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Introduction and overview

In recent years our knowledge about the Universe appears to have consolidated along with
all observational data that seem to converge consistently into a standard model of cosmol-
ogy. The satellite-based Cosmic Microwave Anisotropy Probe WMAP confirmed previous
measurements of cosmological parameters with flying colors and to an unprecedented accu-
racy. Since then, experiments such as large galaxy surveys, Lyman-α forest and cosmic shear
measurements have contributed to further tighten the commonly accepted paradigm of a flat,
accelerating Universe whose large-scale structures are dominated by cold dark matter.

Despite all of the above, we still lack a fundamental understanding of the physics of the
Universe. The nature of both dark matter and “dark energy” which together comprise 96%
of the content of the Universe is still a mystery. Moreover, even though inflationary models
provide the necessary special initial conditions in the early Universe and explain in a consistent
way our observations, their predictions have yet to go through the mandatory path of scrutiny
and confirmation. On the other hand, structure formation in the present Universe on scales
smaller than a couple of Mpc, where non-linear physics plays an essential role, is still not
understood in very much detail.

In order to probe the large-scale structure in the Universe and measure its distribution and
properties, weak gravitational lensing is an excellent tool. The light of distant galaxies is
deflected coherently by the tidal gravitational field of the intervening matter along the line of
sight to the observer. The resulting distortions, or cosmic shear, can be measured statistically,
revealing valuable information about the properties of the large-scale structure and, conse-
quently, about cosmology and cosmological parameters. Since gravitational light deflection is
independent of the nature and the state of matter, it is a unique tool to study the dark matter
in the Universe. Future cosmic shear surveys will play a major role in cosmology. The sensi-
tivity of weak lensing observations will be high enough to allow for precision measurements
of cosmological parameters. These measurements will provide constraints on cosmology that
are independent and complementary to those obtained from other experiments such as CMB
anisotropy probes, supernovae of type Ia and galaxy surveys.

Cosmic shear is sensitive to matter on non-linear scales. It probes the non-linear evolution
of structure and objects in the Universe and can be used to measure the non-Gaussianity of the
large-scale structure arising from gravitational collapse. Up to now, cosmic shear observations
have focused mainly on second-order statistics which only probe the Gaussian part of the
matter distribution. Higher-order statistics that are able to determine non-Gaussian aspects
of the large-scale structure will become more and more important and observational feasible
with larger and deeper surveys, higher sensitivity and better understanding of systematics
in the measurement and data analysis. Moreover, since the dependence on cosmology is
different for shear statistics of second- and third order, the combination of both will improve
the determination of cosmological parameters and reduce the degeneracies between them.
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Introduction and overview

This thesis addresses the problem of constraining cosmological parameters from measure-
ments of second- and third-order cosmic shear statistics. It is organized as follows:

• Chapter 1 sets the foundation needed for the understanding of cosmic shear which is the
cosmological model together with structure formation and those aspects of gravitational
lensing that are relevant for weak lensing by the large-scale structure.

• In Chapter 2, second- and third-order statistics of shear are defined along with estima-
tors and their covariance, being essential for the analyses in the chapters that follow.
Parts of this chapter are based on the publications Schneider, van Waerbeke, Kilbinger,
& Mellier (2002); Schneider, Kilbinger, & Lombardi (2005) and Kilbinger & Schneider
(2005).

• In Chapter 3, the effect of the survey geometry on cosmological parameter constraints
is studied using analysis techniques involving likelihood, Fisher information matrix and
Karhunen-Loève eigenmodes. The results of this work are published in Kilbinger &
Schneider (2004) and Kilbinger & Munshi (2005).

• Chapter 4 compares third-order shear statistics from theoretical, non-linear models with
ray-tracing simulations and portrays a visualization of the shear three-point correlation
function.

• Chapter 5 presents predictions of the improvement of constraints on cosmological pa-
rameters by combining second- and third-order aperture mass statistics of cosmic shear.
This part of the thesis is published in Kilbinger & Schneider (2005).

The major results of this work are summarized at the end of the corresponding Chapters 3,
4 and 5. This thesis concludes with a summary.

2



Chapter 1

Cosmology and the basics of gravitational
lensing

Cosmology is the science of the physical Universe as a whole. It attempts to understand the
properties and the dynamics of space-time itself, in which all objects we observe including
ourselves are embedded. A cosmological model has to explain the overall shape and structure
of the Universe, its time-evolution, and in a statistical sense describe how objects in the
Universe form and evolve. The standard or “concordance” model of cosmology, which is
outlined in this chapter, is based on the assumption of large-scale homogeneity and isotropy
and quantifies the contents, the expansion and the age of the Universe with great success.
On top of this homogeneous background, linear cosmological perturbation theory explains
the growth of matter inhomogeneities from small initial fluctuation seeds, which leads to the
formation of structures on all scales in the Universe. Finally, non-linear approaches based on
high-resolution N -body simulations try to model collapsed and virialized objects like galaxy
clusters which only formed in the recent past.

The most successful model to explain the nowadays numerous and consistent cosmologi-
cal observations is based on cold dark matter (CDM, see Sect. 1.1.9) with a non-vanishing
cosmological constant Λ (Sects. 1.1.5, 1.1.10) and consequently is abbreviated by the term
ΛCDM model.

The main goal of this thesis concerns predictions from observations of the weak gravita-
tional lensing effect by large-scale matter inhomogeneities in the Universe. More precisely, I
examine the ability of these observations to constrain parameters of the ΛCDM model. In
this introductory chapter, the standard model of cosmology with its parameters and the the-
ory of structure formation in a CDM Universe are reviewed (Sect.1.1). Linear perturbation
theory and some non-linear extensions are covered in Sect. 1.2 before the basic definitions,
notations and properties of those aspects of gravitational lensing are given in Sect. 1.3 which
are relevant for the later analysis of weak lensing statistics.

1.1 The homogeneous and isotropic Universe

1.1.1 The field equations

The dominant force in the Universe is gravitation. Not only is the formation of all major
objects, starting from planets to stars, galaxies up to clusters of galaxies, governed by gravity,
also the dynamics and evolution of the Universe as a whole is determined by this force. The
fundamental theory of gravity is the General Theory of Relativity (Einstein 1916), which
interprets gravity as a property of space-time. Space-time is described as a Riemannian
manifold, which is “deformed” in the presence of masses. All particles travel on geodesics of

3



Chapter 1 Cosmology and the basics of gravitational lensing

this manifold, and the effect of gravity on particle trajectories manifests itself in an alteration
of the geodesics with respect to empty space. In classical (Newtonian) theory, this corresponds
to the deviation of a particle trajectory from a straight line in the presence of a force field.
The Riemann tensor Rµ

νλρ describes the curvature of the manifold, and depends on the metric
gµν and its first and second derivatives.

The relation between space-time geometry and matter is expressed by Einstein’s covariant
field equations,

Rµν − 1

2
gµνR =

8πG

c2
Tµν − Λgµν . (1.1)

The Ricci tensor Rµν = Rα
µνα and the Ricci scalar R = Rα

α are contractions of the Riemann
tensor. The matter and energy-momentum content of the Universe is described by the tensor
Tµν . G = 6.673 × 10−11 m3 kg−1s−2 is Newton’s gravitational constant and c the speed of
light. A non-vanishing “cosmological constant” Λ is allowed in the field equations since it
preserves the covariance of the equations and can be considered as a free parameter of the
field equations. Initially, it was introduced by Einstein in order to allow for static solutions
of (1.1). Later, it was realized that it can be interpreted as vacuum energy (Sect. 1.1.10) and
only very recent observations strongly suggest that we live in a Universe with a non-vanishing
Λ. However, there is still no convincing physical interpretation for this mathematical term in
the equation.

1.1.2 The Robertson-Walker metric

The field equations (1.1) are non-linear and to solve them is far from trivial. Only in a
few special cases for the form of the energy-momentum tensor Tµν and the metric tensor
gµν solutions can be found. A simple case, the one on which the concordance cosmology
model is based, is a Universe which is homogeneous and isotropic. These two assumptions
are the pillars of the cosmological principle. Observationally, isotropy around us is verified
on scales larger than about 100 Mpc from the isotropic distribution of galaxies and distant
radio sources, and from the isotropy of the CMB (COBE1, Smoot et al. 1991). Combining
these observations with the assumption that the Earth is not a special place in the Universe,
isotropy around any point and therefore homogeneity of the Universe follows. Moreover,
recent spectroscopic galaxy surveys confirm statistical homogeneity on scales larger than 100
Mpc (Hogg et al. 2005).

A metric which describes a homogeneous and isotropic Universe is the Robertson-Walker
metric, independently found by Robertson (1935) and Walker (1936),

ds2 = gµνdx
µdxν = c2dt2 − a2(t)

[

dw2 + f2
K(w)

(

dϑ2 + sin2 ϑ dϕ2
)]

. (1.2)

Here, a(t) is the scale factor which describes the global expansion or contraction of the Uni-
verse. A remarkable consequence of this metric is that there exists a common universal time
for each observer with zero peculiar velocity, which is the residual velocity component after
subtracting the global expansion. Each of these so-called fundamental observers therefore
experiences the same history of the Universe.

The spatial coordinates in (1.2) are given by the radial part or comoving coordinate dw
and the angular element dϑ2 + sin2 ϑ dϕ2. Note that the coordinate origin can be chosen
arbitrarily. The radial function fK is the comoving angular distance (see also Sect. 1.1.7) for

1COsmic Background Explorer
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1.1 The homogeneous and isotropic Universe

one of the three distinct 3-surfaces of constant curvature K: The sphere (K > 0), the flat
Euclidean space (K = 0) and the hyperboloid (K < 0). It is of the form

fK(w) =

∫ w

0

dw′

√

1 −K · (w′)2
=











K−1/2 sin
(

K1/2w
)

for K > 0

w for K = 0

(−K)−1/2 sinh
(

(−K)1/2w
)

for K < 0 .

(1.3)

1.1.3 The Friedmann equations

In order to solve Einstein’s field equations (1.1), one has to make a particular choice for the
energy-momentum tensor. Under the assumption of the cosmological principle, it has to take
the form of a homogeneous and isotropic perfect fluid, Tµν = (p/c2 + ρ)UµUν − p gµν , where
Uµ is the 4-velocity of the fluid. The density ρ and the pressure p are functions of time or of
the scale factor a only.

Together with the Robertson-Walker metric, the Einstein equations can be simplified to
the Friedmann equations (Friedmann 1922, 1924)

3

(

ȧ2

a2
+
Kc2

a2

)

= 8πGρ+ Λ,

ä = −4πG

3

(

3p

c2
+ ρ

)

a+
Λ

3
a,

(1.4)

where the dot represents the time-derivative. Usually, the normalization a(t0) = a0 = 1
is made for t0 being the present epoch. These equations and some special solutions have
independently been found by Lemâıtre (1927, 1931); a model which satisfies (1.2) and (1.4)
is therefore called Friedmann-Lemâıtre-Robertson-Walker cosmology.

The two Friedmann equations (1.4) can be combined to yield the adiabatic equation,

d

dt

(

ρa3c2
)

+ p
d

dt
a3 = 0, (1.5)

which states that the energy change in a fixed comoving volume is compensated by the
pressure times the volume change, in other words, it is the first law of thermodynamics in
cosmological context.

1.1.4 Redshift

In a non-static Universe, photons are affected by the dynamics of space-time while they are
propagating. Let a light beam of wavelength λe be emitted by a comoving source at time
te. This signal as received at a later time t0 by a comoving observer may have a different
wavelength λ0. The comoving distance w between source and observer is constant. Because
light travels on null geodesics, dw = −cdt/a, and thus

w =

∫ t0

te

cdt

a
= const. (1.6)

Differentiating with respect to te yields the time-dilation dt0/dte = a(t0)/a(te) which also
applies to frequency and wavelength,

dt0
dte

=
a(t0)

a(te)
=
νe

ν0
=
λ0

λe
= 1 + z, (1.7)

5



Chapter 1 Cosmology and the basics of gravitational lensing

where in the last step the relative change of wavelength 1 + z was defined. In an expanding
Universe, the scale factor a is increasing with time and photons are shifted towards longer
wavelength. Therefore, z is called redshift.

Already in the 1920s, shortly after Hubble discovered his famous law according to which
the redshift of galaxies is proportional to their distance from Earth, this redshift of galaxy
spectra was interpreted as relative velocity and the expansion of the Universe was concluded.

1.1.5 Constituents of the Universe and density parameters

The energy-momentum content of the Universe can be separated into several species, which
are characterized by their corresponding equation of state relating the density ρ to the pressure
p of the species via

p = wc2ρ, (1.8)

where w is called the equation-of-state parameter. The Friedmann equations (1.4) can be
solved for a single species with a constant w. From the adiabatic equation (1.5), one finds
the following solution for the density as a function of a,

ρ ∝ a−3(1+w). (1.9)

Primarily, there exist three kinds of species that are relevant for the evolution of the Uni-
verse. The first kind consists of non-relativistic matter ρm with vanishing pressure (w = 0),
also called “dust”. This includes non-relativistic baryonic ρb and cold dark matter ρcdm

(ρm = ρb + ρcdm), see also Sect. 1.1.9. The second kind is radiation ρr which consists of
relativistic particles with w = 1/3; its main ingredients are the CMB photons (Sect. 1.1.8)
and relic relativistic neutrinos from the early Universe. The third kind is the cosmological
constant which can be assigned the energy density ρΛ. Because of isotropy the Λ-term in
(1.1) must be the same for all fundamental observers. Chosing appropriate coordinates, this
term is proportional to the Minkowsk metric ηµν = diag(1,−1,−1,−1) and therefore, one
can attribute an equation-of-state parameter w = −1 to the cosmological constant, which
has the same form than a quantum-mechanical vacuum filled with virtual particles, see also
Sect. 1.1.10.

A useful parametrization of the expansion of the Universe is done by introducing the Hubble
parameter H = ȧ/a as the relative expansion rate. Its present value, H0 = H(t0) is the Hubble
constant and is often written as H0 = 100h km s−1Mpc−1 with the observational uncertainty
hidden in h. Most recent measurements from the combination of WMAP2 and the Hubble
key project yield h = 0.71+0.04

−0.03 (Spergel et al. 2003).
The total density (ρm + ρr + ρΛ) of the Universe can take a special value, called the critical

density ρc, for which the Universe is flat, or K = 0. Its present-day value is

ρc,0 =
3H2

0

8πG
= 1.879 × 10−29 h2 g cm−3. (1.10)

Therefore for an under-critical Universe (ρ < ρc, K < 0), the geometry is open and for a
super-critical one (ρ > ρc, K > 0), it is closed. Note that if Λ 6= 0, a closed Universe can
expand forever and does not necessarily recollapse.

The densities of the various species can be expressed as fractions of the critical density, e.g.
Ωm = ρm,0/ρc,0 for non-relativistic matter. Similarly, the density parameter for baryons is Ωb

2Wilkinson Microwave Anisotropy Probe, http://map.gsfc.nasa.gov
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1.1 The homogeneous and isotropic Universe

and for relativistic particles is Ωr. The density parameter corresponding to the cosmological
constant is ΩΛ = Λ/(3H2

0 ). Recent measured values of the density parameters from a combi-
nation of CMB experiments (WMAP, CBI3, ACBAR4), the 2dF galaxy survey and Lyman-α
forest data are Ωm = 0.27 ± 0.04, Ωb = 0.044 ± 0.004 and ΩΛ = 0.73 ± 0.04 (Spergel et al.
2003).

An upper boundary for the cosmic neutrino density is Ων < 0.015 (Spergel et al. 2003),
which seems non-negligible e.g. in comparison to the baryon density. However, to get a large
neutrino density, the neutrino masses have to be high, up to 0.2 eV, which makes them behave
as non-relativistic particles for most of the cosmic time (the present thermal energy of the
cosmic background neutrinos is of the order of 10−4 eV, thus their rest mass is much larger
than their kinetic energy) and their contribution to Ωm is within the measurement errors.

In terms of the density parameters defined above, the first of the Friedmann equations can
be written as

(

H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

1 − Ωm − ΩΛ − Ωr

a2
+ ΩΛ, (1.11)

and for the curvature one gets

K =

(

H0

c

)2

(Ωm + ΩΛ + Ωr − 1) . (1.12)

Because of its small contribution to the total present density, Ωr can be neglected for late
times.

1.1.6 Hot Big Bang and expansion history

From the observation that all objects whose peculiar velocity is small with respect to the
Hubble flow are receding from us, we know that the Universe is expanding today, ȧ(t0) > 0.
If the right-hand side of the Friedmann equation (1.11) is not zero for some a < 1, one finds
that ȧ was always larger than zero in the past and the Universe expanded from an initial
singularity5 a = 0 which is assigned the time t = 0. The time that elapsed since then is called
the world age t0 and is of the order of the Hubble time H−1

0 . Recent estimates constrain
the world age to t0 = 13.7 ± 0.2 Gyr (Spergel et al. 2003). The finite distance a photon can
travel since the Big Bang is called the horizon which is dh(t) =

∫ t
0 c dt′/a(t′) in comoving

coordinates.

Inserting the three species ρm, ρr and ρΛ individually into (1.9), one sees that for dust
ρm ∝ a−3, for radiation ρr ∝ a−4 and for the cosmological constant ρΛ = const. These
functional dependencies also reveal themselves in the parametrized Friedmann equation 1.11.
At very early times, the Universe was radiation-dominated and expanded with a ∝ t1/2. Using
the Stefan-Boltzmann law, ρ ∝ T 4, one gets for the temperature T ∝ a−1, thus the Universe
was very hot in this era and cooled in the course of the expansion. The CMB (Sect. 1.1.8) is
an observed relic of this hot epoch. At a redshift of zeq ≈ 23 900 Ωmh

2, the matter-dominated
era started and the expansion slowed down to a ∝ t2/3. This lasted until a redshift of about
zacc = 0.4 when the vacuum energy or cosmological constant took over. Since then the

3Cosmic Background Imager
4Arcminute Cosmology Bolometer Array Receiver
5For special initial values of the densities, i.e. large ρΛ and small ρm, a singularity could be avoided with a

finite maximum redshift. However, observations exclude these “loitering” models.
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Chapter 1 Cosmology and the basics of gravitational lensing

Universe is considered to be in a phase of accelerated expansion, which eventually will be
exponential with a ∝ exp(

√

Λ/3 t).

1.1.7 Distances

In a curved space-time, the concept of “distance” is not unambiguous. Distance is closely
related to the measurement method used to obtain it and in contrast to the Euclidian case,
different methods give different answers in a curved and non-static space-time.

A small comoving distance dDcom between two nearby objects is the distance which remains
constant in time if these two objects follow the Hubble flow, and which therefore is the
comoving coordinate distance, dDcom = dw. For null-geodesics, ds vanishes and c dt = −a dw
holds for the distance measured “backwards in time”, i.e. towards smaller cosmic time. Thus,
dDcom = −c da/(Ha2), and the total line-of-sight comoving distance is the integral over many
infinitesimal contributions between the two redshifts z1 and z2 of the objects,

Dcom(z1, z2) = w(z1, z2) =
c

H0

∫ a(z1)

a(z2)
da
[

aΩm + a2(1 − Ωm − ΩΛ) + a4ΩΛ

]−1/2
. (1.13)

The angular diameter distance Dang is given by the ratio of the physical size δL of an object
at redshift z2 to its apparent angular diameter δϑ as seen by an observer at z1. In analogy
to the Euclidean case, one defines Dang = δL/δϑ. The coordinates of two edges of the object
can be set to (w, ϑ, ϕ) and (w, ϑ + δϑ, ϕ), respectively. The spatial part of the line element
in (1.2) then becomes a2(z2) f

2
K(w(z1, z2)) δϑ

2 = δL2 and thus,

Dang(z1, z2) = a(z2) fK(w(z1, z2)). (1.14)

The angular distance is the most prevalent distance used in gravitational lensing, because
of its simple geometrical interpretation, see the lens equation (1.59). Note, that in general
Dang(z1, z2) 6= Dang(z2, z1).

1.1.8 The cosmic microwave background

At the redshift of z∗ ≈ 1090, 380 000 years after the Big Bang, the Universe cooled down
to about T ≈ 3 000 K and photons and electrons which hitherto formed an ionized plasma
decoupled. The electrons combined with protons to hydrogen and the Universe became neutral
and transparent for photons. In the expanding Universe, these ubiquitous photons travel
nearly unhindered through space and are redshifted, but since their distribution function
does not change its form, they still have an almost perfect black body spectrum originating in
the primordial plasma. The existence of this relic radiation as cosmic microwave background
(CMB) with the today’s temperature of T = 2.725 K, discovered serendipitously by Penzias &
Wilson (1965), is one of the strongest proofs in favor of the Hot Big Bang model (Sect. 1.1.6).

Apart from a dipole moment of the order of 10−3 which is interpreted as due to the peculiar
velocity of our galaxy, the CMB temperature is isotropic, and shows deviations from isotropy
only at the level of one part in 105, therefore confirming the cosmological principle. At the
same time, these tiny temperature anisotropies have turned out to be of great importance for
cosmological observations and are interpreted in the following manner. At the time of decou-
pling, the photons emerged out of the gravitational potential of under- and overdense regions
originating from small initial density perturbations and a signature of these perturbations

8



1.1 The homogeneous and isotropic Universe

was imprinted as small temperature differences in the photon background. Moreover, these
perturbations gave rise to acoustic waves in the primordial electron-photon plasma which
froze in at decoupling. The largest possible wavelength of these oscillations is the sound hori-
zon at decoupling ds(z∗), which forms a characteristic scale in the angular power spectrum of
the temperature fluctuations manifesting in a series of harmonic “acoustic peaks”. Since the
absolute physical scale of ds(z∗) can be determined from relatively simple linear physics, the
observation of the first acoustic peak together with an independent measurement of the Hub-
ble constant yields the geometry of the Universe. The detection of the first peak at an angular
scale of about 1◦ in the early 2000s by various experiments, most notably the balloon-based
probe BOOMERanG6 (Netterfield et al. 2002) and its confirmation by the satellite WMAP
(Bennett et al. 2003), is a direct evidence for a flat Universe.

The exact position and the amplitude of the peaks depend on the composition and the
properties of the Universe at high redshifts, which can be probed in great detail by observ-
ing the angular power spectrum of the CMB fluctuations. Further, the so-called secondary
anisotropies are introduced in the CMB between redshifts of about 20 and zero, by processes
such as scattering off electrons in the reionized Universe or a net gravitational redshift due
to the time-varying gravitational potential of the large-scale structure. Thus, the observation
of the CMB fluctuations provides a wealth of information about cosmology at early and late
epochs.

1.1.9 Dark matter

There is a striking number of independent observations that indicate that the matter in the
Universe is not dominated by ordinary baryonic matter but by a non-relativistic, weakly or
non-interacting matter component, called cold dark matter (CDM). This matter unveils its
presence only through gravitational interaction. In virtually all systems of galactic and super-
galactic scales where the luminous and the gravitational masses have been measured, there is
a discrepancy between the two, the latter always being larger than the former. The velocity
dispersion of stars in elliptical and the rotation velocity in spiral galaxies are too high to be
explained by the luminous matter of stars and gas; the same holds for the velocity dispersion
of galaxies in clusters. Clusters without dark matter are not able to bind the hot X-ray
gas observed in the intra-cluster medium. They also fail to produce the observed multiple
images of background galaxies by the strong gravitational lensing effect (see Fig. 1.6). All
these observations can be reconciled by postulating a dark matter component to constitute
the missing mass in these objects.

From theoretical combined with observational studies of the primordial nucleosynthesis, this
matter is deemed to be non-baryonic. A further inference derived from structure formation
is that this matter is non-relativistic. Independently, from the measurement of the amplitude
of the peaks in the CMB anisotropy power spectrum (Sect. 1.1.8), we know that baryonic
matter alone is not sufficient to form high-density contrast objects such as galaxies and
clusters at present time. Other alternative theories, trying to avoid the ad-hoc postulation
of a non-baryonic dark matter component, require a modification of General Relativity and
even Newtonian mechanics. All these attempts up to now have failed and their predictions
are in contradiction to observations.

The nature of this dark matter component is still unknown, although a number of elemen-

6Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics
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Chapter 1 Cosmology and the basics of gravitational lensing

tary particle candidates have been proposed. Experiments to directly detect these “weakly
interacting massive particles” (WIMPs) have started to operate and will soon reach sensitiv-
ities to protude into interesting regions in the plane of mass and interaction strength. Until
then, all information about dark matter and its properties has to be obtained from astro-
nomical observations. For example, weakly-interacting relativistic particles as dark matter
candidates (“Hot Dark Matter”, HDM) such as massless neutrinos are excluded by the obser-
vational fact that small structures formed first and subsequently, larger objects like clusters
evolved (“bottom-up” structure formation). In a HDM-dominated Universe, large objects
form first since small-scale perturbations cannot grow due to free-streaming of HDM particles
(“top-down” scenario). Next, limits on the self-interaction cross-section and on the mass of
dark matter particles can be obtained by (the non-detection of) the annihilation γ-ray signal
from high-density regions, e.g. the galactic center (Stoehr et al. 2003), and by measuring the
profile and population of dark matter halos (Firmani et al. 2001). The question whether dark
matter is in the form of particles at all, or maybe consists of compact massive objects such as
black holes, can be answered by observations of micro-lensing events of stars in neighboring
galaxies by MAssive Halo Objects (MACHOs).

1.1.10 Dark energy

The cosmological constant Λ was initially introduced ad hoc by Einstein in order to allow
a static Universe as a solution for his field equations. Interpreted as part of the energy-
momentum tensor, it has the form of a vacuum energy density, with an equation-of-state
(1.8) parameter of w = −1 and acts as a repulsive force. Only recently, observations have
shown Λ to be non-zero with high significance (Perlmutter et al. 1999; Riess et al. 1998;
Spergel et al. 2003). Most importantly, the dimming of distant type Ia supernovae indicate
an accelerated expansion of the Universe due to a positive cosmological constant. The physical
nature of this quantity is still a mystery. Predictions from quantum field theory are in stark
discordance with observations, the number of attempts to (until today unsuccessfully) model
this “dark energy” are as numerous as names attributed to this phenomenon. More general
models allow w to be different from −1 and vary in time. However, no observation up to now
has indicated a deviation from a pure cosmological constant with w = −1.

1.1.11 Inflation

Apart from the yet unsolved nature of 96% of the Universe content (dark matter and dark
energy), the standard model of cosmology presented so far faces still a few more difficulties
and shortcomings. Firstly, it cannot explain the isotropy of the CMB for regions which had
not been in causal contact to each other before recombination (“horizon problem”). Secondly,
grand unified theories predict a ridiculously high density of magnetic monopoles (not a single
one of which has been observed), and thirdly, the flatness of the Universe demands an extreme
fine-tuning of the initial conditions.

The postulate of a so-called inflationary epoch (e.g. Linde 2005, and references therein)
solves all these problems. According to this postulate, about 10−35 s after the Big Bang there
was a very short period of exponential expansion like in a vacuum energy-dominated era.
The scale factor increased by several dozens of e-foldings, and the Universe within the present
horizon originated out of a tiny causal pre-inflationary region, which is a sturdy solution
to the horizon problem. Furthermore, in the framework of inflationary theory virtually all
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1.2 Large-scale structure

monopoles are “inflated away” and any initial curvature is flattened by the huge expansion
so that after inflation the departure from flatness is minuscule.

The hypothesis of inflation has the advantage that it also explains the origin and the
shape of the initial density perturbations, from which today’s large-scale structures emerged
(Sect. 1.2). This success of the inflationary model came as a complete surprise and was
unintended when the idea of inflation was first introduced. Inflation is driven by a scalar
field; quantum fluctuations in this field are inflated to macroscopic scales and form the seeds
of the initial density perturbations. These are adiabatic or iso-entropy fluctuations, i.e. the
density perturbations in matter and radiation are proportional and have equal phase. They
are Gaussian, thus perturbations on different scales are uncorrelated and they are scale-
invariant with a spectral index of the fluctuation power spectrum a little less than unity (see
also Sect. 1.2.6.1). These properties of density perturbations have been confirmed by CMB
measurements. Next-generation polarization CMB observations will be able to test further
predictions of inflation such as the presence and form of the gravitational wave background
created at the end of inflation.

It should be stressed here that inflation is really a paradigm and not a theory. There
exist a large number of models within the inflationary framework, each one making slightly
different predictions, and not a single one has yet convincingly emerged as a standard model
of inflation.

1.2 Large-scale structure

The Universe is homogeneous and isotropic on very large scales and the Friedmann-Lemâıtre-
Robertson-Walker cosmology (Sect. 1.1) accounts for the overall dynamics of the Universe.
On smaller scales, below some hundred Mpc, one observes a vast variety of structures such
as “walls” of matter, filaments, galaxy clusters and galaxies. The common picture is that all
these objects originated from very small density perturbations, possibly of quantum origin,
and later formed and evolved via gravitational instability. In this section, I will give a brief
overview of the current theories and models that describe how density perturbations grow
and evolve.

1.2.1 The fluid equations

On scales much smaller than the horizon and for non-relativistic matter, Newtonian physics
can be used to describe the structure evolution. The standard equations for an ideal fluid of
zero pressure in comoving coordinates are (Peebles 1980)

Continuity eq. ρ̇+ 3Hρ+
1

a
∇(ρ � ) = 0, (1.15)

Euler eq. ˙� +H � +
1

a
( � ∇) � = −1

a
∇φ, (1.16)

Poisson eq. ∆φ = 4πGρa2 + 3aä− Λa2, (1.17)

where the dot indicates the time-derivative and ∇ is the gradient with respect to comoving
spatial coordinates. These non-linear equations govern the evolution of the density ρ, the
potential φ and the peculiar velocity field � in a dynamical Universe. The peculiar velocity
is defined as the proper velocity � minus the Hubble flow, � = � −H � .
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Chapter 1 Cosmology and the basics of gravitational lensing

It is useful to define the density contrast

δ =
ρ− ρ̄

ρ̄
, (1.18)

where ρ̄ is the background density of a homogeneous and isotropic Universe. With that, the
continuity equation (1.15) becomes

δ̇ +
1

a
∇[(1 + δ) � ] = 0, (1.19)

and the Poisson equation (1.17), using the second Friedmann equation (1.4), can be written
as

∆φ =
3H2

0Ωm

2a
δ. (1.20)

Note that any explicit dependence on the cosmological constant which was still present in
(1.17) has vanished — a uniform matter/energy background has no influence on the evolution
of density perturbations.

1.2.2 Linear perturbation theory

In order to solve the equations of motion (1.16), (1.19) and (1.20), one assumes that the matter
is only slightly perturbed away from the homogeneous and isotropic background cosmology,
corresponding to δ ¿ 1 and v ¿ u. Considering only terms linear in δ and v, eqs. (1.16)
and (1.19) become ˙� +H � = −a−1∇φ and δ̇ + a−1∇ � = 0, respectively. Together with the
Poisson equation (1.20), they can be combined to the second-order linear differential equation
for the linear density contrast

δ̈ + 2Hδ̇ − 3H2
0Ωm

2a3
δ = 0. (1.21)

This equation does not contain derivatives with respect to spatial coordinates, thus the general
solution has the form

δ( � , a) = D+(a)δ1+( � ) +D−(a)δ1−( � ). (1.22)

An index ‘1’ is attached to the spatial parts of the solutions to indicate that these correspond
to linear order. Higher-order solutions to the fluid equations are found in Sect. 1.2.4. One
solution to (1.21) is the Hubble parameter H; since it is a decreasing function of a, D−(a) =
H(a) is called the decaying mode and can be neglected for later times. Density perturbations
in this mode quickly decay and play no role in structure formation. The second solution is
the growing mode

D+(a) =
5Ωm

2

H(a)

H0

∫ a

0
da′
[

1 + Ωm

(

1

a′
− 1

)

+ ΩΛ

(

a′
2 − 1

)

]−3/2

. (1.23)

For a Universe with Ωm = 1 and ΩΛ = 0, called Einstein-de-Sitter (EdS) Universe, D+(a) =
a for a > aeq, the latter being the scale factor at the time of matter-radiation equality,
aeq ≈ 3.2 × 10−5 Ω−1

m h−2. In the radiation dominated era (a < aeq), the growing mode D+

is constant since for radiation inhomogeneities, pressure prevents further collapse and for
collisionless matter, the expansion of the Universe is too fast for the perturbations to grow
via self-gravitation.
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1.2 Large-scale structure

From the observations of CMB fluctuations (Sect. 1.1.8), one knows that at recombination
(z∗ ≈ 1090) the baryon density perturbations were of the order of 10−5. Since then, they only
could have grown by a factor of 1/a∗ ≈ 103 to a today’s density contrast of about 10−2, which
corresponds to matter inhomogeneities still in the linear regime. Despite of that, non-linear
perturbations much larger than this exist. This discrepancy is resolved by non- or weakly
interacting dark matter (Sect. 1.1.9), which already at recombination had a much higher
density contrast than baryons. This is one of the strongest arguments for the existence of
non-baryonic matter in the Universe.

1.2.3 Non-linear equations of motion

In order to describe higher-order correlations and non-linear evolution, one has to depart
from linear perturbation theory. Since it is not possible to find exact solutions of the non-
linear dynamical equations (1.16, 1.19, 1.20), a perturbative approach is chosen, which will
be developed in the next section. With θ = ∇ � being the divergence of the peculiar velocity
field, the full non-linear continuity equation (1.19) is written in Fourier space as

a
˙̂
δ(

�
, a) + θ̂(

�
, a) = −

∫

d3x ei
�

� ∇( � δ)( � , a), (1.24)

where a hat indicates the Fourier transform (see eq. (A.4) for the conventions used in this
work). After integration by parts, one writes the fields � and δ as Fourier integrals and gets

a
˙̂
δ(

�
, a) = −

∫

d3k1

(2π)3

∫

d3k2

(2π)3
i

�
ˆ� (

�
1, a)δ̂(

�
2, a)

∫

d3x ei � (
�
−

�
1−

�
2). (1.25)

One now assumes the velocity field � to be curl-free. This is justified since for a pressureless
ideal fluid, linear vorticity perturbations are decaying modes. For a non-ideal fluid which may
have a non-zero stress tensor, vorticity can be non-linearly amplified by shell-crossing effects
but this happens only on very small scales, where perturbation theory breaks down anyway
(Bernardeau et al. 2002). The velocity then has only a divergence-part θ = ∇ � ; translated
in Fourier space this means that ˆ� (

�
1) ∝ �

1 and
� · ˆ� (

�
1, a) = (

� · �
1/k1)(

�
1/k1 · ˆ� (

�
1, a)).

The x-integral in (1.25) is simply (2π)3 times Dirac’s delta-function δD, and one gets

a
˙̂
δ(

�
, a) + θ̂(

�
, a) = −

∫

d3k1

(2π)3

∫

d3k2 δD(
� − �

1 −
�

2)α(
�

1,
�

2)θ̂(
�

1, a)δ̂(
�

2, a) (1.26)

with

α(
�

1,
�

2) =
(

�
1 +

�
2) ·

�
1

k2
1

. (1.27)

In a similar way, (1.16) is written in Fourier space using Poisson’s equation (1.20),

a
˙̂
θ(

�
, a) + ȧθ̂(

�
, a) +

3H2
0Ωm

2a
δ̂(

�
, a) = −

∫

d3x ei
�

� [∂i (vj∂j) vi] ( � , a), (1.28)

where summation over multiple indices is assumed. Integration by parts and expanding the
fields � and θ into Fourier integrals, the right-hand side of the previous equation becomes

−
∫

d3k1

(2π)3

∫

d3k2

(2π)3
i

�
ˆ� (

�
1, a)

[

i
�
ˆ� (

�
2, a) + θ̂(

�
2, a)

]

∫

d3x ei � (
�
−

�
1−

�
2).
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Chapter 1 Cosmology and the basics of gravitational lensing

If the curl-part of the velocity field � is neglected as before, eq. (1.28) is written as

a
˙̂
θ(

�
, a) + ȧθ̂(

�
, a) +

3H2
0Ωm

2a
δ̂(

�
)

= −
∫

d3k1

(2π)3

∫

d3k2 δD(
� − �

1 −
�

2)β(
�

1,
�

2)θ̂(
�

1, a)θ̂(
�

2, a) (1.29)

with

β(
�

1,
�

2) =
| �

1 +
�

2|2(
�

1 ·
�

2)

2k2
1k

2
2

. (1.30)

The last expression is obtained with the requirement taken into account that the integrand
in (1.29) is symmetric in

�
1 and

�
2.

The kernels α (1.27) and β (1.30) describe the coupling between different Fourier modes
which arises from the non-linear terms in the dynamical equations (1.16, 1.19). The evolution
of both δ̂ and θ̂ at a given Fourier wavevector

�
is determined by the mode-coupling of the

fields at all pairs of wave vectors (
�

1,
�

2), the sum of which is equal to
�

as required by spatial
homogeneity.

