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“If a man will begin with certainties, he shall end in doubts; but if he will be content to begin
with doubts, he shall end in certainties.”

Francis Bacon





Application of knowledge discovery and data mining methods in livestock genomics
for hypothesis generation and identification of biomarker candidates influencing

meat quality traits in pigs

Recent advancements in genomics and genome profiling technologies have lead to an increase in
the amount of data available in livestock genomics. Yet, most of the studies done in livestock
genomics have been following a reductionist approach and very few studies have either followed
data mining or knowledge discovery concepts or made use of the wealth of information available
in the public domain to gain new knowledge. The goals of this thesis were: (i) the adoption
of existing analysis strategies or the development of novel approaches in livestock genomics for
integrative data analysis following the principles of data mining and knowledge discovery and (ii)
demonstrating the application of such approaches in livestockgenomics for hypothesis generation
and biomarker discovery. A pig meat quality trait termed androstenone measurement in backfat
was selected as the target phenotype for the experiments.

Two experiments were performed as a part of this thesis. The first one followed a knowledge
driven approach merging high-throughput expression data with metabolic interaction network.
Based on the results from this experiment, several novel biomarker candidates and a hypothesis
regarding different mechanisms regulating androstenone synthesis in porcine testis samples with
divergent androstenone measurements in back fat were proposed. The model proposed that the
elevated levels of androstenone synthesis in sample population could be due to the combined effect
of cAMP/PKA signaling, elevated levels of fatty acid metabolism and anti lipid peroxidation
activity of members of glutathione metabolic pathway. The second experiment followed a data
driven approach and integrated gene expression data from multiple porcine populations to
identify similarities in gene expression patterns related to hepatic androstenone metabolism. The
results indicated that one of the low androstenone phenotype specific co-expression cluster was
functionally enriched in pathways related to androgen and androstenone metabolism and that
the members of this cluster exhibited weak co-expression in high androstenone phenotype. Based
on the results from this experiment, this co-expression cluster was proposed as a signature cluster
for hepatic androstenone metabolism in boars with low androstenone content in back fat. The
results from these experiments indicate that integrative analysis approaches following data mining
and knowledge discovery concepts can be used for the generation of new knowledge from existing
data in livestock genomics. But, limited data availability in livestock genomics is a hindrance to
the extensive use such analysis methods in livestock genomics field for gaining new knowledge.

In conclusion, this study was aimed at demonstrating the capabilities of data mining and knowledge
discovery methods and integrative analysis approaches to generate new knowledge in livestock
genomics using existing datasets. The results from the experiments hint the possibilities of further
exploring such methods for knowledge generation in this field. Although the application of such
methods is limited in livestock genomics due to data availability issues at present, the increase in
data availability due to evolving high throughput technologies and decrease in data generation
costs would aid in the wide spread use of such methods in livestock genomics in the coming
future.
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Einsatz von Methoden der Datengewinnung und Wissensentdeckung in der
Nutztiergenomforschung zur Hypothesengenerierung und Identifizierung von

Kandidaten-Biomarkern die ein Fleischqualitätsmerkmal beim Schwein
beeinflussen

Neuste Entwicklungen im Bereich der Genomik und in den Technologien für das Genom Profiling
führten zum Anstieg der verfügbareren Datenmengen des Nutztiergenoms. Jedoch folgten die
meisten Studien in der Nutztiergenomforschung dem reduktionistischen Ansatz und nur wenige
Studien den Methoden der Datengewinnung und Wissensentdeckung oder nutzten bestehende
Informationen aus der öffentlichen Domain, um neue Erkenntnisse zu gewinnen. Die Ziele dieser
Dissertation waren: (i) bestehende Analysestrategien aufzunehmen oder neue Methoden in der
Nutztiergenomforschung für die integrative Datenanalyse zu entwickeln. Dabei kamen Methoden
der Datengewinnung und der Wissensentdeckung zum Einsatz. Und (ii) dadurch die Anwendung
dieser Ansätze in der Nutztiergenomforschung zur Hypothesengenerierung und zur Entdeckung von
Biomarkern zu veranschaulichen. Für die vorliegenden Experimente diente als Ziel-Phänotyp ein
Schweinefleischqualitätsmerkmal, welches durch die Messungen von Androstenon im Rückenfett
gekennzeichnet ist.

Zwei Versuche werden in der Dissertation abgehandelt. Das erste Experiment folgte einem
wissensgesteuerten Ansatz und brachte high-throughput Expressionsdaten mit metabolischen
Interaktionsnetzwerken in Verbindung. Basierend auf diesen Versuchsansatz konnten verschiedene
neuartige Kandidaten-Biomarker identifiziert und Hypothesen gebildet werden die mit Mechanis-
men der Androstenonsynthese in Hodenproben vom Schwein mit divergenten Androstenongehalten
aus dem Rückenfett in Verbindung stehen. Für die Stichprobe mit erhöhten Androstenonsyn-
theselevel konnte mittels dieses Models ein kombinierter Effekt aus dem cAMP/PKA Signalweg
sowie einem erhöhten Level des Fettsäuremetabolismus und Antilipid-Peroxidationsaktivität als
Teile des Glutathion Stoffwechselwegs aufgedeckt werden. Das zweite Experiment folgte einem
Daten-basierenden Ansatz und integrierte Genexpressionsdaten von multiplen Schweinepopulatio-
nen, mit dem Ziel Ähnlichkeiten in Genexpressionsmustern bezogen auf den Lebermetabolismus
von Androstenon zu identifizieren. Die Ergebnisse ergaben, dass der Phänotyp niedriger An-
drostenongehalt spezifische Co-Expressions-Cluster aufwiesen die funktionell mit Pathways, die
in Verbindung mit dem Androgen und Androstenon Metabolismus stehen, angereichert sind.
Diese Clustermitglieder wiesen im Gegenzug schwache Co-Expressionen zu dem Phänotyp hoher
Androstenongehalt auf. Basierend auf diesen Ergebnissen konnte das ermittelte Co-Expressions-
Cluster als ein Signatur-Cluster für den hepatischen Androstenenmetabolismus von Ebern mit
niedrigem Androstenongehalt im Rückenfett dargestellt werden. Die Ergebnisse beider Versuche
zeigten, dass integrative Analysemethoden, die der Datengewinnung und der Wissensentdeckung
folgen, für die Gewinnung neuer Erkenntnisse aus bereits vorhandenen Daten in der Nutztiergenom-
forschung benutzt werden können. Allerdings, machte es die begrenzte Datenverfügbarkeit in
der Nutztiergenomik hinderlich solche Analysemethoden im Bereich der Nutztiergenomforschung
extensive zu Nutzung um neues Wissen zu gewinnen.

Abschließend war das Ziel der Studie die Möglichkeiten der Methoden der Datengewinnung und
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der Wissensentdeckung sowie die der integrativen Analysemethoden, als Verfahren zur Gewinnung
von neuem Wissen in der Nutztiergenomforschung aus bereits vorhandenen Daten, darzustellen.
Die Ergebnisse dieser Experimente verweisen auf die Möglichkeiten weiter an diesen Methoden
zur Weiterentwicklungen in diesen Bereichen, zu forschen. Obwohl der Einsatz solcher Methoden
in der Nutztiergenomforschung, aufgrund der zurzeit begrenzt verfügbaren Daten limitiert ist,
unterstützen die sich durch entwickelnden high-throughput Technologien entstehende Daten und
die sinkenden Datengenerierungskosten die weit verbreitete Nutzung dieser Methoden in der
Nutztiergenomforschung in der Zukunft.
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1. Introduction

The conventional method of breeding livestock animals for favorable traits involves visual eval-
uation of animals and keeping records of performance characteristics based on pedigree and
phenotype of the animals. In the genomic and post genomic era, advanced genetic and genomic
technologies have also been used to determine various aspects of the genotype of animals (Holloway
and Morris, 2008). The advantage of using genomic selection over conventional methods is that
the animals can be selected at a young age for traits such as fertility, disease resistance and
feed conversion rates, which are expensive and laborious to measure (Hayes et al., 2013). The
use of genetic and genomic studies in veterinary sciences have been increasing steadily (Figure
1.1). If the number of abstracts indexed in Pubmed is taken as an indicator of the number of
studies published, it can bee seen from the figure that the number of genetics or genomics related
studies in animal sciences have been growing annually. At present, breeding practices in involves
a combination of conventional breeding methods and advanced genetic technologies to refine
and understand the genetics of favorable characters in livestock species (Holloway and Morris,
2008). Thus, the livestock genomics research field primarily involves identifying and studying the
genetic machinery behind various traits of economical importance in livestock animals in an effort
to improve these traits. Following the advancements in human biology and genetics, livestock
genomics also adopted high throughput technologies such as microarray expression profiling, SNP
chips for Genome wide association studies (GWAS) and Next generation sequencing (NGS) to
study the genetics of farm animals.

With the advancements in whole genome profiling technologies, there has been an increase in the
quantity of data available in livestock genomics. As per the current statistics (in early 2014), for
B. taurus (cattle) there are 6,769 datasets in GEO database (GEO Datasets B. taurus, 2014)
and (microarray and other high throughput data) and 765 (SRA Datasets B. taurus, 2014) SRA
experiments (NGS data). In case of S. scrofa, there are 8,848 GEO datasets (GEO Datasets
S. scrofa, 2014) and 1,966 SRA experiments (SRA Datasets S. scrofa, 2014) publicly available.
In addition to these large publicly available datasets, there are improvements in gene function
and pathway annotations for livestock species. According to the current statistics, there are
20,045 bovine gene products and 19,749 porcine gene products annotated1 in the Gene Ontology
annotation project (Hill et al., 2000). Additionally, in KEGG database (Kanehisa and Goto, 2000)
for bovine and porcine genomes there are 279 pathways annotated per genome 2,3. Although there

1http://www.geneontology.org/GO.current.annotations.shtml last accessed March 6, 2014
2http://www.kegg.jp/kegg-bin/search_pathway_text?map=bta&mode=1 last accessed March 6, 2014
3http://www.kegg.jp/kegg-bin/search_pathway_text?map=ssc&mode=1 last accessed March 6, 2014
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is an increase in the number of publicly available datasets for livestock genomics, it has to be
taken into consideration that these numbers are still small in comparison to the data available for
human, mouse and other model organism species. Even this limited amount of publicly available
data can be investigated to learn new patterns and to extract new knowledge.

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

5000
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Figure 1.1: Growth of genetics and genomic studies in animal sciences. Figure shows the number of abstracts
indexed in Pubmed per year from 1990-2013 on genetics and genomics studies in veterinary sciences. Search query
used in Pubmed: “(genomic OR genetic) AND veterinary [sb]”. The reason for the sudden drop in 2013 could be
that a large number of studies from 2013 are still left to be indexed, as this Pubmed query was performed in early

2014.

Majority of the (high throughput) studies in livestock genomics have been focused on identifying
and explaining the differential expression of genes/association of Single Nucleotide Polymorphisms
(SNPs) in large scale expression matrices or in GWAS experiments. Very few studies in this field
have made use of the wealth of information available in various public databases to study the
genetics behind favorable traits in livestock genomics. The data analysis approaches in livestock
genomics have mostly been following a reductionist approach, analyzing various components
of the cellular system individually for biomarker identification. However, human medicine and
development have been following integrative analysis approaches to understand the genetics
behind a variety of diseases and phenotypes.

Integrative analysis in molecular biology refers to merging multiple datasets or data resources in
order to study a phenotype, identify biomarkers and generate hypothesis for further evaluation.
The design philosophy behind such analysis method is that a phenotype or a disease is seldom
the consequence of a change in a single effector gene or gene product, but rather the result of
a multitude of changes in a complex interaction network (Loscalzo and Barabasi, 2011). The
usual end result of such methods are diagnostic pathways or subnetworks. In human development
and medicine, these diagnostic pathways and diseases subnetworks are demonstrated to enhance
the prediction accuracy of disease states and to be more reproducible than single biomarkers
(Chuang et al., 2010). In essence, integrative analysis approaches are used to understand the
effects of different large scale zones of the biological system, rather than focusing on the individual
components. Systems biology is an interdisciplinary branch of biomedical research that mainly
targets the complex biological interactions within a biological system using various holistic data
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analysis approaches. These approaches primarily deal with ‘omics’ data at the level of mRNAs,
proteins and metabolites. Rigorous integration of heterogeneous data is a prime requirement
in systems biology to achieve comprehensive, quantitative and predictive understanding using
mathematical modeling (Sauer et al., 2007).

Two computational theoretic concepts that are often discussed in association with systems biology
and integrative analysis approach are data mining and knowledge discovery. Data mining refers
to the application of algorithms to extract specific patterns from data. Knowledge discovery is a
concept used to highlight that knowledge is the end product of a data driven discovery process
(Fayyad et al., 1996a). The key difference between a data mining approach and a knowledge
discovery process is that the latter also describes the background steps involved, such as data
selection, data preparation, data cleaning, incorporating additional prior knowledge and result
interpretation (Fayyad et al., 1996a). In a broad sense, it can be said that the concepts of data
mining and knowledge discovery are the underlying themes in integrative analysis approaches
and systems biology. In addition to the aforesaid concepts, two additional analysis concepts that
are often discussed along with integrative analysis approaches are knowledge driven and data
driven approaches. As the name suggests, knowledge driven approaches involves integrating prior
knowledge with datasets to gain new knowledge. On the other hand, data driven approaches
integrate large volumes of data to identify patterns and to gain new knowledge from the data
itself.

As discussed before, there have been very few attempts in livestock genomics either to make use
of the publicly available data or to make use of data mining and knowledge discovery methods
in order to identify candidate biomarkers or to generate hypothesis on the cellular mechanisms
involved in the manifestation of economically important phenotypes in livestock genomics. The
primary challenge in this case is that the majority of data mining and knowledge discovery analysis
pipelines or integrative analysis workflows were mainly developed with model organism species
in mind and to make use of the large volumes of data available for model organism species. In
livestock genomics however, far less data is publicly available and therefore the bulk of algorithms
and workflows developed may not be useful. Nevertheless, data available in livestock genomics
can still be used for knowledge discovery purposes.

Taking the limitations of data availability in livestock into consideration, the major goals of this
thesis were defined as:

(i) Adopt existing data analysis approaches or generate new analysis strategies for integrative
data analysis in livestock genomics using principles of data mining and knowledge discovery.

(ii) Demonstrate the application of integrative analysis approaches in livestock genomics by using
these analysis approaches for hypothesis generation and biomarker discovery on existing
data from an economically important phenotype.

For achieving these goals, androstenone content in porcine backfat was chosen as a target analysis
trait. The accumulation of androstenone in porcine adipose tissues is one of the primary reasons
for a meat quality trait known as boar taint. Boar taint is often described as an off odor or
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off taste often noticeable from meat products derived from non castrated boars, primarily due
to a lipophilic sex steroid known as androstenone (Bonneau, 1982). Androstenone is mainly
synthesized in testis and metabolized in liver (James Squires, 2010). Surgical castration of piglets
is one of the most widely practiced method to reduce androstenone by reducing or limiting the
synthesis of androstenone (Haugen et al., 2012). But, on grounds of animal welfare, European
Union has mandated the abolishment of piglet castration without anesthesia by 2018 (Mörlein
et al., 2012). A limitation with the current studies to understand androstenone metabolism is that
none of the studies tried to visualize the mechanism of androstenone biosynthesis or metabolism
as the result of multifaceted cellular mechanisms and tried only to explain the biological processes
and pathways in androstenone biosynthesis and metabolism in terms of individual QTLs, SNPs
or candidate genes.

Two experiments were devised in thesis to demonstrate the use of data mining and knowledge
discovery driven integrative analysis in livestock genomics in the light of the current economic
importance given to androstenone genomics in porcine. The first knowledge driven experiment
dealt with the gene interactions and metabolic processes involved in the synthesis of androstenone
in testis and made use of the existing knowledge on gene interaction networks associated with
steroid hormones biosynthesis. A restriction of this approach in terms of studying androstenone
biosynthesis is that none of the major pathway databases contain data on metabolic reaction steps
or gene interactions involved in androstenone biosynthesis. As a work around to this limitation,
androstenone biosynthesis is treated as an offshoot of steroid hormone (testosterone) synthesis
pathway in testis under the assumption that the pathways and interaction events that affect
steroid hormone biosynthesis could also affect androstenone biosynthesis. The existing knowledge
on hepatic androstenone metabolism is limited to a handful of candidate biomarkers and hence
it was not possible to follow a knowledge driven experimental setup in the second experiment.
Additionally, since liver is the end point for the metabolism of a large number of compounds,
it may not be possible to pinpoint biomarkers based on analysis of a single sample population.
Hence, in the second experiment, a data driven experiment combining expression data from three
porcine sample populations were followed to understand population/breed similarity in the gene
expression patterns related to androstenone metabolism.

The rest of this thesis is structured into four different chapters: Chapter 2 “Literature Review”
gives an overview on current state of the art in livestock genomics research, data analysis
approaches and integrative analysis approaches. Chapter 3 “Material and Methods” describes
the materials and experimental methodology followed in this thesis, Chapter 4 “Results and
Discussion” describes and discusses the results from the experiments and this thesis is concluded
in the final Chapter 5 “Conclusion”.
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2. Literature review

The origins of modern livestock genomics can be traced back to a series of conferences in the early
1990s where strategies and collaborations were developed to maximize the resources available to
animal genetics during that period (Womack, 2005). Major research areas in livestock genomics
study the genetics behind animal growth, nutrition, milk production, meat production and
reproduction related traits in an effort to improve these traits. Genome sequencing efforts in
livestock genomics began with the release of the first draft of chicken (G. gallus) genome in
March 2004 and that of the cattle (B. taurus) genome in September 2004 (Fadiel et al., 2005).
Quantitative genetics technologies used in livestock genomics also progressed from the use of
restriction fragment length polymorphism (RFLP) towards making use of linkage disequilibrium
(LD) for the construction of linkage maps, quantitative trait loci (QTL) detection and finally
towards marker assisted selection (MAS), a concept of establishing association between various
genetic markers and phenotypic trait of interest (Hu et al., 2011). Molecular genetics approaches
used in livestock genomics also evolved from the identification of biomarkers to the sequencing of
expressed sequencing tags (ESTs) and identification of individual sequence polymorphisms to the
use of high throughput genome technologies such as microarrays, SNP chips and finally to use of
Next Generation Sequencing (NGS) technologies for sequencing whole genomes.

2.1 Major areas of research in livestock genomics
Genomic selection of economically important traits is the underlying theme for majority of the
research topics in livestock genomics. Some of the major research areas, development and success
stories in this field are detailed in this section.

In dairy cattle, progeny testing based genomic selection have been performed for improving milk
production (Pryce and Daetwyler, 2012; Schaeffer, 2006). It has been demonstrated in Irish
cattle population that genomic selection has improved the genetic change for milk production and
fertility (Wickham, 2012). According to the data from 2010, reliabilities for predicted transmitting
ability (PTA) for milk production ranged from 74-81% in young Holstein bulls (Wiggans et al.,
2011). In addition to progeny testing, genomic selection for traits such as feed conversion ratios,
body weight gain and dry matter intake (DMI) in dairy cattle have also been subjected to active
research (de Haas et al., 2012; Pryce et al., 2012). According to Pryce and Daetwyler (2012), the
reliabilities of upto 60% in genetic gain is achievable in dairy cattle using genomic selection (Pryce
and Daetwyler, 2012). However, in beef cattle, the adoption of genomic selection technologies
has been slower in comparison to dairy cattle due to the low to moderate breeding values of beef
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cattle traits such as reproduction, carcass traits, meat quality and feed efficiency (Hayes et al.,
2013; Mujibi et al., 2011; Saatchi et al., 2011; Weber et al., 2012). Hayes et al. (2013) pointed
out that the low breeding values for economically important traits in beef cattle might be due to
the small number of reference population for beef cattle and the large number of important beef
cattle breeds, unlike dairy cattle (Hayes et al., 2013). Nevertheless, using a set of hypothetical
marker panels, it was predicted that DNA testing could increase the selection response in beef
cattle between 29 - 158% (Van Eenennaam et al., 2011). To understand the disease resistance
and tolerance traits related to protozoan parasite infection, functional genomics studies are being
conducted in B. taurus and B. indicus cattle species (Glass et al., 2012). Further research have
also been conducted on the genomics of various reproductive traits and issues related to in vivo
and in vitro culture conditions for cattle embryos (Gad et al., 2012; Humblot et al., 2010). Since
published literature can directly reflect the trends in research field, a MeSH1 term (Rogers, 1963)
analysis was done with the search query “(cattle OR cow OR bovine OR B. taurus) AND economic
AND traits” to identify and understand the published trends in studies related to economic traits
in cattle. Figure 2.1 is a word cloud of MeSH terms based on Pubmed abstracts returned for
the search query. This figure hints that major economic traits that are actively researched and
published in bovine genomics are dairying, lactation, milk, pregnancy, meat, body weight and
fertility related traits.
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Figure 2.1: Bovine economic traits MeSH cloud. The figure is generated using MeSH clouds retrieved from
LigerCat (Sarkar et al., 2009) and R package wordcloud (Fellows, 2013). The MeSH terms removed from the

wordcloud representation are: breeding, cattle, male and female. The font size of the terms in the figure directly
reflects the frequency of occurrence of these MeSH terms in the set of abstracts returned for search query.

Genomics of a number of economically important traits in pigs has also been major research
topic in livestock genomics. Feed conversion rates and daily gain in pure bred porcine population
have actively been researched (Ostersen et al., 2011). In case of contribution of maternal trait to

1http://www.nlm.nih.gov/mesh/ last accessed March 18, 2014

6

http://www.nlm.nih.gov/mesh/


total genetic genetic gain, it was shown that genotyping and selection of female pigs increased
the genetic gain upto 55% in comparison with conventional breeding methods (Lillehammer
et al., 2013). Additional investigation has also been done to understand the cellular mechanisms
behind porcine meat quality traits such as water holding capacity, driploss, intra muscular fat
and androstenone content in backfat (Brunner et al., 2012; Gunawan et al., 2013; Ma et al., 2013).
Substantial amount of work has also been devoted to reveal the genetics behind immunity related
traits in various porcine breeds. Based on the investigation of a number of immunity related
genes in porcine, Flori et al. (2011) called for a more sustainable production system, where animal
health can be improved by slight trade-offs in performance characteristics (Flori et al., 2011). To
understand the traits related to innate immunity levels in pig, mapping of quantitative trait loci
related to innate immunity levels in pigs have also been conducted (Uddin et al., 2011). A MeSH
cloud analysis using the query “(pig OR porcine OR swine OR S. scrofa) AND economic AND
traits” indicate that economic traits of active research in porcine genomic community are meat,
body composition, reproduction, litter size, muscle and body weight related traits, with primary
importance given to meat related traits (Figure 2.2).
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Figure 2.2: Porcine economic traits MeSH cloud. The figure is generated using MeSH clouds retrieved from
LigerCat (Sarkar et al., 2009) and R package wordcloud (Fellows, 2013). The MeSH terms removed from the

wordcloud representation are: breeding, swine, male, female and Sus scrofa. The font size of the terms in the figure
directly reflects the frequency of occurrence of these MeSH terms in the set of abstracts returned for search query.

In addition to cattle and pig, the genomics of other economically important livestock species such
as sheep, poultry and horse are also under active study to improve the economically important
traits. In dairy sheep, genomics of lactation related traits such as milk yield, fat content and
somatic cell scores are being investigated (Duchemin et al., 2012). Furthermore, genotypes related
to meat and wool related traits in sheeps were also researched (Daetwyler et al., 2010). As a
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result of this, it was shown that the estimated genomic values of wool traits such as fleece weight
and fiber diameter are higher than 60% (Daetwyler et al., 2012). In poultry, quantitative traits
related to feed conversion rates in chicken were also investigated (González-Recio et al., 2009).
SNP markers for resistance to Salmonella carrier-state in commercial egg laying chicken lines were
also studied to check Salmonella propagation and hence reduce food safety concerns (Calenge
et al., 2011). Researchers have also scrutinized the genomics of a number performance related
traits in various horse breeds. A genome wide analysis examined SNP markers associated with
aesthetics and performance related traits in a number of non-thoroughbred horse breeds (Petersen
et al., 2013). In thoroughbred horses, a genome wide scan revealed a number of genetic markers
related to performance and exercise related traits (Gu et al., 2009).

To future proof livestock species for the challenges in the coming years, researchers in livestock
genomics have been investigating a number of various traits in addition to economically important
ones. About 250 - 500 liters of methane gas per day are generated by ruminant livestock (Johnson
and Johnson, 1995). Methane, one of the green house gases is a major contributor to global
warming. Genomic studies to select cattle population with a potential to reduce enteric emissions
of methane and increase feed efficiency has been initiated (Basarab et al., 2013; de Haas et al.,
2011). To compensate for the major climatic changes in the upcoming decades, researchers have
also identified genomic markers for high milk production under climate change scenarios (Hayes
et al., 2009). Based on the literature citations above, it can be concluded that although major
consideration in livestock genomics is given to genomic selection for economically important traits,
researchers are also examining various other genetic aspects related to animal welfare, health and
adapting livestock species for new challenges in the future.

2.2 Data resources and analysis approaches in livestock genomics

2.2.1 Data resources

Similar to model organism genomics, major sources of data in livestock genomics are the standard
biological databases. Ensembl database2 holds genome assemblies of livestock species such as
cattle, chicken, duck, horse, pig, sheep and turkey3. In addition to assembled genomes in Ensembl
databases, NCBI databases4 have large volumes of nucleotide, protein and gene annotation data
related to livestock genomics. Moreover, the amount of data available for livestock species in
public databases have been on the rise. This growth of publicly available livestock genomic data
can be illustrated using an example. Figure 2.3 shows the growth in number of gene annotations
available in NCBI Entrez gene database5 for livestock species over a timespan of 10 years. As the
figure shows, there has been an increase in the number of gene annotations available for livestock
species and also the number of livestock species for which gene annotation information is available.
With the advent of high-throughput technologies in genomics, the amount of publicly available
gene expression data for livestock genomics species have also been on the rise. Table 2.1 shows

2http://www.ensembl.org/index.html last accessed March 13, 2014
3http://www.ensembl.org/info/about/species.html last accessed March 13, 2014
4http://www.ncbi.nlm.nih.gov/guide/all/ last accessed March 13, 2014
5http://www.ncbi.nlm.nih.gov/gene/ last accessed March 13, 2014
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the statistics of publicly available genomic, proteomic, functional annotations and expression
data for three livestock species: cattle, pig and chicken.
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Figure 2.3: Number of gene annotations available in NCBI Entrez gene database for major livestock species.
Figure shows the growth in number of gene annotations over a period of 10 years from 2004 to 2014. The statistics
include all the gene annotation information, including those of genes withdrawn from major genome release. Data

collected in March 2014.

Along with the traditional set of public databases, livestock genomics community also maintains a
set of custom databases to store livestock specific data. Chief among them is the animalgenome6

repository maintained by the National Animal Genome Research Program (NAGRP) of the U.S
Department of Agriculture (USDA). Animalgenome acts as a repository for livestock specific
databases, genome maps and other resources. At present, this repository stores genomic data
from cattle, chicken, pig, horse and various fish species. This repository also stores custom animal
genome annotation tracks including cattle, chicken, horse, pig, sheep and fish species7 and hosts
a BioMart server for livestock species8. Quantitative trait loci (QTL) information related to
various favorable traits in animals is a characteristic feature in livestock genomics and to store
and query through these QTL related information, Animal QTLdb9 (Hu et al., 2013b) has been
developed. This database collects all the publicly available QTL data, copy number variations
(CNVs) and association data either from published literature or from laboratory reports subjected
to publication and collects more than 50 parameters for a single QTL. The linkage map associated
with QTLs can display QTL distances in either centiMorgans (cM) or corresponding physical
locations in base pairs (bp) (Hu et al., 2013b). Table 2.1 contains the number of various QTLs
and related traits deposited in Animal QTLdb for the livestock species cattle, pig and chicken.
Along the lines of Animal QTLdb, another QTL database, Bovine QTL Viewer10 was developed
to store QTL information related to economically important traits such as weight gain, milk fat
content and intramuscular fat in bovine (Polineni et al., 2006). This database is based on data
from other databases such as INRA BOVMAP11 and USDA-MARC (Kappes et al., 1997) and

6http://www.animalgenome.org/ last accessed March 13, 2014
7http://www.animalgenome.org/gbrowse/ last accessed March 14, 2014
8http://www.animalgenome.org:8181/ last accessed March 14, 2014
9http://www.animalgenome.org/cgi-bin/QTLdb/index last accessed March 14, 2014

10http://genomes.sapac.edu.au/bovineqtl/home.php last accessed April 8, 2014
11http://locus.jouy.inra.fr/cgi-bin/bovmap/intro2.pl last accessed April 2, 2014
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mainly consists of an integrated QTL databases and a QTL viewer to display QTLs based on
chromosomal position (Polineni et al., 2006). The QTL traits are divided into categories including
behavior linear characteristics, body conformation general characteristics, body conformation
linear characteristics, carcass quality, mastitis, milk fat, milk protein, milk yield, parasite load,
parasite resistance, pigmentation and red blood cell mass. A web based tool AnnotQTL 12

(Lecerf et al., 2011) was developed to assist researchers to characterize and select candidate
genes from a given QTL region. AnnotQTL is designed to work with data from livestock species
including cattle, pig, chicken, horse and dog integrating data from external databases including
gene annotation from biological databases, Gene Ontology annotations and SNPs along with
QTL data (Lecerf et al., 2011). SNPchiMP13 (Nicolazzi et al., 2014) is an open access database
designed to manage and resolve the ambiguities in SNP co-ordinate mappings between reference
genome and various SNP chips. Currently, this database is designed to work only with bovine
genome and integrates data from dbSNP builds 136 and 137 along with Illumina SNP chip data
and Affymetrix chip data (Nicolazzi et al., 2014).

