

2010). The TGN is equivalent to the EEs in plant cells, which often termed 

TGN/EE. On the other hand, vacuolar proteins are sequestered into the TGN 

fragments, which then mature into the MVBs and are destined for the vacuoles 

(Robinson and Pimpl, 2014). The MVBs are also termed prevacuolar 

compartments (PVCs) in plant cells, and are the sites where the trafficking of 

vacuolar proteins and the endocytic pathway meet. Therefore, MVBs are 

equivalent to PVCs and LEs in plant cells. The endosomal trafficking pathways 

are shown in Figure 8 (Reyes et al., 2011). 
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Figure 8. Endocytic and Exocytic Pathways in Plant Cells. 

PM proteins are internalized by endocytosis and delivered to TGN/EE. PM 

proteins are either transported back to the PM (endosomal recycling) or to the 

MVBs and the vacuoles/lysosome for degradation (degradative sorting). The 

newly synthesized PM proteins are secreted to the PM by exocytosis and the 

vacuolar cargos are sent to the vacuoles. The vacuolar sorting receptors 

(VSRs) can be recycled back to cis-Golgi and/or ER (retromer-mediated 

recycling). Adopted according Reyes et al. (2011). 
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2.  Material and Methods 

2.1.  Plant Material and Growth Conditions 

Arabidopsis thaliana (L.) seedlings were grown on vertical half-strength 

Murashige and Skoog (1/2 MS) agar plates (pH = 5.8) in a growth chamber at 

22°C under long-day conditions (16 h Light/ 8 h Dark). After 14 days, the 

seedlings were transfer and grown in pots in a culture room at 22°C under 

long-day conditions (16 h Light/ 8 h Dark). Experiments were performed using 

Arabidopsis thaliana Columbia ecotype (Col-0), syt1-2 (SAIL_775_A08), svl-1 

(SALK_114298), svl-2 (SALK_089824C) and svl-3 (SALK_069071.25.70x), 

VAP27-1 RNAi knock-down lines and VAP27-1-YFP/Col-0 transgenic lines. 

VAP27-1 RNAi and VAP27-1-YFP transgenic lines were kindly provided by Dr. 

Pengwei Wang and Prof. Patrick J. Hussey, Durham University, UK. 

VAP27-1-YFP/syt1-2 transgenic lines were obtained by 

agrobacterium-mediated transformation of VAP27-1-YFP into syt1-2 using 

floral-dipping (Clough and Bent, 1998; Zhang et al., 2006). SVL-promoter:GUS 

transgenic Arabidopsis was generated by Dr. Boris Voigt. The 1541 bps of 

SVL promoter was amplified from genomic DNA of Arabidopsis Col-0 using 

primers prSVL-F and prSVL-R listed in Table 1 and then cloned into the binary 

vector p∆GusBin19 (Topping et al., 1991) by BamHI/SmaI sites. The fusion 

construct was transformed into Col-0 using floral-dipping. SVL-GFP/svl-1 

transgenic Arabidopsis was obtained by floral-dipping transformation of 

SVL-promoter:SVL-GFP fusion construct into svl-1. 
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Table 1. Primer List. 

The sequences of restriction enzyme cutting site, the mutated nucleotides, and 

the adapter sequences of attB sites are underline. 

SVL Promoter GUS Analysis 

prSVL-F 5'-GCGGATCCTGTAACTCACGGACCAATTC 

prSVL-R 5'-GCCCCGGGAGAAAAGTGTCAACCTTTCATC 

Site-directed Mutagenesis 

SpeI-SYT1-F CGACACTAGTATGGGCTTTTTCAGTACG 

emGFP-BsrGI-R TACTTGTACAGCTCGTCCATGCCG 

D370N/E372Q-F GTGTGTATAACTGGCAACAGGT 

D370N/E372Q-R ACCTGTTGCCAGTTATACACAC 

E378Q-F TTGGGAATCCCCAGAAGATGGG 

E378Q-R CCCATCTTCTGGGGATTCCCAA 

Genomic DNA Amplification 

AP2µ2-F 
5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCCGCCAGG

ATCAAAGA CGGATCGAGCAA 

AP2µ2-R 
5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCGCATCTGATC 

TCGTAAGATCCC 

SVL-F 
5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCCGCCATGT

AACTCACGGACCAATTCAA 

SVL-R 
5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCTACGGAGGC

TGAAGGTGGTTCT 

RT-PCR 

RT SVL-F 5'-TCGTTCTCCTGAAACCGTGG 

RT SVL-R 5'-CCAAGACCAACCAAACAGCG 
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2.2.  Constructs 

Binary plasmids of Arabidopsis SYT1 tagged with GFP driven by native 

SYT1 promoter (SYT1-GFP), VAP27-1 tagged with YFP driven by 35S 

promoter (VAP27-1-YFP), and NET3C fused with RFP driven by 35S promoter 

(RFP-NET3C) were described previously (Wang et al., 2014; Yamazaki et al., 

2010). The ER marker HDEL-RFP (Lee et al., 2013; Wang et al., 2014), the 

microtubule marker MBD-MAP4-DsRed (Granger and Cyr, 2001; Marc et al., 

1998), the actin maker ABD2-mCherry (Voigt et al., 2005b), the Golgi marker 

ST-RFP (Renna et al., 2005; Schoberer et al., 2010), the TGN marker 

VTI12-mCherry (Geldner et al., 2009), the late endosome marker FYVE-mCherry 

(Voigt et al., 2005a), Ara6-CFP and Rha1-mCherry (Geldner et al., 2009), the 

recycling endosome marker RabA1e-mCherry (Geldner et al., 2009), the early 

endosome marker CLC-mCherry (Wang et al., 2015b; Wang et al., 2013) and 

AP2µ2-YFP (Bashline et al., 2013) were described in the indicated reports. 

The construct of SYT1-3M-GFP was generated by site-directed mutagenesis 

by overlap extension PCR (Ho et al., 1989) using primers listed in Table 1.  

The plasmid encoding mCherry fused to the C terminus of Arabidopsis AP2 µ2  

was constructed by cloning the genomic sequence including native AP2 µ2 

promoter (Bashline et al., 2013) into pMDC83-mCherry vector by Gateway® 

Cloning system. The cDNA of AP2 µ2 was amplified from Arabidopsis genomic 

DNA using primers AP2µ2-F and AP2µ2-R listed in Table 1. 

SVL-promoter:SVL-GFP and SVL-promoter:SVL-mCherry fusion construct 

were generated by cloning the genomic sequence of SVL including the 

promoter into the binary vectors pMDC83-GFP and pMDC83-mCherry, 

respectively, using Gateway® Cloning system. The cDNA of SVL was 

amplified from Arabidopsis genomic DNA using primers SVL-F and SVL-R 
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listed in Table 1. pMDC83-GFP and pMDC83-mCherry binary vectors were 

kindly provided by Prof. Patrick J. Hussey, Durham University, UK (Curtis and 

Grossniklaus, 2003). 

 

2.3.  Agrobacterium-Mediated Transient Expression in 
Tobacco Leaves 

Nicotiana benthamiana plants were grown in a culture room at 22°C under 

long-day conditions (16 h light/8 h dark) for 3-4 weeks. Each construct was 

transformed into Agrobacterium tumefaciens strain GV3101::pMP90 by 

electroporation followed by selection on YEB plates containing the appropriate 

antibiotics. Single colony was inoculated and grown overnight in 3 ml YEB 

liquid medium with antibiotics at 37°C. 1 ml of bacterial culture was centrifuged 

at 3,500 rpm for 5 min and the pellet was resuspended in 1 ml of infiltration 

medium (20 mM citric acid, 2% sucrose and 0.2 mM acetosyringone). The 

bacterial suspension was centrifuged and the pellet was resuspended again in 

1 ml of infiltration medium to ensure complete removal of reminiscent 

antibiotics. Absorbance of the suspension at 600 nm was measured and the 

OD600 was adjusted to the specified value for infiltration (OD600 = 0.2 for 

SYT1-GFP, ABD2-mCherry, MAP4-DsRed and SVL-GFP; OD600 = 0.1 for 

VAP27-1-YFP, NET3C-RPF and HDEL-RFP). Syringe infiltration of tobacco 

leaves was performed as previously described (Batoko et al., 2000; Sparkes et 

al., 2006). The plants were kept in the same culture room after infiltration for 2 

days before confocal imaging. 
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2.4.  Transient Transformation of Arabidopsis Leaves by 
Biolistic Bombardment 

Arabidopsis thaliana Col-0 and syt1-2 seedlings were grown on vertical 

1/2 MS agar plates in a growth chamber at 22°C under long-day conditions for 

2 to 3 weeks The seedlings were transfer onto a new 1/2 MS agar plates with 

the abaxial sides of the leaves facing up. 0.75 mg of 0.6-µm gold particles in 

12.5 µl of 50% glycerol was mixed with 2 µg of VAP27-1-GFP plasmid DNA, 

12.5 µl of 2.5 M CaCl2 and 5 µl of 0.1 M spermidine by vortexing vigorously for 

3 min. The coated gold particles were washed once with absolute ethanol and 

resuspended in 37.5 µl of absolute ethanol. The suspended gold particles 

were loaded onto three carrier disks for three bombardments with rupture disks 

of 1350 psi using PDS-1000/HeTM Systems (Bio-Rad). After bombardment, the 

seedlings were turned back to the normal orientation on the same agar plate 

with the adaxial sides of the leaves facing up. The seedlings were incubated in 

the same growth chamber for 1 day and observed under confocal microscope. 