The non-linear equations of motion (1.26) and (1.29) as derived in this section cannot be
solved analytically in general. For an EdS Universe, it is possible to obtain solutions with
separate temporal and spatial dependence using a perturbative ansatz. This is sketched in
the following section.

1.2.4 Second-order or quasi-linear solutions

In order to solve eqs. (1.26) and (1.29), the fields δ̂ and θ̂ are expanded around the linear
solution, using the ansatz

δ̂(
�
, a) =

∞
∑

n=1

Dn
+(a)δ̂n(

�
), θ̂(

�
, a) = −ȧ

∞
∑

n=1

Dn
+(a)θ̂n(

�
), (1.31)

where δ̂1 and θ̂1 are linear in the initial density field, δ̂2 and θ̂2 are the quadratic terms,
etc. The motivation for this ansatz is the following: For the linear density contrast δ̂1, its
dependence on the scale factor is recovered, which is the linear growth factor D+(a) (1.22),
and for every order n, the perturbative ansatz assures δ̂n = O([δ̂1]

n). For early times, the
growth factor is much smaller than unity and the series is dominated by the first, linear term.
The additional factor −ȧ for θ̂ appears because from eq. (1.19), one obtains δ̂1 = θ̂1 to first
order.

For an EdS Universe (Ωm = 1,ΩΛ = 0), with D+(a) = a, ȧ2 = −2äa and H2
0 = ȧ2a,

the dependence on time (or, equivalently, on the scale factor) can be separated out from
eqs. (1.26) and (1.29), and one obtains to second order

2δ̂2(
�
) = θ̂2(

�
) +

∫

d3k1

(2π)3

∫

d3k2 δD(
� − �

1 −
�

2)α(
�

1,
�

2)δ̂1(
�

1)δ̂1(
�

2);

5

2
θ̂2(

�
) =

∫

d3k1

(2π)3

∫

d3k2 δD(
� − �

1 −
�

2)β(
�

1,
�

2)δ̂1(
�

1)δ̂1(
�

2) +
3

2
δ̂2(

�
).

Combining the two equations, one can write the second-order density contrast δ̂2 as a function
of the linear one δ̂1,

δ̂2(
�
) =

1

2

∫

d3k1

(2π)3

∫

d3k2δD(
� − �

1 −
�

2)F2(
�

1,
�

2)δ̂1(
�

1)δ̂1(
�

2), (1.32)
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and finds7

1

2
F2(

�
1,

�
2) =

5

7
α(

�
1,

�
2) +

2

7
β(

�
1,

�
2) =

5

7
+

1

2

�
1 ·

�
2

k1k2

(

k1

k2
+
k2

k1

)

+
2

7
(

�
1 ·

�
2)

2, (1.33)

where the last expression is obtained by demanding F2 to be symmetric in its arguments. I
parametrize F2 in the following way,

F2(
�

1,
�

2) = F2(k1, k2, cosϕ) =

2
∑

m=0

F
(m)
2 (k1, k2) cosm ϕ;

F
(0)
2 =

10

7
, F

(1)
2 =

k1

k2
+
k2

k1
, F

(2)
2 =

4

7
,

(1.34)

where ϕ is the angle between
�

1 and
�

2. F2 only depends on the scalar product of the wave
vectors defining a triangle in Fourier space, therefore it is invariant under translations and
rotations of the triangle.

For a cosmology with arbitrary Ωm and ΩΛ, the above ansatz is modified with an additional
multiplicative function f(Ωm,ΩΛ) for θ̂. Separable solutions are obtained for f(Ωm,ΩΛ) ≈
Ω

1/2
m which is a very good approximation in practice and leads to changes in the kernel F2 of

only a couple of percent (Bernardeau et al. 2002, Sect. 2.4.4). In Sect. 1.2.7.2, the non-linear
extension of the results presented above will be applied to more general cosmologies.

The kernel F2 describes the coupling between different Fourier modes which is characteristic
of non-linear theories. The individual contributions to this kernel can be interpreted as
follows. The constant term represents the isotropic contribution, which is independent of the
configuration of the triangle in Fourier space, spanned by the wavevectors

�
,

�
1 and

�
2. The

linear cos-term arises from the gradient of the density field in direction of the flow (described
by the (∇δ · � )-term in the continuity equation 1.19). The third, quadratic term represents the
velocity gradient in the flow direction (the ( � ·∇) � -term in the Euler equation 1.16). The last
two terms give more weight to collinear wavevectors (ϕ = 0, π). This reflects the anisotropy
of structures and flows, which can be seen in the filamentary structure of cold dark matter
(see Fig. 1.3). Gradients in density and in velocity divergence are mainly generated parallel
to the flow by gravitational instability. In Fig. 1.2, the reduced bispectrum, which will be
defined in Sect. 1.2.6.2 is plotted, which gives an account of the shape of F2. In Sect. 1.2.7.2,
it is shown how deviations from this behavior in the non-linear regime are modeled.

1.2.5 Suppression of growth

For a density perturbation in radiation or baryonic matter, there exists a critical scale called
the Jeans length, which is the minimum length at which gravity exceeds the opposing pressure
gradient. Before matter-radiation equality, this length is about the size of the horizon dh. In
the matter dominated era, it drops basically to zero. Perturbations on scales smaller than
the Jeans length are strongly suppressed because of radiation pressure which prevents them
from growing. On larger scales, relativistic theory predicts perturbations to grow as δ(a) ∝ a2

before equality and as δ(a) ∝ a for a > aeq.
For a perturbation with a given comoving wavelength λ > dh, the horizon will eventually

get larger than the perturbation because of the expanding Universe — the perturbation will
“enter the horizon” for some scale factor aenter. If this happens before aeq, this perturbation

7this definition of F2 differs from some previous work (e.g. Bernardeau et al. 2002) by a factor of two.
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Γ = 0.1723
Γ = 0.21

T(k)

k/Γ[hMpc−1]

Figure 1.1: Suppression of growth. Left-hand side: The small-scale perturbation which enters the
horizon before aeq is suppressed in growth relative to the large-scale fluctuation which does not enter
before the matter dominated era starts. The suppression is (aenter/aeq)

2. Right-hand side: The transfer
function from eq. (1.37) for the two different values of Γ used in this work. For Ωm = 0.3 and h = 0.7,
the solid line corresponds to a baryon-free model, the dotted line approximates the transfer function
with Ωb = 0 .04 .

will be suppressed with respect to a perturbation which enters after equality. The suppression
factor as given by the growth factor in the radiation dominated era is (aenter/aeq)

2, see Fig. 1.1.
This scale-dependent evolution of perturbations defines a characteristic length scale in the
large-scale structure which is the horizon at equality, dh(aeq) = 12 (Ωmh

2)−1 Mpc.

In order to combine perturbations of all scales, one defines the transfer function

T (k) =

(

δ̂(k, a = 1)

δ̂(k, ai)

) (

δ̂(k = 0, a = 1)

δ̂(k = 0, ai)

)−1

, (1.35)

where k = 0 indicates an arbitrarily large scale. The scale factor ai of the “initial” density
fluctuation δ̂(k, ai) has to be chosen such that at this initial time no scale of interest has
entered the horizon. Then, T (k) is independent of ai for all relevant scales.

For adiabatic cold dark matter perturbations, the transfer function asymptotically ap-
proaches unity for small k, since large scales are not suppressed. The behavior of T (k) for
large k can be inferred from the entering condition of a perturbation of scale λ:

λ =
1

k

!
= dh(aenter) ≈

c

aenterH(aenter)
. (1.36)

For a ¿ aeq, the Hubble parameter scales like a−2, thus k ∝ a−1
enter. Therefore, T (k) ∝ k−2

for large k.

In this work, I use the fitting formula given in Bardeen et al. (1986),

T (k) =
ln(1 + 2.34 q)

2.34 q

[

1 + 3.89 q + (16.1 q)2 + (5.46 q)3 + (6.71 q)4
]−1/4

, (1.37)
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1.2 Large-scale structure

with q = k/(ΓhMpc−1). The shape parameter Γ is initially set to

Γ = Ωmh. (1.38)

Peacock & Dodds (1994) have shown that the fitting formula (1.37) is also valid for a small
baryon contribution to Ωm if one sets Γ = Ωmh exp(−2Ωb). Accordingly, an increasing bary-
onic density does not change the overall shape of the transfer function but shifts it towards
smaller scales; therefore, on a given scale its amplitude is reduced. A generalization to models
with Ωm 6= 1 is provided by Sugiyama (1995),

Γ = Ωmh exp[−Ωb(1 +
√

2h/Ωm)]. (1.39)

In this work, both expressions (1.38, 1.39) for Γ will be used.

This approach to describe baryonic contributions to the matter component is only an
approximation, since it does not take into account the acoustic oscillations in the baryon-
photon plasma before decoupling. The resulting oscillations in the transfer function are only
of the order of a couple of percent. More important is the decrease in amplitude, which for
this work is taken into account by (1.39) with sufficient accuracy, see also Eisenstein & Hu
(1998).

1.2.6 Moments of the density fields

Since the matter density contrast δ in the Universe has to be described as a random field
(see App. A), the studies of δ are limited to its statistical properties. A random field is given
by its moments; for its complete determination an infinite number of moments is needed in
general.

For the special case of a Gaussian random field, the first- and second-order moments are
sufficient to completely describe the field — all higher connected moments vanish. In the
early Universe, the initial inhomogeneities (quantum fluctuations amplified during inflation)
are Gaussian. As long as these perturbations grow linearly, they remain Gaussian. This
has been confirmed observationally: no deviations from Gaussianity in the CMB fluctuations
have been detected. Only in the quasi-linear and, more prominently, in the highly non-linear
regime via gravitational collapse, non-Gaussian features in the matter field arise.

The first moment, or mean, of the matter density contrast δ (1.18) vanishes, since 〈ρ〉 = ρ̄.
In this section, the second and third moments (two- and three-point correlation functions)
of δ are discussed. In Fourier space, these are the power spectrum and the bispectrum,
respectively. Up to now, in most of the cosmological studies and experiments, the power
spectrum of δ has been examined. However, if one wants to detect deviations from non-
Gaussianity, the inclusion of higher-order statistics is inevitable.

1.2.6.1 The power spectrum

The power spectrum of the density fluctuations Pδ is defined by

〈

δ̂(
�
, a)δ̂∗(

�
′, a)

〉

= (2π)3δD(
� − �

′)Pδ(k, a), (1.40)

where angular brackets denote the ensemble average (see App. A). For a given scale factor
a, the power spectrum only depends on the modulus of the wavevector

�
. If one chooses the
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Chapter 1 Cosmology and the basics of gravitational lensing

perturbative ansatz (1.31) for δ, only the first, linear order is needed in order to get the linear
power spectrum.

The power spectrum Pδ(k, a) for some later time can be calculated from the initial one,
Pδ(k, a) = D2

+(a)T 2(k)Pδ(k, ai)/D
2
+(ai). For the initial power spectrum Pδ(k, ai) one usually

assumes the simple and scale-free power law Pδ(k, ai) ∝ kns , with the scalar spectral index
ns . 1 motivated by inflationary scenarios (Sect. 1.1.11) and confirmed observationally (e.g.
Seljak et al. 2005). For ns = 1, the final linear power spectrum has the asymptotic behavior

Pδ(k) ∝
{

k for small k

k−3 for large k
. (1.41)

The steep decrease of the power spectrum towards high k is due to the suppression of
small-scale perturbations which entered the horizon dh before matter-radiation equality aeq

(Sect. 1.2.5). The turnover scale depends on dh(aeq) and is the most characteristic scale in
the dark matter power spectrum.

The power spectrum normalization is fixed by the parameter σ8, which is defined as the
variance of density fluctuations in spheres of radius 8h−1 Mpc. This particular scale was
motivated observationally by the variance of galaxy counts, which is about unity at this
scale, σ8,gal ∼ 1. In order to relate this to the (dark) matter fluctuation amplitude, one has to
model the bias between galaxies and dark matter, and assume that galaxies are tracers of the
underlying dark matter. A linear stochastical bias simply translates into σ2

8,gal = b2σ2
8, where

b is the linear bias factor. The determination of the bias is observationally very challenging.
One method is to combine cosmic shear measurements with galaxy number counts, see e.g.
Simon (2004). Recent observations, including cosmic shear (e.g. van Waerbeke et al. 2005)
indicate a value for σ8 slightly smaller than unity.

1.2.6.2 The bispectrum

The bispectrum Bδ of the density field is the Fourier transform of the 3PCF of δ. It is defined
by the third-order analog of (1.40), see also eq. (A.7),

〈

δ̂(
�

1, a)δ̂(
�

2, a)δ̂(
�

3, a)
〉

= (2π)3δD(
�

1 +
�

2 +
�

3)[Bδ(
�

1,
�

2, a) +Bδ(
�

2,
�

3, a) +Bδ(
�

3,
�

1, a)]. (1.42)

Inserting the series expansion (1.31) for the density contrast, the triple-correlator 〈δ̂δ̂δ̂〉 on the
left-hand side of this equation is, to lowest non-trivial order8, D4

+(a)〈δ̂1(
�

1)δ̂1(
�

2)δ̂2(
�

3)〉+
2 permutations. But the second-order density contrast can be expressed in terms of the
linear one using (1.32) and be rewritten in terms of fourth power in δ̂1. Using (1.40) up to
linear order, and noting that the connected part of the fourth order correlator vanishes for a
Gaussian field, one can evaluate the integral in (1.32) and get

D+(a)4〈δ̂1(
�

1)δ̂1(
�

2)δ̂2(
�

3)〉 = (2π)3 δD(
�

1 +
�

2 +
�

3)F2(
�

1,
�

2)Pδ(k1, a)Pδ(k2, a). (1.43)

Comparing this expression with (1.42), one finds

Bδ(
�

1,
�

2, a) = bδ(k1, k2, cosϕ, a) = F2(k1, k2, cosϕ)Pδ(k1, a)Pδ(k2, a). (1.44)

8the triple-correlator of the linear field δ̂1 vanishes because of its Gaussian nature
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1.2 Large-scale structure

Unlike the power spectrum which spatially depends only on one scalar quantity (the modulus
of the wave vector), the bispectrum is a function of three variables, which uniquely describe a
triangle. It is invariant under translations and rotations of this Fourier space triangle, which
originates from the statistical homogeneity and isotropy of the density contrast δ. It is an
even function of ϕ, corresponding to the parity-invariance of δ.

It is convenient to define the reduced bispectrum Q as

Q(k1, k2, cosϕ, a) =
Bδ(

�
1,

�
2, a) +Bδ(

�
2,

�
3, a) +Bδ(

�
3,

�
1, a)

Pδ(k1, a)Pδ(k2, a) + Pδ(k2, a)Pδ(k3, a) + Pδ(k3, a)Pδ(k1, a)
. (1.45)

Since the bispectrum is proportional to P 2
δ , the reduced bispectrum Q is mostly independent

of time, scale and cosmology and displays the dependence on the triangle configuration of the
bispectrum, given by the three Fourier vectors

�
1,

�
2 and

�
3, see Fig. 1.2.

1.2.7 Non-linear evolution

Bound objects in the low-redshift Universe have a density contrast much higher than unity,
of up to δ ∼ 1000 for galaxy clusters. These objects cannot longer be described with linear
perturbation theory. Several approaches exist to model non-linear evolution and clustering
of these objects. In the highly non-linear regime, the collapse of objects can be calculated
analytically for the simple case of an EdS cosmology. The transition zone between linear and
highly non-linear objects is fitted using high-resolution N -body simulations.

1.2.7.1 The HKLM-method

For an EdS-Universe, Hamilton, Kumar, Lu, & Matthews (1991, HKLM) found a relation
between the linear and the non-linear correlation functions of the density contrast. Peacock
& Dodds (1994) generalized this relation to Ωm 6= 1 and applied it to the power spectrum. I
will shortly discuss the idea behind this approach.

A spherical region of volume r3
L with δL ¿ 1 is assumed to collapse via non-linear evolution

to a smaller, denser region of volume r3
NL and density contrast δNL. In reality, dissipation of

the infalling matter into random motions will prevent collapse to a singularity and stabilize
the halo, a process which is called virialization. Matter conservation yields r3

L = (1+ δNL)r3NL

which quantifies the change in scale of the mass clump. In order to express this equation in
a statistical sense, one makes the transition from the density δ to its two-point correlation
function (2PCF) ξ. From the 2PCF one can obtain a typical halo profile. However, for a col-
lapsing object, it is the integrated overdensity which has to reach a critical value, thus instead
of ξ one should consider the volume-averaged correlation function ξ̄(r) = r−3

∫ r
0 dx3ξ(x) and

write

rL = [1 + ξ̄NL(rNL)]1/3rNL. (1.46)

The next step in the HKLM method is the conjecture of a universal function fNL which
relates the linear and the non-linear volume-averaged correlation functions,

ξ̄NL(rNL) = fNL[ξ̄L(rL)]. (1.47)

The hypothesis of such a universal function was verified with EdS N -body simulations and
later for general ΛCDM cosmologies. The asymptotic behavior of fNL can be deduced readily.
For x¿ 1, where non-linearities are negligible, the non-linear correlation function should just
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Chapter 1 Cosmology and the basics of gravitational lensing

be the linear one, fNL(x) ∝ x. For large x, the corresponding non-linear process is stable
clustering, which denotes the hypothesis that the internal structure of a collapsed object will
be constant in proper time. Since the (non-linear) correlation function on small scales is
the normalized auto-correlation of the halo profile, its only time-dependence comes from the
varying number density of halos which scales as a3, therefore ξ̄NL ∝ a3. The linear density
contrast (for EdS) is proportional to a (Sect. 1.2.2) which implies ξ̄L ∝ a2, thus fNL(x) ∝ x3/2.
The intermediate region is obtained by numerical fits.

In order to make the transition to Fourier space, one interprets ξ̄ as a measure of the power
at some effective wavenumber keff . This is a valid approximation, because ξ̄ is the integral
over the usually rapidly rising dimensionless power spectrum ∆2 = k3/(2π2)Pδ(k) with a
sharp cut-off window function. One can directly transfer eqs. (1.46) and (1.47) into Fourier
space,

∆2
NL(kNL) = fNL[∆2

L(kL)];

kL = [1 + ∆2
NL(kNL)]−1/3kNL. (1.48)

A fit for the universal function fNL, generalized to ΛCDM models, is obtained by using
N -body simulations (Peacock & Dodds 1996).

1.2.7.2 Hyper-extended perturbation theory (HEPT)

Similar to the HKLM method, hyper-extended perturbation theory (HEPT) is an attempt to
construct a non-linear (numerical) model, this time for the bispectrum of density fluctuations,
by modifying perturbation theory predictions and using N -body simulations to fit the regime
between linear and stable-clustering scales. HEPT was first introduced in Scoccimarro &
Frieman (1999) for an EdS Universe and later generalized to ΛCDM models by Scoccimarro
& Couchman (2001).

In HEPT, the kernel (1.34) is replaced by an effective kernel with modified coefficients,

F
(0)
2 =

10

7
a(k1)a(k2), F

(1)
2 =

(

k1

k2
+
k2

k1

)

b(k1)b(k2), F
(2)
2 =

4

7
c(k1)c(k2). (1.49)

The fitting functions a, b and c are given eqs. (10-12) of Scoccimarro & Couchman (2001)
and interpolate between the linear and highly non-linear regime; their numerical coefficients
are determined by fitting N -body simulations. The average deviation between the fit and
the simulations are 15%, which is a sufficient accuracy for the purpose of this thesis. The
fitting functions a, b and c not only depend on the Fourier mode k, but also on some (redshift-
dependent) non-linear scale kNL, the local spectral index of the linear power spectrum n(k)
and weakly on σ8 and the linear growth factor D+(a).

The effect of this modified effective kernel is shown in Fig. 1.2, where the reduced bispectrum
Q (1.45) as a function of the angle between the two wave vectors

�
1 and

�
2 is plotted. Q

reproduces the behavior of the kernel F2, since after dividing the bispectrum by the square of
the power spectrum, it is mainly depending on the triangle configuration and only marginally
on cosmology.

The anisotropy which enhances collinear configurations (ϕ = 0, π), present in quasi-linear
perturbation theory (Sect. 1.2.4), is recovered on large scales where non-linear contributions
are unimportant. On small, non-linear scales however, the anisotropy is washed out and Q is
more and more independent of the triangle configuration as the scale decreases. The physical

20



1.3 Gravitational lensing

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Q
(ϕ

)

ϕ/π

PT

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
Q

(ϕ
)

ϕ/π

HEPT

k2 = 2.35 h/Mpc
k2 = 1.04 h/Mpc
k2 = 0.52 h/Mpc
k2 = 0.26 h/Mpc

Figure 1.2: The reduced bispectrum (1.45) as a function of the angle ϕ between
�

1 and
�

2. In all
cases, k2 = 2k1 , the different curves are for different k2 as shown in the panel. The cosmology is a
ΛCDM Universe (model 2, see Table B.1) at a redshift of zero. The left panel shows the prediction of
perturbation theory, the right panel takes the fitting formulae of HEPT into account.

process responsible for this small-scale trend is virialization of dark matter halos: random
motions cause structures and flows to lose coherence, and the anisotropy of Q for different
triangle configurations diminishes. In the strongly non-linear regime, hierarchical clustering
predicts Q to be constant. This behavior reflects the anisotropic, filamentary structure on
very large scales as well as the isotropic, virialized clusters dominating the matter distribution
on small, non-linear scales, see Fig. 1.3.

1.3 Gravitational lensing

In this section I will give an overview of the theory of gravitational lensing. After a short
introduction to the basic ideas and notations used in gravitational lensing, the focus is set on
the weak lensing effect caused by the large-scale structure of the Universe. A thorough treat-
ment of the subjects addressed in this section can be found in Schneider et al. (1992, focusing
on strong lensing) and Bartelmann & Schneider (2001, weak lensing). A recent seminal text
covering most of the aspects of gravitational lensing and their applications exhaustively is
Schneider (2005).

The modern theory of gravitational lensing is based on the General Theory of Relativity.
In 1915, Einstein predicted a shift in the position of stars near the Sun due to the deflection of
light caused by the Sun’s gravitational field, and in 1920, measurements during a Solar eclipse
confirmed the prediction. Soon afterwards, it was realized that for certain lens configurations
the deflection can be large enough to produce multiple images of background sources. Subse-
quently in 1979, the first double image, the lensed quasar 0957+561, was discovered (Walsh
et al. 1979). Since then, gravitational lensing has become a major research area with huge
impact on a variety of astronomical fields. Lens systems on all scales, from stars over galaxies
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Chapter 1 Cosmology and the basics of gravitational lensing

Figure 1.3: The filamentary structure of the matter distribution on cosmic scales. The figure shows
the density distribution of dark matter from a ΛCDM N -body simulation On large scales, matter forms
anisotropic, collinear structures in the form of filaments. At the intersections of these filaments, the
dark matter density is high enough to virialize into clusters. Source: The VIRGO consortium (Jenkins
et al. 1998).

and clusters up to the large-scale structure of the Universe are nowadays studied in great
detail. A wealth of information about the composition of dark matter, the mass and profile
of dark matter halos of galaxies and clusters, galaxy evolution and dynamics and, last but
not least, cosmological parameters is obtained by these studies.

1.3.1 The deflection angle

The most basic parameter in gravitational lensing is the deflection angle, which quantifies the
light deflection from the tidal field φ of a mass distibution. In the limit of weak gravitational
fields, φ ¿ c2, one can choose a metric which is only slightly perturbed away from that of
Minkowski spacetime, and write the line element as follows,

ds2 =
(

1 + 2φ/c2
)

c2dt2 −
(

1 − 2φ/c2
)

dxidx
i. (1.50)
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1.3 Gravitational lensing

For light-rays, ds2 = 0, and one gets c dt ≈ (1− 2φ/c2)d` with d`2 = dxidx
i. The travel time

for a light ray along a path γ is

t =
1

c

∫

γ

(

1 − 2φ/c2
)

d` =
1

c

∫

γ
n( � )d`, (1.51)

where in analogy to geometrical optics the index of refraction n is introduced in the second
step. One now applies Fermat’s principle, which states that the actual light path is stationary
in the travel time, or δt = 0. The Euler-Lagrange equations of the variational principle
δ
∫

nd` = 0 are
d

ds

(

n
dxi

d`

)

=
∂n

∂xi

d`

ds
, (1.52)

where the curve γ is parametrized with the arc length s. Next, these equations are integrated
along the line of sight x3 between the observer (O) and the source (S). Defining the vector
�

= (x1, x2) as being perpendicular to the x3-direction between O and S, one gets

n
d

�

d`

∣

∣

∣

∣

O

S

=

∫ O

S
∇⊥n

d`

ds
ds. (1.53)

If the lens is far from the source and observer, the refractive index is unity at the end points
O and S. The deflection angle ˆ� is the difference between the directions of the emitted and
received light ray, and using the definition of n (1.51), one gets

ˆ� =
d

�

ds

∣

∣

∣

∣

O

− d
�

ds

∣

∣

∣

∣

S

= − 2

c2

∫ O

S
∇⊥φ d`. (1.54)

1.3.2 Point lens and thin lens approximation

The simplest case of a lens system consists of a point mass M and a point source. Assuming
the impact parameter of the light ray ξ to be much larger than the Schwarzschild radius
RS = 2GM/c2 of the lens and much smaller than the distances between source, lens and
observer, the path of the light ray can be approximated by piecewise straight lines. The
deflection angle in this case is very accurately obtained by inserting the potential of a point
mass φ = −GM/ξ into (1.54) and evaluating the integral along the straight lines. The result
is

ˆ� (
�
) =

4GM

c2ξ

�

ξ
. (1.55)

Because ξ À RS, the deflection angle is much smaller than unity and indeed, for all known
isolated lens systems, the deflection is smaller than an arc minute.

In the next step, a distribution of point masses mi is considered. If again the impact pa-
rameter with respect to all point masses is much larger than the corresponding Schwarzschild
radius, the resulting deflection angle is the (vectorial) sum of the deflections caused by the
individual lenses,

ˆ� (
�
) =

4G

c2

∑

i

mi(
�

i, x
3
i )

� − �
i

| � − �
i|2

=
4G

c2

∫

d2ξ′
∫

dx′3 ρ(
�
′, x′3)

� − �
′

| � − �
′|2 . (1.56)
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Figure 1.4: Geometry of a lens system.

In the second step, the transition from discrete point masses to a continuous mass distribution
with density ρ was made. Defining the surface mass density Σ(

�
) =

∫

dx3 ρ(
�
, x3), (1.56) can

be rewritten as

ˆ� (
�
) =

4G

c2

∫

d2ξ′ Σ(
�
′)

� − �
′

| � − �
′|2 . (1.57)

This expression is valid as long as the extent of the mass distribution along the line of
sight is much smaller than the distances between source, lens and observer. This thin lens
approximation is well satisfied when considering lensing by single galaxies or clusters, but
fails in the case of cosmic shear where the mass distribution causes multiple deflections all
along the line of sight.

1.3.3 The lens equation

An equation can be set up which relates the positions of the images and the source by simply
looking at the geometrical configuration of the lens system as sketched in Fig. 1.4. Let Dd be
the distance from the observer to the lens, or deflector, Ds the distance between the observer
and the source, and Dds the distance between lens and source. The lens and the source plane
are defined as being perpendicular to the optical axis which is the line connecting observer
and lens.

The source is located at a distance � from the optical axis, the impact vector is
�

as before.
By using the intercept theorem, the following equation is found,

� =
Ds

Dd

� −Dds ˆ
� (

�
). (1.58)
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Figure 1.5: The quadruple lens
system HST14176+5226 with a
red elliptical galaxy as lensing
galaxy, from CASTLES9. The
observation was made by Rat-
natunga et al. (1995).

This simple geometrical relation even holds for systems on cosmological scales, if angular
diameter distances are used, see eq. (1.14). Relating distances to angles via � = Ds

�
,

�
= Dd � and defining the scaled deflection angle � ( � ) = Dds/Ds · ˆ� (Dd � ) results in the very

concise form of the lens equation �
= � − � ( � ). (1.59)

The solution of the lens equation for a given mass distribution determining the deflection angle
and a given source position

�
is the observed position � of the image. The lens equation can

have more than one solution which corresponds to multiple images of the source.

1.3.4 Convergence and shear

Introducing the critical surface density

Σcr =
c2

4πG

Ds

DdDds
, (1.60)

one can define a dimensionless surface mass density κ( � ) = Σ(Dd � )/Σcr, also called conver-
gence. A mass distribution with κ ≥ 1 at some position � produces multiple images provided
there is a source at an appropriate position

�
. Today, around 80 multiple image systems

are known. In most of these cases, a high redshift quasar, typically at z & 2 is lensed by a
foreground galaxy of redshift z . 1; an example of a quadruple lens is shown in Fig. 1.5.

Using (1.60), equation (1.57) can be rewritten as

� ( � ) =
1

π

∫

d2θ′κ( � ′)
� − � ′

∣

∣ � − � ′
∣

∣

2 . (1.61)

9CfA-Arizona Space Telescope LEns Survey, http://cfa-www.harvard.edu/castles/
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Chapter 1 Cosmology and the basics of gravitational lensing

The deflection angle is the gradient of the so-called deflection potential, � = ∇ψ, which is

ψ( � ) =
1

π

∫

d2θ′κ( � ′) ln
∣

∣ � − � ′
∣

∣ , (1.62)

and satisfies the 2-D Poisson equation

∇2ψ = (∂1∂1 + ∂2∂2)ψ = 2κ. (1.63)

The Jacobian of the mapping (1.59) is

∂βi

∂θj
= Aij = δij −

∂2ψ

∂θi∂θj
. (1.64)

By introducing the shear

γ1 =
1

2
(∂1∂1ψ − ∂2∂2ψ) , γ2 = ∂1∂2ψ, (1.65)

the symmetric Jacobian matrix can be parametrized with the convergence and the shear as

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

. (1.66)

The two-component shear γ = (γ1, γ2) is a polar or spin-2 field, because it transforms iden-
tically under rotations by an angle π. It is very convenient to write the shear as a complex
number, γ = γ1 + i γ2 = |γ|e2 i ϕ where the polar transformation property of the shear has
been accounted for by the factor 2 in front of the polar angle ϕ.

Liouville’s theorem guarantees surface brightness conservation by gravitational lensing, thus
the observed intensity I at a position � is related to the intensity in the source plane I s via
I( � ) = Is(

�
( � )). If the angular extent of the source is smaller than the scale over which the

lens properties change, this relation can be linearized in a neighborhood of the image position

� 0 to

I( � ) = Is
( �

( � 0) + A( � 0) ( � − � 0)
)

. (1.67)

In general, this equation maps a circular source to an elliptical image. The convergence κ,
being the diagonal part of the Jacobian, isotropically magnifies the image whereas the shear
γ, being the trace-free part of A, distorts the image. The axis ratio of the resulting ellipse
is equal to the ratio of the eigenvalues of A, which are λ1,2 = 1 − κ ±

√

γ2
1 + γ2

2 . An image
is magnified by a factor equal to the ratio of the integrated intensity distributions I( � ) and
Is( � ), which is the inverse of the determinant of A,

µ =
1

detA =
1

(1 − κ)2 − (γ2
1 + γ2

2)
. (1.68)

A lens system where κ ≥ 1 at some position θ is called a strong lens. For typical strong
lenses, the shear γ is also large, thus highly distorted images are produced. Very prominent
examples of strong lenses are the centers of rich clusters where background galaxies show up
as large luminous arcs, see Fig. 1.6.
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1.3 Gravitational lensing

Figure 1.6: The center of the galaxy cluster Abell 1689 as seen with the ACS camera on board of the
HST. Source: NASA press release, N. Benitez et al. (2003).

In order to get a relation between the shear and the convergence, one rewrites the expres-
sions (1.63) and (1.65) in Fourier space,

κ̂( � ) = −1

2

(

`21 + `22
)

ψ̂( � ), γ̂1( � ) = −1

2

(

`21 − `22
)

ψ̂( � ), γ̂2( � ) = −`1`2ψ̂(� ) (1.69)

and obtains

γ̂( � ) = γ̂1( � ) + iγ̂2(� ) =
(`1 + i`2)

2

`2
κ̂( � ) = e2iβκ̂( � ), (1.70)

where β is the polar angle of the Fourier vector � . These relations are not defined for ` = 0,
corresponding to an arbitrarily large scale. The physical interpretation of this is that a
homogeneous constant surface mass density causes no shear and κ can be determined from
the shear only up to an additive constant. In analogy to (1.40), the power spectra of the
convergence and the shear are defined and found to be equal, Pκ = Pγ with

〈

κ̂( � )κ̂∗( � ′)
〉

=
〈

γ̂( � )γ̂∗( � ′)
〉

= (2π)2δD( � − � ′)Pκ(`). (1.71)

The relation between the third-order moments of κ and γ is

〈κ̂( � 1)κ̂( � 2)κ̂( � 3)〉 = 〈γ̂( � 1)γ̂( � 2)γ̂( � 3)〉 e−2i(β1+β2+β3), (1.72)

where βi is the polar angle of the wavevector � i.
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Chapter 1 Cosmology and the basics of gravitational lensing

Figure 1.7: Example of images of faint, high-redshift galaxies on a CCD chip. Source Y. Mellier.

1.3.5 Weak lensing measurements

The regime where κ ¿ 1 and |γ| ¿ 1 is called the weak lensing regime. The distortions of
distant galaxies are typically smaller than their intrinsic ellipticities which makes it impossible
to tell to what extend an individual source is sheared. However, by observing a large number
of galaxies and measuring their shapes, one can statistically detect this weak shear. For
that, one has to quantify the shape of faint, often quite irregular galaxies which in addition
are given as brightness distributions over only a handful of CCD pixels, see Fig. 1.7 for an
example.

First, the center of an isolated brightness distribution I is determined as

¯� =

∫

d2θ qI [I( � )] �
∫

d2θ qI [I( � )]
, (1.73)

where qI is a suitably chosen weight function in order to reduce the noise due to the sky
background. Next, the second-moment tensor of the brightness distribution is defined as

Qij =

∫

d2θ qI [I( � )] (θi − θ̄i)(θj − θ̄j)
∫

d2 θ qI [I( � )]
, i, j = 1, 2, (1.74)

and the complex ellipticity of an object describing its shape is deduced as

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)

1/2
. (1.75)

For an object with elliptical isophotes, the axis ratio r of the isophotes is related to the above
defined ellipticity as |ε| = (1 − r)/(1 + r). The following relation between the intrinsic or
source ellipticity εs of an object and its observed ellipticity ε holds:

εs =



















ε− g

1 − g∗ε
for |g| ≤ 1

1 − gε∗

ε∗ − g∗
for |g| > 1

, (1.76)

where g is the reduced shear,

g =
γ

1 − κ
. (1.77)
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1.4 Cosmic shear

This transformation becomes particularly simple for κ¿ 1 and |γ| ¿ 1. Then, g ≈ γ and, if
additionally |εs| . 1/2, the observed ellipticity is just the sum of the intrinsic ellipticity and
the shear,

ε ≈ εs + γ. (1.78)

This is the basic equation of weak lensing. Under the simple assumption that the intrinsic
orientation of galaxies is random, which is justifiable on grounds of statistical isotropy of
the large-scale structure, the expectation value of the intrinsic ellipticity vanishes, 〈εs〉 = 0.
Therefore, the observed ellipticity is an albeit very noisy but unbiased estimator of the shear,

〈ε〉 = γ. (1.79)

1.3.6 The mass-sheet degeneracy

For a general lens system the source position β is not observable and the source size and
luminosity is not known unless in the rare case of a standard candle such as a supernova of
type Ia. This leads to a non-uniqueness of the lens surface mass density κ, which reproduces
the observational constraints of this system, be it in the strong or weak lensing regime. A
family of lens models

κλ = (1 − λ) + λκ, (1.80)

rescales the convergence by the multiplicative factor λ and adds a constant term or mass
sheet (1 − λ) to it. This ambiguity in the surface mass density is therefore called the mass-
sheet degeneracy. The family κλ satisfies the Poisson equation ∆ψλ = 2κλ (cf. eq. 1.63) with
ψλ( � ) = (1 − λ)θ2/2 + λψ( � ). Defining a family of deflection angles �

λ( � ) = ∇ψλ( � ) =
(1 − λ) � + λ � ( � ), one inserts (1.80) into the lens equation (1.59) and gets

�
= � − �

λ( � ) = λ [ � − κ( � )] , (1.81)

which has the same form than the ‘original’ lens equation (1.59) except for an unobservable
rescaling of the source position. The Jacobi matrix (1.66) changes to Aλ = λA and therefore,
the (unobservable) shear γ (1.65) is rescaled in the same way, but the (observable) reduced
shear (1.77) is invariant. In weak lensing systems, the additional use of redshifts of the
background galaxies can break the mass-sheet degeneracy (Bradač et al. 2004). Since the
magnification changes to µλ = µ/λ2, the number density of background images is modified
as a consequence, and number counts could in principle lift the degeneracy (e.g. Dye et al.
2002); however, since firm number count observations are particularly difficult they are rarely
made. In Sect. 2.1 the aperture mass Map will be introduced as a measure of the local surface
mass density which is independent of the mass-sheet degeneracy in the weak lensing limit.
Second and third moments of Map in the cosmic shear context (see next section) will be used
extensively in this work.

