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Introduction

Incipient models of economic interaction generally assumed perfect information among the
interacting agents. Especially neoclassical economics contain perfect information as a key as-
sumption in their approaches to describe the determination of prices, and income distributions
in markets through supply and demand. Therein, market participants are considered to act
independently on the basis of full and relevant information. As all market participants have
identical information about the value of an asset and as their demand functions depend on
the price of the asset, there exists a price at which the market clears and no participant regrets
trading afterwards.

Since the seminal papers of Spence (1973), Akerlof (1970) and Rothschild and Stiglitz (1976)
we know that information asymmetry can change the outcome of an economic game entirely.
In particular, Akerlof (1970) demonstrates that a market might fail altogether from information
asymmetry. For these reasons regulatory authorities have a special interest in monitoring mar-
kets for information asymmetries, like for example insider activities. In this thesis I reconsid-
erate several market microstructure models that measure information asymmetries on financial
markets.

In the market for ‘lemons’ in Akerlof (1970) one party knows the true value of a good whereas
the other party must act on an expectation of this value. The resulting situation can be deter-
mined by a total market breakdown through adverse selection: High-value assets have van-
ished from the market and low-value assets are offered but not traded, because uninformed
participants would always regret trading since they would generally pay too much for a low-
value asset.

Stiglitz (2002) characterizes in his nobel prize lecture the sources of information asymmetries.
Some of the information asymmetries are inherent for as an insider naturally knows more about
a financial asset than any other market participant. Further information evolves from the eco-
nomic processes. For example: In trading a professional trader or a trading house might trade
for years or even decades in certain securities and has acquired special knowledge about a com-
pany or is able to collect information from orderflow. Stiglitz (2002) points out that "[w]hile such
information asymmetries inevitably arise, the extent to which they do so and their consequences depend
on how the market is structured [...]" This hypothesis is actually considered as a chief argument
in the debate about governmental intervention on security markets. Moreover, it defines the
foundation for the field of market microstructure.

"[M]arket microstructure", as O’Hara (1995) states it, "is the study of process and outcomes of ex-
changing assets under explicit trading rule[s]." Whereas the rational expectations literature focuses
exclusively on the analysis of equilibria by solving for an equilibrium price, market microstruc-
ture is interested in the processes in an economy that coordinate the desires of demanders and
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suppliers, so that a price emerges and trade occurs. Furthermore, "[u]nderlying much of the re-
search in market microstructure is a shared focus on the information implicit in market data, and on the
learning process that translates this information into price[s]." (O’Hara (1995))

While former research in economics considered the price forming process most times as a
Walrasian auction, Demsetz (1968) analyzed trading behavior and its consequences on prices
in security markets and thereby set the stage for the formal study of market microstructure.
The main contribution of Demsetz (1968) is the notice of time dimension in the trading process.
Buyers and sellers rarely arrive at the same time at a market due to heterogeneity in their needs.
This makes it impossible to find a market clearing price at a given point in time. Demsetz’ idea
is to introduce a cost for immediacy: Some traders wish to trade immediately, and as long as
these traders cannot find a counterpart they must offer a better price. This results in two and
not one price characterizing the equilibrium at each point in time: A price to sell and a price to
buy. The difference between these two prices is called the ‘bid-ask spread’. On most of today’s
security markets liquidity gets provided through traders and market makers who are willing
to offer a free trading option in form of a so-called ‘limit order’, and it is considered that they
provide this option only in exchange for an appropriate premia.1 2

If some market participants are better informed, then trading with them results in a certain
loss for an uninformed trader. Starting with an insightful paper by Bagehot (1971), a new theory
emerged to model price processes that did not depend on transaction costs (e.g. cost of imme-
diacy), but postulated an important role for information. As a result, this theory finds a spread
to exist, even in the absence of transaction costs. Main contributions to this branch of market
microstructure theory are Copeland and Galai (1983), Glosten and Milgrom (1985), and Easley
and O’Hara (1987).

The one-period model of Copeland and Galai (1983) assumes a monopolistic market maker (a
liquidity providing intermediary who is in the middle of all trades) and order arrival processes
determined by an exogeneous probabilistic framework. There exist informed and uninformed
traders in the market. Uninformed (or liquidity) market participants trade on both sides of
the market for reasons left unspecified in the model and informed traders only trade, if they
have information, and only on the market side specified by their private information. Since
the market maker cannot know which type of trader she encounters, she weights her expected
gains and losses by the probabilities of uninformed and informed trading. The bid and ask
prices of the market maker then emerge from an optimization over these expected gains and
losses.

The market maker’s decision problem in Copeland and Galai (1983) is a static one: Trading
happens only once, and hence, the market maker simply has to balance gains and losses. In-
troducing dynamics changes the nature of the order arrival process. This process cannot be
exogeneous anymore, as now a single order itself may contain information which should be
considered in the price-setting decision of the market maker. Furthermore, the information un-

1The free trading option was first noted by Copeland and Galai (1983).
2A limit buy order is an order to buy a certain amount of shares at a price not higher as indicated in the

order’s limit. A limit sell order is defined analogously.
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derlying the orderflow can be extracted by uninformed traders during trading. This concept of
inferring information from orderflow is developed in Glosten and Milgrom (1985).

To understand the contribution of the paper by Glosten and Milgrom (1985) it is important
to see that an extension from the one-period to the multi-period case cannot be accomplished
by merely accumulating gains and losses from the one-period solution in Copeland and Galai
(1983). What is missing in this framework is that trades themselves could reveal the underlying
information and thereby influence the price process.

Glosten and Milgrom (1985) consider the trade direction to be information revealing for the
following reason: Informed traders buy the asset in the event of good news and sell it in case
they have bad news about it. Therefore, selling to the market maker happens either, because
a trader needs liquidity, or, because he received bad news about the asset. The market maker
cannot tell which is the reason and minimizes her risk by adjusting her beliefs about the asset’s
value, conditional on the trade direction. During market hours the market maker receives trades
and infers from their direction information, which causes her to permanently update her beliefs,
and this causes prices to change. By time, the market maker eventually learns the information
contained in trades, and her prices converge to the asset’s true value. O’Hara (1995) writes:
"[T]his focus on the learning problem confronting the market maker was a new, and important, direction
in market microstructure. [...] This linkage of price setting to underlying asset values meant that the
process by which information was impounded into prices could be addressed. This issue, long the focus of
both the efficient markets and the rational expectations literature, could now be addressed in the context of
the actual mechanisms used to set prices in security market[s]." In regard to the topic of this thesis, I
like to emphasize that the model of Glosten and Milgrom (1985) also describes how information
asymmetry dissolves through market participants learning the information contained in the
trades of the informed.

Another important result from the Glosten and Milgrom model is that the adverse selec-
tion problem, induced by informed traders, can lead to a total market shutdown, similar to
the breakdown of the market for ‘lemons’ in Akerlof (1970). As already mentioned above, the
amount of informed trading is related to the size of the spread. The market maker sets a larger
spread, if she beares a higher risk of trading with better-informed market participants. In case
of a very high amount of informed traders, the spread is chosen so high that it precludes trading
at all.

From the theoretical model of Glosten and Milgrom (1985) several approaches evolved to
empirically measure information asymmetry and to estimate its influence on security prices.
Such empirical testing can be found among others in Hasbrouck (1988), Glosten and Harris
(1988), Madhavan et al. (1997), and Huang and Stoll (1997), and is summarized under the term
‘trade indicator models’.

In the first part of this thesis I reconsiderate trade indicator models in a joint work with Erik
Theissen. More precisely, we reconsiderate the models of Madhavan et al. (1997) and Huang
and Stoll (1997). Trade indicator models divide the spread into an adverse selection component
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and remaining components.3 As a byproduct an estimate of the spread becomes available. It is a
stylized fact that trade indicator models (e.g. Madhavan, Richardson, and Roomans (1997) and
Huang and Stoll (1997)) underestimate the bid-ask spread. We argue that this negative bias is
due to an endogeneity problem, which is caused by a negative correlation between the arrival
of public information and trade direction. In our sample (the component stocks of the DAX
30 index) we find that the average correlation between these variables is -0.193. We develop
modified estimators and show that they yield essentially unbiased spread estimates.

The second and third part of the thesis build an entity and consider another way to mea-
sure information asymmetries on financial markets. In a seminal paper Easley et al. (1996)
proposed a sequential trade model to estimate the probability of informed trading (PIN). Their
multi-period model assumes a market with risk-neutral and fully competitive market makers,
informed traders and uninformed liquidity traders. The order arrival processes of informed
traders and uninformed traders are described by Poisson processes. Nature chooses between
news days and no-news days. In case of a news day, the news can be either bad or good. Liquid-
ity traders trade for reasons exogeneous to the model and therefore on both sides of the market.
Informed traders only trade on news days. If the news are bad, they sell the asset, and if the
news are good, they buy the asset, i.e., they trade only on one side of the market. The empirical
model of Easley, Kiefer, O’Hara and Paperman (from hereon EKOP model) relies on the theo-
retical ideas presented in Glosten and Milgrom (1985) in that the market maker is assumed to
infer information from orderflow and to adjust his beliefs accordingly.

Information asymmetry in the EKOP model is measured differently from information asym-
metry in the trade indicator models: The trade indicator models consider the adverse selection
component in the spread and thereby follow the assumption that information asymmetry al-
ways gets priced. In contrast, the EKOP model estimates order arrival processes and computes
the market makers beliefs (see Easley et al. (1996, p.1407)), i.e., the probability of informed trad-
ing as derived from the Poisson intensity rates.

In the second part, I present a collective paper with Joachim Grammig and Erik Theissen.
We propose a methodology to estimate the probability of informed trading (PIN) that only
requires data on the daily number of transactions (but not on the number of buyer-initiated and
seller-initiated trades). Because maximum likelihood estimation of the model is problematic
we propose a Bayesian estimation approach. We perform extensive simulations to evaluate the
performance of our estimator. Our methodology increases the applicability of PIN estimation to
situations, in which the data necessary for trade classification is unavailable, or in which trade
classification is inaccurate.

In the third part of this thesis, I apply the Bayesian estimation framework from the second
part to market data of the U.S. corporate bond market. The U.S. coporate bond market is a
highly fragmented market while Easley et al. (1996) base their model on a centralized market
structure. My results might resemble this discrepancy.

I use transaction data from the Trade Reporting and Compliance Engine (TRACE) for con-

3The remaining component in the Madhavan, Richardson and Roomans model is simply the transitory
component. Huang and Stoll also add a component for inventory holding costs.
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stituents of the S&P 500 in the first half-year of 2011. As a measurement of information asym-
metry I employ the probability of informed trading (PIN) proposed by Easley, Kiefer, O’Hara,
and Paperman (1996). In a cross-sectional regression of 4,155 fixed income securities on bond
characteristics, market variables, and stock statistics I find that nearly 50% of the variation in
PINs is explained. All estimated coefficients conform to expectations. While a comparison
of PINs in bond and corresponding equity markets confirms prior findings of lower PINs on
more active stock markets, it indicates the reverse for fixed-income securities: Less-frequently
traded bonds exhibit lower PINs. These findings accord with there being lower transaction
costs on less active bond markets as found by Goldstein, Hotchkiss, and Sirri (2007). However,
as news probabilities for bonds from the same issuer and bonds and corresponding stocks dif-
fer significantly, I question the appropriateness of traditional models for measuring information
asymmetries. The probability of informed trading might not be a suitable measure for highly
fragmented markets such as the U.S. corporate bond market.

Understanding the sources of information asymmetries on markets is important for several
reasons: First, a general understanding for the creation of information asymmetries has been
already emphasized in Stiglitz (2002) and is one of the main goals of economic sciences. Sec-
ond, any governmental intervention in the structure of financial markets should be based on an
understanding of mechanisms and third, as has been demonstrated by Han and Zhou (2013),
information asymmetries appear to be priced in interest rates by investors, and therefore an
understanding of main influence factors in control of the issuer might help issuers to design a
fixed security with bearable costs.
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Part I.

Estimation of trading costs: Trade indicator models revisited

It is a stylized fact that trade indicator models (e.g. Madhavan, Richardson, and Roomans (1997) and
Huang and Stoll (1997)) underestimate the bid-ask spread. We argue that this negative bias is due to an
endogeneity problem which is caused by a negative correlation between the arrival of public information
and trade direction. In our sample (the component stocks of the DAX 30 index) we find that the average
correlation between these variables is -0.193. We develop modified estimators and show that they yield
essentially unbiased spread estimates.
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1. Introduction

For more than 30 years researchers have developed measures of the bid-ask spread and its
components. Trade indicator models (as proposed by Glosten and Harris (1988), Huang and
Stoll (1997) and Madhavan et al. (1997)) are a very important and popular class of models. The
basic intuition of these models is that (1) because of bid-ask bounce the time series of transac-
tion prices contains information on the size of the spread (as in Roll (1984)) and (2) suppliers
of liquidity will adjust their bid and ask prices in response to the information content of trades
they observe (as in Glosten and Milgrom (1985)). The data required to estimate a trade indi-
cator model are a sequence of transaction prices and a trade indicator variable which indicates
whether a trade was buyer-initiated or seller-initiated.1

It is well known that trade indicator models underestimate the actual bid-ask spread. Mad-
havan et al. (1997) report that their implied spread estimate obtained from their trade indicator
model underestimates the spread by approximately one third. Grammig et al. (2006) estimate
the Huang and Stoll (1997) trade indicator model for a sample of German firms and find that
the implied spread is approximately 20% lower than the actual spread. We perform a similar
analysis (using data from Germany) and confirm these results.

In this paper we analyze why trade indicator models underestimate the spread. We focus on
the models proposed by Madhavan et al. (1997) and Huang and Stoll (1997). We hypothesize,
and confirm empirically, that the trade indicator models suffer from an endogeneity problem.
New public information is negatively correlated with the trade indicator variable. This negative
correlation, in turn, results in a downward bias in the estimated spread and adverse selection
component. We propose a modified estimator that accounts for this negative correlation. Ap-
plication of this estimator largely eliminates the bias. The primary advantage of the modified
estimator is that it allows us to identify the source of the bias in implied spreads estimated from
trade indicator models. The modified estimator also lends itself to application in empirical
research. However, it requires additional data, namely, a time series of quote midpoints.2

The bias we document suggests that the results of trade indicator models should be inter-
preted with care. The importance of our findings derives from the widespread use of trade
indicator models in the empirical literature.3 For example Weston (2000) uses the Huang and

1The model proposed by Glosten and Harris (1988) allows the transitory and permanent components of
the spread to depend on transaction size. Consequently, data on transaction volume is required for
estimation of the model.

2In many applications the trade indicator variable is constructed by applying the Lee and Ready (1991)
algorithm to trade and quote data. In this case quote data is needed anyway, and the additional data
requirement of our modified procedure is not a cause for concern.

3We do not intend to provide a complete list of papers that apply trade indicator models. When selecting
the papers referred to in the text we confined ourselfes to research published in major journals.
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Stoll (1997) model to analyze whether the (then) new Nasdaq order handling rules affected
the components of the bid-ask spread. Green and Smart (1999) base their analysis of how an
increase in noise trading affects the components of the spread on the Madhavan et al. (1997)
model. Hatch and Johnson (2002) use the Madhavan et al. (1997) model to analyze whether
mergers among NYSE specialist firms affect the spreads (and its components) of the stocks in
which the specialist firms make a market. Chakravarty et al. (2012) compare the bid-ask spreads
of trades triggered by intermarket sweep orders and trades triggered by other orders using the
Madhavan et al. (1997) model. Brockman and Chung (2001) find that the adverse selection com-
ponent of the spread, measured by the Huang and Stoll (1997) estimator, increases in periods
during which firms repurchase shares.

The application of trade indicator models is not confined to the equity market. Green (2004)
uses the Madhavan et al. (1997) model to analyze the impact of trading on bond prices after
economic news announcements. Bessembinder et al. (2006) and Han and Zhou (2014) adapt
the Madhavan et al. (1997) model to the corporate bond market while Bjønnes and Rime (2005)
apply the Huang and Stoll (1997) model to the foreign exchange market.

Trade indicator models are not only used in market microstructure research but also in other
areas of finance. Odders-White and Ready (2006) analyze the relation between credit ratings
and stock liquidity. One of the liquidity measures they use is the Huang and Stoll (1997) esti-
mator of the adverse selection component. Heflin and Shaw (2000) and Brockman et al. (44) use
the Huang and Stoll (1997) model to analyze how block ownership of shares affects the spread
and its components. Da et al. (2011) analyze the stock selection ability of fund managers. They
find that fund managers are more likely to benefit from trading stocks that are more heavily
affected by information risk. One of the measures of information risk that the authors use is
the adverse selection component as estimated by the Madhavan et al. (1997) model. Cao et al.
(2004) use the Madhavan et al. (1997) model to analyze how lockup expirations after IPOs affect
liquidity.

The remainder of the paper is organized as follows. In section 2 we describe our data and
present descriptive statistics. The effective spread and price impact we estimate directly from
the data serve as benchmarks against which the implied spread and adverse selection compo-
nent obtained from the trade indicator models are evaluated. In section 3 we present the trade
indicator models (both the structural and the corresponding statistical models), explain the en-
dogeneity bias and derive our modified estimator. In this section we also present empirical
evidence which supports the presence of the endogeneity bias, and evidence which suggests
that the modified estimator can largely alleviate this problem. Section 4 concludes.
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2. Data

Our data set includes intraday data on the constituent stocks of the DAX-30 index.4 These
stocks are traded in Xetra, an electronic open limit order book. The sample period is the first
quarter of 2004. The data set contains time-stamped transaction prices, the bid-ask spread in ef-
fect immediately prior to the transaction, and a trade indicator variable which indicates whether
the trade was buyer-initiated (trade indicator = 1) or seller-initiated (-1). Note that the trade in-
dicator variable was provided by the exchange. We thus did not need to apply the Lee and
Ready (1991) algorithm to classify trades.

Table A.1 lists the 30 sample stocks. Even though they are the 30 most liquid German stocks,
they cover a wide range in terms of market capitalization, trading volume, and transaction fre-
quency. The largest stock (Deutsche Telekom) has more than 20 times the market capitalization
of the smallest stock (TUI). Similarly, the most actively traded stock (Deutsche Telekom when
trading activity is measured by volume and Allianz when it is measured by the transaction
frequency) has more than 27 times the trading volume and more than 6 times the transaction
frequency of the least active stock (Fresenius Medical Care). The last column of table A.1 shows
the average effective spread measured in Euro-Cent. Spreads range from 1.12 Cents (Deutsche
Telekom) to 6.51 Cents (Adidas-Salomon).

Table A.2 shows the average price impact for each stock. The price impact of a transaction
t is measured by the product of the trade indicator and the change in the quote midpoint after
the transaction. We estimate three alternative versions of the price impact measure. The first
(which we denote the immediate price impact) is based on the change in the quote midpoint
between transaction t and transaction (t + 1), the second (third) is based on the change in the
quote midpoint between transaction t and the first transaction recorded at least one minute (five
minutes) after transaction t. The immediate price impact is smaller than the 1- and 5-minute
price impact in all 30 cases. The 5-minute price impact is larger than the 1-minute price impact
for almost all stocks, but the increase is much smaller than the increase from the immediate to
the 1-minute price impact. These results suggest that it takes at least one minute for the price
impact of a trade to be fully reflected in the quote midpoint.

4Grammig et al. (2006) use the same data set.
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3. Trade indicator models

As noted in the introduction we consider the trade indicator models proposed by Madhavan
et al. (1997) (henceforth MRR) and Huang and Stoll (1997). The main difference between these
models is that MRR assume that the trade indicator variable follows a Markov process. The
resulting first-order serial correlation of the trade indicator variable is explicitly included in the
model. Huang and Stoll (1997), in contrast, implicitly assume that the trade indicator variable
is serially uncorrelated.5 We start with the richer MRR model.

3.1. The model by Madhavan, Richardson and Roomans

3.1.1. Structural model

We consider a market in which suppliers of liquidity (who may be limit order traders or
market makers) post bid and ask prices at which other traders can buy or sell assets. We develop
the model with an electronic open limit order book (such as Xetra, the trading system from
which we draw our sample) in mind. Therefore, we do not allow transactions at prices within
the quoted spread. Put differently, we assume throughout the paper that the parameter λ is
equal to zero.6

The model ticks in transaction time. Every time t a trade occurs, pt denotes the transaction
price and the trade indicator variable qt ∈ {1,−1} denotes trade direction. qt is 1 for a buyer-
initiated trade and −1 for a seller-initiated trade. Buys and sells are assumed to occur with the
same (unconditional) frequency, i.e. the unconditional probability of the events {qt = 1} and
{qt = −1} equals 1

2 . Consequently, the unconditional expected value of qt is E[qt] = 0 and the
variance is V[qt] = 1.

Denote byµt the expected value of the security conditional upon public information. Changes
in µt depend on (i) new public information arrival modeled by the white noise process {ut} and
(ii) (private) information contained in the order flow. In the spirit of Glosten and Milgrom (1985)
the surprise in the order flow, (qt − E[qt | qt−1]), reveals some of the private information held
by informed traders. The information content of the surprise component of the order flow is
captured by the parameter θMRR ≥ 0. Thus, θMRR(qt − E[qt | qt−1]) is the permanent impact of
the order flow surprise on the expected value µt of the security. µt evolves according to

µt = µt−1 +θMRR(qt −E[qt | qt−1]) + ut . (3.1)

5This statement holds for their basic model (equation (5) in Huang and Stoll (1997)). In their three-way
decomposition of the spread they allow for serial correlation in the trade indicator variable.

6MRR denote by λ the probability that a transaction occurs at a price inside the quoted spread.

12



Note that this process is a martingale and reduces to a simple random walk, if there were no in-
formed traders (in which case θMRR = 0). Suppliers of liquidity post quotes which are assumed
to be ex-post rational (or regret-free). Consequently, the bid and the ask price are set conditional
upon the next trade being seller-initiated (qt = −1) and buyer-initiated (qt = 1), respectively.
Further, the liquidity providers require a compensation for their service. This compensation is
assumed to be a constant amount φMRR ≥ 0 per share. The parameter φMRR models the transi-
tory effect of order flow on prices.7 The ask and bid prices evolve as

pa
t = µt−1 +θMRR(1−E[qt | qt−1]) +φMRR + ut , (3.2)

pb
t = µt−1 +θMRR(−1−E[qt | qt−1])−φMRR + ut . (3.3)

The resulting transaction price is

pt = µt +φMRRqt + ηt , (3.4)

where {ηt} is a white-noise error process which, among other things, captures rounding errors
caused by the existence of a discrete minimum tick size.8 Combining equations (3.1) and (3.4)
yields

pt = µt−1 +θMRR(qt −E[qt | qt−1]) +φMRRqt + ut + ηt . (3.5)

Next we specify the process for the trade indicator variable {qt}. Like Madhavan et al. (1997) we
assume a general Markov process for trade direction. However, as already noted above, we do
not allow for transaction at prices within the quoted spread. The process is characterized by the
fixed transition probability P[qt = qt−1 | qt−1] = γ. If traders split up larger orders into several
smaller trades we expect γ > 1

2 . Similarly, price continuity rules, trade reporting practices, and
other institutional factors may cause γ to deviate from 1

2 .
With this specification the conditional expectation E[qt | qt−1] in eq. (3.5) is

E[qt | qt−1 = 1] = P[qt = qt−1 | qt−1 = 1](1) + P[qt 6= qt−1 | qt−1 = 1](−1) (3.6)

= γ − (1−γ) ,

E[qt | qt−1 = −1] = P[qt 6= qt−1 | qt−1 = −1](1) + P[qt = qt−1 | qt−1 = −1](−1) (3.7)

= (1−γ)−γ .

The first-order autocorrelation of the trade indicator variable is ρMRR = E[qtqt−1 ]
V[qt ]

= γ − (1− γ)
and therefore eq. (3.6) and eq. (3.7) can be summarized by

E[qt | qt−1] = ρMRRqt−1 . (3.8)

7As also pointed out by Madhavan et al. (1997),φMRR may cover order processing costs, inventory hold-
ing costs, and possibly also rents earned by the suppliers of liquidity.

8Ball and Chordia (2001) proposes a model that takes the rounding of prices onto the tick grid explicitly
into account.
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Inserting eq. (3.8) into eq. (3.5) and recognizing that (from the first lag of eq. (3.4)) µt−1 =

pt−1 −φMRRqt−1 − ηt−1 yields the expression

∆pt = (φMRR +θMRR)qt − (φMRR + ρMRRθMRR)qt−1 + ut + ∆ηt . (3.9)

This equation is identical to equation (4) in Madhavan et al. (1997) and is the basis for the
empirical analysis.

Effective spread The expected effective spread implied by eq. (3.9) is 2(φMRR +θMRR). To see
this, start from the definition of the effective half-spread,

sMRR

2
= qt(pt −mt) , (3.10)

where mt denotes the quote midpoint at time t,

mt =
pa

t + pb
t

2
. (3.11)

Inserting the ask and bid prices eq. (3.2) and eq. (3.3), respectively, and conditioning on qt−1

yields

mt|{qt−1=1} =
pa

t |{qt−1=1} + pb
t |{qt−1=1}

2
=

2µt−1 − 2ρMRRθMRR + 2ut

2
= µt−1 − ρMRRθMRR + ut , (3.12)

mt|{qt−1=−1} =
pa

t |{qt−1=−1} + pb
t |{qt−1=−1}

2
=

2µt−1 + 2ρMRRθMRR + 2ut

2
= µt−1 + ρMRRθMRR + ut . (3.13)

which implies
mt = µt−1 − ρMRRθMRRqt−1 + ut . (3.14)

This expression reflects the fact that the suppliers of liquidity take the serial correlation in the
order flow into account when setting their quotes. The effective half-spread conditional on qt−1

is

sMRR

2
|{qt−1=1} = qt(pt −mt) (3.15)

= qt(µt−1 +θMRRqt −θMRRρMRR +φMRRqt + ut + ηt −µt−1 + ρMRRθMRR − ut)

= (φMRR +θMRR + ηt) ,
sMRR

2
|{qt−1=−1} = qt(pt −mt) (3.16)

= qt(µt−1 +θMRRqt +θMRRρMRR +φMRRqt + ut + ηt −µt−1 − ρMRRθMRR − ut)

= (φMRR +θMRR + ηt) ,
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from which it immediately follows that the expected effective spread implied by the MRR model
is

sMRR = 2(φMRR +θMRR) . (3.17)

3.1.2. Estimation of basic model

The basic model (3.9) is nonlinear in its parameters (φMRR ,θMRR ,ρMRR)′. To estimate these pa-
rameters we follow Madhavan et al. (1997) and use the generalized method of moments (GMM)
with moment conditions

E

qtqt−1 − q2
tρMRR

ξtqt

ξtqt−1

 = 0 , (3.18)

where
ξt = ∆pt − (φMRR +θMRR)qt + (φMRR + ρMRRθMRR)qt−1 (3.19)

is the residual.
We estimate this model for the 30 stocks in our sample. Table A.3 reports, for each sample

stock, the structural parameters (φMRR ,θMRR ,ρMRR)′ and the implied effective spread, sMRR =

2(φMRR +θMRR). The last three columns show the actual spread (taken from Table A.1), the dif-
ference between the implied spread and the actual spread in Cents, and the percentage differ-
ence between implied and actual spread. We report Newey-West standard errors to account
for serial correlation and heteroskedasticity. The results are consistent with those reported
by Madhavan et al. (1997) and Grammig et al. (2006). The spread implied by the trade indi-
cator model is systematically lower than the actual spread measured directly from the data,
s = 1

N ∑
N
t=1 2qt(pt −mt) where N is the number of trades. The last column reveals that the bias

amounts to approximately 20%. The objective of this paper is to analyze why such a bias oc-
curs. We argue that there is an endogeneity problem in eq. (3.9), that is, one of the regressors (qt

and/or qt−1) is correlated with the error term (ut +∆ηt). Our argument is best explained in the
context of the statistical model corresponding to eq. (3.9) which we derive in the next section.

3.1.3. Statistical model

We search for a statistcal model that corresponds to our structural model (3.9). As pointed
out in Hasbrouck (2007) the corresponding statistical model must be able to generate the full
joint distribution of the variables under consideration (i.e. price changes and the trade indicator
variable). The trade indicator model assumes a zero mean and stationary autocovariance for the
stochastic processes {∆pt} and {qt}. For models of this kind Wold’s theorem (see e.g. Brockwell
and Davis (2009) and the application to the Roll (1984) model in Hasbrouck (2007)) states that a
corresponding moving average (MA) process exists and is of the form

xt =
∞
∑
j=0
δ jεt− j +κt , (3.20)
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where {εt} is a white-noise process, δ0 = 1 (a normalization), and ∑
∞
j=0 δ j < ∞. κt is a linearly

deterministic process which, in this context, means that it can be predicted arbitrarily well by a
linear projection on past observations of xt. For a purely stochastic process κt = 0, and we are
left with a moving average representation.

The structural model in (3.9) contains two stochastic processes, namely the price differences
{∆pt} and the trade indicator {qt}. The interaction of these variables is described by a multi-
variate linear model,

pt = µt +φ
mod
MRRqt , φmod

MRR ≥ 0 , (3.21)

µt = µt−1 + wt , (3.22)

wt = ut +θ
mod
MRRvt , θmod

MRR ≥ 0 , (3.23)

qt = ρmod
MRRqt−1 + vt , |ρmod

MRR| < 1 , (3.24)

where {ut} and {vt} are white-noise processes, and µt denotes, as before, the expected value of
the security conditional upon public information as of time t. To see that the system of linear
equations in (3.21) - (3.24) indeed corresponds to the MRR trade indicator model we take first
differences of the price eq. (3.21) and substitute ∆µt = wt from (3.22).