 

2.5.  FRAP Analysis 

Stable transgenic Arabidopsis expressing VAP27-1-YFP in Col-0 

(VAP27-1-YFP/Col-0) and syt1-2 (VAP27-1-YFP/syt1-2) background were 

grown in pots for 4 weeks. One T3 homozygous line of VAP27-1/Col-0 and five 

T1 heterozygous lines of VAP27-1/syt1-2 were planted. The expression levels 

of VAP27-1-YFP in five VAP27-1/syt1-2 heterozygous lines were examined by 

confocal microscope, and one with comparable expression of VAP27-1-YFP 

with that in VAP27-1/Col-0 was used for FRAP experiments. Leaf discs (0.5 x 

0.5 cm2) from the first or second leaf of the 4-week-old Arabidopsis were 

selected because the leaves have flattened surface. After incubated either with 
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Mock (0.1% DMSO), 20 µM oryzalin or 25 µM latrunculin B in Milli-Q water, the 

leaf discs were mounted in Milli-Q water and analyzed using confocal 

microscope with a 60x oil immersion objective and a zoom factor of 5.0. 

Confocal parameters were identical for all the FRAP experiments. 2% 

transmission of an argon laser at 515 nm was used for imaging and 80% 

transmission for photobleaching. Ten reference scans were taken before 

bleaching and 60 scans were taken after bleaching at 3-sec intervals. At least 

20 VAP27-1-YFP-labeled puncta for each treatment were analyzed. The raw 

data were normalized and the best-fit curves were generated by least-squares 

regression using Prism (Graumann et al., 2007; Wang et al., 2011).  

 

2.6.  Western Blot 

14-day-old seedlings were frozen by liquid nitrogen and grounded into 

powder. The total protein was extracted with protein extraction buffer (50 mM 

Tris-HCl, 150 mM NaCl, 10 mM MgCl2, 0.5 % NP-40, 1 mM PMSF and 1 X 

protease inhibitor cocktail (P9599, Sigma). The protein samples were 

quantified using Bio-Rad Bradford Protein Assay and subjected to 5X sample 

buffer (300 mM Tris-HCl, 60% Glycerol, 10% SDS, 500 mM DTT and 0.01% 

bromphenol blue). The protein was denatured by heating at 70°C for 5 min and 

cooled down on ice. 40 µg of protein was loaded to gels for SDS-PAGE 

analysis and transferred onto a PVDF membrane by eletroblotting. The 

membranes were first stained with Ponceau S, imaged and then blocked with 

4% non-fat milk + 4% BSA in Tris-buffered saline with Tween 20 (TBST; 10 

mM Tris, 150 mM NaCl and 0.1% Tween 20, pH 7.6) for 60 min. After 

incubation with antibodies against SYT1 (1:1000) or VAP27-1 (1:1500) at 4°C 
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for 16 h, the membranes were washed three times for 10 min and incubated 

with HRP-conjugated anti-rabbit or HRP-conjugated anti-mouse antibodies at 

room temperature for 1.5 h. The blots were washed three times with TBST for 

10 min, and the proteins were visualized using ECL imaging system 

(LAS-1000, Fuji Films). The intensity of the bands was quantified using Image 

J. SYT1 antibody was kindly provided by Prof. Miguel A. Botella, Universidad 

de Malaga, Spain, and VAP27-1 anti-serum was kindly provided Dr. Pengwei 

Wang and Prof. Patrick J. Hussey, Durham University, UK. 

 

2.7.  Immunogold Labeling 

Root tips of Arabidopsis, with or without pre-treatment of 50 µM BFA for 2 

h, were fixed using a high-pressure freezing machine (Bal-Tec HPM010, 

Balzers, Liechtenstein), freeze-substituted at -80°C and embedded in 

Lowicryl® Embedding Media HM20 (Polysciences, Warrington PA). After 

blocked and incubated with antibodies against SYT1 (1:150) and VAP27-1 

(1:150) overnight at 4°C, the ultrathin sections were rinsed and incubated with 

15-nm gold particle-conjugated anti-rabbit and 6-nm gold particle-conjugated 

anti-mouse antibodies at room temperature for 2 h. The sections were 

extensively washed and stained with uranyl acetate. The samples were 

imaged with an LEO 912AB electron microscope (ZEISS AG, Oberkochen). 

For statistical analysis, the positive gold signals were counted along the PM 

(within a distance of 50 nm apart from the PM). A region of interest (ROI) was 

defined as a rectangle area with a width of 50-nm (apart from the PM) and a 

length of 100-nm along the PM. More than one positive signal within a ROI 

was defined as a clustered labeling (co-localization). 
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2.8.  Whole Mount Immunofluorescence Labeling 

5-day-old Arabidopsis seedlings were fixed in fixation buffer (1.5% 

paraformaldehyde + 0.5% glutaraldehyde in 1/2 microtubule stabilizing buffer 

(MTSB; 50 mM PIPES, 5 mM MgSO4 and 5 mM EGTA, pH 6.9) with vacuum 

filtration for 1 h, and the fixed seedlings were washed once with 1/2 MTSB and 

twice with phosphate-buffered saline (PBS; 140 mM NaCl, 2.7 mM KCl, 6.5 

mM Na2HPO4 and 1.5 mM KH2PO4, pH 7.3) for 10 min. After three times of 

reduction with sodium borohydride (NaBH4) in PBS, the roots were washed 

three times for 5 min and then incubated with 2% driselase + 2% cellulose + 

1% pectolyase in PBS at 37°C for 30 min. The cells were permeabilized by 

incubating with 10 mM glycine three times for 5 min and 2% Nonidet P40 + 

10% DMSO for 1 h in PBS. The roots were washed with PBS for 10 min and 

then blocked with 2% BSA in PBS. After incubation with antibodies against 

SYT1 (1:200) and VAP27-1 (1:200) at 4°C for 16 h, the roots were washed six 

times for 10 min and incubated with Cy5®-conjugated anti-rabbit and Alexa 

Fluor® 488-conjugated anti-mouse antibodies at 37°C for 1.5 h plus at room 

temperature for 1.5 h. For single SYT1 immunolabeling, Alexa Fluor® 

488-conjugated anti-rabbit antibody was used. The roots were washed six 

times for 10 min, and the nuclei were stained with 5 µM DAPI in PBS. The 

roots were washed twice with PBS for 5 min before confocal imaging. 
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2.9.  Analysis of BFA Compartments 

Roots of 4-day-old Arabidopsis seedlings were transferred into 1/10 MS 

solution and pre-cooled at 6°C for 5 min. After stained with 4.1 µM of FM4-64 

(SynaptoRed™ C2, Sigma) at 6°C for 10 min, the roots were incubated with 

35.6 µM of BFA at room temperature for 60 min. Z-stack images of the roots at 

2 µm intervals were acquired by confocal microscopy. Images were processed 

with ImageJ and the diameter of the BFA compartments (more than 1 µm) in 

root epidermis of transition zone was measured. More than 80 cells from four 

roots were measured. This experiment was repeated three times and showed 

the same trend. 

 

2.10.  Phylogenetic Analysis 

The eukaryotic SV2-related proteins (Table 2) were extracted from eukaryotic 

protein families in a previous study (Ku et al., 2015). The prokaryotic 

SV2-related proteins were selected from the hits with the highest scores in a 

BLAST (Altschul et al., 1997) search against all prokaryotic sequences in NR 

(Pruitt et al., 2005) using the human SV2A and Arabidopsis SV2-like 

sequences as queries. The sequences were aligned using MAFFT version 

7.130 (Katoh and Standley, 2013) with the option ‘linsi’. The maximum 

likelihood tree was constructed using RAxML version 7.8.6 (Stamatakis, 2006) 

with 100 rapid Bootstrap searches. 
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Table 2. List of SV2-related proteins. 