A trait correlation database, CorrDB14 (Hu et al., 2013a) has also been developed to store
and search various publicly available genotype-phenotype correlation data. As per the current
statistics, the database holds 3,635 correlation data points on 276 economically important traits
related to milk production, meat production, growth and health in cattle. To provide a repository
for quantitative trait loci related to dairy cattle, a QTL database15 was created for cattle dairy
production traits (Khatkar et al., 2004). The dairy production related traits stored in this
database are: milk yield, milk composition (protein yield, protein %, fat yield, fat %), and
somatic cell score (SCS) 16. AgBase17 (McCarthy et al., 2006) is a curated public resource for
the functional analysis of various agriculture animal and plant genomes. AgBase uses controlled
vocabularies from the Gene Ontology project and allows the users to search the database using
plain text queries, perform sequence similarity searches, taxonomy and Gene Ontology based
searches. ANEXdb18 animal expression database was developed to account for inadequate direct
gene/transcript annotations available for livestock species. ANEXdb integrates a microarray
expression database ExpressDB and EST annotation database AnnotDB. ExpressDB hosts
Affymetrix and two color microarray data and AnnotDB contains porcine ESTs from Iowa Porcine
Assembly (IPA) (Couture et al., 2009). Following the footsteps of OMIM®19 (Online Mendelian
Inheritance in Man), a database of human diseases with a known genetic component, OMIA20

(Online Mendelian Inheritance in Animals) has been developed to archive genetic data on various
inherited disorders, single locus traits and genes in animals. At present, this database contains
information on 214 animal species including livestock animals. Table 2.1 gives figures on various

12http://annotqtl.genouest.org/ last accessed April 2, 2014
13http://bioinformatics.tecnoparco.org/SNPchimp/home/ last accessed April 2, 2014
14http://www.animalgenome.org/cgi-bin/CorrDB/index last accessed March 14, 2014
15http://firefly.vetsci.usyd.edu.au/reprogen/QTL_Map/ last accessed April 4, 2014
16http://firefly.vetsci.usyd.edu.au/CMS/reprogen/QTL_Map/index.php?Page=Project+Description last ac-

cessed April 4, 2014
17http://agbase.msstate.edu/index.html last accessed March 14, 2014
18http://www.animalgenome.org/anexdb/index.php last accessed March 28, 2014
19http://www.ncbi.nlm.nih.gov/omim last accessed March 14, 2014
20http://omia.angis.org.au/home/ last accessed March 14, 2014
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traits and disorders available in OMIA database for cattle, pig and chicken. ReCGiP21 (Yang
et al., 2010) is a database of candidate genes related to pig reproduction. The candidate genes in
this database falls into six major porcine reproductive traits such as spermatogenesis, oogenesis,
fertilization, preimplantation development, embryo implantation and placental development (Yang
et al., 2010). The candidate genes in this database are literature derived using named entity
recognition (NER) approach. In addition to candidate genes, gene co-occurrence network based
on co-mentions in articles, Gene Ontology annotations, OMIM (human) and KEGG pathway
mappings related to candidate genes can also be retrieved from this database (Yang et al., 2010).
A genome-wide analysis was conducted to understand the patterns of transcript expression in
pig (Freeman et al., 2012). A custom Affymetrix array was used to profile the transcriptome
expressions and this genome wide expression atlas was generated based on expression data from
62 cell/tissue types. The results from this study are made publicly available22 as a genome wide
expression atlas and can be used for the functional annotation of uncharacterized genes based on
cluster assignment of transcripts (Freeman et al., 2012).

ArkDB23 is a public repository currently hosted by the Roslin Institute24 for genome mapping
data mainly from livestock species along with other animal species. ArkDB hosts chromosomal,
linkage, cytogenetic and radiation hybrid maps for species such as cattle, chicken, pig, sheep, duck,
horse and various fish species. Similar to human HapMap project, bovine and porcine HapMap
projects analyzed the genome wide patterns in variations in cattle and pig genomes (Gibbs et al.,
2009; Megens et al., 2010). ChickVD, a chicken sequence variation database was also created to
facilitate functional and evolutionary studies in avian genetics (Wang et al., 2005). Similar to
Encyclopedia Of DNA Elements25 (ENCODE) (The ENCODE Project Consortium, 2004) human
genome project to identify all functional elements of the human genome, AgEncode26 project
has been initiated to study functional elements in genomes of food animals including ruminants,
swine, poultry and various fish species. Moreover, various protein - protein interaction databases
also contain protein interactions from livestock species. Data statistics for cattle, pig and chicken
protein interactions in databases IntAct and BioGRID interaction databases are given in Table
2.1.

In essence, conventional biological databases and several dedicated livestock genomics databases
store biological, genomic and phenotypic data related to farm animal genomics and various
production traits. To facilitate consistent and unambiguous communication between livestock
genomics researchers and data repositories and to deal with the standardization issues related to
livestock genomics data, Animal Trait Ontology for Livestock 27 (ATOL) was developed (Golik
et al., 2012). The major domains of ATOL are: welfare trait, growth and meat production
trait, mammary gland and milk production trait, egg trait, nutrition trait, fatty liver trait and

21http://klab.sjtu.edu.cn/MDpigs/index.html last accessed April 8, 2014
22http://www.macrophages.com/pig-atlas last accessed April 8, 2014
23http://www.thearkdb.org/arkdb/ last accessed March 28, 2014
24http://www.roslin.ed.ac.uk/ last accessed March 28, 2014
25http://www.nature.com/encode/#/threads last accessed April 2, 2014
26http://www.livestockgentec.com/media-and-outreach/conference/2-uncategorised/

203-eu-us-animal-biotechnology-working-group-agencode-workshop last accessed April 2, 2014
27http://www.atol-ontology.com/index.php/en/ last accessed April 2, 2014
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reproduction trait 28. The livestock species represented in ATOL include cattle, sheep, trout,
rabbit, chicken, turkey and pig along with two model species mouse and zebrafish.

Table 2.1: Statistics for publicly available data in three major livestock species: cattle, chicken and pig,
data as of March 2014. Data statistics for human is given for comparison purposes.

Data type B. taurus S. scrofa G. gallus H. sapiens
(cattle) (pig) (chicken)

Nucleotides 225,600 536,811 118,112 10,472,013
Nucleotide ESTs 1,559,498 1,669,349 600,434 8,704,884
Proteins (NCBI) 123,472 56,949 52,265 851,871
Proteins (SwissProt) 5,984 1,413 2,257 20,266
SNPs 22,055,952 28,665,189 9,415,942 73,362,051
microRNAs (miRBase) 783 326 996 2,578

Functional annotations
GO gene product annotations 20,045 19,749 13,106 44,900
KEGG pathway annotations 279 279 162 284

Expression datasets
GEO Datasets 6,769 8,848 4,653 648,818
SRA Experiments 765 1,966 364 143,402
ArrayExpress experiments 20 27 56 2,394

Animal QTLdb data
QTLs 8,305 9,862 3,919 NA
Traits 467 653 297 NA

OMIA data OMIM data
Total traits/disorders 452 227 209 22,304
Mendelian traits/disorders 189 49 127 1,707
Mendelian trait/disorder with
key mutation known

92 23 39 1,856

Protein - protein interaction data
IntAct database 1,562 119 715 144,630
BioGRID database 309 57 6 147,806

2.2.2 Analysis approaches in livestock genomics

The data analysis approaches in livestock genomics have mostly followed the genetic technologies
used for data generation. The current analysis approaches used in livestock genomics can be
broadly classified into a three major groups: (i) statistical modeling of traits (ii) biomarker
analysis and (iii) mathematical and computational modeling.

2.2.2.1 Statistical modeling of traits

Statistical modeling of traits is primarily used to model the the effects of various biomarker
candidates either for genomic selection or for the estimation of breeding values. In these studies,
biomarkers from either the analysis of individual biomarker candidates or from high-throughput
studies are used. In general, statistical models and selection theory in animal breeding follows the

28http://www.atol-ontology.com/index.php/en/les-ontologies-en/visualisation-en last accessed April 2, 2014
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infinitesimal genetic model of quantitative genetics, where it is assumed that a trait is affected
by a large number of biomarkers with very small and additive effects (Dekkers, 2012). Genomic
selection is defined as a marker assisted selection method in which genetic markers covering the
whole genome are used and the markers are assumed to be in Linkage Disequilibrium (LD) with
QTL to minimize the number of estimated effects per QTL (Goddard and Hayes, 2007). Genomic
breeding values (GEBVs) are calculated as the sum of the effects of various biomarkers or the
effects of these biomarkers across the whole genome and tries to capture the QTLs contributing
to that trait (VanRaden et al., 2009). The effects of such biomarkers are first inferred in large
populations with phenotype information and subsequently, only the effects from biomarkers are
used to compute GEBV. These GEBV estimations have been shown to increase the accuracy of
genetic merit (VanRaden et al., 2009). According to Goddard and Hayes (2007) the three major
steps involved in the statistical analysis to estimate GEBV are:

(i) assessing QTLs through various markers

(ii) estimating the effect of QTLs on genotypes and

(iii) summation of QTL effects for candidate selection and GEBV estimation (Goddard and
Hayes, 2007).

To estimate breeding value on selection of candidates, linear mixed model methodology have been
used in livestock breeding programs (Dekkers, 2012). To predict the effect of SNPs in genomic
estimated breeding values (GEBVs) a method called BLUP (best linear unbiased prediction)
is used. In this linear modeling approach SNP effects are modeled as zero mean non random
variables with a common effect variance and it is assumed that these variables are independently
and identically distributed (Meuwissen et al., 2001). A number of genome wide association studies
(GWAS) published in livestock genomics used linear mixed models to estimate genomic breeding
values based on SNP genotype and related traits. Data from Illumina BovineHD Genotyping
BeadChip assay and phenotypic traits were analyzed using a linear mixed model approach to
assess the effect of SNPs in estimated growth related breeding values in bovine (Utsunomiya
et al., 2013). Similarly, another study also used linear mixed model to estimate the effect of
SNPs in GEBVs related to production traits in cattle (Guo et al., 2012). In a related approach,
conventional pedigree based relationship matrix in BLUP models are substituted with genomic
relationship matrix (GRM) defining additive covariance between animals derived from high density
SNP genotyping technologies, giving rise to a method known as Genomic Best Linear Unbiased
Prediction (GBLUP) (Dekkers, 2012). In addition to linear models, Bayesian hierarchical models
are also used in the estimation of breeding values. There are two levels of data modeling in
these Bayesian approaches: first, at the level of data and second at the level of variances at
chromosome segments (Meuwissen et al., 2001). Bayesian least absolute shrinkage and selection
operator (Bayesian LASSO) method was also used to fit marker effects to a regression model.
In this approach Bayesian LASSO is used to generate a regression model in which effects of
various markers, predictors and other covariates are considered jointly (de los Campos et al.,
2009). In addition to the methods described here, several additional methods were also developed

13



to estimate GEBV (Hayashi and Iwata, 2010; Meuwissen et al., 2009; Shepherd et al., 2010;
Sun et al., 2012; Yi and Banerjee, 2009). To serve as a benchmark dataset to compare genomic
prediction methods, a pig dataset termed PIC dataset has been made available (Cleveland et al.,
2012). PIC dataset was generated by a pig genus company called PIC29 and comprises of data
from a population of 3,534 pigs. The dataset contains high density genotypes generated on
Illumina PorcineSNP60 chip and five purebred traits with heritabilities ranging from 0.07 to 0.62
(Cleveland et al., 2012).

2.2.2.2 Biomarker analysis

Identification and investigation of single or multiple candidate biomarkers related to a phenotypic
trait have long been practiced in livestock genomics. The biomarkers could be genes, proteins,
associated polymorphisms, metabolomes or QTLs related to a phenotypic trait. In livestock
genomics, investigation of biomarkers can be categorized into (i) candidate biomarker analysis and
(ii) high-throughput studies. In candidate biomarker analysis, the activity or effect of a biomarker
under one phenotypic case is compared against the other to understand the role of/effect of the
biomarker in the phenotype. For example, Islam et al. (2013) studied the age related expression
of porcine T helper related cytokines by comparing the expression of candidate biomarker genes
such as IL-2, IL-4, IFN − γ and IL-10 in pigs under various age groups (Islam et al., 2013).

Following the footsteps of human genomics and medicine, livestock genomics also began using
high-throughput technologies such as microarray, SNP chips and NGS technologies to understand
the genetics elemental to various phenotypic traits. The choice of the high-throughput platform
used depend upon the nature of the investigation, species, model system, tissue or cell type under
investigation and the economics (Smith and Rosa, 2007). As per the current statistics in GEO
database, there are 130 high-throughput platforms for bovine, 89 platforms for porcine and 12
platforms for chicken. Since there was no comprehensive information on the high-throughput
data analysis approaches used in livestock genomics, the material and method section from a
random collection of 50 full text articles in livestock high-throughput studies (random corpus)
were manually analyzed. Figure 2.4 gives an overview on the major data analysis approaches used
in livestock genomics. Additional details, such as the species used, high-throughput platform,
analysis approaches and Pubmed identifiers (Pmids) are given in Appendix Table 1.

Figure 2.4 indicates that the analysis of differentially expressed genes/transcripts is one of the
major themes in livestock high-throughput data analysis. The term ‘differential expression analysis’
is used to indicate a broad range of statistical approaches from standard R/Bioconductor packages
for microarray/RNA-seq expression data analysis to Student’s t-test, Wilcoxon ranksum test and
other statistical tests used to compute the difference in gene/transcript expression values in two
or more phenotypes. A detailed table giving the frequency of each analysis approach mention in
the random corpus is given in Appendix Table 2. Although some of this statistical methods are
individually listed in Appendix Table 1, the broad classification ‘differential expression analysis’
was necessary since a number of articles in the random corpus did not detail the methods used to
identify the differentially expressed genes. In addition to statistical tests for group comparison

29http://www.genusplc.com/about/pic.aspx last accessed April 8, 2014
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such as ANOVA, Student’s t-test, Fisher’s exact test, Chi-squared test and Mann Whitney U test,
dimension reduction technique PCA (Principal Component Analysis) and clustering methods such
as hierarchical clustering, k-means clustering and other analysis methods including interaction
network analysis and correlation network analysis were also used in high-throughput studies in
livestock genomics (Figure 2.4, Appendix Table 1).
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Figure 2.4: Major analysis approaches and methodologies used in high-throughput studies in livestock genomics.
Data from manual analysis of the material and method section of 50 full text articles. The figures on the barplot

indicate the frequency of the analysis approach/concept mention in the corpus.

A number of studies in random corpus used de novo assembly, reference mapping and prediction
methods to identify novel microRNAs in livestock species (Appendix Table 1). In a meta analysis
study, te Pas et al. (2012) used publicly available microarray data to identify the common
differentially expressed genes in a number of chicken salmonella experiments (te Pas et al., 2012).
In this study, the authors normalized the expression datasets using R limma package and meta
analysis was carried out using metaMA (Marot et al., 2009) R package and compared the list
of differentially expressed genes (DEGs) common in all the experiments, unique to individual
experiments and unique to the combined study and identified that a number of host metabolic
pathways and functions were similar in different chicken lines when infected with divergent
Salmonella serovars (te Pas et al., 2012). For ranking candidate genes associated with quantitative
traits and diseases in livestock species, Jiang et al. (2012) implemented a network based gene
prioritization method (Jiang et al., 2012). In this method, using a set of genes derived from text
mining, genome wide expression profiling, ortholog mapping and network based prioritization
approach, a relevancy score was calculated and was finally aggregated with the phenotypic
data and using this analysis approach, a number of candidate genes for bovine mastitis were
prioritized (Jiang et al., 2012). In an additional study, a partial correlation and information
theory approach was used to infer gene correlation networks and co-expression clusters in bovine
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skeletal muscle and adipose tissue based on gene expression data from 822 genes in 9 experiments
and 47 conditions (Reverter et al., 2006). In a yet another study, Pearson correlation based
weighted gene coexpression analysis (WGCNA) (Langfelder and Horvath, 2008) was used to
derive gene co-expression clusters for beef marbling using data from multiple publicly available
microarray datasets (Lim et al., 2014).

The analysis approaches in material and methods section the random corpus indicate that
biomarker analysis approaches in livestock genomics mainly follows the classical methods to
identify candidate biomarkers such as DEGs and associated SNPs. Although meta analysis
approaches, interaction network analysis and literature mining approaches are also being used,
the number of experiments utilizing these approaches are minuscule in comparison to conventional
methods.

2.2.2.3 Mathematical and computational modeling

Besides statistical analysis for trait selection and biomarker analysis, mathematical and computa-
tional modeling approaches have also been used in livestock genomics. Doeschl-Wilson (2011)
argues that in case of livestock host pathogen interactions, biomarkers alone cannot predict
the most disease prone or infected animals with 100% accuracy and that mathematical host
pathogen interaction models would be able to describe the root biological process related to
disease mechanisms and how these processes change over time (Doeschl-Wilson, 2011). The
mathematical models developed for studying host pathogen interactions can be divided into three
categories:

(i) The first category consists of the mathematical models describing infection patterns and
immune system dynamics within a host. These models are used to aggregate data from
multiple studies into a comprehensive framework (Doeschl-Wilson, 2011).

(ii) The second category of models accounts for the underlying relationship between immuno-
logical pathways and biological processes related to survival or production. It is assumed
in these models that when resources are scarce, trade-offs can occur between continuing
survival/production related biological process and triggering an immune response (Doeschl-
Wilson, 2011).

(iii) The final category of mathematical models for host pathogen interactions addresses the
co-evolution between various livestock hosts and pathogens and tries to understand how the
control mechanisms involved affect the genetics of hosts and pathogens (Doeschl-Wilson,
2011).

Although these models are grouped into three, it is possible that there are overlaps in the
analysis methods used in these models. A schematic representation of the three different groups
of mathematical models used in host pathogen interaction modeling is given in Figure 2.5.
The mathematical methodologies used in host pathogen interaction studies can be differential
equation systems, stochastic mechanistic models, cellular automata and agent based models or
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bioinformatics and systems biology algorithms (Doeschl-Wilson, 2011). In addition to modeling
host pathogen interactions, a systems biology based mathematical model was used to study
the effects of multiple perturbations on bovine estrous cycle to identify the biological processes
involved in the development of cystic ovaries (Boer et al., 2012).
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Figure 2.5: Three groups of mathematical models used to study host pathogen interaction models in livestock.
Figure adopted from Doeschl-Wilson (2011).

In short, a large variety of diverse analytical approaches are used in livestock genomics to
understand the relationship between behavioral patterns of biomarkers and phenotype under
investigation. The trends in livestock genomics data analysis approaches hints that although
a large number of analysis approaches are being used, conventional biomarker analysis and
statistical modeling of economically important traits take the prime spots.

2.3 Androstenone and boar taint genomics

Boar taint is often described as an unpleasant smell or taste noticeable from meat products
derived from un-castrated male pigs (Bonneau, 1982). Regulating boar taint is important to the
pork industry since it was shown that the odor of boar taint causing compounds are likely to be
detected by consumers (Bonneau et al., 1992). A major reason for boar taint is the accumulation
of androstenone, a lipophilic sex steroid in adipose tissues of pigs. Androstenone is a male sex
pheromone synthesized mainly in testis and metabolized in liver (Bonneau et al., 1992). The
accumulation of androstenone in adipose tissues can be the result of either a high rate of testicular
synthesis of androstenone or/and a low rate of hepatic degradation (Robic et al., 2008). One of
the widely practiced methods to reduce boar taint is the surgical castration of piglets to limit the
synthesis of androstenone (Haugen et al., 2012). But, representatives of European farmers, meat
industry, retailers, scientists, veterinarians and animal welfare NGOs have issued a declaration
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to end surgical castration of piglets without using anesthesia in European union by January 1,
2018 30 thus creating a need to develop non surgical methods to limit androstenone content in
porcine adipose tissues and hence reduce boar taint. The two proposed non surgical methods
to reduce boar taint are: (i) the use of chemicals or drugs to reduce boar taint (Dunshea et al.,
2001) and (ii) breeding for favorable characteristics to reduce boar taint (Frieden et al., 2011). In
this regard, it should be noted that the European Food Safety Authority (EFSA) has already
expressed concerns over consumer perception of meats from animals treated with chemicals and
drugs to reduce boar taint (Spoolder et al., 2011).

To develop non surgical methods to reduce androstenone, it is necessary to understand the genetic
mechanisms involved in the synthesis and degradation of androstenone. The enzyme cytochrome
P450 11A catalyzes the cleavage of cholesterol to pregnenolone, the precursor molecule for androgen
synthesis in testis (Robic et al., 2008). The synthesis of androstenone (5α-androst-16-en-3-one)
from pregnenolone in testis is catalyzed by the enzymes cytochrome P450C17 (CYP17A1) and
enzymes of andien-β synthetase system such as cytochrome b5 (CYB5) along with other reductases
(James Squires, 2010; Robic et al., 2008). In the final step of androstenone synthesis, the ∆4 double
bond in 4,16-androstadien-3-one is reduced by the enzyme 5α reductase (James Squires, 2010).
A schematic representation of major steroid substrates and enzmes involved in androstenone
synthesis is given in Figure 2.6. 3α-androstenol and 3β-androstenol are the final metabolites
of androstenone in both testis and liver. In liver, androstenone under go Phase II conjugation
reactions to form glucuronide conjugates and sulfoconjugates (James Squires, 2010).
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Figure 2.6: Schematic representation of androstenone biosynthesis in porcine testis. Figure adopted from James
Squires (2010).

The rate of synthesis of androstenone is slow for young piglets and increases steadily during
puberty (Andresen, 1976). A number of studies have already tried to understand the cellular
mechanisms involved in androstenone metabolism. High expression of CYB5 was pointed out

30http://ec.europa.eu/food/animal/welfare/farm/initiatives_en.htm last accessed March 19, 2014.
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as one of the reasons for the overproduction of 16-androstene steroids in testis (Davis and
Squires, 1999). The sulfoconjugation of 16-androstene steroids in porcine testis and liver is mainly
catalyzed by hydroxysteroid sulfotransferase enzyme (SULT2A1) (Sinclair et al., 2005). QTLs
related to androstenone levels in pigs have also been under investigation. Androstenone related
QTLs were identified on chromosomes 2, 4, 6, 7 and 9 in a cross between Large White and Meishan
pigs (Lee et al., 2005). According to another study performed on an experimental cross between
Large White and Meishan pig breeds, suggestive QTLs for fat androstenone were identified on
pig chromosomes 3, 4 and 10 (Quintanilla et al., 2003). Additional QTL studies were carried out
on Large White × Meishan cross (Boulliou-Robic et al., 2011), Norwegian Landrace and Duroc
breeds (Grindflek et al., 2011) and Duroc, Landrace, and Yorkshire breeds (Gregersen et al.,
2012). High-throughput microarray gene expression studies have been performed to understand
the difference in gene expression profiles in testis tissues of pigs with extreme high and low levels
of androstenone (Leung et al., 2010; Moe et al., 2007b). Additionally, transcriptome profiles
of a number of candidate genes in testis tissues of pigs with large difference in androstenone
measurements has also been investigated (Grindflek et al., 2010). A GWAS experiment performed
on pure bred animals from a composite Duroc sire-line identified candidate SNPs associated with
androstenone trait on porcine chromosomes 1 and 6 (Duijvesteijn et al., 2010). An in-house study
using data from RNA-seq technology has also been performed to identify candidate biomarkers
for varying levels of androstenone in porcine testes samples (Gunawan et al., 2013).

In comparison to the number of studies done to understand testicular androstenone synthesis,
fewer studies have been carried out to understand the hepatic androstenone metabolism. In liver,
breed differences in the expression of androstenone metabolizing enzymes 3β-HSD and SULT2B1
have been reported in Norwegian Landrace and Duroc pigs (Moe et al., 2007a). Nicolau-Solano
et al. (2006) asserted that the liver specific regulation of 3β-HSD expression could explain the
low rate of hepatic androstenone metabolism based on a study conducted on 13 Large White
and Meishan pigs (Nicolau-Solano et al., 2006). Another study also pointed out the relevance
of 3β-HSD enzyme in hepatic androstenone metabolism based on the investigation in Large
White and Meishan breeds (Doran et al., 2004). Experiments performed on Yorkshire pigs lead
to the conclusion that the enzyme hydroxysteroid sulfotransferase (HST) could be responsible
for the sulfoconjugation of all 16-androstene steroids including androstenone in liver (Sinclair
et al., 2005). A microarray study performed on two pig breeds, Norwegian Landrace and Duroc
have identified a number of candidate genes responsible for hepatic androstenone metabolism in
both breeds and by studying the gene expression profiles in two breeds, the authors also tried
to identify the breed differences in hepatic androstenone metabolism (Moe et al., 2008). The
in-house RNA-seq experiment conducted on a sample population of Duroc × F2 also identified a
number of candidate genes and polymorphisms that might be responsible for hepatic androstenone
metabolism (Gunawan et al., 2013).
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2.4 Data mining and Knowledge discovery

Data mining is the process of examining volumes of data in multiple contexts to abstract the data
into useful information (Palace, 1996). The five major components of data mining are: extraction
and transformation of data, data storage and management, data access provisions, data analysis
and data/result presentation (Palace, 1996). There are two major categories of data mining tasks:
descriptive and predictive (Han and Kamber, 2011). Descriptive data mining is used to identify
the general properties of the data where as predictive data mining is used to infer trends from
data and to generate predictions (Han and Kamber, 2011). The relationships identified in data
mining applications between data points can be divided into four major types (Palace, 1996):

(i) Classes: grouping of data into multiple classes. In a biomedical scenario, presence/expression
of certain specific biomarkers in tissue samples can be used to classify individuals as either
healthy or diseased.

(ii) Clusters: data points are grouped according to the relationship with other data points.
In life sciences, data clustering can be used to identify groups of biomarkers with similar
expression profiles.

(iii) Associations: data mining technologies can be used to identify associative patterns or rules
among data points and is not equivalent to Genome wide association analysis in a genomics
context. In genomics context, association mining is related with using expression profiles of
genes for phenotype disease classification (Creighton and Hanash, 2003).

(iv) Sequential patterns: data mining applications can be used either to identify or to predict
patterns and trends in data. In biomedical realm, an example usage is the time series
analysis of expression patterns or prediction of changes in cellular interaction patterns
during disease progression.

Knowledge discovery, also referred as Knowledge Discovery in Databases (KDD) is a concept that
is discussed along with data mining. Knowledge discovery is defined as the process of identifying
potentially useful, innovative, credible and ultimately understandable patterns of data (Fayyad
et al., 1996c). Data mining is one of the many steps in a knowledge discovery process and at a
basic level, knowledge discovery primarily deals with the development of methods and techniques
to process and make sense of the data (Cios et al., 2007; Fayyad et al., 1996b). The basic steps
in a knowledge discovery process are: developing an understanding of the application domain,
creating a target data set, data cleansing and preprocessing, data reduction and projection,
choosing data mining task, choosing data mining algorithm, data mining, interpreting the mined
patterns and consolidating the knowledge discovered (Fayyad et al., 1996b). Figure 2.7 gives
a schematic representation of the major steps involved in knowledge discovery process. A key
difference between knowledge discovery process and data mining is that the term knowledge
discovery is used to denote the entire process of discovering useful knowledge from data where as
data mining is the application of algorithms to identify specific patterns from the data. Data
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mining is an inherent part of knowledge discovery, but knowledge discovery emphasizes the fact
that knowledge is the end product of a data driven discovery (Fayyad et al., 1996b).
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Figure 2.7: Schematic representation of knowledge discovery process. Figure adopted from Fayyad et al. (1996b).

In biology, data mining and knowledge discovery methods are used in a wide variety of applications.
However, prior to the application of data mining and knowledge discovery concepts in biology, a
number of biological data related constraints have to be taken into account (Brusic and Zeleznikow,
1999). These constraints are detailed below:

Complexity of biological data: All biological data including expression measurements and
interaction data are derived from complex biological systems. Currently, the data structures in
use fail to encode the underlying hierarchical and interconnected biological processes, but are
assumed to be a part of the background knowledge. In this situation, understanding the context
of data generation is a prerequisite for the correct selection of data analysis methods (Brusic and
Zeleznikow, 1999).

Fuzziness of biological data: A number of experimental methods are used in biological
sciences to generate quantitative results. It can happen quite often that the results from a
number of different experiments on the same phenotype are partially overlapping, but not fully.
Even replicating the same experimental setup would not necessarily yield identical results since
experimental outcomes in biology can vary depending on a number of variables such as differences
in temperature or pH, difference in culture media, cells or cell lines and technical variability related
to the chemicals and instrument set ups used. These biological and technical variations in biological
experiments leads to the overall fuzziness of the data and therefore quantitative measurements
in biological data are only approximate measurements. In order to select appropriate analysis
method and tools it is crucial to consider this overall fuzziness of biological data (Brusic and
Zeleznikow, 1999).

Biases and misconceptions: Data generated in biology are subject to biases either due the
inherent properties of the system under consideration or due the presence of related motifs or
historical reasons. In biological research, certain fields are analyzed in depth where as some other
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fields remain relatively unexplored. Typically, new researches are based on previous results and
conclusions. Researchers try to explain biological systems using a set of rules and it can happen
that further research will be directed towards the application of these rules. If these defined rules
explain only a part of the possible behavior of the system, the rule abiding part of the biological
system will be explored in detail where as the rest of the biological system will be under explored.
In a similar manner, understanding biological system with limited data can lead to over/under
simplification of the system and hence can lead to errors. As a result of these issues, a careful
assessment of the data is necessary before setting up analysis pipelines (Brusic and Zeleznikow,
1999).

Effect of noise and errors: The major sources of errors and noises in biological data are
experimental setups, technical variability in chemicals and instruments used, differences in data
measurement, reporting, annotation and processing techniques. Due to the complexity in biological
systems, it is difficult to set an error level for biological experiment. Although it is not possible
to eliminate errors or noises from biological data, selection of data analysis can be guided by the
estimation of noise levels in data (Brusic and Zeleznikow, 1999).

Some of the data mining and knowledge discovery application fields in biology are: gene expression
analysis, protein/RNA structure prediction, phylogenetics, identification of sequence and structural
motifs, genomics and proteomics, gene finding, RNAi and microRNA analysis, drug design,
modeling of biochemical pathways and text mining in biology (Zaki et al., 2003). According to
Nguyen et al. (2013) application of knowledge discovery and data mining models is necessary to
extract information and knowledge from biomedical data on complex biological systems and to
understand the progression of complex diseases (Nguyen et al., 2013). In conclusion, knowledge
discovery and data mining are the background themes in a number of analysis approaches in
biology. A brief literature review on the methods and tools are given in section 2.5.1.

2.5 Integrative analysis approaches

In life science context, integrative analysis approaches refers to the integration of results or
datasets from a number of experiments or data resources to understand the complex systems in
living beings. A major factor fueling integrative data analysis approaches is the technological
advancements in profiling various cellular properties on a genome wide scale. Advances in whole
genome profiling technologies have lead to an increase in the availability of genomic and proteomic
datasets including epigenomic data, transcriptomic data, sequence variation data and interactome
data (Hawkins et al., 2010). The primary objective of integrative data analysis approaches is to
identify the hidden relationships and infer new knowledge based on various biological systems
(Kumar, 2011). This section discusses major sources of biomedical data for integrative data
analysis methods followed by major concepts used in integrative data analysis approaches and
finally reviews the state of the art methods in integrative analysis approaches.

High throughput technologies have enabled the genome scale mapping of DNA methylation
events and covalent modifications (Johnson et al., 2007; Lister et al., 2009; Ren et al., 2000).
Histone modifications of a genome can be identified by Chromatin immunoprecipitation methods
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(ChIP-chip or ChIP-seq) (Park, 2009) and chromatin structure can be determined by DNase I
Hypersensitivity Site technologies such as DHS-Seq or DNase-Seq and DHS-chip (Boyle et al.,
2008). The growth in transcriptomic data was initially due to the use of microarray chips for
profiling the transcriptome abundance under various phenotypic conditions. Although microarray
chips have given way for Next generation sequencing technologies such as RNA-seq recently, a large
volume of publicly available transcriptome profiles were generated using microarray technologies.
In addition to estimating transcriptome abundance, RNA-seq can also detect non coding mRNAs
and gene fusion events (Maher et al., 2009). The major aim of sequence variation study is to link
a genetic variant to a phenotype. The growth in sequence variation data can be attributed to the
use of SNP genotyping arrays and more recently, to the surge in the use of NGS technologies
(Hawkins et al., 2010). Interaction datasets in life sciences can either refer to genetic or physical
interactions in the genome or proteome level. These datasets are mainly generated by means of
large scale genome or proteome wide experiments and the major sources of these interaction are
biological databases specialized for archiving interaction data. In protein - protein interaction
networks, nodes represent proteins where as edges represent the physical interaction between the
proteins (Amar and Shamir, 2014). In case of genetic interactions, nodes represent genes and
edges represent the response of the organism to knock-out experiments (Amar and Shamir, 2014).
Published scientific literatures are yet additional sources of information in the biomedical realm.
Various systems have already been developed to identify and extract the various biomedical
concepts and the relationship between them in published articles (Krallinger and Valencia, 2005).