∆pt = wt +φ
mod
MRR(qt − qt−1)

= ut +θ
mod
MRRvt +φ

mod
MRR(qt − qt−1) (3.25)

= θmod
MRR(qt − ρmod

MRRqt−1) +φ
mod
MRR(qt − qt−1) + ut

= (φmod
MRR +θ

mod
MRR)qt − (φmod

MRR + ρ
mod
MRRθ

mod
MRR)qt−1 + ut .9 (3.26)

The final expression is identical to eq. (3.9).
To arrive at an autoregressive moving average (ARMA) vector representation we transform

(3.25) a little further:

∆pt = ut +θ
mod
MRRvt +φ

mod
MRR(ρ

mod
MRRqt−1 − qt−1 + vt)

= ut + (φmod
MRR +θ

mod
MRR)vt +φ

mod
MRR(ρ

mod
MRR − 1)qt−1 , (3.27)

and use equation (3.27) together with (3.24) for the vector representation,

yt =

[
∆pt

qt

]
=

[
1 φmod

MRR +θ
mod
MRR

0 1

] [
ut

vt

]
+

[
0 φmod

MRR(ρ
mod
MRR − 1)

0 ρmod
MRR

] [
∆pt−1

qt−1

]
= ψMRRεt +ϕMRR yt−1

= ε∗t +ϕMRR yt−1 , (3.28)

9The original model derived above also considers an error process {ηt} accounting for rounding errors,
etc. If we want this error term to be included in the statistical model we would add the error process
{ηt} to the price equation (3.21).
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whereψMRRεt = ε∗t is a standardization necessary for estimation of a VARMA model.10 Define

ϕMRR =

[
0 φmod

MRR(ρ
mod
MRR − 1)

0 ρmod
MRR

]
=

[
ϕ11 ϕ12

ϕ21 ϕ22

]
(3.29)

The vector moving average (VMA) representation of the model in equation (3.28) then is

yt = (I−ϕMRR L)−1ε∗t , (3.30)

where I is the identity matrix. For {yt} to be a stable process all the roots of the polynomial
(I−ϕMRR L)−1 must lie outside the unit circle.

Estimation of the VARMA model eq. (3.28) does not yield estimates of (φmod
MRR + θmod

MRR) and
θmod

MRR. However, inspection of the covariance matrix

ΩMRR
ε∗ = E[ε∗ε∗′] =

[
V[ut + (φmod

MRR +θ
mod
MRR)vt] Cov[ut, vt] + (φmod

MRR +θ
mod
MRR)σ

2
v

Cov[ut, vt] + (φmod
MRR +θ

mod
MRR)σ

2
v σ2

v

]
(3.31)

where σ2
v denotes the variance of the white-noise process {vt} yields the following insight. As

long as the covariance between the trade innovation vt and the public information arrival ut

is zero, the effective half-spread (φmod
MRR + θmod

MRR) can be estimated directly from the covariance
matrix in eq. (3.31) by dividing the element (1, 2) by the element (2, 2).

However, if this covariance is non-zero, the MRR model suffers from an endogeneity prob-
lem. This can be seen from eq. (3.26) using the expression for the trade indicator process, {qt}
in eq. (3.24). If {ut} and {vt} are correlated, so are {qt} and {ut}. Whether {ut} and {vt} are
correlated is an empirical question. Therefore, we now go back to the data in order to obtain an
estimator of the covariance between {ut} and {vt}.

3.1.4. Estimation of covariances

To obtain an estimator for (φmod
MRR +θmod

MRR) we need an estimate of the variance of the white-
noise process {vt} and an estimate of the covariance between {ut} and {vt}. Remember that
{ut} is public information arrival and {vt} the order flow surprise. To obtain an estimate of the
variance of {vt} we can estimate eq. (3.24) by OLS. This regression also provides us with the
time series of {vt}. In order to estimate the covariance between {ut} and {vt} we also need the
time series of {ut}. To obtain this time series we first-difference the quote midpoint equation
(3.14) and substitute ∆µt−1 = ut−1 +θ

mod
MRRvt−1 from eq. (3.22) and eq. (3.23).

10See for instance Lütkepohl (2005, p.448).

17



∆mt = ∆µt−1 − ρmod
MRRθ

mod
MRR∆qt−1 + ∆ut

= −ρmod
MRRθ

mod
MRR∆qt−1 +θ

mod
MRRvt−1 + ut−1 + ∆ut (3.32)

= α1∆qt−1 +α2vt−1 + ut . (3.33)

We estimate eq. (3.33) by OLS and retain the residuals. Now, equipped with the time series of
{ut} and {vt}, we can estimate the covariance 11

Ĉov[ut, vt] = Cov[ût, v̂t] . (3.34)

We apply this procedure to our data. The results are shown in Table A.4. The covariance be-
tween {ut} and {vt} is negative for all 30 sample stocks. Estimates of the correlation range from
-0.041 to -0.257 with a mean value of -0.193. These results provide strong evidence that {ut} and
{vt} are correlated and that, therefore, the trade indicator model suffers from an endogeneity
problem. Economically, the non-zero correlation between {ut} and {vt} implies that the arrival
of public information is correlated with the surprise component of the order flow. A possible
interpretation of a non-zero correlation is that the suppliers of liquidity make errors when ad-
justing their quotes to new public information (or are simply adjusting their quotes too slowly).
Other traders who observe these errors (or who are faster than the suppliers of liquidity, e.g.
high frequency traders) react by submitting orders. These orders will be buy orders (qt = 1)
when the actual quote change is too small (ut smaller than the true price impact of new public
information) and will be sell orders (qt = −1) when the actual quote change is too large (ut

larger than the true price impact of new public information). This will then result in a negative
correlation between public information arrival and the order flow surprise.

3.1.5. Estimation of VAR model

So far we have shown that the MRR model suffers from an endogeneity problem because
{ut} and {vt} and, in consequence, qt and ut are correlated. We now want to analyze whether
this endogeneity problem is indeed the reason why the implied spread from the trade indicator
model underestimates the actual spread. To this end we propose the following three-step esti-
mation procedure to obtain (i) an estimate of the adverse-selection component θmod

MRR and (ii) an
unbiased estimate of the effective spread.

1. Estimate via least-squares an AR(1) model of the trade indicator variable {qt} (eq. (3.24))

qt = ρmod
MRRqt−1 + vt .

11Note that Cov[ut , vt] 6= 0 does not imply Cov[ut , vt−1] 6= 0 because the error processes {ut} and {vt}
are assumed to be serially uncorrelated. Consequently, estimating eq. (3.33) by OLS yields unbiased
estimates.
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2. Estimate the following model by OLS (eq. (3.33))

∆mt = α1∆qt−1 +α2v̂t−1 + ut .

Use the residuals from this regression together with those from step 1, v̂t, to compute the
covariance Cov[ût, v̂t].

3. Next, use a maximum likelihood approach (see for example Lütkepohl (2005)) to estimate
the VAR model (eq. (3.28))

yt = ε
∗
t +ϕMRR yt−1 .

Obtain the variance-covariance matrix of the residuals (eq. (3.31)), Ω̂MRR
ε∗ , and compute the

effective spread by inserting the covariance, Cov[ût, v̂t], from step 2 into the expression

ŝmod
MRR = 2

(Ω̂MRR
ε∗ (1, 2)−Cov[ût, v̂t])

Ω̂MRR
ε∗ (2, 2)

.

The parameter α̂2 from step 2 provides an estimate of the adverse-selection component

θmod
MRR and ŝmod

MRR−2α̂2
2 = φ̂mod

MRR is an estimate of the transitory component of the spread.

We apply this three-step procedure to our 30 sample stocks.12 The results are shown in ta-
ble A.5. All parameters exhibit the expected signs: ρ̂mod

MRR = ϕ̂22 > 0, α̂1 = − ̂ρmod
MRRθ

mod
MRR < 0,

α̂2 = θ̂mod
MRR > 0, and ϕ̂12 = ̂φmod

MRR(ρ
mod
MRR − 1) < 0. Furthermore, estimates from all three steps are

significant at the 1% level. We also tested each polynomial for roots outside the unit circle and
found all estimated polynomials to be stable.

The last three columns of table A.5 show three estimates of the effective bid-ask spread. s,
taken from Table A.1 is the spread estimated directly from the data and serves as benchmark,
as before. ŝ0

MRR is the implied spread obtained under the assumption that Cov[ut, vt] = 0. It
is almost identical to the implied spread obtained from the structural MRR model (eq. (3.9))
shown in Table A.3. Most importantly, it exhibits the same 20% downward bias documented
earlier. In contrast, the estimate of the effective spread obtained under the assumption that
Cov[ut, vt] = Cov[ût, v̂t], denoted ŝmod

MRR, approximates the actual spread s very well. It does not
show the downward bias that plagues the MRR implied spread. In fact, ŝmod

MRR is smaller than s in
14 cases, larger in 15 cases, and in one case the values (rounded to the third digit) are identical.
The mean implied spread is 2.933 which is indeed very close to the average actual spread of
2.955. The largest relative deviation between the implied spread and the actual spread for any
individual stock is 3.57% (as compared to an average relative deviation of 19.9% for the biased
estimator ŝ0

MRR). From these results we conclude that our modified estimator yields an unbiased
estimate of the effective bid-ask spread.

As noted above, α̂2 shown in table A.5 is an estimate of the adverse-selection component and
can be compared to the estimate of θMRR shown in Table A.3. This comparison reveals that our

12All estimations were conducted in R-3.0.1 using the package dse (version 2013.3.2). See Petris (2010)
for further information about the dse-package.
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modified estimator yields significantly larger estimates of the adverse selection component. In
fact, while theθMRR estimates are similar in magnitude to the immediate price impacts shown in
table A.2, the estimates we obtain when using our modified estimator are much closer to the 1-
minute and 5-minute price impacts. In contrast, the transitory component obtained when using

our estimator (not shown in table A.5 but obtainable using the expression ŝmod
MRR−2α̂2

2 = φ̂mod
MRR) is

similar in magnitude to the MRR estimate ofφMRR shown in Table A.3.

3.2. The model by Huang and Stoll

In this section we repeat our analysis for the Huang and Stoll (1997) trade indicator model.
As noted earlier, Huang and Stoll (1997) assume that the trade indicator variable is serially
uncorrelated. Their model can be derived from the MRR model by setting the autocorrelation
of the trade indicator variable, ρMRR in eq. (3.9), to zero.

∆pt = (φHS +θHS)qt − (φHS + 0 ·θHS)qt−1 + ut + ∆ηt

= φHS∆qt +θHSqt +θHSqt−1 −θHSqt−1 + ut + ∆ηt

= (φHS +θHS)∆qt +θHSqt−1 + ut + ∆ηt . (3.35)

3.2.1. Estimating the basic model

We stimate the basic Huang and Stoll (1997) model for our 30 sample stocks. The results are
shown in Table A.6. All parameter estimates are significant at the 1% level. The effective spread
estimates (and, by implication, the bias relative to the effective spread estimated directly from
the data) implied by the model are virtually identical to those obtained from the MRR model
(table A.3). However, the components of the spread estimated by the Huang and Stoll (1997)
model differ from those obtained from the MRR model. The transitory component is smaller
and the adverse selection component larger than the corresponding MRR estimates.

3.2.2. Statistical model

We now derive the statistical model corresponding to the Huang and Stoll (1997) structural
model. We start from eq. (3.28) and set ρmod

MRR = 0. This results in qt = vt and we get the following
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VAR representation for the Huang and Stoll model13

yt =

[
∆pt

qt

]
=

[
1 φmod

HS +θmod
HS

0 1

] [
ut

vt

]
+

[
0 −φmod

HS

0 0

] [
∆pt−1

qt−1

]
(3.39)

= ψHSεt +ϕHS yt−1 . (3.40)

A normalization of the error term ε∗t = ψHSεt results in the equation system

yt = ε
∗
t +ϕHS yt−1 (3.41)

which can be estimated by maximum likelihood.
As in the VAR model in eq. (3.28) the variance-covariance matrix contains in its element (1, 2)

the term Cov[ut, vt] +φmod
HSσ

2
v and in its element (2, 2) the variance of the trade indicator variable,

σ2
v (remember that in the Huang and Stoll (1997) model vt = qt).

3.2.3. Estimation of covariances

As in the MRR model we wish to estimate the covariance between public information arrival
and the order flow surprise (which here is equal to the trade indicator variable because the
expected value of qt is zero). We obtain an estimate of {ut} from the equation for the first
difference of the quote midpoint (see equation (3) in Huang and Stoll (1997)),

∆mt = θ
mod
HS qt−1 + ut . (3.42)

Least-squares estimation gives us residuals ût which can be used to calculate an estimate of the
covariance between the trade indicator process {qt} and the process of new public information
arrival {ut},

Ĉov[ut, qt] = Cov[ût, qt] . (3.43)

Table A.7 shows the covariance estimates that we obtain when we apply this procedure to our
data. All covariances are negative and similar in magnitude to the estimates obtained from the
MRR model. This confirms our previous evidence that new public information arrival and the
trade indicator are negatively correlated.

13It can be shown that this VAR model derives directly from the statistical model,

pt = µt +φ
mod
HS qt , (3.36)

µt = µt−1 + wt , (3.37)

wt = ut +θ
mod
HS qt , (3.38)

and further that this statistical model is identical to the structural model in eq. (3.35).
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3.2.4. Estimation of VAR model

Building on the statistical model derived above we now propose a two-step procedure for a
modified estimate of the effective spread from the HS model.

1. Estimate via least squares the model

∆mt = θ
mod
HS qt−1 + ut ,

and use the residuals to compute the covariance Cov[ût, qt].

2. Use maximum likelihood to estimate the VAR model (eq. (3.41)),

yt = ε
∗
t +ϕHS yt−1 .

Then take the variance-covariance matrix of the residuals, Ω̂HS
ε∗ , and, by using the covari-

ance Cov[ût, qt] from step 1, compute the effective spread as

ŝmod
HS = 2

Ω̂HS
ε∗ (1, 2)−Cov[ût, qt]

Ω̂HS
ε∗ (2, 2)

.

We apply this two-step procedure to our data. The results are summarized in Table A.8. All
parameters, without exception, possess the expected sign (θ̂mod

HS > 0 and ϕ̂12 = −φ̂mod
HS < 0). The

effective spread ŝ0
HS estimated under the assumption that Cov[ut, qt] = 0 is similar to the implied

effective spread ŝHS from the structural model (for these results see table A.6). When comparing
the implied spreads from the two-step procedure for the HS model ŝmod

HS and the estimates from
the three-step procedure for the MRR model (ŝmod

MRR in table A.5) we find that the former exhibit
a small but systematic negative bias of about 1%. This bias is due to the fact that the Huang
and Stoll (1997) model does not take the serial correlation of the trade indicator variable into
account.

Note that the adverse selection component estimated by our two-step procedure is simply the
slope of a regression of changes in the quote midpoint on the lagged trade indicator variable
and is thus identical by definition to the immediate price impact shown in table A.2.

To conclude, the modified Huang and Stoll (1997) model also corrects the bias of the structural
model to a large extent, but does not perform as well as the modified Madhavan et al. (1997)
model.

4. Conclusion

This paper is motivated by the stylized fact that trade indicator models, such as the popu-
lar models by Madhavan et al. (1997) and Huang and Stoll (1997), underestimate the bid-ask
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spread. We argue that this negative bias is due to an endogeneity problem. In order to substan-
tiate our claim we develop the statistical models that correspond to the structural Madhavan
et al. (1997) and Huang and Stoll (1997) models. The VARMA representation of these models
reveals that, in both cases, the spread implied by the model depends on the covariance between
public information arrival and the surprise in the trade indicator variable. If this covariance is
different from zero the structural models suffer from an endogeneity problem which results in
biased spread estimates. We use data for the component stocks of the DAX30 index and the first
quarter of 2004 and find that the covariance is negative and substantial (the average correlation
is -0.193).

We then develop modified estimators which take the covariance between public information
arrival and the surprise component in the order flow explicitly into account. The modified
Huang and Stoll (1997) model has a bias of only about 1% (as compared to almost 19% for
the original model). The modified Madhavan et al. (1997) is essentially unbiased. A potential
drawback of the modified estimator is that it requires additional data, namely, a time series of
quote midpoints. In many applications this will not be a cause for concern, though. Estimation
of any trade indicator model requires a trade indicator variable. This variable, in turn, is usually
obtained by applying the Lee and Ready (1991) algorithm to trade and quote data (as is done in
Huang and Stoll (1997) and Madhavan et al. (1997)). Thus, quote data is required anyway.
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A. Tables

Table A.1.: Descriptive statistics. The table shows the stocks contained in the DAX-30 index to-
gether with their ticker symbols, market capitalization (31st December, 2003), trad-
ing volume (Q1, 2004), number of transactions (Q1, 2004), and effective spread (Q1,
2004). The latter two columns contain solely trading on the electronic limit order
market Xetra.

Stock Ticker Market Cap Trading Volume Transactions Eff. Spread
[bio. Euro] [bio. Euro] [Euro-Cent]

Adidas-Salomon adsft 4.12 2.04 62,394 6.51
Altana altft 6.72 1.98 69,721 3.87
Allianz alvft 38.51 18.54 288,276 4.86
BASF basft 25.52 7.96 164,692 2.18
Bayer bayft 17.09 5.67 153,092 1.71
BMW bmwft 22.99 5.62 134,603 2.07
Commerzbank cbkft 9.25 3.40 92,285 1.52
Continental contft 4.07 1.64 63,703 2.89
Deutsche Boerse db1ft 4.86 2.28 62,518 3.51
Deutsche Bank dbkft 38.34 19.78 252,666 2.96
DaimlerChrysler dcxft 37.80 12.00 211,053 1.98
Deutsche Post dpwft 18.16 2.80 83,772 1.76
Deutsche Telekom dteft 61.04 22.42 283,502 1.12
E.ON eoaft 35.94 10.27 183,284 2.54
Fresenius MC fmeft 3.96 0.82 39,538 5.29
Henkel hen3ft 3.68 1.16 44,704 5.05
Hypovereinsbank hvmft 9.65 6.29 123,296 1.82
Infineon ifxft 7.99 9.37 178,506 1.20
Lufthansa lhaft 5.06 2.81 85,964 1.55
Linde linft 5.09 1.43 57,135 3.50
MAN manft 3.39 1.77 67,326 2.67
Metro meoft 11.34 2.48 78,735 3.10
Muenchener Rueck muv2ft 22.23 13.26 218,564 4.62
RWE rweft 16.54 6.24 147,573 2.11
SAP sapft 42.14 11.80 178,952 6.48
Schering schft 7.79 3.28 97,004 2.89
Siemens sieft 56.84 20.57 281,927 2.63
Thyssen Krupp tkaft 8.08 2.42 80,258 1.76
TUI tuift 2.96 1.68 67,646 2.32
VW vowft 14.20 6.67 162,360 2.17
Mean 18.18 6.95 133,835 2.95
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Table A.2.: Price impacts. The table shows the price impacts for all stocks in the DAX-30 index
where N denotes the number of transactions. Impacts are calculated in three differ-
ent ways: (1) with the next sequential midquote, (2) the next midquote after 1 minute
and (3) the next midquote after 5 minutes. Results were obtained by using R-3.0.2
and the xts-package (version 0.9.7).

Stock Ticker N Next Transaction 1 Minute 5 Minutes
[Euro Cent] [Euro Cent] [Euro Cent]

Adidas-Salomon adsft 62,394 1.7841 2.4910 2.9337
Altana altft 69,721 1.0114 1.4035 1.5530
Allianz alvft 288,276 1.1330 1.6811 2.1625
BASF basft 164,692 0.5774 0.9584 1.0396
Bayer bayft 153,092 0.4265 0.5950 0.5706
BMW bmwft 134,603 0.5378 0.7609 0.8049
Commerzbank cbkft 92,285 0.3684 0.4591 0.5281
Continental contft 63,703 0.7793 1.1076 1.6022
Deutsche Boerse db1ft 62,518 0.8626 1.2821 1.3380
Deutsche Bank dbkft 252,666 0.7329 1.1480 1.3767
DaimlerChrysler dcxft 211,053 0.4688 0.7273 0.8260
Deutsche Post dpwft 83,772 0.3756 0.4721 0.4951
Deutsche Telekom dteft 283,502 0.1518 0.2306 0.2811
E.ON eoaft 183,284 0.6386 1.0643 1.0768
Fresenius MC fmeft 39,538 1.4475 1.8328 2.1103
Henkel hen3ft 44,704 1.3155 1.8675 2.3577
Hypovereinsbank hvmft 123,296 0.4433 0.5670 0.7075
Infineon ifxft 178,506 0.2160 0.2682 0.2769
Lufthansa lhaft 85,964 0.3620 0.4901 0.6102
Linde linft 57,135 1.0203 1.5109 1.9072
MAN manft 67,326 0.7039 0.9773 1.1019
Metro meoft 78,735 0.9246 1.3071 1.6146
Muenchener Rueck muv2ft 218,564 1.1587 1.9262 2.2624
RWE rweft 147,573 0.5479 0.8294 0.9195
SAP sapft 178,952 1.6708 2.6361 2.5552
Schering schft 97,004 0.7274 0.9894 1.2963
Siemens sieft 281,927 0.6306 1.0125 1.0951
Thyssen Krupp tkaft 80,258 0.4030 0.4963 0.5726
TUI tuift 67,646 0.5696 0.7699 0.9512
VW vowft 162,360 0.5664 0.8709 0.8856
Mean 133,835 0.7519 1.0911 1.2604
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Table A.3.: MRR basic model. The table shows the results from a GMM estimation of the model
by Madhavan et al. (1997). Newey-West standard errors are shown below each es-
timate and the standard error for the arithmetic average is used for the empirical
spread. All estimations were performed in the statistical programming language
R-3.0.2 using the package gmm (version 1.4.5).

Parameters Spread
Ticker N φMRR θMRR ρMRR ŝMRR s Bias Rel. Bias

Std. err. [Euro-Cent] [Euro-Cent] [Euro-Cent] [%]
adsft 62,394 0.008822 0.016643 0.2079 5.093 6.51 -1.416 -21.8

2.956e-04 2.887e-04 4.567e-03 6.142e-04 2.619e-04
altft 69,721 0.006137 0.009613 0.2142 3.150 3.87 -0.722 -18.7

1.763e-04 1.691e-04 4.671e-03 3.978e-04 1.313e-04
alvft 288,276 0.009059 0.010127 0.1977 3.837 4.86 -1.027 -21.1

1.082e-04 9.642e-05 2.675e-03 2.694e-04 1.336e-04
basft 164,692 0.003308 0.005569 0.2403 1.775 2.18 -0.405 -18.6

5.978e-05 6.262e-05 3.269e-03 1.388e-04 4.102e-05
bayft 153,092 0.003203 0.003620 0.1857 1.364 1.71 -0.349 -20.4

3.997e-05 4.248e-05 3.195e-03 9.296e-05 3.792e-05
bmwft 134,603 0.003532 0.004885 0.2025 1.683 2.07 -0.386 -18.7

5.900e-05 6.388e-05 3.496e-03 1.357e-04 4.292e-05
cbkft 92,285 0.002941 0.002992 0.2058 1.187 1.52 -0.334 -22.0

4.236e-05 4.499e-05 4.265e-03 9.293e-05 3.864e-05
contft 63,703 0.003454 0.007834 0.2414 2.258 2.89 -0.636 -22.0

1.345e-04 1.437e-04 5.027e-03 3.252e-04 1.226e-04
db1ft 62,518 0.005320 0.009083 0.2679 2.881 3.51 -0.625 -17.8

1.563e-04 1.698e-04 4.984e-03 3.467e-04 1.174e-04
dbkft 252,666 0.005337 0.006804 0.2165 2.428 2.96 -0.534 -18.0

6.752e-05 6.532e-05 2.654e-03 1.623e-04 4.923e-05
dcxft 211,053 0.003796 0.004317 0.2281 1.623 1.98 -0.354 -17.9

4.316e-05 4.221e-05 2.893e-03 9.755e-05 3.222e-05
dpwft 83,772 0.003908 0.003203 0.1983 1.422 1.76 -0.333 -19.0

5.420e-05 5.359e-05 4.316e-03 1.279e-04 5.583e-05
dteft 283,502 0.003647 0.001089 0.2242 0.947 1.12 -0.175 -15.6

1.418e-05 1.269e-05 2.703e-03 2.484e-05 8.167e-06
eoaft 183,284 0.004137 0.006073 0.2440 2.042 2.54 -0.498 -19.6

6.414e-05 6.730e-05 3.036e-03 1.461e-04 4.615e-05
fmeft 39,538 0.006392 0.013644 0.2305 4.007 5.29 -1.278 -24.2

2.836e-04 3.011e-04 5.760e-03 5.922e-04 2.769e-04
hen3ft 44,704 0.006125 0.014285 0.2666 4.082 5.05 -0.970 -19.2

2.633e-04 2.885e-04 5.616e-03 5.649e-04 2.041e-04
hvmft 123,296 0.003713 0.003486 0.1862 1.440 1.82 -0.378 -20.8

4.790e-05 4.928e-05 3.508e-03 1.213e-04 4.089e-05
ifxft 178,506 0.003306 0.001457 0.1992 0.953 1.20 -0.243 -20.3

2.007e-05 1.854e-05 3.307e-03 4.300e-05 1.373e-05
lhaft 85,964 0.002983 0.003219 0.2259 1.240 1.55 -0.311 -20.0

4.588e-05 4.640e-05 4.299e-03 9.561e-05 4.346e-05
linft 57,135 0.002961 0.010837 0.2594 2.760 3.50 -0.736 -21.1

1.689e-04 1.883e-04 5.104e-03 3.580e-04 1.316e-04
manft 67,326 0.003968 0.006794 0.2477 2.152 2.67 -0.515 -19.3

1.159e-04 1.218e-04 4.831e-03 2.641e-04 8.581e-05
meoft 78,735 0.003181 0.008790 0.2311 2.394 3.10 -0.710 -22.9

1.242e-04 1.331e-04 4.447e-03 2.591e-04 9.356e-05

26



Table A.3.: (continued)
Parameters Spread

Ticker N φMRR θMRR ρMRR ŝMRR s Bias Rel. Bias
Std. err. [Euro-Cent] [Euro-Cent] [Euro-Cent] [%]

muv2ft 218,564 0.008387 0.010666 0.2104 3.810 4.62 -0.814 -17.6
1.096e-04 1.158e-04 2.775e-03 2.767e-04 8.312e-05

rweft 147,573 0.003510 0.004820 0.2163 1.666 2.11 -0.439 -20.9
5.822e-05 6.143e-05 3.359e-03 1.399e-04 4.164e-05

sapft 178,952 0.010699 0.014314 0.1954 5.003 6.48 -1.474 -22.8
1.720e-04 1.604e-04 3.015e-03 4.225e-04 1.359e-04

schft 97,004 0.005012 0.006597 0.2052 2.322 2.89 -0.568 -19.7
9.979e-05 1.059e-04 3.985e-03 2.412e-04 9.056e-05

sieft 281,927 0.004987 0.005709 0.2141 2.139 2.63 -0.495 -18.8
5.224e-05 5.106e-05 2.638e-03 1.211e-04 4.184e-05

tkaft 80,258 0.003653 0.003511 0.1943 1.433 1.76 -0.324 -18.4
5.269e-05 5.344e-05 4.141e-03 1.169e-04 4.461e-05

tuift 67,646 0.003946 0.005369 0.2142 1.863 2.32 -0.457 -19.7
8.749e-05 8.801e-05 4.716e-03 1.883e-04 8.246e-05

vowft 162,360 0.003686 0.005070 0.2274 1.751 2.17 -0.424 -19.5
5.691e-05 5.973e-05 3.333e-03 1.265e-04 4.119e-05

Mean 133,835 0.004770 0.007014 0.2199 2.357 2.95 -0.598 -19.9
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Table A.4.: MRR covariances. The table shows for all stocks in the DAX-30 index the variances
of the new public information announcement, ut, and the trade innovation, vt, as
well as their common covariance and the correlation coefficient. All estimations were
performed in the statistical progrmming language R-3.0.2.

Ticker N σ2
u σ2

v Cov[ut , vt] Corr[ut , vt]

adsft 62,394 0.0012492 0.957 -0.006303 -0.1823
altft 69,721 0.0003948 0.954 -0.003429 -0.1767
alvft 288,276 0.0102886 0.960 -0.004097 -0.0412
basft 164,692 0.0001225 0.942 -0.002085 -0.1941
bayft 153,092 0.0000633 0.965 -0.001690 -0.2163
bmwft 134,603 0.0001139 0.959 -0.001996 -0.1910
cbkft 92,285 0.0000484 0.958 -0.001687 -0.2478
contft 63,703 0.0002438 0.941 -0.002624 -0.1732
db1ft 62,518 0.0003256 0.928 -0.002735 -0.1573
dbkft 252,666 0.0002077 0.953 -0.002616 -0.1859
dcxft 211,053 0.0000854 0.947 -0.001782 -0.1982
dpwft 83,772 0.0000591 0.961 -0.001508 -0.2002
dteft 283,502 0.0000142 0.950 -0.000838 -0.2282
eoaft 183,284 0.0001564 0.940 -0.002374 -0.1957
fmeft 39,538 0.0008230 0.947 -0.005190 -0.1859
hen3ft 44,704 0.0006795 0.929 -0.003982 -0.1585
hvmft 123,296 0.0000696 0.965 -0.001923 -0.2347
ifxft 178,506 0.0000220 0.959 -0.001180 -0.2569
lhaft 85,964 0.0000497 0.949 -0.001495 -0.2177
linft 57,135 0.0003416 0.932 -0.003078 -0.1725
manft 67,326 0.0001933 0.938 -0.002501 -0.1857
meoft 78,735 0.0002839 0.947 -0.003297 -0.2011
muv2ft 218,564 0.0005249 0.955 -0.004163 -0.1859
rweft 147,573 0.0001126 0.952 -0.002220 -0.2144
sapft 178,952 0.0010630 0.962 -0.006635 -0.2075
schft 97,004 0.0002112 0.958 -0.002633 -0.1851
sieft 281,927 0.0001445 0.954 -0.002388 -0.2034
tkaft 80,258 0.0000585 0.962 -0.001545 -0.2058
tuift 67,646 0.0001189 0.953 -0.001959 -0.1840
vowft 162,360 0.0001254 0.948 -0.002260 -0.2073
Mean 133,835 0.0006065 0.951 -0.002740 -0.1932
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Table A.5.: MRR estimation results VAR model. The table shows the results from the three step estimation for each stock of the DAX-30
index. ŝ0

MRR is the spread estimated under the assumption that Cov[ut, vt] = 0 and ŝmod
MRR is the spread estimated with an

estimate of the empirical Cov[ut, vt]. All estimations have been performed in the statistical programming language R-3.0.2
and for the VAR model the R-package dse (version 2013.3.2) has been used.

