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Introduction

A fundamental problem in chip design is the construction of networks that distribute
an electrical signal from a given source to a set of sinks. In most cases these networks
are repeater trees. A repeater tree consists of horizontal and vertical wires connecting
the source and the sinks. Moreover, it contains repeaters (inverters or buffers) which
‘refresh’ the signal. Recent chips contain millions of repeater trees.

Clock trees are very similar to repeater trees. Their task is to distribute a clock signal
from a source to a large set of sinks. Beside the repeaters, they can contain additional
special circuits modifying the clock signal. One main goal of clock tree construction
is to minimize the power consumption. Typically, 80% to 90% of the total power
consumption of a clock tree occurs in the last stage of the tree.

This motivates us to have a closer look at this stage. It contains circuits (inverters or
special circuits) driving the sinks. Each sink is assigned to one of these drivers and
each driver is connected to the sinks that are assigned to it by a rectilinear Steiner
tree. Each driver has to drive the electrical capacitance of the tree plus the input
capacitances of its sinks. The total capacitance it can drive is limited. The power
consumption of the last stage is equivalent to the power consumption of the trees
(proportional to their length) plus the power consumption of the drivers. Typically,
the drivers of the last stage are inverters or special circuits of the same size. In both
cases the power consumption of all drivers is the same. The key component of every
clock tree construction tool is to build a last stage that minimizes power consumption
while satisfying the capacitance limits of the drivers.

Mathematically, this task can be formulated as the following Sink Clustering Prob-
lem: Given a finite set D of sinks with positions p(v) ∈ R2 in the plane and demands
(input capacitances) d(v) ∈ R≥0 for all v ∈ D, a facility opening cost f ∈ R>0 (power
consumption of a driver) and a load limit (capacitance limit) u ∈ R>0, the task is to find
a partition D = D1∪̇ · · · ∪̇Dk of D and, for all 1 ≤ i ≤ k, a rectilinear Steiner tree Si for
{p(v)| v ∈ Di}. Each cluster (Di, Si), 1 ≤ i ≤ k, has to keep the load limit, that means∑

e∈E(Si)
c(e)+

∑
s∈Di

d(s) ≤ u. The goal is to minimize the weighted sum of the length

of all Steiner trees plus the number of clusters, i.e. minimize
∑k

i=1

∑
e∈E(Si)

c(e) + kf .

In Chapter 1 we study the Sink Clustering Problem for general metrics and
present the first constant-factor approximation algorithms for it. Moreover, we de-
velop several lower bounds that partly rely on fundamental connections of the Sink
Clustering Problem to matroid theory. In Section 1.4 we show experimental re-
sults on real-life instances from clock tree design. The cost (power consumption) of
the solutions computed by our algorithm is in average only about 10% over the lower
bounds.

Clock trees have to satisfy several timing constraints. Typically, the signal has to
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arrive at all sinks of a clock tree at the same time. In this case we have the Sink
Clustering Problem as defined above. However, there are clock trees where the
signal has to arrive at each sink within an individual required arrival time window.
In this case sinks can only be driven by the same circuit if the time windows of these
sinks have a point of time in common. In Chapter 2 we study this generalization of
the Sink Clustering Problem, describe algorithms and lower bounds.
In Chapter 3 we present our algorithm BonnClock for sythesizing clock trees. Its
key component is the Sink Clustering Algorithm as presented in Chapter 1 and
generalized in Chapter 2. The clustering algorithms are used to construct the last stage
of the clock tree and also to build upper parts of the tree. It is combined with a sink
partitioning approach that is a generalization of the well-known H-trees. BonnClock
has become the standard tool used by IBM Microelectronics for constructing clock
trees. It has been used for the design of hundreds of most complex chips.
Finally, we study the Repeater Tree Topology Problem in Chapter 4. In con-
trast to clock trees, the timing constraints of repeater trees are different: The signal has
to arrive at a sink not later than a given individual required arrival time and therefore
cannot arrive too early. We propose a greedy algorithm that can produce trees that
are either almost length optimal or timing optimal. Moreover, we present theoretical
results, including a characterization of all online algorithms for the minimax and the
almost minimax problem, and improved lower bounds for repeater trees.
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1 The Sink Clustering Problem

In this chapter we deal with the Sink Clustering Problem motivated in the in-
troduction. In Chapter 1.1 we introduce the problem and present approximation algo-
rithms with constant approximation guarantees. In Chapter 1.2 we present two post
optimization algorithms that can further improve an existing clustering. Based on
some fundamental characteristics of the problem and relations to matroid theory we
establish four lower bounds in Chapter 1.3. Finally, we present experimental results of
the algorithms and the lower bounds.
Section 1.1 is based on joint work with Jens Vygen (Maßberg and Vygen [2008]).

1.1 Problem and Algorithm

1.1.1 Problem Definition

First, we introduce the Sink Clustering Problem. Given a metric space (V, c), we
consider a finite set D of sinks with positions p : D → V and demands d : D → R≥0.
We want to ‘cluster’ these sinks. A cluster is a pair (D′, S ′) with D′ ⊆ D and S ′ a
Steiner tree on {p(v)| v ∈ D′} in (V, c). A clustering of D is a family {(Di, Si)}i=1...k

of clusters so that D = D1∪̇ · · · ∪̇Dk is a partition of D.
We aim for a clustering where each cluster keeps some capacitance constraints and
which has minimal cost.

Sink Clustering Problem

Instance: A metric space (V, c), a finite set D of terminals/customers with positions
p(v) ∈ V and demands d(v) ∈ R≥0 for all v ∈ D, a facility opening cost f ∈ R>0

and a load limit u ∈ R>0.

Task: Find a k ∈ N and a clustering {(Di, Si)}i=1...k of D, D = D1∪̇ · · · ∪̇Dk, so that
the load limit is kept, i.e.∑

e∈E(Si)

c(e) +
∑
s∈Di

d(s) ≤ u for i = 1, . . . , k, (1.1)

and the clustering cost
k∑

i=1

 ∑
e∈E(Si)

c(e)

+ kf (1.2)

is minimized.
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Notation

For simplicity we identify sinks with their positions. So e.g. a Steiner tree on a set
D′ ⊂ D is a Steiner tree on {p(v)| v ∈ D′}. Moreover, we denote the cost of a tree G
by c(G) :=

∑
e∈E(G) c(e) and the demand of a set D′ ⊆ D by d(D′) :=

∑
v∈D′ d(v).

A clustering is called feasible if inequality (1.1) is kept for all its clusters.
A solution of the Sink Clustering Problem can be written as

(
k, {(Di, Si)}i∈{1,...,k}

)
where k ∈ N,

⋃̇n

i=1Di = D and (Di, Si) are clusters for i ∈ {1, . . . , k}. A solution is
feasible if its clustering is feasible.

Previous Work

A variant of the Sink Clustering Problem, where the sinks are connected by
spanning trees instead of Steiner trees, has been studied by Shelar [2007]. He proposes
a Kruskal-like strategy. First for each sink a cluster is created. Then the algorithm
tries to merge two clusters by adding a shortest edge between two sinks, one of each
cluster. If the load limit is still kept, the two clusters are replaced by the new one.
Neither Shelar could proof an approximation guarantee for his algorithm, nor could
he establish lower bounds for the problem. Note that the following algorithms and
lower bounds can be modified to compute spanning trees instead of Steiner trees in a
straightforward way. Beside the work of Shelar, the problem has not been studied yet.

1.1.2 Complexity

As the problem contains the Steiner Minimum Tree Problem and the Bin Pack-
ing Problem it is strongly NP -complete and MAXSNP -hard.

Lemma 1.1. There is no polynomial
(

3
2
− ε
)
-approximation algorithm for any ε > 0

for the Sink Clustering Problem in any metric unless P = NP .

Proof. The Sink Clustering Problem is a generalization of the Bin-Packing
Problem. Let a1, . . . , an ≤ 1 be an instance of the Bin-Packing Problem. Choose
an s ∈ V and set D := {v1, . . . , vn}, p(vi) := s and d(vi) := ai for i ∈ {1, . . . , n}.
Finally, set u := 1 and f := 1. Then a solution of the Sink Clustering Problem
directly corresponds to a solution of the Bin Packing Problem. It has been shown
that there is no

(
3
2
− ε
)
-approximation algorithm for the latter problem unless P = NP

(see Garey and Johnson [1979]). �
Moreover, we can show an even stronger result:

Lemma 1.2. There is no polynomial (2 − ε)-approximation algorithm for any ε > 0
for the Sink Clustering Problem in metrics where the Steiner tree problem cannot
be solved optimally in polynomial time unless P = NP .

Proof. Assume there is a polynomial (2−ε)-approximation algorithm. As the Steiner
Minimum Tree Problem is NP -complete, the corresponding Steiner Tree De-
cision Problem is NP -hard: Given a set of terminals T = {t1, . . . , tn} ⊂ V and a
number k ∈ R+, is there a Steiner tree of length ≤ k?



1.1 Problem and Algorithm 7

We construct an instance for the Sink Clustering Problem by setting D :=
{v1, . . . , vn}, p(vi) := ti and d(vi) := 0 for i ∈ {1, . . . , n}. Moreover, set u := k
and f > k 2−ε

ε
. If there exists no Steiner tree on T of length ≤ k then any feasible

clustering consists of at least two clusters and has cost ≥ 2f .
Otherwise, let S be a Steiner tree of length ≤ k. Then the cluster (D,S) is feasible,
i.e. there exists a feasible clustering of cost ≤ f + k. In this case the approximation
algorithm computes a solution of cost at most (2−ε) ·(f+k) < (2−ε) ·(f+ ε

2−ε
f) = 2f .

Thus the solution consists of exactly one cluster.
Hence the approximation algorithm computes a clustering containing one single cluster
if and only if there is a Steiner tree of length at most k, but that means we can decide
the Steiner Tree Decision Problem. �
By constructing multiple copies of the instance used in the last proof it can be shown
that there is not even an asymptotic (2 − ε) approximation algorithm for the Sink
Clustering Problem in metrics where the Steiner Minimum Tree Problem is
NP -complete.

1.1.3 The Sink Clustering Algorithm

We now describe the first approximation algorithm for the Sink Clustering Prob-
lem. It relies on the following simple idea: First we build a minimum spanning tree on
D. Then we remove some of the longest edges, which decomposes the tree into some
components. Finally, we split up components that are overloaded.

Definition 1.3. The Steiner ratio is the supremum of the length of a minimum span-
ning tree over the length of a minimum Steiner tree:

α := sup
D′⊆V,D′ finite,|D′|>1

c(MST (D′))

c(SMT (D′))
.

Remark 1.4. In any metric space the Steiner ratio is at most 2. In the special case
of the rectilinear plane (R2, l1) Hwang [1976] has shown that α = 3

2
.

A First Lower Bound

Now we show a simple way to compute a lower bound for the cost of an optimal
solution. It will help us to prove the approximation factor of the below algorithm. In
Chapter 1.3 we will develop more sophisticated lower bounds. But first we have to
introduce some definitions.

Definition 1.5. A k-spanning forest and a k-Steiner on D is a forest F with V (F ) = D
and D ⊆ V (F ) ⊆ V , respectively, containing exactly k components.

Every clustering (k, {(Di, Si)}1≤i≤k) yields a k-Steiner forest (D,
⋃

1≤i≤k E(Si)).
Let T be a minimum spanning tree on D and denote by e1, . . . , en−1 the edges of T
in non-increasing order, i.e. c(e1) ≥ c(e2) ≥ . . . ≥ c(en−1). Now define F1 := T and
recursively Fi := (D,E(Fi−1) \ {ei−1}) for i = 2, . . . , n.
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Lemma 1.6. Fk is a minimum k-spanning tree for all 1 ≤ k ≤ n.

Proof. Obviously, Fk if a k-spanning forest. Assume there is a shorter k-spanning forest
F ′. As T is a spanning tree you can find k − 1 edges E ⊂ E(T ) so that F ′ plus E
is a spanning tree again. E contains k − 1 edges so by the order of the ei’s clearly∑

e∈E c(e) ≤
∑k−1

i=1 c(ei). But then c(F ′) + c(E) < c(Fk) +
∑k−1

i=1 c(ei) = c(T ). This is
a contradiction to the minimality of the spanning tree T . �
This Lemma can also be proved using matroid theory (a short excursion into matroid
theory can be found in Section 1.3.2). Further note that Kruskal’s minimum spanning
tree algorithm iteratively computes Fn, Fn−1, . . . , F2, F1 = T (see e.g. Korte and Vygen
[2008]).

Lemma 1.7. 1
α
c(Fk) is a lower bound for the length of a minimum k-Steiner forest for

all 1 ≤ k ≤ n.

Proof. For k ∈ {1, . . . , n} let Sk be a minimum Steiner forest. Replace each connected
component of Sk by a minimum spanning tree on the same set of vertices. We get a
k-spanning forest F that costs at most α times the cost of Sk. The cost of a minimum
k-spanning forest cannot be higher than the cost of F . �

Lemma 1.8. Let tlb be the smallest integer that satisfies

1

α
c(Ftlb) + d(D) ≤ tlb · u. (1.3)

tlb is a lower bound for the number of clusters of any feasible clustering.

Proof. Let
(
k, {(Di, Si)}i∈{1,...,k}

)
be a feasible clustering. Using Lemma 1.7 we con-

clude:

1

α
c(Fk) + d(D) ≤

k∑
i=1

c(Si) + d(D)

=
k∑

i=1

(c(Si) + d(Di))

≤ k · u.

Thus (1.3) is a necessary condition that there is a feasible clustering with tlb clusters.
�
Now we can establish our first lower bound:

Lemma 1.9.

min
tlb≤t≤n

(
1

α
c(Ft) + t · f

)
is a lower bound for the cost of any feasible clustering.
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Proof. Again let
(
k, {(Di, Si)}i∈{1,...,k}

)
be a feasible clustering. The cost of it is

k∑
i=1

c(Si) + k · f ≥ 1

α
c(Fk) + k · f.

Moreover, by Lemma 1.8 any feasible solution has at least tlb clusters, which completes
the proof. �
We denote by t∗ the smallest t for which the minimum in Lemma 1.9 is attained,
Lr := 1

α
c(Ft∗) and Lf := t∗ · f . Then Lr + Lf is a lower bound for the cost of an

optimum solution. Moreover, the proof of Lemma 1.9 implies

Lr + d(D) ≤ Lf
u

f
. (1.4)

Approximation Algorithm

The previous observations give us the mathematical basis for the Sink Clustering
Algorithm that will be presented now.
For D′ ⊂ D and a tree T ′ with D′ ⊆ V (T ′) ⊆ V we set load(D′, T ′) := c(T ′) + d(D′).
We call a cluster (D′, T ′) overloaded if load(D′, T ′) > u.
The algorithm first computes a minimum spanning tree T on D. Then it computes
t∗ and removes the t∗ − 1 longest edges from T . This yields a t∗-spanning forest F ′.
Every component T ′ of F ′ induces a cluster (D ∩ V (T ′), T ′). If none of these clusters
is overloaded we have a feasible clustering that costs at most α times the optimum.
Otherwise, let (D′, T ′) be an overloaded component. We will split up subtrees from T ′

and reduce the load of T ′ by at least u
2

for each additional component.
By duplicating vertices and adding edges of length 0 we transform T ′ into a rooted
binary tree with an arbitrarily chosen element r ∈ D′ := V (T ′) ∩ D as the root and
the elements in D′ \ {r} as the leaves. We set d(v) := 0 for every newly inserted vertex
v. For every vertex v ∈ V (T ′) we denote by Tv the subtree rooted at v.
Now let v ∈ V (T ′) be a vertex with maximum distance to r and load(D∩V (Tv), Tv) > u.
v is no leaf, thus v /∈ D and d(v) = 0. As T ′ is a binary tree, v has a successor w with
load(D ∩ V (Tw), Tw) + c({v, w}) ≥ u

2
. We split off Tw and remove the edge (v, w) from

T ′. Then we continue the splitting until no overloaded components are left.

Lemma 1.10. The algorithm computes a solution of cost at most

αLr + 3Lf + 2
f

u
(α− 1)Lr.

Proof. The number of new clusters created by splitting overloaded components is at
most 2

u
load(D,T ). Thus the cost of the solution computed by the algorithm is at most

c(Ft∗) + t∗ · f +
2

u
(c(Ft∗) + d(D)) · f = αLr + Lf +

2f

u
(αLr + d(D))

≤ αLr + 3Lf + 2
f

u
(α− 1)Lr.

In the last inequality we used (1.4). �
Using (1.4) again we get
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Theorem 1.11. The Sink Clustering Algorithm is a (2α + 1)-approximation
algorithm. �

If f
u

is small we get an even better result:

Corollary 1.12. For instances with f
u
≤ φ, the Sink Clustering Algorithm com-

putes a solution of cost at most max{3, α+2αφ+φ
1+φ

} times the optimum.

Proof. Set δ := max{3, α+2αφ+φ
1+φ

}. Then f
u
≤ φ ≤ δ−α

2α+1−δ
. By Lemma 1.10, the cost of

the solution is at most:

αLr + 3Lf + 2
f

u
(α− 1)Lr = αLr + 3Lf + ((δ − 3) + (2α+ 1− δ))f

u
Lr

≤ αLr + 3Lf + (δ − 3)Lf + (2α+ 1− δ)φLr

≤ δ(Lr + Lf ).

We used (1.4) in the first inequality. �

Lemma 1.13. The running time of the Sink Clustering Algorithm is dominated
by computing a minimum spanning tree on D.

Proof. Obviously, detecting overloaded components and splitting them up can be done
in linear time. Now we show how to compute tlb in linear time if the minimum spanning
tree T is already computed. To this end, we use the Weighted Median Problem:
Given an integer n, numbers z1, . . . , zn ∈ R, w1, . . . , wn ∈ R and a number W with
0 < W ≤

∑n
i=1wi, find the unique number z∗ for which∑

i:zi<z∗

wi < W ≤
∑

i:zi≤z∗

wi. (1.5)

The Weighted Median Problem can be solved in linear time (see e.g. Bleich and
Overton [1983], Johnson and Mizoguchi [1978], Reiser [1978], Shamos [1976]).
Let e1, . . . , en−1 be the edges of the minimum spanning tree T . We cannot expect
that these edges are sorted in some way. Let π : {1, . . . , n − 1} → {1, . . . , n − 1}
be a permutation so that c(eπ(1)) ≥ c(eπ(2)) ≥ . . . ≥ c(eπ(n−1)). Then we can rewrite
inequality (1.3) and conclude that tlb is the unique integer satisfying

tlb−2∑
i=1

(
u+

1

α
c(eπ(i))

)
<

1

α
c(T ) + d(D)− u ≤

tlb−1∑
i=1

(
u+

1

α
c(eπ(i))

)
.

We get an instance of the Weighted Median Problem by setting W := 1
α
c(T ) +

d(D)−u, wi := u+ 1
α
c(ei) and zi = −c(ei) for 1 ≤ i ≤ n−1. Applying the Weighted

Median Algorithm we get a number z∗ satisfying (1.5).
Set Z := {e ∈ E(T )| c(e) > −z∗} and W ′ :=

∑
e∈Z

1
α
c(e) + u. Then tlb =

⌈
W−W ′

u−z∗

⌉
+

|Z| + 1. Moreover, t∗ = max{tlb, |{e ∈ E(T )| 1
α
c(e) ≥ f}|}, Z,W ′ and tlb can be

computed in linear time.
We conclude that the running time is dominated by computing the minimum spanning
tree. �
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1.1.4 Variants of the Sink Clustering Algorithm

In the Sink Clustering Algorithm we built a spanning tree, removed some of
the longest edges and finally split up overloaded components. Now we will present
two variants of the algorithm where we first build an approximate Steiner tree and an
approximate minimum tour, respectively, remove some of the longest edges and finally
split up overloaded components.

Sink Clustering Algorithm on Steiner Trees

For the Sink Clustering Algorithm on Steiner Trees we set λ := uf
u+2f

and

let c′ be the metric defined by c′(v, w) := min{c(v, w), λ} for all v, w ∈ V . First
we compute a Steiner tree S on D in (V, c′) with an approximation algorithm with
performance guarantee β. Then we delete all edges of length λ from S. If the resulting
forest F contains overloaded components, they are split up as in the first algorithm.
We get a feasible clustering.

Corollary 1.14. The cost of the clustering is

c′(S)

(
1 +

2f

u

)
+ f +

2f

u
d(D).

Proof. Let t be the number of edges in S of length λ. Then the load of the forest F is
c′(S)− tλ+ d(D). For each component generated by splitting, this load is reduced by
at least u

2
.

Thus the number of clusters is at most 1 + t+ 2
u
(c′(S)− tλ+ d(D)), and the total cost

is at most

(c′(S)− tλ) + f + tf +
2f

u
c′(S)− 2tλf

u
+

2f

u
d(D)

= c′(S)

(
1 +

2f

u

)
+ t

(
f − λ− 2λf

u

)
+ f +

2f

u
d(D).

Using f = λ+ 2λf
u

we get the desired formula. �

Let
(
k, {(Di, Si)}i∈{1,...,k}

)
be an optimum clustering. We set Lr :=

∑k
i=1 c(Si) and

Lf := k · f . Clearly,

Lr + d(D) ≤ Lf
u

f
. (1.6)

Note that the optimum clustering can be extended to a Steiner tree on D by adding
k − 1 =

Lf

f
− 1 edges. Hence there is a Steiner tree on D in (V, c′) of length at most

Lr +
(

Lf

f
− 1
)
λ. Our Steiner tree S is at most β times longer. We conclude that the

total cost of our clustering is bounded by
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β

(
Lr +

(
Lf

f
− 1

)
λ

)(
1 +

2f

u

)
+ f +

2f

u
d(D)

= Lr

(
β + β

2f

u

)
+ βLfλ

(
1

f
+

2

u

)
+ f − β

(
λ+

2λf

u

)
+

2f

u
d(D)

≤ βLr +
2f

u
(βLr + d(D)) + βLf

≤ βLr + 3βLf .

We conclude:

Theorem 1.15. The Sink Clustering Algorithm on Steiner Trees has per-
formance ratio 3β for any metric. �

Using the Robins-Zelikovsky algorithm (Robins and Zelikovsky [2000]) for building the
Steiner trees we get a 4.648-approximation in polynomial time.
However, by a more careful analysis of this algorithm we can do even better. Recall
that the Robins-Zelikovsky algorithm works with a parameter k and analyzes all k-
restricted full components. Its running time is O(n4k) and the length of the Steiner
tree S it computes is at most

c′(E(Y ∗)) + c′(L∗) ln

(
1 +

c′(T )− c′(E(Y ∗))

c′(L∗)

)
, (1.7)

where T is a minimum spanning tree, Y ∗ is any k-restricted Steiner tree on D in (V, c′)
and L∗ is a loss of Y ∗, i.e. a minimum cost subset of E(Y ∗) connecting each Steiner
point of degree at least three in Y ∗ to a terminal.
Let ε > 0 be fixed. For k ≥ 2d

1
ε
e, an optimum k-restricted Steiner tree is at most

1 + ε times longer than an optimum Steiner tree (Du et al. [1991]). Thus taking an
optimum k-restricted Steiner tree for each component of our optimum solution and
adding edges to make the graph connected, we get a k-restricted Steiner tree Y ∗ with

c′(E(Y ∗)) ≤ (1 + ε)Lr +
(

Lf

f
− 1
)
λ, and with loss L∗ of length c′(L∗) ≤ 1+ε

2
Lr.

The derivative of (1.7) with respect to c′(E(Y ∗)) is 1 − c′(L∗)
c′(L∗)+c′(T )−c′(E(Y ∗))

. This is

positive, as c′(T ) ≥ c′(E(Y ∗)). Moreover, c′(T ) ≤ αLr +
(

Lf

f
− 1
)
λ, where α is again

the Steiner ratio. We conclude

c′(S) ≤ (1 + ε)Lr +

(
Lf

f
− 1

)
λ+ c′(L∗) ln

1 +
c′(T )− (1 + ε)Lr −

(
Lf

f
− 1
)
λ

c′(L∗)


≤ (1 + ε)Lr +

(
Lf

f
− 1

)
λ+ c′(L∗) ln

(
1 +

(α− 1− ε)Lr

c′(L∗)

)
≤ (1 + ε)Lr +

(
Lf

f
− 1

)
λ+ (α− 1)Lr

c′(L∗)

(α− 1)Lr

ln

(
1 +

(α− 1)Lr

c′(L∗)

)
≤ (1 + ε)Lr +

(
Lf

f
− 1

)
λ+ Lr

1 + ε

2
ln(1 + 2(α− 1)),
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as max{x ln(1 + 1
x
)| 0 < x < 1+ε

2(α−1)
} = 1+ε

2(α−1)
ln
(
1 + 2(α−1)

1+ε

)
.

For α = 2 we get

c′(S) ≤ (1 + ε)

(
1 +

ln 3

2

)
Lr +

(
Lf

f
− 1

)
λ. (1.8)

For simplicity of notation, we set β′ := (1 + ε)
(
1 + ln 3

2

)
(note that β′ < 1.5495 for

ε ≤ 104). Using (1.8) with Corollary 1.14 and applying (1.6) we get that the Sink
Clustering Algorithm on Steiner Trees computes a solution of total cost at
most (

β′Lr +

(
Lf

f
− 1

)
λ

)(
1 +

2f

u

)
+ f +

2f

u

(
u

f
Lf − Lr

)
= Lr

(
β′ + (β′ − 1)

2f

u

)
+ Lf

(
λ

f
+

2λ

u
+ 2

)
+ f −

(
1 +

2f

u

)
· λ

= Lr

(
β′ + (β′ − 1)

2f

u

)
+ 3Lf

≤ β′Lr + (2β′ + 1)Lf .

We have shown

Lemma 1.16. The Sink Clustering Algorithm on Steiner Trees with the
Robins-Zelikovsky algorithm (with parameter k = 210000) is a 4.099-approximation al-
gorithm. �

Sink Clustering Algorithm on TSP

For the Sink Clustering Algorithm on TSP we set λ′ := fu
u+f

and define the

metric (V, c′′) by setting c′′(v, w) := min{c(v, w), λ′} for all v, w ∈ V .

First the algorithm computes a tour T onD in (V, c′′) using an approximation algorithm
for the TSP with performance ratio γ. Set δ := max{c′′(e)| e ∈ E(T )}.
Then the algorithm deletes all edges of length λ′ from T . If there is no such edge it
deletes an edge of length δ. Let t be the number of deleted edges and let P 1, . . . , P t be
the resulting paths. For each j = 1, . . . , t we split up the path P j into paths P j

1 , . . . , P
j
kj

such that load(D ∩ V (P j
i ), P j

i ) ≤ u and load(D ∩ V (P̃ j
i ), P̃ j

i ) > u for i = 1, . . . , kj − 1,
where P̃ j

i is P j
i plus the edge connecting P j

i and P j
i+1. This yields a feasible clustering.

To show that the tour T is not too long we need the following Corollary.

Corollary 1.17. Let (V, c) be a metric space, T a tree with V (T ) ⊆ V, |V (T )| ≥ 2,
and a, b ∈ V (T ), a 6= b. Then there exists a path P from a to b with V (P ) = V (T ) and
c(P ) ≤ 2c(T ).

Proof. Let Q be the a-b-path in T and H be the graph obtained from T by doubling all
edges except those of Q and adding the edge {a, b}. H is Eulerian and thus contains
a Eulerian walk. Removing {a, b} and short-cutting where vertices appear not for the
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first time results in an Hamiltonian path P from a to b which is not longer than 2c(T ).
�
Let

(
k, {(Di, Si)}i∈{1,...,k}

)
be an optimum clustering. We again set Lr :=

∑k
i=1 c(Si)

and Lf := k · f . And again we get

Lr + d(D) ≤ Lf
u

f
. (1.9)

If k = 1 let e′ be an arbitrary edge of T . If k > 1 we can reorder S1, . . . , Sk such
that T contains an edge e′ = {vk, w1} with vk ∈ V (Sk) and w1 ∈ V (S1). Now we
choose additional vertices vi ∈ V (Si) and wi+1 ∈ V (Si+1) (i = 1, . . . , k − 1) such that
vi 6= wi for i = 1, . . . , k with |V (Si)| > 1. e′ is an edge of T so c′′(e′) ≤ δ. Moreover,
c′′({vi, wi+1}) ≤ λ′ for i = 1, . . . , k − 1. Using Corollary 1.17 we conclude that there is
a tour on D of length at most

Lr +
k−1∑
i=1

c′′({vi, wi+1}) + c′′(e′) ≤ 2Lr + (k − 1)λ′ + δ.

The computed tour T is at most γ times longer, i.e.

c′′(T ) ≤ 2γLr + γ(k − 1)λ′ + γδ.

The algorithm deleted t edges of length at most δ. So the resulting paths P 1, . . . , P t

has length at most

2γLr + γ(k − 1)λ′ + γδ − tδ. (1.10)

In the case t > 1, we have δ = λ′ and (1.10) is equal to

2γLr + γkλ′ − tλ′

= 2γLr + γ
λ′

f
Lf − tλ′.

In the case t = 1, (1.10) is maximized for δ = λ′ as γ ≥ 1, and we get again

c′′(T )− tδ ≤ 2γLr + γ
λ′

f
Lf − tλ′.

Now note that by the construction of the paths,
∑kj−1

i=1 load(D ∩ V (P̃ j
i ), P̃ j

i ) > u for
j = 1, . . . , t and hence 2d(D) + c′′(T ) − tδ >

∑t
j=1(k

j − 1)u. We conclude that the
number of clusters is bounded by

t∑
i=1

kj <
1

u
(2d(D) + c′′(T )− tδ).
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Thus the total cost of the solution is at most:(
2γLr + γ

λ′

f
Lf − tλ′

)(
1 +

f

u

)
+ 2

f

u
d(D) + tf

(1.9)

≤
(

2γLr + γ
λ′

f
Lf − tλ′

)(
1 +

f

u

)
+ 2Lf − 2

f

u
Lr + tf

= Lr

(
2γ + 2(γ − 1)

f

u

)
+ Lf

(
2 + γλ′

(
1

f
+

1

u

))
+ tf + tλ′

(
1 +

f

u

)
= Lr

(
2γ + 2(γ − 1)

f

u

)
+ Lf (2 + γ)

≤ 2γLr + 3γLf .

We conclude

Theorem 1.18. The Sink Clustering Algorithm on TSP has performance guar-
antee 3γ for any metric. �

Using the best known polynomial approximation algorithm for TSP (Christofides [1976])
we get a 4.5-approximation algorithm.
Table 1.1 summarizes the approximation ratios and running times of the presented
algorithms.

algorithm metric factor runtime
Sink Clustering Algorithm (R2, l1) 4 n log n
Sink Clustering Algorithm general 5 n2

Sink Clustering Algorithm on Steiner trees general 4.099 n210000

Sink Clustering Algorithm on TSP general 4.5 n3

Table 1.1: Overview of the approximation ratios and running times of all presented
algorithms for the Sink Clustering Problem.

1.1.5 Analysis

Tight Examples for the Sink Clustering Algorithm

Now we give an example showing that the performance guarantee of the Sink Clus-
tering Algorithm is not better than five:
First we define the metric (V, c) with V := {0, 1, . . . , 4m(m + 2)}, c(0, i) := 1 and
c(i, j) := 2 for all i, j ∈ V \{0}, i 6= j. Let D := V \{0}, u := 4m, f � m and d(i) := 0
for all i ∈ D. Then an optimum solution has cost (m + 2)f + 4m(m + 2). The Sink
Clustering Algorithm could build the spanning tree

T = {{i, i+1}| i ∈ D\{i(m+2)| i = 1, . . . , 4m}}∪{{1, i(m+2)+1}| i = 1, . . . , 4m−1}.