Since datasets from all these high throughput technologies explain different sections of a cellular
machinery, integrating and analyzing these datasets together will help to reveal the co-ordination
between various cellular features such as gene transcripts, polymorphisms, gene and proteomic
interactions and epigenetic effects in the fundamental genome mechanisms and in the manifestation
of a disease or a phenotype. According to Chen and Hofestädt (2006) integrating information
from various metabolic systems and the interactions between them is the key to systems analysis
strategy. It is important to gain an understanding of the relationship among genomic, proteomic
and pharmacological components of the biomedical system to devise treatment strategies (Chen
and Hofestädt, 2006). Figure 2.8 gives a schematic representation of the integrative biomedical
systems architecture as proposed by Chen and Hofestädt (2006) for systems analysis strategies.
Two major underlying concepts in integrative approaches used in life sciences are knowledge
driven analysis and data driven analysis. As the name suggests, knowledge driven approaches
refers to the usage of existing knowledge in association with genome wide datasets to reach
conclusions. These existing knowledge could be either literature based evidences retrieved from
scientific literatures in life sciences or the wealth of knowledge in various biological databases
hosting gene/protein interaction information, metabolic networks or various mathematical models
developed (Chang et al., 2008) based on existing information. Data driven approaches on the
other hand, relies on integrating multiple datasets or data resources so as to identify the common
patterns in the data.
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Figure 2.8: Schematic representation of biomedical systems architecture as proposed by Chen and Hofestädt
(2006). Figure adopted from (Chen and Hofestädt, 2006)

One of the major challenges in integrative analysis approaches is data integration. Three major
data integration approaches in integrative analysis strategies are:

(i) data complexity reduction

(ii) unsupervised integration and

(iii) supervised integration (Hawkins et al., 2010).

Data complexity reduction techniques are mainly performed to reduce the complexity of the
experiment datasets used. Since high throughput technologies like microarray and NGS generate
thousands or millions of probe reads or short read sequences for a given cell/tissue type, it becomes
difficult to account for all these data points and to encode the behavior in a model. An approach
to reduce the complexity of such data sets is to abstract the datasets to a number of genomic
regions of strong signal and yet another approach would be to perform an intersection analysis
on multiple experiments results or datasets (Hawkins et al., 2010). Unsupervised integration
methods, the second class of integrative analysis approaches are based on the assumption that
relevant patterns occur commonly in data and hence can be identified. A commonly used
unsupervised method is clustering. Clustering approaches are employed to identify the common
patterns of gene expression, epigenetic states and interactomes. Unsupervised integration methods
can often be used to identify correlations among different experiments (Hawkins et al., 2010).
Although unsupervised methods can identify the novel patterns in data and generate hypothesis,
the disadvantage is that the novel patterns alone cannot advance the knowledge in biomedical
sciences. The third integrative analysis approach, supervised integration methods mainly focus
on hypothesis testing by incorporating additional datasets or experiments. Supervised integrative
analysis approaches begins with a prediction based on an observation and ends with a test for
the prediction (Hawkins et al., 2010).

Components of the cellular system carrying out various biological functions are thought to have a
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modular organization (Alon, 2003; Hartwell et al., 1999). These modular organization can be in
terms of genes, proteins, enzymes, metabolites or a combination of a number of these biological
components. A number of integrative analysis approaches in systems biology are devoted to
identifying these modules/functions of biological components. According to Mitra et al. (2013)
the module discovery methods can be grouped into four broad classes:

(i) identification of active modules

(ii) identification of conserved modules

(iii) identification of differential modules and

(iv) identification of composite modules (Mitra et al., 2013).

Identification of active modules refers to overlaying interaction networks with expression profiles
of genes, transcripts, proteins or other biological molecules. The computational integration of
expression profiles and interaction networks have been used widely to derive context dependent
interaction sub-networks (modules) (Mitra et al., 2013). Identification of conserved modules
refers to the identification of components or interactions preserving the core biological functions
across different biological conditions or species of animals. By the identification of such conserved
modules it would be possible to understand the basic biological processes and to predict the
evolutionary basis that leads the generation of such conserved modules (Mitra et al., 2013). The
methods classified under the identification of differential modules try to identify the functional
modules showing different patterns of interaction under various phenotypic conditions. In these
cases, the modules of interest are those modules that are differently present, absent or modified
in various phenotypic conditions under investigation (Mitra et al., 2013). In biological systems,
protein - protein interaction networks, gene regulatory networks and metabolic interaction
networks define different parts of the biological system. Identification of composite modules refers
to the identification of modules that jointly form interaction, regulatory or metabolic networks
(Mitra et al., 2013). In addition, various analysis strategies can be strung together into multiple
integrative module analysis methods leading to increasing complexity and sophistication (Mitra
et al., 2013).

2.5.1 Literature review: Integrative analysis approaches

A prime argument for integrative analysis approaches is that by integrating broad spectrum of
data it would be possible to interpret the intrinsic mechanisms underlying the genetic machinery
of a biological system in a particular phenotypic condition or a disease state. Some of the state
of the art approaches used in integrative analysis approaches are detailed in this subsection.

D’Antonio and Ciccarelli (2011) studied the evolutionary change in gene duplicability by comparing
gene and network properties of four species of organisms: E. coli, S. cerevisiae, D. melanogaster
and H. sapiens representing increasing evolutionary complexity. This integrative investigation of
genes and protein protein interaction networks in these species revealed that in all the species,
ancestral singleton hubs are at the core of the networks and are highly conserved, where as the
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genes acquired as a result of progressive evolution encoded less connected and less central proteins
(D’Antonio and Ciccarelli, 2011). By linking this multi species integrated interaction network
to human cancer biology, the authors revealed that cancer mutations mainly affects either the
evolutionary conserved ancestral hub genes, essential for the basic functioning of the cell or a
second group of genes that are involved in regulatory processes (D’Antonio and Ciccarelli, 2011).
For investigating the genetics behind various metabolic disorders, an analysis approach was
developed to merge several biomedical information resources together (Chen and Hofestädt, 2006).
The model implemented in this work made use of Petri nets to model and simulate biological
systems. In this model, the authors integrated metabolic disorder information from OMIM with
metabolic reactions involved in urea cycle from KEGG, ExPASy31 and BRENDA32 (Schomburg
et al., 2002) and transcription factors from a commercial database called Biobase. Using urea
cycle disorder as a case study, the authors were able to describe the mechanisms and pathways
involved in urea metabolism, the gene regulatory regions and patterns, the metabolomics and
transcriptomics of the urea cycle disorder (Chen and Hofestädt, 2006).

An integrative analysis approach was developed to identify a set of common tumor specific
pathways that could differentiate a number of malignant tumor types from healthy samples.
This approach integrated high throughput expression datasets from multiple cancer studies and
projected the gene status calculated on to a pathway interaction network (Efroni et al., 2007).
This study argues that the common pathways identified as a result of this integrative analysis
approach is a better predictor for a cancer outcome (Efroni et al., 2007). To generate biologically
meaningful results and to improve the statistical power in breast cancer research, an integrative
analysis approach was performed combining publicly available expression data from Affymetrix
GeneChips and Illumina BeadArrays (Turnbull et al., 2012). After performing quality control and
normalization on expression datasets, a linear additive model was used to combine the expression
data. Based on the results from the study, the authors concluded that expression data from
different microarray platforms could be integrated despite the difference in technology and this
integrated analysis strategy could lead to robust analysis with improved statistical power in
comparison to analyzing individual datasets (Turnbull et al., 2012). For studying the integration
of external signaling pathways with the core transcription network in embryonic stem cells,
ChIP-seq data from embryonic stem cells were analyzed in combination with publicly available
gene expression experiments (Chen et al., 2008b). Sheng et al. (2011) developed an integrative
analysis approach based on Independent Component Analysis (ICA) and a method called ‘gene
shaving’ (Sheng et al., 2011). Gene shaving is a Principal Component Analysis (PCA) based
method to identify subsets of genes with consistent gene expression patterns and large variation
across multiple conditions (Hastie et al., 2000). ICA methods are used for data analysis and
signal processing and are used to find the linear representation of unknown non-Gaussian data.
Based on the results from the combined investigation of copy number data from breast cancer
cell lines and gene expression profiles from multiple breast cancer datasets, the authors concluded
that this integrative data analysis can be used for identifying subsets of genes with similar or

31http://www.expasy.org/ last accessed April 7, 2014
32http://www.brenda-enzymes.info/ last accessed April 7, 2014

26

http://www.expasy.org/
http://www.brenda-enzymes.info/


dissimilar expression patterns (Sheng et al., 2011).

Dudley and Butte (2009) used a network paradigm for the integration of inter disease genomic
relationships and biofluid proteomes and this framework was further applied for the identification
of disease specific protein markers. Based on this approach, authors generated blood plasma
biomarker network by integrating genomic profiles from 136 diseases with 1,028 blood plasma
proteins (Dudley and Butte, 2009). Additionally, a urine biomarker network was also generated by
linking 577 proteins detectable in urine to genomic profiles from 127 diseases (Dudley and Butte,
2009). The analysis of these networks revealed that more than 80% of the protein biomarkers
are related to multiple disease conditions (Dudley and Butte, 2009). A prostrate cancer study
used an integrative analysis based on graph prototyping to differentiate between 6 prostrate
cancer networks and 7 benign networks (Kugler et al., 2011). In this study, the authors generated
phenotype specific expression networks from publicly available prostrate cancer datasets and
computed graph edit distances based on these networks. It was found that based on the graph
distance metric chosen, the distance within the cancer networks are statistically different from
the distance between benign and cancer networks (Kugler et al., 2011). For identifying active
microRNAs (miRNAs) and their functions related to gastric cancer, Tseng et al. (2011) used an
integrative analysis approach merging gene expression profile with protein interaction networks
and miRNA expression profile. Through this analysis, the authors demonstrated that an integrated
network based approach can be used to determine the nature of miRNA regulated gene expression
(Tseng et al., 2011). Additionally, according to the authors, this integrative analysis method
also helped in the identification of a number of miRNA regulated protein interaction networks
involved in the manifestation of gastric cancer (Tseng et al., 2011).

In another study, predicted human interactome network was analyzed together with cancer
genomics data and Gene Ontology information to identify interaction subnetworks activated in
cancer (Rhodes et al., 2005). Protein-protein interactions from model organisms S. cerevisiae, C.
elegans and D. melanogaster were used to predict orthologus human protein-protein interaction
networks. This network was complemented with shared biological functional annotations from
Gene Ontology and protein domain information. In this study, correlation coefficients of gene
expression values were calculated based on expression data from 65 microarray studies were
retrieved from Oncomine Cancer Microarray Database33 (Rhodes et al., 2004) and a naive Bayes
classifier was used to predict high scoring interaction subnetworks (Rhodes et al., 2005). To
prove the validity of the prediction model, the authors confirmed the colocalization of two genes
predicted in the model and experimentally confirmed two protein protein interactions predicted
in the model (Rhodes et al., 2005). In a handful of studies, combined analysis of co-expression
clusters and protein-protein interaction networks were used for gene prediction and have been
shown to outperform standard clustering algorithms (Amar and Shamir, 2014). An algorithm
known as MORPH (module-guided ranking of candidate pathway genes) was used to identify
unknown genes in biological pathways (Tzfadia et al., 2012). In this work, 216 microarray
expression profiles from A. thaliana and 53 S. lycopersicum (tomato) expression profiles were

33https://www.oncomine.org/resource/login.html last accessed April 7, 2014
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utilized along with species specific pathways from PMN34 and MapMan35 and protein protein
interaction data from PAIR database36 (Lin et al., 2011). MORPH algorithm uses a number
of clustering approaches to separate genes in expression data and protein protein interaction
network into modules. In each module, MORPH identifies genes that are already annotated
to pathways and computes average expression patterns based on these known genes. In the
next step, similarity of the unknown genes in the modules to average expression patterns were
calculated and finally, the scores are normalized and merged from all the modules to obtain a
ranking for all candidate genes (Tzfadia et al., 2012). An overview of the MORPH algorithm is
given in Figure 2.9. Based on results, authors concluded that MORPH prediction results provided
valuable candidate genes on specific pathways (Tzfadia et al., 2012).

Figure 2.9: An overview of MORPH algorithm. Figure adopted from Tzfadia et al. (2012).

In addition to the analysis methods developed to handle individual problems, various publicly
available tools were also developed to facilitate integrative analysis approaches in genomics. Some
of the publicly available tools are described in this section. GeneMANIA37 (Warde-Farley et al.,
2010) is a prediction server for generating hypothesis about a given list of genes by incorporating
data from a number of interaction databases, metabolic pathways and gene expression data. At
present, GeneMANIA includes 1,850 association networks containing 531,122,832 interactions
mapped to 187,657 genes from organisms such as yeast (S. cerevisiae), worm (C. elegans), fly
(D. melanogaster), mouse (M. musculus), plant (A. thaliana), human (H. sapiens), zebrafish (D.
rerio) and rat (R. norvegicus). GeneMANIA uses two different network weighing methods. For a
long list of genes supplied by the user, a basic weighting method is used to learn from the long list
of genes and to construct a gene list specific network. For a short list of genes, the algorithm tries

34http://www.plantcyc.org/ last accessed April 7, 2014
35http://mapman.gabipd.org/web/guest last accessed April 7, 2014
36http://www.cls.zju.edu.cn/pair/ last accessed April 7, 2014
37http://www.genemania.org/ last accessed April 7, 2014
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to retrace the GO co-annotation patterns (Warde-Farley et al., 2010). Integrative multi-species
prediction38 (IMP) is a web server to interpret experimental results in the context of functional
predictions and networks (Wong et al., 2012). At present IMP supports seven model organisms
including H. sapiens, M. musculus, R. novegicus, D. melanogaster, D. rerio, C. elegans and S.
cerevisiae (Wong et al., 2012). This web server performs a graphical search on the organism’s gene
network based on the input gene list. The workflow in IMP uses a Bayesian pipeline to integrate
protein-protein interaction data, phylogenetic profiles, expression data, phenotypes and Gene
Ontology annotations into a functional relationship network (Wong et al., 2012). This network
is used to predict genes and associated phenotypes using an SVM (Support Vector Machine)
classifier (Guan et al., 2010). The authors demonstrated the application of IMP by using EVE1
transcription factor in zebrafish as a case study and predicted the functional role of EVE1 in
anterior-posterior pattern formation (Wong et al., 2012).

To make use of the large amount of data generated from the Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium, a web analysis server canEvolve39 was developed
(Samur et al., 2013). canEvolve communicates with GEO to retrieve microarray and NGS data and
stores normalized expression data. The data analysis framework utilizes R programming language
and Bioconductor data analysis packages to perform differential gene and mRNA expression
analysis, protein expression, copy number alterations and survival analysis (Samur et al., 2013).
In addition to conventional data analysis, canEvolve performs integrative analysis such as GSEA
(Gene Set Enrichment Analysis) (Subramanian et al., 2005) and analysis of gene expression
profiles together with copy number alterations and miRNA expression profiles. Additionally,
the server also stores protein-protein interaction data from STRING (Szklarczyk et al., 2011)
database, gene target transcription factor information from TRANSFAC (Matys et al., 2006)
and miRNA-target information from PICTAR (Chen and Rajewsky, 2006; Samur et al., 2013).
Another web platform, i-cisTarget 40 was developed to enable the analysis of regulatory features in
D. melanogaster genome (Herrmann et al., 2012). The main analysis problems addressed here are
the identification of enriched regulatory features in a set of co-expressed genes or related genomic
loci and using these enriched regulatory features to predict cis-regulatory modules (CRMs) and
infer regulatory networks (Herrmann et al., 2012). Based on benchmark and validation tests in
15 co-expressed datasets, 21 ChIP datasets and 628 curated gene sets, the authors concluded
that the analysis approach used in i-cisTarget leads to the identification of meaningful regulatory
features (Herrmann et al., 2012).

Based on the literature citations mentioned above, it is clear that a large number of application
specific analysis methods and general purpose tools developed make use of the integrative analysis
strategies for discovering new knowledge based on existing datasets or databases. However,
most of the analysis pipeline developed for integrative data analysis in biomedical sciences
are developed to make use of the large volumes of data available in human or other model
organisms. As the figures in Table 2.1 (section 2.2.1) shows, the number of genomic or proteomic

38http://imp.princeton.edu/ last accessed April 7, 2014
39http://www.canevolve.org/ last accessed April 7, 2014
40https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/ last accessed April 7, 2014
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annotations and publicly available gene expression data in livestock genomics comparatively
small in comparison to data availability in model organisms or human. The major challenging
factor in adopting the aforementioned analysis methods to livestock genomics are: (i) the lack
of adequate genomic, proteomic and functional annotations in most of the livestock species and
(ii) insufficient publicly available high-throughput/expression datasets for integrative analysis
and modeling approaches. This challenge is further confounded by the lack of standardized
datasets for application development in a livestock genomics scenario, where as a number of
standardized datasets are available in human and model organism genomics for the development
of species specific or even phenotype and disease specific analysis strategies. The literatures
presented in this brief review of integrative analysis approaches is an indication of the broad
application potentials of integrative analysis approaches in biomedical field. As detailed, the data
sets utilized in these approaches range from publicly available expression profiles to interaction
data, functional annotations and data from published articles.
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3. Materials and Methods

This chapter describes the materials and various methodologies used in this thesis. The first
section materials (see section 3.1) describes the datasets and various algorithms and softwares
used for data analysis. Data analysis approaches and mining techniques used in this thesis are
explained in the section methods (see section 3.2)

3.1 Materials

3.1.1 Data

This section describes gene expression data sets, interaction networks and database mappings
used as data inputs for various analysis methods in thesis.

3.1.1.1 RNA-seq gene expression data

The RNA-seq expression data used in this thesis is from a previous in-house experiment (Gunawan
et al., 2013) conducted in order to understand the genetic mechanism behind androstenone
metabolism. In the original study, testis and liver tissue samples were harvested from 10 boars
which in turn were selected from a pool of 100 boars with an average androstenone value of
1.36 ± 0.45µg/g. This pool of 100 animals was a commercial population of Duroc × F2 cross
breeds. In this pool of animals, boars with a fat androsteone level of 0.5µg/g or less were defined
as low androstenone (LA) animals and boars with a fat androstenone concentration of 1.00µg/g

or more were defined as high androstenone (HA) animals. Among the selected 10 boars, 5
animals with an extreme high androstenone measurement of 2.48 ± 0.56µg/g were selected as
high androstenone (HA) sample population and 5 animals with an extreme low androstenone
measurement of 0.24 ± 0.06µg/g were selected as low androstenone (LA) sample population
(Gunawan et al., 2013). Analyzing the ancestry details of these animals revealed that among
these selected 10 animals, two sets of 3 animals each: 1 LA and 2 HA animals in the first set and
2 LA and 1 HA animals in the second set were half siblings. SMART cDNA library construction
kit (Clontech, USA) was used for library preparations. Sequencing was done externally on an
Illumina HiSeq 2000 system by GATC Biotech AG1 (Konstanz, Germany) (Gunawan et al., 2013).
This data is publicly available in GEO database under the accession id: GSE441712.

1http://www.gatc-biotech.com/en/index.html last accessed July 10, 2014
2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44171 last accessed July 10, 2014
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3.1.1.2 Microarray data

In addition to the in-house RNA-seq data, a microarray dataset was also used in this thesis. This
dataset is publicly available in GEO database (accession id: GSE110733) and was generated to
study the hepatic gene expression differences in hepatic androstenone metabolism of two pig
breeds, Duroc and Norwegian Landrace (Moe et al., 2008). A total of 58 animals per breed was
used in this experiment. For HA Duroc animals the average androstenone level was 11.57 ± 3.2

ppm and for LA Duroc animals, the average androstenone level was 0.37 ± 0.17 ppm (Moe
et al., 2008). In case of Norwegian Landrace animals, average measurement of androstenone
in HA animals was 5.95 ± 2.04 ppm where as the average androstenone level for LA animals
was 0.14 ± 0.04 ppm (Moe et al., 2008). The microarray platform used was a two color cDNA
chip. The probes in this chip was designed using cDNA clones from Sino-Danish Pig Genome
Sequencing Consortium since the chip was designed before the release of the pig genome assembly
(Archibald et al., 2010). The probes were mapped to human gene transcripts from NCBI Refseq
database. There were a total of 26,877 PCR products and 867 control features on this chip4. In
this thesis, this microarray dataset was used to generate multi population co-expression clusters
for liver androstenone metabolism (see section 3.2.2.2).

3.1.1.3 KEGG gene interaction networks and pathway mappings

Protein - protein interaction networks and pathway mappings used in this experiment were
retrieved from KEGG5 database (Kanehisa and Goto, 2000) (Release 60.0). Enzyme - enzyme
interactions and protein - protein interactions in each KEGG pathway mapped to KEGG gene ids
were retrieved from KEGG SOAP based web service using a custom perl script. This retrieved
interaction network was comprised of 23,198 edges (interactions) between 3,510 nodes (genes)
mapped to 197 pathways. This KEGG interaction network was used in experiment 1 (see section
3.2.2.1).

3.1.1.4 SNP annotations

In this thesis, Sus scrofa SNP annotations from dbSNP6 database (build 137) were used in the
variant calling pipeline (see section 3.2.2.1) as the list of known mutations in the Sus scrofa
genome build. This annotation contained information such as chromosomal id, SNP position
on the chromosome (in base pairs), reference and alternate alleles and dbSNP rs ids on 486,585
SNPs in the Variant Calling File (VCF) format.

3.1.2 Algorithms and softwares

This section describes ‘off the shelf’ data analysis algorithms and softwares used in this thesis.
All most all of the softwares and tools described below are freely available for academic use and a
vast majority of these are open source projects. A number of tools detailed here are primarily
used for (RNA-seq) gene expression data analysis.

3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11073 last accessed July 10, 2014
4http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6173 last accessed July 10, 2014
5http://www.genome.jp/kegg/ last accessed July 10, 2014
6http://www.ncbi.nlm.nih.gov/SNP/ last accessed July 10, 2014
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BEDTools

BEDTools7 (Quinlan and Hall, 2010) is a suite of softwares to address common genomics tasks
such as comparing, manipulating and annotating genomic features in the standard gene annotation
formats such as Browser Extensible Data (BED) and General Feature Format (GFF). BEDTools
also allows the comparison of sequence alignments in BAM format to gene annotation features in
either BED or GFF format. BEDTools can be used for a wide variety of tasks such as coverage
analysis, measuring similarity of DNase hypersensitivity measurements, extracting promoter
sequences from a genome, identifying regions lacking coverage and calculating GC content. In
this thesis, BEDTools suite software coverageBed was used to compute the read depth coverage
of genes in BAM sequence alignment format in the RNA-seq analysis pipeline (see section 3.2.1.1).
coverageBed can be used to calculate the depth and coverage of genomic features given in BED
or GFF format against a sequence alignment BAM file. This utility can compute the coverage of
reads spanning the chromosomal co-ordinates of a gene/transcript and also the fraction of reads
that overlaps multiple genomic features8.

Bowtie

Bowtie9 is a memory efficient ultra fast aligner for mapping short DNA sequences to large genomes,
written in c++ (Langmead et al., 2009). To index reference genomes, Bowtie uses a combination
of Burrows-Wheeler transform (BWT) (Burrows and Wheeler, 1994) and the FM index (Ferragina
and Manzini, 2000, 2001). Burrows-Wheeler transform is primarily used in the field of data
compression, but index built using BWT allows indexing and searching of large texts in a memory
efficient manner. FM index is an indexing algorithm utilizing BWT and allows for substring
queries on the index. For the purposes of genome alignment, developers of Bowtie extended
FM index functionality to allow for sequencing errors and genetic variations (Langmead et al.,
2009). Benchmark comparisons done against other next generation sequencing aligners such as
Maq10 (Li et al., 2008a) and SOAP11 (Li et al., 2008b) showed that with very small sacrifices
in sensitivity (number of reads aligned) Bowtie alignments ran considerably faster than Maq or
SOAP alignment (Langmead et al., 2009). The results from an independent benchmark study
on 9 NGS aligners showed that Bowtie maintained one of the best performances in a number of
evaluation criteria (Hatem et al., 2013). In this thesis, Bowtie was used as the aligner in TopHat
suite to map RNA-seq raw reads to porcine reference sequences (see section 3.2.1.1).

Consensus clustering

Consensus clustering is a clustering approach in which a number of different clustering solutions
from the same dataset is used to find a single clustering result. The clustering outputs from a
number of clustering solutions are not deterministic. For a number of graph clustering algorithms
(Blondel et al., 2008; Clauset et al., 2004; Lancichinetti et al., 2011; Raghavan et al., 2007), even

7http://bedtools.readthedocs.org/en/latest/index.html last accessed March 12, 2014
8http://bedtools.readthedocs.org/en/latest/content/tools/coverage.html last accessed March 12, 2014
9http://bowtie-bio.sourceforge.net/index.shtml last accessed October 9, 2013

10http://maq.sourceforge.net/ last accessed October 9, 2013
11http://soap.genomics.org.cn/soapaligner.html last accessed October 9, 2013
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if all the parameters supplied to the algorithm are kept constant, clustering solutions can still
vary slightly depending on the random seed (random number) chosen to initiate clustering. The
usual solution to this problem is to select a clustering result at random or supplying a random
seed as a fixed parameter to the clustering algorithm. In both of these scenarios, the clustering
output can either be one of the best solutions from the algorithm or one of the subpar solutions.
Consensus clustering methods have been proposed as a solution to this problem. Consensus
clustering have been shown to improve the robustness and stability of clustering solutions and
are less sensitive to outliers and sample variations (Nguyen and Caruana, 2007; Topchy et al.,
2005). A variety of strategies have been proposed for obtaining consensus clusters from a set of
different clustering solutions from the same dataset (Goder and Filkov, 2008; Lancichinetti and
Fortunato, 2012; Strehl et al., 2002; Topchy et al., 2005).

The greedy solutions proposed by Strehl et al. (2002) and Lancichinetti and Fortunato (2012)
uses consensus matrices to identify consensus clusters. A consensus matrix is generated from the
co-occurrence of vertices in the set of input clustering solutions. The consensus matrix generated
is then subjected to further clustering using the graph clustering algorithm adopted in the first
phase leading to a new set of solutions. This procedure is repeated until the generated consensus
matrix cannot be clustered anymore (until complete consensus is reached) (Lancichinetti and
Fortunato, 2012). A flowchart representation of consensus clustering technique is given in Figure
3.1. In this thesis, the greedy consensus clustering algorithm as proposed by Lancichinetti and
Fortunato (2012) was used to generate consensus LA and HA co-expression clusters related to
porcine hepatic androstenone metabolism (see section 3.2.2.2).

Clustering solutions

Consensus matrix

Complete 
consensus?

Clustering algorithm

Generate consensus
matrix

Final clustering 
solution

Input 
data/graph

Yes

No

Figure 3.1: Consensus clustering flowchart
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Cutadapt

Cutadapt12 (Martin, 2011) is a tool for removing adapter sequences from high throughput
sequencing data in an error tolerant manner. It can be used to trim adapter sequences from
the output of a number of sequencing machines either from the 3’ end or from the 5’ end of the
read and can perform gapped alignments with mismatches and indels. One of the features of
Cutadapt is that an adapter can be searched and removed multiple times from a read. This
feature is helpful in cases where adapters are joined multiple times during the library preparation
process (Martin, 2011). Cutadapt was primarily used for raw read quality control and adapter
pruning in this thesis (see section 3.2.1.1).

Cytoscape

Cytoscape13 (Shannon et al., 2003) is an open source platform for the visualization and analysis
of complex networks. It is a platform for integrating molecular networks with high throughput
expression data and data from other resources into a unified network. The large collection of
plugins available for Cytoscape allows the users perform network analysis, clustering and modeling
experiments in an input network. In this thesis, Cytoscape was mainly used as a platform for the
visualization of the generated interaction networks and clusters.

FastQC

FastQC14 is a quality control tool aimed at providing initial quality control checks for sequencing
data from high throughput experiments. It provides a set of diagnostic plots based on measures
such as: per base sequence quality scores, per sequence quality scores, per base GC content and
over represented sequences to evaluate the overall quality of the sequencing data. FastQC quality
control checks can be done either manually for each sequencing file using the Graphical User
Interface or through the batch processing mode using the perl script provided as a part of the
FastQC tool. In this thesis, raw read quality evaluation using FastQC was the initial step in
RNA-seq data analysis (see section 3.2.1.1).

Gene Ontology semantic similarity

Similarity of gene or gene products can be assessed based on their sequence similarity or functional
similarity. Two genes/gene products can be functionally similar if they share the same molecular
functions or biological processes. For genes, transcripts and proteins, the primary source of
functional annotation is Gene Ontology (Hill et al., 2000). Gene Ontology is divided into three
sub ontologies: molecular function (MF), biological processes (BP) and cellular components
(CC). These ontologies are directed acyclic graphs (DAGs) and the specificity of the annotation
increases from root to the leaves, where the root (parent) nodes describe a generalized concept
(either MF, BP or CC) and leaf nodes describe a specialized concept. An illustration of this
concept is given in Figure 3.2 using an example. The functional relationship between gene or

12http://code.google.com/p/cutadapt/ last accessed October 7, 2013
13http://www.cytoscape.org/ last accessed October 9, 2013
14http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ last accessed October 7, 2013
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gene products can be quantified using GO annotations and GO semantic similarity is one of the
methods to estimate these functional relationships.

biological process

single-organism process

metabolic processcarbon utilization

organic substance metabolic process

 macromolecule metabolic process

gene expression

Figure 3.2: GO directed acyclic graph representing the GO term “gene expression” and all the parent nodes of the
term.

Algorithms for estimating GO semantic similarity can be classified into two major groups: (i)
Information content based methods (Jiang and Conrath, 1997; Lin, 1998; Resnik, 1999; Schlicker
et al., 2006) and (ii) Graph based methods (Wang et al., 2007). Information content based
methods are based on frequency of a given GO term in a corpus of GO annotations and the
most recent common ancestor (MRCA) of two given GO terms. The identification of MRCA for
two GO terms is necessary here since GO allows multiple parents for each term and since two
GO terms can share the same path by multiple parents. In information content based methods,
probability of MRCA is calculated as the ratio of number of occurrences of MRCA or children of
MRCA to the total number of GO annotations in the corpus. Information content is calculated
as the negative log value of this probability, indicating that the least common MRCA (or MRCA
further away from the root nodes) contains greater amount of information (Jiang and Conrath,
1997; Lin, 1998; Resnik, 1999; Schlicker et al., 2006). The graph based Wang method (Wang
et al., 2007) postulate that a GO term can be represented as a DAG consisting of the term, the
ancestors of the term in GO graph and all the edges in between the terms. Semantic value of
this GO term is then defined as the ratio of aggregate contribution of all terms in DAG to the
value of the term. The semantic similarity between two GO terms A and B is calculated as the
ratio of sum of the semantic values of all ancestor terms of A and B to the sum of semantic
values of A and B. The authors argue that the proposed method takes into account the location
of the terms in GO graphs and the semantic relationship between the GO terms and ancestor
terms (Wang et al., 2007). Wang similarity method is implemented in R Bioconductor package
GOSemSim (Yu et al., 2010). BMA (best-match average strategy) is a method to combine the
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semantic similarity scores between two genes into one single score (Yu et al., 2010). Given a table
of semantic similarity measures, this method calculates the average of maximum similarities on
each row and column (Yu et al., 2010) and the similarity values ranges from 0 to 1, 0 being the
lowest score possible and 1 being the highest score possible.