Step 1 Step 2 Step 3 Spread
Ticker N ρmod

MRR α1 α2 ϕ12 ϕ22 ŝ0
MRR ŝmod

MRR s
(−ρmod

MRRθ
mod
MRR) (θmod

MRR) [Euro-Cent] [Euro-Cent] [Euro-Cent]
adsft 62,394 0.2079 -0.0056873 0.023242 -0.006969 0.2077 5.091 6.408 6.509

4.570e-03 2.043e-04 3.961e-04 2.058e-04 3.916e-03
altft 69,721 0.2142 -0.0028208 0.012892 -0.004807 0.2138 3.149 3.867 3.873

4.674e-03 1.055e-04 2.165e-04 1.155e-04 3.700e-03
alvft 288,276 0.1977 -0.0018046 0.012811 -0.007251 0.1977 3.837 4.690 4.864

2.683e-03 8.026e-04 9.563e-04 6.712e-05 1.826e-03
basft 164,692 0.2403 -0.0017277 0.007509 -0.002512 0.2401 1.775 2.218 2.180

3.275e-03 4.375e-05 8.166e-05 3.996e-05 2.392e-03
bayft 153,092 0.1857 -0.0009004 0.005172 -0.002603 0.1857 1.364 1.714 1.714

3.199e-03 2.840e-05 5.459e-05 3.075e-05 2.511e-03
bmwft 134,603 0.2025 -0.0013274 0.006701 -0.002811 0.2025 1.683 2.099 2.069

3.499e-03 4.288e-05 8.669e-05 4.187e-05 2.669e-03
cbkft 92,285 0.2058 -0.0007368 0.004450 -0.002328 0.2058 1.187 1.539 1.521

4.274e-03 3.161e-05 5.792e-05 3.364e-05 3.221e-03
contft 63,703 0.2414 -0.0027634 0.010472 -0.002609 0.2413 2.257 2.814 2.894

5.034e-03 8.927e-05 1.704e-04 8.901e-05 3.845e-03
db1ft 62,518 0.2679 -0.0029509 0.011577 -0.003875 0.2678 2.879 3.468 3.506

4.989e-03 1.164e-04 2.141e-04 1.061e-04 3.853e-03
dbkft 252,666 0.2165 -0.0017910 0.009157 -0.004176 0.2165 2.428 2.977 2.963

2.661e-03 4.114e-05 9.033e-05 4.367e-05 1.942e-03
dcxft 211,053 0.2281 -0.0012290 0.005940 -0.002930 0.2280 1.622 1.998 1.977

2.905e-03 3.147e-05 5.858e-05 3.021e-05 2.119e-03
dpwft 83,772 0.1983 -0.0007756 0.004544 -0.003129 0.1982 1.423 1.736 1.755

4.323e-03 3.427e-05 6.712e-05 4.175e-05 3.386e-03
dteft 283,502 0.2242 -0.0004575 0.001970 -0.002828 0.2241 0.947 1.123 1.122

2.707e-03 9.483e-06 1.775e-05 1.229e-05 1.823e-03
eoaft 183,284 0.2440 -0.0019933 0.008365 -0.003125 0.2439 2.042 2.547 2.540

3.040e-03 5.111e-05 9.402e-05 4.306e-05 2.265e-03
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Table A.5.: (continued)
Step 1 Step 2 Step 3 Spread

Ticker N ρmod
MRR α1 α2 ϕ12 ϕ22 ŝ0

MRR ŝmod
MRR s

(−ρmod
MRRθ

mod
MRR) (θmod

MRR) [Euro-Cent] [Euro-Cent] [Euro-Cent]
fmeft 39,538 0.2305 -0.0041443 0.018533 -0.004886 0.2304 4.006 5.102 5.285

5.766e-03 1.980e-04 3.492e-04 2.059e-04 4.894e-03
hen3ft 44,704 0.2666 -0.0047732 0.017840 -0.004489 0.2661 4.080 4.937 5.052

5.631e-03 1.872e-04 3.370e-04 1.781e-04 4.559e-03
hvmft 123,296 0.1862 -0.0006756 0.005155 -0.003018 0.1862 1.439 1.838 1.818

3.524e-03 3.273e-05 7.266e-05 3.631e-05 2.798e-03
ifxft 178,506 0.1992 -0.0003704 0.002556 -0.002644 0.1996 0.952 1.198 1.196

3.314e-03 1.494e-05 2.577e-05 1.718e-05 2.317e-03
lhaft 85,964 0.2259 -0.0007677 0.004425 -0.002304 0.2258 1.240 1.555 1.551

4.313e-03 3.522e-05 5.756e-05 3.585e-05 3.322e-03
linft 57,135 0.2594 -0.0037667 0.013863 -0.002163 0.2591 2.757 3.417 3.496

5.115e-03 1.227e-04 2.164e-04 1.120e-04 4.041e-03
manft 67,326 0.2477 -0.0022059 0.009229 -0.002971 0.2476 2.152 2.685 2.667

4.837e-03 8.110e-05 1.562e-04 7.810e-05 3.734e-03
meoft 78,735 0.2311 -0.0028111 0.011995 -0.002452 0.2308 2.394 3.091 3.104

4.452e-03 9.332e-05 1.687e-04 8.414e-05 3.468e-03
muv2ft 218,564 0.2104 -0.0030833 0.014645 -0.006623 0.2104 3.810 4.681 4.625

2.781e-03 7.524e-05 1.648e-04 7.447e-05 2.091e-03
rweft 147,573 0.2163 -0.0014486 0.006929 -0.002750 0.2162 1.666 2.132 2.105

3.364e-03 4.198e-05 8.435e-05 3.991e-05 2.542e-03
sapft 178,952 0.1954 -0.0040698 0.020747 -0.008577 0.1953 5.001 6.381 6.476

3.023e-03 1.129e-04 2.249e-04 1.146e-04 2.318e-03
schft 97,004 0.2052 -0.0017597 0.009021 -0.003979 0.2050 2.321 2.871 2.890

3.989e-03 6.773e-05 1.354e-04 7.010e-05 3.143e-03
sieft 281,927 0.2141 -0.0016441 0.007958 -0.003918 0.2140 2.137 2.638 2.634

2.645e-03 3.356e-05 6.420e-05 3.516e-05 1.840e-03
tkaft 80,258 0.1943 -0.0009069 0.004923 -0.002941 0.1942 1.433 1.754 1.757

4.145e-03 3.661e-05 6.452e-05 4.263e-05 3.462e-03
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Table A.5.: (continued)
Step 1 Step 2 Step 3 Spread

Ticker N ρmod
MRR α1 α2 ϕ12 ϕ22 ŝ0

MRR ŝmod
MRR s

(−ρmod
MRRθ

mod
MRR) (θmod

MRR) [Euro-Cent] [Euro-Cent] [Euro-Cent]
tuift 67,646 0.2142 -0.0014879 0.007181 -0.003099 0.2139 1.863 2.273 2.320

4.723e-03 6.107e-05 1.071e-04 6.375e-05 3.756e-03
vowft 162,360 0.2274 -0.0013031 0.007023 -0.002842 0.2274 1.751 2.227 2.175

3.340e-03 4.183e-05 7.897e-05 3.978e-05 2.417e-03
Mean 133,835 0.2199 -0.0020728 0.009561 -0.003720 0.2198 2.356 2.933 2.955
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Table A.6.: HS basic model. The table shows estimation results from the model of Huang and
Stoll (1997). φHS denotes the transitory component of the spread and θHS the ad-
verse selection component. All estimations were conducted in R-3.0.2.

Ticker N φHS θHS ŝHS s Bias Rel Bias
Std. err. [Euro-Cent] [Euro-Cent] [Euro-Cent] [%]

adsft 62,394 0.012280 0.0131824 5.092 6.51 -1.417 -21.8
3.777e-04 3.035e-04

altft 69,721 0.008196 0.0075555 3.150 3.87 -0.722 -18.7
2.310e-04 1.740e-04

alvft 288,276 0.011062 0.0081262 3.838 4.86 -1.027 -21.1
1.549e-04 1.162e-04

basft 164,692 0.004646 0.0042324 1.776 2.18 -0.404 -18.5
7.721e-05 5.753e-05

bayft 153,092 0.003873 0.0029494 1.364 1.71 -0.349 -20.4
5.225e-05 3.926e-05

bmwft 134,603 0.004519 0.0038961 1.683 2.07 -0.386 -18.7
7.828e-05 5.722e-05

cbkft 92,285 0.003557 0.0023784 1.187 1.52 -0.334 -22.0
5.022e-05 3.903e-05

contft 63,703 0.005342 0.0059456 2.258 2.89 -0.636 -22.0
1.822e-04 1.316e-04

db1ft 62,518 0.007759 0.0066456 2.881 3.51 -0.625 -17.8
1.948e-04 1.502e-04

dbkft 252,666 0.006811 0.0053298 2.428 2.96 -0.535 -18.0
9.462e-05 7.079e-05

dcxft 211,053 0.004782 0.0033294 1.622 1.98 -0.354 -17.9
5.521e-05 4.150e-05

dpwft 83,772 0.004544 0.0025697 1.423 1.76 -0.332 -18.9
7.577e-05 5.490e-05

dteft 283,502 0.003889 0.0008461 0.947 1.12 -0.175 -15.6
1.233e-05 1.216e-05

eoaft 183,284 0.005622 0.0045905 2.042 2.54 -0.497 -19.6
8.319e-05 6.241e-05

fmeft 39,538 0.009539 0.0105000 4.008 5.29 -1.277 -24.2
3.488e-04 2.758e-04

hen3ft 44,704 0.009937 0.0104722 4.082 5.05 -0.971 -19.2
3.337e-04 2.563e-04

hvmft 123,296 0.004363 0.0028343 1.439 1.82 -0.379 -20.8
7.936e-05 5.157e-05

ifxft 178,506 0.003597 0.0011641 0.952 1.20 -0.243 -20.4
2.234e-05 1.901e-05

lhaft 85,964 0.003708 0.0024947 1.240 1.55 -0.311 -20.0
5.083e-05 4.139e-05

linft 57,135 0.005771 0.0080257 2.759 3.50 -0.737 -21.1
2.095e-04 1.591e-04

manft 67,326 0.005656 0.0051081 2.153 2.67 -0.514 -19.3
1.504e-04 1.105e-04

meoft 78,735 0.005211 0.0067599 2.394 3.10 -0.710 -22.9
1.440e-04 1.137e-04

muv2ft 218,564 0.010630 0.0084203 3.810 4.62 -0.815 -17.6
1.631e-04 1.120e-04

rweft 147,573 0.004554 0.0037767 1.666 2.11 -0.439 -20.9
8.091e-05 5.902e-05
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Table A.6.: (continued)
Ticker N φHS θHS ŝHS s Bias Rel Bias

Std. err. [Euro-Cent] [Euro-Cent] [Euro-Cent] [%]
sapft 178,952 0.013496 0.0115176 5.003 6.48 -1.474 -22.8

2.554e-04 1.893e-04
schft 97,004 0.006365 0.0052438 2.322 2.89 -0.568 -19.7

1.365e-04 9.889e-05
sieft 281,927 0.006206 0.0044811 2.137 2.63 -0.497 -18.9

6.474e-05 5.045e-05
tkaft 80,258 0.004337 0.0028288 1.433 1.76 -0.324 -18.4

6.978e-05 5.370e-05
tuift 67,646 0.005096 0.0042199 1.863 2.32 -0.457 -19.7

1.077e-04 8.581e-05
vowft 162,360 0.004839 0.0039164 1.751 2.17 -0.424 -19.5

6.826e-05 5.336e-05
Mean 133,835 0.006340 0.0054447 2.357 2.95 -0.598 -19.9
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Table A.7.: HS covariances. The table shows for all stocks in the DAX-30 index the variances
of the new public information announcement, ut, the variance of the trade indicator,
qt, as well as their common covariance and the correlation coefficient. All estimates
were performed in the statistical programming language R-3.0.2.

Ticker N σ2
u σ2

q Cov[ut , qt] Corr[ut , qt]

adsft 62,394 0.00124621 0.9999 -0.006219 -0.17617
altft 69,721 0.00039429 1.0000 -0.003425 -0.17249
alvft 288,276 0.01027869 0.9983 -0.004182 -0.04128
basft 164,692 0.00012235 0.9997 -0.002095 -0.18941
bayft 153,092 0.00006326 0.9994 -0.001696 -0.21329
bmwft 134,603 0.00011382 0.9995 -0.001998 -0.18736
cbkft 92,285 0.00004837 1.0000 -0.001705 -0.24511
contft 63,703 0.00024351 0.9992 -0.002594 -0.16631
db1ft 62,518 0.00032504 0.9999 -0.002751 -0.15262
dbkft 252,666 0.00020771 0.9994 -0.002639 -0.18316
dcxft 211,053 0.00008536 0.9983 -0.001796 -0.19460
dpwft 83,772 0.00005899 0.9999 -0.001521 -0.19809
dteft 283,502 0.00001419 0.9998 -0.000836 -0.22192
eoaft 183,284 0.00015605 1.0000 -0.002380 -0.19051
fmeft 39,538 0.00081994 1.0000 -0.005201 -0.18164
hen3ft 44,704 0.00067751 0.9997 -0.003981 -0.15297
hvmft 123,296 0.00006960 0.9991 -0.001953 -0.23425
ifxft 178,506 0.00002201 0.9975 -0.001195 -0.25491
lhaft 85,964 0.00004965 0.9996 -0.001521 -0.21592
linft 57,135 0.00034056 0.9992 -0.003053 -0.16549
manft 67,326 0.00019291 0.9989 -0.002508 -0.18069
meoft 78,735 0.00028310 0.9999 -0.003292 -0.19568
muv2ft 218,564 0.00052437 0.9989 -0.004159 -0.18173
rweft 147,573 0.00011254 0.9984 -0.002224 -0.20982
sapft 178,952 0.00106215 0.9999 -0.006632 -0.20352
schft 97,004 0.00021102 0.9999 -0.002642 -0.18191
sieft 281,927 0.00014440 1.0000 -0.002396 -0.19937
tkaft 80,258 0.00005840 0.9999 -0.001548 -0.20259
tuift 67,646 0.00011880 0.9980 -0.001963 -0.18028
vowft 162,360 0.00012537 1.0000 -0.002297 -0.20512
Mean 133,835 0.00060567 0.9994 -0.002747 -0.18927
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Table A.8.: HS VAR model. The table shows the results for the two-step estimation procedure
of the Huang and Stoll (1997) model for each stock of the DAX-30. ŝ0

HS is the spread
estimated under the assumption that Cov[ut, qt] = 0 and ŝmod

HS is the spread estimated
with an estimate of the empirical Cov[ut, qt]. All estimations have been performed in
the statistical programming language R-3.0.2 and for the VAR model the R-package
dse (version 2013.3.2) has been used.

Parameters Spreads
Ticker N θmod

HS ϕ12 ŝ0
HS ŝ2 s

Std. err. (−φmod
HS ) [Euro-Cent] [Euro-Cent] [Euro-Cent]

adsft 62,394 0.01784 -0.01226 5.091 6.33 6.51
3.006e-04 1.841e-04

altft 69,721 0.01011 -0.00817 3.148 3.83 3.87
1.694e-04 1.021e-04

alvft 288,276 0.01133 -0.01104 3.837 4.67 4.86
2.001e-04 5.838e-05

basft 164,692 0.00577 -0.00464 1.775 2.19 2.18
6.206e-05 3.479e-05

bayft 153,092 0.00426 -0.00387 1.364 1.70 1.71
4.403e-05 2.586e-05

bmwft 134,603 0.00538 -0.00451 1.683 2.08 2.07
6.639e-05 3.599e-05

cbkft 92,285 0.00368 -0.00355 1.187 1.53 1.52
4.612e-05 2.808e-05

contft 63,703 0.00779 -0.00533 2.257 2.78 2.89
1.276e-04 8.001e-05

db1ft 62,518 0.00863 -0.00773 2.879 3.43 3.51
1.523e-04 9.382e-05

dbkft 252,666 0.00733 -0.00680 2.428 2.96 2.96
7.204e-05 3.760e-05

dcxft 211,053 0.00469 -0.00478 1.622 1.98 1.98
4.515e-05 2.541e-05

dpwft 83,772 0.00376 -0.00454 1.423 1.73 1.76
5.531e-05 3.460e-05

dteft 283,502 0.00152 -0.00389 0.947 1.11 1.12
1.441e-05 8.493e-06

eoaft 183,284 0.00639 -0.00562 2.042 2.52 2.54
6.743e-05 3.739e-05

fmeft 39,538 0.01447 -0.00950 4.006 5.05 5.29
2.615e-04 1.860e-04

hen3ft 44,704 0.01316 -0.00992 4.080 4.88 5.05
2.436e-04 1.575e-04

hvmft 123,296 0.00443 -0.00436 1.439 1.83 1.82
5.974e-05 3.063e-05

ifxft 178,506 0.00216 -0.00359 0.952 1.19 1.20
2.047e-05 1.310e-05

lhaft 85,964 0.00362 -0.00370 1.240 1.54 1.55
4.544e-05 2.990e-05

linft 57,135 0.01020 -0.00574 2.757 3.37 3.50
1.565e-04 1.005e-04

manft 67,326 0.00704 -0.00564 2.152 2.65 2.67
1.171e-04 6.903e-05
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Table A.8.: (continued)
Parameters Spreads

Ticker N θmod
HS ϕ12 ŝ0

HS ŝ2 s
Std. err. (−φmod

HS ) [Euro-Cent] [Euro-Cent] [Euro-Cent]
meoft 78,735 0.00925 -0.00522 2.394 3.05 3.10

1.254e-04 7.515e-05
muv2ft 218,564 0.01159 -0.01063 3.810 4.64 4.62

1.340e-04 6.433e-05
rweft 147,573 0.00548 -0.00455 1.666 2.11 2.11

6.663e-05 3.457e-05
sapft 178,952 0.01671 -0.01346 5.001 6.33 6.48

1.842e-04 1.008e-04
schft 97,004 0.00727 -0.00636 2.321 2.85 2.89

1.134e-04 6.109e-05
sieft 281,927 0.00631 -0.00620 2.137 2.62 2.63

4.898e-05 2.978e-05
tkaft 80,258 0.00403 -0.00433 1.433 1.74 1.76

5.020e-05 3.514e-05
tuift 67,646 0.00570 -0.00509 1.863 2.26 2.32

7.865e-05 5.443e-05
vowft 162,360 0.00566 -0.00483 1.751 2.21 2.17

6.041e-05 3.451e-05
Mean 133,835 0.00752 -0.00633 2.356 2.91 2.95
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Part II.

Bayesian estimation of the probability of informed trading

We propose a methodology to estimate the probability of informed trading (PIN) that only requires data
on the daily number of transactions (but not on the number of buyer-initiated and seller-initiated trades).
Because maximum likelihood estimation of the model is problematic we propose a Bayesian estimation
approach. We perform extensive simulations to evaluate the performance of our estimator. Our method-
ology increases the applicability of PIN estimation to situations in which the data necessary for trade
classification is unavailable, or in which trade classification is inaccurate.
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1. Introduction

The notion of informational asymmetries is central to our understanding of financial markets.
Traders spend resources to acquire information, or to get access to information earlier than other
traders. Because the presence of informed traders imposes costs on other traders, the amount,
or intensity, of informed trading has immediate implications for the distribution of profits from
trading and for market liquidity. Against this background it is not surprising that researchers
in market microstructure have sought to measure the amount of informed trading.

In a seminal paper, Easley et al. (1996) have proposed a direct measure of the probability of
informed trading (PIN). Their approach builds on the theoretical work of Easley and O’Hara
(1987) and Easley and O’Hara (1992). In their model it is assumed that there are three types
of trading days, good news days (with probability α(1 − δ)), bad news days (probability αδ)
and no news days (probability (1−α)). The market is populated by liquidity traders, informed
traders and uninformed market makers. Liquidity traders buy and sell with intensity ε. In-
formed traders buy with intensity µ on good news days, sell with intensity µ on bad news
days, and abstain from trading on no-news days. Maximum likelihood estimation yields esti-
mates of the structural parameters α, δ, ε and µ. From these estimates, an estimator of PIN is
obtained as PIN = αµ/(αµ + 2ε). The data required for estimation are the daily numbers of
buyer-initiated trades and seller-initiated trades. This data is typically generated by applying
a trade classification algorithm (such as the Lee and Ready (1991) algorithm) to time-stamped
intraday data on bid, ask and transaction prices. This kind of data is usually available for de-
veloped equity markets and recent sample periods. It is, however, often unavailable for less
developed markets, for many derivatives markets, and for sample periods in the more distant
past. Therefore, a method to estimate PIN that does not require the availability of intraday data
would be of obvious interest.

Even in cases in which intraday data is available, there is an important impediment to ac-
curate PIN estimation. It is well known that the Lee and Ready (1991) trade classification al-
gorithm may yield inaccurate trade classification (e.g. Ellis et al. (2000), Lee and Radhakrishna
(2000) and Odders-White (2000)). Boehmer et al. (2007) have shown that inaccurate trade classi-
fication results in biased PIN estimates. If the bias is severe, a methodology to estimate PIN that
does not rely on trade classification may be superior to a method that uses misclassified data.

In this paper we build on previous research by Kokot (2004) and Jackson (2007) and propose
a methodology to estimate PIN that only requires data on the daily number of transactions.
This data is obviously much more easily available than the intraday data required to classify
trades into buyer-initiated and seller-initiated trades. Further, it is not necessary to apply a
trade classification algorithm. Therefore, the estimation results are unaffected by inaccurate
trade classification. The intuition of our procedure is simple. From the formula for PIN shown
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above it is obvious that the parameter δ is not needed. We consequently classify the trading
days into two groups, information days and non-information days. On non-information days
only liquidity traders trade (with intensity 2ε) while on information days both liquidity traders
and informed traders trade (with total intensity 2ε + µ). The resulting model is a mixture of
two Poisson distributions with intensity parameters 2ε and (2ε+ µ) and mixing probability α.
We refer to this model as the compressed model.

Unfortunately, even though the compressed model itself is very simple, estimation is not.
It is well known that mixtures of Poisson distributions are difficult to estimate because of the
presence of local solutions.1 These difficulties arise particularly in small samples. We there-
fore propose to estimate the model using a Markov chain Monte Carlo (MCMC) simulation
approach.

We evaluate our estimation procedure in extensive simulations. We know the data generating
process used in our simulations and therefore know the true parameters α, ε and µ, and we
know the true PIN. We then apply three versions of our MCMC estimation procedure (to be
described in detail in section 2.4) to the simulated data and compare the resulting PIN estimate
to the true PIN. In order to assess the accuracy of our estimators we also compare them to the
traditional PIN estimator, to the traditional PIN estimator applied to misclassified data, and to
a maximum likelihood estimator of the compressed model.

The simulation results indicate that our procedure yields accurate PIN estimates. We pick as
an example the simulations in which we choose the true parameters to be equal to the param-
eters that Easley et al. (1996) estimated for the first, fifth and eighth size decile of NYSE firms.
The true PIN is 0.1581 for the first decile, 0.2143 for the fifth and 0.2253 for the eighth. Our best
estimation procedure (Bayesian maximum likelihood) yields an average PIN estimate (over 250
simulation runs) of 0.1577 (standard error 0.0162) for the first decile, 0.2184 (0.0417) for the fifth
decile and 0.2369 (0.0698) for the eighth decile.

Our paper adds to the literature in two important ways. First, and most importantly, the sub-
stantially lower data requirements of our procedure as compared to traditional PIN estimation
broaden the applicability of PIN estimation significantly. In particular, our procedure can be
used to estimate PIN for markets and sample periods for which intraday data is unavailable
and trade classification thus impossible. Further, because our procedure does not require trade
classification it is unaffected by trade misclassification. It can thus be applied in cases in which
the misclassification bias in traditional PIN estimates documented by Boehmer et al. (2007) is a
concern.

The remainder of the paper is organized as follows. In section 2.1 we briefly describe the
Easley et al. (1996) model and our modified model. Sections 2.2 to 2.4 describes our estimation

1See e.g. Finch et al. (1989), Frühwirth-Schnatter (2006) and the documentation of the mix2Poisson com-
mand in R at http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/VGAM/html/mix2poisson.
html. We note that Jackson (2007) has proposed a model which is essentially identical to ours. He uses
standard ML to estimate his model and finds that the PIN estimates he obtains differ significantly from
those of a traditional PIN model. Jackson (2007) argues that this is because his procedure is unaffected
by trade misclassification (but does not substantiate this claim). We argue instead that the different
results are due to the fact that ML estimation of finite mixture models yields unreliable results.
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strategy in detail. Chapter 3 describes the results, chapter 4 concludes.

2. Econometric methodology

2.1. Model

We start with a short description of the Easley et al. (1996) model. The model assumes a
market populated by competitive market makers, informed traders, and uninformed (liquidity
or noise) traders. Uninformed traders are equally likely to buy or sell shares. The arrival of
uninformed buy and sell orders is modeled by two independent Poisson processes with equal
arrival ratesε. Before the trading day begins an information event may occur with probabilityα.
The information is either bad (with probability δ) or good (with probability (1− δ)). Informed
traders buy on good news days, sell on bad news days, and do not trade on no-news days. The
arrival of their orders is modeled as a Poisson process with intensity parameter µ (assumed
to be identical for informed buy and sell orders). The four structural parameters of the model
– the probability that an information event occurs on a given day, α, the probability that the
information is bad news, δ, and the order arrival rates of uninformed and informed traders, ε
and µ – can be estimated by maximum likelihood (ML). The likelihood of observing B buyer-
initiated trades and S seller-initiated trades on a given day, conditional on the true parameter
vector ϑEKOP = (α, δ, ε, µ), is

L(B, S | ϑEKOP) = αδ(εT)B exp (−εT)
B!

((ε+µ)T)S exp (−(ε+µ)T)
S!

(2.1)

+ (1−α)(εT)B exp (−εT)
B!

(εT)S exp (−εT)
S!

+α(1− δ)((ε+µ)T)B exp (−(ε+µ)T)
B!

(εT)S exp (−εT)
S!

,

where T denotes the length of the trading day in minutes. Easley et al. (1996) derive from their
model the unconditional probability of informed trading (PIN),

PIN =
αµ

αµ + 2ε
. (2.2)

In the following we refer to this model as the EKOP model.
Estimation of PIN requires data on the number of buyer- and seller-initiated trades. This data

is typically obtained by applying a trade classification algorithm such as the Lee and Ready
(1991) algorithm to intraday data. As noted in the introduction, there are two potential prob-
lems with this procedure. First, the intraday data needed for trade classification may simply
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be unavailable. Second, trade classification algorithms are known to be inaccurate, and inaccu-
rate trade classification, in turn, is known to result in biased PIN estimates (see Boehmer et al.
(2007)). It is thus desirable to develop a PIN estimator that does not require trade classification.
Conceptually, such an estimator is easily developed (see also Kokot (2004) and later Jackson
(2007)). Note from eq. (4.2), that the PIN does not depend on the direction of the information.
Therefore, the distinction between good news days and bad news days is not necessary to esti-
mate PIN. When we collapse the good news days and the bad news days into a new category
‘information days’, we obtain a compressed likelihood function:

L(Q | ϑCOMP) = α((2ε+µ) T)Q exp (− (2ε+µ) T)
Q!

+ (1−α)(2εT)Q exp (−2εT)
Q!

, (2.3)

where Q = B + S is the number of transactions on a given trading day. From hereon this
model is referred to as the ’compressed’ model or the ’compressed EKOP’ model.

Depending on the type of the day (news or no-news) an observation is generated from one
of the two component distributions (either a Poisson distribution with intensity parameter
(2ε + µ) or a Poisson distribution with intensity parameter 2ε). Our modified model is thus
a finite mixture model. It is well known that models of this type are difficult to estimate by
maximum likelihood methods because of the presence of local solutions.2 We therefore pro-
pose the Bayesian estimation approach described in the next section.