BsNiaP AFQ56230_Niacin_permease_Bacillus_subtilis_QB928 

CmMFS WP_011519403_MFS_transporter_Cupriavidus_metallidurans 

Ag.tSVL KJX87850_Synaptic_vesicle_2like_protein_Agrobacterium_tumefaciens 

RmNiaP EYD77199_Niacin_transporter_NiaP_Rubellimicrobium_mesophilum_DSM_19309 

TcMFS WP_013970067_MFS_transporter_Treponema_caldarium 

An.tMFS GAP08356_arabinose_efflux_permease_Anaerolinea_thermolimosa 

HsSV2C NP_055794_synaptic_vesicle_glycoprotein_2C_isoform_1_Homo_sapiens 

GgSV2AL XP_415186_PREDICTED:_synaptic_vesicle_2related_protein_Gallus_gallus 

DrSV2A XP_696434_PREDICTED:_synaptic_vesicle_glycoprotein_2A_Danio_rerio 

HsSV2A NP_055664_synaptic_vesicle_glycoprotein_2A_isoform_1_Homo_sapiens 

MmSV2A NP_071313_synaptic_vesicle_glycoprotein_2A_Mus_musculus 

GgSV2A AER68117_synaptic_vesicle_glycoprotein_2A_partial_Gallus_gallus 

HsSV2B NP_055663_synaptic_vesicle_glycoprotein_2B_isoform_1_Homo_sapiens 

CeSVOPL NP_498960_Putative_transporter_svop1_Caenorhabditis_elegans 

Dr.mMFS NP_611868_CG4324_isoform_A_Drosophila_melanogaster 

MmSVOP NP_081081_synaptic_vesicle_2related_protein_Mus_musculus 

GgSVOP XP_004950491_PREDICTED:_synaptic_vesicle_glycoprotein_2Alike_Gallus_gallus 

HsSVOP NP_061181_synaptic_vesicle_2related_protein_Homo_sapiens 

DrSVOPL NP_001007408_putative_transporter_SVOPL_Danio_rerio 

NvMFS XP_001633415_predicted_protein_partial_Nematostella_vectensis 

TaMFS EDV23561_hypothetical_protein_TRIADDRAFT_58334_Trichoplax_adhaerens 

AtSV2L AEE75283_nicotinate_transporter_Arabidopsis_thaliana 

OsMFS BAT09390_Os09g0559800_Oryza_sativa_Japonica_Group  

ZmSV2L NP_001147918_synaptic_vesicle_2related_protein_Zea_mays 

ZmSV2 
DAA50364_TPA:_proteinSynaptic_vesicle_2_protein_Major_facilitator_superfamily_is

oform_1_Zea_mays 

PaMFS XP_001770703_predicted_protein_Physcomitrella_patens 

SmMFS EFJ34774_hypothetical_protein_SELMODRAFT_81650_Selaginella_moellendorffii 

CsMFS 
XP_005644961_MFS_general_substrate_transporter_Coccomyxa_subellipsoidea_C1

69 
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2.11. Histochemical GUS Assay 

The T3 homozygous plants were used for GUS staining. Plant samples 

were vacuum infiltrated for 2 min in the GUS staining solution (100 mM sodium 

phosphate buffer, pH 7.0, 10 mM EDTA, 0.1% Triton X-100, 0.5 mM potassium 

ferricyanide, 0.5 mM potassium ferrocyanide, and 1 mM 

5-bromo-4-chloro-3-indolyl glucuronide) and then incubated at 37°C for 16 h. 

The samples were transferred to 70% of ethanol for 1 h and then incubated in 

100% ethanol for 1 h to remove the chlorophyll. The samples were observed 

with a Leica MZ FLIII stereomicroscope. 

 

2.12.  RT-PCR 

7-day-old Seedlings were frozen by liquid nitrogen and grounded into 

powder. The total RNA was extracted using RNeasy Plant Mini Kit (Qiagen). 

500 ng of RNA was used for cDNA synthesis using RevertAid RT Reverse 

Transcription Kit (Thermo Scientific) with Oligo(dT) primers. 0.5 µl of the cDNA 

was subjected to PCR amplification using primers RT SVL-F and RT SVL-R 

listed in Table 1. 5 µl of the PCR product was subjected to electrophoresis. 

 

2.13.  Confocal Microscopy 

Confocal imaging was performed by using an Olympus FluoView™ 

FV1000 confocal microscope equipped with diode (405 nm), argon-ion (458, 

488 and 514 nm) and helium–neon (543 nm) lasers. GFP single image was 

excited at 488 nm and the emission signals were collected from 500 to 600 nm. 

YFP was excited at 515 nm and emission was collected from 530 to 630 nm. 

The red fluorescent dye FM4-64 was excited at 543 nm and emission was 
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filtered between 660 and 760 nm. For simultaneous imaging of CFP, GFP and 

FM4-64 the setting of CFP (Ex 405 nm/Em 440-505 nm), GFP (Ex 488 nm/Em 

510-550 nm) and FM4-64 (Ex 543 nm/Em BA560-660 nm filter) was used. For 

simultaneous imaging of GFP, YFP and mCherry the setting of GFP (Ex 458 

nm/Em 470-515 nm), YFP (Ex 514 nm/ Em 530-560 nm) and mCherry (Ex 543 

nm/Em BA560-660 nm filter) was used. 

 

2.14.  Accession Numbers 

Arabidopsis SYT1 (AT2G20990); VAP27-1 (AT3G60600); NET3C 

(AT2G47920); AP2 µ2 (AT5G46630); SVL (AT3G13050); VTI12 (AT1G26670); 

Rha1 (AT5G45130); Ara6 (AT3G54840); RabA1e (AT4G18430). 
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3.  Results 

3.1.    Tethering of Arabidopsis SYT1 on the PM Maintains the Stability 

of ER Network and ER‐PM Contact Sites 

 

3.1.1.    Arabidopsis SYT1 is Localized on the ER‐PM Contact Sites 

Arabidopsis Synaptotagmin 1 (SYT1) and VAP27-1 have been shown 

to be ER-PM tethering proteins. However, the relationship between SYT1 and 

VAP27-1 remains unclear. To gain a better understanding this relationship, 

SYT1-GFP was first transiently co-expressed with the ER lumen markers 

HDEL-RFP or HDEL-CFP in leaves of Nicotiana benthamiana. Most SYT1-GFP 

signals were found to accumulate on stable spots along the relatively 

stationary ER tubules and cisternae while fewer amount of SYT1-GFP was 

detected on the motile, quickly remodeling ER strands (Figure 9A). The 

co-expression of CFP-HDEL followed by FM4-64 staining showed that 

SYT1-GFP was localized on the ER and attached to the PM at specific 

stationary regions, i.e., the ER-PM contact sites (Figure 9B and 9C). 

Furthermore, the co-expression of SYT1-GFP and the Golgi marker 

sialyltransferase (ST)-RFP showed that the SYT1 puncta were not co-localized, 

but in close proximity, with the Golgi apparatus (Figure 9D). 
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(B) ER-resident SYT1 attaches to the FM4-64-stained PM at the immobile 

ER-PM contact sites. 

(C) The intensity profiles of the cells in (B) show that the SYT1 signal peaks 

between the ER lumen marker HDEL and the PM marker FM4-64 at the 

ER-PM contact sites. 

(D) SYT1-GFP is not incorporated into the ST-RFP-labeled Golgi apparatus, 

even though these two compartments are very close to each othter. 

Scale bars = 5 µm 

 

3.1.2.  SYT1 and VAP27-1 are Localized on Different Regions 
of ER-PM Contact Sites 

To examine whether SYT1 and VAP27-1 are localized on the same 

ER-PM contact sites, SYT1-GFP and VAP27-1-YFP were co-expressed in 

leaves of Nicotiana benthamiana. The result showed that SYT1-GFP was not 

co-localized with VAP27-1-YFP but often surrounded VAP27-1-YFP (Figure 

10A). SYT1-GFP was mainly overlapped with VAP27-1-YFP on the ER tubules 

or cisternae but not on ER-PM contact sites (Figure 10B and 10C). 
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To obtain more convincing evidence in Arabidopsis, whole-mount 

Immunofluorescent labelling using SYT1- and VAP27-1-specific antibodies 

was conducted to probe the native SYT1 and VAP27-1 proteins in the roots of 

wild type Arabidopsis. The images showed that SYT1 and VAP27-1 were 

localized on different regions of the cortical ER (Figure 11). Immunofluorescent 

staining of the root cells in wild type Arabidopsis with SYT1-specific antibody 

showed clear puncta signals on the cell cortex (Figure 12A) and ER labeling in 

the cells (Figure 12B). Immunofluorescent labeling in the roots of SYT1 null 

mutant, syt1-2, with SYT1-specific antibody undergoing the same procedure 

showed no fluorescent signals (Figure 12C). Western blot using 

VAP27-1-specific antibody showed a single band of the expected molecular 

weight in wild-type Arabidopsis and SYT1 null mutant. The intensity of the 

band was reduced in the VAP27-1 RNAi knockdown line (Figure 12D). These 

data indicated that the aforementioned antibodies were specific and the 

localization sites of endogenous SYT1 and VAP27-1 in Arabidopsis were often 

in close proximity but not overlapped on the membrane contact sites. 
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mutant shows no positive labeling signal. Scale bars = 10 µm 

(D) Western blot of proteins from 5-day-old seedlings of Col-0 (C1-C3), syt1-2 

(s1-s3), and VAP27-1 RNAi mutant (v1-v2) using VAP27-1 antibody shows 

one single band in each line (Left). The blotted proteins on the PVDF 

membrane are stained by Ponceau S (Right). 

 

Ultrastructural immunogold labelling for SYT1 (15-nm gold particles) 

and VAP27-1 (6-nm gold particles) further confirmed that these two proteins 

were localized on distinct patches on the ER-PM contact sites (Figure 13). 