In this case, the algorithm computes t∗ = m+2 and could end up with Ft∗ = T \{{i(m+
2)− 1, i(m + 2)}| i = 1, . . . ,m + 2}. 4m− 1 components have to be split up until the
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Figure 1.1: Clustering instance in the rectilinear plane for m = 2. The left side shows
an optimal clustering, the right side a clustering produced by the Sink
Clustering Algorithm. The blue dotted edges are removed to con-
struct Ft∗ , the red ones are removed when splitting up components.

clustering is feasible. The total cost of the solution is (5m + 1)f + 2(4m − 1)(m + 2)
which is arbitrarily close to 5 times larger than the optimum if f is large enough.
Even in the rectilinear plane the performance guarantee of the Sink Clustering
Algorithm is not better than 4 (see Figure 1.1).
Let D := {vi,j := (2i, 2j), v′i,j := (2i+1, 2j+1)| i = 1, . . . , 3m−1, j = 1, . . . , 3m} ⊂ R2,
u := 12m − 5, f � m and d(v) := 0 for all v ∈ D. An optimum solution has cost
2mf + 24m2 − 10m.
The algorithm might compute the spanning tree T = {{vi,j, vi,j+1}, {v′i,j, v′i,j+1}| i =
2, . . . , 3m−1, j = 1, . . . , 3m−1}∪{{vi,3m, v

′
i,3m}| i = 1, . . . , 3m−1}∪{{vi,3m, v

′
i−1,3m}| i =

2, . . . , 3m− 1}. Each edge of T has length 2. As α = 3
2

in the rectilinear plane we get
t∗ = 2m. Then the algorithm might compute Ft∗ = T \ {{vi,1, vi,2}| i = 1, . . . , 2m− 1}
and the total cost of the final solution is 36m2 − 28m + 6 + (8m − 3)f . For f large
enough this is arbitrarily close to 4 times larger than the optimum.
For the Sink Clustering Algorithm on Steiner Trees and the Sink Clus-
tering Algorithm on TSP no tight examples are known. They would depend on
the approximation algorithms used to compute an approximate minimum Steiner tree
and TSP tour,respectively.
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1.2 Post Optimization

In this section we present two heuristical post optimization algorithms that can improve
an existing feasible clustering. The first algorithm tries to improve pairs of clusters
while the second one tries to improve chains of clusters.

In both algorithms we only consider clusters that are ‘near’ to each other, so we use a
neighborhood graph G on D. Two clusters (DA, SA) and (DB, SB) are called neighbors
if they contain sinks a ∈ DA and b ∈ DB with {a, b} ∈ E(G). In the rectilinear plane
a Delaunay triangulation could be used as neighborhood graph.

1.2.1 TwoClusterOpt

The first post optimization algorithm tries to improve the cost of two clusters that are
neighbors by redistributing their sinks (see Figure 1.2):

Let (DA, SA) and (DB, SB) be two clusters that are neighbors. We compute an approx-
imate Steiner tree SA∪B on A ∪ B by some Steiner heuristic. Then (DA ∪ DB, SA∪B)
forms a (not necessary feasible) cluster. If the load of (DA ∪ DB, SA∪B) is at most u
the cluster is feasible. If, moreover, the cost of the new cluster is smaller than the cost
of the initial two clusters we can replace them by the new one and reduce the total
cost. In this case we have merged the two clusters.

i) ii) iii)

Figure 1.2: Example for TwoClusterOpt. i) shows the initial two clusters. In ii) an
approximate minimum Steiner tree on all sinks has been computed. iii)
shows the resulting two feasible clusters after removing an appropriate edge.

If the two clusters cannot be merged we try to split the tree SA∪B into two new clusters:
Removing an edge e of SA∪B we get two Steiner trees S1

e and S2
e . Note that one or

both endpoints of e might be Steiner points. Let D1
e ⊂ A ∪ B be the sinks that are

connected by S1
e and D2

e ⊂ A∪B be the sinks that are connected by S2
e . C

1
e = (D1

e , S
1
e )

and C2
e = (D2

e , S
2
e ) are two clusters covering DA ∪ DB. Let e ∈ E(SA∪B) be an edge

of maximum cost so that C1
e and C2

e are feasible. If no such edge exists or the cost
of the two new clusters is greater than or equal to the cost of the initial two clusters
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we cannot improve them. Otherwise, we replace (DA, SA) and (DB, SB) by the new
clusters (D1

e , S
1
e ) and (D2

e , S
2
e ) and reduce the cost of the clustering.

Finding an edge e ∈ E(SA∪B) of maximum cost so that C1
e and C2

e are feasible or
deciding that no such edge exists can be done in linear time. To this end, we transform
the tree into an arborescence by selecting an arbitrary vertex s ∈ V (SA∪B) of degree
1 as root. By traversing the arborescence bottom-up from the leaves to s we compute
for every vertex v ∈ V (SA∪B) the capacitance cv of the sub-tree rooted at v. Note that
cv = d(v)+

∑
w∈δ+(v)(c(v, w)+ cw) with d(v) = 0 if v /∈ D is a Steiner point. Removing

an edge e = (v, w) ∈ E(SA∪B) creates two clusters, one of load cw and one of the total
load of SA∪B minus the capacitance of e and cw.

1.2.2 ChainOpt

The second post optimization algorithm tries to optimize a chain of clusters by moving
parts of one cluster to another. Figures 1.3 and 1.4 illustrate the work of ChainOpt.

The input of the main subroutine are two clusters that are neighbors. The goal is
to move load from the second cluster to the first one. For this, let (DA, SA) and
(DB, SB) be two clusters and a ∈ DA and b ∈ DB with c({a, b}) minimal. SA∪B =
SA ∪ {{a, b}} ∪ SB is a Steiner tree on DA ∪ DB. If the cluster (DA ∪ DB, SA∪B) is
feasible the routine returns the merged cluster. If not, removing an edge e ∈ SB from
SA∪B creates two new clusters - one of them containing SA. We denote this cluster by
Ce

A and the other one by Ce
B. If there is no edge e ∈ SB such that both clusters Ce

A and
Ce

B are feasible, the subroutine cannot improve the clustering. Otherwise, it chooses
an edge e ∈ SB so that Ce

A and Ce
B are feasible and the load of Ce

B is minimized.

The algorithm ChainOpt applies this subroutine iteratively on a chain of clusters. It
starts with two clusters C1 and C2 that are neighbors. Let e1 be an edge of minimum
length connecting C1 and C2. Now we can use the subroutine on C1, C2 and e1. If the
subroutine is not successful we cannot improve this pair of clusters. If the clusters can
be merged and cost less than the initial clusters we merge them. Otherwise, let C ′

1 and
C ′

2 be the two new clusters.

Now the iteration steps on: Assume we have constructed C ′
k−1 and C ′

k, then we look
for a cluster Ck+1 that is a neighbor of C ′

k. Let ek be an edge of minimum length
connecting them and apply the subroutine on C ′

k, Ck+1 and ek. Now again three cases
can occur: The subroutine

1. was not successful,

2. merged both clusters into one cluster C ′′
k or

3. returns two new clusters C ′′
k and C ′

k+1.

If it was not successful we check if the cost of the clusters C ′
1, C

′′
2 , . . . , C

′′
k−1, C

′
k is smaller

than the cost of the initial clusters C1, . . . , Ck. In this case we replace the initial clusters
by the new ones. Otherwise, we dismiss the chain.

If the clusters were merged into one cluster C ′′
k we have got a new chain C ′

1, C
′′
2 , . . . , C

′′
k .

If its cost is smaller than the cost of the initial clusters C1, . . . , Ck+1 we replace them
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and dismiss them otherwise. Note that the old chain contains one cluster more than
the new one.
In the third case we continue with the next iteration. In order to limit the running
time of the algorithm the lengths of the chains can be limited.

C1 C2 C3 C4 C5 C6C7 C8 C9 C10

Figure 1.3: Clustering before applying ChainOpt. Only the clusters that are considered
in the current chain are plotted. The dotted edges are the ones to be
inserted and the black edges the ones to be deleted.

C ′
1 C ′′

2 C ′′
3 C ′′

4 C ′′
5 C ′′

6C
′′
7 C ′′

8 C ′′
9

Figure 1.4: Clustering after applying ChainOpt.
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1.3 Lower Bounds

In this chapter we establish improved lower bounds for the Sink Clustering Prob-
lem. We already presented a simple lower bound in Section 1.1.3 that was based on
building a minimum spanning tree and removing the longest edges until a capacitance
constraint is satisfied.
In Section 1.3.1 we will use a lower bound for the length of a minimum Steiner tree on
D in order to get bounds for our problem. After making a short excursion into matroid
theory we will introduce the concept of K-dominating functions in Section 1.3.3. They
will help us to analyze clustering instances more locally and yield new lower bounds.
Finally, in Section 1.3.4 we establish bounds that combine the ideas of the previous
approaches.
For the rest of this chapter let

(
ko, {(Do

i , S
o
i )}i∈{1,...,ko}

)
be an optimum solution, i.e. a

feasible solution that minimizes the cost function (1.2).

1.3.1 Lower Bound Based on Minimum Steiner Trees

We have seen that the clusters of a feasible clustering induce a k-Steiner forest on D
for some k ∈ N. But then there exist k − 1 edges of a minimum spanning tree so
that the Steiner forest plus these edges form a Steiner tree on D connecting all sinks.
We will use this observation in order to get a lower bound for the cost of our Sink
Clustering Problem.
Let lSMT be a lower bound for the length of a minimum Steiner tree on D and let T
be a minimum spanning tree on D. Moreover, let

(
kfeas, {(Dfeas

i , Sfeas
i )}i∈{1,...,kfeas}

)
be a

feasible clustering with kfeas clusters. Then there exists a set of edges E ′ ⊆ E(T ) with

|E ′| = kfeas − 1 so that G = (D,
⋃kfeas

i=1 E(Sfeas
i ) ∪ E ′) is connected. G is a Steiner tree

on D and therefore
∑kfeas

i=1 c(Sfeas
i ) + c(E ′) = c(G) ≥ lSMT. We get

kfeas∑
i=1

c
(
Sfeas

i

)
≥ lSMT −

∑
e∈E′

c(e). (1.11)

Let e1, . . . , en−1 be the edges of T with c(e1) ≥ . . . ≥ c(en−1). Then

∑
e∈E′

c(e) ≤
kfeas−1∑

i=1

c(ei). (1.12)

As the solution is feasible we get

kfeas · u
(1.1)

≥ d(D) +
kfeas∑
i=1

c
(
Sfeas

i

)
(1.11)

≥ d(D) + lSMT − c(E ′)

(1.12)

≥ d(D) + lSMT −
kfeas−1∑

i=1

c(ei).
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And so we conclude:

Theorem 1.19. Let tSMT be the smallest integer satisfying

d(D) + lSMT −
tSMT−1∑

i=1

c(ei) ≤ tSMT · u.

Then tSMT is a lower bound for the number of facilities of any feasible solution.
Moreover,

min
t≥tSMT

(
lSMT −

t−1∑
i=1

c(ei) + t · f

)
is a lower bound for the cost of an optimum solution.

Lemma 1.20. The computation of the lower bound in the last theorem is as fast as
computing a lower bound for a minimum Steiner tree and constructing a minimum
spanning tree.

Proof. Observe that tSMT can be computed in linear time by using the Weighted
Median Algorithm similar as in the proof of Lemma 1.13. �

1.3.2 Excursion into Matroid Theory

We have already noted that the forests on D form a matroid. As an important prop-
erty of matroids will be used extensively in the following section we now give a short
excursion into matroid theory. We are using the notations of Korte and Vygen [2008].

Definition 1.21. A set system (E,F) with E finite and F ⊆ 2E is a matroid if

(M1) ∅ ∈ F ,

(M2) if X ⊆ Y and Y ∈ F then X ∈ F ,

(M3) if X, Y ∈ F and |X| > |Y |, then there is an x ∈ X \ Y with Y ∪ {x} ∈ F .

A set X ∈ F is called independent and a set X /∈ F is called dependent. A maximal
independent set is called basis and a minimal dependent set is called circuit.

Now we show the well-known result that the forests on D form a matroid:

Lemma 1.22. Let G be a graph.
Then (E(G),F) with F = {F ⊆ E(G)| (V (G), F ) is a forest} is a matroid.

Proof. (M1) and (M2) are trivial. Let X and Y ∈ F with |X| > |Y |. We have to
show that there is an edge e ∈ X so that (V (G), Y ∪ {e}) is a forest. As |X| > |Y |
the forest (V (G), Y ) has at least one connected component more than (V (G), X). But
then there must be an edge e ∈ X that connects two different connected components
of (V (G), Y ). Thus Y plus e forms a new forest. �
The following lemma is essential for the next section.
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Lemma 1.23. Let M = (E,F) be a matroid and X, Y be two bases. There exists a
bijective mapping π : X → Y such that (X \ {a}) ∪ {π(a)} is a basis for all a ∈ X.

Proof. The original proof is due to Gabow et al. [1974] (see also von Randow [1975]).
It uses some observations that can be concluded directly from the matroid properties.
In our proof we will use Hall’s condition.
We define the bipartite graph G = (V,E) with V := X∪̇Y and E := {(a, b)| a ∈ X, b ∈
Y, (X ∪ {b}) \ {a} ∈ F}. We will show that G satisfies the Hall condition: For all
X ′ ⊆ X the number of neighbors of X ′ is at least as big as |X ′|, i.e. |Γ(X ′)| ≥ |X ′|.
Then by Hall’s Theorem (Hall [1935]) there is a matching covering X and this matching
induces the desired bijective mapping.
Let X ′ ⊆ X. M is a matroid and thus there is a set Y ′ ⊆ Y so that (X \X ′) ∪ Y ′ is
a base. Now we show that for any b ∈ Y ′ there is an a ∈ X ′ so that (a, b) ∈ E. This
implies Y ′ ⊆ Γ(X ′) and thus |Γ(X ′)| ≥ |Y ′| = |X ′| and we are done.
To this end, assume that there is a b ∈ Y ′ so that for each a ∈ X ′ we have (a, b) /∈ E. As
X is a basis there is a unique circuit C ⊆ X∪{b} (see e.g. Welsh [1976]). For all a ∈ X ′

the set (X∪{b})\{a} is dependent, X\{a} is independent and (X∪{b})\{a} ⊆ X∪{b}.
We conclude C ⊆ (X ∪{b})\{a} for all a ∈ X ′ and therefore C ⊆ X := (X ∪{b})\X ′,
i.e. X is dependent. ButX is a subset of the independent set (X∪Y ′)\X ′ contradicting
that M is a matroid. �

1.3.3 An Improved Lower Bound using ‘K-dominated’ Functions

When computing the previous lower bounds, we always removed the k − 1 longest
edges from the minimum spanning tree in order to get a lower bound for the length of
a k-Steiner forest. This might be too pessimistic as we had only a ‘global’ look at the
instance.
Assume that there is a set of sinks D′ ⊆ D so that the distance to any other sink of
D is ‘long’. Then any cluster containing both sinks in D′ and sinks outside of D′ also
contains a ‘long’ edge. To make this statement more precise, we introduce the concept
of ’K-dominated’ functions in this section. They will help us to analyze the instances
more locally and yield improved lower bounds for the Sink Clustering Problem.

Preliminaries

Adding an artifical vertex r we define the metric space (V ′, c′) with V ′ := V ∪ {r},
c′(v, w) := min{ 1

α
c(v, w), f} for v, w ∈ V and c′(v, r) := c′(r, v) := f for v ∈ V . Here α

denotes the Steiner ratio again. Let
(
ko, {(Do

i , S
o
i )}i∈{1,...,ko}

)
be an optimum clustering

in (V, c). For i ∈ {1, . . . , ko} let T o
i be a minimum spanning tree on Do

i ∪{r} in (V ′, c′).
Then

c′(T o
i ) ≤ c(So

i ) + f (1.13)

for all i and
∑ko

i=1 c
′(T o

i ) is a lower bound for the cost of an optimum solution.

T o = (D ∪ {r},
⋃ko

i=1E(T o
i )) is a spanning tree on D ∪ {r}. We choose a minimum

spanning tree T on D ∪ {r}. Each edge has length at most f and all edges incident to
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r have length exactly f so we can assume without loss of generality that r has degree
1 in T , i.e. |δT (r)| = 1. T o and T can be interpreted as arborescences rooted at r.
Figures 1.5 and 1.6 show an example which will be used throughout the rest of this
section to illustrate the next lower bound.

s10

s7

s9

s6

s4

s1

s5

s3

s11

s8

s12

s2

1

1

1

1

1

0

0

0

0

0

0

0

Figure 1.5: An instance in the rectilinear plane with 12 sinks, D := {s1, . . . , s12}. The
distance between two consecutive grid lines is 1. The demands are printed
next to the sinks in the middle picture. Moreover, u := 7 and f := 10. The
right picture shows an optimum clustering of cost 63.

Definition 1.24. For a sink v ∈ D let eT (v) be the unique edge in T ending in v and
ET (W ) := {eT (v)|v ∈ W} for W ⊆ D.

For i ∈ {1, . . . , ko} we denote by Ti the graph obtained by removing the edges of ET (Do
i )

from T and adding the edges of E(T o
i ), i.e. Ti := (D ∪ {r}, (E(T ) \ ET (Do

i )) ∪ E(T o
i )).

T o

r
T

r
Ti

r

Figure 1.6: The tree T o, the minimum spanning tree T and the arborescence Ti for the
i belonging to the red cluster.

Lemma 1.25. Ti is a spanning tree on D ∪ {r} for all i ∈ {1, . . . , ko}.

Proof. As |Do
i | = |ET (Do

i )| = |E(T o
i )| it is sufficient to show that every vertex v ∈ D

is reachable from r in Ti. T
o
i is a spanning tree rooted at r so all vertices v ∈ Do

i are
reachable from r in T o

i ⊆ Ti.
Choose v ∈ D \Do

i and let P be the unique path from r to v in T . If V (P ) ∩Do
i = ∅

then P is completely contained in Ti and we are done. Otherwise, let w ∈ V (P ) ∪Do
i

be the last vertex of Do
i on P and denote by Pw the path from w to v in P . By the

choice of w there is no vertex in V (Pw) \ {w} that is also contained in Do
i , so Pw ⊆ Ti.
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Moreover, we know that w ∈ Do
i so w is reachable from r in Ti by a path P ′

w ⊆ Ti.
Connecting P ′

w and Pw yields an r-v-path in Ti. �
T and Ti are spanning trees on D ∪ {r}. By Lemma 1.23 there exists a bijective
mapping πi : ET (Do

i ) → E(T o
i ) so that (D ∪ {r}, E(T ) \ {e} ∪ {πi(e)}) is a spanning

tree for all e ∈ ET (Do
i ) and πi(e) = e for all e ∈ E(T ) \ ET (Do

i ).

Remark 1.26. For all e ∈ ET (Do
i ) the graph T ∪ {πi(e)} contains a unique circuit C

with {e, πi(e)} ⊆ E(C).

T

b

a

c

c

a b

a

b

c

a

c
b

T o

a

b c

a

bc

a

b

c

a

b c

Figure 1.7: Illustration of the bijective function π : E(T ) → E(T o). Edges with the
same label in the same color are mapped on each other.

As T is a minimum spanning tree we have c′(πi(e)) ≥ c′(e) for e ∈ ET (Do
i ).

ET (Do
1)∪̇ . . . ∪̇ET (Do

ko) is a partition of E(T ) so we can extend the mappings πi, i ∈
{1, . . . , ko} to a mapping π : E(T )→ E(T o) with π|Do

i
= πi (see Figure 1.7).

Remark 1.27. Note that π(e) = e for all e ∈ E(T ) ∩ E(T o).

For simplicity we define cπ : E(T )→ R+ by cπ(e) := c′(π(e)) for all e ∈ E(T ).

K-dominated Functions

We have to introduce some more definitions in order to handle the new bounds.
Let K ⊆ D. For each vertex v ∈ K there exists exactly one edge of T ending in v, thus
|K| = |ET (K)|. For a function g : E(T )→ R+ let eg,K

1 , . . . , eg,K
|K| be the edges of ET (K)

sorted in non-increasing order with respect to g, i.e. g(eg,K
1 ) ≥ g(eg,K

2 ) ≥ . . . ≥ g(eg,K
|K| ).

Definition 1.28. Let g, h : E(T ) → R+ be two cost functions on the edges of T and
K ⊆ D. g is called K-dominated by h if g(eg,K

i ) ≤ h(eh,K
i ) for all i ∈ {1, . . . , |K|}.

Proposition 1.29. If K1, K2 ⊆ D, K1∩K2 = ∅, g, h : E(T )→ R+, g is K1-dominated
by h and g is K2-dominated by h then g is K1 ∪K2-dominated by h.

Proof. It is sufficient to show that for any j ∈ {1, . . . , |K1 ∪K2|} there are at least j
edges e ∈ ET (K1 ∪ K2) with g(eg,K1∪K2

j ) ≤ h(e). To show this, let p : {1, . . . , |K1 ∪
K2|} → {1, 2} be a function satisfying eg,K1∪K2

i ∈ ET (Kp(i)), 1 ≤ i ≤ |K1 ∪ K2|. As
K1 ∩K2 = ∅, each edge e ∈ ET (K1 ∪K2) is either in ET (K1) or in ET (K2) and thus
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the function p exists and is unique. Moreover, define π : {1, . . . , |K1 ∪ K2|} → N so

that eg,K1∪K2

i = e
g,Kp(i)

π(i) .

Now choose j ∈ {1, . . . , |K1 ∪ K2|}. Using that g is K1- and K2-dominated by h we
conclude that for every i ∈ {1, . . . , j} we have

g
(
eg,K1∪K2

j

)
≤ g

(
eg,K1∪K2

i

)
= g

(
e

g,Kp(i)

π(i)

)
≤ h

(
e

h,Kp(i)

π(i)

)
.

As K1 ∩K2 = ∅ the set
{
e

h,Kp(i)

π(i) | 1 ≤ i ≤ j
}
⊆ ET (K1 ∪K2) contains j elements. �

If g isD-dominated by cπ then
∑

e∈E(T ) g(e) is a lower bound for the cost of an optimum

solution as
∑

e∈E(T ) cπ(e) is a lower bound, too.

As c′(e) ≤ cπ(e) for all e ∈ E(T ), c′ is K-dominated by cπ for all K ⊆ D.

A Lower Bound for the Number of Components

Let
(
kfeas, {(Dfeas

i , Sfeas
i )}i∈{1,...,kfeas}

)
be a feasible clustering. Again let K ⊆ D, K 6= ∅,

be a subset of D.
By IK = {i |Dfeas

i ∩ K 6= ∅} we denote the set of components that have a sink in
common with K. We want to compute a lower bound for |IK | with the aid of a
function g : E(T )→ R+ that is K-dominated by cπ.
The load of the components of IK is at least

∑
i∈IK

d (Dfeas
i

)
+

∑
e∈E(Sfeas

i )

c(e)


(1.13)

≥
∑
i∈IK

d (Dfeas
i

)
+

∑
e∈E(T feas

i )

c′(e) − f


def. of π

=
∑
i∈IK

d (Dfeas
i

)
+
∑

s∈Dfeas
i

cπ(eT (s)) − f


≥

∑
i∈IK

d (Dfeas
i ∩K

)
+

∑
s∈Dfeas

i ∩K

cπ(eT (s))− max
s∈Dfeas

i ∩K
cπ(eT (s))


= d(K) +

∑
s∈K

cπ(eT (s))−
∑
i∈IK

(
max

s∈Dfeas
i ∩K

cπ(eT (s))

)

≥ d(K) +
∑
s∈K

cπ(eT (s))−
|IK |∑
i=1

(
cπ(ecπ ,K

i )
)

≥ d(K) +
∑
s∈K

g(eT (s))−
|IK |∑
i=1

(
g(eg,K

i )
)
.

The first equation comes from the definition of cπ and in the last inequality we used
that g is K-dominated by cπ.
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As each cluster has load at most u we get:

Lemma 1.30. The minimum t ∈ Z satisfying

d(K) +
∑
s∈K

g(eT (s))−
t∑

i=1

(
g(eg,K

i )
)
≤ t · u

is a lower bound for the number of clusters that have a sink in common with K for any
feasible clustering.

For K ⊆ D, 1 ≤ t ≤ |K| and g : E(T ) → R+ K-dominated by cπ we denote by
L(K, g, t) the total length of the t longest edges in ET (K) with respect to g, i.e.

L(K, g, t) :=
t∑

i=1

(
g
(
eg,K

i

))
and set

C(K, g, t) := d(K) +
∑
s∈K

g(eT (s))− L(K, g, t).

By Lemma 1.30 the minimum t ∈ N satisfying C(K, g, t) ≤ t · u is a lower bound for
|IK |. We will denote this value by tgK .

Improving K-dominated Functions

Now we show how to ‘improve’ a K-dominated function by analysing parts of the
instance more carefully. To this end, we make some preparative observations.

Proposition 1.31. For all j ∈ {1, . . . , ko} with K ∩Do
j 6= ∅ there is a sink v ∈ K ∩Do

j

so that π(eT (v)) joins a vertex that is not in K.

Proof. E ′ := {π(eT (v))| v ∈ K ∩Do
j} is a subset of the edges of T o

j . π is bijective, so
|E ′| = |K ∩Do

j |. As T o
j is a spanning tree, E ′ cannot contain a circuit, so there must

be an edge in E ′ that joins a vertex that is not in K ∩Do
j . Recall that the endpoints

of the edges in E ′ are in Do
j ∪ {r}, and the proof is complete. �

We denote by lK := mine∈δT (K) c
′(e) the minimum length of an edge in the cut defined

by K in T .

Proposition 1.32. Let v̂ ∈ K ∩Do
j be a vertex so that π(eT (v̂)) joins a vertex that is

not in K. Then cπ(eT (v̂)) ≥ lK.

Proof. If π(eT (v̂)) = eT (v̂) then eT (v̂) ∈ δT (K) and the claim follows directly. Oth-
erwise, by Remark 1.26 there is a unique circuit C in (V (T ), E(T ) ∪ {π(e(v̂))}) with
{eT (v̂), π(eT (v̂))} ⊆ E(C). C contains vertices both of K and of (V ∪ {r}) \ K, so
two edges of E(C) are in δC(K) and at least one of them is an element of δT (K) and
therefore in δT (K) ∩ E(C). Choose ê ∈ δT (K) ∩ E(C). As T is a minimum spanning
tree cπ(eT (v̂)) = c′(π(eT (v̂))) ≥ c′(ê) ≥ lK . �
Combining Proposition 1.31 and 1.32 yields:
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Corollary 1.33. There are at least |IK | edges e ∈ ET (K) with cπ(e) ≥ lK.

We get the main result of this section:

Lemma 1.34. Let K ⊆ D, g : E(T ) → R+ be a function that is K-dominated by cπ
and 1 ≤ t ≤ tgK. We define g′ : E(T )→ R+ as

g′(e) :=

{
max {lK , g(e)} e = eg,K

i for an i ∈ {1, . . . , t}
g(e) otherwise.

Then g′ is K-dominated by cπ.

Proof. Set LK := {e ∈ ET (K)| cπ(e) ≥ lK}. As tgK is a lower bound for |IK | and
|LK | ≥ |IK | by Proposition 1.32, we have |LK | ≥ tK and the claim follows immediately.
�
Clearly, Lemma 1.34 is also true when we replace tgK by |IK |.

A Lower Bound using Dominated Functions

Now we show how to compute a lower bound by defining a sequence gK1 , . . . , gKn of
functions on the edges of T that are D-dominated by cπ. To this end, we construct a
laminar family G of subsets of D. Initially G contains all subsets of D with one element.
Let e1, . . . , en be the edges of the minimum spanning tree T sorted in non-decreasing
order, i.e. c′(e1) ≤ c′(e2) ≤ . . . ≤ c′(en−1) ≤ c′(en). Recall that T is a minimum
spanning tree on D ∪ {r}, n = |D| and that the distance between any sink and r is
f . Thus c′(en) = f . Now assume that there are k ≥ 2 edges connected to r. We
remove k − 1 of them and get k − 1 connected components. Adding k − 1 new edges
between sinks of these components we achieve a spanning tree T ′ where only one edge
is connected to r. By the definition of c′ the length of any edge is at most f and thus
T ′ is also a minimum spanning tree. So we can assume without loss of generality that
only the edge en is connected to r.

T

2
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5
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Figure 1.8: The minimum spanning tree T in (V ′, c′) with edge lengths and a corre-
sponding laminar family G. As some lengths appear several times, G is not
unique.

For i = 1 to n let Ai and Bi be the two unique maximal sets of G that are connected
by ei and add the set Ki = Ai ∪ Bi to G (see also Figure 1.8). Note that if there are
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edges in T of the same length, G is not unique. We denote by T [K] the graph induced
by a K ⊆ D in T .
By construction we get:

Lemma 1.35. Let Ki, Ai, Bi ∈ G with Ki = Ai ∪Bi defined as above. Then

• T [Ki] = (Ai ∪Bi, E(T [Ai]) ∪ E(T [Bi]) ∪ {ei}),

• T [Ki] is connected,

• ei is at least as long as every edge in T [Ai] and T [Bi] and

• ei is a shortest edge in δT (Ai) and δT (Bi).

Now we define for each set K ∈ G a function gK : E(T )→ R+ that is K-dominated by
cπ. Initially we set gK ≡ c′ for K ∈ G with |K| = 1.
Now assume we have defined gKj

for j < i.
We define g̃Ki

:

g̃Ki
(e) =


c′(e) e ∈ E(T ) \ E(T [Ki])
gAi

(e) e ∈ E(T [Ai])
gBi

(e) e ∈ E(T [Bi])
c′(ei) e = ei.

g̃Ki
is well defined by Lemma 1.35 and Ki-dominated by cπ by Proposition 1.29. Choose

tKi
:= t

g̃Ki
Ki

as above, i.e. let tKi
be the minimum integer satisfying C(Ki, g̃Ki

, tKi
) ≤

tKi
· u. We have seen that tKi

is a lower bound for the number of components of any
feasible solution that have a nonempty intersection with Ki.
Now we can use Lemma 1.34 to construct gKi

from g̃Ki
by setting the length of the

tKi
− 1 longest edges of T [Ki] with respect to gKi

to the length of the shortest edge in
δT (Ki) if they are shorter. By Lemma 1.34, gKi

is still Ki-dominated by cπ.

Lemma 1.36.
∑

e∈ET (D) gD(e) is a lower bound for the cost of an optimum solution.

Proof. D = Kn−1 and gKn−1 is D-dominated by cπ. �

Remark 1.37. This lower bound can be implemented so that the running time is
dominated by constructing the minimum spanning tree.

In Section 1.3.5 we will give an example computing this lower bound for the instance
shown in Figure 1.5.

The Laminar Family G is Best Possible

The previous lower bound computation can be done with any laminar family H of sets
of edges from T . A question that might arise is if the chosen laminar family G is the
best possible choice or if there is another laminar family that yields better bounds. We
will show now that G is the best one.
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Let G, gK and tgK

K for all K ∈ G be chosen as above. Let H be another laminar family
of subsets of D and h̃K , hK and shK

K be defined analogously to g̃K , gK and tgK

K , but
for K ∈ H instead of K ∈ G. We can assume that D ∈ H and for all K ∈ H either
|K| = 1 or there exist A,B ∈ H with A ∩ B = ∅ and K = A∪̇B. For the sake of
simplicity, we abbreviate tK := tgK

K and sK := shK
K .

In order to show that G is the best choice for the laminar family it is sufficient to prove
that hD is D-dominated by gD.
To see this, we first extend the functions g̃K and gK to be defined for all K ∈ H: For
K ∈ H let K̂ := {A ∈ G| A ⊆ K and A is maximal}. Then for A,B ∈ K̂ with A 6= B

we have A∩B = ∅ and
⋃̇

A∈K̂A = K. So for every e ∈ ET (K) there is a unique A ∈ K̂
with e ∈ ET (A) and we set g̃K(e) := g̃A(e) and gK(e) := gA(e). g̃K and gK are well
defined. For K ∈ H set tK :=

∑
A∈K̂ tA.

Lemma 1.38. hK is K-dominated by gK for all K ∈ H.

Proof. By induction on |K|: For K ∈ H with |K| = 1 the functions are equivalent, i.e.
hK ≡ gK and sK = tK = 1.
Assume the claim has been proven for all K ∈ H with |K| < m. Let K ∈ H, |K| = m.
Then there exist A,B ∈ H with A ∩ B = ∅ and A∪̇B = K. Moreover, |A| < m and
|B| < m, so by induction hA is A-dominated by gA and hB is B-dominated by gB.
Using the definition of g̃K and Proposition 1.29 we see that h̃K is K-dominated by g̃K

and so by gK .
sK was defined to be the minimum integer t so that

C(K, h̃K , t) ≤ t · u.

We show that sK ≤ tK , i.e. t = tK satisfies the above inequality:

C(K, h̃K , tK) ≤ C(K, g̃K , tK)

= d(K) +
∑
s∈K

g̃K (eT (s))− L(K, g̃K , tK)

=
∑
A∈K̂

(
d(A) +

∑
s∈A

g̃A(eT (s))

)
− L

K, g̃A,
∑
A∈K̂

tA


≤

∑
A∈K̂

(
d(A) +

∑
s∈A

g̃A(eT (s))− L (A, g̃A, tA)

)
=

∑
A∈K̂

C(A, g̃A, tA)

≤
∑
A∈K̂

tA · u

= tK · u.