2.2. Mixture likelihood and complete-data likelihood representation for the
compressed EKOP model

The starting point for our Bayesian PIN estimation procedure is the observation that the
probability to observe Q trades during a trading day of T minutes can be described as a mixture
of two Poisson distributions, viz

p(Q|ϑ) = γP(Q|λ1) + (1−γ)P(Q|λ2) , (2.4)

where ϑ = (γ, λ1, λ2)
′, λ1 = (2ε + µ)T and λ2 = 2εT. P(Q|λ) = e−λ λ

Q

Q! denotes the Pois-
son probability density function. Assuming that the information events are independent across
days, the joint probability of observing a sequence of the number of daily trades over N days,
Q = (Q1, . . . , QN)

′, is given by p(Q|ϑ) = ∏
N
i=1 p(Qi|ϑ), which implies the mixture log-likelihood

function

Lmix(ϑ) = ln p(Q|ϑ) =
N

∑
i=1

ln p(Qi|ϑ) . (2.5)

2See e.g. Finch et al. (1989), Frühwirth-Schnatter (2006) and the documentation of the mix2Poisson com-
mand of the VGAM R-package in Yee (2013).
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The parameters in (2.4) are defined up to a ‘label switch’, which means that

p(Q|ϑ∗) = γ∗P(Q|λ∗1) + (1−γ∗)P(Q|λ∗2) , (2.6)

where ϑ∗ = (γ∗, λ∗1 , λ∗2)
′, γ∗ = 1 − γ, λ∗1 = λ2, and λ∗2 = λ1 represents an observationally

equivalent parametrization. As a consequence, the mixture-likelihood in (2.5) is symmetrically
bimodal, a fact that must be accounted for when attempting to maximize it.

While the maximum likelihood method has been the standard approach towards estimating
mixture models (for a review see Redner and Walker (1984)), previous literature has identified
severe problems that will also affect PIN estimation through the maximization of the mixture
log-likelihood (2.5). Frühwirth-Schnatter (2006), among others, points out convergence prob-
lems and starting value dependence of the maximization algorithm, poor performance in small
samples and weakly separated components of the mixture distribution (here: information and
no-information days). Moreover, there are severe caveats to apply asymptotic theory to com-
pute reliable standard errors.3

Our Bayesian approach towards PIN estimation avoids these drawbacks. The starting point is
the so-called complete-data likelihood, which is based on the joint distribution of the number of
trades per day, Qi and the binary variables Zi, i = 1, . . . , N, henceforth referred to as allocations.
The vector of allocations Z = (Z1, . . . , ZN)

′ consists of i.i.d. Bernoulli(γ) random variables that
are equal 1 when Qi is drawn from the Poisson distribution associated with the parameter λ1

and 0 when Qi is drawn from a Poisson distribution associated with the parameter λ2. The joint
distribution of Q and Z can then be written as:

p(Q, Z|ϑ) =p(Q|Z,ϑ)p(Z|ϑ) =
N

∏
i=1

p(Qi|Zi ,ϑ)p(Zi|ϑ) (2.7)

=
N

∏
i=1

(P(Qi|λ1)γ)
Zi × (P(Qi|λ2)(1−γ))1−Zi

= ∏
i:Zi=1

P(Qi|λ1)× ∏
i:Zi=0

P(Qi|λ2)×
(
γN1(Z)(1−γ)N2(Z)

)
,

where N1(Z) = ∑
N
i=1 Zi and N2(Z) = N − N1(Z). The maximization of the complete-data

log-likelihood
Lcomp(ϑ) = ln p(Q, Z|ϑ) , (2.8)

requires knowing the allocations Z, which in the present application will not be available. How-

3Chung et al. (2004) report unreliable ML estimates for small sample sizes, Redner and Walker (1984)
analyze the condition number of Hessian matrices and find that a sample size of 106 is needed to ensure
reasonable standard errors for mixtures with weakly separated components. Chung et al. (2004) per-
form simulations using small samples and report severe irregularities of likelihood surfaces, and the
failure to apply asymptotic reasoning to compute parameter standard errors. The problem of unreli-
able standard errors is also addressed by Basford et al. (1997).
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ever, we can use

p(Zi = 1|Qi ,ϑ) =
p(Qi|Zi = 1,ϑ)p(Zi = 1|ϑ)

p(Qi|Zi = 1,ϑ)p(Zi = 1|ϑ) + p(Qi|Zi = 0,ϑ)p(Zi = 0|ϑ)

=
P(Qi|λ1)γ

P(Qi|λ1)γ +P(Qi|λ2)(1−γ)
(2.9)

for a classification of each trading day. As we will describe in detail in section 2.4, we use a
Markov chain Monte Carlo (MCMC) algorithm to alternate between N independent Bernoulli
draws to generate the allocations vector Z using the probability in (2.9) (based on values for λ1,
λ2, and γ), and draws from the posterior distributions of λ1, λ2, and γ based on Z. In the next
two sections we first describe how to obtain the posterior distributions conditional on Z and Q
and then explain the MCMC procedure and how to obtain Bayesian point estimates of the PIN.

2.3. Posterior, prior, and hyperprior distributions

The key object of interest for our Bayesian approach towards PIN estimation is the posterior
joint distribution of parameters and allocations, p(ϑ, Z|Q) ∝ p(Q, Z|ϑ)p(ϑ), where p(ϑ) is the
prior joint density of the parameters. We can write:

p(ϑ, Z|Q) ∝ p(Q, Z|ϑ)p(ϑ)

= ∏
i:Zi=1

P(Qi|λ1)× ∏
i:Zi=0

P(Qi|λ2)×
(
γN1(Z)(1−γ)N2(Z)

)
× p(ϑ). (2.10)

Assuming prior independence and conditioning on Z yields the following expressions for
the marginal posterior distributions of the model parameters:4

p(λ1|Q, Z) ∝
(

∏
i:Zi=1

P(Qi|λ1)

)
p(λ1) , (2.11)

p(λ2|Q, Z) ∝
(

∏
i:Zi=0

P(Qi|λ2)

)
p(λ2) , (2.12)

p(γ|Q, Z) ∝
(
γN1(Z)(1−γ)N2(Z)

)
p(γ) . (2.13)

We choose conjugate prior distributions, which in the present case entails using a Gamma
density, G(a0, b0), for p(λ1), and p(λ2), and a Beta density, B(e0, e0), for p(γ).5 The posterior

4A detailed derivation can be found in section A.1 of chapter A in the appendix. We also used a de-
pendent prior as suggested by Viallefont et al. (2002). Albeit the EKOP model structure may suggest
otherwise, assuming prior independence yields superior results.

5Recall that the conjugate prior distribution for a Poisson likelihood is the Gamma distribution and the
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densities in (2.11) -(2.13) are then given by:

λ1|Q, Z ∼ G(a1(Z), b1(Z)) , (2.14)

where a1(Z) = a0 + ∑
N
i=1 Qi · Zi and b1(Z) = b0 + N1(Z), and

λ2|Q, Z ∼ G(a2(Z), b2(Z)) , (2.15)

where a2(Z) = a0 + ∑
N
i=1 Qi · (1− Zi) and b2(Z) = b0 + N2(Z), and

γ|Z ∼ B(e1(Z), e2(Z)) , (2.16)

where e1(Z) = e0 + N1(Z) and e2(Z) = e0 + N2(Z).6

We follow the recommendations of previous literature and use a Gamma hyperprior for the
parameter b0 in the prior distributions of λ1 and λ2, b0 ∼ G(g0, G0), (see Viallefont et al. (2002)).
The posterior density of the hyperparameter b0 given by

p(b0|ϑ, Q, Z) = p(b0|ϑ) ∝ p(λ1|b0)p(λ2|b0)p(b0) (2.17)

∝ bg0+2a0−1
0 exp (− (G0 + (λ1 + λ2)) b0)

is then again a Gamma density,7

p(b0|ϑ, Q, Z) = p(b0|ϑ) ∼ G(g0 + 2a0, G0 + (λ1 + λ2). (2.18)

Regarding the other hyperparameters, we follow Viallefont et al. (2002) who suggest to use
a0 = Q2

/(s2
Q − Q), where Q and s2

Q denote the sample mean and variance of the data vector
Q, and Frühwirth-Schnatter (2006) who advocates using g0 = 0.5 and G0 = g0Q/a0. Accord-
ingly, E(b0) = g0/G0 = a0/Q, which implies that E(λ1) = E(λ2) = Q (the sample mean) and
Var(λ1) = Var(λ2) = s2

Q − Q (the sample overdispersion) when evaluated at b0 = E(b0). The
only subjective choice is the hyperparameter for the Beta prior, e0. We want to ensure that γ is
bounded away from zero, which is accomplished by setting e0 = 4 .8

conjugate prior distribution for a Bernoulli likelihood is the Beta distribution. We prefer conjugate
priors because as pointed out by Robert (2007), the information conveyed in Q about ϑ should not lead
to a modification of the whole structure of p(ϑ), only of its parameters. In the present case conjugate
priors result in posteriors from standard distribution families, which facilitates sampling from these
distributions.

6A detailed derivation of the posterior Gamma distribution is shown in section A.2 of chapter A in the
appendix.

7This use of hierarchical priors should compensate for modeling errors at the lower levels and reinforces
the non-informative perspective, while providing a well-defined posterior distribution of the parame-
ters (Robert, 2007). We do not follow the approach taken in previous Bayesian market microstructure
analysis to use improper priors. We thereby pay heed to the warning of Frühwirth-Schnatter (2006),
who points out that improper priors may lead to improper mixture posteriors.

8We also used smaller hyperparameter values and the results remain robust.
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2.4. Gibbs sampling and Bayesian point estimates

In order to draw from the posterior distributions (2.14)-(2.16) and (2.18), we use a Gibbs sam-
pling algorithm that works as follows. We start with an initial allocations vector Z(0) that re-
sults from a two-means cluster analysis of the data Q, the vector of the number of daily trades,
and an initial value for b0, for which we use the midrange of Q, the average of the smallest
and largest number of daily trades in the sample. The next steps consist of M0 + M alternate
draws from the posterior distributions (2.14)-(2.16), based on the vector of allocations from the
previous step, and an update of the allocations vector along with a draw from the posterior
density (2.18), for which the current draw from the posterior distributions for γ, λ1 and λ2 are
taken as given. This procedure yields the Gibbs-sampled sequences {γ(m)}M0+M

m=1 , {λ(m)
1 }

M0+M
m=1 ,

{λ(m)
2 }

M0+M
m=1 , {Z(m)}M0+M

m=1 , as well as {b(m)
0 }

M0+M
m=1 . The classification of the observations (trad-

ing days), which is required to obtain the allocations Z(m), is performed using Equation (2.9).
M0 are the number of steps of the Gibbs sampler in the so-called burn-in phase, which is not
used for post-processing.

The Gibbs sampling algorithm must account for the aforementioned label switching prob-
lem, that is, the fact that (2.4) and (2.6) are observationally equivalent parametrizations. For
that purpose, we use the random permutation Gibbs sampler proposed by Frühwirth-Schnatter
(2001). Random permutation means allowing for the probability of a label switch after each
step, such that one of the two observationally equivalent parameter combinations is randomly
selected. If a label switch is indicated, then the original draws λ(m)

1 λ
(m)
2 , γ(m) are replaced by

the permuted values λ(m)∗
1 = λ

(m)
2 , λ(m)∗

2 = λ
(m)
1 , and γ(m)∗ = 1 − γ(m). Moreover, all ones

in Z(m) are replaced by zeros, and all zeros are replaced by ones, so the allocations are also
permuted.9 All steps of our Gibbs sampler are summarized by algorithm B.1.1 in section B.1
of the appendix. An illustration of the resulting empirical marginal distributions of the Gibbs-
sampled data {λ(m)

1 }M
m=M0+1, {λ(m)

2 }M
m=M0+1, and {γ(m)}M

m=M0+1 is depicted in Figure 2.1(a).
The bimodal kernel densities reflect the purposeful label switching of the random permutation
Gibbs sampler.

We consider three Bayesian point estimates for the PIN, which are based on the Gibbs-
sampled data. The first is the maximum a-posteriori (MAP) estimate, which is the parameter
combination ϑ̂MAP = (γ̂MAP, λ̂1,MAP, λ̂2,MAP)

′ that provides the maximum value of the poste-
rior joint density,

ϑ̂MAP = max
ϑ(m)
{p(ϑ(m)|Q, Z(m−1))|m = M0 + 1, . . . , M0 + M} , (2.19)

where the posterior joint density is given by the product of the three marginal densities in
Equations (2.14)-(2.16).

To provide point estimates of the structural parameters of the EKOP model (α, ε, µ, and the

9As noted by Jasra et al. (2005), label switching is a desirable property, as it indicates that the Gibbs
sampler is able to freely move around the parameter space.
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Figure 2.1.: Marginal posterior densities. The figure depicts kernel density plots of the
marginal posterior densities before (2.1(a)) and after relabeling (2.1(b)). Dashed
lines indicate the true parameters. For the data generating process we used the first
EKOP decile with α = 0.5003, ε = 0.1757, δ = 0.3491, µ = 0.1320, and T = 390,
i.e. λ1 = 137.046 trades per day and λ2 = 180.526 trades per day and γ = 0.5003.
The data set contained N = 100 observations and the Gibbs sampler used a burn-in
of M0 = 1000 iterations and a simulation size of M = 10000. We used the two-
means clustering for classification of the resulting MCMC sample and applied a
kernel density with a Gaussian kernel to the data for the plots. All plots were gen-
erated in R-3.0.1 using the package KernSmooth (version 2.23.10, see Wand and
Ripley (2006) for the KernSmooth-package). The bandwidth is chosen by the ‘over-
sized bandwidth selector’, of Wand and Jones (1994, p.61). Original sample values
in fig. 2.1(a) show a bimodal pattern for component parameters, λ1, and λ2, as la-
bel switching mixed sampled values from both components. Values from the first
component are displayed by black lines and respective values from the second com-
ponent by gray lines. Relabeled parameters in fig. 2.1(b) then show, that relabeling
is successful in separating values from the two components. Sample values for γ
scatter around the true value 0.5003 and therefore both component weights, γ and
(1− γ), have very similar sample values and relabeling does not show significant
changes in the posterior densities.
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implied PIN) we use

max{λ̂1,MAP, λ̂2,MAP} = (2ε̂MAP + µ̂MAP)T (2.20)

min{λ̂1,MAP, λ̂2,MAP} = (2ε̂MAP)T (2.21)

The point estimate of the probability of an information day α̂MAP is then either γ̂MAP, if λ̂1,MAP >

λ̂2,MAP, or 1 − γ̂MAP, if λ̂1,MAP < λ̂2,MAP. The MAP-based Bayesian PIN estimate is then
P̂INMAP = α̂MAP×µ̂MAP

α̂MAP×µ̂MAP+2ε̂MAP
.

The second vector of Bayesian point estimates ϑ̂BML = (γ̂BML, λ̂1,BML, λ̂2,BML)
′ emerges from

ϑ̂BML = max
ϑ(m)
{p(Q|ϑ(m))|m = M0 + 1, . . . , M0 + M}, (2.22)

and is, for obvious reasons, referred to as Bayesian maximum likelihood (BML) estimate. The
point estimates of the structural parameters of the EKOP model and the implied PIN are iden-
tified analogously to the MAP case, yielding α̂BML, ε̂BML, µ̂BML, and the BML-implied Bayesian
PIN estimate P̂INBML = α̂BML×µ̂BML

α̂BML×µ̂BML+2ε̂BML
.

Because of this identification scheme, the bimodality of the posterior distributions used in
(2.19) and the mixture likelihood function used in (2.22) do not pose a problem when computing
the MAP- and BML-based PIN estimates. However, the third Bayesian point estimate that we
consider requires a unique labeling. For that purpose we follow Celeux (1998) who proposes
to apply a two-means cluster analysis on the Gibbs-sampled data, which assigns each of the
M − M0 parameter vectors to one of two clusters. Once the grouping is accomplished, the
parameters in one of the two clusters are re-labeled, such that λ(m)

1 λ
(m)
2 , γ(m) are replaced by

the permuted values λ∗(m)
1 = λ

(m)
2 , λ∗(m)

2 = λ
(m)
1 , and γ∗(m) = 1 − γ(m). Figure 2.1(b) shows

an example of the resulting empirical distributions after clustering and relabeling the data in
Figure 2.1(a). The kernel densities have become unimodal.10 The third Bayesian point estimate,
denoted ϑ̂EIA = (γ̂EIA, λ̂1,EIA, λ̂2,EIA)

′, is then computed as the sample average of these relabeled
draws produced by the Gibbs sampler. In line with previous literature, we refer to the estimate
as the ergodic identified average (EIA) estimate. Using the relabeled Gibbs sample, we obtain
the EIA estimate as:

ϑ̂EIA =
1

M−M0

M0+M

∑
m=M0+1

ϑ(m). (2.23)

Similar to the two other point estimates, the EIA-based PIN estimate results from equating
the greater of the two estimates λ̂1,EIA or λ̂2,EIA with (2ε̂EIA + µ̂EIA)T and the smaller of the two
point estimates with 2ε̂EIAT. The point estimate of the probability of an information day α̂EIA is
then either γ̂EIA, if λ̂1,EIA > λ̂2,EIA, or 1− γ̂EIA, if λ̂1,EIA < λ̂2,EIA. The EIA-based Bayesian PIN
estimate is then P̂INEIA = α̂EIA×µ̂EIA

α̂EIA×µ̂EIA+2ε̂EIA
.

10We also applied the relabeling algorithms of Stephens (1997a,b). Results were quite similar and we
decided to use the simplest method.
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3. Results

3.1. Simulation Results

In order to evaluate the three Bayesian estimators and compare them to the traditional max-
imum likelihood estimators we perform extensive simulations. The simulations were imple-
mented with the statistical software R-3.0.1 using a self-coded package.11 Our choice of the
parametersα, ε and µ for the data generating process follows Boehmer et al. (2007). We choose
11 different parameter constellations. For each constellation we run 250 simulations with 100
data points each (corresponding to 100 days or slightly more than four months) and 250 sim-
ulations with 250 data points each (corresponding to approximately one year). We sort the
parameter constellations into three groups, A, B and C. Group A (parameter ids 1-3 and 12-14)
contains ‘realistic’ parameter constellations. They correspond to the parameters estimated in
Easley et al. (1996) for stocks in the first, fifth and eighth size decile of NYSE stocks. In group
B (ids 4-7 and 15-18) the intensity of informed trading, µ, is small relative to the intensity of
uninformed trading, ε. We therefore expect that our algorithm (as well as the traditional ML
estimator) will have difficulties to separate information and non-information days, particularly
in cases in which the probability of an information event, α, is also small. In group C (ids 8-11
and 19-22) the intensity of informed trading, µ, is high relative to the intensity of uninformed
trading, ε, and we therefore expect well separated components. All parameter combinations
are summarized in table C.1.

In our simulation study we implement six different estimation methods. MCMC with a
burn-in of M0 = 1000 and a sample of M = 10000 using (1) the maximum likelihood es-
timator (BML), (2) the maximum a-posteriori estimator (MAP), and (3) the ergodic identified
average estimator (EIA). Further, we implement three maximum likelihood estimators, namely,
(4) the original EKOP model (EKOP) using accurately classified data, (5) the original EKOP
model with misclassified data (EKOPM), and (6) maximum likelihood estimation of the com-
pressed EKOP model (COMPML). The three maximum likelihood estimators (EKOP, EKOPM,
COMPML) serve as benchmarks against which to evaluate our Bayesian estimation approach.
If the Bayesian approaches perform better than the compressed EKOP model, a Bayesian ap-
proach should be used in all cases in which only data on the number of trades (but not on trade
direction) is available. If the Bayesian approaches perform better than the EKOP model on mis-
classified data, then a Bayesian approach should be used whenever accurate trade classification

11R is a language and environment for statistical computing and graphics and it is open-source. This
language shows the fastest growing user community in the area of statistical computing. For further
information see R Core Team (2013). Our self-coded package relies heavily on C++ extensions using the
API RcppArmadillo (Eddelbuettel and Sanderson (2013)) that wraps the C++ high-performance linear
algebra library Armadillo (Sanderson et al. (2010)).
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is infeasible. We do not expect the Bayesian estimators to perform better than the EKOP model
applied to accurately classified data because the EKOP model uses more information (namely,
information on trade direction).

We also tested the performance of the EM-based REBMIX algorithm. Although the EM algo-
rithm is the most commonly applied method to find the ML estimator nowadays, it has several
drawbacks as reported by Reddy and Rajaratnam (2010). The REBMIX algorithm origins in
Nagode and Fajdiga (2011) and avoids these drawbacks. It is an iterative numerical procedure
relying on the following steps: First, an empirical density is assigned to the dataset and the
global mode position is identified. Next, rough component parameters are estimated from the
empirical density and its global mode. Based on the rough component parameters the dataset
is then clustered successively into the classes linked to the predictive component density and
the residual. Enhanced component parameters and the component weights are then assessed
for all classes and the remaining observations are distributed between the existing components
by the Bayes decision rule. Finally, the parameters of the finite mixture are fine-tuned.12 The
results of the REBMIX algorithm applied to our simulated datasets are similar to the results of
the ML estimation, though with greater bias and RMSE. In addition, the algorithm exhibited
significantly more convergence problems than the ML estimator and offered, for some datasets
in group B, solutions with one component only. For these reasons we omit the results. They are
available from the authors upon request.

As noted above, each of the six estimation methods was applied to 250 samples of 100 data
points (corresponding to 100 trading days or roughly four months) and another 250 samples
of 250 trading days (roughly a year). We produced the data samples by drawing values from
Poisson mixture distributions defined by the input parameters shown in table C.1 using the
Mersenne-Twister random number generator in R-3.0.1 with a seed of zero. We generate mis-
classified data by randomly changing the trade direction.13 For each trade in the simulated data
the trade direction was reversed with a probability of 15%. This corresponds to a misclassifica-
tion rate of 15%, consistent with Odders-White (2000).

For the ML procedures we adopted the optim function in R-3.0.1 with an L-BFGS-B algo-
rithm using appropriate restrictions for the parameters and data-dependent starting values.14

More precisely, we used a logit transformation for the parameterα (and also for the parameter δ
which is estimated in the EKOP and EKOPM models) and starting valuesα = 0,ε = 0.75/2 ·Q,
(δ = 0) and µ = 0.25/2 · Q. In cases in which the L-BFGS-B algorithm did not converge or
produced an error we applied as a second approach a derivate-free optimization, namely, a
bounded Nelder-Mead algorithm via the nmkb-function from the R-package dfoptim (version
2011.8.1, Varadhan et al. (2011)).15

12For a more detailed description of the REBMIX algorithm we refer to the vignette of the R-package
REBMIX that we used, written by Nagode (2014).

13More precisely, we start at a random seed of zero and generate for each of the 11 parameter constellations
in table C.1 (ids 1-11) 100 data points and then for each of them another 250 observations (ids 12-22).
All data sets contain misclassified data though the original trade direction is recorded.

14See Zhu et al. (1997) for the L-BFGS-B algorithm.
15See Kelley (1999) for the bounded Nelder-Mead method.
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All simulations were run on a node of the high-performance cluster of the RWTH Aachen
University Computing Center.16 A run with 250 simulations, applied to all parameter con-
stellations and the two sample sizes of 100 and 250 days required approximately 90 minutes.
Running a single MCMC simulation with a burn-in of 1000 iterations and a sample of 10000 it-
erations on a MacBook Pro with 2 Intel i7 cores (2.8 Ghz) takes about 0.85 seconds. Another 1.35
seconds are consumed for relabelling the sample and computing the three estimators, namely
MAP, BML and EIA. These numbers demonstrate that the MCMC procedure is fast and is ap-
plicable with standard hardware.

As noted in chapter 2 we used a random permutation Gibbs sampler (see algorithm B.1.1
in the appendix) to improve mixing. Random permutation Gibbs samplers converged quickly
as can be seen in the example traceplots shown in fig. 3.1 and the corresponding plots of the
posterior density of the PIN in fig. 3.2. Figure 3.1 shows traceplots for parameter constellation
id 1 (which corresponds to the parameters estimated for the first NYSE size decile by Easley
et al. (1996)) before (panel a) and after (panel b) component classification. The traces fluctuate
stationary around their mean values, thereby exploring the whole parameter space. For the
component parameters in λ random permutation is obviously necessary.17 From the identified
traceplot (fig. 3.1(b)) we can infer that the two-means clustering is successful in separating the
two components of the mixture.

The posterior distributions of the PINs are shown in fig. 3.2 for the first four parameter con-
stellations. Each plot shows the posterior estimated from the corresponding parameter draws of
the Gibbs sampler (solid line) and the true PIN (dotted vertical line). The shaded areas mark the
PIN values corresponding to the 95% highest posterior density (HPD).18 In all cases the HPD
interval includes the true PIN. This is evidence of the reliability and adequacy of the MCMC
approach for finite mixtures. Note that the posteriors are dependent on the generated data and
therefore simulated posteriors do inherently not disperse symmetrically around the true input
parameter values.

The simulation results for all six estimators (the three MCMC point estimators and the three
ML estimators) are presented in table C.2 (simulations with 100 observations) and table C.3 (250
observations). The tables show Monte Carlo averages of the PINs for each parameter combi-
nation together with corresponding Monte Carlo standard errors, calculated over all simula-
tions. The PIN estimates for most parameter constellations are reasonably close to the true PIN.
There is one notable exception, though. The EKOPM estimator (the EKOP estimator applied to
misclassified data) tends to severly underestimate the true PIN. This confirms the findings of
Boehmer et al. (2007). PIN estimates are the least accurate for parameter constellations 4 and

16This node is based on a Bullx S6010 board with 32 Intel Xeon (Nehalem) X7550 processors (2 Ghz). See
for further information http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/
~eubj/High-Perfomance-Computing/lidx/1/

17The parameter constellation shown in fig. 3.1 is characterized by α close to 0.5. For parameter constel-
lations with small α (ids 4-7 and ids 15-18), random permutation is also necessary for the parameter
γ.

18We used the LaplacesDemon package (version 14.6.23) in R to compute the highest posterior density
intervals.
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Figure 3.1.: Trace plots. The figures depicts trace plots of the Gibbs-sampled sequences
{γ(m)}M0+M

m=1 , {λ(m)
1 }

M0+M
m=1 , {λ(m)

2 }
M0+M
m=1 , and {b(m)

0 }
M0+M
m=1 , of a simulation with

input parameters id 1 (first EKOP decile). All values are obtained by running a
Gibbs sampler on N = 100 data points for M = 10000 iterations with a burn-in
of M0 = 1000. Results for fig. 3.1(a) come from the non-identified samples and
fig. 3.1(b) plots the values identified through two-means clustering.
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Figure 3.2.: Posterior PINs. The figures depict posterior densities for the PIN of randomly cho-
sen simulations with input parameters id 1 (corresponding to the first NYSE size
decile), id 2 (left and right in fig. 3.2(a)), id 3, and id 4 (left and right in fig. 3.2(b))
with N = 100 observations. The true PIN values are indicated by the dotted ver-
tical lines. Shaded areas define the highest 95% posterior density intervals. All
values were obtained by random permutation Gibbs sampling with a burn-in of
M0 = 1000 iterations and a sample of M = 10000 iterations. HPD intervals were
computed using the R-package LaplacesDemon (version 14.6.23).
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5 in table C.2 and 15 and 16 in table C.3. This comes as no surprise, though, because these
parameter constellations are characterized by a low intensity of informed trading and a low
probability of an information event.

For a more rigorous statistical evaluation of the six estimators we used the two common loss
functions bias and root mean squared error (RMSE):

Bias(ϑ̂E) =
1

Sim

Sim

∑
i=1

(ϑ̂E,i −ϑ′), RMSE(ϑ̂E) =

(
1

Sim

Sim

∑
i=1

(ϑ̂E,i −ϑ′)2

)0.5

, (3.1)

where ϑ̂E is the parameter estimate obtained with estimator E,ϑ′ is the true parameter and ‘Sim’
the number of Monte Carlo iterations. The results for the bias are shown in table C.4, those for
the RMSE in table C.5.

Of all six estimators, the traditional EKOP estimator performs best. The average bias is (with
the notable exceptions of parameter constellations 3, 4, 14 and 15) low, and the RMSE is, with
few exceptions, the lowest of all six estimators. The good performance of the EKOP estimator
comes as no surprise, though. It uses all available information (including trade direction), and
it is based on the assumption that there are no trade classification errors. The effect of trade mis-
classification is clearly visible when comparing the EKOP estimator (which is based on correctly
classified data) to the EKOPM estimator (which is based on misclassified data). The EKOPM
estimator exhibits a significant, and often large, downward bias. This bias has already been
documented by Boehmer et al. (2007). There are some parameter constellations in which the
EKOPM estimator has low bias (ids 3, 4, 5, 14, 15, 16). Interestingly, these are exactly those con-
stellations in which the EKOP estimator has a large positive bias. In these cases, the downward
bias induced by trade misclassification counterbalances the positive bias of the EKOP estimator,
resulting in low overall bias. This characteristic is likely to be of limited practical use, though,
because the researcher does not typically know whether the EKOP estimator is biased in a par-
ticular application and will therefore not be able to identify those circumstances under which
EKOPM performs well.

An important question in the presence of trade misclassification is whether it is better to use
the inaccurate data, or to resort to one of the concentrated likelihood estimators which does
not use the trade classification data. In cases in which the data necessary to classify trades is
unavailable, the application of one of the four concentrated likelihood estimators is without
alternative anyway. Therefore, we now turn to the evaluation of the COMPML, BML, MAP and
EIA estimators. We will first discuss the results for parameter constellation groups A and C
before turning to the more challenging conditions of group B.

The estimated PINs from the compressed model in tables C.2 and C.3 are reasonably close to
the true values in the parameter constellation groups A and C. The standard errors of the esti-
mators do not differ much, however, the BML estimator has the largest range of standard de-
viations, namely between 0.0100 for simulations with parameter combination id 12 and 0.0698
for id 3.

The biases shown in table C.4 range from −5.2964× 10−2 for the EKOPM estimator on id 13
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to 4.0392 × 10−2 for the EKOP estimator on id 3. Averaging the bias across different param-
eter constellations is inappropriate because some parameter constellations result in a negative
bias for all estimators while other constellations predominantly result in positive biases. We
therefore consider the average across parameter constellations of the absolute bias. In parame-
ter constellation groups A and C the Bayesian estimators perform very well. They have lower
average absolute bias than the three ML estimators. The BML estimator performs best with an
average absolute bias of 0.001852.