1.4 Cosmic shear

The term cosmic shear describes the coherent distortion of light coming from high-redshift
galaxies caused by matter inhomogeneities on very large cosmological scales. The distortions
are very minute, of the order of a few percent and therefore much smaller than the typical
intrinsic ellipticity of a galaxy. For that reason, cosmic shear has to be detected in a statistical
way, using high-quality images of a large number of faint galaxies.
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Chapter 1 Cosmology and the basics of gravitational lensing

Cosmic shear has been detected for the first time nearly simultaneously by four independent
groups in 2000 (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman
et al. 2000). Since these pilot studies with the main goal to demonstrate that measurements
of cosmic shear are possible and feasible, weak gravitational lensing by the large-scale matter
distribution in the Universe has become an important tool for cosmology. On the one hand,
the observed sky area and thus the number of faint background galaxies increased dramatically
with the advent of wide-field imaging cameras mounted onto large telescopes, both ground-
based and space-based. On the other hand, measurement errors have decreased with further
understanding of systematics together with new image analysis methods. These two advances
were crucial in the evolution of cosmic shear towards a high-precision cosmology probe.

Deep cosmic shear surveys out to redshifts beyond unity covering sky areas from a few
dozen square arc minutes to more than a hundred square degrees have yielded measurements
of cosmological parameters without the need for modeling the relation between luminous and
dark matter (bias). Most notably, interesting constraints on Ωm and σ8 have been derived
(Hoekstra et al. 2002; Jarvis et al. 2003; van Waerbeke et al. 2005). Cosmic shear is probably
the most important tool in order to determine the dark matter power spectrum normalization
σ8. Its superiority over other techniques becomes evident by noting that the method works
without having to model the bias between galaxies and dark matter as is required for galaxy
surveys. It also probes the normalization on scales which are relevant for non-linear structure
formation in the recent past in contrast with CMB anisotropy experiments which are sensitive
on much larger, linear scales.

Depending on the depth of the survey, cosmic shear is sensitive to inhomogeneities in the
projected matter distribution out to redshifts of order unity. It probes scales where fluctu-
ations started to grow non-linearly due to gravitational instabilities. These non-linearities
along with projection effects erase most of the primordial features such as baryon wiggles
in the power spectrum due to the acoustic waves in the electron-photon plasma prior to de-
coupling (Sect. 1.1.8). Thus, cosmological parameters cannot be determined uniquely from
cosmic shear; there exist substantial near-degeneracies, e.g. between Ωm and σ8, or Γ and ns.

Some of these near-degeneracies can be broken on combining weak lensing with other cos-
mological measurements like CMB anisotropy experiments, the statistics of the Lyman-α
forest or galaxy redshift surveys. The parameter dependencies are very different for the indi-
vidual methods, for example the Ωm-σ8-degeneracy is nearly orthogonal between cosmic shear
and CMB (van Waerbeke et al. 2002). Consequently, even the most precise measurements
of cosmological parameters can be improved substantially when weak lensing data is added
(Contaldi et al. 2003; Hu & Tegmark 1999).

These degeneracies manifest themselves in a different way also for shear statistics of different
order, and they can be lifted by combining e.g. second- and third-order statistics. An example
is the reduced skewness of the convergence κ, which is a (non-linear) combination of the
skewness and the variance of κ. This quantity has been shown to not, or only weakly, depend
on σ8 and thus to be able to break the near-degeneracy with Ωm (Bernardeau et al. 1997; van
Waerbeke et al. 1999). An important result of the present work is that degeneracies between
cosmological parameters, most notably between Ωm and σ8, can be lifted substantially by
linearly combining second- and third-order statistics of cosmic shear (Chapter 5).

For cosmic shear, the thin lens approximation fails, because the light of background galaxies
is distorted continuously on its path by intervening matter. Therefore, a rigorous description
of the propagation of light is needed. In the following, I use the notation from Bartelmann &
Schneider (2001).
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1.4 Cosmic shear

1.4.1 Light propagation

The propagation of light bundles through a general space-time manifold is described by the
geodesic deviation equation, which relates the deviation of two neigboring geodesics to the
space-time geometry via the Riemann tensor (for a derivation, see e.g. Peebles 1993). Using
this equation, one can derive a propagation equation for the comoving transverse separation

� of neighboring light rays in an infinitesimally thin light bundle. In a Friedmann-Lemâıtre
Universe, this is simply

d2 �

dw2
+K � = 0. (1.82)

Here, w is the comoving distance along the light ray and K is the spatial curvature of the
Universe. All rays of the light bundle have a common intersection point, which is the position
of the observer at w = 0. The solution of (1.82) is � ( � , w) = fK(w) � , where � is the angle of
two light rays separated by � , as seen by the observer.

Next, one adds density perturbations to the cosmological background. It is assumed that
their Newtonian potentials Φ are weak, |Φ| ¿ c2, which is fulfilled for large-scale density
fluctuations. Furthermore, the largest perturbations have to be much smaller than the horizon
which is also satisfied: the density fluctuation power spectrum has a very small amplitude
on large scales. Applying Fermat’s principle to the light rays, one finds that an additional
term −2/c2 ∇⊥Φ has to be added to the right-hand side of equation (1.82), where ∇⊥ denotes
differentiation perpendicular to the light path. This modified propagation equation describes
the deviation of a light ray in a perturbed Universe with respect to that in an unperturbed
one. Since in reality all light rays are perturbed, one has to replace the gradient of the
potential by the difference of potential gradients ∆(∇⊥Φ) between points of two neighboring
light rays. Equation (1.82) then becomes

d2 �

dw2
+K � = − 2

c2
∆
(

∇⊥Φ( � ( � , w), w)
)

. (1.83)

The comoving separation of the light rays � depends on � and the comoving distance w, the
potential depends on � and w.

Using Green’s function, (1.83) can be written as an integral equation,

� ( � , w) = fK(w) � − 2

c2

∫ w

0
dw′fK(w − w′)∆

(

∇⊥Φ( � ( � , w′), w′)
)

. (1.84)

In order to simplify this equation, the zeroth-order solution, � ( � , w) = fK(w) � , is inserted
into the right-hand side, which is equivalent to integrating over the potential along the un-
perturbed ray. This is the analogy of the Born approximation used in scattering theory and
permits to interchange the potential gradient differences by the gradient of the differences of
the potential. But taking the potential difference boils down to adding a term independent
of � , the perpendicular gradient of which vanishes. Therefore, one replaces ∆Φ by Φ. One
can now introduce a quantity analogous to the deflection angle (see Sect. 1.3.1), which is the
unperturbed separation minus the real separation, divided by the angular diameter distance,
hence

� ( � , w) =
fK(w) � − � ( � , w)

fK(w)
=

2

c2

∫ w

0
dw′ fK(w − w′)

fK(w)
∇⊥Φ(fK(w′) � , w′). (1.85)

An effective convergence can be defined which depends on the comoving distance, via
2κ( � , w) = ∇θ

� ( � , w). Applied to eq. (1.85), the differentiation only acts on the potential,
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Chapter 1 Cosmology and the basics of gravitational lensing

resulting in the two-dimensional Laplacian of ψ. One can add at each point the second deriva-
tive of the potential with respect to the line-of-sight direction to get the three-dimensional
Laplacian. Integrated along the light path, this extra term averages to zero (see White & Hu
(2000) for a validation of this assumption). This Laplacian can then be written in terms of
the linear density perturbations using the Poisson equation (1.20), and one gets

κ( � , w) =
3H2

0Ωm

2c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)a(w′)
δ
(

fK(w′) � , w
)

. (1.86)

Although the thin-lens approximation is no longer valid for cosmic shear as mentioned
before, one can think of the three-dimensional perturbations as a stack of multiple lens planes,
each plane being a thin lens. Then, using the Born approximation and retaining only the
first-order terms in Φ is equivalent to adding up the contributions to the convergence of all
lens planes linearly. The higher-order terms which describe the coupling of lens planes are
neglected. One can introduce a deflection potential

ψ( � , w) =
2

c2

∫ w

0
dw′ fK(w − w′)

fK(w′)fK(w)
Φ(fK(w′) � , w′), (1.87)

with fulfills κ = ∇2ψ/2 (cf. 1.63), and define the shear γ1 = (∂1∂1ψ − ∂2∂2ψ) /2 and γ2 =
∂1∂2ψ according to (1.65). Given the weak potentials on large scales and small deflection
angles, the Born approximation is justifiable. The validity of this treatment has also been
verified by ray-tracing light rays through large-scale N -body simulations, see e.g. Jain et al.
(2000).

In order to get the total convergence, one integrates the effective convergence (1.86),
weighted by the distribution function of observed source galaxies in comoving distance
p(w)dw, up to some sufficiently large distance wlim at which p basically drops to zero, and
obtains

κ( � ) =

∫ wlim

0
dw p(w)κ( � , w) =

∫ wlim

0
dwG(w) fK(w) δ (fK(w) � , w) , (1.88)

with the lens efficiency function

G(w) =
3

2

(

H0

c

)2 Ωm

a(w)

∫ wlim

w
dw′ p(w′)

fK(w − w′)

fK(w′)
. (1.89)

In this work, three fiducial cosmological models (App. B) with two different source red-
shift distributions are employed. For model 1 (Table B.1), the following realistic redshift
distribution, taken from Brainerd et al. (1996), is used,

p(w)dw = p(z)dz =
β

z0Γ (3/β)

(

z

z0

)2

e−(z/z0)β

dz, (1.90)

where Γ denotes the Eulerian Gamma function. The parameter β specifies how fast the
distribution falls off towards the high-redshift end. z0 is related to the mean redshift z̄ of the
distribution; for β = 1.5, it is z̄ ≈ 1.5 z0. Both model 2 and model 3 assume a single redshift
plane for the source galaxies at z ≈ 1 corresponding to the ray-tracing simulations.

The product G ·fK determines the redshift sampling of the density field δ in the projection
for the convergence κ (1.88). This integration kernel follows the source galaxy distribution but
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Figure 1.8: The integration kernel G · fK in (1.88) as a function of the redshift z is shown in the left
panel for the two ΛCDM cosmologies model 1 (solid line) and model 2 (dashed line), see Table B.1.
Model 1 assumes a continuous redshift distribution (1.90) with β = 1 .5 and z0 = 1 , which is shown
in the right panel. For model 2, all source are situated at redshift of about unity.

also depends on the geometrical factors fK , which are the direct correspondence of the dis-
tances between source, lens and observer in the single thin lens case (Sect. 1.3.2). Accordingly,
if all source galaxies are at the same redshift, as it is the case for models 2 and 3, intermediate
redshifts between observer and sources contribute most to the effective convergence. The lens
efficiency and the source distribution are plotted in Fig. 1.8.

1.4.2 Moments of the convergence

Since the convergence κ is a linear projection of the density contrast δ, it also has to be
described as a random field. Consequently, the power spectrum and the bispectrum of κ can
be calculated from the corresponding Fourier moments of δ.

1.4.2.1 The convergence power spectrum

The convergence power spectrum is defined in (1.71) and can be expressed in terms of the
power spectrum of the density perturbations using Limber’s equation (Limber 1953) in Fourier
space (Kaiser 1992),

Pκ(`) =

∫

dwG2(w)Pδ

(

`

fK(w)

)

. (1.91)

The dimensionless power spectrum `2Pκ(`) is plotted in Fig. 1.9. The cosmological and
redshift distribution parameters can be divided into groups, depending on how they influence
the power spectrum. One group, consisting of Ωm, σ8, z0 and β roughly cause a shift only of
the amplitude. A change in Γ, ns or ΩΛ results in a tilt of the power spectrum. Since the
functional dependence of the power spectrum is very similar for each of the parameters in one
group, these parameters are highly degenerate. These relationships and degeneracies between
parameters will be analyzed in more detail in Chapters 3 and 5.
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Figure 1.9: The dependence of the dimensionless convergence power spectrum `2Pκ(`) on cosmological
parameters. For each curve, the corresponding parameter as indicated in the panel is increased by 10%
with respect to the default ΛCDM model (model 1, see Table B.1). The conjugate angle 2π/` of the
Fourier scale ` is given on the top axes.

1.4.2.2 The convergence bispectrum

The bispectrum Bκ of the convergence is defined by the following equation, in analogy to
(1.42):

〈κ̂( � 1)κ̂( � 2)κ̂( � 3)〉 = (2π)2δD(� 1 + � 2 + � 3) [Bκ(� 1, � 2) +Bκ(� 2, � 3) +Bκ(� 3, � 1)] . (1.92)

The convergence inherits the statistical isotropy and parity-invariance from the density con-
trast, thus the bispectrum only depends on the scalar product of its two arguments,
Bκ( � 1, � 2) = Bκ(� 1 · � 2) = bκ(`1, `2, ϕ). I write

bκ(`1, `2, ϕ) =
2
∑

m=0

F
(m)
2 (`1, `2) cosm(ϕ) b̄(m)

κ (`1, `2), (1.93)

where the coefficients F
(m)
2 are taken either from PT (1.34) or from HEPT (1.49). The

functions b̄
(m)
κ are projections of the 3-D bispectrum of density fluctuations δ. The projection

is obtained using Limber’s equation, applied to the bispectrum (App. C). Inserting the result
of this projection (C.8) for the convergence bispectrum (1.92) and using the second-order
relation between the bispectrum and the power spectrum (1.44) yields

b̄(m)
κ (`1, `2) =

∫ whor

0

dw

fK(w)
G3(w)f (m)(w, `1)f

(m)(w, `2)Pδ

(

`1
fK(w)

)

Pδ

(

`2
fK(w)

)

. (1.94)

If PT is used as a model for the δ-bispectrum, the coefficients f (m) for m = 0, 1, 2, are equal
to unity, and Pδ corresponding to the linear power spectrum (Sect. 1.2.6.1) has to be inserted.
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1.4 Cosmic shear

For the non-linear model HEPT (Scoccimarro & Couchman 2001) with the modified kernel
(1.49), one has to replace f (m), m = 0, 1, 2, with the fitting functions a, b and c respectively,

see Sect. 1.2.7.2. Note that the coefficients F
(m)
2 only depend on the ratio of its arguments,

therefore they can be drawn out of the integration over the comoving distance w justifying
the form of the bispectrum given in (1.93).

1.4.3 The E- and B-mode of the shear field

From the relations between the shear, the convergence and the gravitational potential, one
can derive the following relation (Kaiser 1995; Schneider et al. 2002),

∇κ =

(

∂1γ1 + ∂2γ2

∂2γ1 − ∂1γ2

)

= � , (1.95)

which defines the vector � as the gradient of the “potential” κ. However, when measuring �

from data, it will have a non-gradient component due to noise and systematic measurement
errors. Moreover, other sources than measurement effects can cause a non-zero curl component
of � which will be discussed below.

In order to separate the gradient from the curl part of � , one introduces the new quantities
κE and κB, which represent the so-called E- and B-mode of the convergence (in analogy to
the electromagnetic field) by

∇2κE = ∇ · � ;

∇2κB = ∇× � = ∂1u2 − ∂2 u1. (1.96)

Further, one defines the E- and B-mode potentials ψE and ψB via the Poisson equation

∇2ψE,B = 2κE,B. (1.97)

For notation and calculation simplification, the E- and B-modes are combined into complex
quantities,

ψ = ψE + iψB, κ = κE + iκB. (1.98)

The Poisson equation (1.97) then takes its simple form ∇2ψ = 2κ, and the complex shear
γ = 1

2 (∂1∂1 − ∂2∂2)ψ + i ∂1∂2ψ can be written as

γ1 + i γ2 =
1

2

(

∂1∂1ψ
E − ∂2∂2ψ

E
)

− ∂1∂2ψ
B + i

[

∂1∂2ψ
E +

1

2

(

∂1∂1ψ
B − ∂2∂2ψ

B
)

]

. (1.99)

These definitions are consistent with eqs. (1.63) and (1.65) in the absence of B-modes.

The shear and convergence power spectrum as defined in (1.71) can be generalized to a field
which has both an E- and a B-mode. One defines the E-mode, the B-mode and the mixed
power spectra of the convergence as follows,

EE = 〈κ̂E(� )κ̂E( � ′)〉 = (2π)2δD(� − � ′)PE
κ (`),

BB = 〈κ̂B( � )κ̂B( � ′)〉 = (2π)2δD(� − � ′)PB
κ (`), (1.100)

EB = 〈κ̂E( � )κ̂B( � ′)〉 = (2π)2δD(� − � ′)PEB
κ (`),

35



Chapter 1 Cosmology and the basics of gravitational lensing

and can derive for the correlators of γ in Fourier space

〈γ̂( � )γ̂∗( � )〉 = (2π)2δD(� − � ′)[PE
κ (`) + PB

κ (`)],

〈γ̂( � )γ̂(� )〉 = (2π)2δD(� − � ′)[PE
κ (`) − PB

κ (`) + 2iPEB
κ (`)]. (1.101)

A similar generalization can be done for the convergence bispectrum (1.92) and the terms
(in the above introduced short notation) EEE, EEB, EBB and BBB can be defined. Schneider
(2003) has shown that under parity transformation (see also Sect. 2.3.1.2) ψE is invariant and
ψB changes sign. The same holds for κ and therefore, since the large-scale structure is parity-
symmetric, the above defined correlators EB, EEB and BBB which have an odd number of
‘B’s vanish.

In principle, there are three different sources of a B-mode in the shear field. Firstly, it
can arise from measurement errors such as imperfect PSF anisotropy correction or inaccurate
determination of the galaxy shape parameters. Secondly, lensing itself is a cause: source
redshift clustering (Schneider et al. 2002) and lens-lens coupling which is not accounted for
in the Born approximation of the deflection angle (1.85), see Schneider et al. (1998), can
introduce a B-mode. However, these higher-order effect are assumed to be very small; their
contribution to the signal can most probably be neglected even for the nowadays achieved
measurement accuracies. Thirdly, the intrinsic correlation of galaxy orientations, also called
intrinsic alignment, is supposed to show up in both the E- and the B-mode shear signal.
Galaxies can be intrinsically aligned, even over large physical distances, by spin-correlations
with their (common) dark-matter halo or by tidal torques (see e.g. Catelan et al. 2001; Crit-
tenden et al. 2001; Croft & Metzler 2000; Heavens et al. 2000; Jing 2002). The mechanisms
are still not very well understood and consequently, theoretical predictions of this effect differ
by orders of magnitudes (e.g. Brown et al. 2002, and references therein). Observations have
not yielded stringent constraints on this effect — moreover, basically no intrinsic alignment
was found in the SDSS10 galaxy sample (Hirata et al. 2004). For a shear survey where no
redshift information of the source galaxies is available, galaxy pairs which are close on the sky
have a smaller probability to be also physically close the deeper the survey is. Consequently,
the intrinsic alignment contamination to shear diminishes with the survey depth. Since the
dependence on angular separation is different for shear and intrinsic correlation, it is possible
to separate the two effects (King & Schneider 2002, 2003).

It is believed that for a deep cosmic shear survey the main if not only significant source of
a B-mode in the shear field are measurement errors. The amplitude of the residual B-mode
can therefore be interpreted as a quality attribute of the data reduction. Recently, a re-
analysis of the VIRMOS-DESCART data using a refined PSF correction method succeeded
in eliminating the B-mode whose presence in previous analyses of the data was most probable
due to an incorrect PSF model (van Waerbeke et al. 2005).

10Sloan Digital Sky Survey, http://www.sdss.org
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Chapter 2

Cosmic shear statistics

In this chapter I introduce and define the basic quantities which are the prerequisites for the
treatment of cosmic shear statistics (Sect. 2.1). Several second- and third-order shear statistics
and their interrelations are defined in Sects. 2.2 and 2.3. The dependence of these statistics on
the underlying Fourier-space moments of the convergence, which are the power spectrum and
the bispectrum, respectively, are given. These relations will be used in Chapter 4 in order to
compare third-order shear statistics from theoretical models of the large-scale structure with
numerical ray-tracing simulations. Further, in Chapters 3 and 5, these relations are essential
since they determine the dependence of second- and third-order cosmic shear statistics on
cosmological parameters.

In Sects. 2.4 and 2.5, estimators and their covariance, respectively, of the shear statistics
are discussed. These expressions will be used in Chapters 3 and 5 to quantitatively address
the problem of constraining cosmological parameters using cosmic shear measurements.

2.1 Definitions of the basic quantities of cosmic shear statistics

Projection of shear. Shear is a two-component quantity, which transforms like a spin-2 or
polar field under rotations. It can be written as a complex number γ = γ1+iγ2 = |γ| exp (2iφ),
where γ1 and γ2 are the two Cartesian components, |γ| the modulus and φ the polar angle of
the shear (1.65). In Fig. 2.1 the orientation of the shear illustrated as an ellipse is shown as
a function of its Cartesian coordinates.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

γ1

γ 2

Figure 2.1: The orientation of the ellipses given
by the Cartesian coordinates γ1 and γ2 of the
shear. While the polar angle ϕ passes through the
range [0 ; 2π], the shear ellipse rotates around π.
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π/4

ϑ′ − ϑ

Figure 2.2: Left panel: The tangential and cross-component of the shear, as defined in eq. (2.1).
Right panel: Sketch for the definition of the aperture mass statistics (2.2).

A very useful representation of shear is the decomposition of γ into its tangential and
cross-component relative to some direction � ,

γt = −<
(

γe−2iϕ
)

and γ× = −=
(

γe−2iϕ
)

, (2.1)

where ϕ is the polar angle of the vector � , see Fig. 2.2. Around a spherical mass overdensity,
the shear field shows a tangential pattern, thus background galaxies are tangentially aligned
with respect to the mass center. In the above defined notation, this corresponds to γt > 0
and γ× = 0.

The aperture mass statistics. Linear combinations of shear which are scalar quantities can
be found and will turn out to be very useful in various aspects. One important measure of
shear and the convergence is the aperture mass Map which was first introduced by Kaiser
et al. (1994) and Schneider (1996) as a quantity which is not affected by the mass-sheet
degeneracy (Sect. 1.3.6). In the following years its relevance and usefulness for cosmic shear
was discovered. Map at a point � is defined as the integral over the filtered surface mass
density κ in an aperture of radius θ, centered at � . Alternatively it can be expressed in
terms of the tangential shear γt (2.1), where ‘tangential’ is now understood with respect to
the aperture center � (Kaiser et al. 1994; Schneider 1996),

Map(θ, � ) =

∫

d2ϑ′ Uθ(| � − � ′|)κ( � ′) =

∫

d2ϑ′Qθ(| � − � ′|)γt( � ′), (2.2)

the second equality holds if Uθ is a compensated filter function, i.e.

∫

dϑϑUθ(ϑ) = 0. (2.3)

Obviously, this property of Uθ leaves Map invariant to a constant additive surface mass density
and is therefore insensitive to the mass-sheet degeneracy in the weak lensing regime (κ¿ 1).
Further, Q is obtained from U by

Qθ(ϑ) =
2

ϑ2

∫ ϑ

0
dϑ′ ϑ′ Uθ(ϑ

′) − Uθ(ϑ). (2.4)
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Here and in the following I assume, if not stated otherwise, that the convergence is free of a
B-mode, κ = κE, and omit the subscript ‘E’.

It is the second equality in (2.2) which makes the aperture mass so useful from an ob-
servational point of view. Accordingly, the total (weighted) projected mass density κ in a
region on the sky can be estimated by averaging over the (weighted) tangential ellipticities of
background galaxies in this region, since the observed ellipticity is an estimator of the shear
in the weak-lensing limit (1.79). An aperture mass-map can be compiled for a sky region,
where each point � is assigned the value of Map(θ, � ) for some filter scale θ, see Fig. 5.1. Mass
overdensities such as galaxy clusters manifest themselves as peaks in the Map-map. With this
method, not only clusters which have been found via galaxy overdensities or X-ray emission
can be confirmed, but blind searches can be done to identify galaxy clusters (e.g. Schirmer
et al. 2004).

Analogous to the second part of (2.2), the weighted cross-component of shear in an aperture
can be defined as

M⊥(θ, � ) =

∫

d2ϑQθ(| � − � ′|)γ×( � ), (2.5)

the corresponding “convergence” is κB (1.98) which, however, does not represent a physical
surface mass density. M⊥ is a measure of the B-mode, and can be used to quantify systematic
measurement errors (see Sect. 1.4.3), since the equality M⊥(θ, � ) = 0 holds for every � in
the absence of a B-mode. Note that this equality is not satisfied when the aperture mass is
estimated using observed background galaxy ellipticities as tracers of the shear field because
of noise. However, the expectation value of M⊥ is still zero for every � when no B-mode is
present.

The integrals (2.2) and (2.5) can be written as convolutions,

Map(θ, � ) = (Uθ ∗ κ) ( � ) = <
(

Q′
θ ∗ γ

)

( � ),

M⊥(θ, � ) = =
(

Q′
θ ∗ γ

)

( � ), (2.6)

where the modified filter function Q′
θ is defined as follows,

Q′
θ(ϑ) = −Qθ(ϑ)e−2i arctan(ϑ2/ϑ1). (2.7)

One can combine (2.2) and (2.5) and define the complex aperture mass

M(θ, � ) = Map(θ, � ) + iM⊥(θ, � ) =
(

Q′
θ ∗ γ

)

( � ). (2.8)

Two sets of filter functions for U and the derived function Q (2.4) have been used fre-
quently in previous studies; both will be employed for this work. With the definition Uθ(ϑ) =
u(ϑ/θ)/θ2 and Qθ(ϑ) = q(ϑ/θ)/θ2, the first set of functions considered here are the polynomial
filter functions defined in Schneider et al. (1998),

u(x) =
9

π
(1 − x2)

(

1

3
− x2

)

H(1 − x), q(x) =
6

π
x2(1 − x2)H(1 − x), (2.9)

where H is the Heaviside step function, H(x) = 1 for x > 0 and 0 elsewhere. These functions
have the nice property of compact support, thus the integrals (2.2) are performed over a finite
region. Another set of functions was defined by Crittenden et al. (2002),

u(x) =
1

2π

(

1 − x2

2

)

e−
x2

2 , q(x) =
x2

4π
e−

x2

2 . (2.10)
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Figure 2.3: The polynomial (2.9)
and Gaussian (2.10) filter functions
for Map.
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Both of these Gaussian filter functions decrease exponentially and are significantly non-zero
up to about three times the aperture radius θ. Therefore, the formally infinite integrals (2.2)
can be evaluated over a finite range with sufficient accuracy, however, the integration range
is much more extended than for the polynomial filter. All four filter functions are plotted in
Fig. 2.3.

2.2 Second-order statistics

The ensemble average of the convergence κ and the shear γ caused by matter inhomogeneities
on large scales vanishes because 〈δ〉 = 0 (Sect. 1.2.6) and because the large-scale structure
is statistically isotropic. The same holds for all linear combinations of κ and γ such as the
aperture mass statistics (2.2). For all cosmological experiments, the ensemble average of a
quantity is replaced by a spatial average over a sufficiently large volume or sky area. This
corresponds to the ergodicity hypothesis, see App. A.

If averaged over only a small area, 〈κ〉 and 〈γ〉 will have values different from zero, repre-
senting local over- or underdensities. For cosmic shear, these fluctuations typically are much
smaller than the noise due to the intrinsic ellipticities of the observed galaxies. Most of the
cosmic shear studies do not aim to map the distribution of the projected mass in some sky
region, but rather try to determine its statistical properties. The first non-trivial moment
of κ and γ is the second-order moment, and most observations up to now have focused on
second-order shear statistics. The detection of third and higher-order moments is very chal-
lenging. Their amplitude is very small, since the deviation of κ and γ from a Gaussian field
is small on the scales where cosmic shear is observed. Only recently with the up-coming of
large and deep surveys have higher-order statistics and the non-Gaussianity of the shear field
started to play a significant role for cosmic shear.

2.2.1 The two-point correlation function

Given a pair of angular positions on the sky � and � + � , the tangential and cross-component
of the shear (2.1) with respect to the connecting vector � is the natural representation of
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2.2 Second-order statistics

shear. The three components of the two-point correlation function (2PCF) are defined as the
following linear combinations of products of γt and γ×,

ξ+(θ) = 〈γt( � )γt( � + � )〉 + 〈γ×( � )γ×( � + � )〉 ,
ξ−(θ) = 〈γt( � )γt( � + � )〉 − 〈γ×( � )γ×( � + � )〉 , (2.11)

ξ×(θ) = 〈γt( � )γ×( � + � )〉 = 〈γ×( � )γt( � + � )〉.

Because the large-scale structure is statistically homogeneous and isotropic, the 2PCF only
depends on the modulus θ of the connecting vector of the two points. Due to parity symmetry,
the mixed 2PCF ξ× vanishes, since under parity transformation (Sect. 2.3.1.2), γt is invariant
and γ× changes its sign.

The Fourier transform of the 2PCF of shear is the shear power spectrum. Since Pγ = Pκ

(eq. 1.71), the 2PCF can be written in terms of the convergence power spectrum. The more
general case of a convergence which contains not only the gradient-part κE but also the curl-
component κB shall be included here, see Sect. 1.4.3. Using (1.101), the 2PCF (2.11) can be
written as

ξ+(θ) =
1

2π

∫

d` `J0(`θ)[P
E
κ (`) + PB

κ (`)],

ξ−(θ) =
1

2π

∫

d` `J4(`θ)[P
E
κ (`) − PB

κ (`)], (2.12)

ξ×(θ) =
1

2π

∫

d` `J4(`θ)P
EB
κ (`),

where Jν is the first-kind Bessel function of order ν. In the absence of a B-mode, ξ±(θ) =
1/2

∫

d` `PE
κ (`)J0,4(`θ) and ξ× = 0. In that case I will drop the superscript denoting the

E-mode and write Pκ = PE
κ .

The 2PCF and the corresponding filter functions J0 and J4 are shown in Figs. 2.4 and
2.5, respectively. At the end of the next section, I will discuss various second-order shear
statistics and how they sample the convergence power spectrum which is characterized by the
corresponding filter function.

It is desirable to possess a clean measurement which separates the E- from the B-mode
power spectrum, since (to leading order, see Sect. 1.4.3) only the first contains cosmological
information — the latter is usually solely due to unwanted systematic effects. It is possible
to define correlation functions ξE

± and ξB± which only depend on the E- and B-mode power
spectrum, respectively. These quantities are not observable directly but have to be calculated
from the above defined 2PCF ξ±. However, the knowledge of either ξ− for arbitrary large
angular separations or ξ+ on arbitrarily small scales is necessary in order to obtain the E-
and B-mode correlation functions (Schneider et al. 2002). This is not feasible since data fields
are finite and shapes of very close galaxy pairs cannot be determined reliably. In the next
section, it is demonstrated that the dispersion of the aperture mass statistics (2.2) provides
a useful way to isolate the E- and the B-mode power spectrum (Crittenden et al. 2002).

2.2.2 Second-order aperture mass statistics

The second moment or dispersion of (2.2) was introduced by Schneider et al. (1998) and has
been used with great success in numerous cosmic shear surveys (Hamana et al. 2003; Hoekstra
et al. 2002; Jarvis et al. 2003; van Waerbeke et al. 2005). Because it separates the E- from the
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B-mode, it is an extremely valuable tool to assess systematic measurement errors. Moreover,
〈M2

ap〉 is a local measure of the power spectrum and therefore very sensitive to cosmological
parameters.

Using the definition of the complex aperture mass (2.8), one can define the two second-
order quantities 〈MM〉(θ) and 〈MM ∗〉(θ), where the ensemble average is replaced by a spatial
average over aperture centers � when these quantities are calculated from data. Using the
relations (2.2) leads to

〈MM〉(θ) = 〈M2
ap〉(θ) + 〈M2

⊥〉(θ) =
1

2π

∫

d` `
[

PE
κ (`) + PB

κ (`)
]

Û2(θ`),

〈MM∗〉(θ) = 〈M2
ap〉(θ) − 〈M2

⊥〉(θ) + 2i〈MapM⊥〉(θ) (2.13)

=
1

2π

∫

d` `
[

PE
κ (`) − PB

κ (`) + 2iPEB
κ (`)

]

Û2(θ`).

Combining these expressions, one gets

〈M2
ap〉(θ) =

1

2π

∫

d` ` PE
κ (`)Û2(θ`),

〈M2
⊥〉(θ) =

1

2π

∫

d` ` PB
κ (`)Û2(θ`). (2.14)

These important equations state that 〈M 2
ap〉 depends on the E-mode and 〈M 2

⊥
〉 on the B-mode

power spectrum only, respectively. Here, Û(θ`) = F [Uθ](`) is the Fourier transform of the
filter function Uθ. For the polynomial filter (2.9), it is

Û(η) =
24J4(η)

η2
, (2.15)

and

Û(η) =
η2

2
e−η2/2 (2.16)

in the case of the Gaussian filter (2.10). The aperture mass dispersion for the two filter
functions is plotted in Fig. 2.4.

All of the above defined second-order statistics of shear are linear functions of the conver-
gence power spectrum Pκ. The corresponding filter functions determine how these statistics
sample the convergence power on different scales. In Fig. 2.5, the behavior of these filter
functions is shown. Both filters for the correlations function are broad and decrease very
slowly towards large arguments, the amplitude of the oscillations of both J0,4(η) decreases
with η−1/2. Because J0(η) is constant for small η, ξ+ picks up a lot of power at low wavenum-
bers or large scales, whereas J4(η) ∝ η4 for small η, thus ξ− samples the power spectrum
more localized than ξ+. Both filters of the aperture mass statistics decrease quickly for large
η, as η−5 for the polynomial filter (2.15) and exponentially for the Gaussian filter (2.16).
Thus, the aperture mass statistics is the most localized measure of the power spectrum and
is very sensitive to its shape and therefore on cosmological parameters. On the other hand,
a statistics with a non-local, broad filter function collects power over a large range yielding a
higher signal-to-noise than a very localized statistics.
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Figure 2.4: The second-order
statistics of cosmic shear used in
this work, for a ΛCDM model
(Table B.1, model 1). The solid
and long-dashed lines show the
two components of the 2PCF, ξ+
and ξ−, respectively. The two
aperture mass dispersions cor-
respond to the polynomial (2.9,
short-dashed) and Gaussian filter
(2.10, dash-dotted line), respec-
tively.
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Figure 2.5: Filter functions for the different second-order shear statistics.

2.2.3 Interrelations

The dispersion of the aperture mass can in principle be measured directly from data by
placing apertures onto the observed area. However, this method is very ineffective – regions
with bright stars, foreground galaxies or telescope reflections have to be omitted in order not
to bias the result. Moreover, for the Gaussian filter (2.10), apertures of radius θ cannot be
put closer than about 3θ from the image border because of the significant exponential tail of
the filter.

A more effective way to get 〈M 2
ap〉 from data is by integration over the 2PCF. Since 〈M 2

ap〉 is
given in terms of the power spectrum (2.14), and the equation which relates the 2PCF to the
power spectrum (2.12) can be inverted, one can express 〈M 2

ap〉 (and any other second-order
statistics) in terms of the 2PCF. The following relation can be derived (Schneider et al. 2002;
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Crittenden et al. 2002)

〈

M2
ap,⊥(θ)

〉

=
1

2θ2

∫

∞

0
dϑϑ

[

ξ+(ϑ)T+

(

ϑ

θ

)

± ξ−(ϑ)T−

(

ϑ

θ

)]

, (2.17)

where the functions T+ and T− are given by

T±(x) =

∫

∞

0
dt t J0,4(xt)Û

2(t). (2.18)

Explicit expressions for T± can be found in Schneider et al. (2002) for the polynomial and
Crittenden et al. (2002) in the case of the Gaussian filter. The functions T±(x) vanish for
x→ 0 in both cases and have compact support of x ∈ [0; 2] for the polynomial filter and decay
exponentially for the Gaussian filter. Thus, the correlation functions have to be known only
for a finite range of angular scales in order to infer the aperture mass statistics and separate
the E- from the B-mode power spectrum. This fact is the major advantage of the aperture
mass dispersion over the 2PCF. For the latter statistics alone and for a realistic shear data set,
it is not possible to separate the E- from the B-mode without extrapolating the correlation
function to scales where it has not been measured, see Sect. 2.2.1.

Note that in the absence of a B-mode, both terms in (2.17) have equal amplitude.

