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Introduction

Active Galactic Nuclei (AGN) show signi�cant �ux density variability across the whole
electromagnetic spectrum on a wide range of time scales, from years to less than one
day. Variations on intraday time scales have been detected in theγ-regime since the
early experiments in this band (Mattox et al. 1993). In the optical band, rapid in-
tranight variability has been observed both in total intensity and polarization (Angel
and Stockman 1980). In the radio regime, variability on time scales of less than one
day was discovered in the mid eighties (Witzel et al. 1986, Heeschen et al. 1987). It
was also found (Quirrenbach et al. 1992) that about30 % of all compact �at-spectrum
sources show Intraday Variability (IDV).
While fast variations can be well explained at high energies (optical toγ-band) using
models for accretion disks and relativistic jets, at cm-wavelengths, the observed rapid
variations imply, via a causality argument, a very small source size and a very high
apparent brightness temperature (of up to 1021 K), if we consider these variations as
intrinsic. To prevent the �Compton catastrophe�, which limits the brightness temper-
ature to 1012 K (Kellermann and Pauliny-Toth 1969), IDV would require relativistic
boosting with Doppler factors of up to D = 1000. This is much higher than so far
observed with VLBI. Qian et al. (1996) proposed a modi�ed shock-in-jet model, which
relies on a special geometry, to prevent such high Doppler-factors. In this model, a
thin shock moves relativistically along an oscillating jet. The observed brightness tem-
perature, T obs

b , then scales with the 5th power of the intrinsic Lorenz factor and only
moderate Doppler factors (D ≤ 60) are needed.
Alternative models, which are based on collective plasma emission processes, allow
brightness temperatures far in excess of the inverse Compton limit (Benford 1992,
Benford and Lesch 1998). However, such models can explain high brightness tempera-
tures only within a limited bandwidth (10�100GHz), which makes hard to describe a
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broad-band phenomenon as the Intraday Variability.

Another important process to consider is the radiation propagation through the In-
terstellar Medium (ISM). The sizes of intraday variable sources at cm-wavelengths
appear to be typically smaller than the scattering size, set by the ISM in our galaxy.
Hence, IDV sources show refractive interstellar scintillation (RISS). The variations in
sources like 0917+62 can be explained mainly by RISS (cf. Rickett et al. 1995), but
this explanation clearly fails in other sources like 0716+71 (Wagner and Witzel 1995),
where correlated radio-optical IDV is present and most recently IDV at 9mm has been
detected (Krichbaum et al. 2002).
Evidence for RISS as being the main cause for rapid variability has recently become
very strong in at least two sources: 0405−385 (Jauncey et al. 2000) and J1819+3845
(Dennett-Thorpe and de Bruyn 2000). In these objects, the extremely fast variability
(∼ 600 % in less than one hour) shows an annual modulation of the time scales, which
is predicted by the RISS theory (Dennett-Thorpe and de Bruyn 2001) if the orbital
motion of the Earth and the velocity of the scattering screen are taken into account.
In addition, interstellar scintillation is becoming a useful tool to detect microarcsecond
structures in the radio cores of AGNs by using the interstellar medium as an interfer-
ometer (Macquart et al. 2002).
Due to small source sizes, either refractive interstellar scintillation (RISS) or source in-
trinsic e�ects or a mixture of both are possible causes for Intraday Variability. There-
fore, observations at mm and submillimeter wavelengths are important, since they
would help to disentangle between extrinsic (dominant at longer cm-wavelengths) and
intrinsic (dominant at mm/optical-bands) contributions for the observed rapid vari-
ability.

Even 15 years after its discovery, Intraday Variability in �at-spectrum radio sources
still remains a hot and controversial topic in astronomy and is still requiring an expla-
nation. In the last decade a lot of e�ort was spent trying to disentangle the di�erent
mechanisms responsible for the observed rapid variations. In this work, we would like
to provide a further contribution to the understanding of Intraday Variability. After an
introduction to the observational characteristics of IDV (chapter 1), the data measured
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in the last 15 years (chapter 2) will be used to perform a statistical analysis of the phe-
nomenon (chapters 3 and 4). Also, recent RISS-related models will be compared to our
data and physical parameters of the ISM and radio sources will be derived (chapters
5 and 6). High frequency approaches to search for rapid variability of �at-spectrum
radio sources in total intensity and polarization were applied and the results will also
be presented (chapters 7 and 8). Finally, an overall interpretation of the results and
some implications about the physics of compact structures and the characteristics of
the interstellar medium will be discussed (chapter 9).



4 Introduction



Chapter 1

IntraDay Variability of Active
Galactic Nuclei

Variability of active galactic nuclei on timescales of weeks to years is an useful instru-
ment to study the inner regions of these objects. In the radio regime, total �ux density
and polarization variations on shorter timescales, less than one day, were discovered in
the mid eighties (Witzel et al. 1986, Heeschen et al. 1987). Such Intraday Variability
(IDV) has also been detected in other bands of the electromagnetic spectrum up to
γ-ray energy.

1.1 Observational IDV

Intraday variability of �at-spectrum radio sources has been detected in all electromag-
netic spectral bands. Rapid �ares in Gamma-emission and optical fast variability seem
to be related to radiative phenomena from central regions in AGNs. In the cm-regime,
intraday variability is present in∼ 30 % of all �at spectrum sources (Quirrenbach et al.
1992). The light curve of an IDV object shows variations at the10−20 % level in total
intensity with time scales from 0.5 up to 3 days (�g. 1.1, top) showing strict correla-
tions among the frequencies. In some cases the light curves can also have time lags.
Moreover, a factor 3 or more in the variability of the linearly polarized �ux density
is usually detected with similar time scales. Correlations and, in some cases, anti-
correlation were observed between total intensity and polarization. Furthermore, the
polarization angle showed very fast variations and in few cases a180 ◦ -swing (Rickett
et al. 1995).
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Figure 1.1: Typical light curve of an IDV source (0716+714). The top panel shows the
total intensity variability. Polarization variations are plotted in the central panel. On
the bottom, we see the behaviour of the polarization angle. (These data were observed
in March 2000.)

Regarding the broad-band properties, simultaneous radio-optical observations were car-
ried out and correlated features were observed in 0716+714 (Wagner et al. 1996, see
�g. 1.2) and in 0958+658 (Wagner et al. 1993).
In the gravitational lens B0218+357, Biggs et al. (1999) discovered time delayed and
correlated rapid variations in the lensed images. Such rapid variation (with time scale
of ∼ 2 days in the source frame) is interpreted (Biggs et al. 2001) as intrinsic �ux
density change in the background object.
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Figure 1.2: Correlated radio-optical IDV in 0716+714 observed in 1990 (Wagner et al.
1996). Note the mutual transition from fast `quasi-periodic' variability mode to slower
variations after J.D. 2447929.

1.2 Source-intrinsic variability
The light-travel (causality) argument sets a limit on the size of the emitting region:

∆l < c ·∆t (1.1)

where ∆l is the linear size of the variable emitting region, ∆t is the time interval of
the observed variation and c the speed of light (assumed as upper limit for the velocity
of the perturbation).
If the variability is intrinsic, the very short time scales imply very small source sizes.
Calculating the brightness temperature of the variable object (for typically observed
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values of the �ux density variation∆S, luminosity distance DL and redshift z):

Tb[K] = 4.5 · 1010 ·∆S[Jy] ·
(

λ[cm] ·DL[Mpc]

∆t[d] · (1 + z)

)2

, (1.2)

we obtain Tb = 1014 − 1018 K (up to 1021 for very extreme objects).
Such high temperatures would exceed the inverse Compton limit ofTb = 1012 K (Keller-
mann and Pauliny-Toth 1969) for incoherent synchrotron emission. Relativistic beam-
ing of the radiation was suggested to avoid the Compton limit violation. Introducing
the Doppler factor1 D = (Γ(1 − v

c
· cos θ))−1, the brightness temperature is reduced

by D−3. In particular, following the description of Verschuur and Kellermann (1988):
D−(3−α) for a blob moving inside the jet and D−(2−α) for a continuous jet. We use
S ∝ ν−α.

From relativistic considerations, the �ux density measured from the observer,Sν , is
related to the �ux density in the frame of the source,Sint, via the Doppler factor:

Sν = D3−α Sint. (1.3)

The measured surface �ux density isSν ∝ L/Ω, where Ω is the solid angle seen by the
observer and can be estimated via light-travel argument: Ω = c2∆t2.
Now, it is possible to evaluate the brightness temperature and from eq. 1.2 we obtain:

Tb ∝ Sν/ν
2. (1.4)

Recalling the Lorentz transformation for the time (∆t = 1
D
·∆tint) and the frequency

(ν = D · νint) we immediately obtain:

Tb = D3 · T int
b (1.5)

The relativistic e�ects as the superluminal motions observed in the VLBI cores (vapp ≈
40c Marscher et al. 2000), can explain only moderate values ofD, but much higher
values (D = 100 − 1000) would be needed to bring the brightness temperature down
to 1012 K.

1Γ = (1− v2

c2
)−1/2 is the Lorentz factor.
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1.2.1 Shock-in-Jet Model

Shocks moving inside jets can provide a possible explanation for the rapid �ux density
changes in the �at-spectrum radio sources. In these models, outbursts are produced
by the acceleration of highly relativistic particles in a turbulent jet. Such models (eg.
Qian et al. 1991) are able to reproduce the polarization features of IDV, but some
problems still remain unexplained like the frequency dependence of the variations and
the quasi-periodicity (about 2-3 days) of the variability that was observed in some
sources.
Special geometry e�ects can be taken into account to solve the discrepancies between
the models and the observational evidence. Thin shocks can illuminate the knots which
are emitted at relativistic speed from the core in helical trajectories and with a viewing
angle very close to the line of sight (Qian et al. 1996). In this case, frequency-correlated
variations would be expected and it is possible to explain the quasi-periodicity of the
phenomenon. Moreover the apparent brightness temperature can be reduced using
only moderate Doppler and Lorentz factors: Tb ∝ Γ2D3 and the required factors are
similar (even slightly greater) to those involved from superluminal motions (eg. Bach
et al. 2002).
If these models can solve the inverse Compton limit violation, it is however hard to
believe that such special geometry and very small viewing angles (Beckert et al. 2002b)
are common in AGNs.

1.2.2 Coherent emission

Alternative models based on coherent synchrotron emission processes should allow
brightness temperatures far in excess of the inverse Compton limit (Benford 1992,
Benford and Lesch 1998). In incoherently emitting synchrotron sources, the circular
polarization is usually relatively small (Legg and Westfold 1968), of the order of the
0.1 − 0.5 %. In coherent emission processes, like synchrotron masers or synchrotron-
cyclotron emission, one would expect appreciable circular polarization which is not
observed in typical IDV sources. Larger circular polarization can be obtained in the
interstellar medium (ISM) by Faraday conversion from linear to circular (Jones and
O'dell 1977), or if the magnetic �elds are highly ordered.
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Recently, relatively strong circular polarization has been observed in quasars and
BL Lacs objects, in particular the IDV source PKS 1519−273 showed intraday varia-
tions even in the circular polarized �ux density. This phenomenon was explained by
Macquart (2002) in terms of propagation e�ects.

1.3 Propagation through the Interstellar Medium: Re-
fractive Interstellar Scintillation

The twinkling of star-light in a clear night is known since long time. This �rst exam-
ple of scintillation is caused by the scattering of star light in the Earth's atmosphere.
Similarly, for compact radio sources, the turbulence in the interstellar medium causes
a change in the phase of the incoming radio waves: the paths of the waves are distorted
producing spatial variations in the received �ux density. The phenomenon of scintil-
lation then occurs (�g. 1.3), since the turbulent medium is in motion with respect to
the observer. Let us consider a thin layer in the ISM as a screen and assume that the

source

Observer plane

v

dscatt

From a distant

Figure 1.3: Schematic representation of scattering due to the interstellar medium.

radiation passing through it changes its phase. Equation 1.6, the so-called Fresnel-
Kirchho� equation, corresponds to the change in amplitude of the incoming wave, due
to the screen, seen by an observer in its coordinate frame(X, Y ) (Narayan 1992). The
Fresnel-Kirchho� equation contains the e�ects of a change in the phaseφ(x, y) of an
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incoming radio wave:

Ψ(X,Y ) =
e−iπ/2

2πrF

∫ ∫
exp

(
iφ(x, y) + i

(x−X)2 + (y − Y )2

2 rF

)
dx dy (1.6)

rF =

√
λ · d
2π

(1.7)

where we de�ned the Fresnel scale rF for radiation, at the wavelengthλ, scattered by a
screen at distance d from the observer. In particular the second term in the exponential
indicates the phase changes due to the path distortion from the point(x, y) to the point
(X,Y ). The amplitude modulation occurs within an angular scaleθscatt and the source
scintillates only if its apparent size is smaller thanθscatt. The spatial scale that de�nes
the strength of scintillation is called di�ractive scale:

rd =
λ

2π θscatt

(1.8)

When rd > rF, we refer to weak (refractive) scattering. From eq. 1.7 and eq. 1.8,
it is possible to state that the weak scintillation is dominant at short radio wavelengths
and small distances. In such regime the amplitude of the �ux density varies �weakly�
around its unscattered value due to the path distortion withinrF. We de�ne the typical
temporal scale for weak scattering tweak ∼ rF/v, where v is the screen velocity seen by
the observer.
The strong scattering regime occurs when rd < rF. In this case, the dominant spatial
scale is rd but also the size of the scattering screen has to be taken into account. We
de�ne the refractive scale rrefr as the region in the screen generating the variations;
this spatial scale corresponds to the angular sizeθscatt. Therefore, in the strong regime
two di�erent types of scintillation are considered: spatial scales fromrd to rrefr imply
�di�ractive� scintillation and between rrefr and rF the scintillation is �refractive�. The
corresponding time scales are: td ∼ rd/v and tr ∼ rrefr/v.

Finally, we can describe the scintillation features of the extragalactic radio sources.
Assuming a source angular size θsource, the scattering size is:

di�ractive: θsource is smaller than the di�ractive angular scale, θd = rd/d.
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refractive strong: θsource <∼ θscatt. Strong e�ects become less prominent if the source
size is comparable to the scattering size. From eqs. 1.7 and 1.8, it follows:
θscatt =

√
λ

2πd.

refractive weak: θsource >∼ θscatt. We are in the regime of quenched scattering. The
variations involved become smaller and they disappear forθsource > θweak = rF/d.

The angular sizes of the extra-galactic sources in the radio band are always larger
than the di�ractive angular size in our galaxy and so the di�ractive scintillation is
not present. On the other hand, (strong and weak) refractive interstellar scintillation
(RISS) is present and it is responsible for �ux density variations with time scales from
weeks down to hours of �at-spectrum radio sources.
The polarization characteristics of IDV can also be described by interstellar scattering
(Rickett et al. 1995, Qian et al. 2001): the superposition of two scintillation components
with non-parallel ~E vectors can create modulation of the polarization and correlations
(or anti-correlations) with the total �ux density.
However, RISS theory cannot completely explain all the observations and a mixture of
intrinsic and extrinsic e�ects may occur. In particular, scintillation cannot explain the
quasi-periodicity observed in some sources and the broad-band correlations like the si-
multaneous variability in 0716+714 (�g. 1.2). Regarding the polarization, scintillation
models can not yet explain the observed 180◦ -swings of the polarization angle.

