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Abstract

In this thesis, the development of a fast effective simulation for the planned PINGU experiment at
the geographic South Pole is described, which will make a precision measurement of the atmospheric
neutrino flux at low GeV energies. In this flux, the effects of neutrino oscillations in the matter potential
of the Earth are visible, which will be observed by PINGU with unprecedented precision.

Using the aforementioned simulation, PINGU’s expected precision in determining the relevant neu-
trino oscillation parameters and the neutrino mass hierarchy is calculated, incorporating a variety of
parameters covering systematic uncertainties in the experimental outcome. The analysis is done in the
framework of the Fisher Matrix technique, whose application to a particle physics experiment is novel.
It allows for a fast and stable evaluation of the multi-dimensional parameter space and an easy combi-
nation of different experiments.
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CHAPTER 1

Introduction

Although the first conclusive observation of neutrino oscillations was made not even twenty years ago,
this phenomenon of neutrinos changing their flavour when travelling macroscopic distances has been
one of the major areas of research in particle physics and astrophysics ever since. Up to now, it is the
only manifestation of so-called “physics beyond the standard model” that has been confirmed experi-
mentally. During the past two decades, many dedicated experiments have mapped out the parameters
characterising neutrino oscillations in great detail, leaving only two parameters to be determined.

One of these parameters is the so-called neutrino mass hierarchy. It refers to the sign of another
parameter, one of the two independent mass splittings, whose absolute value has already been mea-
sured. The fact that the absolutes of parameters can be determined precisely without learning about
its sign is one of the peculiarities of the neutrino oscillation formalism, where central parameters enter
quadratically in most cases.

A chance to access the neutrino mass hierarchy is to study the differences in the oscillation probabil-
ities of neutrinos and antineutrinos at low GeV energies that are created in the Earth’s atmosphere and
propagate through its interior. The proposed Precision IceCube Next Generation Upgrade (PINGU) will
be a facility apt to observe the small modulations on top of the flux of atmospheric neutrinos with the
required precision.

As its name suggests, PINGU is planned as an upgrade to the existing IceCube neutrino telescope
at the geographic South Pole in Antarctica. IceCube has been constructed to discover extra-terrestrial
neutrinos at TeV to PeV energies. Neutrino oscillation patterns in the atmospheric flux at medium
GeV energies, however, have already been observed as well using its DeepCore extension. PINGU is
now intended to further lower the energy threshold down to a regime where signatures of the neutrino
mass hierarchy appear. This also provides an opportunity to measure the absolute values of the relevant
oscillation parameters with high precision.

In this thesis, the development of an effective detector simulation for PINGU, named PaPA for
“Parametrised PINGU Analysis”, is described. The outcome of this simulation is analysed using the
Fisher Matrix formalism, a tool that is well established in cosmology, but novel to be applied to a parti-
cle physics experiment. In a linear approximation, it allows for a fast construction of the full covariance
matrix of the experiment including a large number of systematic uncertainties.

After checking that the prerequisites for the Fisher Matrix are in fact fulfilled, PINGU’s expected
sensitivity to the mass hierarchy is evaluated, showing its dependence on controlling the relevant sys-
tematics. The expected precision in measuring the accessible oscillation parameters is calculated as
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1 Introduction

well. Following this, the effect of changing various simulation input parameters is studied in terms of
the resulting sensitivity to the neutrino mass hierarchy.

Finally, PaPA is modified to simulate the outcome of JUNO, a nuclear reactor based neutrino experi-
ment targeted at the determination of the neutrino mass hierarchy as well, yet exploiting a very different
physical effect. JUNO’s sensitivity to the mass hierarchy will be calculated, where a Fourier transforma-
tion of the observed signal is needed in order to justify the application of the Fisher Matrix. Afterwards,
the standalone results of PINGU and JUNO can be combined easily as in the Fisher Matrix formalism
this corresponds to a mere matrix addition and inversion. Then the benefits from marginalising over
common systematics can be investigated.

The thesis concludes with a summary of the results found using PaPA and analysing its outcome in
terms of the Fisher Matrix. An outlook is given on the future of PaPA and its integration into a wider
software framework for PINGU detector simulations.
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CHAPTER 2

Neutrinos in the Standard Model

In this chapter, the theoretical background of this thesis will be discussed in detail. Here the focus will
be on neutrinos and their properties and interactions, while neutrino oscillations will be described in the
following chapter.

2.1 Standard Model in a Nutshell

In the Standard Model of Particle Physics, or just Standard Model, the current theories of the electroweak
and strong interactions are combined [1–4], for an overview see e.g. [5]. It is a quantum field theory of
the fundamental interactions and particles relevant on the scales that are accessible for particle physics
experiments.

The particles, listed in Fig. 2.1, can be divided in two classes: fermions with an intrinsic spin of
1/2 make up everything that is usually called “matter”, and exchange bosons with integer (one in most
cases) spin that convey the interactions and couple to the respective charge. Formally, the bosons are
the generators of the gauge symmetry group of the particular interaction.

This means that the strong force, which obeys a SU(3) symmetry, has eight generators that are repre-
sented by eight gluons g. The gluons couple to the strong charge which is usually referred to as “colour”.
Since it has the largest coupling constant, the strong interaction is dominant whenever a colour charge
is present. However colour is “confined”, i.e. free particles must not have a net colour. This means that
any coloured particles have to be bound inside a compound object at all times. The range of the strong
interaction is limited to about the size of a nucleus since the gluons are coloured themselves and hence
self-coupling.

The the electromagnetic interaction is about two orders of magnitude weaker. According to its U(1)
symmetry, it has only one exchange boson, the photon γ, coupling to the electrical charge. It is massless
and electrically neutral, hence the electromagnetic interaction is not restricted in range. This and the fact
that there is no confinement on the electrical charge mean that electromagnetic phenomena are dominant
on macroscopic scales.

At low energies, the effective coupling constant of the weak interaction is another three orders below
the electromagnetic one. From its SU(2) symmetry originate three exchange bosons, W± and Z0 with
masses of about 90 MeV limiting its range to the subatomic scale. However with increasing energy, the
mass of the gauge bosons becomes more and more negligible and the effective coupling rises. Above the
electroweak unification at about 100 GeV, the weak and electromagnetic interactions can be described

3



2 Neutrinos in the Standard Model

Figure 2.1: The fundamental particles in the Standard Model. Figure taken from [6].

by one unified theory, whose existence is also hinted at by the fact that the weak gauge bosons are
electrically charged.

Their masses arise from another spontaneously broken local SU(2)×U(1) symmetry of the so-called
Higgs1 field. After breaking, the generators of the SU(2) part mix with the weak bosons, giving them
mass, while the generator of the remaining U(1) can be observed as the only scalar gauge boson, the
Higgs boson. The Higgs boson was the last fundamental particle of the standard model to be detected,
its discovery was claimed by the ATLAS and CMS collaborations in 2012 [9, 10].

The other group of fundamental particles are the fermions (and their corresponding antiparticles).
They can be divided again into two subclasses: the six quarks u, d, c, s, t, and b, which obey all
forces and—being coloured—are confined, so that no free quarks can be found in nature. Bound quarks
are making up baryons, like protons and neutrons, consisting of three quarks, and unstable mesons
like pions, kaons, and many others, which consist of a quark and an antiquark. Baryons and mesons,
together called hadrons, are the only free particles participating in the strong interaction, since they
contain coloured quarks, although not being coloured themselves.

The second subclass are the leptons, the three charged leptons e, µ, and τ, as well as the corresponding
(neutral) neutrinos νe, νµ, and ντ. The charged leptons interact predominantly electromagnetically, most
prominently electrons are bound to nuclei via electrical attraction. However the decay of µ and τ is—
like every flavour-changing process—a weak interaction. The electron as the lightest charged lepton has
to be stable due to conservation of energy and charge.

Since neutrinos are neither coloured nor electrically charged, they only interact weakly. This means
that they are very hard to detect directly. In fact, their existence had already been suggested in 1930 by
Wolfgang Pauli as a solution for the problem of missing energy in radioactive β decays [11]. However

1 After Peter Higgs, who, together with others, laid the foundations of this theory in the 1960’s [7, 8].
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2.2 Neutrino Sources

the first direct detection of (electron) neutrinos, νe, from a nuclear reactor was achieved only in 1956 in
the so-called Cowan-Reines experiment [12]. The existence of a second neutrino, the muon neutrino νµ,
was established few years later in 1962 from the study of charged pion decays [13]. The third neutrino,
the ντ, was finally discovered directly by the DONUT experiment in 2001 in the decay of DS mesons
into ν̄τ and τ, which again decay into ντ and other leptons [14].

In addition to having neither colour nor electrical charge, the standard model also predicts that neutri-
nos are massless. Thus the observation of neutrino oscillations by the Super-Kamiokande experiment in
19982 [16] gained much attention, this being the first detection of physics beyond the standard model.

The term “neutrino oscillations” describes the phenomenon that neutrinos propagating over macro-
scopic distances can change their flavour eigenstate on the way between production and detection. The
details of this effect will be described in Sec. 3. However it can only occur when there are different mass
eigenstates available for the neutrinos, meaning that only one of them—if any—can have zero mass,
while the others must correspond to finite mass.

Since their first observation, neutrino oscillations have been a field of intensive research. After es-
tablishing all oscillation channels, nowadays’ focus is on the precise measurement of the parameters
that characterise the oscillation. The planned PINGU experiment (see Sec. 4.2), whose simulation is the
main topic of this thesis, is aimed to reach unprecedented accuracy in measuring the parameters ϑ23 and
∆m2

31.

2.2 Neutrino Sources

As mentioned above, neutrinos do not participate in the strong and electromagnetic interaction, leaving
only weak processes for them to be created or detected. On the other hand, neutrinos are produced in
nearly every weak interaction, making them a very common particle that can stem from a variety of
different sources in very different energy ranges.

2.2.1 Natural Radioactivity

On Earth, the most common source is the β decay of natural radionuclides. Depending on the type of
the decay (β+ or β−), an electron (anti-) neutrino is emitted along with the charged lepton. The general
equations read:

β+ : A
ZX → A

Z−1Y + e+ + νe (2.1)

β− : A
ZX → A

Z+1Y + e− + ν̄e (2.2)

Examples for typical β emitters are 40K (both β+ and β−) and intermediate products from the decay
chains of 232Th or 238U (β−), the neutrino energies are usually on the scale of few MeV. These neutri-
nos, originating from nuclear decays inside the Earth’s crust and mantle, are commonly referred to as
geoneutrinos.

In fact, the β decay was the original reason to propose the existence of the then undetectable neu-
trino. Since only the daughter nucleus and the charged lepton were visible as decay products, the
process seemed to be a two-body decay. This means that the energies of the decay products are exactly
determined from kinematics and hence the emitted electrons or positrons would be mono-energetic.
Observations showed, however, a broad spectrum in energy instead of a single line. Without violating

2 Hints of neutrino oscillations had already been observed in the 1960’s [15], but were widely refused by the scientific
community.
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2 Neutrinos in the Standard Model

W−

u
d

d

u
d

u

ν̄e

e−

Figure 2.2: Feynman diagram of a β− decay

the conservation of energy, this can only be achieved if a third particle is produced in the process, which
has to be electrically neutral but can carry away energy and momentum.

On the subatomic level, in a β+ decay one proton inside a nucleus emits a virtual W+ boson, turning
an u into a d quark, and becomes a neutron. During a β− decay, the opposite happens via the emission
of a W−, as shown in Fig. 2.2. The W boson subsequently decays into an electron and a ν̄e or positron
and νe, respectively3.

2.2.2 Nuclear Reactors

In nuclear reactors, the controlled fission of heavy elements is used for the generation of electrical
power. The intermediate products of these nuclear fissions are unstable isotopes that usually have a
large surplus of neutrons compared to a stable configuration. These unstable nuclides undergo a series
of β− decays until they they reach a stable ratio of proton and neutron numbers.

Since in each of those β− decays a neutrino is emitted, a nuclear reactor provides a strong and steady
flux of ν̄e in the low MeV range, which can be monitored via the thermal power of the reactor. This
makes reactor neutrinos a popular target for experiments, especially for the study of neutrino oscilla-
tions. The main challenge in such experiments is the accurate modelling of the neutrino energy spec-
trum, which is the sum of the spectra of all of the different β decays in the decay chain. Even though
there are very elaborate flux models available, there might still be components unaccounted for, resulting
in unexpected features in the measured neutrino flux [17].

2.2.3 Neutrino Beams

Another artificial source of neutrinos, but somewhat higher in energy (typically at a few GeV), are
neutrino beams. Since the neutral neutrinos cannot be accelerated directly, usually a high-energy, high-
intensity proton beam is aimed at a target in which it produces mesons, mostly pions and kaons, which
subsequently decay under the emission of neutrinos [18]:

π± → µ± +
(−)
νµ (2.3)

K± → µ± +
(−)
νµ (2.4)

(2.5)

3 In principle, a W boson can decay into any charged lepton and corresponding neutrino. Yet in natural radioactivity the
typical decay energies are few MeV, hence the W boson is only virtual and since the overall energy has to be conserved,
muons or tau leptons are too massive to be produced.
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2.2 Neutrino Sources

(a) The different branches of the pp chain. “Lost” en-
ergy is not dissipated into the Sun, but carried away by
neutrinos.

(b) The solar neutrino spectrum from the pp chain. The
neutrino fluxes are in units of cm−2 s−1 MeV−1 for con-
tinuous and cm−2 s−1 for discrete components.

Figure 2.3: The reactions and resulting neutrino spectrum of the solar pp chain. Figures adopted from [19].

Such beams are the source of neutrinos that can be controlled best in terms of energy and intensity,
making them a preferred choice for precision experiments such as measurements of neutrino cross-
sections. However they are very expensive to build and operate in contrast to natural sources or nuclear
reactors, the latter usually being operated by commercial power suppliers and thus provide the neutrino
flux “for free”.

2.2.4 Solar Neutrinos

In terms of total flux, the strongest source of neutrinos on Earth is the Sun. In its interior, hydrogen is
fused to helium mostly in the so-called pp chain4, producing the energy that powers the Sun’s radia-
tion[19].

Effectively, this is carried out via the reaction

4p→ 4
2He + 2e+ + 2νe + 26.73 MeV . (2.6)

In reality, this will not occur in a single step since it is a weak interaction (as neutrinos are produced in
its course) with a correspondingly small cross-section which in addition has to overcome the Coulomb
repulsion of the four protons. Instead the fusion process involves several intermediate stages, the first
of which is the fusion of two protons to a deuteron,

p + p→ d + e+ + νe , (2.7)

releasing 0.42 MeV of energy carried by the (subsequently annihilating) positron and the so-called pp
neutrino. The low Q value along with the aforementioned low cross-section and Coulomb repulsion are
the reason for the long lifetime of free protons inside the Sun5—it takes them an average of about 1010

years to fuse to deuterium. A competing, but even more improbable reaction is the pep process, where

4 Other fusion processes such as the CNO cycle and the production of heavier elements are strongly suppressed since they
need extremely high pressures that the Sun cannot supply due to its comparatively low mass.

5 And hence also the long lifetime of the Sun itself
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2 Neutrinos in the Standard Model

an electron is involved directly in the fusion and no positron is produced:

p + e− + p→ d + νe (2.8)

Since there are only two particles in the final state, the produced neutrinos are monoenergetic at 1.44 MeV.
Once a deuteron is produced, it quickly (≈ 1 s) merges with another proton to 3

2He and emits a photon.
At this stage, the pp chain divides into three different branches (see Fig. 2.3a). In the main branch,

ppI, two 3
2He nuclei fuse to 4

2He, also called an α particle, and two protons that can then enter the pp
chain again. However in terms of neutrinos, the two subdominant branches ppII and ppIII are much
more interesting, especially since the pep and pp neutrinos, who make up the main part of the solar
neutrinos, are very low in energy and thus difficult to detect.

If a 3
2He does not fuse with another 3

2He, but with a 4
2He instead, 7

4Be is formed. In most cases, this
will then capture an electron to produce 7

3Li under the emission of a neutrino in the ppII branch:

7
4Be + e− → 7

3Li + νe (2.9)

These so-called 7Be neutrinos have an energy of 0.86 MeV. Due to this high energy and their rather high
flux portion of about 14 %, they were targeted in the first detection of solar neutrinos [15]. The 7

3Li
finally catches another proton to form two 4

2He nuclei.
Sometimes, the 7

4Be reacts with a proton rather than an electron (ppIII branch) and forms 8
5B, which

is a β+ emitter with a half-life of 0.77 s [20]. Although their flux is very low, the very high Q-value of
14.1 MeV of this decay makes the so-called 8B a favourable target for the search for solar neutrinos.

The excited 8
4Be∗ created in the decay

8
5B→ 8

4Be∗ + e+ + νe (2.10)

will then further decay into two α particles immediately.

2.2.5 Atmospheric Neutrinos

Neutrinos that are created in the interaction of high-energy charged particles with atoms in the Earth’s
atmosphere are several orders of magnitude higher in energy. During the past decades, the spectrum of
these particles, the so-called cosmic radiation, has been measured in great detail over many orders of
magnitude. Although it covers such a wide range in energy and flux, it shows almost no features and
can be described by a simple power law with a spectral index of γ = −2.7, softening to γ = −3.0 at the
so-called “knee” at a few PeV and turning back to γ = −2.7 at the “ankle” at the highest energies [21].

The origin of the cosmic radiation is not fully established yet. However it is commonly assumed
that the particles are accelerated in non-thermal processes, usually moving shock fronts, that develop in
extreme astrophysical environments. This mechanism is known as Fermi acceleration [26]. Candidates
for the acceleration sites are both galactic sources, such as supernova remnants, as well as extragalactic
ones like gamma ray bursts or active galaxies. Due to their small size and rather low energy density,
galactic sources are believed to dominate the low-energy part of the spectrum in the GeV to TeV regime,
while the extragalactic contribution takes over at the knee region.

When such a high energy particle hits the Earth’s atmosphere, it interacts with a nucleus in the air
(usually nitrogen or oxygen) in a so-called deep-inelastic scattering process. Since the energy of the
incoming particle is far beyond all binding energies in the nucleus, it is completely disrupted. From the
fragments of the nucleus that are still highly energetic, a shower of secondary particles develops, which
then travels down to Earth.
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2.2 Neutrino Sources

(a) The all particle spectrum of the charged cos-
mic radiation. Figure taken from [21].
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Figure 2.4: Spectra of the cosmic radiation at Earth and the resulting atmospheric neutrino spectrum.

Main components of these particle showers are kaons, pions, and muons. All of these particles are
relatively short-lived6 and produce neutrinos in their decay, according to (2.3), (2.4), and

µ± → e± +
(−)
νe +

(−)
νµ (2.11)

As one can see from the above equations, these so-called conventional atmospheric neutrinos coming

mostly from pion and kaon decays have a flavour ratio of
(−)
νµ :

(−)
νe = 2 : 1.

Their energy spectrum is linked to the primary spectrum of cosmic rays since the secondary pions
and muons follow the primary energy distribution directly. Thus being highly relativistic, their lifetime
is Lorentz boosted by a factor γ ∝ E. So the higher the particle’s energy, the higher is its probability
not to decay into neutrinos in-flight but reach the Earth’s surface and interact there, producing another
shower of much less energetic particles. Therefore, the spectrum of conventional atmospheric neutrinos
is suppressed roughly by a factor of 1/E with respect to the primary cosmic ray distribution.

For a more precise calculation, details of high-energy proton interactions and the geomagnetic field
have to be taken into account [22, 23]. As shown in Fig. 2.4b, these predictions show good agreement
with measurements.

Another predicted, but not yet observed component of the atmospheric neutrino flux are the so-called
prompt neutrinos. They originate from charmed mesons that are rarely produced in cosmic ray induced
air showers as well. Since these are so short-lived that they always decay in-flight (“promptly”) despite
of their relativistic boost, their energy spectrum is the same as the primary one and thus harder than the
conventional component, but with a much smaller normalisation.

6 τµ = 2.2 × 10−6 s, τK = 1.2 × 10−8 s, and τπ = 2.6 × 10−8 s [27]
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2 Neutrinos in the Standard Model

2.2.6 Astrophysical Neutrinos

The highest energy neutrinos are the so-called astrophysical ones. They are assumed to be produced
at similar sites as the cosmic radiation, i. e. in highly energetic shock fronts. There, ∆ resonances are
generated in the collision of protons and high-energy photons, producing pions in their decay:

p + γ → ∆+ → n + π+ (p + π0) (2.12)

The pions then decay further into neutrinos as shown in (2.3).
Since astrophysical neutrinos are produced in the same processes as cosmic rays, their fluxes are

linked. The flux of cosmic rays has been measured in quite some detail over the recent decades [28],
hence an upper limit for the flux of astrophysical neutrinos can be derived that is independent of any
model assumptions about the production sites [29].

The first high energy astrophysical neutrino events have been recorded only recently by the IceCube
neutrino telescope [30, 31], making them the highest energy neutrinos ever observed. Although event
statistics are still low, the flux seems to be very close to the predicted upper bound, meaning that the
neutrino production efficiency is close to maximal. The spectral shape of the flux is compatible with a
power law with an index of –2 and an exponential cut-off around a few PeV as well as a steeper power
law with index –2.3 [32].

2.3 Detection of Neutrinos

As already mentioned, neutrinos only interact with other particles in weak processes where the total
cross-sections are typically very low. Thus high fluxes or large target volumes (or both) are needed to
detect a sufficient number of neutrinos.

And even if these requirements are fulfilled, in most cases the neutrino signal has to be distinguished
from a background of dominant processes, whose rate can be several orders of magnitude higher than the
neutrino event rate. Depending on the targeted energy range, the most common background processes
are inherent radioactivity of the surroundings and the detector itself at MeV energies, and muons created
in cosmic ray induced air showers which can penetrate even strong shielding.

2.3.1 Neutrino cross-sections

The calculation and experimental testing of neutrino cross-sections has been a field of extensive research
over the past decades. On the experimental side, the challenge is the smallness of the cross-sections. The
key point on the theoretical side is the calculation of the matrix elements associated with the interaction
of interest.

W

e−

ν f

νe

f −

+ Z0

e−

νe

e−

νe

Figure 2.5: Feynman diagrams for the charged (left) and neutral (right) current contributions of ν f e− → νe f −

scattering.
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2.3 Detection of Neutrinos

Figure 2.6: Electroweak cross-section for νee− → νee− scattering on free electrons as a function of neutrino
energy. Various neutrino sources are also shown at their respective energy scales. [33]

Neutrinos scattering off a free electron will serve as an introductory example. The cross-section is
[33]

dσ
dq2 =

1
16π

|M2|

(s − m2
e)2

, (2.13)

with s and q2 being the centre-of-mass energy and the four-momentum transfer, respectively, assuming
very small neutrino mass. In this case, calculating the matrix element |M2| is rather straightforward,
since only weak interactions between fundamental particles have to be considered. The scattering pro-
cess itself is the sum of a charged-current (W± exchange, CC)

MCC = −
GF
√

2

{[
l̄γµ

(
1 − γ5

)
νl
] [
ν̄eγµ

(
1 − γ5

)
e
]}

(2.14)

and a neutral current (Z0 exchange, NC) contribution,

MNC = −
√

2GF
{[
ν̄lγ

µ
(
gνV − g

ν
Aγ

5
)
νl
] [

ēγµ
(
g

f
V − g

f
Aγ

5
)

e
]}

, (2.15)

as shown in Fig. 2.5. The vector and axial couplings of the involved leptons are given by:

gνV = gνA = +
1
2

(2.16)

g
f
V = −

1
2

+ 2 sin2 ϑW (2.17)

g
f
A = −

1
2

(2.18)

After converting the momentum transfer to the energy fraction y carried by the outgoing lepton,
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Figure 2.7: Total CC cross-section for neutrino (left) and antineutrino (right) cross-section for an isoscalar nucleon,
N = (p + n)/2, divided by the neutrino energy and plotted as a function of energy. Shown are data from various
experiments and predictions for the quasi-elastic (QE), resonance (RES), and deep inelastic (DIS) contributions
[33].

dq2

dy = 2meEν, the charged current cross-section for scattering off an electron is given by [33]

dσ
dy

∣∣∣∣∣
CC

=
2meG2

F Eν

π

1 − m2
f − m2

e

2meEν

 , (2.19)

where Eν is the incoming neutrino energy, and me and m f are the masses of the electron and the outgoing
fermion. The corresponding total cross-section for νee− → νee− scattering is shown in Fig. 2.6. In case
that m f can be neglected compared to the neutrino energy, the above can be integrated to give a simple
expression for the total cross-section:

σ '
2meG2

F Eν

π
=

G2
F s
π

(2.20)

In Fig. 2.6, this corresponds to the regime above about 107 eV, well above the electron mass. The
sharp peak at ≈ 1016 eV is the so-called Glashow resonance, at which the centre-of-mass energy is
comparable to the W boson mass, enabling resonant production of real W− bosons and hence causing a
strong enhancement of the cross-section.

When looking at other scattering processes, the principles of deriving the cross-section remain the
same. However the kinematic part is subject to change, mostly due to different angular momentum
states, and of course the matrix elements depend strongly on the respective target. For non-fundamental
targets, form factors describing the internal charge distribution have to be taken into account as well.

In general, the cross-section for hadronic interactions are much larger than the leptonic ones (e. g.
neutrino-electron scatting as discussed above) due to the larger target masses. This means that for
conventional targets consisting of atoms with a nucleus and an electron hull, a neutrino is much more
likely to interact with the nuclei than with the shell electrons.

2.3.2 Neutrino interactions with hadrons at the GeV scale

For the scope of this thesis, the most interesting energy regime is the low GeV scale, especially the range
of 1 − 50 GeV. Here the cross-section for neutrino interactions with nuclei is quite complex to describe,
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Z0

nucleus

ν

hadronic shower

ν′

Figure 2.8: Neutral current interaction between a neutrino and a nucleus.

W

eνe

EM shower

(a)

W

νµ µ

(b)

W

τ
ντ

hadr./EM shower

ντ

(c)

Figure 2.9: Charged current interactions between a νe (a), νµ (b), and ντ (c) and a nucleus.

as several distinct processes (shown in Fig. 2.7) have to be considered for the scattering:

Quasi-elastic scattering: At rather low energies, the neutrino scatters off an entire nucleon, removing
it (possibly together with other nucleons) from the nucleus. The free proton(s) or neutron(s) will
then propagate through the surrounding medium until they have dissipated all their energy. These
interactions range out quickly above about 10 GeV.

Resonance production: At the range of about 1 − 3 GeV, the dominant process is the excitation of
short-lived baryonic resonances (such as ∆+ or N∗) in the target nucleon. These resonances then
decay to various final states producing nucleons and π mesons.

Deep inelastic scattering: Above about 10 GeV, the scattering neutrino has sufficient energy to re-
solve the quark structure of the nucleons. Then it scatters on a quark constituent rather than the
whole nucleon. Thereby the nucleon gets disrupted and an hadronic shower consisting of a variety
of mesons forms from its remains.

Common to all these processes is that they have both a CC and a NC contribution—similar to the
scattering off electrons shown in Fig. 2.5, only that the target is either a whole (for quasi-elastic and
resonant processes) or a quark inside a nucleon (deep inelastic scattering).

This means that four different classes of events can be observed. The first are neutral current interac-
tions of any neutrino flavour, as shown in Fig. 2.8. In this case, the final state consists of the scattered
neutrino ν′ and a hadronic shower or cascade consisting of a variety of mesons, fermions, and photons
developing from the fragments of the stricken nucleus.

The details of the development of such a hadronic shower are not fully understood and have to be
modelled in Monte Carlo based simulations. However, since the involved particles are mostly short-
lived and strongly interacting, the typical size is on the order of one meter or below.

The outgoing neutrino on the other hand is virtually impossible to detect, meaning that the fraction
of the total interaction energy that is carried by this neutrino remains invisible. In beam experiments, in
which the energy of the incoming particles is known, this is commonly referred to as “missing energy”.

In charged current interactions, the neutrino scatters off a nucleus by exchanging a W boson. From
the fragmented nucleus, a hadronic shower develops similarly to the neutral current case. The outgoing
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2 Neutrinos in the Standard Model

lepton however is now a charged one, the flavour corresponding to the incoming neutrino’s flavour. This
charged lepton now dominates the event signature:

Electron: In dense matter, a GeV electron will induce an electromagnetic shower by radiating high-
energy photons (bremsstrahlung), which in turn will create electron-positron pairs. The typical
scale length X0 of such a shower is given by

1
X0

= 4αr2
e

NA

A

{
Z2 [

Lrad − f (Z)
]
+ Z L′rad

}
, (2.21)

where α is the fine structure constant, re the classical electron radius, and NA Avogadro’s number.
A and Z are atomic mass and charge of the medium, and Lrad, L′rad, and f (Z) semi-empirical
parameters that have been tabulated [27, 34]. For water, the scale length is X0,H2O = 24.33 g/cm2,
meaning that the typical size of such a shower is below one metre, as water has a density of
%H2O = 1 g/cm3.

Muon: In contrast to the much lighter electron, a muon of a few GeV is a so-called minimum ionising
particle. This means it is in the minimum region of the Bethe-Bloch formula for the energy loss
of a charged particle in matter:〈

−
dE
dx

〉
= Kz2 Z

A
1
β2

[
1
2

ln
2mec2β2γ2Wmax

I2 − β2 −
δ(βγ)

2

]
. (2.22)

Here, K = 4πNAr2
e mec2, z = 1 is the electrical charge of the muon, I the mean excitation potential

of the material, δ(βγ) a density effect correction, and Wmax the maximum energy transfer in a
single collision between the muon and an electron in the medium. β = v/c and γ are the Lorentz
variables [27].

This expression has a wide minimum in the range βγ ≈ 1 − 100, corresponding to a muon mo-
mentum in the low GeV/c regime. Here, (2.22) evaluates to 〈dE/dx〉 ≈ 2 MeV/(g/cm2), hence for
a medium with a density of 1 g/cm3 a muon has a range of approximately 5 m/GeV before it has
deposited all its energy and decays at rest.

Tau: In principle, a tau lepton is a minimum ionising particle as well. But with a lifetime of only
2.9×10−13 s and a mass of 1.78 GeV, at GeV energies it can travel at most a few hundred microns
before it decays. In its decay, a ντ has to be created again, whose energy has to be considered
“missing” as well. The remaining decay products form an electromagnetic or hadronic shower,
depending on their nature.

In a large detector with detection units spaced widely on a scale of several meters, like the PINGU
neutrino telescope described in Sec. 4.2, the four event classes discussed above can only be categorized
into two channels: tracks and cascades.

Tracks correspond to νµ CC events. A muon track of several meters length is pointing away from the
hadronic shower at the event vertex. In principle, this allows for a good directional reconstruction
of the event. For the energy reconstruction on the other hand there is the disadvantage that the
outgoing muon might not be fully contained in the detector, then only a fraction of its total energy
can be recorded.

Cascades encompass all other types of events. A hadronic shower is always present, and another
shower of electromagnetic or hadronic nature overlays it, if a CC interaction has occurred. The
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Figure 2.10: Illustration of the Cherenkov effect (schematic). Photons are emitted perpendicular to the surface of
the Cherenkov cone at the angle ϑC, as indicated by the arrow. Graphics taken from [35].

displacement of the second shower (if it exists) is much smaller than a millimetre and hence
not resolvable. Also the showers themselves have to be considered point-like, but have some
directionality since the momentum of the incoming neutrino is transferred to the final state.