2.3 Third-order statistics

2.3.1 The three-point correlation function

The shear two-point correlation function (2PCF, Sect. 2.2.1) is defined for a pair of points;
analogously, the three-point correlation function (3PCF) is given for a triplet of points � 1,

� 2, and � 3 forming a triangle. Let � 1 = � 3 − � 2, � 2 = � 1 − � 3 and � 3 = � 2 − � 1 be
the vectors forming the three sides of the triangle. Moreover, let ϕi be the polar angle of the
side vector � i and φi the interior angle at the triangle corner � i, see Fig. 2.6. One then gets
the relations

ϕ3 − ϕ2 = π − φ1, ϕ1 − ϕ3 = π − φ2, ϕ2 − ϕ1 = π − φ3. (2.19)

The Cartesian components of the shear 3PCF (Schneider & Lombardi 2003) are defined as

γµνλ( � 1, � 2, � 3) = 〈γµ( � 1)γν( � 2)γλ( � 3)〉, (2.20)

where γµ( � i), µ = 1, 2 is the Cartesian component of the shear at position � i.
One would like to write the 3PCF in terms of the tangential and cross-component of the

shear, in analogy to the 2PCF. However, this task is not straightforward at all in the third-
order case. The first difficulty is to define a direction with respect to which γt and γ× are
understood. For a triangle no obvious projection direction exists in contrast to the two-point
case where the connecting vector of the two points is a natural choice. The second obstacle
is that it is not possible to define a scalar from the product of three two-component quan-
tities, which again is in contrast to the second-order case. In 2003, three papers (Schneider
& Lombardi 2003; Takada & Jain 2003; Zaldarriaga & Scoccimarro 2003) introduced polar
components of the 3PCF projected to different centers of the corresponding triangle. Further-
more, Schneider & Lombardi (2003) defined the so-called natural components (see below) of
the 3PCF, whose transformation properties are particularly simple and which are relatively
easily expressed in terms of the convergence bispectrum (Schneider, Kilbinger, & Lombardi
2005), see Sect. 2.3.1.5.
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Figure 2.6: The labeling of
the corner points, sides and
angles of the triangles used for
the definition of the 3PCF.

2.3.1.1 Projection onto triangle centers

Given a triangle, there are a number of special points or triangle “centers”, such as the
orthocenter (intersection point of the altitudes), the centroid (intersection point of the side-
bisectors), the barycenter etc. All these points (in fact, any point which is fixed with respect
to the triangle) can be used to define a direction to project the shear. For example, for every
triangle corner � i, one can project the corresponding shear γµ( � i) to the altitude of the
opposite side � i; the common projection point of all three corners is then the orthocenter.
Eq. (2.1), γt + iγ× = −(γ1 + iγ2) exp (−2iα), is more conveniently written in components,
γτ = −Rτµ(2α)γµ, where τ = 1, 2 corresponds to ‘t’ and ‘×’, respectively, and the general
rotation matrix � is

� (φ) =

(

cosφ sinφ

− sinφ cosφ

)

. (2.21)

The polar angle of the altitude of � i is αi = ϕi + π/2; inserting the three angles into (2.21),
one gets the 3PCF in the orthocenter projection,

γ(o)
τσρ( � 1, � 2, � 3) = Rτµ(2ϕ1)Rσν(2ϕ2)Rρλ(2ϕ3)γ

cart
µνλ( � 1, � 2, � 3). (2.22)

Here, and in the following, I will denote the projected 3PCF with a superscript indicating
the projection center (e.g. ‘(o)’ for orthocenter, ‘(b)’ for barycenter) in case of ambiguity.
If the projection center is not specified, the superscript will be ‘P’. The 3PCF in Cartesian
coordinates will be denoted by ‘cart’.

The 3PCF in a particular projection (to any triangle center) is invariant under a rotation
of the whole triangle, since the projection center is fixed with respect to the triangle and
performs the same rotation alongside. The 3PCF thus only depends on three independent
quantities which uniquely describe a triangle. These three quantities are e.g. the moduli of
the three sides x1, x2, x3, or the moduli of two sides x1, x2 and one angle φ3. In addition, the
parity of the triangle has to be fixed, see next section. If not stated otherwise, positive parity
is assumed in all cases, i.e. the vectors � 1, � 2, � 3 describe an anti-clockwise or cyclic closed
path. Negative parity corresponds to a clockwise or anti-cyclic closed path of these vectors.
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2.3.1.2 Parity-modes of the 3PCF

The shear has two components at each of the three triangle corners, therefore the 3PCF has
23 = 8 components. The question arises whether all of these components are important and
carry cosmological information, or whether maybe some of them vanish because of parity
symmetry, as for example the function ξ× (2.11) in the case of the two-point correlation
function.

A parity transform P — e.g. the flipping of the triangle along one of its sides — keeps the
tangential shear component at each triangle corner invariant and causes the cross-component
to change sign, which can be expressed as Pγ = γ∗ in complex notation. Thus, any component
of the 3PCF which consists of a product of three γ is either invariant or changes sign under
a parity operation. According to this transformation behavior, the eight components of the
3PCF are divided into the two groups,

γttt, γt××, γ×t×, γ××t (parity-even),

γtt×, γt×t, γ×tt, γ××× (parity-odd). (2.23)

where the parity-even (-odd) modes consist of an even (odd) number of γ×’s and accordingly
their eigenvalue for the parity operator P is +1 (−1), respectively. The parity-modes are
plotted for special triangles in Figs. 4.4 and 4.6.

2.3.1.3 Natural components of the 3PCF

A rotation of the 3PCF will transform γυς% into γ′τσρ = Rτυ(2α1)Rσς(2α2)Rρ%(2α3)γυς%. One
cannot expect any of the parity-modes as defined in the last section to be invariant under
general rotation. However, special rotations can be found which leave linear combinations of
these modes invariant. For example, the quantity

〈γ( � 1)γ( � 2)γ( � 3)〉P = 〈[(γt + iγ×) ( � 1)] [(γt + iγ×) ( � 2)] [(γt + iγ×) ( � 3)]〉

is multiplied by the phase factor exp[−2i(α1 + α2 + α3)] according to (2.1) when rotated
as described above and it is seen immediately that it is invariant for α1 + α2 + α3 = 0.
Analogously, 〈γ∗( � 1)γ( � 2)γ( � 3)〉 is invariant for the special case −α1 + α2 + α3 = 0. Two
more “invariants” can be defined; because of their special properties they are called the natural
components of the 3PCF (Schneider & Lombardi 2003),

Γ(0)(x1, x2, x3) = 〈γ( � 1)γ( � 2)γ( � 3)〉p

= −
〈

(γ( � 1)γ( � 2)γ( � 3))
cart e−2i(α1+α2+α3)

〉

= γttt − γt×× − γ×t× − γ××t + i(γtt× + γt×t + γ×tt − γ×××),

Γ(1)(x1, x2, x3) = 〈γ∗( � 1)γ( � 2)γ( � 3)〉p

= −
〈

(γ( � 1)γ( � 2)γ( � 3))
cart e−2i(−α1+α2+α3)

〉

= γttt − γt×× + γ×t× + γ××t + i(γtt× + γt×t − γ×tt + γ×××),

Γ(2)(x1, x2, x3) = 〈γ( � 1)γ
∗( � 2)γ( � 3)〉p

= −
〈

(γ( � 1)γ( � 2)γ( � 3))
cart e−2i(α1−α2+α3)

〉
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= γttt + γt×× − γ×t× + γ××t + i(γtt× − γt×t + γ×tt + γ×××),

Γ(3)(x1, x2, x3) = 〈γ( � 1)γ( � 2)γ
∗( � 3)〉p

= −
〈

(γ( � 1)γ( � 2)γ( � 3))
cart e−2i(α1+α2−α3)

〉

= γttt + γt×× + γ×t× − γ××t + i(−γtt× + γt×t + γ×tt + γ×××). (2.24)

Inverting these equations, the parity-modes of the 3PCF can be obtained from the complex
natural components as follows,

γttt = <
(

Γ(0) + Γ(1) + Γ(2) + Γ(3)
)

/4, γtt× = =
(

Γ(0) + Γ(1) + Γ(2) − Γ(3)
)

/4,

γt×× = <
(

−Γ(0) − Γ(1) + Γ(2) + Γ(3)
)

/4, γt×t = =
(

Γ(0) + Γ(1) − Γ(2) + Γ(3)
)

/4,

γ×t× = <
(

−Γ(0) + Γ(1) − Γ(2) + Γ(3)
)

/4, γ×tt = =
(

Γ(0) − Γ(1) + Γ(2) + Γ(3)
)

/4,

γ××t = <
(

−Γ(0) + Γ(1) + Γ(2) − Γ(3)
)

/4, γ××× = =
(

−Γ(0) + Γ(1) + Γ(2) + Γ(3)
)

/4.

(2.25)

2.3.1.4 Transformation properties and symmetries of the 3PCF

Defining the complex phase factors

λ0 = exp[−2i(α1 + α2 + α3)], λ1 = exp[−2i(−α1 + α2 + α3)],

λ2 = exp[−2i(α1 − α2 + α3)], λ3 = exp[−2i(α1 + α2 − α3)], (2.26)

the qth natural component is invariant under a special rotation with a choice of the rotation
angles α1, α2, α3 such that λq = 1 is assured. A general rotation simply changes the phase
of the natural components, they do not mix, (Γ(q))′ = λqΓ

(q). Since the 3PCF has eight real
components, a general rotation can be written as an 8 × 8 -matrix. This matrix has eight
eigenvalues, which are the four λq defined in (2.26) and their complex conjugates. Thus,
the natural components Γ(q) together with their complex conjugates are a complete set of
eigenvectors of the triangle rotation, with corresponding complex eigenvalues λq and λ∗q .

For special triangles obeying certain symmetries some of the 3PCF components or their
combinations vanish. For isosceles triangles with, say x1 = x2, one finds that two of the parity-
even modes are equal, γt×× = γ×t×, two of the parity-odd modes vanish, γtt× = γ××× = 0
and the two remaining odd components have opposite sign, γt×t = −γ×tt. This implies that
Γ(0) and Γ(3) are real and equal and =Γ(1) = −=Γ(2). For equilateral triangles, all parity-odd
modes vanish and as a consequence, the imaginary part of the natural components vanishes,
too.

In Sect. 4.1, I will verify these symmetry properties of the 3PCF using ray-tracing simu-
lations and predictions from non-linear models of the large-scale structure. I will also show
that in general, none of the eight components is vanishing, following the work of Takada &
Jain (2003). Thus, all eight parity-even and -odd modes (2.23) carry important information
about the projected mass density and should be taken into account for shear measurements.
Equivalently, the four complex natural components can be used, and in fact, the latter ones
are the natural choice when expressing the 3PCF in terms of the convergence bispectrum and
thus directly relating the third-order shear statistics to cosmology, see following section.
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2.3.1.5 The 3PCF in terms of the convergence bispectrum

The natural components in the orthocenter projection are written in terms of the convergence
bispectrum Bκ (Schneider, Kilbinger, & Lombardi 2005). First, the 3PCF is expressed in
Cartesian coordinates using (2.22) and transformed into Fourier space. The triple-correlator
of γ̂ is written in terms of κ̂ using (1.72) and the first natural component is

Γ(0)(x1, x2, x3) = 〈γ( � 1)γ( � 2)γ( � 3)〉(o) = e−2i(ϕ1+ϕ2+ϕ3)

∫

d2`1
(2π)2

e−i � 1 � 1

×
∫

d2`2
(2π)2

e−i � 2 � 2

∫

d2`3
(2π)2

e−i � 3 � 3〈κ̂(� 1)κ̂(� 2)κ̂(� 3)〉e2i(β1+β2+β3). (2.27)

Next, the bispectrum Bκ (1.92) for the triple correlator of the convergence is inserted and
one `-integration for each of the three terms is carried out, making use of the delta-function.
After renaming the integration variables, one gets

Γ(0)(x1, x2, x3) = e−2i(ϕ1+ϕ2+ϕ3)

∫

∞

0

d`1 `1
(2π)2

∫

∞

0

d`2 `2
(2π)2

∫ 2π

0
dβ1

∫ 2π

0
dβ2 bκ(`1, `2, ϕ)

×
[

ei( � 1 � 2− � 2 � 1) + ei( � 2 � 2− � 1 � 1) + ei( � 3 � 2− � 1 � 1)
]

e2i(β1+β2+β3). (2.28)

For the moment, only the first term of this equation is considered. Since the bispectrum bκ
only depends on ϕ = β1−β2 which is the difference of the polar angles of � 1 and � 2, one more
angular integral can be carried out by substituting β1 and β2 with ϕ and θ3, where

ϕ = β1 − β2, θ3 = (β1 + β2)/2 − (ϕ1 + ϕ2)/2. (2.29)

Focusing on the scalar product � 1 � 2 occurring in the exponential in (2.28), the angle between
the two vectors is ϕ1 − β2 = (ϕ1 + ϕ2)/2 + (ϕ1 − ϕ2)/2 + (β1 − β2)/2 − (β1 + β2)/2 =
−(π − φ3)/2 + ϕ/2 − θ3, where use of (2.19) was made. One then can express the scalar
product as � 1 � 2 = −x1`2 sin[θ3 − (ϕ+ φ3)/2] and, similarly, � 2 � 1 = x2`1 sin[θ3 + (ϕ+ φ3)/2].
The sum of the two scalar products can be written as � 1 � 2 − � 2 � 1 = −A3 sin(θ3 + α3) with

cosα3 =
`1x2 + `2x1

A3
cos

(

ϕ+ φ3

2

)

, sinα3 =
`1x2 − `2x1

A3
cos

(

ϕ+ φ3

2

)

,

A2
3 = (`1x2)

2 + (`2x1)
2 + 2`1x2`2x1 cos(ϕ+ φ3). (2.30)

Next, one rewrites the sum of angles in the exponent in (2.28), β1 +β2 +β3 −ϕ1 −ϕ2 −ϕ3 =
2θ3 + β3 + (ϕ1 + ϕ2)/2 − ϕ3 = 3θ3 + β̄ + (φ1 − φ2)/2, with

β̄ = β3 − θ3 − (ϕ1 + ϕ2)/2 = β3 −
β1 + β2

2
. (2.31)

Now, one angular integration of the first term in (2.28) can be performed as follows:

∫ 2π

0
dβ1 e2i(β1+β2+β3−ϕ1−ϕ2−ϕ3)ei( � 1 � 2− � 2 � 1)

= e2iβ̄ ei(φ1−φ2)

∫ 2π

0
dθ3 e6iθ3e−iA3 sin(θ3+α3)

= e2iβ̄ ei(φ1−φ2)

∫ 2π

0
dϑ e6i(ϑ−α3) e−iA3 sin ϑ = 2π e2iβ̄ ei(φ1−φ2) e−6iα3 J6(A3). (2.32)
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Similar calculations for the other two terms lead to the final result

Γ(0)(x1, x2, x3) = (2π)−3

∫

∞

0
d`1 `1

∫

∞

0
d`2 `2

∫

dϕ bκ(`1, `2, ϕ)e2iβ̄

×
[

ei(φ1−φ2−6α3)J6(A3) + ei(φ2−φ3−6α1)J6(A1) + ei(φ3−φ1−6α2)J6(A2)
]

, (2.33)

where the Ai and αi are obtained from (2.30) by cyclic permutations of x1, x2 and x3.
Similarly, the second natural component Γ(1) is expressed in terms of the projected bis-

pectrum bκ (1.92, 1.93). The phase factor responsible for the transformation into Cartesian
coordinates in this case is exp[−2i(−ϕ1 + ϕ2 + ϕ3)] (see eq. 2.24), and from the fact that
κ is real, one infers F [〈γ∗γγ〉](� 1, � 2, � 3) = 〈κ̂(− � 1)κ̂(� 2)κ̂(� 3)〉 exp(2i(−β1 + β2 + β3). After
similar calculations than above, the final result is

Γ(1)(x1, x2, x3) = (2π)−3

∫

∞

0
d`1 `1

∫

∞

0
d`2 `2

∫

dϕ bκ(`1, `2, ϕ)e2iβ̄
[

ei(φ1−φ2+2α3)e2i(β̄−ϕ+φ3)

× J2(A3) +ei(φ2−φ3−2α1)e2i(−β̄+φ3−φ2))J2(A1) + ei(φ3−φ1−2α2)e2i(β̄+ϕ−φ2)J2(A2)
]

. (2.34)

The remaining two natural components Γ(2) and Γ(3) are obtained from (2.34) by cyclic
permutations of the indices, according to the transformation laws.

The expressions of the 3PCF as functions of the bispectrum are considerably more complex
than those of the 2PCF in terms of the power spectrum. Three-dimensional integrals are
involved (integration over the three arguments of the bispectrum), the integrand extends to
infinity and is highly oscillating due to the Bessel functions of order two and six. Note that
the arguments of the Bessel functions are not analytic functions of the integration variables,
and are modulated with the cosine of the integration angle ϕ. Depending on the triangle
configuration and `1 and `2, this modulation can cause several hundreds to thousands of zeros
of the Bessel functions between 0 and 2π deeming a numerical integration to an ordeal. This
makes the predictions of the 3PCF from theoretical models of the bispectrum challenging.

Expressions (2.33) and (2.34) can be inverted to obtain the bispectrum in terms of the
shear 3PCF, in analogy to the second-order case, where the power spectrum is written as a
function of the shear 2PCF. Consequently, since any third-order statistics (linearly) depends
on the bispectrum, it can be expressed as a function of the 3PCF. An application of this fact
will be discussed in Sect. 2.3.3, where the third-order aperture mass statistics is written in
terms of the 3PCF natural components (although the derivation of these expressions does not
use the inversion of the bispectrum as a function of the 3PCF).

2.3.2 Third-order aperture mass statistics

The third moment or skewness of the aperture mass (2.2) was first considered in Schneider
et al. (1998) in the framework of quasi-linear perturbation theory (PT). It has been measured
for the first time with the VIRMOS-DESCART survey by Pen et al. (2003) who used the
reduced skewness 〈M 3

ap〉/〈M2
ap〉2 to derive an upper limit for ΩΛ. However, their data set

was significantly contaminated by a B-mode and even by a parity-violating mode (Schneider
2003). A 2σ detection of the Map-skewness on scales with no substantial B-mode present was
obtained from the CTIO data by Jarvis et al. (2004).

Schneider, Kilbinger, & Lombardi (2005) generalized the expression for the skewness, and
defined the three-point correlator of the aperture mass for three different aperture radii,
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Chapter 2 Cosmic shear statistics

〈M3
ap(θ1, θ2, θ3)〉 = 〈Map(θ1)Map(θ2)Map(θ3)〉. From now on, I will denote the skewness of the

aperture with 〈M 3
ap,d〉 =

〈

M3
ap(θ, θ, θ)

〉

(‘d’ for diagonal). The hypothesis that the generalized
third-order aperture mass statistics contains much more information about cosmology than
the skewness is subject of a detailed analysis in Chapter 5. This analysis and the resulting
arguments which confirm this hypothesis constitute one of the main parts of this thesis.

Using (2.2), the generalized third-order aperture mass statistics can be written in terms of
the convergence bispectrum Bκ as

〈

M3
ap(θ1, θ2, θ3)

〉

= 〈Map(θ1)Map(θ2)Map(θ3)〉

=

∫

d2`1
(2π)2

∫

d2`2
(2π)2

Bκ( � 1, � 2)
∑

(i,j,k)∈S3

Û(θi| � 1|) Û(θj |� 2|) Û(θk|� 1 + � 2|), (2.35)

where S3 is the symmetric permutation group of (123), thus the summation is performed
over even permutations of i, j, k. This expression can be further simplified using polar coor-
dinates for the integration variables � 1 and � 2. One angular integral is trivial and yields 2π.
The second one can be performed analytically because of the separable ϕ-dependence of the
bispectrum (1.93), where ϕ is the angle between � 1 and � 2. Integrals of the form

K(m)(θ`1, θ`2) =

∫ 2π

0
dϕ cosm(ϕ) Û

(

θ
√

`21 + `22 + 2`1`2 cosϕ

)

(2.36)

for m = 0, 1, 2 occur; for Uθ being the Gaussian filter (2.10) these are

K(0)(t1, t2) = πe−
1

2
(t2

1
+t2

2
)
[

(t21 + t22)I0(t1t2) − 2t1t2I1(t1t2)
]

,

K(1)(t1, t2) = πe−
1

2
(t2

1
+t2

2
)
[

2t1t2I0(t1t2) − (2 + t21 + t22)I1(t1t2)
]

, (2.37)

K(2)(t1, t2) = πe−
1

2
(t2

1
+t2

2
)

[

(

2 + t21 + t22
)

I0(t1t2) −
(

t21 + t22 + 4

t1t2
+ 2t1t2

)

I1(t1t2)

]

,

where Iν is the modified Bessel function of order ν.
One remark concerning the asymptotic behavior of the integrand shall be made here. For

large arguments the modified Bessel functions diverge exponentially, Iν(x) ≈ ex/
√

2πx. How-
ever, this divergence is absorbed by the exponential prefactor of the K (m) and the functions
decrease exponentially as exp[(t1− t2)2] — this term dominates over the polynomials for large
arguments. If the integral is to be calculated numerically, this asymptotic form of the K (m)

should be used in order to reduce round-off errors (multiplication of a very large by a very
small number).

Inserting (2.37) into (2.35), one gets

〈

M3
ap(θ1, θ2, θ3)

〉

= (2π)−3

∫

d`1 `1

∫

d`2 `2

2
∑

m=0

I(m)(θ1, θ2, θ3; `1, `2) b̄
(m)
κ (`1, `2) (2.38)

with

I(m)(θ1, θ2, θ3; `1, `2) = F
(m)
2 (`1, `2)

∑

(i,j,k)∈S3

Û(θi`1) Û(θj`2)K
(m)(θk`1, θk`2). (2.39)

The functions I(m) determine how the generalized third-order aperture mass samples the
bispectrum and therefore cosmological information — these functions are plotted in Fig. 2.7.
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Figure 2.7: Contours of the filter functions I (m) for m = 0 , 1 , 2 from left to right are plotted for
different values of θi as a function of `1 and `2 (in units of inverse radians). Dashed contours
indicate negative values. The right-most panels show the profile along the diagonal of I (m); the solid,
dashed and dotted lines correspond to m = 0 , 1 and 2, respectively.
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Figure 2.8: Parametrization of the
triangle used for the integration of the
3PCF. � is the centroid or barycenter
of the triangle. The vectors � i connect
the barycenter with the edges of the tri-
angles � i, their polar angles (not dis-
played) are denoted by %i. X1

q1

q2

X2

q3ψ

b

X3

y2 = −x1

y1 = x2

They all are relatively well localized which makes 〈M 3
ap〉 a local measure of the bispectrum.

Furthermore, for equal filter scales only the region around the diagonal of the bispectrum is
probed, corresponding to equilateral triangles in Fourier space. When different filter scales

are taken into account, other parts further away from the diagonal of b̄
(m)
κ dominate the

integral. Although in this latter case the amplitude of I (m) is lower, the generalized aperture
mass, probing the bispectrum for general triangles in Fourier space, contains much more
information about the bispectrum and cosmology than the ‘diagonal’ one. This approach
to sample the bispectrum on a large region of Fourier space is similar to a previous study
(Takada & Jain 2004), who have used all triangle configurations of the convergence bispectrum
in order to predict tight constraints on cosmological parameters from cosmic shear. In contrast
to their work, I will later use moments of the aperture mass statistics (which are direct weak
lensing observables) as real-space probes of the convergence power spectrum and bispectrum
(Sect. 5.3).

2.3.3 Interrelations

As in the second-order case (Sect. 2.2.3) there exist relations between 〈M 3
ap〉 and the corre-

lation function. These relations were first derived by Jarvis et al. (2004) for the skewness
〈M3

ap,d〉 and later generalized for 〈M 3
ap〉 in Schneider, Kilbinger, & Lombardi (2005). Both

studies were undertaken for the Gaussian filter (2.10) since the corresponding expressions for
the polynomial filter (2.9) are extremely cumbersome and of no practical use1.

Following Jarvis et al. (2004), two of the triangle sides which were introduced in Sect. 2.3.1
are reparametrized as �

1 = � 2 and
�

2 = − � 1. (2.40)

The connecting vectors between the barycenter of the triangle and its three corners are

� 1 =
2

�
1 −

�
2

3
, � 2 =

2
�

2 −
�

1

3
, � 3 = −

�
1 +

�
2

3
, (2.41)

see Fig. 2.8. Let %k be the polar angle of � k, k = 1, 2, 3, which can be expressed as the complex
number � k = qk exp(i%k). The 3PCF expressed in these new coordinates is denoted with Γ̃(q)

in a projection to an arbitrary triangle center and is equal to the previously defined one,

Γ̃(q)(

�
1,

�
2) = Γ̃(q)( � 2,− � 1) = Γ(q)( � 1, � 2), (2.42)

1M. Lombardi, priv. comm.
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which follows from the transformation rules of the 3PCF, see Sect. 2.3.1.4. Choosing the
barycenter projection, one finds after some calculations (Schneider et al. 2005) the two quan-
tities

〈

M3
〉

(θ1, θ2, θ3) =
S

24

∫

dy1 y1

Θ2

∫

dy2 y2

Θ2

∫ 2π

0

dψ

2π
Γ̃

(0)
b (y1, y2, ψ)R

(0)

� (y1, y2, ψ),

〈

M2M∗
〉

(θ1, θ2; θ3) =
S

24

∫

dy1 y1

Θ2

∫

dy2 y2

Θ2

∫ 2π

0

dψ

2π
Γ̃

(3)
b (y1, y2, ψ)R

(3)

� (y1, y2, ψ), (2.43)

where the two integral kernels are

R
(0)

� = e−Z q21 q
2
2 q

2
3

Θ6
f∗21 f∗22 f∗23 ,
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[

q21 q
2
2 q

2
3

Θ6
f∗21 f∗22 f2
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(
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2
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2
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Q
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∗
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with
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√

θ2
1θ

2
2 + θ2

1θ
2
3 + θ2

2θ
2
3

3
, S =
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2
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2
3
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fi =
θ2
j + θ2

k

2Θ2
+

(qje
i%i − qke

i%j )qie
−i%i

qi2
θ2
j − θ2

k

6 Θ2
,

gi =
θ2
j θ

2
k

Θ4
+

(qje
i%j − qke

i%k)qie
−i%i

qi2
θ2
i (θ

2
k − θ2

j )

3Θ4
,

(ijk) = symm. perm. of (123). (2.46)

In Figs. 2.9 and 2.10, exemplary plots of the integral filter functions from the two equations
defined above are shown. Similar as in the case of the 2PCF, these functions have infinite
support, but decrease exponentially.

The four generalized third-order aperture mass statistics are then given by

〈

M3
ap

〉

(θ1, θ2, θ3)=<
[〈

M3
〉

(θ1, θ2, θ3) +
〈

M2M∗
〉

(θ1, θ2; θ3)

+
〈

M2M∗
〉

(θ1, θ3; θ2) +
〈

M2M∗
〉

(θ2, θ3; θ1)
]

/4 ,
〈

M2
apM⊥

〉

(θ1, θ2; θ3)==
[〈

M3
〉

(θ1, θ2, θ3) +
〈

M2M∗
〉

(θ1, θ3; θ2)

+
〈

M2M∗
〉

(θ2, θ3; θ1) −
〈

M2M∗
〉

(θ1, θ2; θ3)
]

/4 ,
〈

MapM
2
⊥

〉

(θ1; θ2, θ3)=<
[

−
〈

M3
〉

(θ1, θ2, θ3) +
〈

M2M∗
〉

(θ1, θ2; θ3)

+
〈

M2M∗
〉

(θ1, θ3; θ2) −
〈

M2M∗
〉

(θ2, θ3; θ1)
]

/4 ,
〈

M3
⊥

〉

(θ1, θ2, θ3)==
[

−
〈

M3
〉

(θ1, θ2, θ3) +
〈

M2M∗
〉

(θ1, θ2; θ3)

+
〈

M2M∗
〉

(θ1, θ3; θ2) +
〈

M2M∗
〉

(θ2, θ3; θ1)
]

/4 . (2.47)

These four distinct aperture statistics have very different physical interpretations. The first
quantity 〈M3

ap〉 is a measure of the skewness of the E-mode of the shear field, or the gradient
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Figure 2.9: Contours of the integral kernel R
(0)
θ (2.44) as a function of y1 and y2 for fixed ψ

(upper row: ψ = π/4 , lower row: ψ = π/2). The left-most of the three columns represents the case
where all three aperture radii are equal. The function scales with the aperture radius. Note that the
imaginary part vanishes due to symmetry. The two right columns show the real and imaginary part of
the integrand for three different filter radii. The contour lines are logarithmically spaced with a factor
of 5 between successive lines, starting with 10−10 . Dashed lines correspond to negative values.

part of the corresponding convergence field. This measure is the interesting one in terms of
cosmology, because it is generated by the skewness of the large-scale structure, i.e. due to non-
linear clustering. It is this quantity which directly probes the bispectrum of cosmic density
fluctuations, and thus will provide valuable information about structure formation on large
scales and cosmological parameters. The third of the above defined expressions,

〈

MapM
2
⊥

〉

,
indicates the presence of a B-mode in the shear field which is correlated with the E-mode.
A B-mode is believed to arise mainly from intrinsic alignment of source galaxies and from
measurement errors such as imperfect PSF correction, or incorrect shape estimation of galaxies
(see Sect. 1.4.3). The second and fourth of the quantities defined in (2.47), which have odd
powers of M⊥, are only non-zero if the underlying shear field is not parity-invariant (Schneider
2003). Since parity-violating fields cannot be explained by cosmic effects a significant non-zero
measurement of these terms has to originate in measurement systematics.

The interrelations between the 3PCF and the third-order aperture mass allows one, like
in the second-order case, to calculate the three-point correlation function from the data,
making use of the complete available survey area, and integrate over the 3PCF to obtain the
third-order measures for the E- and B-mode.
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Figure 2.10: Contours of the integrand kernel R
(3)
θ (2.44). The upper and lower row correspond to

fixed values of ψ = π/4 and π/2 , respectively. In the left two columns, the real and imaginary part of
the function is shown for the three aperture radii being equal. The right two panels correspond to three
different radii. The contours are the same as in Fig. 2.9.

2.4 Shear estimators

Second-order shear estimators. In this section I define practical estimators of the various
second- and third-order statistics of shear as introduced in the previous section. The shear
and its moments (and functions of it) can be estimated from the observed background galaxy
ellipticity. Recall the basic equation of weak lensing, ε ≈ εs + γ (1.78), which states that the
observed ellipticity of a galaxy (1.75) equals the sum of intrinsic ellipticity and shear. Assum-
ing random orientations of the background galaxies, the observed ellipticity is an unbiased
estimator of the shear, 〈ε〉 = γ. From this, one can construct an unbiased estimator of the
2PCF of shear,

ξ̂±(ϑ) =
1

Np(ϑ)

∑

ij

(εitεjt ± εi×εj×)∆ϑ(| � i − � j |), (2.48)

where the ‘bin selection’ function is

∆ϑ(θ) =

{

1 for | lnϑ− ln θ| ≤ ∆ ln ϑ
2

0 else
. (2.49)

This is indeed an unbiased estimator of the 2PCF, since from (1.78) one sees that

〈εitεjt ± εi×εj×〉 = σ2
εδij + ξ±(| � i − � j |), (2.50)

where σε is the dispersion of the intrinsic ellipticities of the source galaxies. The previous
relation is valid under the assumption that the intrinsic orientations of galaxies are uncorre-
lated and the correlation between shear and intrinsic shape is negligible. Intrinsic alignment
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of source galaxies is discussed in Sect. 1.4.3 and supposed to contribute only little to the
shear signal. The correlation between the orientation of galaxies and shear has only recently
been considered theoretically (Hirata & Seljak 2004). If there exists a correlation between
the orientation of a foreground galaxy and its surrounding dark-matter host halo, the shear
on a more distant galaxy image produced by this halo can experience a correlation with the
intrinsic orientation of the first galaxy. This effect is most effective for projected close pairs
of galaxies on the sky, but with quite different physical distances. The amplitude can exceed
that of the intrinsic alignment signal depending on the model.

Both of the above mentioned contaminations to the shear signal can be further diminished
if (photometric) redshift information for the galaxies are available. Then, close galaxy pairs
suspicious of contributing to one of the above mentioned effects can be down-weighted or
ignored.

Note that the estimator (2.48) is not optimal in the sense that all galaxies enter the sum
with the same weight. When dealing with real data, however, it is convenient to assign
individual weights which can depend on the estimated noise of the ellipticity measurements,
or the uncertainty of the PSF correction and other factors. For simplicity, in this work all
weights are set to unity.

For the dispersion of the aperture mass statistics (2.2, 2.5), an unbiased estimator can be
constructed using (2.17),

M±(θ) =
1

2θ2

N(θ)
∑

i=1

∆ϑiϑi

[

ξ̂+(ϑi)T+

(

ϑi

θ

)

± ξ̂−(ϑi)T−

(

ϑi

θ

)]

. (2.51)

An index has been attached to the bin width ∆ϑi to account for variable bin widths (e.g.
logarithmic bins). Note that for the polynomial filter (2.9) the sum extends to an upper bin
index N(θ) such that ϑN(θ) = 2θ. Using the Gaussian filter (2.10), the sum formally extends
to infinity but can be truncated at around ϑN(θ) ≈ 6θ. With this definition, M+ and M−

are unbiased estimators for
〈

M2
ap

〉

and
〈

M2
⊥

〉

, respectively.

Third-order shear estimators. An unbiased estimator of the natural component Γ(q), q =
0 . . . 3 of the 3PCF (2.24) is

Γ̂(q)(Tx) =
1

NT(Tx)

∑

ijk

E(q)(ijk)∆Tx(ijk), (2.52)

where Tx represents a triangle of points � i, � j and � k, uniquely given e.g. by two side lengths
x1, x2 and the angle φ3 between them. NT(Tx) is the number of triangles within the bin
containing Tx and E(q)(ijk) denotes the qth natural component of the observed product of
ellipticities from three galaxies at positions � i, � j and � k, according to (2.24), e.g. for q = 0

E(0) = (εttt − εt×× − ε×t× − ε××t) + i(εtt× + εt×t + ε×tt − ε×××), (2.53)

where ετσρ = ετσρ( � i, � j , � k) = ετ ( � i)εσ( � j)ερ( � k) for τ, σ, ρ ∈ {‘t’,‘×’}. The summation in
(2.52) is performed over all possible triples of points ( � i, � j , � k) and ∆Tx(ijk) is the triangle-
bin selection function (cf. 2.49) — it is unity if the triangle given by ( � i, � j , � k) is in the same
bin as Tx and zero otherwise. This estimator is used later (Sect. 2.5.2) in order to calculate
the covariance of the 3PCF for the simple case of vanishing cosmic variance, thus, it only
includes shot noise from the intrinsic galaxy ellipticities. Using this result, the variance of
the aperture mass skewness is inferred and compared with numerical simulations.
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2.5 Covariance of the shear estimators

2.5 Covariance of the shear estimators

Let xi be an estimator of some statistics, e.g. of the two-point correlation function ξ+ at an
angular scale θi or of the second-order aperture mass 〈M 2

ap(θi)〉 for some aperture radius θi.
The covariance matrix of this estimator is defined as

C(x)ij = 〈xixj〉 − 〈xi〉 〈xj〉 . (2.54)

In this work, I will also use the cross-covariance between two different statistics x and y,

C(x, y)ij = 〈xiyj〉 − 〈xi〉 〈yj〉 . (2.55)

The variance of an estimator xi is the diagonal of the covariance, var(x)i = 〈x2
i 〉 − 〈xi〉2 =

C(x)ii.
In this section, I give analytical expressions for the covariance of various second-order

estimators of shear statistics, which are exact for Gaussian fields. For estimators of third-
order statistics, the variance is calculated in the simple limiting case of vanishing cosmic
variance. The analytical expressions of the covariance for the second-order statistics will
be the foundation for the likelihood and Fisher matrix analysis of cosmological parameter
constraints in Chapter 3. In Chapter 5 covariance matrices of aperture mass estimators will
be calculated where the ensemble average in (2.54) and (2.55) is approximated by the average
over several (nearly) independent realizations of ray-tracing simulated shear fields.

2.5.1 Second-order measures

Two-point correlation function. Schneider et al. (2002) calculated the covariance matrices
of the estimators defined in the last section, in the case of a Gaussian shear field. The
covariance of the correlation function consists of three terms: A pure shot noise term ( � ),
originating from the dispersion of the intrinsic ellipticities of the source galaxies which is
present only on the diagonal, a cosmic variance term ( � ), and a mixed term ( � ),

�
++ =

�
(ξ̂+, ξ̂+) = � + � ++ + � ++,�

−− =
�
(ξ̂−, ξ̂−) = � + � −− + � −−, (2.56)

�
+− =

�
(ξ̂+, ξ̂−) = � +− + � +−.