1.3.1 Annual modulation

The apparent relative velocity between the orbital motion of the Earth and the scat-
tering screen is modulated by the composition of the Earth's velocity vector and the
velocity vector of the screen (Bondi et al. 1994): it results in a seasonal change of the
time scale.
In detail, such annual modulation of the time scales is due to changes of the transverse
velocity of the Earth across the scattering medium. The transverse velocity, the per-
pendicular component of the relative velocity of the scattering screen, consists of three
components: the Earth's orbital motion ~v⊕, the motion of the sun towards the solar
Apex ~v¯ and the motion of the scattering screen~vs with respect to the Local Standard
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of Rest:

~v = ~v⊕ + ~v¯ + ~vs (1.9)

the transverse velocity is: v⊥ = v · sin ϑ, where ϑ is the angle between the velocity and
the line of sight.
In September 1998, Kraus et al. (1999) found a dramatic slow down in the variability
of 0917+624. Figure 1.4 (see Qian and Zhang 2001) shows the relative velocity of the
Earth with respect to a screen in the direction of this quasar. The four curves in the
picture 1.4 correspond to the di�erent velocities assumed for the scattering screen. The
change observed by Kraus et al. (1999) corresponds to the minimum around day 250�
300 (September�October), but observations by Fuhrmann et al. (2002) demonstrated
that 0917+624 was not variable for the following two years. Krichbaum et al. (2002)
suggested that a blending with a possible new jet component recently ejected may be
the reason for the �disappearance� of IDV in the radio core.
Notably, other sources located in the vicinity of 0917+624 (eg. 0716+714, 0954+658)
so far did not show any sign of annual modulation in their variability pattern. If IDV
would be solely due to interstellar scattering, this is hard to understand.

1.3.2 Very rapid IDV sources

Recently, very fast variable objects were discovered: PKS 0405−385 (Kedziora-Chudczer
et al. 1997), J1819+385 (Dennett-Thorpe and de Bruyn 2000) and PKS 1257−326 (Big-
nall et al. 2002). These objects vary in amplitude up to 600% in the cm-regime on
time scales of less than one hour. Di�erent experiments indicated that the very fast
variations in these extreme IDVs are caused by scintillation. In fact, all these objects
showed the seasonal changes discussed above: in particular J1819+385 reproduced the
predicted annual modulation during two consecutive years.
Simultaneous observations at 6 cm of PKS 0405-385 with the ATCA (Australian Tele-
scope Compact Array, Australia) and VLA (Very Large Telescope, USA) showed a
signi�cant time lag between the arrival times of the variability patterns at the two tele-
scopes (Jauncey et al. 2000). The IDV features arrived �rst at the VLA and 140 seconds
later at the ATCA, this large time lag shows that the variations are not intrinsic to
the source and they can only be explained by a scattering screen at a distance of few
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Figure 1.4: The relative velocity of the Earth in the direction of 0917+62. The three
curves corresponds to the motion of the scattering medium in right ascension and
declination: (vα

m, vδ
m). The solid line corresponds to a stationary screen, the dashed

line to a velocity of -10 km/s in right ascension and 0 in declination, the dotted line to
-10 km/s in α and 4 km/s in δ, and the dotted-dashed line to -10 km/s and 10 km/s in
the directions α and δ, respectively.

tens of parsec.

The intrinsic brightness temperatures derived for these extreme IDV objects are∼ 1015

and still violate the inverse Compton limits. Eqs. 1.3 and 1.4 are valid in the general
case and it is possible to calculate the brightness temperature without using the light-
travel argument 1.1. From the Lorentz transformation for the frequency (ν = D · νint),
it results:

Tb = D · T int
b (1.10)

Due to the linear dependence of theTb on the Doppler factor, one needs, for intrinsically
variable sources, high Doppler factors (D ∼ 1000) to avoid the violation of the inverse
Compton limit and again one has to take beamed radiation very close to the line of
sight and intrinsically active core into account, to describe the IDV characteristics of
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these peculiar radio sources. However, the high brightness temperature problem can
be avoid in a pure extrinsic interpretation of the extreme IDV requiring a scattering
screen at distances in the range 3�30 pc (Rickett et al. 2002).

1.3.3 Microlensing

Gravitational lensing of quasars by an intermediate galaxy located near the line of
sight is a well known phenomenon. However, such a general relativistic e�ect can also
occur if one considers perturbations of the gravitational �eld due to single stars within
galaxies (thereforemicrolensing). The ampli�cation e�ect varies because of the relative
velocity between the �lens� and the Earth: this leads to a �ux density variability of the
background object. Observational characteristics of intrinsic IDV and microlensing are
similar and it is di�cult to disentangle the two phenomena (Wambsganss and Kundic
1995). Moreover microlensing requires relativistic boosting and high intrinsic activity
in the lensed object (i.e. the source must also intrinsically vary).
Subramanian and Gopal-Krishna (1991) proposed a model which combines superlu-
minal motion and microlensing: the rapid variability is generated by the apparent
faster-than-light motion of the knots, in the jets, relative to the stars of a foreground
galaxy. Such superluminal microlensing could produce rapid and frequent outburst on
even intrinsically non-variable radio sources.
Although microlensing e�ects could reproduce some observational characteristics of
IDV, it is hard to believe that all the observed rapid variations are due to this phe-
nomenon. In particular, microlensing is achromatic and can not reproduce the observed
broad-band variability.
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Part I

Observations and Data Reduction





Chapter 2

Data at cm-wavelengths

In this work, a complete statistical analysis of the rapid variability in AGNs was per-
formed. We combined all the E�elsberg and VLA data of the IDV monitoring projects
taken from 1985 up to 2000. In this chapter, the selection criteria of the complete sam-
ple of �at-spectrum radio sources is discussed. Then, observations and data reduction
procedures of the data obtained at the E�elsberg radio telescope is described and a
new set of data measured in March 2000 is presented.

2.1 The complete sample of �at-spectrum radio sources
The radio sources were selected from the 1 Jy catalogue (Kühr et al. 1981), which covers
the whole sky except for the galactic plane region (| b |< 10 ◦ ) and the Magellanic
clouds. This catalogue consists of 518 objects and, at 5GHz, is complete with a �ux
density limit of 1 Jy. From the overall source list, the radio sources with declination
higher than 50 ◦ were extracted (60 objects). Finally among these, we found 32 �at-
spectrum1 radio sources (tab. 2.1), which form our complete sample. In detail the
sample consists of 18 quasars (QSO), 9 BL Lacs (BL), 3 galaxies (GAL) and 2 empty
�elds (EF). In galactic coordinates, these sources are distributed in the region de�ned
by 10 ◦ ≤ b ≤ 60 ◦ . Out of the complete sample, our IDV archive contains some
additional measurements of interesting sources at various declinations and spectral
indices (see bottom of table 2.1). These sources were chosen mainly since they are
frequently observed at other telescopes and with VLBI.
Table 2.2 (center panel) summarizes the �ux density monitoring projects carried out

1α < 0.5, we use: S ∝ ν−α
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with the 100-m radio telescope. Presentation and description of the data (since 1989
up to 1999) are given in Kraus et al. (2003). The March 2000 data are analyzed in
this work. Furthermore, we used the data from Heeschen et al. (1987) (tab. 2.2, top
panel) and the IDV monitoring data (tab. 2.2, bottom panel) obtained at the VLA
(Very Large Array2) which are presented in Quirrenbach et al. (2000).

2.2 E�elsberg data

From 1985 to 2000, several monitoring projects of rapid variability in blazars were
carried out using the 100-m E�elsberg radio telescope of the Max-Planck-Institut für
Radioastronomie (Bonn). This instrument is able to pick up the radio emission in the
frequency range between 408MHz and 86GHz using receivers in both primary and
secondary (Gregory) focus.
Our archive contains �ux density monitoring data of �at-spectrum radio sources at 11,
6, 2.8 and 0.9 cm (2.7, 4.85, 10.45 and 32GHz, respectively), all these receivers are
located in the secondary focus.
Here, a new set of observations at 2.8, 6, 11 cm, carried out from March 10th to
17th, 2000 during a radio-optical campaign (see section 5.4), is included: table 2.3
summarizes the observations and in appendix A the light curves of all the observed
�at spectrum radio sources are shown. Observations of non-variable sources assured a
reliable �ux density calibration allowing to correct for instrumental and atmospheric
e�ects. Besides the total power, linear polarization information was collected: the
incoming radiation was split by a circular transducer in the left (LHC) and right (RHC)
components of the polarization. These signals enter a polarimeter which provides as
output the Stokes parameters I, Q, U (and V). The output of a receiver consists of four
signals:

Sig1 = SLHP · SLHP (2.1)

Sig2 = SLHP · SRHP · sin Θ (2.2)

Sig3 = SLHP · SRHP · cos Θ (2.3)

Sig4 = SRHP · SRHP (2.4)
2A facility of the NRAO (National Radio Astronomy Observatory).
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SLCP is the signal in left-hand circular polarization,SRCP is the right-hand polarized
signal and Θ is the phase shift between these two component of the polarization. The
total �ux density is proportional to Sig1 + Sig4. Circular polarization could be mea-
sured as V = Sig1−Sig4. In our sources it is typically≤ 0.5% and therefore neglected
in this work.
At 0.9, 2.8 and 6 cm themulti-beam technique was used. The receivers consist of a main
feed (which observes the source) and secondary feeds (pointing at the empty sky). In
this way, it is possible to take into account and remove time variable e�ects due to the
Earth atmosphere. The data reduction program (toolbox) combines instantaneously
the output of the di�erent horns.

All the sources are point-like compared to the resolutions of the telescope at the dif-
ferent frequencies and were observed using the cross-scan technique: the telescope is
driven in two orthogonal directions (usually azimuth and elevation) centered on the
source position. Such cross scans are repeated various times to increase the integra-
tion time: the number of subscans depends on the weakness of the radio source. The
signal-to-noise ratio increases with increasing integration timetint:

∆Tnoise

Tsys

=
K√

∆ν tint

(2.5)

where K is a constant that depends on the receiver system,∆Tnoise indicates the rms
�uctuations (that is the minimum noise uncertainty), Tsys the system temperature
(that is the whole system noise) and∆ν is the bandwidth.

2.3 Data reduction and Calibration
2.3.1 Total Intensity

The data reduction was performed usingcont2, a task of the standard software pack-
age toolbox of the MPIfR. For each subscan cont2 adds the signals of eq. 2.1 and
eq. 2.4 and calculates the respective error from the rms of the signals. Finally, the
program �ts a Gaussian on the average of the subscans in the two directions. The am-
plitudes of the Gaussian �ts are proportional to the observed �ux densities in azimuth
and elevation. Such �ts may be not exactly centered to the zero position, e.g. because
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of gravity e�ects which change the dish shape. The 100-m E�elsberg radio telescope is
built following the principle of homology that allows the re�ecting structure to deform
into a new paraboloid with a slightly di�erent focal point. It is then only necessary
to move the secondary re�ector to maintain optimal performance. A paraboloid shape
allows to correct for the o�-sets in the pointing using the following formulae:

Strue
elv = Sobs

elv · exp
(

4 ln 2
(COL*)2

θ2
azi

)
(2.6)

Strue
azi = Sobs

azi · exp
(

4 ln 2
(NulE)2

θ2
elv

)
. (2.7)

COL* and NulE are the pointing corrections and θx (x = azi or elv) is the measured
HPBW in the �x� direction (note the cross correction between azimuth and elevation).
After the pointing adjustments, the azimuth and elevation Gaussian �ts are averaged.
Another important correction to consider is how the telescope e�ciency varies at di�er-
ent elevations. In this case, frequent observations of primary and secondary calibrators
(i.e. steep-spectrum radio sources) are used to build the gain curve of the telescope.
Such a gain correction curve consists of a polynomial �t of the normalized �ux densities
of the calibrators as a function of the elevation.
Finally, relatively long term variations due to atmospheric or systematic time-dependent
e�ects are corrected by comparison with the secondary calibrators. The duty cycle of
these calibrators is the same as for our program sources: a calibrator is always observed
after an IDV candidate. In this way, systematic e�ects can be recognized and removed.
The resulting value for the �ux density should now be correct but it is still expressed
in telescope units. An absolute �ux density scale (Baars et al. 1977, Ott et al. 1994) is
used to calculate the actual �ux density of primary calibrators (eg. 3C286, NGC7027):

log S[Jy] = a + b log ν[MHz]+ c log2ν[MHz] (2.8)

where a, b, c are coe�cients given in Baars et al. (1977) at the observing frequency
ν. The scaling factor is the ratio between the calculated value and the average of
the observed ones. Finally, all the measurements of our sources are multiplied by this
factor.
The scattering of the non-variable sources is an indication of the achieved measurement
accuracy and it is taken into account for the estimate of the �nal uncertainties that lie
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Raw data
Gain Corrected data
After all the corrections

0836+710
different stages of calibration

Figure 2.1: Importance of secondary calibrators. Circles: Normalized �ux density
measurements of 0816+710 without any correction. Squares: 0816+710 after the gain
curve application. Triangles: Final values corrected for the time dependent e�ects.
The errors take into account the rms �uctuations of all the calibrators. For plotting
convenience, the light curves are shifted by arbitrary values.

in the range of 0.5−1 % of the total �ux density. As example, �gure 2.1 shows the �light
curves� of 0836+710, used in March 2000 as secondary calibrator, at di�erent stages
of the calibration process. One should note that the �nal light curve has larger errors.
This is due to the fact that we propagate the formal measurement uncertainties with
the values of rms of the non-variable objects to have an indication of the remaining
systematic errors on the variability.

2.3.2 Polarization

Regarding the polarized signal, the data reduction softwarecont2 works with eq. 2.2
and eq. 2.3 since they are related to the Stokes parameterQ and U :

Q = 2 · Sig2 (2.9)
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U = 2 · Sig3 (2.10)

The cont2 output for the polarization includes the intrinsic polarization of the object
and other e�ects like the instrumental polarization, �cross talk�, and the parallactic
angle (eq. 2.15). Following the Turlo et al. (1985) analysis for linear polarization, it is
possible to determine the in�uence of the instrumental polarization during astronomical
observations:
The intrinsic polarization can be described by the vectorStrue(I,Q,U) (again we neglect
V) and what one measures is Sobs(I,Q,U), that is the observed polarization containing
the intrinsic one and the cross talk. The relationship between these vectors is:

Sobs(I, Q, U) = M · Strue(I, Q, U) (2.11)

where M is the 3× 3 Müller matrix. We can decomposeM into two parts, M = T ·P.
The T matrix contains only information about the instrumental polarization andP

takes into account the time dependent polarization variations due to parallactic angle
(P.A.) changes:

P =




1 0 0
0 cos 2 · P.A. − sin 2 · P.A.
0 sin 2 · P.A. cos 2 · P.A.