Let again lK be the length of the shortest edge in the cut δT (K) with respect to c′.
Set LK := {e ∈ eT (K)| gK(e) ≥ lK}. Now we show that |LK | ≥ tK .
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Let e be the shortest edge in
⋃̇

A∈K̂δT (A) with respect to c′. Assume c′(e) < lK . Then

e /∈ δT (K) by the definition of lK and there exist A,B ∈ K̂ so that e has a vertex in
common with each of the two sets. As e is the shortest edge in δT (A) ∪ δT (B), the set
A∪̇B must be an element in G. But this is a contradiction to the maximality of the
elements of K̂. Therefore every edge in

⋃
A∈K̂ δT (A) has length at least lK .

But then by the definition of gA at least tA edges in {eT (v)| v ∈ A} have length ≥ lK
with respect to gA for all A ∈ K̂. All these edges are disjoint for the different sets
A ∈ K̂ and we get at least

∑
A∈K̂ tA = tK edges in ET (K) of gK-length at least lK .

h̃K is K-dominated by gK . When we compute hK , the sK longest edges according to
h̃K will be increased to lK if they are shorter. But as at least tK ≥ sK edges have
gK-length at least lK , the function hK has to be K-dominated by gK , too.

�

Final Remarks

An interesting fact we will use later is the following observation:

Lemma 1.39. tAi
+ tBi

− 1 ≤ tKi
≤ tAi

+ tBi
for all i ∈ {1, . . . , n}.

Proof. Recall that ei is the unique edge connecting Ai and Bi. Thus ei ∈ δT (Ai) and
ei ∈ δT (Bi) and so by induction and Lemma 1.35 c′(ei) = gAi

(ei) ≥ gAi
(e) for all

e ∈ E(T [Ai]) and c′(ei) = gBi
(ei) ≥ gBi

(e) for all e ∈ E(T [Bi]).

Moreover, ei is still a shortest edge in the cuts defined by Ai and Bi as gAi
(e) = c′(e)

for all e ∈ δ(Ai) and gBi
(e) = c′(e) for all e ∈ δ(Bi). But that means that the tAi

− 1
longest edges in E(T [Ai]) with respect to gAi

and the tBi
− 1 longest edges of E(T [Bi])

with respect to gBi
have cost c′(ei). According to g̃Ki

there are altogether at least
gAi

+ gBi
− 1 edges of length c′(ei) in E(T [Ki]) and there is no longer edge.

Let eKi
be the shortest edge in the cut defined by Ki. By construction c′(eKi

) =
g̃Ki

(eKi
) ≥ g̃Ki

(e) for all e ∈ E(T [Ki]). Recall that ET (Ki) = E(T [Ki]) ∪ {eKi
}.

These observations show that

L(Ki, g̃Ki
, tAi

+ tBi
− 2) = L(Ai, gAi

, tAi
− 1) + L(Bi, gBi

, tBi
− 1).

For t = tAi
+ tBi

− 2 we have

C(Ki, g̃Ki
, t) = d(Ki) +

∑
s∈Ki

g̃Ki
(eT (s))− L(Ki, g̃Ki

, t)

= C(Ai, g̃Ki
, tAi
− 1) + C(Bi, g̃Ki

, tBi
− 1)

≥ C(Ai, g̃Ai
, tAi
− 1) + C(Bi, g̃Bi

, tBi
− 1)

≥ (tAi
− 1) · u+ (tBi

− 1) · u.

The last inequality follows from the choice of tAi
and tBi

. We conclude that tKi
>

tAi
+ tBi

− 2.
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On the other hand we get

(tAi
+ tBi

) · u ≥ C(Ai, gAi
, tAi
− 1) + C(Bi, gBi

, tBi
− 1)

= d(Ki) +
∑

e∈ET (Ki)

g̃Ki
(e)− L(Ki, g̃Ki

, tAi
+ tBi

)

= C(Ki, g̃Ki
, tAi

+ tBi
).

Thus tKi
≤ tAi

+ tBi
which completes the proof. �

1.3.4 A Lower Bound Combining Dominated Functions and
Steiner Trees

The lower bound using dominated functions has the advantage that it works locally
while the lower bound using minimum Steiner trees is more accurate to the Sink
Clustering Problem than using spanning trees. In this section we develop a lower
bound that combines the advantages of both approaches.
For this we analyze the laminar family G that has been defined in Section 1.3.3 more
closely. For each K ∈ G we have found a lower bound tK for the number of clusters
that contain a sink of K for any feasible clustering.
Let S := {Ki ∈ G| tAi

+ tBi
= tKi

}. S is well defined. Our goal is to find an edge
eS ∈ E(T [S]) for every S ∈ S and a set of edges E ⊆ E(T ) with |E| = ko − |S| − 1 so
that (D,E ∪ {eS|S ∈ S} ∪

⋃ko

i=1E(So
i )) is a Steiner tree.

To this end, we first have to look at the structure of S.

Proposition 1.40. For each set K ∈ G there are exactly tK − 1 sets S ∈ S with
S ⊆ K.

Proof. By induction on |K|. If |K| = 1 then tK = 1 and there is no set S ∈ S with
S ⊆ K so the claim is true.
Denote by sK the number of sets S ∈ S with S ⊆ K. Let K ∈ G with |K| = m > 1.
Then K = Ki = Ai∪̇Bi for some i ∈ {1, . . . , n}. As S ⊆ G is laminar, for each set
S ∈ S with S ⊆ Ki we have either S = Ki or S ⊆ Ai or S ⊆ Bi. If Ki ∈ S then
tKi

= tAi
+ tBi

and therefore sKi
= sAi

+ sBi
+ 1 = (tAi

− 1) + (tBi
− 1) + 1 = tKi

− 1.
Otherwise, Ki /∈ S. In this case by Lemma 1.39 tKi

= tAi
+ tBi

− 1 and we get
sKi

= sAi
+ sBi

= (tAi
− 1) + (tBi

− 1) = tKi
− 1. �

This proposition helps us to estimate the number of clusters that have a nonempty
intersection with subsets of S.

Lemma 1.41. Let K ⊆ S and denote by t the number of clusters that have a sink in
common with

⋃
K∈KK for a feasible clustering. Then

t ≥ |K|+ 1.

Proof. Let K′ ⊆ K be the set of maximal elements of K. Consider an instance of the
Sink Clustering Problem with the reduced set of sinks D′ := ∪K∈KK. For K ∈ K′
with K 6= D′ we want to estimate the minimum cost of an edge {v, w} with v ∈ K
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and w ∈ D′ \K. Using that T is a minimum spanning tree and the definition of K we
conclude:

min
v∈K,w∈D′\K

c′({v, w}) ≥ min
v∈K,w∈D\K

c′({v, w})

= min
e∈δT (K)

c′(e)

≥ max
e∈E(T [K])

c′(e).

It follows that there exists a minimum spanning tree T ′ on D′ with E(T [K]) ⊆ E(T ′)
for all K ∈ K′, i.e. T ′ contains all trees induced by K for all K ∈ K′. Let G ′ be
the corresponding laminar family of T ′ and t′K for all K ∈ K the lower bound for the
number of clusters that contain a sink of K. Moreover, let S ′ be defined analogously
to S with respect to G ′.
Let t′ be the minimum number of components a feasible clustering for D′ can have. D′

is a subset of D so each feasible clustering for D can be reduced to a feasible solution
for D′ and therefore t ≥ t′. K is a subset of S ′. Putting all together and applying
Proposition 1.40 we see that t− 1 ≥ t′ − 1 ≥ |S ′| ≥ |K|. �
Now we come to the main observation of this section.

Lemma 1.42. Let V be a finite set and T = {T1, . . . , Tt} with Ti = (V (Ti), E(Ti)) a
spanning tree on V (Ti) ⊆ V for i ∈ {1, . . . , t} so that for all T ′ ⊆ T :∣∣∣∣∣ ⋃

T∈T ′
V (T )

∣∣∣∣∣ ≥ 1 + |T ′|. (1.14)

Then there exist edges eT ∈ E(T ) for all T ∈ T so that F = (V, {eT |T ∈ T }) is a
forest.

Proof. First observe that by (1.14) the graph (T ∪̇V, {(T, a)| a ∈ V (T )}) satisfies the
Hall condition. Thus we can find vT ∈ V (T ) for all T ∈ T so that vT 6= vT ′ for
T 6= T ′ ∈ T . Furthermore, as |V (T )| ≥ 2 and T is a spanning tree there exist
wT ∈ V (T ) so that e1T := {vT , wT} is in E(T ) for all T ∈ T .
If G := (V, {{vT , wT}|T ∈ T }) does not contain any circuits set F := G and we are
done. Otherwise, we will reduce the number of connected components that contain a
circuit one by one until none exists anymore.
For this, let G1 = (V ′, E1) be a connected component of G that contains a circuit. Let
R := {T ∈ T | {vT , wT} ∈ E1} be the set of trees that contribute an edge to G. All vT ,
T ∈ R, are different, thus |V (G1)| ≥ |E(G1)|. But as G1 is connected it follows that
the component contains exactly one circuit C1.
The idea of the remaining proof is to eliminate this circuit by removing an edge of
it and replacing it by another one from the same tree T ∈ R. The problem is that
inserting the new edge can create a new circuit C2. In this case we are looking for
another edge either of the initial circuit or the second circuit that will be replaced
by an other edge with one endpoint outside of C1 and C2. Again this can create a
new circuit C3. We repeat this procedure until we replace an edge by another without
creating a new circuit.
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We construct a sequence of graphs G2 = (V ′, E2), G3 = (V ′, E3), . . . on the same
vertices as G1 with Ei = {ei

T |T ∈ R} where ei
T ∈ E(T ) are edges that will be defined

later. Moreover, there will be exactly one circuit Ci ∈ Ei in each Gi. We denote by

Ri := {T ∈ R| ∃j ∈ {1, . . . , i} s.t. ej
T ∈ Cj}

the set of trees that contribute an edge to at least one of the circuits C1, . . . , Ci. Let
V (Ri) =

⋃i
j=1 V (Cj) be all vertices that are covered by at least one of the circuits

C1, . . . , Ci.

Assume we have created G1, . . . , Gi. By (1.14) |Ri| + 1 ≤ |
⋃

T∈Ri
V (T )|. But then

there exists a tree T ′ ∈ Ri and a vertex v ∈ V (T ′) so that v is not contained in any
previous circuit, i.e. v /∈ V (Ri).

As T ′ is connected and V (T ′) ∩ V (Ri) 6= ∅ there exist v′, w′ ∈ V (T ′) with {v′, w′} ∈
E(T ′), v′ /∈ V (Ri) and w′ ∈ V (Ri). Choose k ∈ {1, . . . , i} so that the edge T ′

contributes to Gk is in the circuit Ck, i.e. ek
T ′ ∈ E(Ck). Such a circuit must exist as

T ′ ∈ Ri.

If v′ ∈ V ′, i.e. it is in the connected component, set ei+1
T = ei

T for T ∈ R \ {T ′} and
ei+1

T ′ = {v′, w′}. Then by the choice of ei+1
T ′ , Gi+1 = (V ′, {ei+1

T |T ∈ R}) again contains
exactly one circuit Ci+1. As v′ ∈ V (Ri+1), v

′ /∈ V (Ri) and V (Ri) ⊆ V (Ri+1) we
conclude |V (Ri+1)| > |V (Ri)|. But as there is only a finite set of vertices covered by
the trees in R, after a finite number of iterations we get v′ /∈ V (R).

Now we turn to the case that v′ is not inside the connected component Gi, i.e. v′ /∈ V ′.
The graph (V ′, Ek \{ek

T}) does not contain a circuit and {v′, w′} connects two different
connected components. Thus setting e′T := eT , T ∈ T \ R, e′T := ek

T , T ∈ R \ {T ′}
and e′T ′ := {v′, w′} yields a graph G′ = (V, {e′T |T ∈ R}) that contains one circuit
less than G. We set G := G′ and continue in this fashion with the next connected
component that contains a circuit. Finally, after a finite number of iterations, we get
the proposed forest F . �

Obviously, the lemma is still true if the Ti are connected graphs instead of spanning
trees. Now we will apply this lemma on our laminar family S. To this end, let(
ko, {(Do

i , S
o
i )}i∈{1,...,ko}

)
be an optimum clustering again. Let V ′ := {Do

i | 1 ≤ i ≤ ko}
be the set of all partition sets of the clustering. For K ∈ S let TK be the graph obtained
by merging the sinks of T [K] that are within the same cluster to one vertex. Then
TK is a connected graph on a subset of V ′. Set T := {TK |K ∈ S}. By Lemma 1.41
the preconditions of Lemma 1.42 are satisfied. Thus we can find edges eK ∈ E(TK)
for K ∈ S so that {eK |K ∈ S} is a spanning forest on the clusters of the optimum
clustering.

For K ∈ S let e′K be the edge in the initial spanning tree T that became eK after
merging. Then H := (D,

⋃ko

i=1E(So
i ) ∪ {e′K |K ∈ S}) does not contain a circuit. Thus

we can find additional ko − |S| − 1 edges E ′ ⊆ E(T ) that complete the graph H to a
Steiner tree on D.

Unfortunately we cannot compute these edges efficiently, but we can bound their total
length. Let K1, . . . , K|S| be an order of the elements of S so that Ki ⊆ Kj if i ≤ j.
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Now set

êi :=


longest edge in E(T [K1]) i = 1,
longest edge in E(T [Ki]) \ {e1, . . . , ei−1} 2 ≤ i ≤ |S|,
longest edge in E(T ) \ {e1, . . . , ei−1} |S| < i < |D|.

It is obvious that
∑ko−1

i=1 c(êi) ≥
∑

K∈S c(eK) +
∑

e∈E′ c(e).
In the end, we get a lower bound similar to the one of Theorem 1.19.

Theorem 1.43. Let tsmtdom be the smallest integer satisfying

d(D) + lSMT −
tsmtdom∑

i=1

c(êi) ≤ tsmtdom · u.

Then tsmtdom is a lower bound for the number of facilities of any feasible solution.
Moreover,

min
t≥tsmtdom

(
lSMT −

t∑
i=1

c(êi) + t · f

)
is a lower bound for the cost of an optimum solution.

Remark 1.44. As this lower bound is a combination of the former two bounds its
computation is as fast as computing a lower bound for a minimum Steiner tree and
constructing a minimum spanning tree.

1.3.5 An Example

In this section we will use the example of Figure 1.5 in order to illustrate the compu-
tation of the four lower bounds that have been presented. The instance consists of 12
sinks, some have demand 1, the others have demand 0. The load limit is u := 7 and
the facility cost is f := 10. An optimum solution has cost 23 + 4f = 63.
A minimum Steiner tree on D has length 29. We will use this value as lower bound
lSMT.

First Lower Bound from Section 1.1

First we compute the lower bound of Section 1.1. The total demand of the sinks
is d(D) = 5. Moreover, the length of a minimum 1-,2-,3-spanning forest on D is

c(T1) = 33, c(T2) = 28 and c(T3) = 23. By Lemma 1.8 we get tlb = 3 as c(T3)
α

+ d(D) =
232

3
+5 = 20+ 1

3
≤ 21 = 3u. Using Lemma 1.9 we get as lower bound 232

3
+3f = 45+ 1

3
.

Lower Bound Based on Minimum Steiner Trees from Section 1.3.1

We have lSMT = 29 as lower bound for the length of a minimum Steiner tree on D.
The three longest edges of the minimum spanning tree on D all have length 5. Thus
using Theorem 1.19 we get tSMT = 4 and lSMT − (5 + 5 + 5) + 4f = 54 as lower bound
for the cost of an optimum solution.



1.3 Lower Bounds 35

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

a)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

b)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

c)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

d)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

e)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

f)

2
α

5
α

2
α 2

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

g)

2
α

5
α

2
α 5

α

f

5
α

1
α

2
α

5
α

3
α

3
α

2
α

h)

2
α

5
α

2
α 5

α

f

5
α

1
α

2
α

5
α

3
α

5
α

2
α

i)

2
α

5
α

2
α 5

α

f

5
α

1
α

2
α

5
α

3
α

5
α

2
α

j)

2
α

5
α

2
α 5

α

f

5
α

1
α

2
α

5
α

3
α

5
α

2
α

k)

2
α

f

2
α

f

f

5
α

1
α

2
α

5
α

3
α

f

2
α

Figure 1.9: The first picture shows the spanning tree with the laminar family G and the
initial cost function c′. Figures a) to k) show the graphs for gK1 , . . . , gK11

with the corresponding sets Ki (marked by a red bounding box). Edge
costs that have been updated are written in red.
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Lower bound using dominated functions from Section 1.3.3

We compute a minimum spanning tree on D ∪ {r} and get the initial cost function c′

and the laminar family G as shown in Figure 1.9 a).
tK1 = . . . = tK6 and so gK1 = . . . = gK6 = c′. The first proper computation occurs
when considering K7 (shown in 1.9 b) ). There C(K7, gK6 , 1) = 5

α
+ 3 = 7 + 1

3
> u but

C(K7, gK6 , 2) ≤ 2u, thus we get tK7 = 2. Moreover, λK7 = 5
α
. Applying Lemma 1.34

two edges of EK7(T ) have length at least λK7 . Therefore, we have to increase the cost
of an internal edge and get a new cost function gK7 .
We continue withK8,K9,K10 andK11 and compute the new cost functions gK8 , gK9 , gK10

and gK11 in each iteration. Table 1.2 shows all computed values.

i tKi
λi

∑
e∈E(T ) gKi

(e) Ki

1 1 2 1
α

32 1
α

+ f {s9}∪̇{s11}
2 1 2 1

α
32 1

α
+ f {s7}∪̇{s10}

3 1 2 1
α

32 1
α

+ f K1∪̇{s8}
4 1 5 1

α
32 1

α
+ f {s1}∪̇{s5}

5 1 3 1
α

32 1
α

+ f {s2}∪̇{s3}
6 1 3 1

α
32 1

α
+ f {s4}∪̇{s6}

7 2 5 1
α

35 1
α

+ f K2∪̇K3

8 2 5 1
α

37 1
α

+ f K5∪̇K6

9 2 5 1
α

37 1
α

+ f K7∪̇{s12}
10 3 5 1

α
37 1

α
+ f K8∪̇K9

11 4 f 22 1
α

+ 4f K4∪̇K10

Table 1.2: Values computed for the lower bound using K-dominated functions.

Finally, gK11 gives us 22
α

+ 4f = 54 + 2
3

as lower bound for the cost of an optimum
solution.

Lower Bound Combining Dominated Functions and Steiner Trees from Section
1.3.4

Finally, we compute the last lower bound that combines the ideas of the previous two
ones. Again we have lSMT = 29. Moreover, we can conclude from the previous lower
bound that ê1 = 2, ê2 = 3, ê3 = 5 and ê4 = 5 (we do not need the other values). By
Theorem 1.43 we get tsmtdom = 4 and lSMT − (2 + 3 + 5) + 4f = 59 as a lower bound
for the cost of an optimum solution.
Table 1.3 shows a summary of the four lower bounds.

1.3.6 Analysis

We now analyze the gap between the lower bounds and an optimum solution in the
worst case. First we show that there is no lower bound computable in polynomial
time and better than 1

2
times the cost of an optimum clustering for any instance unless

P = NP .
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cost of optimum solution 63
Lower bound Section 1.1 45 + 1

3

Lower bound Section 1.3.1 54
Lower bound Section 1.3.3 54 + 2

3

Lower bound Section 1.3.4 59

Table 1.3: Summary of the four lower bounds applied on the example instance.

Proposition 1.45. Let (V, c) be a metric space and L be a polynomial time algorithm
that computes a lower bound L(I) for the cost O(I) of an optimum solution for any
instance I = (V, c,D, d, f, u) of the Sink Clustering Problem. If there is an

ε > 0 so that L(I) > O(I)
2

+ ε for every instance I then the Steiner Tree Decision
Problem can be solved in polynomial time.

Proof. Let (D, k) be an instance of the Steiner Tree Decision Problem (Is there
a Steiner tree on D of length at most k?). We construct an instance I = (V, c,D, d, f, u)
of the Sink Clustering Problem by setting d(s) := 0 for all s ∈ D, u := k and
f � k. W.l.o.g. we may assume that k ≤ ε

2
by scaling k and c with the same

appropriate value.

Assume there is a Steiner tree on D of length k. Then L(I) ≤ O(I) ≤ f+k. Otherwise,

there have to be at least two clusters and we get O(I) ≥ 2f . Therefore L(I) ≥ O(I)
2

+ε ≥
f + ε > f + k. We conclude that there is a Steiner tree of length ≤ k if and only if
L(I) ≤ f + k. �
In Section 1.1.3 we presented the Sink Clustering Algorithm. It computes a
feasible clustering of cost at most (2α+ 1) times the lower bound presented in Section
1.1. As the lower bound using K-dominated functions is at least as good as this bound,
both have a gap of at most 2α+ 1.

For the rest of this section we give an example for an instance where the lower bound
of Section 1.1 and the lower bound using K-dominated functions are about 1

4
from

the cost of an optimum clustering. So the gap is at least 4. Recall that the Sink
Clustering Algorithm in Section 1.1.3 always computes a feasible solution of cost
at most 5 times the lower bound of Section 1.1. The lower bound using K-dominated
functions cannot be worse. Thus the gap is at most 5.

For m, r ∈ N we define the graph Gm
r = (V,E) with V = {s} ∪

⋃r
i=1{v1

i , . . . , v
m
i } and

E =
⋃m

i=1{(s, v1
i ), (v1

i , v
2
i ), (v

2
i , v

3
i ), . . . , (v

m−1
i , vm

i )} (see Figure 1.10). Set c(e) := 1 for
all e ∈ E and let c({v1, v2}) be the length of the unique path between v1 and v2 in G.
It can be verified easily that (V, c) is a metric.

Consider the set D′ := {vm
1 , . . . , v

m
r }. c({vm

i , v
m
j }) = 2m for i 6= j and so the length

of a minimum spanning tree on D′ is 2m · (r − 1). On the other side, Gm
r is a Steiner

tree on D′ and has length m · r. This shows that the Steiner ratio α in (V, c) is at least
2(r−1)

r
. It can be shown that indeed α is equal to 2(r−1)

r
.

Now set D := V , d(v) := 0 for v ∈ V , u := 2m− 1 and f � u. An optimum solution
has at least r clusters as D′ ⊆ V and the distance between two elements in D′ is greater
than u.
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Figure 1.10: Illustration of the example showing that the optimum solution can cost
4 times more than the lower bound of Section 1.1 and the lower bound
using K-dominated functions in general metrics.

Gm
r is a minimum spanning tree on D. As every edge in Gm

r has length 1, the lower
bound of Section 1.1 and the bound using K-dominated functions have the same value
and so we only have to analyze the first one. For any k let Tk be the minimum k-
spanning forest we obtain by removing k − 1 edges of Gm

r . It is easy to see that
c(Tk) = m · r − k + 1. Now we look for the minimum integer t so that 1

α
c(Tt) ≤ t · u,

i.e.

r

2(r − 1)
(m · r − t+ 1) ≤ t(2m− 1).

This is equivalent to

mr2 + r

4rm− r − 4m+ 1
≤ t.

For m and r large enough we get t ≈ d r
4
e+ 1 and the lower bound L = f ·

(
d r

4
e+ 1

)
+

1
α
c(Td r

4
e+1). An optimum solution has cost O = f · r + c(Tr). Thus for any ε > 0 there

exist r,m and f so that O
L
≥ 4− ε.

In the special case of the rectilinear plane it can be shown by a similar example that
the gap is at least 8

3
.
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1.4 Experimental Results

We have implemented the Sink Clustering Algorithm and the four presented
lower bounds. As metric we use the rectilinear plane.

instance |D| d(D) f u length MST l.b. SMT
Z1 529 1.6 0.088 0.164 0.6 0.53
Z2 2 444 9.5 0.127 0.333 14.7 13.52
Z3 7 708 29.8 0.132 0.400 31.2 28.66
Z4 10 896 20.4 0.102 0.126 26.2 23.50
Z5 24 610 74.5 0.122 0.212 39.7 35.07
Z6 39 473 114.1 0.127 0.479 158.7 n.c.
Z7 74 974 162.5 0.097 0.131 341.3 n.c.
Z8 130 064 476.9 0.141 0.379 505.5 n.c.
Z9 141 503 436.5 0.088 0.164 239.2 n.c.
Z10 260 402 653.9 0.112 0.518 745,6 n.c.
Z11 387 666 915.4 0.097 0.446 911,9 n.c.
Z12 802 804 1 760.2 0.127 0.383 1 306.2 n.c.

Table 1.4: The test instances. n.c. = not computed.

The instances summarized in Table 1.4 come from clock trees of some recent chips.
The table shows the number of sinks, the total demand, the facility opening cost, the
load limit and the length of a minimum spanning tree on D. For the smaller instances
we could compute lower bounds for the length of a Steiner minimum tree, using the
software GeoSteiner 3.1 Warme et al. [2003].

core Sink Clustering alg. ... plus post opt.
instance total cost wire cost #clusters total cost wire cost #clusters
Z1 1.8 0.5 14 1.8 0.5 14
Z2 19.6 9.3 81 19.2 9.5 76
Z3 48.9 27.5 162 48.0 27.4 156
Z4 61.3 21.3 393 58.9 21.6 366
Z5 104.8 35.3 570 101.1 35.1 541
Z6 214.8 135.1 628 210.2 134.3 597
Z7 663.7 281.6 3 939 642.7 276.4 3 776
Z8 828.9 446.7 2 711 808.5 445.2 2 577
Z9 599.9 214.2 4 383 579.8 211.7 4 183
Z10 999.6 680.6 2 848 984.6 680.0 2 719
Z11 1 278.1 857.0 4 341 1 262.3 857.9 4 169
Z12 2 241.9 1 171.8 8 426 2 187.4 1 174.1 7 979

Table 1.5: Total cost of the solution, wiring cost and number of clusters after the initial
Sink Clustering Algorithm and after additional post optimization.
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Table 1.5 shows the results we got on the instances by applying the Sink Clustering
Algorithm and after additional application of the two post optimization algorithms
presented in Section 1.2. The table contains the total cost, the wiring cost and the
number of clusters for each computed clustering.
Table 1.6 shows the simple lower bound of Section 1.1.3 and the improved lower bound
using K-dominated functions. These lower bounds also give us lower bounds for the
number of clusters of each feasible clustering. The table shows the lower bound for the
cost of an optimum solution, the lower bound for the number of clusters (#clusters)
and the ratio of the total cost of the clustering of Table 1.5 and the lower bound.

lower bound 1 lower bound 2
Section 1.1.3 Section 1.3.3

instance cost #clusters ratio cost #clusters ratio
Z1 1.5 13 1.146 1.5 13 1.143
Z2 12.6 50 1.529 14.9 55 1.293
Z3 32.3 117 1.487 35.9 124 1.335
Z4 41.1 271 1.432 45.3 289 1.301
Z5 81.1 466 1.247 83.1 472 1.218
Z6 142.0 426 1.480 156.1 450 1.346
Z7 433.5 2 621 1.483 469.8 2 780 1.368
Z8 599.3 2 070 1.349 621.9 2 114 1.300
Z9 437.2 3 461 1.326 460.9 3 555 1.258
Z10 718.5 2 186 1.370 732.9 2 209 1.344
Z11 905.8 3 359 1.394 921.3 3 388 1.370
Z12 1 696.6 6 777 1.289 1 721.8 6 826 1.270
average 1.369 1.296

Table 1.6: Simple lower bounds and lower bounds using K-dominated functions.

In Table 1.7 the corresponding values for the the lower bound using a lower bound for
the length of a minimum Steiner tree and the lower bound combining K-dominated
functions and the lower bound for the length of a minimum Steiner tree.

lower bound 3 lower bound 4
Section 1.3.1 Section 1.3.4

instance cost #clusters ratio cost #clusters ratio
Z1 1.7 14 1.015 1.7 14 1.012
Z2 14.5 53 1.322 17.4 60 1.103
Z3 39.3 130 1.219 44.0 139 1.091
Z4 47.9 300 1.230 52.0 318 1.133
Z5 92.6 500 1.092 94.9 507 1.066
average 1.176 1.081

Table 1.7: Lower bounds based on a lower bound for the length of a minimum Steiner
tree.
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Finally, Table 1.8 shows the running time of the core clustering algorithm and the two
post optimization heuristics and the number of successful applications of TwoClus-
terOpt and ChainOpt.

initial TwoClusterOpt ChainOpt
instance runtime (s) runtime (s) succ. runtime (s) succ.
Z1 < 0.1 < 0.1 3 < 0.1 1
Z2 0.1 0.4 47 0.1 7
Z3 0.2 1.7 108 0.3 8
Z4 0.4 2.4 354 0.6 75
Z5 1.0 8.6 554 1.7 56
Z6 1.5 12.3 539 3.0 69
Z7 3.6 12.7 2 703 6.8 556
Z8 8.7 45.7 2 360 12.7 303
Z9 7.3 34.8 3 621 13.1 650
Z10 17.5 100.0 2 494 30.5 267
Z11 27.6 117.0 3 529 43.1 360
Z12 68.3 353.7 8 062 98.0 777

Table 1.8: Running time in seconds and number of successful applications of TwoClus-
terOpt and ChainOpt.

The experimental results show the quality of the clustering algorithms. For the in-
stances where we could compute a lower bound for the length of a Steiner minimum
tree the costs of the clusterings are only about 8% higher than the lower bounds. The
costs of the instances are about 30% over the lower bounds based on K-dominated
functions (lower bound 2). The results indicate that the performance ratio of our clus-
tering approach is nearly independent of the size of the instances and a lot better than
the theoretical worst case scenario.

Moreover, the clustering appears to be extremely fast. Even the biggest instance has
been clustered in about one minute and in 9 minutes with additional applied post
optimization.

Comparison to Industrial Clustering tool

In this section we compare the results of our clustering algorithm with the clustering
used by the clock tree construction tool used by Magma Design Automation Inc.. Paul
Lippens from Magma Design Automation Inc. was friendly enough to compute and
give us their clustering results.

Table 1.9 shows the instances we used for comparison. In Table 1.10 you can see
the total cost, wiring cost and number of clusters in the clusterings computed by the
Magma tool and by our clustering algorithm (core algorithm plus post optimization).
Our results are throughout better. In any testcase our clustering algorithm uses less
wiring and less clusters. In average the total cost is reduced by 6.6% .
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instance |D| d(D) f u length MST lb SMT
A 4108 9.0 0.140 0.046 7.7 6.7
B 10 968 15.8 0.140 0.133 70.9 65.7
C 17 140 38.5 0.140 0.111 60.3 59.7
D 35 305 285.6 0.140 0.158 105.4 n.c.
E 119 461 258.8 0.140 0.111 314.5 n.c.

Table 1.9: Instances for comparison with Magma clustering.

Magma clustering our clustering
instance total cost wire cost #clusters total cost wire cost #clusters
A 59.9 6.8 379 57.0 6.3 362
B 150.4 51.7 705 140.6 45.8 677
C 210.0 65.1 1 035 179.9 52.7 908
D 454.8 93.7 2 579 441.0 85.2 2 541
E 1 075.7 305.5 5 501 1 007.1 277.7 5 210

Table 1.10: Comparision between the clustering produced by Magma and our cluster-
ing.

Lower bounds for the total cost and the number of clusters are shown in Table 1.11.
Here we computed the lower bound using K-dominated functions and, if we have a
lower bound on the minimum Steiner length, the combined bound. The clusterings
produced by the Magma tool have costs about 40%, while our clusterings have costs
about 30% over the lower bound.

lower bound 1 ratio lower bound 2 ratio
instance cost #clusters Magma our cost #clusters Magma our
A 45.9 296 1.303 1.240 50.6 321 1.183 1.126
B 103.9 487 1.447 1.353 118.4 528 1.269 1.187
C 129.4 670 1.623 1.390 159.9 792 1.313 1.125
D 367.1 2 196 1.239 1.201 - - - -
E 767.3 4 095 1.402 1.312 - - - -
average 1.403 1.299 1.255 1.146

Table 1.11: Lower bounds for the cost and number of clusters of each feasible clustering.
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Figure 1.11: Computed clustering on instance Z12. 0.1% of the instance is shown. The
coloring is used to distinguish the clusters.
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2 The Sink Clustering Problem with
Time Windows

As mentioned in the introduction, the Sink Clustering Problem occurs in the clock
tree construction when building one stage of a tree. Clock trees have to satisfy some
timing constraints. More precisely, the clock signal has to arrive at each sink of the tree
within an individual required arrival time window. Often all these time windows have a
point of time in common and we can apply on of the Sink Clustering Algorithms
presented in the previous chapter. But this is not always the case, for example when
skew scheduling has been applied in order to speed up a chip (see Held [2008] for more
details). In this case we have to guarantee that the time windows of the sinks of one
cluster have at least one point of time in common.
In this chapter we will study this generalization of the Sink Clustering Prob-
lem, present an approximation algorithm and lower bounds and, finally, show some
experimental results.