The individual terms involve summations over galaxy positions and are explicitely

D(ϑ1, ϑ2) =
σ4

ε

F
δ̄(ϑ1 − ϑ2)Np(ϑ1),

M++(ϑ1, ϑ2) =
2σ2

ε

F

∑

ijk

∆ij
ϑ1

∆ik
ϑ2
ξ+(jk),

V++(ϑ1, ϑ2) =
1

F

∑

ijkl

∆ij
ϑ1

∆kl
ϑ2

(

ξ+(il)ξ+(jk) + cos[4(ϕil − ϕjk)]ξ−(il)ξ−(jk)
)

,

M−−(ϑ1, ϑ2) =
2σ2

ε

F

∑

ijk

∆ij
ϑ1

∆ik
ϑ2

cos[4(ϕij − ϕik)]ξ−(jk), (2.57)

V−−(ϑ1, ϑ2) =
1

F

∑

ijkl

∆ij
ϑ1

∆kl
ϑ2

(

cos[4(ϕij − ϕil − ϕjk + ϕkl)]
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Figure 2.11: The ratio of the fourth-order aperture mass statistics for the non-Gaussian and the
Gaussian case using the OCDM and ΛCDM ray-tracing simulations, see Sect. 5.1. The latter is
obtained using the Gaussianized ray-tracing simulations (Sect. 5.2.2).

× ξ−(il)ξ−(jk) + cos[4(ϕij − ϕkl)]ξ+(il)ξ+(jk)
)

,

M+−(ϑ1, ϑ2) =
2σ2

ε

F

∑

ijk

∆ij
ϑ1

∆ik
ϑ2

cos[4(ϕik − ϕjk)]ξ−(jk),

V+−(ϑ1, ϑ2) =
2

F

∑

ijkl

∆ij
ϑ1

∆kl
ϑ2

cos[4(ϕil − ϕkl)]ξ−(il)ξ+(jk),

with F = Np(ϑ1)Np(ϑ2), ∆ij
ϑ = ∆ϑ(| � i − � j |) and ξ±(ij) = ξ±(| � i − � j |) for brevity. δ̄(ϑ1 −

ϑ2) is unity if ϑ1 and ϑ2 are in the same bin and zero otherwise. σε is the ellipticity dispersion
of the galaxies in the absence of shear.

I note here that the expressions for the cosmic variance terms � of the covariance only
contain the Gaussian or unconnected part of the four-point correlator of shear. On scales
below ∼ 10 arc minutes the non-Gaussianity of the shear field gets important, see Fig. 2.11 and
also Scoccimarro et al. (1999). On scales below 1 arc minute, the shot noise term � dominates
over � , see Fig. 4 of Kilbinger & Schneider (2004), thus under the Gaussian assumption I
expect to slightly underestimate the covariance in this transition regime between 1 and 10
arc minutes.

Second-order aperture-mass statistics. The covariance of the aperture mass dispersion is
calculated from the covariance of the 2PCF using (2.17), see Schneider et al. (2002). The
result is

C(M±; θ1, θ2) =
1

4 θ2
1θ

2
2

I1(θ1)
∑

i=1

I2(θ2)
∑

j=1

∆ϑi∆ϑjϑiϑj

×
[

T+

(

ϑi

θ1

)

T+

(

ϑj

θ2

)

C++(ϑi, ϑj) + T−

(

ϑi

θ1

)

T−

(

ϑj

θ2

)

C−−(ϑi, ϑj)

± T+

(

ϑi

θ1

)

T−

(

ϑj

θ2

)

C+−(ϑi, ϑj) ± T+

(

ϑj

θ2

)

T−

(

ϑi

θ1

)

C+−(ϑj , ϑi)

]

. (2.58)
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The upper limits of the sums I1 and I2 depend on the aperture radii θ1 and θ2, respectively,
in the same way as in the equation for the 〈M 2

ap〉-estimator (2.51).

2.5.2 Third-order measures

Three-point correlation function. The covariance of the estimator of the 3PCF Γ̂(q) (2.52)
consists of four terms, which are proportional to σ6

ε , σ
4
ε , σ

2
ε and σ0

ε , respectively. The first
term corresponds to pure ellipticity noise, the last term originates from cosmic variance alone
and the two other terms are mixed contributions of both error sources. I consider here the
simple case of vanishing cosmic variance, and analytically calculate the variance of the 3PCF
and M3

ap,d. The only remaining term for the covariance of the 3PCF estimator Γ̂(q) (2.52) in

this case is the σ6
ε -term — it reads

C(Γ̂(q), Γ̂(p);Tx, Ty) =
1

NT(Tx)NT(Ty)

×
∑

ijklmn

〈

E(q,s)(ijk)(E (p,s))∗(lmn)
〉

∆Tx(ijk)∆Ty(lmn), (2.59)

where the superscript ‘s’ indicates intrinsic (‘source’) ellipticity. The term in angular brackets
is non-zero only if the two triangles given by ( � i, � j , � k) and ( � l, � m, � n) are identical (under
the assumption that different galaxies are intrinsically uncorrelated), and factorizes into a
sum of products of three two-point terms, each of the form 〈ετ ( � i)ετ ′( � l)〉δilδττ ′ . With
〈εtεt〉 = 〈ε×ε×〉 = σ2

ε/2 and 〈εtε×〉 = 0, the term in angular brackets becomes 8 · [σ2
ε/2]

3 = σ6
ε .

The sum reduces to a triple sum over ∆Tx(ijk) which is just the number of triangles in the
respective bin. Finally, one gets

C(Γ̂(q), Γ̂(p);Tx, Ty) =
σ6

ε

NT(Tx)
δ̄(Tx, Ty), (2.60)

where δ̄(Tx, Ty) is zero if the two triangles Tx and Ty are in different bins, and unity otherwise.
This result will be used in the next section in order to calculate the variance of the aperture
mass skewness.

Third-order aperture mass statistics. The covariance of the generalized third-order aperture
mass M3

ap(θi, θj , θk) depends on six scalar quantities, namely the 2 × 3 filter scales involved.
In order to obtain a two-dimensional matrix, I relabel all non-degenerate combinations of
filter triplets (

〈

M3
ap

〉

is invariant under permutations of its arguments) with a single index.
The resulting 〈M3

ap(θ1, θ2, θ3)〉-vector is organized such that (θ1, θ2, θ3) is in lexical order, I
further demand that θ1 ≤ θ2 ≤ θ3. Note that the labeling order does not play a role in the
later analysis. For a number of N distinct filter scales, there are

(

N+2
3

)

= N(N +1)(N +2)/6
different combinations.

I define the covariance matrix
�
(M 3

ap) for the generalized third-order aperture mass statis-
tics, and

�
(M3

ap,d) for the skewness of Map, which is a function of only one filter scale,

M3
ap,d(θ) = M3

ap(θ, θ, θ).

The covariance of M 3
ap can be obtained by integrating over the covariance of the 3PCF,

in analogy to the second-order case. This can be done analytically for the simple exemplary
case of vanishing cosmic variance, of all six aperture radii being equal (this corresponds to the
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Figure 2.12: Sketch for the determination of the number of galaxy triplets NT for a triangle
Tx = (x1 , x2 , ϕ) within a bin given by (∆x1 ,∆x2 ,∆ϕ). NT(Tx ) is the number of positions � 3 times
the number of galaxies in the annulus at � 1 times the galaxy number in a small area at � 2 .

variance of M3
ap,d), and in the absence of a B-mode, in which case 〈M 3

ap〉 = M3 (see eq. 2.47).
Then

var(M3
ap,d; θ) =

1

(48πθ4)2

∫

dx1 x1

∫

dx2 x2

∫

dϕ

∫

dy1 y1

∫

dy2 y2

∫

dψ

× C(Γ̂
(0)
b , Γ̂

(0)
b ;Tx, Ty)R

(0)
θ (x1, x2, ϕ)R

(0)
θ (y1, y2, ψ). (2.61)

Here, the triangles Tx and Ty are given by (x1, x2, ϕ) and (y1, y2, ψ), respectively. Inserting
(2.60) yields the function δ̄ in the integrand, which can be used to eliminate three integrals
since for any function f

∫

dy1

∫

dy2

∫

dψf(y1, y2, ψ)δ̄(Tx, Ty) = f(x1, x2, ϕ)∆x1∆x2∆ϕ, (2.62)

where ∆x1, ∆x2, ∆ϕ are given by the bin size in which the triangle Tx is situated.
For simplicity, I assume that boundary effects due to the finite field size A can be neglected.

The number of galaxy pairs at the triangle points � 3 and � 1 with distance ∈ [x2;x2 + ∆x2]
is the number of galaxies N times the area of an annulus multiplied by the galaxy number
density n, N · (2πx2∆x2 n). To get the number of galaxy triples, one has to multiply this
by the number of galaxies in a small area at position X2, which is x1∆x1∆ϕn, and one gets
NT(Tx) = 2πAn3x1∆x1x2∆x2∆ϕ, see also Fig. 2.12. Thus,

var(M3
ap,d; θ) =

σ6
ε

2πAn3

1

(48πθ4)2

∫

dx1

∫

dx2

∫

dϕR2
θ(x1, x2, ϕ). (2.63)

Solving the integral, one gets

var(M3
ap,d, θ) =

11

15552π2

σ6
ε

An3 θ4

= 10−16
( σε

0.3

)6
(

A

9 deg2

)−1
( n

25 arcmin−2

)−3
(

θ

arcmin

)−4

. (2.64)

Note that the variance ofM 2
ap (Schneider et al. 2002) has the same dependence on the observed

area A, but is only quadratically inverse as a function of both n and θ. I compare this
analytical result with numerical simulations in Fig. 5.3.
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Chapter 3

Study of the geometry of cosmic shear surveys

The second-order cosmic shear statistics as defined in Chapter 2 are used extensively in this
part of the thesis and their properties and dependence on cosmology are studied. Estimators
of these statistics and their covariance are employed to predict constraints on cosmological
parameters from a cosmic shear survey. With the primary goal to minimize the errors on cos-
mological parameters, I address the question concerning the influence of the survey design on
the determination of various cosmological parameters. In particular, I study the survey geom-
etry which comprehends the distribution of lines of sight and the angular range of the survey.
The measurement of cosmic shear with a sufficiently high precision to constrain cosmological
parameters requires many independent lines of sight to keep the sampling or “cosmic vari-
ance” low. On the other hand, it is important to measure the shear on a large range of angular
scales. In order to design a cosmic shear survey under the inevitable constraint of limited
telescope time, one has to carefully choose the geometry of the survey and find a trade-off be-
tween a low-cosmic-variance survey containing many independent but sparsely sampled lines
of sight and fewer but densely covered sky regions providing a larger signal-to-noise over the
measured angular range. I compare different survey settings with respect to their capability
of constraining cosmological parameters. To that end, I simulate cosmic shear surveys for a
variety of realistic survey strategies and noise characteristics and calculate the corresponding
covariance matrices of second-order shear statistics by Monte-Carlo-integrating the analytical
expressions (2.56 – 2.58). The parameters of the simulated surveys are described in Sect. 3.1.
I use various combinations of second-order statistics (Sect. 3.2) and investigate their ability
to constrain cosmological parameters of non-linear models of large-scale structure formation
(Sect. 1.2.7). Various techniques such as likelihood analysis (Sect. 3.3), the Fisher informa-
tion matrix (Sect. 3.4) and Karhunen-Loève (KL) eigenmode analysis are applied in order to
quantitatively determine the accuracy with which cosmological parameters can be obtained
from cosmic shear measurements. Moreover, the degeneracies between parameters are stud-
ied. I review the KL technique and introduce its application to second-order cosmic shear
statistics in Sect. 3.5 and present numerical results in Sect. 3.6.

3.1 Survey characteristics

I consider several different survey strategies for the analysis presented in this chapter. Firstly,
individual images are distributed randomly but non-overlapping within circular patches on
the sky, where ‘image’ means one individual field of view of size 13′ × 13′. This field of
view corresponds to medium-sized wide-field imaging cameras, e.g. VIMOS at the 8.2m ESO-
VLT telescope UT3 (Melipal). The random placement of images accounts for the fact that
for realistic surveys, bright stars and foreground galaxies should be avoided and therefore,
sparse sampling of a sky region is necessary. It is assumed that the shear correlation can be
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Figure 3.1: Realizations of circular patches (N,R) where N is the number of images per patch and
R the patch radius. The squares represent the individual images with a side length of 13 arc minutes.
For comparison, two fields of size 26 ′ × 26 ′ and 65 ′ × 65 ′, respectively, are shown on the right side.

measured across image boundaries, up to scales as large as the patch diameter. The individual
patches are assumed to be separated by at least several degrees. On these scales, the shear
correlation is virtually zero, so different patches can be considered as uncorrelated; they probe
statistically independent parts of the large-scale structure.

A survey consists of P patches of radius R, each patch containing N images. The total
number of images, n = PN = 300 is kept fixed for all surveys, corresponding to 14.1 square
degrees for the entire survey. For N being a factor of n the values 10, 20, 30, 50, and 60 are
considered, corresponding to geometries with P = 30, 15, 10, 6 and 5 patches, respectively.
Throughout, I denote these patch geometries by the two numbers (N,R). An illustration of
some patches is given in Fig. 3.1.

The patch geometries are compared to a configuration which consists of 300 single uncor-
related images, where ‘uncorrelated’ means separated by at least several degrees as before.
This configuration has the smallest possible cosmic variance, but the shear correlation can be
only measured up to

√
2 · 13 arc minutes. In the following, I denote this survey design with

300 · 13′.

Two more survey strategies of single uncorrelated fields are used later for the KL eigenmode
analysis of a cosmic shear survey, see Sect. 3.6. The first survey consists of 75 uncorrelated
26′ × 26′ square images — typical fields of view for current wide-field cameras like WFI
on the ESO 2.2-m telescope. The second survey represents 12 independent 65′ × 65′-fields,
corresponding to new-generation wide-field cameras like MegaCam/CFHT. I refer to these
surveys with 75 · 26′ 2 and 12 · 65′ 2, respectively.

If not indicated otherwise, the number density of source galaxies is ngal = 30 arcmin−2.
This number density of high-redshift galaxies which are usable for weak lensing shape mea-
surements can be achieved with high-quality ground-based imaging data from a 4 m-class
telescope. The source galaxy ellipticity dispersion is σε = 0.3, if not stated otherwise.

62



3.2 The input data

3.2 The input data

For the analysis of survey strategies I use the following four combinations of second-order
shear statistics as input data � :

1. The two-point correlation function ξ+(θi) measured at various angular scales θi with its
covariance matrix

�
++.

2. The 2PCF ξ−(θi) with its covariance
�
−−.

3. The combination of the two 2PCF ξ+ and ξ− to the joint data vector ξtot = (ξ+(θ1), . . . ,
ξ+(θN ), ξ−(θ1), . . . , ξ−(θN )), with the joint covariance matrix, written as the block ma-
trix

�
tot =







�
++

�
+−

� t
+−

�
−−






. (3.1)

4. The aperture mass statistics 〈M 2
ap(θi)〉 corresponding to the polynomial filter (2.9) for

various aperture radii θi and its covariance
�
(M+).

The 2PCF is calculated from the convergence power spectrum using eq. (2.12); the aperture
mass dispersion is obtained from the 2PCF, see eq. (2.17). The covariance matrices (2.57)
are calculated using a Monte-Carlo integration. To this end, galaxy positions are simulated
for a realistic survey geometry and number density — these positions are used to perform the
summation in (2.57). In order not to introduce artificial Poisson noise, the galaxies are not
distributed randomly but subrandomly onto the survey fields, see Chapter 7 of Press et al.
(1992). Because the number of operations increases with the galaxy number to the fourth
power, it is not feasible, except for a very small survey area, to sum over all galaxy positions.
Instead, a random subsample of galaxy positions is used (for more details see Kilbinger &
Schneider 2004).

The covariance matrices depend on the survey strategy in various ways. First of all, the
sampling of angular scales is encoded in the covariance: The better a particular scale is
sampled by some survey geometry and the more galaxy pairs contribute to the estimate of
the correlation function, the smaller is the noise for this angular scale. Secondly and related
to the previous point, the relative contribution to the noise coming from cosmic variance
and intrinsic ellipticity dispersion depends on the survey, in particular, on the number of
independent directions on the sky. In general, a survey with a dense angular sampling will
have a larger cosmic variance than a survey with the same total area but sparse sampling of
a larger range of angular scales or of more independent sky regions.

For the likelihood and Fisher matrix analyses (Sects. 3.3 and 3.4), I use 20 angular loga-
rithmic bins for the 2PCF, the smallest separation between two galaxies considered being 0.2
arc minutes. Since the calculation of the covariance is very time-consuming, I have chosen
a rather small number of angular bins. The largest angular distance is determined by the
survey setting — for a patch geometry, it is chosen to be equal to the patch diameter R. The
joint 2PCF data vector ξtot has 40 entries, corresponding to the two times 20 angular bins
for ξ+ and ξ−. The aperture mass dispersion 〈M 2

ap〉 is calculated for 18 different radii.
For the Karhunen-Loève analysis (Sect. 3.6), I discard the largest bin for the 2PCF. This is

to avoid very large angular separations with small numbers of galaxy pairs which caused the
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results to be unstable when the binning was varied (Sect. 3.6.6). Therefore, ξ+ and ξ− are
sampled for 19 bins and ξtot for 38 angular separations. For the aperture mass dispersion, I
take into account 14 filter scales.

3.3 Likelihood analysis of survey strategies

In order to compare different weak lensing survey strategies regarding their potential to
determine cosmological parameters, a measure of the precision is needed with which the
parameters can be constrained. I choose a likelihood function for an n-dimensional multi-
variate Gaussian distribution,

L( � ; � ) =
1

(2π)n
√

det
�
(� )

exp

[

−1

2
( � − � (� ))t

�
−1(� )( � − � (� ))

]

, (3.2)

where � is the mean of the data vector � , 〈 � 〉 = � and
�

is the covariance,
�

= 〈( � −
� )( � − � )t〉. Both the mean and the covariance can depend on some model parameter

� = (p1, p2, . . . , pm). The assumption that the data is drawn from a Gaussian probabil-
ity distribution is justified since non-Gaussian contributions are small (see the comment in
Sect. 2.5.1).

For the likelihood analysis (and the Fisher matrix study in the next section) I assume the
covariance to be constant and not to depend on � . This is a valid approximation; as shown
in Sect. 3.6.5, the contribution of the parameter-dependent covariance term to the Fisher
matrix (3.6) is small in comparison to the parameter-dependent mean term. Next and not
least important, the numerical calculation of the covariance is very time-consuming; were
it non-constant, an adequate sampling of the likelihood in parameter space would not be
feasible.

A ‘figure-of-merit’ is defined as

χ2(� ) = ( � − � (� ))t
�
−1( � − � (� )), (3.3)

which in the case of constant covariance is — up to an additive constant — equal to −2 lnL.

Since the likelihood analysis of cosmic shear survey strategies has been discussed in Kil-
binger (2002) and Kilbinger & Schneider (2004), I will only give a short summary here. In
this analysis, I vary two parameters at a time while keeping the others fixed. The parameters
under consideration are Ωm, σ8,Γ and the source redshift parameter z0.

In all cases, ξtot yields the best constraints on the cosmological parameters, closely followed
by ξ+, which dominates the contribution to ξtot. Next in the list is the aperture mass statistics,
the worst constraints come from ξ− alone.

I compare the likelihood contours in the resulting two-dimensional parameter space for the
individual survey strategies (see Figs. 5 and 6 of Kilbinger & Schneider 2004). The differences
between the patch geometries are rather small, the uncorrelated images survey yield the best
parameter constraints for ξtot and ξ+. This implies that the way of sampling is not a dominant
factor, and that the measurement of the shear on large angular scales can be left out in favor
of a small cosmic variance, as is the case of the 300 · 13′ survey.

The statistics ξ− and 〈Map〉 show a different behavior to ξ+. They are more sensitive to
large angular scales, thus they provide far better constraints for patch geometries than for
the 300 · 13′ survey with its lack of large-scale information.

64



3.4 Fisher matrix analysis of survey strategies

This simple case of the likelihood analysis in the presence of two unknown parameters is just
an showcase example to stress the differences in the survey strategies and the behavior of the
second-order statistics. A more thorough and realistic study has to include more parameters.
Since a full likelihood analysis on a higher-dimensional parameter space is extremely time-
consuming, I constrain myself to a local neighborhood around the maximum of the likelihood.
To this purpose the Fisher matrix is introduced in the following section.

3.4 Fisher matrix analysis of survey strategies

The Fisher matrix (Kendall & Stuart 1969; Tegmark et al. 1997) is defined as

Fαβ =

〈

∂2[− lnL]

∂pα∂pβ

〉

=

(

∂2[− lnL]

∂pα∂pβ

)

� =�
0

, (3.4)

where the likelihood L depends on the model parameter vector � = (p1, . . . , pm) and � 0

denotes the “true” parameter value. The Fisher matrix is the expectation value of the Hessian
matrix of (− lnL) at � = � 0, which coincides on average with L’s maximum if the maximum
likelihood estimator of p0 is unbiased (Tegmark et al. 1997) — thus it is a local measure of
how fast L falls off from the maximum.

The smallest possible variance σ of any unbiased estimator of some parameter pα is given
by the Cramér-Rao inequality

σ(pα) ≥
√

(F−1)αα ; (3.5)

the expression on the right-hand side is called the minimum variance bound (MVB). If only
one parameter is considered, (3.5) simplifies to σ(pα) ≥ 1/

√
Fαα.

In the case where the data is drawn from a multi-variate Gaussian probability distribution
(3.2), the general expression for the Fisher matrix is

Fαβ =
1

2
tr[

�
−1 �

,α
�
−1 �

,β +
�
−1 � αβ ], (3.6)

where � αβ = � ,α � t
,β + � ,β � t

,α and the comma notation as abbreviation for partial derivatives
is introduced, i.e.

�
,α = ∂

�
/∂pα.

In the case of a constant covariance matrix,
�

,α = 0 (see also previous section), eq. (3.6)
simplifies to

Fαβ = � t
,α

�
−1 � ,β . (3.7)

In the case of a simple survey geometry, e.g. a single large field of view, where border effects of
the survey can be neglected, the covariance for all shear estimators scales with A−1 where A is
the observed area. Thus, the MVB is approximately proportional to 1/

√
A. The derivatives

� ,α of the shear statistics are calculated throughout this work based on the theoretical models
for the power- and the bispectrum as described in Sect. 1.4.2. The numerical derivatives are
obtained using polynomial extrapolation of finite differences, see Chapter 5.7 of Press et al.
(1992). For the KL analysis, in particular in Sect. 3.5.2, also the derivatives of the covariance
are needed. These are easily calculated from eq. (2.57), by differentiating ξ+ and ξ− in these
expressions. The shot-noise term � , being independent of cosmology, does not contribute,
and the cosmic variance term � , being quadratic in the correlation function, has a larger
influence than the mixed term � .

65



Chapter 3 Study of the geometry of cosmic shear surveys

a/b = 18.2 (7.6)

0.25 0.30 0.35
0.90

0.95

1.00

1.05

1.10

Ωm

σ
8

a/b = 10.5 (6.1)

0.25 0.30 0.35

0.95

1.00

1.05

Ωm

z
0

a/b = 3.7

0.18 0.20 0.22 0.24

0.98

1.00

1.02

Γ

σ
8

a/b = 13.6

0.95 1.00 1.05
0.90

0.95

1.00

1.05

1.10

σ8

z
0

Figure 3.2: 1σ-likelihood contours (solid lines) using the log-likelihood (3.3) compared with the 1σ-
error ellipse from the Fisher matrix (3.6), for the combined 2PCF ξtot: The dashed ellipses are for a
flat Universe (as it is the case for the likelihood contours), the dotted ones are for ΩΛ = 0 .7 . a/b is
the axis ratio of the ellipses (the case ΩΛ = 0 .7 is in parentheses). The configuration 300 · 13 ′.

3.4.1 Comparison of the Fisher matrix with the likelihood function

I compare the minimum variance bound (3.5) with the 1σ-levels of the likelihood function
(3.2) for the combined 2PCF ξtot. Only two parameters are varied, the others are kept fixed,
in which case the Fisher information matrix reduces to a 2×2 matrix, which can be visualized
as 1σ-error ellipses. This comparison is shown in Fig. 3.2. As expected from the Cramér-Rao
inequality, the likelihood contours are larger than the 1σ-ellipse from the Fisher matrix. The
orientation of the Fisher error ellipse coincides with the likelihood shape, i.e. the direction of
the minimal and maximal degeneracy of parameters is recovered. The larger the degeneracy
between two parameters, the larger the deviation between the local approximation by the
Fisher matrix and the likelihood function. In the case of a flat Universe where the sum of
Ωm and ΩΛ is restricted to unity, the degeneracy is much larger than for a fixed cosmological
constant ΩΛ = 0.7. I checked the correctness of the local approximation of the likelihood at
the 0.1σ-level, and found an excellent match between the likelihood contours and the Fisher
error ellipses.

3.4.2 More parameters

After having considered only two varying parameters, I calculate the minimum variance bound
for three and more parameters out of (Ωm, σ8,Γ,ΩΛ, ns) simultaneously. In general, the aper-
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N=10
N=20
N=30
N=50
N=60

Figure 3.3: The minimum variance bound for the parameters Ωm,Γ and σ8 , for the
〈

M 2
ap

〉

-statistics.
All hidden parameters are kept fixed and a flat Universe is assumed. Each point in the plot represents
a patch geometry with N images in patches of radius R. The MVB for the 300 · 13 ′-survey is given
in Table 3.1.

ture mass gives less tight constraints than the combined two-point correlation functions (Kil-
binger & Schneider 2004). However, this difference gets smaller the more parameters are
included. Furthermore, with the aperture mass statistics and its ability to separate the E-
from the B-mode of the shear field one can contol systematic measurement errors (Sect. 1.4.3)
and therefore, I will focus on this statistics for the remaining part of the Fisher matrix anal-
ysis.

Figures 3.3 - 3.5 show the MVB for a different number of free cosmological parameters for
the individual patch geometries. The fiducial parameters correspond to model 1 (Table B.1).
In the cases where ΩΛ is not a free parameter, the prior is a flat Universe (ΩΛ = 1 − Ωm).

When taking into account three or more parameters, the uncorrelated image configuration
gives very poor constraints on these parameters. The MBV for this survey strategy is in most
cases more than twice the value of the MBV for the least optimal patch geometry. The reason
is that the lack of medium- and large-scale information dramatically raises the degeneracy
between parameters. The advantage of having a small cosmic variance cannot compensate
for this missing out of the large angular scales for this survey. The more parameters are to
be determined from the data the stronger is the degradation of the errors.

When ΩΛ is added as a free parameter (compare Fig. 3.3 with Fig. 3.4), the variance of
the shape parameter increases by more than a factor of two, whereas the variances of Ωm and

67



Chapter 3 Study of the geometry of cosmic shear surveys

Figure 3.4: The minimum variance for the parameters Ωm,Γ , σ8 and ΩΛ using the
〈

M 2
ap

〉

-statistics.
See Fig. 3.3 for more details. The MVB for the 300 · 13 ′-survey is given in Table 3.1.

σ8 are only slightly deteriorated. For large patches, the variances of the three parameters
Ωm, σ8 and Γ are just rescaled, whereas for small patches, the change is more complex. The
constraint on the cosmological constant is very poor, confirming the results of Bernardeau
et al. (1997).

When the spectral index ns is added (Fig. 3.5), the minimum variance bound of Ωm and σ8

again increase in the same way as before, when ΩΛ was added to the analysis, although this
time by a greater amount. The variance on Γ changes completely, taking a similar functional
form on R and N as the variance on ns. The reason for this is that both parameters determine
the shape of the power spectrum in about the same way and, therefore, the dependence of
cosmic shear on these two parameters is very similar (see also Sect. 3.6.3). By contrast, Ωm

and σ8 influence mainly the amplitude of the power spectrum.

For each data point in Figs. 3.3 - 3.5, only one realization for each of the P patches is used,
corresponding to one survey withN images in P = 300/N patches. Due to the (quasi-)random
positions of the images in each patch there is some scatter in the resulting covariance and
consequently, in the Fisher matrix and the MVBs which are shown in these figures. In order
to quantify this scatter, I create two new surveys by bootstrapping from a larger number of
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Figure 3.5: The minimum variance for the parameters Ωm,Γ , σ8 and ns using the
〈

M 2
ap

〉

-statistics.
See Fig. 3.3 for more details. The MVB for the 300 · 13 ′-survey is given in Table 3.1.

additional realizations for two of the patch geometries. I calculate the rms of the MVB from
the bootstrapping sample and find the scattering of the minimum variance bound to be at a
level of about one percent.

From Fig. 3.3, the best geometry is a (60, 120′)-patch survey. Considering Fig. 3.5, a
configuration with N = 30 and small R yields the best minimum variance bounds. For both
cases, a survey with 30 images per patch and a patch radius of around 100 arc minutes
seems to be a good choice. The patch radius has only a small influence on the minimum
variance bound, more important is the number of images per patch and therefore the number
of independent patches.

The difference in the minimum variance bound between individual patch geometries make
up to 25 percent. Thus, the conclusion of the Fisher matrix analysis presented in this section
is that by an appropriate choice of the survey strategy, an improvement for the determination
of cosmological parameters of about 25 percent can be made for each parameter.
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Table 3.1: The minimum variance for several combinations of parameters, for the 300 · 13 ′ configu-
ration consisting of 300 uncorrelated images. In each row, those parameters which have an entry are
assumed to be determined from the data, the other parameters are fixed. The counterpart of the three
rows for the patch geometries are the Figs. 3.3 - 3.5.

Ωm σ8 Γ ΩΛ ns

0.53 0.76 0.09
0.53 0.76 0.14 0.64
0.53 0.77 0.16 0.20

3.5 Karhunen-Loève (KL) eigenmodes technique

Modern cosmological experiments yield a huge number of data that have to be processed and
analyzed. Therefore, it is essential to study data compression techniques which can efficiently
reduce the data vector to a lower-dimensional space. The effect of such a compression on the
Fisher information matrix can be seen by analysing the Karhunen-Loève (KL) eigenmodes
(Karhunen 1946; Loève 1948) associated with the Fisher matrix. These techniques are already
in use in cosmic microwave background studies, see e.g. Bond (1995) for COBE/FIRAS1

data and Tegmark et al. (1997) for a general review of the KL eigenmode analysis. In the
context of galaxy surveys, Hamilton et al. (2000) studied PSCz2 with KL techniques and
Szalay et al. (2003) used this method in the context of SDSS. Watkins et al. (2002) employed
these techniques to analyze the peculiar velocity surveys for removal of small-scale, non-
linear modes from large-scale linear modes which retain cosmological information. Recent
studies by Huterer & White (2005) have underlined its importance for filtering unwanted
non-cosmological information at small angular scales.

The data vector in weak lensing surveys which is used to extract cosmological information
is usually the shear correlation at various angular separations, estimated from the shapes
of the observed background galaxies. Thus, it represents an already compressed data set for
which likelihood analyses are feasible although further compression can speed up the analysis.
Moreover, for third-order statistics, the number of measured triangle configurations can be
very large even in a binned way and and further compression of the data might be necessary to
place constraints in a high-dimensional cosmological parameter space. Therefore, the study of
KL methods in the context of cosmic shear will be very useful for future weak lensing surveys.

Being not only an effective tool for data compression, the KL eigenmode analysis can
also help to understand the specific linear combination of angular scales and the redshift
range that contribute most significantly to an estimator. A KL eigenmode analysis of weak
lensing observables in redshift space has already been done in the context of cosmic shear
by Heavens (2003), where the distribution of observed ellipticities was directly used as data
vector. I extend these previous analyses to the second-order shear statistics ξ±, ξtot and 〈M2

ap〉
(Sect. 3.2) as functions of projected angular scales and for realistic survey geometries. Before
I present the results of this KL study in Sect. 3.6, the basic ideas of data compression and its
effect on the Fisher matrix are reviewed, following Tegmark et al. (1997).

1Far Infrared Absolute Spectrophotometer
2Point Source Catalogue redshift
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3.5.1 Data compression and the Fisher matrix

A general linear data compression can be written as

˜� = � � , (3.8)

where from the n-dimensional data vector � a new ñ-dimensional data set ˜� is constructed
via the ñ × n matrix � . This means that the expectation value 〈 � 〉 of the original data
vector � transforms to 〈˜� 〉 = � 〈 � 〉 and hence the covariance

�
= 〈 � � t〉 − 〈 � 〉〈 � 〉t changes

accordingly to ˜� = �
�

� t. An example for a data compression is the dispersion of the aperture
mass statistics 〈M2

ap〉 (Sect. 2.2.2) which is a linearly compressed version of the correlation
functions ξ+ and ξ−. The compression matrix � depends in this case on the functions T+ and
T− (2.17).

The Fisher matrix � (3.6) corresponding to the original data vector � changes to �̃ , given
by

F̃αβ =
1

2
tr
[

( �
�

� t)−1( �
�

,α � t)( �
�

� t)−1( �
�

,β � t) + ( �
�

� t)−1( � � αβ � t)
]

. (3.9)

Clearly, when the dimensionality n and ñ of the original and the transformed data vectors
are the same and � has full rank, the transformation is a similarity transformation and the
Fisher matrix remains unchanged, �̃ = � .

Usually, the goal of a KL analysis is to find a compression matrix � for ñ < n with a minimal
loss of information corresponding to a minimal increase of the resulting errors on cosmological
parameters. Regarding only one parameter pα with the minimum variance bound (3.5) as a
lower bound of its error bar, one seeks to maximize the Fisher matrix element F̃αα.

Following TTH, I consider the two simple cases of a constant mean � and a constant co-
variance

�
, where ‘constant’ means with respect to the parameter vector � . The optimization

is done first for one parameter and later for several parameters simultaneously with the aid
of a singular value decomposition (SVD).

For cosmic shear, the assumption of a constant covariance seems quite natural, since in most
cases of weak lensing observations the covariance is not calculated analytically but extracted
directly from the data (e.g. van Waerbeke et al. 2002) and thus it is constructed to be constant
and not dependent on cosmological parameters. However, the situation is different for the
mean, since with a model parameter independent mean it is not possible to even define a
likelihood function. And although within the Fisher matrix formalism, a constant mean can
be considered in a consistent way, this mean first has to be found using e.g. the maximum
likelihood estimator. But the distinction into a constant mean and a constant covariance
case is of rather technical nature, and the general case of parameter-dependent mean and
covariance can be considered by combining the two, see Sect. 3.5.4. Thus, a strategy to
obtain cosmological parameters and their minimum variance bound from data would be first
to define a likelihood function L using a parameter dependent mean (and parameter dependent
covariance if desired) and to find the maximum likelihood parameter � 0. Secondly, the Fisher
matrix is calculated by evaluating the second derivatives of L at the point � = � 0. A KL
analysis of this Fisher matrix resulting in an optimal data compression can be undertaken by
considering the two cases of constant mean and covariance independently, and then combining
both cases. Using the compressed data vector and its covariance, a detailed likelihood analysis
is now possible because of the reduced dimensionality after compression.
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Note that in this case the “mean” is a second-order statistics (the shear correlation), and
the covariance is of fourth order (although reduced to only depend on second-order because
of the assumption of a Gaussian shear field). I therefore choose a different approach than
e.g. Heavens (2003) who directly use the galaxy ellipticities as data vector. In their case, the
(zero) mean is of first order, and the covariance contains the information about the power
spectrum.

3.5.2 Constant mean

In the case where the mean � is known and constant, the second term in (3.6) vanishes. To
begin with, one considers a compression matrix which consists of a single row vector, � = � t.
The diagonal element of the compressed Fisher matrix (3.9) which determines the error bar
of the parameter pα becomes

F̃αα =
1

2

( � t �
,α �

� t � �
)

. (3.10)

The task is now to find a compression � t which maximizes this expression. Without loss of
generality the compression vector � can be normalized such that � t � � = 1. The maximization
problem can then be solved by maximizing the numerator of (3.10) with the side constraint
of the denominator equating to unity. Introducing a Lagrangian multiplier, this is equivalent
to maximizing

� t �
,α � − λ � t � � . (3.11)

Differentiating with respect to � and setting the result to zero, one obtains the generalized
eigenvalue problem �

,α � = λ
� � . (3.12)

Since
�

is symmetric and positive definite there exists an invertible matrix � with
�

= ��� t.
Using this Cholesky decomposition (e.g. Press et al. 1992), the previous equation can be
reduced to an ordinary eigenvalue problem,

( � t �
,α � −t) � t � = λ � t � . (3.13)

Solving this equation for all n orthogonal eigenvectors � t � k, k = 1 . . . n results in n real
eigenvalues λk. A compression matrix � is then constructed containing as row vectors the
first ñ eigenvectors which have been sorted by the absolute value of their corresponding
eigenvalues. These KL eigenmodes satisfy an orthogonality relation and the new data vector
˜� is statistically orthogonal, 〈˜� ˜� t〉 = � . Hence, ˜� is a vector of independent unit variance
random variables with a diagonal covariance matrix ˜� .