 . (2.12)

Due to the Earth rotation, the sources cover a circle in the sky (described by the
parallactic angle) and the polarization vectors change their orientation. In particular
the polarization angle:

χ = 0.5 · arctan

(
U

Q

)
(2.13)

becomes:
χtrue = χobs + P.A.− γ̃ (2.14)

where γ̃ is the directional coupler angle of the noise diode, used for the receiver cali-
bration, and the parallactic angle. It is:

P.A. = arctan

(
± cos(Lat) sin(∆h)

sin(Lat) cos(δ)− cos(Lat) sin(δ) cos(∆h)

)
(2.15)

where ∆h is the hour angle, δ the declination of the source andLat is the latitude of the
radio telescope (for the 100-m E�elsberg radio telescope: Lat = 50 ◦ 31 ′ 30 ′′ ). The ar-
gument of the arctangent is positive when0 < ∆h < 12 and negative for 12 < ∆h < 24.
From a linear independent set of observations of known calibrators, it is possible to
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Raw data of polarized flux density
After instrumental correction

0836+710
different stages of polarization data reduction

Figure 2.2: Importance of the secondary calibrators in the data reduction of polariza-
tion. Circles: Polarized �ux density measurements of 0816+710 without any calibra-
tion. Triangles: This light curve is the result of corrections. For plotting convenience,
the light curves are shifted of arbitrary values.

derive the elements of M. Inverting the Müller matrix, one can calculate the true
polarization vector of the observed source using at least three observations. To obtain
a better �t, di�erent sources were used: non-variable sources with well de�ned polar-
ization (eg. 3C286 and 0836+710) and unpolarized objects such as 0951+699. The
unknown coe�cients of the linear system given by the equationSobs = T · P · Strue

are determined by least-square �ts on the observed values, that is the matrixSobs.
Following such procedures it is possible to reach an accuracy for the linear polarization
of < 5 % and for the polarization angle < 5 ◦ . Figure 2.2 shows as an example the
polarization raw data and the corrected polarized �ux densities.
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Name bII ID z α11/6 Type
0016+73 +10.7 QSO 1.781 -0.16 I
0153+74 +12.4 QSO 2.338 0.32 0
0212+73 +12.0 BL 2.367 0.12 0
0454+84 +24.7 BL 0.122 -0.38 II
0602+67 +20.9 EF - -0.39 II
0615+82 +26.0 QSO 0.710 0.03 0
0716+71 +28.0 BL - -0.21 II
0723+67 +28.4 QSO 0.846 0.33 0
0831+55 +36.6 GAL 0.241 0.46 0
0833+58 +36.6 QSO 2.101 -1.31 0
0836+71 +34.4 QSO 2.172 0.33 0
0850+58 +38.9 QSO 1.322 -0.78 II
0917+62 +41.0 QSO 1.446 -0.25 0
0945+66 +41.9 EF - 0.46 0
0954+55 +47.9 QSO 0.901 0.12 0
0954+65 +43.1 BL 0.367 -0.25 II
1031+56 +51.9 QSO 0.459 0.31 0
1039+81 +34.7 QSO 1.254 -0.40 II
1150+81 +35.8 QSO 1.250 0.09 I
1418+54 +58.3 BL 0.152 -0.24 II
1435+63 +49.7 QSO 2.068 0.23 I
1637+57 +40.4 QSO 0.750 -0.56 II
1642+69 +36.6 QSO 0.751 0.26 II
1739+52 +31.7 QSO 1.379 -0.07 II
1749+70 +30.7 BL 0.770 0.33 I
1803+78 +29.1 BL 0.684 -0.26 I
1807+69 +29.2 GAL 0.051 0.35 II
1823+56 +26.1 BL 0.664 -0.17 I
1928+73 +23.5 QSO 0.302 0.01 0
1954+51 +11.8 QSO 1.230 0.14 II
2007+77 +22.7 BL 0.342 -0.67 I
2021+61 +13.8 GAL 0.227 -0.10 0
0235+16 -39.1 BL 0.851 1.09 II
0804+49 +42.1 QSO 1.433 -.67 II
0828+49 +32.6 BL/QSO 0.548 .46 II
1458+71 +59.9 QSO 0.905 .18 0
1504+37 +36.4 GAL 0.674 -.06 II
2200+42 −10.4 BL/GAL 0.069 -.19 II

Table 2.1: List of the complete sample: �at-spectrum sources at high declination
(δ > 50 ◦ ). We also show: the galactic latitudes, optical identi�cations, known redshifts
(Stickel et al. 1994) and the spectral indices evaluated between 11 and 6 cm (Kühr
et al. 1981). The last 6 sources do not belong to the complete sample but were as well
observed and analyzed in this work. Last column: IDV type (at 6 cm) from observations
(see section 3.2).
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Date N Frequencies [GHz]
04/05/1985 � 06/05/1985 8 2.70∗
15/08/1985 � 19/08/1985 15 2.70∗
27/12/1985 � 31/12/1985 15 2.70∗
22/12/1989 � 29/12/1989 6 4.75 10.55
31/07/1990 � 03/08/1990 8 2.70 4.75
17/05/1991 � 24/05/1991 11 2.70 4.75
27/12/1991 � 03/01/1992 10 2.70∗ 4.75∗ 10.55∗
10/04/1993 � 13/04/1993 3 4.75
18/06/1993 � 20/06/1993 4 4.75
01/09/1995 � 08/09/1995 4 2.70 4.85
05/12/1997 � 08/12/1997 4 4.85 10.45
25/12/1997 � 31/12/1997 9 2.70 4.85 10.45
17/09/1998 � 22/09/1998 5 4.85 10.45 32∗
08/02/1999 � 14/02/1999 5 4.85
10/03/2000 � 17/03/2000 9 2.70 4.85 10.45
04/05/1989 � 09/05/1989 9 1.49 4.86 8.44 15.0
29/01/1990 � 23/02/1990 3 1.49∗ 4.86∗ 8.44∗ 15.0∗
02/10/1992 � 23/10/1992 9 1.49∗ 4.86∗ 8.44∗

Table 2.2: Summary of all IDV experiments carried out since 1985. The � * � indicates
the lack of polarization information at that frequency due to bad weather conditions or
technical problems. N is the number of �at-spectrum sources observed. The data in the
top panel are discussed in Heeschen et al. (1987). The center panel shows the E�elsberg
data presented in Kraus et al. (2003) plus the March 2000 experiment discussed in this
work. The bottom panel shows the VLA monitoring experiments, which are discussed
in Quirrenbach et al. (2000).
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λ = 11 cm TOT m0 = 0.51 %

Source N S[Jy] ∆S m[%] Y[%] χ2
r type

0716+71 74 0.738 0.021 2.87 8.47 35.443 II
0836+71 74 2.698 0.014 0.51 0.00 1.309 0
0917+62 36 1.460 0.020 1.35 3.74 8.930 I
0954+65 91 0.473 0.020 4.13 12.31 54.357 0
1150+81 28 1.735 0.015 0.88 2.16 3.888 0
1749+70 26 0.684 0.006 0.91 2.26 3.407 0
1803+78 36 2.495 0.059 2.36 6.92 28.338 I
3C309.1 37 5.038 0.018 0.37 0.00 0.693 0

λ = 6 cm TOT m0 = 0.42 %

Source N S[Jy] ∆S m[%] Y[%] χ2
r type

0716+71 73 0.721 0.014 1.96 5.76 4.728 II
0836+71 73 2.397 0.010 .42 0.13 0.192 0
0917+62 35 1.515 0.011 .70 1.70 0.604 0
0954+65 90 0.595 0.015 2.58 7.64 8.812 II
1150+81 28 1.548 0.008 .50 0.80 0.322 0
1749+70 27 0.630 0.004 .69 1.65 0.513 0
1803+78 35 2.728 0.043 1.59 4.61 3.216 I
3C309.1 36 3.646 0.012 .33 0.00 0.139 0

λ = 2.8 cm TOT m0 = 0.75 %

Source N S[Jy] ∆S m[%] Y[%] χ2
r type

0716+71 58 0.850 0.016 1.92 5.32 0.984 II
0836+71 61 2.329 0.017 0.75 0.00 0.154 0
0917+62 28 1.362 0.017 1.24 2.95 0.409 I
0954+65 67 0.690 0.013 1.94 5.35 1.023 II
1150+81 23 1.271 0.015 1.21 2.85 0.393 0
1749+70 22 0.563 0.010 1.83 5.02 0.819 I
1803+78 31 2.795 0.037 1.32 3.27 0.470 I
3C309.1 30 2.419 0.029 1.19 2.76 0.377 0

Table 2.3: Observations in March 2000. λ = 11 cm,6 cm, 2.8 cm: Total intensity. The
columns correspond to source name, number of data points, mean �ux density and its
error, the modulation index (see section 3.1 eq. 3.1), the variability amplitude (see
section 3.1 eq. 3.4), the reduced χ2 (see section 3.1 eq. 3.3) and the variability type
(see section 3.2).
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λ = 11 cm POL mP,0
= 1.07 % σχ,0 = 0.19 ◦

Source N P[Jy] ∆P mP[%] YP[%] χ2
r(P) χ[ ◦ ] ∆χ χ2

r(χ)

0716+71 74 .0285 .0044 15.47 46.29 9.169 -7.16 5.37 21.034
0836+71 74 .2131 .0067 3.16 8.93 8.338 100.72 .91 23.611
0917+62 37 .0480 .0027 5.59 16.47 6.170 32.31 2.62 9.725
0954+65 91 .0248 .0030 11.94 35.69 4.221 11.44 6.42 21.470
1150+81 28 .0406 .0034 8.38 24.93 7.689 118.56 2.89 6.595
1749+70 26 .0086 .0021 24.23 72.62 2.360 86.17 24.93 27.610
1803+78 36 .1331 .0064 4.81 14.08 32.200 46.06 1.55 19.806
3C309.1 37 .1848 .0025 1.36 2.52 2.625 102.59 1.33 19.872

λ = 6 cm POL mP,0
= 1.06 % σχ,0 = 0.35 ◦

Source N P[Jy] ∆P mP[%] YP[%] χ2
r(P) χ[ ◦ ] ∆χ χ2

r(χ)

0716+71 73 .0202 .0021 10.67 31.84 111.145 6.00 6.46 781.451
0836+71 73 .1689 .0030 1.77 4.27 82.491 105.34 1.46 261.217
0917+62 35 .0628 .0017 2.78 7.70 124.571 32.85 1.23 134.481
0954+65 89 .0188 .0023 12.02 35.92 461.670 41.63 3.22 165.226
1150+81 28 .0466 .0011 2.31 6.17 28.799 77.99 3.28 434.723
1749+70 27 .0090 .0008 9.24 27.52 10.441 86.72 12.38 67.963
1803+78 35 .1561 .0590 37.77 113.27 ******* 90.82 8.28 *******
3C309.1 37 .0906 .0023 2.51 6.83 97.988 67.81 1.83 193.704

λ = 2.8 cm POL mP,0
= 2.64 % σχ,0 = 0.21 ◦

Source N P[Jy] ∆P mP[%] YP[%] χ2
r(P) χ[ ◦ ] ∆χ χ2

r(χ)

0716+71 58 .0207 .0028 13.60 40.04 11.334 18.61 9.55 338.708
0836+71 61 .1079 .0056 5.19 13.41 26.880 113.16 3.23 47.451
0917+62 28 .0496 .0025 5.11 13.13 10.201 36.37 1.47 10.488
0954+65 67 .0062 .0077 124.30 372.80 40.791 30.73 26.28 120.815
1150+81 23 .0217 .0021 9.80 28.30 5.775 78.67 2.48 10.582
1749+70 22 .0092 .0019 20.88 62.14 5.336 83.42 7.63 13.469
1803+78 31 .1945 .0094 4.86 12.23 84.803 109.60 1.30 98.371
3C309.1 30 .0381 .0035 9.30 26.75 13.153 45.61 2.90 12.274

Table 2.4: Observations in March 2000. λ = 11 cm, 6 cm, 2.8 cm: Polarization. The
columns correspond to source name, number of data points, mean polarized �ux density
P and its error, the modulation index of P (see section 3.1.1 eq. 3.5), the variability
amplitude for P (see section 3.1.1 eq. 3.6), the reducedχ2 for the polarized �ux density
(see section 3.1 eq. 3.3), the mean polarization angleχ, the standard deviation of χ
and the reduced χ2 for the polarization angle.
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Chapter 3

Mathematical methods

For a quantitative description of the characteristics of variability, a time series analysis
of the measured data points was performed. In this chapter, useful de�nitions for the
data analysis and the mathematical instruments are summarized.

3.1 Modulation Index and Variability Amplitude

First of all, it is important to quantify the amount of variability in a light curve.
Heeschen et al. (1987) developed some useful instruments and tests to describe the
rapid variability in extragalactic radio sources. Here we follow their work introducing
the most important details.
We de�ne the modulation index, m, which provides the most direct indication of the
variability characteristics of a source at a given frequency:

m[%] = 100 · σS

< S >
(3.1)

where < S > is the �ux density averaged over time and σS is the standard deviation
of the �ux density variations. It is measured from the data and can be related to
theoretical models (see section 5.2). The modulation index depends on the measure-
ment accuracy during the observations. A highm can be due to large measurement
uncertainties. However, m alone is not the �nal proof for the existence of variability
since the errors of the measurements of S are ignored. A χ2-test is used to verify the
hypothesis of variability. For each source, we test the hypothesis that the �ux den-
sity remains constant during the observing period and is equal to the average of the
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measured values. In this way, it results:

χ2 =
N∑

i=1

(
Si− < S >

δSi

)2

(3.2)

χ2
r =

1

N − 1
χ2 (3.3)

where χ2
r is the reduced value of χ2, N is the number of observations, Si are the

measured �ux densities andδSi the respective errors. Finally, the sources are considered
variable, if the probability of the �ux density to be constant is≤ 0.1%.
It is useful to de�ne the variability amplitude, Y , a noise-corrected parameter that
describes the amount of variations in a light curve. The variability amplitude is given
by:

Y [%] = 3
√

m2 −m2
0 (3.4)

where m0 is the mean modulation index of the non-variable sources and is a mea-
sure of the calibration accuracy. The variability amplitude indicates the level of the
variations independently from the measurement uncertainty, which is contained in the
modulation index of the calibrators. The variability amplitude is important to compare
observations carried out at di�erent epochs and frequencies. The multiplying factor of
3 is arbitrary and it is used for consistency with the original de�nition by Heeschen
et al. (1987). In particular, this factor makes the variability amplitude of the same
order as the observed peak-to-peak magnitude of the variations. The value ofY for
the non-variable sources is set to zero.