The achievable directional resolution is worse than for tracks since the events lack a long lever
arm in form of an extended muon trajectory. Yet the energy resolution should be better at least
for νe CC events, since the event is always fully contained in the detector. For NC and ντ CC
events the energy of the outgoing neutrino in the final state is invisible, causing a reconstruction
bias towards low energy.

2.3.3 Cherenkov Effect

As discussed above, high fluxes and/or large target volumes are required for the detection of neutrino in-
teractions. Since the atmospheric flux is rather low compared to focused, high-intensity artificial beams,
there is no way around building a megaton scale detector when searching for atmospheric neutrinos.
Obviously, a “conventional” detector for subatomic particles7 is not feasible at these dimensions.

The common choice for measuring natural (i. e. low) neutrino fluxes above MeV energies are water-
based Cherenkov detectors. A large volume of water or ice serves as both target and detector: The
neutrinos interact with the protons and neutrons in the water molecules, creating relativistic charged
particles as described in the previous section. Then the charged particles emit light via the Cherenkov
effect, which propagates in the transparent medium and can finally be detected (usually using photomul-
tiplier tubes) to reconstruct the underlying neutrino event.

Whenever a charged particle moves through a dielectric medium, it shortly polarises the atoms along
its path, which in turn emit electromagnetic waves. Usually waves from neighbouring atoms cancel,
such that no net effect is observable. If, however, the velocity of the charged particle is higher than the

7 made up from e. g. wire chambers, solid state scintillators, ...
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local phase velocity of light given by the index of refraction,

v > cmedium = c/n , (2.23)

the wave fronts interfere constructively to form a shock front of conical shape, similar to the Mach cone
in supersonic motion (see Fig. 2.10). Photons are emitted almost8 rectangular to the shock front.

The opening angle of the Cherenkov cone is given by the relation

cosϑCh =
cmedium

v
=

1
βn

. (2.24)

It depends on the particle’s velocity and hence its energy. Usually, the constituents of the particle
showers are relativistic, so β ' 1 and hence

ϑCh ' arccos
1

nice
' 41◦ (2.25)

for ice with nice ' 1.32 [36].
The energy loss due to Cherenkov radiation is described by the Frank-Tamm formula that can be

found in [35]:
dE
dx

=
(Ze)2

c2

∫
n(ω)>1/β2

ω

(
1 −

1
(βn(ω))2

)
dω . (2.26)

This integral does not diverge as the refractive index drops below 1 in the ultraviolet region.
Its contribution to the total energy dissipation of the particle9 is marginal, but from this the rate of

photon production can be inferred. Expressed as an energy spectrum, the number of photons generated
per track length is [27]

d2Nγ

dx dE
=
αZ2

~c
sin2 ϑCh =

αZ2

~c

(
1 −

1
(βn(E))2

)
, (2.27)

where for simplicity the refractive index was treated as constant. Evaluating the constants, one finds for
particles of unit charge (Z2 = 1) in ice:

d2Nγ

dx dE
≈ 370 sin2 ϑCh eV−1cm−1 ≈ 175 eV−1cm−1 . (2.28)

One also often finds a version of this formula giving a wavelength spectrum [27]:

d2Nγ

dx dλ
=

2παZ2

λ2

(
1 −

1
(βn(λ))2

)
. (2.29)

Here the 1/λ2 dependency of the spectrum becomes evident10. When using this wavelength dependent
equation, one has to bear in mind that λ always means the vacuum wavelength and not the wavelength
in the medium that differs from that in the vacuum by a factor of n.

As mentioned above, the energy dependent expression can be treated as constant with good accuracy.
Then the integration over a certain energy interval becomes trivial and one can easily estimate the

8 As group and phase velocity differ, the angle is not quite 90°.
9 Which is described by the Bethe-Bloch formula (2.22).

10 This is the reason for the bright blue colour in which Cherenkov light appears to the human eye.
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number of Cherenkov photons for a certain particle. Again using the values for ice, the calculation
yields a number of

dNγ

dx
≈ 325 cm−1 (2.30)

photons in the visible range between 300 nm and 600 nm of vacuum wavelength.
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CHAPTER 3

Neutrino Oscillations

The Standard Model of Particle Physics, as described in the previous chapter, has been one of the most
successful theories in the history of physics. It is, however, not fundamental in the sense that it can
explain all physical phenomena alone. Its shortcomings are e. g. the missing inclusion of the fourth
fundamental force, gravity, and a lack of explanation for the fundamental asymmetry between bosons
and fermions. There are theoretical extensions to the Standard Model addressing these questions, such
as “Grand Unified Theories”, supersymmetry, and many others [37], but all of them lack experimental
evidence so far.

Yet there is one effect of so-called “Physics beyond the Standard Model” that has been well estab-
lished experimentally during the past years: neutrino oscillations. As already mentioned in Sec. 2.1,
this term refers to neutrinos changing their flavour when travelling over macroscopic distances, which
can be explained by finite neutrino masses, while in the Standard Model they have zero mass.

The theory behind this process will be described in the following. In-depth treatments of this topic
can be found in many textbooks, e. g. [37–40]. The notation will follow [38] here.

3.1 Vacuum Oscillations

There are two bases of eigenstates to which a neutrino can be decomposed: the flavour and the mass
base. The flavour eigenstates are |νe〉, |νµ〉, and |ντ〉, which will be summarised as |να〉. These are the
eigenstates of the weak interaction, hence neutrinos are always produced as a pure flavour eigenstate
and have to be projected back onto these eigenstates whenever they interact.

On the other hand there are the three mass eigenstates |ν1〉, |ν2〉, and |ν3〉, summarised as |νk〉, corre-
sponding to the three neutrino masses mk. The absolute values of these masses are yet unknown, but
since neutrino oscillations have been observed, at least two of them have to be different from zero. The
mass eigenstates have to be considered when describing the propagation of a neutrino in vacuum since
they are the eigenstates of the corresponding Hamiltonian

Ĥ |νk〉 = Ek |νk〉 . (3.1)
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3.1.1 General Case

Changes between the two bases are carried out via the so-called PMNS matrix1 UPMNS that can be
parametrised using three Euler angles ϑi j, also called mixing angles, and one complex phase angle δ
that is related to possible CP violation:

UPMNS =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 (3.2)

Here, si j and ci j are shorthands for sinϑi j and cosϑi j, respectively. Transformations between flavour
and mass base are then given by

|να〉 =
∑

k

U∗αk |νk〉 , (3.3)

|νk〉 =
∑
α

Uαk |να〉 . (3.4)

To ensure lepton number conservation, unitarity of UPMNS has to be required. Any deviation from
this can be interpreted as a hint for additional neutrino flavours that do not participate in the weak
interaction2. Such signals have been reported (e. g. [42]), but the overall picture remains inconclusive
[27].

If now a pure flavour eigenstate |να〉 is produced at an energy E, the probability to detect it as |νβ〉
after propagating over a distance L has to be calculated according to

Pα→β =

∣∣∣∣∣〈νβ ∣∣∣∣U†PMNS

∣∣∣ Ĥ
∣∣∣ UPMNS

∣∣∣∣ να〉∣∣∣∣∣2 . (3.5)

In the mass base, the propagation of the neutrinos can be described as plain waves,

|νk(t)〉 = exp
(
−i(Ekt − ~pk · ~x)

)
|νk(0)〉 , (3.6)

and assuming relativistic neutrinos (mk � Ek ⇒ v ≈ c) one can approximate in natural units3

Ek =

√
~p2

k − m2
k ≈ pk +

m2
k

2pk
, (3.7)

Ekt − ~pk · ~x =

pk +
m2

k

2pk

 L − pkL ≈
m2

k

2E
L (3.8)

With this, (3.5) reduces to

Pα→β =
∑
k, j

U∗αkUβkUα jU∗β j exp

−i
∆m2

k jL

2E

 (3.9)

1 After Bruno Pontecorvo, Ziro Maki, Masami Nakagawa, and Shoichi Sakata.
2 Measurements of the Z0 decay width have shown that only three weakly interacting neutrino flavours exist [41]—at least at

masses up to half the Z0 mass, mν < mZ0/2 = 45.6 GeV.
3 ~ = c = 1
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3.1 Vacuum Oscillations

with the squared mass differences
∆m2

k j ≡ m2
k − m2

j . (3.10)

In the mass base, the Hamiltonian can be replaced by an effective one containing the squared masses:

Ĥeff =
1

2E
diag

(
m2

1, m2
2, m2

3

)
=

m2
1

2E
1 +

1
2E

diag
(
0, ∆m2

21, ∆m2
31

)
(3.11)

The first summand on the r. h. s. of the above equation can even be ignored since it will only introduce
an unobservable global phase shift. This simplification will prove handy when discussing oscillations
in matter in Sec. 3.3.

Using the unitarity ofUPMNS, (3.9) can now be rewritten as

Pα→β = δαβ − 2
∑
k> j

<
[
U∗αkUβkUα jU∗β j

] 1 − cos
∆m2

k jL

2E


+ 2

∑
k> j

=
[
U∗αkUβkUα jU∗β j

]
sin

∆m2
k jL

2E
. (3.12)

Obviously, this oscillation probability collapses to Pα→β = δαβ if all mi are equal. Hence the ob-
servation of actual flavour conversion means that the mi are different from each other and in particular
different from zero (at least two of them), contradicting the standard model prediction of vanishing neu-
trino masses. Additionally, the second oscillatory term only contributes if there is CP violation in the
neutrino sector—otherwise the mixing matrix (3.2) is real.

For antineutrinos, the oscillation probability is derived analogously, only withUPMNS being replaced
by its complex conjugate. Hence differing vacuum oscillation probabilities for neutrinos and antineutri-
nos are a proof of CP violation.

3.1.2 Two Flavour Case

In many cases4 it is sufficient to consider only two neutrino flavours in the oscillation. Then there is
only one mass splitting

∆m2 ≡ ∆m2
21 ≡ m2

2 − m2
1 (3.13)

and the mixing matrixU can be parametrised by one effective mixing angle

U =

(
cosϑ sinϑ
− sinϑ cosϑ

)
. (3.14)

The expression for the transition probability simplifies to

Pα→β = sin2 2ϑ sin2
(
∆m2L

4E

)
= sin2 2ϑ sin2

(
π

L
Losc

)
(α , β) , (3.15)

introducing the oscillation length

Losc ≡
4π E
∆m2 ≈ 2.47

E [GeV]
∆m2 [eV2]

km . (3.16)

4 In particular, if the survival probability of a certain flavour is measured.
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3 Neutrino Oscillations

From (3.15), the two different groups of parameters in neutrino oscillation phenomenology and how
they influence the oscillation probabilities, become obvious: The mixing angles define the amplitude of
the oscillation, with ϑ = 45° giving rise to so-called “maximum mixing” where a full transition from one
flavour to another is possible. The mass splittings determine the frequency at a given neutrino energy,
expressed through the oscillation length at which the first full oscillation cycle is completed.

So from an experimental point of view, placing a detector at a distance L = Losc/2 from the neutrino
source is preferential, since here the oscillation effects are strongest. If L � Losc, the flavour transition
has not yet happened while at L � Losc only the average transition probability〈

Pα→β
〉

=
1
2

sin2 2ϑ (3.17)

can be measured and no information on ∆m2 can be obtained5.

3.2 Absolute Neutrino Masses and Mass Hierarchy

Since the existence of neutrino oscillations has unambiguously shown that neutrinos have non-zero
masses, the question is what the absolute values of these masses are. Although this question seems to
be very simple, it turns out to be experimentally challenging.

To establish absolute neutrino masses one has to consider effects such as distortions at the upper end
of the energy spectrum of nuclear β decays (as described in Sec. 2.2.1). Here the decay of tritium is
promising due to its small decay energy. In fact, currently the most stringent upper limits for the mass
of the electron (anti-) neutrino 6 set by the Mainz and Troitsk experiments [44, 45] stem from this very
decay. Their limit of

mν̄e . 2.1 eV (3.18)

is expected to be improved by one order of magnitude in the KATRIN experiment that targets the tritium
decay spectrum as well [46].

However these experiments can only directly measure the superposition of mass eigenstates that cor-
responds to the νe or ν̄e flavour eigenstate. A direct measurement of the νµ or ντ mass (or their an-
tiparticles) is by far more difficult since they cannot be created in a controllable source like a nuclear
decay. The only not completely unrealistic options here would be time-of-flight measurements with an
extremely long baseline7.

So the most promising overall approach is to fix the neutrino mass scale at one point by measuring the
νe mass directly and then derive the other mass eigenstates via the mass differences that are accessible
in neutrino oscillations. On the other hand, apart from CP violating effects, which have not yet been
observed, all oscillatory terms above are proportional to either cos or sin2 and hence insensitive to the
sign of their argument. Thus, in vacuum oscillations, only information on the distances of the mass
eigenstates can be collected, but not on their relative ordering or hierarchy.

This could be resolved, however, if one would measure all three mass splittings separately and then
use that obviously

∆m2
31 = ∆m2

32 + ∆m2
21 . (3.19)

5 Here it is assumed that in a real experiment one will always have a continuous neutrino energy spectrum and hence a
distribution of oscillation lengths. Hence the fast oscillations will smear out on a distance L � Losc.

6 Defined as m2
νe

=
∑

i |U2
ei|m

2
i [43].

7 E. g. astrophysical neutrinos that can be associated with a transient optical event such as a supernova or a gamma-ray burst.
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Figure 3.1: Feynman diagrams for the charged (a) and neutral (b) current contributions to coherent forward scat-
tering in matter.

to derive the ordering. Unfortunately, it turns out [47, 48] that

∆m2
32 ' ∆m2

31 � ∆m2
21 , (3.20)

such that with current experiments’ precision it is impossible to disentangle ∆m2
32 and ∆m2

31. So what
can be done to learn about the ordering of the neutrino mass eigenstates?

There is a possibility to access the neutrino mass hierarchy in oscillation experiments, if the neu-
trinos in question pass through a sufficient amount of matter along their path. In this case, additional
resonances appear that depend on the sign of the mass splittings. These so-called matter effects will be
discussed in the following section.

3.3 Oscillations in Matter

When neutrinos are passing through matter, they will undergo coherent forward scattering off the elec-
trons and nucleons in their path. Since the matter distribution is continuous, this can be interpreted as a
matter potential which the neutrinos are experiencing, leading to a change of their effective mass similar
to photons passing through a transparent medium. The implications of this scenario were first described
by L. Wolfenstein in 1978 [49]

Neutral current interactions, as shown in Fig. 3.1b, are open to all neutrino flavours in a similar way.
Here, the contributions from electrons and protons cancel since their associated weak currents have
opposite sign8 and only the neutron potential remains:

VNC = −
1
2

√
2 GF Nn (3.21)

Yet since this potential affects all flavours and hence all mass eigenstates in the same way, it also changes
all effective masses by the same amount, but leaves the mass splittings unaffected. Charged current
scattering (Fig. 3.1a) on the other hand is only possible for νe as electrons are the only charged leptons
present in ordinary matter. The CC matter potential can be expressed as

VCC =
√

2 GF Ne . (3.22)

This means that the eigenvalue equation (3.1) has to be modified to include the matter potential.
Since the potential acts on the flavour eigenstates, the effective vacuum Hamiltonian (3.11) has to be

8 Assuming that the matter is macroscopically neutral, hence electrons and protons have equal number densities.
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transferred into the flavour base first, then the potential can be added:

Ĥmatter = U†ĤeffU + diag (VNC + VCC, VNC, VNC) (3.23)

Here and in the following, the index has been dropped from UPMNS to improve readability. Constant
contributions can now be neglected again, which results in the following effective Hamiltonian in matter:

Ĥeff
matter =

1
2E

[
U†diag

(
0, ∆m2

21, ∆m2
31

)
U + diag (ACC, 0, 0)

]
, (3.24)

where
ACC ≡ 2E VCC = 2

√
2 E GF Ne . (3.25)

Here it is very important to note that for antineutrinos the matter potential has the opposite sign. In
particular, ν̄e will feel a charged current potential of

ĀCC = −ACC . (3.26)

3.3.1 MSW Effect

For simplicity, the effects of a matter potential will be discussed for only two neutrino flavours here,
without loss of generality. In this case, (3.24) reduces to

Ĥeff
matter =

1
2E

[
U†diag

(
0, ∆m2

)
U + diag (ACC, 0)

]
. (3.27)

Diagonalising this matrix now gives the effective mixing matrix and the mass splitting in matter:

U
†
matterĤ

eff
matterUmatter = Ĥdiag

matter , (3.28)

where
Ĥdiag

matter = diag
(
−∆m2

M, ∆m2
M

)
(3.29)

and

Umatter =

(
cosϑM sinϑM
− sinϑM cosϑM

)
. (3.30)

The effective mass splitting is then given by

∆m2
M =

√(
∆m2 cos 2ϑ − ACC

)2
+

(
∆m2 sin 2ϑ

)2
, (3.31)

while
tan 2ϑM =

tan 2ϑ

1 − ACC
∆m2 cos 2ϑ

(3.32)

is the effective mixing angle in matter.
In 1985, S. P. Mikheyev and A. Y. Smirnov discovered [50, 51] that for

Ares
CC = ∆m2 cos 2ϑ ⇔ Nres

e =
∆m2 cos 2ϑ

2
√

2 E GF
(3.33)

a resonance exists where the effective mixing angle approaches π/4, meaning that the mixing amplitude
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3.3 Oscillations in Matter

sin2 2ϑ in (3.15) becomes equal to one and a full transition from one flavour to another is possible. At
the same time, the mass splitting becomes minimal.

Another thing to note is that in (3.32), both ACC (by being replaced by ĀCC = −ACC for antineutrinos)
and ∆m2 can carry a negative sign. Thus one can infer the sign of ∆m2 by observing the so-called MSW
resonance9 in either the neutrino or the antineutrino channel:

If, e. g., the hierarchy is normal—meaning that ∆m2 is positive—for antineutrinos, where the matter
potential ĀCC is always negative, the denominator of (3.32) will always be larger than one and no
resonance can occur. For neutrinos on the other hand, ACC is positive and can cause a MSW resonance
if it has the appropriate value.

This measurement has been done by the SNO experiment, which measured both the flux of solar νe

and the all-flavour flux of solar neutrinos independently from each other with high precision [52]. Clear
signs for a MSW resonance were detected for the solar νe

10 travelling through the high electron density
of the inner Sun, hence one could conclude that the relevant mass splitting for the oscillation of solar
neutrinos, ∆m2

21, has a positive sign.
In the planned PINGU experiment (for details, see Sec. 4.2), a similar measurement is envisaged

to determine the sign of the other mass splitting ∆m2
31, which will be referred to as “Neutrino Mass

Hierarchy” (NMH) in the following. Here the matter potential of the Earth will be used to observe a
MSW resonance either in the atmospheric neutrino or antineutrino channel [53, 54]. The details of this
measurement will be discussed in Sec. 3.5.

3.3.2 Parametric Enhancement
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Figure 3.2: The PREM Earth density profile [55].

Another feature of neutrino oscillations in matter are parametric enhancements. In contrast to MSW
resonances, they depend on the shape of the matter potential rather than its actual value.

As shown in Fig. 3.2, the density profile and hence the matter potential of the Earth is characterised

9 After Mikheyev, Smirnov, and Wolfenstein.
10 No antineutrinos are produced in the Sun, cf. Sec 2.2.4
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3 Neutrino Oscillations

Figure 3.3: νe disappearance probability (qualitatively11) as a function of the distance t (measured in units of the
Earth’s radius) along the neutrino trajectory. Figure adopted from [56].

by two major regions: the core in the centre, with a radius of ≈ 3500 km, surrounded by the mantle12.
Within these regions, the density is rather constant at ≈ 11 g/cm3 and ≈ 5 g/cm3, respectively, while at
the transition between the regions the density changes by almost a factor of two quasi instantaneously.

Thus for atmospheric neutrinos crossing the Earth, the matter potential can be approximated by a
so-called “castle-wall” profile with good precision: First the neutrinos will experience a constant po-
tential Am

CC for a distance lm while passing through the mantle, with Am
CC given by (3.25) inserting the

mean electron density in the mantle. Thereafter, they traverse the core, represented by another constant
potential Ac

CC with a width of lc, followed by a second crossing of the mantle that is symmetric to the
first one.

The principal resonance occurs if both lm and lc are close to half the oscillation length (3.16) for the
effective mass splittings (3.31) in the respective regions [56, 57]:

lm
Losc

m
=

lc
Losc

c
=

1
2

(3.34)

This can be achieved by choosing an appropriate zenith angle at which the neutrinos pass through the
Earth.

Although the actual calculation of the oscillation probability is rather involved [56], the principal
effect can be understood qualitatively: The transition probability is close to its maximum when the
neutrinos cross the border between mantle and core, as shown in Fig. 3.3. At this point, the matter
potential changes, thus the neutrino state has to be projected into the flavour base in which interactions
have to be evaluated. This re-sets the effective propagation length the neutrinos have travelled to zero,
such that the oscillation probability does not decrease after reaching its maximum in the first region.
Instead, the oscillation is “restarted” and the oscillation probability in the second region is added to the
one at the transition between the regions. The same happens at the second region transition, back from

11 As [56] has been published already in 1999, the values assumed for the mixing parameters do not coincide with the current
best fits. The effect in general, however, is the same for more up-to-date values.

12 The Earth crust has a thickness of only a few tens of km and can thus be neglected.
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3.4 Oscillation Experiments

the core to the mantle, hence the final oscillation probability after passing through the Earth is vastly
enhanced w. r. t. the non-resonance case.

These parametric enhancements depend on the neutrino mass hierarchy in the same way as the MSW
resonance, so they will also contribute to the NMH signature to observe with PINGU, yet on a smaller
scale than said resonance as it will be shown in Sec. 3.5.

3.4 Oscillation Experiments

Over the course of the last decades, a variety of experiments targeting most of the possible neutrino
sources listed in Sec. 2.2 have observed oscillations. Consequently, measured values for all of the
mixing angles and mass splittings have been published, leading to a fairly consistent global picture [47,
48]. The most prominent of these experiments will be presented in this section, followed by an overview
of the current best-fit values of the oscillation parameters.

3.4.1 Solar Neutrinos

As mentioned previously, already in the first detection of solar electron neutrinos from the decay of 8B
in the Homestake experiment in the 1960s [15], neutrino oscillations had been observed in the form of
a lower than expected event rate. Although oscillations had been considered as the cause for the deficit
[58], a measurement of the all-flavour solar neutrino flux was needed to exclude possible errors in the
flux calculation. This was provided later by the Kamiokande experiment [59], however not in sufficient
precision.

The required precision was finally reached by the SNO experiment, thereby making the first definite
observation of solar electron neutrinos oscillating to other flavours [52, 60]. In a two-flavour approxi-
mation, values for ∆m2

21 and ϑ12 could be published as well [61].

3.4.2 Atmospheric Neutrinos

The very first conclusive observation of neutrino oscillations was the disappearance of atmospheric
muon neutrinos at energies around 1 GeV, reported by the Super-Kamiokande collaboration in 1998
[16]. This detection was facilitated by a large value of the relevant mixing angle ϑ23, which is close to
the maximum mixing value of π/4. Over the course of the last years, more data have been added to this
analysis, improving its precision on the measured parameters ϑ23 and ∆m2 = (∆m2

31 + ∆m2
32)/2.

Additionally, a similar measurement has been done with the IceCube DeepCore neutrino telescope at
energies of several tens of GeV [62]. Reaching a comparable accuracy after a much shorter livetime, this
result demonstrated that a precision oscillation measurement is possible with a detector using a natural
target at which experimenters have much less control than over an artificial one. DeepCore’s success
has paved the way for PINGU [54], which will map atmospheric oscillations in the full three flavour
picture with unprecedented accuracy13.

3.4.3 Neutrino Beams

Experiments aiming at atmospheric neutrino oscillations have both the problem and the benefit that they
will observe events over a large energy spectrum that come from all directions. Although it provides a

13 With ORCA [63], a very similar experiment has been proposed that is supposed to do the same measurement, only using
sea water as detection medium instead of ice.
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large lever arm for fitting oscillation parameters, this also means that there is a fairly large uncertainty
from event reconstruction.

A way to overcome that problem is to use a controllable neutrino source, such as a neutrino beam from
an accelerator pointing towards a dedicated detector. Then, the total flux as well as the energy and arrival
direction of the neutrinos is known, and one can concentrate on determining the oscillation parameters—
especially the mass splittings, which depend strongly on a precise knowledge of the neutrino energy. If
the value of the mixing parameter one is about to constrain is roughly known beforehand, one can even
fine-tune the accelerator settings to reach maximal precision.

Examples are the MINOS [64] and T2K [65] experiments, both using a νµ beam from Fermilab
or J-PARC, respectively, to measure ∆m2

31 and ϑ23—the same parameters accessible for atmospheric
oscillations, thus providing an uncorrelated measurement.

Another goal that can be achieved with neutrino beams due to their high and well-known flux and
clean flavour composition is the search for the appearance of neutrinos that have oscillated to other
flavours. This has been done in T2K, where the appearance of νe has been observed [66], and also in
OPERA, an experiment dedicated to search for ντ events appearing in a νµ beam from CERN [67].

3.4.4 Reactor Neutrinos

Finally another class of experiments uses the strong flux of ν̄e at low MeV energies produced by com-
mercial nuclear reactors to study neutrino oscillations. Typically, they consist of one “near” detector
as close to the reactor core as possible to achieve a precise normalisation of the un-oscillated neutrino
flux and the detector acceptance, and one identical “far” detector in the first oscillation minimum, usu-
ally at several kilometres distance. The relevant mixing parameter in this regime is ϑ13, the last one to
be measured. The first measurement of ϑ13 was published in 2012 by the Daya Bay experiment [68],
subsequently confirmed by RENO and Double Chooz [69, 70].

With reactor neutrinos, also the mass hierarchy is accessible. If a far detector is placed at a distance of
≈ 50 km, the small difference between ∆m2

31 and ∆m2
32 will cause a fastly oscillating interference pattern

on top of the principal oscillation probability, whose exact shape depends on the mass hierarchy. This
measurement employs a different effect than the hierarchy determination in atmospheric oscillations,
thereby providing a completely independent confirmation with different systematic effects. Even if
neither of the two experiments achieves a conclusive significance on its own, the combination of both
can vastly enhance the results [71]. This will be shown for the combination of PINGU with JUNO14

[72, 73] in Sec. 6.5.

3.4.5 Current Status of Neutrino Mixing Parameters

Global fits to neutrino oscillation results from different experiments are available from various authors
and usually constantly updated once new results are published. For this thesis, the best fit values and
uncertainties from Fogli et al. released in 2012 [74] are used, which include the results on ϑ13 from
Daya Bay and RENO that were published shortly before. There are more recent analyses available (e. g.
[75, 76]), but the differences are small as no major results have been released in the meantime.

Since one of the neutrino mass splittings has a much smaller value than the others, the convention is
to label the two mass eigenstates that are close to each other as m1 and m2, with m1 < m2 since the sign
of the small splitting has been determined using solar neutrinos (cf. Sec. 3.3.1). The third eigenstate m3
is then separated from the first two, either above—in the “normal” mass hierarchy (NH)—or below in
the “inverted” hierarchy (IH). This is illustrated in Fig. 3.4.

14 Initially named Daya Bay II.
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3.4 Oscillation Experiments

Figure 3.4: Schematic depiction of the ordering of neutrino mass eigenstates in both normal and inverted mass
hierarchy. The definition of ∆m2 and δm2 according to Fogli et al. [74] is indicated as well.

Since only two of the neutrino mass splittings are independent, Fogli et al. choose to do their analysis
in terms of one small and one large mass splitting:

δm2 ≡ m2
2 − m2

1 = ∆m2
21 > 0 (3.35)

∆m2 ≡ m2
3 −

(
m2

2 + m2
1

)
/ 2 =

(
∆m2

31 + ∆m2
32

)
/ 2 = ∆m2

31 − ∆m2
21/ 2

 > 0 for NH
< 0 for IH

(3.36)

The values and 1σ ranges given in [74] for δm2, ∆m2, sin2 (ϑ12), sin2 (ϑ23). and sin2 (ϑ13) have to be
converted to ∆m2

21 and ∆m2
31 and the values of the mixing angles in degrees in order to be processed

by the oscillation code calculating the transition and survival probabilities. These values, which will be
used as the fiducial oscillation parameters, are listed in Tab. 3.1. The CP violating phase δCP is set to
zero.

Table 3.1: Fiducial values of the oscillation parameters, according to Fogli et al. [47], used throughout this thesis.

Parameter Best Fit 1σ Range

∆m2
31 [10−3eV2]

2.46 (NH)
-2.38 (IH)

0.08

∆m2
21 [10−5eV2] 7.54 0.24

ϑ12 [◦] 33.6 1.1
ϑ23 [◦] 38.6 1.3
ϑ13 [◦] 8.93 0.47

As one can see, the main unknown is the sign of ∆m2
31, which will be assessed by PINGU. Another

remaining question is the octant of ϑ23, i. e. whether its value is below or above 45°. This unresolved
as of now since most oscillation experiments cannot measure the angle directly, but rather sin2 (2ϑ23),
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which is symmetric about 45°. Yet PINGU has good sensitivity to the octant of ϑ23, and in addition the
significance of its hierarchy measurement is enhanced if ϑ23 > 45°, as one will see in Sec. 6.3.2.

3.5 Mass Hierarchy Signature in PINGU

In the previous sections, all ingredients needed to understand the measurement of the neutrino mass
hierarchy PINGU is supposed to perform have been discussed. These are

• the atmospheric flux of νe, νµ, and their antiparticles (Sec. 2.2.5);

• their probabilities to convert to another flavour via neutrino oscillations in matter, especially the
occurrence of the MSW resonance and parametric enhancement (Sec. 3.3);

• and the cross-sections and peculiarities for the interaction of different neutrino flavours with the
target material (Sec. 2.3).

The atmospheric neutrino flux as a starting point, follows a steeply falling power law spectrum with
an index of γ ≈ −3.7 in all flavours. The normalisation for νµ is about twice the νe normalisation, while
neutrinos and antineutrinos of the same flavour have about the same flux. This flux has to be multiplied
by the oscillation probabilities, which depend not only on the neutrinos’ energies, but also on the zenith
angle at which they arrive—this determines the distance travelled since their production in the Earth’s
atmosphere as well as the amount of matter traversed on their way through the Earth.

In Figs. 3.5 and 3.6, the oscillation probabilities for νe to νµ and νµ to νµ are shown as examples. They
have been calculated using the AtmoWeights package that was developed by the IceCube collaboration
[77] using the “Preliminary Reference Earth Model” (PREM) [55] for the Earth’s density profile, shown
in Fig. 3.2. It is easily recognisable that the oscillation probabilities for να → νβ are in principle equal
to those for ν̄α → ν̄β. Differences arise from the MSW resonance, easy to spot in the energy range
from 2 to 10 GeV for zenith angles between cosϑzenith ≈ −0.9 and −0.4, that appears in neutrinos for
the normal and in antineutrinos for the inverted mass hierarchy (cf. Sec. 3.3). In addition, parametric
enhancements occur for neutrinos passing through the Earth’s core, corresponding to the steepest zenith
angles values below cosϑzenith ≈ −0.9. These change between neutrinos and antineutrinos in the same
way as the MSW resonance, yet the latter covers a larger cosϑzenith range and hence is responsible for
most of the mass hierarchy asymmetry.