Gold particles located along the PM were counted and the result showed that 

61.82% of the labeled regions were VAP27-1 single-labeled, 28.22% of the 

labeled regions were SYT1 single-labeled, and 9.96% of the labeled regions 

were VAP27-1/SYT1 dual-labeled. Statistical analyses using chi-square test 

showed that the localization of gold particles of two different sizes tended to 

localize exclusively on distinct domains; SYT1 showed no preference to cluster 

with SYT1 itself nor with VAP27-1 whereas VAP27-1 tended to cluster with 

VAP27-1 itself (Table 3). This result is consistent with the previous study 

showing that VAP27-1 is able to form oligomers. Based on their respective 

properties, the two distinct ER-PM contact sites were named as 

SYT1-enriched ER-PM contact sites (SECSs) and VAP27-1-enriched ER-PM 

contact sites (VECSs). 
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(A) Co-expression of SYT1-GFP, VAP27-1-YFP, and MAP4-DsRed in N. 

benthamiana leaves shows that the localizations of SYT1 and VAP27-1 are 

associated with the microtubules. 

(B) The intensity profiles of one VAP27-1 punctum, two SYT1 puncta, and one 

microtubule show that VAP27-1 overlaps with the microtubule and is 

sandwiched by the SYT1 puncta. 

Scale bars = 2 µm. 

 

3.1.4.  Disruption of VAP27-1 Tethering to PM has no Obvious 
Effects on Formation of SECSs 

Our results showed that SYT1 and VAP27-1 were not co-localized on 

the ER-PM contact sites. Nevertheless, these two contact sites were closely 

located; therefore, it was interesting to investigate their anchoring mechanisms. 

A previous study has shown that point mutations on the major sperm domain 

of VAP27-1 (VAP27-1-T59/60A) render the protein unable to attach to the 

ER-PM contact sites and co-localize with NET3C. To investigate the localization 

patterns of VAP27-1 mutant and SYT1, VAP27-1-T59/60A-YFP was 

co-expressed with SYT1-GFP in tobacco leaves. Time-lapse imaging showed 

that VAP27-1 T59/60A mutant aggregates were motile, moving along the ER 

network (Figure 17). Still, their movement was restricted within the 

SYT1-enriched ER-PM contact sites and unable to pass through these contact 

sites. The motile protein aggregates were sometimes even caged by many 

SECSs (Figure 17). On the other hand, after three negatively charged amino 

acid residues, which are essential for coordinating the Ca2+ in the C2A domain, 

of SYT1 were substituted with three uncharged residues. The SYT1 

D370N/E372Q/E378Q mutant tagged with GFP (SYT1-3M-GFP) was still able 
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    Studies have shown that SYT1 binds to phospholipids via the C2 domains, 

and the C2 domains are essential for the binding of SYT1 to the PM 

(Perez-Sancho et al., 2015; Schapire et al., 2008; Yamazaki et al., 2010). Our 

data showed that the mutation on the C2A domain did not destroy the 

anchoring of SYT1 to the ER-PM contact sites. In order to examine whether 

the tethering of VAP27-1 to the PM requires the proper anchoring of SYT1 to 

the PM, we tried to disrupt the binding of SYT1 to the PM by depleting the 

cytosolic calcium and seeing if the VECSs are affected. The experiment was 

conducted by co-expressing SYT1-GFP and VAP27-1-YFP in tobacco leaves, 

which were then infiltrated with the membrane permeable calcium chelator 

BAPTA-AM. Confocal imaging showed that both the SECSs and the VECSs 

were not removed after the BAPTA-AM treatment for 1 min, 30min, and 60 min. 

However, after SYT1-GFP-labeled puncta were bleached by the laser, 

SYT1-GFP was often unable to recover on the same ER-PM contact sites, the 

SECSs were then removed. Additionally, the cortical ER was no longer stable 

and reticulated but started to flow dynamically (Figure 19). The dynamic ER 

strands were still labeled by SYT1-GFP and VAP27-1-YFP. Most of the 

VAP27-1-YFP-labeled puncta remained stationary within the ER streams; 

some of the VECSs were removed together with the SECS. This result 

indicated that i) depletion of the cytosolic calcium did not disconnect the 

already established ER-PM junctions; ii) the anchoring of VAP27-1 to the PM 

did not require SECSs. 
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Figure 19. Removal of SECSs has Little Effect on Anchoring of VAP27-1 

at Stable Puncta Structures in N. benthamiana Leaf Epidermal Cells. 

Co-expression of SYT1-GFP, VAP27-1-YFP, and RFP-HDEL show that the 

SECSs are removed by the BAPTA treatment (25 µM) for 50 min and 

photobleaching. The ER network is disturbed but most of the VECSs remain 

stable at the anchoring sites (arrows). Some VECSs become motile 

(asterisks). 

 

3.1.5.  SYT1 Stabilizes VECSs by Maintaining Patterns of 
Polygonal ER Networks 

 To eliminate the possible effects of the endogenous SYT1 or VAP27-1 

in tobacco, VAP27-1-YFP was transiently expressed in the leaf epidermis of 

Arabidopsis SYT1 null mutant, syt1-2, using particle bombardment. The result 

showed that VECSs still existed in syt1-2; however, the behavior of the VECSs 
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Figure 21. SYT1 is Essential for Maintaining of Polygonal ER Networks in 

Arabidopsis Leaf Epidermal Cells. 

(A) The stable VAP27-1 puncta are still observed in the leaf cells of 

VAP27-1-YFP transgenic Arabidopsis in syt1-2 background, but the ER 

network in syt1-2 background is less connected compared with that in 

Col-0 background. 

(B) Comparing the number of the three-way junctions of the ER in the leaf cells 

of VAP27-1-YFP/Col-0 and VAP27-1-YFP/syt1-2 transgenic Arabidopsis 

shows that the junctions is significantly reduced in syt1-2 background. 

(t-test, p-value < 0.001***) 

(C) The number of the VECSs is reduced by 46.61% in the loss of SYT1. (t-test, 

p-value < 0.001**) The three-way junctions and the VECSs were counted 

per 100 µm2 in the first leaf cells of the transgenic plants from the confocal 

images. In total, 368 of the areas from 64 cells were counted. 

Scale bars = 5 µm. Error bars = standard deviation (SD). 

 

To examine if the dynamic of VAP27-1 on the VECSs was altered in the 

absence of SYT1, fluorescence recovery after photobleaching (FRAP) of 

VAP27-1-YFP was performed in the leaves of VAP27-1-YFP/Col-0 and 

VAP27-1-YFP/syt1-2 transgenic Arabidopsis (Figure 22A and 22B). The 

results showed that the maximal recovery of VAP27-1-YFP in syt1-2 (69.08% 

± 2.48%) was higher than that in Col-0 (55.20% ± 1.73%, p-value < 0.0001) 

(Figure 22C), indicating increased mobility of VAP27-1 in syt1-2. In addition, 

20.69% (12 out of 58) of the VECSs in syt1-2 were completely removed after 

photobleaching compared to only 1.85% (1 out of 54) in Col-0 background 

(Figure 23), showing that the VECSs were unstable in SYT1 null mutant. 
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However, when cells were treated with the actin-depolymerizing drug 

latrunculin B, the maximal recovery of VAP27-1-YFP in syt1-2 drastically 

decreased from 69.08% ± 2.48% to 49.44% ± 2.36 % (p-value < 0.0001) 

(Figure 22B and 22C). Latrunculin B treatment slightly reduced the maximal 

recovery of VAP27-1-YFP in Col-o from 55.20% ± 1.73% to 48.25% ± 2.01% 

(p-value = 0.0001). After treated with latrunculin B, the maximal recovery of 

VAP27-1-YFP in the leaves of Col-0 and syt1-2 showed no significant 

difference (p-value = 0.32). In addition, the dynamic remodeling of the ER 

strands in both the cells of Col-0 and syt1-2 was remarkably arrested after 

treated with latrunculin B, showing that the actin-dependent movement of 

cortical ER was hindered by the depolymerization of F-actin. These data 

demonstrated that the enhanced recovery of VAP27-1 in syt1-2 resulted from 

the instability and the over-remodeling of the cortical ER. 

On the other hand, when microtubules were depolymerized by oryzalin 

treatment, the maximal recovery of VAP27-1-27 in Col-0 significantly 

increased (69.44% ± 2.16%, p-value < 0.0001) (Figure 22A and 22C), which 

was consistent with the previous study (Wang et al., 2014). However, oryzalin 

did not further increase the turnover of VAP27-1-YFP in syt1-2 (68.70% ± 

4.40%, p-value = 0.89). The oryzalin treatment did not disturb the stability of 

the VECSs because all the VECSs remained unmoved during the FRAP 

experiments (Figure 23C). Statistical analyses showed that the maximal 

recovery of VAP27-1-YFP in the leaf cells of oryzalin-treated Col-0, 

oryzalin-treated syt1-2, and non-treated syt1-2 were not significantly different 

(p-value = 0.27) (Figure 22C). These results indicated that VAP27-1 was able 

to anchor on the ER-PM contact sites without SYT1 and microtubule. In 

summary, the above data demonstrate that SYT1 is an essential component 
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for maintaining the polygonal network of cortical ER and, therefore, the stability 

of VAP27-1 tethering on the ER-PM contact sites. 