In this thesis, GO semantic similarity as proposed by Wang et al. (2007) and implemented in
R Bioconductor package GOSemSim was used to estimate the semantic relationship between
enriched clusters in experiment 2 (see section 3.2.2.2). The GO semantic similarity scores were
then combined into one single score using the BMA strategy discussed above.

Genome Analysis Toolkit(GATK)

Genome Analysis Toolkit (GATK)15 (McKenna et al., 2010) is a software package that of-
fers a number of tools for analyzing next generation sequencing data. The functionalities
offered by GATK are primarily focused on variant discovery and genotyping. Algorithms in
GATK software suite including RealignerTargetCreator, IndelRealigner, CountCovariates
and TableRecalibration were used in a variant calling pipeline. A brief description of these
tools are given below.
RealignerTargetCreator: generate a list of doubtful alignments that were in need of realign-
ment.
IndelRealigner: correct misalignments due to indels (insertion/deletion) in the list of doubtful
alignments generated in the first step and generate a new set of alignments in BAM format from
the original input files.
CountCovariates: used to traverse all the locii that are not in the known list of mutations from
the dbSNP database based on the assumption that the mismatches with the reference seen in
this step are errors and therefore indicators of poor base quality.
TableRecalibration: recalculates base quality scores for reads based on the table generated by
CountCovariates utility and overwrites the base quality scores for the reads based on empirical
observations.
In this thesis, these GATK software suite algorithms were used in association with the Picard
utility MarkDuplicates as a part of the variant calling pipeline in experiment 1 (see section
3.2.2.1).

Infomap

Infomap16 (Rosvall et al., 2010) is a graph (network) clustering algorithm based on an information
theoretic method called the map equation. The clusters generated by the Infomap algorithm
are non overlapping, that is, each node is assigned to one and only one module. Given a graph
(network), the algorithm computes the fraction of time each node is visited by a random walker
and uses these visit frequencies to search for possible module (cluster) partition spaces. The
search results are further refined by a simulated annealing approach (Rosvall and Bergstrom,
2008). Given module partitions, the map equation calculates the average bits per step to describe

15http://www.broadinstitute.org/gatk/ last accessed October 14, 2013
16http://www.mapequation.org/code last accessed March 4, 2014
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an infinite random walker on a network based on these the module partitions. To find the best
partitions of the graph, the algorithm tries to minimize the map equation by identifying the
clusters of nodes in which the random walker spends a significant period of time before moving
on to another cluster of nodes (Rosvall and Bergstrom, 2008).

A benchmark test (Lancichinetti and Fortunato, 2009) compared the performance of a number of
a number of graph clustering and community detection algorithms. The algorithms subjected
to comparison were : divisive hierarchical algorithm (Girvan and Newman, 2002; Newman and
Girvan, 2004), fast greedy modular optimization algorithm (Clauset et al., 2004), exhaustive
modular optimization and simulated annealing algorithm (Guimerà et al., 2004), fast modularity
optimization algorithm (Blondel et al., 2008), divisive hierarchical algorithm (Radicchi et al.,
2004), Cfinder (Palla et al., 2005), Markov Cluster Algorithm (MCL) (van Dongen, 2000), In-
fomod structural algorithm (Rosvall and Bergstrom, 2007), Infomap algorithm (Rosvall et al.,
2010), spectral algorithm (Donetti and Muñoz, 2005), expectation maximization (EM) algorithm
(Newman and Leicht, 2007) and Potts model algorithm (Ronhovde and Nussinov, 2009). Two
graph clustering benchmarks, GN benchmark (Girvan and Newman, 2002) and LFR benchmark
(Lancichinetti et al., 2008) were used in this comparison study. In the LFR benchmark compari-
son, the clustering performance of algorithms were compared in multiple graph types such as:
undirected and unweighted graphs, directed and unweighted graphs, undirected and weighted
graphs, undirected unweighted graphs with overlapping communities. Based on the comparisons
done using GN and LFR benchmarks, the authors concluded that Infomap algorithm has the
best reliable performance in a number of real world scenarios among the tested graph clustering
algorithms.

Based on this conclusion by Lancichinetti and Fortunato (2009), in this thesis, Infomap algorithm
is used in the second data driven experiment (section 3.2.2.2) to identify gene clusters in low and
high androstenone co-expression networks (undirected weighted graphs).

Picard

Picard17 is a suite of Java based commandline utilities for manipulating sequence alignments in
SAM format. Picard supports both SAM text format (SAM) and SAM binary format (BAM).
Picard utility MarkDuplicates is used to mark duplicate reads in SAM/BAM files. This duplicate
marking helps to reduce biases in the variant calling pipeline by flagging the duplicate reads
mapped to same part of the reference genome and removing these sequences from further processing
in the variant calling pipeline. In this thesis, Picard utility MarkDuplicates was used as a part
of the variant calling pipeline. An illustration of Picard MarkDuplicates run is given in Figure
3.3 (Figure adopted from presentation gatk talks: Mapping and dulicate marking18).

17http://picard.sourceforge.net/ last accessed October 14, 2013
18http://www.broadinstitute.org/gatk//events/2038/GATKwh0-BP-1-Map_and_Dedup.pdf last accessed

March 12, 2014
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Figure 3.3: An illustration of the effects of Picard MarkDuplicates utility run on BAM format files.

SAMStat

SAMStat19 (Lassmann et al., 2011) is an open source C program for plotting nucleotide over-
representation and other statistics from mapped and unmapped reads in NGS SAM and BAM file
formats. In this thesis, SAMStat was mainly used to generate the sequence alignment statistics for
BAM files generated from mapping testis and liver raw reads to Sscrofa10.2 genome annotation.

SAMTools

SAMTools20 (Li et al., 2009) is a software suite that provides utilities for manipulating alignments
in the Sequence alignment/map (SAM) format. The utilities implemented in SAMTools can be
used for post-processing alignments in SAM format. These post-processing functions include
sorting, merging, indexing, printing alignments and variant calling. In this thesis, the utilities
implemented SAMTools were primarily used for SAM to BAM format conversion and SAMTools
mpileup function was used for variant calling. The variant calling algorithm mpileup in SAMTools
is designed under the assumption that all the variants are biallelic. Additionally it is also assumed
that at a sequence position, the sequencing and mapping errors of individual reads are independent.
Variant calling is done based on a Bayesian inference approach utilizing the prior knowledge that
at most of the aligned positions in a sequence, the base pairs from sample reads are homozygous
to the reference sequence (Li, 2011).

Seqtk

Seqtk21 is a lightweight tool for preprocessing sequences in FASTQ and FASTA format. The
implemented functionalities include: trimming low quality regions, trimming user specified regions,
extracting sequences from a set of user defined regions and converting FASTQ files into FASTA
files. Seqtk was also used in the initial quality control phase in RNA-seq data analysis in this
thesis (see section 3.2.1.1).

19http://samstat.sourceforge.net/ last accessed October 22, 2013
20http://samtools.sourceforge.net/ last accessed October 13, 2013
21https://github.com/lh3/seqtk last accessed October 8, 2013
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SnpEff

SnpEff22 (Cingolani et al., 2012) is a program for categorizing the effect of polymorphisms in
gene annotations. SnpEff can be used to annotate genomic locations and to predict coding effects
of a variant in the genome. Using this tool, polymorphisms can be categorized as belonging
to intronic, untranslated region, upstream, downstream, splice site, or intergenic regions of the
genome. The predicted coding effects of the variants include: synonymous or non-synonymous
amino acid replacement, start codon gains or loss, stop codon gains or loss and frame shifts.
In this thesis, SnpEff was used to annotate the polymorphisms identified in RNA-seq genome
annotations using SAMTools in the variant calling pipeline (see section 3.2.2.1).

Statistical significance of clusters

Statistical significance of a cluster is defined as the probability of finding a cluster in graphs
(networks) without any community structure (random graphs) (Lancichinetti et al., 2011). The
algorithm developed by Lancichinetti et al. (2010) for estimating the statistical significance of
clusters is detailed in this section. The authors have provided the binaries and source codes23. In
this algorithm, random graphs are generated based on a model known as configuration model
(Molloy and Reed, 1995). Given an input graph, configuration model generates random graphs by
randomly connecting the nodes while preserving the node degree distribution. In the algorithm
proposed by Lancichinetti et al. (2010), given an input graph and a cluster generated from this
graph, the stochastic null model is generated in such a way that the original edges between the
nodes in the cluster are preserved (within cluster edges) where as the outgoing edges, edges
connecting cluster nodes with other non cluster nodes are randomly shuffled (Lancichinetti
et al., 2010). This rewiring step also allows multiple edges between two nodes and self loops
(Lancichinetti et al., 2010).

Once a null model has been selected, the probability that a node k has i internal nodes in a
cluster C can be modeled as a hypergeometric distribution (Lancichinetti et al., 2010). This
hypergeometric modeling is followed by a cumulative probability calculation step and provides a
means to rank nodes in a cluster based on their link to other nodes in the cluster. The cumulative
probabilities are derived from a set of different degrees generated using a bootstrap strategy
(Lancichinetti et al., 2011). The statistical significance of a cluster is calculated as the probability
of inclusion of the second worst node in the cluster (Lancichinetti et al., 2010). The estimation of
statistical significance is followed by a cluster up clean up procedure (Lancichinetti et al., 2011).
In this step, nodes outside the cluster are either added to the cluster or nodes inside the cluster
are trimmed off from the cluster. This inclusion or trimming depends on the probability (of
inclusion of node in a given cluster) calculated in the previous step. If the probability calculated
for nodes outside a cluster are statistically significant with respect to a given threshold, the nodes
are added to the cluster, where as, if the probability calculated for nodes in the cluster are not
statistically significant, these nodes are trimmed off from the final cluster (Lancichinetti et al.,
2011).

22http://snpeff.sourceforge.net/ last accessed December 10, 2013
23https://sites.google.com/site/andrealancichinetti/software last accessed April 11, 2014
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In this thesis, this algorithm was used as a part or experiment specific methods in experiment 2
(see section 3.2.2.2) to estimate the statistical significance of the co-expression clusters and to
perform the cluster clean up procedure.

TopHat

TopHat24 (Trapnell et al., 2009) is a splice junction mapper algorithm to align RNA-seq reads
to a known genome independent of the existing splice sites defined for the genome. TopHat is
implemented in c++ and python and for aligning RNA-seq reads to genome, TopHat uses an
‘off the shelf’ high-throughput aligner Bowtie. In TopHat read mapping pipeline, for each read,
Bowtie reports one or more alignments with a few number of mismatches (default number of
mismatches: 2) in the 5’ bases of the read. In case of bases at the 3’ end of the read, Bowtie
allows additional mismatches based on a Phred-quality-weighted Hamming distance threshold.
This criteria for allowing mismatches is based on the observation that the 3’ end of the reads
contain more sequencing errors in comparison to 5’ end of the read (Hillier et al., 2008). TopHat
allows Bowtie to report more than one alignment per read and suppresses all alignment for reads
with more than a predefined (default number of alignments: 10) number of alignments. The
developers of TopHat claim that this approach allows the reporting of multireads from genes
with multiple copies while suppressing the alignments to low complexity regions of the genome
(Trapnell et al., 2009).

In this thesis, TopHat was used as an aligner to map RNA-seq raw reads after the quality control
process to Sus scrofa genome build Sscrofa10.2 (see section 3.2.1.1).

3.2 Methods

The method section of this thesis is divided into two main subsections, (i) RNA-seq data quality
control, mapping and normalization and (ii) Experiment specific methods. The first subsection
describes the methods used in gene expression data quality control and normalization and applied
in general to the RNA-seq expression data used in both analysis and the second section details
the data mining and analysis procedures that are specific to each of the experiments carried out
as a part of this thesis.

3.2.1 RNA-seq data quality control, mapping and normalization

3.2.1.1 Data quality control and mapping

In the original study, the raw reads from the RNA-seq data were mapped to NCBI
Sus scrofa genome build Sscrofa9.225 (Gunawan et al., 2013). But in case of the experiments
discussed here, the raw reads (in .fastq files) were remapped to a new NCBI Sus scrofa genome
build released at the time, Sscrofa10.226. The first step in this remapping process was the quality
control step. In this step, the quality of the raw read sets (testis and liver) were independently

24http://tophat.cbcb.umd.edu/index.shtml last accessed October 9, 2013
25http://www.ncbi.nlm.nih.gov/assembly/111518/ last accessed October 14, 2013
26http://www.ncbi.nlm.nih.gov/assembly/304498/ last accessed October 14, 2013
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assessed using FastQC quality control tool. Over represented PCR primers, bad quality bases
(with Phred score <20) and bases with fluctuating GC content were identified in this step (reported
by FastQC) and removed from the raw sequencing data using a combination of Cutadapt and
Seqtk tools. Cutadapt, as the name suggests, was mainly used for pruning PCR primers from
the raw reads. A well known issue with the next generation sequencing Illumina systems is the
low quality of the bases at the 3’ end of the reads. A recommended procedure in this case is
to exclude these bases of the reads from further processing (Minoche et al., 2011), for which
Seqtk was primarily used. The selection of threshold cut-off (Phred score >20) was arbitrary
and yet this cut-off threshold ensured that only the reads with a base quality score of 99% or
more were retained for further analysis. The pruned datasets obtained as a result of this quality
control step were aligned to the Sus scrofa genome build Sscrofa10.2 using the “splice aware”
mapping algorithm TopHat (see section 3.1.2). According to Trapnell et al. (2009), in RNA-seq
experiments, the major objective of mapping raw reads to genome are (i) identification of novel
transcripts and (ii) abundance estimation of transcripts (Trapnell et al., 2009). In this thesis,
mapping raw reads to genome was primarily used for the abundance estimation of transcripts.
As explained in the section Algorithms and softwares (section 3.1.2), to compute read depth
coverage for each gene and to generate gene read coverage (gene expression) matrices, sequence
alignments in the BAM format and gene feature annotations in GFF format were given as inputs
for BEDTools coverageBed utility. The next step was to filter genes with low read counts testis
and liver expression matrices. In both cases (testis and liver), genes with mean read count <25 in
HA and LA phenotypes were removed from the raw read count expression matrix before further
processing. Table 3.1 shows the number of genes in each gene expression matrix generated from
RNA-seq sequence alignment files.

Table 3.1: RNA-seq expression data statistics

Sample tissue
type

Number of
genes before
pruning

Number of
genes after
pruning

HA samples LA samples

Testis samples 21,340 16,760 5 5
Liver samples 18,427 11,736 5 5

3.2.1.2 Expression data normalization

In RNA-seq experiments, the expression of a gene is measured as the number of reads mapping
into a particular genomic interval, unlike the probe intensity values measured in microarray exper-
iments. The measured RNA-seq gene expression values follows a negative binomial distribution
(Robinson et al., 2010) in contrast to the normally distributed gene expression values in microarray
experiments. A major challenge raised by this difference in data distribution is that the classical
linear modeling analysis procedures developed for microarray data mining and analysis assumes
the data to be normally distributed and hence cannot be directly applied to RNA-seq expression
data. Although various non parametric procedures (distribution free methods) can be used in
this context, the initial “trial and error” experiments have shown that the results given by such

42



analysis procedures were statistically non significant, owing to the small sample size of the data
set (number of phenotypes per sample: 5) used in the experiments performed in this thesis and
also due to the limited power of non parametric methods to draw significant conclusions from
data sets with small sample sizes. Additionally, in the second experiment (see section 3.2.2.2), to
combine RNA-seq meta data with microarray meta data it is necessary that expression data from
all the experiments follow the same distribution.

Recently, Law et al. (2013) proposed applying normal distribution based microarray like statistical
analysis methods to RNA-seq read count data. This proposed model is based around the principle
that accurate modeling of the mean-variance relationship intrinsic to the data generating process
is essential to design statistically powerful methods (Law et al., 2013). Mean-variance modeling
at the observational level (voom) estimates mean-variance relationship in the read count data
and computes weights for each observation based on this relationship (Law et al., 2013). In order
to overcome the limitations of small sample sizes and non parametric methods to an extend and
also following the proposed idea in (Law et al., 2013), the RNA-seq gene expression matrix was
normalized and log2 transformed using voom function implemented in limma R package (Smyth,
2005). Comparison of various normalization and differential expression analysis methods for
RNA-seq data have shown that voom normalization combined with limma package to be relatively
unaffected by outliers and to perform well under many conditions (Soneson and Delorenzi, 2013).
An additional study (Rapaport et al., 2013) concluded that modeling RNA-seq gene count data as
log normal distribution with appropriate pseudo counts (limma voom modeling) is a reasonable
approximation of the data.

3.2.2 Experiment specific methods

In this thesis, in addition to the common methods described above, different experiment specific
analysis were also performed. This section describes these specific analysis procedures and each of
the experiment specific analysis sections are subdivided into subsections to describe the different
methods followed in each of the experiments.

3.2.2.1 Experiment 1: Pathway based analysis of genes and interactions influencing
porcine testis samples from boars with divergent androstenone content in
back fat

The major aim of this analysis was to identify and study the dominant metabolic pathways and
interactions involved in the maintenance and regulation of steroidogenesis and androstenone
biosynthesis in porcine testicular tissues. For this purpose, an integrative knowledge driven
approach merging together interaction network and pathway information from KEGG database
and gene expression data from RNA-seq experiments was used. But, a current limitation of
this approach in terms of studying androstenone metabolism is that none of the major pathway
databases contain data on metabolic reaction steps or gene interactions involved in androstenone
biosynthesis. As a work around to this limitation, androstenone biosynthesis was considered as an
offshoot of steroid hormone (testosterone) synthesis pathway in testis under the assumption that
the pathways and interaction events that affect steroid hormone biosynthesis could also affect
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androstenone biosynthesis.

This analysis section has three subsections (i) identification of significant interactions, (ii) KEGG
pathway enrichment and (iii) variant calling. The methods used in the identification of statistically
significant pathway interactions are described in the first subsection, the steps followed in
interaction pathway enrichment are detailed in the second subsection and the last subsection
describes the gene polymorphism analysis performed.

Identification of significant interactions

The major objective behind this analysis was to identify significant pathway interactions by
merging RNA-seq gene expression data and KEGG pathway interaction network (section 3.1.1.3).
In this analysis, the gene expression data from only the testis samples in RNA-seq expression data
(see section 3.1.1.1) was used. As noted in Table 3.1, the normalized porcine testis expression
matrix contained expression measurements of 16,760 genes in 10 samples and as described in
section 3.1.1.3, the KEGG gene interaction network contain interactions only for 3,510 genes.
Hence, the first step in this analysis procedure was to trim the the testis gene expression data set
for genes in the KEGG interaction network. As a result of this trimming, only 2,871 genes in
common between the gene expression data set and the KEGG interaction network were retained.
The KEGG interaction network was also trimmed down to 2,871 genes and contained 23,198
edges.

In the next analysis phase, Pearson Correlation Co-efficient (PCC) of gene expression values
were calculated for both HA and LA testis samples separately and the edges of the trimmed
pathway interaction network were weighted with these correlation values. This step gave rise to
two different pathway interaction networks: in the first network, the edges were weighted with
correlation coefficients derived from LA testis expression data (“LA network”) and in the second
network, edges were weighted with correlation coefficients derived from HA testis expression data
(“HA network”). Both LA and HA networks were comprised of 2,871 nodes and 15,960 edges.
In order to identify the interactions that were significantly different between both LA and HA
networks, the edge weights (correlation coefficients) of both networks were transformed to z-score
using Fisher-r-to-z transformation based on the equation:

z =
1

2
ln

(1 + r)

(1 − r)
, where r is the PCC (3.1)

Following the calculation of z-scores for interactions in both networks, the differences between the
z-scores were also calculated. For an edge z-score in LA network, the corresponding edge z-score
from HA network was retrieved and the difference between the z-scores was calculated as:

zscoreDIFF = zscoreLA − zscoreHA (3.2)

In the following analysis step, in order to identify significant zscoreDIFF , a two step evaluation
criteria based on permutation and random sampling was used (Ripley, 1987). Permutation and
random sampling based methods for estimating significance thresholds have already been used in
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high throughput studies (Gatti et al., 2009; Zhang et al., 2012). The evaluation criteria used in
this step were:

(i) zscoreDIFF should be significant at a threshold of empirical p-value <0.05 against a set of
zscores generated from randomly sampling the original expression data set.

(ii) At least one of the correlations, either from LA expression set or from HA expression set
used to calculate the zscoreDIFF must be significant at a threshold of empirical
p-value <0.05 against a set of correlations generated from randomly sampling the original
expression data set.

For generating the set of zscores used in evaluation criteria (i), a random expression matrix
was generated by randomly shuffling and assigning the whole testis gene expression values into
two sample groups. The purpose behind random shuffling and assigning of expression values
was to break up the original ordering and classification of the expression values and samples as
belonging to either HA or LA sample set and generate two complete random expression matrices
(expression sets). Pearson correlation coefficients, zscores and zscore differences were calculated on
these random expression matrices following the previously described steps and the entire process
was repeated 10,000 times to generate a set of random zscore differences (zscoreRAND) for each
interaction. The significance threshold empirical p-value for each zscoreDIFF was calculated as:

PvalEmpirical =
# zscoreRAND > zscoreDIFF

N
, where N = 10, 000 (3.3)

A similar procedure was followed for calculating significance threshold empirical p-value for
correlations in evaluation criteria (ii), where empirical p-value was calculated between correlation
coefficients from randomly sampled expression data and the original correlation coefficients from
LA or HA datasets. Once the significant interaction (correlation) identification was complete,
the identified significant interactions were further classified into 8 correlation types such as: HA
positive, HA positive significance, HA negative, HA negative significance, LA positive, LA positive
significance, LA negative and LA negative significance. The rules used for classification of these
correlation types and edge colors and line styles used in visualization of these correlation types
are given in Table 3.2. These classification rules were mainly used in the visualization step,
and all the interaction networks in this work were visualized using Cytoscape. All the above
mentioned analysis procedure were carried out in the statistical computing platform R and several
custom functions were written in R to perform these analysis steps. In this analysis, R package
igraph27(Csardi and Nepusz, 2006) was used for network analysis and manipulation.

27http://igraph.sourceforge.net/ last accessed October 14, 2013
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Table 3.2: Interaction edge classification rules. Set of rules used for the classification of
interactions(correlations) and assigning correlation types, edge color and line styles

Correlation Correlation coefficient Correlation coefficient Edge color Edge line style
coefficients coefficient in coefficient in for for

HA testis samples LA testis samples visualization visualization

HA positive positive and significant negative red solid line
HA positive signif-
icance

positive and significant positive red dashed line

HA negative negative and significant positive light green solid line
HA negative sig-
nificance

negative and significant positive or negative light green dashed line

LA positive negative positive and significant green solid line
LA positive signif-
icance

positive positive and significant green dashed line

LA negative positive negative and significant orange solid line
LA negative sig-
nificance

positive or negative negative and significant orange dashed line

KEGG pathway enrichment analysis

Once the identification of significant interactions were completed, the next step in this analysis
was the identification of pathways enriched for significant interactions. In this step, rather than
performing the conventional gene enrichment analysis, an interaction enrichment analysis was
performed following the school of thought that the interactions of a gene reveals more about
the functions of that particular gene in a phenotype. A custom function was written in R to
perform the hypergeometric test to asses the pathways over-represented for significant interactions.
The pvalues generated by the R phyper function were then corrected for multiple testing using
Benjamini–Hochberg procedure. Finally, the pathways with a p-adjusted value of < 0.05 from this
analysis were considered as significantly enriched (over-represented) for the identified interactions.

Variant calling

This section describes the analysis methods used in the variant calling pipeline. The variant
calling pipeline used utilities and tools implemented in software suites Gatk, Picard and SAMTools
function mpileup.

The input data used in this pipeline were :

(i) BAM format sequence alignments from TopHat (see section 3.2.1.1)

(ii) Sscrofa10.2 DNA sequences in FASTA format and

(iii) SNP annotations in VCF format (see section 3.1.1.4)

The variant calling pipeline described below was adapted from the GATK guideline on best
practices for variant calling28. The variant calling pipeline used GATK algorithms and Picard

28http://www.broadinstitute.org/gatk/guide/best-practices last accessed October 14, 2013
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function MarkDuplicates for realigning and re-indexing the bam files and SAMTools function
mpileup for variant calling. Figure 3.4 shows the workflow followed for variant calling pipeline
in this thesis. In the final step in this pipeline, the realigned and recalibrated reads in BAM
format are used for variant calling by using the SAMTools function mpileup. The initial set of
polymorphisms obtained from samtools was further filtered down with the parameters: Root
Mean Square (RMS) Phred quality score greater than 20, read depth greater than 50 and SNP
quality score greater than 20. Furthermore, all the polymorphisms mapped to intronic positions
of genes were excluded from this analysis. The chromosomal position and reference alleles of the
final filtered set of polymorphisms were crosschecked against dbSNP database (Build 136) to
identify the variants that were already represented in the SNP database. The possible amino acid
coding effects of these polymorphisms such as synonymous mutation, non synonymous mutation,
start/stop codon gain or loss and genomic positions such as upstream, downstream, in UTR
(un-translated region) were predicted using SnpEff software.

.bam
 RealignerTargetCreator

(GATK)
 IndelRealigner

(GATK)
 MarkDuplicates

(Picard)

 CountCovariates
(GATK)

 TableRecalibration
(GATK)

Processed
.bam

mpileup
(SAMTools)

SNPs per
.bam
(VCF)

Figure 3.4: Flow chart of variant calling pipeline used in this experiment.

A schematic diagram of the entire workflow used in this experiment is given in Figure 3.5.
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Figure 3.5: Pathway based analysis workflow. Legend: White parallelograms with grey outline:
Input/output data and results. White cylinders with red outline: data from external databases.
Rectangles with light blue shades: various tools and analysis processes used in this workflow.
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3.2.2.2 Experiment 2: Identification of gene co-expression clusters in liver tissues
from multiple porcine populations with high and low backfat androstenone
phenotype

One of the difficulties in studying porcine androstenone metabolism is the lack of external
knowledge on this subject. Although a number of studies (Doran et al., 2004; James Squires, 2010;
Moe et al., 2007a, 2008; Nicolau-Solano et al., 2006; Robic et al., 2008; Sinclair et al., 2005) have
detailed a number of biomarkers for hepatic androstenone metabolism, majority of the enzymes
and pathways involved in the liver metabolism of androstenone are still largely unknown. Since
there are sizable discontinuities in external knowledge about hepatic androstenone metabolism,
using a knowledge driven approach in this case would not yield fruitful results. A suitable
alternative approach in this scenario would be to follow a data driven approach incorporating gene
expression data from multiple high throughput experiments in multiple porcine breeds/populations
on hepatic androstenone metabolism and to analyze these datasets to identify similarities in gene
expression patterns. The advantages of such an analysis procedure would be:

(i) by combining data from multiple populations it would be possible to understand the breed
similarities in androstenone metabolism

(ii) since the analysis includes data from multiple populations, the candidate biomarkers can be
used fill current gaps in the understanding of androstenone hepatic metabolism and finally,

(iii) the analysis results could be used as a comparison standard to understand breed differences.

Hence, in this experiment, a data driven analysis method combining multiple high-throughput
gene expression datasets was followed to identify the common gene expression patters in hepatic
androstenone metabolism of three different pig populations. For this purpose, publicly available
gene expression datasets on porcine hepatic androstenone metabolism were retrieved and then
combined into two datasets based on the androstenone measurements and phenotype assignments
in the original studies.

Publicly available high throughput gene expression data from three pig populations, generated
in two different experiments were used in this analysis. The number of expression matrices
and porcine populations were limited to three here since it was not possible to obtain publicly
available expression data on porcine hepatic androstenone metabolism for any other breed during
the time of this study. Among the expression data selected, one was from an in-house RNA-seq
experiment performed on a sample population of Duroc × F2 boars (Gunawan et al., 2013). The
liver samples from 5 boars with extreme high levels of androstenone measurement in backfat were
categorized as high androstenone animals (HA) and liver samples from 5 boars with extreme low
levels of androstenone measurement in backfat were categorized as low androstenone animals
(LA). Expression dataset on porcine testicular androstenone metabolism generated as a part of
this study was used in the previous experiment (section 3.2.2.1). Additional details of this dataset
are described in section 3.1.1.1. The remaining two data sets were from a microarray experiment
based on a custom porcine cDNA microarray platform. In this experiment, gene expression
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profiling was performed on boar liver samples from two breeds, Duroc and Norwegian Landrace.
Expression profiling was performed separately for each breed and both datasets contained 29 HA
animals and 29 LA animals each (Moe et al., 2008). This dataset is described in section 3.1.1.2.

Table 3.3 gives an overview of the gene expression datasets used in this experiment.

Table 3.3: Expression dataset details

Dataset #Genes #Common
genes

#LA
samples

#HA
samples

Breed GEO
dataset
id

GEO
platform
id

DuF2 11,736
7,693

5 5 Duroc× F2 GSE44171 GPL11429
Duroc
Landrace

11,186 29 29
Duroc
Norwegian
Landrace

GSE11073 GPL6173

Various steps used in RNA-seq data quality control, mapping, generating expression matrix and
normalization of expression data are described in section 3.2.1.

Microarray data retrieval and mapping

The next step in this analysis was the retrieval, normalization and mapping of microarray
expression data in (Moe et al., 2008) to gene identifiers from Sscrofa10.2 gene build. The
data normalization procedure described in the original microarray experiment is as follows:
after hybridization and scanning, the mean foreground intensities were log transformed and
normalized using print-tip loess normalization procedure in R (R Development Core Team, 2013)
limma package (Moe et al., 2008). The duplicate correlation feature in the limma package was
used to estimate the correlation between duplicate spots in the array and finally the effect of
the normalization procedure was assessed using MA-plots and box plots (Moe et al., 2008).
Since the standard procedures of normalization were followed in the original experiment, the
normalized expression datasets were retrieved from the corresponding GEO dataset using R
package GEOQuery (Davis and Meltzer, 2007).