Yet since the fluxes of neutrinos and antineutrinos of the same flavour are essentially equal and
PINGU cannot discriminate between them15, the question is how the different hierarchies can show
up in the recorded data. Here the different cross-sections for neutrinos and antineutrinos come into
effect. As one can see from Fig. 2.7, at the relevant energies just below 10 GeV the cross section for
antineutrino interactions with a hadronic target material is about a factor of two lower than the one for
neutrinos. Thus, the MSW resonance will appear in the data in any case, but much more prominent if
the hierarchy is normal. In this case roughly 2⁄3 of the events—the neutrino-induced ones—are affected
by the resonance, while in the inverted hierarchy case only the remaining third caused by antineutrinos
is.

So the quantities of interest are the sum of neutrino and antineutrino events for the different flavours
at the energy and cosϑzenith range where the MSW resonance is expected and how they differ assuming
normal and inverted mass hierarchy. To assess how significant the difference is in a given bin in the (E,

15 The only method to do this would be to identify the sign of the electrical charge of the lepton produced in CC interactions.
However it is unrealistic to generate the required magnetic field in the antarctic glacier, where PINGU will be located (see
Secs. 4.1 and 4.2).
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Figure 3.5: Oscillation probabilities for νe → νµ (top) and ν̄e → ν̄µ (bottom) for normal and inverted hierarchy.
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Figure 3.6: Oscillation probabilities for νµ → νµ (top) and ν̄µ → ν̄µ (bottom) for normal and inverted hierarchy.
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3 Neutrino Oscillations

cosϑzenith) plane, a bin-wise ∆χ similar to [53] can be defined as

∆χ =
NNH − NIH
√

NNH
, (3.37)

where NNH and NIH are the expected number of events in the normal and inverted hierarchy case, re-
spectively. Plots of the event rates and their weighted difference ∆χ are shown in Figs. 3.7 to 3.9. In
this calculation not the bare cross-sections, but rather the effective areas for the different flavours enter,
which also include the detection threshold and selection efficiency of the detector. This will be discussed
in detail in Sec. 6.2.

Comparing the different flavours, one notes that the largest overall scale of the ∆χ values appears
in the νµ channel, but the contiguous regions of either positive or negative ∆χ are rather small and
alternate rapidly. Since a realistic detector has a limited resolution in reconstructing individual events,
it will be challenging to resolve these fine structures in the data. In the νe channel, the features are less
pronounced, but more extended than for νµ, offering a more robust measurement.
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Figure 3.7: Expected νe + ν̄e CC event rates in PINGU (arbitrary units) for normal and inverted mass hierarchy
and their weighted difference ∆χ.
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Figure 3.8: Same as Fig. 3.7, but for νµ + ν̄µ events
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Figure 3.9: Same as Fig. 3.7, but for ντ + ν̄τ events
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CHAPTER 4

Detector

In this chapter, a detailed description of the proposed PINGU neutrino telescope and its predecessor
IceCube will be given. First the concept of ice or water based neutrino telescopes based on the detection
of Cherenkov radiation is introduced with IceCube/DeepCore as example, followed by a characterisation
of its upcoming PINGU upgrade. Thereafter the selection and reconstruction of physics events for an
analysis targeting the determination of the neutrino mass hierarchy will be described, and finally how
conceptually new hardware might improve the results.

4.1 IceCube/DeepCore

4.1.1 Location

As already mentioned (Sec. 2.3), the natural choice for observing the low natural fluxes of high-energy
neutrinos are water-based Cherenkov detectors. Although the basic requirement—a sufficiently large
amount of water or ice—seems not very difficult to meet, there are additional constraints that have to be
addressed as well:

Size: Depending on the energy range one is interested in, the size of the detector has to be adjusted
accordingly. Since the atmospheric flux decreases rapidly with increasing energy while the size
of the expected event signatures extend, one needs larger detector volumes to study higher fluxes.
Roughly from the GeV scale upwards, the required dimensions are so big (several hundred metres)
that artificial structures like the underground caverns of Kamiokande and Super-Kamiokande [16]
are not feasible any more and one has to look for suitable natural locations.

Transparency: Since the detection of neutrinos is based on recording Cherenkov radiation, i. e. pho-
tons in the optical and near UV regime, obviously the chosen medium has to be transparent for
these photons. Here ice has an advantage over fluid water as it has very low absorption down to
wavelengths of 300 nm and below [78], while the fluid starts to absorb significantly below 400 nm
[79].

Purity: The goal of all experiments is to reconstruct the neutrino events as accurately as possible.
Therefore it is desirable to record a large number of unscattered photons, for which a very clear
environment is needed. There might be, however, situations where scattering is eligible, e. g. when
only the neutrino energy is of interest: then strong scattering keeps the photons inside the detector
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Figure 4.1: Effective scattering and absorption of light in the polar ice. Plot taken from [78].

for a longer time and hence increases the total number of detected photons, thereby improving the
energy resolution. Absorption on the other hand is always a downside since it reduces the total
number of photons and hence the information available for event reconstruction.

Shielding: In high-energy neutrino experiments, muons from atmospheric showers created by cos-
mic radiation (cf. Sec. 2.2.5) are a background whose rate is several orders of magnitude higher
than the neutrino signal. In order to suppress those muons, detectors have to be placed deep
underground so that there is a shielding of several hundred meters thickness, comparable to the
penetration depth of O(100 GeV) muons.

Choosing an environment optimising all these factors, the IceCube neutrino observatory has been con-
structed in the deep glacial ice at the geographical South Pole in Antarctica. The Antarctic glacier with
its thickness of ≈ 2500 m is a pristine environment of substantial size. In contrast to other natural re-
sources like lakes or the deep sea, it inherently provides a solid holding structure for the instrumentation,
is free of lifeforms that might disturb or even destroy the detector, and has a much lower content of ra-
dioactive 40K than sea water. Especially at depths more than ≈ 2000 m below the surface, age and high
pressure have facilitated the hydratisation of enclosed air bubbles, leaving an extremely clear ice with
scattering and absorption lengths of several tens of metres even in the UV range, see Fig. 4.1. Instru-
menting only the deepest ice below 1500 m guarantees a sufficient shielding of atmospheric muons.

The nearby Amundsen-Scott South Pole Station operated by the United States Antarctic Program
provides the infrastructure needed for such a large scale experiment. This incorporates the supply of
electrical power for the detector itself and the computing farm processing the raw data, satellite com-
munications for transmitting science data, general technical support as well as accommodations for the
visiting scientists.

4.1.2 Detector Geometry

A total of 86 strings, each instrumented with 60 Digital Optical Modules (DOMs, see Sec. 4.1.3), have
been installed during IceCube’s deployment phase from 2005 until December 18, 2010. A hot water
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Figure 4.2: Top view of the IceCube string layout, including the DeepCore and planned PINGU (geometry V36)
sub-arrays.

drill was used to melt holes of 60 cm diameter into the ice, reaching down to 2450 m, shortly above
the underlying bedrock. Then the strings were lowered into the holes still filled with water which then
refroze and now firmly encloses the strings.

Eighty of those strings form the hexagonal main array with an inter-string distance of 125 m, while
the remaining six are placed at additional positions near the centre of the array, forming a dense sub-
array called DeepCore with a string spacing of only 72 m, lowering the threshold energy for neutrino
detection from ≈ 100 GeV to ≈ 20 GeV. A top view of the string layout is shown in Fig. 4.2.

To the lowest 1000 m of the main array strings, sixty DOMs each are attached, evenly spaced with
a distance of 17 m. In DeepCore, the vertical DOM spacing is only 7 m below the dust layer found
between 1950 m and 2100 m depth1. Above it, ten DOMs with 10 m spacing are attached to each
DeepCore string to serve as a veto against atmospheric muons [80, 81].

4.1.3 Digital Optical Modules

The 5160 Digital Optical Modules [83] are the basic detection units of IceCube. They are attached to
the string and connected to the main string cable during deployment and work autonomously except for
the low voltage power supply. This modular design has the convenience that if one DOM fails to work
and cannot be fixed as it is frozen in the deep ice, the others are not affected.

As shown in Figure 4.3, the DOM is housed by a borosilicate glass sphere of 13" diameter and
0.5" thickness to withstand the pressure arising from the refreezing water in the drill holes. This glass
sphere contributes to the noise rate of about 540 Hz per DOM as it contains isotopes of the uranium

1 The dust layer can be recognised easily in Fig. 4.1 as the region of increased scattering and absorption.
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Figure 4.3: Comparing an IceCube/DeepCore DOM to the PDOM used in PINGU. Graphics taken from [82].

and thorium decay chains. The content of natural 40K, that undergoes beta decay where the emitted β
particle generates Cherenkov light, has been reduced in the glass.

The main component of the DOM is a 10" photomultiplier tube (Hamamatsu R7081-02 [84, 85]).
In DeepCore, an improved version of this PMT with a 35 % higher quantum efficiency was used [81].
The PMT is oriented downwards as the main focus of IceCube is on extraterrestrial neutrinos from
the northern hemisphere that have travelled through the Earth and hence arrive at the South Pole from
below. The coupling to the glass sphere is provided by an optical gel which also provides protection and
fixation to the PMT, while a surrounding Mu-metal grid guarantees the shielding of external magnetic
fields.

The upper half of the DOM is filled with an high voltage divider that locally transforms the 96 V
voltage that is provided by the string main cable into the high voltage of 1.3–1.5 kV that is needed to
fuse the PMT, thus making it independent from possible voltage fluctuations of the pole station’s power
supply. Around the HV divider, the circular flasher board and DOM mainboard are mounted. The
flasher board is populated with LEDs that can be used to produce a standardised signal for calibration.
On the mainboard the electronics are located that are needed to read out the PMT signal and digitise the
recorded data in situ, after which they are sent to the surface.

The digitisation is done with two di-channel analogue transient waveform digitisers (ATWDs) and
one fast analogue-to-digital converter (fADC) operated in parallel. The ATWDs read out the PMT
waveforms with three different gain factors (one channel is reserved for internal calibration) for max-
imum dynamic range at a sampling rate of 300 MHz with 10 bit resolution each, resulting in a total
readout window of 422.4 ns with 128 samples. In order to enhance this readout time to a total of 6.4 µs,
the fADC has a sampling rate of only 40 MHz with 256 samples at 10 bit resolution to also record late
photon hits.

4.2 PINGU

PINGU, the Precision IceCube Next Generation Upgrade, is planned as a further infill to the Ice-
Cube/DeepCore array, lowering the energy threshold to few GeV [54]. The current baseline geometry,
V36, consists of forty additional strings with 96 PINGU-DOMs (PDOMs, see below) each. In this lay-
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Figure 4.4: Side view of the IceCube string layout, including the DeepCore and planned PINGU (geometry V36)
sub-arrays. The approximate position of the dust layer is shown for reference.

out, shown in Figs. 4.2 and 4.4, the string spacing is 22 m while the PDOMs are located at the lowest
300 m of IceCube with a vertical distance of 3 m. In this depth, the same as the main part of DeepCore,
the ice has the best optical properties.

This detector geometry has been optimised to yield a maximum sensitivity for the neutrino mass
hierarchy. It will be used for all studies described in Chapter 6 unless explicitly stated otherwise.

In terms of hardware and software infrastructure, many things can be adopted from IceCube, redesign-
ing parts where a potential for improvement or simplification has been discovered. Several components
of the electronics part of the module, like the main board, the PMT base, and the high voltage supply,
have been redesigned or replaced by more recent versions. In particular the PMTs will all be the high
quantum efficiency models already installed in DeepCore. Also the rather complicated digitisation unit
with three components operating in parallel (cf. Sec. 4.1.3) will be replaced by only one ADC with high
dynamic range that can be read out continuously [82]—a component that was not yet available at the
construction of IceCube. A delay board has become obsolete with the more recent signal digitisers and
will not be part of the PINGU DOMs. Additional components, such as cameras to monitor the freeze-in
process, are in discussion.

Although the bulk of PDOMs are an improved version of the technology that has proven to work
reliably, prototypes of novel optical modules will be deployed with PINGU as well. As those might be
the baseline technology of future neutrino telescopes, they have to be tested under realistic conditions
before they can be considered for large-scale use. Two options for these next-generation optical modules
are described in Sec. 4.5, studies showing how they will impact the NMH determination are presented
in Sec. 6.4.

Another thing to be improved upon in PINGU is the so-called “hole ice”. In IceCube it was observed
that the refrozen ice directly around the strings that had been molten during deployment contains lots of
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small air bubbles2. These inclusions lead to a dramatically reduced scattering length around the DOMs,
significantly deteriorating the quality of event reconstruction that strongly profits from a large number
of direct (i. e. unscattered) photons being recorded. In order to reduce the impact of the hole ice, the
molten water will be degassed as a part of the drilling process for PINGU, thus reducing its air content
and hence the number of air bubbles remaining after refreezing.

4.3 Event Reconstruction

As shown in Sec. 3.5, the neutrino mass hierarchy imprints fine features onto the the distribution of
neutrino events recorded by PINGU. To resolve this pattern, it is crucial to reconstruct the events as
exactly as possible. Although the interesting neutrino properties are only its energy and the zenith angle
of its arrival direction3 as those are determining the oscillation probability, an actual neutrino interaction
event in PINGU has far more properties that need to be reconstructed as well. These are:

• The position of the interaction vertex in both space and time, giving rise to four variables in total
(x, y, z, t).

• The energy of the hadronic cascade caused by the fragmented target nucleus, Ecscd.

• The direction of the hadronic cascade, described by its zenith and azimuth angles (ϑ, ϕ)

• The energy Eµ of the outgoing muon (if present), which can be replaced by its length l since
muons can be considered as minimum ionising particles (see Sec. 2.3.2).

• The direction of the muon, represented by zenith and azimuth angles (ϑµ, ϕµ) as well.

This amounts to a total of ten variables (seven if no muon is created in the interaction) whose values
have to be found in the reconstruction process. The neutrino energy is then given by the sum of cascade
and muon energy, and its direction has to be calculated from their momenta using conservation of the
total momentum.

4.3.1 Triggering

Before an event can be reconstructed, it has to trigger the detector to read out the signals of the optical
modules. In the simulations that are the basis for this thesis, the preliminary PINGU trigger is a so-
called SMT3, standing for triple simple multiplicity trigger, however this is likely to change in the
actual implementation of PINGU [86].

This SMT3 trigger requires at least three DOMs registering a hard local coincidence (HLC) within a
time window of 2.5 µs. A HLC means that two DOMs on the same string that are not more than two
vertical positions (i. e. 6 m) apart have launched within 1 µs. For the PINGU trigger, all PINGU DOMs
plus the DeepCore DOMs and the ones one the neighbouring IceCube strings are taken into account.

If an event satisfies the PINGU trigger, the full detector including IceCube and DeepCore is read out.
This is necessary for background suppression, since dim atmospheric muons might trigger only PINGU,
which has a lower threshold than IceCube4, but still cause single sub-threshold hits in IceCube due to
which it can be recognised and vetoed.

2 The bulk glacial ice contains air as well, which has been integrated into the crystal structure of the ice. However this
hydratisation needs thousands of years under high pressure, such that the air bubbles in the hole ice had not enough time to
dissolve yet.

3 Which determines the length of propagation since the creation in the Earth’s atmosphere and the matter potential passed on
the way.

4 In IceCube, the standard trigger is SMT8 with a much larger DOM spacing.
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Figure 4.5: Illustration of the seeded RT cleaning algorithm (see text). Figure taken from [89].

4.3.2 Feature Extraction

After the DOMs have been read out, so-called feature extraction takes place. In this process, the raw
digitised PMT waveforms that are the DOM output are deconvolved into a time series of single photon
hits. As the digitisation unit for PINGU is not fully developed yet, the simulation falls back to the
current IceCube technology, where this decomposition is done by the Wavedeform module [87] using
the Lawson-Hanson least squares algorithm [88].

The result is a so-called pulse series in time of photon hits on DOMs, which then can be processed
by the actual event reconstruction algorithms.

4.3.3 Noise Cleaning

The pulse map returned by Wavedeform still contains noise hits caused by electronic thermal noise or
radioactive decays inside the DOM that hold no information on the neutrino event, but might confuse
the reconstructions. Yet the majority of these hits can be removed by noise cleaning algorithms. In
PINGU, two different cleanings are applied consecutively: first a seeded radius-time (SRT) cleaning,
followed by a time-window (TW) cleaning.

SRT cleaning: Starting from the cluster of HLC hits that caused the event to trigger (see Sec. 4.3.1),
the seed, the remaining hits are searched for ones that fall within a radius r and time window t
w. r. t. one of the already selected. If such a hit is found, it is added to the cluster and the procedure
is repeated. In PINGU, the boundaries are r = 100 m and t = 200 ns, the same values commonly
used in DeepCore. An illustration of the algorithm is shown in Fig. 4.5.

TW cleaning: A time window of 6 µs width is moved over the pulse series, searching for the position
containing the largest amount of charge. Based on this position, all hits outside the window are
discarded.
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4.3.4 CLast

The start of the actual reconstruction chain is CLast [90], a first-guess algorithm for cascade, i. e. point-
like events. With ~ri being the positions of the DOMs that have registered charges ai at times ti in the
event, first the event vertex is determined a the centre of gravity (COG) of the hit DOMs:

~x =
∑

i

ai~ri (4.1)

Following that, the time t of the vertex is calculated. For this, the residual time is defined as

τi(t) = ti − (t + di/cice) , (4.2)

where di = |~x − ~ri| and cice = c/nice is the speed of light in ice. After that, a direct hit is defined as a
DOM hit with 0 < τi < tw, with a trigger window of tw = 200 ns. Now for each DOM, a test vertex time
is chosen to be ti − di/cice and the number of direct hits on all other DOMs is calculated. From all those
test vertex times, the earliest one resulting in more than four direct hits on other DOMs is chosen as the
vertex time t.

After the vertex position has been established, the cascade direction is determined from the “tensor of
inertia” of the hit pattern. In a reference frame centred at the COG, ~r′i = ~r−~x, this is calculated analogue
to the quantity in classical mechanics with the mass replaced by the DOM charge:

Ik,l =
∑

i

ai
(
δkl~r′2i − r′ki r′li

)
(4.3)

The cascade direction is then given by the eigenvector corresponding to the smallest eigenvalue of the
tensor of inertia, which points along the strongest elongation of the hit pattern.

Finally, a first estimate for the cascade energy is calculated using an empirical polynomial fit [91] to
the number of hit DOMs in the event, NCh:

log10 (Ecscd[GeV]) = −3.3 + x ( 9.2 + x (−9.7 + x ( 5.3 + x (−1.4 + x · 0.134)))) (4.4)

with x = log10(NCh).

4.3.5 Photonics

The Photonics software [92] is a tool widely used in IceCube to get a fast description of the propagation
of Cherenkov photons in the ice. Its main functionality is to return the expected number of registered
photons B(~r, ~x, t, ϑ, ϕ) for any combination of source (~x, t, ϑ, ϕ) and sensor position ~r.

Since photon propagation needs extensive computing, B cannot be directly simulated for each request.
The number is retrieved from a table look-up instead. The respective tables have to be generated in
advance by simulating a large number of sources in all possible depths—since the optical properties of
the Antarctic ice sheet depend strongly on the vertical position, see Fig. 4.1—and all possible zenith
angles, using data on the ice properties that have been retrieved from onboard LED flasher signals
recorded by the IceCube DOMs [93]. The resulting photon density distribution is then stored in six-
dimensional tables, the relevant quantities being three spatial dimensions, the relative time between
emission and detection, the emission angle at the source, and the angle of incidence on the detector since
the DOMs have a zenith dependent detection efficiency, as clearly visible from their layout (Fig. 4.3).

Finally these tables are fitted with multidimensional spline functions, which leads to smoother results
and significantly reduces the amount of data that has to be stored [94]. This is an important issue, since
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4.3 Event Reconstruction

one of those six-dimensional tables has to be loaded into the CPU memory for every source depth,
orientation, and type (point-like and track-like, as these have different light output distributions).

4.3.6 Monopod

The Monopod algorithm is a likelihood reconstruction for cascade-like events using detailed photon
timing information. It is the single source case of the more general Millipede algorithm [95] that is used
for high-energy track reconstruction, where it segments an extended track into a series of point-like
energy depositions along the track.

Assuming a cascade-like energy deposition E at the vertex position ~x and time t, pointing into the
direction (ϑ, ϕ), the expected number of photons Bcscd

j (~ri, ~x, t, ϑ, ϕ) per unit energy is retrieved from
Photonics (see Sec. 4.3.5) for every DOM i that registered photons in the event and for every time bin
j. The total number of expected photons is then

µi j = Bcscd
j (~ri, ~x, t, ϑ, ϕ) Ecscd + ν j , (4.5)

where ν j is the expectation of noise hits.
From this, a Poisson likelihood is constructed according to

L =

# hit DOMs∏
i

# time bins∏
j

µ
ni j
i j

Γ
(
ni j + 1

) e−µi j , (4.6)

with ni j being the actual number of photons registered on DOM i in the time bin j. A fitting routine can
now search for the values of (~x, t, ϑ, ϕ) that maximise L, corresponding to the most probable values of
the true cascade parameters.

Those fitting routines search for the maximum value of L5 in a multidimensional parameter space in
an iterative process. In general, the procedure is to choose a test point in the parameter space, where the
likelihood and its gradient vector are evaluated. After that, the test point is moved into the direction of
the gradient by a distance depending on its magnitude. This procedure is repeated until the likelihood
difference between two subsequent test points is below a predefined convergence value, indicating that
the minimum has been found, or the maximum number of iterations has been reached.

In PINGU, Monopod is run with four iterations using the output of CLast as seed, i. e. the first test
point. Yet obviously it cannot fully describe all of the expected events since its assumption about
the event topology does not contain the possibility of an outgoing muon track. But since muons at
PINGU energies of few GeV have a range at the order of ten or twenty metres, comparable to the string
spacing, they distort the point-like event topology only slightly. Thus Monopod still gives a reliable
estimate of the vertex position and direction, sufficiently precise for the first loose vertex containment
cut (Sec. 4.4.1).

4.3.7 HybridReco/MultiNest

The final, most accurate and involved reconstruction currently existing for PINGU events is called
HybridReco/MultiNest, or just MultiNest. It consists of two different ingredients: the HybridReco
event hypothesis and the MultiNest minimiser.

5 Usually, and computationally more conveniently, they search for the minimum of − logL. Hence they are commonly called
“minimisers”.
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HybridReco

To conform to the actual event topology in PINGU, it is necessary to add the possibility of an outgoing
muon of finite length to the pure cascade hypothesis that was used for the previous reconstructions.
Since its starting point is fixed at the cascade vertex, the muon adds only three variables to the problem:
its direction, again defined by two angles, and its length. However, at PINGU energies the kinematic
angle between the hadronic cascade and the outgoing lepton is only a few degrees [96], far below the
directional resolution of the reconstruction (see Sec. 6.2). Thus the directions of muon and cascade are
assumed to be aligned to reduce complexity. In addition, this alignment will cause the reconstructed
direction to be a weighted average of the cascade and track direction, which is likely to be closer to the
true neutrino direction—which is the relevant quantity—than the two separate directions.

Hence, only the muon energy Eµ, which is proportional to its length as the muon is a minimum
ionising particle, is added to the set of parameters. This means that the expression for the expected
number of photons on a certain DOM (4.5) has to be extended by a term representing the muon track:

µi j = Bcscd
j (~ri, ~x, t, ϑ, ϕ) Ecscd + Btrack

j (~ri, ~x, t, ϑ, ϕ) Eµ + ν j , (4.7)

Although only one variable is added with respect to the cascade reconstruction, it turns out that finding
the maximum likelihood gets much more difficult than before. The reason for this is the fact that two
different photon emission patterns, Bcscd for the hadronic cascade6 and Btrack for the muon, have to be
considered in the hypothesis where it is unclear whether a given photon originates from the cascade or
the muon. Additionally the typical distances in PINGU are so small that photon scattering plays only a
small role and most of the photons reach the DOMs on an undisturbed path, so-called “direct hits” or
“direct photons”.

As an illustration, consider a photon that is detected close to the muon track in its direction of travel.
Since the muon moves with the speed of light in vacuum, but the photons only with the speed of light
in ice, cice = cvac/nice, a direct photon from the muon would arrive earlier than one from the vertex,
although it was emitted later. On the other hand, a photon whose arrival time is compatible with a direct
hit from the vertex could also originate from the muon if it was scattered on the way and hence took a
longer path to its detection. This leads to ambiguities in the photon distributions.

Even more importantly, the large number of direct hits causes strong discontinuities in the likeli-
hood space, as it is very probable that a given photon arrives undisturbed at the earliest time allowed
by causality, but forbidden to arrive even a short time earlier. These sharp edges are problematic for
conventional minimisers as described in Sec. 4.3.6, which tend to “get stuck” in local minima of the
likelihood space during their iterations.

MultiNest

A robust way to handle such a challenging likelihood profile and reliably find its global maximum is
offered by the MultiNest algorithm [97, 98]. Instead of starting with a seed point and trying to move it to
the maximum along a path following the direction of the local gradient, MultiNest uses an ensemble of
active points distributed over an active region in the parameter space to infer the shape of the likelihood

6 The value of Bcscd returned by Photonics always assumes a fully electromagnetic cascade, however the event signatures
in PINGU always have a hadronic cascade that is overlaid with an electromagnetic one in νe/ν̄e and ντ/ν̄τ CC events. In
HybridReco, the reconstructed energy is corrected to correspond to a fully hadronic cascade. Since hadronic cascades
contain more neutral particles and hence have less light output per energy, this leads to a slight overestimation of the
neutrino energy in νe/ν̄e CC events. In ντ/ν̄τ CC events, this effect is overcompensated by the energy carried away by the
outgoing neutrino.
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Figure 4.6: Cartoon illustrating the MultiNest sampling process. (a) – (d) show the shrinking sampling region
with the iso-likelihood contours approximated by ellipses. In (e) the sampling region has been separated into two
distinct active regions. Figure taken from [97].

and then tries to shrink this region down to the maximum.
The algorithm starts off with evaluating the likelihood values at the initial ensemble of points in

parameter space. From this, an elliptical iso-likelihood contour is estimated from the points with the
lowest likelihoods, as shown in Fig. 4.6a. Then the contour is scaled down by a certain factor, Fig. 4.6b,
and the points which are now outside the contour are replaced by new points distributed evenly within
the smaller contour. This procedure is repeated until the likelihood values of all active points are inside
a sufficiently small range, indicating that the maximum has been found, or the number of iterations has
reached the allowed bound.

A powerful feature of the MultiNest algorithm is that it can combine several overlapping ellipses into
one iso-likelihood contour, and hence efficiently map out irregularly shaped maxima, and even identify
sub-samples of active points belonging to different local maxima. If such sub-samples are detected, the
active region is split into several distinct regions, as shown in Fig. 4.6e. Then the different regions are
optimised in parallel, and if at some iteration it turns out that one of the local maxima is significantly
lower than the others, the corresponding region gets removed again.

Figure 4.7: Example of MultiNest treating a likelihood landscape with two distinct, sharp maxima (a). In (b),
the starting ensemble of test points is shown in red and the maximum likelihood points from the two isolated
sub-samples evolving during successive iterations of MultiNest in green and blue, respectively. Figure taken from
[97].

Due to these possibilities, MultiNest is suited to find the maximum likelihood solution of the Hy-
bridReco hypothesis for events in PINGU, where sharp and irregularly shaped maxima commonly oc-
cur. Also the ambiguities described above can be handled reliably via the technique of disjoint samples
following two possible solutions of the problem in parallel. An example showing MultiNest operating
on an artificial likelihood landscape with sharp edges and two separated maxima is shown in Fig. 4.7.
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4.4 Event Selection

Since in PINGU the expected rate of neutrino events is on the order of 1−2 mHz, corresponding to about
five neutrinos per hour, while background events, the vast majority caused by atmospheric muons, will
be triggered at several kHz7, an efficient background rejection algorithm is essential. At the same time,
one has to make sure that a large fraction of the neutrinos carrying the neutrino mass hierarchy signal
pass the imposed cuts—since it is only a second-order effect event statistics are of great importance—
and that the signal in the data is not destroyed or changed by the cuts.

For the data samples used in this study, a two step selection has been applied [91]. The rationale
for this approach is the efficient use of computing resources. At least the first part of the data reduc-
tion has to be run directly at the South Pole due to the limited bandwidth for data transmission to the
northern hemisphere. Hence the computing for this part has to be lightweight, as computing resources
in Antarctica are scarce as well. After the easily identifiable background events have been removed,
more involved reconstructions can be run on the remaining data, whose results will be used for a refined
second event selection and eventually in the analysis of the final data sample.

4.4.1 Step 1

The first set of cuts is based on the rather fast CLast and Monopod reconstructions and on the topology
of the charge distribution in the detector itself. The cut variables have demonstrated their discrimination
power in previous DeepCore analyses, in which atmospheric neutrino oscillations have already been
measured at higher energy [62].

zCLast < −200 m: The very first cut requires the event vertex reconstructed by the CLast algorithm to be
below – 200 m in IceCube coordinates, which is 20 m below the topmost PINGU DOMs. Since
atmospheric muons enter the detector from above moving downwards, their vertices tend to be
reconstructed at the highest possible location while the neutrinos that PINGU is interested in have
travelled through the Earth and interact inside the detector volume, pointing upwards.

C2QR6 > 0.5: The next cut is the so-called “C2QR6” quantity being larger than 0.5. It is defined as
the fraction of the total PMT charge in the event that has been accumulated within the first 600 ns,
while the two very first hits are ignored. Muons are usually travelling through the detector on an
extended path and generate Cherenkov light evenly along it, so that usually only a small fraction
of it is recorded during the first 600 ns8. Neutrinos on the other hand deposit a large fraction of
their energy in the hadronic cascade that only lasts for few ns.

ztravel > −30 m: For the third cut, the mean spread in z of all hits is calculated relative to the mean depth
of the first quartile of hits in the event. The cut is passed if this value is larger than – 30 m, meaning
that the the topology of the event is not too strongly pointing downwards. Again this disfavours
muons travelling through the detector from top to bottom while retaining neutrinos coming from
below.

t90 % < 2 µs: This cut requires the time from the start of the event after which 90 % of the total charge
has been accumulated to be less than 2 µs. Again the reasoning is that background muons deposit
their energy evenly on their rather long path through the detector, while neutrinos are almost
point-like sources in both location and time.

7 In IceCube, the trigger rate is ≈ 3000 Hz.
8 During this time, a muon propagates ct ≈ 180 m.
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Figure 4.8: Selection efficiency for events of all interaction channels with contained true vertices.

rMonopod < 95 m: Looking at the secondary Monopod reconstruction, the final cut at the first level se-
cures that the event is contained in the detector volume not only vertically, but also horizontally.
This horizontal containment is considered to be fulfilled if the reconstructed vertex is not farther
than 95 m from the detector centre at (50 m, −35 m) in the xy direction. The containment assures
that the event has the possibility to be successfully reconstructed by the MultiNest algorithm,
which has to be run prior to the second cut level.

4.4.2 Step 2

The intention of the second set of cuts is not so much to reject background events, which is the focus
of the first cut level, but rather to select well-reconstructed events whose quality is sufficient for the
final analysis. Therefore, all the cuts in the second step are merely containment cuts, assuming any
non-neutrino event fulfilling the strict containment has already been recognised and removed in the first
step. The reference reconstruction for the following cuts is the MultiNest reconstruction (Sec. 4.3.7)
that has been run on all events passing the first stage of cuts.