3.1.1 Polarization

In the data reduction process, we measure the Stokes parameters Q and U (and their
respective errors), which de�ne the linear polarization features of the radiation. How-
ever, the quantities P (polarized �ux density), and χ (polarization angle) are more
relevant for a description of the variations. Similar to the total intensity discussion, we
de�ne modulation index and variability amplitude for the polarized intensity:

mP[%] = 100 · σP
< P >

(3.5)

YP[%] = 3
√

m2
P −m2

P,0
(3.6)
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and for the polarization angle:

mχ[ ◦ ] = σχ (3.7)

Yχ[ ◦ ] = 3
√

σ2
χ − σ2

χ,0. (3.8)

As described in the section 2.3.2, observations of non-variable sources are necessary
to calibrate the polarization data which are very sensitive to systematic e�ects. Fur-
thermore, the secondary calibrators were used to set the noise level of the polarization
variations: mP,0

and σχ,0.
Again, the χ2 hypothesis test was used to identify the variability in polarization with
a level of con�dence equal to 99.9%.

3.1.2 Discussion of the uncertainty for the modulation index

An important point to discuss is the evaluation of the error for the modulation index,
which consists of the measurement uncertainties and the statistical errors due to the
occurrence of a stochastic event.
The error of the mean �ux density, δ < S >, is the contribution to the m uncertainty
and takes into account the measurement accuracy. However, variations in the �ux
density are a stochastic process observed within a �nite periodTtot with a characteristic
time scale tvar. Therefore, the error on a number n of independent variations during
the observing period has to be taken into account for the overall uncertainty on the
variability. Such number corresponds to:

n =
Ttot

tvar

(3.9)

and its error is:
δn = 0.85

1√
n

(3.10)

the factor 0.85 comes from the analytic solution of this statistical problem as it is
described in Jenkins and Watts (1969).
But the question is how to properly identify the time scaletvar: if n takes into account
the possible lack of variations in the stochastic process because of a limited observing
period, one should also consider the variations on time scales below the sampling time.
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In principle the data could show variations on a point by point basis. It is possible to
have a signi�cant variation at least within three data points which is more conservative
than the limit set by Nyquist theorem for two data points. In this case, we can have:

ñ =
Ttot

3 < ts >
(3.11)

δñ =
1

ñ
(3.12)

where < ts > is the mean sampling interval.
The �nal errors for the modulation index used in this work were evaluated as propa-
gation of the independent errors δn, δñ and δ < S >.

3.2 Structure Function
The temporal structure of the variability in a data set can be studied in a mathematical
way using Structure Function (SF ) analysis. Following the de�nition of Rutman 1978,
we write the �rst increment1 of a random process (in our case the �ux density variations
S(t) in the light curve of a compact �at-spectrum radio source) as:

∆S(t, τ) = S(t + τ)− S(t) (3.13)

were τ is the time lag and S(t) is the �ux density at the time t. By de�nition, the
�rst order structure function is the average over the time of the square of the �rst
increment:

SF (τ) =< (S(t)− S(t + τ))2 >t (3.14)

At τ → 0, the structure function yields to the noise level of the measurements. For
τ À T ∗, where T ∗ is the largest correlation time scale in the data, the structure function
is proportional to the variance of the variations, i.e. to the square of the modulation
index: SF (τ À T ∗) = 2σ2

S ∝ m2. For shorter time lags, the structure function has a
dependence on τ with a power law less than or equal to 2 (Rutman (1978)). The changes

1For the Mth-order increment, we have:

∆(M)g(t, τ) =
M∑

k=0

(−1)k




M

k


S(t + (M − k)τ)
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in such dependence are related to the periodicity and time scales of the variations in
a time series: a maximum in the SF re�ects the typical time scale of the variations
while the presence of periodicity in our data produces minima in the structure function.

The di�erent types of intraday variability are de�ned according to the shape of the
structure function. Following Heeschen et al. (1987) we de�ne three IDV classes:
A monotonic increase in the SF de�nes a Type I source, that is a long-term variable.
In fact the lack of a maximum in the SF indicates that it is not possible to de�ne a
typical time scale during the observing period and in this case the source is variable
with a time scale larger than the observing period. A maximum implies that fast vari-
ations are present (Type II) with a time scale de�ned by the time lag in the structure
function, by de�nition (Wagner and Witzel 1995) an intraday variable source reaches
such maximum within two days. Type 0 denotes the non-variable sources and theSF

is constant and dominated by the noise. The last column of table 2.1 indicates the
IDV types (at 6 cm) in our sample. Figure 3.1 (left) shows the structure function for
some radio sources observed in March 2000 at 6 cm. 0716+714 is a prototype of a type
II object. In this case, the SF increases and reaches a maximum before the two days
limit (vertical dashed line). For an IDV source, the typical time scale corresponds to
a time lag close to the maximum in the SF (5.3). In the case of 1803+784 (type I),
we note a monotonic increase of the SF without a well-de�ned maximum. Finally the
structure function of 0836+710 is �at as expected for a secondary calibrator.

3.3 Other instruments for the time series analysis:
Autocorrelation function, Power Spectrum and
Cross-Correlation function

In the data analysis process,autocorrelation function, power spectra and cross-correlation
functions were used to obtain further quantitative measurements from the time series.

An instrument for the time series analysis is the autocorrelation function (Edelson
and Krolik 1988):

ρ(τ) =< (S(t) · S(t− τ)) >t (3.15)
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Figure 3.1: The structure functions are plotted on the left side of this �gure. On the
right, the autocorrelation functions are showed. The three sources plotted represent the
di�erent kinds of IDV. Top: type II, center: type I and bottom type 0. Measurements
carried out in March 2000 at 6 cm.

As for the SF, ρ provides quantitative information about the periodicity and the typical
time scales in a light curve (�g. 3.1 right). In particular, the square of the modulation
index corresponds to the autocorrelation function at zero time lag: m2 = ρ(τ → 0).
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The structure function and the autocorrelation function are related by the formula:

SF(τ) = 2[ρ(0)− ρ(τ)] (3.16)

which is not valid for τ = 0 (because we do not deal with ideal data and for τ = 0, as
we have seen above, the SF corresponds to the noise). For largeτ the autocorrelation
is close to zero: that proves SF(τ À T ∗) = 2ρ(0) = 2m2 (see above).

The power spectrum is the square modulus of the Fourier transformation of the data:

PS = |FT[S(t)]|2 (3.17)

The power spectrum analysis is applied to time series in order to detect periodicities
(or quasi-periodicities) by the presence of signi�cant peaks at various frequencies (̃ν).
A peak in the power spectrum corresponds to a characteristic time (t FT7−→ ν̃), but each
spectrum contains also several other peaks which are produced by the irregular and
not equidistant sampling of the data. In the software used here, aclean algorithm is
used to remove alias peaks in the power spectrum, which are caused by the irregular
time sampling (Roberts et al. 1987 and Högbom 1974).
In this work, the power spectrum is only used as a cross-check for the time series analy-
sis performed with the structure function. For a givenS(t) both methods should yield
similar variability time scales.

In some cases, it is important to check whether two data sets are correlated with
each other with (or without) a certain time lag. The cross-correlation function gives
an indication on the correlation degree between two time series,X(t) and Y (t) . The
mathematical de�nition of the cross-correlation function is:

CCFX,Y (τ) =< X(t + τ) · Y (t) >t (3.18)

We immediately note that the CCF becomes the autocorrelation function in the par-
ticular case of X(t) = Y (t). An application of CCF is to check for correlation between
polarization and total intensity or between data at di�erent frequencies (see chapter
4).
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Results





Chapter 4

Statistics

From the comparison of recent measurements with similar previous data (eg. Quirren-
bach et al. 1992), one immediately sees that some objects changed IDV characteristics.
However about one third of the sources in our complete sample showed variations of
type II at least once and an overall two thirds can be considered variable (type I or
type II). Such �ndings are largely consistent with previous analysis (Heeschen et al.
1987, Quirrenbach et al. 1992).
In this chapter, we perform a complete statistical analysis combining the new data
(March 2000) with our previous measurements at the 100-m radio telescope and at
VLA (Heeschen et al. 1987, Quirrenbach et al. 1992, Quirrenbach et al. 2000 and
Kraus et al. 2003) as described in section 2.1. Finally we compare the results with the
competing models for IDV.

4.1 Galactic dependences of the IDV phenomenon

It is important to verify the correlations between modulation indices of rapid variable
sources and observable parameters strictly related to our Galaxy. From studies on
the Dispersion Measures of Pulsars (Nordgren et al. 1992) the scattering medium is
distributed in the Galaxy with a well de�ned latitude dependence: we expect that the
concentration of the ionized gas increases as one gets closer to the galactic plane.
Following the refractive interstellar scintillation theory, Shapirovskaya and Larchenkova
(1995) noted that one should observe a strong correlation between the modulation
index of the intraday variable sources and the galactic latitude. These authors tried
to calculate the distribution of the modulation indices along the galactic latitudeb,
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using data from di�erent samples in a wide range of frequencies (from 80MHz to
37GHz). Their work is a statistical analysis that is based on long term variability:
i.e. low frequency variability and ��ickering� (Heeschen 1984). They conclude that a
clear correlation is present but still not in agreement with the predicted correlation
from the RISS theory (m ∝ 1√

sin(b)
). However, Shapirovskaya and Larchenkova (1995)

used in their study, together with other data, the 6 cm sample observed and analyzed
in Quirrenbach et al. (1992), who show that it is di�cult to �nd a clear correlation
between m and b. The two cited works are not in contrast because they are based
on di�erent approach to the problem and on a di�erent analysis. However in both
cases, the �ndings were not consistent with the large scale structure distribution of the
ISM, derived from pulsar measurements. Furthermore, Kedziora-Chudczer et al. (2001)
found no clear correlations between the maximum of variability for the observed sources
and the galactic latitude, in the statistical analysis of the ATCA survey for intraday
variability.
Regarding our data, �gure 4.1 shows the variability amplitudes of all our variable (type
I and II) sources plotted versus galactic latitudeb: No evidence for correlations is found
either in the total intensity or in the polarization variability. From such analysis one
�nds that same variable sources show di�erent IDV behaviors at di�erent epochs: eg.
for 0917+624, which is at b = +41 ◦ , one sees that the values of the amplitude of
modulation show a huge scattering (∼ 3 up to ∼ 20).
The sources in our sample are not evenly distributed, most of them lie in a region of
the sky 20 ◦ < b < 50 ◦ , which is also occupied by galactic loops (see Heeschen et al.
1987). Therefore it is hard to perform a conclusive statistical study with such a still
limited sample. The lack of strong b-dependence together with the RISS theory which
limits the distance of the scattering screen to few tens of parsec demonstrates, however,
that the scattering is not caused by the global matter distribution in the ISM, but could
be due to clouds localized and homogeneously distributed in our surrounding.
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Figure 4.1: Variability amplitudes and galactic latitude (summary of all epochs). The
top panel shows the total intensity information. On thebottom: the left panel shows the
variability amplitudes of the polarized �ux density and theright panel the polarization
angle variability. Blue triangles: 20 cm, Black circles: 11 cm, Red diamonds: 6 cm,
Brown stars: 3.6 cm, Green squares: 2.8 cm and Violet crosses: 2 cm.

4.2 Source-intrinsic characteristics and rapid variabil-
ity

Another test is to study the variations in view of intrinsic properties of radio sources.
First, we analyze a possible dependence of the variability on the brightness of the
source. Figure 4.2 shows the total �ux density of all the sources at all epochs, the
di�erent symbols represent di�erent observing wavelength: 20 cm corresponds to blue
triangles, 11 cm to black circles, 6 cm to red diamonds, 3.6 cm to brown stars, 2.8 cm to
green squares and 2 cm to violet crosses. Moreover for the total intensity a linear least-
square �t was performed on all the data sets to show the possible correlations between
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S and Y . The correlation degree between the �t and the data is small, however, the
outcoming trend could be considered as an indication of larger variability at low �ux
densities. The slope of the �t could indicate intrinsic long-term changes in the �ux
density of quasars and BL Lacs. Such long term variability is interpreted as structural
variations in the innermost regions of the jets: eg. emission of new jet components or
shock propagation inside the jets. In fact, we may argue that when a new component is
emitted from the core, the variability is quenched due to a larger apparent source size
or because the long-term core activity dominates on the intrinsic mechanism causing
the rapid variability.
However, one should also consider the ratio between the compact core �ux density and
the extended (non-scintillating) jet emission. The low variability, observed at high �ux
densities, could be explained in terms of a stronger contribution of the jet emission
to the total �ux density. Such e�ect should vanish at shorter wavelengths since the
emission is more dominated by the radiation from the compact core. The slightly
inverted slope of the least-square �ts on the 2.8 cm data, shown in �gure 4.3, validate
such interpretation. However, one could also take into account an intrinsic contribution
to the variability, which becomes more dominant at shorter wavelengths.

In a more general way, it is possible that a mixture of both intrinsic and extrin-
sic e�ects is always present. At higher frequencies (and in some epochs even at low
frequency) the sole extrinsic explanation is not su�cient to describe the observed vari-
ability.

The occurrence of IDV may also be dependent on redshift:
From the distribution of the variability amplitude (�g. 4.4), one immediately notes
that the variability can be strong or weak without any dependence on redshift. As
for the galactic latitude correlation, the plot shows again that the same sources be-
have in a di�erent way at di�erent epochs. Such changes of the IDV characteristics
with the epoch and the lack of any evidence on z dependence demonstrate again that
the scattering screen is very localized in the Galaxy. Again the intrinsic structural
changes in the observed objects must play an important role in the evolution of the
IDV characteristics.
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Figure 4.2: Total �ux density against variability. Blue triangles: 20 cm, Black circles:
11 cm, Red diamonds: 6 cm, Brown stars: 3.6 cm, Green squares: 2.8 cm and Violet
crosses: 2 cm. The least square �t on all the data is also shown (black straight lines).
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Figure 4.3: Total �ux density against variability at 6 (left panel and 2.8 cm (right
panel), respectively. The least square �ts on the data are also shown (black straight
lines).

4.2.1 Spectral index variability

Correlation between the measured amplitude of variations and the spectral indices (�g.
4.5), calculated by Kühr et al. (1981), allows to compare source-intrinsic characteristics
to rapid variability. The available data for the single sources in our archive are too
sparse for this kind of analysis, but a statistical study on our complete sample gives
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Figure 4.4: Variability amplitude against redshift. The top panel shows the total
intensity information. On the bottom: the left panel shows the variability amplitudes
of the polarized �ux density and the right panel the polarization angle variability.
Blue triangles: 20 cm, Black circles: 11 cm, Red diamonds: 6 cm, Brown stars: 3.6 cm,
Green squares: 2.8 cm and Violet crosses: 2 cm.

an overall description of the variability behaviour at any epoch.
Figure 4.5 shows that the highest variability in total intensity and polarization are
directly related to a very �at-spectrum radio core (α from ∼ −0.5 up to ∼ 0). Previous
studies, here con�rmed, predict that sources with steeper spectrum are less variable
(see Quirrenbach et al. 1992 and recently Kedziora-Chudczer et al. 2001 for a sample
of southern hemisphere radio sources). In this analysis we note an indication that
even very inverted-spectrum sources show less variability. The synchrotron theory
predicts (eg. Lobanov and Zensus 1999) that the emission of a new component in the
compact core of an AGNs produces an increase in the spectral index: the spectrum
becomes �atter or, in case of �at self-absorbed components, more inverted. Under
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such assumption we have again a connection between intrinsic changes in the radio
core and IDV characteristics. In section 4.2 the emission of a new component from
the core was already related to a change in the IDV pattern, now we have a further
indication of such a scenario: in a quiescent phase of the �at-spectrum radio core,
the rapid variability is present, while in a �aring phase (more inverted spectrum) the
variations could be quenched by the emission of new components and a larger core size:
the scattering e�ects are reduced by the increase in the apparent source size and/or
the intrinsic variability is dominated by strong core activity.
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Figure 4.5: Variability amplitude against spectral index. Thetop panel shows the total
intensity information. On the bottom: the left panel shows the variability amplitudes
of the polarized �ux density and the right panel the polarization angle variability.
Blue triangles: 20 cm, Black circles: 11 cm, Red diamonds: 6 cm, Brown stars: 3.6 cm,
Green squares: 2.8 cm and Violet crosses: 2 cm.