The EKOP estimator has the lowest RMSE (see table C.5. The average across the parameter
constellations in groups A and C is 0.020. The three Bayesian estimators are ranked second
to fourth and thus have a lower RMSE than the COMPML and the EKOPM estimators. Of
the three Bayesian estimators the EIA estimator has the lowest average RMSE, followed by the
MAP estimator.

We now turn to the results for the parameter constellations in group B. Here, the intensity of
informed trading is low relative to the intensity of uninformed trading. Consequently, it is more
difficult for the estimators to differentiate between information days and non-information days.
This is particularly true if the probability of an information event is also low. The plot of the
log-likelihood contours in fig. 3.3 illustrate this point. The first simulation (id 1, corresponding
to the first NYSE decile) has well separated components and shows two well separated modes
in the log-lieklihood surface (see fig. 3.3(a)). The second simulation (id 4, characterized by a low
value of µ and a low probabilityα) appears almost unimodal (see fig. 3.3(b)). Correspondingly,
the PIN estimates in tables C.2 and C.3 reveal that the accuracy of the point estimates is rather
low when, in addition to a low intensity of informed trading, the probability of an information
event, α, is also low (as in parameter ids 4 and 15). We further note that increasing the number
of observations from 100 to 250 does not significantly increase the accuracy of the PIN point es-
timates (tables C.2 and C.3) but does reduce bias and RMSE by a substantial amount (tables C.4
and C.5).

In terms of bias the EKOP estimator dominates. The average absolute bias across the eight
parameter constellations in group B is 0.0068× 10−2. Two of the Bayesian estimators, the MAP
and EIA estimators, follow with average absolute biases of 0.0107× 10−2 and 0.0117× 10−2,
respectively. The BML estimator (which has the lowest average absolute bias in groups A and
C) performs worst with an average absolute bias of 0.0183× 10−2.

The EKOP estimator also has the lowest average RMSE (0.209× 10−2). The EKOPM estima-
tor (i.e. the EKOP estimator estimated on misclassified data) has a low average RMSE as well
(0.0222× 10−2). Of the Bayesian estimators the EIA and MAP estimators perform reasonably
well with average RMSEs of 0.0290× 10−2 and 0.0331× 10−2, respectively. In particular, the
two estimators have a considerably lower RMSE than the COMPML estimator (0.0496× 10−2).
The BML estimator again performs worst; its average RMSE amounts to 0.0576× 10−2.

The performance of the BML point estimator deserves a discussion. It performs very well
in parameter constellations of groups A and C but exhibits the largest RMSE and bias in pa-
rameter constellations of group B. If the information provided by the data is inconclusive, i.e.
insufficient for the two modes to clearly become apparent in the likelihood, the region around
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Figure 3.3.: Log-likelihood contours. The figures depict log-likelihood contours for simulated
data sets with parameters from id 1 (fig. 3.3(a)) and id 4 (fig. 3.3(b)). The contour
plots cover a sufficient range around the true component parameters λ1 = 2ε+ µ
and λ2 = 2ε and show the two possible optima due to label switching as labeled
points.
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the two modes forms rather a plateau and the optimization algorithm encounters difficulties
in finding the maximum. Consequently, estimated PINs suffer from higher bias.19 It is further
possible that the algorithm converges to the saddlepoint right in the middle of the line connect-
ing the two modes in fig. 3.3(b). This will obviously result in a biased PIN estimate. It is further
known that saddlepoints may result in a positive definite or an indefinite hessian. The two
other Bayesian point estimators (MAP and EIA) are less affected by these difficulties because
they include information about the prior distribution. Our simulation results indicate that this
feature enables these estimators to reduce the bias significantly and to easily outperform the
BML estimator (and also the EKOPM and COMPML estimators) in parametrical environments
characterized by components that are poorly separated.

Figure 3.4 provides further insights into the simulation results. It shows boxplots (con-
structed from the results of all 250 simulations) for the same two parameter constellations (id
1, corresponding to the first NYSE decile and id 4, a parameter set with poorly separated com-
ponents) already shown in fig. 3.3 above. The figure further shows histograms of a representa-
tive data sample. Parameter id 1 is characterized by well separated mixture components. The
data sample shown in fig. 3.4(a) exhibits two clearly separated modes. All estimators (with
the exception of EKOPM) are hardly biased. The PIN estimates of the 250 simulations are dis-
tributed symmetrically around the true PIN (see fig. 3.4(a)). The EKOPM estimator exhibits a
pronounced downward bias. The bias is a consequence of trade misclassification. Because of
this bias we exclude the EKOPM estimator from the second plot. This plot shows a parame-
ter constellation with poorly separated components and a low news probability (id 4, α = 0.2,
fig. 3.4(b)). Correspondingly, the data sample in fig. 3.4(b) suggests a unimodal distribution.
Consequently, the traditional maximum likelihood estimator (COMPML) and the BML estima-
tor both produce a high number of outliers. The MAP and the EIA estimators, on the other
hand, show a reasonably good performance because they also use the information contained in
the prior distribution of the Bayesian framework. This advantage is of particular importance in
‘difficult’ settings characterized by small and/or poorly separated components.

Figure 3.5 provides a different perspective on the simulation results. It shows the bias (Panel
a) and the RMSE (Panel b) of all four estimators of the compressed model (COMPML, BML,
MAP and EIA) for all 22 parameter constellations. The parameter constellations are sorted by
the amount of bias (Panel a) and the RMSE (Panel b) of the maximum likelihood estimator
COMPML. The shaded areas correspond to the parameter constellations belonging to group B.
Figure 3.5 confirms the finding that in these difficult environments, the MAP and EIA estima-
tors (which use information from the prior distribution) outperform the COMPML and BML
estimators. In less difficult environments, the differences between the four estimators are much
less pronounced. The RMSEs are hardly distinguishable. In terms of bias, the BML estimator
performs best.

So far we have discussed the average performance of our estimators across all simulation
runs. For practical applications it is also of interest how the estimators behave in individual

19In addition, if the likelihood forms a plateau around its modes, the hessian matrix could turn singular.
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Figure 3.4.: Boxplots. The figures depict boxplots and data samples of PIN estimation routines
from simulations with input parameters id 1 (first EKOP decile, fig. 3.4(a)) and id
4 (fig. 3.4(b)). The boxplots are constructed with all 250 estimators of the PIN from
each simulation using the boxplot-function in R-3.0.1. The whiskers are deter-
mined by multiplying the interquartile range by 1.5.
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Figure 3.5.: Bias and RMSE. The figures depict plots of the bias (fig. 3.5(a)) and the RMSE
(fig. 3.5(b)) for all estimators of the compressed EKOP model along all parameter
combinations. Shaded areas identify parameter settings from group B with weakly
separated components in the mixture.
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data sets. Table C.6 provides some insights. The first three columns report the number of cases
(out of a total of 250) in which the traditional maximum likelihood estimators (EKOP, EKOPM
and COMPML) did not converge. On average slightly more than 7% of the estimations do not
converge. However, in some parameter settings (among them ids 3 and 14 which correspond
to the parameter values for the eighth NYSE decile) the percentage increases to almost 20%. In
these cases the ML estimators do not provide results while the Bayesian estimators do.20

The remaining columns of table C.6 show the percentage of cases in which the Bayesian es-
timators produced results which were closer to the true PIN than the estimates produced by
the ML estimators. These figures suggest that the Bayesian estimators are less accurate than
the EKOP estimator and more accurate than the COMPML estimator. Consequently, the EKOP
estimator should be chosen when accurate trade classification data is available while one of
the Bayesian estimators should be chosen when no trade classification data is available. The
comparison of the Bayesian estimators to the EKOPM estimator (i.e. the EKOP estimator ap-
plied to misclassified data) yields ambiguous results. The Bayesian estimators appear to be
more accurate for parameter constellations in groups A and C while the EKOPM estimator is
more accurate for parameter constellations in group B. The relatively good performance of the
EKOPM estimator in group B was already documented earlier and is due to the fact that the
inherent negative bias of the EKOPM estimator essentially corrects for a positive bias which the
EKOP estimator exhibits in the parameter constellations of group B.

Of the three Bayesian estimators the BML estimator performs worst. Consider, for example,
the comparison of the Bayesian estimators to the COMPML estimator in the last three columns
of table C.6. For 17 out of 22 parameter constellations the MAP and the EIA estimator yield
PIN estimates that are closer to the true value than the COMPML estimator in more than 50%
of the cases. The BML estimator achieves a 50+% result only in 10 parameter constellations.
The poor performance of the BML estimator documented here contrasts with the low average
bias reported previously. These findings are easily reconciled, though. The BML estimator has
a low bias but has high variance (as illustrated by the large RMSE documented in table C.5).
Therefore, individual estimates are often inaccurate.

3.2. An algorithm to choose a best estimator

The discussion of the results in the previous section has revealed important differences be-
tween the three Bayesian estimators. Which estimator is best depends on (a) whether the bias
or the RMSE is used as a criterion and (b) whether the parameter constellation is character-
ized by well separated components (constellations in groups A and C) or by poorly separated

20All results presented in this paper are based on all simulated datasets for which convergence was
achieved. Thus, when a ML estimator converges in 240 out of 250 cases, the ML results for these
240 cases are compared to the Bayesian estimators obtained for the full set of 250 simulated datasets. It
is conceivable that ML estimation fails in ‘difficult’ datasets. If this is the case our procedure puts the
Bayesian estimators at a disadvantage. To control for this possibility we compared the ML estimates
to the Bayesian estimates obtained only for those cases in which ML estimation converged. The results
are similar to those presented in the paper.
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components (group B). When judged by the RMSE the EIA estimator performs best in all en-
vironments. When judged by the bias, the BML estimator performs best in environments with
well separated components while the MAP and EIA estimators are less biased in environments
with poorly separated components.

Thus, when the researcher is interested in an estimator with low RMSE she should choose the
EIA estimator. However, when the focus is on reducing bias, the optimal choice of estimator
depends on the environment. In empirical applications the true parameter values are obviously
unknown. What is thus needed is a method that uses the data to differentiate between envi-
ronments with well separated components and those with poorly separated components. In
the cases of MCMC simulations such a differentiation can be achieved by considering sampling
representations. Sampling representations were explored in Bayesian finite mixture estimation
by Celeux et al. (2000); Frühwirth-Schnatter (2001) and Hurn et al. (2003) as a tool to visual-
ize the posterior density in case of higher dimensionality. Sampled component parameters are
stacked together and plotted against each other in a scatter plot, thereby revealing the modes of
the posterior density. Figure 3.6 shows sampling representations of randomly chosen data sets
for four of our parameter combinations in table C.1, namely parameter ids 1, 4, 12 and 15. When
components in the underlying model are well separated the clusters in the sampling represen-
tation are also well separated (see fig. 3.6(a)). However, if the intensity of informed trading, µ,
is small, the sampling representations of MCMC component parameter samples appear to be
almost unimodal (id 4 and id 15 in fig. 3.6(b)).

If the number of estimations is small (e.g. because the cross-section is small), choosing an
estimator based on manual inspection of the sampling representations is feasible. This proce-
dure will be cumbersome, however, when the number of estimations is large. In these cases it
will be preferable to conduct a formal test and decide upon the choice of estimator based on
the result of that test. A test-based procedure also has the advantage of being unaffected by
personal judgement and thus more reliable.

As illustrated above (see fig. 3.6), well separated components result in a sampling repre-
sentation which is clearly bimodal while sampling representations for data sets with poorly
separated components appear to be almost unimodal. We therefore propose an algorithm (pre-
sented as algorithm B.2.1 in section B.2 of the appendix) that uses the Hartigan and Hartigan
(1985) test for unimodality. In the first step of the algorithm an MCMC simulation as described
previously is run. In the second step the Hartigan and Hartigan (1985) test is applied to the
sample of component parameters, λ. If the test rejects the null hypothesis of unimodality at
the 5% level of significance the BML point estimator is chosen.21 If the null hypothesis is not
rejected the MAP point estimator is chosen instead.

We tested this algorithm using all data samples of our simulation study. The performance of
the algorithm is summarized in fig. 3.7. The figure shows the absolute average bias of all four
estimators of the compressed EKOP model (COMPML, BML, EIA and MAP) together with the
point estimator proposed by our algorithm (denoted ALGBM, the solid line in the figure). The

21Tests with other significance levels gave similar results.
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Figure 3.6.: Sampling representations. The figure shows sampling representations for the pa-
rameter combinations 1 and 12 (fig. 3.6(a), 100 observations), as well as 4 and 15
(fig. 3.6(b), 250 observations) from table C.1 on randomly chosen data sets. Each
plot displays the clusters of sampled component parameters resulting from the two
ways of labelling these parameters.
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algorithm consistently delivers a small bias. We therefore conclude that it can be successfully
applied in cases in which the main objective is to obtain an estimator that delivers a small bias.
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Figure 3.7.: Bias-reducing algorithm. The figure shows a plot of the bias for all estimators of
the compressed EKOP model and our bias-reducing algorithm (ALGBM) along all
parameter combinations. Shaded areas identify parameter settings from group B
with weakly separated components in the mixture.

The results in fig. 3.7 are based on averages over the 250 simulations for each parameter con-
stellation. Table C.7 considers the results from individual simulations instead. It reveals that
the unimodality test always rejects the null hypothesis in the parameter constellations of groups
A and C. However, it also tends to reject the null hypothesis in the parameter constellations of
group B. In fact, there is only one parameter constellation (id 4) in which the rejection rate is
below 50%. Thus, the ability of the Hartigan and Hartigan (1985) test to discriminate between
environments with well separated and poorly separated components is limited. Consequently,
our algorithm recommends the BML estimator most of the time. This is reflected by the results
shown in the last three columns of table C.7. They show how frequently our algorithm deliv-
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ers PIN estimates that are closer to the true value than the estimates obtained from the EKOP,
EKOPM and COMPML estimators. These frequencies can be compared to the corresponding
values for the BML, MAP and EIA estimators (shown in table C.6 above). In parameter constel-
lations A and C the algorithm is equivalent to the BML algorithm. In parameter constellation B
it improves slightly upon the BML estimator but does not achieve the performance of the MAP
and EIA estimators. This is a reflection of the fact that (as outlined above) the algorithm some-
times selects the BML estimator when the MAP estimator would have been superior. In future
research we will try to improve further our algorithm by using a test of the null hypothesis of
bimodality.

4. Conclusion

In this paper we explore procedures to estimate the probability of informed trading (PIN)
in settings in which data on trade classification is unavailable, or in which trade classification
is inaccurate. The starting point of our investigation is the compressed maximum likelihood
estimator first proposed by Kokot (2004). This estimator only requires data on the daily number
of trades (but not on the daily number of buyer- and seller-initiated trades as does the original
Easley et al. (1996) (EKOP) estimator).

The compressed maximum likelihood estimator estimates the parameters of a univariate mix-
ture of two Poisson distributions. It is well known that maximum likelihood estimation of mix-
ture distributions encounters difficulties. We therefore propose Bayesian estimation of the com-
pressed model. Specifically, we apply a random permutation Gibbs sampler and evaluate in a
simulation study the performance of three Bayesian point estimators, the Bayesian maximum
likelihood (BML), the maximum a-posteriori (MAP), and the ergodic identified average (EIA).
To put the performance of these estimators into perspective we compare them to the traditional
EKOP estimator, the EKOP estimator applied to misclassified data, and an ML estimator of the
compressed likelihood model (COMPML).

In our simulation exercise we define different parameter constellations. If the probability
of an information event is high and the intensity of informed trading is high relative to the
intensity of uninformed trading the two components (information days and non-information
days) are well separated and accurate estimation of the probability of informed trading is ‘easy’.
If, on the other hand, the probability of an information event is low and/or the intensity of
informed trading is low, the two components are poorly separated and accurate estimation is
‘difficult’.

Our simulation results yield the following recommendations. If accurate trade classification
data is available the traditional EKOP model should be used. It uses all information in the data
and yields the best PIN estimates in terms of bias and RMSE. If trade classification is inaccurate
it may be advisable to discard the information on trade direction and estimate the compressed
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model instead. Finally, if data on trade classification is unavailable, there is obviously no alter-
native to the compressed model.

Of the four estimators of the compressed model the Bayesian estimators are generally su-
perior to the COMPML estimator. The EIA estimator has the lowest RMSE. If the focus is on
low bias rather than low RMSE, the BML estimator should be used in environments with well
separated components and the MAP or EIA estimator in environments with poorly separated
components. We recommend to use sampling representations or a unimodality test to differen-
tiate between these cases.

Our results have important implications for empirical research in market microstructure. The
compressed model extends the applicability of PIN estimation considerably. All that is required
is data on the daily number of trades. Intraday data (which, in the context of the traditional
EKOP model is required to classify trades) is not needed. Therefore, the compressed model can
be applied to historical data, or to data from markets that do not make available intraday data.
The results of our simulation study provide valuable advice to researchers on how to implement
the compressed likelihood model.
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A. Derivations

A.1. Derivation of posterior distributions

We assume the parameters to be independent a priori, i.e.

p(ϑ) = p(λ1)p(λ2)p(γ) . (A.1)

For the joint probability of ϑ and Z in the Markov chain holds

p(ϑ, Z|Q) =
p(Q|Z,ϑ)p(Z,ϑ)

p(Q)
=

p(Q|Z,ϑ)p(Z|ϑ)p(ϑ)
p(Q)

=
p(Q, Z|ϑ)p(ϑ)

p(Q)
, (A.2)

where p(Q, Z|ϑ) is the complete-data likelihood defined by

p(Q, Z|ϑ) =
(

∏
i:Zi=1

P(Qi|λ1)

)(
∏

i:Zi=0
P(Qi|λ2)

)

(γN1(Z)(1−γ)N2(Z)) (A.3)

= p(Q|Z,ϑ)p(Z|ϑ) . (A.4)

Furthermore, it holds via Bayes’ rule

p(ϑ|Q, Z) =
p(Q, Z|ϑ)p(ϑ)

p(Q, Z)
. (A.5)

Let Λ j with j ∈ {1, 2} be the parameter space for λ j, and let E2 be the unit simplex. Then,

p(λ1|Q, Z) =
∫
Λ2×E2

p(ϑ|Q, Z)d(λ2,γ)

eq. (A.5)
=
∫
Λ2×E2

p(Q, Z|ϑ)p(ϑ)
p(Q, Z)

d(λ2,γ)

eq. (A.1)
=
∫
Λ2×E2

p(Q, Z|ϑ)p(λ1)p(λ2)p(γ)
p(Q, Z)

d(λ2,γ) (A.6)
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It remains to identify the joint unconditional distribution p(Q, Z):

p(Q, Z) =
∫
Λ1×Λ2×E2

p(Q, Z,ϑ)d(ϑ)

=
∫
Λ1×Λ2×E2

p(Q, Z|ϑ)p(ϑ)d(ϑ)

eq.(A.1)
=
∫
Λ1×Λ2×E2

p(Q, Z|ϑ)p(λ1)p(λ2)p(γ)d(λ1, λ2,γ)

eq.(A.3)
=
∫
Λ1×Λ2×E2

(
∏

i:Zi=1
P(Qi|λ1)

)(
∏

i:Zi=0
P(Qi|λ2)

)
(A.7)

(γN1(Z)(1−γ)N2(Z))p(λ1)p(λ2)p(γ)d(λ1, λ2,γ)

Using the derived equation (A.7) in equation (A.6) and considering the independence of the
single terms in equation (A.3) gives us:

p(λ1|Q, Z) =
∫
Λ2×E2

(
∏i:Zi=0 P(Qi|λ2)

)
p(λ2)∫

Λ2×E2

(
∏i:Zi=0 P(Qi|λ2)

)
p(λ2)

(γN1(Z)(1−γ)N2(Z))p(γ)
(γN1(Z)(1−γ)N2(Z))p(γ)d(λ2,γ)

d(λ2,γ)

(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)∫

Λ1
(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)dλ1

(A.8)

and as the denominator defines a constant,

p(λ1|Q, Z) =

∫
Λ2×E2

(
∏i:Zi=0 P(Qi|λ2)

)
p(λ2)∫

Λ2×E2

(
∏i:Zi=0 P(Qi|λ2)

)
p(λ2)

(γN1(Z)(1−γ)N2(Z))p(γ)d(λ2,γ)
(γN1(Z)(1−γ)N2(Z))p(γ)d(λ2,γ)

(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)∫

Λ1
(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)dλ1

=

(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)∫

Λ1
(
∏i:Zi=1 P(Qi|λ1)

)
p(λ1)dλ1

(A.9)

The derivation of the marginal parameter distributions p(λ2) and p(γ) works analogously.
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A.2. Derivation of the posterior Gamma distribution

We start with the notation of the posterior distribution of λ1 for given observations, Q, and
allocations, Z:

p(λ1|Q, Z) =
p(Q, Z|λ1)p(λ1)

p(Q, Z)
∝ p(Q, Z|λ1)p(λ1) (A.10)

= ∏
i:Zi=1

e−λ1
λ

Qi
1

Qi!︸ ︷︷ ︸
p(Q,Z|λ1)

ba0
0

Γ(a0)
λ

a0−1
1 e−b0λ1︸ ︷︷ ︸

p(λ1), λ1∼Γ(a0 ,b0)

∝ ∏
i:Zi=1

e−λ1λ
Qi
1 λ

a0−1
1 e−b0λ1

∝ e−λ1 N1(Z)λ
∑

N
i=1 QiZi

1 λ
a0−1
1 e−b0λ1

∝ e−λ1 N1(Z)−b0λ1λ
∑

N
i=1 QiZi+a0−1

1

∝ e−λ1(N1(Z)+b0)λ
∑

N
i=1 QiZi+a0−1

1

∝ e−λ1b1λ
a1−1
1

∝
ba1

1
Γ(a1)

e−λ1b1λa1−1

∝ Γ(a1, b1) ,

where a1 = a0 + ∑
N
i=1 QiZi and b1 = b0 + N1(Z). The Gamma posterior for λ2 is derived

analogously.
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B. Algorithms

B.1. MCMC algorithm

The algorithm of the Gibbs sampler consists of the following steps:

Algorithm B.1.1. Start with some classification Z(0) and a hyperparameter b(0)0 and repeat the following
steps for m = 1, . . . , M0, . . . , M + M0.

1. Parameter simulation conditional on the classification Z(m−1):

a) Sample γ, (1−γ) from a B(e1(Z(m−1)), e2(Z(m−1)))-distribution, given by eq. (2.16).

b) Sample λ1 from a G(a1(Z(m−1)), b1(Z(m−1)))-distribution, given by eq. (2.14).

c) Sample λ2 from a G(a2(Z(m−1)), b2(Z(m−1)))-distribution, given by eq. (2.15).

2. Classification of each observation Qi conditional on knowing ϑ(m): sample Zi independently for
each i = 1, . . . , N from the conditional posterior distribution p(Zi|Qi ,ϑ(m)), which is given by

p(Zi = 1|Qi ,ϑ(m)) ∝ (λ
(m)
1 T)Qi exp (−λ(m)

1 T)γ(m) , (B.1)

p(Zi = 0|Qi ,ϑ(m)) ∝ (λ
(m)
2 T)Qi exp (−λ(m)

2 T)(1−γ)(m) . (B.2)

3. Sample b(m)
0 from p(b0|λ) given by eq. (2.18):

b0|λ ∼ G
(

g0 + 2a0, G0 + (λ
(m)
1 + λ

(m)
2 )T

)
. (B.3)

4. Conclude each draw by selecting randomly one of the 2 possible permutations, denoted by {ρs(1),
ρs(2)}, s ∈ {1, 2} (namely {1, 2} and {2, 1}), of the current labeling. This permutation is
applied to γ(m), the component parameters λ(m)

1 , λ(m)
2 , and the classifications Z(m):

a) The group weightγ(m) is substituted byγ(m)∗ = (1−γ(m)), if the permutation {ρ2(1),ρ2(2)} =
{2, 1} is drawn and remains equal for {ρ1(1),ρ1(2)} = {1, 2}.

b) The component parameters λ(m)
1 and λ(m)

2 are substituted by λ(m)
ρs(1)

and λ(m)
ρs(2)

respectively.

c) The classifications Z(m)
i , i = 1, . . . , N, are substituted by ρs(Z(m)

i + 1)− 1, i = 1, . . . , N.

M0 is called the burn-in of the sampler and denotes the number of iterations that are descarded
due to convergence criteria. M is the actual number of iterations after discarding the burn-in.
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B.2. Bias-reducing algorithm

Algorithm B.2.1.

1. Run the MCMC simulation defined in algorithm B.1.1.

2. Apply the unimodality test of Hartigan and Hartigan (1985) with a certain confidence level, κ, to
the sampled component parameters, λ.

3. If the unimodality test in the second step accepts the null of unimodality, calculate the MAP from
simulation results. Otherwise, calculate the BML.
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C. Tables

Table C.1.: Input parameters. The table shows all parameter combinations used for the
Monte Carlo simulation of the EKOP model. In addition the resulting Proba-
bility of informed trading (PIN) is shown in the last column. ’id’ indicates the
simulation ID and ’N’ is the number of trades simulated per dataset.

EKOP Parameters
id N α ε δ µ PIN

News
probability

Uninformed
trading

intensity

Probability
of good

news

Informed
trading

intensity

Probability
of Informed

trading

Group A
1 100 0.5003 0.1757 0.3491 0.1320 0.1581
2 100 0.4340 0.0240 0.4444 0.0301 0.2144
3 100 0.3563 0.0096 0.5018 0.0157 0.2254

Group B
4 100 0.2000 0.0500 0.5000 0.0200 0.0385
5 100 0.3000 0.0500 0.5000 0.0200 0.0566
6 100 0.4000 0.0500 0.5000 0.0200 0.0741
7 100 0.5000 0.0500 0.5000 0.0200 0.0909

Group C
8 100 0.2000 0.1000 0.5000 0.1000 0.0909
9 100 0.3000 0.1000 0.5000 0.1000 0.1304

10 100 0.4000 0.1000 0.5000 0.1000 0.1667
11 100 0.5000 0.1000 0.5000 0.1000 0.2000

Group A
12 250 0.5003 0.1757 0.3491 0.1320 0.1581
13 250 0.4340 0.0240 0.4444 0.0301 0.2144
14 250 0.3563 0.0096 0.5018 0.0157 0.2254

Group B
15 250 0.2000 0.0500 0.5000 0.0200 0.0385
16 250 0.3000 0.0500 0.5000 0.0200 0.0566
17 250 0.4000 0.0500 0.5000 0.0200 0.0741
18 250 0.5000 0.0500 0.5000 0.0200 0.0909

Group C
19 250 0.2000 0.1000 0.5000 0.1000 0.0909
20 250 0.3000 0.1000 0.5000 0.1000 0.1304
21 250 0.4000 0.1000 0.5000 0.1000 0.1667
22 250 0.5000 0.1000 0.5000 0.1000 0.2000
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Table C.2.: Estimation results (100 observations). The table shows the estimation results
from Monte Carlo simulations of the EKOP model and the compressed model
on N = 100 data points generated with the Mersenne-Twister RNG in R. All
parameter values are Monte Carlo means with corresponding Monte Carlo
standard errors. For each parameter combination 250 simulations were con-
ducted. Each parameter set has been estimated using R. For the MCMC ap-
proach we used a burn-in of M0 = 1000 iterations and ran the Gibbs sampler
for M = 10000 iterations.

MCMC PIN Estimates ML PIN Estimates
id True PIN BML MAP EIA EKOP EKOPM COMPML

Std. err.

Group A
1 0.1581 0.1577 0.1569 0.1569 0.1576 0.1239 0.1575

0.0162 0.0153 0.0151 0.0151 0.0115 0.0161
2 0.2144 0.2184 0.2192 0.2195 0.2173 0.1653 0.2168

0.0417 0.0362 0.0345 0.0279 0.0231 0.0397
3 0.2254 0.2369 0.2473 0.2480 0.2658 0.2133 0.2626

0.0698 0.0489 0.0467 0.0286 0.0287 0.0519

Group B
4 0.0385 0.0728 0.0468 0.0518 0.0521 0.0410 0.0694

0.0637 0.0372 0.0267 0.0222 0.0191 0.0584
5 0.0566 0.0813 0.0606 0.0620 0.0649 0.0483 0.0778

0.0635 0.0379 0.0291 0.0228 0.0192 0.0531
6 0.0741 0.0943 0.0672 0.0670 0.0778 0.0558 0.0902

0.0629 0.0402 0.0331 0.0263 0.0201 0.0706
7 0.0909 0.1029 0.0737 0.0714 0.0904 0.0635 0.0933

0.0669 0.0370 0.0302 0.0219 0.0197 0.0605

Group C
8 0.0909 0.0894 0.0962 0.0988 0.0895 0.0735 0.0892

0.0181 0.0170 0.0165 0.0176 0.0145 0.0181
9 0.1304 0.1285 0.1325 0.1341 0.1290 0.1051 0.1277

0.0188 0.0178 0.0173 0.0177 0.0143 0.0184
10 0.1667 0.1676 0.1690 0.1696 0.1671 0.1337 0.1675

0.0205 0.0193 0.0189 0.0182 0.0142 0.0201
11 0.2000 0.2012 0.2002 0.2000 0.2013 0.1581 0.2007

0.0217 0.0206 0.0203 0.0178 0.0140 0.0212
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Table C.3.: Estimation results (250 observations). The table shows the estimation results
from Monte Carlo simulations of the EKOP model and the compressed model
on N = 250 data points generated with the Mersenne-Twister RNG in R. All
parameter values are Monte Carlo means with corresponding Monte Carlo
standard errors. For each parameter combination 250 simulations were con-
ducted. Each parameter set has been estimated using R. For the MCMC ap-
proach we used a burn-in of M0 = 1000 iterations and ran the Gibbs sampler
for M = 10000 iterations.