−500 m < zvertex < −180 m: The upper boundary of the vertical containment, as shown in Fig. 4.4, has
been loosened with respect to the zvertex < −200 m cut in step one, where the stricter bound was
necessary due to the strong downgoing background contamination. The lower boundary has been
introduced since events originating from far below the instrumented volume generally have poor
reconstruction quality: only photons that have travelled far through the ice and hence are subject
to multiple scattering contribute to the signal recorded in the detector.

rvertex < 85 m: The horizontal containment, shown in Fig. 4.2, has been tightened by 10 m compared to
the first step. Since the reconstructed zenith angle of the neutrino is a key variable in the mass
hierarchy analysis, one needs to make sure that this quantity is reconstructed as accurately as
possible. This can not be guaranteed for events that are so close to the edge of the detector that
they are recorded only partly.
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ϑzenith ≥ π/2 (optional): For the mass hierarchy analysis, neutrinos that have undergone oscillations in
a matter potential have to be selected. This means that only events that are reconstructed as upgo-
ing and hence have passed through the Earth will be selected for the final data sample. However,
the downgoing neutrino sample can still be used as a control region, e. g. for the normalisation of
the atmospheric neutrino flux or to estimate the remaining background contamination at the final
cut level.

The probability of passing all these cuts apart from the final directional cut is shown as a function of
neutrino energy in Fig. 4.8 for events whose true interaction vertex is inside PINGU’s fiducial volume
as defined by the containment cuts above. νe and ν̄e events show the typical behaviour with a steady
rise at low energies that reaches a plateau of ≈ 85 % efficiency slightly below 10 GeV. νµ and ν̄µ events
behave similarly at low energies, but above ≈ 20 GeV the selection efficiency starts to decrease again
as the event topology becomes less and less point-like with increasing energy of the outgoing muon.
The prominent muon track increases the event’s probability to fail especially the cuts on C2QR6 and
t90 % described in Sec. 4.4.1. For ντ and ν̄τ events, the most prominent feature is the sharp cutoff at
≈ 3.5 GeV. This is of kinematic nature, as a tau lepton with a rest mass of 1.78 GeV [27] has to be
produced in the interaction between a massless neutrino and a nucleon at rest. Due to baryon number
conservation, a nucleon has to be present in the final state as well, which leads to the following threshold
energy (assuming a proton in both initial and final state):

s = m2
p + 2Eνmp

!
= (mτ + mp)2 (4.8)

⇒ Eν =
(mτ + mp)2 − m2

p

2mp
= 3.46 GeV (4.9)

Neutral current events of all flavours finally show a behaviour similar to νe and ν̄e CC events as they
correspond to point-like emissions of light as well, yet their turn-on until the efficiency plateau is reached
is much slower due to the missing energy carried away by the outgoing neutrino.

4.4.3 Particle Flavour Identification

Since in PINGU the main oscillation channels are muon neutrinos converting into νe or ντ, which are
all selected by the event selection strategy described above, it is necessary to reconstruct the flavours
of the neutrino events in the final data sample. As shown in Sec. 2.3.2, however, PINGU can only
distinguish between track-like events corresponding to νµ CC interactions with a muon in the final state
and cascade-like events, made up from of νe and ντ CC events and NC events of all flavours, which lack
the outgoing muon and consist of a cascade only, and possibly missing energy in form of an outgoing
neutrino.

To make this discrimination as efficient as possible, a boosted decision tree [99] has been set up to
generate a single cut variable from the combination of six input variables, all carrying information on
the topology of the underlying event [100]. Three of these variables are based on the distribution of the
reduced arrival times tred

i of the DOM hits (~ri, ti) in the event with respect to the reconstructed vertex
(~x, t),

tred
i = ti − t − |~ri − ~x|/c , (4.10)

while the remaining three refer to the result of the MultiNest reconstruction:

Early hit charge: The number of DOM hits in the time window [−200, −6] ns (i. e. before) relative to
the reconstructed vertex time. Track-like events tend to have a larger number of these early hits
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since the muon travelling through the detector and hence emitting light over a longer time causes
a bias towards late vertex times. Then direct hits from the cascade can be registered prior to the
reconstructed interaction vertex (cf. Sec. 4.3.7).

Very late hit charge: The number of DOM hits in the time window [200, 20000] ns relative to the
reconstructed vertex time. Track-like events tend to have a larger number of very late hits as well,
as the total light deposition is spread out over a longer time span due to the muon.

Time to accumulate 10 % of the total charge: In cascade-like events, light deposition happens at a
more or less singular point in space and time, such that the first 10 % of the integrated PMT charge
are accumulated faster than in spread-out track events.

Reconstructed muon length: The propagation length of the muon reconstructed by MultiNest be-
fore it has deposited all its energy and decays. Obviously, this value should be larger for true
track events while cascades should ideally contain a muon of zero length.

Muon fractional energy: The fraction of the total reconstructed energy that is accounted to the muon,
Eµ

Eµ+Ecscd
. Similar to the above, this is a measure of how prominent the muon features are in the

event and is close to zero for cascades.

Best vs. cascade-only likelihood: For the best fit parameters found by MultiNest, the likelihood of
the cascade-only hypothesis is evaluated by setting the muon energy to zero and scaling up the
cascade energy accordingly. The larger the difference to the actual value of the best-fit likelihood
including a muon, the more probable that a muon is contained in the event.

4.5 Next-Generation Optical Modules

Currently two different prototypes of optical modules are supposed to be deployed in PINGU. The first
one, called WOM (Sec. 4.5.1), is a novel approach to enhance the photon collection efficiency by using
passive components. The other one, called mDOM (Sec. 4.5.2), is an adaptation of the Km3NeT optical
module [101] whose shape has been changed from spherical to cylindrical in order to fit into the holes
drilled for the PINGU strings.

Both types of modules will be described in more detail below. In Sec. 6.4, the performance of a
PINGU detector consisting fully of these next-generation modules will be investigated.

4.5.1 Wavelength-shifting Optical Module (WOM)

A description of the wavelength-shifting optical module including estimates of its photon detection
capabilities has already been published as a conference contribution [103], with the author of this thesis
as main author. Thus this section will closely follow said publication, with updated plots and figures
reflecting recent findings.

The main idea of the WOM is to increase the sensitive area of a PMT by using passive components
that act as light collectors and concentrators (a sketch of the module design is shown in Fig. 4.9b). Due
to Liouville’s theorem, mirrors or lenses can not be used for this purpose. However, by introducing a
wavelength shift (at the cost of a short time delay), this limitation can be overcome.

The main design component are tubes that have wavelength-shifting properties. These tubes collect
Cherenkov photons on their outer surface. The Cherenkov photons, which are mainly in the UV regime,
are absorbed and then re-emitted isotropically at a larger wavelength within the tube. The isotropic
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(a)

  

PMT and Readout
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Figure 4.9: The (a) mDOM and (b) WOM module concepts. Graphics taken from [102] and [103], respectively.

emission ensures that a large fraction of the photons, which were incident roughly perpendicular to the
surface, will now be captured inside the tube and then guided towards the end via multiple total internal
reflection.

At both ends of the tube, small high-efficiency PMTs will be placed that read out the incoming
photons. Since their spectrum has been shifted away from UV towards the optical blue, it is now better
suited for readout by conventional PMTs as those are usually most sensitive in the optical blue and
green.

The whole assembly will be enclosed by a transparent pressure vessel that protects the components
from physical damage. It will also ensure that the wavelength-shifting tube is surrounded by a small
gap of air and not in direct optical contact with the outside (e. g. the glacial ice). Although an optical
contact to the surroundings usually is desirable to gather as many photons as possible, in this case a
large difference in refractive index is needed to achieve efficient total internal reflection.

The three most important components of the WOM, for which details of their properties will be
discussed, are:

• the pressure housing

• the PMT

• and the wavelength-shifting tube.

For the pressure housing, apart from mechanical stability9, two requirements have to be met. Firstly,
optical transparency has to be guaranteed not only in the optical but also in the UV regime down to
≈ 250 nm. Secondly, the material needs to have a high radio purity. In regular glass, 40K is a common
contamination and its decay would give rise to a very high module noise rate. It turns out that fused
quartz glass is a very good choice, having a transparency of 90 % at 250 nm and an activity of only
0.02 Bq/kg [104].

A possible choice for the PMT is a prototype manufactured by the Hamamatsu corporation that has
a novel photocathode with enhanced green sensitivity [105]. Although for this prototype no noise mea-

9 Static pressure of up to 10000 psi can occur during the freeze-in process when deploying in deep Antarctic ice.
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Figure 4.10: Capture efficiency and output spectrum of a 20 mm diameter fused quartz glass tube coated with
EJ-298 wavelength-shifting paint.

surements at low temperature are available, for similar models typical noise rates are reported to be
below 1 Hz per cm2 of cathode area at a temperature of −30 ◦C [106].

The wavelength-shifting tube can be made of quartz glass as well although the wall thickness can
be much thinner than for the outer cylinder, since there is no pressure inside. This inner cylinder will
be covered by a thin film of wavelength-shifting material. First tests have been done with samples
produced by dip-coating 20 mm and 5 mm diameter glass tubes with EJ-298 wavelength-shifting paint,
which consists of a fluorescent dopant and a PVT base [107]. The film thickness is ≈ 50 µm, its surface
roughness RMS has been measured with an AFM to be 3 nm. The wavelength shifter itself is an organic
material with an inherent activity of 0.4 Bq/kg [108], yet its contribution is negligible due to the thinness
of the layer. Hence the noise rate of this component is dominated by the quartz glass tube.

To calculate the performance of a fully assembled WOM, the efficiencies of the individual parts have
to be combined:

Photon capture efficiency The photon capture efficiency (CE), is defined as

CE(λ) =
] detectable photons

] photons injected at outer surface
. (4.11)

This quantity has been measured in a lab setup using a monochromator with wavelength range
250 – 1200 nm and two identical photo-sensors, read out via lock-in amplifiers. Details of the
experimental setup for this measurement and the extraction of the capture efficiency are given in
App. A.1 and A.2, respectively. The emission spectrum and capture efficiency as a function of
wavelength are shown in Fig. 4.10 for the 20 mm sample described in the previous section. For
the 5 mm sample, the results are identical within the precision of the measurement.

The peak efficiency of ≈ 23 % has to be compared to the theoretical maximum, which, assuming
that all incoming photons are absorbed by the active dye and then re-emitted isotropically with
100 % quantum efficiency, and ignoring any transport loss, is given by the fraction of solid angle
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where total internal reflection occurs:

CEmax = cos(ϑc) = cos
(
arcsin

(
nair

nglass

))
≈ 75 % . (4.12)

The decrease in efficiency down to ≈ 8 % below 350 nm is assumed to be due to re-absorption
and/or UV absorption inside the PVT base of the paint. This should be reducible by thinning
the paint layer and future R&D for the dye. An improved production scheme allowing for thinner
layers is under development, and first studies with custom-made paint mixtures combining several
dyes that are active in different wavelength regimes have been done [109].

PMT readout efficiency To account for the fact that the captured photons coming out at either end
of the wavelength-shifting glass tube will be read out by PMTs, its (normalised) output spectrum
(also shown in Fig. 4.10) has to be convolved with the quantum efficiency of a realistic PMT. This
gives the fraction εPMT of photons coming out of the wavelength-shifting tube that are actually
detected by the PMT. Using the data provided by Hamamatsu for their R7600-EG prototype [105],
the readout efficiency can be calculated to be εPMT = 30.8 %.
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Figure 4.11: Relative angular acceptance (a) and full module photo-detection efficiency at optimal illumination
angle (b) of WOM and IceCube DOM.

Angular efficiency The angular acceptance εΩ of the WOM can be calculated with Fresnel’s equa-
tions. For this a homogeneous, parallel bundle of light incident onto the WOM at an angle ϑ
w. r. t. its longitudinal (i. e. vertical) axis is assumed. The acceptance at this angle can be calcu-
lated by integrating the transmission probability from ice (n = 1.33) through glass (n = 1.48) into
air (n = 1.0) over the whole visible surface of the WOM, including the fact that the WOM appears
shortened by a factor of sin(ϑ) at angles different from 90◦. This calculation is carried out in detail
in App. A.3. Note that εΩ only covers the propagation of photons from the surrounding ice into
the air gap, since the penetration from air into the actual wavelength-shifting tube is included in
the measured capture efficiency described above.

In Fig. 4.11a the relative acceptance is shown w. r. t. the maximum for the WOM and an IceCube
Digital Optical Module (DOM), the photosensor module used in IceCube [93]. For the WOM, a
maximum acceptance εΩ(max) = 70.1 % is achieved at ϑ = 90◦. Averaging the relative angular
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acceptance shown in Fig. 4.11a over all angles of incidence, the mean angular acceptances are
ε̄Ω(WOM) = 57.5 % and ε̄Ω(DOM) = 34.1 %, respectively.

To obtain the detection efficiency of the fully assembled module, the three efficiencies discussed
above, CE, εPMT, and εΩ, have to be multiplied:

ME(λ) = εΩ(max) · εPMT ·CE(λ) . (4.13)

The result, assuming optimal illumination (i.e. ϑ = 90◦), is shown in Fig. 4.11b, compared to the
efficiency of an IceCube DOM at its optimal illumination angle (ϑ = 0◦).

Comparing the module efficiencies of WOM and IceCube DOM in Figs. 4.11a and 4.11b, at first sight
the WOM does not provide an improvement in photon collection efficiency. However, one has to keep
two things in mind:

First, the WOM can be produced in a very large size since its size-critical components are just two
glass tubes (pressure vessel and WLS painted inner tube), that are easily scalable. The size of the DOM
on the other hand is given by the size of the enclosed PMT which can hardly be pushed much further at
reasonable cost10.

Second, the WOM is more sensitive in the UV below ≈ 370 nm. As the photons that are to be de-
tected stem from Cherenkov radiation, their spectrum is proportional to 1/λ2. Accounting for this initial
spectrum when calculating the mean module efficiency

ME =

∫ 600 nm
250 nm ME(λ) dλ

λ2∫ 600 nm
250 nm

dλ
λ2

, (4.14)

the performance of the WOM improves significantly w. r. t. the IceCube DOM.
Assuming a WOM with a diameter of 20 cm and a length of 2 m as above and, for comparison, a

DOM with 30 cm diameter [83], one can calculate the full effective area of WOM and DOM for an
isotropic Cherenkov spectrum between 250 and 600 nm. The results are shown in Tab. 4.1.

Table 4.1: Comparison of WOM and IceCube DOM properties for a Cherenkov spectrum between 250 and
600 nm.

Module ME ε̄Ω Eff. Area Noise

WOM 1.57 % 57.5 % 36.1 cm2 ≈ 10 Hz
DOM 5.36 % 34.1 % 12.9 cm2 800 Hz

Hence in terms of total effective area,

Aeff = ME · ε̄Ω · Axsec , (4.15)

one WOM with a cross-section of Axsec = 2RL = 4000 cm2 is the equivalent of about three IceCube
DOMs (Axsec = 707 cm2).

In summary, the WOM concept offers a technological solution to obtain a large area single photon
sensor with exceptionally low noise rate. First measurements with off-the-shelf components already
10 This is mostly due to the deployment in the antarctic glacier: Larger spherical DOMs need larger diameter drill holes,

dramatically increasing the costs for drilling.
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show promising results, yet the photon sensitivity of the module should be improvable especially in the
UV range where the Cherenkov spectrum is peaked. This can be achieved by adding UV-active dyes
to the paint mixture and improving the overall sample quality, avoiding the loss of already captured
photons. Thus, future work will concentrate on the optimisation of the film coating, the choice of
dyes, as well as on the proof of long term stability and large scale expandability. In the long term, the
WOM technology is expected to enhance the number of detected photons per event by a factor of a few
compared to the DOMs used in IceCube and PINGU.

4.5.2 Multi-PMT Optical Module (mDOM)

Comparing the mDOM, short for Multi-PMT Optical Module, to the standard PINGU DOMs, the main
difference is that instead of one single large PMT, a total of 41 small PMTs with 3" diameter will be
used for photon detection, see Fig. 4.9a. The advantages from this layout are that the angular acceptance
covers almost every direction, in contrast to the downwards-pointing single PMT that has no sensitivity
for photons arriving from above [102].

In addition, the use of more than one PMT per module allows for a very effective noise reduction. If
one only counts module hits where at least two different PMTs on the same module have registered a
photon within a very short coincidence time, the most important sources of module noise can be strongly
suppressed: Both radioactive decays inside the PMT glass housing and random electronic noise are
restricted to one PMT at a time and hence vetoed with close to 100 % efficiency.
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CHAPTER 5

Simulation

As this thesis is about estimating the performance of the PINGU detector before it is actually built, the
estimate has to be based on simulations. In this chapter, the simulations used to generate the results
reported in Chapter 6 will be described in detail.

The chapter, as the simulation process, is divided into two sections. In Sec. 5.1 the existing and well-
established IceCube Monte Carlo (MC) chain will be discussed, which has been adopted for PINGU
simulations. Here, individual neutrino events are generated and their output of Cherenkov photons
is modelled. After propagating the photons through the ice, the resulting pattern of triggered optical
modules is processed through the standard reconstruction and event selection specified in Secs. 4.3
and 4.4, respectively. The outcome of this event-by-event MC, i. e. the effective areas, reconstruction
resolutions, and particle identification efficiencies for all neutrino flavours, are then used as input for the
second part of the detector simulation.

The Parametric PINGU Analysis, PaPA in short, was written specifically for the rapid analysis of
PINGU’s neutrino mass hierarchy sensitivity including a variety of systematic parameters. Since prop-
agating these through the full MC chain would be too time-consuming, an effective detector simulation
was implemented. Instead of operating on individual events, the expected event distributions are gener-
ated directly, based on the detector performance retrieved from the MC data. PaPA will be described in
detail in Sec. 5.2.

5.1 The IceCube/PINGU Simulation Chain

5.1.1 Event Generation

The first step in the MC chain is to model the interaction of an incoming neutrino with a target nucleus
in the ice and the resulting final state, the so-called event generation. In the dedicated PINGU MC, this
is carried out using the GENIE (Generates Events for Neutrino Interaction Experiments [110]) software
package. This is already the first modification of the standard IceCube MC chain, where NuGen [111],
an IceCube-specific neutrino generator, is the default. NuGen is laid out for high-energy neutrino events
where only deep inelastic scattering has to be considered as an interaction process. In PINGU, however,
the low GeV energy range contains the interesting signal for an oscillation measurement, and here the
complex interplay between quasi-elastic and deep-inelastic scattering as well as resonant processes has
to be taken into account (see Sec. 2.3.2). Since GENIE puts much effort into modelling especially this
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energy range with great care and validating it against experimental results, it is the natural choice for
generating PINGU events.

GENIE starts off with an isotropic flux of neutrinos of a given flavour following a user-defined power-
law distribution in energy (usually ∝ E−1 or E−2 for PINGU MC [112]) on the surface of a cylindri-
cal generation volume well encompassing the full IceCube detector. Any generated neutrino passing
through the interaction volume, which is fully inside the generation volume but still contains the detec-
tor as a whole, is forced to interact inside this volume. The interaction type is chosen randomly from the
ones that are allowed and the event is assigned a weight Wi proportional to the particular interaction
probability, taking into account the generated energy spectrum. This weighting strategy makes it possi-
ble to re-weight the generated events to any desired incoming flux Φ(E, ϑ, ϕ) later on. Then the actual
weight is simply given by

wi =
Φ(Ei, ϑi, ϕi)Wi

Nevts
, (5.1)

where Nevts is the total number of simulated events.
After the interaction mechanism has been determined, the interaction itself is modelled in detail and

all involved particles, from the initial neutrino and nucleus over possible intermediate states to the final
(meta-)stable particles like pions or muons, are stored inside an I3MCTree object for further processing.
The reference to a tree comes from the fact that this object has the structure of a multiply nested list,
where every particle is the root of a sub-tree (or branch) holding the particles created in its decay.
The particles are characterised by their identities, positions, four-momenta, and state (such as ‘initial’,
‘intermediate’, or ‘final’). Additional GENIE-specific information such as the number of generated
events, Nevts, the size of the interaction volume, and others, are kept as an I3MCWeightDict object.

5.1.2 Particle Propagation

The I3MCTree generated by GENIE is handed off to the mmc module [113], which propagates the final
state particles in the tree as well as possible secondaries created in their decay through the ice until they
have deposited all their energy. The particles involved here are mainly produced in the electromagnetic
and hadronic showers, as discussed in Sec. 2.3.2. These are electrons, photons, and pions as well as
muons and taus. The I3MCTree is extended with the outcome of mmc, additional information being
stored as MMCTrackList and passed on to another module called clsim [114].

clsim is then used to generate the Cherenkov photons produced by the particles propagating through
the ice. Therefore, every particle is converted into a series of steps of constant velocity β = v/c, over
which Cherenkov photons are emitted according to (2.29). Usually this process of photon generation is
handled by the Geant4 package [115, 116], but can also be done using an effective parametrisation as
well.

These photons are then propagated through the ice until they either get absorbed or hit a DOM. Since
photon propagation is a process that can well be run in parallel by multiple computation threads, clsim
uses the publicly available OpenCL library [117] to outsource the calculations to GPUs, resulting in a
significant speedup compared to a simulation on CPUs. The photons that have hit and launched a DOM,
taking into account its angle- and wavelength-dependent quantum efficiency (see Fig. 5.1), are stored in
a I3MCHitSeriesMap. This object contains the registered photons and the corresponding DOM IDs;
other information such as the parent particle, wavelength, and position and angle of incidence on the
hit DOM can be stored as well. This information gets passed on to emulate the response of the actual
detector.
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5.1.3 Detector Response

(a) (b)

Figure 5.1: (a) Quantum efficiency of the IceCube DOM as a function of the photon wavelength for head-on
illumination. (b) Normalised angular dependence of the acceptance for a “bare” DOM and a DOM inside “hole
ice”, with η denoting the angle towards the centre of the PMT front. Plots taken from [93].

In PINGU simulations, all DOMs are represented by an identical copy of the standard DeepCore
DOM, having a 35 % higher quantum efficiency than the IceCube DOM (see Sec. 4.1.3). This is only
an approximation of the actual PINGU DOM, which currently only exists as a prototype, however it has
already become clear that especially the digitisation process will be simplified. Yet as the PDOM design
is not finalised, the DeepCore DOM is the closest approximation at hand.

Before the response of the DOMs gets evaluated, noise hits from both thermal electronic noise as
well as radioactive decays inside the DOM and the accompanying scintillation and fluorescence light
are added to the HitSeries with the vuvuzela module [118]. Then the DOMLauncher module [119] is
called to generate the actual DOM output.

The DOMLauncher first calls the PMTResponseSimulator submodule [120] to convert the single
photo-electron produced at the PMT cathode by a DOM hit to a charge pulse entering the DOM elec-
tronics. Here, the PMT transit time jitter is applied, which takes into account that there is a spread in the
time needed by the electron avalanche developing on the PMT dynodes to pass through all amplification
stages. This distribution is shown in Fig. 5.2a. The distribution of the amount of charge generated by a
single photo-electron is dominated by a Gaussian, per construction centred at the charge equivalent of
one photo-electron, but also contains a exponentially decreasing component of small-amplitude pulses,
as shown in Fig. 5.2b.

Once the main photon pulse has been processed, secondary effects like pre-, late, and after-pulses
are added. These result from photons hitting the first dynode instead of the photocathode, scattered
avalanche electrons hitting the same dynode twice, and ionised residual gas atoms drifting onto the
photocathode, respectively, and are offset by a specific time window from the main bunch of photo-
electrons, but causally connected. Finally, saturation effects are taken into account, which have to be
considered for events of very high energy or with an interaction vertex in the close proximity of a single
DOM.

The full PMT charge output as a function of time, or “waveform”, is then passed to the main DOM-
Launcher module, which simulates the processing and digitisation of the raw PMT signal on the DOM
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(a) (b)

Figure 5.2: Parametrisation of (a) the PMT transit time jitter distribution (in green) and (b) the single photo-
electron charge distribution as used by the PMTResponseSimulator. Plots taken from [120].

main board [119]. First a discriminator threshold and local coincidence logic are applied, deciding
whether a waveform gets digitised based on its strength and coincidence with a hit on a neighbouring
DOM. These steps will be removed in the actual PDOM since advances in technology allow a con-
tinuous readout of the PMT waveform by a single ADC instead of the multiple parallel ATWDs [82].
Finally, electronic noise in the digitisers and uncertainties in the time calibration are added and a digi-
tised representation of the waveform is created, which can then be injected in the actual reconstruction
chain described in Secs. 4.3 and 4.4.

5.2 The PaPA Code

5.2.1 Idea

As already discussed in Sec. 3.5, the primary science goal of PINGU is the determination of the neutrino
mass hierarchy, imprinted on the oscillation probability pattern of the atmospheric electron and muon
neutrinos travelling through the Earth’s matter potential. Observing such a small effect requires a precise
high-level analysis and a detailed knowledge of the detector performance.

The observable in the mass hierarchy analysis is the distribution of arriving neutrinos in the (E,
cosϑzenith) plane. The shape of this distribution is determined not only by the mass hierarchy, but also
by the true values of the other neutrino mixing parameters as well as the reconstruction efficiency and
precision of the detector. All those quantities—and especially their uncertainties—have to be taken into
account estimating the significance which PINGU can determine the mass hierarchy with.

The standard procedure to account for systematic uncertainties in IceCube is a brute force approach,
where the parameters in question get increased and decreased by an amount corresponding to the esti-
mated uncertainty. Then the simulation is re-run for each setting and the sensitivity re-evaluated. For
the mass hierarchy measurement with PINGU, however, this strategy is not applicable. The reason for
this is that in IceCube analyses usually only search for the existence of events passing a certain set of
selection criteria—it is a detection experiment, where systematics in general have a much less severe
impact compared to the search for a pattern in a large amount of data. Here, correlations between the
systematics have to be taken into account as well, while in IceCube they can be considered indepen-
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Figure 5.3: Flow chart of the PaPA simulation chain

dent. Additionally, the number of relevant systematic parameters is much higher for PINGU, since in
IceCube oscillations are not measured in such detail, and the detector itself is much better understood
as it is already operating and hence could be studied and modelled in great detail.

Thus, re-running the whole simulation chain for all possible combinations of these parameters—
which will be treated in detail in Sec. 5.2.3—is not feasible in a reasonable amount of time. This is
especially true since a comparatively large number of MC events—in the order of 106—is needed to
make a reliable estimate of the sensitivity. In case of insufficient MC events, statistical fluctuations will
exceed the strength of the imprinted mass hierarchy pattern and bias the calculated significance towards
high values, as it will be demonstrated in Sec. 6.3.5.

The basic idea how to overcome this fundamental problem is to move away from an event-by-event
MC simulation and simulate the event histograms in (E, cosϑzenith) directly, based on parametrisations
of the relevant detector quantities that are extracted from MC data. This is much faster than filling the
histograms with individual events and has the benefit of quasi-infinite statistics since the parametrisa-
tions will in general be smooth functions, resulting in inherently smooth distributions. This strategy has
been implemented in the PaPA code, which will be described in detail in the following section.

A certain amount of MC events is still needed to produce the parametrisations that are the input
to PaPA, however it has been found during the parametrisation process that about 20,000 events per
neutrino flavour are sufficient to get stable fit results. This is at least a factor of ten less than the number
of events required to reach a stable result in Sec. 6.3.5. Also, the MC simulation does not need to be
re-run for the different settings of the systematic parameters, as they are tuned within PaPA.

5.2.2 Implementation

The PaPA source code is available in the IceCube subversion repository [121], with a detailed manual
and version history maintained at the IceCube wiki pages [122]. It is written entirely in the python
programming language [123] and relies heavily on the numpy and scipy packages for numerical and
scientific computing [124, 125], with graphical output functionality based on the matplotlib library
[126].
PaPA employs a staged processing procedure following the logical ordering and emulating the ef-

fects of the multiple physics processes that are involved in the actual measurement, as illustrated in
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Fig. 5.3. The code itself is split into two main parts that are run separately. The first part is the
PhysicsSimulation, responsible only for the calculation of neutrino oscillation probabilities. In the
second part of PaPA—the DetectorSimulation—the actual event histograms as observed in PINGU
are calculated from the oscillation probabilities and detector settings.

PhysicsSimulation

In the physics simulation the neutrino oscillation probabilities in the full three-flavour mode including
matter effects are calculated, using either NuCraft [127] or AtmoWeights [77] and assuming the Prelim-
inary Reference Earth Model (PREM) [55] for the Earth’s density profile. The difference between the
two software modules is that NuCraft is more versatile in the sense that it can include the oscillation
into sterile neutrino flavours, model the generation heights of the neutrinos in the Earth’s atmosphere
in more detail, and handle a varying electron density in the Earth while in AtmoWeights this value is
fixed to 0.5 electrons per nucleon. On the other hand, AtmoWeights is much faster. After checking
consistency of the two softwares to the sub-permill level given the same input, AtmoWeights has been
selected for the baseline analysis due to its higher speed. The additional options provided by NuCraft
are not essential for the study of the neutrino mass hierarchy.

The oscillation probabilities are calculated for νe, ν̄e, νµ and ν̄µ injection, such that twelve histograms
of oscillation probabilities are obtained:

• P(να → νe/ν̄e)

• P(να → νµ/ν̄µ)

• P(να → ντ/ν̄τ)

with να ∈
[
νe, ν̄e, νµ, ν̄µ

]
. Since no CP violation is assumed1, there is no oscillation between neutrinos

and antineutrinos.
To properly sample the fast oscillations at low energies, PaPA can be set up to oversample by given

factors in energy and zenith. This means that every point at which the oscillation probabilities are
calculated is replaced by a number of evenly spaced points in the vicinity, and the resulting probabilities
are averaged over. If no oversampling is applied, the values at the bin centres are used.

As mentioned above, the calculation of the oscillation probabilities is the most time-consuming part
of the simulation as here the Schrödinger equations for full three-flavour oscillations in a varying matter
potential (see Sec. 3.3) have to be solved numerically.

To get all oscillation probabilities needed for a full analysis, the three relevant oscillation parameters
∆m2

31, ϑ23, and ϑ13 as well as the energy scale (see Sec. 5.2.3) have to be varied independently at 15
test points each. This typically takes several hours on a single CPU whereas with NuCraft this goes up
to a few days. Fortunately, the fiducial settings for the oscillation parameters do not change when the
detector parametrisation changes, meaning that the oscillation probabilities only have to be calculated
once and can then be re-used for different detector settings.

DetectorSimulation

In the detector simulation the pure oscillation probabilities calculated in the physics simulation are
converted into an actual detector response, taking into account all detector related parameters. It consists
of three major steps, as depicted by the flow chart in Fig. 5.3. At each step, a histogram in (E, cosϑzenith)

1 It has been checked that if CP violation existed, it would not be detectable with PINGU in any case.
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will be produced for every event signature that has to be considered at the respective stage. Event
histograms at all simulation stages are shown in Fig. 5.4.