2.1 Problem and Algorithm

Sink Clustering Problem with Time Windows

Instance: A metric space (V, c), a finite set D of terminals/customers with positions
p(v) ∈ V , demands d(v) ∈ R+, time windows τ(v) = [rat(v), rat(v)] for all
v ∈ D, a facility opening cost f ∈ R+ and a load limit u ∈ R+.

Task: Find a k ∈ N and a clustering {(Di, Si)}i=1...k of D so that the load limit is
kept, i.e. ∑

e∈E(Si)

c(e) +
∑
s∈Di

d(s) ≤ u for i = 1, . . . , k, (2.1)

the timing constraints are satisfied, i.e.

max
v∈Di

rat(v) ≤ min
v∈Di

rat(v) for i = 1, . . . , k, (2.2)

and the clustering cost
k∑

i=1

 ∑
e∈E(Si)

c(e)

+ kf, (2.3)

is minimized.
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In the special case that all sinks are on the same point, the Sink Clustering Prob-
lem with Time Windows reduces to the Bin Packing Problem with Con-
flicts: Given a set of items {1, . . . , n} with sizes s1, . . . , sn ∈ R≥0 and a conflict
graph G = (V,E), the goal is to find a partition of the items into independent sets of
G, where the total size of the items in each independent set is at most 1 so that the
number of independent sets is minimized. In our case, the conflict graph is the com-
plement of the interval graph induced by the time windows of the sinks. This graph is
perfect. Epstein and Levin [2008] presented a 2.5-factor approximation algorithm for
the Bin Packing Problem with Conflicts for perfect conflict graphs. However,
the Sink Clustering Problem with Time Windows has not been studied yet.

2.1.1 Initial Observations

From now on let I = ((V, c), D, d, τ, u, f) be an instance of the Sink Clustering
Problem with Time Windows. For simplicity of notation we define by ID′ :=
((V, c), D′, d|D′ , τ |D′ , u, f) the reduced instance for the sinks D′ ⊆ D.
Let O(I) be the cost of an optimum solution for I. Ignoring the time windows of the
sinks we get an instance of the Sink Clustering Problem, where O′(I) denotes the
cost of an optimum solution. As every solution of the Sink Clustering Problem
with Time Windows is also a solution of the Sink Clustering Problem, clearly
O′(I) ≤ O(I).

Proposition 2.1. Let D′ ⊆ D. Then O(ID′) ≤ O(ID).

Proof. Let (D1, S1), . . . , (Dk, Sk) be an optimum solution for instance I. For 1 ≤ i ≤ k
define D′

i = D′ ∩ Di. Si is still a Steiner tree on D′
i. Thus (D′

1, S1), . . . , (D
′
k, Sk) is a

feasible solution for the reduced instance ID′ and an optimum solution for ID′ cannot
be more expensive. �
Note that this lemma is not true if the Si have to be spanning trees instead of Steiner
trees, as a minimum spanning tree on a set of terminals D′ can be longer than a
minimum spanning tree on a bigger set D ⊃ D′.

Proposition 2.2. Let Da, Db ⊆ D be two subsets of sinks so that

max
s∈Da

rat(s) < min
s∈Db

rat(s).

Then O(IDa∪Db) = O(IDa) +O(IDb).

Proof. It is obvious that O(IDa∪Db) ≤ O(IDa)+O(IDb). Now let (D1, S1), . . . , (Dk, Sk)
be an optimum solution for IDa∪Db . As the timing constraints have to be satisfied
we have either Di ∩ Da = ∅ or Di ∩ Db = ∅ for 1 ≤ i ≤ k. Set A := {i| 1 ≤ i ≤
k, Di ∩ Db = ∅} and B := {1, . . . , k} \ A. Then Da =

⋃̇
i∈ADi and {Di, Si}i∈A is a

feasible solution for IDa that costs at least O(IDa). In the same manner we get that

Db =
⋃̇

i∈BDi and {Di, Si}i∈B is a feasible solution for IDb that costs at least O(IDb). As
both solutions together cost O(IDa∪Db

) we conclude that O(IDa∪Db) ≥ O(IDa)+O(IDb),
which completes the proof. �
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2.1.2 An Approximation Algorithm

In this section we introduce the first approximation algorithm for the Sink Clus-
tering Problem with Time Windows. It will use an approximation algorithm
for the Sink Clustering Problem as a subroutine. But first of all we need some
definitions.

Definition 2.3. Let T = {t1, . . . , tk} ⊆ R be a finite set of points and D′ ⊆ D be a
set of sinks with time windows. We say that T covers D′ if for every sink v ∈ D′ there
exists a t ∈ T with t ∈ τ(v).

Definition 2.4. Let D′ ⊆ D be a set of sinks with time windows. We define ψ(D′) :=
minT⊆R,T covers D′ |T | to be the minimum size of a set covering D′.

Proposition 2.5. A set T covering D′ with τ(D′) = |T | can be found in time O(|D′|
log |D′|).

Proof. Set D1 := D′ and i := 1. As long as Di 6= ∅ let vi ∈ Di be a sink with
ti := rat(vi) = minv∈Di rat(v). Set Di+1 = Di \ {v ∈ Di| ti ∈ τ(v)} and increment i.
Let k be the biggest integer such that Dk 6= ∅ and T = {t1, . . . , tk}. By construction
the time windows τ(v1), . . . , τ(vk) are pairwise disjoint. Thus ψ(D′) ≥ k = |T |. On
the other hand it is obvious that T covers D′. �
Note that ψ(D′) could also be defined as the maximum number of pairwise disjoint
arrival time windows of sinks in D′.
For the rest of this section let TD = {t1, . . . , tk} be a set that covers D with |TD| =
ψ(D). First we compute a partition Dt1∪̇ . . . ∪̇Dtk = D of D so that ti ∈ τ(v) for all
v ∈ Dti and i ∈ {1, . . . , k}.
To this end, we will recursively partition a set of sinks into three subsets. The time
windows of the sinks in one of these sets will have a non-empty intersection. On this
set we can later apply an algorithm for the Sink Clustering Problem ignoring the
timing restrictions. The other two sets will be further partitioned if necessary.
In each partition step we have a set of sinks D′ ⊆ D, a finite set of points T ′ =
{t′1, . . . , t′h} ⊆ TD that covers D′ and an integer m that will be used later for analysis.
We compute a partition Dt′1

∪̇ . . . ∪̇Dt′h
= D′ of D′ so that t′i ∈ τ(v) for all v ∈ Dt′i

and i ∈ {1, . . . , h}. If T ′ consists of only one element t′1, we set depth(t′1) := m and
Dt′1

:= D′. Otherwise let j be the median of the indices, i.e. j :=
⌊

h
2

⌋
. We set

depth(t′j) := m and

• Dleft := {v ∈ D| rat(v) < t′j},

• Dt′j
:= {v ∈ D| rat(v) ≤ t′j ≤ rat(v)},

• Dright := {v ∈ D| t′j < rat(v)}.

By the definition of T ′ the set Tleft := {t ∈ TD| t < tj} covers Dleft and Tright := {t ∈
TD| tj < t} covers Dright. Moreover, D = Dleft∪̇Dt′j

∪̇Dleft, T
′ = Tleft∪̇{t′j}∪̇Tleft and

ψ(T ′) = ψ(Tleft)+1+ψ(Tleft). If Dleft and Dright, respectively, are not empty, we repeat
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the partition step on (Dleft, Tleft,m + 1) and (Dright, Tright,m + 1), respectively. The
algorithm returns the result of these sub-calls plus Dt′j

.

Applying this recursive partition on (D,TD = {t1, . . . , tk}, 1) we get a partitionDt1 , . . . ,
Dtk of D. For each i ∈ {1, . . . , k} the set {ti} covers Dti , i.e. the time windows of
all sinks in Dti have a non-empty intersection and we can apply an approximation
algorithm for the Sink Clustering Problem on them. The union of the clusters
produced by the calls of this algorithm on all Dti , i ∈ {1, . . . , k}, gives a feasible
clustering for D.

Lemma 2.6. Let ASCP be an approximation algorithm for the Sink Clustering
Problem and δSCP its approximation guarantee. Then the presented algorithm for the
Sink Clustering Algorithm with Time Windows using ASCP as sub function
has an approximation guarantee of δSCP dlog2 (ψ(D) + 1)e.

Proof. Let T be a minimum set covering D. First observe that dmax := maxt∈T depth(t)
= dlog2 (ψ(D) + 1)e, as we always choose the median of T ′ when partitioning the sinks
D′ in each iteration. Set T (d) := {t ∈ T | depth(t) = d}. For t, t′ ∈ T (d), t < t′, we get
by construction maxs∈Dt rat(s) < mins∈Dt′

rat(s). Using Proposition 2.1 and 2.2 we see

O(ID) ≥ O
(
IS

t∈T (d) Dt

)
=
∑

t∈T (d)

O(IDt) =
∑

t∈T (d)

O′(IDt).

Let co(D) be the cost of the computed solution and co(Dt) be the cost of the partial
solution computed by the Sink Clustering algorithm for the set Dt, t ∈ T . We
conclude

co(D) =
∑
t∈T

co(Dt)

≤ δSCP

∑
t∈T

O′(Dt)

= δSCP

∑
t∈T

O(Dt)

= δSCP

dmax∑
i=1

∑
t∈T (di)

O(Dt)

≤ δSCP

dmax∑
i=1

O(D)

= δSCP dlog2 (ψ(D) + 1)eO(D).

�
Using the algorithms for the Sink Clustering Problem of Chapter 1 we get:

Lemma 2.7. The Sink Clustering Problem with Time Windows for an in-
stance ((V, c), D, d, τ, u, f) can be solved with approximation ratio
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• (1 + 2α)dlog2 (ψ(D) + 1)e,

• 3βdlog2 (ψ(D) + 1)e and

• 3γdlog2 (ψ(D) + 1)e

where α is the Steiner ratio, β is the approximation ratio of a minimum Steiner tree
algorithm and γ is the approximation ratio of a minimum traveling salesman tour
algorithm.

�
Now we present an example showing that the above algorithm could produce a clus-
tering with cost log2(ψ(D)) times the cost of an optimum solution.
Initially we set D1 := {s} with p(s) := 1, rat(s) := rat(s) := 1 and d(s) := 0. For
s ∈ Dk let ŝk be a sink with position p(ŝk) := p(s)+2k, required arrival times rat(ŝk) :=
rat(s) + 2k, rat(ŝk) := rat(s) + 2k and demand d(ŝk) := 0. Set D̂k := {ŝk| s ∈ Dk}.
Moreover, we define for each 1 ≤ j ≤ 2k − 1 the sink sk

j by setting the position
p(sk

j ) := j, required arrival times rat(sk
j ) := 1, rat(sk

j ) := 2k−1 and demand d(sk
j ) := 0.

Set Lk := {sk
j | 1 ≤ j ≤ 2k − 1}. Finally, we need the sink sk with p(sk) := 2k−1,

rat(sk) := rat(sk) := 2k−1 and d(sk) := 0.
Now we define recursively Dk := Dk−1 ∪ D̂k−1 ∪ Lk ∪ {sk} (See Figure 2.1). Finally,
set the facility cost f := 1 and the load limit u := 1

2
. Ik := ((R, l1), Dk, d, τ, u, f),

with τ(s) = [rat(s), rat(s)] for s ∈ D, forms an instance for the Sink Clustering
Problem with Time Windows in the rectilinear plane (R, l1).

s4

D3 D̂3

L4

R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.1: Worst case example for the approximation algorithm of Lemma 2.6 for
the Sink Clustering Problem with Time Windows. The set D4 is
printed. Each line and dot represent one sink, with the line as time interval
and the dot as position.
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Set k ∈ N. Then {p(s)| s ∈ Dk} = {1, . . . , 2k − 1}. As two sinks with different
positions have distance at least 1 they cannot be clustered together. Thus we have
to open a new cluster for each of the 2k − 1 positions. For 1 ≤ j ≤ 2k − 1 set
Cj := {s ∈ Dk| p(s) = j}. By construction rat(s) ≤ p(s) ≤ rat(s) so all sinks in Cj

have a point of time in common. That means that Cj and the Steiner tree consisting
just of the point {j} is a feasible clustering. We conclude that an optimum clustering
of Ik has cost 2k − 1.
Note that T k := {1, . . . , 2k − 1} covers Dk and ψ(Dk) = |T k| = 2k − 1. The median
of T k is j = 2k−1. Therefore the algorithm computes t′j = 2k−1 and the partition

Dk = Dleft∪̇Dt′j
∪̇Dright with Dleft = Dk−1, Dright = D̂k−1 and Dt′j

= Lk ∪ {sk}. Then
an algorithm for the Sink Clustering Problem on Dt′j

is applied. Note that the

sinks in Dt′j
have 2k − 1 different positions and thus any feasible clustering of these

sinks contains at least 2k − 1 clusters. The algorithm then continues by partitioning
the other two sets.
By induction we conclude that the final solution contains

2k − 1 + 2 · (2k−1 − 1) + 4 · (2k−2 − 1) + . . .+ 2k−1 · (21 − 1)

= k · 2k − (1 + 2 + 22 + . . .+ 2k−1)

= (k − 1) · 2k + 1

clusters.
Thus the clustering computed by the algorithm has cost O(k · 2k) = O(log2(ψ(D))2k).
This is factor log2(ψ(D)) from the cost of an optimum solution.
In this section we have presented a polynomial log2(ψ(D))-approximation algorithm for
the Sink Clustering Problem with Time Windows. The last observations show
that the approximation ratio is tight. It is an open question if there is a polynomial
approximation algorithm with constant approximation ratio for the problem.
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2.2 Post Optimization

The post optimization algorithm presented in Section 1.2 can also be used, with some
small modifications, for the Sink Clustering Problem with Time Windows.
First of all, we modify the neighborhood graph G on D used to find pairs of clusters
that are near to each other. We ensure that sinks are connected by an edge only if
their required arrival time windows have a point in common. Then, again, two clusters
(DA, SA) and (DB, SB) are neighbors if they contain sinks a ∈ DA and b ∈ DB with
{a, b} ∈ E(G). Note that by this definition there might be clusters that are neighbors
but the time windows of all their sinks do no have a point of time in common.
When applying TwoClusterOpt we additionally have to check if the two clusters we get
by removing an edge of the Steiner tree satisfy the timing constraints, i.e. if all sinks
of each cluster have a point of time in common.
Recall that within the main loop of ChainOpt we analyze two clusters (DA, SA) and
(DB, SB). We add an edge {a, b}, a ∈ A, b ∈ B, in order to get a Steiner tree T on A∪B.
Then we remove an edge of E(T )\E(SA) maximizing the load of the cluster containing
SA. Again we have to ensure that the timing constraints are satisfied. Obviously, this
operation can only be successful if the arrival time windows of a and b have a point in
common.
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2.3 Lower Bounds

In this section we want to develop lower bounds for the cost of optimum solutions of the
Sink Clustering Problem with Time Windows. Similar to the approximation
algorithm we will describe a framework where lower bounds for the Sink Clustering
Problem are used for parts of the initial instance and then are combined to form a
lower bound for the complete instance.

The main idea is given by the following observation:

Proposition 2.8. Let I = ((V, c), D, d, τ, u, f) be an instance of the Sink Clustering
Problem with Time Windows, r ∈ N+ and t1, . . . , tr+1 ∈ R with t1 < t2 < ... <
tr+1. Define Di := {s ∈ D, ti < rat(s), rat(s) ≤ ti+1} for i ∈ {1, . . . , r}. Then

O(I) ≥ O′(ID1) + . . .+O′(IDr).

Proof. First observe that all sets Di are pairwise disjoint and the time windows of
sinks of different sets have an empty intersection. Using Proposition 2.1 and 2.2 we
conclude:

O(ID) ≥ O(ID1∪...∪Dr)

= O(ID1) + . . .+O(IDr)

≥ O′(ID1) + . . .+O′(IDr).

�
For D′ ⊆ D let l(ID′) be a lower bound for the cost of an optimum solution on ID′

ignoring the timing constraints, i.e. l(ID′) ≤ O′(ID′). Now we can find a lower bound
for the Sink Clustering Problem with Time Windows using l in the following
way:

For a < b we define the set D[a, b] = {s ∈ D, a < rat(s), rat(s) ≤ b}.
Choose r + 1 points t1 < t2 < ... < tr+1. By the previous proposition∑

1≤i≤r

l(ID[ti,ti+1]) ≤ O(I).

The problem is to find points ti that yield a good lower bound. The next lemma will
show that we can find the best choice for the ti’s efficiently.

Lemma 2.9. Let n = |D| and θ|D′| be the running time to compute l(ID′) for D′ ⊆ D.
Then we can compute

max
r∈N,t1,...,tr+1∈R,t1<...<tr+1

∑
1≤i≤r

l(ID[ti,ti+1]) (2.4)

in time O(n2θn).
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Proof. Let r′ ∈ N, t′1, . . . , t′r′+1 ∈ R and t′1 < . . . < t′r′+1 numbers maximizing (2.4).
Let t−∞ ∈ R be a number with t−∞ < rat(s) for all s ∈ D. Set T := {rat(s)| s ∈
D}∪ {rat(s)| s ∈ D}∪ {t−∞}. First we want to show that we can assume without loss
of generality that t′i ∈ T .
For 1 ≤ i ≤ r + 1 set Ai := {rat(s)|s ∈ D, rat(s) ≤ t′i} ∪ {t−∞} and Bi := {rat(s)|s ∈
D, rat(s) ≤ t′i} ∪ {t−∞}. Set ai := maxAi, bi := maxBi and ci := max{ai, bi}. Note
that ci ∈ T . By definition D[t′i, t

′
i+1] = D[ai, t

′
i+1] and D[t′i, t

′
i+1] = D[t′i, bi+1]. As

ai ≤ ci ≤ t′i and bi+1 ≤ ci+1 ≤ t′i+1 we conclude D[t′i, t
′
i+1] = D[ci, ci+1]. Therefore we

can replace t′i by ci for all i and get the same lower bound.
Now we show how to compute the lower bound efficiently. To this end, let p0, . . . , pm

be the elements of T in increasing order, i.e. t−∞ = p0 < p1 < p2 < . . . < pm and
{p0, . . . pm} = T . For simplicity we set for J = {j1, . . . , jl} ⊆ {0, 1, . . .m}, j1 < . . . <
jl,

l(J) :=
∑

1≤i≤l

l
(
ID[pji ,pji+1 ]

)
.

By the previous observations we have to find a set J ⊆ {0, . . . ,m} maximizing l(J).
By induction on i we will compute a set Ji ⊆ {0, . . . , i} maximizing l(J) subject to
J ⊆ {0, . . . , i}..
Set J0 := {0} and J1 := {0, 1}. Assuming we have computed Ji, we will now compute
Ji+1. To this end, we need the following observations: Let a1, . . . , ak be the elements of
Ji+1 in increasing order. If ak < i+ 1 then Ji+1 = Jak

. But as l(Ji+1) ≥ l(Ji) ≥ l(Jak
)

we can set w.l.o.g. Ji+1 = Ji in this case. Otherwise, we conclude

l(Ji+1) = l ({a1, . . . , i+ 1})
= l ({a1, . . . , ak−1}) + l ({ak−1, i+ 1})
= l

(
Jak−1

)
+ l ({ak−1, i+ 1})

= l
(
Jak−1

)
+ l
(
ID[pak−1

,pi+1]

)
.

Thus l(Ji+1) = max0≤j≤i l(Jj) + l(ID[pj ,pi+1]). If the maximum is obtained for j = j′ we
get Ji+1 = Jj′ ∪ {i+ 1}. We conclude that we have to compute i+ 1 lower bounds and
take the maximum of i+ 2 values in order to compute Ji+1.
Finally, Jm is the set we are looking for. Altogether the computations of the 1 + 2 +
. . . +m = O(m2) = O(n2) lower bounds dominates the running time, and the lemma
follows. �

2.3.1 Analysis

We have seen that the approximation algorithm for the Sink Clustering Problem
with Time windows presented in Section 2.1 can be Ω(logψ(D)) away from the cost
of an optimum solution. In the analysis of that algorithm we compared the cost of the
computed solution with the simple lower bound for the Sink Clustering Problem
presented in Section 1.1. It is obvious that the lower bound of Lemma 2.9 is at least as
good. Thus it can be at most O(logψ(D)) away from the cost of an optimum solution.



54 2 The Sink Clustering Problem with Time Windows

In this section we will give an example that shows that this is tight, i.e. that the
lower bound can be indeed Ω(logψ(D)) away from the cost of an optimum solution.
To this end, we define an instance for the Sink Clustering Problem with Time
Windows within the metric space (V, c) = (R, l1).
Let h ∈ N, k := 2h, and ti := i for i ∈ {1, . . . , k}. For 1 ≤ i ≤ j ≤ k we define the
sinks si,j with position p(su,j) := j− i, d(si,j) := 0, rat(si,j) := i and rat(si,j) := j. Let
D = {si,j| 1 ≤ i ≤ j ≤ k}. Obviously, ψ(D) = k. We choose f := 1 as facility opening
cost and u := 0.5 as load limit.
Now we analyze the following sets of sinks (see Figure 2.2):

• P1 := {s1,1, s2,2, . . . , sk,k},

• P2 :=
{
s1,2, s3,4, . . . , s2b k

2c−1,2b k
2c
}

• P3 :=
{
s1,3, s4,6, . . . , s3b k

3c−2,3b k
3c
}

• . . .

• Pk := {s1,k}

Any two sinks of the same set Pi have disjoint time windows and cannot be in the same
cluster. Moreover, any two sinks of two different sets Pi and Pj cannot be clustered
together, as their distance is |i− j| ≥ 1 > 0.5 = u. Hence any feasible clustering has at
least

∑
1≤i≤k |Pi| clusters. It can be shown that this is exactly the number of clusters

of any optimum solution.
The number of elements in Pi is

⌊
k
i

⌋
. In total we get:

∑
1≤i≤k

|Pi| =
∑

1≤i≤k

⌊
k

i

⌋

≥

(∑
1≤i≤k

k

i

)
− k

=
∑

2≤i≤k

k

i

≥ k ·
∑

2≤i≤2h

1

2dlog2(i)e

= k ·

 ∑
20<i≤21

1

2dlog2(i)e +
∑

21<i≤22

1

2dlog2(i)e + . . .+
∑

2h−1<i≤2h

1

2dlog2(i)e


= k ·

 ∑
20<i≤21

1

21
+

∑
21<i≤22

1

22
+ . . .+

∑
2h−1<i≤2h

1

2h


= k · 1

2
· h =

k log2 k

2
.
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(Hoehn and Ridenhour [1989] proved that
∑

1≤i≤k

⌊
k
i

⌋
= k(log2 k + 2γ − 1) + O(

√
k)

where γ is is the Euler-Mascheroni number.) We conclude that an optimum solution
for this instance costs at least Ω(k log k).
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Figure 2.2: Worst case example for lower bound of Lemma 2.9.

In the next step we compute the lower bound given by Lemma 2.9. To this end, we first
have a look at D[a, b] for a, b ∈ {0, . . . , k}, a < b. As by definition D[a, b] = {si,j| a <
i ≤ j ≤ b} all sinks in D[a, b] have a position in {0, . . . , b− a− 1}. The lower bound l
ignores the time windows and therefore l(ID[a,b]) = (b− a) · f = b− a.
Let J = {j0, . . . , jr, j0 < j1 < . . . < jr} ⊆ {0, 1, 2, 3, . . . , k} . From what has already
been proved, we conclude l(J) =

∑
1≤i≤r l(ID[ji−1,ji]) = (j1− j0)+ (j2− j1)+ . . .+(jr−

jr−1) = jr − j0 ≤ k. Thus the best lower bound we get by the previous approach for
this instance is k, but an optimum solution has cost O(k log k) = O(k logψ(D)).
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2.4 Experimental Results

The instances summarized in Table 2.1 are again from clock trees of some recent chips.
The table shows the number of sinks, the total demand, the facility opening cost, the
load limit and the length of a minimum spanning tree on D. Additionally we added
the minimum size of a set that covers D (see Section 2.1.2). We applied the Sink
Clustering Algorithm with Time Windows using the Sink Clustering Al-
gorithm working on spanning trees as sub-function. By Lemma 2.7 the approximation
ratio is 4dlog2 (ψ(D) + 1)e.

instance |D| d(D) f u MST |ψ(D)|
S1 16 260 58.1 0.127 0.142 76.7 5
S2 33 479 107.9 0.112 0.155 111.9 6
S3 35 305 285.6 0.132 0.167 105.2 329
S4 57 402 118.7 0.093 0.087 93.1 4
S5 71 356 211.8 0.122 0.196 86.0 234
S6 119 461 258.8 0.142 0.117 314.5 8
S7 141 503 436.5 0.127 0.164 239.2 132
S8 638 129 1 337.8 0.093 0.087 1 094.7 5

Table 2.1: The test instances.

Table 2.2 shows the results we got on the instances after applying the Sink Clus-
tering Algorithm with Time Windows and after additional use of the two post
optimization algorithms presented in Section 1.2. The table contains the total cost,
the wiring cost and the number of clusters of the computed clustering. The post
optimization reduced the total cost of the solution by 9.3% in average.

core Sink Clustering alg. ... plus post opt.
instance total cost wire cost #clusters total cost wire cost #clusters
S1 286.7 77.8 1 645 249.5 67.1 1 436
S2 310.4 113.9 1 755 277.6 100.6 1 581
S3 1 017.9 249.8 5 819 893.6 194.3 5 298
S4 359.6 97.9 2 814 333.6 90.8 2 611
S5 1 478.1 649.3 6 793 1 370.9 573.0 6 540
S6 1 072.6 297.1 5 461 1 001.7 284.5 5 051
S7 1 604.4 431.3 9 237 1 547.9 405.7 8 994
S8 4 205.4 1 149.1 32 863 3 917.5 1 073.4 30 582

Table 2.2: Total cost of the solution, wiring cost and number of clusters after the ini-
tial Sink Clustering Algorithm with Time Windows and after ad-
ditional post optimization.

Table 2.3 shows the computed lower bounds. The first one is the lower bound based
on K-dominated functions without considering time windows. The second is the one
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presented in the last section using the lower bound for K-dominated functions as sub-
function. As expected, the cost of our solution is far away from the lower bound in
some cases. The reason can be both a bad lower bounds or a bad solution.

lower bound 1 lower bound 2
instance cost #clusters ratio cost #clusters ratio
S1 134.2 731 1.859 147.4 778 1.693
S2 187.1 1 115 1.484 192.8 1 135 1.440
S3 334.8 2 082 2.669 551.0 3 175 1.622
S4 246.7 2 028 1.353 260.2 2 105 1.282
S5 222.2 1 366 6.169 598.4 2 387 2.291
S6 746.5 3 886 1.342 750.2 3 901 1.335
S7 599.6 3 555 2.582 1 131.7 6 411 1.368
S8 2 833.2 23 145 1.383 3 034.1 24 285 1.291
average 2.355 1.540

Table 2.3: Comparison to lower bounds. The table shows the lower bound for the cost
(cost) , the lower for the number of clusters (#clusters) and the ration of
the cost of our solution and the lower bound (ratio).

Finally, Table 2.4 shows the running time of the core clustering algorithm and the two
post optimization heuristics and the number of successful applications of TwoClus-
terOpt and ChainOpt.

initial TwoClusterOpt ChainOpt
instance runtime (s) runtime (s) succ. runtime (s) succ.
S1 1.1 7.6 1 876 4.6 702
S2 3.9 24,7 2 643 9.7 781
S3 2.4 11.3 3 877 21.0 2 812
S4 2.6 26.5 3 377 10.9 716
S5 3.8 47.0 6 402 92,7 1 150
S6 14.4 42.4 6 177 14.0 1 355
S7 10.4 33.7 3 595 40.2 1 580
S8 37.2 297.7 38 900 188.3 5 856

Table 2.4: Running times in seconds and number of successful applications of TwoClus-
terOpt and ChainOpt.
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3 BonnClock

In this chapter we will give an introduction to clock tree design and present our algo-
rithm BonnClock developed to build such trees. A clock tree is an electrical network
with the task of distributing a clock signal from a source to several sinks placed on a
chip. A given initial clock tree has to be replaced by a logically equivalent tree that
satisfies some timing and several other constraints. To this end, inverters are inserted
and special circuits (circuits that are neither buffers nor inverters) have to be cloned.
Moreover, all circuits have to be placed. The clock signal, starting at the root, has to
arrive at each sink within an individual required arrival time window.
We will describe the Clock Tree Construction Problem more formally in the
next section. For the sake of simplicity, we will restrict our description to trees that
do not contain other circuits than inverters. However, the algorithm can be extended
in a straightforward way to handle more complex tree structures.

3.1 The Clock Tree Construction Problem

3.1.1 Problem Definition

Clock Tree Construction Problem

Instance: An instance consists of:

• A rectangular chip area A ⊂ R2,

• a source r with timing rules and a location pr ∈ A, and input slew slr,

• a finite set S of sinks. For each sink s a parity in {+,−}, a location ps ∈ A
and a required arrival time windows rat(s) =

[
rat(s), rat(s)

]
⊂ R,

• a library L of inverters with timing rules and input capacitances,

• a set of rectilinear axis-parallel blockages B where circuits cannot be placed,

• a slew limit maxslew and

• additional technology dependent parameters (wire resistance, wire capaci-
tances per unit length, ...)

The task is to compute an arborescence T with root r and leaves S, a mapping bhc :
V (T ) \ (S ∪ {r}) → L from the internal vertices to the inverter library, a position
π(v) ∈ A for each vertex v ∈ V (T ), a rectilinear Steiner tree Sv for each vertex
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v ∈ V (T ) \S with terminals {π(v)}∪ {π(w)| (v, w) ∈ E(T )}, a starting time atr of the
signal and a number δ ∈ R+ indicating how well the timing requirements are met, so
that

• π(s) = ps for s ∈ S ∪{r} and no internal vertex of T is placed on a blockage, i.e.
π(v) /∈ B for all B ∈ B and all v ∈ V (G) \ (S ∪ {r}).

• For any sink s ∈ S the number of internal vertices on the r-s path is even if the
parity of s is + and odd if it is −.

• The slew limit is kept at all input and output pins.

• The signal, starting at time atr and slew slr at the source, arrives at sink s ∈ S
within the time interval [rat(s)− δ, rat(s) + δ].

The main goal is to build a tree that satisfies the timing requirements as good as
possible, i.e. to minimize δ. Further important goals are to minimize the resource
consumption. This means on the one hand to minimize the capacitance (proportional to
the power consumption) of the tree

∑
v∈V (T )\S c(Sv) where c(Sv) is the total capacitance

of the Steiner tree Sv. On the other hand we have to minimize the power consumption
of the inserted circuits

∑
v∈V (T )\(S∪{r}) c(bhc(v)).

Figure 3.1: A clock tree instance and a complete clock tree. The sinks are in orange,
the source is placed in the upper right corner. The color and thickness of
the wires in the right picture depend on the arrival time of the clock signal
(blue and thick is early, red and thin is late).

One variant of the Clock Tree Construction Problem handles several sources
instead of a single one. Then the algorithm has to compute an assignment from the
sinks to the sources and build a clock tree for each source on the assigned sinks.
Moreover, in practice there appear more complicated clock tree structures like clock
trees running into each other. Sometimes there are actually ‘clock trees’ that are not
trees but contain circuits that receive the clock signal from several other circuits.
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3.1.2 Previous Work

The literature on clock tree design distinguishes between three different parts of the
problem. First the creation of the tree topology, second the embedding of a given
topology into the plane and third the insertion of inverters. Some papers deal with
only one of these aspects, some combine two or all three parts.