One of the challenges in analyzing these microarray datasets together with in-house RNA-seq
dataset was the mapping between the custom probe ids used in the microarray platform and
Entrez gene ids used in RNA-seq expression dataset. The cDNA microarray chip (see Table
3.3) used in the experiment was designed before the release of the pig genome (Archibald et al.,
2010) and used cDNA clones from Sino-Danish Pig Genome Sequencing Consortium as probes29.
The cDNA probes were mapped to human gene transcripts in NCBI Refseq database and used
custom probe identifiers. Since these custom designed microarray probes and Entrez gene ids
from RNA-seq dataset were not directly compatible, a mapping between the microarray probe
identifiers and NCBI Entrez gene identifiers was generated. For this purpose, sequence alignments
were performed between the FASTA sequences of these custom probes and Sscrofa10.2 Refseq
cDNA sequences mapped to Entrez gene ids. An all-vs-all BLAST was performed using NCBI

29http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL6173 last accessed March 4, 2014
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standalone BLAST executable (version: 2.2.28+) (Mount, 2007) and reciprocal blast approach
was used to remove ambiguous mappings. The Sscrofa10.2 sequence database generated for
BLAST-ing consisted of 25,890 cDNA sequences mapped to Entrez gene ids and the microarray
probe sequence database was comprised of 26,877 sequences. In this step, mappings were generated
between 11,251 microarray cDNA probes and 11,186 Entrez gene ids. In order to avoid the
conflicts where multiple cDNA probes were mapped to an Entrez gene id, the expression values
from the probe with the largest variance between sample expression values was mapped to the
corresponding Entrez gene id and the remaining conflicting probe ids and expression values were
discarded from further analysis. Only 7,693 genes were common between the three datasets, and
hence the expression values from only these genes were retained in all the datasets for further
analysis. In the next step, the expression matrices were regrouped according the phenotype
assignment and generated 2 expression datasets: an LA set and an HA set with 3 expression
matrices each (Table 3.3).

Generating multi breed co-expression networks

In this study, Pearson correlation coefficient between gene pairs in an expression matrix was used
as a measure of co-expression. The principal aim behind this experiment was to generate signature
gene co-expression networks by merging metadata from multiple gene expression datasets to
study porcine hepatic androstenone metabolism. A number of methods have been developed to
merge and analyze datasets across multiple microarray experiments (Chang et al., 2013; Shabalin
et al., 2008; Xu et al., 2008). But a recent study (Almeida-de Macedo et al., 2013), argues that
rather than merging multiple datasets together, combining statistical results is a better method
for estimating correlation coefficients of a gene pair across multiple datasets. This argument is
based on the analysis of correlation coefficients between gene pairs by combining 19 heterogeneous
microarray datasets into one pool (Almeida-de Macedo et al., 2013).

Stuart et al. (2003) developed a method for computing gene co-expression clusters across microarray
datasets from multiple species. In this method, the authors calculated correlation coefficient
between gene pairs in each dataset and further computed rank order statistics for each gene
pair (Stuart et al., 2003). The rank order statistics for each gene pair (each unique correlation
coefficient) was calculated as the ratio of its rank (ordered position) to the total number of gene
pairs (unique correlation coefficients). In each dataset, for correlation coefficients
−1 < cor1 < cor2 < · · · < 0 < · · · < corn−1 < corn < 1, the rank ratios followed the order
0 < r1 < r2 < · · · < rn−1 < rn < 1.

Under the assumption that the rank ratios follows a uniform distribution U(0, 1) the cumulative
density F (rn) for each rank order (correlation coefficient/gene pair) is :

F (rn) =


0 for rn≤ 0

rn for 0 <rn< 1

1 for rn≥ 1

The rank ratios were calculated for each expression matrix independently. Assuming that the
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cumulative density functions of each gene pair (rank ratio) are independent across multiple
datasets, the joint cumulative density function (joint c.d.f) of each rank ratio (each gene pair)
across multiple species was calculated based on the following equation:

P (r1, r2, · · ·, rn) = n!

∫ r1

0

∫ r2

r1

· · ·
∫ rn

sn−1

ds1, ds2, · · ·, dsn (3.4)

In this equation n is the number of species in the study and r1, r2, · · ·, rn are the rank order
ratios of a gene pair in multiple species (datasets). This method proposed by Stuart et al. (2003)
has the advantage that only the statistical results from multiple datasets are combined and thus
possibly avoids Simpon’s paradox and generating equivocal results as stated by (Almeida-de
Macedo et al., 2013).

In this work, the aforesaid approach proposed by Stuart et al. (2003) was adopted to generate
the signature co-expression networks related to porcine hepatic androstenone metabolism. As a
first step, Pearson correlation coefficients were calculated for gene pairs in all the 6 expression
matrices (3 LA and 3 HA expression matrices) separately. Since there were 7,693 (n=7,693)
common genes among all the datasets, a total of 29,587,278 unique gene pairs (unique correlation
coefficient values) were generated per dataset (total number of unique correlation coefficients
(gene pairs) calculated as : n×(n−1)

2 ). Based initial experiments, it was found that due to this
high number of unique correlation coefficient values, using signed values of correlation coefficients
for rank order calculation would result in high rank order ratios even for correlation coefficients
with a very small positive value. Since these rank ratios were used for computing the joint cdf,
even the gene pairs with very small positive correlation coefficients in all the three expression
matrices of a dataset would receive a high joint cumulative probability. In order to overcome this
issue, the absolute value of correlation coefficients was used to compute the rank order statistics
of gene pairs. After calculating the rank order ratios of gene pairs in all the expression matrices,
gene pair correlation coefficients and rank order ratios were compiled into either LA or HA set
according to the phenotype assignment described in the previous subsection.

In the next step, all the gene expression matrices in LA and HA datasets were pruned for
correlation coefficients ≥ +0.50. This pruning step was aimed at removing all those gene pairs
with conflicting directionalities. For example, gene pairs ELAC1, gene id: 100524839 and
LAPTM5, gene id: 100624193 with a correlation coefficient of +0.852 in DuF2 expression matrix,
-0.371 in Duroc expression matrix and +0.250 in Landrace expression matrix. The correlation
coefficients described here are from LA dataset. Additionally, this pruning step had the added
advantage that the gene pairs in both LA and HA set with negative correlation coefficients or very
low positive correlation coefficients were also removed, thus reducing the number of calculations
and hence the computing time needed. After this pruning step, the number of remaining gene
pairs in LA and HA sets were 43,480 (from 3,648 genes) and 42,309 (from 2,826 genes) respectively.
The joint cumulative probability of rank order ratios for these gene pairs in LA and HA sets were
calculated using equation 3.4. The cumulative probabilities generated in this step for gene pairs
in LA and HA sets were used as edge weights for the gene pairs and thus two phenotype specific
edge weighted co-expression networks were generated: an LA network with 43,480 edges among
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3,648 nodes (genes) and an HA network with 42,309 edges and 2,826 nodes (genes). These LA
and HA co-expression networks were further used as inputs for graph clustering and community
detection.

Identifying statistically significant co-expression clusters

In this experiment, a combination of Infomap clustering algorithm (see section 3.1.2) and consensus
clustering technique (see section 3.1.2) was used to generate clusters from LA and HA co-expression
networks. All the input parameters, except random seed were kept constant for clustering LA
and HA networks and 500 clustering solutions were generated in each iteration (per network).
Complete consensus clusters were generated from LA network after 3 iterations where as complete
consensus clusters were generated from HA network after only 2 iterations. Figure 3.6 gives an
overview of the LA and HA consensus clustering runs and the total number of clusters generated
per run for each network.

Although consensus clustering technique can enhance the accuracy and reliability of the resulting
clusters, this method still cannot guarantee the significance of a cluster with respect to the
input network. Since the initial LA and HA co-expression networks had a large number of nodes
(3,648 and 2,826 respectively), it could be possible that some of the clusters generated from these
networks are not specific to the phenotype at all, but random collection of nodes either as a result
of the large number of nodes in the initial networks or as a result of an artifact in the cluster
algorithm. In this work, the aim was to select only the clusters which were not random but
specific to the given input network. So, in the next step, a cluster clean up process and assessment
of the statistical significance of the clusters was performed by applying the methodology proposed
by (Lancichinetti et al., 2010) (for a detailed explanation of this method see section 3.1.2). After
this step, clusters with less than 10 nodes and significance score (p-value) ≥ 0.05 were excluded
from further analysis.
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Figure 3.6: LA HA networks consensus clustering. Legend: “run 0” in both graphs indicate first clustering
run using LA and HA networks, “run 1” indicates clustering run for the first consensus cluster and “run 2”

indicates clustering run for the second consensus cluster.

Enrichment analysis

To identify and describe the biological functions of these significant co-expression networks, Gene
Ontology (GO) and KEGG enrichment analysis were performed for each cluster. GO enrichment
analysis was limited to the biological process sub tree of the Gene Ontology and was performed
using the R package topGO (Alexa and Rahnenfuhrer, 2010). The algorithm used by topGO
package takes into account the hierarchical structure of GO graph and transfers annotations from
child nodes to parent nodes of the graph for significance testing using Fisher’s exact test (Alexa
et al., 2006). KEGG enrichment analysis was performed using a custom R script and Fisher’s
exact test was used for testing the significance of KEGG annotated pathways. In both of these
enrichment analyses, only the GO terms/KEGG pathways with significance p-value < 0.05 and
with ≥ 5 annotated genes were selected as significantly enriched.
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Cluster similarity analysis

Once the significant clusters in LA and HA networks were identified and enrichment analysis
was performed, the next step was to calculate the similarity between these significant LA and
HA clusters. In this step, the physical and functional similarity between significant LA and HA
clusters were calculated. It should be noted that the physical similarity was calculated for all
significant LA and HA clusters while functional similarity was calculated only for the clusters
with GO enrichment. The reason behind cluster similarity assessment was to understand the
physical and functional similarity between the clusters, whether the physical overlap between LA
and HA clusters were significant and whether the clusters showed a high degree of functional
similarity irrespective of the physical overlap.

Physical similarity

Physical similarity between LA and HA clusters were calculated using a hypergeometric test. For
each significant LA cluster, an HA cluster was retrieved and hypergeometric test was performed
between the nodes of these clusters to identify the overlap. In this step, only LA - HA similarity
was tested since Infomap clustering algorithm generates non overlapping clusters. P-values were
generated using the phyper function in R environment and the hypergeometric test results were
pruned at a significance threshold of p-value < 0.05.

Functional similarity

Functional similarity between LA and HA significant clusters was established by calculating the
Gene Ontology semantic similarity (Lord et al., 2003; Schlicker et al., 2006; Wang et al., 2007).
In GO enrichment analysis, a number of clusters showed significant enrichment for GO biological
process. In this step, the functional similarity only between those clusters showing significant
GO enrichment were assessed. For calculating the semantic similarity between GO terms, the
Wang method (Wang et al., 2007) as implemented in GOSemSim (Yu et al., 2010) bioconductor
package was used (a detailed explanation of GO semantic similarity method is given in section
3.1.2). In this step, semantic similarity was calculated between all enriched LA and HA clusters.
For enriched GO terms in each LA or HA cluster, GO terms from another LA or HA cluster was
drawn and semantic similarity was calculated between these terms using Wang method and these
similarity measurements were combined into a single value using best-match average strategy
(BMA) (Yu et al., 2010). These semantic similarity values were termed simCLUS for future
references. The semantic similarity values from this step ranges from 0 to 1, with 0 being the
lowest value possible and 1 being the highest possible value.

Although the step mentioned above allows to calculate semantic similarity between two enriched
clusters in this analysis, this step does not provide a cut-off threshold to indicate whether the
similarity between the two clusters were significant or not. To provide a significant cut-off point
for semantic similarity, an empirical approach based on random sampling was utilized. In this
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step, all GO biological process annotations for porcine genes were retrieved and sampled two
sets of GO terms from these annotations. The number of sampled terms were also kept random
and were drawn from the number of GO terms enriched for either LA or HA clusters. Semantic
similarity was calculated between these two sets GO terms based on the Wang method. The aim
behind this step was to generate a baseline semantic similarity measure from two sets of randomly
drawn porcine GO biological process annotations. This whole step was repeated 10,000 times
to generate a set of random semantic similarity measures. These random semantic similarity
values were termed as simRAND for further references. Finally, the significance threshold cut-off
empirical p-value for each simCLUS was calculated as:

PvalEmpricial =
# simRAND > simCLUS

N
, where N = 10, 000. (3.5)

The threshold cut off used here was PvalEmpricial< 0.05. In the next step, two cluster similarity
graphs were generated based on physical similarity assessment and functional similarity assessment.
The nodes of these graphs represented LA or HA clusters and edges represented significant
similarity measurement (physical or functional) between them. These graphs were visualized
using the biological network visualizing platform, Cytoscape.

A schematic diagram of the entire workflow used in this experiment is given in Figure 3.7.
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4. Results and Discussion

This chapter describes the results obtained from the investigation of porcine testis and liver tissue
high throughput data through knowledge driven and data driven approaches described in the
material and methods chapter. This chapter is divided into two main sections, the first section
explains and discusses the results from the knowledge driven integrative analysis performed on
gene expression dataset from porcine testis tissues and the second section explains and discusses
the results from the data driven analysis performed on expression datasets from porcine liver
tissues.

Before detailing the results of the experiments, this subsection gives an overview on data mapping
and alignment statistics for the in-house RNA-seq data used in this thesis. Analyzing the
alignment of testes sample raw reads to Sscrofa10.2 revealed that 80 ± 5% of the reads in all the
testis samples were aligned to the genome. The alignment statistics of testis samples are given in
Table 4.1. Similarly, the alignment of liver raw reads to Sscrofa10.2 gene annotations showed that
74-89% of raw reads in liver were mapped (see Table 4.1).

Previous RNA-seq studies on porcine tissues have shown a wide range of variability in the
percentage of reads mapped to the reference genome. It was reported that the up to 44.1% of raw
reads from porcine male gonads were mapped to reference genome (Esteve-Codina et al., 2011)
and the in-house RNA-seq study reported alignments ranging from 40.8% to 56.63% (Gunawan
et al., 2013). In a number of other porcine transcriptomics studies, the percentage of annotated
reads varied from 15.6% to 74.9% (Bauer et al., 2010; Chen et al., 2011; Jung et al., 2012;
Ramayo-Caldas et al., 2012). This difference in mapping percentages could be the result of a
number of factors including GC content, independent cell types, laboratory protocols, primer
biases and dinucleotide fragmentation sites (McIntyre et al., 2011). Another factor influencing
the percentage of reads mapped to reference genome among multiple studies cited above and the
mapping statistics in Table 4.1 could be the choice of reference genome build used for mapping
and the quality control parameters used in the initial data quality control phase.
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Table 4.1: Testis and Liver samples alignment statistics

Phenotype sample
number

#mapped
reads

#unmapped
reads

% mapped

LA testis

1 9,370,900 2,591,380 78 %
2 7,880,721 2,257,957 78 %
3 22,220,951 4,052,960 85 %
4 18,367,833 3,254,373 85 %
5 15,480,913 5,133,215 75 %

HA testis

1 20,814,444 3,609,890 85 %
2 22,764,774 4,180,618 84 %
3 9,477,859 2,579,939 79 %
4 8,344,818 2,422,822 77 %
5 9,611,381 2728058 78 %

LA liver

1 17,520,764 2,654,624 87 %
2 25,886,718 3,985,968 87 %
3 9,811,260 2,148,315 82 %
4 7,640,379 1,904,670 80 %
5 18,935,689 24,39,887 89 %

HA liver

1 17,906,455 2,751,493 87 %
2 7,616,917 1,763,874 81 %
3 33,133,982 3,993,499 89 %
4 6,412,629 2,227,964 74 %
5 7,033,081 2,022,279 78 %

4.1 Pathway based analysis of genes and interactions influencing
porcine testis samples from boars with divergent androstenone
content in back fat

In this section, the results of the analysis methods described in section 3.2.2.1 are explained and
discussed. As described in the method section, the analysis of testis data set was focused around
identifying statistically significant gene interactions between HA and LA interaction networks.
The results from the identification of significant interactions showed that 1,023 interactions
between 826 genes were significant in both HA and LA testis datasets. Analysis of this interaction
network revealed that these 1,023 interactions formed into an interaction network and the largest
connected component of this network contained 848 edges (interactions) and 563 nodes (genes)
(Figure 4.1).

4.1.1 Significant interaction network analysis

Network analysis performed in Cytoscape (section 3.1.2) showed that the significant interaction
network had a total of 95 connected components, clustering coefficient value of 0.036, a path
length of 8.490 and the average number of neighbors is 2.477. Additional network statistics from
this analysis are given in Table 4.2. Analysis of the node degree distribution of the network
showed that the network exhibits scale free topology following the power law distribution of node
degrees (Figure 4.2), a characteristic nature of interaction networks in biology. Node degree
calculations have also revealed that genes such as LOC100623707 (POLR2G), ADCY9, PDE8B,
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NUDT2, PDE8B and LOC100620235 (PIK3R1) were some of the highly connected genes in this
network. Among the significant interactions in this network, 209 interactions were LA positive,
201 interactions were LA negative, 257 interactions were HA positive and 220 interactions were
HA negative (Table 4.2).

Figure 4.1: Testis HA and LA dataset significant interactions. Legend : nodes – genes, edges – interactions with
significant z-scores. Edge legend : Red solid edges: interactions positive and significant in HA samples, negative in

LA samples. Red dashed edges: interactions positive and significant in HA samples, positive in LA samples.
Orange solid edges: interactions positive in HA samples, negative and significant in LA samples. Orange dashed

edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid edges:
interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges:

interactions positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions
positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions negative in

LA samples, negative and significant in HA samples.

Table 4.2: Testis HA LA dataset significant interaction network statistics

Network feature Significant interactions Significant interactions
network network in

enriched pathways

Number of nodes 826 718
Number of edges 1,023 865
Clustering coefficient 0.036 0.039
Characteristic path length 8.490 8.558
Avg. number of neighbors 2.477 2.409

LA positive interactions 209 173
LA positive significance interactions 35 31
LA negative interactions 201 166
LA negative significance interactions 30 24
HA positive interactions 257 217
HA positive significance interactions 42 39
HA negative interactions 220 189
HA negative significance interactions 29 26
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Figure 4.2: Significant interaction network node degree distribution. Power law fit is indicated by the red line in
the figure.

4.1.2 Pathway enrichment analysis

The major aim behind pathway enrichment analysis was to annotate significant interactions with
metabolic pathways and to identify the key pathways and interactions that might be relevant
for porcine testicular steroidogenesis and androstenone synthesis. Pathway enrichment analysis
showed that out of 1,023 significant interactions, 865 interactions between 718 genes were enriched
in 92 pathways (Table 4.3). Among these enriched pathways, top 5 enriched pathways in terms of
the number of interactions were: purine, pyrimidine and glycerophospholipid metabolism pathway,
phosphatidylinositol signaling system and Jak-STAT signaling pathway (Table 4.3). Significant
interactions in pathways such as synthesis and degradation of ketone bodies, steroid biosynthesis,
oxidative phosphorylation, butanoate metabolism, drug metabolism – other enzymes and RNA
transport were found only in HA samples where as the interactions in antigen processing and
presentation pathway, intestinal immune network for IgA production, autoimmune thyroid disease
and allograft rejection pathways were found only in case of LA sample set (Table 4.3).
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Table 4.3: KEGG pathway enrichment analysis

pathway
id

pathway name p.adj # total sig-
nificant
interactions

# significant
interactions
in LA sam-
ples

# significant
interactions
in HA sam-
ples

ssc04650 Natural killer cell mediated
cytotoxicity

0.02 11 3 8

ssc04672 Intestinal immune network
for IgA production

0.00 7 7 0

ssc04660 T cell receptor signaling
pathway

0.00 13 5 8

ssc04662 B cell receptor signaling
pathway

0.00 14 6 8

ssc04612 Antigen processing and pre-
sentation

0.00 19 19 0

ssc00360 Phenylalanine metabolism 0.00 6 3 3
ssc04630 Jak-STAT signaling pathway 0.00 33 22 11
ssc00380 Tryptophan metabolism 0.01 5 3 2
ssc04621 NOD-like receptor signaling

pathway
0.01 3 2 1

ssc04622 RIG-I-like receptor signaling
pathway

0.02 3 2 1

ssc05310 Asthma 0.00 7 7 0
ssc05323 Rheumatoid arthritis 0.00 7 7 0
ssc05322 Systemic lupus erythemato-

sus
0.00 7 7 0

ssc05320 Autoimmune thyroid disease 0.00 16 16 0
ssc00410 beta-Alanine metabolism 0.03 5 1 4
ssc05330 Allograft rejection 0.00 16 16 0
ssc04210 Apoptosis 0.03 7 2 5
ssc05010 Alzheimers disease 0.00 5 2 3
ssc05030 Cocaine addiction 0.03 4 2 2
ssc00280 Valine, leucine and isoleucine

degradation
0.00 23 5 18

ssc00270 Cysteine and methionine
metabolism

0.02 6 4 2

ssc00260 Glycine, serine and threonine
metabolism

0.01 7 2 5

ssc00250 Alanine, aspartate and gluta-
mate metabolism

0.02 5 2 3

ssc00240 Pyrimidine metabolism 0.00 74 37 37
ssc04720 Long-term potentiation 0.03 9 1 8
ssc05416 Viral myocarditis 0.00 17 16 1
ssc05412 Arrhythmogenic right ven-

tricular cardiomyopathy
(ARVC)

0.00 2 1 1

ssc00340 Histidine metabolism 0.00 4 3 1
ssc00740 Riboflavin metabolism 0.02 2 2 0
ssc00350 Tyrosine metabolism 0.00 11 7 4
ssc00330 Arginine and proline

metabolism
0.00 9 7 2
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Table 4.3: KEGG pathway enrichment analysis (continued...)

pathway
id

pathway name p.adj # total sig-
nificant
interactions

# significant
interactions
in LA sam-
ples

# significant
interactions
in HA sam-
ples

ssc04360 Axon guidance 0.01 10 5 5
ssc04370 VEGF signaling pathway 0.00 19 8 11
ssc03008 Ribosome biogenesis in eu-

karyotes
0.00 6 1 5

ssc03015 mRNA surveillance pathway 0.01 7 3 4
ssc03013 RNA transport 0.03 9 0 9
ssc03018 RNA degradation 0.02 6 2 4
ssc00760 Nicotinate and nicotinamide

metabolism
0.01 8 4 4

ssc04070 Phosphatidylinositol signal-
ing system

0.00 44 24 20

ssc05152 Tuberculosis 0.00 14 5 9
ssc05166 HTLV-I infection 0.01 18 7 11
ssc05160 Hepatitis C 0.01 6 4 2
ssc05134 Legionellosis 0.01 3 2 1
ssc05145 Toxoplasmosis 0.01 7 4 3
ssc00140 Steroid hormone biosynthe-

sis
0.02 8 3 5

ssc00190 Oxidative phosphorylation 0.00 7 0 7
ssc00600 Sphingolipid metabolism 0.00 21 11 10
ssc00230 Purine metabolism 0.00 187 94 93
ssc00620 Pyruvate metabolism 0.00 17 5 12
ssc00650 Butanoate metabolism 0.00 8 0 8
ssc00640 Propanoate metabolism 0.00 13 3 10
ssc04910 Insulin signaling pathway 0.00 16 6 10
ssc04914 Progesterone-mediated

oocyte maturation
0.00 11 6 5

ssc00670 One carbon pool by folate 0.00 7 4 3
ssc04012 ErbB signaling pathway 0.02 7 1 6
ssc04010 MAPK signaling pathway 0.02 20 7 13
ssc04962 Vasopressin-regulated water

reabsorption
0.03 2 0 2

ssc00480 Glutathione metabolism 0.00 19 6 13
ssc04976 Bile secretion 0.02 7 6 1
ssc04510 Focal adhesion 0.03 21 12 9
ssc04514 Cell adhesion molecules

(CAMs)
0.00 17 16 1

ssc00020 Citrate cycle (TCA cycle) 0.00 8 1 7
ssc00010 Glycolysis / Gluconeogenesis 0.00 13 2 11
ssc00071 Fatty acid metabolism 0.00 23 3 20
ssc00072 Synthesis and degradation of

ketone bodies
0.00 4 0 4

ssc00983 Drug metabolism - other en-
zymes

0.02 3 0 3

ssc04530 Tight junction 0.02 17 8 9
ssc00052 Galactose metabolism 0.00 4 3 1
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Table 4.3: KEGG pathway enrichment analysis (continued...)

pathway
id

pathway name p.adj # total sig-
nificant
interactions

# significant
interactions
in LA sam-
ples

# significant
interactions
in HA sam-
ples

ssc04520 Adherens junction 0.00 12 2 10
ssc00100 Steroid biosynthesis 0.05 2 0 2
ssc05223 Non-small cell lung cancer 0.02 5 1 4
ssc05222 Small cell lung cancer 0.04 4 1 3
ssc05221 Acute myeloid leukemia 0.00 9 4 5
ssc05220 Chronic myeloid leukemia 0.02 6 2 4
ssc05210 Colorectal cancer 0.00 7 4 3
ssc05212 Pancreatic cancer 0.00 7 6 1
ssc05211 Renal cell carcinoma 0.03 4 1 3
ssc05214 Glioma 0.04 8 4 4
ssc05213 Endometrial cancer 0.05 3 1 2
ssc05216 Thyroid cancer 0.01 3 3 0
ssc05215 Prostate cancer 0.00 12 5 7
ssc05218 Melanoma 0.02 8 4 4
ssc04114 Oocyte meiosis 0.00 16 5 11
ssc00520 Amino sugar and nucleotide

sugar metabolism
0.00 9 2 7

ssc05200 Pathways in cancer 0.00 32 23 9
ssc04141 Protein processing in endo-

plasmic reticulum
0.00 23 10 13

ssc04145 Phagosome 0.00 11 5 6
ssc00563 GPI-anchor biosynthesis 0.02 3 0 3
ssc00561 Glycerolipid metabolism 0.00 21 12 9
ssc04150 mTOR signaling pathway 0.00 6 3 3
ssc00565 Ether lipid metabolism 0.00 16 11 5
ssc00564 Glycerophospholipid

metabolism
0.00 55 29 26

Although the pathways such as purine, pyrimidine and glycerophospholipid metabolism pathway,
phosphatidylinositol signaling system and Jak-STAT signaling pathway were some of the top
enriched pathways in this analysis, literature references (Altamirano et al., 2009; Fix et al.,
2004; Losel et al., 2003; Ray et al., 2013; Sakata et al., 2000; Sharifi and Mottaghi, 2012)
suggest that a number of these pathways were activated by steroid hormones through various
signaling pathways and may not have directly influenced steroidogenesis. However, some of the
enriched pathways of interest were: steroid hormone biosynthesis pathway, fatty acid metabolism,
oxidative phosphorylation, glutathione metabolism and sphingolipid metabolism. These pathways
were chosen as pathways of interest since steroid hormone biosynthesis is the major pathway
synthesizing testosterone and androstenone and also on account of literature based evidences that
the metabolites from glutathione metabolism, sphingolipid metabolism and fatty acid metabolism
can influence steroid hormone biosynthesis (Chen et al., 2008a; Hu et al., 2010; Lucki and Sewer,
2010). Based on these enriched pathways and significant interactions, five major assumptions were
formalized on the synthesis and maintenance of steroidogenesis and androstenone metabolism in
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the porcine testis samples. These assumptions are discussed in the following subsections.

4.1.2.1 Steroid hormone biosynthesis

As expected, steroid hormone biosynthesis pathway is one of the pathways enriched for significant
interactions (Table 4.3). In this pathway, five significant interactions (correlations) were positive
in HA sample set and three significant interactions were positive in LA sample set (Figure 4.3).
One of the interactions positive in HA sample set was the interaction between the genes CYP17A1
and HSD17B3 (Figure 4.3). The enzyme encoded by CYP17A1 gene converts 17 α-Hydroxy
progesterone into androstenedione (Boron and Boulpaep, 2005) and the hydroxysteroid dehy-
drogenase enzyme encoded by HSD17B3 gene catalyzes the conversion of androstenedione to
testosterone (Payne and Hardy, 2007). Since CYP17A1 gene product is involved in the initial
steps of steroid hormone synthesis, a number of studies have reported this gene as a candidate
gene for androstenone biosynthesis (Billen and Squires, 2009; Leung et al., 2010; Moe et al.,
2007a,b).

Another HA positive interaction in these results was the interaction between the genes CYP17A1
and LOC100620470 (HSD17B6) (Figure 4.3). In this second interaction involving CY17A1 gene,
the interactant LOC100620470 (HSD17B6) encodes 17 β-hydroxysteroid dehydrogenase type 6
enzyme, which catalyzes the conversion of testosterone back to androstenedione (Tindall and
Mohler, 2009). Although none of the high throughput studies on androstenone synthesis mention
LOC100620470 (HSD17B6) expression in relation with androstenone, this gene is reported to
be in an androstenone related QTL region (Grindflek et al., 2011). The third HA positive
interaction in steroid hormone biosynthesis pathway was the interaction between the genes
LOC100620470 (HSD17B6) and UGT1A3 (Figure 4.3). The enzyme encoded by UGT1A3 gene,
a LOC100620470 (HSD17B6) interaction partner catalyzes the glucuronidation of testosterone
to testosterone glucuronide (Kuuranne et al., 2003). The fourth HA positive interaction in
this pathway was between genes HSD17B8 and LOC100624700 (UGT2C1) (Table 4.3). Among
these interaction partners, the former codes for the enzyme hydroxysteroid (17-β) dehydrogenase
8, primarily involved in testosterone inactivation (Hartley et al., 2000) and the latter encodes
UDP-glucuronosyltransferase 2C1 enzyme. Although UDP-glucuronosyltransferase 2C1 enzyme
is known to catalyze the conjugation of endogenous compounds, its exact function in relation
with hydroxysteroid dehydrogenase enzyme remains unclear. The final positive interaction in HA
samples was the interaction between genes HSD17B3 and UGT1A3 (Figure 4.3). As described
above, the enzyme encoded by HSD17B3 converts androstenedione to testosterone and UGT1A3
gene product catalyzes the glucuronidation of testosterone to testosterone glucuronide. The
evidences described here could indicate that both testosterone synthesis and degradation steps
were active in HA sample set.

In case of LA sample set, positive interactions were CYP17A1 – HSD17B8 interaction, HSD17B8
– UGT1A3 interaction and HSD17B8 - LOC100152603 (UDP-glucuronosyltransferase) interaction
(Table 4.3). As mentioned above, CYP17A1 codes for an enzyme catalyzing 17α-Hydroxy
progesterone to androstenedione conversion and the enzyme hydroxysteroid (17-β) dehydrogenase
8 encoded by HSD17B8 gene inactivates testosterone. The remaining interaction partners of
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HSD17B8 gene, UGT1A3 and LOC100152603 (UDP-glucuronosyltransferase) primarily catalyzes
the conjugation and removal of various endogenous compounds. It should be noted that in all
the three interactions positive in LA sample sets, the gene HSD17B8 was one of the interaction
partners and the major function of the protein encoded by this gene is testosterone inactivation.
These results and evidences could be and indication that in low androstenone animals, testicular
testosterone concentrations were primarily affected by a low amount of synthesis coupled with
active testosterone inactivation and degradation steps.

A recent study (Lervik et al., 2013) has shown that estimated breeding value of androstenone
was positively related to plasma testosterone levels and it was also shown that genetic correlation
between androstenone (plasma and fat) and sex steroids were high in pure bred Duroc and
Landrace populations (Grindflek et al., 2011). Based on these evidences from published studies
and the observation that the enzymes involved in the synthesis of testosterone also catalyzes
androstenone synthesis and since both the compounds are derived from pregnenolone (James
Squires, 2010), it could be postulated that in HA animals, an active testosterone synthesis could
also imply active synthesis of androstenone.