MCMC PIN Estimates ML PIN Estimates
id True PIN BML MAP EIA EKOP EKOPM COMPML

Std. err.

Group A
12 0.1581 0.1584 0.1581 0.1580 0.1583 0.1250 0.1582

0.0100 0.0098 0.0097 0.0093 0.0072 0.0099
13 0.2144 0.2165 0.2169 0.2171 0.2148 0.1614 0.2177

0.0241 0.0226 0.0221 0.0174 0.0147 0.0239
14 0.2254 0.2260 0.2350 0.2377 0.2613 0.2194 0.2628

0.0400 0.0339 0.0317 0.0261 0.0164 0.0455

Group B
15 0.0385 0.0579 0.0606 0.0604 0.0555 0.0486 0.0687

0.0400 0.0252 0.0218 0.0134 0.0114 0.0299
16 0.0566 0.0699 0.0710 0.0697 0.0625 0.0533 0.0716

0.0429 0.0200 0.0193 0.0151 0.0129 0.0237
17 0.0741 0.0857 0.0793 0.0773 0.0776 0.0594 0.0842

0.0465 0.0227 0.0228 0.0154 0.0119 0.0297
18 0.0909 0.1016 0.0836 0.0808 0.0928 0.0643 0.0924

0.0480 0.0247 0.0239 0.0153 0.0119 0.0393

Group C
19 0.0909 0.0907 0.0935 0.0946 0.0908 0.0749 0.0907

0.0117 0.0113 0.0112 0.0111 0.0089 0.0117
20 0.1304 0.1311 0.1326 0.1333 0.1311 0.1067 0.1309

0.0127 0.0124 0.0123 0.0118 0.0094 0.0128
21 0.1667 0.1668 0.1673 0.1677 0.1662 0.1336 0.1667

0.0127 0.0124 0.0123 0.0111 0.0087 0.0128
22 0.2000 0.1995 0.1991 0.1991 0.1997 0.1573 0.1992

0.0127 0.0124 0.0124 0.0109 0.0084 0.0125
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Table C.4.: Bias. The table shows the bias for the Markov chain Monte Carlo and
the maximum likelihood estimators. The bias is computed over all 250
simulations corresponding to one combination of true parameters.

MCMC ML
id BML MAP EIA EKOP EKOPM COMPML

[10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

Group A
1 −0.0477 −0.1198 −0.1265 −0.0556 −3.4190 −0.0600
2 0.4041 0.4796 0.5106 0.2951 −4.9056 0.2439
3 1.1525 2.1935 2.2594 4.0392 −1.2085 3.7194

Group B
4 3.4300 0.8372 1.3357 1.3684 0.2580 3.0950
5 2.4670 0.4002 0.5375 0.8310 −0.8337 2.1189
6 2.0209 −0.6858 −0.7074 0.3774 −1.8267 1.6146
7 1.2025 −1.7202 −1.9537 −0.0549 −2.7418 0.2396

Group C
8 −0.1494 0.5319 0.7872 −0.1369 −1.7376 −0.1757
9 −0.1933 0.2071 0.3625 −0.1392 −2.5312 −0.2723

10 0.0923 0.2299 0.2917 0.0443 −3.2953 0.0856
11 0.1186 0.0199 0.0032 0.1296 −4.1938 0.0690

Group A
12 0.0236 −0.0045 −0.0092 0.0155 −3.3109 0.0101
13 0.2086 0.2530 0.2688 0.0416 −5.2964 0.3346
14 0.0641 0.9619 1.2311 3.5861 −0.5952 3.7377

Group B
15 1.9396 2.2108 2.1895 1.7074 1.0185 3.0228
16 1.3310 1.4440 1.3071 0.5946 −0.3338 1.5027
17 1.1582 0.5259 0.3185 0.3537 −1.4699 1.0079
18 1.0718 −0.7266 −1.0095 0.1918 −2.6581 0.1442

Group C
19 −0.0198 0.2549 0.3672 −0.0148 −1.6019 −0.0198
20 0.0628 0.2200 0.2882 0.0629 −2.3761 0.0484
21 0.0094 0.0643 0.0997 −0.0449 −3.3102 0.0031
22 −0.0467 −0.0903 −0.0884 −0.0339 −4.2671 −0.0796
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Table C.5.: RMSE. The table shows the root mean squared error (RMSE) for the
Markov chain Monte Carlo and the maximum likelihood estima-
tors. The RMSE is computed over all 250 simulations corresponding
to one combination of true parameters.

MCMC ML
id BML MAP EIA EKOP EKOPM COMPML

[10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

Group A
1 1.6181 1.5355 1.5075 1.5036 3.6059 1.6107
2 4.1824 3.6434 3.4774 2.8041 5.4224 3.9691
3 7.0619 5.3535 5.1755 4.9478 3.1126 6.3727

Group B
4 7.2277 3.8106 2.9826 2.6003 1.9240 6.5989
5 6.8029 3.8037 2.9500 2.4228 2.0913 5.7056
6 6.5974 4.0660 3.3788 2.6491 2.7124 7.2290
7 6.7831 4.0744 3.5878 2.1828 3.3718 6.0374

Group C
8 1.8092 1.7735 1.8234 1.7599 2.2582 1.8111
9 1.8835 1.7870 1.7684 1.7761 2.9047 1.8561

10 2.0449 1.9377 1.9106 1.8132 3.5879 2.0106
11 2.1683 2.0520 2.0231 1.7822 4.4216 2.1170

Group A
12 0.9990 0.9759 0.9687 0.9277 3.3879 0.9917
13 2.4121 2.2740 2.2178 1.7415 5.4949 2.4054
14 3.9893 3.5171 3.3920 4.4299 1.7373 5.8770

Group B
15 4.4370 3.3470 3.0876 2.1679 1.5298 4.2442
16 4.4796 2.4656 2.3284 1.6244 1.3347 2.8029
17 4.7844 2.3242 2.2975 1.5728 1.8893 3.1273
18 4.9136 2.5663 2.5870 1.5403 2.9095 3.9272

Group C
19 1.1663 1.1571 1.1780 1.1040 1.8324 1.1686
20 1.2734 1.2545 1.2612 1.1765 2.5550 1.2747
21 1.2714 1.2405 1.2348 1.1128 3.4215 1.2742
22 1.2688 1.2447 1.2384 1.0926 4.3492 1.2537
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Table C.6.: Convergence errors and frequencies. The table shows the frequencies of Bayesian estimations with lower ab-
solute bias than the corresponding MLE from either EKOP, EKOPM, or COMPML. In addition the number of
convergence errors in the gradient method for the maximum likelihood estimations are displayed. In case the
L-BFGS-B algorithm did not converge a bounded Nelder-Mead routine was applied.

Conv. Errors MCMC vs. EKOP MCMC vs. EKOPM MCMC vs. COMPML
id EKOP EKOPM COMPML BML MAP EIA BML MAP EIA BML MAP EIA

[%] [%] [%] [%] [%] [%] [%] [%] [%]

Group A
1 5 6 4 42 42 43 88 91 91 52 64 73
2 21 29 17 34 39 39 72 77 78 48 71 72
3 48 52 40 45 54 53 26 32 34 51 62 64

Group B
4 11 26 17 34 28 50 28 26 45 54 56 66
5 18 24 16 29 36 44 30 29 40 46 58 62
6 16 18 19 21 33 36 27 40 40 41 60 58
7 20 15 20 18 34 27 38 54 49 41 53 52

Group C
8 10 5 17 46 51 47 72 66 64 49 50 46
9 12 10 14 42 47 50 78 76 76 47 51 48

10 18 7 10 40 46 49 84 84 83 41 64 60
11 8 11 8 34 42 43 88 90 90 50 72 72

Group A
12 8 2 8 42 44 46 98 99 99 44 58 67
13 33 28 19 39 39 40 92 92 92 54 66 72
14 36 41 39 57 63 68 26 25 25 72 77 79

Group B
15 25 31 28 50 34 38 34 14 22 62 68 71
16 19 28 24 28 41 39 24 31 28 46 59 59
17 14 16 18 21 36 32 29 46 44 38 56 57
18 27 30 32 18 32 33 40 68 65 28 52 48

Group C
19 13 4 8 44 44 41 81 78 75 44 46 43
20 11 13 6 44 52 51 85 84 84 51 47 45
21 8 7 11 39 41 43 94 95 95 46 62 51
22 6 9 12 38 40 41 100 100 100 50 60 65
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Table C.7.: Frequencies (bias-reducing algorithm). The table
shows the frequencies of Bayesian estimations with
lower absolute bias than the corresponding MLE from
either EKOP, EKOPM, or COMPML when using the
ALGBM. In addition the number of rejected unimodal-
ity tests are presented.

ALGBM vs. MLE
id Rejected EKOP EKOPM COMPML

unimodality tests [%] [%] [%]

Group A
1 250 42 88 52
2 250 34 72 48
3 250 45 26 51

Group B
4 98 37 33 57
5 148 34 33 46
6 154 20 28 39
7 177 17 34 36

Group C
8 250 46 72 49
9 250 42 78 47

10 250 40 84 41
11 250 34 88 50

Group A
12 250 42 98 44
13 250 39 92 54
14 250 57 26 72

Group B
15 207 50 37 63
16 234 29 25 45
17 233 21 29 37
18 241 17 40 27

Group C
19 250 44 81 44
20 250 44 85 51
21 250 39 94 46
22 250 38 100 50
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Part III.

The probability of informed trading on U.S. corporate bond markets:
Conclusions from a fragmented market

This article investigates information asymmetries in U.S. corporate bond markets using transaction data
from the Trade Reporting and Compliance Engine (TRACE) for constituents of the S&P 500 in the first
half-year of 2011. As a measurement of information asymmetry I employ the probability of informed
trading (PIN) proposed by Easley, Kiefer, O’Hara, and Paperman (1996). In a cross-sectional regression
of 4,155 fixed-income securities on bond characteristics, market variables, and stock statistics, I find that
nearly 50% of the variation in PINs is explained. All estimated coefficients conform to expectations.
While a comparison of PINs in bond and corresponding equity markets confirms prior findings of lower
PINs on more active stock markets, it indicates the reverse for fixed-income securities: Less-frequently
traded bonds exhibit lower PINs. These findings accord with there being lower transaction costs on less
active bond markets as found by Goldstein, Hotchkiss, and Sirri (2007). However, as news probabilities
for bonds from the same issuer and bonds and corresponding stocks differ significantly I question the ap-
propriateness of traditional models for measuring information asymmetries. The probability of informed
trading might not be a suitable measure for highly fragmented markets such as the U.S. corporate bond
market.
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1. Introduction

The secondary market for U.S. corporate bonds is organized as an ‘over-the-counter’ market
with fragmented liquidity pools. The unavailability of transaction data left empirical research in
the field of market microstructure to fortunate authors in possession of proprietary data sets di-
rectly provided by market participants. The field changed entirely after the introduction of the
Trade Reporting and Compliance Engine (TRACE) in 2002 through efforts of the SEC. TRACE
collects trade reports from nearly all corporate bonds traded in the United States and makes
these data accessible to researchers. Since its introduction, empirical research on bond trad-
ing has proliferated and offered important insights into trading costs and market efficiency in
general.

Although the TRACE data have been available since 2002, papers concerned with informa-
tion asymmetry in corporate bond markets are rare. This paper begins to close this gap in the
literature by investigating the probability of informed trading (PIN), as proposed in a seminal
paper by Easley et al. (1996). To the best of my knowledge, I am the first to provide a thorough
study of information asymmetries in bond markets.

Cai et al. (2012) provide PIN estimates in their herding study. In contrast to their study, I
exclusively focus on information asymmetry. Two questions motivated this paper: (1) What are
the causes of information asymmetries and how do other market variables relate to informa-
tion asymmetry? (2) Are information asymmetries in bond and corresponding stock markets
comparable? I begin my analysis with cross-sectional regressions to explain the causes of in-
formation asymmetries in U.S. corporate bond markets. For this purpose I select from issuers
listed in the S&P 500 in the first half-year of 2011 all available bonds from the enhanced TRACE
database with complete information in the FISD Mergent and complete stock data in the Com-
pustat Security Daily databases and estimate the PIN measure for each of the resulting 4,155
bonds. To estimate the PIN I employ a slightly altered version of the Easley et al. (1996) (EKOP)
model that is based on a compressed likelihood and only requires data on the number of trades.
I apply a Bayesian approach first proposed in Grammig et al. (2014) and considered to be a
robust procedure with reliable convergence. I then regress the PIN measure on several bond-,
stock- and market-specific variables. The results indicate that nearly 50% of the variation in es-
timated PINs can be explained by bond characteristics and market measures and certain issuer
characteristics.

In the second part of my analysis I compare PIN measures from U.S. corporate bond and
corresponding equity markets. Similar to Easley et al. (1996), I divide my sample by trading
volume and investigate information asymmetries among different volume deciles. My bond
sample comprises 108 companies from the S&P 500 composite index and market data from 1
January 2011 to 30 June 2011. My results are the following: While PIN estimates for the stock
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markets reveal a structure reported in previous studies of higher information asymmetry in
less active markets, measures for bond markets indicate the reverse. Quite infrequently traded
bonds appear to suffer less from information asymmetries than bonds with high trading vol-
umes. Furthermore, news probabilities for stocks and bonds of the same company differ signif-
icantly and this could be considered conflicting evidence. Statistical tests reinforce my findings
and allow me to assess whether the EKOP and the compressed model can be appropriately
applied to fragmented markets.

My findings may be relevant for regulators and issuers. Referring to the recently published
agenda for the roundtable of fixed income markets of the SEC many yet unanswered questions
relate to information asymmetries and their drivers.1 For debt issuers information asymmetries
appear to be important, as reported in the recent paper of Han and Zhou (2013). The authors
demonstrate that information asymmetries get priced and this in turn increases the issuer’s cost
of debt. My results indicate that there exist factors that there are factors under the issuer’s direct
control and could therefore be used to design a debt obligation that accomodates the influences
issuer’s characteristics on information asymmetries.

The remainder of this paper is structured as follows. Section 2 describes the market structure
of the U.S. corporate debt market and related literature. Section 3 contains details on the data
sets used in my analyses and provides some summary statistics. In section 4 estimation methods
and results are discussed and section 5 concludes.

2. Market structure and literature

Corporate bonds represent in addition to equity an important capital resource for a company.
They are contractual obligations to make a series of ‘coupon’ payments and repay the ‘face
value’ at maturity. Coupons are either fixed or variable, where in the latter case the coupon is
tied to prevailing interest rates. There are also ‘zero-coupon’ bonds that only pay a face value
after a pre-fixed time horizon. The typical coupon payment frequency is twice per year, how-
ever, monthly or yearly payments are not unusual. Bonds are issued on the so called ‘primary
market’ and afterwards trade on the ‘secondary market’ investigated in this paper. The market
values of bonds depend on general economic variables, most notably the interest rate and on
company-related factors such as the default risk. In contrast to equity, bonds are issued in a
series of blocks where each block defines a distinct contract between the issuer and all buy-side
investors. This contract also occasionally involves special options that are also priced, such as a
rebuy option for the issuer.

If intended for public sale, the bond has to be registered with the SEC. An important aspect
of bond issuance and subsequent trading on secondary markets is a publicly available rating

1For the agenda of the roundtable for fixed income markets see http://www.sec.gov/spotlight/
fixed-income-markets/fixed-income-markets-agenda.htm (last visited on 11 November 2014).
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issued by one of the main rating agencies, Fitch, Standard & Poor’s, Moody’s or Duff & Phelps.2

Issuers directly hire a rating agency to signal their credit worthiness and improve investors’
trust in the payment obligation.

The annual value of newly issued bonds in the United States is enormous. In 2011, included
in my data set, companies issued a volume of $1,005.5 billions new debt in U.S. bond markets
with $8,324.7 billions in totals debt outstanding.3 As former SEC chairman Arthur Levitt noted
in a speech at the Media Studies Center in New York 1998:4

There seems to be a common misconception that the bond market is somehow less impor-
tant than the equity market. But history shows, if anything, that the opposite may be true.
(Arthur Levitt, New York, 1998)

Levitt mentions in relation to this comment that the daily transaction volume in stocks on the
NYSE is approximately $28 billion whereas the total corresponding volume on all secondary
bond markets is over $380 billion per day.5

2.1. Trading on secondary markets

After bonds are issued they are traded on secondary markets. The secondary market for
U.S. corporate bonds is organized as an ‘over-the-counter’ (OTC) market where broker-dealers
execute the majority of customer transactions in a principal capacity.6 Biais and Green (2007)
provide a comprehensive overview of bond trading history and the development of contempo-
rary markets.

Following the SEC’s definition, the OTC corporate bond market does not have a centralized
interdealer quotation system and can therefore not be described as either a quote-driven dealer
market or an order-driven auction market.7 Instead, this market is most often referred to as
a fragmented market. The way in which trade agreements are arranged does not appear to
be standardized: Saunders et al. (2002) find that the trading mechanism closely resembles a
first-price sealed-bid auction in which dealers collect bids and offers to match a client’s order
at the best price. Goldstein et al. (2007), Gu and Zhao (2006), Randall (2013), Harris (2002) and
the Securities Industry and Financial Markets Association (2006) mention a bargaining mecha-
nism. As requests for quotations often have to be conducted over the telephone or in person,
bargaining can be expected to determine an important share of a price agreement; this, then,
particularly holds for large block trades.

2These four rating agencies were the only rating agencies assigning ratings to the fixed-income securities
in my sample from Mergent FISD.

3This information was collected from the Securities Industry and Financial Markets’ (SIFMA) website
(http://www.sifma.org/research/statistics.aspx, February 21, 2014).

4See Levitt (1998) for the entire speech.
5However, one has to account for the large markets for government bonds, treasury bills and municipal

bonds.
6‘Over-the-counter’ is the established term used by the SEC to describe markets not being legally orga-

nized like an ‘exchange’.
7See Edwards (2006).
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2.1.1. Electronic quotation systems

Early attempts to introduce centralized electronic quotation systems into the highly frag-
mented U.S. bond markets were a costly failure.8 Edwards (2006) also comments on the failure
in mid-1998 to embrace many of the technological innovations in trading that had swept other
secondary markets in the United States. Although the attempts to adopt centralized systems
were unsuccessful, several dealers and brokers had already implemented proprietary electronic
information systems to serve their clients. Some of the large systems currently in use were intro-
duced in these times: Tradeweb by Thomson Reuters and ten leading dealers began operating
in 1996 and reported a trading volume of $1 trillion per year in 2000.9 BondDesk Trading by
the BondDesk Group (acquired by Tradeweb in 2013), was founded in 1995 and then developed
from thereon services to access liquidity pools, quotations, post-trade information and research
support.10 BGC Partners introduced the eSpeed system in 1996 (acquired by NASDAQ OMX
Group Inc. in 2013) and one of the largest players in the market, MarketAxess from ETP, began
operating in 2002 with a system for requests of executable bids from multiple broker-dealers.11

Most of these systems are hybrid voice/electronic systems.
In 2005 the Bond Market Association conducted a study of trading systems among 54 firms

that offered electronic trade execution systems in fixed-income securities.12 The study notes that
trading systems in fixed-income markets are characterized by broad variety and can be catego-
rized by the participants trading on them (dealer-customer or dealer-dealer) and the method-
ologies and technologies used for price discovery and trade execution. The largest trading
platform in 2005 registered 7,650 buy-side participants and four other platforms reported over
1,000 registered buy-side firms.

2.1.2. Market participants

Generally, market participants desiring to trade a certain bond contact dealers to obtain
quotes and then select the best bid or offer for execution. However, this seemingly simple
process involves a series of costly operations in terms of human resources and especially time:

8The case of InterVest Financial Services made headlines when its chairman Larry E. Fondren offered an
electronic service that attempted to provide information on the bond market - at the time occasionally
called a souk. His business was boycotted by bond dealers and closed in 1997 with a loss of more than
$10 million. Fondres himself believes that the dealers’ rejection of his system was related to an informal
investigation by the Justice Department and the SEC in 1996 into whether dealers were colluding to
keep InterVest from growing. His story was published in an article in BloombergBusinessweek by
Laura Duffie (http://www.businessweek.com/stories/1998-03-08/never-cross-a-bond-dealer,
last visited on 17 February 2014) and appeared in SEC publications (Edwards (2006)).

9For detailed information see http://www.tradeweb.com.
10Additional information can be gathered from the company’s website at: http://www.bonddeskgroup.

com.
11For eSpeed see http://www.espeed.com. MarketAxess offers services specifically designed for U.S.

and European high-grade corporate bonds, high-yield and emerging market bonds (http://www.
marketaxess.com).

12Bond Market Association (2005) also found in a speech by an SEC commissioner in May 2006 (http:
//www.sec.gov/news/speech/2006/spch051906cag.htm, 17 February 2014).
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To obtain the best price several dealers have to be contacted and prices have to be collected
and evaluated. As Bessembinder and Maxwell (2008) note, an executable quote by a dealer is
typically only valid ‘as long as the breath is warm’, which limits the ability to obtain multiple
quotations before committing to trade. This problem is exacerbated, if the bond is traded infre-
quently or the dealer has no inventory. In the latter case, dealers have to either reject services to
the market participant or engage in a similar search process, although they profit from having
far better market insight and substantially more contacts than a trader. If the dealer ultimately
executes a client’s order, she faces an inventory adjustment and after a number of trades in a
certain bond, inventory must be rebalanced to reduce risks. Inventory management may repre-
sent ‘the’ most important aspect of a dealer’s business. A formal analysis of this dimension of
the dealer’s problem is offered in the influential papers of Stoll (1978) and Ho and Stoll (1981)
and has been the subject of intensive discussion since. Note however, that these models assume
compensation for inventory-based risks through higher spreads, whereas interdealer markets
reduce this inventory-based risk by simplifying the management of large positions.

To manage their inventory dealers trade with other dealers. This interdealer business can be
considered delicate, especially, if the rebalancing of inventory involves substantial trade sizes.
When a dealer approaches another dealer, she reveals her identity and likely sustains negative
market impacts due to other dealers running in front of her order or earning significant markups
as counterparties. Revealing her identity and needs to trade reduces her bargaining power.

Regarding the interdealer market, Saunders et al. (2002) mention the perhaps least known
and least understood but likely most important market participants: The interdealer brokers
(IDBs). Interdealer brokers are middlemen in fixed-income trades. It is difficult to find informa-
tion describing the role of these special market entities in the fixed income markets, despite their
importance. This void in the literature is due to their highly confidential services. The Securities
Industry and Financial Markets Association (2006) provides an overview of the interdealer bro-
kers’ business and cites the enhancement of price discovery and transparency, the provision of
anonymity and confidentiality, facilitating of information flow, liquidity enhancement, improv-
ing market efficiency, and reducing costs as the general values added by these middlemen to
the fixed-income markets. Further, the Securities Industry and Financial Markets Association
(2006) stresses that the corporate bond market in particular makes extensive use of IDBs. As
mentioned above, the information flow on this market is viscous and transparency is low due
to its highly fragmented structure. Search costs can be expected to be very high, in contrast
to markets with a centralized structure such as the stock market, and the transaction of large
blocks becomes especially difficult in such an environment. As a result, interdealer brokers de-
veloped naturally as there was a need for intermediaries to make markets efficient and it can be
suspected that their special role might have significant effects on information asymmetries in
this market.

Before the SEC introduced TRACE, interdealers also constituted the main source for price
transparency in the market. Through proprietary information systems IDBs provided pre-trade
transparency by aggregating multiple orders and dealer quotations either on an indicative or
an executable basis. These systems were voice, electronic or hybrid brokerage models. Their
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assurance of anonymity encouraged dealers to supply IDBs with their quotations, typically in
the form of calls received seeking bonds or seeking a buyer for their bonds. IDBs’ aggregation
of trade interest and the subsequent dissemination of this information to participants enhanced
price formation, price discovery and trade frequency. Post-trade transparency was facilitated
by information on whether the bonds were reoffered or concerning the ‘cover bid’, the next
best bid after the level at which a bond traded. The Securities Industry and Financial Markets
Association (2006) considers this information flow to be important for dealers to quote markets
with certainty, thereby reducing spreads.

In interdealer trades IDBs preserve the anonymity of their clients and reduce the market
impact of inventory rebalancing orders. In addition, their broad range of contacts with other
dealers and brokers or large institutional traders enables them to divide a large block among
several potential buyers and sellers; this keeps markets more stable. Moreover, the business
model of IDBs allows dealers to better serve their clients’ needs: If a client requests a bond
that is not in the dealer’s inventory at a given point in time, the dealer can simply contact an
IDB and request a quote for the security. The network between various market players often
forms chains in which securities pass through more than three hands: From a client to a dealer
through an IDB to another dealer who in turn transfers the bond to her client (if the client acts
via a broker the chain becomes even longer).13 Serving as the key party in a large number of
trades in U.S. bond markets, IDBs should be expected to learn permanently from orderflow and
from the revealed identities of dealers and traders that are contacted directly.

As mentioned by the Securities Industry and Financial Markets Association (2006), the in-
terdealer broker business is considered a pure agency function and therefore as predominantly
riskless. There are a few large IDBs in the corporate bond market, among them ICAP, BGC Part-
ners, Tradition, GFI Group and Mint Partners which means that competition is questionable.14

Recently, IDBs emerged as key enablers of the Libor scandal in 2010. They are considered to
have played the role of central middleman in Libor-rigging.15 It is assumed that the specific
market environment in which traders know one another made the assumed collusion possible.

However, interdealer brokers are not the only actors that possess delicate private information:
Former SEC chairman Arthur Levitt reported in his speech at the Media Studies Center in New
York, September 1998, that the SEC found anecdotal evidence of the possible misuse of insider
information in the high-yield bond market. Unidentified sources informed the SEC, that invest-
ment banks and institutional investors that purchase high-yield corporate bonds occasionally
participate in loan syndicates for those same companies issuing high-yield bonds. At the time
the chairman was in contact with the FINRA (formerly NASD) concerning the introduction of
a standardized reporting system for the corporate bond market: TRACE.

13See Li and Schürhoff (2012) for an explicit overview over dealer networks.
14See http://www.icap.com, http://www.bgcpartners.com, http://www.gfigroup.com and http://

www.mintpartners.com/default.aspx for further information.
15Article published in BloombergBusinesweek in 2013 by Gavin Finch

and Liam Vaughan (http://www.bloomberg.com/news/2013-02-08/
interdealer-brokers-emerge-as-key-enablers-in-libor-scandal.html, last visited on February
17th, 2014).
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2.1.3. Introduction of TRACE

After the introduction of the world-wide electronic reporting system GovX in 1991 for gov-
ernment securities and the SEC’s encouragement of the Municipal Securities Rulemaking Board
(MSRB) to collect the details of dealer-to-dealer transactions in the municipal bond market,
Arthur Levitt believed that it was time for the corporate bond market to, in his words, ‘step up
to the plate’ as he said. In the following years, the Trade Reporting And Compliance Engine
(TRACE) was introduced in three large phases and replaced the prior system FIPS.16 TRACE
requires brokers and dealers to report virtually all trades in the fixed-income securitized prod-
uct market, stores these reports and makes them available. Asquith et al. (2013) describe the
introduction of TRACE in detail.

In its news release, FINRA (2005) cites the positive effects of the introduction of TRACE.
While FINRA emphasizes its role to be the leading private-sector provider of financial regula-
tory services, it notes increased interest among individual investors in the bond market follow-
ing the sharp decline in the equity market at the time. Following the report, "[t]wo out of three
corporate bond transactions are carried out at the retail leve[l]".17 Edwards (2006) mentions the
testimony of Doug Shulman (FINRA) before the US Senate Committee, in which he declared,
"[c]ontrary to popular belief [...] the bond market has a substantial retail participatio[n]". Table
1 in Edwards (2006) demonstrates, that while the average trade size in corporate bonds is 788
bonds in 2003 and 2004, median trade size is only 32. Institutional investors determine trans-
action volumes, while the number of trades is dominated by the retail sector. Retail trading
is generally considered to be uninformative and hence this development in the U.S. corporate
bond market should have an effect on information asymmetries.

While TRACE has improved post-trade transparency no effects are to be observed for pre-
trade transparency. Indeed, as Edwards (2006) reports, the pre-trade transparency formerly
provided by FIPS had been deliminated.18 The Securities Industry and Financial Markets Asso-
ciation (2006) mentions that the benefits of market data distribution - long championed by IDBs
- have now institutionalized by regulators. However, IDBs still provide pre-trade transparency
to their clients; therefore it is unlikely that retail investors are able to afford registration (they
could only access such services via their broker). While post-trade transparency was substan-
tially improved through TRACE, the pre-trade transparency and fragmented market structure
of the corporate bond market remain unchanged. The market microstructure and the initia-
tion of trades are particularly important determinants of the distribution of information among
market participants. With middlemen masking the identities of their clients and maintaining
personal contacts with them and dealers and large institutional investors enjoying long-time
profitable relationships, information asymmetries could become crucial for market efficiency in

16The Fixed Income Reporting System (FIPS) had been used predominantly for high-yield bonds and
operated from 1994 to 2002. This reporting system resulted from a regulatory intervention to better
monitor insider trading in this security segment; see Edwards (2006).

17It should be mentioned here that the literature classifies trades below a $100,000 par as ‘retail’ and the
average par of a bond is $1,000.

18FIPS also reported one-sided quotations for 50 bonds.
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an environment with a growing retail segment.
This paper analyzes post-TRACE information asymmetry in the U.S. corporate bond market

and concludes, that information asymmetries are highly volitile in comparison to the equity
sector though primarily driven by an insufficient amount of uninformed trading. Additionally,
this paper challenges the traditional models for measuring information asymmetries when in-
vestigating a highly fragmented market and poses the question of whether research should then
continue to rely on these models’ results.