One classical tree construction algorithm that guarantees the same length of all source-
sink paths are the H-trees. These trees are build top-down. First a vertex is placed
in the center of the chip area and connected to the source (see Figure 3.2). Then the
area is divided into two halves. In the center of both halves a new vertex is placed and
connected to the one in the center of the area. This procedure will be repeated until
all sinks are near enough to a leaf of the tree so that they can be connected directly
to them. A big disadvantage of this approach is that the sinks have to be distributed
symmetrically over the chip area which is not the usual case in practice. Moreover,
blockages cannot be considered and only zero-skew trees can be implemented.

The top-down partition algorithm that will be presented in Section 3.6 can be seen as
a generalization of the H-tree method. Unlike the classical H-tree algorithm, it can
handle arrival time windows and blockages.

Figure 3.2: An H-tree

One widely used algorithm for embedding a given topology T into the plane is the
Deferred-Merge-Embedding (DME) (Chao et al. [1992], similar approaches proposed
by Edahiro [1991], Muuss [1994], Tsay [1993]). In the final embedding all source-sink
paths have the same length. Without loss of generality let T be a strict binary tree.

For every vertex v ∈ V (T ) of the tree the DME-algorithm stores a merging region
MR(v) that consists of a line segment (that could also be a single point) and a value
len(v) that is the length of the path from v to any sink of the subtree rooted at
v in the final embedding. The merging region of a sink v is its position and the
length is len(v) := 0. Let r and l be the children of a vertex v ∈ V (T ) where
we have already computed the merging regions and lengths. Now let len(v) be the
smallest value so that there exists a point x with len(v) ≥ max{d(x,MR(r)) +
len(r), d(x,MR(l)) + len(l)}. Here d(x,MR(l)) is the (minimum) distance from x
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to the line segment MR(l) which can be computed efficiently. Set MR(v) := {x ∈
R2| max{d(x,MR(r)) + len(r), d(x,MR(l)) + len(l)} ≤ len(v)}.

Finally, in a top-down process the positions of the vertices are computed. First an
arbitrary position x ∈ MR(r) for the source r will be selected. Then the algorithm
chooses for every vertex v ∈ V (T ) a position in the merging region MR(v) of v that is
nearest to the position of its predecessor.

s1 s2 s3 s4

a b

c s1

s2

s3

s4

s1

s2

s3

s4

Figure 3.3: Illustration of the Deferred-Merge Embedding algorithm. The left side
shows the initial topology, the middle the merging regions and the right
side the final vertex positions.

Chao et al. proved that the Deferred-Merge-Embedding algorithm computes a zero
skew tree that has minimum length for the given topology.

The length of the final tree depends on the topology of the tree. This topology can be
precomputed or it can be chosen within the DME algorithm. In the latter case often
a simple greedy strategy is used: in each iteration of the algorithm two vertices with
minimum distance between their merging regions are taken and get a new predecessor
(see e.g. Edahiro [1992]).

There are many variants of the DME algorithm. One is to allow that the lengths of
the source-sink paths need not be the same but might differ by at most some value
b ∈ R≥0, or to allow more general skew constraints (Tsao and Koh [2002]). In our
definition of the clock tree problem this means that the required arrival time windows
are not identical points but intervals of equal or individual length. In both cases the
merging regions become octagons instead of line segments.

Actually, we are interested in the delay between the source and the sinks and not the
lengths of the source-sink paths. Chong et al. [1998] extended the DME algorithm in
order to use the Elmore delay model. In this case, however, the merging regions get even
more complicated and can only be approximated by simpler geometrical structures.
Moreover, it cannot be guaranteed anymore that the computed embedding is best
possible for the given topology.

A problem of all algorithms that are based on the Deferred-Merge Embedding concept
is that long wire detours are necessary in order to balance the tree. This leads to an
extensive use of wiring resources and a high power consumption.
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3.2 Outline of BonnClock

The algorithm BonnClock constructs clock trees as defined in the last section. It
builds the tree bottom-up, but it also uses a top-down partitioning algorithm in order
to compute roughly the topology of the tree. It does not use balanced nets. Rather all
nets will be as short as possible. Delays are balanced by the constructed tree topology
and accurate inverter sizing.
For each circuit a placement area is computed where the vertex can be placed. In
addition, a set of ‘solution candidates’ is stored to help us with the selection of good
inverter sizes. More details on solution candidates are presented in Section 3.3.
The topology creation and the placement of the internal vertices are done simultane-
ously. The size of the circuits is not chosen until the complete tree has been computed.
While building the tree we maintain a list of ‘solution candidates’ for each vertex that
is computed by a dynamic program.
An outline of the outer loop of the BonnClock Algorithm is shown in Algorithm 1. We
always keep a set of active vertices, i.e. vertices that have no predecessor yet. First,
these vertices are preliminarily clustered together. We are most interested in ‘late’
clusters. To determine them let t := maxv active rat(v) be the latest starting point of
the required arrival time window of an active vertex. Denote by Alate := {v active|t ≤
rat(v)} all active vertices that have a late feasible arrival time and denote by C the set
of all clusters only containing vertices of Alate (note that C is not empty). Let A be
the set of all vertices that are in a cluster of C. The final positions of the vertices in A
are chosen and new solution candidates are created. After dismissing the preliminary
clusters, the vertices in A will be clustered again, using their new positions. For each
cluster we insert a new vertex having the vertices of the cluster as successors. Then the
placement areas and preliminary solution candidates for the new vertices are computed.
This procedure has to be repeated until the remaining circuits can be connected to the
source of the tree. After the main loop, the algorithm chooses a good solution candidate
for the source and sets the circuit sizes according to it. In this simplified version of
the algorithm we have not considered the parities of the sinks. The algorithm can be
extended to respect them too by maintaining two sets of active vertices, one for the
vertices that require an even and one for the vertices that require an odd number of
vertices on the path towards the source. Only vertices of the same set are clustered
together and new vertices are sorted into the correct set.
Within the algorithm we will use two values, maxdist and dwire. maxdist denotes
the maximum distance between two inverters so that the slew limit is kept and the
capacitance constraints are satisfied. dwire is the best possible delay per unit of wire
that can be achieved without violating the constraints (this value is computed in a
preprocessing step). Moreover, we only use a finite set of feasible slew values in order
to handle the dynamic program and the computation of solution candidates (see Section
3.3).
In the next sections we will dicuss the different main parts of the algorithm. Section
3.3 will show more precisely how the dynamic program is used to compute solution
candidates. How the Sink Clustering Algorithms are used for the clustering is
described in Section 3.4. Section 3.5 shows how to compute the placement areas and
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Algorithm 1: BonnClock main loop.

Active vertices Vact := S;
while Vact cannot be connected to root do

// Pre-Clustering

Cluster active vertices;
Let A be all active vertices with latest arrival time windows;
// Placement

Place vertices of A within their placement area;
Recompute solution candidates for vertices A;
// Clustering

Recluster A and let B the new vertices driving A;
Vact := (Vact \ A) ∪B;
// Dynamic Program Update

Compute solution candidates and placement areas for vertices B;
end

in Section 3.6 the top-down partition is explained. Finally, in Section 3.7 we will give
some ideas how the problem of on-chip variation can be handled.

3.3 Solution Candidates

A solution candidate for a vertex v of the clock tree describes a feasible assignment of
the vertices in the subtree rooted at v to the inverters. But before we define solution
candidates more formally and show how they can be computed we will have a closer
look at the delay and slew functions of the circuits.

For the computation of the solution candidates we have to discretize the slew values in
some situations. To this end, let Sl be a finite set of feasible slew values. In practice
we set Sl =

{
i
k
maxslew| i ∈ {0, . . . , k}

}
for k = 20.

For the rest of this section a circuit can be either the source, a sink, an internal inverter
or a special gating circuit.

We associate with each vertex of the clock tree a set of solution candidates. A solution
candidate sc for a vertex c (or more precisely the input pin of a circuit) consists of a
circuit type T , a capacitance cap, a slew slew, an arrival time window rat = [rat, rat]
and a solution candidate succ(w) for each successor w of c. We will write the solution
candidate as tuple sc = (T (sc), cap(sc), slew(sc), rat(sc), succ(sc)).

A solution candidate can be interpreted in the following way. Assume we realize the
subtree rooted at a vertex v according to a solution candidate sc of v, i.e. we set the
inverter types according to the types given by the candidate and its successors. If the
clock signal arrives at the input pin of circuit v with slew slew(sc) and within the
time window rat(sc), then the signal arrives at each sink of the subtree within its time
window. In the next section we will extend the definition of solution candidates to
vertices that do not correspond to input pins of circuits but to output pins of circuits
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or points on the Steiner trees connecting the circuits, and thus do not have a circuit
type. In these cases we set T (sc) := NULL.
Now we show how to compute the set of solution candidates SolCand(v) for a vertex
v ∈ V (T ) of the clock tree. Obviously, the solution candidates of the successors δ+(v) =
{v1, . . . , vk} of v have to be computed already (Figure 3.4 shows an example with three
successors). We compute an (approximate) minimum Steiner tree on {v} ∪ δ+(v) and
transform it into a tree, defined in the following. To this end, we double the vertex
v and insert a ‘circuit’ edge between them (red in Figure 3.4). These two vertices
represent the input and output pin of the circuit v. The first one will be the root
of the tree. We also replace each Steiner point of degree at least 3 by a vertex for
every incident edge. We insert edges between the ‘merging’ vertex (blue in Figure 3.4)
belonging to the edge leading to v and the other ones. Thus we get a directed tree
T ′ where for each edge of the Steiner tree there exists a corresponding ‘timing’ edge
(black in Figure 3.4). Note that the first vertices of these edges all have degree 2. We
will call these vertices ‘wire’ vertices. Altogether, there are four types of vertices: the
sinks (white circles in Figure 3.4), the wire vertices (green circles), the merging vertices
(blue circles), and the root (black square).
Propagating a signal from the root of the timing tree to the sinks, i.e. computing
its arrival times and slews, can be done easily using the delay and slew functions for
the circuit at the root and the Elmore delay model for the wiring (recall that the
Elmore-delay on a piece of wire of capacitance c and resistance r driving a downstream
capacitance dcap located at the end of the wire is δ · r( c

2
+ dcap) where δ is some

constant.). But our task is to do a backward propagation of the solution candidates
and combining them to feasible new ones at the root.

v

v1

v2

v3

v

v1

v2

v3

v

v1

v2

v3

Figure 3.4: Example showing a part of the clock tree with four vertices and the corre-
sponding Steiner tree. The right picture shows the resulting timing tree.

Next we show how to compute a set of solution candidates for each vertex.

Solution Candidates of a Wire Vertex

A wire vertex w has exactly one successor w′. Let cap(w,w′) and res(w,w′) be the
capacitance and resistance of the corresponding wire segment and sc′ be a solution
candidate of w′. Assume we want to realize sc′. Then the signal has to arrive at w′
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within the time window rat(w′). It will be delayed by some delay del and the slew
increase by some value sd. But because we know the downstream capacitance dcap(w′)
at w′ they can be computed easily using the Elmore model. Thus we get a new solution
candidate

sc := (NULL, cap(sc′) + cap(w,w′), slew(sc′)− sd, [rat(sc′)− del, rat(sc′)− del], (sc′))

for w with del := res(w,w′)
(

1
2
cap(w,w′) + cap(sc′)

)
. Note that |SolCand(w)| =

|SolCand(w′)| and SolCand(w) can be computed in linear time.

Solution Candidates of a Merging Vertex

A merging vertex w has at least two successors w1, . . . , wk. Let sc1 ∈ SolCand(w1), . . . ,
sck ∈ SolCand(wk) be solution candidates for the successors. In order to combine
these candidates to a new one of w we have to choose ones with the same input slew
slew(sc1) = . . . = slew(sck). To this end, we discretize all slew values by rounding
them to the nearest value in Sl. We get a new solution candidate

sc :=

(
NULL,

k∑
i=1

cap(sci), slew(sc1), rat(sc), (sc1, . . . , sck)

)

with rat(sc) := maxk
i=1 rat(sci) and rat(sc) := mink

i=1 rat(sci).
Combining all permutations of solution candidates would take too long and could
produce many candidates with unusable require arrival time windows. So we will
restrict ourselves to ‘good’ solution candidates that are not ‘dominated’ by others. We
call a solution sca dominated by scb if slew(sca) = slew(scb) and rat(sca) ⊂ rat(scb). In
respect of timing, it will be better to use scb instead of sca as the former one has a bigger
required arrival time window. Note that this is not always true, as these candidates can
have different capacitances that influence the delays and slews of the wires and circuits
driving these vertices. Moreover, dominated solution candidates might result in trees
with a lower power consumption. In order to limit the number of solution candidates
and to speed up their computation we restrict ourselves to dominated ones. This
limitation seems to have no big influence on the quality of the final trees in practice.
This has to be verified for each new technology as this might change. We remove all
solution candidates that are dominated by others and store the solution candidates
SolCand(v) of each vertex v in ordered lists, one for each slew. That means, we have
for any slew sl ∈ Sl a list SolCandsl(v) := (sc1, . . . , sck) with slew(sci) = sl and
rat(scj) < rat(scj+1) for 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1. As no candidate is dominated
by another one we conclude rat(scj) < rat(scj+1) for 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1.
Now it is easy to compute the solution candidates for the merging vertex w. The left
boundary t := rat(sc) of the time interval of a new solution candidate sc is equal to
the left boundary of the time window of one of the successor candidates of w. We want
to maximize rat(sc), otherwise we could construct a candidate that dominates sc. To
this end, we choose for each successor wi the unique candidate sci with rat(sci) ≤ t
and rat(sci) maximum. This computation can be performed by a simple sweep-line
algorithm (see Algorithm 2), that computes for any slew sl ∈ Sl the list SolCandsl(w).
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Algorithm 2: Sweep-line method to compute the solution candidates.

Input: Vertex w with successors w1, . . . , wk, slew sl ∈ Sl and solution candidates
SolCandsl(wi) = (sci1, . . . , sc

i
|SolCandsl(wi)|) for i ∈ {1, . . . , k} with

slew(scij) = sl.
Result: Solution candidates SolCandsl(w) for vertex w.
pi := 1 for i ∈ {1, . . . , k};
t := max rat(scipi

);

while t 6=∞ do
for i ∈ {1, . . . , k} do

while pi < |SolCandsl(wi)| and rat(scipi+1) ≤ t do
pi := pi + 1;

end
Create new solution candidate sc with successors scipi

for i ∈ {1, . . . , k};
SolCandsl(w) := SolCandsl(w) ∪ {sc};
t := min

({
rat(scipi+1)

∣∣ pi < |SolCandsl(wi)|, 1 ≤ i ≤ k
}
∪ {∞}

)
;

end

end

We immediately conclude that |SolCand(w)| ≤
∑k

i=1 |SolCand(wi)| − k + 1 and that
the computation is dominated by sorting the solution sets.

Solution Candidates of the Root Vertex

Finally, we have to compute the solution candidates for the root vertex v. Assume
we have the solution candidates for its successor w. v and w represent the input and
output pins of a circuit. In order to get a finite set of solution candidates we discretize
all slew values by setting them to the nearest value in Sl. For any solution candidate
sc′ ∈ SolCand(w) and any inverter type T ∈ L we compute the set of input slews
InSlews := {sl′ ∈ Sl| slT (cap(sc′), sl′) = slew(sc′)} that produce an output slew of
slew(sc′) when driving a capacitance of cap(sc′). For any slew sl ∈ InSlews we get a
new solution candidate

sc :=
(
T, incap(T ), sl, rat(sc) = [rat(sc), rat(sc)], (sc′)

)
for v with

rat(sc) := rat(sc′)− delT (cap(sc′), sl)

and

rat(sc) := rat(sc′)− delT (cap(sc′), sl)

and where delT (cap(sc′), sl) is the delay of a circuit of type T when driving a capacitance
cap(sc′) and an input slew sl.

InSlews ⊆ Sl can be empty, contain one or more elements, depending on the slew
function of the circuit. We conclude that |SolCand(v)| ≤ |L||Sl||SolCand(w)|.
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Remarks

Altogether we get at most

|SolCand(v)| ≤ |L||Sl| ·
∑

w∈δ+(v)

|SolCand(w)|

solution candidates for a vertex v ∈ V (T ).

Within the BonnClock algorithm we first compute preliminary solution candidates for
the newly created active vertices. At that stage the vertices have no final positions but
placement areas where they can be placed. In order to use the previously described
method we have to choose for every vertex a preliminary position within its placement
area. Later in the algorithm, when the locations of the vertices have been fixed, the
final solution candidates are computed.

After computing the solution candidates for a vertex v ∈ V (T ) we dismiss the timing
tree rooted at v and the solution candidates of the internal vertices (i.e. the wire and
merging vertices) as they are not required anymore.

For the clustering we need a time window for each active vertex. To this end, we take
the bounding box of the time windows of the solution candidates of the vertex.

3.4 Clustering

An important part of the clock tree construction, if not the most important, is the
clustering. It computes which circuits have to be driven by the same driver circuit.
More precisely, the input of the clustering is a set of circuits (vertices) in the plane with
input capacitances that have to be driven by new inserted circuits. All circuits that
are in the same cluster are connected by a rectilinear Steiner tree and the capacitance
of this Steiner tree (proportional to its length) plus the input capacitances has to be
at most the load limit of the drivers. Moreover, the required arrival time windows of
the circuits in the same cluster must have a point of time in common. The goal is to
find a clustering that minimizes the power consumption.

The Sink Clustering Problem and the Sink Clustering Problem with Time
Windows introduced in Chapters 1 and 2 are good mathematical models for the
clustering within clock trees. The active vertices are the sinks. As position of a vertex
we take a point of the placement area. If the vertex is a leaf of the tree this point
is unique. Otherwise, we take a point that is nearest to the center of the placement
area. The demand of a vertex is the input capacitance of the corresponding input pin.
Each cluster will be driven by a special circuit or an inverter. As load limit we use the
load limit of the strongest driver type and its power consumption as facility cost. The
arrival time windows of the vertices are directly taken as time windows for the sinks.
Often all time windows have a point of time in common so that the Sink Clustering
Algorithm can be applied.

80% to 90% of the total power consumption of a clock tree arise in the last stage
(wires and driver circuits). Moreover, recent designs can contain up to 1 000 000 sinks.
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We have shown in the experimental results in Section 1.4 and 2.4 that the proposed
clustering algorithms are extremely fast and compute almost power optimal solutions.
Our clustering algorithms can be modified easily to consider additional constraints. For
example we can limit the maximum distance between two sinks within a cluster or the
total number of sinks, both possibilities to reduce the wire delays. Note that we cannot
prove approximation guarantees for the problem with such additional constraints but
in practice the results are still not far from the lower bounds.
Nevertheless, there are some limitations of the clustering algorithm. The Sink Clus-
tering Problem does not compute the positions of the driver circuits. Instead of
this, we compute for each new vertex v a placement area Pl(v) where v can be placed
without violating the constraints (see Section 3.5). As the clustering does not consider
blockages and the position of the source, the placement area might be empty. In this
case we choose a position for v which minimizes any violations.
Moreover, the algorithm requires sink positions. When we perform the pre-clustering
of vertices that are not sinks, no final positions have been selected for them. Thus we
have to select appropriate positions for these vertices within their placement areas in
order to run the clustering.
Finally, the clustering algorithm ignores the wire delays from the driver to the sinks
within a clusters. Even if the required arrival time windows of the sinks of a cluster
have a point of time in common, different wire delays from the driver to the sinks might
lead to an infeasible result. That means there can be sinks where the clock signal does
not arrive within the time window.
It is an interesting open problem whether there are approximation algorithms for the
variant of the Sink Clustering Problem where driver positions have to be com-
puted and the wire delays from the drivers to the sinks are considered.

3.5 Placement Areas

For every vertex v we store a feasible placement area Pl(v) where v can be placed and
a feasible placement area Plpred(v) where the predecessor of v can be placed without
violating any of the constraints. The positions of the sinks and the root are fixed,
thus their placement areas consist of a single point. In all other cases the placement
area Pl(v) of a vertex v is the intersection of the predecessor placement areas of the
successors of v, i.e. Pl(v) :=

⋂
w∈δ+(v) Plpred(w). The placement area Plpred(v), where

the predecessor of a vertex v can be placed, has to satisfy the following three conditions:

a) Each point has distance at most maxdist from a feasible position of v,

b) the points are not on a blockage and

c) they are not too far away from the root.

The area that satisfies a) and b) is easy to compute. In order to satisfy c) we must
know for each point of the placement area the expected delay of the clock signal from
the source to that point in a clock tree that satisfies all constraints. For this, we will
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introduce a blockage grid that approximates the blockages and a distance graph that
will give us the estimated delays from the source to any point.

3.5.1 Blockage Grid and Distance Graph

In order to find a shortest path from the root and to estimate the delay from the root to
any point of the chip area while considering the blockages, we use a blockage grid. First
we partition the chip area by horizontal and vertical lines that are given by the edges
of significant large blockages (similar to the Hanan grid, Hanan [1966]). Additionally,
we insert lines so that the distance between two consecutive lines is at most d for some
parameter d ∈ R>0. This partition of the area should be fine enough in order to get a
good approximation of the blockages and delays but also coarse enough in order to get
small running times. In practice we set the maximum width d to a fraction of maxdist.
The lines partition the chip area into tiles. A tile is called blocked if it is completely
covered by blockages, otherwise it is free.

Figure 3.5: Blockage maps of different chips.

For a given source tile s, which in the majority of cases is free but could also be
blocked, we compute a shortest distance tree Ts on the tiles that gives us for every tile
t an approximate delay from s to t. All blocked tiles, except for the source tile if it is
blocked, are leaves of Ts, so on every s-t path in Ts all internal tiles are free.

We define a directed graph G on the tiles. Denote by B the blocked and by U the
unblocked tiles. Then set V (G) := B∪U and E(G) = {(v, w)| v ∈ U ∪{s}w ∈ B∪V },
i.e. we can reach each tile from an unblocked tile or the source and there is no edge
leaving a blocked tile if it is not the source. We will identify the tiles with their
midpoints. So the distance between two tiles is the distance between their midpoints.

The cost of an edge in E(G) is dwire times its length if the length is at most maxdist.
Recall that dwire is the best possible delay per unit of distance that can be achieved.
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For longer distances we extend this linear cost function to a quadratic function in order
to model higher delays if the distance between two inverters is bigger than the optimal
distance. Sometimes we cannot place inverters in optimal distances as big blockages
might separate sinks from the source. Moreover, it might be better to allow minor
distance and slew violations instead of long detours from the source to a sink.
Using this cost function we can compute the shortest path tree Ts in G. This can
be done efficiently by a variant of Dijkstra’s algorithm (Dijkstra [1959]) without com-
puting E(G) explicitly. The tree gives us for every point p ∈ A of the chip area the
approximate delay from the source to p.
The grid and the distance graphs will also be used for the top-down partitioning that
is described in Section 3.6.

3.5.2 Placement Area Computation

Now we compute the placement area Plpred(v) where we can place the predecessor of a
vertex v ∈ V (T ) without violating any constraints (see Figure 3.6 a)-e) ). Initially, we
have given Pl(v) (Figure 3.6 a) in blue). We compute the area of all points that are
at most maxdist from a point in Pl(v) (red dotted area in 3.6 b) ). This is also called
the l1-expansion by maxdist. Then we remove all blocked areas (gray in 3.6 c) ) and
the area that lies too far away from the root (green in 3.6 d) ). In order to get this
area we will estimate a latest starting time of the signal at the root so that all sinks
can be reached within their time windows. Using this starting time and the estimated
delay from the root to a tile given by the distance graph we can compute the estimated
arrival time of the signal at any tile. Then we remove all tiles from the placement area
which are reached by the signal later than the required arrival time window. Figure
3.6 e) finally shows Plpred(v).
The placement areas are represented as unions of overlap-free octagons. The boundaries
of the octagons are parallel to the x- or y-axis or the axes rotated by 45 degrees. The
rotated boundaries arise by the l1-expansion of the placement areas and the boundaries
parallel to the x- and y-axis by removing the rectilinear blockages and tiles (see Figure
3.6).
The following operations are required in order to compute Plpred(v) for a vertex v:
Computing the intersection of two placement areas and computing the set of points
that have a distance of at most maxdist from a placement area. Gester [2009] showed
how these operations can be implemented efficiently in O(n log n) time, where n is the
number of octagons. Note that removing the blockages and the tiles that are too far
away from the source can be implemented as intersection with the complement of these
areas.

3.6 Blockage Aware Top-Down Partitioning

Up to now BonnClock builds the clock tree bottom-up and the topology of the tree
is determined only by the clustering. In this section we present a top-down partition
algorithm that determines the topology of the upper part of the tree. The algorithm
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a) b) c)

d) e)

Figure 3.6: Example for computing the predecessor placement area Plpred(v) for a ver-
tex v ∈ V (T ).

partitions the sinks into two parts. The source of the tree is connected with a merging
point where the tree splits into two branches. Each branch then goes to the ’center’
of the two partition sets. For each partition set we can repeat this procedure. The
connection between the source and the merging point and the connections between the
merging point and the centers of the partition sets can be buffered optimally (i.e. the
inverters can be placed with optimum distance).

This approach has several advantages. First, the BonnClock algorithm becomes more
robust. Without the top-down partition an additional sink or a slight movement of the
position of a sink might change the complete tree topology. Moreover, by the optimal
buffering the latency (the maximum delay of the signal from the source to a sink) of
the tree decreases, which has positive effects on the on-chip variation (see Section 3.7).

We will define the Sink Partition Problem for arbitrary distance functions. In
practice we will use the blockage grid and distance graph introduced in the previous
section. We assume that any direct connection between two points will be buffered
optimally, that means, the delay between the points is proportional to the distance
between them. We will give a generalized definition where k ∈ N>0 sub-sources are
computed. The goal is to find a partition and place the sub-sources so that the overall
latency does not increase and that the maximum latency of a sub-tree starting at a
sub-source in minimized. For k = 1 the problem is to place one sub-source so that
the maximum distance between sub-source and sinks is minimum while the maximum
distance between source and sink does not increase.
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Sink Partition Problem

Before we define the Sink Partition Problem more formally we introduce some
notations and deduct some fundamental properties.
The input is a set of sinksD with required arrival time windows rat(x) = [rat(x), rat(x)]
for all x ∈ D. Moreover, we have a source r and a set of feasible positions F where
we can place sub-sources. The function d : ({r} × (F ∪ D)) ∪ (F × D) → R+ gives
us the distance between r and a sink or a feasible position and the distance between a
feasible position and a sink.
We use a simplified delay model and assume that the delay to cover a certain distance
d is proportional to d. The signal on a path can be further delayed so that we get for
(a, b) ∈ ({r} × (F ∪D)) ∪ (F ×D):

delay(a, b) ≥ d(a, b)

if the signal goes from a to b.
The signal starts at the source at a given time at(r) and has to reach a sink x ∈ D at
some time at(x) ∈ rat(x). By definition at(r) + delay(r, x) = at(x), thus

at(r) ≤ at(x)− d(r, x).

We immediately conclude

at(r) ≤ min
x∈D

(rat(x)− d(r, x)).

Note that in the following problem formulation the starting time of the signal is part
of the input. In most cases the starting time should be as late as possible. In this case
we set at(r) = minx∈D(rat(x)− d(r, x)).
The problem now is to add k sub-sources s1, . . . , sk at feasible positions and assign each
sink to one of the sub-sources by a function s : D → {s1, . . . , sk}. The signal starts at
the source, goes to the sub-sources and finally reaches the sinks that are assigned to
it. We have for x ∈ D

delay(r, x) = delay(r, s(x)) + delay(s(x), x).

We denote by the non-negative number δ(si) := delay(r, si) − d(r, si) the additional
delay on the path from the source to the i-th sub-source, i = 1, . . . , k. The starting
time of the signal should remain the same, thus we have to ensure that we can find
arrival times at(x) ∈ rat(x) satisfying

at(x)− at(r) = delay(r, x)

= delay(r, s(x)) + delay(s(x), x)

≥ d(r, s(x)) + δ(s(x)) + d(s(x), x).

This can only be kept if

rat(x)− d(r, s(x))− δ(s(x))− at(r) ≥ d(s(x), x). (3.1)
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Our goal is to minimize the maximum latency of a sub-source, that means the maximum
delay between a sub-source and a sink that is assigned to it,

min max
x∈D

delay(s(x), x). (3.2)

For a sink x ∈ D we have

delay(s(x), x) = delay(r, x)− delay(r, s(x))
= at(x)− at(r)− d(r, s(x))− δ(s(x))

and

delay(s(x), x) ≥ d(s(x), x).

To achieve (3.2) we set

at(x) = max{at(r) + d(r, s(x)) + δ(s(x)) + d(s(x), x), rat(x)}

and get

delay(s(x), x) = max{d(s(x), x), rat(x)− at(r)− d(r, s(x))− δ(s(x))}.

(3.1) guarantees that at(x) ∈ rat(x).
After these preparations we can define the problem formally:

Sink Partition Problem

Instance: A source r with starting time at(r), sinks D = {x1, . . . , xn} with required
arrival time windows rat(x) = [rat(x), rat(x)] for all x ∈ D and a k ∈ Z>0.

In addition, a set of feasible sub-source positions F and a distance function

d : ({r} × (F ∪D)) ∪ (F ×D)→ R+.

Task: Find sub-source positions s1, . . . , sk ∈ F , delays δ : {s1, . . . , sk} → R≥0 and an
assignment s : D → {s1, . . . , sk} satisfying

rat(x)− d(s(x), x)− d(r, s(x))− at(r) ≥ δ(s(x)) (3.3)

for all x ∈ D so that

max
x∈D

max{d(s(x), x), rat(x)− at(r)− d(r, s(x))− δ(s(x))} (3.4)

is minimized. (Or decide that no such sub-source positions exist.)

For simplicity we define

latency(si) := max
x∈D,s(x)=si

delay(si, x)

= max

{
max

x∈D,s(x)=si

d(si, x), max
x∈D,s(x)=si

rat(x)− at(r)− d(r, si)− δ(si).

}
Minimizing (3.4) is equivalent to minimizing maxi=1,...,k latency(si).
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Sink Partition for k = 1

First we study the case k = 1. An easy way to get an optimum sub-source position is
to try each v ∈ F and check if it is feasible, compute latency(v) and take the best one.
This can be done in O(|F ||D|). We present another approach with the same worst case
running time, but that performs a lot better in practice (see Algorithm 3).

To compute an optimum solution we will have for each v ∈ F an upper bound ubδ(v)
for δ(v) and a lower bound lbd(v) for the max d(v, x). Set c(v) := maxx∈D rat(x) −
at(r)− d(r, v) for all v ∈ F . Then max{lbd(v), c(v)− ubδ(v)} is a lower bound for the
latency of v ∈ F . If ubδ(v) < 0 then v is not feasible.

Algorithm 3: Sink Partition Algorithm for k = 1.

Input: Instance (r, at(r), D, rat, k = 1, d) of the Sink Partition Problem.
Result: Optimal sub source position v ∈ F .
if at(r) > minx∈D(rat(x)− d(r, x)) then return ’No feasible solution exists.’ ;1

c(v) := maxx∈D rat(x)− at(r)− d(r, v);2

foreach v ∈ F do3

lbd(v) := 0;4

ubδ(v) := minx∈D rat(x)− d(r, v)− at(r);5

end6

repeat7

v′ = arg minv∈F,ubδ(v)≥0 max{lbd(v), c(v)− ubδ(v)};8

// Check upper bound ubδ(v
′).

xδ = arg minx∈D rat(x)− d(v′, x);9

if rat(xδ)− d(v′, xδ)− d(r, v′)− at(r) < ubδ(v
′) then10

foreach v ∈ F with ubδ(v) ≥ 0 do11

ubδ(v) = min{ubδ, rat(xδ)− d(v, xδ)− d(r, v)− at(r)};12

end13

else14

// Check lower bound lbd(v
′).

xd = arg maxx∈D d(v
′, x);15

if lbd(v
′) < d(v′, xd) then16

foreach v ∈ F with ubδ(v) ≥ 0 do17

lbd(v) := max{lbd(v), d(v, xd)};18

end19

else20

return v′;21

end22

end23

until ubδ(v) < 0 ∀v ∈ F ;24

return ’No feasible solution exists.’25

Initially, we set ubδ := minx∈D rat(x)− d(r, v)− at(r) and lbd(v) := 0 for all v ∈ F .