 

3.1.6.  SYT1-Mediated Regulation of Vesicle Trafficking 

 

Studies have shown that Arabidopsis SYT1 plays a role in regulating the 

endocytosis in the leaves of N. benthamiana. However, the functions of SYT1 

on the endocytic pathway in Arabidopsis remain unclear. To investigate 

whether STY1 would be incorporated in the endocytic vesicles, the roots of 

transgenic Arabidopsis expressing SYT1-GFP driven by SYT1 native promoter 

and VAP27-1-GFP driven by 35S promoter were stained with the lipophilic 

styryl dye FM 4-64 followed by brefeldin A (BFA) treatment. BFA is a fungal 

toxin that blocks exocytosis and the return of recycling vesicles to the plasma 

membrane but does not abolish endocytosis. The blockage will lead to the 

accumulation of trans-Golgi networks/early endosomes (TGN/EE) and the 

Golgi apparatus and form the BFA compartments (Berson et al., 2014; 

Naramoto et al., 2014). The results showed that neither SYT1-GFP nor 

VAP27-1-GFP was co-localized with the BFA compartments (Figure 24A and 

24B), indicating that these two proteins were not transported to the endosomes. 

Cryo-immunogold electron microscopy further confirmed that both SYT1 and 

VAP27-1 were still localized on the ER-PM contact sites in the BFA-treated 

root cells (Figure 24C and 24D). 
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and 6-nm gold particles (VAP27-1) are indicated by red circles. Scale bars 

= 500nm. 

 

The roles for ER-PM contact sites in vesicle trafficking in yeast and animal 

cells have been documented (Stefan et al., 2013; Stradalova et al., 2012). In 

addition, the dynamic of the ER has been shown to influence the endocytosis 

and the trafficking of endosomes in plant cells (Stefano et al., 2015). To 

determine whether the mutation of SYT1 would affect the membrane trafficking 

in Arabidopsis, the sizes of the BFA-induced compartments in the cells of root 

transition zone in Col-0 and sty1-2 were measured (Figure 25). The frequency 

distribution of different BFA compartment sizes showed that the most common 

size of the BFA compartments in syt1-2 (1.5 - 2.0 µm, 39.20%) was smaller 

than that in Col-0 (2.0 – 2.5 µm, 25.76%). Statistics using unpaired t-test 

rejected the hypothesis that the two populations would be the same size 

(p-value < 0.0001) (Figure 25B). This result indicated that vesicle trafficking, 

either the endocytosis rate or the fusion of vesicles, was affected due to the 

loss of SYT1 protein. 
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structures in two parts of the same cell. The ABD2-labeled F-actin as the 

reference of the intracellular conditions shows that the two parts of the cell 

are intact and undamaged. 

(B) Double immunofluorescent labeling of SYT1 and VAP27-1 in wild type 

Arabidopsis roots shows that SYT1 sometimes occupies huge areas of the 

cell cortex (in comparison with the images in Figure 11A).  

Scale bars = 2 µm. 

 

The co-expression of SYT1-GFP, VAP27-1-YFP, and MAP4-DsRed 

showed that the “gaps” were occupied by microtubules. Some “holes” were 

filled by the VECSs (Figure 27A). When SYT1-GFP and HDEL-RFP were 

co-expressed in tobacco leaf cells, the wide spread of SYT1 on the cortical ER 

was accompanied by a disturbance of ER cisternae and tubules (Figure 27B). 

However, the wide spread of SECSs was not caused by the cisternalization of 

the ER because the SYT1 could also form puncta structures around the ER 

cisternae (Figure 27C). In all the cases, there were still areas on the cell cortex 

that were not occupied by SYT1, VAP27-1, or microtubules. These empty 

areas might be the regions where endocytosis and exocytosis took place. To 

support this hypothesis, the endosomal markers, clathrin light chain fused with 

mCherry (CLC-mCherry) or adaptor protein 2 µ2 fused with mCherry 

(AP2µ2-mCherry), were co-expressed with SYT1-GFP. The results showed 

that the CLC- or AP2µ2-labeled endosomes only appeared on the cortical 

regions where no SYT1-labeled cortical ER was identified (Figure 28). 

However, the early endosomes were often in contact with the STY1-labeled 

cortical ER. These data were all in line with the idea that SYT1 regulates the 

vesicle trafficking by confining the hot-spots for endocytosis or exocytosis. 
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3.2 Trans-Golgi Network-Localized Synaptic Vesicle 

Protein 2-like in Root Apex Cells 

 

3.2.1.  Phylogenetic Relationship of SV2 and SV2-like 
Proteins in Eukaryotes 

In order to investigate the evolutionary relationships of Arabidopsis SV2-like 

(SVL) and other SV2-related proteins in plant and animal kingdoms, 

phylogenetic analysis was conducted using the amino acid sequences of these 

proteins and several bacterial proteins as the outgroup. The phylogenetic tree 

showed that eukaryotic SV2-like proteins were divided into two clades: 

Animalia SV2-like and Plantae SV2-like (Figure 29). SV2 proteins existed only 

in vertebrates. Eukaryotic SV2 and SV2-like separated very early in the 

evolutionary history, before eukaryotes diverged into the two major lineages 

unikonts (including animals) and bikonts (including plants) (Derelle et al., 

2015). Arabidopsis SV2-like belongs to the clade of Plantae SV2-like and is 

distantly related to the vertebrate SV2. 
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that the expression of SVL in 2- to 3-day-old seedlings of Arabidopsis was 

restricted in root tips and hypocotyls. The expression of SVL becomes 

ubiquitous in the 7-day-old seedlings. SVL is also expressed in anthers and 

sepals. 

 

3.2.3.  SVL Null Mutant Showed no Apparent Phenotype 

To reveal the physiological functions of SVL gene in Arabidopsis, three 

SALK insertion mutants of SVL were ordered from the Arabidopsis Biological 

Resource Center (ABRC). The three mutant lines were named svl-1 

(SALK_114298), svl-2 (SALK_089824C) and svl-3 (SALK_069071.25.70x) 

(Figure 31A). The homozygous lines were obtained by antibiotic screening and 

genotyping PCR. The RT-PCR analysis showed that svl-1 was a null mutant, 

but the expression levels of SVL transcripts in svl-2 and svl-3 were similar to 

that of wild type (Figure 31B). The growth of the primary roots of svl-2 and 

svl-3 was the same as that of wild type in both normal and salt-stress 

conditions (Figure 31C). No phenotype could be observed in the two mutants. 

Moreover, the SVL knock-out mutant svl-1 still showed no severe phenotype, 

even though the roots of svl-1 grew slightly faster than that of wild type at the 

early seedling stage in normal condition (Figure 32A). Arabidopsis SVL has 

been shown to be a niacin transporter; however, our RT-PCR results showed 

the niacin treatment did not alter the expression levels of SVL in wild type 

Arabidopsis (Figure 31B). High concentration of niacin inhibited the growth of 

Arabidopsis; however, no significant difference was observed between the 

growth of svl-1 and wild type under niacin treatment (Figure 32). No obvious 

phenotype in the SVL mutants was recorded from our experiments. 
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are localized on different vesicles. 

(B) Co-expression of SVL-GFP and FYVE-mCherry shows that SVL is not 

localized on the FYVE-labeled late endosomes. 

(C) Co-expression of SVL-GFP and Rha1-mCherry shows that SVL is not 

transported to the Rha1-labeled prevacuolar compartments/late 

endosomes. 

Scale bars = 2 µm. 
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overlapped with the RabA1e-labeled endosomes. 

Scale bars = 2 µm. 

 

In order to confirm the subcellular localization of SVL in Arabidopsis, SVL-GFP 

fusion construct driven by SVL native promoter was stably transformed into the 

SVL null mutant, svl-1. To investigate if SVL-GFP is incorporated into the early 

endosomes, the roots of SVL-GFP/svl-1 homozygous transgenic Arabidopsis 

was stained with the endocytic tracer FM4-64 for 15 min. The result showed 

that SVL-GFP was largely overlapped with the FM4-64-stained early 

endosomes (Figure 37A). When the FM4-64 stained roots were treated with 

35.6 µM of BFA for 60 min, SVL-GFP formed large aggregate and incorporated 

into the BFA compartments (Fiugre 37B). Some of the SVL-GFP vesicles 

decorated the periphery of the BFA compartments. This indicated that SVL 

was localized on the TGN and partly on the Golgi apparatus. When the roots 

were treated with 33 µM of wortmannin for 100 min, some of the 

FM4-64-stained vesicles, the late endosomes, became swelled. However, 

SVL-GFP was not co-localized with the enlarged multivesicular compartments 

induced by wortmannin (Figure 37C), indicating that SVL was probably not 

transported to the PVCs/LEs.
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4.  Discussion 

 

4.1.  Arabidopsis SYT1 

4.1.1.  Subcellular Localization of SYT1 

Using expression of SYT1-GFP fusion in N. benthamiana and Arabidopsis, 

aqueous two-phase extraction followed by mass spectrometry or western blot, 

and immunogold electron microscopy, studies have shown that Arabidopsis 

Synaptotagmin 1 (SYT1) is a plasma membrane protein (Schapire et al., 2008; 

Yamazaki et al., 2008). Arabidopsis SYT1 has also been shown to be localized 

to the plasma membrane-derived endosomes in N. benthamiana protoplasts 

(Lewis and Lazarowitz, 2010). However, two recent studies have shown 

Arabidopsis Synaptotagmin 1 is an ER integral membrane protein localized on 

the ER-PM junctions (Levy et al., 2015; Perez-Sancho et al., 2015). The 

subcellular localization of Arabidopsis SYT1 is convoluted owing to i) the 

resemblance of the protein to human SYT1 and E-SYT1, ii) the phospholipid 

binding property of the C2 domains and the characteristic of the transmembrane 

domain (TM), and iii) the diverse morphology of the cortical ER in plant cells. 