2.2. Related literature

Market microstructure models including information asymmetries in securities trading were
first developed in the 1990s by Copeland and Galai (1983), Glosten and Milgrom (1985) and
Easley and O’Hara (1987) but assume a centralized dealer-market underlying. Copeland and
Galai (1983) analyze a one-period model of a dealer’s pricing problem under the assumption
that certain traders possess superior information. As, on average, the market maker looses to
those traders, she compensates for her risk of losing by setting a spread. While the market
maker’s loss in the model of Copeland and Galai (1983) depends on the demand elasticities
of traders (and thus on the current bid and ask prices), Glosten and Milgrom (1985) relate this
loss to the speed of information inbound into prices and set thereby the foundation for the un-
derstanding of how markets learn from information in order flow. Although this study does
not focus on information asymmetry reflected in spreads, this important strand of the literature
must be mentioned for the sake of completeness. Easley and O’Hara (1987) describe a model
similar in the spirit to Glosten and Milgrom (1985) and consider trade size as a second dimen-
sion of order flow information. They conclude that informed traders have an incentive to trade
in large order sizes. My analysis relates to their results in that many large orders submitted to
the market appear to have a positive effect on information asymmetry.

Empirical models to measure the impact of information asymmetry on transaction costs have
been published for example by Glosten and Harris (1988), Hasbrouck (1988), Huang and Stoll
(1997), and Madhavan et al. (1997), and are classified as the term ‘trade indicator models’. These
empirical studies obtain results consistent with theory in that information asymmetries result
in higher spreads. Hasbrouck (1988) also finds evidence in his NYSE data set that large trades
contain more information.

In their seminal paper Easley et al. (1996) propose a new technique to measure information
asymmetry in financial markets. Rather than using prices to obtain indirect evidence of in-
formed trading, the authors directly measure the effect of informed trading by estimating the
market maker’s beliefs (see Easley et al. (1996, p.1407)). The most important empirical result of
Easley et al. (1996) is that the probability of informed trading is lower for high volume stocks.
My study follows their approach and concludes that this pattern may not hold when consider-
ing debt markets.

The important segment of interdealer markets with their middlemen, the IDBs, is studied
in many papers, although for the government bond market, the commodities market and the
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FX market rather than for the U.S. corporate bond market. Theoretical models that involve in-
terdealer markets are developed in Lyons (1997) and Calcagno and Lovo (2006). Lyons (1997)
develops a model for the foreign exchange market in which dealers trade with customers and
then among themselves. The basic premise of his model is that when a dealer engages in in-
ventory balancing via the interdealer market, not only the customer’s trade but also any in-
formation contained therein is passed from dealer to dealer. This information is subsequently
revealed in prices depending on the information content in interdealer markets. Lyons (1997)
terms the passing of customer trades among dealers ‘hot-potato’ trading and demonstrates that
it reduces the information in interdealer trades, thus making prices less informative. Calcagno
and Lovo (2006) develop a theoretical model with a particular focus on information asymmetry
in fragmented markets. In their model, a market maker with superior information competes
with market makers that are uninformed. To summarize the results of their study, the informed
market maker has positive expected pay-offs due to price leadership. These findings illustrate
that adverse selection does not exist solely in dealer-customer relationships but that there are
also profitable opportunities from using private information in interdealer markets.

Huang et al. (2002) analyze the U.S. Treasury note interdealer market. The authors examine
the trading behavior of primary dealers in the 5-year Treasury note interdealer broker market.
They find that trading frequency is determined by public information and private information,
represented by the dealers’ inventory and order flow information. Additionally, they mention
that trade size appears to have no information content in this market. As mentioned above, my
results contrast those of Huang et al. (2002) in that trade size is important.

Evans and Lyons (1999) and Payne (2003) observe information content in FX order flow
data from direct interdealer trading platforms and broker platforms, respectively. Marsh and
O’Rourke (2005) also observe private information in the FX customer order flow by analyzing
the order flow of a leading European commercial bank’s foreign exchange desk. In addition, the
order flows of different exchange rates contain information relevant for other exchange rates.
As an interesting byproduct of their study, they mention that the dealer is also able to extract
information from the trading accounts of its customers: Citibank clients appear to be better in-
formed on average. Thus, even if the clients themself remain anonymous dealers distinguish
between order flows from different brokers (accounts). Furthermore, Bjønnes and Rime (2005)
analyze the proprietary order flow data of four interbank dealers in the foreign exchange spot
market and find strong support for an information effect in incoming trades. They report that
the direction of trade is the most important factor but that trade size is also relevant.

Menkhoff and Schmeling published a series of papers investigating the behavior and charac-
teristics of informed orderflow. Menkhoff and Schmeling (2008) demonstrate that there is only
a permanent price impact for orders from certain geographical regions, typically the regions
where political and financial decision making occurs. In Menkhoff and Schmeling (2010b) the
authors report that informed traders are characterized by simultaneously having large trading
volumes, medium-sized orders, trading early during the trading session and at times with a
thin order book plus wide spreads, and finally by being located in a financial center. Menkhoff
et al. (2010) analyze the limit-order submission strategies of informed traders and conclude that
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informed traders are sensitive to spreads, volatility, momentum and depth. Furthermore, they
find that the informed treat aggressive limit-orders as a substitute for market-orders. Finally,
Menkhoff and Schmeling (2010a) focus on information about the counterparty in FX trades and
observe significant effects on the future trading decisions of individual traders. The effect is
such that traders tend to reverse their order flows to align them with those of better-informed
counterparties.

Studies specifically concerning with the U.S. corporate bond market have proliferated follow-
ing the increased data availability offered by TRACE. Important studies concerning transaction
costs and price efficiency are Edwards et al. (2006), Bessembinder et al. (2006), Goldstein et al.
(2007), and most recently, Asquith et al. (2013). All studies report a significant decrease in trans-
action costs and price dispersion due to the increase in transparency. In addition, transaction
costs in more active markets are found to be significantly higher.19 Asquith et al. (2013) also
mention a negative effect of TRACE: The trading activity for certain categories of bonds de-
creased.

Han and Zhou (2013) measure information asymmetry in bond markets using a trade indi-
cator model and explain U.S. corporate bond yield spreads and default rates using bond char-
acteristics, general economic variables and their information asymmetry measure. In contrast
to their study my paper does not use a trade indicator model but a more general measure of in-
formation asymmetry. I extend their study by describing the causes of information asymmetry,
which might in turn be priced following their explanation of yield spreads.

Cai et al. (2012) also calculate the probability of informed trading in their study, although
their focus is on institutional herding in U.S. corporate bond trading. The authors estimate the
model of Easley et al. (1996) using data on sell and buy trades and the range of their estimates is
similar to my results. In contrast to their study I exclusively focus on the probability of informed
trading, cover a broad range of stylized facts associated with this measure, and compare the
probabilities of informed trading in fixed-income and equity markets.

Studies concerned with explaining information asymmetries in debt markets are rare.
Wittenberg-Moerman (2008) considers the secondary loan market and measures the effects of
loan characteristics on information asymmetry. As a measure of information asymmetry, the
author adopts the bid-ask spread, a debatable measure with respect to the above mentioned
empirical findings in Madhavan et al. (1997), Glosten and Harris (1988) and Huang and Stoll
(1997). Information asymmetries determine only one of several components contained in the
spread, and it remains questionable whether variation in spreads resemble variations in infor-
mation asymmetries.

19Goldstein et al. (2007, Section 3.3) find their estimated spreads to increase in the level of trading activity.
The authors offer the explanation that dealers might trade less active bonds differently than more active
bonds.
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3. Data

I used the enhanced TRACE data set for bond order flow data, the Mergent FISD data set
for information on ratings and issuance, the former online database of the Financial Markets
Research Center of Vanderbilt University for stock orderflow data, and the Compustat Daily
database for information on stock trading volumes.20 For my analysis of the probability of
informed trading, I considered a time range from 1 January 2011 to 30 June 2011. I selected all
bonds available for the constituents of the S&P 500 during this period. Two different datasets
were constructed: For the cross-sectional analysis, from issuers listed in the S&P 500, I obtained
all available bonds from the enhanced TRACE database with more than 29 trades and complete
information in the Mergent FISD database and the Compustat Security Daily database during
the period between 1 January 2011 and 30 June 2011. This left 4,155 bonds for my analysis. For
the comparison between bond and stock markets I used a different dataset. I followed Easley
et al. (1996) and divided bonds into ten deciles by their transaction volume observed during the
first half of 2011. I then selected the three deciles, the 3rd, the 5th and 10th (the 10th being the
decile with highest transaction volume). For each company, the bond with highest transaction
volume and at least 30 trades in the period considered was chosen. This procedure yielded
a total of 9,728 observations for 108 bonds over the three deciles. Finally, I assigned to each
of these 108 bonds its corresponding equity, i.e., the deciles for equities are determined by the
bonds.

As Dick-Nielsen (2013) notes, the enhanced TRACE data set is a tremendous improvement for
most applications using TRACE and enjoys several advantages over the standard TRACE data.
While the standard TRACE database caps large transaction volumes in reports to ‘1MM+’ and
‘5MM+’, the enhanced TRACE set reports these transaction volumes uncapped. Furthermore,
enhanced TRACE includes buy-sell side information and in addition to trade execution dates
and times the corresponding report filing dates and times. The enhanced TRACE database
contains transaction reports for all transactions dating back to the introduction of TRACE in
July 2002, although this comes at the cost of an 18-month lag in availability.

Because TRACE includes raw reports the data must be cleaned to eliminate duplicate entries
due to bilateral reporting of counterparties in trades involving two registered members of the
FINRA. Furthermore, trades are often cancelled or corrected ex post on the same day or on
later days. Cancelled and corrected reports and duplicates from agency and interdealer trades
would distort arrival rates in the EKOP or compressed model, respectively, and could have
strong effects on the measured PIN. In cleaning the data set I followed suggestions from Dick-

20All bond data were retrieved from Wharton Research Data Services (WRDS). For stock order flow
data see the website of the Financial Markets Research Center of Vanderbilt University, http://www.
vanderbiltfmrc.org/databases/market-microstructure-database/.
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Nielsen (2009, 2013) and Asquith et al. (2013).
A detailed description of my cleaning algorithm is provided in appendix A, and a summary

of the cleaning procedure is presented in table B.1: Of the 507 companies included in the S&P
500 during the first half-year of 2011, 387 issued publicly traded debt eligible for TRACE.21

For these 387 companies the enhanced TRACE sample included 10,818 bonds prior to clean-
ing with a total of 4,483,549 reports filed. Of this amount, 31,842 reports indicated same-day
corrections resulting in a deletion of the related original report filings and 41,329 trades were
cancelled, which resulted in a deletion of both, the original and cancelling reports. Cancella-
tions or corrections on later days defined 43,900 more reports as deleted from the database and
unmatched reversals from this step were matched with ‘as-of’ reports and resulted in 3,085 fur-
ther deletions.22 Additionally, remaining 10,205 reversals that could not be matched to prior
trade reports were excluded.

Agency trades are trades in which a so-called ‘introducing dealer’ acts as an agent for its
client and transfers its client’s order to another dealer that in turn executes the order. This chain
results in three reports filed in TRACE, although only one trade was executed. I identified
agency trades by three matching trade reports and deleted two of them. In total, 626,632 reports
were deleted due to agency trades. In interdealer trades both FINRA members involved in the
trade have a report obligation. I matched these reports based on a POSIX timestamp (date and
time) and in a second step by date alone and retained only the sell side of such trades. In total,
656,026 filings could be identified as part of an interdealer trade by matching date-times, and
further 901,328 reports were additionally found by matching only dates. Remaining unmatched
interdealer buy-side reports were also deleted. Using this approach, I followed the conservative
method of Asquith et al. (2013). I checked for special trade or settlement agreements and for
delayed reporting but no such reports were contained in my enhanced TRACE data sample. In
sum, 2,594,567 reports were deleted and 1,888,982 reports remained in my database.

Bond order flow data from the enhanced TRACE database and information on issuance and
ratings from Mergent FISD were matched based on the securities’ complete CUSIPs. The stock
and bond data were matched based on the company ticker.

Table B.2 reports summaries for daily contract volumes in the bond markets and for daily
share volumes in stock markets during the considered time interval. The first block summarizes
the trading volume statistics of intraday bond data in enhanced TRACE. The volumes were
collected from individual trades and aggregated over each trading day for a bond. I report
means and medians from the deciles three, five and ten. Contract volumes differ substantially
across deciles ranging in mean from approximately 200,000 contracts in the lowest decile to 4.3
million contracts in the highest. With a maximum of over 1.7 million contracts per day and a
minimum of nearly 209 contracts, daily volumes in the 10th decile vary significantly. Similar
variations can be observed for deciles 3 and 5. Mean standard deviations resemble these high

21Constituents of the S&P 500 index are selected using guidelines and an index committee that meets once
a month. Over the period from January 2011 to June 2011 some companies in the index were replaced
by others resulting in 507 companies over the full period.

22‘As-of’ reports are filed on subsequent days and replace the original reports.
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variations. The median values on the right side of the table indicate that the daily contract
volumes in all deciles are driven by some large volumes.

For the stock markets I collected the daily share volumes from Compustat Security Daily to
calculate the statistics.23 The summary of the stock market volumes reveals similar distributions
for all share volumes in the considered period. Beginning with a mean share volume of over 449
million for the first half-year of 2011 in the lowest decile, the highest decile has an average of 2.9
billion; these are between 500 to 2000 times the mean contract volumes in the bond markets for
this period. The daily share volume in stocks varies between 97 million and 10 million in decile
10 and approximately 14 million and 1.5 million in decile 3. Note, that the minimum daily share
volume in the highest stock decile is higher than the maximum contract volume in the highest
bond decile. All median volumes are smaller than the mean volumes for the stock deciles and
this points to a right-skewed distribution. Interestingly, the bond market behaves accordingly.

Summaries of numbers of trades are contained in table B.3 and reveal a greater difference
between fixed-income and equity markets. While on the equity markets trades occurred on
approximately 35% more days than on bond markets, the number of trades per day on these
markets is also substantially higher: The average in fixed-income markets in the highest decile
is approximately 14 trades per day, whereas even in its lowest decile, the stock market records
over 15,000 trades daily. Maximum numbers of trades per day were on average 163 in the high-
est decile of the bond markets and over 54,000 in the lowest decile in the equity sector with
values increasing along deciles. The minimum number of daily trades in fixed-income markets
is only between 1 and 3 trades on the average bond. Comparing these numbers to the stock
markets I arrive at values that are more than 7,000 times higher in magnitude. Overall, the
equity markets report between 1.9 and 7.2 million trades between 1 January 2011 and 30 June
2011 whereas the bond markets range in total trades from between 320 in their lowest and 1,314
in their highest decile. This clearly demonstrates that even if the structure of the bond market
enables very large transaction volumes, trades are rare compared to the equity markets. There
are several hypotheses for these large differences in trade numbers between the markets for
corporate bonds and the associated markets for equity shares. One is the substantially lower
trading activity of the retail segment on bond markets. A further explanation would be higher
transaction costs on fixed-income markets, as demonstrated by Edwards et al. (2006), Bessem-
binder et al. (2006) and Goldstein et al. (2007). Yet another potential reason is the decentralized
market structure in which trading mechanisms continue to significantly rely on communication
via phone, email and even face-to-face encounters and the preference for buy-and-hold strate-
gies in fixed-income markets. Furthermore, in equity markets, the algorithmic trading segment
enjoyed substantial growth rates over the last seven years, whereas in fixed-income markets
this segment is negligible.24

23The Compustat Security Daily data were collected via Wharton Research Data Services.
24See Kishore (2013) for a brief overview of algorithmic trading in fixed-income securities.
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4. Estimation and results

This section reports the methodology and results of the two analyses conducted in this paper,
namely a cross-sectional regression to explain the causes of information asymmetries in bond
markets, and a comparison of PINs between bonds and their corresponding equities. I begin
with the cross-sectional analysis.

4.1. Cross-sectional regressions

To explain the causes of information asymmetries in U.S. corporate bond markets I conducted
a cross-sectional regression using 4,155 bonds traded in fixed-income markets in the period
between 1 January 2011 and 30 June 2011. The probability of informed trading for each bond
was estimated using a procedure described in the following paragraph.

Easley et al. (1996) propose a model (henceforth denoted as the EKOP model) to estimate
the information asymmetry in a security market using the probability of informed trades in the
order flow. Their model considers a market with competitive market makers, informed traders
and uninformed (liquidity or noise) traders. Buyer- and seller-initiated trades are counted on
each trading day and a mixed Poisson process is fitted to the data. Uninformed buyers and
uninformed sellers each arrive at a rate ε. Information events occur with probability α and
are either good (with probability (1 − δ)) or bad news (with probability δ). On good- and
bad-news days informed traders are presumed to trade on the demand and supply side of the
market, respectively, thereby intensifying the arrival rates on these days byµ. Easley et al. (1996)
assume a centralized market in their model, however, even if the market for corporate bonds is
decentralized with highly fragmented liquidity pools, TRACE represents a central collection of
the market’s trading activity.

The enhanced TRACE database contains buy- and sell-flags and enables estimation of the
EKOP model, although I used a slightly modified version of this model first described by Kokot
(2004) and recently reanalyzed by Grammig et al. (2014) (denoted as the ‘compressed’ model).25

The compressed model forgoes the need for buy-sell flags and solely considers the number of
trades in a market. It does so by collapsing good- and bad-news days and therefore requires
one fewer parameter than the EKOP model, i.e., δ is no longer needed:

L(Q|ϑ) = α((2ε+µ)T)Q exp (−(2ε+µ)T)
Q!

+ (1−α)(2εT)Q exp (−2εT)
Q!

, (4.1)

where ϑ = (α,ε,µ)′, denotes the parameter vector, containing α, the probability of news, ε,

25Moreover, Wuensche (2007) uses a Poisson mixture and presents stylized facts concerning the empirical
count data for trades.
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the intensity parameter of uninformed (noise or liquidity) trading, and µ, the arrival rate of
informed trading. Q denotes the number of trades per day and T is the length of the trading
day, set to 390 minutes (6.5 hours) in my analysis.

The measure for information asymmetry (the probability of informed trading) is then defined
by the three parameters contained in ϑ:

PIN =
αµ

αµ + 2ε
. (4.2)

The reason for my choice of the compressed model was, first, the very low trading activities
on the sell and/or the buy side of the fixed-income markets (which are occasionally even zero)
and, second, the prevailing instabilities of the maximum likelihood function in estimating the
EKOP model. These instabilities are based on the nature of the EKOP likelihood function as a
finite mixture of three bivariate Poisson distributions.26

The prevailing instabilities of the maximum likelihood procedure led me to employ the Markov
Chain Monte Carlo (MCMC) approach proposed by Grammig et al. (2014). I ran the MCMC
sampler with a burn-in of 1,000 iterations and collected parameter samples from the follow-
ing 10,000 replications for all 4,155 bonds in my dataset.27 The resulting probabilities of in-
formed trading in my bond sample vary between a minimum of 0.31× 10−5 and a maximum
of 0.975 with an overall mean of 0.11 and a median of 6.25× 10−2. The 1st and 3rd quartiles
are 4.17× 10−3 and 0.179, respectively. In summary, the distribution of PINs in my data set is
highly skewed to the right, with many bonds exhibiting small probabilities of informed trading
and a few bonds having very high probabilities.

The estimated PINs were then regressed on several variables describing either the bond and
its market or the corresponding company’s stock. Table B.4 summarizes the variables used in
the multiple regression. Maturity and age are considered important variables for the evaluation
of a bond and the bonds in my sample are on average 5 years old and have a mean of 10 years
until maturity. The coupons are distributed around $5, with 404 bonds possessing a variable
coupon and 137 being zero-coupon bonds (all remaining bonds have a fixed coupon). Coupons
are paid with an approximate frequency of twice annually. The offering amount is on average
$400 million with a standard deviation of more than $600 million. The mean denomination

26The contour of this likelihood function contains six modes and in the case of overlapping components
these modes form a plateau that impedes the optimization algorithm to determine the maximum. For
instance, in estimations of the EKOP model using a Nelder-Mead simplex on stock order flow, 103
of 108 estimations did not depart from the initial values and all hessian matrices were singular. I
employed two different likelihood functions: The original likelihood function reported in Easley et al.
(1996) and a modified version accounting for large trade amounts proposed in Easley et al. (2008).
A maximum likelihood approach with a compressed likelihood function and applied to bond trades
yielded better estimation results, although in 24 of 108 estimations, the hessian matrices were singular
and had to be inverted via the Moore-Penrose approach and 10 covariance matrices were not positive
definite. Results from these maximum likelihood estimations are available upon request.

27All estimations were performed by using a self-coded R-package based on C++-extensions that rely heav-
ily on the high-performance library RcppArmadillo (0.3.920.1) (see Eddelbuettel and Sanderson
(2013)).
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(minimum trade size) of the bonds in my sample is approximately four bonds per trade but
with a standard deviation of more than 18 contracts. The high standard deviation results from
several bonds with denominations of between 100 and 250 bonds per trade.

Only a small number of bonds are convertible (65) and fewer bonds are exchangeable.28 Five
companies were in bankruptcy during my sample period and for 443 securities their issuer had
made a debt tender offer since issuance. During the period from 1 January 2011 to 30 June 2011
203 companies were (re)rated and over 900 companies were not (any longer) monitored by a
ratings agency (off-watch). Ratings are predominantly between A and BBB, and only 84 bonds
were top-rated (AAA). Three rating agencies analyzed the creditworthiness of issuers, namely
Standard & Poor’s, Fitch, and Moody’s. Of 4,155 bonds, Fitch rated the most, 2,524, followed
by Moody’s, with 1,087, and Standard & Poors, with 544.

Bond markets possess high volumes, as mentioned in prior sections: The average bond in
the cross-sectional sample had a volume of over $300 million traded in the first half-year of
2011. The variables ‘MM1’ and ‘MM5’ determine the number of large trades with trading vol-
umes between $1 and $5 million and above $5 million, respectively. The distributions of these
variables are highly skewed, with a few bonds showing very large trades quite frequently, but
a median at 13 and 4 for ‘MM1’ and ‘MM5’, respectively. Traditional market microstructure
measures were added to my analysis, among them the Amihud (2002) (il)liquidity measure,
the Roll (1984) measure of transaction costs, and dispersion as a second measure of transaction
costs. The Amihud liquidity measure was measured as in Dick-Nielsen (2009):

Amihudt =
1
N

N

∑
|ri j,t|
Vi,t

, (4.3)

where N is the number of trades of a bond on day t, ri j is the return between two consecutive
trades j and i and Vi is the dollar par volume for trade i (measured in $million). I then took the
median over all daily Amihud measures of a bond.

The Roll measure was computed using daily price differences:

Rollt = 2
√
−Cov(∆Pt,i , ∆Pt,i−1) , (4.4)

where t is the trading day and i denotes intraday transaction times. ∆Pt,i and ∆Pt,i−1 are the
intraday price difference and its lag, respectively. The single Roll measure for a bond in my
sample is the median over all trading days with negative autocovariance in price differences.

Price dispersion was proposed by Feldhütter (2012) and Dick-Nielsen et al. (2012) to capture

28A convertible bond includes the option to convert the bond into the equity of its issuer. An exchangeable
bond also carries a convertibility option but in contrast to the convertible bond a bondholder has the
right to exchange her bond to stock in a subsidiary or a company in which the issuer owns a stake.

98



roundtrip trading costs:29

Dispersiont =
1
N

N

∑
Pt,max − Pt,min

Pt,last
, (4.5)

where N is the number of days, Pt,max and Pt,min are the maximum and minimum price on
trading day t, and Pt,last denotes the closing price on day t.

The Amihud (2002) measures are very small indicating sufficient liquidity to avoid large price
jumps between consecutive trades. Further, the dispersion measure proposed by Feldhütter
(2012) and Dick-Nielsen et al. (2012) is quite small.

Finally, I included the median of daily standard deviations of bond prices, the mean issuer’s
stock return (measured in %) for the period between 1 January 2011 and 30 June 2011, the
issuer’s stock return volatility for the same period (measured by the standard deviation of daily
percentage stock returns), and an indicator variable for affiliation with the highly regulated
financial or utility industries in the analysis. Prices on bond markets do not exhibit high daily
volatility during the first half-year of 2011. The average bond issuer has daily average returns
of approximately 0.065%, with a median slightly lower at 0.052%. Stock return volatilities were
in an acceptable range, approximately 1.8% for the average bond issuer. Interestingly, over half
of the bonds were issued by a company in the financial or utility industries. These industries
are highly regulated and one could expect, that the bonds of such firms behave differently.

For my examination of information asymmetries estimated from aggregated trading activity
I specified my model as follows:30

PINi j =β0 +β1Maturityi +β2Agei +β3Couponi +β4VariableCouponi

+β5 log OfferingAmounti +β6Convertiblei +β7InBankruptcyi

+β8TenderOfferi +β9RatedInRangei +β10AAAdumi

+β11AAdumi +β12Adumi +β13S&Pi +β14Moody’si

+β15 log Volumei +β16MM1i +β17MM5i

+β18Dispersioni +β19PriceStdi +β20IssuerStockReturni j

+β21IssuerStockVolatiltyi j , (4.6)

29Feldhütter (2012) and Dick-Nielsen et al. (2012) demonstrate, that their measure is as robust as the Ami-
hud (2002) liquidity measure.

30Beginning with an even larger set of variables, I used the Akaike information criterion (AIC, see Akaike
(1974)) to exclude variables from the estimation. Specifically, the step-function in R-3.0.2 was used
to exclude and include variables in a stepwise manner. A list of excluded variables is available upon
request.
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where i indicates a certain bond i in the sample and j the corresponding stock j, Maturityi is
the number of days until bond i matures, Agei is defined as the number of days since bond
i was issued, Coupon is the $-valued coupon of the bond, VariableCouponi is a dummy, in-
dicating whether bond i has a variable coupon, OfferingAmti is the amount of debt issued,
Convertiblei indicates whether a bond is convertible to common stock, InBankruptcyi is equal
to one, if bankruptcy proceedings were initiated for an issuer, TenderOfferi indicates whether
a debt tender offer had been made for bond i by its issuer since issuance, RatedInRangei is a
dummy reporting that bond i was (re)rated during the considered time period, AAAdumi to
Adumi are dummies denoting the rating of bond i (always the most recent rating has been cho-
sen), S&Pi and Moody’si are dummies indicating whether a bond has been rated by the two
rating agencies. MM1i and MM5i count the number of large trades (between 1 and 5 mil-
lion and more than 5 million contracts per trade) in bond i, Dispersioni is the price dispersion
measure from eq. (4.5), PriceStdi is the median daily standard deviation of security’s i prices,
IssuerStockReturni j is the mean of daily stock returns of bond i’s issuer j in the first half-year
of 2011, and IssuerStockVolatilityi j is the corresponding issuer’s volatility of daily stock returns
from January to June 2011.

Equation (4.6) was estimated by least squares using heteroskedasticity-consistent standard
errors and the results are reported in the first block of table B.5.31 The variables considered
explain over 47% of the variation in the probability of informed trading with all variables being
significant at the 10% level. Other than Age all variables are also significant at the 5% level
and most of them as well at the 1% level. The Wald test supports the choice of the model
and rejects the null at a confidence level above 1%. A (re)rating (RatedInRange) substantially
increases information asymmetry. This is unsurprising, as a (re)rating typically indicates a case
of new information arrival. Conversely, a company in bankruptcy exhibits, on average, a lower
probability of informed trading as reflected in the negative coefficient of InBankruptcy.

The large coefficient of the price dispersion is due to the very low values of this variable.
However, large price movements increase information asymmetries in the corporate bond mar-
ket. In the EKOP model large differences in maximum and minimum transaction prices in a
market can only be caused by informed trading, as otherwise the market maker does not al-
ter her quotes. The regression results indicate that price dispersion increases the PIN and thus
conform to the model.

Higher coupons positively affect the probability of informed trading. Whether this is because
higher coupons could be considered a proxy for lower ratings remains ambiguous. However,
a variable coupon also increases the PIN: Such a coupon is coupled with the interest rate and
introduces a further source of volatility, which increases information asymmetry in the market.

If an issuer has ever made a tender offer to repurchase its debt, investors regard a second
offer as more likely, creating uncertainty concerning the value, thereby increasing information
asymmetry in the bond. A rating between AAA and A decreases the PIN: All coefficients for
the included rating dummies take a negative sign. This is unsurprising as a high rating makes

31In detail, I use the heteroscedasticity-consistent variance-covariance matrix proposed by Cribari-Neto
and da Silva (2011). This matrix is implemented in the sandwich (2.3.0)-package for R (type HC4m).
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unexpected losses less likely. Further, investment-grade bonds might enjoy higher trading ac-
tivity in the retail sector, and as Easley et al. (1996) note, uninformed trading reduces the PIN.
In the comparison analysis below, I demonstrate that probabilities of informed trading in differ-
ent deciles of corporate bond markets are primarily driven by the relative rates of uninformed
traders.

Interestingly, a rating by S&P or Moody’s appears to increase information asymmetries, in
contrast to the results for Fitch (which rated most of the bonds in the sample).

Whereas the trading volume of a bond increases information asymmetry, the offering amount
at issuance has a negative impact. The former result conforms to the findings from the compar-
ison analysis below, as bonds in higher volume deciles exhibit also higher PINs.

It is intriguing that having a number of trades with between $1 million and $5 million in
trading volume increases the probability of informed trading, whereas having a high number
of trades with more than $5 million in trading volume decreases this measure to a substantially
greater extend. The model of Easley and O’Hara (1987) predicts that informed traders will, on
average, trade higher volumes to extract the largest rents possible, although the model does not
differentiate between certain large trade volumes. It is possible that trades with a dollar volume
in excess of $5 million are considered liquidity trades by institutional investors such as pension
funds and do not rank among informed trades. Menkhoff and Schmeling (2010b) find that
informed traders predominantly use medium-sized orders following a trading strategy called
stealth trading.