During a single session of observations, it is possible to study the variation of the
spectral index with the time. Figure 4.6 shows the spectral index variability in March
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2000 of 0716+714 compared to the nearby secondary calibrator 0836+710. While in
the calibrator, as expected, a constant relation between the �ux density at 11 and
6 cm is shown, for 0716+714 large and very rapid (intraday) variability of the spectral
index is clearly observable. Such behaviour could be explained within the RISS theory
considering the frequency dependence on the strength of variability (see eq. 5.3): the
growth in �ux density a�ects the variability at di�erent frequencies in di�erent ways.
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Figure 4.6: Spectral index variability of 0716+714 and 0836+710 in March 2000.

4.2.2 Polarization angle variability at di�erent frequency

It was shown that the IDV characteristics are more pronounced in the polarized �ux
density P and polarization angleχ. Propagation of the radiation through the interstel-
lar medium can rotate the polarization angle viaFaraday Rotation. Faraday rotation
occurs when a linearly polarized electromagnetic wave passes through a magnetized
plasma: the two circular polarized components of the wave pass through the plasma
with two di�erent speeds and, after a certain path, the phase shift of these components
is changed causing a rotation of the polarization vector:

∆χ[rad] = λ2 · 8.1 · 105
∫

neB‖dl (4.1)

where B‖ is the magnetic �eld along the line of sight,λ is the wavelength measured in
meter and dl, the pathlength, in parsec.
In principle, via propagation e�ects, it is possible to describe the variations of the
polarization angle. Our study, of which �gure 4.7 is an example, shows a complex
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pattern of the rotation of the polarization angle with the frequency. Assuming that
the observed variations are due to Faraday rotation, one has to consider very fast and
physically improbable changes either in the electron density of the screen or in the
magnetic �eld along the line of sight with time scales of around 1 day. The nature
of the variations must therefore lie in the source. We suggest a multi-component
structure (Qian et al. 2001) of the innermost regions of the radio jet. The vector,
which results from the sum of the polarization vectors of the various components,
could have a di�erent orientation and amplitude at di�erent frequencies. Therefore,
if one of the components scintillates, we could have changes in the di�erence of the
resulting polarization angles and the pattern seen in �gure 4.7 could be reproduced.
Multi-component models are able to explain some of the polarization characteristics
of the intraday variable radio sources via interstellar scintillation. Qian et al. (2001)
use a 2-component model to describe the rapid polarization variations at 20 cm of the
quasar 0917+624. Recently, Rickett et al. (2002) made a �t of the polarization pattern
of the extreme intraday variable PKS 0405−38 using two polarized components in the
parsec-scale structure of the source. However, Qian et al. (2002) have also tried 3-, 4-,
and 5-component models and a complete description of all the observed polarization
characteristics of IDV was still not possible, mainly the polarization angle changes
could not be reproduced.
In conclusion, the apparent �Faraday rotation� (�g. 4.7) could be interpreted as an
indication of a complex structure in the jets with at least two (if not more) ultra-
compact components. High resolution observations (e.g. VLBI and millimeter VLBI)
are necessary to check the relationship between the scintillating components and the
observed VLBI structures.

4.3 Analysis of the Time scales

The changes of the characteristic variability time scales of 0716+714 were analyzed to
search for possible correlations with other variability characteristics of this source.
The time scales have been derived from the structure functions of the variability light
curves (see section 3.2): in this analysis, the �rst maximum in theSF was used to
extract the typical time scale, tIDV . The power spectra (see section 3.3) were also used
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Figure 4.7: �Faraday Rotation� variability of 0716+714 in March 2000.

to improve the determination of the time scales in cases of �noisy� light curves.
First of all, a comparison was performed between the long-term variability of 0716+714
and tIDV . Figure 4.8 shows, on the bottom panel, the measurements of the total �ux
density of 0716+714 from the AGN monitoring of the University of Michigan Radio
Astronomical Observatory (UMRAO) at 5GHz. These data are compared with the
time scales of the source from the IDV monitoring experiments, which are shown on
the top panel: no clear correlations can be seen between changes of the IDV time scales
and the rising (or descending) phases of the radio light curve. From the lack of corre-
lation could follow the interpretation that the characteristics of IDV are independent
of the physical process, eg. the emission of new VLBI components, causing the long
term variability. However, it is important to consider that the measurements oftIDV

are too sparse to completely exclude any dependence among the various variability
characteristics of the AGNs.
Moreover, one can immediately note that the characteristic variability time scale of
0716+714 changes with the observing epoch. At 5GHz a factor 2 variations intIDV

are observed. It is possible to test whether the observed rapid variability could be
caused by an annual modulation (see section 1.3.1), which is due to the orbital motion
of the Earth. In �gure 4.9, the IDV time scales are plotted with respect to the month,
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in which the observations were carried out. The slow-down of the variability around
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Figure 4.9: Time scales of 0716+714 against period of the year.

October could be an indication of a seasonal modulation of the IDV. One could, there-
fore, argue that scintillation e�ects could play an important role in the changes of the
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variability characteristics of 0716+714.
A systematic analysis of the variability time scales for all the sources of the complete
sample is in progress. This complete study will provide further information about the
physical processes, or the mixture of precesses, of the short term variability in blazars.



Chapter 5

A multi-frequency approach

Multi-frequency observations constrain the competing models describing the rapid vari-
ability observed in �at-spectrum radio sources. Furthermore RISS models, applied to
the IDV sources, could be combined with VLBI and/or pulsar observations to put
some further constraints to the ISM structure and the intrinsic source sizes. In this
chapter we compare statistical models for the RISS to our data and we try to analyze
the mixture of the causes for the rapid variability in active galactic nuclei.

5.1 Variability characteristics of �at-spectrum radio
sources

The scattering theory (see section 1.3) predicts two regimes of refractive interstellar
scintillation: weak and strong. A change between strong and weak regimes occurs
around 3�8GHz (Walker 1998): below a critical frequencyνc, which can be determined
with multi-frequency observations, the scattering is strong. As it was shown in the
chapter 4, di�erent IDV patterns at di�erent epochs for the same source is a common
phenomenon.
In �gure 5.1 we analyze the changes in the variability strength,Y , in 0716+714 for 6
di�erent epochs, combining all available data including 3 sessions observed with the
VLA (see Quirrenbach et al. 2000):

May 1989 (VLA data): The variability rises from 20 cm up to 6 cm and at shorter
wavelength a decrease in the amplitudes of the variations is observed.

February 1990 (VLA data): The variability is larger and during this observing ses-
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sion a correlation between radio and optical regimes was observed (see 1.2, Wag-
ner et al. 1996). As in May 1989, the variations rise from 20 cm up to 6 cm
and decrease at 3.6 cm. But at this epoch, the variability amplitudes rise again
towards higher frequency (2 cm).

December 1991: Again the variability at 6 cm, i.e. νc ∼ 5GHz, is more pronounced
than at other wavelengths.

October 1992 (VLA data): A monotonic increase of the variability amplitude up
to 3.6 cm was observed.

September 1998: The variations are more pronounced at very high frequency. In
particular, the observed IDV at 32GHz (Krichbaum et al. 2002) is di�cult to
explain with the interstellar scintillation model.

March 2000: During the radio-optical campaign (see 5.4), 0716+714 showed a de-
crease in the variability amplitude from low towards higher frequencies as ex-
pected in the weak scattering regime.
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Figure 5.1: Variability amplitudes against frequency at di�erent epochs.
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From this overall analysis of the frequency dependence ofY , we immediately note that
the frequency in which the variability is more pronounced (i.e. νc) di�ers with the
epoch and the amplitude of such variability changes, too. Moreover the curves show
many trends and slopes and one can argue that di�erent mechanisms can be simulta-
neously involved but alternatively dominant in the occurrence of IDV. Once again it is
possible to interpret the di�erent variability behaviors in the same sources as changes
either in the source structure or in the interstellar medium favoring an explanation of
the IDV phenomenon that takes into account both intrinsic and extrinsic models.
Changes in the variability characteristics of the studied objects with the observing
epochs are common: some sources appeared to be type II or type 0 depending on the
epoch of the observations (see Kraus et al. 2003). Equation 1.9 tells us that the relative
velocity of the scattering screen varies during the course of one year due to changes in
the projected velocity vector of the Earth. The annual modulation (section 1.3.1) suc-
cessfully explains the changes in the variability characteristics for the extremely rapid
IDV sources (eg. J1819+38, see section 1.3.2), but it is not clear whether it plays an im-
portant role in the �classic� IDV. In �gure 5.1, the curve for February 1992 and March
2000 (also for October 1992 and September 1998) are extremely di�erent although the
observations were carried out in similar periods of the year, when the relative velocity
between the Earth and the scattering screen is similar. Excluding therefore an extrinsic
phenomenon like annual modulation of the time scales, one can argue that the changes
in the variability pattern are due to source-intrinsic structure changes which, however,
also e�ect the RISS-related features of the source. We can assume that the apparent
size of the variable component changes and quenches the variability as Fuhrmann et al.
(2002) interpreted in the case of the radio core 0917+624 (section 1.3.1).
In this view, it is hard to �nd an overall conclusion with a statistical study if only
one of the two competitive models for the rapid variations in the AGNs is considered.
Flat-spectrum radio sources are strongly variable on longer time scales due to intrinsic
modi�cation of the source structure like the emission of new components: hence IDV
shows di�erent characteristics at di�erent epochs due to changes in the apparent source
size. Changes in the source morphology and scattering can be strictly related and a
comprehensive explanation of the IDV phenomenon has to consider a mixture of both
intrinsic and extrinsic contributions.
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Finally, in some cases, we also see an increase of the variability amplitudes at high
frequencies. This is not in agreement with the expectations from RISS: because of
the frequency dependence of the modulation index (see below, eq. 5.3) in the refrac-
tive interstellar scintillation theory, the �ickering vanishes towards higher frequencies.
Therefore RISS cannot explain the observed trends and one has to take into account a
source intrinsic contribution, which increasingly dominates towards higher frequencies.

5.2 Modeling the quenched scintillation
In section 1.3, we discussed the theory of refractive interstellar scintillation. Now,
we want to analyze the data with a model (Beckert et al. 2002a) for the quenched
scattering.
Coles et al. (1987) found a relation between the autocorrelation function and physical
characteristics of the interstellar medium. In particular, taking into account the source
size and its brightness pro�le, it is possible to describe the fast and slow variations
(hours to months) of the �ux density within the refractive interstellar scintillation
theory.
The spacial spectrum of the electron density �uctuations in the ISM is:

Φ(z, q) = C2
N(z)q−β (qmin < q < qmax) (5.1)

where z is the coordinate along the line of sight, q is the spacial frequency (qmin and
qmax are the lower and upper cut-o� in the power law1), C2

N(z) de�nes the turbu-
lence of the interstellar gas and such turbulence is described by thescattering measure:
SM=∫

C2
N(z)dz. The autocorrelation function can be related from theoretical consid-

erations to the physical parameter for the interstellar medium which is here described
by the Fresnel angular scale, θF (= rF/d, see section 1.3), and Φ(z, q). Coles et al.
(1987) report:

ρ(x) = 8πreλ
2

∫ d
0

∫ +∞

−∞
exp[ixq] · Φ(z, q) · sin2(qzθF /

√
2) · |V (q)|2dzdq (5.2)

λ is the observing wavelength, d the distance and |V (q)|2 the visibility of the source
brightness pro�le. Physically, q is a two dimensional spacial vector perpendicular to

1The exponent β for a Kolmogorov spectrum of the density �uctuations in the ISM is equal to
11/3.
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the line of sight in screen reference frame. In the observer plane, it corresponds to
the vector x=vt (see section 1.3.1). Beckert et al. (2002a) solved in an analytical way
equation 5.2 for di�erent source luminosity pro�les and it is now possible to relate ISM
parameters to observational quantities as the modulation index:

m2 = 2
(

re

dθ2

)2

λ4(dθ)β−2SM · f(β) (5.3)

θ is the apparent source size. The functionf(β) depends on β as well as on the chosen
pro�le for the source brightness and, in any case, it has a value close to unity.
Such analytical model for m is used to test the propagation e�ects in the IDV phe-
nomenon. Equation 5.3 relates the modulation index to observable parameters of the
ISM. In this work, we assume some values for these parameters and compare the model
to the observations. The �gure 5.2 shows the frequency dependent patterns of the mod-
ulation index of the rapid variable radio sources observed in March 2000. In the same
�gure we plotted a theoretical curve which was derived with the following assumptions:

• C2
N ∼ 10−3 m−20/3 (Coles et al. 1987). For the scattering measure SM, we assumed

a slab model for the ISM: we consider only a slab 1 pc wide of constantC2
N at

distance d responsible for the turbulence causing the interstellar scattering.

• We used two values for the distance of the scattering screen: d= 10 and 100 pc.

• θ = 100µas at 11 cm. The source size can be estimated from the analysis of the
structure function (see section 5.3) and it is consistent with the upper limits set
by VLBI measurements.

The resulting curves (�g. 5.2 open circles and open squares) are valid in weak (or
quenched) scattering and in March 2000 seems to reproduce qualitatively the behaviour
of the rapid variable objects. The discrepancies start at higher frequencies: the ob-
served sources show an increasing trend toward the highest ν. One can argue that
intrinsic variations are always present, but dominated at cm-wavelengths by the scin-
tillation. The unexpected (for RISS) enhanced variability, observed in some sources,
could be explained with a more and more dominant entanglement of intrinsic e�ects.
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Figure 5.2: Modulation Index against frequency during March 2000 for the variable
sources. The open (red) circles and the open (green) squares represent the model
described in the text using screen distances of 10 pc and 100 pc, respectively.