Eigenmodes with high eigenvalues or low rank (row) numbers contain more information
about the parameter pα than ones with small (absolute) eigenvalues and high rank numbers,
which contain almost no additional information. As will be shown in Sect. 3.6, a compres-
sion by a factor of nearly two is typically achieved for the independent analysis of various
parameters which yields about the same MVB as for the uncompressed case.

The matrix � constructed in this way represents a set of eigenvectors, rank-ordered accord-
ing to their signal-to-noise ratio: An individual eigenmode � k contributes to the measurement
error for the parameter pα as δpα = 1/|λk|. Thus, the signal-to-noise ratio for this mode there-
fore is pα(δpα)−1 = pα|λk|.
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3.5 Karhunen-Loève (KL) eigenmodes technique

The new Fisher matrix diagonal element F̃αα corresponding to a KL compression with ñ
eigenmodes is simply (TTH)

F̃αα =
1

2

ñ
∑

k=1

λ2
k. (3.14)

In this analysis (Sect. 3.6), I repeat the data compression with different mode numbers ñ
and plot for various cosmological parameters pα the associated error ∆pα = 1/(F̃αα)1/2 as a
function of ñ, see Fig. 3.6. Clearly, the error is a decreasing function of the mode number
ñ. However, it reaches a constant plateau for some ñ0 < n, thus the original error for the
uncompressed case is recovered before all modes are used for the parameter estimation. I
find in most of the cases that a plateau is reached for ñ0 . n/2, thus a compression factor
of nearly two is possible without any loss of information. Note that the compression factor
depends of course on the original number of bins — I comment on the binning in Sect. 3.6.6.

Since in the case of a constant mean, the Fisher matrix contains products of the inverse
covariance and the (derivative of the) covariance, it is independent of the survey area, and
only very slightly sensitive to the survey geometry.

3.5.3 Constant covariance

When
�

is independent of pα, the first term in (3.9) vanishes and one wishes to maximize the
quantity

F̃αα =
� t � αα �

� t � � . (3.15)

Proceeding as in the case of a constant mean, one introduces a Lagrangian multiplier and
finds the eigenproblem

( � −1 � αα � −t) � t � = λ � t � (3.16)

to be equivalent to the maximization problem. However, the matrix � αα = 2 � ,α � t
,α is merely

of rank one, since any two rows (and columns) of � αα are linearly dependent and proportional
to
∑

j(µ,α)j . Therefore, the left-hand side of the previous equation, 2( � −1 � ,α)( � t
,α � ), maps �

onto a one-dimensional subspace of � spanned by � −1 � ,α and the only non-trivial eigenvector

is � t � 0 = � −1 � ,α with eigenvalue λ0 = 2| � −1 � ,α| = tr
[ �

−1 � αα

]

.

Inserting this eigenvector � 0 =
�
−1 � ,α into the compression matrix � (3.9), one finds that

the modified Fisher matrix is the same as the original one, F̃αβ = Fαβ = � t
,α

�
−1 � ,β . Thus,

in contrast to the constant mean case, there exists only one mode and this mode contains all
information.

If geometrical effects of the survey are neglected, the covariance is proportional to one over
the survey area A. Thus, in the case of constant covariance the Fisher matrix is proportional
to A, in contrast to the constant mean case, where � is independent of A. For reasonably
large cosmic shear surveys, the second term in (3.6) is therefore dominant over the first one.
In Sect. 3.6.5 this statement will be quantified further.

3.5.4 General case

TTH describe how the general case (when neither mean nor covariance is constant) can be
treated efficiently, by simply adding the one eigenmode from the constant covariance case to
the ñ modes from the constant mean analysis. However, as mentioned in the previous section,
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Chapter 3 Study of the geometry of cosmic shear surveys

the constant covariance eigenmode is (for reasonably large survey areas) dominant over all the
other modes and contains the bulk part of the information about cosmological parameters.
This is also true for the likelihood: In Sect. 3.6.7, it is shown that the constant mean modes
contribute negligibly to the likelihood of the parameters Ωm and σ8 in comparison with the
constant covariance modes.

3.5.5 Joint parameter estimation

For the independent estimation of a parameter pα, the KL method is devised to minimize the
associated error bar ∆pα = (F̃αα)−1/2 in a suitably rotated basis. However, for the case of

joint parameter estimation, the objects to be minimized are ∆pα = ( � −1)
1/2
αα which is a more

demanding optimization problem. Therefore, I adopt an alternative approximate technique
described in TTH as follows. The individual compression matrices � α optimized for the inde-
pendent estimation of the parameters pα are arranged into a new matrix after multiplying each
row (corresponding to an eigenvector) with its corresponding eigenvalue. This can be written
as the n × nm-dimensional matrix � = (Λ1 � t

1, . . . ,Λm � t
m) where Λα = diag(λα1, . . . , λαn)

is a diagonal matrix containing the eigenvalues corresponding to the individual eigenanalysis
of the αth parameter. � will contain a lot of redundant information, because of unavoid-
able near-degeneracies of parameters measured from cosmic shear, e.g. between Ωm and σ8

or between Γ and ns. Thus, the individual compression matrices contain linearly (nearly)
dependent eigenvectors.

In order to separate useful from redundant information, this new matrix � is factorized using
a singular value decomposition (SVD), � = � Σ � t (Press et al. 1992, Sect. 2.6) according to
the following scheme,

n

{

nm

︷ ︸︸ ︷
(

Λ1 � t

1

∣
∣
∣ · · ·

∣
∣
∣ Λm � t

m

)

=

n

︷ ︸︸ ︷
( � )

·

n

︷ ︸︸ ︷
(

Σ

)

·

nm

︷ ︸︸ ︷
( �

t

) }

n

,
(3.17)

where the n×n-dimensional matrix � is orthogonal, � t � = ��� t = � , and the n×nm-matrix
� t is column-orthogonal, � t � = � . Σ = diag(σi) is a diagonal matrix containing the singular
values, which can be interpreted as generalized eigenvalues. Such a decomposition can be
found for any matrix � uniquely up to simultaneous permutations of the columns of � ,Σ and

� t, and, if two or more singular values σi and σj are equal, up to linear combinations of the
corresponding columns i and j.

After sorting the columns of � t according to the modulus of the corresponding singular
value, in a similar manner to the way is was done for the single parameter compression ma-
trices � α, the final compression matrix is � joint = � t. The columns of � with corresponding
non-zero singular values form an orthonormal set of basis vectors of the same space that
is spanned by all initial compression vectors of the single parameter analysis. Modes with
high singular values contain the bulk information about the cosmological parameters, whereas
column vectors of � corresponding to vanishing or very small singular values capture redun-
dant or almost redundant information. Inserting � joint into (3.9), the Fisher matrix after the
final compression is easily calculated. Based on the amplitude of the singular values, one
can choose a final mode number ñjoint < n fixing the compression factor. In the same way
as for the single parameter estimation the error bars ∆pα can be plotted as a function of
the compression factor and the saturation plateau can be used to determine the final mode
number, see Fig. 3.6. In the analysis presented here, I find that the result does not depend on
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3.5 Karhunen-Loève (KL) eigenmodes technique

whether the individual � α contain all ñ modes or whether modes with small eigenvalues have
been discarded before the construction of � . Thus, the SVD is a robust method to separate
useful from redundant information in a given data set.

Also for the constant covariance case (Sect. 3.5.3), a joint parameter estimation analysis can
be done. Them eigenvectors resulting from them individual parameter analyses are combined
to the n ×m-matrix � 0, after having multiplied them by their respective eigenvalues. The
singular value decomposition of � 0 will result in m singular values, which yield information
of the degree of degeneracy between the parameters. I will discuss results for this analysis in
Sect. 3.6.

3.5.6 Window functions

The components x̃i of the new data vector contain pairwise independent and uncorrelated
information about cosmology, which in this case is contained in the convergence power spec-
trum. Using the KL eigenmode technique, one can study in detail how the power spectrum is
sampled by the various second-order statistics in order to yield uncorrelated data points. By
comparing modes corresponding to high and low eigenvalues respectively, one can see which
scales carry much and which ones carry little of the cosmological information.

For any second-order statistics, the dependence on the power spectrum is encoded in a win-
dow function. For the two components of the shear 2PCF ξ+ and ξ− these are the broad-band
Bessel functions J0 and J4, respectively, see eq. (2.12). The filter function corresponding to
the aperture mass statistics 〈M 2

ap〉 is the narrow-peaked function [24 J4(η)/η
2]2, see eq. (2.17).

For each component x̃i of the new data vector I define a new window function Wi which is
a linear combination of the original filter functions associated with different smoothing scales
θj . In the case of the 2PCF, the new data vector is

ξ̃±i = T±

ij ξ±(θj) =
1

2π

∫

∞

0
d` ` Pκ(`)W±

i (`); W±

i (`) =
∑

j

T±

ij J0,4(`θj). (3.18)

Similarly, for 〈M̃2
ap〉 one obtains the new window functions

WE
i (`) =

∑

j

TE
ij [24 J4(`θj)/(`θj)

2]2. (3.19)

In the case of the combined vector ξ̃tot = (ξ̃+, ξ̃−), the window functions W tot
i are linear

combinations of W+
i and W−

i .

In case of a constant mean, the rows of the matrix � contain the ñ transposed eigenvectors
� , see Sect. 3.5.2. For the constant covariance case, there is only one eigenmode, in this case
� 0 = � t

,α

�
−t if the compression is optimized for the parameter pα. I denote all quantities

corresponding to the constant covariance case with a subscript ‘0’, e.g. ξ̃+0 , W+
0 etc.

The objective here is to study these window functions for different survey geometries and
noise characteristics. This will give insights about how the convergence power spectrum is
sampled in order to constrain cosmological parameters with cosmic shear, and how different
Fourier modes are probed by a given survey strategy.
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Figure 3.6: ∆pα = (F̃αα)−1/2 as a function of the mode number ñ is plotted, according to (3.14) for
the constant mean case and various cosmological parameters. Solid lines correspond to the independent
parameter estimation (Sect. 3.5.2), dashed lines represent the joint parameter analysis (Sect. 3.5.5).
The four panels correspond to the shear statistics ξ+, ξ−, their combination ξtot and 〈M 2

ap〉 (see
Sect. 3.2) The survey geometry is (30 , 100 ′). The maximum mode number n equals the number of
bins, which is 38 for ξtot, 19 for both ξ+ and ξ− and 14 for 〈M 2

ap〉.

3.6 KL eigenmode analysis

In this section, the impact of various survey strategies, noise structures and the effect of
binning are considered in the determination of the KL eigenmodes. I separately study the
constant mean case (see Sect. 3.5.2) and the constant variance case (see Sect. 3.5.3). Eigen-
modes associated with the independent analysis of a single parameter and the joint analysis
of several parameters (see Sect. 3.5.5) are investigated.

3.6.1 Error bars

Constant mean For the case of a constant mean (Sect. 3.5.2), the MVB ∆pα= (F̃αα)−1/2=

(2/
∑ñ

k=1 λ
2
k)

1/2 is plotted in Fig. 3.6 as a function of the compression mode number ñ. Similar
to the results of TTH for the case of CMB anisotropies, the errors for the single parameter
estimation show a power-law decrease until some mode number ñ0, at which a saturation
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3.6 KL eigenmode analysis

plateau is reached. For comparison, the error bars for the individual parameters using the
SVD modes, optimized for the joint parameters simultaneously, are plotted. These errors are
only slightly larger than the ones for the single analysis and the plateau is established for a
larger compression numbers. In the case of Ωm, σ8, β and z0, the corresponding MVBs also
show a power-law decrease. For Γ, ns and ΩΛ, the shape is more complicated. Note that for
the joint estimation the individual error bars ∆pα are also obtained from the reciprocal of
the corresponding diagonal element F̃αα and not by inverting the full Fisher matrix, since in
both the above described cases, a single parameter is determined from the Fisher matrix.

Similar to the likelihood analysis of cosmic shear surveys (Sect. 3.3), the joint use of ξ+
and ξ− yields the smallest error bars on cosmological parameters, followed by ξ+. However,
ξ− gives better constraints than 〈M 2

ap〉 and thus behaves opposite to the case of the likeli-
hood analysis. This is not a contradiction since the likelihood analysis was performed for
two parameters simultaneously in contrast to the KL analysis presented here. As stated in
Sect. 3.4.2, the efficacy of the aperture mass dispersion with respect to the 2PCF is improved
with increasing number of parameters considered simultaneously. Moreover, in the case of
constant covariance, 〈M 2

ap〉 yields better constraints than ξ−, see Sect. 3.6.5.

The saturation limit is reached for approximately the same mode number for each of the
individual cosmological parameters. Irrespective of the survey strategy, a little less than the
first half of eigenmodes contain virtually all information about each individual parameter,
thus a compression factor of nearly two is possible without increasing the error.

Constant covariance I also conduct a joint parameter estimation for the case of a constant
covariance (Sect. 3.5.3). The complete information of all seven cosmological parameters is
encoded in the m = 7 individual eigenmodes. However, the result of the SVD shows that
for Ωm, σ8, z0 and β already the first singular mode carries basically all of the information on
these parameters. For Γ, ns and ΩΛ, the saturation of the error is reached after two modes.
Apparently, the first mode picks up most of the information about the first group of highly-
degenerate parameters, the second one completes the information about the parameters from
the second group. This picture is consistent with the correlation matrix of the parameters,
as will be discussed in Sect. 3.6.3.

3.6.2 Window functions for the compressed eigenmodes

Constant mean In Fig. 3.7 the rank-ordered window functions Wi(`) associated with the
individual determination of the parameters Ωm and Γ, respectively, are plotted. As an exam-
ple, the first three window functions containing most of the information are compared with
two higher-order modes which contain less or negligible information. In Fig. 3.8, the first
three window functions from the joint parameter analysis are shown, multiplied by the corre-
sponding singular values in order to display their relative contribution of the corresponding
mode, since the magnitude of the singular value encodes the information content.

Because the window functions for ξ̃+i are linear combinations of J0(`θj), there is always
an extended tail which takes contributions from very large scales. ξ+ and consequently its
compressed version ξ̃+ are both sensitive to large-scale power which is not covered by the
survey. The window functions for 〈M̃2

ap〉 are very localized and each eigenmode samples only
a small `-region. For all statistics, small scales are noise dominated and contribute with only
small amplitude to higher-order, low signal-to-noise KL modes, see also Fig. 3.11.
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Figure 3.7: Window functions Wi(`) multiplied with the corresponding eigenvalues λi for Ωm and
Γ , for the constant mean case. The first three as well as to two (shifted) higher-order eigenmodes
(i = 14 , 19 for ξtot and i = 10 , 14 for 〈M 2

ap〉) are plotted. The survey strategy is a (30 , 100 ′) patch
geometry (see Sect. 3.1). Note that the window functions for the two higher-order modes have been
displaced from zero to increase the visibility.

The fact that the information content is larger for small ` and decreases with increasing
` can be understood when considering the simple case in which the covariance matrices and
their derivatives are diagonal. Then, the eigenproblem matrix � = � t �

,α � −t (3.13) is also
diagonal with Akk = (C,α)kk/Ckk being the eigenvalues. The diagonals of both

�
and

�
,α

are decreasing functions of the angular scale (except for small bumps due to geometrical
effects from the survey). Since the decrease of

�
,α is in general shallower than

�
, the largest

eigenvalues occur on the largest angular scales.

Constant covariance For the constant covariance case, the window functions W0 are much
broader since there is only one eigenmode containing all information and taking contributions
from all angular scales (Fig. 3.9). Although these are still linear combinations of Bessel func-
tions as described above, the individual contributions blend together to produce a composite
window which peaks at a median angular scale determined by the survey geometry and where
the signal dominates over the noise both from the intrinsic ellipticity dispersion of galaxies
at small angular scales and from the finite sky coverage at larger angular scales.
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Figure 3.8: Window functions σiWi for the joint analysis of all parameters using SVD in the case
of constant mean. The first four singular modes multiplied by the corresponding singular values are
displayed. Window functions corresponding to the two surveys (30 , 100 ′) and 75 · 26 ′ and to the two
statistics ξtot and 〈M 2

ap〉 are contrasted.

The strong degeneracy among various parameters is reflected in the behavior of their as-
sociated window functions: for all four statistics, degenerate parameters have very similar
curves (see next section for a discussion of the different near-degeneracies). The Γ-, ns and
ΩΛ-filter functions have a zero-transition – the low `-plateau has opposite sign than the peak.
All three parameters influence the slope of the power spectrum – an estimate of a tilt in the
power spectrum is obtained by adding up power on large and small scales with opposite sign.

Figure 3.9 displays for the dominant contibution to the Fisher matrix (second term in
eq. 3.6) how individual Fourier modes are sampled and combined in an “optimal” way to
constrain cosmological parameters as indicated. It shows on which scales the convergence
power spectrum has the largest influence on the determination of cosmological parameters,
depending on the survey strategy (see also Sect. 3.6.4). It will be interesting in future work to
apply these techniques presented here to third-order statistics of cosmic shear, allowing one
to quantify the sampling of the convergence bispectrum to extract cosmological information.
It will be possible to study the scales of interest for a combined analysis of the power and the
bispectrum which will reduce the near-degeneracies between parameters.
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Figure 3.9: The window function W0 for the constant covariance case associated with various pa-
rameters as indicated in the middle right panel. In the case of the (30 , 100 ′) survey, all four shear
statistics are shown (upper two rows). For comparison, window functions corresponding to ξtot and
〈M 2

ap〉 are plotted for the 75 · 26 ′ strategy.
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Figure 3.10: The correlation of Ωm (left), Γ (middle) and ΩΛ (right panels) with the other param-
eters, as a function of the mode number ñ′ for the joint parameter estimation. The upper and lower
row corresponds to ξtot and 〈M 2

ap〉, respectively. The correlation coefficients with z0 are not plotted
since it is virtually identical with the ones for σ8.

3.6.3 Correlation between cosmological parameters

Constant mean The KL eigenmode analysis seeks to maximize the diagonal elements of
the Fisher matrix and therefore tries to minimize the error corresponding to the MVB (3.5).
However, also the off-diagonal elements of the Fisher matrix contain important information
— they determine the level of degeneracy between cosmological parameters. The correlation
coefficient of the inverse Fisher matrix

rαβ =
F−1

αβ
√

F−1
ααF

−1
ββ

(3.20)

is a measure of the correlation between the αth and βth parameter. For α 6= β, it can vary
between −1 and 1. In the two-dimensional case, r12 = r21 = 0 corresponds to an error ellipse
with major and minor axes parallel to the coordinate (parameter) axes – the probability
distribution of the parameters factorizes. For r12 → 1, the ellipse degenerates to a line.

In Fig. 3.10 the correlation coefficient of the Fisher matrix as a function of the compression
mode number ñ is plotted. For very small mode numbers, the Fisher matrix becomes singular
and all parameters are completely degenerate. The correlation decreases for increasing mode
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numbers; however, for some parameter combinations, there is very little decrease, correspond-
ing to a near-degeneracy even if all information is included. One group of highly-degenerate
parameters are Ωm, σ8, z0 and β, another near-degenerate pair is Γ and ns. Between the first
and the second group, the correlation in some cases changes sign when going from high to
small mode number. The first group roughly influences the convergence power spectrum in
modifying its amplitude whereas the second group tilts the power spectrum, see Fig. 1.9. Al-
though the cosmological constant ΩΛ influences the shape of the power spectrum, it is mainly
degenerate with Ωm, less with σ8, z0 and β and not so much with Γ and ns.

In general, no or a very late plateau is formed for the correlation coefficient. Thus, the off-
diagonal elements of the Fisher matrix keep on evolving even after the diagonal elements have
reached the saturation limit. Redundant modes which do not carry any information regarding
the Fisher diagonal are nevertheless important and help to reduce parameter degeneracies.

Constant covariance I also calculate the correlation coefficient rαβ for the constant covari-
ance case, where the SVD produces only m = 7 singular modes. The correlation coefficient
forms a plateau when as few as two of the singular modes are included, as it is the case for
the diagonal elements of the Fisher matrix (Sect. 3.6.1). However, even though � does not
change much when three modes and more are added, this is not true for the inverse Fisher
matrix since � is quite ill-conditioned and small changes have a large impact on � −1. For a
numerically stable determination the of MVBs from the inverse Fisher matrix, one needs as
many modes as number of parameters.

3.6.4 Survey strategy

Constant mean The overall shape of the constant mean window functions is similar for dif-
ferent survey geometries (Fig. 3.8). When two surveys sample different scales, their respective
window functions are shifted accordingly. For example, the low-`-tail of the ξ̃+-filter is much
broader for the surveys consisting of single uncorrelated images than for the patch geometries
and drop at much larger ` corresponding to smaller scales. Further, for some cosmological
parameters the peaks of the 〈M̃2

ap〉-window functions are shifted towards higher `; the peak
positions are plotted as a function of the mode number ñ in Fig. 3.11, for Ωm and Γ. For
Ωm (and all other parameters from the same degeneracy-group, see Sect. 3.6.3) this shift is
clearly visible, whereas for Γ and ns the peaks seem to be randomly distributed. For the
latter two parameters, there is no preference of large scales, apparently all scales contribute
to the Fisher matrix.

Constant covariance The window functions W0 for the constant covariance also case depend
on how different scales are sampled by the survey (see Figs. 3.9). For patch geometries, the

filter functions are generally broader towards small `. In the case of 〈M̃2
ap〉, a low-`-plateau is

formed, which is absent for the uncorrelated images-surveys. A similar effect is also present for
the window functions W0 in the joint parameter estimation case (Fig. 3.12). From this figure,
it is also clear that only the first two modes carry significant information about cosmology.
The reason is that there are basically two groups of parameters entering the convergence
power spectrum, and the informational content can be described by two eigenmodes.

In both cases (constant mean and covariance), the differences between patch strategy and
single uncorrelated image survey are present most prominently for low `, because the main
difference between these two kinds of settings is the sampling of large scales for the patches.
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3.6 KL eigenmode analysis

Figure 3.11: The peak position of the ñth 〈M̃2
ap〉-windows as a function of the corresponding eigen-

mode number ñ, for single analysis of the parameters Ωm (upper left panel) and Γ (upper right), and
for the joint estimation (lower panel). θpeak = 5/`peak = 17 ′(1000/`peak) is the corresponding peak in
real space.

3.6.5 Noise levels

In this section, the dependence of the Fisher matrix for different survey characteristics and
noise levels is quantified. The calculations are done for a (30, 100′)-patch survey geometry.
I vary the survey area A between 1.4 and 14 square degrees, by adding more and more
independent, uncorrelated patches to the survey, each patch containing 30 images. For the
variation of the other parameters (source ellipticity dispersion σε, number of background
galaxies ngal, number of bins n and redshift parameter z0), a single patch was used to calculate
the Fisher matrix.

Constant mean If the mean is constant the Fisher matrix is independent of the area of the
survey. Except for the binning (see next section), the sensitivity to the survey characteristics
is weaker than for the constant covariance case. For the fiducial values of σε = 0.3, ngal =
30 arcmin−2, n = 20 and z0 = 1, the area where both terms in eq. (3.6) are equal varies
between 0.06 (for ns) and 0.4 (Ωm) square degrees in the case of ξtot. For the aperture mass
statistics, this area of equal contribution of both terms to the Fisher matrix is roughly a factor
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Chapter 3 Study of the geometry of cosmic shear surveys

Figure 3.12: The first four window functions multiplied by the singular values, σiWi , for the joint
analysis of constant covariance, corresponding to two survey strategies as indicated.

of 4 smaller. Thus, only for very small survey areas, the constant mean term is important.

Constant covariance In the constant covariance case, I write the MVB as

∆pα = F−1/2
αα = k

(

A

10 sq deg2

)−0.5
( σε

0.3

)µ ( ngal

30 arcmin−2

)ν ( n

20

)η
zλ
0 , (3.21)

where the constant k and the power-law indices µ, ν, η and λ are given in Table 3.2 for each
parameter α.

Note that although the MVB for 〈M 2
ap〉 is smaller than the one for the 2PCF, this is not

true when more than one parameter is considered. In that case, the MVB is given by the
inverse of (a submatrix of) the Fisher matrix. The off-diagonal terms are typically larger for
〈M2

ap〉 which decreases the diagonal of the inverse matrix.
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3.6 KL eigenmode analysis

Table 3.2: The coefficients describing the MVB for the constant covariance case as function of various
survey characteristics, for different cosmological parameters, see eq. (3.21).

ξtot 〈M2
ap〉

Param. k µ ν η λ k µ ν η λ

Ωm 0.0074 −0.77 0.40 −0.03 0.52 0.0073 −0.90 0.51 −0.02 0.70
Γ 0.0109 −1.28 0.71 −0.08 1.03 0.0085 −1.20 0.67 −0.05 1.03
σ8 0.0098 −0.96 0.52 −0.05 0.85 0.0086 −1.03 0.58 −0.05 1.00
z0 0.0157 −1.08 0.59 −0.06 −0.59 0.0131 −1.11 0.62 −0.04 −0.49
ns 0.0237 −1.34 0.76 −0.09 1.04 0.0184 −1.23 0.68 −0.04 1.00
β 0.0206 −1.09 0.59 −0.06 0.36 0.0172 −1.11 0.62 −0.04 0.45
ΩΛ 0.0498 −1.25 0.70 −0.09 0.50 0.0424 −1.23 0.68 −0.06 0.24

3.6.6 Binning

The number of angular bins is varied between 20 and 50 in order to quantify the effect of
binning on the results. For the constant mean case, the attainable compression factor of
almost two and the power-law decrease of the Fisher matrix diagonal are unaffected by the
binning. However, and as a consequence of this, the saturation level decreases with increasing
bin and therefore total mode number. I find the height of the plateau to weakly depend on
the bin number, as n−η where η is different for different statistics and parameters, and ranges
between 0.18 and 0.3. The plateau is expected to be stationary for very large bin numbers,
since it is not possible to increase the cosmological information by refining the binning ad
infinitum. The weak dependence on n of the plateau shows that this saturation limit is not
yet reached by the number of bins considered here.

The Fisher matrix in the case of constant covariance is only very weakly dependent on the
bin number, as shown in the previous section (see Table 3.2). The diagonal elements of the
Fisher matrix for both cases (constant mean/covariance) are shown in Fig. 3.13.

The binning has a small influence on the correlation coefficient. Between the two degeneracy
groups (Ωm, σ8, z0, β and Γ, ns) r gets smaller with increasing bin number; for n varying from
20 to 50, the change is typically smaller than 0.25 when all modes are included. The correlation
within a group basically does not change.

3.6.7 Consequences for the likelihood

The KL data compression is optimized in the context of the Fisher information matrix, in
the sense that the MVBs are minimized. How will more realistic error bars on parameters
behave when obtained from the KL eigenmodes? In this section, the KL studies presented
in the previous sections are extended to the likelihood function, and an exemplary case is
analyzed. For the compressed data vector ˜� and its covariance, ˜� , the modified figure-of-
merit χ̃2 (cf. 3.3) is defined as

χ̃2(� ) = (˜� − ˜� (� ))t˜
� −1

(˜� − ˜� (� )) (3.22)

with ˜� = � � . For a (30, 100′) survey geometry, χ̃2 is obtained for Ωm and σ8 with all
other parameters being fixed, assuming a flat Universe. Confidence levels of χ̃2 are plotted
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Figure 3.13: Effect of the bin number n on the Fisher matrix in the constant mean case for various
estimators as indicated in the panels.

in Fig. 3.14 for the uncompressed data vector ξtot (case A) and five combinations of KL
eigenmodes (B - F) as follows.

First, the two constant covariance modes (one for Ωm and σ8, respectively) are combined
and a SVD is performed (Sect. 3.5.5). Using the first singular mode (B), the degeneracy direc-
tion is very badly constrained but orthogonal to that direction the likelihood corresponding
to the uncompressed data is very well recovered. The first singular mode completely con-
strains a combination of Ωm and σ8 whose functional dependence determines the degeneracy
“valley”. The second singular mode (C) adds further information along the near-degeneracy
direction. Note that all information about the two parameters are compressed into the two
singular modes and therefore the confidence levels (C) are the same than for (A).

Next, the constant mean modes are considered. The 2 × 38 modes corresponding to the
individual optimization for Ωm and σ8, respectively, are combined and a SVD is performed
as before, yielding 38 singular modes in this case. According to Fig. 3.6, one expects that
about half the modes will recover most of the original likelihood. However, the first 20 and
25 modes (D and E) do not constrain Ωm and σ8 very well. Only if about 30 modes are taken
into account (not shown) most of the original information is sampled by the compressed data.

Finally, the general case is considered and the two constant covariance modes are combined
with 30 of the constant mean modes (F). This combination does not yield an improvement
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Figure 3.14: Confidence contours (1, 2 and 3σ) from the figure-or-merit χ̃2 (3.22) in the Ωm-σ8-
plane. All other parameters are fixed and a flat Universe is assumed. The six panels correspond to the
uncompressed combined data vector ξtot (A) and to various combinations of KL eigenmodes (B-F) as
described in the text.
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with respect to (C). Therefore, the conclusion obtained from the Fisher matrix analysis which
states that the constant covariance modes carry negligible information with respect to the
constant mean modes is also valid for the more general case of likelihood analysis.

3.7 Summary and conclusions of the survey strategy analysis

I numerically calculate the covariance matrices (2.57 - 2.58) for the second-order estimators of
cosmic shear ξ± and

〈

M2
ap

〉

, which were derived in Schneider et al. (2002), via a Monte-Carlo
integration technique. Galaxy positions are simulated corresponding to various cosmic shear
survey geometries of 14 square degree area. These surveys consist of a total of 300 images of
size 13′×13′ which are randomly distributed in patches on the sky. A number of (semi-)random
patch configurations are compared to a survey consisting of 300 completely uncorrelated
images. I summarize the results of the maximum likelihood analyses presented in Kilbinger
(2002) and Kilbinger & Schneider (2004), before I perform a detailed analysis using the Fisher
information matrix for three and four cosmological parameters out of (Ωm, σ8,Γ,ΩΛ, ns).
The more parameters are assumed to be determined from the data, the more important
becomes large-scale information in order to resolve the near parameter degeneracies. Using
the combined ξ+ and ξ−, some of the patch geometries yield tighter constraints than the
uncorrelated image configuration. The aperture mass is best applied to patches with N = 30
images, the results are nearly independent of the patch radius in most cases.

The differences between the individual patch geometries make up to 25 percent for the
minimum variance bound on several parameters. Thus, a 25 percent improvement on the
determination on cosmological parameters can be obtained solely by choosing an appropriate
geometry for a future cosmic shear survey.

For the KL eigenmode analysis, two different scenarios are considered. In one case, the mean
of second-order shear estimators is used to constrain the cosmological parameters while the
covariance is constant and independent of cosmology. The second case uses the covariance of
these estimators to constrain cosmological parameters assuming a constant mean. I study the
information content of KL eigenmodes in both cases for various parameters. For the constant
mean case, there are several eigenmodes among which the information is distributed; however,
there is only one eigenmode associated with the constant covariance case which contains the
complete information. The resulting error bars are inversely proportional to the square root
of the survey area for the constant covariance case, and independent of the survey area if the
mean is constant. Thus, for reasonable sky coverage (more than about 0.4 square degrees)
the first case dominates over the second and the bulk part of the cosmological information is
collected in only one mode per parameter.

From the results of the KL eigenmode analysis I find that a compression factor almost of
two can be achieved in most cases without information loss, if the cosmological parameters are
determined using the covariance. KL analysis provides rank-ordered, uncorrelated eigenmodes
and corresponding window functions in the case of single parameter estimation. These sets
of window functions provide cleanest measures of the projected power spectrum for a specific
survey strategy. The first eigenmodes contain most of the information that one can extract and
directly use for maximum-likelihood studies to constrain cosmological parameters. Typically,
the error bars on cosmological parameters are smallest when the joint correlation function
ξtot is used. ξ+ gives better constraints than ξ− which is in turn better than the aperture
mass statistics 〈M2

ap〉.
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3.7 Summary and conclusions of the survey strategy analysis

I provide both an independent study of different parameters as well as a joint analysis of all
parameters for each of the two cases of constant mean and constant covariance. The parame-
ters which are near-degenerate have similar KL eigenfunctions. Among the five cosmological
parameters I have considered, (Ωm, σ8) and (Γ, ns) show similar levels of degeneracy and have
very similar eigenmodes. Moreover, the parameters characterizing the source galaxy redshift
distribution (z0 and β, see eq. 1.90) are degenerate to a high level with Ωm and σ8.

The eigenmodes associated with Ωm and σ8 mainly focus on larger angular scales where
cosmological information is not contaminated by noise on small scales. On the other hand, Γ
and ns measure the shape of the projected matter power spectrum which is easier to determine
when information on smaller angular scales is also available. Therefore the eigenmode windows
associated with these two parameters tend to take more contributions from smaller scales.

In contrast, the eigenmodes associated with the constant covariance case take contributions
from virtually all angular scales probed by the survey and reach a maximum roughly at
medium angular scales where the signal dominates over both shot noise and scatter due to
finite sky coverage. The window functions associated with the combined analysis of (ξ+, ξ−)
are dominated by contributions from ξ+, whereas the 〈M2

ap〉-filter, although more localized,
is not very different from that of ξ−.

Higher-order KL modes do not carry any useful information and approximately half of
the modes contain all of the information content of the Fisher matrix for a constant mean.
However, the off-diagonal terms of the Fisher matrix which encode the cross-correlation among
various parameters are also a function of the number of modes that are included to reconstruct
the Fisher matrix. I find that these terms keep evolving even after the diagonal terms have
already reached a saturation limit. For very small numbers of modes the reconstructed Fisher
matrix becomes singular, since the information sampled in only the few eigenmodes is too
little in order to put constraints on more than one parameter, thus different cosmological
parameters become completely degenerate.

The joint analysis of all seven parameters being estimated from the mean only (constant
covariance) shows that only two eigenmodes (out of seven) are needed to constrain the param-
eters and to lift their near-degeneracies as far as possible. This is because the parameters can
be arranged into two groups according to their degeneracy between each other. One group
consisting of Ωm, σ8, z0 and, to a smaller extend, ΩΛ, the other group being composed of Γ
and ns. Two independent modes are sufficient to comprise most of the information about the
two degeneracy groups.

The KL eigenmodes are also used in various combinations for an exemplary case of likeli-
hood analysis involving Ωm and σ8. In the case of constant covariance, the degeneracy direc-
tion between these two parameters is encoded in the first of two eigenmodes. The constant
mean modes do not contribute significantly to the likelihood in comparison to the constant
covariance modes as in the case of the Fisher matrix analysis.

In the analysis involving KL eigenmodes I have not included and modeled any systematic
measurement errors. I have assumed that the errors are dominated by Poisson noise and
intrinsic ellipticity noise at small scales and cosmic variance at larger angular scales. The
covariance of the second-order shear statistics include all these noise sources, which are exact
if the shear is a Gaussian field. Non-Gaussianity leads to an under-estimation of the noise on
angular scales between 1 and 10 arc minutes (see Sect. 2.5.1).
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Chapter 4

Third-order shear statistics from theoretical
predictions and ray-tracing simulations

In this chapter two different third-order statistics of cosmic shear, the three-point correlation
function Γ(q), q = 0, 1, 2, 3 and the generalized third-order aperture mass 〈M 3

ap〉 are determined
from theoretical predictions and numerical ray-tracing simulations separately, the latter based
on CDM N-body simulations. A comparison is undertaken in order to assess the accuracy of
non-linear models of the bispectrum in the framework of cosmic shear. I use results from quasi-
linear perturbation theory (PT, Sect. 1.2.4) and hyper-extended perturbation theory (HEPT,
Sect. 1.2.7.2) in order to model the convergence bispectrum (1.92 - 1.94). PT describes the
large-scale structure accurately only on very large scales in the linear regime. Since the HEPT
fitting formulae have been obtained using N-body simulations, they are expected to match
the ray-tracing simulations reasonably well. Apart from the comparison between theory and
simulations, some symmetry properties established in Sect. 2.3.1.4 of the 3PCF are verified
numerically and predictions regarding the amplitude and the shape of the 3PCF as a function
of various triangle parameters are investigated. Furthermore, the third-order aperture mass
statistics and its dependence on cosmological parameters is examined.