Truth Histograms The first step is to calculate the true rates of events triggering the detector. There-
fore, spline fits are generated for the azimuth-averaged atmospheric neutrino flux tables by Honda et al.
[128, 129], from which then the fluxes for νe/ν̄e and νµ/ν̄µ can be retrieved. These fluxes are multiplied
by the oscillation probabilities P(να → νβ) calculated in the physics simulation to obtain the flux for
each neutrino flavour at the detector:

Φβ, det =
∑
α

Φα, atm P(να → νβ) (5.2)

To obtain event rates, the neutrino fluxes are then multiplied by the effective areas of PINGU for
νe/ν̄e, νµ/ν̄µ and ντ/ν̄τ CC interactions as well as νX/ν̄X NC—the four different interaction channels—
after background rejection cuts (cf. Sec. 4.4). The effective area, a function of neutrino energy and
zenith direction, is defined as the collection area an ideal detector identifying every neutrino passing
through it would need to have in order to achieve the same event rate as PINGU. For a given interaction
channel, it can be calculated according to

Aeff(channel) =
∑
target

Ntarget σtarget, channel εchannel , (5.3)

summing over the possible targets, protons and neutrons. Here, Ntarget stands for the total number of the
respective targets inside the detector volume, σtarget, channel is the interaction cross section in the given
channel, and εchannel is the efficiency which interactions occurring inside the detector actually pass the
triggering, reconstruction, and event selection process with. Although the selection efficiency is usually
of the order of 80 % [130], see Fig. 4.8, the effective area is much smaller than the geometrical size of
the detector as the interaction cross sections for neutrinos are extremely small (see Sec. 2.3.1). Hence,
most neutrinos pass the detector without any interaction.

The number of expected events per lifetime t in a given channel can, thus, be calculated by

Nνα CC = Aeff(να CC) Φα, det t (5.4)

NνX NC = Aeff(νX NC)
∑
α

Φα, det t (5.5)

for the three charged and one neutral current channels, respectively. Finally, the histograms for neutrinos
and anti-neutrinos in the same interaction channels are added since PINGU will not be able to distinguish
between them. Also in terms of reconstruction quality and flavour identification (see below) there is no
difference between neutrinos and anti-neutrinos.

Since both the fluxes and the effective areas are functions of E and cosϑzenith, the result of this
simulation step are four 2D histograms, one each for the four channels νe + ν̄e CC, νµ + ν̄µ CC, ντ + ν̄τ
CC, and νX + ν̄X NC, examples of which are shown in the second row of Fig. 5.4.

Reconstructed Histograms In the next step, event reconstruction is applied to the histograms that
up to now contain true neutrino energies and directions. This is done by smearing the true histograms
with a kernel2 whose shape depends on the true energy and zenith angle of the event, i. e. the position in
the histogram. There are two different ways how these kernels can be handed over to PaPA:

2 A smearing kernel can be interpreted as a binned point spread function.
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Figure 5.4: Event counts in one year of PINGU lifetime at the different simulation stages, assuming normal mass
hierarchy. From top to bottom: Truth Histograms without and with oscillations, Reconstructed and Analysis
Histograms. The variables are true neutrino energy and direction for the upper two rows of histograms and
reconstructed energy and direction for the bottom ones. For details, refer to the text.
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(a) Parametrised point spread functions.
These have to be fitted from MC data and generally take the form of a double Gaussian for both
energy and cosϑ to properly account for the tails of the reconstruction distributions:

PSF = (1 − f ) · exp
− (x − µ1)2

σ2
1

 + f · exp
− (x − µ2)2

σ2
2

 (5.6)

The five parameters (two mean values µi, two widths σi, and the relative normalisation f ) are
supplied to the code as a function of true neutrino energy.
Here it can happen that events are “leaking” out of the histograms. At the edges of the energy range
this effect can be neglected since the event rates are small anyways (due to low flux/small effective
area). In the directional dimension, losing events at the horizon is accepted since mis-reconstructed
events will be also be lost in the real experiment due to cutting the analysis at the horizon. Events
that would be lost at the zenith are reflected back into the histogram, as events migrating “over the
zenith” will flip the sign of their azimuth angle (which is irrelevant) and move back to larger values
of the zenith angle.

(b) Tabulated point spread functions.
If the MC statistics is sufficient, i. e. in the order of 106 events per flavour, the resolutions can be re-
trieved directly from the MC data. This means creating a 4D histogram of true vs. reconstructed (E,
cosϑzenith), which is equivalent to the individual smearing kernel for each bin in true (E, cosϑzenith).

Option (a) is used primarily in this study, since for the PINGU geometry V36 that is the baseline for all
analyses, the amount of MC events is insufficient for option (b). Also, the parametrised reconstruction
resolutions make it possible to investigate the effects of an improved resolution within a well-defined
metric in Sec. 6.4.1. For the earlier PINGU geometry V15, however, enough MC events exists to follow
option (b) for the event reconstruction stage. This is reported on in Sec. 6.3.5, where also the effect that
an insufficient MC sample has on the calculated NMH sensitivity is demonstrated.

Example histograms after the reconstruction stage—still in the four interaction channels already
present after the previous stage—are shown in the third row of Fig. 5.4. However one has to keep in
mind that now the variables have changed from true to reconstructed neutrino energies and directions.
The reconstructed neutrino energy is given by the sum of the deposited energies of the cascade and track
as fitted by HybridReco/MultiNest. The reconstructed direction comes from the same algorithm, where
track and cascade are assumed to be aligned (cf. Sec. 4.3.7).

Analysis Histograms Up to now, the histograms are still divided into the four “effective flavour”
channels, νe, νµ, ντ CC and νX NC, each including anti-neutrinos. The final step in the detector sim-
ulation is to apply the particle flavour identification (PID). However, current tools for particle ID can
only distinguish events with an outgoing muon signature (only present in νµ CC interactions), which are
classified as tracks, from other events (cascades), as already described above (cf. Sec. 4.4.3).

So for every interaction channel, two analytic functions of the neutrino energy have to be supplied
to PaPA, giving the probabilities of identifying a neutrino of that channel and energy as either track or
cascade. If those two probabilities add up to less than one, the remaining events are assigned to an
“unidentified” channel that can be used for the analysis as well.

For the baseline settings (Sec. 6.2), the PID is a binary decision, meaning that there are no unidentified
events. In Sec. 6.3.4, the effects of an event selection producing cascade and track samples of higher
purity plus a set of unidentified events will be discussed.
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After this final stage, all key features of a real experiment (triggering, event selection, reconstruction,
and flavour identification) have been taken into account, and the analysis histograms are the best estimate
of the outcome of an actual PINGU physics run. Example histograms after this final step, also referred
to as analysis histograms, are shown in the bottom row of Fig. 5.4 and will also be used throughout
Chapter 6 to illustrate the various effects studied.

5.2.3 Systematic Parameters

The main benefit of the fast simulation provided by PaPA is that it makes the inclusion of the many
systematic parameters feasible, which are needed to correctly evaluate the mass hierarchy significance.
The parameters that were considered in this thesis can be divided into two groups. The first one contains
the physics parameters, i. e. the neutrino oscillation parameters: three mixing angles, two mass splittings,
the CP violating phase and of course the sign of the NMH. The best fit values and priors for the mixing
angles and mass splittings as listed in Tab. 3.1 are taken from [47], assuming inverted NMH as fiducial
value. The CP violating phase δCP is set to a fiducial value of zero. After having checked that their
impact is negligible, the so-called solar mixing parameters ∆m2

21 and ϑ12 as well as the CP phase will
not be left free to vary any more in order to save computation time.

The mass hierarchy needs special treatment since it is a binary quantity, yet the Fisher matrix formal-
ism (see Sec. 6.1), which will be used to quickly evaluate the simulation outcome, can only treat contin-
uous parameters. Thus the NMH needs to be converted into a continuous variable. This is achieved by
calculating the oscillation probabilities assuming normal and inverted NMH once each and propagating
both through the full DetectorSimulation chain as described in the previous section. Then a hierar-
chy parameter 0 ≤ h ≤ 1 is introduced that allows for a continuous transition between normal (NH) and
inverted (IH) hierarchy:

N(h) = hNNH + (1 − h)NIH , (5.7)

where NNH and NIH are the expected number of events in a given (E, cosϑzenith) bin of the analysis
histograms for normal and inverted mass hierarchy, respectively. All other oscillation parameters are
kept at their fiducial values.

The rationale is that while in theory any value of h other than 0 or 1 is unphysical, in practice this
definition allows to assess the deviation from the physical points, as long as these are close to the fiducial
values. It is such a measure of the hierarchy likeness, similar to a likelihood3. If no other parameters
are present, this description is mathematically equivalent to a bin-wise ∆χ2 sum as defined in [53], as it
will be shown in Sec. 6.1.3.

The second set of parameters are related to the detector, which is commonly referred to as nuisance
parameters. Most of them scale properties of the detector up or down, reflecting uncertainties in the
knowledge of the detector performance. In several cases, however, they can be interpreted as theoretical
uncertainties on, e. g., the neutrino cross sections or atmospheric flux tables. The systematic parameters
belonging to this class are, ordered according to their entry point into the simulation chain:

The energy scale sE describes a potential scaling error in the assumed relation between true and re-
constructed neutrino energy. Such a mis-scaling, i. e. a systematic under- or overestimation of the
neutrino energy can be the result of a wrong value for e. g. PMT efficiency, absorption effects in
the ice model etc. that are used to reconstruct the neutrino events. It is implemented in a way that
the true values of the energy bins that are fed to the oscillation code are scaled w. r. t. the energy

3 It can also be interpreted as a measure of the orthogonal distance of the hyperplanes in parameter spaces defined by normal
and inverted hierarchy

64



5.2 The PaPA Code

bins in the analysis according to
Etrue = sE · Eana . (5.8)

So the energy bins in the actual histograms remain unchanged, but the oscillation minima and
maxima do not appear at the expected energies. This mimics the effect of a wrong energy scale
in an actual analysis, since one would of course assume the energy scale to be correct. Note that
in PaPA, the energy scale does affect neither the atmospheric flux calculations for the South Pole,
as they are usually validated with existing IceCube data that would likely have the same energy
mis-scaling as PINGU. Nor does it change the effective areas, since their main feature, the energy
threshold for detecting a neutrino interaction, would scale in parallel with the energy bin edges.
Other accompanying effects, such as the overall normalisation of the effective area, are absorbed
in different systematic parameters.
Although the energy scale is a detector-related parameter, it has to enter at the PhysicsSimul-
ation stage already as the rescaled energy bins have to be passed on to the calculation of the
oscillation probabilities. Thus, it is the very first detector parameter in the simulation chain to be
accounted for.

The relative flux normalisation rΦ, νe−νµ represents the uncertainty on the relative contributions of νe

and ν̄e vs. νµ and ν̄µ to the total flux of atmospheric neutrinos, which is approximately 1:2. It is
applied to the un-oscillated atmospheric neutrino fluxes (cf. (5.2)) such that

Φ′α, atm = Φα, atm · (1 ± rΦ, νe−νµ) , (5.9)

with positive sign for α = νe or ν̄e and negative sign for α = νµ or ν̄µ.

The effective area scale sAeff
opens the possibility that the effective areas for all interaction channels

scale differently with energy than assumed in the generation of the MC from where they are ex-
tracted. It also partially compensates for a potential error in the spectral index of the atmospheric
flux, since it effectively alters the total number of events per energy bin as a function of energy
according to

Aeff
′ = Aeff ·

(
1 + sAeff

· E
)

. (5.10)

The relative effective area normalisation rAeff , ν−ν̄ for neutrinos and anti-neutrinos accounts for a
possible error in the relative normalisation of the neutrino-nucleon cross sections for neutrinos vs.
antineutrinos, which effectively alters the effective areas4. The effective areas are then given by

Aeff
′ = Aeff · (1 ± rAeff , ν−ν̄) , (5.11)

with the positive sign for neutrinos and the negative sign for antineutrinos. Since the relative
strength of neutrino and antineutrino interactions governs the size of the NMH signal that can be
observed with PINGU (see Sec. 3.5), this parameter is of particular importance.

The overall effective area normalisation nAeff
scales the effective areas for all channels indepen-

dently of energy:
Aeff

′ = Aeff · nAeff
(5.12)

4 Inflicting this re-normalisation on the atmospheric fluxes instead of the effective areas would have the same effect. Since
the effects are completely degenerate and uncertainties on the relative cross sections are larger than on the relative fluxes,
the flux normalisation is not treated as a parameter.

65
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Since it just evenly increases the total number of events in all channels and, hence, is fully de-
generate with the detector lifetime, it is not that interesting by itself. However, it is needed in
combination with the relative scalings mentioned above to effectively allow for separate scaling
of one single channel.
Obviously, all three parameters related to the effective area enter the calculation at the same time
during the calculation of the true event rates, represented by (5.4) and (5.5), i. e. after the oscilla-
tion probabilities have been applied.

The PID scaling sPID scales the probabilities to detect a track or a cascade signature up or down, ac-
counting for the possibility to mis-estimate the overall effectiveness of the particle ID algorithm.

The PID offset ∆PID shifts the whole particle ID function in energy to open the possibility that PID
might become effective5 at higher or lower energies than expected from Monte Carlo data. The
actual PID function is then

P′ID(E) = sPID · PID(E − ∆PID) . (5.13)

5 In particular for the correct identification of νµ CC events as track-like, the PID function has a step-like shape, with a steep
increase of the selection efficiency between 5 and 10 GeV, cf. Sec. 6.2.
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CHAPTER 6

Analysis

Now that the tools and theoretical foundations needed for the simulation of an PINGU physics run have
been presented and described, the next step is the actual calculation of PINGU’s physics capabilities, in
particular its sensitivity for the neutrino mass hierarchy. This will be done using the Fisher information
matrix, a tool to quickly evaluate the covariance matrix of an experiment where a large number of
systematic uncertainties has to be taken into account, which will be introduced in Sec. 6.1.

Thereafter, the simulation input that was used for the generation of the results is documented (Sec. 6.2)
before finally the results themselves can be presented and discussed in Sec. 6.3. Looking even more into
the future, in Sec. 6.4 the possible benefits of instrumenting PINGU with the next generation optical
modules described in Sec. 4.5 will be estimated. Finally, one can make use of the Fisher matrix’s ability
to easily combine the results of different experiments measuring the same physical effect to evaluate the
benefits gained from the joint analysis of PINGU and another neutrino oscillation experiment, JUNO
[72] (Sec. 6.5). The chapter concludes with a summary of the findings in Sec. 6.6.

6.1 Fisher Information Matrix

The Fisher information matrix, or just Fisher matrix in the following, provides a way to estimate the full
covariance matrix of an experiment and therefore the accuracy of its intended measurement in advance.
It has been widely used, especially in cosmology [131], but also in neutrino astrophysics [132]. For a
detailed discussion see e. g. [131, 133, 134].

The experiment that is to be modelled is characterised by two sets of variables:

Observables are the variables fn that will actually be measured by the experiment. In the case of
PINGU, these are the expected event counts binned in energy and zenith angle. Since the partial
derivatives of the observables w. r. t. the parameters enter the calculation of the Fisher matrix,
their dependence on the parameters has to be known either analytically or (as in this analysis)
from simulations, such that these derivatives can be determined in an analytical or numerical way.

Parameters are the variables pi that will be extracted from the measurement (i. e. from the observ-
ables). These are the physical parameters which are the actual target of the experiment as well as
nuisance parameters required to account for systematic uncertainties.
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Then the Fisher matrix is defined as:

Fi j =
∑

n

1
σ2

n

∂ fn
∂pi

∂ fn
∂p j

∣∣∣∣∣
fid.model

(6.1)

Here the σn denote the errors on the measurement of the observables. Since in this analysis, these are
the expected numbers of events in the bins n of the analysis histograms (cf. Sec. 5.2.2), fn = Nn, one can
apply Poissonian statistics where the errors are simply given by the square root of the number of events:

σn =
√

fn =
√

Nn (6.2)

The derivatives in (6.1) are evaluated at the set of “true” values of pi that are used as an input for the
simulation. This set of parameters pi is called the fiducial model and is chosen with the best existing
knowledge.

6.1.1 Properties

Once the Fisher matrix has been constructed, the covariance matrix of the experiment is obtained by
inverting the Fisher matrix. Then the full errors of the parameters σfull

i and their correlations can be read
from the covariance matrix S:

σi = σfull
i =

√
Sii =

√(
F −1)

ii (6.3)

The purely statistical error of a given parameter σstat
i (i. e. the error that is obtained assuming all other

parameters are fixed) can be calculated from the corresponding diagonal element of the Fisher matrix:

σstat
i =

√
(Fii)−1 (6.4)

External constraints on parameters, so-called priors, can easily be incorporated as well. If parameter
i has an prior σext

i , it can simply be added to the corresponding diagonal element of the Fisher matrix:

F
prior

ii = Fii +

(
1
σext

i

)2

(6.5)

This assumes that the prior is Gaussian, i. e. the underlying probability density function for the true
value of parameter pi is a Gaussian distribution with the width σext

i centred at the fiducial value of pi.
To fix one parameter completely, the corresponding row and column are removed from the Fisher matrix
before inversion.

With this, the full error on a certain parameter can be decomposed into the purely statistical part (6.4)
and the contribution arising from the uncertainties of the other parameters, denoted as systematic error
σ

syst
i below:

σ
syst
i =

√
σ2

i −
(
σstat

i

)2
, (6.6)

where σi is calculated without any possible priors on parameter i.
The correlation coefficient between two parameters i and j is given by:

ci j =

(
F −1

)
i j

σiσ j
=

σi j

σiσ j
(6.7)
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With this, the error ellipse in the (pi, p j) plane can be calculated as well. Its semi-major and semi-minor
axes a and b are given by the eigenvalues of the 2×2 sub-matrix of the covariance matrix corresponding
to the two parameters,

S(i, j) =

(
σ2

i σi j

σi j σ2
j

)
, (6.8)

which are equal to [135]

a2 =
σ2

i + σ2
j

2
+

√√(
σ2

i + σ2
j

)2

4
+ σ2

i j (6.9)

b2 =
σ2

i + σ2
j

2
−

√√(
σ2

i + σ2
j

)2

4
+ σ2

i j (6.10)

for σi > σ j. Otherwise, the roles of semi-major and semi-minor axis have to be exchanged. These
values have to be scaled by a factor α reflecting the confidence level the ellipse is supposed to represent,
e. g. CL = 68 % for a 1σ ellipse. It can be determined with

α =
√

PPFχ2, 2(CL) , (6.11)

where PPFχ2, 2 is the percent point function—the inverse of the cumulative distribution function—for
the χ2 distribution with two degrees of freedom. The rotation of the ellipse corresponds to the angle ϕ
between the pi axis and the eigenvector of the reduced covariance matrix (6.8):

tan 2ϕ =
2σi j

σ2
i − σ

2
j

(6.12)

Since the parameters pi and p j do not necessarily have the same dimension, all values in the equations
above have to taken as dimensionless, i. e. in units of actual size on a plot. For this reason, (6.12) has to
be divided by the aspect ratio of the plot before taking the arc tangent.

Another important property of the Fisher matrix is its additivity. As one can see from (6.1), where the
total Fisher matrix is given by summing the contributions from all observables, one can always add a new
measurement to the ones already accounted for just by adding the respective Fisher matrices. If there are
parameters that only appear in one of the measurements—e. g. some nuisance parameter for detector A
that does not affect detector B—the matrix of the experiment not yet having said parameter is expanded
by a corresponding row and column filled with zeroes: As the measurement does not depend on the new
parameter, the uncertainty on its value as extracted from the measurement (6.4) is 1/

√
0→ ∞. The full

covariance matrix of the combination of the two experiments is then simply given by the inverse of the
added Fisher matrices.

6.1.2 Prerequisites

As the simplicity of the Fisher matrix formalism suggests, it is not universally applicable, but an ap-
proximation that is only valid under certain circumstances. The basic requirement that has to be met is
that the fiducial model, in which the Fisher matrix is constructed, already gives a good description of
the actual “truth”. There are several criteria to judge whether this requirement is in fact fulfilled, which
turn out to all be equivalent:

69



6 Analysis

(a) In parameter space, the fiducial and true points have to be close enough, such that the dependence of
the observables on the parameters, fn(pi), can be approximated by linear functions. I. e. the partial
derivatives ∂ fn

∂pi
entering in (6.1) are the same at both points. If this was not the case, the experiment’s

“response” to the parameters would be different at the two points and hence the fiducial point was
not appropriate to make predictions about the actual truth.

(b) When constructing the likelihood landscape over the parameter space, such that

∂2L

∂p2
i

=
∑

n

∂ fn
∂pi

(6.13)

with a minimum of L at the true point, at the fiducial point the shape of L can still be approximated
by a parabola with the apex at the true point. This ensures that the error ellipses, which are nothing
else than iso-likelihood contours, are in fact elliptical.

(c) The test statistics of the experiment is Gaussian. This means that the likelihood values of an en-
semble of pseudo-experiments follow a Gaussian distribution, no matter whether they are thrown at
the fiducial or at the true point. Throwing a pseudo-experiment means in this case that a possible
“real” experimental outcome is simulated by generating a 2D histogram of events filled with random
numbers following a Poisson distribution with the means taken from the expected event numbers
generated with PaPA.

That these conditions are, in fact, fulfilled for the baseline settings of PINGU is demonstrated in App. B.
As for conditions (b) and (c) this would require a likelihood evaluation of the full parameter space1, here
the validation is restricted to a case with only two systematic parameters, ∆m2

31 and ϑ23.

6.1.3 The Hierarchy Parameter

The Fisher matrix can only handle continuous parameters pi, as the derivatives of the observables w. r. t.
these parameters enter in (6.1). For this reason the hierarchy parameter h was introduced in (5.7), making
the intrinsically binary2 neutrino mass hierarchy continuous. However it still needs to be demonstrated
that this definition leads to a result that can be interpreted in a meaningful way.

In [53], a metric is defined that allows to evaluate the sensitivity of an atmospheric neutrino exper-
iment to the mass hierarchy in terms of standard ∆χ2 statistics. For every bin of the final analysis
histograms in (E, cosϑzenith), a ∆χ is defined as

∆χ =
NNH − NIH
√

NNH
. (6.14)

The expected significance of the experiment’s mass hierarchy measurement is then given by

Sχ2 =

√∑
bins

∆χ2 =

√∑
bins

(NNH − NIH)2

NNH
. (6.15)

With the definition of h according to (5.7), from the Fisher Matrix the statistical error on h can be

1 This is not possible within reasonable computing time, which is why the Fisher Matrix approach has been chosen in the first
place.

2 By construction it can only be either normal or inverted.
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retrieved:

σstat
h =

√
(Fhh)−1 , (6.16)

with
Fhh =

∑
bins

1
σ2

b

∂Nb

∂h
∂Nb

∂h
=

∑
bins

1
NNH

(NNH − NIH)2 . (6.17)

As the pure normal and pure inverted hierarchy case correspond to h = 1 and h = 0, respectively, i. e.
the two cases that have to be distinguished differ by 1, the statistical significance (without including any
systematic parameters) retrieved from the Fisher matrix is

SFisher =
1

σstat
h

=
√
Fhh =

√∑
bins

(NNH − NIH)2

NNH
= Sχ2 . (6.18)

Thus the significances calculated according to ∆χ2 statistics, where by construction no systematic pa-
rameters are included, and from the Fisher matrix with explicitly excluding systematics are, in fact,
identical.

6.1.4 Constructing the Fisher Matrix with PaPA

To construct the Fisher matrix for PINGU primarily means to calculate the partial derivatives entering
(6.1), i. e. the derivatives of the expected number of events w. r. t. to all systematic parameters pi intro-
duced in Sec. 5.2.3 for each bin in the final analysis histograms. In order to do this, for every parameter
a set of test points3 is selected in the vicinity of its fiducial value and PaPA is run for each of these test
points while all other parameters are kept at their fiducial values.

Then for every bin b in the analysis histograms, the expected bin count Nb is fitted as a function of pi

with a parabola, i. e.
Nfit

b (pi) = c0 + c1 · pi + c2 · p2
i . (6.19)

The sought-after derivative is then simply given by

∂Nfit
b

∂pi
= c1 + 2c2 pi (6.20)

with pi at the fiducial value. As this procedure is repeated for ever parameter and every bin, it produces
all ingredients needed to finally construct the Fisher matrix.

Here another advantage of the Fisher matrix formalism becomes obvious: since all systematic param-
eters are treated independently from each other, adding a new parameter results only in a small relative
increase in computing time. The parameter space is sampled only along one-dimensional paths aligned
with the parameter axes, thus adding an extra dimension only means adding one path to the sampling.
Hence the time needed to get a result scales only linearly with the number of parameters taken into
account while for algorithms sampling the full parameter space the scaling is exponential. Using a
more graphic explanation, the Fisher matrix infers the shape of the likelihood landscape by retrieving a
cross-section in each coordinate direction and then “rotates” them assuming a parabolic shape.

3 Typically ≈ 10 different values.
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6.2 Simulation Input

In this section, the actual values of the inputs required by PaPA as described in Sec. 5.2.2 will be
presented as they were used to generate the results reported in Sec. 6.3. The detector-related inputs
were extracted from the official PINGU Monte Carlo datasets for geometry V364.

6.2.1 Atmospheric Neutrino Flux
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Figure 6.1: The atmospheric neutrino flux at the South Pole integrated over all upgoing (cosϑzenith in [−1, 0])
directions. Based on the azimuth-averaged neutrino flux tables from [129].

As already mentioned, the incoming atmospheric neutrino flux without oscillations is calculated from
the 2014 re-calculation of the flux tables published by Honda et al. [128, 129]. A plot of the flux in
the energy range covered by the PINGU simulation (1 – 80 GeV) is shown in Fig. 6.1. The flux has
been integrated over all upgoing (cosϑzenith in [−1, 0]) directions, as downgoing neutrinos arriving from
above the detector are not included in the mass hierarchy analysis. Since they do not pass through a
significant amount of matter, they do not bear any information on the neutrino mass hierarchy.

6.2.2 Oscillation Probabilities

The neutrino oscillation probabilities have been calculated using the AtmoWeights code for the PREM
Earth density profile as described in Sec. 3.5. The fiducial values of the mixing parameters used for
the calculation follow the global fit of Fogli et al. [47], listed in Tab. 3.1, with priors according to the
stated uncertainties. Example plots of the probabilities demonstrating the characteristic signature of the
mass hierarchy are shown in high resolution in that section as well, the full set of all possible oscillation
channels can be found in App. C. The binning of those plots is the same as used for the actual analysis,
which is 79 logarithmic bins in energy between 1 GeV and 80 GeV and 20 equally sized bins between
-1 and 0 in cosϑzenith. In the calculation of the probabilities, however, the binning has been oversampled
(cf. Sec. 5.2.2) by a factor of eight in energy and two in cosϑzenith.

4 These are the PINGU Monte Carlo runs 390 for νe and ν̄e, 389 for νµ and ν̄µ, and 390 for ντ and ν̄τ.
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6.2.3 Effective Areas
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Figure 6.2: Effective areas for all relevant neutrino interactions. Shown are energy (left) and zenith (right) depen-
dence.

The effective areas are extracted from PINGU Monte Carlo datasets via the OneWeight quantity mul-
tiplied by 4π, which is equivalent to a per-event effective area [136]. The zenith dependence of the
effective area is modelled by an analytic fit to the MC data, assuming that energy and zenith dependence
can be handled separately. A plot of the effective areas and their zenith dependence is shown in Fig. 6.2.

Note that the absolute values of the functions describing the zenith dependence are chosen to give a
good visual separation between the channels. In PaPA the functions get internally normalised.

6.2.4 Reconstruction Resolutions

The event reconstruction for the baseline model will be simulated by smearing the 2D event histograms
with kernels represented by the sum of two Gaussian distributions (cf. Sec. 5.2.2). The five parameters
needed to describe these Gaussians, see (5.6), are given as functions of the neutrino energy. To get the
energy dependence of these five parameters, a two-stage fitting procedure is applied.

In the first stage, all events of a given interaction channel are divided into subsets according to their
true neutrino energy, where each subset covers an energy range of 2 GeV. For each of the subsets up
to an energy of 20 GeV5, the difference between true and reconstructed energy is histogrammed and
fitted with the aforementioned kernel function. This results in values for the five parameters of (5.6)
as a function of energy. These are fitted again, now as (piecewise) linear functions of the true neutrino
energy.

After repeating the procedure for the resolution in cosϑzenith, the fit function definitions are stored
in a dictionary that serves as input to PaPA. This dictionary can be found in App. D. For the actual
fits to the resolutions, examples are shown in Fig. 6.3. In the ντ CC and νX NC interaction channels,
the reconstructed energies are biased towards too low values. This is a result of the neutrinos in the
respective final states which is not detected and hence carries away “missing energy” (cf. Sec. 2.3.2).

Although the fits are only anchored to data up to 20 GeV, they are extrapolated to higher energies.
This approach is valid as events beyond 20 GeV are so far above PINGU’s energy threshold that new
features in the description of the reconstruction resolutions are not to be expected. In addition, the mass
hierarchy signature is located at energies below 10 GeV (see Figs. 3.7 – 3.9), such that inaccuracies

5 At higher energies, the event statistics are too low for the fit to converge.
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Energy Resolution cosϑzenith Resolution
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Figure 6.3: Examples for the parametrisations of the energy (left) and cosϑzenith (right) reconstruction resolutions
for (from top to bottom) νe, νµ, and ντ CC and νX NC events. Note the bias towards low reconstructed energies
for ντ and NC.
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in the resolution parametrisations above 20 GeV do not influence the calculation of the mass hierarchy
sensitivity.

6.2.5 Particle Flavour Identification
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Figure 6.4: Track identification probability as function of energy in all four interaction channels. The straight
lines show fits to the data.

The classification of the neutrino events into track-like and cascade-like events is according to their final
score in the boosted decision tree described in Sec. 4.4.3. In the baseline detector settings, the decision
is of binary nature, meaning that the probability to classify a given event as cascade is one minus the
probability to classify it as a track.

Data points for the track identification probabilities in all channels as a function of the neutrino energy
have been provided by [137]. These data were fitted with analytic functions, the fits are shown together
with the data points in Fig. 6.4. The function definitions themselves are listed in App. E.
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6.3 Results for the Baseline Geometry

Table 6.1: Uncertainties on all systematic parameters for the baseline detector model with three years of lifetime,
ranked according to their impact on the mass hierarchy parameter h.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 3.43 × 10−1 2.33 × 10−1 2.52 × 10−1 free
rAeff , ν−ν̄ 8.9 0.00 4.73 × 10−2 4.76 × 10−3 1.47 × 10−1 5.00 × 10−2

ϑ13 [◦] 8.0 8.93 4.64 × 10−1 8.24 × 10−1 3.67 4.68 × 10−1

nAeff
7.4 0.00 1.94 × 10−2 1.99 × 10−3 1.94 × 10−2 2.00 × 10−1

ϑ23 [◦] 3.2 3.86 × 101 4.67 × 10−1 3.02 × 10−1 3.97 × 10−1 1.32
∆m2

31 [eV2] 2.7 2.46 × 10−3 6.49 × 10−5 1.77 × 10−5 1.10 × 10−4 8.00 × 10−5

rΦ, νe−νµ 2.4 0.00 1.10 × 10−2 5.12 × 10−3 1.01 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 1.1 0.00 2.19 × 10−4 1.23 × 10−4 1.82 × 10−4 free

∆PID [GeV] 0.9 0.00 1.70 × 10−2 1.58 × 10−2 6.23 × 10−3 5.00 × 10−1

sE 0.1 1.00 2.81 × 10−2 7.66 × 10−3 3.31 × 10−2 5.00 × 10−2

Using the settings described in the previous section, the Fisher matrix for PINGU can now be con-
structed with PaPA. The full, statistical, and systematic errors are for all parameters are listed in Tab. 6.1
for a nominal PINGU lifetime of three years. The parameters are ordered after their impact on the mass
hierarchy parameter h, which is defined as the square of their correlation coefficient cih (6.7) with h.
Note that for the baseline settings, the systematic parameter sPID has been excluded as it is fully degen-
erate with nAeff

: since the PID decision is binary, no channel of unidentified events exists and hence both
parameters just evenly increase the overall number of events, effectively.