5.3 The Structure Function and the compactness of
the �at-spectrum radio sources.

In the section 3.2, the mathematical de�nition of the structure function was given and
it was discussed what kind of information can be provided from the characteristic time
scales of time series. From the analytical solution of the autocorrelation function (sec-
tion 5.2), it is possible to relate the time scales from theSF to physical characteristics
of either the interstellar medium (in case of sole scattering) or the source size and its
brightness pro�le (in a more general case). Beckert et al. (2002a) built a slab model for
the scattering measure and they �nd that for small time lags up to a break time scale,
tISM (which depends only on the interstellar medium characteristics) theSF shows a
quadratic dependence on the time lag:

SF (θ) = 2ρ(0)
(

vτ

dθ

)2

f(β) (5.4)

We tried to �t our data with such model: �gure 5.3 shows the SF of 0716+714 in
March 2000 and the best �t of the model on the data. The horizontal line corresponds
to the modulation index and the typical IDV time scale tIDV is derived from the SF
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using the modulation index from the data: tIDV corresponds to the time lag (plus
a theoretical factor of 1.207, see Beckert et al. 2002a) when the SF cross the 2m2-
'plateau' (see �gure 5.3). The �t at small time lags is not a quadratic function as
expected and the break at tISM is not present. We can argue either that the variability
is not due to the propagation through the ISM or that the slab model is too simple to
describe the frequency dependence of the IDV. In the �rst case, intrinsic variability can
be superimposed to the variations due to the refractive scattering and the structure
function contains information on both mechanisms. In the second case, the slope of the
SF can be reproduced, if one considers a strati�ed medium: many slabs of constant
(but di�erent) scattering measures along the line of sight that are responsible for the
overall scintillation.
The characteristic IDV time scale corresponds, in the RISS theory, to a source size2:

θ =
v

d
tIDV

2
. (5.5)

It was noted above that the characteristic time scale of the ISM,tISM , is not present.
However in all the SF s it is possible to measure the typical variability time scale,
tIDV . If tISM and tIDV were both known from the SF , a multi-frequency approach
would permit to determine the distance, d, of the scattering screen, the scattering
measure SM , the exponent β of the power spectrum of the �uctuation in the ISM,
the velocity v of the scattering screen and the apparent source size θ. That is the
complete information on the ISM parameters and on the intrinsic size of the scattering
component in the source (if the redshift is known). In our case and in all theSF s in
our archive, it is di�cult to �nd a good determination of tISM and one has to deal
only with a multi-frequency study of tIDV which provides the size of the scattering
region in the core of the compact radio sources (table 5.1). Taking into account a
linear dependence on the wavelength of the source size (θλ2 = θλ1 ·λ1/λ2), the apparent
source size calculated at 11 and 6 cm are in good agreement: θ11 = 121 ± 37 µas and
θ6 = 133 ± 54 µas while the data at 2.8 cm (θ2.8 = 340 ± 125 µas) again do not �t the
scattering model as unique explanation for the observed variability (see �g. 5.4).
For the velocity of the scattering screen, we assumed that only the Earth motion has

2This expression for θ derives from the analytical solution of the SF discussed in Beckert et al.
(2002a)
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Figure 5.3: Structure function of 0716+714 at 11, 6 and 2.8 cm in March 2000. The
modulation index (actually 2m2) is plotted as a horizontal line and corresponds to a
�plateau� of theSF for large time lags. The best �t on the �rst part of theSF (see text)
is showed and it de�nes the characteristic time scale of the variability in the light curve.

a dominant contribution, neglecting the random velocity distribution of the clouds in
the ISM: in any case Cordes and Lazio (2001) calculated that the ISM structures have
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λ [cm] tIDV [d] d [pc] v [km/s] θ [µas]
11 1.10 ± 0.34 100 38 121 ± 37
6 0.66 ± 0.27 100 38 72 ± 30

2.8 0.79 ± 0.29 100 38 87 ± 32

Table 5.1: Apparent source size calculated from theSF .
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Figure 5.4: Apparent source sizes at di�erent wavelengths, calculated as described in
the text.

typical velocities not exceeding 10 km/s. During the observation in March 2000, the
projected velocity of the Earth was v = 38.03±0.65 km/s. The error in this parameter
is calculated considering the di�erence of the velocity between the starting and the
ending date of the observations. Regarding the distance, we showed the results for
an arbitrary, but reasonable value of 100 pc: the possibility of di�erent distances, i.e.
10 pc, would imply an increase of the angular size of an order of magnitude.

5.4 Radio-Optical Campaign in March 2000

In optical bands, extremely rapid intranight variability is often observed. This e�ect is
considered intrinsic and explained via perturbations in accretion disks of the AGN (see
Krishan and Wiita 1994) or acceleration in shock front inside turbulent jets (Hughes
et al. 1985 and Koenigl and Choudhuri 1985).
As discussed in section 1.1, the claimed correlations between the radio and optical
bands put severe constraints on the nature of the radio IDV. In particular, with such a
correlation the interstellar scintillation e�ects can be ruled out as the unique mechanism
causing the rapid �ux density variations of the radio emission. However, after the con-
�rmed case for broad-band correlations in 0716+714 in 1990 and an indication of such
a correlation in 0954+658 (Wagner et al. 1993), no further experiments showed such
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e�ect. There are several problems which make a �nal con�rmation of correlated vari-
ability characteristics between the radio and optical bands di�cult. First of all, due to
the oscillatory nature and the quasi-periodicity of the phenomenon, it is hard to unam-
biguously cross-correlate the variations observed in the di�erent regimes. Furthermore
a huge amount of continuous simultaneous observing time is necessary to cover all the
possible time scales: many radio and optical telescopes around the world have to ded-
icate continuously at least 2�3 weeks of observing time to monitor the program sources.

In March 2000 (the table 5.2 shows the participating telescopes) it was possible to
organize a coordinate multi-frequency campaign, intended to repeat the 1990 exper-
iment. Unfortunately, however, the 100-m E�elsberg radio telescope, which had to
provide the denser radio monitoring, could only participate for one week.
Figure 5.5 shows a general decreasing trend (after an initial remarkable outburst) of
the optical light curve of 0716+714 between from J.D. 2451612 up to J.D. 2451620 and
a slightly increasing trend afterwards. The data points from the IRAM monitoring
at 3mm are monotonically increasing while the E�elsberg observations (at 11, 6 and
2.8 cm) present no such long term e�ect. This pattern can be described in terms of a
propagating shock visible at di�erent times. Due to the di�erent optical depths in radio
and optical regimes, a change in �ux density is faster in the optical than in the radio
band. Therefore, the optical �ux density would probably decrease if we are observing
at a certain time after the maximum of the variation. At this time, the �ux density at
millimeter wavelengths would instead start to increase (the variation has just started in
this band) while in the centimeter regime the source would show no long-term changes
in �ux density as the variation would not have yet started here.
Regarding the fast variations, �gure 5.5 shows no clear evidence any correlation be-
tween the optical and the radio light curves of 0716+714. Moreover, a cross-correlation
study was performed (�g. 5.5, bottom right): to compare the data sets, the slopes in
the light curves have been removed (�g. 5.5, bottom left). The correlation coe�cient
at zero time lag resulted ∼ 0.2. The maxima (CCF∼ 0.5) in the correlation factors
occurred with 1 day delay between 11 cm and the optical data and with 1.3 days time
lag between the optical and the 6 cm observations. Notably, in all the data set a quasi-
periodicity of ∼ 2.5 days was detected. On the one hand, a common quasi-periodicity
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Optical telescopes

Telescope Size Date
Calar Alto 1.23m 28/2 - 3/4
La Palma 0.7m 1/3 - 31/3
Flagsta� 1.8m 11/3 - 24/3
Cananea 2.1m 7/3 - 22/3
YunNan 1.0m 13/3 - 18/3
Beijing 0.6m 2/3 - 23/3
Abastumani 0.7m 28/3 - 3/4

Radio telescopes

Telescope Date
E�elsberg 10/3 - 17/3, 24h per day
Pico Veleta 8/3 - 30/3
Westerbork 6/3 - 26/3, 2.5h per day
RATAN-600 6/3 - 29/3

Table 5.2: Telescopes involved in the March 2000 radio-optical campaign. The analysis
is still in progress for the data from Westerbork and RATAN-600.

could be interpreted as an indicator for the same mechanism causing the rapid varia-
tions. On the other hand, it is di�cult to exactly recognize which features are common
to the di�erent bands.
Clearly such experiments bear a huge potential for the future and have to be repeated.
In particular, in the millimeter and radio bands, the time sampling should be improved.
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Figure 5.5: Radio-mm-Optical Data during the March 2000 Campaign.
Top: The black circles correspond to a preliminary analysis of the optical measure-
ments in the R-band (Courtesy of Wagner and collaborators, Landessternwarte Hei-
delberg). Our data at 6 and 11 cm are plotted as red squares and blue diamonds,
respectively. The green triangles corresponds to the Pico Veleta �ux density monitor-
ing of point-like radio sources.
Left bottom: The residual optical data compared to the radio data during the Ef-
felsberg observing period. Right bottom: Cross-correlation functions between the
residual optical and the radio data: the black line and the red line correspond to the
optical-6 cm cross-correlation and the optical-11 cm cross-correlation, respectively.



Chapter 6

A very rapid Extreme Scattering
Event in the IDV source 0954+658

The BL Lac object 0954+658 (mV = 17 mag, Padovani and Giommi 1995; z=0.367,
Stickel et al. 1994) is an extremely active radio source. Superluminal motion of the
VLBI components have been observed (Jorstad et al. 2001) with apparent velocities
up to ∼ 19h−1c (h = H0/100 is the reduced Hubble constant). The source is strongly
polarized (10 − 20%) and the polarization shows a complex structure at VLBI scale
(Gabuzda and Cawthorne 1996). 0954+658 was the �rst source to show an Extreme
Scattering Event (ESE: see Fiedler et al. 1987), indicating the presence of a clumpy
interstellar medium along the line of sight. This BL Lac has been observed in most IDV
monitoring projects discussed in this work. Also, fast variability in total and polarized
�ux density has been detected and the source is classi�ed as a type II IDV (see section
3.2).
In the light curve of this object (�g. 6.1), observed in March 2000, we found that a
drop in the �ux density showed a systematic reversal of the time lags between adjacent
frequencies. We explain such a particular variation as a very rapid ESE. It is here
important to recall that the extreme scattering event seen by Fiedler et al. (1987)
showed variations on a time scale of∼ 18 weeks, much longer than the e�ect seen in
our data (time scale ∼ 2 days).
In this chapter, the study of this ESE-like event will be shown and a description of the
interstellar medium characteristics will be given using the multi-frequency approach to
the IDV phenomenon as an instrument for the analysis.
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Figure 6.1: Top: Light curve of 0954+658 at 11, 6 and 2.8 cm. The dashed box
highlights the ESE-like event. Bottom: Running Cross Correlation Function (CCF),
where we plot time lags versus time. We were not able to perform a proper CCF
analysis for the last few hours of the event because it occurred at the end of our
observing period.

6.1 Analysis of the time series
The light curve of 0954+658 (�g. 6.1) shows the characteristic pattern of a type II
intraday variable. The variations have a typical peak-to-peak amplitude of∼ 12% at
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11 cm and a characteristic time scale of1.3 days. The amplitude of variability decreases
with the wavelength, as expected by the RISS theory. However, we note two di�er-
ent behaviors regarding the time scales at the three observing frequencies. The �rst
part of the data set (J.D. 2451614 − 2451619.5 ) does not show any time lag among
the three frequencies while in the last part we measure rapid and (in time) delayed
changes. At J.D.∼ 2451619.6, we observe a systematic time lag, in the sense that the
�ux density at longer wavelengths peaks before the �ux density at shorter wavelengths
(t11cm < t6cm < t2.8cm). At J.D.∼ 2451621.8, the situation reverses and the shorter
wavelength peaks before the longer wavelength.
To check whether this systematic time reversal is real, a running cross correlation was
performed, i.e. time lags between 11 and 6 cm versus time was calculated (see �g.6.1,
bottom). The time series was binned in time intervals of 0.3 days and for each bin the
time lag corresponding to the maximum of the cross-correlation coe�cient between the
frequencies was evaluated. The �rst part of the plot showed a �at pattern (centered
at zero) indicating no time lag between 6 and 11 cm. During the last 2 days of obser-
vations, however, a di�erent behaviour was seen. This again indicates that after J.D.
2451619.6, the variability pattern and the time lag between the frequencies must have
changed.
Furthermore, an analysis of the polarization gives evidence for a di�erence in the vari-
ability patterns at di�erent frequencies: we noted that the polarized �ux density and
the polarization angle variations after J.D.∼ 2451619.6 are more pronounced and faster
than before. Using a structure function analysis, we were able to quantify this change
in the polarization characteristics of the source. The results are shown in �gure 6.2,
where we plot the structure functions for two di�erent time intervals at 6 cm. The
typical time scale of the variations changes from≥ 1.5 to ∼0.4 days.
The time reversal phenomenon could also appear in weak scattering by random vari-
ations in the frequency dependence pattern of RISS (Rickett priv. communication).
Here we suppose that the reversal of time lags is caused by changes in the optical depth
of a single cloud in the ISM. Such an interpretation is supported by the observed vari-
ability pattern which resembles an extreme scattering event, but on much shorter time
scales, tESE ∼ 2 days, than the one seen earlier on the same source by Fiedler et al.
(1987), tESE ∼ 8weeks (see next section for a description of the ESE characteristics).
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Also, the sudden change in the polarization characteristics is a further indication of
some peculiar event occurring after J.D. 2451619.5.

Figure 6.2: Structure functions of the polarized �ux density. Theupper curve corre-
sponds to half of the time series where the usual variability behaviour is present. The
bottom curve shows the SF for the second half where the ESE-like pattern is seen in
the total intensity signal.

6.2 The Extreme Scattering Event phenomenon

An extreme scattering event is a �ux density variation caused by ray path distortions
within an isolated inhomogeneity (�plasma lens�) in the interstellar medium located
within the line of sight (�g. 6.3). These events are characterized by a deep minimum
with surrounding maxima and have time scales which vary from weeks to months.
A characteristic of these events is a well de�ned frequency dependence: variability
indices, time scales, amplitudes of variations and amplitudes of the two surrounding
maxima decrease with increasing frequency. Some of these features are similar to nor-
mal scattering processes and for shorter time scales it is hard to distinguish between
small amplitude ESEs and refractive scintillation. In a statistical description of this
phenomenon, Fiedler et al. (1994) suggested that the identi�cation of an ESE is dif-
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�cult, if the amplitude and the time scale of the variations are comparable to other
possible origins of variability. An important di�erence between an ESE and standard
scattering is the focusing which causes the reversal of the time lag: observations showed
that in an ESE the �ux density rises �rst at lower frequencies (�rst maximum). The
�ux density reaches the minimum at di�erent frequencies simultaneously, then it rises
again at higher frequencies �rst (second maximum). The two bracketing maxima are
due to focusing at the edges of the cloud which, basically, acts like a lens.

θ

Observer plane

Interstellar medium

Ray paths

ν2

ν1

Point source at infinity

ν1 ν2<
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Time
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Figure 6.3: Scheme of an extreme scattering event.
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6.3 Description of the model
Electron density �uctuations within isolated structures in the interstellar medium along
the line of sight to a compact background extragalactic source are responsible for ESE.
Such events seem to have a duration of weeks to months and do not appear very
frequently. Clegg et al. (1998) developed a plasma lens model describing ESEs and in
this work we extend their model to the small lenses generating the very rapid extreme
scattering events. The model is described only by two parameters (Clegg et al. 1998):

αs ≡ λ2reN0d
πa2

= 3.6

(
λ

1 cm

)2

·
(

N0

1 cm−3 pc

)
·
(

d
1 kpc

)
·
(

a

1 AU

)−2

(6.1)

βs = θi/θl (6.2)

The strength of the scintillation is described by the dimensionless parameterαs, which
is related to the wavelength and to the parameters describing the cloud: the column
electron density N0, the distance d, and the size a of the lens. The parameter βs

indicates the ratio between the apparent angular size of the source and that of the
lens. We assumed a Gaussian brightness pro�le for both the plasma lens and the
background source.
We applied this model to the last part of our light curve (box in �gure 6.1), where
the strong change of the time lag between 11 and 6 cm is seen. Figure 6.4 shows the
modeled light curves and the cross correlations that we can immediately compare to
our data (�g. 6.5).