4.1 The three-point correlation function

Since it is not possible to display the 3PCF as a function of all its three arguments character-
izing a triangle, the following analysis is carried out by considering a special set of triangles
for which the 3PCF is plotted as a function of only one varying parameter. For the theoretical
model, the natural components of the 3PCF (2.24) in the ortho-center projection are calcu-
lated from the bispectrum using (2.33) and (2.34). From the OCDM ray-tracing simulations
(model 3, Table B.1), the eight parity-modes of the 3PCF (2.23) are obtained by averaging
over triangles with the same configuration (within some bin). The natural components are
obtained from the parity-modes and vice-versa using (2.24) and (2.25).

4.1.1 The 3PCF from the ray-tracing simulations

In order to calculate the parity-modes of the 3PCF from the ray-tracing simulations, a brute-
force approach is adopted. For every triple of data points, where each data point is a repre-
sentation of the two Cartesian shear components γ1 and γ2 given at an angular position on a
grid, the eight parity-modes are calculated, and the results are stored in a bin corresponding
to the triangle formed by the three positions. This is a very time-consuming method: For N
being the number of data points, the computing time of this algorithm is proportional to N 3.
In contrast, a tree code can reduce the computation cost to O(N logN) (Jarvis et al. 2004)
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or even O(N) (Zhang & Pen 2005). However, the brute-force method is chosen for several
reasons. First of all, in this section only a small number of special triangles (e.g. isosceles
triangles with two sides measuring 1 arc minute) is considered for which the 3PCF is com-
pared with theoretical predictions. Therefore, the number of N 3 combinations for a general
triangle is vastly reduced and so is the computation time. Secondly, the ray-tracing data
is given on a grid in which case the advantage of a tree-code over the brute-force approach
is less pronounced. Only for real data, where the galaxies are clustered and the observed
field is blanked by gaps and masked regions because of bright stars or telescope reflections, a
tree-code algorithm shows its full superiority. Moreover, the brute-force code makes extensive
use of the fact that the shear positions are given on a regular grid: The distances between
points are calculated using integer operations and a particular triangle of points is translated
over the grid in both directions without the need of recalculating the angles for the projection
of the 3PCF onto the triangle center. Thus for each triangle position on the grid, the 3PCF
can then be obtained by a small number of multiplications and additions of the shear at the
corresponding triangle points and the pre-calculated angles.

I obtain the 3PCF and its variance using the mean and the rms over seven OCDM ray-
tracing simulations, each field with an area of 10.5 square degrees. Since the individual
fields represent virtually independent realizations of the simulated large-scale structure, the
variance corresponds to the sampling or cosmic variance. Note that the error bars in Figs. 4.4
- 4.6 are not independent but highly correlated.

For triangles, with side lengths x1 and x2 larger than about 200 times the pixel size, the
computation time is quite long after all. In order to reduce the calculation time for these
cases, the triangles are not shifted to every grid point. Instead random numbers uniformly
distributed between 1 and rstep are chosen for the steps between successive shifts. The number
rstep is typically of the order of x1 and x2 in units of the grid width. This sparse sampling of
the shear data on the grid points will not introduce any bias to the mean of the 3PCF, nor
to the variance, since cosmic variance is independent of the number density of sample points
(for real data this is the number density of background galaxies ngal). Note however, that if
the number of sampling points is too small, this estimate of the cosmic variance can get very
noisy.

4.1.2 The 3PCF from theoretical non-linear models

On numerically integrating the convergence bispectrum b̄κ, the natural components of the
3PCF are obtained using eqs. (2.33) and (2.34) (for the latter equation, cyclic permutations
of the indices yield Γ(2) and Γ(3)). Since the comparison is made with simulations for only one
or two cosmological models, the bispectrum for these models is pre-computed and tabulated
values are stored, resulting in the number of integrations to reduce from four to three.

The three-dimensional integral is calculated numerically using a Gaussian quadrature rou-
tine. The upper integration limits are set to `lim = 5 · 105 and the integrand is evaluated
at the roots of Gauss-Legendre polynomials for the two `-integrations and equidistantly for
ϕ. The number of sampling points chosen for the `-integrations is 300 and for the angular
ϕ-integration is 75, representing a compromise between accuracy and computation time.

On increasing the upper limit `lim, the number of sampling points and the sampling rate
of the bispectrum, the results of the numerical integration are changed by small amounts,
see Fig. 4.1. The “fluctuations” between different sets of the above integration parameters
are of the order of up to about 10−8, and approximately represent the absolute precision
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Figure 4.1: Γ (3)(x1 , x2 , φ3 )
(solid line: real part, dashed:
imaginary part) for triangles
with x1 = 10 ′, x2 = 3 ′, with
different numerical integration
parameters. The three num-
bers in brackets denote the val-
ues for the number of sampling
points for the `-integrations,
for the ϕ-integration, and the
cutoff for the `-integration, re-
spectively.

of the numerical integration. For the typical magnitude of the 3PCF in the angular range
between 1 and 20 arc minutes, this corresponds to a relative precision of 1 to 10 percent.
This choice of numerical parameters is sufficient for carrying out a qualitative comparison
between the theoretical prediction of HEPT and ray-tracing simulations. Note also that the
HEPT bispectrum of the density contrast fits N -body simulations with a precision of only up
to 15%.

4.1.3 Comparison between theory and simulations

Figs. 4.3 to 4.6 show the 3PCF for triangles with fixed x1 and x2 and the angle between these
two sides φ3 in the range [0;π]. The 3PCF for π ≤ φ3 ≤ 2π can be obtained by performing
a mirror transformation with respect to the side x2 on a triangle given by (x1, x2, φ3) which
will result in the triangle (x1, x2, 2π − φ3), see Fig. 4.2. This is a parity transformation, and
thus

γµνλ(x1, x2, 2π − φ3) = γµνλ(x1, x2, φ3) (parity-even),

γµνλ(x1, x2, 2π − φ3) = −γµνλ(x1, x2, φ3) (parity-odd), (4.1)

Γ(q)(x1, x2, 2π − φ3) =
(

Γ(q)
)∗

(x1, x2, φ3) for q = 0 . . . 3.

The theoretical model reproduces the results from the ray-tracing simulations very well for
most triangle configurations and on all angular scales under consideration. Only for very
degenerate triangles, where one of the inner angles is close to zero, there is a mismatch
between theory and simulations. This is due to the inacurracy of the theoretical model on very
small scales and to discreteness effects of the ray-tracing fields, which are most pronounced
for nearly collapsed triangles for which one of the side lengths is close to the pixel size and
reliable estimates of the 3PCF cannot be made.
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Figure 4.2: Mirror trans-
formation of a triangle with
respect to the side x2 . The
cyclic triangle is reflected
into an anti-cyclic one,
the angle φ3 changes into
2π − φ3 .
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4.1.4 Verification of the symmetry properties of the 3PCF

The most important conclusion about the 3PCF that can be drawn from Figs. 4.5 and 4.6
is that for a general triangle without special symmetry properties, none of the four complex
components (or equivalently the eight real parity-components) of the 3PCF or their linear
combinations vanish, and all components have about the same amplitude range. The parity-
odd modes are not subdominant as might be suggested by only looking at isosceles triangles
(Figs. 4.3 and 4.4), but have the same order of magnitude than the parity-even modes. This
is in contrast to the second-order case, where the two quantities 〈γtγ×〉 and 〈γ×γt〉 vanish
identically because of parity symmetry. Consequently, in future weak lensing surveys, all
eight independent components of the 3PCF have to be measured in order not to discard any
cosmological information.

The symmetry properties of the 3PCF are verified using both the theoretical model and the
ray-tracing simulations. For isosceles triangles with x1 = x2, the two parity-even modes γt××

and γ×t× are found to be equal and the parity-odd components vanishing γtt× = γ××× =
γt×t + γ×tt = 0. For the complex natural components, Γ(0) and Γ(3) are equal and real, and
=Γ(1) = −=Γ(2), as was already stated in Sect. 2.3.1.4.

4.1.5 Other properties of the 3PCF

The amplitude of the 3PCF components is typically of the order 10−7 to 10−6 for the angular
range between 1′ and 10′. This is about two orders of magnitudes below the 2PCF signal.
Even for small angular scales, where non-Gaussian contributions are important, the skewness
of cosmic shear is much smaller than its variance. This makes the measurement of third-
order shear functions very challenging. The 3PCF signal decreases with increasing triangle
size because the correlation of the large-scale mass distribution decreases with separation
and thus the shear signal diminishes, too. The 3PCF shows cyclic patterns which reflect the
periodicity of the triangle when φ3 is varied between 0 and 2π. On top of that, some of the
components show higher-frequency sinusoidal oscillations.

The equilateral triangle with its maximum symmetry is a special case for the 3PCF as
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Figure 4.3: The real (left panels) and imaginary (right panels) part of the four natural components
of the 3PCF Γ (q)(x1 , x2 , φ3 ), q = 0 . . . 3 (2.24) for iscosceles triangles with x1 = x2 = 1 ′ (top) and
x1 = x2 = 5 ′ (bottom), as a function of the angle φ3 between x1 and x2 . The lines correspond to the
theoretical HEPT predictions, the points with error bars are obtained from the ray-tracing simulations
where the errors represent the rms over seven realizations.

can be seen in the plots of isosceles triangles (Figs. 4.3 and 4.4). Some of the parity-even
modes have local extrema and the parity-odd modes have zero-crossings for φ3 = π/3. This
behavior shows up for all angular scales between 1 and 20 arc minutes and thus seems to be
related to the symmetry of equilateral triangle. In contrast, the zero-crossings of the parity-
mode for π/2 < φ3 < π are only present for scales larger than about 2 arc minutes. These
features therefore are not caused by the triangle’s symmetry but are based on properties of
the convergence bispectrum and its scale dependence.
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Figure 4.4: The parity-even (left panels) and parity-odd (right panels)components of the 3PCF (2.23)
for iscosceles triangles with x1 = x2 = 1 ′ (top) and x1 = x2 = 5 ′ (bottom), as a function of the angle
φ3 between x1 and x2 . The lines correspond to the theoretical HEPT predictions, the points with
error bars are obtained from the ray-tracing simulations where the errors represent the rms over seven
realizations.
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Figure 4.5: The real (left panels) and imaginary (right panels) part of the four complex components
of the 3PCF Γ (q) (2.24) for triangles with x1 = 5 ′, x2 = 3 ′ (top) and x1 = 10 ′, x2 = 3 ′ (bottom), as a
function of the angle φ3 between x1 and x2 . The lines correspond to the theoretical HEPT predictions,
the points with error bars are obtained from the ray-tracing simulations where the errors represent the
rms over seven realizations.
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Figure 4.6: The parity-even (left panels) and parity-odd (right panels) components of the 3PCF
(2.23) for triangles with x1 = 5 ′, x2 = 3 ′ (top) and x1 = 10 ′, x2 = 3 ′ (bottom), as a function of the
angle φ3 between x1 and x2 . The lines correspond to the theoretical HEPT predictions, the points with
error bars are obtained from the ray-tracing simulations where the errors represent the rms over seven
realizations.
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4.2 Aperture mass statistics

Figs. 4.7 and 4.8 show
〈

M2
ap

〉

and
〈

M3
ap

〉

from the ΛCDM simulations (model 2, Table B.1)
and the theoretical predictions using both quasi-linear perturbation theory and non-linear
models. The latter reproduce the results from the simulations reasonably well for angular
scales above ∼ 1 arc minute, whereas PT largely underestimates the shear signal for scales
smaller than about 30 arc minutes. In obtaining the aperture mass, the Gaussian filter with
infinite support as described by eq. (2.10) is used, therefore the largest aperture which can
be put onto the field without being too close to the border is for θmax = a/6 = 34′, where
a = 204.8′ is the field size.
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Figure 4.7:
〈

M 2
ap

〉

and 〈M 3
ap〉 from the 36 ΛCDM simulations (solid lines) as compared to theoretical

predictions (dashed and dotted lines). The error bars are the rms values from the 36 fields. The
curves for 〈M 3

ap〉 are calculated from the simulations for aperture radii smaller than one sixth of the
field size. PD = Peacock & Dodds (1996) and HEPT = Scoccimarro & Couchman (2001) denote non-
linear models of the power spectrum and the bispectrum, respectively (Sect. 1.2.7). PT = (quasi-)linear
perturbation theory (Sect. 1.2.4).
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Figure 4.8: Contours
of

〈

M 3
ap(θ1 , θ2 , θ3 )

〉

from
simulations (upper row)
and from the HEPT model
(lower row). In each panel
θ3 is fixed to the value
indicated by the cross,
corresponding to 3.87 arc
minutes (left column) and
10.77 arc minutes (right
column), respectively.
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A major part of this thesis (Chapter 5) is dedicated to the study of weak lensing aperture
mass measurements in order to constrain cosmological parameters. It is therefore instructive
to show the dependence of the aperture mass on various cosmological parameters, and to
compare its second- and third-order moments. The more different the dependencies are for
the second- and third-order statistics, the better will be the improvement on the parameter
constraints on combining both statistics. In Figs. 4.9 and 4.10 the logarithmic derivatives of
the aperture mass statistics with respect to cosmological parameters used in this work (see
also App. B) are shown as calculated in HEPT.

For all parameters shown in Fig. 4.9, the curves are quite featureless and their similarity is
due to the near-degeneracies between the parameters. For example, one sees that the ratios
(∂〈M2

ap〉/∂ns)/(∂〈M2
ap〉/∂Γ) ≈ (∂〈M3

ap,d〉/∂ns)/(∂〈M3
ap,d〉/∂Γ) are roughly equal and constant

as a function of the aperture radius θ. Therefore, the two parameters Γ and ns are expected
to have the same near-degeneracy for both statistics.

The ratio of derivatives with respect to Ωm and σ8 are slowly increasing functions of θ, with
significant differences between 〈M 2

ap〉 and 〈M3
ap,d〉. From that one can infer that the reduced

skewness s3 = 〈M3
ap,d〉/〈M2

ap〉2 breaks the Ωm - σ8 degeneracy of second-order cosmic shear

statistics. From Fig. 4.9 one sees that ∂ ln〈M 3
ap,d〉/∂σ8 ≈ 2∂ ln〈M2

ap〉/∂σ8, so ∂s3/∂σ8 ≈ 0
— s3 is indeed nearly independent of σ8, as predicted from quasi-linear perturbation theory
(Bernardeau et al. 1997; Schneider et al. 1998).
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Figure 4.10: Contours of d ln
〈

M 3
ap(θ1 , θ2 , θ3 )

〉

/dp from the HEPT model, with p = Ωm,ΩΛ,Γ , σ8 ,ns

and z0 as indicated. In each panel θ3 is fixed to the value indicated by the cross, corresponding to 3.87
(left column) and 10.77 arc minutes (right column), respectively.
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4.3 Visualization of the 3PCF

The apparent difficulty to visualize a polar quantity with eight components depending on
three scalar variables is an obstacle in developing an intuitive feeling for the 3PCF of shear.
For the second-order case, it is much more simple — there are only two (non-trivial) real
components of the two-point correlation function depending on a single scalar which is the
modulus of the angular separation of the two points in question. In contrast, the 3PCF is a
much more complex function, and the understanding of its behavior and its properties will
be valuable for any further studies using this statistics.

Whereas in Sect. 4.1.4 the components of the 3PCF were plotted for special triangles
with only one of the arguments varying, now the objective is to display the shear pattern
of the 3PCF for more general triangles, which is inspired by Bernardeau et al. (2003). In
their work, a special smoothed projection of the 3PCF was introduced and calculated from
theoretical predictions of the HEPT model. Following Bernardeau et al. (2003), I generate
plots of the shear pattern of the 3PCF from the OCDM ray-tracing simulations (App. B)
as follows: The side x3 of a triangle is kept fix, and the points � 1 and � 2 are assigned
the coordinates � 1 = (−x3/2, 0)

t and � 2 = (x3/2, 0)
t. Every point (y1, y2) on a grid in

the � 2-plane is identified with the third triangle point � 3. The natural components Γ(q)

(2.24) are calculated for the triangle ( � 1, � 2, � 3), and a ‘shear stick’ is drawn at position
� 3 = (y1, y2), its length and orientation indicating the absolute value and phase ϕ of the

polar Γ
(q)
cart = |Γ(q)| exp(2iϕ). The sticks can be compared to the orientation of the ellipses in

Fig. 2.1 and the corresponding Cartesian coordinates of Γ
(q)
cart can be inferred.

Two examples of these patterns for x3 = 3 and 10 arc minutes are shown in Figs. 4.11 and
4.12, respectively. These plots reveal a complicated pattern of each of the natural components
of the 3PCF. The patterns for x3 = 3 and 10 arc minutes look similar with, on average, a
smaller shear amplitude for the second case. All natural components show regions where
only the real or imaginary part is present, e.g. Γ(0) is mainly real and negative in an elliptical
region between the two points � 1 and � 2. These properties of the 3PCF can be exploited and
integrated third-order quantities can be defined as the average over regions of constant 3PCF.
This averaging results in a higher signal-to-noise ratio in comparison with the correlation
function and might simplify the detection of third-order statistics of cosmic shear. In fact,
the first significant measurement of third-order shear was achieved using such an integrated
quantity (Bernardeau et al. 2002).

There are also bands or narrow stripes where the 3PCF or its real or imaginary part
is vanishing. In some cases these bands are connected with the vertices � 1 and � 2. In
this framework, the symmetry properties that were found in the last sections can be easily
recovered. The components Γ(1) and Γ(2) are real and positive on circles of radius x3 centered
on � 1 and � 2, respectively, corresponding to isosceles triangles for which Γ(1) and Γ(2) were
shown to be real in Sect. 4.1.4. Moreover, the parity transformation corresponding to a mirror
image along a vertical line between � 1 and � 2 interchanges Γ(1) and Γ(2) — this can be seen
clearly in the figures.

4.4 Summary of the study of third-order shear statistics

In this chapter, I study third-order statistics of cosmic shear using theoretical predictions
of non-linear models of the large-scale structure, and compare the results with OCDM ray-
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Figure 4.11: Shear pattern for triangles with x3 = 3 arc minutes. Each shear stick represents the

amplitude and phase of Γ
(q)
cart, q = 0 . . . 3 for a triangle given by the stick position (y1 , y2 ) and the two

dots � 1 and � 2 . The size of a stick corresponding to 10−6 is indicated on top of the plot. The
relation between the stick orientation and the polar angle of the complex shear can be inferred from
Fig. 2.1.

tracing simulations. Both the three-point correlation function and the generalized third-order
aperture mass statistics from the theoretical models and the simulations agree reasonably well
on angular scales larger than about one arc minute. The symmetry properties of the 3PCF
as derived in Chapter 2 are verified numerically and it is shown that for a general triangle,
all eight components of the 3PCF are non-zero and have comparably amplitude.

The dependence on cosmological parameters of the third-order aperture mass statistics is
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Figure 4.12: Shear pattern for triangles with x3 = 10 arc minutes, see previous figure for more
details. The size of a stick corresponding to 10−7 is indicated on top of the plot.

investigated and it is shown that it is sensitive to Γ and ns in the same way as 〈M 2
ap〉, but

differently sensitive to Ωm and σ8 when compared to 〈M 2
ap〉. This implies that whereas the

former parameter pair remains highly degenerate under the combination of 〈M 2
ap〉 and 〈M3

ap〉,
the Ωm-σ8-degeneracy can be lifted. This prediction will be verified in Chapter 5, and can be
seen when comparing the error ellipses for these parameters in Fig. 5.6.

Further, a two-dimensional visualization of the four complex natural components of the
3PCF is done which reveals a complicated pattern as a function of triangle parameters. These
patterns can help to find high signal-to-noise integrals of the 3PCF which might be easier
detectable than the 3PCF itself.
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Chapter 5

Combined second- and third-order aperture
mass statistics measurements

In this chapter predictions on cosmological parameter constraints from combined measure-
ments of second- and third-order aperture mass statistics of cosmic shear are presented. The
generalized third-order aperture mass statistics 〈M 3

ap〉 (Sect. 2.3.2) is shown to contain much
more information about the bispectrum of the projected matter density than the skewness
of the aperture mass 〈M 3

ap,d〉. From theoretical models (Sect. 1.2.7) as well as from ΛCDM

ray-tracing simulations (Sect. 5.1) the moments 〈M2
ap〉 and 〈M3

ap〉 and their dependence on
cosmological parameters are calculated. The covariance including shot noise and cosmic vari-
ance of M2

ap, M
3
ap and their cross-correlation are estimated using ray-tracing simulations

(Sect. 5.2). A Fisher matrix analysis is performed and for various combinations of cosmo-
logical parameters 1σ-errors are predicted corresponding to a deep 29 square degree cosmic
shear survey (Sect. 5.3). Although the parameter degeneracies cannot be lifted completely,
the (linear) combination of second- and third-order aperture mass statistics reduces the errors
significantly. The near-degeneracy between Ωm and σ8, present for all second-order cosmic
shear measures, is diminished substantially whereas less improvement is found for the near-
degenerate pair consisting of the shape parameter Γ and the spectral index ns. Uncertainties
in the source galaxy redshift z0 increase the errors of all other parameters.

5.1 The aperture mass from ray-tracing simulations

In order to estimate the second- and third-order aperture mass statistics and their covari-
ance (Sect. 2.4), 36 ΛCDM ray-tracing simulations are used, kindly provided by T. Hamana
(for more details see Ménard et al. 2003). Each field consists of 10242 data points of the
convergence κ and the shear γ, the pixel size is 0.2 arc minutes. I assume that every pixel
corresponds to a galaxy, thus the source galaxy density is 25 per square arc minute. The
Poisson noise is much smaller than the shape noise of the ellipticities, and apertures with
radii smaller than one arc minute are discarded due to discreteness effects in the ray-tracing
and in the underlying N -body simulations. All source galaxies are located at a redshift of
about unity. The parameters of the ray-tracing simulations correspond to model 2, see Table
B.1.

Because the field κ is given on a regular grid, the aperture mass (2.6) can be calculated
very quickly using FFT with the ensemble average replaced by the average over all aperture
centers � . However, since for discrete Fourier transforms periodic boundary conditions are
assumed which is not the case for the ray-tracing simulations, points near the borders have
to be excluded from the averaging. This leads to an overestimation of the covariance of the
Map-statistics which increases with the aperture radius. To avoid this, one could calculate
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Figure 5.1: Upper row: The convergence κ( � ) and the shear γ( � ) are plotted for an extract of
one of the ΛCDM ray-tracing fields. The box size is 40 arc minutes. Middle row, left to right: The
square of the aperture mass, M 2

ap(θ, � ), for θ = 1 .4 , 2 .3 and 3 .9 arc minutes, for the same region.
Lower row, left to right: The product of three aperture masses, Map(θ1 , � )Map(θ2 , � )Map(θ3 , � ), for
(θ1 , θ2 , θ3 ) = (2 .3 , 2 .3 , 3 .9 ), (1 .4 , 1 .4 , 2 .3 ) and (1 .4 , 2 .3 , 3 .9 ) arc minutes, for the same region. For
the middle and lower row, the color coding is proportional to the square root of the levels in order to
increase the contrast.
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Figure 5.2: 〈M 3
ap,d〉(θ) from aper-

tures (bold line), and from the inte-
gration over the 3PCF (thin line).
Also plotted are the B-mode sig-
nals from the integration method
〈MapM

2
⊥
〉 (dashed), 〈M 2

apM⊥
〉 (dot-

ted) and 〈M 3
⊥
〉 (dash-dotted). The

curves represent the mean from
three of the ray-tracing fields.

〈

M2
ap

〉

and 〈M3
ap〉 from the shear correlation functions using the relations (2.17) and (2.43),

which takes into account the complete area. This approach is not chosen here because of the
time-consuming calculation of the 3PCF. The correction scheme I apply to the covariance
matrices is described in Sect. 5.2.

In Fig. 5.1 an extract of one of the ray-tracing simulations is shown as an example. In the
convergence map, over- and underdensities show up clearly which manifest themselves in the
shear map with tangential shear patterns. In the maps of the square and cube of the aperture
mass, the over- and underdensities in κ are smoothed out according to the filter scales.

Figures 4.7 and 4.8 show
〈

M2
ap

〉

and
〈

M3
ap

〉

from the ΛCDM simulations and the theoretical
predictions of HEPT (Sect. 1.2.7.2). The non-linear fitting formulae reproduce reasonably well
the results from the simulations for angular scales above ∼ 1 arc minute. Since the Gaussian
filter (2.10) is significantly larger than zero out to three times the aperture radius, the largest
aperture which can be put onto the field is for θmax = a/6 = 34′ where a = 204.8′ is the field
size.

For comparison, I calculate
〈

M3
ap

〉

by integrating over the 3PCF, using eq. (2.43). Although
the fast tree-code algorithm described in Jarvis et al. (2004) is used to calculate the 3PCF,
it is still time-consuming. The computation time goes as b−3.3 where b is the logarithmic bin
width and a fine binning of the 3PCF is required in order not to introduce a large B-mode,
see below. For the choice of b = 0.075 used here, the integration method takes about a factor
of 500 longer than the aperture method using FFT.

The results are shown in Fig. 5.2 and represent the average over three of the ray-tracing
fields.

〈

M3
ap

〉

as calculated via the FFT method cannot be determined for large radii because
of the border effects, as mentioned above. Since

〈

M3
ap

〉

obtained via integrating over the
3PCF is based on the simulated shear field, I use the γ fields instead of the κ fields in order
to calculate

〈

M3
ap

〉

via the FFT aperture method, using the second equality of the first line
in (2.6). With M⊥(θ) = = (Q′

θ ∗ γ), I also determine the statistics 〈M 2
apM⊥

〉, 〈MapM
2
⊥
〉 and

〈M3
⊥
〉 as indicators of a B-mode (Sect. 1.4.3). 〈MapM

2
⊥
〉 is expected to vanish if the ray-

tracing simulations are B-mode-free. The two quantities with odd power in M⊥ can only be
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Chapter 5 Combined second- and third-order aperture mass statistics measurements

non-zero for a convergence field which is not parity-invariant (Schneider 2003). I find all three
statistics to be three and more orders of magnitude below the pure E-mode, confirming that
the ray-tracing simulations contain virtually no B-mode and are parity-symmetric. However,
〈MapM

2
⊥
〉 inferred from the 3PCF is at a couple of percent of the E-mode. This is most

probable due to the binning of the 3PCF — the B-mode gets smaller when the binning is
refined. As can be seen in Fig. 5.2, there is good agreement between the two methods, except
for very small angular scales (where the B-mode is of the order 10%) and large aperture radii
(where a significant fraction of the field near the border cannot be taken into account with
the aperture method).

5.2 Covariance matrices of the aperture mass statistics

I use the ray-tracing fields to estimate the covariance matrices of the second- and generalized
third-order aperture mass statistics. The averaging in eq. (2.54) is performed over the different
simulations. Because of the small number of realizations, I split up each of the 36 fields into
4 subfields and average over the resulting 144 realizations. This is necessary in order to
avoid a singular covariance matrix, see Sect. 5.2.3. Adjacent subfields do not represent fully
independent realizations of the convergence field but the correlations are negligible: when
averaging over only a bootstrapped subset of subfields, no systematic deviation but only a
noisier estimate of the covariance is obtained. Note that because of the splitting, the maximum
usable aperture radius is now 17 arc minutes.

The fact that a region around the border cannot be used depending on the aperture ra-
dius θ results in an effective area Aeff(θ) which is smaller than the original area A = a2,
namely Aeff(θ) = (a − 6θ)2. Since the covariance is inversely proportional to the observed
area, a correction scheme is applied by multiplying each covariance matrix entry C(θ1, θ2)
with

√

Aeff(θ1)Aeff(θ2)/A in the case of
〈

M2
ap

〉

and 〈M3
ap,d〉. For the generalized third-order

aperture mass, where each matrix element corresponds to two triplets of aperture radii, the
effective area corresponding to the maximum radius of each triplet is inserted for the correc-
tion factor. Altogether, this correction makes sure that the covariance matrix corresponds to
the same survey area A for all aperture radii.

For the Fisher matrix analysis of cosmological parameters (Sect. 5.3), the covariance ma-
trices obtained from the 2.9 square degree fields are rescaled to a corresponding survey area
of 29 square degrees by division with 10, making use of their 1/A-dependence. Note that this
increase of survey area is not equivalent of extending a single patch on the sky, since this
extended observed area will not sample independent but correlated parts of the large-scale
structure and the decrease in cosmic variance will be less than the increase in area. This
rescaling of the area corresponds to observing 10 independent lines of sight, each one 2.9
square in area.

5.2.1 Adding intrinsic ellipticities

In order to realistically model the noise coming from the intrinsic ellipticities of the source
galaxies, one would have to add a random ellipticity to each shear value. It has been shown
that this is equivalent to adding a noise term to the convergence κ (van Waerbeke 2000). For
mass reconstructions, this noise has to be added to a smoothed κ map. Here however, no
smoothing is required (for a justification see below), thus, to each pixel of κ, I add a random
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Figure 5.3: Left panel: The variance of M 2
ap from the Gaussianized ΛCDM simulations (bold lines),

in comparison with the Monte-Carlo integration (thin lines), for a survey area of A = (102 .4 ′)2 . The
dotted lines give the variance from shot noise only (due to the intrinsic ellipticity dispersion), the
dashed curves correspond to cosmic variance only. The solid line includes both error sources; note
that it is not the sum of the other two curves — there is a non-vanishing mixed term. The dash-
dotted line indicates the cosmic variance term for the non-Gaussian case. Right panel: The diagonal
of the covariance matrix of M 3

ap,d(θ), for the same survey area. The dotted line (bold: simulations,
thin: theoretical value, eq. 2.64) indicates shot noise only, the dashed curve is the cosmic variance
contribution and the solid line includes both error sources.

Gaussian variable with zero mean and dispersion 0.3/
√

2. This is equivalent to adding to
each shear value a complex random ellipticity with 〈ε(s)〉 = 0 and 〈ε(s)(ε(s))∗〉1/2 = σε = 0.3.

In the case of
〈

M2
ap

〉

, this method of adding ellipticity noise yields the predicted ampli-
tude to the variance without need of smoothing, as can be seen in Fig. 5.3. The shot-noise
contribution to the variance is in good agreement with the Monte-Carlo method described
in Sect. 3.2. The shot-noise term of the variance of M 3

ap agrees very well with the analytical
expectation (2.64), see Fig. 5.3, except for large θ, where only few apertures can be placed
onto the field which are not too close to the border. Apparently, adding intrinsic random
ellipticities to each grid point without smoothing introduces no artefacts.

5.2.2 Gaussianized fields

In order to compare the covariance of M 2
ap from the ray-tracing simulations with the Monte-

Carlo integration of the analytical expressions (2.57) as a sanity check, I transform the
ray-tracing simulations into Gaussian fields without changing the power spectrum. This is
achieved by multiplying the Fourier transform κ̂ of each convergence field by random phases
(destroying the phase correlations). Then for each Fourier mode

�
, a κ̂(

�
) value is picked

randomly from one of the 36 fields repeatedly to create 36 new Gaussianized realizations.

Destroying the phase correlations for each individual field independently would not have
led to the desired goal. Randomizing the phases cancels the connected 4-point term (kurtosis)
of each individual realization, but not the kurtosis of the underlying ensemble. The estimator
of the covariance (2.54) is independent of the kurtosis of each individual realization because
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Figure 5.4: Contours of the cosmic-variance term of the covariance of M 2
ap, for the Monte-Carlo

method (upper left panel), the Gaussianized ray-tracing fields (upper right) and the original fields
(lower panel), for a survey area of A = (102 .4 ′)2 . The contours are logarithmically spaced.

first 〈M2
ap〉 is determined for each field and then the square of this quantity is averaged over

all fields — thus for this averaging, only second-order quantities are taken into account. The
process of remixing the κ̂-fields in Fourier space annihilates the kurtosis of the underlying
ensemble, and the resulting fields represent realizations of a Gaussian random field.

In Fig. 5.3, the variance (diagonal of the covariance) of M 2
ap is plotted. The results from the

ray-tracing simulations are in fairly good agreement with the Monte-Carlo method, although
the cosmic variance term from the ray-tracings is slightly higher than the one from the Monte-
Carlo integration.

It is clear from this figure that non-Gaussianity increases the noise level on the diagonal by
an enormous amount, about two orders of magnitude at ∼ 1′. The ratio of the non-Gaussian
to the Gaussian variance is ∝ θ−2 for small θ and becomes less steep for larger θ.

On nearly all scales, cosmic variance dominates over the shot noise. From Fig. 5.4, one
sees that due to mode-coupling, high cross-correlations between different angular scales are
introduced, present on the off-diagonal of the covariance.
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5.3 Constraints on cosmological parameters

5.2.3 The case of 〈M 3
ap〉

The variance of the aperture mass skewness, M 3
ap,d(θ) = M3

ap(θ, θ, θ) is plotted in Fig. 5.3.
As for the second-order case, cosmic variance dominates over shot noise on all but very small
scales.

The covariance matrix of M 3
ap is not diagonal-dominant, as can be seen in Fig. 5.5, where

the correlation coefficient of
�
(M 3

ap) is plotted. The self-similar pattern and the many sec-
ondary diagonals originate from the reordering of 〈M 3

ap(θ1, θ2, θ3)〉 into a single vector, which
inevitably creates repeating entries of similar combinations of aperture radii. The correlation
of 〈M2

ap〉 for two aperture radii θ1 ≥ θ2 is a rapidly decreasing function of the ratio θ1/θ2.
In the case of 〈M3

ap〉, however, there are many combinations of filter scales which show high
correlation. This fact together with the small sample of realizations of κ-fields causes the
covariance matrix to be very ill-conditioned. For the Fisher matrix analysis (Sect. 5.3.2) the
covariance matrix has to be inverted. Stable results are obtained when the ratio of adjacent
aperture radii is not too small, i.e. larger than about 1.5, and therefore, the number of data
points for M3

ap is not too large. This is in agreement with Pan & Szapudi (2005) who claim
that the rank of a covariance matrix obtained from averaging over Nsim realizations cannot
be more than Nsim, and that in practice not more than Nsim/2 modes should be used.

One way to determine whether the estimate of the covariance of M 3
ap is reasonable would

involve 6-point statistics, which is not feasible analytically. Instead, I slightly modify the
aperture radii used in the analysis and get a rough estimate of the accuracy of this method.
I comment on the stability of the results in Sect. 5.3.4.

5.3 Constraints on cosmological parameters

From the simulated data, a data vector � is “observed”, which consists of n values of
〈

M2
ap

〉

and/or
〈

M3
ap

〉

as a function of angular scales. Using a theoretical model, and approximating
the observables as Gaussian variables, the likelihood function for an n-dimensional multi-
variate Gaussian distribution which is defined in eq. (3.2) is constructed.

5.3.1 The input data

The following five cases for the input data vector � and its covariance
�

are distinguished:

1. (‘2’) xl =
〈

M2
ap(θl)

〉

,
�

= covariance of M 2
ap.

2. (‘3’) xl =
〈

M3
ap(θi, θj , θk)

〉

for a combination of three filter radii which after relabeling
corresponds to the index l as described in Sect. 2.5.2. xl is organized such that (θi, θj , θk)
is in lexical order and θi ≤ θj ≤ θk.

�
= covariance of M 3

ap.

3. (‘3d’) xl = 〈M3
ap,d(θl)〉,

�
= covariance of M 3

ap,d.

4. (‘2+3d’) xl = some element from the concatenated data vector containing
〈

M2
ap

〉

and
〈M3

ap,d〉.
�

is a block matrix containing the covariance matrices of M 2
ap and M3

ap,d on
the diagonal and the cross-correlation on the off-diagonal.

5. (‘2+3’) xl = some element from the concatenated data vector containing
〈

M2
ap

〉

and
〈

M3
ap

〉

.
�

is a block matrix containing the covariances of M 2
ap and M3

ap on the diagonal
and the cross-correlation on the off-diagonal.
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Figure 5.5: The correlation coefficient rij = � (M 3
ap)ij /[var(M

3
ap)i var(M 3

ap)j ]
1/2 of the covariance of

M 3
ap, corresponding to a field size of A = (204 .8 ′)2 . 9 filter radii between 0.5 and 30 arc minutes are

used (logarithmic spacing). See Sect. 2.5.2 for the correspondence between the matrix indices i , j and
the filter scale triplets.

The survey area is 29 square degrees corresponding to ten uncorrelated fields, each of size
A = (102.4′)2. The covariance matrices are calculated by averaging over the realizations as
described in Sect. 5.2. Six different filter radii are used, logarithmically spaced between 1 and
15 arc minutes and yielding six data points for both of 〈M 2

ap〉 and 〈M3
ap,d〉 and 56 for 〈M3

ap〉.

5.3.2 Fisher matrix analysis

As in the case of the survey strategy analysis (Chapter 3), the Fisher matrix (3.7) correspond-
ing to a local expansion of the likelihood around the maximum, instead of the full likelihood,
is analyzed. The Fisher matrix elements for the five combinations of second- and third-order
aperture mass statistics considered here (see Sect. 5.3.1) are given in Table 5.3.2.