Arabidopsis STY1 was deemed functionally related to human SYT1 because 

both Arabidopsis SYT1 and human SYT1 possess a single N-terminal 

transmembrane domain and two tandem C2 domains (C2A-C2B) at the 

C-terminal. Human E-SYTs have a long N-terminal transmembrane domain that 

forms a hairpin-like structure, and three to five C2 domains at the C-terminal; 

however, human E-SYTs share with Arabidopsis SYT1 a conserved SMP 

domain located between their TM and the C2 domains (Kopec et al., 2010; 
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Levy et al., 2015). The respective lengths of Arabidopsis SYT1, human SYT1, 

and human E-SYT1 are 541 aa, 422 aa and 1104 aa. The protein architecture 

of Arabidopsis SYT1 is close to human SYT1; however, Arabidopsis SYT1 has 

been proposed to share the same origin in a common ancestor with human 

SYTs and E-SYTs (Craxton, 2010). The subcellular localization and the 

physiological functions of the Arabidopsis SYT family provide important 

information on the influence of evolution on these proteins. 

Mammalian SYTs and E-SYTs are both highly expressed in neurons; however, 

the ability of SYTs to translocate through the exocytosis pathway and trigger 

the membrane fusion makes it functionally different from the ER-retaining 

E-SYTs. Mammalian SYTs are transported from the ER membrane to the 

Golgi apparatus, carrier vesicles, and then to the plasma membrane by 

calcium-regulated exocytosis whereas mammalian E-SYTs are retained on the 

ER membrane and attach to the plasma membrane by calcium-regulated 

binding (Min et al., 2007; Rizzoli, 2014). Mutations in the linker domain 

between the TM and the C2A domain or the short C-terminus inhibit the 

transport of human SYTs from the ER to the Golgi apparatus (Fukuda et al., 

2001). Moreover, both linkers between C2A and C2B domains, and between 

the TM and the C2 domains, influence neurotransmission (Lee and Littleton, 

2015; Liu et al., 2014). On the other hand, deletion or mutation in the C2C 

domain of human E-STY2 prevents its cortical localization, leading to a 

dispersion of E-SYT2 on the ER (Giordano et al., 2013). Apparently, the C2 

domains and other regions throughout the cytosolic part play important roles in 

the localization and the function of SYTs and E-SYTs. This may explain why 

Arabidopsis SYT1 is localized to the ER-PM contact sites but the closely 
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related Arabidopsis SYT2 is localized to the Golgi apparatus and the plasma 

membrane (Wang et al., 2015a; Zhang et al., 2011a). 

Human E-SYT2 has three C2 domains (C2A-C2B-C2C) and the C2C 

domain of E-SYT2 is indispensable for the protein’s cortical localization and 

binding to the PM (Giordano et al., 2013). Arabidopsis SYT1, by comparison, 

contains only two C2 domains (C2A-C2B) but is still localized on the cortical 

ER and tethers to the PM. The SMP domain of Arabidopsis SYT1 has also 

been shown to be critical for the puncta localization (Perez-Sancho et al., 2015; 

Yamazaki et al., 2010); however, the deletion of SMP domain in human 

E-SYT2 has no apparent effect on its localization (Giordano et al., 2013). It 

seems that Arabidopsis SYTs and mammalian E-SYTs have evolved different 

sorting and anchoring mechanisms. Furthermore, Arabidopsis SYTs are type I 

transmembrane protein with the N-terminus in the non-cytosolic space and a 

single transmembrane domain consisting of 22 or 23 amino acids, which is 

very similar to that of mammalian SYTs (about 22 to 27 aa) (Craxton, 2004; 

Giordano et al., 2013; Yamazaki et al., 2010). It has been demonstrated and 

generally assumed that proteins with a transmembrane domain of these 

lengths are transported to the post-Golgi compartments or to the PM. On the 

other hand, proteins with shorter transmembrane domains (about 17 to 20 aa) 

are generally retained on ER in both animal and plant cells (Brandizzi et al., 

2002; Giordano et al., 2013; Sharpe et al., 2010; Yamazaki et al., 2010). 

Arabidopsis SYT1 is a special case in this aspect, indicating other factors may 

determine the ER retention of Arabidopsis SYT1. In addition, Arabidopsis SYTs 

(SYT1-5) have a very short N-terminal amino acid residue (about 2 to 7 amino 

acids) in the non-cytosolic space and the predicted signal peptide is overlapped 
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with the TM domain. These N-terminal features of Arabidopsis SYT1 are 

different from that of mammalian SYTs (about 64 aa in the non-cytosolic space 

for SYT1) and E-SYTs (N-terminus in cytosolic space). 

This study demonstrates that Arabidopsis SYT1 is localized mainly on the 

cortical ER by co-expressing SYT1-GFP fusion with SYT1 native promoter in N. 

benthamiana leaves with ER, Golgi, PM, and endosome markers. Whole-mount 

fluorescent immunocytochemistry and cryo-immunogold electron microscopy 

in Arabidopsis root tips further confirm the ER-PM localization of Arabidopsis 

SYT1. Nonetheless, it may be a concern that GFP fusion to the C-terminus of 

Arabidopsis SYT1 may affect the trafficking of the protein as suggested in 

previous studies (Fukuda et al., 2001; Kotzer et al., 2004; Sohn et al., 2003). 

As the anti-SYT1 antibody was generated against the peptides on the C2 

domains (Schapire et al., 2008) and the distance between the ER and the PM 

membranes on the contact sites is approximately 30 nm, the SYT1-positive 

gold particles localized on the ER-PM contact sites become indistinguishable 

from those on the PM if there is no clear staining on the cortical ER observed 

by electron microscopy. However, no SYT1-positive signal was found on the 

Golgi apparatus and BFA compartments, showing that Arabidopsis SYT1 is 

not transported to the Golgi apparatus. No evidence has suggested that 

membrane fusion occurs on the ER-PM contact sites in animal cells, even 

though hemifusion on the ER-chloroplast contact sites has been suggested 

(Mehrshahi et al., 2013; Prinz, 2014). The existence of Arabidopsis SYT in the 

PM fraction isolated by aqueous two-phase partitioning shown by previous 

studies (Kawamura and Uemura, 2003; Schapire et al., 2008; Yamazaki et al., 

2010) may be attributed to its strong phospholipid binding ability even in the 
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absence of calcium ions and its long transmembrane domain. Therefore, 

excluding the possibility of transient translocation of Arabidopsis SYT1 from 

the ER to the PM, Arabidopsis SYT1 is an ER integral membrane protein 

localized on the ER-PM contact sites. 

 

4.1.2.  Tethering of SYT1 and VAP27-1 on ER-PM Contact 
Sites 

The relationships between Arabidopsis SYT1 and ER-PM tethering 

proteins VAP27-1 and NET3C have also been addressed in this study. 

Co-expression in tobacco leaves, double immunofluorescent staining, and 

double immunogold labeling together have confirmed that Arabidopsis STY1 

does not co-localized with VAP27-1 and NET3C on the ER-PM contact sites. 

The localization patterns of these proteins indicate that there are different 

types of ER-PM contact sites, which have been identified by our team. These 

contact sites may have different functions, but their functions are interrelated. 

From our observation, the VECSs are always associated with the SECSs, but 

half of the SECSs are not attached to the VECSs, suggesting that the VECSs 

may be dependent on the SECSs. The expression of the mutant form of 

VAP27-1, which was unable to anchor to the PM has no effect on the 

stationary characteristic of SECSs; the mutation of three conserved amino acid 

residues of the calcium binding motif slight reduces the stability of the SECSs. 

The SECSs remain intact either by photobleaching or by the depletion of 

cytosolic calcium after BAPTA-AM treatment. However, the protein can be 

removed by photobleaching with BAPTA-AM pre-treatment. These data 

indicate that the tethering of SYT1 to the PM is steady and the SECSs are 
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stable, which agrees with the results described previously (Perez-Sancho et al., 

2015). Based on the above observation, it can be inferred that Arabidopsis 

SYT1 plays important roles in stabilizing the ER network or supporting the 

compartmentation of the cell cortex. 