6.4 The size of the clouds in the ISM
The table 6.1 shows the values for αs and βs used in our calculation. The spatial lens
size was evaluated using the equation:

a <∼ v∆t (6.3)

At 11 cm ∆t is 2 days, a lens speed of 30 km s−1 would correspond to a size of the
lens of 0.035A.U. Assuming that the lens is at 0.15 kpc (distance of Galactic Loop
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Figure 6.4: Left: normalized �ux density model of light curves of a very rapid ESE at
di�erent frequencies, respectively: 11 cm (dotted line), 6 cm (dashed-dotted line) and
3 cm (solid line). Right: cross correlation functions for the model light curves for a
very rapid ESE between 11 and 6 cm (dotted line) and between 6 and 3 cm (solid line).
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Figure 6.5: Models of the normalized �ux densities and normalized data: 11 and 6 cm

III, direction close to the line of sight to 0954+658) we can evaluate the density of
the plasma lens: N0 ≈ 1.875 · 10−5pc cm−3 and ne ≈ 110.95 cm−3. For the standard
Kolmogorov size distributions in the ISM (see 5.1), such structures are still physically
reasonable, but they put new constraints on the clumpiness of the interstellar medium.
Discussing the ESE in 1981, Clegg et al. (1998) derived (at 2.25GHz and assuming the
same distance) a lens size of 0.38A.U.: Thus the size of the lens derived here is
10 times smaller.
It is therefore likely that the ISM has also a clumpy component, in addition to the
�smooth� large scale distribution (with scale heights h1 = 500 pc and h2 = 100 pc
as described by Cordes et al. (1988) using pulsar measurements). These �clumpy�
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components have probably a low �lling factor. The detection of this rapid ESE in
0954+658, together with the earlier detection of a slow ESE suggests that the size of
these plasma lenses could be very di�erent, at least by a factor 10. It is therefore not
unlikely that the ISM is �lled with such clouds in a inhomogeneous way.

λ 6 cm 11 cm
αs 0.2980 1.00
βs 0.90 1.450

Table 6.1: Parameter of the model from the data.
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Chapter 7

86GHz observations at Pico Veleta

The theory of the interstellar scintillation and in particular the theory of RISS (see
section 1.3) is capable of describing the rapid variations of compact objects in the cen-
timeter regime. Since the amplitude of RISS decreases with λ2, observations in the
mm-band can be useful to disentangle source-intrinsic and propagation e�ects in the
observed variability. Claims for detection of rapid variations at high frequency were
presented by Wagner (1998) and Krichbaum et al. (2002) at 32GHz. The detection
of rapid variability at mm-wavelengths is di�cult, and in particular the calibration
is less accurate because of the strong weather in�uence: during our measurements,
an accuracy of ∼ 5 % was achieved. Thereupon tests were performed on well suited
sources (mainly 0716+714) to check whether IDV measurements (in total intensity and
polarization) were at all possible at millimeter wavelengths. This chapter will describe
the high frequency data measured at the IRAM 30-m telescope located in Pico Veleta
at an altitude of 2920m in the Spanish Sierra Nevada near Granada. The 30-m tele-
scope, a Cassegrain-Nasmyth system with an altazimuth mount, was built following
the homology principle (see section 2.3) and has a thermally insulated backup structure
of the primary mirror. Moreover the temperature homogeneity of the panels is kept
within 1 ◦ Celsius, via an active control system.
The main re�ector surface has an accuracy of 70± 5 µm.
Two observing campaigns (see table 7.1) were carried out in May 2001 (polarime-
try experiments) and October 2002 (total intensity monitoring) using the 3mm het-
erodyne receivers of the IRAM 30-m telescope. Two SIS (Superconductor-Insulator-
Superconductor) receivers (A100 and B100) were used simultaneously in our experi-
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ments. They work at intermediate frequency (νIF = 1.5 GHz) and can be tuned for
continuum and line observations in the range of 80 � 115.5GHz. In general we have:

νobs = νLO ± νIF (7.1)

where ± de�nes the upper/lower bands to which a heterodyne receiver is sensitive.
The νLO is the frequency of the local oscillator used to reachνIF .

7.1 The fast monitoring of 0716+714
The tentative detection of fast variability at 9mm on 0716+714 with the E�elsberg
100-m radio telescope in 1998 (Krichbaum et al. 2002) initiated additional studies at
3mm. During 3rd − 4th of October 2002, dedicated observations of this object were
carried out in Pico Veleta at 86GHz. The source was observed during these two con-
secutive nights, (∼ 2 hrs per night) together with the secondary calibrator 0836+710.
The telescope beam at 86GHz is28 ′′ and our sources were point-like and strong enough
to be observed with cross-scans (see section 2.3). All our sources are part of the IRAM
pointing catalogue for the 30-m telescope.
The command for a cross-scan ispointing, a task which includes before each observa-
tion a calibration scan (cal cold). The cal cold scan measures the temperature of
the sky and two loads (cold and warm) of known brightness temperature and calculates
τsky (the sky opacity) using an atmospheric model (Pardo et al. 2001).
Earlier measurements su�ered from intrinsic changes with the parallactic angle, since
the source were observed with linear polarized feeds. Therefore, during the observations
in October 2002 (the total intensity experiment), a quarter wave plate was inserted in
front of the receivers. In this case, the receivers handled with the circular polarization

POL May TOT Oct
Experiment 2001 Experiment 2002

Source N Source N
0716+714 9 0716+714 28
0836+710 11 0836+710 25
1803+784 18 0954+658 7

1044+719 7

Table 7.1: Summary of two IDV experiments carried out in Pico Veleta. N is the
number of the observations for the given source.
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components of the radiation (instead of the linear components). Usually such plates
are used during the mm-VLBI experiments. Here it makes the polarization measure-
ments independent of the variations of the parallactic angle.
The data were reduced using the program class, a software of the gildas package
(Grenoble Image and Line Data Analysis System) of IRAM, in the continuum mode.
class (Continuum and Line Analysis Single-dish Software) reads the telescope output
�le containing the measurements already calibrated (including the gain correction and
the conversion factor temperature-to-Jansky) and makes an average of all the subscans.
Finally, a Gaussian is �tted to this averaged scan.
To check the quality of the results, primary (eg. planets) and secondary calibrators
were observed at regular intervals. In particular, a secondary calibrator was always
observed after a program source. Due to the relevant in�uence of the weather condi-
tions in the observations at mm-wavelengths, a calibration uncertainty of∼ 5% was
achieved, which is larger than the 0.5− 1 % obtained at cm-wavelengths.

7.1.1 Results

The source was observed with a very dense time sampling: one cross-scan every
3minutes for the program source as well as for the calibrator. The light curves are
plotted in �gure 7.1. In both nights, we have marginally detected variability at10 %

level in 0716+714 with very small time scale of∼ 15minutes. The uncertainty on the
variability was derived from the modulation index of the calibratorm0 = 4 %. The
consistency of these variations was tested with a formalχ2 test: it resulted χ2

red = 0.77,
which gives only 25 % probability for 0716+714 to vary during the observing period.
However, it is important to note that during this year the source showed a prominent
outburst in the millimeter regime on longer time scales (see �g. 7.2). We may spec-
ulate once more (see chapter 4) that when a source is getting very bright, the rapid
variations are quenched by physical changes (i.e. changes of size, ejection of new VLBI
component) occurring in the radio core. This may have caused the low variability seen
in this 3mm experiment.
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Figure 7.1: 0716+714 measured at 3mm in October 2002 with the IRAM 30-m tele-
scope.
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Figure 7.2: Long term variability of 0716+714 in the millimeter regime (IRAM pointing
sources monitoring).

7.2 The experiment on the polarization variability of
0716+714

In a second observing campaign at 3mm, we looked also for polarization variability in
this regime.
The polarimeter (Thum et al. 2002) is designed for narrow band (40MHz) line and
continuum polarimetry. The radiation from the two orthogonally polarized receivers,
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A100 (vertical component) and B100 (horizontal component), is fed to the polarimeter
which generates four output signals (S1, S2, S3, S4). An autocorrelator combines
the two original linear polarized signals from the receivers (S5, S6). With the four
polarimeter outputs all four Stokes parameters can be derived.

• Using the polarimeter:

I =
1

2
(S1 + S2) =

1

2
(S3 + S4) (7.2)

U =
1

2
(S1− S2) (7.3)

V =
1

2
(S3− S4) (7.4)

• Bypassing the polarimeter:

I = S5 + S6 (7.5)

Q = S5− S6 (7.6)

The ON-OFF technique is suitable for weak objects and it was used for the polarime-
try project since small polarized �ux densities were expected. The telescope integrates
alternatively ON source and OFF source to take into account and subtract the atmo-
spheric e�ects. The integration time depends on the weakness of the sources following
eq.(2.5). In both ON and OFF phases, the wobbler was on with a frequency of 0.25Hz:
the sub-re�ector points to a di�erent part of the sky improving the signal to noise ratio
of the observations and the quality of the baseline of the individual scans.
Observations of unpolarized calibrators (eg. HII regions, planets, etc...) were used to
measure and correct for the instrumental polarization. The data reduction was done
using special class procedures developed by C. Thum and H. Wiesemeyer (IRAM-
Grenoble) and slightly modi�ed for our purpose. Each ON-OFF is reduced by �nding
the mean value of the ON-source �ux density and subtracting the OFF subscans. Then
all the Stokes parameters (I, U, Q, V) were calculated and corrected for the instrumen-
tal polarization. Finally, for a single scan the procedures evaluated the Julian date of
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the observation, the polarized �ux density, the percentage of polarization, the polar-
ization angle and the respective errors.

Thum et al. (2002) detected linearly polarized �ux density at 3mm on strong (S3mm ∼
1− 10 Jy) active galactic radio sources. Aim of our experiment was to measure linear
polarization and its possible variability also on weaker sources (S3mm >∼ 0.5 Jy).
The program source 0716+714 and the calibrators were observed for 24 hours. Unpo-
larized non-variable objects were used as primary calibrators and the polarized non-
variable quasar 0836+710 was observed with a very dense time sampling to provide an
accurate secondary calibration for the linear polarization. A preliminary analysis of
the data (�g. 7.3) shows peak-to-peak variations of the polarization degree at a34 %

level in 0716+714 (the mean value is< p >= 2.2± 0.1 %). In 0836+710 the observed
polarization degree seems to be constant, for most of the observing session, with the
value of < p >= 4.0± 0.1 %.
Further data analysis and tests are still necessary to check whether the fast variability
observed on the light curve of 0716+714 is due to intrinsic variability or external bi-
ases (i.e. systematic e�ects caused by receivers, feeds or the weather). If a detection
of polarization variability could be con�rmed, it would be the �rst case of intraday
(polarization) variations observed in the millimeter regime.
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Figure 7.3: Linear polarization measurements (preliminary results) at 3mm. Thetop
panel shows the polarization degree of 0716+714. In thebottom panel, the polarization
degree of the calibrator 0836+710 is plotted.
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Chapter 8

345GHz observations at the
Heinrich-Hertz-Telescope

In this chapter, our experiments at the Heinrich Hertz Sub-Millimeter Telescope on
Mount Graham (Arizona, USA) are discussed. In January 2002, �rst test measurements
on polarization in the sub-mm regime (in collaboration with the MPIfR Bolometer
group) were carried out at the Heinrich Hertz Sub-Millimeter Telescope (HHT) of the
Steward Observatory using the MPIfR 19-channel bolometer array (at 345GHz) with
the ON-OFF technique. Furthermore at the HHT using the 19-channel bolometer, in
May 2002 a monitoring project of �at-spectrum radio sources was carried out within a
radio-submillimeter-optical campaign (see section 8.2.1).

8.1 Sub-Millimeter IDV monitoring of AGNs

The HHT is part of the Sub-Millimeter Observatory (SMTO) facilities and it is located
at an altitude of 3186m (10453 feet) on Mount Graham about 250 km north-east from
Tucson in Arizona (USA). The telescope with diameter of 10-m, is an altazimuth
mounted paraboloid with Nasmyth focus. The dish surface accuracy is better than
12 µm. The observing range in elevation is limited by the trees that surround the
dome: in some directions, it is possible to observe only at elevation higher than35 ◦ .
The MPIfR 19-channel bolometer array (Kreysa et al. 2002) consists of 19 individual
continuum receivers sensitive around the wavelength of 0.87mm (345GHz). The array
is arranged in two concentric hexagons around the central bolometer (�g.8.1). The
azimuth distance between two adjacent channels is about50 ′′ and the maximum beam
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Figure 8.1: The array geometry at an elevation of 0 degrees. For increasing elevations,
the image of the whole array rotates counterclockwise.

separation about 200 ′′ . Usually, a point-like source is observed with the central horn
while the outer channels collect only the radiation of the surrounding sky.
At high frequencies, the measurements are very sensitive to atmospheric variations.
Di�erent methods are used to take into account the e�ects of the sky turbulence.
Throughout all the measurements a 2Hz wobbler was running and the ON (or OFF)
signal collected by the backend is the result of an instantaneous subtraction of the
empty sky seen with the wobbler. With the ON-OFF technique we can get rid of
longer term sky noise. Furthermore, an event observed at the same time by all the
bolometers has to be considered spurious as only the central horn points on the source.
This is the so-called correlated noise and can be removed during the data reduction.
For the data reduction, the programnic (a gildas software) was used. To obtain the
actual value for the �ux density, for each scan,nic:

• calculates the mean and the variance of each single subscans
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• removes the baseline of each ON-OFF pair of subscans

• removes the correlated noise

• subtracts from the central channel the weighted average of the outer channels1

• estimates the �nal errors.

Finally, the signals of each channel are corrected for the opacity: at sub-millimeter
wavelengths, the sky opacity is relevant and it has to be carefully considered in the
correction of the data. The atmospheric opacity (τsky) was calculated using the skydip
scans that measure the sky emission Tsky at di�erent air masses A = sec Z (where Z is
the Zenith angle equal to 90−elevation). We have:

Tsky = Tatm(1− eA·τzenith) (8.1)

Tatm is the temperature of the atmosphere and τzenith is the opacity at the zenith. The
slope of a least square �t of theTsky at di�erent air masses gives τzenith. Such operations
were computed using nic and mopsi (a mapping software of Robert Zylka, MPIfR)
and taking a mean value of the outputs for τzenith of the two programs. We performed
a skydip scan after each measurement, to better sample the sky turbulence (�g.8.2).
Strong and compact objects (Ultra Compact Hii regions, planetary nebula and planets)
of known �ux density were observed at 345GHz to provide the absolute calibration,
that is the counts-to-Jansky factor to convert the counts of the bolometer array in
physical unit (Jansky). Again Ultra Compact Hii regions, planetary nebulae, planets
or strong quasars were observed before and after the program sources: we obtained an
overall calibration accuracy of∼ 10− 15 %.