In each iteration choose v′ ∈ F with ubδ(v
′) ≥ 0 and minimal max{lbd(v), c(v)−ubδ(v)}.
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First we have to check if ubδ(v
′) = δ(v′). For this, we compute xδ ∈ D minimizing

rat(x)− d(v′, x). This is a sink minimizing the left side of (3.3). If ubδ(v
′) > rat(xδ)−

d(v′, xδ) − d(r, v′) − at(r) the upper bound is not strict and we update ubδ(v) for all
v ∈ F using xδ and continue with the next iteration.
Otherwise, we check if lbd(v

′) is optimum. Let xd ∈ D be the vertex maximizing
d(v′, x). If lbd(v

′) ≥ d(v′, x) then max{lbd(v), c(v)−ubδ(v)} is the latency at v′. In this
case v′ is optimum by its choice. Otherwise, we update the lower bounds for all v ∈ F
by setting lbd(v) := max{lbd(v), d(v, xd)}.
The running time is dominated by the update process. Note that updating ubδ and
lbd will be performed at most once for each x ∈ D. Therefore the algorithm will
terminate. In each iteration at most |F | values will be updated. Thus the running
time is O(|D||F |). Nevertheless, the algorithm performs much better in practice. The
sink xδ, chosen in line 9, has the property that it is a sink that is furthest away from
a possible sub-source position (plus some constant). In practice, only a few of the
sinks have this property and thus the outer loop will be processed only a few times
(≤ 10). The running time is in average only 1

20
times the running time of the trivial

computation.

Sink Partition for k ≥ 2

For k ≥ 2 the Sink Partition Problem becomes even more complicated. In this
case we want to place k sub-sources and assign the sinks to them.
We can assume that the signal starts at the source as late as possible, i.e. at(r) :=
minx∈D(rat(x) − d(r, x)). Otherwise, we apply the algorithm for k = 1 and place a
single sub-source r′ optimally. As (3.4) is minimized, the signal reaches r′ as late as
possible. Then we apply the problem for k ≥ 2 using r′ as source. Thus we can assume
without loss of generality δ(s1) := 0.
Let (s1, . . . , sk, δ(s2), . . . , δ(sk), s : D → {s1, . . . , sk}) be an optimum solution. Set
Di := {x ∈ S| s(x) = si}, i ∈ {1, . . . , k}. For i ∈ {2, . . . k} we can assume that there
is an x ∈ Di so that (3.3) is satisfied with equality. Otherwise, we could increase δ(si)
and get a solution that is still feasible. By increasing δ(si) (3.4) cannot get worse so
the solution is also optimum. We conclude that the left hand side of (3.3), and hence
δ(si), can have at most |Di| different values if si is fixed.
These observations lead to a simple polynomial algorithm (see Algorithm 4). For each
possible tuple (s1, . . . , sk, δ2, . . . , δk) we compute for every sink x ∈ D the delay between
x and si for the corresponding δi, 1 ≤ i ≤ k (we set the delay to ∞ if x cannot be
assigned to that sub-source without violating (3.3)). latency(s1, . . . , sk, δ2, . . . , δk) is the
best achievable latency for the tuple. The best tuple and the corresponding partition
will be taken. The optimality follows immediately from the previous observations. The
running time of the algorithm is O(|F |k|D|k).
The running time can be further improved. Assume we have chosen s1, . . . , sk and
δ2, . . . , δk−1. Let δ ∈ ∆k be fixed and denote by D̂i(δ) the set of sinks that can be
assigned to si, i ∈ {1, . . . , k}, without violating (3.3). Now assign each sink x to a sub-
source si satisfying x ∈ D̂i(δ) and minimizing (3.4). Note that there might be sinks that
cannot be assigned, as all sub-sources do not satisfy (3.3). Let Di(δ) be the set of sinks
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Algorithm 4: Sink Partition Algorithm for k ≥ 2.

δ1 := 0;
foreach (s1, . . . , sk) ∈ F k do

∆i := {rat(x)− d(si, x)− d(r, si)− at(r)|x ∈ D} for 2 ≤ i ≤ k;
foreach (δ2, . . . , δk) ∈ ∆2 × . . .×∆k, δ2 ≤ . . . δk do

foreach x ∈ D do
foreach i ∈ {1, . . . , k} do

// Check if x can be assigned to si

if rat(x)− d(s1, x)− d(r, s1)− at(r) ≥ 0 then
delayi(x) := max(d(si, x), rat(x)− at(r)− d(r, si)− δi};

else
delayi(x) :=∞;

end

end

delay(x) := mink
i=1 delayi(x);

end
latency(s1, . . . , sk, δ2, . . . , δk) := maxx∈D delay(x);

end

end

assigned to si and let latencyi(δ) := maxx∈Di(δ){d(si, x), rat(x)−at(r)−d(r, si)−δ(si)}
, i ∈ {1, . . . , k}, be the latency at si for the partition given by δ, δ(s1) := 0, δ(sk) := δ
and δ(si) = δi, 2 ≤ i ≤ k − 1.
Now let δa ≤ δb. Observe that D̂i(δa) = D̂i(δb), 1 ≤ i ≤ k − 1, as these sets are
independent of δ and D̂k(δb) ⊆ D̂k(δa) as sinks could get infeasible to be connected
to sk for increasing δ. We conclude maxk−1

i=1 latencyi(δa) ≤ maxk−1
i=1 latencyi(δb) and

latencyk(δa) ≥ latencyk(δb). We are looking for δ ∈ ∆k so that each sink can be
assigned feasibly to a sub-source and so that max{latency1(δ), . . . , latencyk(δ)} is min-
imized. The previous observations showed that this can be done by a binary search
over ∆k.

Theorem 3.1. The Sink Partition Problem for k ≥ 2 with δ1 = 0 can be solved
in O(|F |k|D|k−1 log(|D|)). �

There are further options to reduce the running time in practice. For example, it can
be shown that there is a sink x′ that can be assigned without loss of generality to
s1 and for which the inequality (3.3) is strict. Then s1 must be placed on a shortest
path from the source to x′. Moreover, when looking for s1, another binary search like
heuristic can be used. Nevertheless, the worst case running time does not improve. It
is an open question if the Sink Partition Problem can be solved more efficiently.

Usage within BonnClock

Within BonnClock the cases k = 1 and k = 2 are the interesting ones. The tree starts
at the source, goes to the optimum sub-source, then splits into two branches and so
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on. In order to use the presented algorithms we need a finite set of feasible sub-source
positions and an appropriate distance function. For this, we use the blockage grid
and distance graphs presented in Section 3.5.1. As sub-source positions we use the
centers of the free tiles and compute the distance graphs on-demand. Two examples
are shown in Figure 3.7. On both chips first the source is connected to the optimum
sub-source position. Then the sinks are partitioned into two parts and then these parts
are partitioned once more. The black lines and circles show the resulting upper parts
of the clock trees.

Figure 3.7: Sink partition examples for two zero skew trees.

3.7 On-Chip Variation

One problem in clock tree construction we have not mentioned yet is the on-chip
variation. In order to understand the impact of variation we have to take a closer look
at the timing of a chip and to define slacks.
Figure 3.8 shows a simplified section of a chip with two registers A and B receiving a
clock signal from a clock tree and a logical path PAB starting at A and ending in B.
Let delAB be the delay of a data signal on this path. The clock signal arrives at the
clock pin of A at time atA and at the clock pin of B at time atB. Moreover, the clock
tree has a cycle time of C. We define the slacks

slacklate := atB + C − (atA + delAB + δlate
AB )

and

slackearly := atA + delAB − (atB + δearly
AB )

where δlate
AB and δearly

AB are some constants.
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clock tree

data signal

m

A B

Figure 3.8: Example of on-chip variation.

Both slacks have to be non-negative, otherwise the signal arrives to late (slacklate < 0)
or to early (slackearly < 0) at register B. If a slack is negative we call it a late mode
violation or early mode violation, respectively.
Early mode violations can be fixed easily by inserting inverters into the logical path
between A and B and thus delaying the signal. Nevertheless, there should not be
too many early mode violations as inserting too many inverters increases the power
consumption and might lead to placement problems. Late mode problems are hard to
fix, as this can only be done by speeding up the data signal from A to B. But one can
assume that the data path is already made as fast as possible by previous design steps.
In the worst case, large parts of the chip have to be redesigned or the cycle time of the
tree has to be increased by the worst late mode slack and the chip becomes slower.
A produced chip differs from the mathematical model. Wires and circuits can get
a little bit bigger or smaller than computed, the voltage might differ and even the
temperature might be different on different parts of the chip. Thus some signals might
get slower or faster than estimated. Now assume that in our example in Figure 3.8
the path from m to the clock pin of register A within the clock tree becomes slower
and the path from m to the clock pin of B gets faster by on-chip variation. Then atA
increases and atB decreases and slacklate becomes worse. If, on the other hand, the
path from m to A gets faster and the path from m to B gets slower, slackearly gets
worse. One possibility to reduce the effect of on-chip variation is to reduce the lengths
of the non-common path to the registers within the clock tree.
We propose the following approach to consider on-chip variation within the BonnClock
algorithm. First we perform a timing analysis with the assumption that the clock signal
arrives at each sink within its required arrival time window (for example by using the
tool BonnCycleOpt, Held [2008]). We get a list of pairs of sinks together with late
and early slacks. Let L and E be the most critical late and early edges. We want to
minimize the effect of on-chip variation on these edges by reducing the lengths of the
non-common paths within the clock tree. To this end, we have to adapt the topology
of the tree.
The topology of the tree can be influenced directly within the clustering and by the
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top-down partition. The goal of the clustering is to minimize the length of all Steiner
trees plus the number of clusters. This cost function can be expanded by a reward for
each edge of L ∪ E where both endpoints are within the same cluster. As early mode
problems can be fixed easily their reward is a small constant. Late mode problems are
hard to fix, so we want to maximize the minimum late slack. The smaller a late mode
slack is the bigger its reward will be. The post optimization algorithms presented in
Section 1.2 and 2.2 can be extended to consider these extra rewards.
Considering the late and early edges within the top-down partition is more difficult.
If the endpoints of an edge are in two different partition sets the non-common paths
get long as the first common predecessor of the vertices within the tree is the merging
point. Thus the endpoints of the edges should be in the same partition set. If there
are long edges or if the edges form large connected components we have to ‘split’ some
of them. A first simple approach is to perform the sink partitioning as described and
achieve two partition sets. Let D1 be the sinks that have to be assigned to the first
sub-source, D2 be the sinks that have to be assigned to the second sub-source and D′

be the remaining sinks that can be assigned to both sets without increasing the cost
of the partition. The early and late edges induce a graph on D1 ∪ D2 ∪ D′. Now we
want to distribute the sinks of D′ to the sub sources so that the cost of the edges with
endpoints assigned to different sub-sources is minimized (here the cost of an edge is
minus the reward it gets within the clustering). Such a distribution can be determined
optimally by finding a minimum cut in the induced graph separating D1 from D2.
Nevertheless, there could be many edges between sinks that can only be assigned to
one sub-source.
It is an open problem how the late and early edges can be considered appropriately
within the partition algorithm itself. Another problem of on-chip variation is that there
is no convincing method to model and estimate its effect.

3.8 An Example

In the following pictures (3.9 to 3.14) we show some ’snap shots’ of a run of the
algorithm BonnClock on a recent design (technology: 45nm, 3.4mm × 3.0mm, 5 498
sinks). In order to determine the topology of the upper part of the tree, the sink
partition algorithm has been used twice. The result is shown on the left side of Figure
3.7. As the sinks are distributed all over the chip and the blockages are quite small, the
upper part of the tree, determined by the sink partition, looks like a classical H-tree.
On the pictures the circuits, placement areas and wires are colored according to the
arrival time of the clock signal (blue early, red late).
Figures 3.15, 3.16 and 3.17 show further trees that have been computed by the Bonn-
Clock algorithm. The orange blockages in the pictures receive themselves the clock
signal.
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Figure 3.9: Initial instance with sinks in orange and rectangular blockages in gray.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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Figure 3.10: The tree after the first clustering. You can see the placement areas of the
active vertices. They are in orange as their required arrival time window
is still relatively late. a a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a
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Figure 3.11: The tree some iterations later. Only a few active vertices are remaining.
Their placement areas are now in green. The vertices move towards the
sub-sources in the four quadrants of the chip. a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a
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Figure 3.12: The four sub-sources in the four quadrants have been reached. The re-
maining four active vertices go towards the two sub-sources on the left
and the right half. a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a
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Figure 3.13: Now the final sub-source in the center of the chip has been reached and
the last active vertex goes towards the source in the upper right corner.
Its placement area is colored in blue. You can see that the area that is
too far away from the source has been removed.
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Figure 3.14: The final tree. a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a
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Figure 3.15: Clock tree (65 nm technology, 2.0mm × 2.0mm, 37 107 sinks) with big
blockages.
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Figure 3.16: Clock tree (65 nm technology, 18.0mm × 18.0mm, 118 319 sinks) with
more complex blockages.
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Figure 3.17: Large clock tree (80 nm technology, 15.6mm × 15.6mm, 680 776 sinks).
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3.9 Lower Bounds

In this section we develop lower bounds for the power consumption of a clock tree
using the lower bounds for the Sink Clustering Problem. We study a special
class of clock trees where the sinks are driven by circuits of one special type (that
could also be inverters) and where these special circuits are driven by a tree only
containing inverters. Furthermore, the nets driven by the special circuits can have
different electrical characteristics than the other nets. This type of clock trees often
appear in practice: The clock signal is distributed by an inverter tree and then modified
in some way by the special circuits before it reaches the sinks. We refer to the special
circuits and the nets they are driving as last stage of the tree and the remaining parts
as upper stages.

Let D be the set of sinks with positions in the plane, clast, flast and ulast the input
capacitance, power consumption and load limit of a circuit of the last stage. Assume
we have k ∈ N different types of inverters we can use in the upper part of the tree. Let
ciup, f

i
up and ui

up be the input capacitance, power consumption and load limit of the
i’th inverter type. Moreover, denote by κlast and κup the cost per unit of length in the
last and upper stages and by uroot the load limit of the root.

Let lSMT be a lower bound for the length of a Steiner tree on D. Now let T be a
feasible clock tree driving D and denote by llast be the length of the the wiring in the
last stage and by tlast the number of circuits in the last stage. Later we will use lower
bound for the Sink Clustering Problem in order to estimate llast and tlast.

The clock tree induces a Steiner tree on D. Thus the length of the tree in the upper
part is at least max{lSMT − llast, 0}. We conclude that the load of the upper part of
the tree is at least

upcap := κup ·max{lSMT − llast, 0}+ tlast · clast.

The load upcap has to be driven by the root and by inverters. We can assume that
the first uroot units of load are driven by the root. Note that for each inserted inverter
additional capacitance is added to the tree that itself has to be driven by other inverters.
These inverters have to be driven by others and so on. Let ti be the number of inverters
of the i’th type that are used in the upper part of the tree. By the previous observations
we get

upcap− uroot +
k∑

i=1

tic
i
up ≤

k∑
i=1

tiu
i
up.

The power consumption of the inverters is
∑k

i=1 tif
i
up. In order to find a lower bound for

this we relax the problem and allow to insert fractions of inverters. Then the problem
is to find ti ∈ R≥0 satisfying upcap−uroot =

∑k
i=1 ti(u

i
up− ciup) so that pow :=

∑k
i=1 f

i
up

is minimum. For this purpose, we use the argumentation of Bartoschek et al. [2006].

Let j be a type of inverter minimizing
fj

up

uj
up−cj

up
. Obviously, tj := upcap−uroot

uj
up−cj

up
and ti := 0,

1 ≤ i ≤ k , i 6= j minimizes pow, i.e. we can assume that only type j is used in the
upper stages. Set cup := cjup, fup := f j

up, uup := uj
up and t := tj. Therefore, the total
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capacitance to drive in the upper stages is at least(
1 +

cup

uup − cup

)
· (upcap− uroot) + uroot

and the total power consumption of the upper stages is at least(
1 +

fup

uup − cup

)
· (upcap− uroot) + uroot.

We set λ :=
(
1 + fup

uup−cup

)
and conclude that the total power consumption of the

complete tree is at least

λ · (κup ·max{lSMT − llast, 0}+ tlast · clast) + (1− λ)uroot + κlast · llast + tlast · flast. (3.5)

Theorem 3.2. Let T be a clock tree as defined in this section. Assume there is a
feasible clustering of the last stage of T and denote by llast the total length of the nets
in the clustering and by tlast the number of clusters.
If κlast > λκup then the total power consumption is at least the maximum of

λκuplSMT + (1− λ)uroot + (κlast − (λκup))llast + (λclast + flast)tlast (3.6)

and
(1− λ)uroot + κlast · llast + (λclast + flast)tlast (3.7)

If κlast ≤ λκup then the power consumption of T is at least the maximum of

(1− λ)uroot + κlast · lSMT + (λclast + flast)tlast (3.8)

and
(1− λ)uroot + κlast · llast + (λclast + flast)tlast (3.9)

Proof. (3.6), (3.7) and (3.9) follow directly from (3.5). In order to see (3.8), observe
that (3.5) is at least

λκup · (lSMT − llast) + (1− λ)uroot + κlast · llast + tlast · flast

= (κlast − λκup)llast + (1− λ)uroot + κlast · lSMT + (λclast + flast)tlast

≥ (1− λ)uroot + κlast · lSMT + (λclast + flast)tlast

In the last inequality we used κlast ≤ λκup. �
The length of the wiring in the last stage llast and the number of drivers of the last stage
tlast are not known. But note that in all four cases (3.6) to (3.9) we are looking for a
feasible clustering of the sinks with load limit ulast minimizing a non-negative weighted
sum of the total length of the nets and the number of clusters. But this is exactly the
Sink Clustering Problem. Thus we can use the lower bound developed in Section
1.3 in order to get a lower bound for (3.6) to (3.9).
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3.10 Experimental Results

In this section we compare the power consumption of trees built by BonnClock to the
lower bound for the power consumption presented in Section 3.9. As mentioned in that
section the bound can only be applied on trees with a special structure.
The clock tree instances on page 93 to page 96 are from different technologies and vary
from small (Kurt with 59 073 sinks) to big instances (Nicolai with 680 776 sinks).
The tables show information about the designs and the main clock tree that has been
built for these results. We abbreviate ‘power consumption’ by ‘p.c.’ and ‘lower bound’
by ‘l.b.’. ‘unplanned skew’ is the maximum time a required arrival time window is
missed - this is equivalent to the δ in the problem formulation in Section 3.1.1. We also
give the parameters that are relevant for the lower bound computation. Note that the
clock tree instance ‘Nicolai’ has a structure different from the one required to compute
the lower bound of Section 3.9.
In order to a compute lower bound for the power consumption we need a lower bound
lSMT for the length of a minimum Steiner tree on all sinks. The instances were to big
to use the tool GeoSteiner for good lower bounds (see Section 1.4), thus we computed
the length of a minimum spanning tree. 2

3
times this length yields a lower bound for

the length of a minimum Steiner tree (see Section 1.1.3). The clock trees built by
BonnClock have a power consumption that is about 40% more than the lower bound
presented in Section 3.9. This is just a little bit worse than the results we have seen for
the Sink Clustering Algorithm. As the simple lower bound we used for the length
of a minimum Steiner tree is not very good (see results in Section 1.4), we can expect
that we are even a lot nearer to the cost of an power-optimum clock tree. Moreover,
remark that the lower bounds do not consider any timing or placement restrictions.
We also show a comparison to the clock tree construction tool ClockDesigner that has
been developed by IBM. ClockDesigner builds uniform trees, i.e. on all source-sink
paths there are the same number of inverters. All inverters are of the same type and
in the upper stages the tree is balanced by wiring detours. In order to guarantee a
fair comparison, we used the same set of parameter for ClockDesigner and BonnClock.
While the unplanned skew of the trees of both tools are nearly the same, the number
of inserted circuits and the total power consumption differ a lot. The trees build by
ClockDesigner use a lot more resources than our trees.
Finally note, that on all instances about 80 to 90% of the total power consumption
is within the last stage of the clock trees. Thus a good sink clustering is the most
important part of a clock tree construction tool in order to reduce power consumption.
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design Kurt
technology 45 nm

size (mm× mm) 3.4× 3.0
|D| 59 073

clast (W) 7.723 · 10−6

flast (W) 3.320 · 10−5

κlast (W per mm) 3.416 · 10−4

cup (W) 1.772 · 10−5

fup (W) 3.543 · 10−5

κup (W per mm) 1.873 · 10−4

κup · lSMT (W) 0.04679
uup (W) 1.482 · 10−4

total p.c. (W) 0.1926
p.c. lower stages (W) 0.1634 (84.8%)
lower bound p.c. (W) 0.13513

total p.c. / l.b. p.c. 1.4253

Figure 3.18: Clock tree instance and computed tree on Kurt.

ClockDesigner (CD) BonnClock (BC) CD/BC
unplanned skew (ps) 27 32 0.084

number of circuits 1 736 1 348 1.288
last p.c. circuits (W) 0.0576 0.0448 1.287

stage p.c. wiring (W) 0.1290 0.1186 1.087
total p.c. (W) 0.1966 0.1634 1.203

number of circuits 153 182 0.841
upper p.c. circuits (W) 0.0054 0.0059 0.919
stages p.c. wiring (W) 0.0260 0.0233 1.118

total p.c. (W) 0.0314 0.0292 1.075
all stages total p.c.(W) 0.2280 0.1926 1.184

Table 3.1: Comparison to ClockDesigner on Kurt.
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design Pascal
technology 65 nm

size (mm× mm) 2.4× 2.6
|D| 71 356

clast (W) 3.311 · 10−6

flast (W) 4.052 · 10−5

κlast (W per mm) 4.660 · 10−4

cup (W) 2.815 · 10−5

fup (W) 7.016 · 10−5

κup (W per mm) 1.611 · 10−4

κup · lSMT (W) 0.06245
uup (W) 2.723 · 10−4

total p.c. (W) 0.2734
p.c. lower stages (W) 0.2472 (90.4%)
lower bound p.c. (W) 0.20981

total p.c. / l.b. p.c. 1.303

Figure 3.19: Clock tree instance and computed tree on Pascal.

ClockDesigner (CD) BonnClock (BC) CD/BC
unplanned skew (ps) 39 45 0,867

number of circuits 2 784 1 560 1.785
last p.c. circuits (W) 0.1128 0.0632 1.785

stage p.c. wiring (W) 0.1995 0.1840 1.084
total p.c. (W) 0.3223 0.2472 1.304

number of circuits 165 114 1.447
upper p.c. circuits (W) 0.0116 0.0102 1.137
stages p.c. wiring (W) 0.0249 0.0160 1.556

total p.c. (W) 0.0365 0.0262 1.393
all stages total p.c.(W) 0.3598 0.2734 1.316

Table 3.2: Comparison to ClockDesigner on XppHdm.
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design Katrin
technology 130 nm

size (mm× mm) 10.1× 10.1
|D| 119 461

clast (W) 8.0978× 10−7

flast (W) 2.3016× 10−5

κlast (W per mm) 6.1407× 10−5

cup (W) 1.1944× 10−5

fup (W) 2.0308× 10−5

κup (W per mm) 3.5637× 10−5

κup · lSMT (W) 0.05107
uup (W) 8.9278× 10−5

total p.c. (W) 0.2660
p.c. lower stages (W) 0.2359 (88.7%)
lower bound p.c. (W) 0.1864

total p.c. / l.b. p.c. 1.4273

Figure 3.20: Clock tree instance and computed tree on Katrin.

ClockDesigner (CD) BonnClock (BC) CD/BC
unplanned skew (ps) 53 48 1.104

number of circuits 8 247 3 616 2.281
last p.c. circuits (W) 0.1897 0.0832 2.280

stage p.c. wiring (W) 0.1636 0.1527 1.071
total p.c. (W) 0.3533 0.2359 1.498

number of circuits 585 606 0.965
upper p.c. circuits (W) 0.0120 0.0093 1.290
stages p.c. wiring (W) 0.0318 0.0208 1.527

total p.c. (W) 0.0438 0.0301 1.455
all stages total p.c.(W) 0.3971 0.2660 1.493

Table 3.3: Comparison to ClockDesigner on Katrin.



96 3 BonnClock

design Nicolai
technology 90 nm

size (mm× mm) 15.6× 15.6
|D| 680 776

total p.c. (W) 4.1208
p.c. lower stages (W) 3.4610 (84.0%)

Figure 3.21: Clock tree instance and computed tree on Nicolai.

ClockDesigner (CD) BonnClock (BC) CD/BC
unplanned skew (ps) 39 43 0.907

number of circuits 99 472 41 981 2,369
last p.c. circuits (W) 4.1561 1.7540 2.369

stage p.c. wiring (W) 1.8189 1.7070 1.066
total p.c. (W) 5.9750 3.4610 1.726

number of circuits 7 675 5 193 1.478
upper p.c. circuits (W) 0.3682 0.2008 1.834
stages p.c. wiring (W) 0.5123 0.4590 1.116

total p.c. (W) 0.8805 0.6598 1.334
all stages total p.c.(W) 6.8555 4.1208 1.664

Table 3.4: Comparison to ClockDesigner on Nicolai.
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4 Repeater Tree Topology Problem

Repeater trees are very similar to clock trees. They are also inverter trees distributing
a logic signal from a source to a set of sinks. Repeater tree instances are much smaller
than clock tree instances, most of them have just a few to some dozen sinks. On the
other hand there can be more than a million repeater tree instances on a chip. Another
big difference to clock trees are the timing constraints. In clock trees each sink has a
required arrival time window, the clock signal has to arrive within it. In repeater trees
the signal has to arrive at each sink not later than an individual latest required arrival
time, but it is allowed to arrive at any time before.

Most repeater tree algorithms split the task into two parts: first generating a repeater
tree topology and then buffering (insertion of inverters) into the tree.

In this thesis we will restrict ourselves to the generation of repeater tree topologies.
First, we define the Repeater Tree Topology Problem and present and analyze
a simple topology creation algorithm.

Sections 4.1 and 4.2 are based on joint work with Christoph Bartoschek, Stephan Held,
Dieter Rautenbach and Jens Vygen.

4.1 Previous Work and Problem Definition

The construction of repeater trees, including buffering, has been studied by various
authors. Okamoto and Cong [1996] proposed an algorithm computing a topology by a
bottom-up clustering of the sinks and then top-down buffering of the obtained topology.
Similarly, Lillis et al. [1996] also integrated buffer insertion and topology integration
by considering an algorithm which takes the locality of sinks into account combined
with an dynamic programming approach. Hrkic and Lillis [2002, 2003] considered
an algorithm, which makes better use of timing information and integrated timing
and placement informations. The sinks are partitioned according to their criticality
and a given topology is changed by partially separating critical and non-critical sinks.
The algorithm of Alpert et al. [2002] is a hybrid combination of the Prim heuristic
for minimum spanning trees (Prim [1957], Dijkstra [1959]) and the Dijkstra’s shortest
path algorithm (Dijkstra [1959]). Further approaches were proposed by Cong and Yuan
[2000], Dechu et al. [2004], Hentschke et al. [2007] and Pan et al. [2007].

Before we continue, we define the Repeater Tree Topology Problem formally:
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Repeater Tree Topology Problem

Instance: An instance consists of:

• a source r ∈ R2,

• a finite non-empty set S ⊆ R2 of sinks,

• a required arrival time as ∈ R for every sink s ∈ S, and

• two numbers c, d ∈ R>0.

Feasible Solution: A feasible solution of such an instance is

• a rooted tree T = (V (T ), E(T )) with vertex set {r} ∪ S ∪ I where I ⊆ R2

is a set of |S| − 1 points such that r is the root of T and has exactly one
child, the elements of I are the internal vertices of T and have exactly two
children each, and the elements of S are the leaves of T .

In Bartoschek et al. [2006, 2009] such a feasible solution was called a repeater tree
topology, because the number, types, and positions of the actual repeaters are not yet
determined.
The optimization goals for a repeater tree are related to the wiring, to the number of
repeater circuits, and to the timing. We assume that every edge e = (u, v) ∈ E(T )
of T is realized along a path between the two points u and v in the plane which is
shortest with respect to some norm || · || on R2 (in practice the l1 norm). Furthermore,
we assume that repeaters are inserted in a relatively uniform way into all wires in order
to linearize the delay within the repeater tree. Hence the wiring and also the number
of repeater circuits needed for the physical realization of the edge e are proportional
to ||u− v||. For the entire repeater tree topology, this results in a total cost of

l(T ) :=
∑

(u,v)∈E(T )

||u− v||.

The delay of the signal starting at the root and traveling through T to the sinks has
two components. Let E[r, s] denote the set of edges on the path P in T between the
root r and some sink s ∈ S. The linearized delay along the edges of P is modeled by∑

(u,v)∈E[r,s]

d||u− v||.

Furthermore, every internal vertex on P corresponds to a bifurcation which causes an
additive delay of c along P . For the entire path P , these additional delays sum up to

c(|E[r, s]| − 1).

In practice there is sometimes a certain degree of freedom how to distribute the addi-
tional delay caused by a bifurcation to the two branches (see Section 4.4).
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Figure 4.1: Quality of the delay model.

Altogether, we estimate the delay of the signal along P by the sum of these two
components.
Assuming that the signal starts at time 0 at the root, the slack at some sink s ∈ S in
T is estimated by

σ(T, s) := as −
∑

(u,v)∈E[r,s]

d||u− v|| − c(|E[r, s]| − 1)

and the worst slack equals

σ(T ) := min{σ(T, s) | s ∈ S}.

The restrictions on the number of children of the root and the internal vertices of T im-
ply that the number of sinks contributes logarithmically to the delay, which corresponds
to physical experience. The accuracy of our simple delay estimation is shown in Figure
4.1, which compares our estimation with the real physical delay once the repeater tree
has been realized and optimized. The parameters c and d are technology-dependent.
For the 65nm technology their values are about c = 20ps and d = 220ps/mm.

In principle, a repeater tree topology is acceptable with respect to timing if σ(T ) is
non-negative, i.e. the signal arrives at every sink s ∈ S not later than as. Nevertheless,
in order to account for inaccurate estimations and manufacturing variation, the worst
slack σ(T ) should have at least some reasonable positive value σmin or should even be
maximized.
We can formulate three main optimization scenarios: Determine T such that

(O1) σ(T ) is maximized, or

(O2) l(T ) is minimized, or

(O3) for suitable constants α, β, σmin > 0, the expression

αmin{σ(T ), σmin} − βl(T )

is maximized.
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While scenario (O1) is reasonable for instances which are very timing critical, scenario
(O2) is reasonable for very timing uncritical instances. Scenario (O3) is probably the
practically most relevant one. In the next section, we will show that (O1) can be solved
exactly in polynomial time. In contrast to that, (O2) is hard even for restricted choices
of the norm such as the l1-norm, since it is essentially the Steiner tree problem (Garey
and Johnson [1977]).

4.2 A Simple Procedure and its Properties

We propose the following very simple procedure for the construction of repeater tree
topologies.

Algorithm 5: Repeater tree topology creation

Choose a sink s1 ∈ S;
V (T1)← {r, s1};
E(T1)← {(r, s1)};
T1 ← (V (T1), E(T1));
n← |S|;
for i = 2 to n do

Choose a sink si ∈ S \ {s1, s2, . . . , si−1}, an edge ei = (u, v) ∈ E(Ti−1), and an
internal vertex xi ∈ R2;
V (Ti)← V (Ti−1)

.
∪ {xi}

.
∪ {si};

E(Ti)← (E(Ti−1) \ {(u, v)}) ∪ {(u, xi), (xi, v), (xi, si)};
Ti ← (V (Ti), E(Ti));

end

The procedure inserts the sinks one by one according to some order s1, s2, . . . , sn start-
ing with a tree containing only the root r and the first sink s1. The sinks si for i ≥ 2
are inserted by subdividing an edge ei with a new internal vertex xi and connecting xi

to si. The behavior of the procedure clearly depends on the choice of the order, the
choice of the edge ei, and the choice of the point xi ∈ R2.
In view of the large number of instances which have to be solved in an acceptable time
(Bartoschek et al. [2006, 2009]) the simplicity of the above procedure is an important
advantage for its practical application. Furthermore, implementing suitable rules for
the choice of si, ei, and xi allows to pursue and balance various practical optimization
goals.
We present two variants (P1) and (P2) of the procedure corresponding to the above
optimization scenarios (O1) and (O2), respectively.

(P1) The sinks are inserted in an order of non-increasing criticality, where the criticality
of a sink s ∈ S is quantified by

−(as − d||r − s||).
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(Note that this is the estimated worst slack of a repeater tree topology containing
only the one sink s. Since a sink s can be critical because its required arrival
time as is small and/or because its distance ||r− s|| to the root is large, this is a
reasonable measure for its criticality.)

During the i-th execution of the for-loop, the new internal vertex xi is always
chosen at the same position as r — formally this turns V (Ti) into a multiset —
and the edge ei is chosen such that σ(Ti) is maximized.