The tethering of VAP27-1 to the PM does not require SYT1 because the 

VECSs can still be found in SYT1 null mutant. These results are compatible 

with the presence of the stable VECSs in the cells in which the SECSs are 

removed by BAPTA-AM pre-treatment and photobleaching. However, the ER 

tubules are more dynamic, the VECSs are less stable, and the turnover of 

VAP27-1 increases in SYT1 null mutant. The ER network is less connected 

and the average number of three-way-junctions is decreased in the absent of 

SYT1, although cells with well-reticulated ER and those with extremely motile 

ER strands can be observed in the same leaf. This observation suggests that 

the organization of cortical ER varies from across cell types. Additionally, 

Arabidopsis SYT1 and other factors are vital in regulating the stability of 

cortical ER. The behaviour of the cortical ER and the ER-PM contact sites may 

be affected by other endogenous and exogenous factors. Possible endogenous 

factors include growth, health status, signaling, or other tethering proteins; 

exogenous factors include pathogens, osmotic stress, wounding, or mechanical 

stimuli. This may also explain the conflicting results that the ER network may 

be found to be either collapsed or intact in SYT1 null mutant as described in 

previous studies (Levy et al., 2015; Perez-Sancho et al., 2015). Recently, 

different types of proteins localized on the ER-PM contact sites have also been 

discovered in yeast and human (Gatta et al., 2015; Henne et al., 2015). Further 
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studies on ER-PM anchor proteins in plants will help to reveal the complexity of 

ER-PM interactions. 

This study has demonstrated that the fluorescence recovery of 

VAP27-1-YFP after photobleaching on the ER-PM contact sites is enhanced in 

SYT1 null mutant. Such enhancement is restored after treated with the 

actin-depolymerizing drug latrunculin B. However, latrunculin B treatment only 

slightly affect the recovery of VAP27-1 in Col-0 background. Depolymerization 

of microtubule by oryzalin treatment increases the recovery of VAP27-1 in 

Col-0 background. This result is consistent with the previous results showing 

that microtubule stabilizes the VAP27-1 by direct physical interaction (Wang et 

al., 2014). However, oryzalin treatment has no significant effect on the 

dynamic of VAP27-1 in SYT1 mutant. This indicates that the increased motile 

fraction of VAP27-1 resulted from SYT1 mutation is actin-dependent. ER 

dynamics can be categorized into two types: i) directional ER remodeling and ii) 

diffusive movement. Directional ER remodeling is an actomyosin-based 

movement, which is hindered by latrunculin B treatment but not by oryzalin 

treatment (Griffing et al., 2014; Runions et al., 2006). The enhanced recovery 

of VAP27-1 couples with the enhanced ER remodeling in SYT1 mutant. 

Therefore, it can be inferred that Arabidopsis SYT1 restrains the ER 

remodeling by ER-PM tethering and stabilizes the VECSs without a direct 

interaction with VAP27-1. 
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4.1.3.  ER-PM Contact Sites and Vesicle Trafficking 

Roles of ER-PM contact sites in membrane trafficking have been 

documented recently. In yeast, the spatial distribution of the cortical ER in 

close contact with the PM regulates the endocytic and exocytic events by 

steric hindrance for vesicle formation and delivery (Stradalova et al., 2012). 

Furthermore, several enzymes and ion channels localized on ER-PM contact 

sites can also modulate the recognition sites of receptors and PIP content on 

the PM. For example, the internalization of ligand-bound ephrin (Eph) receptors 

and interferon receptor (IFNAR1) are regulated by the ER-anchored protein 

tyrosine phosphatase 1B (PTP1B) on ER-PM contact sites in human cells 

(Carbone et al., 2012; Nievergall et al., 2010). The ER-localized PIP 

phosphatase Sac1 together with VAP and oxysterol-binding protein related 

proteins (ORPs) regulates phosphatidylinositol 4-phosphate (PI4P) pools, a 

signaling molecule controlling the secretion and endocytic recycling, at ER-PM 

contact sites (Hammond et al., 2012; Short, 2015; Stefan et al., 2011). E-SYT1, 

VAP-A and the phosphatidylinositol­transfer protein Nir2 together regulate the 

replenishment of PM phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which 

play important roles in endocytosis and PM-actin interaction (Chang et al., 

2013; Di Paolo and De Camilli, 2006). In addition, the E-SYT1-mediated 

contact sites, and the activity of voltage-gated Ca2+ channels, which can be 

inhibited by STIM1, have also been proposed to regulate the 

neurotransmission (Fernández-Busnadiego et al., 2015; Park et al., 2010; 

Stefan et al., 2013). 

 A previous study has shown that the formation of PM-derived endosomes 

is inhibited by the expression of truncated SYT1 lacking the C2B domain in N. 
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benthamiana leaf cells (Lewis and Lazarowitz, 2010). This study demonstrates 

that the accumulation of BFA compartments is attenuated in the root cells of 

SYT1 null mutant. BFA treatment inhibits the endosomal recycling to the PM 

by targeting GNOM, an ADP-ribosylation factor-guanine nucleotide exchange 

factor (ARF-GEF), which mediates vesicle budding process in Arabidopsis roots 

(Beck et al., 2012; Naramoto et al., 2014). The BFA compartments, visualized 

by the fluorescent endocytic tracer FM4-64, consist of the FM dye-stained 

early endosomes and trans-Golgi networks. The reduced BFA compartments 

sizes may represent reduced endocytosis or less fusion of the early 

endosomes. In addition, the expression of SYT1-GFP driven by native SYT1 

promoter in tobacco leaves shows various patterns and sizes of the SECSs on 

the cell cortex. The immunofluorescent labeling of SYT1 in the root cells also 

shows that the SECS may occupy large area of the cell cortex. The ER-PM 

contact sties in nerve cells also display different forms and shapes: the ER-PM 

junctions show discrete punctate patterns at the synapses, whereas the width 

of the ER-PM contact area can extend up to 2 to 4 µm in other regions of the 

neurons (Hayashi et al., 2008; Rosenbluth, 1962; Stefan et al., 2013). 

Moreover, it has been shown that the sizes of the SECSs are increased by 

thigmostimuli (Perez-Sancho et al., 2015). The ER-endosome contact sites 

and the integrity of ER network have also been shown to regulate the 

endosome fission, endosome dynamics, and endocytosis (Rowland et al., 

2014; Stefano et al., 2015). All these data suggest that Arabidopsis SYT1 play 

a role in vesicle trafficking by maintaining the ER stability and by regulating the 

extent of ER-PM contact sites. 
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4.2.  Arabidopsis SVL 

4.2.1.  Physiological Functions of Arabidopsis SVL 

The phylogenetic analysis shows that the division of SV2 and SV2-like 

proteins occurred prior to the divergence of eukaryotes into unikonts (animals, 

fungi, Choanozoa and Amoebozoa) and bikonts (plants, chromists and all 

other protozoa). SV2 proteins are preserved only in vertebrate animals while 

other eukaryotes lost the gene in evolution. It is unclear how these 

neuron-specific genes, loss of which produces lethal phenotype in mice, exist 

only in vertebrates but not in other invertebrates. SV2-like proteins are 

conserved in all eukaryotes and are abundant on the synaptic vesicles in 

mammals. Unlike SV2, SV2-like proteins are not glycosylated (Janz et al., 

1998). The function of SV2-like in eukaryotes is still unknown. The 

promoter:GUS reporter assay in this study shows that the expression of 

Arabidopsis SV2-like is restricted in the root tips and the hypocotyls at 

germination and early growing stages. The expression of Arabidopsis SV2-like 

increases over time and spreads through the whole roots and leaves at later 

seedling stage (4 to 7 days after germination). This pattern is similar to that of 

Xenopus SVOP/SV2-like gene, whose expression also increases over time in 

the developing nervous system (Logan et al., 2005). The promoter activity of 

Arabidopsis SV2-like seems to be regulated by the salt stress in our 

preliminary data; however, all these data should be confirmed by RT-PCR in 

the future. Even though the SVL null mutant svl-1 seems to grow faster at the 

early seedling stage (2 to 5 days after germination) in the control and salt 

stress conditions, no consistent and convincing results had been obtained. 

The phenotype of SVL mutants and the physiological function of SVL gene in 
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Arabidopsis remain to be clarified. 