8.2 Intraday variability at 345GHz
The detection of fast variability needs very accurate measurements to disentangle be-
tween source-intrinsic variations and instrumental and atmospheric e�ects. At cm-
wavelengths, the in�uence of the atmosphere is negligible and with a proper calibra-
tion, as it is done for the E�elsberg/VLA data, it is possible to reach a very good level

1The horns that are inside the OFF-beam are not considered for the calculation of the average.
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of accuracy: ∼ 1 − 0.5 % (see section. 2.3). On the other hand, our measurements
at 345GHz are more strongly a�ected by the weather conditions. As described in the
section 8.1, the achieved calibration accuracy was∼ 10 %. Under these conditions,
only variations larger than 30− 35 % can be detected at the 3-σ level.

The observations were carried out from the 30th of April to the 17th of May, 2002.
Our sample consists of 33 AGNs and 8 primary calibrators. Due to the large number
of objects, only few of them were observed with the necessary time sampling to per-
form an intraday variability study. Some sources were too weak at 345GHz at the time
of our observations and only one data point was measured to get an estimate of the
�ux density in the sub-mm regime. The sources were selected from the IRAM pointing
sources catalogue, which contains also some well known rapid variable sources from our
previous IDV monitoring. The selection was based on the �atness of the millimeter
spectra: α < 0.5.
In our variability study, we focused on 0716+714. (In appendix B the data for all the

2452396.0 2452400.0 2452404.0 2452408.0 2452412.0
J. D.

0.5

1

τ

TAU vs Time

Figure 8.2: Opacity measurements during the May 2002 IDV monitoring session.
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Figure 8.3: Top: Plot of the signal of 0716+714 in all the 19 channels. Note in the �rst
channel, the di�erence between ON and OFF, while in the outer channels only the sky
noise is visible. Bottom left: The array geometry at an elevation of 30 degrees. Bottom
center: Total intensity of the 0716+714. Note that the source is seen only by the �rst
channel. Bottom right: Noise map in the bolometer array.

program sources and some light curves for other interesting objects are also provided.)
Even if the uncertainty of the calibration still is high (due to the atmospheric in�uence)
the measured �ux densities of the program source presents variations of the order of
25 % up to 40 % on a time scale of ∼ 0.5 days (�g.8.4). Thus, intraday variability of
the �ux density in the submillimeter regime may be detected: the reducedχ2 resulted
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χ2
red = 1.07, which gives 87 % probability that the observed variations in 0716+714 are

consistent with the hypothesis of a variable source. Such variations can not be due to
propagation e�ects and a source-intrinsic scenario should be considered.

Do these fast variations violate the inverse Compton limit?
First of all, to calculate the apparent brightness temperature the luminosity distance2

is needed (see eq. 1.2). However, the redshift of 0716+714 is not known. Here we
use z≥ 0.3 (Wagner et al. 1996). For a variation of 0.4 Jy in 0.5 days we obtain:
TB >∼ 3 ·1014 K. Thus, only a moderate Doppler factor ofD >∼ 7 is required to avoid the
Compton catastrophe. The relativistic beaming which is inferred from such Doppler
factor is in agreement with the superluminal (vapp up to 11c) motion seen in this source
by Bach et al. (2002).

8.2.1 Comparison with simultaneous Radio and Optical obser-
vations

During our observations in May 2002, other telescopes were involved in collecting simul-
taneous data from di�erent spectral bands, however, with a much looser time sampling.
The telescopes involved are shown in table 8.1. From the sub-millimeter data plotted

Optical telescopes

Telescope Size Date
Calar Alto 1.23m 30/4 - 17/5
Greve 0.32m 29/4 - 17/5
Vallinfreda 0.50m 29/4 - 17/5

Radio telescopes

Telescope Date
HHT 30/4 - 17/5, 24h per day
Torun 30/4 - 14/5, 24h per day
Metsahovi ∼ 1 point per week

Table 8.1: Telescopes involved in the May 2002 radio-optical campaign.

2For the calculation of DL we used: H0 = 50 Km
sec·Mpc and q0=0.5.
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Figure 8.4: 345GHz light curve of 0716+714 compared to all the observed calibrators.

in �gure 8.4 we note that the variability is marginally present only at a 3-σ level and
a short-term comparison of the optical (�g. 8.5, right) and radio (�g. 8.5, left and
8.6) data is di�cult to perform. Anyhow, a long-term variability analysis is still possi-
ble but one immediately sees that the observed patterns at di�erent wavelengths only
show uncorrelated features: the �ux density in the sub-millimeter regime just shows
fast variations and a �at long-term behaviour. A typical IDV pattern is visible in the
6 cm light curve and a simultaneous maximum together with the optical data seems
to occur around J.D. 2452404. Such a single event is unique and is not supported by
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the subsequent radio and optical observations. Finally, high frequency radio observa-
tions (�g. 8.6) show a �are starting around J.D. 2452400. Such a behaviour for the
broad band properties of the observed IDV sources seems to favor the hypothesis of two
di�erent mechanisms causing the variations in the radio and optical spectral bands.
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Figure 8.5: Left: 6 cm data of 0716+714 (Courtesy of R. Zajaczkowski, Torun center
for Astronomy � Poland). Right: Optical data (Greve and Vallinfreda) of 0716+714
(Courtesy of R. Nesci, Università �La Sapienza� � Rome). Observations carried out in
May 2002.
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8.3 Polarization measurements
The polarimeter (Siringo et al. 2002) was projected and built by G. Siringo, E. Kreysa
and other collaborators of the MPIfR Bolometer Group. It consists of two parts: a
rotating (3.5Hz) half wave plate and an analyzer. The half wave plate is made of a
grid of conducting wires placed in front of a mirror. It creates the phase shift between
the two component of the polarization via re�ection: the radiation is re�ected from the
wires and from the mirror with di�erent length paths. This half wave plate is mounted
in the optical path of the telescope at an angle of 45 degrees. The polarized signal is
selected by an analyzer which consists of a wire grid placed in front of the bolometers.
The study of the characteristics of the instrument and the procedures for the data
analysis are still in progress: details of the instrument and the data reduction are given
in Siringo (2003). Our test experiment was successful. First encouraging result is the
detection of linear polarization in the radio sources 3C279 and 1633+382. Figure 8.7
shows the polarization degree of these two objects measured by the central channel
of the bolometer array compared to the measurements of the outer channels. Further
analysis on variability of the polarized �ux density is still in progress.
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Figure 8.7: Detection of polarized �ux density at 345GHz in 3C279 (left panel) and
1633+382 (right panel). Courtesy of G. Siringo.
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Chapter 9

Conclusions

The statistical analysis performed in this work has given a new insight on the nature of
intraday variability. It was found that intrinsic long-term changes of the VLBI struc-
tures in the radio core, eg. emission of new components, could modify the short-term
characteristics of �at-spectrum radio sources. Furthermore, the analysis of the po-
larization indicated a multi-component structure in the jet. Therefore, we propose a
mixture of both intrinsic and extrinsic e�ects as a possible interpretation for the IDV
phenomenon: the rapid variations are caused mainly by refractive interstellar
scintillation, but the occurrence and the strength of these variations in to-
tal intensity and polarization may be related to the jet structure atµas scale.

All these �ndings indicate the existence of a close scattering screen as cause for the
intraday variations. Following this interpretation, it was possible to use the IDV
measurements as a tool to evaluate the source sizes and to study the nature
of the ISM. In particular, an upper limit of the size of the scintillating components
in the jets can be estimated from the typical time scale of the variability. Moreover,
the size of the discrete clouds in the ISM was measured analyzing the time series of
the BL Lac 0954+658, from the assumption that the local clouds are responsible for
the observed IDV.

9.1 Detailed Summary of the Results

In this work, the occurrence of intraday variations in �at-spectrum radio sources was
discussed with respect to the present models.
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First of all, a complete statistical analysis was performed.
We combined all the E�elsberg and VLA data of the IDV monitoring projects from
1985 up to 2000. Our sample consisted of 32 �at-spectrum radio sources, selected
from the 1 Jy catalogue. Intraday variability (of type II) was detected in∼ 30 % of all
�at-spectrum radio sources.

Galactic dependences of the IDV phenomenon. No strong b-dependence of the
strength of variability was found. We argue that the observed features of IDV
are not caused by the global distribution of matter in the ISM, but they could be
rather due to local clouds which may cause �interstellar weather� and therefore
rapid extreme scattering events.

Dependence of the variability on the brightness of the source. A correlation
between the amplitude of variations and brightness of the radio source was
marginally detected. This could be considered as an indication for larger vari-
ability at low �ux densities. We suggest that when a new component is emitted
from the core, the variability is quenched due to the larger source size.

Redshift dependence. No correlations were found between variability and redshift.
However, di�erent IDV characteristics for the same sources was noted at di�erent
epochs. The changes of the IDV characteristics with the epoch and the lack of
any evidence for a z dependence are further indications of intrinsic structural
changes in the observed sources and of a very localized scattering medium.

Spectral index variability. Previous studies predict that sources with steeper spec-
trum are less variable. We suggest that even very inverted-spectrum sources show
less variability due to intrinsically larger source sizes.
Furthermore, we explain the observed intraday variability of the spectral indices
with the RISS theory.

Polarization angle variability. We assume that the nature of the observed polar-
ization angle variations lies in the source and we suggest a multi-component
structure (Qian et al. 2001) of the innermost regions of the radio jet.
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Besides the statistical analysis, we tested the potential of IDV as tool for studying the
ISM and the compact structures in the radio cores.
A multi-frequency approach:
We compared statistical models for the RISS to our data and we tried to analyze the
mixture of e�ects causing the rapid variability in active galactic nuclei.
Again, di�erent IDV behaviors of a source, observed at di�erent epochs, was noted.
We interpret such e�ect as due to intrinsic variations of the source size with time.
Furthermore, we showed that, in some cases, the variability amplitudes increase towards
high frequencies. This is not in agreement with the predictions of the RISS theory.
In the time series of simultaneous observations in di�erent bands of the electromagnetic
spectrum (from optical to radio), the observed long-term variability could be explained
as a propagating shock, visible at di�erent times in the di�erent regimes. Regarding the
intraday variations, no correlated features were clearly detected. Therefore, while the
same mechanism could be responsible for the long-term variations, one should consider
di�erent processes causing the rapid �ux density variations in the di�erent bands.
Determination of the source size via IDV measurements:
Using the model developed by Beckert et al. (2002a), it was possible to reproduce
qualitatively the behaviour of the rapid variability in the quenched scattering regime.
Furthermore, the size of the scattering region in the core of the compact radio sources
was derived. We found that, in case of 0716+714, the scattering component should
have a size (at 11 cm) of 121µas for a screen 100 pc distant.
The size of the clouds in the interstellar medium via IDV measurements:
In the BL Lac object 0954+658, we have detected a variability pattern which resembles
an extreme scattering event, but on much shorter time scales (tESE ∼ 2 days) than seen
earlier (tESE ∼ 18weeks). We suggest that a very rapid ESE occurred in this source.
This implies 10 times smaller clouds than generally presumed in the ISM.
Detection of IDV at high frequencies:
Test experiments of polarimetry at millimeter and submillimeter wavelengths were
performed on the BL Lac object 0716+714. While the total intensity of the source at
3mm only shows marginal variability, intraday polarization variations were tentatively
detected. More detailed measurements will be necessary to con�rm this e�ect.
Moreover, the �ux density of 33 AGNs was measured at 345GHz. In particular, the



100 Conclusions

�ux density of 0716+714 showed peak-to-peak variability at25− 40 % level with time
scales of∼ 0.5 days. Such variations are source-intrinsic and can be explained via shock
propagation in the jet.
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Appendix A

E�elsberg observations in March 2000

In the following pages, the light curves of the �at-spectrum radio sources observed in
March 2000 are shown. In the top panel, the total intensity light curve is plotted.
The central panel shows the behaviour of the polarized �ux density. Finally in the
bottom panel, the polarization angle versus time is plotted.
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Figure A.1: 0716+71 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.2: 0836+71 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.3: 0917+62 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.4: 0954+65 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.5: 1150+81 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.6: 1803+78 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.
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Figure A.7: 1458+71 in March 2000: total intensity and polarization.Top left: 11 cm.
Top right: 6 cm. Bottom: 2.8 cm.



Appendix B

Observations at 345GHz

In this section, the data at 345GHz measured at the Heinrich Hertz Sub-Millimeter
Telescope (HHT) of the Steward Observatory (Tucson, USA) are showed. The program
sources are shown in table B: the measured �ux densities, the errors and the number
of measurements for each source are listed.
Furthermore, the light curves of the most frequently observed objects are shown. The
plotted �ux densities are normalized and an arbitrary scaling factor was used to com-
pare the measurements of the program sources to the calibrators.
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Figure B.1: 345GHz light curve of 0133+47 compared to all the observed calibrators.
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Figure B.2: 345GHz light curve of 0355+50 compared to all the observed calibrators.
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Figure B.3: 345GHz light curve of 1803+78 compared to all the observed calibrators.
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χ2

red = 0.763



114 Observations at 345GHz

Source < S >[Jy] Err[Jy] N
W3OH 26.034 1.565 149
NGC7027 4.268 0.344 7
NGC7538 21.193 2.982 3
GL490 5.741 0.419 12
K3-50A 17.460 0.887 67
G34.3 71.129 8.117 26
CWLEO 5.605 0.343 53
1757−24 34.525 4.913 24
0133+47 2.024 0.199 52
0355+50 2.736 0.297 50
0716+71 1.166 0.177 129
0736+01 2.309 0.297 5
0851+20 1.466 0.379 8
0923+39 1.067 0.176 8
0954+65 0.378 0.069 12
1156+29 1.542 0.160 3
1219+28 0.243 0.062 7
1226+02 4.049 0.449 12
1253−05 9.646 1.464 7
1308+32 0.906 0.153 19
1510−08 0.560 0.107 3
1622−29 0.225 0.028 3
1633+38 2.975 0.399 12
1641+39 2.285 0.031 2
1652+39 0.400 0.071 11
1730−13 2.500 0.257 14
1739+52 0.355 0.075 2
1741−03 1.758 0.152 6
1749+09 1.914 0.111 7
1803+78 0.879 0.138 43
1921−29 3.531 0.431 1
1928+73 0.919 0.232 2
2005+40 0.247 0.047 1
2007+77 0.448 0.065 1
2037+51 0.316 0.053 1
2013+37 1.322 0.163 1
2200+42 1.586 0.172 55
2201+31 0.537 0.034 5
2223−05 1.543 0.010 2
2230+11 2.409 0.292 1
2251+15 4.571 0.550 1

Table B.1: List of sources observed at 345GHz in May 2002. The calibrators are listed
in the upper panel.
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