(P2) s1 is chosen such that ||r − s1|| = min{||r − s|| | s ∈ S} and during the i-th
execution of the for-loop, si, ei = (u, v), and xi are chosen such that

l(Ti) = l(Ti−1) + ||u− xi||+ ||xi − v||+ ||xi − si|| − ||u− v||

is minimized.

Theorem 4.1. The largest achievable worst slack σopt equals

σ∗(S) := max

{
σ ∈ R |

∑
s∈S

2−b
1
c
(as−d||r−s||−σ)c ≤ 1

}
,

and (P1) generates a repeater tree topology T(P1) with σ
(
T(P1)

)
= σopt.

Proof: Let a′s = as− d||r− s|| for s ∈ S. Let T be an arbitrary repeater tree topology.
By the definition of σ(T ) and the triangle-inequality for || · ||, we obtain

|E[r, s]| − 1 ≤

1

c

as −
∑

(u,v)∈E[r,s]

d||u− v|| − σ(T )

 ≤ ⌊1

c
(a′s − σ(T ))

⌋

for every s ∈ S. Since the unique child of the root r is itself the root of a binary subtree
of T in which each sink s ∈ S has depth exactly |E[r, s]| − 1, Kraft’s inequality (Kraft
[1949]) implies ∑

s∈S

2−b
1
c
(a′s−σ(T ))c ≤

∑
s∈S

2−|E[r,s]|+1 ≤ 1.

By the definition of σ∗(S), this implies σ(T ) ≤ σ∗(S). Since T was arbitrary, we obtain
σopt ≤ σ∗(S).
It remains to prove that σ

(
T(P1)

)
= σopt = σ∗(S), which we will do by induction on

n = |S|. For n = 1, the statement is trivial. Now let n ≥ 2. Let sn be the last sink
inserted by (P1), i.e. a′sn

= max{a′s | s ∈ S}. Let S ′ = S \ {sn}.

Claim

frac

(
σ∗(S)

c

)
∈
{

frac

(
a′s
c

)
| s ∈ S ′

}
(4.1)

where frac(x) := x− bxc denotes the fractional part of x ∈ R.
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Proof of the claim: Note that the definition of σ∗(S) implies that 1
c
(a′s − σ∗(S)) is

an integer for at least one s ∈ S. For contradiction of the claim, we assume that
1
c

(
a′sn
− σ∗(S)

)
∈ Z and 1

c
(a′s − σ∗(S)) 6∈ Z for every s ∈ S ′. Since a′sn

− σ∗(S) ≥
a′s − σ∗(S) for every s ∈ S ′, this implies⌊

1

c

(
a′sn
− σ∗(S)

)⌋
> max

{⌊
1

c
(a′s − σ∗(S))

⌋
| s ∈ S ′

}
and hence ∑

s∈S

2−b
1
c
(a′s−σ∗(S))c ≤ 1− 2−b

1
c(a′sn

−σ∗(S))c.

Now, for some sufficiently small ε > 0, we obtain∑
s∈S

2−b
1
c
(a′s−(σ∗(S)+ε))c = 2−b

1
c(a′sn−σ∗(S))c+1 +

∑
s∈S′

2−b
1
c
(a′s−σ∗(S))c ≤ 1

which contradicts the definition of σ∗(S) and completes the proof of the claim. �

Let T ′(P1) denote the tree produced by (P1) just before the insertion of the last sink sn.

By induction, σ
(
T ′(P1)

)
= σ∗(S ′).

First, we assume that there is some sink s′ ∈ S ′ such that within T ′(P1)

|E[r, s′]| − 1 <

⌊
1

c
(a′s′ − σ∗(S ′))

⌋
.

Choosing en as the edge of T ′(P1) leading to s′, results in a tree T such that

σ∗(S) ≥ σopt ≥ σ
(
T(P1)

)
≥ σ(T ) = σ∗(S ′) ≥ σ∗(S),

which implies σ
(
T(P1)

)
= σopt = σ∗(S).

Next, we assume that within T ′(P1)

|E[r, s]| − 1 =

⌊
1

c
(a′s − σ∗(S ′))

⌋
for every s ∈ S ′. This implies∑

s∈S

2−b
1
c
(a′s−σ∗(S′))c >

∑
s∈S′

2−b
1
c
(a′s−σ∗(S′))c = 1

and hence σ∗(S) < σ∗(S ′). By (4.1), we obtain

σ∗(S) ≤ max

{
σ | σ < σ∗(S ′), frac

(σ
c

)
∈
{

frac

(
a′s
c

)
| s ∈ S ′

}}
= max

{
σ | σ < σ∗(S ′), frac

(
σ − σ∗(S ′)

c

)
∈
{

frac

(
a′s − σ∗(S ′)

c

)
| s ∈ S ′

}}
= cmax

{
x | x < σ∗(S ′)

c
, frac

(
x− σ∗(S ′)

c

)
∈
{

frac

(
a′s − σ∗(S ′)

c

)
| s ∈ S ′

}}
= c

(
σ∗(S ′)

c
− 1 + max

{
frac

(
a′s − σ∗(S ′)

c

)
| s ∈ S ′

})
= σ∗(S ′)− c(1− δ)
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for

δ = max

{
frac

(
a′s − σ∗(S ′)

c

)
| s ∈ S ′

}
.

If s′ ∈ S ′ is such that

δ = frac

(
a′s′ − σ∗(S ′)

c

)
,

then choosing en as the edge of T ′(P1) leading to s′, results in a tree T such that

σ∗(S) ≥ σopt ≥ σ
(
T(P1)

)
≥ σ(T ) = σ∗(S ′)− c(1− δ) ≥ σ∗(S),

which implies σ
(
T(P1)

)
= σopt = σ∗(S) and completes the proof. �

Theorem 4.2. (P2) generates a repeater tree topology T for which l(T ) is at most the
total length of a minimum spanning tree on {r} ∪ S with respect to || · ||.

Proof: Let n = |S| and for i = 0, 1, . . . , n, let T i denote the forest which is the union
of the tree produced by (P2) after the insertion of the first i sinks and the remaining
n− i sinks as isolated vertices. Note that T 0 has vertex set {r}∪S and no edge, while
for 1 ≤ i ≤ n, T i has vertex set {r} ∪ S ∪ {xj | 2 ≤ j ≤ i} and 2i− 1 edges.
Let F0 = (V (F0), E(F0)) be a spanning tree on V (F0) = {r} ∪ S such that

l(F0) =
∑

uv∈E(F0)

||u− v||

is minimum. For i = 1, 2, . . . , n, let Fi = (V (Fi), E(Fi)) arise from(
V
(
T i

)
, E(Fi−1) ∪ E

(
T i

))
by deleting an edge e ∈ E(Fi−1) ∩E(F0) which has exactly one end-vertex in V (Ti−1)
such that Fi is a tree. (Note that this uniquely determines Fi.)
Since (P2) has the freedom to use the edges of F0, the specification of the insertion
order and the locations of the internal vertices in (P2) imply that

l(F0) ≥ l(F1) ≥ l(F2) ≥ . . . ≥ l(Fn).

Since Fn = Tn the proof is complete. �

For the l1-norm, the well-known result of Hwang [1976] together with Theorem 4.2
imply that (P2) is an approximation algorithm for the l1-minimum Steiner tree on the
set {r} ∪ S with approximation guarantee 3/2.
We have seen in Theorems 4.1 and 4.2 that different insertion orders are favorable for
different optimization scenarios such as (O1) and (O2).
Alon and Azar [1993] gave an example showing that for the online rectilinear Steiner
tree problem the best approximation ratio we can achieve is Θ(log n/ log log n), where
n is the number of terminals. Hence inserting the sinks in an order disregarding the
locations, like in (P1), can lead to long Steiner trees, no matter how we decide where
to insert the sinks.
The next example shows that inserting the sinks in an order different from the one
considered in (P1) but still choosing the edge ei as in (P1) results in a repeater tree
topology whose worst slack can be much smaller than the largest achievable worst slack.
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Example 4.3. Let c = 1, d = 0 and a ∈ N. We consider the following sequences of
−a’s and 0’s

A(1) = (−a, 0),

A(2) = (A(1),−a, 0),

A(3) = (A(2),−a, 0, . . . . . . , 0︸ ︷︷ ︸
1+(21−1)(a+2)

),

A(4) = (A(3),−a, 0, . . . . . . . . . , 0︸ ︷︷ ︸
1+(22−1)(a+2)

), . . . ,

i.e. for l ≥ 2, the sequence A(l) is the concatenation of A(l−1), one −a, and a sequence
of 0’s of length 1 +

(
2l−2 − 1

)
(a+ 2).

If the entries of A(l) are considered as the requires arrival times of an instance of the
repeater tree topology problem, then Theorem 4.1 together with the choice of c and d
imply that the largest achievable worst slack for this instance equals⌊

− log2

(
l2a +

(
1 +

l∑
i=2

(
1 + (2i−2 − 1)(a+ 2)

))
20

)⌋
.

For l = a+ 1 this is at least −2− a− log2(a+ 2).
If we insert the sinks in the order as specified by the sequences A(l), and always choose
the edge into which we insert the next internal vertex such that the worst slack is
maximized, then the following sequence of topologies can arise: T (1) is the topology
with two exactly sinks at depth 2. The worst slack of T (1) is −(a+ 2). For l ≥ 2, T (l)
arises from T (l− 1) by (a) subdividing the edge of T (l− 1) incident with the root with
a new vertex x, (b) appending an edge (x, y) to x, (c) attaching to y a complete binary
tree B of depth l − 2, (d) attaching to one leaf of B two new leaves corresponding to
sinks with required arrival times −a and 0, and (e) attaching to each of the remaining
2l−2 − 1 many leaves of B a binary tree ∆ which has a+ 2 leaves, all corresponding to
sinks of arrival times 0, whose depths in ∆ are 1, 2, 3, . . . , a − 1, a, a + 1, a + 1. Note
that this uniquely determines T (l).
Clearly, the worst slack in T (l) equals −a− (l+1). Hence for l = a+1, the worst slack
equals −2a−2, which differs approximately by a factor of 2 from the largest achievable
worst slack as calculated above.

In the next section we show how the sinks can be inserted in order to maximize the
slack, even if the sinks are in a different order from the one considered in (P1). However,
it is an open question to find a bicriteria approximation algorithm, or an algorithm for
(O3).
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4.3 The Online Minimax Problem

Assume we want to find a repeater tree topology with optimum slack. In the last
section we have shown how to compute such a tree. A disadvantage of the approach is
that it does not consider the locations of the sinks and thus can compute trees that are
much longer than necessary. In the variant (P1) the sinks are sorted according to their
criticality and then inserted into the tree. But can we also achieve trees with optimum
or nearly optimum slack if we have to insert the sinks in a given order (not sorted by
their criticality)? If the answer of the question is yes we could sort the sinks according
to their positions and then build the tree topology, hoping to get shorter trees that are
still slack optimal. Moreover, we could allow that the trees are not optimal but to have
a slack that is at most some constant c from the optimum. This could further reduce
the length of the trees.

In this section we will show that there is an online algorithm that computes a slack
optimal tree, i.e. the sinks are inserted into the tree in any given order. Moreover, we
give necessary and sufficient conditions for an online algorithm to compute binary trees
with a slack that is at least the optimum slack minus c for any constant c ∈ N. But
first we will reformulate the problem so that is in the form of the well-known minimax
problem.

4.3.1 Introduction

Let n ∈ N and A := (a1, . . . , an) be a tuple with weights ai ∈ N, 1 ≤ i ≤ n. For
a binary tree T with n leaves let ti be the depths of leaf i, 1 ≤ i ≤ n. Then the
weight of the tree T is defined as sT := max1≤i≤j(ti + ai). The definition of weight
can be extended to the internal vertices of T . In this case the weight of a vertex is
the maximum weight of its two children plus 1. Obviously, sT is the weight of the root
of T . A binary tree that minimizes sT is called binary minimax tree. Analogously to
the proof of Theorem 4.1, by Kraft’s inequality (Kraft [1949]), there exists a binary
tree T with leaves at depth at most t1, . . . , tn if and only if

∑n
i=1 2−ti ≤ 1. Hence

sT ≥ OPT := dlog2

∑n
i=1 2aie.

Note that minimizing the depths sT is equivalent to maximizing the slack in the for-
mulation of the previous section.

We use the following variant of the algorithm from the previous section, adapted to the
formulation of the minimax problem: The algorithm starts with the binary tree with
leaves 1 and 2. At step j ∈ {3, . . . , n} one of the two following operations are allowed:
The first operation is to insert leaf j at an edge e of T by subdividing e and inserting
a branch that ends at leaf j. The second operation is to insert the leaf j at the root of
T by creating a new root s with two branches, one ending in the original tree T and
the other ending in j.

We are interested in the online version of this algorithm: When inserting leaf j we
neither know n nor the following weights aj+1, . . . , an. An open question of the last
section is whether there are online algorithms that always compute binary trees of
weight OPT + c for an non-negative integral constant c. We will show in this section
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that such algorithms exist for any c and we will give necessary and sufficient conditions
for them that can be verified efficiently.
The non-online version of the minimax tree problem is well studied. Minimax trees are
used for data compression and prefix-codes (Drmota and Szpankowski [2002, 2004]) and
some applications in VLSI design to limit circuit fan-ins and fan-outs (Parker [1979],
Hoover et al. [1984]). Golumbic [1976] first showed that it can be solved optimally in
O(n log n) using a variant of Huffman’s algorithm (Huffman [1952], see also Section
4.2). In the algorithm repeatedly two vertices with minimum weights ai and aj are
replaced by a new vertex of weight max{ai, aj} + 1. Recently, Gawrychowski and
Gagie [2008] showed that the algorithm can be modified to run in linear time. To our
knowledge, the online version of this problem has not be studied yet.

4.3.2 Preliminaries

For a tuple A = (a1, . . . , aj) and a binary tree T with sinks 1, . . . , j we recursively
define a tuple B. Initially set T1 := T and B := ∅. For i = 1, . . . , j let bi the largest
integer so that bi can be inserted in the tree Ti without increasing the weight of it. If
no leaf can be inserted we are done. Otherwise let Ti+1 be the resulting tree and set
B := (b1, . . . , bi). We call B the filler tuple of (A, T ).

Constructing the Filler Tuple B.

Now we describe a method to construct the filler tuple B.
If T only consists of a single vertex we are done as we cannot add another vertex.
Otherwise let s be the root, r and l the two children of s and Tr and Tl be the subtrees
rooted at r and l, respectively (see Figure 4.2). Then sT = 1 + max{sTr , sTl}. W.l.o.g.
sT = sTl + 1.

s

l r

Tl
Tr

sT

sTl
sTr

Figure 4.2: A tree T with root r and the sub-trees Tl and Tr.

Obviously, no weight b ≥ sT − 1 can be inserted without increasing the weight of
T . If sTr = sTl we could not even insert b = sT − 2. If sTr < sTl we can insert
b = sT − 2 at the edge (s, r), i.e. subdividing (s, r) by inserting a new vertex r′

and adding a branch that ends at leaf b = sT − 2 (see Figure 4.3) and this is the
only possible choice. The root of the new tree T ′ is driving the sub-trees Tl and T ′r.
Observe that sT ′r = 1 + max{sTr , b} = 1 + sT − 2 = sT − 1 = sTl . This implies
that the edges (s, l) and (s, r′) cannot be subdivided without increasing the weight
of the tree. Subdividing an edge of one of the sub-trees does not affect the other
tree. Thus the filler tuple of T ′ is the ordered union of the filler tuples of Tl and



4.3 The Online Minimax Problem 107

T ′r. (The ordered union of two tuples C = (c1, . . . , ck) and D = (d1, . . . , dl) is the
tuple (eτ(1), . . . , eτ(k+l)) with e1 = c1, . . . , ek = ck, ek+1 = dk+1, . . . , ek+l = dk+l, where
τ : {1, . . . , k + l} → {1, . . . , k + l} is a bijective mapping with eτ(i) ≥ eτ(i+1) for
1 ≤ i ≤ k + l − 1.)

s

l r′
r

b

Tl Tr

sT

sTl sT ′r = sTl

Figure 4.3: The tree after subdividing (s, r) and inserting a branch ending in b.

The construction immediately yields:

Proposition 4.4. The filler tuple of (A, T ) is unique. �

Moreover, the filler tuple ‘fills up’ the tree:

Proposition 4.5.
∑

a∈A 2a +
∑

b∈B 2b = 2sT
.

Proof. If
∑

a∈A 2a +
∑

b∈B 2b > 2sTi the weight of the resulting tree would be greater

than sT . That is a contradiction to the definition of B. If
∑

a∈A 2a +
∑

b∈B 2b < 2sT

we can insert at least weight b = 0 without increasing the weight of the tree. �

Some Properties of B.

In the following section we always have a tuple A = (a1, . . . , a|A|), a corresponding
binary tree T and the filler tuple B = (b1, . . . , b|B|) of (A, T ).

Proposition 4.6. Let a > maxB and T ′ the tree obtained by inserting weight a at the
root of T . Let B′ be the filler tuple of ((a1, . . . , a|A|, a), T

′).

a) If a < sT then B′ = (sT − 1, sT − 2, . . . , a+ 1, a, b1, . . . , b|B|).

b) If a > sT then B′ = (a− 1, a− 2, . . . , sT + 1, sT , b1, . . . , b|B|).

c) If a = sT then B′ = B.

Proof. Simple application of the construction of B. �

Proposition 4.7. Let a ∈ B and T ′ be the tree obtained by inserting weight a at an edge
where one of the bi ∈ B with bi = a has been inserted. Then B′ = (b1, . . . , bi−1, bi+1, . . . ,
b|B|) is the filler tuple of ((a1, . . . , a|A|, a), T

′).

Proof. We look at the tree T ′ of the previous construction after inserting bi at edge (s, l).
Denote by l′ the inserted vertex, by Ts the subtree rooted at s and let r be the other child
of s beside l′ (see Figure 4.4). When we replace bi by a the tree does not change and we
get the same filler tuple for the remaining tree. Thus B′ = (b1, . . . , bi−1, bi+1, . . . , b|B|).
�
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s

l

l′ r

bi
Tl

Tr

Figure 4.4: The subtree rooted at s after inserting bi.

Proposition 4.8. Let a be an integer with a /∈ B and a ≤ maxB. Let bi ∈ B be a
number so that bi > a and there is no b ∈ B with bi > b > a. Let T ′ be the tree obtained
by inserting weight a at the edge where bi has been inserted. Then B′ = (b1, . . . , bi−1, bi−
1, bi − 2, . . . , a+ 1, a, bi+1, . . . , b|B|) is the filler tuple of ((a1, . . . , a|A|, a), T

′).

Proof. Again look at the tree T ′ of the above construction after inserting bi at edge
(s, l). Denote by l′ the inserted vertex, by Ts the subtree rooted at s and let r be the
other child of s beside l′ (see Figure 4.4). The filler tuple of T ′ is the ordered union of
the filler tuples Tl and Tr.

l

l′

a

s
r

Tr

aa+ 1
. . .

bi − 2bi − 1

Tl

sTl = bi

Figure 4.5: The subtree rooted at s after inserting a and the fillers bi− 1, bi− 2, . . . , a.

As a /∈ B and as there is no b ∈ B with bi > b > a we conclude bi − 1 /∈ B. Thus the
edge (l′, l) cannot be subdivided and the weight of the subtree Tl rooted at l has to be
bi.

Now we replace bi by a. The edges (s, l′), (l′, l) and (s, r) still cannot be subdivided.
But as sTl = bi we have to insert bi − 1 at the edge (l′, a). Let x′ be the vertex we got
by subdividing (l′, a). x′ is driving two subtrees consisting of just one vertex. One has
weight bi − 1 the other one weight a. If bi − 1 > a we can insert bi − 2 at the edge
(x′, a) and continue by inserting bi − 3, . . . , a + 1, a (see Figure 4.5). The subtrees Tl

and Tr are not affected by these insertions. We conclude B′ = (b1, . . . , bi−1, bi − 1, bi −
2, . . . , a+ 1, a, bi+1, . . . , b|B|). �

4.3.3 Conditions for an Optimal Online Algorithms

An online algorithm is optimal if and only if for any A and computed tree T it gua-
rantees
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log2

(∑
a∈A

2a +
∑
b∈B

2b

)
Prop.4.5

= log2

(
2sT
)

= sT

≤ OPT

=

⌈
log2

(∑
a∈A

2a

)⌉

< log2

(∑
a∈A

2a

)
+ 1

= log2

(
2 ·
∑
a∈A

2a

)
.

This is equivalent to ∑
b∈B

2b <
∑
a∈A

2a. (4.2)

Let b1 ≥ b2 ≥ . . . ≥ b|B| be the elements of B. Now assume that the next k weights
(1 ≤ k ≤ |B|) of the input are b1, b2, . . . , bk−1, bk + 1 (in this order). By the definition
of B the first k− 1 numbers can be inserted into T without increasing its weight. But
inserting the last number enforces that the weight of the tree increases by at least one.
We have to ensure that also the weight of this tree is optimal:

log2

(∑
a∈A

2a +
∑
b∈B

2b

)
+ 1

Prop.4.5
= log2

(
2sT +1

)
= sT + 1

≤ OPT ′

=

⌈
log2

(∑
a∈A

2a +
k−1∑
i=1

2bi + 2bk+1

)⌉

< log2

(∑
a∈A

2a +
k−1∑
i=1

2bi + 2bk+1

)
+ 1.

And thus

|B|∑
i=k+1

2bi < 2bk . (4.3)

Inequalities (4.2) and (4.3) are necessary conditions for an online algorithm to produce
for each A a tree T with sT = OPT . We claim that these conditions are also sufficient.
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First note that (4.2) directly follows from (4.3) and can be neglected. b1 is the biggest
number that can be inserted into T without increasing sT . Thus sT ≥ b1 + 2. We
conclude using Proposition 4.5 and (4.3):∑

a∈A

2a = 2sT −
∑
b∈B

2b ≥ 2b1+2 −
∑
b∈B

2b > 2 ·
∑
b∈B

2b −
∑
b∈B

2b =
∑
b∈B

2b.

To show that (4.3) is also sufficient we just have to prove the following:

Lemma 4.9. For any pair A, T satisfying (4.3) and any weight a ∈ N we can insert
weight a into T creating a new tree T ′ so that (4.3) is kept for (a1, . . . , a|A|, a) and T ′.

Proof. It is easy to see that inequality (4.3) is true if and only if B does not contain
two number with the same value. Now assume we have A, T and the filler tuple B
where every number occurs at most one time. Let a ∈ N.
If a > maxB we insert a at the root of T . Then by Proposition 4.6 the filler tuple B′

of (a1, . . . , a|A|, a) and the new tree T ′ does not contain a number more than one time.
If a ∈ B we insert a at an edge where we have inserted the unique element bi ∈ B with
bi = a. By Proposition 4.7 the resulting filler tuple B′ is a subset of B and does not
contain duplicate numbers.
Finally, if a ≤ maxB and a /∈ B we choose bi ∈ B so that bi > a and there is no b ∈ B
with bi > b > a. Inserting a at the position of bi we get by Proposition 4.8 the filler
tuple B′ = (b1, . . . , bi−1, bi− 1, bi− 2, . . . , a+ 1, a, bi+1, . . . , b|B|). By the choice of bi the
tuple B′ does not contain a number twice. �
The proof of the Lemma immediately gives an optimal online algorithm.

4.3.4 Conditions for an Online Algorithms with sT ≤ OPT + c

Now we turn to the case that we aim for a tree that need not be optimal, but near-
optimal. An online algorithm constructs trees of weight at most OPT + c if and only
if for any (A, T ) and corresponding filler tuple B the following inequality is kept.

log2

(∑
a∈A

2a +
∑
b∈B

2b

)
Prop.4.5

= log2

(
2sT
)

= sT

≤ OPT + c

=

⌈
log2

(∑
a∈A

2a

)⌉
+ c

< log2

(∑
a∈A

2a

)
+ c+ 1.

This is equivalent to ∑
a∈A

2a +
∑
b∈B

2b < 2c+1 ·
∑
a∈A

2a. (4.4)
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Again let b1 ≥ b2 ≥ . . . ≥ b|B| the elements of B. Assume that b1, b2, . . . , bk−1, bk + 1
(in this order) are the next numbers of the input of the algorithm. By the definition
of the filler tuple B the first k − 1 numbers can be inserted into T without increasing
sT , but the k’th number enforces that the weight of the tree increases by 1. We have
to ensure that the weight of this new tree (= sT + 1) is at most OPT ′ + c where OPT ′

is the optimum weight for a tree for weights (a1, . . . , a|A|, b1, . . . , bk). We conclude that
the following inequality has to be satisfied for all 1 ≤ k ≤ |B|:

log2

(∑
a∈A

2a +
∑
b∈B

2b

)
+ 1

Prop.4.5
= sT + 1

≤ OPT ′ + c

=

⌈
log2

(∑
a∈A

2a +
k−1∑
i=1

2bi + 2bk+1

)⌉
+ c

< log2

(∑
a∈A

2a +
k−1∑
i=1

2bi + 2bk+1

)
+ c+ 1.

In short we have

∑
a∈A

2a +
∑
b∈B

2b < 2c

(∑
a∈A

2a +
|B|

min
k=1

{
k−1∑
i=1

2bi + 2bk+1

})
. (4.5)

Let kmin be the minimum index with bkmin
= bkmin+1. If no two bi have the same value

set kmin = |B|.

Lemma 4.10. The minimum in (4.5) is obtained for k = kmin.

Proof. For simplicity of notation set v(k) =
∑k−1

i=1 2bi + 2bk+1. We have to show
v(kmin) ≤ v(k) for all 1 ≤ k ≤ |B|. Let k < kmin. By the definition of kmin we
know bk > bk+1. We conclude

v(k) =
k−1∑
i=1

2bi + 2bk+1 =
k∑

i=1

2bi + 2bk ≥
k∑

i=1

2bi + 2 · 2bk+1 = v(k + 1).

If k = kmin + 1 we get, using the definition of kmin,

v(kmin + 1) =

kmin∑
i=1

2bi + 2bkmin+1+1 >

kmin−1∑
i=1

2bi + 2bkmin
+1 = v(kmin).

Finally, let k > kmin + 1. Then

v(k) =
k−1∑
i=1

2bi + 2bk+1 =

kmin∑
i=1

2bi +
k−1∑

i=kmin+1

2bi + 2bk+1
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≥
kmin∑
i=1

2bi + 2bkmin+1 =

kmin−1∑
i=1

2bi + 2bkmin
+1 = v(kmin).

�
By Lemma 4.10 inequality (4.5) is satisfied if and only if

2c

(∑
a∈A

2a +

kmin−1∑
i=1

2bi + 2bkmin
+1

)
>

∑
a∈A

2a +
∑
b∈B

2b. (4.6)

(4.4) and (4.6) are necessary conditions for the online algorithm to find a tree of weight
at most OPT + c for any input.
To show that (4.4) and (4.6) are sufficient we have to prove the following:

Lemma 4.11. For any A, T satisfying (4.4) and (4.6), any number x ∈ N can be
inserted into T , creating T ′, so that (a1, . . . , a|A|, x), T

′ also satisfy (4.4) and (4.6).

Proof. Let A, T a pair satisfying (4.4) and (4.6) and B its filler tuple. Set kmin as
above. Let x ∈ N. We will insert x into T and construct the tree T ′. By B′ we denote
the filler tuple of (a1, . . . , a|A|, x) and T ′.
Let bmin be the minimum number that appears at least twice in B′ or bmin = minB′ if
all numbers only appear once. Thus to show (4.6) for A′, T ′ we have to prove

2c

 ∑
a∈A∪{x}

2a +
∑

b∈B′,b>bmin

2b + 2bmin+1

 >
∑

a∈A∪{x}

2a +
∑
b∈B′

2b. (4.7)

Case 1: x > maxB. We insert x at the root of T . By Proposition 4.6 B′ is the ordered
union of C and B with

• C = {sT − 1, sT − 2, . . . , x+ 1, x} if x < sT ,

• C = {x− 1, x− 2, . . . , sT + 1, sT} if x > sT or

• C = ∅ if x = sT .

In all three sub-cases the numbers of C only appear once and are greater than maxB.
Thus bmin = bkmin

and we conclude

2c

 ∑
a∈A∪{x}

2a +
∑
b∈C

2b +

kmin−1∑
i=1

2bi + 2bkmin
+1


= 2c

(
2x +

∑
b∈C

2b

)
+ 2c

(∑
a∈A

2a +

kmin−1∑
i=1

2bi + 2bkmin
+1

)
> 2x +

∑
b∈C

2b +
∑
a∈A

2a +
∑
b∈B

2b

=
∑

a∈A∪{x}

2a +
∑
b∈B′

2b.
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Thus (4.7) is satisfied. Inequality (4.4) is equivalent to OPT + c ≥ sT ′ . If x ≥ sT then
OPT = dlog2(

∑
a∈A 2a +2x)e = x+1 = sT ′ and we are done. Otherwise x < sT . Using

x > b1 and (4.5) we conclude

2c+1
∑

a∈A∪{x}

2a = 2c+1

(∑
a∈A

2a + 2x

)

≥ 2c+1

(∑
a∈A

2a + 2b1+1

)

≥ 2 ·

(∑
a∈A

2a +
∑
b∈B

2b

)
=

∑
a∈A

2a +
∑
b∈B

2b + 2sT

=
∑
a∈A

2a +
∑
b∈B

2b + 2x +
sT−1∑
i=x

2i

=
∑

a∈A∪{x}

2a +
∑
b∈B′

2b.

Case 2: x ∈ B: We insert x at an edge where one of the bi ∈ B with bi = x has been
inserted. Then by Proposition 4.7 we have B′ = (b1, . . . , bi−1, bi+1, . . . , b|B|). (4.4) is
clearly satisfied. We removed one element from B. So if bi = bmin then bmin ≤ bkmin

otherwise bmin = bkmin
and we conclude

2c

 ∑
a∈A∪{x}

2a +
∑

b∈B′,b>bmin

2b + 2bmin+1


= 2c

(∑
a∈A

2a + 2bi +
∑

b∈B′,b>bmin

2b + 2bmin+1

)

≥ 2c

(∑
a∈A

2a +

kmin−1∑
i=1

2bi + 2bkmin
+1

)
>

∑
a∈A

2a +
∑
b∈B

2b

=
∑

a∈A∪{x}

2a +
∑
b∈B′

2b.

Case 3) x /∈ B, x ≤ maxB. Let bi ∈ B be a number so that bi > x and there is no b ∈ B
with bi > b > x. Let T ′ be the tree obtained by inserting x at the edge where bi has been
inserted. By Proposition 4.8 B′ = (b1, . . . , bi−1, bi− 1, bi− 2, . . . , x+1, x, bi+1, . . . , b|B|).
Set C := {bi − 1, bi − 2, . . . , x+ 1, x}. First observe that∑

a∈A∪{x}

2a +
∑
b∈B′

2b =
∑
a∈A

2a + 2x −
∑
b∈B

2b − 2bi +

bi−1∑
i=x

2i =
∑
a∈A

2a +
∑
b∈B

2b.
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Moreover, note that all numbers of C only appear once in B′. If bkmin
> bi or bkmin

= bi
and there are at least three elements in B with value bi it is easy to verify that (4.7)
is satisfied. Otherwise bkmin

= bmin < x and we get

2c

 ∑
a∈A∪{x}

2a +
∑

b∈B′,b>bmin

2b + 2bmin+1


= 2c

∑
a∈A

2a + 2x +
∑

b∈B,b>bkmin

2b + 2bmin+1 − 2bi +

bi−1∑
i=x

2i


= 2c

∑
a∈A

2a +
∑

b∈B,b>bkmin

2b + 2bmin+1


>

∑
a∈A

2a +
∑
b∈B

2b

=
∑

a∈A∪{x}

2a +
∑
b∈B′

2b.

This completes the proof. �

4.3.5 Algorithms

In the last two sections we established necessary and sufficient conditions for online
algorithms to be satisfied in order to compute trees of weight at most OPT + c. These
conditions yield such algorithms at once. A straight forward implementation might
result in excessive running times. If for example a1 = 0 and a2 = 1 000 000 we get
a tree consisting of three vertices and two edges and B = (999 999, 999 998, . . . , 1, 0),
i.e. B contains 1 000 000 elements. In this section we will show how to get a strongly
polynomial running time by handling the filler tuples efficiently.