Edwards et al. (2006) regress estimated percentage transactions costs on various bond char-
acteristics. Some of their bond characteristics are identical to the variables used in my cross-
sectional regression. However, under the assumption of the commonly accepted adverse se-
lection component in transaction costs, not all coefficient estimates coincide. Ratings of BBB
to C increase transaction costs, and this agrees with the finding that ratings of A to AAA de-
crease information asymmetries which in turn could be assumed to decrease transaction costs.
The estimated coefficient of the coupon rate in the analysis of Edwards et al. (2006) is posi-
tive as is the estimated coefficient in my cross-sectional analysis. The issue size (in my equation
OfferingAmount) is positively and a variable coupon negatively related to transaction costs. Both
variables affect the probability of informed trading similarly in that a variable coupon increases
information asymmetries in a market and the offering amount decreases it accordingly. How-
ever, there are estimated coefficients that do not coincide with the findings in Edwards et al.
(2006): InBankruptcy, Age, and Maturity. Indirect effects could account for these discrepancies in
estimated coefficients.

There could be numerous covariance structures in the residuals that vary by the issuer, al-
though the individual residuals are homoskedastic within each cluster. To allow for greater
flexibility in the variance-covariance matrix of the regression I applied cluster-robust standard
errors and the results are reported in the second block of table B.5.32 Accounting for cluster-
ing changes the significance levels of the Age variable from below 10% to above 15%, of the

32For a discussion of robust inference under within-group correlated errors, see for example Cameron
et al. (2011) and the references therein.
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dummy AAAdum from 1.4% to 0.06%, of the dummy AAdum from 2.03% to 6.34%, and of the
dummy InBankruptcy from above 1% to approximately zero, however, most other variables re-
main highly significant and the Wald-statistic increases from 112.8 to 9,300.

4.2. Comparison of PINs between corporate bond and corresponding equity
markets

As described in the data section above I divided bonds with more than 30 trades in the first
half-year of 2011 into deciles based on their transaction volume and selected the deciles 3, 5,
and 10 for my comparison analysis. For each bond the corresponding stock was then assigned
to the same decile. This procedure led to 39 bonds with an average of 87 observations and
39 stocks with an average of 122 observations in the 3rd decile, 35 bonds with an average of
92 observations and 35 corresponding stocks with an average of 121 observations in the 5th
decile, and 34 bonds with an average of 90 observations and 34 stocks with an average of 122
observations in the 10th decile.

For all bonds and stocks, I estimated parameters using the random permutation Gibbs sam-
pler with a burn-in of 1,000 iterations and collecting the following 10,000 replications. Parameter
and PIN estimates from the comparison analysis (Bonds and Stocks) are reported in table B.6.
Estimates in each decile are aggregated by the mean and median. The results reflect the findings
from the number of trades in table B.3: Arrival rates of Poisson processes on the stock markets
are much higher than corresponding rates on the fixed-income markets. The log-likelihoods ac-
cord with these findings. While the stock market results reflect the expected pattern observed in
earlier studies, e.g., by Easley et al. (1996), with greater information asymmetries on less active
markets, the structure of PIN estimates for the bond markets is the reverse of prior findings. Es-
timates for the stock market vary between 16.1% in the 3rd and 18.9% in the 5th decile. Easley
et al. (1996) obtained similar results with 22% in decile 3, 20.7% in decile 5 and 16.3% in decile
10. Corresponding PIN estimates for bonds in my study vary between 9.9% in low-activity
markets and 31.2% in markets with high trading activity. This structure is also observed with
reduced values, for the median in the third block of the table, indicating that mean estimations
are dominated by a few large values. Standard errors for estimates in the fixed-income sector
are much higher than their stock counterparts. Relative standard errors in bond markets are be-
tween 105% in the 3rd and 61% in the 10th decile, whereas average variation in stock markets’
PINs is between 20% in decile 3 and approximately 28% in deciles 5 and 10.

The anomalous structure of information asymmetries in the bond markets cannot be easily
explained by prevailing theories. Typically, more severe information asymmetries on less ac-
tive markets are assumed to result from there being fewer uninformed traders in these markets
(see e.g., Easley et al. (1996)). Comparing the differences in informed trading in bond and stock
markets between deciles indicates that informed trading, measured by µ, is distributed simi-
larly across deciles in the bond and stock markets. This also holds for the rates of uninformed
trading, measured by ε. However, fixed-income and equity markets, differ significantly in the
ratios between the intensity rates of informed and uninformed trading. Informed trading rates
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are between 4.2 (decile 3) and 20.4 (decile 10) times larger than the arrival rates of uninformed
trading. The corresponding figures for the stock markets range between 1.8 (decile 3) and 1.9
(decile 10). This indicates a much less uninformed trading activity relative to informed trading
intensities in fixed-income segments. The growing portion of retail trading in the fixed-income
segment, presented in FINRA (2005) and Edwards (2006), does not appear to generate sufficient
uninformed trading, especially for liquid bond markets in which retail traders can be assumed
to be the most active.33 In contrast, this could create an incentive for informed traders to en-
ter markets in which retail trading is more extensive, enabling them to extract greater profits
at the expense of the uninformed. Furthermore, it can be assumed that in less active bond
markets more trade agreements are concluded on a personal basis. This environment could
make informed trading costly relative to markets with more anonymous trading. In addition, a
substantial share of the information in corporate bond markets could be substitutional, e.g., in-
formation on future interest rates, facilitating shifting informed trading between different bond
markets. In turn, informed traders favor bond markets with frequent trading for their busi-
ness, and as a result, the intensity of informed trading in markets with high trading volumes
will increase disproportionally. Marsh and O’Rourke (2005) report such substitution effects in
information for FX markets.

Goldstein et al. (2007) and recently, Han and Zhou (2011) report that trading costs are higher
in corporate bond markets with high transaction volumes than on markets with low transac-
tion volumes. Differences in transaction costs between low-volume markets and high-volume
markets are assumed to arise because of inventory holding costs, order processing costs, and
adverse selection costs.34 Holding inventory in markets with infrequent trading is risky, as
rebalancing could become difficult due to the limited number of counterparties. Particularly
in decentralized markets the order processing costs could determine a much larger share of
trading costs, as concluding trade agreements in this context requires more time and resources.
However, the findings in this paper would suggest, that trading costs are primarily driven by
the adverse selection component as both transaction costs and information asymmetries appear
to increase in transaction volume. My estimates agree with the regression results in the analysis
of estimated spreads in Goldstein et al. (2007, Section 3.3).

I followed Easley et al. (1996) and conducted Kruskal-Wallis and Mann-Whitney tests for
the parameters of the compressed model and the PIN.35 The Kruskal-Wallis test allows me to
compare the three samples of PINs from deciles 3 to 10 and determine whether at least one
sample does not stem from the same distribution as the two others. The Mann-Whitney test is
similar but allows for bilateral comparison.

The plots of the empirical distribution functions of PINs in fig. 4.1 depict similar results for
the equity markets (see fig. 4.1(b)) to those in Easley et al. (1996) with intersecting distributions

33Retail trading is generally assumed to be uninformative. See for instance Ferriani (2010) or Malinova
et al. (2013).

34See for example the empirical studies of Madhavan et al. (1997) and Huang and Stoll (1997).
35All tests were performed in R-3.0.2 using the kruskal.test-function for the Kruskal-Wallis tests and

the wilcox.test-function with exact p-values for the Mann-Whitney tests.
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for the lower deciles and clear dominance of the highest decile. In contrast, the probabilities
of informed trading in bond markets (fig. 4.1(a)) indicate a reverse ordering with significant
distances between the functions.
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Figure 4.1.: Empirical distributions of PINs. The figures depict empirical distribution functions
for the PIN estimates in each decile in corporate bond markets (fig. 4.1(a)) and equity
markets (fig. 4.1(b)).

The Kruskal-Wallis test statistics and their corresponding p-values in table B.7 all strongly
reject the null-hypothesis of identical distributions, except the tests for the news probability α
on equity markets.

Mann-Whitney tests were applied by comparing the 3rd and 5th, 3rd and 10th, and 5th and
10th deciles for all markets. The Mann-Whitney test results are presented in table B.8 and largely
support the Kruskal-Wallis test results above. However, the difference between the parameters
and PINs in the fixed-income markets is significant at the 1% level between the highest and
lower deciles whereas both, stock and bond markets show no significant difference between the
two lower deciles. The Mann-Whitney tests for equity markets reflect the results from Easley
et al. (1996): The null hypothesis is strongly rejected in a comparison of the 3rd and 5th deciles
with the 10th decile, however, for the news probability, α, no significant difference between
deciles was observed. Overall, the tests reinforce the anomalous structure of information asym-
metries in fixed-income markets relative to equity markets.

As both stocks and bonds are issued by the same company it could be considered contradic-
tory if the probabilities of news,α, for the two securities differ.36 For this reason I also conducted

36A more thorough discussion of this issue and a corresponding modeling approach can be found in
Grammig et al. (2001), however, the authors investigate floor and screen trading of the same security.
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Kruskal-Wallis and Mann-Whitney tests to test for the equality of the underlying population of
estimated α-parameters between stock and corporate bond markets in each decile. Table B.9
presents the results. For decile 10, the null hypothesis of equal distributions is strongly rejected,
but for decile 5, the hypothesis is rejected at the 5% level and for decile 3, this hypothesis cannot
be rejected. The empirical distribution plots in fig. 4.2 indicate that for each decile the distri-
bution function of stocks intersects the corresponding distribution function of bonds. This also
explains the divergent results of the Kruskal-Wallis and the Mann-Whitney tests in deciles 3 and
5: Both tests are based on ranks and as the intersection in deciles 3 and 5 is nearly symmetrical,
no significant difference can be detected between corresponding ranks.

Regarding the discrepancies between the news probabilities, α, of a bond and stock from a
single company, I also investigated the news probabilities among different bonds issued by the
same company and found similar discrepancies in my cross-sectional dataset used in section 4.1.
The results are summarized in fig. 4.3 and confirm the findings in the last paragraph. The news
probabilities of bonds issued by the same company often vary within a range of 60%, and this
behavior appears inconsistent.

There are various explanations for why news probabilities in stock and corresponding corpo-
rate bond markets are not identical. First, it might be that the relevant news in the two markets
is not identical, i.e., at least part of exploitable news in one market is independent of exploitable
news in the other. However, the wide ranges of news probabilities from bonds issued by the
same company would contradict this hypothesis. Second, the EKOP model and its compressed
version could simply be inappropriate for applications involving highly fragmented markets.
The last hypothesis is also supported by the large discrepancies between the arrival rates of
informed and uninformed trading on the bond markets. The intensities of informed trading, µ,
are between four and twenty times higher than the intensities of liquidity trading,ε. Intuitively,
such a market should not function.

5. Conclusion

In this study I analyze the probability of informed trading on U.S. corporate bond markets
by first investigating the causes of information asymmetries through cross-sectional regressions
and second, by comparing information asymmetries in debt and corresponding equity markets.

In summary, the results from the cross-sectional analysis reveal that several variables appear
to have a significant influence on information asymmetries in corporate bond markets. Several
significant factors are related to bond characteristics and could become relevant to debt issuers
as Han and Zhou (2013) demonstrated that information asymmetry is priced and investors
demand higher debt yields in compensation for the adverse-selection risks they carry.

The findings from the comparison study suggest that the relationship between liquidity and
information asymmetry in the two markets is different. In equity markets information asym-
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Figure 4.2.: Empirical distribution functions of news probabilities. The figures compare em-
pirical distribution functions for theα-estimates in corporate bond markets and eq-
uity markets for decile 3 (fig. 4.2(a)), decile 5 (fig. 4.2(b)), and decile 10 (fig. 4.2(c)).
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Figure 4.3.: News probability distributions. The figure plots histograms of the news probabili-
ties of bonds issued by a single company. The companies are the first 16 companies
in the cross sectional data set.
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metry is greater for less active stocks than for stocks with high trading activity whereas infre-
quently traded bonds seem to suffer less under information asymmetry than more active bonds.
Possible explanations for this behavior may be related to the specific market structure of corpo-
rate bond markets in the U.S., namely an OTC market complemented by interdealer brokerage.

My findings also suggest that the low relative rate of uninformed traders represents a crucial
driver of the information asymmetries in bond markets. The growing segment of retail trading
in the corporate bond market reported by the SEC and FINRA may adjust this imbalance over
time demonstrating its importance to an efficiently working market.

However, I also observe significant differences in the news probabilities between stocks and
their bonds which could be regarded as contradictory. Thus, one must question the appropriate-
ness of traditional models for measuring information asymmetry. The EKOP (and comparably
the compressed model) might not be suited for highly fragmented markets such as the U.S.
corporate bond market investigated here.

There remain open questions that could not be covered in my study and are left for future
research. First, if the results in this study can be considered reliable, then they demand an expla-
nation of the reversed structure of information asymmetries in relation to liquidity. Traditional
theoretical models concerning information asymmetry cannot explain this relationship. Higher
transaction costs for frequently traded debt, as observed by Goldstein et al. (2007) are consistent
with simultaneously higher information asymmetries, but there is currently no theory clarifying
the causes. The literature holds that transaction costs are induced by information asymmetries
and a model is necessary to describe this relationship for fixed-income securities.

Second, investors’ pricing of information asymmetries was first investigated by Han and
Zhou (2013) and cross-sectional regressions reveal additional variables that appear to affect the
information asymmetry. It remains unclear whether there are certain debt-issuer characteristics
that could become crucial to reducing the cost of debt.

Finally, regulators would benefit from deeper insights into the causes of information asym-
metries in debt markets. Recently, the SEC announced the agenda for the roundtable of fixed-
income markets, which includes numerous questions to be answered by research and investi-
gation.37 Some of these questions concretely address differences in information asymmetries
caused by bond characteristics making this study a promising initial contribution to a fruitful
literature on the topic of information asymmetries in the U.S. corporate bond markets.

37See http://www.sec.gov/spotlight/fixed-income-markets/fixed-income-markets-agenda.htm
for the agenda of the roundtable for fixed income markets published by the SEC in April 2013.
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A. Cleaning the enhanced TRACE data set

I cleaned my enhanced TRACE data set by eliminating same-day corrections and cancella-
tions, trade reversals, duplicates from agency trades and interdealer trades. As Dick-Nielsen
(2009) emphasizes, the TRACE system is essentially a one-day system, and reporting is only
possible within the system’s operating hours. This enables easy trade corrections or cancella-
tions within the same day as the report was filed, but necessitates a specific process to reverse
trade reports from past days. In the event that a member wishes to correct same-day reports
she must send a report identified as a correction and referring to the original report via the
original message sequence number. The same is true for trade cancellations. In the case of
same-day corrections, the original report must be deleted, and in the case of a trade cancella-
tion, the original report as well as the cancellation report must be removed from the data set.
I use the algorithm developed by Dick-Nielsen (2013) to identify and delete redundant reports
from same-day corrections and cancellations.

Corrections and cancellations filed after the day the original report was created are not cap-
tured by using the original message sequence number. Message sequence numbers are only
unique for a given security on a single day; therefore members who wish to cancel trades on a
later date must file a report identical to the original trade report indicated as a ‘reversal’. If the
member wishes to correct a trade from a previous day, she must send a reversal report and in
addition a socalled ‘as-of’ report with identical information but corrected price and/or volume.
Note that reversals could also cancel an as-of report. To identify reversals and as-of reports I
combined the approaches developed by Dick-Nielsen (2013) and Asquith et al. (2013): to match
reversals and as-of reports with their corresponding original filings, in addition to the bond
symbol I used a POSIX timestamp (combining trade execution date and time), the reported
price, the entire volume quoted, and the buy-sell flag. In contrast to the approach adopted by
Dick-Nielsen (2013), I added the buy-sell flag, which was used in Asquith et al. (2013), to im-
prove the matching. Furthermore, I followed the suggestion of Dick-Nielsen (2013) and only
compared reports that have a trade execution date before the reversal or as-of filing’s report
date. First, I deleted all reversed trades from my data set and the matching reversals. I then
repeated this step by matching reversals and as-of reports. Finally, all remaining unmatched
reversals were also deleted.

Next I checked for reports filed with a delay; no such reports were contained in my data set.
Agency trades are a further source of error. Generally a dealer can act in a trade in a principal

capacity or as an agent for another market participant. When she acts as an agent and another
dealer is executing the trade for his customer, one trade results in three reports in TRACE: Two
reports describing the execution of the interdealer trade for each of the two counterparties and
one report describing the following customer trade between the socalled ‘introducing dealer’
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and her customer. Two of these three records must be deleted from the database. Similar to
Dick-Nielsen (2013), I matched the associated trade reports using the bond symbol, trade ex-
ecution date, reported price and the full volume quoted. Further matching was restricted to
matches with at least one report indicated as an agency trade. When more than three reports
could be matched I only deleted two of them. This procedure was conducted for sell- and buy-
side agency trades.

In a next step, I followed Asquith et al. (2013) and deleted all duplicates from interdealer
trades. If dealers trade among one another, both sides of the trade have an obligation to report
and this results in two reports for one interdealer trade. I adopted a very conservative approach
in cleaning my data set to eliminate interdealer trade duplicates: I first matched reports by
bond symbol, POSIX timestamp (combining trade execution date and trade execution time),
the reported price, the full volume quoted, and a contra-party flag, indicating that the trade was
between dealers. In a next step, I repeated this procedure using the trade execution date only
instead of a timestamp. As the dealers involved could report different trade execution times,
this second step checks for missing matches in the first step. Finally, I reduced the number of
reports by all unmatched buy-side interdealer trades as in Asquith et al. (2013).

The final cleaning step is described fully in Dick-Nielsen (2013) and deletes reports from
trades when the security was issued, trades from primary markets, trades executed under
special circumstances and in equity-linked securities and trades with non-standard settlement,
without cash payment and with commission. In my data set, no such reports were found.

Statistics for deleted records in my enhanced TRACE data set are summarized in table B.1.
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B. Tables

Table B.1.: Clean-up statistics. The table shows report statistics from cleaning the enhanced
TRACE data set collected from WRDS. While the number of securities was reduced
by the deletion of reports, the number companies remained stable at 389.

Number of Securities Number of reports

Raw data 10,818 4,483,549

Corrections 31,842
Cancellations 82,658

Reversed trades 43,900
Reversed as-of trades 3,085
Remaining reversals 10,205

Agency trades 626,631

Inter-dealer trades by date-time 656,026
Inter-dealer trades by date 901,328
Inter-dealer trades all buys 235,807

Deleted 2,594,567
Remaining 10,735 1,888,982

111



Table B.2.: Daily trading volumes. The table shows daily contract volumes on bond and corresponding stock markets used in the
comparison analysis. Decile 3 contains 39 companies, decile 5 has 35 companies, and decile 10 is comprised of 34 companies.
The average number of trades, ‘N’, is rounded up/down to the next integer value. For the bond data from TRACE single
trade volumes were aggregated and for the stock data daily share volumes were collected from the Compustat Daily database.
Means and medians were used to summarize daily volumes in a decile.

Mean Median
DECILE N SUM MAX MIN STD SUM MAX MIN STD

Bonds
3 87 203,257.9 34,897.92 8.974359 5,683.577 204,492 31,550 5 5,332.102
5 92 379,644.1 64,754.34 9.057143 10,732.319 382,346 43,244 5 7,694.139

10 90 4,343,912.6 1,716,467.82 209.735294 205,891.987 3,018,882 1,656,765 37 198,204.050

Stocks
3 122 449,788,749 13,878,202 1,501,749 1,727,601 357,128,048 11,287,470 1,168,290 1,305,316
5 121 582,675,282 20,347,779 1,811,060 2,686,582 486,864,990 14,036,380 1,359,658 1,701,813

10 122 2,905,510,840 97,364,368 10,638,535 11,476,339 1,269,504,626 35,936,095 4,801,466 4,418,355
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Table B.3.: Number of trades. The table shows trade summaries for 108 bonds and corresponding stocks used in the comparison anal-
ysis. Decile 3 contains 39 companies, decile 5 has 35 companies and decile 10 is comprised of 34 companies. The average
number of days with trades, ‘N’ is rounded up/down to the next integer value. Data for the number of trades on bond
markets were collected from reported trades in the enhanced TRACE data set and corresponding values for the stock markets
were taken from the former online database of the Financial Markets Research Center of the Vanderbilt University.

Mean Median
DECILE N SUM MEAN MAX MIN SUM MEAN MAX MIN

Bonds
3 87 320.6667 3.179432 14.69231 1.102564 189 2 9 1
5 92 349.8857 3.641377 22.22857 1.028571 248 2 12 1

10 90 1,314.0000 14.849650 163.02941 2.676471 1,018 10 176 1

Stocks
3 122 1,951,678 15,899.87 54,481.03 7,294.769 1,885,349 15,328 50,521 6,791
5 121 2,466,261 20,253.49 66,569.63 8,758.600 2,353,870 19,137 53,360 7,421

10 122 7,150,904 58,240.39 187,085.74 29,831.176 4,631,340 37,653 107,888 19,929
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Table B.4.: Variable summary. The table shows a summary of the regressors used in cross-
sectional regression. Counting variables show their sum and numeric values show
median, mean and standard deviation.

MEDIAN/SUM MEAN STD. DEVIATION

PIN 0.0128 0.15 0.188

Issuance
Maturity (days) 2,526 3,694 3,596
Age (days) 1,359 1,724 1,459
Coupon 5.62 5.32 2.03
VariableCoupon 404
ZeroCoupon 137
InterestFrequency 2 2.9 3.7
OfferingAmount ($) 400,000,000 554,224,517 673,415,325
Denomination 1 4.268 18.36
Convertible 65
Exchangeable 13
InBankruptcy 5
TenderOffer 443
RatedInRange 203
OffWatch 981
AAA 84
AA 560
A 1,686
BBB 1,102
S&P 544
Moody’s 1,087
Fitch 2,524

Market
Volume ($) 86,614,000 301,114,377 688,569,230
MM1 13 31.26 54.62
MM5 4 16.50 37.87
Amihud ($ mio.) 0.05432 0.1148 0.5636
Roll 1.486 1.607 0.8031
Dispersion 6.536e-03 8.741e-03 7.627e-03
PriceStd 0.5217 0.5994 0.4214

Issuer
IssuerStockReturn (%) 0.05213 0.0642 0.3877
IssuerStockVolatility (%) 1.461 1.803 4.147
FinOrUtil 2,530
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Table B.5.: Cross-sectional analysis. The table shows results from two cross-sectional regressions using the probability of informed
trading as dependent variable. Standard errors in the first regression were computed using a heteroskedasticity-consistent
variance-covariance matrix defined in the R-package sandwich (namely HC4m), and the second regression uses cluster-robust
standard errors where clusters are determined by the issuer. All estimations were conducted in R-3.0.2.

Dep. Var.: PIN Heteroskedastic Clustered
ESTIMATE STD. ERROR t-VALUE P(> |t|) ESTIMATE STD. ERROR t-VALUE P(> |t|)

(Intercept) -1.62e-01 2.51e-02 -6.44 0e+00 -1.62e-01 2.32e-02 -6.96 0e+00
Maturity -2.09e-06 5.87e-07 -3.56 0.0004 -2.09e-06 5.63e-07 -3.72 0.0002
Age -2.02e-06 1.18e-06 -1.72 0.0855 -2.02e-06 1.55e-06 -1.30 0.1934
Coupon 5.40e-03 1.10e-03 4.89 0e+00 5.40e-03 1.74e-03 3.10 0.0019
VariableCoupon 5.98e-02 6.69e-03 8.95 <2e-16 5.98e-02 1.03e-02 5.83 0e+00
log(OfferingAmount) -1.47e-02 2.23e-03 -6.57 0e+00 -1.47e-02 2.79e-03 -5.26 0e+00
Convertible 4.66e-02 1.83e-02 2.54 0.0110 4.66e-02 1.95e-02 2.39 0.0171
InBankruptcy -1.60e-01 6.65e-02 -2.40 0.0165 -1.60e-01 1.94e-02 -8.21 0e+00
TenderOffer 1.53e-02 5.50e-03 2.78 0.0055 1.53e-02 5.74e-03 2.66 0.0078
RatedInRange 2.78e-01 1.38e-02 20.18 <2e-16 2.78e-01 1.75e-02 15.89 <2e-16
AAAdum -3.22e-02 1.32e-02 -2.45 0.0144 -3.22e-02 9.41e-03 -3.42 0.0006
AAdum -1.33e-02 5.72e-03 -2.32 0.0203 -1.33e-02 7.15e-03 -1.86 0.0634
Adum -1.62e-02 3.64e-03 -4.47 0e+00 -1.62e-02 5.03e-03 -3.23 0.0013
S&P 1.18e-02 5.20e-03 2.27 0.0235 1.18e-02 5.94e-03 1.98 0.0472
Moody’s 1.69e-02 4.23e-03 4.00 1e-04 1.69e-02 5.02e-03 3.37 0.0008
log(Volume) 2.07e-02 2.16e-03 9.60 <2e-16 2.07e-02 2.20e-03 9.39 <2e-16
MM1 4.98e-04 1.40e-04 3.56 0.0004 4.98e-04 1.53e-04 3.27 0.0011
MM5 -9.45e-04 1.41e-04 -6.68 0e+00 -9.45e-04 1.38e-04 -6.86 0e+00
Dispersion 6.97e+00 4.30e-01 16.22 <2e-16 6.97e+00 5.15e-01 13.53 <2e-16
PriceStd -2.82e-02 7.55e-03 -3.74 0.0002 -2.82e-02 7.13e-03 -3.96 1e-04
IssuerStockReturn -3.69e-02 1.07e-02 -3.45 0.0006 -3.69e-02 1.09e-02 -3.39 0.0007
IssuerStockVolatility 3.34e-03 9.79e-04 3.41 0.0007 3.34e-03 1.00e-03 3.33 0.0009

Adj. R-squared 0.476 0.476
F-statistic 112.7861 <2.22e-16 9,299.693 <2.22e-16
Residual Std. Err. 0.09837898 0.09837898
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Table B.6.: Comparison analysis. The table shows estimation results of the compressed model for fixed-income markets (Bonds)
and equity markets (Stocks). The mean and the median are used to aggregate the results in each of the three deciles of
a market. Results were obtained by an MCMC procedure using a self-coded R-package and R-3.0.2.

Parameters Standard Errors
DECILE COMP N α ε µ PIN α ε µ PIN LOGLIK

Bonds (avg.)
3 39 87 0.281 0.00346 0.0145 0.0998 0.207 0.00285 0.0221 0.105 -171
5 35 92 0.234 0.00378 0.0306 0.1608 0.208 0.00205 0.0589 0.127 -194

10 34 90 0.133 0.01409 0.2868 0.3123 0.169 0.01247 0.2347 0.193 -350

Stocks (avg.)
3 39 122 0.291 16.8 30.3 0.183 0.1051 10.4 25.9 0.0364 -53,619
5 35 121 0.289 20.9 41.3 0.189 0.1164 10.6 31.0 0.0533 -73,602

10 34 122 0.258 62.8 118.7 0.161 0.0957 47.5 141.2 0.0451 -176,127

Bonds (med.)
3 39 87 0.2579 0.00264 0.00432 0.085 -145
5 35 92 0.1489 0.00305 0.00846 0.125 -171

10 34 90 0.0512 0.01042 0.30043 0.288 -327

Stocks (med.)
3 39 122 0.302 16.1 25.3 0.180 -43,574
5 35 121 0.310 20.1 33.8 0.190 -51,283

10 34 122 0.284 40.5 73.4 0.158 -105,900

116



Table B.7.: Kruskal-Wallis tests. The table shows the results of Kruskal-Wallis tests applied
to the parameters of the compressed model and the PIN of all deciles for the bond
market (Bonds) and the equity markets (Stocks). Tests were conducted in R-3.0.2
using the function kruskal.test.

STATISTIC PROBABILITY

Bonds
α 13.06 1.46e-03
ε 48.78 2.55e-11
µ 44.10 2.65e-10
PIN 27.62 1.01e-06

Stocks
α 2.06 3.57e-01
ε 42.14 7.09e-10
µ 30.64 2.22e-07
PIN 9.31 9.50e-03

Table B.8.: Whitney-Mann tests. The table shows the Whitney-Mann statistics for the pa-
rameters of the compressed model for all combinations of deciles of bond markets
(Bonds) and stock markets (Stocks). All tests were conducted in R-3.0.2 using the
wilcox.test with exact p-values.

3rd to 5th 3rd to 10th 5th to 10th
STAT. PROB. STAT. PROB. STAT. PROB.

Bonds
α 766 0.3710 967 6.27e-04 824 5.58e-03
ε 516 0.0722 102 5.13e-12 120 4.94e-10
µ 544 0.1358 118 3.15e-11 153 1.28e-08
PIN 493 0.0402 207 9.53e-08 310 4.89e-04

Stocks
α 676 0.9485 781 1.95e-01 694 2.39e-01
ε 495 0.0424 134 1.68e-10 173 7.31e-08
µ 512 0.0655 191 2.77e-08 268 5.33e-05
PIN 677 0.9571 927 3.18e-03 792 1.77e-02

Table B.9.: News probability tests. The table shows the results of Kruskal-Wallis and Whitney-
Mann tests applied to the parameter α between bond and stock markets. Tests were
conducted in R-3.0.2 using the functions kruskal.test and wilcoxon.test.

DECILE STATISTIC PROBABILITY

Kruskal-Wallis
3 0.09 7.68e-01
5 3.34 6.78e-02
10 14.36 1.51e-04

Whitney-Mann
3 790 7.73e-01
5 768 6.85e-02
10 887 9.92e-05
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