SULT2B1

CYP7B1

HSD11B2

STS

CYP21A2

HSD17B3

HSD3B1

CYP17A1

HSD17B8

LOC100525350

CYP1A1

CYP7A1

LOC100518046

LOC100515394

UGT1A3

HSD17B7

HSD17B1

LOC100152603

HSD17B12

COMT

LOC100623255

LOC100738495

LOC100620470

ST5AR2

LOC100624700

Figure 4.3: Steroid hormone biosynthesis pathway. Legend : Red solid edges: interactions positive and significant
in HA samples, negative in LA samples. Red dashed edges: interactions positive and significant in HA samples,
positive in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA
samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark
green solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed

edges: interactions positive and significant in LA samples, positive in HA samples. Light green solid edges:
interactions positive in LA samples, negative and significant in HA samples. Light green dashed edges:

interactions negative in LA samples, negative and significant in HA samples. Grey edges: Non significant
interactions, part of KEGG network data.

4.1.2.2 Glutathione metabolism

Glutathione metabolism was another major metabolic pathway enriched for significant correlations
(interactions) in these results (Table 4.3). Literature evidence suggests that the depletion of
intracellular gluathione pool significantly decreases testosterone production (Chen et al., 2008a)
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and that a decrease in glutathione peroxidase (Gpx) activity affects testosterone synthesis since
Gpx activity reduces lipid peroxidation (Chandra et al., 2000). Additionally, it has also been
indicated that alterations in glutathione redox cycle might play significant roles in detoxifying
mechanisms in testes (Mori et al., 1989).

This analysis identified seven GPX1 gene interactions to be positive in HA sample set (Figure 4.4).
GPX1 gene encodes glutathione peroxidase enzyme, primarily involved in the detoxification of
hydrogen peroxide. GSTA2, a GPX1 interaction partner in glutathione metabolism pathway
exhibits high activity against lipid peroxidation (Fishbein, 2011). GSTA4, another GPX1
interactant metabolizes lipid peroxidation product 4-hydroxynonenal (4-HNE) by conjugating
it with glutathione (GSH) (Sharma et al., 2011). GPX1 – GSTA2 interaction (correlation) and
GPX1 – GSTA4 interaction (correlation) were positive in HA phenotype, possibly indicating that
the combined action of the enzymes encoded by these genes reduced lipid peroxidase activity in
HA samples and thus had a positive effect on testicular steroidogenesis.

In this scenario, it should also be taken into account that the majority of reactive oxygen
species (ROS), the primary agent in lipid peroxidation is a by-product of mitochondrial oxidative
phosphorylation (West et al., 2011). Pathway enrichment analysis and further investigations
have shown that oxidative phosphorylation pathway was enriched for significant interactions
(Table 4.3) and that a number of interactions (correlations) in oxidative phosphorylation pathway
were positive in HA dataset (Table 4.3, Figure 4.5). From these results it could be assumed
that in HA samples, an active glutathione metabolism pathway was balancing the negative side
effects of an active mitochondrial oxidative phosphorylation, specifically, the peroxidation of lipids
triggered by ROS. Interaction evidences also shows the gene GGT1 as an interaction partner for
the gene GSTA4 and that the interactions were positive in HA dataset (Figure 4.4). Conversion
of glutathione (GSH) into cysteinyl glycine and γ-glutamate catalyzed by GGT1 gene product is
an essential step that helps to maintain cellular levels of glutathione and cysteine. GGT1 deficient
male mice have been shown to be infertile (Kumar et al., 2000). Although KEGG interaction
network includes an interaction between GSTA4 and GGT1, at this point, additional evidence for
this interaction could not be found in any published literature.

Based on the evidences stated above, it could be postulated that in HA testis tissues, an active
glutathione metabolic pathway resulted in reduced lipid peroxidase activity and thus an increased
steroidogenesis and androstenone biosynthesis. In this regard, the genes GPX1 and its interactions
partners such as GST family genes GSTA4 and GSTA2 and gene GGT1 in glutathione metabolism
as could be further investigated as candidate biomarkers for their involvement in porcine testicular
steroid biosynthesis and androstenone biosynthesis. Among the genes involved in significant
interactions in this pathway, the gene GSTO1 is previously reported to be differentially expressed
in high androstenone (Duroc) boars (Moe et al., 2007b).
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Figure 4.4: Glutathione metabolism. Legend : Red solid edges: interactions positive and significant in HA
samples, negative in LA samples. Red dashed edges: interactions positive and significant in HA samples, positive
in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples.
Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges:
interactions positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions
positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions negative in
LA samples, negative and significant in HA samples. Grey edges: Non significant interactions, part of KEGG

network data.
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Figure 4.5: Oxidative phosphorylation. Legend : Red solid edges: interactions positive and significant in HA
samples, negative in LA samples. Red dashed edges: interactions positive and significant in HA samples, positive
in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples.
Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges:
interactions positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions
positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions negative in
LA samples, negative and significant in HA samples. Grey edges: Non significant interactions, part of KEGG

network data.
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4.1.2.3 Sphingolipid metabolism

Sphingolipids are a class of lipids composed of an aliphatic amino alcohols and a sphingosine
(long chain base) backbone. These lipids have been established to play a significant role in
steroidogenic pathway by acting as secondary messengers, paracrine, autocrine regulators and
nuclear receptors (Lucki and Sewer, 2010). Literature evidences (Meroni et al., 2000; Morales
et al., 2003) show that ceramides (Cer, N-acylsphingosine), a major class of sphingolipids can
suppress testicular StAR gene expression, testosterone biosynthesis and regulate hCG stimulated
steroidogenesis in rat Leydig cells. Studies have also shown that sphingosine-1-phosphate (S1P),
an intracellular sphingolipid inhibits germ cell apoptosis in human testis (Suomalainen et al.,
2003) and modulates lutenizing hormone signaling (Sanz et al., 2013). Sphingomyelin, another
sphingolipid is shown to enhance steroid hormone synthesis (Isabella Pörn et al., 1991). It is also
suggested that sphingosine (SPH), another sphingolipid class member acts as an antagonist for
steroid hormone biosynthesis nuclear receptor SF1 (Urs et al., 2006).

Sphingolipid metabolism was one of the pathways found to be enriched for significant interactions
in pathway enrichment results (Table 4.3). A total of 10 interactions in this pathway were positive
for HA samples (Figure 4.6). Among these HA positive interactions, gene GALC was involved in 4
interactions (Figure 4.6). The protein encoded by this gene hydrolyzes the galactose ester double
bonds of various sphingolipids including galactoceramide and converts into N-acylsphingosine
(ceramide) (Schomburg et al., 2003). The first interaction partner of GALC was the gene
SMPD1, which encodes a sphingomyelinase enzyme that converts sphingomyelin to ceramide
(Schomburg et al., 2003). GBA gene was the second HA positive GALC interaction partner and the
product of this gene hydrolyzes D-glucosyl-N-acylsphingosine to D-glucose and N-acylsphingosine.
LOC100155321 (ACER2) was the third GALC interactant in HA positive interactions and the
product of this gene catalyzes the hydrolysis of N-acylsphingosine to sphingosine (Lennarz and
Lane, 2013). In case of gene LOC100525450 (CERS1), the final GALC interaction partner in HA
positive interactions, it is speculated that the enzyme encoded by this gene is either a ceramide
synthase or a modulator. Although ceramide synthases have been shown to catalyze the de
novo synthesis of ceramides (Hannun and Obeid, 2008), the function of the gene LOC100525450
(CERS1) or its product in relation to GALC could not be pinpointed at this time. The results
also show that three interactions involving the gene SGMS2 were also positive in HA samples
(Figure 4.6). The enzyme encoded by the gene SGMS2 is involved in the synthesis of sphingomyelin
from ceramides (Abelson et al., 1999). The interaction partners of SGMS2 in HA positive
interactions were the genes LOC100525450 (CERS1), GBA and LOC100511825 (UGT8). As
mentioned above, the product of the gene LOC100525450 (CERS1) is speculated to be a ceramide
synthase or a modulator and the enzyme encoded by the GBA gene hydrolyzes D-glucosyl-N-
acylsphingosine to D-glucose and ceramide. The enzyme encoded by LOC100511825 (UGT8)
catalyzes the transfer of galactose to ceramide during the synthesis of galactocerebrosides (Chalfant
and Poeta, 2010). An additional HA positive interaction in this pathway was the interaction
between the genes LOC100738292 (SPHK2) and SGPL1. LOC100738292 (SPHK2) gene product
phosphorylates sphingosine to sphingosine-1-phosphate (McQueen, 2010). The enzyme encoded by
the gene SGPL1 cleaves sphingoid bases such as sphingosine-1-phosphate into fatty aldehydes and
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phosphoethanolamine (Hirabayashi et al., 2006). From these evidences at the gene level, it could
be speculated that in HA samples, ceramides were mainly generated by the conversion/hydrolysis
of other sphingolipids such as sphingomyelin or D-glucosyl-N-acylsphingosine and that these
ceramides were further converted to galactocerebrosides or to sphingosine and finally into fatty
aldehydes and phosphoethanolamine.

In these results, a total of 11 interactions in sphingolipid metabolic pathway were positive for
LA samples (Figure 4.6). The gene LOC100152988 (KDSR) was involved in two out of 11 LA
positive interactions (Figure 4.6). One of the interaction partners of LOC100152988 (KDSR)
was the gene SPTLC3. The enzyme encoded by SPTLC3 converts palmitoyl-CoA and L-serine
into 3-ketodihydrosphingosine, initiating de novo synthesis of sphingolipids (Hanada, 2003). The
reductase enzyme encoded by LOC100152988 (KDSR) reduces 3-ketodihydrosphingosine into
dihydrosphingosine (Chauhan, 2008). The second interaction partner of LOC100152988 (KDSR)
was the gene LASS6. LASS6 gene encodes a ceramide synthase enzyme, Ceramide synthase 6 and
it is shown that ceramide synthases (CerS) are involved in the acylation of dihydro sphingosine to
dihydroceramide, a precursor of ceramide (Hannun and Obeid, 2008). From these interactions it
could be speculated that sphingolipid de novo synthesis was active in case of LA samples. Similar
to HA samples, an interaction between a gene coding for an enzyme involved in the synthesis of
sphingomyelin and a gene coding for ceramide synthase or modulator was found to be positive
in LA animals. This interaction was between the genes LASS3 and SGMS1 (Figure 4.6). An
interaction between the genes LOC100512419 (PPAP2B) and LOC100622165 (ACER1) was also
found to be LA positive. LOC100512419 (PPAP2B) hydrolyzes sphingosine-1-phosphate (Abelson
et al., 1999) and LOC100622165 (ACER1) hydrolyzes ceramide to sphingosine.

Literature based evidences (Bartke and Hannun, 2009; Isabella Pörn et al., 1991; Lucki and Sewer,
2010; Meroni et al., 2000; Merrill, 2002; Morales et al., 2003; Sanz et al., 2013; Suomalainen
et al., 2003; Urs et al., 2006) indicate that elevated amounts of ceramide negatively affects steroid
biosynthesis and the evidences at the genomic level from this analysis suggest active de novo
sphingolipid synthesis steps in LA animals. Based on these genomic level evidences, it could
be assumed that the elevated concentrations of ceramide in LA animals could be one of the
contributing factors to reduced steroid synthesis and possibly reduced androstenone biosynthesis
in this phenotype. Although there were several interactions positive in HA animals suggesting
the conversion of various sphingolipids to ceramide in these animals, based on the results, it could
be speculated that the ceramide levels in these animals were maintained by its conversion either
to galactocerebrosides or to fatty aldehydes, mainly by the action of LOC100155321 (ACER2),
LOC100738292 (SPHK2) and SGPL1 gene products.

Building around the aforesaid speculations and the literature evidences from model organisms,
sphingolipids such as ceramide, sphingosine and sphigosine-1-phosphate and genes involved
in sphingolipid metabolic pathway such as GALC, LOC100152988 (KDSR), SGMS1, SGMS2,
SMPD1 and SMPD4 could be further investigated as candidate biomarkers for their involvement
in porcine steroid hormone biosynthesis and androstenone biosynthesis pathways. From Figure 4.6
it can be seen that several other interactions were positive in either one of the phenotypes, but
due to the lack of additional literature or database evidences to support these interactions, these
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interactions were dropped from further investigation.
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Figure 4.6: Sphingolipid metabolism. Legend : Red solid edges: interactions positive and significant in HA
samples, negative in LA samples. Red dashed edges: interactions positive and significant in HA samples, positive
in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples.
Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green
solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges:
interactions positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions
positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions negative in
LA samples, negative and significant in HA samples. Grey edges: Non significant interactions, part of KEGG

network data.

4.1.2.4 Fatty acid metabolism

Fatty acid metabolism was also one of the enriched pathways in the analysis results (Table 4.3).
The β oxidation (catabolic) part of fatty acid metabolism breaks down fatty acids to acetyl-
CoA which then enters TCA cycle and electron transport chain metabolic pathways for energy
generation.

A total of 23 interactions in fatty acid metabolism were significant in pathway enrichment analysis
(Figure 4.7). Out of the 23 interactions, 20 interactions were positive in HA samples and 3
interactions were positive in LA samples (Figure 4.7), possibly indicating an active fatty acid
metabolic pathway in HA animals. Eight out of the twenty interactions in HA samples had
the gene HADHA as one of the interaction partners (Figure 4.7). The gene HADHA codes
for mitochondrial trifunctional protein alpha subunit, an enzyme necessary for the final steps
mitochondrial beta oxidation of fatty acids (Cheng and Bostwick, 2011). This suggests that the
fatty acid oxidation might be highly active in HA samples, oxidizing fatty acids to acetyl-CoA.
Acetyl-CoA is also the starting molecule for de novo synthesis of cholesterol. The results also show
that the interactions between acetyl-CoA acetyltransferase genes and HADHA were also positive in
HA animals. These interactions were: ACAT1 – HADHA interaction and LOC100152303 (ACAT2)
– HADHA interaction (Figure 4.7). Enzymes encoded by the genes ACAT1 and LOC100152303
(ACAT2) belongs to the thiolase family of enzymes and the major function of these enzymes is
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catalyzing the synthesis of acetoacetyl-CoA from two units of acetyl-CoA (Frey and Hegeman,
2007). Acetoacetyl-CoA generated as a result of this reaction enters mevalonate pathway leading
to cholesterol synthesis (Mander and Liu, 2010). It has been shown that cholesterol used in
steroidogenesis could be derived from cholesteryl ester mobilization, selective uptake of cholesteryl
esters or de novo synthesis of cholesterol in cytosol (Hu et al., 2010). In this regard, based
on the results described above, it could be hypothesized that acetoacetyl-CoA derived from an
active fatty acid metabolic pathway in HA animals could have enhanced the de novo synthesis
of cholesterol in testis tissues of HA animals. Cholesterol synthesized in this manner might be
also entering steroidogenic and androstenone biosynthetic pathways finally resulting in higher
amounts of androgens in these animals.
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Figure 4.7: Fatty acid metabolism. Legend : Red solid edges: interactions positive and significant in HA samples,
negative in LA samples. Red dashed edges: interactions positive and significant in HA samples, positive in LA
samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA samples. Orange
dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid edges:
interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges: interactions
positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions positive in LA
samples, negative and significant in HA samples. Light green dashed edges: interactions negative in LA samples,
negative and significant in HA samples. Grey edges: Non significant interactions, part of KEGG network data.

4.1.2.5 Cyclic AMP – PKA/PKC signaling

In addition to the interactions in significant pathways, additional interactions which could be
relevant in maintaining steroidogenesis in porcine testes tissues were also found in the results.
A number of these identified interactions were part of cAMP (cyclic AMP)/PKA signaling,
although this pathway was neither represented in the KEGG pathway interaction data used
in this analysis nor enriched for significant interactions. Cyclic AMP/PKA signaling pathway
is one of the primary signaling cascades maintaining and regulating steroidogenesis (Stocco,
2005). Cyclic-AMP/PKA signaling pathway activation of steroidogenesis is initiated by trophic
hormones, which activate G-proteins. G-proteins stimulate adenylate cyclases, thus increasing the
levels of intracellular cAMP which further activates protein kinase A (PRKACA). An activated
protein kinase A phosphorylates transcription factors such as steroidogenic factor 1 (NR5A1),
GATA binding protein 4 (GATA4), cAMP response-element binding protein (CREB) and cAMP
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response element modulator (CREM) which activate the genes involved in steroidogenesis (Stocco,
2005).

It was found that the interaction between the genes ADCY9 and PRKCA was significant and
positive in HA samples (Figure 4.8). The gene ADCY9 codes for the enzyme adenylate cyclase
type 9, which catalyzes the conversion of ATP to cyclic AMP and diphosphate (Hacker et al., 1998).
PRKACA, as mentioned above, upon cAMP activation phosphorylates certain transcription
factors which activates the genes involved in steroidogenesis. The interaction between the genes
PRKCA and CREB3L2 was also found to be significant and positive in HA animals. CREB3L2
is described as cAMP responsive element binding protein (CREB) 3-like 2, but whether the
transcription factor encoded by this gene activates the genes involved in steroidogenesis is unknown
as of now.

Interestingly, it was also found that two interactions involving adenylate cylases class of genes and
guanine nucleotide binding protein class of genes were positive in LA animals. These interactions
were: ADCY9 - GNAI2 interaction and LOC100739348 (ADCY8) - GNAI3 interaction (Figure 4.8).
Contrary to the interactions observed in HA animals, the interactions found in LA animals were
inhibitory. One of the functions of guanine nucleotide binding protein family is the inhibition
of adenylate cyclases (Näsman et al., 2002), indicating that GNAI gene products were possibly
inhibiting the action of ADCY gene products in LA animals. Another LA positive interaction
in these results was the interaction between the genes ADCY2 and PRKCA. ADCY2, similar
to other adenylate cyclases, catalyzes the synthesis of cAMP. Gene PRKCA codes for the alpha
subunit of the protein protein kinase C (PKC). In a similar manner to PKA, PKC has also been
shown to be activated by trophic hormones and stimulates adenylate cyclase activity indicating
that in addition to PKA, PKC also influences gonadal steroidogenesis (Manna et al., 2009; Stocco,
2005). But studies done over the years have demonstrated that PRKCA (PKC) is a weak inducer
of steroidogenesis and that progesterone synthesis in rat Leydig cells is only moderately elevated
by PKC activation (Jo et al., 2005; Manna et al., 2007; Manna and Stocco, 2005). In contrast,
Fleury et al. (2004) showed that the mutation of PRKACA (PKA) phosphorylation sites in StAR
protein reduced steroidogenesis by 70-80%. These published evidences points out PRKACA
(PKA) as a major steroidogenesis activator and PRKCA (PKC) as an auxiliary activator of
steroidogenesis. By piecing together the interaction results at the genomic level and information
from published articles, it could be speculated that in HA animals an active cAMP/PKA signaling
results in higher steroidogenic activity. But in case of LA animals, although cAMP/PKC based
signaling of steroidogenesis was active, the inhibition of adenylate cylases by guanine nucleotide
binding proteins might be slowing down the steroid hormone synthesis machinery and thus could
be affecting androstenone synthesis.
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Figure 4.8: Cyclic AMP – PKA/PKC signaling. Legend : Red solid edges: interactions positive and significant in
HA samples, negative in LA samples. Red dashed edges: interactions positive and significant in HA samples,

positive in LA samples. Orange solid edges: interactions positive in HA samples, negative and significant in LA
samples. Orange dashed edges: interactions negative in HA samples, negative and significant in LA samples. Dark
green solid edges: interactions positive and significant in LA samples, negative in HA samples. Dark green dashed

edges: interactions positive and significant in LA samples, positive in HA samples. Light green solid edges:
interactions positive in LA samples, negative and significant in HA samples. Light green dashed edges:

interactions negative in LA samples, negative and significant in HA samples. Grey edges: Non significant
interactions, part of KEGG network data.

Based on the assumptions and speculations discussed above, a hypothetical metabolic pathway
was sketched to illustrate the different mechanisms governing the biosynthesis of testosterone,
androstenenone and related steroids in the sample HA and LA organisms (Figure 4.9). As
represented in Figure 4.9 the proposed hypothesize is as follows: the combined action of cAMP-
PKA/PKC signaling, glutathione metabolism, sphingolipid metabolism and fatty acid metabolism
was affecting steroid hormone synthesis and therefore androstenone biosynthesis in both HA and
LA animals. In HA samples, one of the factors contributing to high androstenone could be that
steroidogenesis and hence androstenone synthesis in these animals were activated by trophic
hormone signaling through cAMP-PKA (PRKACA) signaling. Additionally, these pathways
could have been further boosted by anti lipid peroxidation activity by members of glutathione
metabolism pathway and de novo synthesis of cholesterol as a result of an active fatty acid
metabolic pathway. In case of LA samples, it could be assumed that a weak cAMP-PKC
(PRKCA) based signaling of steroidogenesis activation and synthesis of ceramide by sphingolipid
metabolic pathway, which inhibits steroidogenesis could be the reason for a low steroidogenesis
and hence low androsteonone synthesis. Since pig and humans share similarities at the genetic,
anatomic and physiological level, it can be expected that the hypothetical pathway depicted in
Figure 4.9 share a great deal of phylogenetic similarity with the well characterized metabolic
interactions in human. In addition to the pathways discussed here, from Table 4.3 it can be seen
that a number of other pathways were also enriched. As discussed previously, published literature
suggest that these pathways might be activated by steroid hormones and may not have a direct
role in maintaining or regulating steroid hormone synthesis. Figure 4.10 depicts the interaction
of a number of these over represented pathways (Table 4.3) with steroid hormone biosynthesis
pathway. Figure 4.11 gives a detailed illustration of the proposed hypothetical mechanism of
androstenone regulation along with significant interactions in each of the metabolic pathways.
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Figure 4.9: Hypothetical pathway showing the different mechanisms governing steroid biosynthesis in HA and LA
animals. Legend : Circular nodes: genes, hexagonal nodes: enriched pathways, diamond nodes: pathways that
might be involved in steroidogenesis, but not found in results, rectangular nodes: metabolites from pathways.
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Figure 4.10: Interactions between steroid hormone biosynthesis pathway and enriched pathways. Legend : Grey
hexagonal nodes: pathways that were enriched for significant interactions. Blue diamond nodes: pathways that
might be involved in steroidogenesis, but not found in results. Purple diamond node: external stimulus in the
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Figure 4.11: Proposed mechanism of androstenone biosynthesis regulation in HA and LA porcine samples.
Legend : Interactions inside each pathway shows the significant interactions from analysis with genes as nodes and

significant KEGG pathway interactions as edges. Blue diamond nodes: pathways that might be involved in
steroidogenesis, but not found in results. Cyan colored nodes: chemical compound or molecules synthesized in
pathways. Purple node: external stimulus in the form of hormone signaling. Grey solid edges: hypothetical
interactions based on information from literature. Very light blue circular nodes: genes involved in significant
interactions. Red dashed edges: interactions positive and significant in HA samples, positive in LA samples.

Orange solid edges: interactions positive in HA samples, negative and significant in LA samples. Orange dashed
edges: interactions negative in HA samples, negative and significant in LA samples. Dark green solid edges:

interactions positive and significant in LA samples, negative in HA samples. Dark green dashed edges:
interactions positive and significant in LA samples, positive in HA samples. Light green solid edges: interactions
positive in LA samples, negative and significant in HA samples. Light green dashed edges: interactions negative in

LA samples, negative and significant in HA samples.

4.1.3 Gene polymorphism analysis (Variant calling)

Polymorphism analysis revealed a total of 235,738 polymorphisms in LA samples and a total
of 259,991 polymorphisms in HA samples. After filtering for SNP quality score, RMS Phred
score and read depth, only the polymorphisms mapped to the exonic positions of 718 interactant
genes were retained for further analysis. This filtered list of mutations was further trimmed down
to include only those mutations on genes involved in significant interactions in the pathways
discussed in previous sections. In this final list of polymorphisms, 11 polymorphisms were specific
for LA samples, 8 polymorphisms were specific for HA samples and 50 polymorphisms were present
in both LA and HA samples. The final list of polymorphisms along with sample set specific RMS
quality score and read depth is given in Table 4.4. The results in Table 4.4 indicate that genes
HADHA, ATP5F1, DHCR24, GSTA2, CYP51, DEGS1 and ACAA1 are highly polymorphic.
Since the polymorphisms in genes ATP5F1, GSTA2 and DEGS1 were identified in both sample
sets, the possible protein changes due to these polymorphisms might not have contributed to the
difference in androstenone synthesis in both sample sets. Appendix Table 3 gives read counts for
each polymorphism per sample.
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Table 4.4: Polymorphisms in genes involved in significant interactions in selected pathways

Gene name Chr POS REF ALT LA
MQ

LA
DP

HA
MQ

HA
DP

Pheno
tye

Effect

LOC100152303 1
9399735 T C 50 163 NIL NIL LA UTR 3’
9399968 G A 50 221 NIL NIL LA Synonymous

LOC100152988 1 175812592 ATTTTT ATTTTTT,
ATTTTTTT

50 112 50 138 LA,HA UTR 3’

GPX4 2 77676073 CAAAT CAAAAAA
AAAAAAA
AAAAAT

50 155 NIL NIL LA UTR 3’

LOC100736975 3 100117148 A T 50 326 50 341 LA,HA new start
codon

HADHA 3

119782443 A G 49 400 49 362 LA,HA Synonymous
119782506 T C 49 307 49 266

LA,HA UTR 3’
119782546 A G 48 349 47 304
119782551 T C 48 345 47 306
119782751 A G 49 468 49 444
119782780 T C 49 458 49 456

MGST3 4 92725756 T C 49 537 49 445 LA,HA Synonymous

ATP5F1 4

119078700 A T 49 591 48 567

LA,HA UTR 3’

119078761 C G 48 827 48 818
119078830 G T 46 826 46 820
119078856 C A 47 821 46 827
119078862 ATTTTT

TTTTT
ATTTT
TTTT

47 822 47 832

119078864 TTTTTTTT TTTTTTT 47 812 47 824
119078865 TTTTTTT TTTTTT 47 818 47 826

LOC100514231 4
120827636 A T NIL NIL 49 812 HA UTR 3’
120827710 A G 50 914 48 915 LA,HA Synonymous

DHCR24 6

145581907 G A NIL NIL 49 111 HA UTR 3’
145582020 T C 50 195 50 223

LA,HA UTR 3’

145582255 C T 48 258 48 250
145582258 A G 48 253 48 249
145582458 A T 49 297 49 308
145582665 A G 48 266 49 310
145582785 ATTTTTTT ATTTTTT NIL NIL 50 278 HA UTR 3’

CPT2 6 146702408 T C 50 94 NIL NIL LA UTR 3’

LOC100517534 6
147870177 T G 49 213 50 208

LA,HA UTR 3’
147870526 G A 48 168 49 198

GALC 7

116349042 A C NIL NIL 50 270
HA UTR 3’

116349177 A G NIL NIL 49 238
116349201 T C 49 177 NIL NIL LA UTR 3’
116349671 A G 48 143 49 180 LA,HA Synonymous

GSTA2 7

134289767 C T 48 556 48 339

LA,HA UTR 3’
134289825 A G 49 556 49 349
134289849 C T 49 539 49 332
134289905 T G 44 521 47 360
134289913 G A 43 548 46 392 LA,HA Synonymous
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Table 4.4: Polymorphisms in genes involved in significant interactions in selected pathways

Gene name Chr POS REF ALT LA
MQ

LA
DP

HA
MQ

HA
DP

Pheno
type

Effect

GSTA4 7
134380269 A G 47 666 48 507

LA,HA UTR 3’134380285 T C 47 676 48 512
134380456 A G 48 688 48 537

HADH 8
122213097 G A NIL NIL 50 147 HA UTR 3’
122213121 G T 49 228 50 157 LA,HA UTR 3’

HADH 8
130466631 G A 50 194 NIL NIL

LA UTR 3’
130466820 A G 50 256 NIL NIL

CYP51 9

78792947 C T 49 211 49 235 LA,HA

UTR 3’

78792965 G A 49 272 NIL NIL LA
78792967 C A NIL NIL 49 314 HA
78793035 G A 49 404 49 490

LA,HA78793339 GTATAT GTAT 50 456 50 570
78793638 A G 49 711 50 771

DEGS1 10

15053002 A G 49 192 48 187

LA,HA UTR 3’
15053060 G A 49 192 49 193
15053131 T C 49 206 48 199
15053143 G A 49 200 48 196

ACAA1 13

25168976 G A 49 169 49 144
LA,HA UTR 3’25169066 G A 48 127 49 131

25169119 A G 48 143 48 125
25169195 G A 49 125 NIL NIL LA

Synonymous
25169225 G A 49 124 49 118 LA,HA

ALDH2 14 42379317 T C NIL NIL 49 190 HA Non synony-
mous

GSTO1 14 125185652 G A 49 148 48 173 LA,HA Synonymous
ACADSB 14 144190025 A G 50 123 NIL NIL LA UTR 3’
ACSL3 15 138712086 G A 50 209 50 246 LA,HA Synonymous

GPX3 16
78290583 C T 48 207 48 207

LA,HA UTR 3’
78290858 A G 48 164 48 171

GSS 17 43511491 C T 50 78 NIL NIL LA UTR 3’

Polymorphism position and function prediction results from SnpEff have shown that a large
number (57) of these polymorphisms are on 3’ UTR (un-translated region) of the exon and might
not have contributed to any change in the protein encoded. The prediction also showed that 10
polymorphisms in the selected genes were synonymous (Table 4.4). The prediction also indicate
that the polymorphism g.100117148A>T on gene LOC100736975 (ATP6V1E2) on chromosome 3
resulted in a new start codon and that the only non synonymous SNP in this result was an HA
specific SNP: g.42379317T>C on ALDH2 gene on chromosome 14. Deficiency in mitochondrial
ALDH2 was shown to be one of the major reasons for oxidative stress in murine cell lines (Ohsawa
et al., 2003). These results indicate that these polymorphisms on genes involved in significant
interactions might not have contributed to the androstenone phenotype.
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4.2 Identification of gene co-expression clusters in liver tissues
from multiple porcine populations with high and low backfat
androstenone phenotype

This section describes and discusses the results from the data driven analysis performed to identify
the common signature gene expression clusters related to androstenone metabolism in three
different pig populations with comparable androstenone phenotypes. In this experiment, a total
of 17 clusters from LA co-expression network and 12 clusters from HA co-expression network were
found be significant with more than 10 nodes per cluster. Table 4.5 shows the number of genes,
significance scores and average correlation coefficients of nodes in these clusters across three
datasets. The maximum and minimum number of nodes (genes) in LA co-expression clusters
were 478 and 20 respectively where as the maximum and minimum number of nodes in HA
co-expression clusters were 616 and 11 respectively (Table 4.5).

Table 4.5: Significant clusters in LA and HA co-expression networks.