 

4.2.2.  Subcellular Localization of Arabidopsis SVL 

 

No evidence of the subcellular localization of Arabidopsis SVL has been 

published. This study demonstrates that Arabidopsis SVL is mainly localized 

on the TGN/EE using live-cell imaging of fluorescently tagged SVL in tobacco 

leaf cells and Arabidopsis root cells. The genomic sequence including the 

promoter of SVL was used in the expression vectors. The TGN/EE is a 

dynamic and complicated organelle that carries a variety of cargos from the 

endocytic and biosynthetic pathways. The TGN/EE receives the materials form 

the Golgi and the PM, and transports the materials to the MVBs or to the PM 

depending on the sorting processes. Many protein components are involved in 

the sorting and targeting processes, including receptors, adaptor proteins, 

clathrins, soluble-N-ethylmaleimide sensitive factor attachment protein 

receptor (SNAREs), and Rat sarcoma (Ras)-related proteins in brain (Rab) 

GTPases (Rutherford and Moore, 2002). This study shows that Arabidopsis 

SVL is largely co-localized with VTI12, a vesicle-associated SNARE protein 

mostly localized to the TGN in plant cells (Reyes et al., 2011). VTI12 is shown 

to be involved in the transport of vacuolar storage proteins to the vacuoles 

(Sanmartín et al., 2007) and VTI12 mutants display accelerated leaf 

senescence under starvation conditions (Surpin et al., 2003). This phenotype 

is connected with the possible function of animal SVOP in aging, even though 

SVOP knockout mice show normal aging phenotype (Yao et al., 2013). This 

study also shows that Arabidopsis SVL is not localized to the clathrin-coated 

vesicles, indicating that the trafficking of SVL vesicles is clathrin-independent. 
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This result also supports the idea that VTI12 is involved in the 

clathrin-independent pathway (Sanmartín et al., 2007). 

 

Rha1/RabF2a belongs to the conventional Rab5-related GTPase which 

mediate the trafficking of soluble cargo from the PVC/MVB/LE to the lytic 

vacuole (Sohn et al., 2003). On the other hand, Ara6/RabF1 is a plant-unique 

Rab5-related GTPase which play a role in the trafficking from the 

PVC/MVB/LE to the PM (Ebine et al., 2012; Tsutsui et al., 2015). Rha1 and 

Ara6 are localized on distinct populations of PVC/MVB/LE with large overlap 

(Ebine et al., 2011). This study shows that Arabidopsis SVL partly co-localizes 

with Ara6, but does not overlap with Rha1 and the LE marker FYVE. In 

addition, Arabidopsis SVL is also partly co-localized with EE/RE marker 

RabA1e (Asaoka et al., 2013; Bar et al., 2013). Taken together, these data 

suggest that Arabidopsis SVL may play a role in the vesicle transport from 

endosomes to the PM. 
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5.  Conclusions 

This work addresses the spatial relationships between Arabidopsis SYT1, 

VAP27-1 and the cytoskeletons on the cell cortex, and the functional relevance 

of Arabidopsis SYT1 in ER dynamics and vesicle trafficking. By live-cell 

imaging, immunocytochemistry, and immunogold labeling, SYT1 and VAP27-1 

are shown to be localized on distinct ER-PM contact sites. VAP27-1 is always 

in contact with SYT1 and often associated with microtubules, but SYT1 is often 

excluded by microtubules on the cell cortex and often arranged along thick 

actin filaments. Amino acid substitutions demonstrate that VAP27-1 mutant 

protein has no dominant-negative effect on the SYT1 anchoring to the PM, and 

the mutation on the C2A domain of SYT1 does not prevent SYT1 from 

accumulating on the ER-PM contact sites. Using transient and stable 

transformation of VAP27-1 in Arabidopsis, SYT1 is shown to be essential for 

maintaining the stability of ER network and the ER-PM contact sites. The 

dynamic of VAP27-1 on the ER-PM contact sites is restrained by microtubule 

through direct interaction and by SYT1 through indirect interaction. 

Time-course imaging shows that SYT1 influences the distribution of early 

endosomes on the cell cortex. Finally, by fluorescent endocytic dye FM4-64 

staining and BFA treatment, the vesicle trafficking is shown to be attenuated in 

the lack of SYT1. In summary, this study shows that Arabidopsis SYT1 is 

critical for tethering the ER to the PM and plays roles in regulating the ER 

remodeling, VAP27-1-located ER-PM contact sites, and vesicle trafficking. 

This study also shows that Arabidopsis SVL-GFP is mainly associated 

with the VTI12-labelled TGN and partly co-localized with the Ara6-labelled 

MVBs and RabA1e-labelled REs. Arabidopsis SVL-GFP is not overlapped with 
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the CLC-labelled EEs and the FYVE- and Rha1-labelled LEs. In addition, 

Arabidopsis SVL-GFP is incorporated into the BFA compartments but not the 

wortmannin-induced compartments in root cells. Taken together, Arabidopsis 

SV2-like is localized to a specific population of the TGN/EE that may 

participate in regulating the vesicle trafficking to the PM. Furthermore, the 

activity of SVL promoter is developmental-stage-dependent; however, the SVL 

null mutant shows no obvious phenotype. These characteristics of Arabidopsis 

SVL resemble that of mammalian SVOP. The function of SV2-like family in 

eukaryotes still remains mysterious and requires further investigation. 

This study aimed at investigating functions of synaptic vesicle proteins in 

plants and, in turn, proving the existence of neurotransmission in plants. This 

research has discovered that Arabidopsis SYT1 bear functional similarities 

with E-SYTs in animals instead of SYTs. In both plants and animals, SV2-like 

proteins, whose physiological functions remain unknown, are located on 

vesicles. It still remains unknown how plants convert electric signals into 

chemical signals. 
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7.  Appendix 
 

7.1.   Abbreviation 
 

aa    amino acid 

ABD2   actin-binding domain 2 

ABRC      Arabidopsis Biological Resource Center 

ANO1   anoctamin 1 

AP2    adaptor protein 2 

AtSYT   Arabidopsis thaliana synaptotagmin 

BAPTA-AM 1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid 

tetrakis(acetoxymethyl ester) 

BFA    brefeldin A 

BLAST      Basic Local Alignment Search Tool 

BSA      bovine serum albumin 

CC    coiled-coil 

CFP   cyan fluorescent protein 

CLC   clathrin light chain 

CRAC   Ca2+ release-activated Ca2+ 

DNA      deoxyribonucleic acid 

DAPI   4',6-diamidino-2-phenylindole 

EDTA      Ethylenediaminetetraacetic acid 

EE    early endosome 

ER    endoplasmic reticulum 

ERMES   ER–mitochondrion encounter structure 

E-SYT   extended synaptotagmin 

DMSO   dimethyl sulfoxide 

FFAT   di-phenylalanine in an acidic tract 

FYVE      Fab1, YOTB, Vac1, and EEA1 

GFP      green fluorescent protein 

GUS      β-glucuronidase 

HRP      horseradish peroxidase 

Ist2    increased sodium tolerance protein 2 

JPH    junctophilin 

KKKK   poly-lysine patch 

LatB   latrunculin B 

LE    late endosome 

HsSYT   Homo sapiens synaptotagmin 
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MAFFT   Multiple Alignment using Fast Fourier Transform 

MAP4   microtubule-associated protein 4 

MBD   microtubule-binding domain 

MCS   membrane contact site 

MFS   major facilitator superfamily 

MORN   membrane occupation, and recognition nexus 

MS        Murashige and Skoog 

MSP   N-terminal major sperm protein 

MTSB      microtubule stabilizing buffer 

MVB   multivesicular body 

NAB   NET actin-binding 

NCBI   National Center for Biotechnology Information 

NET3C   Networked 3C 

Nir    PYK2 N-terminal domain-interacting receptors 

Nvj2   nucleus–vacuole junction 

ORP   OSBP-related protein 

OSBP   oxysterol-binding protein 

OSH   oxysterol binding homology 

PBS      phosphate-buffered saline 

PIP/PtdInsP  phosphoinositide 

PIP2   phosphatidylinositol(4,5)-bisphosphate 

PM    plasma membrane 

PB    polybasic 

PC    phosphatidylcholine 

PCR      polymerase chain reaction 

PI    phosphatidylinositol 

PS    phosphatidylserine 

PVC   prevacuolar compartment 

PYK2   proline-rich tyrosine kinase 2 

Rab    Ras-related proteins in brain 

Ras    rat sarcoma 

RE    recycling endosome 

RFP   red fluorescent protein 

Rha1   root handedness 1 

RNA      ribonucleic acid 

RNAi   RNA interference 

RT-PCR   reverse transcription polymerase chain reaction 

Sac1   phosphoinositide phosphatase 
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Scs2   suppressor of choline sensitivity 

ScTcb   Saccharomyces cerevisiae Tricalbin 

SECS   SYT1-enriched ER-PM contact sites 

SMP   synaptotagmin-like mitochondrial and lipid-binding protein 

SNARE soluble-N-ethylmaleimide sensitive fusion factor attachment 

protein receptor 

SOCE   store-operated Ca2+ entry 

SR    sarcoplasmic reticulum 

ST    sialyltransferase 

STIM1   stromal interaction molecule-1 

SV2    synaptic vesicle protein 2 

SVL    SV2-like 

SVOP   SV2-related protein 

SYT    synaptotagmin 

TGN   trans-Golgi network 

TM    transmembrane 

TULIP   tubular lipid-binding 

VAMP   vesicle-associated membrane protein 

VAP   VAMP-associated protein 

VECS   VAP27-1-enriched ER-PM contact sites 

VSR   vacuolar sorting receptor 

VTI12   vesicle transport v-SNARE 12 

YFP    yellow fluorescent protein 
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