From the first line of Tab. 6.1, one can read off the expected significance of PINGU’s mass hierarchy
measurement by inverting the full error (see Sec. 6.1.3). This gives an expected significance of 2.9σ
after three years. Looking at the statistical error alone, the significance increases to 4.3σ, emphasising
the important role systematic parameters are playing in the determination of the mass hierarchy.
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Figure 6.5: ∆χ distribution in the track (left) and cascade (right) channels for the baseline settings.

Treating the track and cascade channels separately, the expected significances are 1.9σwith and 3.0σ
without systematics for the cascade and 1.3σ (3.1σ) for the track channel, respectively6. Although the

6 The full error listings corresponding to Tab. 6.1 can be found in App. F.1
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Figure 6.6: (a) Evolution of PINGU’s expected mass hierarchy significance with time and (b) full correlation
matrix for PINGU for the baseline settings.

purely statistical significances are comparable, when taking systematics into account the significance
for the cascades remains much higher than the track significance. The reason for this becomes obvious
when looking at the ∆χ distributions for both channels in Fig. 6.5. In the track channel, there are three
distinct regions driving the expected significance. These regions are separated only by small margins and
have alternating sign, while in the cascade channel most of the significance comes from one contiguous
region. Together with the fact that the cascade channel has roughly three times higher event statistics
than the track channel—62,000 vs. 22,000 neutrino events per year—this makes the cascade channel
much more robust against the impact of systematic parameters.

In Fig. 6.6a, the significances for the individual channels and for their combination are shown as
a function of time. The purely statistical significance is plotted as well, exhibiting a scaling with the
square root of the lifetime as one would expect for a counting experiment where the relative error is
proportional to 1/

√
N. The actual significances including systematics increase much slower with time

as a part of the accumulating statistics has to be “spent” in order to better constrain the systematic
parameters. However the combined analysis of the two channels still gives a much higher sensitivity
than simply adding the two individual channels in quadrature as one would do for two completely
unrelated measurements of the same quantity. E. g. for a lifetime of three years as above, the quadratic
sum of the track and cascade significances is

√
(1.3σ)2 + (1.9σ)2 ≈ 2.3σ, considerably lower than the

2.9σ for the combined analysis.
Finally one can look at the correlation matrix of PINGU. In contrast to the error listing for all param-

eters as in Tab. 6.1, here the interdependences between the parameters are in the focus. The graphical
representation in Fig. 6.6b shows, for every combination of parameters, their correlation coefficient ci j.
Using these quantities instead of the entries σi j of the covariance matrix themselves has the benefit that
due to their normalisation, cf. (6.7), the entries of the matrix are dimensionless and restricted to the
range [−1,+1], thus making them easier to interpret.

From the correlation matrix itself, several things can be learned. First, the hierarchy parameter is the
one with strongest overall correlations. This emphasises the fact that the determination of the neutrino
mass hierarchy is a very delicate measurement relying on a small effect, and that the inclusion of so
many systematic parameters is indeed necessary to get a robust result.

Furthermore, two combinations of parameters stick out due to their very strong correlation. The
first one is the relative normalisation of the effective areas for neutrinos and antineutrinos, rAeff , ν−ν̄,
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Figure 6.7: PINGU constraint on ∆m2
31 as a function of the prior on the energy scale. No prior knowledge about

∆m2
31 is assumed.

and the overall normalisation of all effective areas, nAeff
. Their anticorrelation is obvious from their

definition: rAeff , ν−ν̄ increases the number of neutrino events while decreasing the number of antineutrino
events. Since PINGU cannot distinguish between those and the cross-section for neutrinos is higher
approximately by a factor of two (see Fig. 2.7), the total number of events is increased, which can be
compensated by decreasing nAeff

. Only the MSW resonance oscillation causes an asymmetry between
neutrinos and antineutrinos, such that the anticorrelation is not exactly −1.

The second strong correlation can be observed between the absolute value of the mass splitting ∆m2
31

and the energy scale sE . The value of ∆m2
31 is determined from the position of the oscillation minimum

in the track channel that is easy to spot in Fig. 5.4. In a two-flavour approximation, this can be described
by equation (3.16), where the oscillation length is determined by the zenith angle. Then the size of ∆m2

31
is inversely proportional to the neutrino energy at which the oscillation minimum appears. Thus a larger
value of ∆m2

31 can be compensated by increasing the energy scale accordingly.
This means that if PINGU is supposed to make a precise measurement of ∆m2

31, the energy scale has
to be known very accurately. As the energy of a neutrino event is determined primarily from the number
of detected photons7, this means that the photon detection efficiency of the optical modules has to be
well calibrated. This behaviour is illustrated in Fig. 6.7, where PINGU’s self-contained constraint on
the value of ∆m2

31 is plotted against the prior put on sE . To improve on the current limits, the energy
scale has to be known with an accuracy of at least 3 %.

6.3.1 Measuring the Atmospheric Mixing Parameters

To determine the neutrino mass hierarchy, PINGU makes a precision measurement of the oscillations of
atmospheric neutrinos. In fact, with more than 80,000 events recorded per year it will collect the largest
sample of atmospheric neutrinos so far. After DeepCore has been established as a serious contributor to
the global effort of characterising neutrino oscillations, PINGU will go even further into that direction
and provide tight constraints on the values of ∆m2

31 and in particular ϑ23.

7 The Cherenkov light output is directly proportional to the deposited energy.
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These constraints are shown in Fig. 6.8, along with the most recent confidence regions of current
oscillation experiments. For PINGU, no priors have been put on ∆m2

31 or ϑ23, meaning that the displayed
confidence ellipse comes from PINGU data alone and does not profit from external knowledge.

The most obvious feature of PINGU’s confidence ellipse is its orientation, which is different from
the other experiments: While it cannot constrain ∆m2

31 any better than current experiments, the value
of ϑ23 will be much more precise than any measurement available today. The reason for this is that
the value of ∆m2

31 is extracted from the position of the oscillation minimum in energy, which needs a
precise calibration of the energy scale as shown above. This is much easier to achieve in experiments
on a neutrino beam like MINOS or T2K where the beam energy is well-known. ϑ23 on the other hand
is determined from the relative depth of the oscillation minimum as one can see from equation (3.15).
Here PINGU profits from its wide energy range including control regions without oscillations and the
large event statistics, such that especially the overall detector efficiency8, which usually is difficult to
constrain in beam experiments, only has minor impact.

From the error contours in Fig. 6.8 one can also see that the value of the mixing angle ϑ23 is not very
tightly constrained yet. So far, all experiments’ results are compatible with the maximal mixing value of
ϑ23 = 45◦9, however MINOS’s and SuperKamiokande’s best fit points are rather distant from maximal
mixing.

Since PINGU will make a much more precise measurement of ϑ23 than any current experiment, it
will likely be able to exclude the maximal mixing case with high confidence if the true value of ϑ23 is
sufficiently offset from 45◦. In Fig. 6.9 the confidence which PINGU can reject the maximal mixing
hypothesis with is shown as a function of the experimental lifetime. Although this depends on the
assumed true value of ϑ23, it is obvious that PINGU is likely to exclude maximal mixing at the 5σ level
already after the first year of data taking.

6.3.2 Impact of the Octant of ϑ23

As shown in the previous section, currently it is still unclear whether ϑ23 is smaller or larger than 45◦.
The fiducial value chosen for the baseline analysis was the best fit point from the Fogli global fit [47],
which is close to the MINOS best fit point and such gives a comparably small mixing angle.

Thus it is important to test whether the fiducial value of ϑ23 that is chosen in PaPA has any impact
on the expected sensitivity to the mass hierarchy. The PhysicsSimulation step, i. e. the calculation
of the oscillation probabilities, has been repeated for several different fiducial values of ϑ23, all larger
than the baseline one. The resulting oscillation probabilities were consecutively processed through the
DetectorSimulation. For each of these settings, the sensitivity to the neutrino mass hierarchy has
been evaluated for a lifetime of three years and plotted against the injected fiducial value for ϑ23 in
Fig.6.10a.

As it turns out, the sensitivity increases considerably as ϑ23 takes larger values and even exceeds 5σ
in the second octant, i. e. at values above 45◦. This increase in sensitivity comes exclusively from the
cascade channel, which already points to its origin: the oscillation of νµ to νe, which is mainly defined by
this mixing angle. However the neutrinos propagate through the Earth, so this angle has to be replaced
by the corresponding effective mixing angle in matter (3.32), which is further from maximal mixing
than the vacuum value.

The relation between matter and vacuum value of ϑ23 is shown qualitatively in Fig. 6.10b. The choice
of ACC/∆m2 = −0.5 corresponds to a neutrino energy of ≈ 3.2 GeV at a matter density of 5 g/cm−3,
the negative sign is due to ACC being below zero as it caused by electrons with negative charge, see

8 Represented by nAeff
in PaPA.

9 Since the “strength” of the mixing is proportional to sin2 2ϑ, see (3.15), it becomes maximal for ϑ = 45◦.
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Figure 6.10: PINGU three-year sensitivity to the neutrino mass hierarchy (a) and effective mixing angle in matter
for ACC/∆m2 = −0.5 (b) as a function of the fiducial value of ϑ23.

(3.25). So due to the effective reduction of ϑ23 in matter, the amplitude of the oscillation, proportional
to sin2 (2ϑM), keeps growing even beyond ϑ23 = 45◦, where for oscillations in vacuum the amplitude
would decrease again. Consequently, increasing the overall scale of νµ → νe oscillations results in
an increased absolute difference between the cascade event histograms for normal and inverted mass
hierarchy and hence a better sensitivity for the hierarchy determination.

A beneficial side effect of the effective reduction of ϑ23 in matter is that it causes the relation of the
parameter, ϑ23, and the observable, the oscillation probability proportional to sin2 (2ϑM), to be in the
linear regime, as shown in Fig. 6.10b as well. This makes the evaluation in the Fisher matrix formalism
well justified (cf. Sec. 6.1.2), whereas for vacuum oscillations the oscillation probability sin2 (2ϑ23)
becomes an increasingly non-linear function close to the maximal mixing value of ϑ23.

In addition, the symmetry between values of ϑ23 in the first and second octant, mirrored at 45◦,
gets broken. This symmetry can be found in most of the confidence contours in Fig. 6.8 and affects
all experiments that observe vacuum oscillations, making it difficult to determine the actual octant of
ϑ23 even if the best fit point does not correspond to maximal mixing. Yet PINGU does not see said
symmetry, thus its exclusion of maximal mixing discussed in the previous section does actually include
a definite measurement of the octant. In other words, the likelihood maximum indicated by the PINGU
ellipse in Fig. 6.8 does not have a counterpart at a corresponding value of ϑ23 in the second octant.

6.3.3 Fiducial Value of the Mass Hierarchy

Thus far, the true neutrino mass hierarchy was assumed to be inverted. This means that the fiducial
value for the mass hierarchy used as an input to PaPA was normal. This may sound paradoxical at first,
yet it corresponds to the actual analysis that will be done in PINGU:

In order to “detect” e. g. an inverted hierarchy, the normal hierarchy has to be excluded. This means
to compare the data that have been measured, represented by the histograms resulting from the best fit
IH oscillations and the fiducial detector settings, to all possible realisations of the NH scenario. These
are simulated by varying all systematic parameters around the best fit NH model, which is what happens
when the fiducial value of the hierarchy parameter in PaPA corresponds to the NH case.

Now it is of course important to know how the assumed true mass hierarchy affects the significance
of the mass hierarchy determination. If it would drop considerably when assuming a normal ordering,

81



6 Analysis

PINGU could not claim to provide a definite measurement of the mass hierarchy since the inverted
hierarchy case could never be excluded.

Calculating the significance for a true normal mass hierarchy, i. e. choosing the IH value of ∆m2
31 from

Tab. 3.1 as fiducial value in PaPA, the expected three-year significance for the baseline detector model
is 3.1σ. This moderate increase by 0.2σ w. r. t. the IH case originates predominantly in the cascade
channel, whose individual significance increases from 1.9σ to 2.2σ. The full error listings are shown
in App. F.2. The purely statistical significances do not change w. r. t. to the IH true case as they only
depend on the difference between both models.

The reason for the increased significance in the cascade channel is that the most significant feature
in the analysis histograms is the region of negative ∆χ values in the cascade channel (Fig. 6.5 right) at
energies between 5 and 10 GeV and cosϑzenith < −0.6. According to the definition of ∆χ (6.14), in this
region more events are expected for true IH than for true NH, NIH > NNH. Since the absolute difference
between NIH and NNH is the same regardless of which hierarchy is true, the relative difference to the IH
expectation is larger if NH is true than vice versa.

So assuming true inverted hierarchy as well as ϑ23 in the first octant, i. e. being smaller than 45◦, is
in fact a conservative choice. As shown in this and the previous section, PINGU’s expected sensitivity
to the neutrino mass hierarchy is higher if the mass hierarchy is in truth normal and especially for larger
values of ϑ23. Consequently, those settings will be used as well for the various scenarios studied in the
following sections.

6.3.4 High-Purity Event Classification
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Figure 6.11: Individual and combined mass hierarchy sensitivity for the baseline model with V15 particle identi-
fication with two (a) and three (b) channels.

Thus far, the particle identification has been considered as a binary decision, classifying each event as
either track-like or cascade-like, based on a BDT score (cf. Sec. 4.4.3). Yet PaPA offers the option to
have separate event selections for tracks and cascades, such that e. g. the cascade channel is populated
only by events that actually “look like cascades” rather than events that just “do not look like tracks”. To
make sure that a given event does not end up in both samples, the decision should be based on the same
BDT, but now with two cut values. Then the scores below the lower cut would then e. g. correspond
to cascades while the ones above the higher cut would be classified as tracks. All events with scores
between the two cut values would end up in the “unidentified” sample.
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Such an event selection does only exist for an anterior geometry version of PINGU, V15, that was
used for intense systematic and reconstruction studies before optimising the geometry for maximal
sensitivity to the mass hierarchy. The identification efficiencies are plotted in Fig. E.1, with the corre-
sponding function definitions listed in App. E.2. Note that the track identification efficiency is much
better than for the baseline geometry V36, shown in Fig. 6.4, since due to an error in the simulation con-
figuration all Monte Carlo for V15 was produced without generating noise hits on the PINGU optical
modules, resulting in very clear event signatures.

The resulting significances are shown as a function of time in Fig. 6.11. As expected from the im-
proved track identification w. r. t. the baseline settings, already the two-channel significance (Fig. 6.11a)
is enhanced compared to the baseline. When opening the third channel of unidentified events (Fig. 6.11b),
the cascade channel loses sensitivity due to the reduced statistics and is now at approximately the same
level as the track channel, which remains unchanged. The unidentified events alone yield a significance
on the scale of tracks and cascades individually as well, yet they suffer slightly stronger from systematic
effects10. The full error listings are tabulated in App. F.3.

This behaviour is expected as the event selection for tracks stays the same as in the two-channel
settings while the cascade sample gets split into two subsamples. Comparing the two corresponding
error listings—Tabs. F.7 for the case of all “non-track” events being combined into one channel as in
the baseline model and F.10 for having separate cascade and unidentified channels and combining the
respective Fisher matrices—the statistical error on the mass hierarchy parameter h is slightly higher
when the cascade channel is split due to larger relative statistical errors. The systematic uncertainty
on h on the other hand is reduced for the separate analysis, leading to the expected overall increase in
sensitivity. Yet this increase is rather moderate, indicating that there is not much gain to be expected
from moving further into this direction11.

For the remaining parameters one can see that e. g. the impact of the relative flux scaling rΦ, νe−νµ

is reduced for the separated analysis, driven by the high-purity cascade sample that has only a small
contamination of νµ events. Additionally, now the parameter sPID, scaling the overall cascade and track
identification efficiencies, comes into play for the three-channel analysis, as it is no longer degenerate
with the overall normalisation nAeff

(at least for the unidentified channel), yet it has no noticeable impact
on the expected mass hierarchy significance.

6.3.5 The Missing Monte Carlo Effect

In Sec. 5.2.1 it was pointed out that the “conventional” approach to evaluate PINGU’s sensitivity to
the neutrino mass hierarchy, i. e. to propagate the full Monte Carlo detector simulation through the
analysis, is not only computationally challenging, but introduces a bias towards too high significances
if the amount of available MC statistics is insufficient. This effect can be demonstrated using an event
reconstruction based on individual Monte Carlo events processed for the earlier PINGU geometry V15.

For this geometry, enough MC events have been generated and processed12 to use them for the recon-
struction in PaPA directly. The the reconstruction kernels were created by histogramming the MC events
as described in Sec. 5.2.2, i. e. now option (b) is used for calculating the reconstructed histograms. This
is repeated multiple times, reducing the fraction of the total number of events that is actually filled into

10 This is apparent from the fact that the curves for tracks and unidentified events lie on top of each other for lifetimes below
one year, but the track significance keeps to increase stronger as more statistics gets accumulated.

11 As an extreme, one could imagine to open a third axis on the event histogram by introducing a Björken-y-like variable, e. g.
the ratio of cascade and track energy reconstructed by HybridReco/MultiNest.

12 For the most important channels, νe and νµ, ≈ 270, 000 and ≈ 340, 000 events are available, respectively. In addition,
≈ 40, 000 ντ and ≈ 80, 000 νX NC events could be used for this study.
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Figure 6.12: PINGU’s sensitivity to the neutrino mass hierarchy with reconstruction from MC data for geometry
V15. The result for a reconstruction parametrisation from the same data is shown for reference.

the kernels from 100 % to 1 %. Additionally, a reconstruction parametrisation is fitted to the full dataset,
which is given in App. D.2.

In Fig. 6.12, the resulting mass hierarchy significances for three years of PINGU lifetime are shown
as a function of the fraction of MC data used for the reconstruction. Only for the full amount of statistics
a relatively stable result is achieved, which is also consistent with the parametrised reconstruction.

The reason for this behaviour can be found when inspecting the ∆χ distributions for the different
settings, shown in Fig. 6.13. When using the full sample of MC events (middle panel), the pattern
generated with the parametrised reconstruction is reproduced quite accurately, reflected in the resulting
significance values being in agreement. For the extreme case of populating the reconstruction kernels
with only 1 % of the available events, the pattern imprinted by the mass hierarchy difference has almost
completely vanished and is replaced by random fluctuations.

However the scale of the ∆χ values is much higher in the histograms for very low MC statistics, as
one can see from the range of the colour scale, which is linked to the highest individual bin value. The
reason for this is that if the kernel tables are underpopulated, the reconstruction resolution effectively
gets enhanced: When the statistics is sufficient, the hierarchy sensitivity of a single bin in the histogram
of true energy and zenith angle is smeared out into the surrounding bins. If, in the extreme, only one
MC event falls into this bin, its sensitivity is not smeared out, but only moved to a single other bin in
the reconstructed histogram (the one where the single event is reconstructed in). The full sensitivity
from the true histogram being retained at one point now increases the total significance as it is given by
quadratically summing all individual bins.
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Figure 6.13: ∆χ distribution in the track (left) and cascade (right) channels for (top to bottom) the reconstruction
parametrisation based on geometry V15 and the reconstruction directly from 100 % and 1 % of the Monte Carlo
events available for V15.
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6.4 Effects of Advanced Optical Modules

In Sec. 4.5, two different concepts to substantially improve the optical modules have been introduced,
prototypes of both are supposed to be deployed in PINGU: the mDOM that has several small PMTs
instead of a single large one, and the WOM, where the effective area of a single small PMT is enhanced
drastically by passive components. In this chapter, PINGU will be modelled as it was built completely
from these next-generation optical modules. Then the possible benefits for the experiment’s outcome
can be analysed.

6.4.1 WOM: Increasing the Photon Statistics

With its enhanced photosensitive area, the WOM will primarily increase the number of photons detected
per event. Since this is the driving parameter for event reconstruction quality—the more photons are de-
tected, the more information is available for the reconstruction algorithm—more precise reconstructions
are expected especially at low energies, where photon statistics are scarce.

To simulate the improvement resulting from a photon count increased by a factor fph in PaPA, the
absolute widths of the energy reconstruction functions that are usually given by linear functions of the
form

σE(E) = aE + b , (6.21)

where a and b are constants determined by a fit (see App. D), are replaced by

σ′E(E) = aE + b/ fph . (6.22)

The rationale behind this is that the relative energy resolution is assumed to be a function of the number
of detected photons, which in turn is directly proportional to the neutrino energy13. Thus increasing the
number of detected photons by fph means that an an event with the energy E will now have the relative
energy resolution of an event of energy fph · E:

σ′E(E)
E

=
σE( fphE)

fphE
=

a fphE + b
fphE

(6.23)

⇒ σ′E(E) = aE + b/ fph (6.24)

For the cosϑzenith resolution, the modification is more straightforward as one can simply read out the
parametrisations for the absolute widths at an energy increased by the factor fph:

σ′cosϑ(E) = σcosϑ( fph · E) . (6.25)

In addition, the threshold for passing PINGU’s event selection is expected to become lower with an
increasing number of photons per neutrino energy, enhancing the event statistics at low energy. This ef-
fect is mimicked by scaling the effective area at a given energy E by the ratio of the selection efficiencies
εsel (as shown in Fig. 4.8) at E and fph · E:

Aeff
′(E) = Aeff(E) ·

εsel( fph · E)
εsel(E)

(6.26)

The scaling is applied for all flavours except from ντ and ν̄τ CC events, as there the main feature is the
kinematic cutoff due to the large mass of the tau lepton (cf. Sec. 4.4.2), which of course is independent
13 The number of Cherenkov photons is proportional to the total deposited energy, see Sec. 2.3.3.
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Figure 6.14: Relative expected three-year significance for the mass hierarchy as a function of fph.

from the performance of the optical modules used in the detector.
This gives a conservative estimate as only effects after the actual triggering of the detector are taken

into account. Since the trigger condition essentially is a certain number of photon hits being registered
within a short time window, the trigger threshold itself does sink as well, enhancing the overall effect.
Yet as the available amount of MC events before triggering is insufficient to quantify this, the reduced
trigger threshold will be neglected.

The median three-year significance for the mass hierarchy is shown as a function of fph in Fig. 6.14.
As expected, the mass hierarchy significance increases with the photon statistics as a result of the im-
proved resolutions and enhanced effective area. When the photon statistics are doubled, i. e. fph = 2,
it reaches 3.8σ, an increase of about 30 %. Looking at the track and cascade channels separately, the
tracks are profiting slightly more from the higher number of photons. This emphasises the fact that the
track channel is more affected by systematics (cf. Sec. 6.3), which can be resolved better if the events
are reconstructed more precisely.

6.4.2 mDOM: Eliminating the Noise

The segmented photosensitive area of the mDOM will allow for an almost perfect rejection of noise
hits. Thus the event signatures will be clearer, leading to an improved reconstruction and particle iden-
tification. In PaPA, this can be modelled by using the parametrised reconstruction functions and event
classification extracted from the Monte Carlo data for geometry V15, which was erroneously produced
without simulating noise. As the difference to geometry V36 in terms of module density—which is
crucial for the reconstruction performance—is rather small14, the resulting parametrisations, written out
in App. D.2 and E.2, respectively, should give a good approximation of what to expect for the baseline
geometry V36 with fully suppressed noise.

The resulting significance as function of lifetime and the correlation matrix are shown in Fig. 6.15.
Comparing this to the results for the baseline settings in Fig. 6.6, only a very small improvement can

14 Geometry V36 has a horizontal string spacing of 22 m and a vertical module spacing of 3 m, while in V15 string and module
spacing are 20 m and 5 m, respectively.
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Figure 6.15: (a) Evolution of PINGU’s expected mass hierarchy significance with time and (b) full correlation
matrix for PINGU assuming reconstruction and particle identification as in geometry V15, i. e. no module noise.

be observed. Looking at the correlation matrix, the most obvious change is the increased impact of the
mixing angle ϑ23 and the flux ratio rΦ, νe−νµ on the mass hierarchy.

The reason for this is that especially the cascade channel profits from the improved particle identifi-
cation, increasing its significance without systematics from 3.0σ to 3.3σ15, which is reflected by the
increased significance scale of the ∆χ distribution in the cascade channel, shown in Fig. 6.16. As such
a feature basically means more νe-like events being detected, it can of course be mimicked by a wrong
relative normalisation of the primary νe and νµ fluxes or a stronger oscillation from νµ to νe, determined
by the value of ϑ23. Unfortunately, these two parameters are insufficiently constrained by themselves,
thus they can partly “absorb” the gain in sensitivity to the mass hierarchy.
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Figure 6.16: ∆χ distribution in the track (left) and cascade (right) channels assuming reconstruction and particle
identification as in geometry V15, i. e. no module noise.

15 The full error listings are shown in App. F.4
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6.5 Combining PINGU with JUNO

6.5.1 The JUNO Experiment
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Figure 6.17: ν̄e survival probability for a baseline of 50 km, overlaid with the un-oscillated nuclear reactor spec-
trum as it would be detected by JUNO (including detector acceptance).

As already briefly discussed in Sec. 3.4.4, JUNO16 is a neutrino experiment under construction in
China’s Guangdong province. With its sensitive region at low MeV energies, it is able to detect su-
pernova and geoneutrinos, yet its main target are reactor neutrinos from the Taishan and Yangjiang
nuclear power plants to be erected in ≈ 50 km distance each. These ν̄e’s can be detected via inverse beta
decay:

A
ZX + ν̄e → A

Z−1Y + e+ (6.27)

The ν̄e undergo oscillations that are mostly due to the smaller mass splitting ∆m2
21, but have a fast

modulation due to ∆m2
31. The vacuum ν̄e survival probability17 can be expressed analytically:

P(ν̄e → ν̄e) = 1 − cos4(ϑ13) sin2(2ϑ12) sin2
(
∆m2

21
L

4E

)
− cos2(ϑ12) sin2(2ϑ13) sin2

(
∆m2

31
L

4E

)
− sin2(ϑ12) sin2(2ϑ13) sin2

(
∆m2

32
L

4E

)
(6.28)

with ∆m2
32 = ∆m2

31 − ∆m2
21. As shown in Fig. 6.17, for a baseline of L = 50 km this is dominated by

the slow ∆m2
21 oscillation, corresponding to the first term in (6.28). On top of that is a pattern of rapid

oscillation originating from the interference of the second and third term of (6.28). The exact shape
of this pattern, especially the position of the local minima and maxima, depend on the mass hierarchy
which changes the relative sizes of ∆m2

31 and ∆m2
32

18.

16 Short for Jiangmen Underground Neutrino Observatory.
17 Matter effects can be neglected here.
18 Their signs are irrelevant as the outer sin2 is symmetric about zero.
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Figure 6.18: Layout of the JUNO detector. Figure taken from [73].

Taking the detector acceptance into account, the expected reactor neutrino spectrum [139] is very
suitable to observe this signal, as one can see in Fig. 6.17 as well. However, a very precise energy
reconstruction is needed to actually resolve the spectral features associated with the neutrino mass hier-
archy.

With the detector setup shown in Fig. 6.18, a relative resolution of 3 %/
√

E[MeV] is aimed for. The
target volume is filled with 20 kt of liquid scintillator to enhance the photon output. This essentially
destroys any directionality of the event signatures, however, no information about the arrival direction
of the neutrinos is needed as the baseline for the oscillation is known19. The inner surface of the volume
is covered with ≈ 15000 20” PMTs, resulting in a photocoverage of at least 70 %. Tagging and vetoing
of atmospheric muons is ensured by scintillator tiles on top of the detector and a 10 kt water Cherenkov
detector surrounding the target volume. Natural radioactivity is buffered in a layer between muon veto
and active region filled with 6 kt of mineral oil [73].

If this precision can indeed be realised, JUNO claims to be able to determine the neutrino mass
hierarchy with a significance of ≈ 3.3σwith a total of 105 recorded neutrino events, corresponding to six
years of data taking [72, 73, 139]. In the following sections a modification of PaPA is described, aiming
at a detector simulation for JUNO instead of PINGU in order to reproduce the reported sensitivity.

6.5.2 Simulating JUNO with PaPA

The major difference between the observable signals in PINGU and JUNO is that PINGU will record
a two-dimensional histogram in (E, cosϑzenith) while in JUNO only the energy spectrum is measured.
Thus only one very narrow zenith bin with edges at cosϑzenith = [−0.0039245, −0.0039235] is simu-
lated in PaPA, corresponding to a baseline of 50 km. In energy, 300 bins between 2 MeV and 8 MeV
are used. No oversampling is applied as the oscillation probabilities are already sufficiently smooth (see
Fig. 6.17).

Since only the ν̄e survival probability is relevant for JUNO, which can be calculated analytically ac-

19 In PINGU, the cosϑzenith information is needed to infer the location where the neutrinos were generated in the Earth’s
atmosphere and hence the distance they have travelled.
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cording to (6.28), the PhysicsSimulation has been extended by a module doing exactly this analytical
calculation. Avoiding the numerical solution of the Schrödinger equation, the PhysicsSimulation is
sped up dramatically.

For the DetectorSimulation, the software itself is not changed, however the inputs of course have
to model the JUNO detector. The neutrino flux is adopted from [139] and stored in a table of the same
format as the atmospheric flux tables provided by [129]. This flux, shown as an overlay in Fig. 6.17, has
the detector acceptance already folded in, but is only given in arbitrary units. Thus, the effective area is
set to a constant value of 1 m2 for ν̄e CC and zero for all other interaction channels while the analysis
histograms will be normalised to 105 ν̄e events before analysis.

The directional reconstruction is parametrised by a single Gaussian with a fixed width of 10−5 in
cosϑzenith, meaning that all events will stay in place. As there is only one bin in cosϑzenith, migration of
events is impossible in any case.

The energy reconstruction is represented by a single Gaussian as well, with mean and width given by

µ(E) = E − 0.8 MeV (6.29)

σ(E)/E = 4 %/
√

E[MeV] − 0.8 . (6.30)

The shift in energy reflects the fact that the visible energy in an inverse beta decay is smaller than the
initial neutrino energy. 511 keV are needed to create the e+, which in turn stops to emit Cherenkov
light once it falls below the Cherenkov threshold (2.23), corresponding to a kinetic energy of ≈ 280 keV
depending on the optical medium. These two contributions sum up to ≈ 0.8 MeV. The relative energy
resolution refers to the visible energy as well. Additionally, it has been deteriorated w. r. t. the published
specifications to be 4 %/

√
Evis[MeV]. This reflects the fact that the nuclear power plants used as neu-

trino sources have several reactor cores which are up to 500 m apart from each other. This introduces
an uncertainty of 1 % on the baseline L, which is equivalent to an additional uncertainty of 1 % in the
energy reconstruction as the relevant quantity is L/E.
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Figure 6.19: Expected event spectrum in JUNO including all detector effects.

Finally, in JUNO there is no discrimination between cascade-like and track-like events as only ν̄e-
induced inverse beta decays are expected. Hence, all events are classified as cascades and the track
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channel is not considered for the analysis. The resulting observed event distribution for the normal and
inverted hierarchy case as well as for oscillations with ∆m2

31 = 0 is shown in Fig. 6.19.

6.5.3 Preparing the JUNO Signal for Fisher Matrix Analysis
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Figure 6.20: Linearisation of the detector response to ∆m2
31 via Fourier transformation. For details, refer to the

text.

In contrast to PINGU, the analysis histograms for JUNO as shown in Fig. 6.19 cannot be used for the
Fisher matrix analysis directly. The reason for this are the rapid oscillations of the event count as a
function of energy that are the signal to be observed. This means that for a given bin in energy, the
expected number of events is usually not a linear function of the systematic parameters.