Cluster
Id

#Genes Significance
(p-value)

DuF2
cor. coeff.
(mean± sd)

Duroc
cor. coeff.
(mean± sd)

Landrace
cor. coeff.
(mean± sd)

LA 0 478 0.00216 0.758± 0.138 0.850± 0.115 0.625± 0.090

LA 1 316 0.00267 0.742± 0.135 0.832± 0.122 0.622± 0.091

LA 2 134 0.0076 0.776± 0.139 0.672± 0.100 0.596± 0.075

LA 3 116 0.02248 0.741± 0.133 0.849± 0.111 0.630± 0.089

LA 4 96 0.04911 0.773± 0.139 0.666± 0.101 0.600± 0.074

LA 6 86 0.01046 0.793± 0.149 0.714± 0.108 0.600± 0.070

LA 7 87 0.0203 0.736± 0.143 0.724± 0.115 0.582± 0.063

LA 8 72 0.0379 0.765± 0.134 0.707± 0.132 0.587± 0.069

LA 9 68 0.01526 0.765± 0.149 0.610± 0.081 0.605± 0.084

LA 11 61 0.01415 0.729± 0.141 0.663± 0.126 0.662± 0.096

LA 12 40 0.04167 0.739± 0.125 0.622± 0.085 0.598± 0.074

LA 14 39 0.00594 0.736± 0.139 0.700± 0.116 0.610± 0.076

LA 15 30 0.04776 0.768± 0.138 0.641± 0.104 0.592± 0.065

LA 17 21 0.01309 0.748± 0.139 0.676± 0.131 0.612± 0.077

LA 18 28 0.00258 0.749± 0.134 0.661± 0.117 0.591± 0.075

LA 19 20 0.00408 0.726± 0.122 0.679± 0.100 0.622± 0.080

LA 21 21 0.01807 0.758± 0.140 0.746± 0.107 0.620± 0.084

HA 0 616 0.03963 0.780± 0.139 0.704± 0.115 0.663± 0.102

HA 1 75 0.0166 0.812± 0.132 0.598± 0.077 0.668± 0.106

HA 3 23 0.0023 0.815± 0.128 0.612± 0.081 0.679± 0.109

HA 4 18 0.00095 0.826± 0.117 0.597± 0.065 0.622± 0.079

HA 10 207 0.00203 0.770± 0.137 0.741± 0.116 0.681± 0.114

HA 11 22 0.01025 0.773± 0.125 0.775± 0.098 0.656± 0.103

HA 12 13 0.01196 0.776± 0.138 0.747± 0.105 0.660± 0.090

HA 14 75 0.00429 0.750± 0.141 0.611± 0.086 0.685± 0.100

HA 17 40 0.01279 0.821± 0.133 0.637± 0.088 0.619± 0.085

HA 18 25 0.02743 0.770± 0.136 0.776± 0.094 0.735± 0.101

HA 19 25 0.02149 0.767± 0.128 0.604± 0.080 0.680± 0.106

HA 22 11 0.04384 0.744± 0.136 0.677± 0.121 0.689± 0.105
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4.2.1 Enrichment analysis and selection of signature co-expression clusters

7 LA co-expression clusters and 5 HA co-expression clusters were enriched for GO biological
processes terms, where as 5 LA co-expression clusters and 3 HA co-expression clusters were
enriched for KEGG metabolic pathways. Table 4.6 gives the number of GO terms and KEGG
pathways enriched per cluster. Appendix Tables 4 and 5 contains GO terms enriched for LA
and HA clusters, Appendix Tables 6 and 7 contains KEGG pathways enriched for LA and HA
clusters.

Table 4.6: Number of GO terms and KEGG pathways enriched per cluster.

Cluster Id #GOenriched
terms

#KEGGenriched
pathways

LA 0 19 –
LA 1 10 –
LA 2 14 11
LA 3 5 3
LA 4 – 1
LA 6 8 1
LA 7 4 –
LA 8 5 –
LA 9 – 2

HA 0 50 5
HA 1 7 6
HA 3 3 –
HA 10 8 –
HA 17 3 2

Although several LA and HA clusters were enriched for GO processes and KEGG pathways, LA
cluster 2 was selected for a detailed analysis based on the enrichment results. This cluster was
enriched for GO processes such as oxidation-reduction process, xenobiotic metabolic process,
triglyceride metabolic process, lipid metabolic process, cholesterol metabolic process, response
to drug, response to hormone stimulus (Table 4.7) as well as KEGG pathways such as PPAR
signaling pathway, peroxisome, retinol metabolism, drug metabolism - other enzymes, drug
metabolism - cytochrome P450 and metabolism of xenobiotics by cytochrome P450 (Table 4.8).
The relationship between various GO biological process terms enriched for LA cluster 2 are
depicted in Figure 4.12. It was previously established that steroid metabolism is closely linked to
metabolism of drugs/xenobiotics and that the metabolism of steroids, steroid hormones, drugs
and other xenobiotics are mediated by phase I and phase II metabolic pathways (Handschin and
Meyer, 2003; Schänzer, 1996; Xie et al., 2003; Xu et al., 2005). One of the GO biological processes
enriched in LA cluster 2 results is the oxidation reduction process and it was already found that
oxidation and reduction metabolic processes constitute phase I metabolism (Gibson and Skett,
2001). Several genes involved in xenobiotic metabolism are also involved in the metabolism of
androgens (Xie, 2008) and GO biological process “xenobiotic metabolic processes” was enriched
for LA cluster 2 (Table 4.7). In GO and KEGG enrichment results GO term aromatic compound
catabolic process and KEGG pathways drug metabolism - cytochrome P450 and metabolism
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of xenobiotics by cytochrome P450 were enriched (Table 4.7 and Table 4.8). Cytochrome P450
related enzyme pathways were identified to be involved in metabolism of aromatic compounds,
drugs and steroid hormones (de Montellano, 1995; Foye et al., 2008). Since LA cluster 2 GO and
KEGG enrichments strongly points to the involvement of the member genes in phase I and II
metabolism, LA cluster 2 was chosen for further detailed analysis. A detailed description of the
functions of genes in LA cluster 2 is given in the next section.

Table 4.7: GO biological process terms enriched in LA cluster 2

GO.ID Term #Enriched
genes

Enrichment
p-value

GO:0055114 oxidation-reduction process 42 9.6E-011
GO:0051289 protein homotetramerization 6 0.0000016
GO:0006805 xenobiotic metabolic process 8 0.000012
GO:0006641 triglyceride metabolic process 5 0.002
GO:0006629 lipid metabolic process 33 0.00231
GO:0009058 biosynthetic process 40 0.01118
GO:0048869 cellular developmental process 11 0.0115
GO:0006810 transport 34 0.01378
GO:0008203 cholesterol metabolic process 7 0.01502
GO:0042493 response to drug 8 0.01503
GO:0046395 carboxylic acid catabolic process 11 0.02834
GO:0019439 aromatic compound catabolic pro-

cess
14 0.02987

GO:0006869 lipid transport 5 0.03686
GO:0009725 response to hormone stimulus 7 0.04158

Table 4.8: KEGG pathways enriched in LA cluster 2

KEGG.ID Pathway #Enriched
genes

Enrichment
p-value

ssc00982 Drug metabolism - cytochrome P450 9 0.00000325
ssc00071 Fatty acid degradation 8 0.00001695
ssc00980 Metabolism of xenobiotics by cy-

tochrome P450
7 0.00019518

ssc00830 Retinol metabolism 7 0.00026192
ssc00053 Ascorbate and aldarate metabolism 5 0.00033240
ssc05204 Chemical carcinogenesis 7 0.00082319
ssc00983 Drug metabolism - other enzymes 5 0.00107901
ssc04146 Peroxisome 8 0.00109469
ssc00280 Valine, leucine and isoleucine degra-

dation
6 0.00149421

ssc00380 Tryptophan metabolism 5 0.00343914
ssc03320 PPAR signaling pathway 6 0.00990966
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Figure 4.12: Directed acyclic graph showing the relationship between enriched LA cluster 2 enriched GO terms.
Legend : Green nodes: GO biological process terms enriched in LA cluster 2. The intensity of the node color

directly corresponds to the significance of the enriched term. White nodes: part of GO biological process ontology,
not enriched in LA cluster 2 results. Black edges: represent is_a relationship in GO. Blue edges: represent

part_of relationship.

4.2.2 Functional roles of LA cluster 2 genes

LA cluster 2 was comprised of 134 nodes (genes) and 1,121 edges (Figure 4.13). Node degree
calculations done on the cluster indicated that genes such as PRDX3, LOC100622308 (SCP2),
LOC100516628 (UGT2B18-like), PON1 and OTC were the top ranking highly connected nodes
in the cluster. Some of the major families of genes in this cluster were: the UGT gene fam-
ily (UGT2B17, LOC100516628 (UGT2B18-like), LOC100738495 (UGT2B31-like)), HSD/SDR
gene family (HSD17B4, HSD17B10, HSD17B13, HSDL2), SLC gene family (LOC100737875
(SLC22A10), SLC25A4), ALDH gene family (ALDH3A2, ALDH5A1) and USP gene family
(Usp9x, USP28) (Figure 4.13). Literature references show that UGT, HSD and ALDH gene
families are associated with steroids and steroid hormone metabolism (Jin and Penning, 2001;
Vasiliou and Nebert, 2005; Yoshida et al., 1998).

Three members of the UGT gene family, UGT2B17, LOC100516628 (UGT2B18-like) and
LOC100738495 (UGT2B31-like) were co-expressed in LA cluster 2. Members of the UGT
gene family are involved in the metabolism of steroids, biogenic amines, fat soluble vitamins,
drugs and xenobiotics (Mackenzie et al., 2005). UGT2B17 was found to be important for hepatic
detoxification and involved in androgen metabolism (Jin et al., 2009; Turgeon, 2003). It was shown
that UGT2B18 was predominantly active on C19 steroids with a hydroxyl group at the 3α position
(Beaulieu et al., 1998). Kojima and Degawa (2013) demonstrated that UGT2B31 expression was
higher in male pigs when compared to female pigs and that testosterone treatment of castrated
boars increased UGT2B31 expression (Kojima and Degawa, 2013). Canine UGT2B31 catalyzed
the glucuronidation of compounds such as steriods, opoids, apliphatic alcohols and phenols (Soars
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et al., 2003). Considering that the literatures cited above points to steroid metabolic roles of
these genes and that these genes were co-expressed in all the three LA datasets, it could be
possible that the UGT family genes mentioned above were involved in androgen/androstenone
metabolism in all the three datasets (populations).
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Figure 4.13: LA cluster 2. Figure showing the genes co-expressed in LA cluster 2. Legend : light blue nodes
indicate genes and green edges indicate node co-expression (cor ≥ +0.50 in all three populations).

In addition to UGT gene family, 4 members of HSD gene family were also co-expressed in
these results. These genes are: HSD17B4, HSD17B10, HSD17B13 and HSDL2. Among these
genes, three (HSD17B4, HSD17B10, HSD17B13) are members of 17β-HSD gene family. The
reduction reactions catalyzed by 17β-HSDs are necessary for the formation of active androgens
where as the oxidative reactions inactivates potent sex steriods (Chen et al., 2002). The enzyme
encoded by gene HSD17B4 functions as a steroid inactivating enzyme and is also involved in
the beta oxidation of fatty acids (de Launoit and Adamski, 1999). Additionally, it was also
demonstrated that the conversion of ∆ 5-androstene-3-17-diol to dehydro-epiandrosterone (DHEA)
was inactivated by HSD17B4 (Prough et al., 1994). HSD17B10 was shown to be expressed in
human liver, gonads, localized to mitochondria and associated with phase I metabolic pathway.
The mitochondrial ability to modulate intracellular levels of active sex steroids stem from this
localization of HSD17B10 (He et al., 2001). HSD17B13 is expressed in liver across a number
of mammalian species. While the functions of HSD17B4 and HSD17B10 could be discussed
in detail, it was not possible to find published evidences related to HDS17B13. But, in the
light of evidences from SDR (HSD) gene family, it could be hypothesized that HSD17B13 is
also involved in the metabolism of sex steroids. Another short chain reductase (SDR/HSD)
family member HSDL2 was found to be involved in cholesterol metabolism and homeostasis
(Skogsberg et al., 2008). In case of SLC family genes in LA cluster 2, although it is known that
LOC100737875 (SLC22A10) gene product transports sulfate conjugates of steroids, estrone sulfate
and dehydroepiandrosterone sulfate (DHEAS) with high affinity (Emami Riedmaier et al., 2012)
function of SLC25A4 with regard to androgen or sterid metabolism or transport is unknown as of
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now. In case of ALDH gene family, although ALDH3A2 is involved in phase I metabolic pathway,
known to catalyze the oxidation of long-chain aliphatic aldehydes to fatty acid and ALDH5A1
is involved in γ aminobutyric degradation (Muzio et al., 2012), evidences to link these genes to
hepatic androgen/androstenone metabolism were not found.

Another LA cluster 2 member, AKR1C1 is an NADPH dependent ketosteroid reductase. The
product of this gene converts progesterone to its inactive form 20-α-dihydroxyprogesterone

(Zhang et al., 2000). In androgen metabolism, the conversion of dihydrotestosterone (DHT) to
5α-androstane-3β, 17β-diol is mainly catalyzed by AKR1C1 gene product (Steckelbroeck et al.,
2004). It was also shown that AKR1C1 activity can be induced by phase II enzyme inducers
(Lou et al., 2006), suggesting a potential role of this gene in phase II metabolic processes. FMO5
was another co-expressed gene in LA cluster 2. The enzyme encoded by this gene is NADPH
dependent, upregulated by progesterone and catalyzes the oxidation of drugs, pesticides and
xenobiotics (Brooks and Harris, 2006). It was also found that FMO5 is expressed in human liver
cells and ≥ 50% of all FMO transcripts in human liver cells are from FMO5 (der Zee and Daly,
2012). STARD4, an LA cluster 2 member is widely expressed in liver and is demonstrated to be
an important effector of lipid distribution in body (Riegelhaupt et al., 2010). A functional study
postulated that STARD4 might reduce steroid hormone production during murine development
(Rodriguez-Agudo et al., 2008) and yet another study (Rodriguez-Agudo et al., 2011) found that
STARD4 functions in a rate limiting step in cholesterol ester formation. STARD4 increases
intracellular cholesteryl ester formation and is a major component of cholesterol homeostasis
regulating mechanism (Mesmin et al., 2011). ADH1C was another gene co-expressed in LA cluster
2. This gene is a member of the alcohol dehyrogenase family which metabolize substrates such
as ethanol, retinol, hydroxysteroids and lipid peroxidation products. A study done on human
ADH1C allele 2 found that this allele (ADH1C*2) had measurable activity on steroidogenic com-
pounds such as 5β-androstan-17β-ol-3-one, 5β-androstan-3β-ol-17-one, 5β-pregnan-3β-ol-20-one

and 5β-pregnan-3, 20-dione (Plapp and Berst, 2003).

PGRMC1, a progesterone steroid receptor is an LA cluster 2 member predominantly expressed
in liver and kidney. This gene was found to be involved in sterol metabolism/homeostasis and
cell survival (Lösel et al., 2008). DBI, an LA cluster 2 member gene boost steroid synthesis by
stimulating delivery of cholesterol to inner mitochondrial membranes (Venturini et al., 1998).
The functional roles of DBI include supporting energy metabolism, transcription, membrane
production and steroidogenesis (Rasmussen et al., 1993). CRYZ gene, another LA cluster 2 member
is associated with lipid, fatty acid and steroid metabolism (Taulan et al., 2004). LOC100622308
(SCP2) gene encodes sterol carrying protein 2 and is also an LA cluster 2 member. This gene is
found to be involved in hepatic cholesterol metabolism, biliary lipid secretion and intracellular
cholesterol distribution (Stanley et al., 2006) and it is suggested that SCP2 might be involved in
regulating steroidogenesis (Fuchs et al., 2001). Yet another LA cluster 2 member gene in this
analysis was LOC100523701(aldehyde oxidase like). The richest source of this gene product is
liver and is found in a number of mammals. Moreover, aldehyde oxidases are involved in phase
I metabolism of a number of compounds and probably functions along with the microsomal
cytochrome P450 system (Garattini et al., 2009). FHL2, another LA cluster 2 co-expressed gene is
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an androgen responsive gene and a co-activator of androgen receptor (AR) (Heemers et al., 2007;
Müller et al., 2000). Further research also found that FHL2 is involved in steroid hormone related
pathways and interacts with endoplasmic reticulum (ER) in the presence of 17β-estradiol (Kleiber
et al., 2007). An LA cluster 2 member gene, OCT1 interacts with AR and can interact with
HNF1 to modulate its capacity to upregulate UGT2B expression in liver (Xie, 2008). Since three
UGT2B genes (UGT2B17, LOC100516628 (UGT2B18-like), LOC100738495 (UGT2B31-like)) and
OCT1 are found in the same cluster and co-expressed in three different datasets (populations), the
potential action of OCT1 on UGT2B genes and their role in androgen/androstenone metabolism
could be further investigated. Another LA cluster 2 coexpressed gene was PON1. PON1 is
synthesized in liver and is involved in the biotransformation of various xenobiotics as well as
protection against lipid peroxidation (Draganov et al., 2005). Table 4.9 gives the summary of
functions for a number of other genes in LA cluster 2. The next part of this section describes and
discusses the results from cluster similarity assessments.

Table 4.9: Table containing function summaries for genes in LA cluster 2.

Gene name Functions

LOC100517137
(ALDH1A1)

involved in retinol metabolism (Zheng et al., 1993), Androgen receptor might be in involved
in regulating levels of ALDH1A1 (Yoshida et al., 1998), involved in non-catalytic interactions
with androgen, thyroid hormone, cholesterol and drug compounds including flavopiridol,
daunorubicin and quinolone (Marchitti et al., 2008).

IDI1 catalyzes the conversion of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate
(DMAPP) an intermediate product in Mevalonate pathway resulting in the formation of
cholesterols and sterols (Zheng et al., 2007).

ANGPTL3 expressed specifically in liver (Conklin et al., 1999), in mice overexpression of ANGPTL3
lead to an increased level of circulating plasma lipids and a mutation in the gene is a factor
for the low levels of plasma triglycerides in a strain of obese mice (Koishi et al., 2002).

ABCB11 integral part of plasma membrane and product of this gene is a bile acid transporter
(Strautnieks et al., 1998), involved in Phase III detoxification system after phase I and phase
II metabolism (Sies and Packer, 2005).

ETFA catalyzes initial step of mitochondrial fatty acid β oxidation (Bartlett and Eaton, 2004).

SEPP1 expressed in liver (Burk and Hill, 2005) androgen responsive gene and shown to have gender
specific expression (Takahashi et al., 2006).

GSTO1 proposed to be involved in sterol glucoronidation in liver (Moe et al., 2008), involved in
xenobiotic metabolism (Yu et al., 2003).

SOD1 decreases cholesterol biosynthesis processes and HMG-CoA reductase activity in rate hepa-
tocytes and human fibroblast cells (De Felice et al., 2004), hepatic concentrations of total
cholesterol, triglyceride and non-esterified fatty acids were were significantly increased in
SOD1-/- mice (De Felice et al., 2004).

MGST3 down regulated by testosterone (Bagchi et al., 2011), involved in drug metabolism and
disposition in liver and kidney (Choudhuri et al., 2003; Lu et al., 2010).

ACAT1 overexpression of ACAT1 stimulates assembly and release of VLDL from liver cells (Liang
et al., 2004), involved in esterification process in cholesterol metabolism (An et al., 2006).

GLYAT catalyzes the conjugation of glycine with acetyl-coA substrates and is involved in the detoxifi-
cation of endogenous and xenobiotic acyl CoA’s (Mawal and Qureshi, 1994), differentially
expressed in Duroc liver tissues with divergent androstenone content (Moe et al., 2008).
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Table 4.9: Table containing function summaries for genes in LA cluster 2 (continued...)

Gene name Functions

SEC14L3
(hTAP2)

expressed in human liver, involved in lipid transportation, regulation of lipid dependent
events and cholesterol biosynthesis (Zingg et al., 2008).

FABP1 promote cellular uptake, transport and metabolism of fatty acids and peroxisomal oxidation
of long chain fatty acids (Antonenkov et al., 2006), can bind to a variety of ligands including
fatty-acyl CoAs, lysophospholipids, bile acids and drugs (Hagan et al., 2002; Myszka and
Swenson, 1991).

ACOX1 catalyzes the rate limit limiting step in peroxisomal β oxidation pathway (Fan et al., 1996),
human ACOX1 isoforms are involved in cholesterol homeostasis (Vluggens et al., 2010).

ACOX2 involved in the oxidation of long chain straight fatty acids and bile acid intermediates
(Baumgart et al., 1996).

HADH overexpression of HADH resulted in higher rates of mitochondrial β oxidation and HADH is
also associated with down regulating insulin release (Martens et al., 2007), shows increased
activity in response to drugs and hormones (Furuhashi et al., 2002; Seiva et al., 2008).

PRDX3 majority of PRDX3 is localized to mitochondria, but PRDX3 located in cell membranes is
regulated by androgens (Whitaker et al., 2013), PRDX3 is a c-Myc target gene essential for
maintaining mitochondrial functions (Wonsey et al., 2002), possibly involved in mitochondrial
response to hydrogen peroxide and reactive oxygen species (ROS) and protects mitochondria
from ROS generated through electron leakage in cytochrome P-450 system (Chae et al., 1999;
Lee et al., 2007; Simoni et al., 2008).

MSMO1 associated with metabolism of sterols and small molecules (Li and Kaplan, 1996).

4.2.3 Cluster similarity analysis

Hypergeometric test for cluster node overlap assessment showed that 15 LA clusters and 13 HA
clusters had significant node overlap between them (Figure 4.14). The highest node overlap
was between clusters LA 0 and HA 0 with 280 common nodes followed by the overlap between
clusters LA 1 and HA 10 with 152 common nodes (Figure 4.14). LA cluster 2 showed significant
node overlap between 6 HA clusters: HA 0, HA 1, HA 3 , HA 14, HA 17 and HA 22. Among
these clusters, the highest overlap was with cluster HA 0, with 35 nodes in common where
as HA cluster 1 with 33 common nodes showed the next highest overlap with LA cluster 2
(Figure 4.15). It can also be seen from Figure 4.15 that LA cluster 2 showed the least physical
overlap with HA cluster 22 with only 4 nodes in common. The results from functional similarity
assessment showed that 12 LA and HA clusters had significant functional similarity overlap
(Figure 4.16). Out of these 12 clusters, 7 clusters were from LA network and 5 clusters were from
HA network. The highest functional similarity (0.626) was between clusters LA 1 and HA 10
(Figure 4.16). These clusters also showed the second highest physical similarity (node overlap)
(Figure 4.14). The second highest functional similarity (0.603) was between clusters HA 3 and
HA 17, indicating that irrespective of having no physical overlap, the clusters showed significant
functional similarity. The third highest functional similarity (0.586) was between clusters LA 0
and HA 0, the clusters with highest physical overlap (Figure 4.16, Figure 4.14). LA cluster 2
showed significant functional similarity with one LA cluster, LA 0 and 4 HA clusters: HA 0, HA
1, HA 3 and HA 17. Interestingly, the four HA clusters with significant functional similarity also

87



showed significant physical similarity (node overlap) with LA cluster 2 (Figure 4.15).
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Figure 4.14: Cluster physical overlap. Figure showing significant node overlap between LA and HA clusters.
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Based on the evidences from GO and KEGG enrichment results (Table 4.7, Table 4.8), it could be
postulated that LA cluster 2 could be one of the signature co-expression clusters in boars with low
androstenone measurement since enrichment results indicate the role of the cluster member genes
in phase I and phase II metabolism. Additionally, literature references on functions of cluster
members (as mentioned above) also hint the potential role of these genes in hepatic metabolism.
Since this analysis incorporate data/metadata from three different populations (datasets) it could
further be postulated that this cluster commonly occurs in all the three populations used in
this analysis and functions in a similar manner across the three populations. Physical similarity
analysis reveals that LA cluster 2 shows significant physical similarity (node overlap) with 6 HA
clusters. Although these similarities were significant, even the HA cluster with highest physical
similarity (HA cluster 0) shares only 26% of LA cluster 2 nodes (Table 4.5, Figure 4.15). From
these results it could be hypothesized that LA cluster 2 members exhibit strong co-expression,
cluster behavior and probably similar functions in LA dataset where as in HA datasets, these
genes show a weak co-expression and weak cluster behavior. The dispersion of genes occurring in
LA cluster 2 across multiple clusters in HA network could be an indication of weak co-expression
of these genes in HA datasets. The functional similarity assessment also supports this hypothesis.
As can be seen from Figure 4.15, although the functional similarity between LA cluster 2 and
HA clusters are statistically significant, based on GO semantic similarity range (0-1) it can be
seen that the functional similarities are only moderate. The strong co-expression of LA cluster 2
member genes in low androstenone animals and enrichment analysis results from this cluster is
an indication that these genes are highly involved in hepatic phase I and phase II metabolism of
these animals and since these genes do not exhibit a strong co-expression in high androstenone
animals, it could be assumed that this co-expression cluster is a signature cluster for hepatic
androgen and hence androstenone metabolism in low androstenone animals. Consolidating these
analysis results, LA cluster 2 can be proposed as one of the signature co-expression cluster for
low androstenone boars and that the combined action of LA cluster 2 member genes might be
contributing to hepatic androstenone and androgen metabolism in the populations used in this
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experiment. Since these results are based on gene expression data from three pig populations
(datasets), it could be further postulated that this co-expression cluster might be functioning in a
similar manner in all the three pig populations (Duroc × F2, Duroc and Norwegian Landrace)
used in the experiment.

In general, experiment 1 was performed to identify the interaction patterns that are significantly
different between LA and HA phenotype. This experiment utilized the existing knowledge by
integrating gene expression data from a previous RNA-seq experiment metabolic interactions
retrieved from KEGG database. Based on the result from this experiment, this thesis extends the
current knowledge in androstenone biosynthesis by proposing a hypothetical model of androstenone
biosynthesis. This model postulates that there are differences in the interaction patterns involved
in signaling and regulating testicular androstenone biosynthesis in low and high androstenone
phenotypes. In the light of the results from experiment 1, it was postulated that pathways such as
glutathione metabolism, sphingolipid metabolism, fatty acid metabolism and cAMP-PKA/PKC
signaling were fundamental in maintaining and regulating steroidogenesis and hence androstenone
biosynthesis in both high and low androstenone animals. The proposed model theorized that in
high androstenone animals, steroidogenesis was activated by cAMP-PKA signaling and that the
anti lipid peroxidation activity of glutathione metabolism and de novo synthesis of cholesterol
as a result of an active fatty acid metabolism activity might have boosted steroidogenesis and
androstenone metabolism. In low androstenone animals, a weak cAMP-PKC activation of
steroidogenesis and regulatory action of ceramides on steroidogenesis might have contributed to a
weak steroid hormone synthesis and hence, low levels of androstenone synthesis. The combined
effect of these key differences in the metabolic and signaling pathways could have a “cascading
effect” in determining the levels of androstenone synthesis in the sample population.

In experiment 2, due to the short comings in current knowledge about androstenone metabolism
in porcine liver tissues, a data driven approach was used to analyze the common patterns of gene
expression in multiple porcine populations. Meta data from three different porcine populations
were used to generate low and high androstenone co-expression clusters. The results from this
experiment broaden the current understanding of hepatic androstenone metabolism by identifying
the common genes involved in hepatic androstenone metabolism of the selected porcine populations.
The co-expression cluster selected in this experiment (LA cluster 2) could be used as a signature
co-expression cluster for low androstenone hepatic metabolism. Cluster similarity assessments
done in this experiment indicate that the strong clustering behavior exhibited by the (LA 2)
cluster genes in low androstenone expression network is absent in high androstenone expression
network, hinting a weak co-expression of these genes in high androstenone animals. Additionally,
since the analysis combined meta data from three different pig populations, it could be theorized
that this signature cluster functions in a similar manner across all the three porcine populations.

The hypothetical model pathway from experiment 1 and common gene expression cluster in
experiment 2 are in silico results based on gene expression data and external database information.
These results demonstrate that by using integrative analysis approaches following the concepts of
knowledge discovery and data mining, new knowledge can be gained from existing datasets in
livestock genomics. These results presented here also shows how integrating multiple data types

90



or data resources can add an additional dimension to the results. The metabolic interactions
from KEGG database add this additional dimension in first experiment where as datasets from
multiple experiments contribute an improved granularity to the results in the second experiment.
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5. Conclusion

Integrative analysis methods have long been used in human and model organism genomics to
extract new knowledge from existing high-throughput datasets and other data sources. Although
livestock genomics have been using modern high-throughput techniques for data generation,
very few researches in this field have made use of integrative analysis techniques utilizing data
mining and knowledge discovery concepts to extract new knowledge. This thesis was aimed at
demonstrating the capabilities of integrative analysis methods to extract new knowledge and to
generate novel hypothesis from existing datasets to answer major research questions in livestock
genomics. For this purpose, a porcine meat quality related phenotype, androstenone content in
backfat was selected as a target analysis trait. Despite being an active research topic in porcine
genomics for the last few years, the current understanding of testicular synthesis and hepatic
degradation of androstenone is limited to a handful of biomarkers and a selected number of
metabolic pathways.

Based on the two experiments performed, this thesis extends the current understanding of
testicular androstenone synthesis and hepatic androstenone degradation by proposing a novel
hypothetical model for the difference in androstenone biosynthesis with divergent androstenone
measurements and introducing a novel hepatic gene co-expression cluster as a signature cluster
in animals with low androstenone content. The analysis methods and results presented in this
thesis is one of the forerunning attempts in livestock genomics and androstenone genomics to
make use of integrative analysis approaches for knowledge extraction and hypothesis generation.
A major challenge in the application of integrative analysis methods in livestock genomics is the
reduced availability of high-throughput datasets and other data resources in livestock genomics
in comparison to human or other model organism genomics. Hence, the extend of metabolic
interactions and diversity of gene expression variations covered in this thesis is limited. Another
limitation is that is that the second experiment in this thesis integrates multiple datasets, but
not multiple data types and hence lacks an additional dimension in results, which would be
theoretically possible. But, in spite of these limitations, this thesis showed that the available
datasets in livestock genomics can be used for the extraction of new knowledge and for hypothesis
generation.

In the future, these analysis methods can be extended in a number of directions. The results
presented in thesis are based on in-silico models and therefore are hypothetical. By using data from
multiple porcine populations and multiple experiments at genomic, proteomic and metabolomic
level these results can either be validated/challenged or extended. Proceeding in this direction
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would enable the androstenone research community to develop standard models to explain
testicular androstenone synthesis or hepatic metabolism. These standard models can be then
established as “ground truth” models for androstenone metabolism in porcine. The second direction
to take would be the extension of current models using multiple data types such as experimentally
determined protein - protein interaction networks, exon expression, gene polymorphisms and
epigenetic data such as transcription factor binding and histone modifications. Further, these
analysis strategies can be generalized for a global livestock genomics perspective. Experimental
genomic or proteomic data in livestock can be used in integrative analysis strategies and can
be enriched using metabolic, protein interaction and gene variation data from publicly available
biological databases and information mined from published literature. Such an integration of
multiple flavors of data would enable livestock genomics researchers to visualize the phenotype of
interest based on various layers of cellular mechanisms with an increased level of granularity. In
the long run, integrative analysis methods can be used in two major research scenarios in livestock
genomics. In the first scenario, integrative analysis methods can be utilized as a platform for
the extraction of new knowledge and the generation of hypothesis. This generated knowledge
and hypothesis can be used as pointers for further laboratory experiments thus facilitating a
detailed understanding of the molecular mechanisms involved in the manifestation of various
economically important traits in livestock. In another scenario, integrative analysis strategies
could also promote the generation of computable models in livestock genomics to enable the
replication of results from computational biology experiments in livestock genomics. In a yet
another future direction, researches in livestock genomics could greatly benefit from open source
and online analysis platforms specialized for livestock genomics species. Currently only a limited
number of public analysis platforms hosts livestock genomic data and very few livestock genomics
analysis platforms are available for data mining, knowledge discovery and integrative analysis.