For various combinations of cosmological parameters, the MVBs (3.5) are computed by
inverting the Fisher matrix or a submatrix of it, corresponding to the parameter combination
considered. First, the analysis is done for only two parameters, in order to graphically display
the MVBs (Sect. 5.3.2.1). Then, simultaneous MVBs for three and more parameters are
calculated (Sect. 5.3.2.2).
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5.3 Constraints on cosmological parameters

Table 5.1: Fisher matrix for the five different input data as listed in Sect. 5.3.1, denoted by ‘2’, ‘3’,
‘3d’, ‘2+3d’ and ‘2+3’, respectively. The survey area is 29 square degrees, the table entries are given
in units of 10 4 .

Ωm ΩΛ Γ σ8 ns z0
Ωm 1.766 −0.268 1.543 1.597 0.601 1.079
ΩΛ −0.268 0.239 −0.784 −0.424 −0.336 −0.413

Γ 1.543 −0.784 2.875 1.905 1.202 1.630
2

σ8 1.597 −0.424 1.905 1.618 0.766 1.200
ns 0.601 −0.336 1.202 0.766 0.507 0.674
z0 1.079 −0.413 1.630 1.200 0.674 0.975

Ωm 1.698 −0.315 1.260 1.848 0.478 0.661
ΩΛ −0.315 0.445 −1.304 −0.852 −0.552 −0.452

Γ 1.260 −1.304 3.952 2.803 1.653 1.389
3

σ8 1.848 −0.852 2.803 2.705 1.137 1.146
ns 0.478 −0.552 1.653 1.137 0.701 0.579
z0 0.661 −0.452 1.389 1.146 0.579 0.544

Ωm 0.263 −0.079 0.291 0.342 0.109 0.119
ΩΛ −0.079 0.146 −0.422 −0.255 −0.177 −0.141

Γ 0.291 −0.422 1.236 0.794 0.513 0.418
3d

σ8 0.342 −0.255 0.794 0.635 0.319 0.284
ns 0.109 −0.177 0.513 0.319 0.214 0.173
z0 0.119 −0.141 0.418 0.284 0.173 0.144

Ωm 3.256 −0.071 1.844 2.322 0.713 1.757
ΩΛ −0.071 0.363 −0.999 −0.466 −0.434 −0.379

Γ 1.844 −0.999 3.613 2.405 1.527 1.924
2+3d

σ8 2.322 −0.466 2.405 2.180 0.974 1.592
ns 0.713 −0.434 1.527 0.974 0.653 0.799
z0 1.757 −0.379 1.924 1.592 0.799 1.337

Ωm 7.046 0.348 2.457 4.440 0.939 3.219
ΩΛ 0.348 0.764 −1.775 −0.740 −0.773 −0.435

Γ 2.457 −1.775 5.846 3.925 2.486 2.756
2+3

σ8 4.440 −0.740 3.925 4.162 1.597 2.635
ns 0.939 −0.773 2.486 1.597 1.076 1.159
z0 3.219 −0.435 2.756 2.635 1.159 2.169

5.3.2.1 Two parameters

In Fig. 5.6, the MVBs are shown as ellipses in two-dimensional subspaces of the parameter
space. The hidden parameters are fixed. In all cases, the combination of

〈

M2
ap

〉

and
〈

M3
ap

〉

leads to a substantial reduction in the 1σ-error. As expected, the generalized third-order
aperture mass statistics yields better constraints than the ‘diagonal’ version 〈M 3

ap,d〉. The
direction of degeneracy is slightly different for some parameter pairs, most notably when
the source redshift parameter z0 is involved, making the combination of the statistics very
effective in these cases. The Ωm-σ8-degeneracy is lifted partially and the combined Fisher
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Figure 5.6: 1σ-error ellipses from the Fisher matrix. The hidden parameters are kept fixed. Dashed
line: 〈M 2

ap〉, dotted line: 〈M 3
ap〉, solid line: 〈M 3

ap,d〉, dash-dotted line: combination of 〈M 2
ap〉 and 〈M 3

ap〉
as described in Sect. 5.3.1. If one of the parameters is Ωm, a flat Universe is assumed (except for the
Ωm-ΩΛ-plot). The assumed survey area is 29 square degrees.

matrix analysis yields a large improvement on the error of the two parameters. Contrary to
that, the pair (Γ, ns) is degenerate to a high level for both

〈

M2
ap

〉

and
〈

M3
ap

〉

as well as for
their combination.

Note that the combined 1σ-errors are not completely determined by the product of the
likelihoods of

〈

M2
ap

〉

and
〈

M3
ap

〉

. The combined covariance is not the direct product of the
covariance of

〈

M2
ap

〉

and
〈

M3
ap

〉

because of the contribution from the cross-correlation between
both statistics.

It is not surprising that the directions of degeneracy between parameters are quite similar
for
〈

M2
ap

〉

and
〈

M3
ap

〉

, with larger differences existing when z0 is one of the free parameters.
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5.3 Constraints on cosmological parameters

Both statistics depend on the convergence power spectrum, because in HEPT as well as in
quasi-linear PT the bispectrum of the matter fluctuations is given in terms of the power
spectrum (1.94). The differences between

〈

M2
ap

〉

and
〈

M3
ap

〉

mainly come from their different
dependence on the projection prefactor and the lens efficiency G (eq. 1.89). The projection is
most sensitive to the source redshift and of all parameters, changes in z0 show up in a most
distinct way for

〈

M2
ap

〉

and
〈

M3
ap

〉

.
Since the degeneracy direction between 〈M 2

ap〉 and the skewness 〈M 3
ap,d〉 are very similar,

not much improvement is obtained when these two statistics are combined, therefore the
corresponding error ellipses are not drawn in Fig. 5.6.

5.3.2.2 Three and more parameters

I calculate the MVBs for three and more parameters simultaneously for various combinations
of parameters and for each input data as described in Sect. 5.3.1. The results are given in
Table 5.2. All hidden parameters are fixed to the fiducial values of model 2, see Table B.1. If
not both Ωm and ΩΛ vary, a flat Universe is assumed.

In most of the cases, the error bars from the generalized third-order aperture mass statis-
tics 〈M3

ap〉 are smaller than those from its second-order counterpart 〈M 2
ap〉. This trend gets

stronger the more free cosmological parameters are involved, since the measurement of 〈M 3
ap〉

provides more data points and therefore more degrees of freedom1. The skewness of the
aperture mass 〈M 3

ap,d〉 provides by far the worst constraints on the parameters.

In all of the cases, the combination of 〈M 2
ap〉 and 〈M3

ap〉 yields an improvement on the
parameter constraints. This improvement may be rather small, e.g. in the cases when both
Γ and ns are involved. Then the combined MVB is dominated mainly by the MVB of 〈M 3

ap〉,
and the additional information from 〈M 2

ap〉 is unimportant. However, for the majority of
parameter combinations the combined error is a factor of two and more smaller, indicating
that the dependence of the two statistics on the cosmological parameters is different to some
degree, and their combination lifts the near-degeneracy substantially. Amongst other, this is
true for the pair Ωm and σ8. Even if a rather good constraint on these two parameters from
〈M3

ap〉 is combined with a large MVB coming from 〈M 2
ap〉, the combined error can be reduced

by a factor of two and more, thus the most prominent parameter degeneracy for second-order
cosmic shear between Ωm and σ8 can efficiently be broken by adding third-order statistics.

When 〈M2
ap〉 is combined with the generalized aperture-mass statistics (the case ‘2+3’) and

the skewness (‘2+3d’), the former combination always yields better parameter constraints
than the latter. For three free parameters, the first combination is typically a factor of two
better, if more parameters are involved the improvement is even larger, up to a factor of ten
when all six parameters are free. Thus, the preference of 〈M 3

ap〉 over the skewness of Map is
justified also when it is combined with the second-order aperture mass statistics.

In general, constraints on the cosmological constant ΩΛ are weaker than for the other
parameters, and although the combination of second- and third-order aperture mass statistics
gives some improvement on the error, ΩΛ remains the least known parameter.

5.3.3 Correlation between parameters

Table 5.3 shows the correlation coefficient (3.20) between all cosmological parameters consid-
ered in this chapter. For the combination of 〈M 2

ap〉 and 〈M3
ap,d〉 (‘2+3d’), the correlation is

1This is true only to some extent since the data points are correlated.
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Table 5.2: MVBs for various combinations of three and more cosmological parameters, corresponding
to a 29 square degree survey. The hidden parameters are kept fixed. ‘2’, ‘3’, ‘3d’, ‘2+3d’ and ‘2+3’
stand for the five different input data as described in Sect. 5.3.1. If ΩΛ is not a free parameter, a flat
Universe is assumed. The table is continued on the next page.

Ωm ΩΛ Γ σ8 ns z0
2 0.077 0.104 0.035
3 0.041 0.053 0.047
3d 0.189 0.219 0.116

2+3d 0.027 0.030 0.029
2+3 0.016 0.016 0.019

2 0.087 0.015 0.119
3 0.063 0.017 0.078
3d 0.267 0.043 0.300

2+3d 0.027 0.012 0.044
2+3 0.015 0.008 0.024

2 0.083 0.110 0.029
3 0.059 0.072 0.035
3d 0.222 0.242 0.077

2+3d 0.026 0.040 0.025
2+3 0.014 0.022 0.017

2 0.017 0.093 0.200
3 0.010 0.051 0.113
3d 0.343 0.158 0.347

2+3d 0.010 0.063 0.138
2+3 0.005 0.035 0.078

2 0.087 0.106 0.113
3 0.057 0.089 0.067
3d 0.244 0.328 0.263

2+3d 0.033 0.056 0.047
2+3 0.019 0.037 0.028

2 0.157 0.204 0.241 0.406
3 0.063 0.056 0.080 0.115
3d 0.976 0.786 1.204 1.389

2+3d 0.030 0.089 0.056 0.175
2+3 0.015 0.041 0.026 0.085

2 0.095 0.744 0.353 0.285
3 0.065 0.117 0.053 0.085
3d 0.387 0.817 0.490 0.542

2+3d 0.066 0.243 0.078 0.053
2+3 0.028 0.088 0.026 0.030
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5.4 Summary and conclusions of the combined 〈M 2
ap〉- and 〈M3

ap〉-analysis

Table 5.2: MVB table continued.

Ωm ΩΛ Γ σ8 ns z0
2 0.569 0.270 0.552 0.645
3 0.080 0.033 0.088 0.091
3d 1.113 0.498 1.084 1.332

2+3d 0.218 0.090 0.224 0.213
2+3 0.069 0.031 0.072 0.069

2 0.674 2.447 2.199 1.857 1.618
3 0.065 0.127 0.065 0.085 0.125
3d 7.306 1.349 7.613 9.686 8.344

2+3d 0.075 0.263 0.101 0.070 0.186
2+3 0.031 0.094 0.043 0.034 0.090

2 3.554 5.535 2.677 3.719 2.169 3.553
3 0.110 0.328 0.084 0.092 0.140 0.220
3d 7.532 23.48 11.87 10.43 13.15 17.83

2+3d 0.928 1.101 0.620 0.996 0.701 0.812
2+3 0.079 0.124 0.050 0.080 0.090 0.072

very large for all parameter pairs, the difference to unity in some cases is only of the order of
10−3. The degeneracy directions of 〈M 2

ap〉 and 〈M3
ap,d〉 are very similar, thus the combination

of the two causes the correlation between parameters to be very high.

5.3.4 Stability

In order to check the Fisher matrix analysis for consistency and stability towards small changes
of the input data, the calculations are redone with slightly different aperture radii. For changes
of a couple of percent in the aperture radii, the resulting Fisher matrix elements vary of the
order of up to 10 percent. The MVBs (3.5) fluctuate by about the same amount if two or three
parameters are considered to be determined from the data simultaneously. However, for four
and five free parameters, the MVBs are less stable, since the Fisher matrix is numerically very
ill-conditioned and the inversion is a non-linear operation. In general, the MVBs for 〈M 3

ap〉
are less stable than the ones for 〈M 2

ap〉.
The eigenvectors of F−1

αβ are less affected by a different sampling of the aperture radius.
Angles between original and modified eigenvectors are typically only a few degrees. The
variation of the correlation coefficient rαβ is less than ∼ 0.1 if up to four parameters are
considered. For a higher-dimensional Fisher matrix however, the variation can be higher,
similar to the case of the MVB.

5.4 Summary and conclusions of the combined 〈M 2
ap〉- and

〈M 3
ap〉-analysis

The power spectrum of large-scale (dark-)matter fluctuations was until recently the most
important quantity that has been measured — directly or indirectly — by cosmic shear.
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Chapter 5 Combined second- and third-order aperture mass statistics measurements

Table 5.3: The correlation coefficient rαβ (3.20) of the inverse Fisher matrix (3.20). ‘2’, ‘3’, ‘3d’,
‘2+3d’ and ‘2+3’ stand for the five different input data as described in Sect. 5.3.1. Note that the
correlation matrix r is symmetric and unity on the diagonal.

ΩΛ Γ σ8 ns z0
Ωm −0.80 0.71 −0.94 −0.79 −0.98
ΩΛ −0.15 0.56 0.28 0.90
Γ −0.90 −0.98 −0.57

2
σ8 0.95 0.87
ns 0.67

Ωm −0.81 −0.31 −0.84 0.35 −0.81
ΩΛ 0.66 0.41 −0.29 0.92
Γ −0.15 −0.69 0.63

3
σ8 −0.14 0.38
ns −0.46

Ωm −0.29 0.43 −0.81 −0.43 −0.24
ΩΛ 0.74 −0.33 −0.74 1.00
Γ −0.88 −1.00 0.77

3d
σ8 0.87 −0.37
ns −0.77

Ωm −0.99 0.98 −1.00 −0.97 −1.00
ΩΛ −0.94 0.98 0.96 0.97
Γ −0.99 −0.98 −0.99

2+3d
σ8 0.97 1.00
ns 0.96

Ωm −0.87 0.46 −0.99 −0.12 −0.92
ΩΛ −0.20 0.83 0.24 0.65
Γ −0.55 −0.66 −0.52

2+3
σ8 0.17 0.90
ns −0.04

Interesting constraints on cosmological parameters like Ωm and σ8 have been obtained from
second-order cosmic shear statistics. The bispectrum of the density fluctuations contains
complementary information about structure evolution and cosmology. It is a measure of
the non-Gaussianity of the large-scale structure. Current cosmic shear surveys are at the
detection limit of measuring non-Gaussianity significantly, and future observations will most
certainly determine the bispectrum with high accuracy.

Combined measurements of the power and the bispectrum yield additional constraints on
cosmological parameters and partially lift degeneracies between parameters. The second- and
generalized third-order aperture mass statistics 〈M 2

ap〉 and 〈M3
ap〉 are local measures of the

power and bispectrum, respectively. In this part of the thesis, cosmological parameter forecast
from combined measurements of these two shear statistics is presented. Using ΛCDM ray-
tracing simulations, the covariance of M 2

ap and M3
ap and their cross-correlation are calculated.

An extensive Fisher matrix analysis is performed and minimum variance bounds (MBVs) are
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5.4 Summary and conclusions of the combined 〈M 2
ap〉- and 〈M3

ap〉-analysis

obtained for a variety of combinations of cosmological parameters.
The generalized third-order aperture mass statistics (Sect. 2.3.2) is the correlator of Map for

three different aperture radii. In contrast to the skewness of Map which probes the bispectrum
for equilateral triangles only, the generalized third-order aperture mass is in principle sensitive
to the bispectrum on the complete `-space. Therefore, it contains much more information
about cosmology than the skewness alone.

The direction of degeneracy between cosmological parameters are similar for second- and
third-order statistics. However, in most cases the combination of 〈M 2

ap〉 and 〈M3
ap〉 gives

substantial improvement on the predicted parameter constraints. The MVBs decrease by a
factor of two or more for most of the parameter combinations. When the source redshift z0 is
not fixed but also to be determined from the data, the errors on the other parameters increase
largely and the improvement by combining 〈M 2

ap〉 and 〈M3
ap〉 is lowered.

I combine the second-order aperture mass statistics 〈M 2
ap〉 both with the skewness and the

generalized third-order aperture mass. The latter combination gives much better parameter
constraints than the first one. For six parameters to be determined from the data simultane-
ously, the corresponding MVBs are better by a factor of about 10 for each parameter.

The Ωm-σ8-degeneracy is very prominent for both the second- and the third-order statistics
of Map individually. However, by combining the two, the degeneracy is partially lifted — the
1σ-errors of both parameters drop by a factor of two or more, depending on which other
parameters are also considered to be free. The Γ-ns-degeneracy, however, cannot be broken
by combining 〈M2

ap〉 and 〈M3
ap〉, the determination of this pair of parameters is dominated by

〈M3
ap〉.

If the range of apertures is extended, would one expect the resulting improvement on the
parameter estimation from the third-order aperture mass statistics to be higher than from
second-order? For the former, the number of data points increases with the third power of
the number of aperture radii, whereas for the latter, the increase is only linear. Thus, for an
increase in the number of measured apertures, the constraints using 〈M 3

ap〉 should improve
more than those from 〈M 2

ap〉. On the other hand, the data points are not at all uncorrelated,
in fact as is shown in this work (Sect. 5.2.3) the correlation can be very high for various
combinations of aperture radius triples. Moreover for large scales (θ & 30′, see Fig. 4.7), the
linear regime of the large-scale structure is probed, non-Gaussian contributions are small, and
the information content for the third-order shear statistics is not very important.
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Summary

In this thesis I study the efficacy of cosmic shear measurements to constrain cosmological
parameters. The first chapter shortly reviews the current standard model of cosmology and
the parameters describing this model. The theory of structure formation in the Universe
is introduced and the phenomenum of gravitational lensing, in particular weak lensing by
large-scale matter inhomogeneities is elucidated. In Chapter 2, various second- and third-
order statistics of cosmic shear are introduced together with estimators and their covariance.
These quantities are used in the following chapters for the study of cosmological parameter
determination from cosmic shear measurements. In Chapter 3, I examine the influence of
cosmic shear survey characteristics on the resulting parameter errors. The properties of
third-order cosmic shear statistics and their importance for cosmological measurements are
presented in Chapter 4. Finally in Chapter 5, second- and third-order aperture mass statistics
of cosmic shear are combined with the result that error bars and degeneracies for various
cosmological parameters are largely reduced.

Weak lensing by the large-scale structure in the Universe has become an important cosmo-
logical tool and allows one to measure cosmological parameters independently and comple-
mentary to other cosmology experiments such as Cosmic Microwave Background anisotropy
probes, Lyman-α or galaxy surveys. Future cosmic shear surveys will provide high-precision
measurements of the large-scale distribution of matter in the Universe on linear and non-linear
scales and yield tight constraints on various cosmological parameters.

Since weak lensing observations put a very high demand on atmospheric conditions, in-
strumental requirements and are very time-consuming, the current end even next-generation
cosmic shear surveys will be able to cover only a couple of percent of the complete sky. One
therefore has to carefully choose a strategy of distributing the lines of sight and find a trade-off
between the following opposing scenarios. On the one hand, a large range of angular scales
has to be covered by sampling a compact sky region with a fair number of individual lines of
sight. On the other hand, one needs a considerable number of independent directions on the
sky in order to minimize the sampling or cosmic variance. Apart from these considerations,
bright stars and foreground galaxies inevitably render parts in the data as unusable causing
an imaging survey to have a complicated geometry.

I examine the effect of the survey geometry on the accuracy of cosmological parameter
determination in Chapter 3. I consider surveys consisting of a varying number of independent
circular regions on the sky (“patches”) which are sparsely sampled by a different number
of lines of sight. These surveys are compared with ones consisting of single, uncorrelated
fields of view. The latter have a very small cosmic variance but do not sample the shear
correlation on scales larger than the individual images. From Monte-Carlo simulations of
various survey geometries, I obtain the covariance of several second-order statistics encoding
the measurement errors and correlation between different angular scales for a particular survey
setting. Using a Fisher matrix analysis, I estimate the minimum variance bounds for various
combinations of cosmological parameters such as the matter density Ωm, the power spectrum
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normalization σ8, the shape parameter Γ, the spectral index of the initial fluctuations ns,
the cosmological constant ΩΛ, and the characteristic source galaxy redshift z0. Using the
aperture mass dispersion 〈M 2

ap〉, the patch geometries yield smaller errors for the parameters
indicating that information on medium and large angular scales are more important than a
small cosmic variance. The result of this study is that by appropriately choosing the survey
geometry a 25 percent improvement for the 1σ-error is possible.

In addition, a Karhunen-Loève (KL) eigenmode analysis is performed to study various
estimators of second-order shear statistics and the influence of the survey geometry and
various noise contributions to these estimators. The KL technique allows the range and
combination of angular scales which contain most of the information about cosmological
parameters to be quantified. Accordingly, although medium scales where the shot noise due
to the intrinsic ellipticities and finite number of galaxies is small contribute most to the
signal, all scales which are probed by the survey carry valuable information. The KL analysis
shows that the second-order shear estimators can be linearly combined into two modes which
essentially carry all cosmological information. Furthermore, the information contained in the
covariance of the shear estimators is subdominant for survey areas larger than about half a
square degree.

The accuracy of cosmological parameters, measured from second-order cosmic shear statis-
tics, suffers from near-degeneracies between various parameters which leads to large error
bars. It has been shown that the reduced skewness of the convergence κ, which is the non-
linear combination of second- and third-order moments of κ, can break the most prominent
near-degeneracy between Ωm and σ8 (Bernardeau et al. 1997; van Waerbeke et al. 1999). Until
recently, the survey size and accuracy of the galaxy shape determination allowed for significant
measurements only of second-order statistics. However, the first detections of a third-order
shear signal have been reported (Bernardeau et al. 2002; Jarvis et al. 2004; Pen et al. 2003)
and the next-generation surveys will most certainly measure non-Gaussian features in the
shear field with high accuracy.

The power spectrum of the matter density contrast on large scales has been extensively
modeled using numerical simulations and consequently, second-order statistics of cosmic shear
which probe the projected power spectrum have been studied in great detail using theoretical
predictions. On the other hand, the bispectrum of the cosmological dark matter distribution
is less securely known and until now, theoretical predictions of third-order cosmic shear statis-
tics have been scarce. In Chapter 4, the three-point correlation function and the third-order
aperture mass statistics, which are both functions of the projected bispectrum, are calculated
from theoretical non-linear models of structure formation. These predictions are tested and
compared with ray-tracing simulations. The dependence of the third-order aperture mass
statistics with respect to cosmological parameters is discussed and a two-dimensional visual-
ization of the shear three-point correlation function is presented.

In Chapter 5, I show that the linear combination of second- and third-order aperture mass
statistics, 〈M2

ap〉 and 〈M3
ap〉, respectively, highly reduces near-degeneracies between several

cosmological parameters and improves the resulting error bars significantly. It is demonstrated
that the generalized third-order aperture mass statistics contains much more information
about cosmology than the skewness of Map. From ΛCDM ray-tracing simulations of the shear
and the convergence, the covariance of M 2

ap, M
3
ap and their cross-correlation are estimated

which contain non-Gaussian contributions originating from the non-linear evolution of the
large-scale structure. A Fisher matrix analysis quantifies error bars of and degeneracies
between the cosmological parameters Ωm,Γ, σ8, ns,ΩΛ and the source galaxy redshift z0. For
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most parameter pairs, their degeneracies for 〈M 2
ap〉 and 〈M3

ap〉 are similar. However, the
combination of the two statistics results in an improvement of the error bars by a factor of two
or more. If all six parameters are determined simultaneously from the data, the corresponding
error bars are reduced by a factor of 10 on combining 〈M 2

ap〉 and 〈M3
ap〉. While the parameters

Γ and ns remain highly degenerate, the Ωm-σ8-degeneracy is lifted substantially by combining
the second and generalized third moment of Map — the error bars of the two parameters drop
by a factor of two to three if the source redshift z0 is known.
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Appendix A

Random fields

To deal with cosmological fields describable only in a statistical way, such as the large-scale
matter distribution in the Universe or the cosmic shear field given in some sky region, the use
of random fields is necessary. In this section, random fields and their properties, adapted to
the needs of this work, are issued. For a strict mathematical treatment of random fields see
e.g. Adler (1981).

A random field F is a measurable set of functions F = {g : � n → � }, where an element
g ∈ F is called a realization of the random field. It is further equipped by joint probability
distribution functions

P [g( � 1), g( � 2), . . . , g( � N )] dg( � 1)dg( � 2) . . .dg( � N ) (A.1)

for all N ∈ � . P [g( � )]dg( � ) is the probability for an element of F to take the value g( � )
at the point � , P [g( � 1)g( � 2)]dg( � 1)dg( � 2) gives the joint probability for having the values
g( � 1) at � 1 and g( � 2) at � 2, etc.

The first moment or mean of the random field is defined as

〈g( � )〉 =

∫

g( � )P [g( � )] dg( � ), (A.2)

where the integration is carried out over the set F . This averaging process, indicated by
the angle brackets, are called ensemble average. A random field g′ with zero mean can be
constructed from any random field g by setting g′( � ) ≡ g( � ) − 〈g( � )〉. From now on, only
fields with zero mean will be considered.

The second moment or two-point correlation function (2PCF) of a random field is

ξ( � 1, � 2) = 〈g( � 1)g( � 2)〉 =

∫ ∫

g( � 1)g( � 2)P [g( � 1), g( � 2)] dg( � 1)dg( � 2). (A.3)

Analogously, the three-point correlation function (3PCF) ζ( � 1, � 2, � 3) = 〈g( � 1)g( � 2)g( � 3)〉
and for every N ∈ � the N -point correlation function is defined. To fully characterize a
random field, all N -point correlation functions are needed in general.

For a cosmological experiment there usually exists only one observable realization g, in
particular because there is only one observable Universe. The determination of the properties
of the underlying random field F from a single realization g seems to be a hopeless task.
However, instead of ensemble averaging one can average over a sufficient large number of
spatial points. The assumption that these two averaging processes are equivalent is the
ergodicity hypothesis. For example, the large-scale structure is sampled for many different,
statistically independent directions on the sky. The sampling variance of this spatial averaging
process is called cosmic variance.
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A.1 Homogeneous and isotropic random fields

A random field is called homogeneous if all joint probability distribution functions are invari-
ant under simultaneous translation by the same vector. In this case, the 2PCF only depends
on the difference of the two points, ξ( � 1, � 2) = ξ( � 1 − � 2). Likewise, the 3PCF depends only
on two vector differences an can be written as e.g. ζ( � 1, � 2, � 3) = ζ( � 1 − � 2, � 1 − � 3). A
homogeneous random field is called isotropic, if all joint probability distribution functions are
invariant under simultaneous rotation by the same rotation matrix. In particular, the 2PCF
ξ is rotational invariant, ξ( � ) = ξ(x) and the 3PCF only depends on three scalars which
uniquely describe a triangle.

The study of the properties of homogeneous and isotropic random fields in Fourier space is
very useful. For the function g : � n → � , its Fourier transform is the function ĝ : � n → � ,
related to g by the following two expressions:

ĝ(
�
) =

∫

�
n

dnx g( � )ei
�
· � , g( � ) =

∫

�
n

dnk

(2π)n
ĝ(

�
)e−i � ·

�

. (A.4)

The 2PCF of the random field F in Fourier space is then given by

〈

g(
�
)g∗(

�
′)
〉

=

∫

�
n

dnx ei
�

�
∫

�
n

dnx′ e−i
�

′
� ′ 〈

g( � )g( � ′)
〉

= (2π)nδD(
� − �

′)Pg(k), (A.5)

where δD is the Dirac delta “function” and Pg is the Fourier transform of the 2PCF ξ or the
power spectrum of g,

Pg(k) =

∫

�
n

dny ei
�

�
ξ(y). (A.6)

Note that here and throughout this thesis, ergodicity is assumed and the random field F
can be identified with one of its realizations g. Equation (A.5) states that pairwise different
Fourier modes are uncorrelated which is a direct consequence of the translational invariance.
Because of isotropy, the power spectrum only depends on the modulus of the wave vector.

Similarly to (A.5), the three-point correlation function can be written in Fourier space,

〈g( �
1)g(

�
2)g(

�
3)〉 =

∫

�
n

dnx1

∫

�
n

dnx2

∫

�
n

dnx3 ei(
�

1 � 1+
�

2 � 2+
�

3 � 3) 〈g( � 1)g( � 2)g( � 3)〉

= (2π)nδD(
�

1 +
�

2 +
�

3)

[

Bg(
�

1,
�

2) +Bg(
�

2,
�

3) +Bg(
�

3,
�

1)

]

, (A.7)

where Bg is the Fourier transform of 3PCF ζ or the bispectrum of g:

Bg(
�

1,
�

2) =

∫

� dny1

∫

� dny2 ζ(
�

1,
�

2) ei(

�
2

�
1−

�
1

�
2). (A.8)

As can be seen in eq. (A.7), homogeneity implies that only Fourier modes which form a closed
triangle show a correlation.

A.2 Gaussian random fields

A random field is called Gaussian if its joint probability distribution functions are multi-
variate Gaussian distributions,

P [g1, g2, . . . , gN ] dg1dg2 . . .dgN =
exp

[

−1
2

∑

ij giC
−1
ij gj)

]

[(2π)N det
�
]1/2

dg1dg2 . . .dgN , (A.9)
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A.2 Gaussian random fields

where gi = g( � i) and Cij ≡ 〈gigj〉 is the covariance matrix of g. For a Gaussian random field,
all connected moments higher than second are zero and therefore, all odd moments vanish and
all even moments can be written in terms of the second moment. Thus, a Gaussian random
field is fully characterized by the two-point correlation function or equivalently, the power
spectrum. Another important property is that for a Gaussian field the ergodicity hypotheses
holds if and only if the power spectrum is a continuous function (Adler 1981).
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Appendix B

Fiducial cosmological models

In this work several CDM cosmologies are used as fiducial models, the parameters of which are
listed in Table B.1. The models 1 and 2 are ΛCDM cosmologies with a non-zero cosmological
constant, model 3 represents an open Universe (OCDM) with Λ = 0. The parameters are
the matter density parameter Ωm, the density parameter of the cosmological constant ΩΛ,
the shape parameter Γ, the normalization σ8 and the initial spectral index ns of the power
spectrum. See Sects. 1.1.5, 1.2.5 and 1.2.6.1 for more details on the parameters. Models 2
and 3 match the parameters of the N -body and inferred ray-tracing simulations.

For the models 1 and 3, the shape parameter has the form Γ = Ωmh, see eq. (1.38). In
model 2, Sugiyama’s Γ (eq. 1.39) is assumed (Sugiyama 1995) — the numerical value of Γ
corresponds to h = 0.7 and Ωb = 0.04. Only for model 1, a continuous redshift distribution
of the source galaxies (1.90) is chosen which is characterized by the two parameters z0 and
β. The ray-tracing simulations and therefore the models 2 and 3 have a single source redshift
plane at z0 around unity.

Table B.1: Parameters of the cosmological models used in this work.

model 1 model 2 model 3

Cosmological parameters

Ωm 0.3 0.3 0.3
ΩΛ 0.7 0.7 0.0
Γ 0.21 0.172 0.21
σ8 1 0.9 1
ns 1 1 1

Redshift distribution

z0 1 0.977 1
β 1.5 - -

Ray-tracing parameter

pixel number - 1024 2048
pixel size - 0.2′ 0.0949′

number of realizations - 36 7
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Appendix C

Limber’s equation for the bispectrum

The relation between a homogeneous and isotropic three-dimensional random field (e.g. the
density contrast δ) and its projection onto two dimension (e.g. the convergence κ) in a cosmo-
logical context can be obtained using Limber’s equation (Limber 1953). Applied in Fourier
space, this equation yields the projection of the power spectrum of the random field (Kaiser
1992, 1998; Bartelmann & Schneider 2001). In this section the projection of the three-
dimensional bispectrum is derived using Limber’s equation. The result of this calculation
is used for the expression of the convergence bispectrum (eq. 1.94).

In analogy to Bartelmann & Schneider (2001), three projections of the density contrast δ
are defined,

gi( � ) =

∫ wlim

0
dw qi(w) δ [fK(w) � , w] , i = 1, 2, 3, (C.1)

where the qi are weight functions, � is a two-dimensional vector and wlim is the limiting
comoving distance of the projection. The three-point correlation function (3PCF) of the gi is

ζg( � 1, � 2, � 3) = 〈g1( � 1)g2( � 2)g3( � 3)〉

=

∫

dw1 q1(w)

∫

dw2 q2(w)

∫

dw3 q3(w) 〈δ[fK(w) � 1, w]δ[fK(w) � 2, w]δ[fK(w) � 3, w]〉

=

∫

dw1 q1(w)

∫

dw2 q2(w)

∫

dw3 q3(w)

∫

d3k1

(2π)3

∫

d3k2

(2π)3

∫

d3k3

(2π)3

×
〈

δ̂(
�

1, w1)δ̂(
�

2, w2)δ̂(
�

3, w3)
〉

e−ifK(w1) � 1·

�
1⊥e−ifK(w2) � 2·

�
2⊥

× e−ifK(w3) � 3·

�
3⊥e−iw1k13e−iw2k23e−iw3k23 , (C.2)

where the Fourier transform is applied in the last step and the three-dimensional Fourier
mode vectors are decomposed into a two-dimensional perpendicular and a one-dimensional
parallel component with respect to the projection direction,

�
i = (

�
i⊥, ki3).

Following Bartelmann & Schneider (2001), I assume that no power on scales larger than
some coherence scale exists and further, that the density contrast δ as well as the weight
functions qi do not vary appreciably over this coherence scale. Consequently, one sets
fK(w1) = fK(w2) = fK(w3) =: fK(w) and q1(w1) = q1(w), q2(w2) = q2(w), q3(w3) = q3(w).
Next, the bispectrum Bδ of the density contrast (1.42) is inserted and the k3-integral is carried
out making use of the delta function. One gets

ζg( � 1, � 2, � 3) =

∫

dw q1(w)q2(w)q3(w)

∫

d3k1

(2π)3

∫

d3k2

(2π)3

[

Bδ(
�

1,
�

2, w)

+Bδ(
�

2,−
�

1 −
�

2, w) +Bδ(−
�

1 −
�

2,
�

1, w)

]

e−ifK(w) � 1·

�
1⊥e−ifK(w) � 2·

�
2⊥
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× e−ifK(w) � 3·(−
�

1⊥−

�
2⊥)e−iwk13

∫

dw2 e−iw2k23

∫

dw3 e−iw3(−k13−k23) . (C.3)

The trivial w2- and w3-integrations yield (2π)2δD(k13)δD(k23), canceling out all Fourier modes
which are not perpendicular to the projection direction (Blandford et al. 1991),

ζg( � 1, � 2, � 3) =

∫

dw q1(w)q2(w)q3(w)

∫

d2k1⊥

(2π)2

∫

d2k2⊥

(2π)2

×
[

Bδ(
�

1⊥,
�

2⊥, w) + 2 terms

]

e−ifK(w)( � 1− � 3)·
�

1⊥e−ifK(w)( � 2− � 3)·
�

2⊥ . (C.4)

Because of homogeneity, the 3PCF only depends on the two vector differences � 1 = � 1 − � 3

and � 2 = � 2 − � 3. Inserting one of the three terms of the last equation into the expression
for the bispectrum of g (eq. A.8), one gets

Bg(� 1, � 2) =

∫

dw q1(w)q2(w)q3(w)

∫

d2k1

(2π)2

∫

d2k2

(2π)2

×Bδ(
�

1,
�

2)

∫

d2ϑ1 ei(fK(w)
�

2−� 2)· � 1

∫

d2ϑ2 e−i(fK(w)
�

1−� 1)· � 2 , (C.5)

where the subscripts indicating the perpendicular components of the wave vectors have been
dropped. The ϑ1-integral yields (2π)2δD(fK(w)

�
2 − � 2) = (2π)2/f2

K(w) · δD(
�

2 − � 2/fK(w));
another delta-function emerges from the ϑ2-integration. Finally,

Bg( � 1, � 2) =

∫

dw

f4
K(w)

q1(w)q2(w)q3(w)Bδ

(

� 1

fK(w)
,

� 2

fK(w)

)

. (C.6)

In the case of the bispectrum of the convergence κ, the expression

qi(w) =
3

2

(

H0

c

)2 Ωm

a(w)

∫ wlim

w
dw′ p(w′)

fK(w − w′)

fK(w′)
fK(w) = G(w)fK(w) (C.7)

for i = 1, 2, 3 has to be taken. With that, one gets

Bκ(� 1, � 2) =

∫ wlim

0

dw

fK(w)
G3(w)Bδ

(

� 1

fK(w)
,

� 2

fK(w)

)

. (C.8)
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