In order to apply the Fisher matrix formalism, JUNO’s response to the systematic parameters has to
be linearised. As the signal itself is oscillatory, the natural choice is to apply a Fourier transformation
before analysis. To assure an input signal that smoothly fades out to zero at the edges of the considered
energy interval, the expected signal for ∆m2

31 = 0 (black line in Fig. 6.19) is subtracted from the actual
event rates and an exponential cut-off at low energies applied to the result.

This quantity is shown in the left panel of Fig. 6.20, the non-linearity of the individual bin counts as
a function of ∆m2

31 can clearly be seen. It is then fed to the implementation of the fast Fourier transform
(FFT) algorithm [140] provided by the numpy package.

As the input spectrum is real, only positive frequencies have to be considered in the FFT result. In
addition, frequencies below 1/MeV are ignored as they are subject to large fluctuations. Thus the output
of the FFT is a complex frequency spectrum in the range from 1/MeV to 8/MeV, given as its real and
imaginary part. As the FFT is a linear transform, the error on both is given by

FFT(Σ) = F ΣF H , (6.31)

where F is the Fourier matrix, i. e. the Fourier transform of the n-dimensional unit matrix where n is
the number of bins in the input series, and F H its conjugate transpose. Σ is the covariance matrix of the
input data, see e. g. [141].

In this case, the input data are independent bin counts Ni with statistical errors σi =
√

Ni, hence Σ is
diagonal:

Σ = diag(~σ) = diag(σ2
1, σ

2
2, . . . , σ

2
n) = diag(N1, N2, . . . , Nn) (6.32)

Propagating these properties through (6.31), one finds that the error on both the real and the imaginary
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part of the FFT output is constant and proportional to the square root of the total number of bin entries20:

<[FFT(Σ)] = =[FFT(Σ)] = 1

n∑
i=1

σ2
i = 1

n∑
i=1

Ni = 1Ntot (6.33)

Yet for the analysis of the JUNO oscillation signal, amplitude and phase of the complex spectrum are
better suited than its real and imaginary part. These quantities are calculated according to

A =
√
<2 + =2 (6.34)

ϕ = arctan(=/<) + 2πk (6.35)

with k ∈ N assuring that ϕ increases monotonically with increasing frequency, removing discontinuities.
Their errors are then given by

∆A =

√(
<

A
∆<

)2

+

(
=

A
∆=

)2

=
√

Ntot (6.36)

∆ϕ = ∆A/A . (6.37)

The FFT result in the amplitude-phase base is shown in the middle and right panel of Fig. 6.20.
One can see that the amplitude of the spectrum is virtually independent from ∆m2

31 while the phase is
approximately proportional to the mass splitting21. The shaded region marks the error range for the
spectra for ∆m2

31 = 2.33 · 10−3 eV2, for the other spectra the errors are very similar.

6.5.4 Results for JUNO

Table 6.2: Uncertainties on all systematic parameters expected for JUNO with 105 detected events, ranked ac-
cording to their impact on the mass hierarchy parameter h.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 3.32 × 10−1 7.99 × 10−2 3.22 × 10−1 free
ϑ13 [◦] 54.9 8.93 2.34 5.62 × 10−1 2.27 free
∆m2

31 [eV2] 38.2 2.46 × 10−3 1.71 × 10−5 4.74 × 10−6 1.64 × 10−5 free
sAeff , JUNO 17.9 0.00 8.26 × 101 2.05 × 101 8.00 × 101 free
sE, JUNO 15.0 1.00 1.52 × 10−2 5.14 × 10−3 2.26 × 10−2 2.00 × 10−2

ϑ12 10.5 3.36 × 101 1.87 8.65 × 10−1 1.65 free
∆m2

21 9.8 7.54 × 10−5 6.96 × 10−6 3.86 × 10−6 5.79 × 10−6 free
nAeff , JUNO 0.0 0.00 2.00 × 10−2 9.43 × 10−2 2.79 2.00 × 10−2

Now that an observable has been constructed which is sufficiently linear as a function of the parameters
that JUNO will measure, the Fisher Matrix can be applied.

20 The full error on any observable, i. e. entry in the FFT output spectrum, is given by the square root of the corresponding
diagonal element of the covariance matrix, cf. (6.3).

21 Note that all phases are shown relative to the phase spectrum for ∆m2
31 = 2.33 · 10−3 eV2 to visualise the behaviour more

clearly.
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Figure 6.21: Covariance matrix for JUNO, without external constraints on the oscillation parameters.

The full error listing is given in Tab. 6.2, where one can read off a NMH sensitivity of 3.0σ for an
event sample of Ntot = 105. Yet in contrast to the PINGU analysis, no priors have been put on any of
the oscillation parameters as the resulting significance is to be compared to the one quoted by the JUNO
collaboration themselves. In [73], for a “reactor-only analysis”, i. e. no without external knowledge, a
confidence level of ∆χ2 ≈ 11 is reported, corresponding to a significance of S =

√
∆χ2 ≈ 3.3σ. This

does not match up perfectly with the figure retrieved from the modified PaPA simulation, however the
agreement is fairly good given that the two calculations are completely independent in simulation and
analysis method, and in addition PaPA was intended for a very different experiment.

Another claim from [73] is that the NMH significance can be increased to ∆χ2 ≈ 19 =̂ S ≈ 4.4σ
when using a prior measurement of ∆m2

µµ with 1 % precision. This parameter can be measured in νµ
disappearance experiments, usually with a neutrino beam from an accelerator travelling over a baseline
of O(100 km). But since ∆m2

µµ is a rather complex combination of all mixing parameters [142], it is not
possible to put the corresponding prior in the base of mixing parameters chosen in this thesis.

One can, however, include priors on all mixing parameters according to a current global fit [47] as
it was done in the analysis for PINGU (cf. Sec 6.2.2). This increases the significance retrieved from
the Fisher Matrix to 4.6σ, a gain of 1.6σ w. r. t. the value without any priors. The full errors are listed
in Tab. F.14. In JUNO’s own analysis, only 1.1σ are added by the inclusion of external constraints,
however there only one prior is put on an composite parameter, which is a weaker statement than putting
individual priors on four underlying parameters.

The strongest impact on JUNO’s expected sensitivity to the neutrino mass hierarchy has the uncer-
tainty of the mixing angle ϑ13, as one can read off from Tab. 6.2 and the covariance matrix, shown in
Fig. 6.21. Including the current knowledge of this parameter alone enhances the significance to 4.4σ.

Next in size is the impact of ∆m2
31 on the mass hierarchy. For this parameter, however, including the

current knowledge as a prior does not significantly improve the NMH measurement. The reason is that
the current uncertainty on ∆m2

31 is 8 · 10−5 eV2 [47], while JUNO will already provide a constraint of
1.7 · 10−5 eV2 by itself (see Tab. 6.2), i. e. there is no other experiment that can make a more precise
measurement of ∆m2

31 than JUNO.
This sub-percent precision on the value of ∆m2

31 is stated by [73], too. A similar precision is claimed
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for sin2 (ϑ12) and ∆m2
21. Looking at Tab. 6.2, however, the relative uncertainties from the Fisher matrix

are on the order of 10 %22. Yet in the given reference it remains unclear whether the stated uncertainties
include the prior on ∆m2

µµ. After adding priors on all oscillation parameters, the Fisher matrix lists a
precision of ≈ 3 % for both parameters (see Tab. F.14).

6.5.5 Joint Analysis of JUNO and PINGU

Finally, the results of PINGU and JUNO can be combined by adding the respective Fisher matrices. To
start off on common grounds, only the oscillation parameters will be considered as systematics without
any prior knowledge. This severely decreases PINGU’s NMH significance to only 1.5σ after three
years of lifetime as it is strongly correlated with ϑ13, see Tab. F.16. Here a fundamental difference
in the approaches taken by PINGU and JUNO becomes evident: JUNO is able to determine the mass
hierarchy with appreciable significance all by itself, while in PINGU at least the value of ϑ13 has to
be retrieved from an independent experiment, e. g. Daya Bay [68]. JUNO on the other hand still has a
NMH significance of 3.5σ considering only physics systematics without priors (Tab. F.15).

Table 6.3: Error listings for the combination of PINGU and JUNO, including only oscillation parameters without
any priors.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 2.33 × 10−1 7.56 × 10−2 2.21 × 10−1 free
∆m2

31 [eV2] 83.4 2.46 × 10−3 1.21 × 10−5 4.58 × 10−6 1.12 × 10−5 free
ϑ13 [◦] 76.8 8.93 1.01 4.64 × 10−1 8.99 × 10−1 free
ϑ12 2.5 3.36 × 101 1.25 8.65 × 10−1 9.08 × 10−1 free
ϑ23 [◦] 1.4 3.86 × 101 3.05 × 10−1 3.02 × 10−1 3.79 × 10−2 free
∆m2

21 0.7 7.54 × 10−5 5.52 × 10−6 3.86 × 10−6 3.94 × 10−6 free

If now the Fisher matrices of PINGU and JUNO are added, the combined sensitivity to the NMH
increases to 4.3σ, much larger than the square sum of the individual sensitivities, which is 3.8σ. This
is mainly due to the good constraint on ϑ13 from JUNO being passed on to PINGU and hence enhancing
its NMH sensitivity. JUNO on the other hand can not profit much from PINGU since the only parameter
that it can measure with greater precision than JUNO is ϑ23, which does not affect JUNO at all.

A second outcome of the joint analysis is that JUNO’s extremely precise measurement of ∆m2
31 can

be used to shrink down PINGU’s error ellipse in the (∆m2
31, sin2 (ϑ23)) parameter space, which was

shown above in Fig. 6.8. Fig. 6.22 is an update of the former including the expected result of JUNO.
The combined ellipse of PINGU and JUNO demonstrates the enormous improvement in the knowledge
about these two parameters that is to be expected over the course of the next decade—the time needed
for the two experiments to be constructed and take their nominal amount of data.

Since ∆m2
31 and ϑ23 are virtually uncorrelated in PINGU—as one can recognise from the semi-major

axes of PINGU’s error ellipse that are almost aligned to the coordinate axes—JUNO’s strict constraint
on ∆m2

31 does not affect PINGU’s precision on ϑ23. Still the uncertainties on both parameters will be
reduced by almost one order of magnitude w. r. t. the current precision.

22 For the relative error on sin2 (ϑ12), the errors listed in Tabs. 6.2 and F.14 for ϑ12 in degrees have to be converted: sin2 (ϑ12) ≈
0.306 and σfull

sin2(ϑ12)
=

∂ sin2(ϑ12)
∂ϑ12

σfull
ϑ12

= sin(2ϑ12)σfull
ϑ12

with σfull
ϑ12

in radians.
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Figure 6.22: Same as Fig. 6.8, adding JUNO’s expected constraint on ∆m2
31 and the combined error ellipse of

PINGU and JUNO.

6.6 Summary

In this chapter, PINGU’s sensitivity to the neutrino oscillation parameters, especially the neutrino mass
hierarchy, has been studied in depth. The baseline detector parametrisation leads to a median signifi-
cance of 2.9σ after three years of data taking. Looking at the track and cascade channels separately,
the individual significances are 1.3σ and 1.9σ, respectively. This is a somewhat conservative estimate,
and various effects increasing the expected significance have been explored in this chapter. These are
summarised in Tab. 6.4.

The choice of the fiducial values for the oscillation parameters puts PINGU’s baseline sensitivity to
the neutrino mass hierarchy at the lower bound of the range of possible values: As one can see from the
second set of rows in Tab. 6.4, PINGU will determine the NMH with higher significance if the true mass
hierarchy is normal or ϑ23 is in the second octant. The latter effect is much more dramatic, possibly
almost doubling the expected significance. In both cases, the increase is primarily due to the cascade
channel.

Technical improvements to the detector itself are covered in the third section of the table. A more
evolved event classification with more channels than just tracks and cascades only leads to a moderate
increase of the NMH sensitivity, thus efforts to modify the PID in this direction seem not too promising.
In terms of sensor technology, a further reduction of the module noise has virtually no positive impact
on the significance. This points to the conclusion that already with current optical modules random
noise does not notably affect the event reconstruction—the noise cleaning algorithms (Sec. 4.3.3) are
very effective and the reconstruction results stable against small perturbations. Increasing the number of
detected photons per neutrino energy by enhancing the photosensitive area per sensor on the other hand
leads to improved reconstruction results. From these, PINGU’s NMH measurement can indeed profit,
as the features of the mass hierarchy pattern can be resolved more precisely.

The last row of Tab. 6.4 covers the combination of PINGU and JUNO. For this, all priors and detector
parameters are removed, strongly reducing PINGU’s sensitivity, especially in the track channel. The

96



6.6 Summary

Table 6.4: Summary of the effects studied in this chapter and their impact on PINGU’s sensitivity to the NMH,
relative to the baseline settings.

Model Combined Tracks Cascades Note Section

Baseline 2.9σ 1.3σ 1.9σ Absolute significance, ref-
erence for following rows

6.3

Remove priors on oscilla-
tion parameters, no detec-
tor nuisance parameters

−1.4σ −1.0σ −0.6σ To be compatible with
JUNO’s analysis

6.5.5

ϑ23 in 2nd octant +2.7σ +0.2σ +2.3σ Fiducial value of ϑ23 mir-
rored at 45◦

6.3.2

True normal NMH +0.2σ +0.0σ +0.2σ 6.3.3

Three-channel PID +0.2σ ±0.0σ −0.4σ Unidentified events
contribute 1.3σ
Reference uses PID from
geometry V15

6.3.4

No module noise +0.1σ +0.0σ +0.0σ PINGU built from mDOMs 6.4.2
Photon statistics doubled +0.9σ +0.9σ +0.8σ PINGU built from WOMs 6.4.1

Combining with JUNO +2.8σ n/a n/a JUNO contributes 3.5σ
Reference is second row

6.5.5

joint analysis with JUNO then leads to an expected NMH significance exceeding all values before,
however the signal is mostly driven by JUNO.

Through all the analyses the picture holds that the cascade channel is driving PINGU’s sensitivity
to the neutrino mass hierarchy. Not only is its intrinsic significance higher than the track channel’s,
it also contributes most of the possible enhancement due to varying fiducial settings of the oscillation
parameters and refined particle identification. In addition it is more stable if external constraints are
loosened—the track channel on the other hand loses its discrimination power almost completely in this
case.
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CHAPTER 7

Conclusion

In this thesis, the development of PaPA, a standalone simulation for the planned PINGU atmospheric
neutrino experiment, has been described. With PaPA, the expected event histograms in (E, cosϑzenith)
can be generated directly from inputs like the atmospheric neutrino flux, oscillation probabilities, effec-
tive areas of the detector and a parametrisation of the detector resolution, taking into account a variety
of systematic parameters, cf. Sec. 5.2. Since most of the inputs are extracted from Monte Carlo data in
advance, the time-consuming event-by-event simulation can be avoided in PaPA, making it well suited
to explore PINGU’s multi-dimensional parameter space in short time and robustly even in case of rather
low Monte Carlo statistics.

Using the results of PaPA, PINGU’s capability to measure the oscillation parameters ϑ23 and ∆m2
31

and especially to determine the neutrino mass hierarchy, i. e. the sign of ∆m2
31, was assessed with the

Fisher matrix technique. This analysis method, whose application to a particle physics experiment is
novel, is especially suited for problems with a large number of parameters and essentially linear detector
response to these parameters.

After checking that the requirements for applying the Fisher matrix are met (Sec. 6.1.2), PINGU’s
performance was evaluated for its current baseline geometry V36 with the most up-to-date estimates of
reconstruction resolution. In Sec. 6.3 it was shown that for a nominal lifetime of three years, PINGU is
expected to determine the neutrino mass hierarchy with a confidence level of 2.9σ, with the major con-
tribution coming from the analysis of cascade-like events1. In addition, PINGU will provide precision
measurements of the oscillation parameters ∆m2

31 and ϑ23, and in particular resolve the octant of ϑ23.
The latter is possible as PINGU observes neutrino oscillations in matter, where the symmetry between
the two octants is broken. This also means that the asymmetry between the normal and inverted mass
hierarchy cases grows with an increasing value of ϑ23, such that the expected significance of the mass
hierarchy measurement can reach 5σ and more if the true value of ϑ23 is in the second octant. The use
of next-generation optical sensors—like the WOM concept, for which basic work has been done in the
context of this thesis—can further enhance PINGU’s performance by increasing the expected photon
statistics per event and hence improving the detection threshold and reconstruction precision (Sec. 6.4).

Finally, in Sec. 6.5 a combined analysis of PINGU and JUNO, a medium baseline reactor neutrino
experiment currently under construction, was done to explore possible synergies. Given the respective
settings, JUNO’s expected neutrino spectrum could be simulated with PaPA without any modifications.
Yet for the analysis with the Fisher matrix method the spectrum had to be Fourier transformed to achieve

1 All events that are not caused by a νµ or ν̄µ CC interaction, i. e. without an outgoing muon.
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7 Conclusion

linear relations between the observables and the underlying physical parameters. After this, JUNO’s
sensitivity to the neutrino mass hierarchy as reported by the JUNO collaboration itself could be repro-
duced. The combined analysis of both experiments, i. e. adding the respective Fisher matrices, results in
a NMH significance exceeding the squared sum of the individual ones by 0.5σ, mainly due to PINGU
profiting from JUNO’s constraint on the oscillation parameter ϑ13

2.
In a broader picture, intermediate results of this work have been published as official sensitivity esti-

mates by the PINGU collaboration. The current version of the PINGU Letter of Intent [54] relies on the
PaPA simulation of the previous baseline geometry V15, evaluated with the Fisher matrix technique. An
update of this report is planned in the near future, referring to the current baseline geometry V36, re-
flecting all improvements on event selection, reconstruction etc. achieved in the meantime, and covering
a wider range of systematic parameters.

In this update, the analysis will only partly depend on PaPA. The main calculations will be done with
pisa [143], the software framework PaPA has evolved into. It keeps the idea of a direct simulation of
event histograms in a staged way and develops it further. Separating the individual stages even more
than PaPA, pisa offers the option to add alternative implementations of particular stages3 and easily
apply different analysis methods4 to exactly the same data, as well as better maintainability of the code
itself.

Since PaPA and the Fisher Matrix analysis have been fully re-implemented within pisa and both
input and output format are compatible, the results presented in this thesis can always be reproduced.
Vice versa, the concepts first introduced here, namely the staged simulation of event histograms using
parametrisations fitted to distributions of Monte Carlo events and the Fisher matrix analysis, leading to
a very fast evaluation of systematic effects, will stay present within PINGU and might even be adopted
by other collaborations.

2 For this study, no detector systematics were considered and no external constraints were put on the oscillation parameters.
3 E. g. other oscillation codes, event reconstruction from parametrised reconstruction functions or directly from Monte Carlo

data, . . .
4 E. g. the Fisher Matrix and the Likelihood Ratio techniques.
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APPENDIX A

Details of the WOM Efficiency Calculation

A.1 Measurement of the Capture Efficiency

A fixed setup (see Fig. A.1) has been installed, which is specifically designed to allow for the quick
and easy testing of different samples with wavelength-shifting (WLS) properties. As input radiation,
the monochromated light of a xenon arc lamp is used, which allows for scanning wavelengths down to
200 nm. After passing through an optical chopper, the incident beam is split, with one beam used for
monitoring the intensity of the incoming light with a reference photo diode. The other beam is coupled
to a UV-transmitting light guide which then irradiates the sample.

The WLS sample is fixed in a mount that permits an easy exchange of samples of different size.
Therefore also the irradiating end of the light guide is installed in a way that its position can be varied so
that—apart from accounting for different sample sizes—one is able to vary the distance between light
incidence and readout. This setup provides a handle on determining the absorption length at the emitted
wavelength.

The WLS read-out is done via a second photo diode identical to the reference diode that is coupled
to the WLS by an index-matching gel. Its output current, as well as the one of the reference diode, is
measured with a lock-in amplifier. Using the photo diode calibration curve (response function), along

Figure A.1: Experimental setup for measuring the wavelength-dependent capture efficiency of the WLS samples.
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A Details of the WOM Efficiency Calculation

with the WLS emission spectra (Fig. 4.10), the measured current is transformed into a photon flux.
For a typical measurement, the input wavelength is tuned with a resolution of 5 nm or less in the

relevant regime. At each input wavelength, the current wavelength and the output from both diodes are
stored. From this, the capture efficiency of the WLS sample is calculated as described in App. A.2.
Note that this capture efficiency includes not only the light conversion and propagation efficiency, but
also reflection effects at the surface occurring in the measurement. The results are hence somewhat
dependant on the geometry of the WLS that is probed. Yet as the samples match the cylindrical shape
of the intended final sensor geometry, those losses will also be present in the fully assembled module.

A.2 Calculating the WLS Capture Efficiency

The quantity that is to be extracted from the measurements is the wavelength dependent capture effi-
ciency of a given WLS sample, CE(λ).

In the data recorded are only the photo currents of signal and reference diode, Isig(λ) and Iref(λ),
respectively. As additional input we need a calibration measurement, which is a normal wavelength
scan without any sample installed so that the full output of the light guide is recorded. From this we get
the output fraction

F(λ) =
Isig, cal(λ)
Iref, cal(λ)

. (A.1)

Furthermore, the response function
R(λ) = Iout/Pin (A.2)

of the signal diode, which can be taken from the data sheet [144], has to be known and the (normalized)
emission spectrum of the WLS S WLS(λ) needs to be measured. The finite width of the monochromator
spectrum (FWHM < 3 nm) is neglected.

To determine the capture efficiency, the number of photons detected when coming out of the sample
has to be divided by the number of photons radiated into the sample. The incoming photon flux is
calculated via the power emitted from the light guide:

Pin = Iref · F/R (A.3)

Then the photon rate is then given by
Ṅγ, in = Pin/

hc
λ . (A.4)

When calculating the detected photon rate one has to take into account that the emitted spectrum is
not monochromatic, hence one needs to average over the relevant wavelength regime:

Ṅγ, out = Isig/〈R · Eγ〉 , (A.5)

where
〈R · Eγ〉 =

∫
S WLS(λ) R(λ) hc

λ dλ . (A.6)

The capture efficiency is finally given by

CE(λ) =
Ṅγ, out(λ)

Ṅγ, in(λ)
·Ω , (A.7)

where Ω is a factor accounting for the fact that the readout area in this setup is smaller than it will be in
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a real application. Its value is given by

Ω =
WLS front area
photo diode area

· 2 , (A.8)

assuming that ultimately the WLS will be read over the full front area on both ends.

A.3 Transmission into the WOM

For light inciding into the WOM, its effective area Aeff is to be calculated given the the WOM length L
(without end caps) and radius R. For simplicity, we will first handle the case of frontal illumination and
then extend the result for arbitrary angles.

For the incoming light, the WOM has a rectangular cross-section of

Atot = 2RL . (A.9)

The effective area is then given by

Aeff =

∫ L

0
dl · 2

∫ R

0
dr T (r) = Atot · εΩ (A.10)

with

εΩ =
1
R

∫ R

0
dr T (r) =

∫ π
2

0
cosϑ dϑT (ϑ), sinϑ = r/R (A.11)

and T being the transmission through two consecutive optical surfaces according to Fresnel’s formulae.
Since the transmission formulae are given as functions of the angle of incidence ϑ, it is convenient to
transform the integral in (A.11) to depend on this angle (for an illustration see Fig. A.2b). Assum-
ing the permeability is µ = 1, Fresnel’s formulae for the transmission of light polarised parallel and
perpendicular to the optical surface read [35]:

T‖ = 1 −
(
nt cosϑi − ni cosϑt

nt cosϑi + ni cosϑt

)2

(A.12)

T⊥ = 1 −
(
ni cosϑi − nt cosϑt

ni cosϑi + nt cosϑt

)2

(A.13)

and accordingly for unpolarised light:

Tmean(ϑi, ni, nt) =
(
T‖(ϑi, ni, nt) + T⊥(ϑi, ni, nt)

)
/2 . (A.14)

The angle of the refracted photon ϑt is given by Snell’s law:

ϑt(ϑi, ni, nt) = arcsin (ni/nt sinϑi) . (A.15)

The combined transmission of two surfaces with a transition from medium 1 via medium 2 to medium
3, with refractive indices n1, n2, n3, can be written as the product of two transmissions of a single surface
where the angle of incidence on the second surface is given by the refraction at the first one:

T (ϑ, n1, n2, n3) = Tmean(ϑ, n1, n2) · Tmean(ϑt(ϑ, n1, n2), n2, n3) . (A.16)
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A Details of the WOM Efficiency Calculation

(a) (b)

Figure A.2: Definition of the angle of incidence on the WOM ϕ and the surface normal ϑ.

Putting this into (A.11), the integral can be solved numerically.
If now the incident light has an angle ϕ , π/2 with the WOM axis (see Fig. A.2a), the calculation has

to be adjusted. If we choose the coordinates in a way that the WOM axis coincides with the z axis and
the x-z-plane is defined by the incident light î, ϑ is still embedded in the x-y-plane, but no longer equal
to the angle between incident light and the surface normal n̂ of the WOM. The latter, however, which
we will call α, is needed for the Fresnel transmission. It is determined by

cosα = î · n̂ =

sinϕ
0

cosϕ

 ·
cosϑ
sinϑ

0

 = sinϕ cosϑ . (A.17)

Additionally one has to account for the fact that for light inciding at an angle ϕ the length L of the
WOM is jolted by a factor sinϕ. Including all this in (A.11) one ends up with

εΩ(ϕ) = sinϕ
∫ π

2

0
cosϑ dϑT (α(ϑ, ϕ)) . (A.18)

The full transmission efficiency εΩ is plotted as a function of cosϕ in Fig. 4.11a.
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APPENDIX B

Validation of the Fisher Matrix Approach

B.1 Linearity

As established in Sec. 6.1.2, one requirement for the Fisher Matrix to be valid is that the observables
(i. e. the bin counts for PINGU) are described by linear functions of the parameters, hence the partial
derivatives entering (6.1) can be considered to be constant within the considered range. To quantify the
non-linearity, one can define the quantity

Υn(pi) =

(
Nn(pi,fid + σpi) − Nn(pi,fid) +

∂Nn

∂pi
σpi

) /
Nn(pi,fid) , (B.1)

describing the relative contribution of the non-linear terms to the variation of the event count Nb in bin
b as a function of the parameter pi over its uncertainty range pi,fid ± σpi .

As one can see from Figs. B.1 and B.2, for the simple scaling parameters like the mass hierarchy h or
the overall normalisation nAeff

non-linearities are on the order of the machine precision. But also for the
physics parameters they are typically smaller than 10−3, hence the requirement of linearity (condition
(a) in Sec. 6.1.2) is well fulfilled.

For means of illustration, the actual dependence of all bin entries on the systematic parameters is
shown as well. By eye, deviations from linearity can only be recognised for ∆m2

31 and the energy scale.
Since both shift the sinusoidal oscillation pattern in energy non-linearities have to be expected, however
they only occur on a scale conceivably larger than the actual uncertainty range.

B.2 Comparison to a Log-Likelihood Ratio Method

On the other hand, the test statistics of the experimental outcome is required to be Gaussian (condition
(c) in Sec. 6.1.2). To demonstrate that this is in fact fulfilled, templates of the expected bin counts for
one year of lifetime1 have been created on a full 2D grid in ∆m2

31 and ϑ23 for both normal and inverted
hierarchy. One of the templates was chosen as “truth” to draw Poissonian pseudo experiments from. For
each of the pseudo experiments X, the Log-Likelihood Ratio between normal and inverted hierarchy was

1 This study has been done using the detector parametrisation for the outdated geometry V15. However, here the goal is to
verify the method as such, thus the exact description of the detector is not relevant as long as it is not completely unrealistic.
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Figure B.1: Left: Relative values of all bin entries in the analysis histograms as functions of the systematic
parameters. The the entries at the fiducial parameter values are set to one. The vertical lines indicate the full error
range as listed in Tab. 6.1.
Right: Histograms of the non-linearities Υ of the bin counts as functions of different systematic parameters (see
equation (B.1)).
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Figure B.2: Same as Fig. B.1 for the remaining parameters.
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B Validation of the Fisher Matrix Approach

calculated according to

LLR = − log10
L(X | IH)
L(X |NH)

. (B.2)

Here, L(X | IH) is the maximum Poissonian likelihood for comparing the pseudo experiment X =

(n1, n2, . . . ) to all templates T = (µ1, µ2, . . . ) generated for the normal mass hierarchy:

L(X | IH) = max
T ∈ IH

∏
i ∈ bins

µni
i

ni!
e−µi (B.3)

L(X |NH) is calculated equivalently for the normal hierarchy.
As shown in Fig. B.3a, the test statistics is well described by a Gaussian distribution for both hierar-

chies.
Additionally, a median significance of the NMH measurement can be derived from the LLR distribu-

tions: Taking the median LLR value for NH (dashed vertical line in Fig. B.3a) and integrating over the
IH distribution from this value upwards (hatched area) results in a one-sided p-value of 2.7 %, corre-
sponding to a significance of 1.922σ. Evaluating the Fisher Matrix on the same data (see below), with
only ∆m2

31 and ϑ23 as systematic parameters and without any priors, gives a consistent significance of
1.923σ.

3 2 1 0 1 2 3

LLR value

0

100

200

300

400

500

E
n
tr

ie
s

IH true

NH true

(a)

2.50 2.45 2.40 2.35 2.30 2.25 2.20

∆m 2
31 [10−3 eV2 ]

38

40

42

44

ϑ
23

 [
d
e
g
]

1500

1475

1450

1425

1400

1375

1350

1325

1300

LL
H

 v
a
lu

e
(b)

Figure B.3: (a) Test statistic for PINGU with 104 pseudo experiments thrown for each NH and IH as assumed
truth. A Gaussian fit to the NH distribution and its median value are indicated by the solid and dashed lines,
respectively.
(b) Grid scan of the log-likelihood landscape for ∆m2

31 (IH) and ϑ23, overlaid with the 68 % CL ellipse calculated
with the Fisher Matrix from the highlighted row and column. The star marks the injected truth.

When looking at the likelihood landscape itself (Fig. B.3b), the shape of the minimum in the (∆m2
31,

ϑ23) plane is approximately elliptical, so condition (b) in Sec. 6.1.2 is fulfilled as well. From the slices
through the parameter space corresponding to the injected true values of ∆m2

31 and ϑ23, highlighted in
the figure, and the corresponding best fit point for inverted hierarchy, a Fisher matrix can be constructed.
The 1σ error ellipse retrieved from this matrix aligns well with the true shape of the likelihood land-
scape, hence the Fisher matrix gives a precise description of the problem.
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APPENDIX C

Oscillation Probabilities

C.1 Baseline Settings

1.0 0.8 0.6 0.4 0.2 0.0

cos ϑzenith

100

101

E
n
e
rg

y
 [

G
e
V

]

Normal

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.8 0.6 0.4 0.2 0.0

cos ϑzenith

100

101

E
n
e
rg

y
 [

G
e
V

]

Inverted

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.8 0.6 0.4 0.2 0.0

cos ϑzenith

100

101

E
n
e
rg

y
 [

G
e
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.8 0.6 0.4 0.2 0.0

cos ϑzenith

100

101

E
n
e
rg

y
 [

G
e
V

]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure C.1: Oscillation probabilities for νe → νe (top) and ν̄e → ν̄e (bottom) for normal and inverted hierarchy.
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Figure C.2: Oscillation probabilities for νe → νµ (top) and ν̄e → ν̄µ (bottom) for normal and inverted hierarchy.
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Figure C.3: Oscillation probabilities for νe → ντ (top) and ν̄e → ν̄τ (bottom) for normal and inverted hierarchy.
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Figure C.4: Oscillation probabilities for νµ → νe (top) and ν̄µ → ν̄e (bottom) for normal and inverted hierarchy.
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Figure C.5: Oscillation probabilities for νµ → νµ (top) and ν̄µ → ν̄µ (bottom) for normal and inverted hierarchy.
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Figure C.6: Oscillation probabilities for νµ → ντ (top) and ν̄µ → ν̄τ (bottom) for normal and inverted hierarchy.
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C.2 Scanning the fiducial value of ϑ23
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Figure C.7: Probabilities for νµ → νe oscillations in normal mass hierarchy (left column) and difference between
normal and inverted hierarchy oscillation probabilities (right column) for different values of ϑ23 in both octants.