The analysis results in this thesis show that although data availability is a major confounding
factor, data mining and knowledge discovery methods can be successfully used for gaining new
knowledge in livestock genomics. The knowledge gained through these methods can boost the
current understanding about cellular processes involved in the development of various economically
important traits in livestock species and can ultimately aid in improving these traits and future
proofing the livestock animals against the challenges ahead. The limited availability of publicly
available data in livestock genomics in comparison to model organism species is the major
factor impeding the wide spread use of integrative analysis methods, data mining and knowledge
discovery concepts in livestock genomics. But, the increasing amounts of data generated by high
throughput technologies and the steadily decreasing cost of such data generation technologies will
aid in the availability of large volumes of publicly available data in livestock genomics enabling
the widespread use of the integrative analysis methods in livestock genomics in the coming years.
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.1 Publications

Thesis publications

Methodology and analysis results from Experiment 1 except the variant calling pipeline
and results are published as:
Sahadevan S, Gunawan A, Tholen E, Große-Brinkhaus C, Tesfaye D, Schellander K,
Hofmann-Apitius M, Cinar MU, Uddin MJ (2014): Pathway based analysis of genes and
interactions influencing porcine testis samples from boars with divergent androstenone
content in back fat. PLoS ONE 9(3). e91077.

Methodology and analysis results from Experiment 2 were submitted as:
Sahadevan S, Tholen E, Große-Brinkhaus C, Tesfaye D, Schellander K, Hofmann-Apitius
M, Cinar MU, Gunawan A, Hölker M, Neuhoff C. Identification of gene co-expression clusters
in liver tissues from multiple porcine populations with high and low backfat androstenone
phenotype. [BMC Genetics].

Other publications

Salilew-Wondim D, Ahmed I, Gebremedhn S, Sahadevan S, Hossain MD, Rings F, Hölker
M, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. The expression pattern of
microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal
phase of the bovine estrous cycle. [Under review: PLoS ONE]

Gunawan A, Sahadevan S, Cinar MU, Neuhoff C, Große-Brinkhaus C, Frieden L, Tesfaye
D, Tholen E, Looft D, Salilew Wondim D, Hölker M, Schellander K, Uddin MJ (2013):
Identification of the novel candidate genes and variants in boar liver tissues with divergent
skatole levels using RNA deep sequencing. PLoS ONE 8(5): e72298.

Gunawan A, Sahadevan S, Neuhoff C, Große-Brinkhaus C, Gad A, Frieden L, Tesfaye D,
Tholen E, Looft C, Uddin MJ, Schellander K, Cinar MU (2013): RNA deep sequencing
reveals novel candidate genes and polymorphisms in boar testis and liver tissues with
divergent androstenone levels. PLoS ONE 8(5): e63259.

Sahadevan S, Hofmann-Apitius M, Schellander K, Tesfaye D, Fluck J, Friedrich CM.
(2012): Text mining in livestock animal science: introducing the potential of text mining to
animal sciences. Journal of Animal Science 90(10): 3666–3676.
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.2 Literature review: analysis approaches in livestock genomics

Table 1: Appendix Table Analysis approaches in livestock genomics literature.

Pmid Year Organism High throughput plat-
form

Analysis approaches

24631266 2014 G. gallus Agilent 4 × 44K chicken mi-
croarray

differential expression analysis, GeneSpring
GX

24548287 2014 B. taurus Agilent 8 × 15 K miRNA ar-
rays

correlation network, GeneSpring GX, Multi
Experiment Viewer

24467805 2014 B. taurus Affymetrix Bovine GeneChip differential expression analysis, ANOVA

24496830 2014 S. scrofa Agilent 4 × 44K procine mi-
croarray

differential expression analysis, network
analysis

24341289 2013 S. scrofa Custom microarray (GEO
GPL7151)

Principal Component Analysis, hierarchical
clustering, differential expression analysis,
limma R package

24104205 2013 B. taurus Agilent 44K bovine microar-
ray

differential expression analysis, mixed
model analysis, REML

23893995 2013 B. taurus CombiMatrix bovine mi-
croarray

differential expression analysis, local pooled
error analysis

23786935 2013 S. scrofa µ Paraflo Microfluidics chip differential expression analysis, Student’s t
test

23758853 2013 O. aries Illumina HiSeq 2000 differential expression analysis, Fisher’s Ex-
actTest

23550144 2013 G. gallus Illumina 60 K chicken SNP
BeadChip

GenABEL, Mann-Whitney U-test

23451171 2013 S. scrofa miRCURY LNA Array differential expression analysis

24024930 2013 B. taurus Illumina 50 K bovine SNP
BeadChip

association analysis, univariate model anal-
ysis, PLINK

23803555 2013 B. taurus Affymetrix GeneChip
miRNA microarray

differential expression analysis, ANOVA,
Principal Component Analysis, hierarchical
clustering

23437186 2013 S. scrofa Illumina HiSeq 2000 differential expression analysis, ANOVA,
Mann-Whitney U test

23642483 2013 B. taurus Agilent Bovine-Four-Plex
G2519F

differential expression anaysis, Student’s t
test, Principal Component Analysis

23530236 2013 B. taurus Affymetrix bovine GeneChip differential expression analysis, GeneSpring

23363372 2013 G. gallus Illumina GA II differential expression analysis, DESeq,
SNP calling, mixed model analysis

23355796 2013 S. scrofa Affymetrix porcine
GeneChip

differential expression analysis

23284895 2012 S. scrofa Solexa sequencing reference mapping, prediction

23226446 2012 G. gallus Solexa G1 sequencer, µ

Paraflo Microfluidics chip
reference mapping, prediction, differential
expression analysis, Audic and Claverie test,
Fisher’s exact test, and Chi-squared test
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Table 1: Appendix table: Analysis approaches in livestock genomics literature (continued...)

Pmid Year Organism High throughput plat-
form

Analysis approaches

22844420 2012 G. gallus Illumina 60 K chicken SNP
BeadChip

association analysis, PLINK

22567158 2012 S. scrofa Roche NimbleGen Porcine
Genome Expression Array

differential expression analysis, linear mod-
els, empirical Bayes method, interaction
network analysis

22530940 2012 G. gallus Agilent 4 × 44K chicken mi-
croarray

differential expression analysis, ANOVA

22848698 2012 S. scrofa Roche 454 GS-FLX pyrose-
quencing

de novo assembly, prediction

22607119 2012 B. taurus Illumina GAII differential expression analysis, DESeq

22308471 2012 G. gallus Agilent 4 × 44K chicken mi-
croarray

differential expression analysis, ANOVA,
SAM

23097340 2012 G. gallus Agilent chicken 44K oligo mi-
croarray

differential expression analysis, linear mod-
els, empirical Bayes method

22701814 2012 B. taurus BOTL-5 cDNA microarray differential expression analysis, empirical
Bayes model

22531008 2012 G. gallus multiple platforms differential expression analysis, meta anal-
ysis, metaMA

22337866 2012 S. scrofa DJF Pig oligo 27K1
(GPL5972)

differential expression analysis, linear mod-
els, Principal component analysis, hierar-
chical clustering

22270015 2012 S. scrofa Affymetrix porcine
GeneChip

differential expression analysis, GeneChip,
heirarchical clustering

22234994 2012 B. taurus – network analysis, gene prioritization, in-
teraction networks, text mining, relevancy
scores

22190712 2012 G. gallus Nimblegen chicken genome
array

survival analysis, Cox’s proportional haz-
ards model, correlation networks, hierarchi-
cal clustering

21994447 2011 E. f. cabal-
lus

Illumina equine SNP50 Bead-
Chip

association analysis, Golden Helix SNP and
Variation Suite 7

22099820 2011 S. scrofa Affymetrix porcine
GeneChip

differential expression analysis, limma, Gen-
Mapp, MAPPFinder

22140460 2011 G. gallus avian IEL array differential expression analysis, ANOVA,
Student’s t-test, GeneSpring

20732839 2010 B. taurus Bovine oligonucleotide 24 K
chip

differential expression analysis, GeneSifter

20302897 2010 S. scrofa Agilent 244 K porcine mi-
croarray

differential expression analysis, ANOVA,
Acuity 4.0 Enterprise Microarray Informat-
ics software

20214824 2010 G. gallus Arizona G. gallus 20.7K
Oligo Array

differential expression analysis, ANOVA
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Table 1: Appendix table: Analysis approaches in livestock genomics literature (continued...)

Pmid Year Organism High throughput plat-
form

Analysis approaches

20138717 2010 S. scrofa Agilent chicken 44K oligo mi-
croarray

differential expression analysis, GeneSpring

19644847 2009 B. taurus Custom miRNA microarray differential expression analysis

19421343 2009 B. taurus Affymetrix porcine
GeneChip

differential expression analysis, paired t-
test, Wilcoxon rank sum test, Student’s
t-test

19366786 2009 S. scrofa Affymetrix porcine
GeneChip

linear model analysis

19056128 2009 O. aries Ruminant Immuno-
inflammatory Gene Univer-
sal Array

differential expression analysis

20494844 2008 B. taurus Custom microarray Student’s T-test, differential expression
analysis, ANOVA, GeneSifter

18818466 2008 B. taurus NCode Multi-Species
miRNA Microarray

differential expression analysis, Significance
Analysis of Microarray

17594506 2007 G. gallus Affymetrix chicken
GeneChip

differential expression analysis, Significance
Analysis of Microarray, hierarchical cluster-
ing, Multi Experiment Viewer

17974019 2007 B. taurus Bovine Total Leukocyte
cDNA microarray (GPL
363)

differential expression analysis, mixed
model analysis

16091418 2005 B. taurus Cattle 7,872-element cDNA
(GPL2108)

differential expression analysis, k-means
clustering, correlation analysis

Table 2: Appendix Table Number of times each analysis method is mentioned in 50 random full text
articles.

Method Count

differential expression analysis 39
ANOVA 9
hierarchical clustering 6
Student’s t-test 6
linear models 4
Principal Component Analysis 4
association analysis 3
empirical Bayes method 3
GeneSpring 3
mixed model analysis 3
prediction 3
correlation network 2
DESeq 2
Fisher’s exact test 2
GeneSifter 2
GeneSpring GX 2
limma R package 2
Mann-Whitney U test 2
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Table 2: Number of times each analysis method is mentioned in 50 random full text articles (continued...)

Method Count

Multi Experiment Viewer 2
network analysis 2
PLINK 2
reference mapping 2
Significance Analysis of Microarray 2
Acuity 4.0 Enterprise Microarray Informatics software 1
Audic and Claverie test 1
Chi-squared test 1
correlation analysis 1
Cox’s proportional hazards model 1
de novo assembly 1
GenABEL 1
GeneChip 1
gene prioritization 1
GenMapp 1
Golden Helix SNP and Variation Suite 7 1
interaction network analysis 2
k-means clustering 1
local pooled error analysis 1
MAPPFinder 1
meta analysis 1
metaMA 1
relevancy scores 1
REML 1
SAM 1
SNP calling 1
survival analysis 1
text mining 1
univariate model analysis 1
Wilcoxon rank sum test 1
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.3 Results and discussion: Experiment 1 Variant calling

Table 3: Appendix Table Variant calling. Legend : NIL indicates polymorphism was absent in the sample.
LA. 1 read depth for the polymorphism in sample 1 in LA phenotype, HA. 1 read depth of the

polymorphisms in sample 1 in HA phenotype.

Gene name Chr POS LA
1

LA
2

LA
3

LA
4

LA
5

HA
1

HA
2

HA
3

HA
4

HA
5

LOC100152303 1 9399735 23 24 37 46 33 NIL NIL NIL NIL NIL
LOC100152303 1 9399968 27 27 59 61 46 NIL NIL NIL NIL NIL
LOC100152988 1 175812592 24 15 34 20 13 26 37 22 22 18
GPX4 2 77676073 15 11 22 18 16 NIL NIL NIL NIL NIL
LOC100736975 3 100117148 53 22 97 80 72 93 107 45 36 58
HADHA 3 119782443 49 60 103 109 77 86 119 64 45 42
HADHA 3 119782506 45 50 52 85 71 48 104 48 40 22
HADHA 3 119782546 52 62 59 91 80 59 105 63 41 32
HADHA 3 119782551 48 61 62 86 81 57 105 67 45 31
HADHA 3 119782751 69 82 113 117 84 111 126 81 61 58
HADHA 3 119782780 67 73 109 113 85 102 131 82 71 59
MGST3 4 92725756 80 105 110 131 108 99 131 76 64 74
ATP5F1 4 119078700 112 107 127 123 115 113 115 109 104 116
ATP5F1 4 119078761 154 149 176 177 165 169 173 158 149 162
ATP5F1 4 119078830 157 152 170 170 160 173 175 145 145 164
ATP5F1 4 119078856 155 146 170 168 155 172 173 150 145 160
ATP5F1 4 119078862 136 132 160 152 141 159 158 137 130 144
ATP5F1 4 119078864 137 131 155 153 141 162 155 139 133 146
ATP5F1 4 119078865 137 131 158 153 141 162 155 138 133 146
LOC100514231 4 120827636 NIL NIL NIL NIL NIL 163 164 160 159 162
LOC100514231 4 120827710 179 183 182 182 184 182 180 183 178 184
DHCR24 6 145581907 NIL NIL NIL NIL NIL 19 37 22 13 20
DHCR24 6 145582020 31 33 38 44 48 45 61 42 54 20
DHCR24 6 145582255 63 53 37 52 44 23 57 50 85 27
DHCR24 6 145582258 63 53 38 53 44 26 59 50 85 26
DHCR24 6 145582458 70 38 43 68 73 43 78 49 96 38
DHCR24 6 145582665 68 49 44 57 42 61 74 48 89 36
DHCR24 6 145582785 NIL NIL NIL NIL NIL 61 64 33 65 39
CPT2 6 146702408 11 17 32 13 21 NIL NIL NIL NIL NIL
LOC100517534 6 147870177 34 22 71 46 38 41 75 34 29 29
LOC100517534 6 147870526 32 14 53 32 32 44 76 30 21 26
GALC 7 116349042 NIL NIL NIL NIL NIL 62 64 41 42 51
GALC 7 116349177 NIL NIL NIL NIL NIL 56 70 36 33 39
GALC 7 116349201 23 21 55 38 38 NIL NIL NIL NIL NIL
GALC 7 116349671 23 18 45 33 24 41 48 28 18 41
GSTA2 7 134289767 155 160 86 98 49 68 65 145 27 31
GSTA2 7 134289825 166 167 77 97 49 72 64 153 34 26
GSTA2 7 134289849 166 164 78 90 41 71 59 151 31 19
GSTA2 7 134289905 154 152 74 91 46 58 96 134 32 36
GSTA2 7 134289913 153 153 75 96 59 66 110 134 37 41
GSTA4 7 134380269 112 129 145 144 119 104 150 99 77 74
GSTA4 7 134380285 111 136 151 147 122 109 151 99 76 72
GSTA4 7 134380456 116 137 150 140 132 115 146 116 75 77
HADH 8 122213097 NIL NIL NIL NIL NIL 19 63 28 13 24
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Table 3: Appendix Table Variant calling. Legend : NIL indicates polymorphism was absent in the sample.
LA. 1 read depth for the polymorphism in sample 1 in LA phenotype, HA. 1 read depth of the

polymorphisms in sample 1 in HA phenotype (continued...)

Gene name Chr POS LA
1

LA
2

LA
3

LA
4

LA
5

HA
1

HA
2

HA
3

HA
4

HA
5

HADH 8 122213121 29 48 50 49 51 23 65 30 12 26
ADH5 8 130466631 27 36 53 44 34 NIL NIL NIL NIL NIL
ADH5 8 130466820 42 48 69 66 31 NIL NIL NIL NIL NIL
CYP51 9 78792947 35 39 55 50 32 58 61 46 32 35
CYP51 9 78792965 46 52 71 66 37 NIL NIL NIL NIL NIL
CYP51 9 78792967 NIL NIL NIL NIL NIL 79 79 60 42 52
CYP51 9 78793035 75 62 114 99 48 120 120 93 69 85
CYP51 9 78793339 74 67 116 106 70 121 136 95 75 110
CYP51 9 78793638 133 105 174 152 143 168 173 139 147 135
DEGS1 10 15053002 21 23 57 48 42 35 59 37 17 38
DEGS1 10 15053060 20 25 57 46 44 35 69 28 18 43
DEGS1 10 15053131 26 23 75 46 35 41 63 36 21 35
DEGS1 10 15053143 26 23 78 42 31 44 59 38 22 32
ACAA1 13 25168976 17 31 46 42 32 26 54 30 13 20
ACAA1 13 25169066 16 21 36 28 24 31 52 18 10 17
ACAA1 13 25169119 14 30 39 30 28 29 50 18 12 14
ACAA1 13 25169195 16 29 30 21 29 NIL NIL NIL NIL NIL
ACAA1 13 25169225 17 29 28 22 28 21 43 23 10 19
ALDH2 14 42379317 NIL NIL NIL NIL NIL 38 63 40 25 24
GSTO1 14 125185652 23 22 32 41 27 31 54 38 17 31
ACADSB 14 144190025 14 19 43 27 20 NIL NIL NIL NIL NIL
ACSL3 15 138712086 33 30 65 50 31 65 65 40 34 41
GPX3 16 78290583 20 51 42 62 28 70 69 32 11 10
GPX3 16 78290858 22 53 40 21 27 60 49 29 18 15
GSS 17 43511491 10 17 20 15 13 NIL NIL NIL NIL NIL
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.4 Results and discussion: Experiment 2 Enrichment Tables

Table 4: Appendix Table LA cluster GO enrichment.

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

LA cluster 0
GO:0032259 methylation 195 11 6.48 0.00014
GO:0040011 locomotion 934 23 31.04 0.00076
GO:0022008 neurogenesis 877 19 29.14 0.00303
GO:0002119 nematode larval development 26 5 0.86 0.00378
GO:0006396 RNA processing 559 31 18.57 0.00589
GO:0043069 negative regulation of programmed

cell death
406 15 13.49 0.00633

GO:0006839 mitochondrial transport 99 11 3.29 0.01591
GO:0051225 spindle assembly 45 5 1.5 0.01653
GO:0016485 protein processing 84 8 2.79 0.01892
GO:0045454 cell redox homeostasis 51 5 1.69 0.02652
GO:0051436 negative regulation of ubiquitin-

protein ligase activity involved in
mitotic cell cycle

69 6 2.29 0.02675

GO:0006366 transcription from RNA poly-
merase II promoter

1128 25 37.48 0.03064

GO:0000216 M/G1 transition of mitotic cell cy-
cle

72 6 2.39 0.03213

GO:0007584 response to nutrient 92 6 3.06 0.0354
GO:0007067 mitosis 243 13 8.07 0.03709
GO:0031647 regulation of protein stability 104 7 3.46 0.03904
GO:0018279 protein N-linked glycosylation via

asparagine
96 7 3.19 0.04046

GO:0007017 microtubule-based process 382 17 12.69 0.04098
GO:0034660 ncRNA metabolic process 236 17 7.84 0.04187

LA cluster 1
GO:0021915 neural tube development 90 8 1.9 0.00016
GO:0000122 negative regulation of transcription

from RNA polymerase II promoter
381 17 8.05 0.003

GO:0010923 negative regulation of phosphatase
activity

49 5 1.04 0.00362

GO:0035239 tube morphogenesis 220 9 4.65 0.00853

GO:0031929 TOR signaling cascade 47 6 0.99 0.01116
GO:0007155 cell adhesion 615 19 13 0.02183
GO:0030308 negative regulation of cell growth 115 7 2.43 0.0286
GO:0006897 endocytosis 293 8 6.19 0.02905
GO:0043065 positive regulation of apoptotic pro-

cess
333 12 7.04 0.04146

GO:0035023 regulation of Rho protein signal
transduction

146 5 3.09 0.04441
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Table 4: Appendix Table LA cluster GO enrichment (continued...)

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

LA cluster 2
GO:0055114 oxidation-reduction process 807 42 8.31 9.6E-011
GO:0051289 protein homotetramerization 36 6 0.37 0.0000016
GO:0006805 xenobiotic metabolic process 105 8 1.08 0.000012
GO:0006641 triglyceride metabolic process 82 5 0.84 0.002
GO:0006629 lipid metabolic process 911 33 9.38 0.00231
GO:0009058 biosynthetic process 3614 40 37.22 0.01118
GO:0048869 cellular developmental process 2038 11 20.99 0.0115
GO:0006810 transport 2743 34 28.25 0.01378
GO:0008203 cholesterol metabolic process 100 7 1.03 0.01502
GO:0042493 response to drug 269 8 2.77 0.01503
GO:0046395 carboxylic acid catabolic process 157 11 1.62 0.02834
GO:0019439 aromatic compound catabolic pro-

cess
953 14 9.82 0.02987

GO:0006869 lipid transport 150 5 1.55 0.03686
GO:0009725 response to hormone stimulus 555 7 5.72 0.04158

LA cluster 3
GO:0006415 translational termination 103 5 0.89 0.0019
GO:0022900 electron transport chain 101 7 0.87 0.0023
GO:0044281 small molecule metabolic process 2035 19 17.5 0.0038
GO:0006401 RNA catabolic process 215 7 1.85 0.0076
GO:0007267 cell-cell signaling 693 7 5.96 0.0416

LA cluster 6
GO:0006415 translational termination 103 29 0.67 < 1e-30
GO:0006614 SRP-dependent cotranslational pro-

tein targeting to membrane
120 29 0.78 < 1e-30

GO:0000184 nuclear-transcribed mRNA
catabolic process, nonsense-
mediated decay

128 29 0.84 < 1e-30

GO:0006414 translational elongation 130 29 0.85 < 1e-30
GO:0019083 viral transcription 165 29 1.08 < 1e-30
GO:0006413 translational initiation 177 29 1.16 < 1e-30
GO:0006364 rRNA processing 88 7 0.58 0.000012
GO:0042592 homeostatic process 903 8 5.9 0.038

LA cluster 7
GO:0048585 negative regulation of response to

stimulus
566 5 3.14 0.02706

GO:0006195 purine nucleotide catabolic process 629 5 3.49 0.02722
GO:0006355 regulation of transcription, DNA-

templated
1848 13 10.26 0.03237

GO:0048699 generation of neurons 794 5 4.41 0.04386

LA cluster 8
GO:0010951 negative regulation of endopepti-

dase activity
109 5 0.59 0.0024

GO:0007243 intracellular protein kinase cascade 723 5 3.89 0.01
GO:0007599 hemostasis 396 5 2.13 0.0155
GO:0005975 carbohydrate metabolic process 651 6 3.5 0.0196
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Table 4: Appendix Table LA cluster GO enrichment (continued...)

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

GO:0043065 positive regulation of apoptotic pro-
cess

333 6 1.79 0.0493

Table 5: Appendix Table HA cluster GO enrichment.

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

HA cluster 0
GO:0006415 translational termination 103 35 4.55 2.8E-022
GO:0006614 SRP-dependent cotranslational pro-

tein targeting to membrane
120 37 5.3 8.1E-022

GO:0006414 translational elongation 130 39 5.74 1.4E-021
GO:0019083 viral transcription 165 35 7.29 4.5E-021
GO:0006413 translational initiation 177 41 7.82 1.3E-020
GO:000184 nuclear-transcribed mRNA

catabolic process, nonsense-
mediated decay

128 34 5.65 7.1E-018

GO:0022904 respiratory electron transport chain 92 21 4.06 5.1E-009
GO:0042273 ribosomal large subunit biogenesis 17 6 0.75 0.000059
GO:0006364 rRNA processing 88 14 3.89 0.000061
GO:0040010 positive regulation of growth rate 20 6 0.88 0.00016
GO:0006099 tricarboxylic acid cycle 28 7 1.24 0.00017
GO:0019430 removal of superoxide radicals 15 5 0.66 0.00063
GO:0007067 mitosis 243 18 10.73 0.0007
GO:0002119 nematode larval development 26 6 1.15 0.00146
GO:0055114 oxidation-reduction process 807 70 35.63 0.00188
GO:0042274 ribosomal small subunit biogenesis 25 7 1.1 0.00257
GO:0072593 reactive oxygen species metabolic

process
92 14 4.06 0.00426

GO:0032259 methylation 195 11 8.61 0.00438
GO:0006120 mitochondrial electron transport,

NADH to ubiquinone
37 6 1.63 0.00521

GO:0045454 cell redox homeostasis 51 7 2.25 0.00673
GO:0031145 anaphase-promoting complex-

dependent proteasomal ubiquitin-
dependent protein catabolic
process

81 9 3.58 0.00919

GO:0043524 negative regulation of neuron apop-
totic process

82 9 3.62 0.00994

GO:0051436 negative regulation of ubiquitin-
protein ligase activity involved in
mitotic cell cycle

69 8 3.05 0.01072

GO:0051437 positive regulation of ubiquitin-
protein ligase activity involved in
mitotic cell cycle

71 8 3.14 0.01265

GO:009792 embryo development ending in
birth or egg hatching

452 14 19.96 0.01336

GO:0042542 response to hydrogen peroxide 62 8 2.74 0.01384
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Table 5: Appendix Table HA cluster GO enrichment (continued...)

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

GO:0042127 regulation of cell proliferation 866 33 38.24 0.01664
GO:0006184 GTP catabolic process 448 26 19.78 0.01677
GO:0042255 ribosome assembly 20 6 0.88 0.01757
GO:0045839 negative regulation of mitosis 35 5 1.55 0.01769
GO:0040017 positive regulation of locomotion 204 8 9.01 0.018
GO:0006412 translation 453 65 20 0.02002
GO:0034660 ncRNA metabolic process 236 24 10.42 0.02413
GO:0009615 response to virus 177 10 7.82 0.02509
GO:0006396 RNA processing 559 42 24.68 0.02512
GO:0051402 neuron apoptotic process 129 12 5.7 0.02564
GO:0090068 positive regulation of cell cycle pro-

cess
140 12 6.18 0.02886

GO:0045471 response to ethanol 68 7 3 0.02983
GO:0034341 response to interferon-gamma 91 6 4.02 0.03125
GO:0006521 regulation of cellular amino acid

metabolic process
55 6 2.43 0.03348

GO:0006749 glutathione metabolic process 42 5 1.85 0.03709
GO:0051591 response to cAMP 57 6 2.52 0.03896
GO:0043154 negative regulation of cysteine-type

endopeptidase activity involved in
apoptotic process

57 6 2.52 0.03896

GO:0000216 M/G1 transition of mitotic cell cy-
cle

72 7 3.18 0.03908

GO:0022008 neurogenesis 877 27 38.72 0.04097
GO:0044281 small molecule metabolic process 2035 121 89.86 0.04356
GO:0006119 oxidative phosphorylation 54 9 2.38 0.04481
GO:0009790 embryo development 730 29 32.23 0.04586
GO:0048869 cellular developmental process 2038 60 89.99 0.04755
GO:0006200 ATP catabolic process 142 11 6.27 0.04959

HA cluster 1
GO:0010951 negative regulation of endopepti-

dase activity
109 7 0.68 0.00000067

GO:0006879 cellular iron ion homeostasis 58 5 0.36 0.00003
GO:0055114 oxidation-reduction process 807 18 5.06 0.000036
GO:0006956 complement activation 47 5 0.29 0.0002
GO:0046395 carboxylic acid catabolic process 157 5 0.98 0.01788
GO:0006875 cellular metal ion homeostasis 238 8 1.49 0.03965
GO:0006508 proteolysis 799 10 5.01 0.04925

HA cluster 3
GO:0055114 oxidation-reduction process 807 9 1.45 0.00039
GO:0044281 small molecule metabolic process 2035 13 3.65 0.00281
GO:0006082 organic acid metabolic process 757 9 1.36 0.01032

HA cluster 10
GO:0007156 homophilic cell adhesion 63 5 0.84 0.0014
GO:0009166 nucleotide catabolic process 634 8 8.4 0.0018
GO:0035239 tube morphogenesis 220 6 2.92 0.0035
GO:0021915 neural tube development 90 5 1.19 0.0057
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Table 5: Appendix Table HA cluster GO enrichment (continued...)

GO.ID Term #Annotated #Significant Expected Enrichment
p.value

GO:0009987 cellular process 10095 140 133.82 0.0146
GO:0008152 metabolic process 7747 99 102.69 0.0212
GO:0000122 negative regulation of transcription

from RNA polymerase II promoter
381 10 5.05 0.0302

GO:0051726 regulation of cell cycle 657 17 8.71 0.0355

HA cluster 10
GO:0006457 protein folding 204 7 0.66 0.000013
GO:0006869 lipid transport 150 6 0.48 0.00336
GO:0055114 oxidation-reduction process 807 10 2.6 0.03544

Table 6: Appendix Table LA cluster KEGG enrichment.

KEGG.ID Pathway #Enriched
genes

Enrichment
p.value

LA cluster 2
ssc03320 PPAR signaling pathway 6 0.00990966
ssc04146 Peroxisome 8 0.00109469
ssc00280 Valine, leucine and isoleucine degra-

dation
6 0.00149421

ssc00071 Fatty acid degradation 8 0.00001695
ssc00830 Retinol metabolism 7 0.00026192
ssc05204 Chemical carcinogenesis 7 0.00082319
ssc00983 Drug metabolism - other enzymes 5 0.00107901
ssc00982 Drug metabolism - cytochrome

P450
9 0.00000325

ssc00380 Tryptophan metabolism 5 0.00343914
ssc00980 Metabolism of xenobiotics by cy-

tochrome P450
7 0.00019518

ssc00053 Ascorbate and aldarate metabolism 5 0.00033240

LA cluster 3
ssc00190 Oxidative phosphorylation 7 0.01474052
ssc04932 Non-alcoholic fatty liver disease

(NAFLD)
7 0.04177778

ssc05012 Parkinsons disease 8 0.00499836

LA cluster 4
ssc01200 Carbon metabolism 5 0.041088727

LA cluster 6
ssc03010 Ribosome 29 5.09E-025

LA cluster 9
ssc03013 RNA transport 6 0.011340915
ssc03015 mRNA surveillance pathway 5 0.002345787
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Table 7: Appendix Table HA cluster KEGG enrichment.

KEGG.ID Pathway #Enriched
genes

Enrichment
p.value

HA cluster 0
ssc05016 Huntingtons disease 29 0.0134605056
ssc00190 Oxidative phosphorylation 24 0.0018550649
ssc05010 Alzheimers disease 27 0.0122442626
ssc05012 Parkinsons disease 24 0.0027797706
ssc03010 Ribosome 36 1.3182E-006

HA cluster 1
ssc04610 Complement and coagulation cas-

cades
12 3.4967E-010

ssc00830 Retinol metabolism 6 7.5598E-005
ssc05204 Chemical carcinogenesis 6 0.0002134292
ssc00860 Porphyrin and chlorophyll

metabolism
5 0.0002234595

ssc00982 Drug metabolism - cytochrome
P450

6 6.6350E-005

ssc00980 Metabolism of xenobiotics by cy-
tochrome P450

6 0.000058064

HA cluster 17
ssc03320 PPAR signaling pathway 5 0.0002034416
ssc04141 Protein processing in endoplasmic

reticulum
6 0.0014178496
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