113





APPENDIX D

Parametrisations of the Detector Resolutions

The full parametrisations of the reconstruction performances will be listed in form of the actual PaPA
input. These are nested dictionaries giving the resolutions in energy (’e’) and cosϑzenith (’coszen’)
for all four interaction channels: νe, νµ, and ντ CC (’nue’, ’numu’, and ’nutau’, respectively) and
νX NC (’NC’). For each of those the resolution is given by the five parameters ’fraction’, ’loc1’,
’loc2’, ’width1’, and ’width2’, corresponding to f , µ1, µ2, σ1 and σ2 in (5.6).

The actual function definitions for the five parameters is then supplied as a text string that can be
interpreted as a python function by python’s eval() function. In those definitions, ’n’ is a shorthand
for the numpy library [124] used for most of the numerical operations in PaPA.

D.1 Baseline Settings

{
"NC": {
"coszen": {
"fraction": "lambda E: 0.6*n.ones_like(E)",
"loc1": "lambda E: -0.0*E + 0.0",
"loc2": "lambda E: -0.0*n.ones_like(E)",
"width1": "lambda E: 0.189 * n.exp(-E / 14.9) + 0.0581",
"width2": "lambda E: 0.236 * n.exp(-E / 9.73) + 0.308"

},
"e": {
"fraction": "lambda E: n.min([0.374 - 0.026*E, n.ones_like(E)], axis=0)",
"loc1": "lambda E: -0.905*E + 1.45",
"loc2": "lambda E: -0.686*E + 1.68",
"width1": "lambda E: 0.0316*E + 0.688",
"width2": "lambda E: 0.170*E + 0.650"

}
},
"nue": {
"coszen": {
"fraction": "lambda E: 0.8*n.ones_like(E)",
"loc1": "lambda E: 0.05*n.ones_like(E)",
"loc2": "lambda E: -0.00240*E + 0.0509",
"width1": "lambda E: 0.121 * n.exp(-E / 5.57) + 0.0414",
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D Parametrisations of the Detector Resolutions

"width2": "lambda E: 0.308 * n.exp(-E / 6.63) + 0.127"
},
"e": {
"fraction": "lambda E: n.max([0.4 - 0.034*E, n.zeros_like(E)], axis=0)",
"loc1": "lambda E: -0.0*E - 0.0",
"loc2": "lambda E: 0.0*E + 1.5",
"width1": "lambda E: 0.240*E + 0.187",
"width2": "lambda E: 0.0*E + 1.5"

}
},
"numu": {
"coszen": {
"fraction": "lambda E: 0.8*n.ones_like(E)",
"loc1": "lambda E: n.zeros_like(E)",
"loc2": "lambda E: -0.00331*E + 0.0641",
"width1": "lambda E: 0.135 * n.exp(-E / 8.99) + 0.00369",
"width2": "lambda E: 0.335 * n.exp(-E / 6.32) + 0.097"

},
"e": {
"fraction": "lambda E: n.min([0.1 + 0.05*E, 0.6*n.ones_like(E)], axis=0)",
"loc1": "lambda E: -0.0732*E - 0.125",
"loc2": "lambda E: n.max([1.15 - 0.208*E, -2.*n.ones_like(E)], axis=0)",
"width1": "lambda E: 0.0842*E + 0.467 + 0.3",
"width2": "lambda E: 0.185*E + 1.01"

}
},
"nutau": {
"coszen": {
"fraction": "lambda E: 0.6*n.ones_like(E)",
"loc1": "lambda E: n.zeros_like(E)",
"loc2": "lambda E: n.zeros_like(E)",
"width1": "lambda E: n.max([0.151 - 0.00369*E, 0.6*n.ones_like(E)], axis=0)",
"width2": "lambda E: 0.326 * n.exp(-E / 16.3) + 0.157"

},
"e": {
"fraction": "lambda E: 0.0*n.ones_like(E)",
"loc1": "lambda E: -0.457*E - 0.216",
"loc2": "lambda E: -0.0*E + 0.0",
"width1": "lambda E: 0.282*E - 0.0287",
"width2": "lambda E: 0.0*E + 1."

}
}

}

D.2 Geometry V15 (Noiseless)

{
"NC": {
"coszen": {
"fraction": "lambda E: 0.6*n.ones_like(E)",
"loc1": "lambda E: 0.*n.ones_like(E)",
"loc2": "lambda E: 0.*n.ones_like(E)",
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"width1": "lambda E: 0.131 * n.exp(-E / 12.0) + 0.0757",
"width2": "lambda E: 0.273 * n.exp(-E / 13.7) + 0.227"

},
"e": {
"fraction": "lambda E: 0.5*n.ones_like(E)",
"loc1": "lambda E: -0.798*E + 1.17",
"loc2": "lambda E: -0.522*E + 1.33",
"width1": "lambda E: 0.0974*E + 0.499",
"width2": "lambda E: 0.149*E + 0.789"

}
},
"nue": {
"coszen": {
"fraction": "lambda E: n.max([-0.007*E + 0.78, n.zeros_like(E)], axis=0)",
"loc1": "lambda E: 0.*n.ones_like(E)",
"loc2": "lambda E: 0.*n.ones_like(E)",
"width1": "lambda E: 0.103 * n.exp(-E / 4.64) + 0.0508",
"width2": "lambda E: 0.319 * n.exp(-E / 4.94) + 0.137"

},
"e": {
"fraction": "lambda E: n.min([0.0117*E + 0.0679, 0.4*n.ones_like(E)], axis=0)",
"loc1": "lambda E: 0.331*n.ones_like(E)",
"loc2": "lambda E: 0.16*E + 0.492",
"width1": "lambda E: 0.241*E + 0.514",
"width2": "lambda E: 0.0752*E + 0.623"

}
},
"numu": {
"coszen": {
"fraction": "lambda E: n.max([-0.0117*E + 0.785, 0.4*n.ones_like(E)], axis=0)",
"loc1": "lambda E: 0.*n.ones_like(E)",
"loc2": "lambda E: 0.*n.ones_like(E)",
"width1": "lambda E: 0.0918 * n.exp(-E / 9.9) + 0.0387",
"width2": "lambda E: 0.278 * n.exp(-E / 14.5) + 0.0795"

},
"e": {
"fraction": "lambda E: 0.15*n.ones_like(E)",
"loc1": "lambda E: n.array([0.0748*e + 0.142 if e < 6 else -0.0809*e + 0.975 for e in E])",
"loc2": "lambda E: n.array([2.10 if e < 6 else -0.876*e + 9.49 for e in E])",
"width1": "lambda E: n.array([0.285*e + 0.269 if e < 6 else 0.116*e + 1.26 for e in E])",
"width2": "lambda E: n.array([0.617*e - 0.346 if e < 15 else 0.008*e + 2.62 for e in E])"

}
},
"nutau": {
"coszen": {
"fraction": "lambda E: 0.7*n.ones_like(E)",
"loc1": "lambda E: 0.*n.ones_like(E)",
"loc2": "lambda E: 0.*n.ones_like(E)",
"width1": "lambda E: n.max([-0.00379*E + 0.363, 0.2*n.ones_like(E)], axis=0)",
"width2": "lambda E: n.max([-0.00907*E + 0.133, 0.05*n.ones_like(E)], axis=0)"

},
"e": {
"fraction": "lambda E: 0.3*n.ones_like(E)",
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D Parametrisations of the Detector Resolutions

"loc1": "lambda E: -0.341*E + 0.588",
"loc2": "lambda E: -0.599*E + 0.148",
"width1": "lambda E: 0.233*E + 0.373",
"width2": "lambda E: 0.144*E + 0.255"

}
}

}
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APPENDIX E

PID Functions

E.1 Baseline Settings

The particle identification is a binary decision, thus only the track identification probabilities Pchannel→track are
listed:

Pνe→track(E) = 0.192 exp
(
−

(log10(E[GeV]) − 0.878)2

0.4042

)
+ 0.0309 (E.1)

Pνµ→track(E) =
0.687

exp
(
(0.683 − log10(E[GeV]))/0.183

)
+ 1

+ 0.0585 (E.2)

Pντ→track(E) = 0.197 exp
(
−

(log10(E[GeV]) − 1.28)2

0.4662

)
+ 0.0732 (E.3)

PνX NC→track(E) = 0.171 exp
(
−

(log10(E[GeV]) − 1.37)2

0.4832

)
+ 0.0339 (E.4)

The cascade identification probabilities are given by Pchannel→cascade = 1 − Pchannel→track.
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E PID Functions
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Figure E.1: Classification efficiencies for the high-purity track (left) and cascade (right) selections for PINGU
V15, similar to Fig. 6.4.

E.2 High-Purity Event Classification

The particle identification is done by selecting high-purity track and cascade samples, events ending up in neither
sample are classified as “unidentified”:

Pνe→track(E) = 0.0481 exp
(
−

(log10(E[GeV]) − 0.904)2

0.2652

)
+ 0.0350 (E.5)

Pνe→cascade(E) =
0.945

exp
(
(0.922 − log10(E[GeV]))/0.180

)
+ 1

+ 0.0264 (E.6)

Pνµ→track(E) =
0.782

exp
(
(0.808 − log10(E[GeV]))/0.135

)
+ 1

+ 0.0507 (E.7)

Pνµ→cascade(E) =
0.103

exp
(
(0.499 − log10(E[GeV]))/0.127

)
+ 1

+ 0.0223 (E.8)

Pντ→track(E) =
0.125

exp
(
(0.882 − log10(E[GeV]))/0.120

)
+ 1

+ 0.0396 (E.9)

Pντ→cascade(E) =
0.811

exp
(
(1.19 − log10(E[GeV]))/0.200

)
+ 1

+ 0.0163 (E.10)

PνX NC→track(E) =
0.0344

exp
(
(0.939 − log10(E[GeV]))/0.0516

)
+ 1

+ 0.0439 (E.11)

PνX NC→cascade(E) =
0.771

exp
(
(1.34 − log10(E[GeV]))/0.216

)
+ 1

+ 0.0202 (E.12)

The fit of these functions to data is shown in Fig. E.1.
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APPENDIX F

Full Error Listings

Here the full error lists, similar to Tab. 6.1, for various detector settings and sub-channels will be collected. These
have not been included in the main text for the sake of better readability. For a description how to read the tables,
refer to the explanations given for Tab. 6.1 in Sec. 6.3.

F.1 Baseline Settings

Table F.1: Same as Tab. 6.1, but for the track channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 7.47 × 10−1 3.20 × 10−1 6.75 × 10−1 free
sE 8.4 1.00 2.98 × 10−2 8.36 × 10−3 3.62 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 7.2 2.46 × 10−3 6.70 × 10−5 1.93 × 10−5 1.21 × 10−4 8.00 × 10−5

ϑ23 [◦] 6.0 3.86 × 101 5.83 × 10−1 3.55 × 10−1 5.43 × 10−1 1.32
ϑ13 [◦] 3.6 8.93 4.67 × 10−1 9.47 × 10−1 1.01 × 101 4.68 × 10−1

rΦ, νe−νµ 2.4 0.00 3.59 × 10−2 5.84 × 10−3 5.12 × 10−2 5.00 × 10−2

∆PID [GeV] 2.3 0.00 3.80 × 10−2 1.71 × 10−2 3.41 × 10−2 5.00 × 10−1

nAeff
1.3 0.00 3.00 × 10−2 3.87 × 10−3 3.01 × 10−2 2.00 × 10−1

sAeff
[m2/GeV] 0.3 0.00 4.13 × 10−4 1.64 × 10−4 3.79 × 10−4 free

rAeff , ν−ν̄ 0.2 0.00 4.86 × 10−2 9.29 × 10−3 2.06 × 10−1 5.00 × 10−2
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F Full Error Listings

Table F.2: Same as Tab. 6.1, but for the cascade channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 5.17 × 10−1 3.39 × 10−1 3.91 × 10−1 free
rΦ, νe−νµ 24.9 0.00 2.44 × 10−2 1.06 × 10−2 2.58 × 10−2 5.00 × 10−2

ϑ23 [◦] 20.7 3.86 × 101 1.05 5.78 × 10−1 1.61 1.32
∆PID [GeV] 11.4 0.00 1.53 × 10−1 4.14 × 10−2 1.55 × 10−1 5.00 × 10−1

sAeff
[m2/GeV] 4.5 0.00 3.96 × 10−4 1.85 × 10−4 3.50 × 10−4 free

rAeff , ν−ν̄ 4.2 0.00 4.91 × 10−2 5.55 × 10−3 2.60 × 10−1 5.00 × 10−2

ϑ13 [◦] 3.0 8.93 4.66 × 10−1 1.67 5.53 4.68 × 10−1

sE 1.5 1.00 3.14 × 10−2 1.92 × 10−2 3.55 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 1.2 2.46 × 10−3 6.73 × 10−5 4.44 × 10−5 1.16 × 10−4 8.00 × 10−5

nAeff
0.1 0.00 2.29 × 10−2 2.32 × 10−3 2.29 × 10−2 2.00 × 10−1

F.2 Normal Mass Hierarchy as Truth

Table F.3: Full error listings for the combined analysis of tracks and cascades when assuming true normal mass
hierarchy.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 0.00 3.22 × 10−1 2.32 × 10−1 2.23 × 10−1 free
ϑ13 [◦] 8.5 8.93 4.64 × 10−1 8.23 × 10−1 3.64 4.68 × 10−1

∆m2
31 [eV2] 2.4 2.46 × 10−3 6.49 × 10−5 1.77 × 10−5 1.09 × 10−4 8.00 × 10−5

ϑ23 [◦] 2.1 3.86 × 101 4.74 × 10−1 3.02 × 10−1 4.08 × 10−1 1.32
∆PID [GeV] 0.5 0.00 1.70 × 10−2 1.58 × 10−2 6.27 × 10−3 5.00 × 10−1

rΦ, νe−νµ 0.5 0.00 1.09 × 10−2 5.33 × 10−3 9.79 × 10−3 5.00 × 10−2

rAeff , ν−ν̄ 0.5 0.00 4.74 × 10−2 4.83 × 10−3 1.49 × 10−1 5.00 × 10−2

nAeff
0.1 0.00 1.90 × 10−2 1.99 × 10−3 1.90 × 10−2 2.00 × 10−1

sE 0.1 1.00 2.81 × 10−2 7.65 × 10−3 3.31 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 0.0 0.00 2.25 × 10−4 1.23 × 10−4 1.88 × 10−4 free
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Table F.4: Same as Tab. F.3, but for the track channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 0.00 7.51 × 10−1 3.20 × 10−1 6.79 × 10−1 free
sE 8.6 1.00 2.98 × 10−2 8.35 × 10−3 3.62 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 7.0 2.46 × 10−3 6.70 × 10−5 1.93 × 10−5 1.21 × 10−4 8.00 × 10−5

ϑ23 [◦] 7.0 3.86 × 101 5.83 × 10−1 3.53 × 10−1 5.45 × 10−1 1.32
nAeff

3.8 0.00 2.95 × 10−2 3.87 × 10−3 2.96 × 10−2 2.00 × 10−1

ϑ13 [◦] 3.5 8.93 4.67 × 10−1 9.48 × 10−1 1.00 × 101 4.68 × 10−1

rΦ, νe−νµ 3.0 0.00 3.55 × 10−2 5.90 × 10−3 5.02 × 10−2 5.00 × 10−2

∆PID [GeV] 2.9 0.00 3.82 × 10−2 1.71 × 10−2 3.42 × 10−2 5.00 × 10−1

rAeff , ν−ν̄ 0.4 0.00 4.86 × 10−2 9.38 × 10−3 2.10 × 10−1 5.00 × 10−2

sAeff
[m2/GeV] 0.0 0.00 4.17 × 10−4 1.64 × 10−4 3.83 × 10−4 free

Table F.5: Same as Tab. F.3, but for the cascade channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 0.00 4.64 × 10−1 3.36 × 10−1 3.21 × 10−1 free
ϑ23 [◦] 25.8 3.86 × 101 1.06 5.79 × 10−1 1.67 1.32
rΦ, νe−νµ 14.5 0.00 2.34 × 10−2 1.24 × 10−2 2.33 × 10−2 5.00 × 10−2

∆PID [GeV] 7.7 0.00 1.51 × 10−1 4.15 × 10−2 1.53 × 10−1 5.00 × 10−1

ϑ13 [◦] 3.4 8.93 4.66 × 10−1 1.66 5.61 4.68 × 10−1

sAeff
[m2/GeV] 2.3 0.00 3.97 × 10−4 1.85 × 10−4 3.51 × 10−4 free

nAeff
1.6 0.00 2.29 × 10−2 2.32 × 10−3 2.29 × 10−2 2.00 × 10−1

∆m2
31 [eV2] 0.9 2.46 × 10−3 6.72 × 10−5 4.43 × 10−5 1.15 × 10−4 8.00 × 10−5

sE 0.8 1.00 3.12 × 10−2 1.92 × 10−2 3.51 × 10−2 5.00 × 10−2

rAeff , ν−ν̄ 0.2 0.00 4.91 × 10−2 5.64 × 10−3 2.62 × 10−1 5.00 × 10−2
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F Full Error Listings

F.3 High-Purity Event Classification

Table F.6: Full error listings for the high-purity track channel, see Sec. 6.3.4.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 1.10 4.93 × 10−1 9.86 × 10−1 free
sE 21.3 1.00 3.36 × 10−2 1.31 × 10−2 4.34 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 10.7 2.46 × 10−3 6.97 × 10−5 3.03 × 10−5 1.38 × 10−4 8.00 × 10−5

ϑ23 [◦] 6.1 3.86 × 101 7.53 × 10−1 5.50 × 10−1 7.32 × 10−1 1.32
∆PID [GeV] 3.6 0.00 8.20 × 10−2 3.98 × 10−2 7.29 × 10−2 5.00 × 10−1

ϑ13 [◦] 1.7 8.93 4.67 × 10−1 1.46 1.83 × 101 4.68 × 10−1

sAeff
[m2/GeV] 0.4 0.00 6.16 × 10−4 2.74 × 10−4 5.52 × 10−4 free

rΦ, νe−νµ 0.3 0.00 4.37 × 10−2 9.35 × 10−3 8.96 × 10−2 5.00 × 10−2

sPID 0.0 1.00 2.05 × 10−1 7.47 × 10−3 2.05 × 10−1 free
rAeff , ν−ν̄ 0.0 0.00 4.95 × 10−2 1.78 × 10−2 3.60 × 10−1 5.00 × 10−2

nAeff
0.0 0.00 2.00 × 10−1 7.47 × 10−3 NaN 2.00 × 10−1

Table F.7: Full error listings for the standard cascade channel (i. e. cascades are all events not identified as tracks),
see Sec. 6.3.4.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 7.30 × 10−1 5.47 × 10−1 4.83 × 10−1 free
rΦ, νe−νµ 17.1 0.00 3.12 × 10−2 1.83 × 10−2 3.54 × 10−2 5.00 × 10−2

ϑ23 [◦] 12.5 3.86 × 101 1.26 9.53 × 10−1 4.03 1.32
sAeff

[m2/GeV] 7.7 0.00 5.53 × 10−4 3.37 × 10−4 4.39 × 10−4 free
nAeff

3.8 0.00 2.33 × 10−2 3.89 × 10−3 2.32 × 10−2 2.00 × 10−1

∆PID [GeV] 1.9 0.00 1.78 × 10−1 9.95 × 10−2 1.62 × 10−1 5.00 × 10−1

rAeff , ν−ν̄ 1.9 0.00 4.96 × 10−2 9.31 × 10−3 3.74 × 10−1 5.00 × 10−2

ϑ13 [◦] 1.3 8.93 4.67 × 10−1 2.92 8.26 4.68 × 10−1

sE 0.4 1.00 3.64 × 10−2 3.88 × 10−2 3.65 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 0.3 2.46 × 10−3 7.03 × 10−5 8.96 × 10−5 1.17 × 10−4 8.00 × 10−5
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Table F.8: Full error listings for the high-purity cascade channel, see Sec. 6.3.4.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 9.54 × 10−1 6.35 × 10−1 7.12 × 10−1 free
∆PID [GeV] 29.0 0.00 9.77 × 10−2 3.74 × 10−2 9.24 × 10−2 5.00 × 10−1

rΦ, νe−νµ 21.4 0.00 4.34 × 10−2 4.50 × 10−2 7.45 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 16.6 0.00 1.06 × 10−3 4.43 × 10−4 9.64 × 10−4 free

ϑ23 [◦] 2.8 3.86 × 101 1.29 3.02 5.08 1.32
sPID 1.2 1.00 2.05 × 10−1 9.07 × 10−3 2.05 × 10−1 free
sE 0.5 1.00 4.12 × 10−2 5.85 × 10−2 4.30 × 10−2 5.00 × 10−2

ϑ13 [◦] 0.5 8.93 4.67 × 10−1 3.82 1.20 × 101 4.68 × 10−1

rAeff , ν−ν̄ 0.4 0.00 5.00 × 10−2 2.07 × 10−2 1.41 5.00 × 10−2

∆m2
31 [eV2] 0.1 2.46 × 10−3 7.38 × 10−5 1.38 × 10−4 1.32 × 10−4 8.00 × 10−5

nAeff
0.0 0.00 2.00 × 10−1 9.07 × 10−3 NaN 2.00 × 10−1

Table F.9: Full error listings for the sample of unidentified events, see Sec. 6.3.4.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 1.13 8.16 × 10−1 7.80 × 10−1 free
rΦ, νe−νµ 21.8 0.00 4.14 × 10−2 1.64 × 10−2 7.21 × 10−2 5.00 × 10−2

nAeff
10.6 0.00 2.49 × 10−2 4.30 × 10−3 2.47 × 10−2 2.00 × 10−1

sE 9.7 1.00 4.22 × 10−2 5.06 × 10−2 6.06 × 10−2 5.00 × 10−2

sPID 4.8 1.00 6.42 × 10−3 2.30 × 10−3 6.00 × 10−3 free
∆m2

31 [eV2] 4.1 2.46 × 10−3 7.39 × 10−5 1.15 × 10−4 1.54 × 10−4 8.00 × 10−5

∆PID [GeV] 3.9 0.00 1.15 × 10−1 4.72 × 10−2 1.09 × 10−1 5.00 × 10−1

sAeff
[m2/GeV] 2.3 0.00 2.32 × 10−3 5.12 × 10−4 2.26 × 10−3 free

ϑ23 [◦] 1.8 3.86 × 101 1.29 9.74 × 10−1 6.12 1.32
ϑ13 [◦] 0.6 8.93 4.67 × 10−1 3.74 9.99 4.68 × 10−1

rAeff , ν−ν̄ 0.5 0.00 4.97 × 10−2 1.04 × 10−2 4.26 × 10−1 5.00 × 10−2

Table F.10: Full error listings for the high-purity cascade channel combined with the unidentified sample after
Fisher matrix evaluation.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 6.19 × 10−1 5.01 × 10−1 3.63 × 10−1 free
ϑ23 [◦] 18.1 3.86 × 101 1.20 9.27 × 10−1 2.74 1.32
rΦ, νe−νµ 6.7 0.00 2.63 × 10−2 1.54 × 10−2 2.68 × 10−2 5.00 × 10−2

sPID 4.3 1.00 3.00 × 10−3 2.23 × 10−3 2.01 × 10−3 free
sAeff

[m2/GeV] 3.3 0.00 5.53 × 10−4 3.35 × 10−4 4.40 × 10−4 free
rAeff , ν−ν̄ 2.1 0.00 4.94 × 10−2 9.31 × 10−3 3.31 × 10−1 5.00 × 10−2

ϑ13 [◦] 1.8 8.93 4.67 × 10−1 2.67 7.62 4.68 × 10−1

nAeff
0.9 0.00 2.19 × 10−2 3.89 × 10−3 2.16 × 10−2 2.00 × 10−1

sE 0.3 1.00 3.63 × 10−2 3.83 × 10−2 3.64 × 10−2 5.00 × 10−2

∆PID [GeV] 0.3 0.00 3.37 × 10−2 2.93 × 10−2 1.69 × 10−2 5.00 × 10−1

∆m2
31 [eV2] 0.2 2.46 × 10−3 7.02 × 10−5 8.84 × 10−5 1.17 × 10−4 8.00 × 10−5
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F Full Error Listings

F.4 PINGU equipped with mDOMs

Table F.11: Full error listings for PINGU assuming reconstruction and particle identification as in geometry V15,
i. e. no module noise.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 3.33 × 10−1 2.34 × 10−1 2.37 × 10−1 free
ϑ23 [◦] 12.5 3.86 × 101 5.06 × 10−1 2.81 × 10−1 4.69 × 10−1 1.32
rΦ, νe−νµ 7.7 0.00 9.32 × 10−3 4.85 × 10−3 8.15 × 10−3 5.00 × 10−2

rAeff , ν−ν̄ 7.6 0.00 4.78 × 10−2 4.73 × 10−3 1.62 × 10−1 5.00 × 10−2

ϑ13 [◦] 7.4 8.93 4.64 × 10−1 9.29 × 10−1 3.46 4.68 × 10−1

nAeff
6.0 0.00 1.93 × 10−2 1.96 × 10−3 1.93 × 10−2 2.00 × 10−1

∆m2
31 [eV2] 2.2 2.46 × 10−3 6.59 × 10−5 2.28 × 10−5 1.14 × 10−4 8.00 × 10−5

∆PID [GeV] 1.3 0.00 2.31 × 10−2 2.00 × 10−2 1.16 × 10−2 5.00 × 10−1

sE 0.2 1.00 2.88 × 10−2 9.83 × 10−3 3.39 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 0.1 0.00 2.33 × 10−4 1.47 × 10−4 1.81 × 10−4 free

Table F.12: Same as Tab. F.11, but for the track channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 7.93 × 10−1 3.65 × 10−1 7.03 × 10−1 free
sE 13.1 1.00 3.14 × 10−2 1.05 × 10−2 3.91 × 10−2 5.00 × 10−2

∆m2
31 [eV2] 7.4 2.46 × 10−3 6.80 × 10−5 2.42 × 10−5 1.26 × 10−4 8.00 × 10−5

∆PID [GeV] 5.7 0.00 5.21 × 10−2 2.16 × 10−2 4.78 × 10−2 5.00 × 10−1

ϑ13 [◦] 3.1 8.93 4.67 × 10−1 1.11 1.08 × 101 4.68 × 10−1

ϑ23 [◦] 3.1 3.86 × 101 5.85 × 10−1 3.26 × 10−1 5.65 × 10−1 1.32
nAeff

0.3 0.00 3.58 × 10−2 4.34 × 10−3 3.61 × 10−2 2.00 × 10−1

rAeff , ν−ν̄ 0.1 0.00 4.88 × 10−2 1.05 × 10−2 2.28 × 10−1 5.00 × 10−2

rΦ, νe−νµ 0.0 0.00 3.41 × 10−2 5.59 × 10−3 4.62 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 0.0 0.00 4.99 × 10−4 2.10 × 10−4 4.53 × 10−4 free

Table F.13: Same as Tab. F.11, but for the cascade channel only

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 5.34 × 10−1 3.04 × 10−1 4.38 × 10−1 free
rΦ, νe−νµ 43.4 0.00 2.69 × 10−2 9.78 × 10−3 3.03 × 10−2 5.00 × 10−2

sAeff
[m2/GeV] 18.8 0.00 4.92 × 10−4 2.06 × 10−4 4.46 × 10−4 free

ϑ23 [◦] 10.4 3.86 × 101 1.19 5.56 × 10−1 2.69 1.32
sE 6.7 1.00 3.58 × 10−2 2.83 × 10−2 4.26 × 10−2 5.00 × 10−2

nAeff
5.1 0.00 2.18 × 10−2 2.20 × 10−3 2.18 × 10−2 2.00 × 10−1

∆m2
31 [eV2] 2.5 2.46 × 10−3 6.98 × 10−5 6.61 × 10−5 1.27 × 10−4 8.00 × 10−5

∆PID [GeV] 2.5 0.00 1.13 × 10−1 5.25 × 10−2 1.03 × 10−1 5.00 × 10−1

ϑ13 [◦] 2.3 8.93 4.66 × 10−1 1.71 5.49 4.68 × 10−1

rAeff , ν−ν̄ 2.2 0.00 4.95 × 10−2 5.29 × 10−3 3.37 × 10−1 5.00 × 10−2
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F.5 JUNO

Table F.14: Full error listings for JUNO including prior knowledge on the oscillation parameters as given in [47].

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 2.19 × 10−1 7.99 × 10−2 2.04 × 10−1 free
∆m2

31 [eV2] 37.1 2.46 × 10−3 1.56 × 10−5 4.74 × 10−6 1.52 × 10−5 8.00 × 10−5

sAeff , JUNO 32.0 0.00 3.49 × 101 2.05 × 101 2.82 × 101 free
ϑ13 [◦] 7.2 8.93 4.49 × 10−1 5.62 × 10−1 1.51 4.68 × 10−1

ϑ12 4.4 3.36 × 101 8.12 × 10−1 8.65 × 10−1 9.32 × 10−1 1.06
sE, JUNO 2.5 1.00 1.33 × 10−2 5.14 × 10−3 1.70 × 10−2 2.00 × 10−2

∆m2
21 0.1 7.54 × 10−5 2.22 × 10−6 3.86 × 10−6 4.41 × 10−6 2.40 × 10−6

nAeff , JUNO 0.0 0.00 2.00 × 10−2 9.43 × 10−2 5.29 × 10−1 2.00 × 10−2

Table F.15: Error listings for JUNO, including only oscillation parameters without any priors.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 2.87 × 10−1 7.99 × 10−2 2.76 × 10−1 free
∆m2

31 [eV2] 88.8 2.46 × 10−3 1.52 × 10−5 4.74 × 10−6 1.45 × 10−5 free
ϑ13 [◦] 69.3 8.93 1.08 5.62 × 10−1 9.27 × 10−1 free
ϑ12 0.9 3.36 × 101 1.26 8.65 × 10−1 9.21 × 10−1 free
∆m2

21 0.1 7.54 × 10−5 5.68 × 10−6 3.86 × 10−6 4.16 × 10−6 free

Table F.16: Same as Tab. F.15, but for PINGU.

Parameter Impact [%] Best Fit σfull σstat σsyst Prior

h 100.0 1.00 6.72 × 10−1 2.33 × 10−1 6.30 × 10−1 free
ϑ13 [◦] 79.8 8.93 3.18 8.24 × 10−1 3.07 free
∆m2

31 [eV2] 25.1 2.46 × 10−3 3.56 × 10−5 1.77 × 10−5 3.09 × 10−5 free
ϑ23 [◦] 5.4 3.86 × 101 3.13 × 10−1 3.02 × 10−1 8.05 × 10−2 free
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