To this end, we denote for each edge e ∈ E(T ) by BT
e the tuple of fillers in decreasing

order that are inserted at e. Let v ∈ V (T ) be a vertex with two successors r and
l and let Tv, Tr, Tl be the subtrees rooted at v, r and l. We have seen that sTv =
max{sTr , sTl}+ 1. W.l.o.g. sTv = sTr + 1. We do not insert any filler at the edge (v, r)
and thus BT

(v,r) = ∅. If sTv = sTl + 1 then also BT
(v,l) = ∅. Otherwise we will insert the

fillers sTv − 2, sTv − 3, . . . , sTl at (v, l) and get BT
(v,l) = (sTv − 2, sTv − 3, . . . , sTl). For

simplicity of notation we denote by bTe the largest and by bTe the smallest element in

BT
e . Thus BT

e =
(
bTe , b

T
e − 1, . . . , bTe + 1, bTe

)
.

Lemma 4.12. For a given tuple of weights A and a corresponding tree T the tuples
BT

e , e ∈ E(T ), can be computed in time O(n).

Proof. The BT
e ’s can be computed by traversing the edges of T bottom-up, computing

sTv for every vertex v ∈ V (T ) and setting BT
e for each edge as described above. �
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Optimal Online Algorithm.

Now we will discuss an online algorithm that computes a tree of optimum weight.
Assume we have given A, T and {BT

e }e∈E(T ). The edges {e1, . . . , em} of T are ordered

so that bTe1
≥ bTe1

≥ . . . ≥ bTem
. Let x ∈ N be the next weight in the input. We will

insert it according to Proposition 4.6, 4.7 and 4.8, creating the tree T ′, and show that
the filler tuples BT ′

e can be computed efficiently.
If x > maxB we add x at the root, i.e. we insert a new root v with two edges ending
in r and l, add T at l and assign weight x to r (see Proposition 4.6). Then for all
e ∈ E(T ), BT

e does not change. For the edges (v, l) and (v, r) we get

• if x < sT then BT ′

(v,l) = ∅ and BT ′

(v,r) = (sT , sT − 1, . . . , x),

• if x > sT then BT ′

(v,l) = (x, x− 1, . . . , sT ) and BT ′

(v,r) = ∅ and

• if x = sT then BT ′

(v,l) = BT ′

(v,r) = ∅.

If x ∈ B then let bi ∈ B an element with x = bi and we insert x at the edge (v, w)
where bi has been inserted (see Proposition 4.7). In this case we intersect (v, w) by
a new vertex s and add an edge (s, t). By the choice of bi we know bi ∈ BT

(v,w) =(
bT(v,w), b

T
(v,w) − 1, . . . , bT(v,w)

)
. We get BT ′

(v,s) =
(
bT(v,w), b

T
(v,w) − 1, . . . , bi + 1

)
, BT ′

(s,w) =(
bi − 1, bi − 2, . . . , bT(v,w)

)
and BT ′

(s,t) = ∅.
If finally x ≤ maxB and x /∈ B then we insert x at the unique edge (v, w) with
bi ∈ BT

(v,w) where bi is the smallest integer with bi ∈ B and bi > x (see Proposition

4.8). In this case we intersect (v, w) by a vertex s and insert the edge (s, t). By the

choice of bi we have BT ′

(v,w) =
(
bT(v,w), b

T
(v,w) − 1, . . . , bi

)
and get

BT ′

(v,s) =
(
bT(v,w), b

T
(v,w) − 1, . . . , bi + 1

)
, BT ′

(s,w) = ∅

and
BT ′

(s,t) =
(
bT(v,w) − 1, bT(v,w) − 2, . . . , x

)
.

Lemma 4.13. The online algorithm that inserts a new element x according to Propo-
sition 4.6, 4.7 and 4.8 always computes an optimum solution and can be implemented
to run in time O(n log n) with n := |A|.

Proof. The optimality is given by Lemma 4.9. By the previous observations inserting
x ∈ N at an appropriate edge ex and updating the BT

e ’s can be done in constant time.
But how to find the edge ex efficiently? As shown in the proof of Lemma 4.9 all numbers
bTi , 1 ≤ i ≤ |BT |, are different. Thus we can sort the tuples BT

e with e ∈ E(T ) and

BT
e 6= ∅ by setting BT

e < BT
f if and only if bTe < bTf . We save the tuples BT

e with

BT
e 6= ∅ in an ordered list and can find for any x an appropriate edge ex by binary

search in O(log n). By each of the three operations the filler tuples BT
e of at most three

edges change. It is easy to see that in all three cases the ordered list can be updated
in constant time. �
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OPT + c Online Algorithm.

In the case that the trees are allowed to have a weight of at most c more than the
optimum weight we want to check efficiently if we can insert a new weight x ∈ N at
an edge e′ of an existing tree. To this end, we insert x at e′ (creating the tree T ′),
compute the tuples BT

e for all e ∈ E(T ′) and finally check if the inequalities (4.4) and
(4.6) are satisfied. First we handle the latter inequality.
We sort the edges of T so that BT

e1
≥ BT

e2
≥ . . . ≥ BT

en−1
. Then we have to compute

bkmin
, the biggest number in the filler tuple B that appears at least twice. This number

is easy to find. Obviously, we have to look for the smallest number k ∈ {2, . . . , n− 1}
so that bTek

∈ BT
ek−1

. If no such integer exists no two numbers in the filler tuple B are
the same. But in this case (4.6) is always satisfied. Otherwise we have

(b1, . . . , bkmin
) = (b1, . . . , b1, b2, . . . , b2, . . . , bk−1, . . . , bk, bk).

Moreover, note that
∑

b∈BT
e

2e = 2bT
e + 2bT

e −1 + . . . + 2bT
e +1 + 2bT

e = 2bT
e +1 − 2bT

e . Thus

we can rewrite (4.6) as

∑
a∈A

2a +
k−2∑
i=1

(
2bi+1 − 2bi

)
+
(
2bk−1+1 − 2bk

)
+ 2bk > 2sT−c

This is equivalent to

∑
a∈A

2a +
k−1∑
i=1

2bi+1 > 2sT−c +
k−2∑
i=1

2bi (4.8)

Moreover, (4.4) is equivalent to ∑
a∈A

2a > 2sT−c−1 (4.9)

On both sides of the inequalities (4.8) and (4.9) we have the sum of O(n) integral non-
negative powers of two (n := |A|). We can verify in O(n log n) time if these inequalities
are satisfied: For both sides of an inequality we create an ordered list of the exponents.
Going through the lists in non-decreasing order we replace numbers a that appear
twice by one a + 1. Then we have to check if the list belonging to the left side of the
inequality is lexicographically bigger than the right one.

Lemma 4.14. For a constant c ∈ N, a pair (A, T ) with sT ≤ OPT +c, a weight x ∈ N
and an edge e ∈ E(T ) it can be verified in O(n log n), n := |A|, if x can be inserted at
e without violating (4.4) and (4.6).
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4.4 Unbalanced Binary Trees with Choosable Edge
Length

This section is based on joint work with Dieter Rautenbach (see Maßberg and Raut-
enbach [2009]).

In Section 4.1 we have already mentioned that within a repeater tree there is a certain
degree of freedom how to distribute the additional delay caused by a bifurcation to
the two branches. The reason for this is that one can insert inverters in such a way
that they shield off the capacitance load of one of the branches increasing the delay of
that branch but reducing the delay of the other branch. This motivates the following
definition of L-trees.

We consider rooted strict binary trees T with the property that the two edges leading
from every non-leaf to its two children are assigned lengths l1 and l2 with {l1, l2} ∈ L
for some fixed set L ⊆

(R≥0

2

)
containing two-element sets of non-negative real numbers.

We will use the term L-trees for such trees. The depth of a vertex in an L-tree T
equals its distance from the root of T with respect to the assigned edge lengths and
the depth of an L-tree equals the maximum depth of a leaf. Note that for L = {{1, 1}}
the notion of depth in L-trees coincides with the usual notion of depth in binary trees.

We are mainly interested in sets L for which l1 + l2 is constant for all {l1, l2} ∈ L which
models that some constant total length can be distributed in certain ways to the pairs
of edges leading to the children of non-leaves. Specifically, for an integer n ≥ 3 we
study a continuous version

L(n) =

{
{y, 1− y} | 1

n
≤ y ≤ 1− 1

n
, y ∈ R

}
and a discrete version

L′(n) = {{i, n− i} | 1 ≤ i ≤ n− 1, i ∈ N}.

For some d ∈ R let fL(d) denote the maximum number of leaves in an L-tree of depth
at most d. We are interested in the growth of fL. Furthermore, we are interested in
an appropriate version of Kraft’s inequality: For given values d1, d2, . . . , dn ∈ R≥0 we
want to characterize / algorithmically decide the existence of an L-tree with n leaves
having depths at most d1, d2, . . . , dn.

In the Section 4.4.1 we present results on the asymptotic growth of fL(n). In Section
4.4.2 we study the existence of {{1,m}}-trees for m ∈ N and L′(4)-trees. We pose
several related conjectures.

Binary trees with unequal edge lengths (Kapoor and Reingold [1989]), the related
recursions (Hwang and Tsai [2003]), Kraft’s inequality (Kraft [1949], McMillan [1956]),
and its variants mainly occur in contexts such as coding theory (Gallager [1968]),
combinatorial search (Aigner [1988]), divide-and-conquer strategies, and analysis of
running times of algorithm (Sedgewick and Flajolet [1996]). In these contexts the
liberty of distributing a total length budget to different edges makes no obvious sense.
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The results of Section 4.4.1 allow us to evaluate a lower bound on the achievable
delay and to quantify the quality of the final repeater tree with respect to timing, and
the results Section 4.4.2 enable the construction of repeater tree topologies with good
timing behavior.

4.4.1 Growth of fL(n)

Throughout this section we assume that some integer n ≥ 3 has been fixed and abbre-
viate fL(n) as f . Since every L(n)-tree with at least two leaves has at least one leaf at
depth at least 1

2
, the definition of f immediately implies the following recursion

f(d) =

{
0, d < 0 ,
1, 0 ≤ d < 1

2

and f(d) =

max
1
n
≤y≤1− 1

n

(f(d− y) + f(d− (1− y))) (4.10)

for d ≥ 1
2
.

Clearly, f is a monotonously increasing step function, i.e. there is a sequence of ‘step
points’

d0(n) < d1(n) < d2(n) < . . .

with d0(n) = 0 and d1(n) = 1
2

such that for i ∈ N0, f is constant within the intervals
[di(n), di+1(n)) and f(di(n)) < f(di+1(n)).
Altogether, we will establish some exponential growth for f which implies that the
individual ‘steps’ must become either higher or shorter. In fact, our first result is that
every step is of height 1.

Proposition 4.15. f(di+1(n))− f(di(n)) = 1 for i ∈ N0.

Proof. We abbreviate di(n) as di and prove the statement by induction on i.
For i = 0, we have f(d1)− f(d0) = f

(
1
2

)
− f(0) = 1.

Now let i ≥ 1. By (4.10), there is some 1
n
≤ y ≤ 1

2
< 1 − 1

n
such that f(di+1) =

f(di+1 − y) + f(di+1 − (1− y)). By the induction hypothesis, there is some ε > 0 such
that 1

n
≤ y + ε

2
≤ 1 − 1

n
, f(di) = f

(
di+1 − ε

2

)
and f(di+1 − y − ε) ≥ f(di+1 − y) − 1.

This implies that

f(di) = f
(
di+1 −

ε

2

)
≥ f

((
di+1 −

ε

2

)
−
(
y +

ε

2

))
+f
((
di+1 −

ε

2

)
−
(
1−

(
y +

ε

2

)))
= f(di+1 − y − ε) + f(di+1 − (1− y))
≥ f(di+1 − y)− 1 + f(di+1 − (1− y))
= f(di+1)− 1

≥ f(di)
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Figure 4.6: Structure of optimal trees for d ≤ 1.

which completes the proof. �

We first consider the case that n is a power of 2, i.e. n = 2i for some i ∈ N with i ≥ 2,
and solve the recursion (4.10) explicitely for d ≤ 1.

Proposition 4.16.

f(d) =



0, d < 0,

l,
l−1∑
j=1

1
2j ≤ d <

l∑
j=1

1
2j

with 1 ≤ l ≤ i,
i+ 1, 1− 1

2i ≤ d < 1 and
i+ 2, d = 1.

Proof. Every L(n)-tree with at least two leaves in which none of the two children of
the root is a leaf, has depth at least 1 and if it has depth 1, then is has exactly 4
leaves. This implies that we can assume that at least one child of every non-leaf in an
L(n)-tree with a given number l of leaves which is of minimum depth ≤ 1 is a leaf.
Hence there are optimal L(n)-trees that have a very simple structure (cf. Figure 4.6):
The non-leaves induce a directed path v1v2 . . . vl−1 where v1 is the root.
Clearly, we may assume that the two edges from vl−1 to its two children have equal
length 1

2
. In view of this, we may assume that the two edges from vl−2 to its two

children have lengths 1
4

and 3
4
, because this balances the delays in a best-possible

way. It is obvious how this kind of argument can be applied in turn to the vertices
vl−3, vl−4, . . . , v1.

In general, a minimum depth of the form
l−1∑
j=1

1
2j would be realized if the two edges from

every vl−k to its two children have lengths 1
2k and 1− 1

2k . By the definition of L(n), this
is only possible for k ≥ i. This argument determines f(d) as given in the statement of
the Proposition for d < 1. For d = 1, it is best-possible to assign the lengths 1

2i and
1− 1

2i to the edges from the root to its two children. This leads to an L(n)-tree with
i+ 1 leaves of depth 1 and one leaf of depth 1− 1

2i and the proof is complete.
�

As said before, we will establish an exponential growth for f and f is as convex as a
step function can be. In order to reduce the recursion (4.10) essentially to a simple
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-
1
2

3
4 1 22

16

6

Figure 4.7: f and f̃ for x = 1
16

. The line segments correspond to f and the dotted lines

correspond to f̃ .

linear recursion that can be solved with textbook methods (see e.g. Sedgewick and
Flajolet [1996]) we consider a function

f̃ : [0,∞)→ R

such that

(i) f̃
(

j
2i

)
= f

(
j
2i

)
for 0 ≤ j ≤ 2i,

(ii) f̃ is linear within the intervals
[

j
2i ,

j+1
2i

]
for 0 ≤ j ≤ 2i − 1 and

(iii) f̃(d) =

max
1

2i≤y≤1− 1

2i

(
f̃(d− y) + f̃(d− (1− y))

)
(4.11)

for d > 1.

Clearly, f̃(d) ≥ f(d) for d ∈ [0, 1] and hence for every d ≥ 0 (cf. Figure 4.7).

Lemma 4.17. The function f̃ is convex within [1,∞) and

f̃(d) = f̃

(
d− 1

2i

)
+ f̃

(
d−

(
1− 1

2i

))
for d > 1.

Proof. Clearly, for 0 ≤ j ≤ 2i − 1, the function f̃ is linear within the interval
(

j
2i ,

j+1
2i

)
with derivative 0 or 2i. Note that for 2i − 3 ≤ j ≤ 2i − 1 the function f̃ has derivative
2i within the interval

(
j
2i ,

j+1
2i

)
. This implies that f̃ , wherever it is differentiable, has

derivative at least 2i for d > 1. Now, this implies that the derivative of f̃ , wherever it
exists, is non-decreasing for d ∈ [1, 2] which easily implies the desired result. �

Proposition 4.18. f
(

j
2i

)
= f

(
j−1
2i

)
+ f

(
j−2i+1

2i

)
for j ≥ 2i.
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Proof. We prove the statement by induction on j. For j = 2i, we have f(1) = i+ 2 =

(i+ 1) + 1 = f
(

2i−1
2i

)
+ f

(
1
2i

)
and the statement is true.

Furthermore, by (i) of the definition of f̃ and Lemma 4.17, we obtain for j > 2i that

f

(
j

2i

)
≤ f̃

(
j

2i

)
= f̃

(
j − 1

2i

)
+ f̃

(
j − 2i + 1

2i

)
= f

(
j − 1

2i

)
+ f

(
j − 2i + 1

2i

)
≤ f

(
j

2i

)
and the proof is complete. �

Whereas the simple linear recursion for some specific values of f given by Proposition
4.18 determines the asymptotic and exponential growth of f , the “local” behavior of
f is far from being sufficiently understood. We investigated a lot of explicit numerical
data without being able to discover a reasonable pattern.
One notable curiosity is the following. For the essentially convex function f̃ the maxi-
mum in (4.11) is always attained only for y = 1

2i for d > 1. Therefore, it would seem
reasonable to assume that the closely related function f displays a similar behavior
at least eventually. Nevertheless, the exponential growth of f on the one hand and
Proposition 4.15 on the other hand imply

lim inf
j→∞

(dj+1(n)− dj(n)) = 0.

It is easy to see by an inductive argument that for every j ∈ N we have dj+1(n)−dj(n) =
1
2l for an appropriate l ∈ N. These two facts together immediately imply the existence
of a sequence (d′j(n))j∈N with limj→∞ d′j =∞ for which f(d′j(n)) is strictly larger than

f

(
d′j(n)− 1

2i

)
+ f

(
d′j(n)−

(
1− 1

2i

))
for j ∈ N. Intuitively, this seems to be in conflict with the asymptotic growth of f as
determined by Proposition 4.18.

Now we consider the case that n is not a power of 2. The problem in this case is that
the behavior of f(d) for d around 1 is already quite complicated. Nevertheless, we
believe that a similar approach as above leads to a result analogous to Proposition 4.18
and hence allows to estimate the asymptotic growth.
To be precise, we conjecture the existence of n step points di1(n), di2(n), . . . , din(n)
with

(i) dij+1
(n)− dij(n) = 1

n
for 0 ≤ j ≤ n− 1.
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(ii) f(dij+1
(n))− f(dij(n)) is monotonously increasing for 0 ≤ j ≤ n− 1.

(iii) f(d) ≤ θf(dij(n)) + (1 − θ)f(dij+1
(n)) for d = θdij(n) + (1 − θ)dij+1

(n) with
θ ∈ (0, 1).

Defining f̃ as above using the values of f for the dij(n) would clearly lead to results sim-
ilar to Lemma 4.17 and Proposition 4.18. We have verified the existence of appropriate
dij(n) as above for all n ≤ 32 and provide some examples in Section 4.4.3.

4.4.2 Existence of {{1,m}}-trees and L′(4)-trees

The existence of {{1,m}}-trees with leaves at specified maximal depths can be char-
acterized by the following variant of Kraft’s inequality (Kraft [1949]).

Proposition 4.19. Let integers 1 ≤ d1 ≤ d2 ≤ . . . ≤ dn be given. There exists a
{{1,m}}-tree T with n leaves at depths at most d1, d2, . . . , dn if and only if∑

1≤j≤i

f{{1,m}}(di − dj) ≤ f{{1,m}}(di) (4.12)

for 1 ≤ i ≤ n.

Proof. We consider the ‘infinite’ {{1,m}}-tree T∞ of which every {{1,m}}-tree T is a
finite subtree whose leaves correspond to vertices of T∞ which are not descendants of
each other. Because of the edges of length 1 in T∞, T∞ has exactly f{{1,m}}(d) vertices
of depth exactly (!) d. Clearly without loss of generality, we can allow non-leaves of
the desired {{1,m}}-trees to have just one child and the edge leading to that unique
child to have length exactly 1. Hence to decide existence it suffices to consider such
modified {{1,m}}-tree T with n leaves at depths exactly d1, d2, . . . , dn.
If such a (modified) {{1,m}}-tree T with n leaves at depths d1, d2, . . . , dn exists, then
counting the descendants at depth li within T∞ of the first i of the leaves of T at depths
d1, d2, . . . , di yields

∑
1≤j≤i

f{{1,m}}(di − dj) vertices within T∞ at depth li which implies

(4.12).
Conversely, the validity of (4.12) for all 1 ≤ i ≤ n implies that a desired (modified)
{{1,m}}-tree can be found within T∞ by successively choosing its leaves. After having
chosen the first i− 1 vertices within T∞ at depths exactly d1, d2, . . . , di−1 there remain

f{{1,m}}(di)−
∑

1≤j≤i−1

f{{1,m}}(di − dj)

≥ f{{1,m}}(di − di) = 1

vertices within T∞ at depth di that are not descendants of the previously chosen ver-
tices. This clearly implies the existence of the desired {{1,m}}-tree by an inductive
argument and completes the proof. �

Now we turn our attention to the simplest case of the discrete version L′(n) with
|L′(n)| ≥ 2 which is L′(4). In the previous section we saw that choosing y = 1

4
is
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Figure 4.8: l ∈ {1, 2}.

eventually the optimal choice within the recursion (4.10) for L(4). For the discrete
version this observation reflects in the property that in an optimal L′(4)-tree T the
edge lengths pair {2, 2} ∈ L′(4) can be assumed to occur only ‘close’ to the leaves of
T , i.e. in the ‘inner’ part of T only the edge lengths pair {1, 3} ∈ L′(4) is used. The
following proposition makes this statement precise.

Lemma 4.20. If there is an L′(4)-tree T with leaves at depths d1, d2, . . . , dn, then there
is an L′(4)-tree T ′ with leaves at depths at most d1, d2, . . . , dn such that every edge of
T ′ of length 2 is incident to a leaf of T ′.

Proof. Every edge of length 2 in T that is not incident to a leaf can be replaced as
indicated in Figure 4.8 without increasing the depths of leaves. �

We will describe how to decide the existence of an L′(4)-tree T with leaves at depths at
most d1, d2, . . . , dn. Clearly, if all inequalities (4.12) are satisfied, then the desired tree
T exists by Proposition 4.19 and does not need to contain any edge of length 2. Hence
we can assume that (4.12) is violated for some index. The following result captures
the essential observation.

Proposition 4.21. Let integers 1 ≤ d1 ≤ d2 ≤ . . . ≤ dn be given and let 1 ≤ i∗ ≤ n be
such that inequality (4.12) holds for 1 ≤ i ≤ i∗ − 1 and does not hold for i = i∗.

There exists an L′(4)-tree T with leaves at depths at most d1, d2, . . . , dn if and only if
di∗−1 = di∗ and there exists an L′(4)-tree T ′ with leaves at depths at most

d1, d2, . . . , di∗−2, di∗ − 2, di∗+1 . . . , dn.

Proof. Let the integers 1 ≤ d1 ≤ d2 ≤ . . . ≤ dn and the index i∗ be as in the statement.
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Since the ‘if’-part of the statement is trivial, we only prove the ‘only if’-part. By
Proposition 4.19, the existence of T implies that T contains edges of length 2. By
Lemma 4.20, we may assume that there are two such edges which are incident and lead
to leaves of T . Clearly, the depth requirements for these two leaves must be equal,
since otherwise we could use the edge lengths pair {1, 3} without violating the depth
requirements. Hence dj = dj+1 for some 1 ≤ j ≤ i∗ − 1. By contracting the edge pair,
this implies the existence of an L′(4)-tree T ′′ with leaves at depths at most

d1, d2, . . . , dj−1, dj − 2, dj+2, . . . , dn. (4.13)

For these new depth requirements, the left hand side of inequality (4.12) for index i∗

changes by
f{{1,3}}(di∗ − (dj − 2))− 2f{{1,3}}(di∗ − dj).

Since f{{1,3}}(d+ 2)− 2f{{1,3}}(d)

=



1− 2 · 0 = 1 , d = −2,
1− 2 · 0 = 1 , d = −1,
1− 2 · 1 = −1 , d = 0,
2− 2 · 1 = 0 , d = 1,
3− 2 · 1 = 1 , d = 2,
4− 2 · 2 = 0 , d = 3

and, by induction,

f{{1,3}}(d+ 2)− 2f{{1,3}}(d)

= (f{{1,3}}(d+ 1) + f{{1,3}}(d− 1))

−2(f{{1,3}}(d− 1) + f{{1,3}}(d− 3))

= (f{{1,3}}(d+ 1)− 2f{{1,3}}(d− 1))

+(f{{1,3}}(d− 1))− 2f{{1,3}}(d− 3))

≥ 0

for d ≥ 4, considering (4.13) can only reduce the left hand side of inequality (4.12) for
index i∗ if dj = di∗−1 = di∗ . This completes the proof. �

Based on Proposition 4.21 we now describe an algorithm that decides the existence
(and could also construct it, in case of existence) of an L′(4)-tree with leaves at depths
at most some n given positive integers d1, d2, . . . , dn.
If dmax = max{d1, d2, . . . , dn}, then the running time will be O(n+ dmax). Let

n(i) = |{j | 1 ≤ j ≤ n, dj = i}|

for 1 ≤ i ≤ dmax. The algorithm can be viewed as choosing an appropriate subtree of the
infinite tree T∞ considered in the proof of Proposition 4.19. Whenever it is necessary
to use a pair of edges of lengths 2 for a pair of leaves, the algorithm replaces the two
leaves by one whose depth requirement is two units less according to Proposition 4.21.
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With b(i) we will denote the number of blocked vertices with depth i, i.e. those vertices
of T∞ at depth i that have been chosen as leaves of the desired tree and also those that
are descendants of chosen leaves of the desired tree with smaller depths.
In view of Lemma 4.20, it can never be necessary for the existence of the desired tree
that a ‘new’ leaf which replaced two other leaves will itself be replaced together with
some further leaf by another ‘new’ leaf. Hence we keep track of the number m(i) of
‘new’ leaves with depth i and only consider the n(i) −m(i) ‘old’ leaves with depth i
for possible replacements.

Algorithm 6: Construction of L′(4)-trees.

Input: dmax ∈ N, n(·) : {1, . . . , dmax} 7→ N
Result: Returns true iff there exists an L′(4)-tree for n(·)
Compute f{{1,3}}(i) for 1 ≤ i ≤ dmax;1

Set b(i)← 0 for 1 ≤ i ≤ dmax;2

i← 1;3

while i ≤ dmax do4

b(i)← b(i− 1) + b(i− 3) + n(i);5

if b(i) > f{{1,3}}(i) then6

if n(i)−m(i) ≥ 2 then7

n(i)← n(i)− 2;8

n(i− 2)← n(i− 2) + 1;9

m(i− 2)← m(i− 2) + 1;10

i← i− 2;11

else12

return false;13

end14

else15

i← i+ 1;16

end17

end18

return true;19

We think that the results of this section extend to L′(n)-trees for n ≥ 5. To be precise,
we conjecture that optimal L′(n)-trees can always be assumed to use edge lengths
pairs different from {1, n − 1} only ‘close’ to leaves, i.e. every such edge is within a
distance bounded in terms of n from some leaf, which would generalize Lemma 4.20.
Furthermore, we think that it might be possible to extend Proposition 4.21 to n ≥ 5.
In Proposition 4.21 the feasibility of some instance of the existence problem is reduced
to the feasibility of exactly one (!) smaller instance. We fear but believe that for n ≥ 5
this will change which might make it much harder to describe an efficient algorithm
for the existence problem.
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4.4.3 Examples of the Function fL(n) for Different Values of n

• n = 3 :

f
(

1
2

)
= 2, f

(
5
6

)
= 3, f

(
7
6

)
= 5

• n = 5 :

f
(

279
160

)
= 14, f

(
311
160

)
= 19, f

(
343
160

)
= 26, f

(
75
32

)
= 36, f

(
407
160

)
= 50

• n = 6 :

f
(

367
192

)
= 20, f

(
133
64

)
= 26, f

(
431
192

)
= 34, f

(
463
192

)
= 45,

f
(

165
64

)
= 60, f

(
527
192

)
= 80

• n = 7 :

f
(

75
56

)
= 8, f

(
83
56

)
= 10, f

(
13
8

)
= 13, f

(
99
56

)
= 17, f

(
107
56

)
= 22,

f
(

115
56

)
= 28, f

(
123
56

)
= 36

• n = 9 :

f
(

9 659
4 608

)
= 37, f

(
10 171
4 608

)
= 45, f

(
1 187
512

)
= 55, f

(
11 195
4 608

)
= 67,

f
(

11 707
4 608

)
= 82, f

(
4 073
1 536

)
= 101, f

(
12 731
4 608

)
= 125, f

(
13 243
4 608

)
= 155,

f
(

4 585
1 536

)
= 192

• n = 10 :

f
(

35
16

)
= 47, f

(
183
80

)
= 57, f

(
191
80

)
= 69, f

(
199
80

)
= 83,

f
(

207
80

)
= 100, f

(
43
16

)
= 121, f

(
223
80

)
= 147, f

(
231
80

)
= 179,

f
(

239
80

)
= 218, f

(
247
80

)
= 265

• n = 20 :

f
(

271 155
65 536

)
= 8 162, f

(
1 372 159
327 680

)
= 9 180, f

(
1 388 543
327 680

)
= 10 329,

f
(

1 404 927
327 680

)
= 11 624, f

(
1 421 311
327 680

)
= 13 082, f

(
287 539
65 536

)
= 14 722,

f
(

1 454 079
327 680

)
= 16 565, f

(
1 470 463
327 680

)
= 18 634, f

(
1 486 847
327 680

)
= 20 955,

f
(

1 503 231
327 680

)
= 23 557, f

(
303 923
65 536

)
= 26 472, f

(
1 535 999
327 680

)
= 29 736,

f
(

1 552 383
327 680

)
= 33 390, f

(
1 568 767
327 680

)
= 37 481, f

(
1 585 151
327 680

)
= 42 063,

f
(

320 307
65 536

)
= 47 198, f

(
1 617 919
327 680

)
= 52 957, f

(
1 634 303
327 680

)
= 59 421,

f
(

1 650 687
327 680

)
= 66 682, f

(
1 667 071
327 680

)
= 74 844



Bibliography 127

Bibliography

Aigner, M. [1988]: Combinatorial Search. Wiley & Sons, New York, 1988.

Alon, N. and Azar, Y. [1993]: On-line Steiner trees in the Euclidean plane. Discrete
and Computational Geometry 10, pp. 113–121, 1993.

Alpert, C.J., Gandham, G., Hrkic, M., Hu, J., Kahng, A.B., Lillis, J., Liu, B., Quay,
S.T., Sapatnekar, S.S. and Sullivan, A.J. [2002]: Buffered Steiner trees for difficult
instances. In IEEE Transactions on Computer-Aided Design 21, pp. 3–14, 2002.

Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J. [2006]: Efficient generation of
short and fast repeater tree topologies. In Proceedings of the International Symposium
on Physical Design, pp. 120–127, 2006.

Bartoschek, C., Held, S., Rautenbach, D., and Vygen, J. [2009]: Fast buffering for
optimizing worst slack and resource consumption in repeater trees. In Proceedings of
the International Symposium on Physical Design, pp. 43–50, 2009.

Bleich, C. and Overton, M.L. [1983]: A linear-time algorithm for the weighted me-
dian problem. Technical Report 75, Department of Computer Science, New York
University, 1983.

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. [1973]: Time bounds
for selection. Journal of Computer and System Sciences 7, pp. 448–461, 1973.

Chao, T.-H., Ho, J.-M., and Hsu, Y.-C. [1992]: Zero skew clock net routing. In Pro-
ceedings of the 29th ACM/IEEE Design Automation Conference, pp. 518–523, 1992.

Chong, J., Kahng, A.B., Koh, C.-K., and Tsao, C.-W.A. [1998]: Bounded-skew clock
and Steiner routing. ACM Transactions on Design Automation of Electronic Systems
3, pp. 341–388, 1998.

Cong, J. and Yuan, X. [2000]: Routing tree construction under fixed buffer locations. In
Proceedings of the ACM/IEEE Design Automation Conference, pp. 379–384, 2000.

Christofides, N. [1976]: Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical Report CS-93-13, G.S.I.A., Carnegie Mellon University, Pitts-
burgh, 1976.

Dechu, S., Shen, Z.C. and Chu, C.C.N [2004]: An efficient routing tree construc-
tion algorithm with buffer insertion, wire sizing and obstacle considerations. IEEE
Transactions on Computer-Aided Design of Intergated Circuits and Systems 24, pp.
600–608, 2004.



128 Bibliography

Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische
Mathematik 1, pp. 269–271, 1959.

Drmota, M. and Szpankowski, W. [2002]: Generalized Shannon code minimizes the
maximal redundancy. In Proceedings of the 5th Latin American Symposium on The-
oretical Informatics, pp. 306–318, 2002.

Drmota, M. and Szpankowski, W. [2004]: Precise minimax redundancy and regret.
IEEE Transactions on Information Theory 50, pp. 2686–2707, 2004.

Du, D.-Z., Zhang, Y., and Feng, Q. [1991]: On better heuristic for “Euclidean Steiner”
minimum trees. In 32nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 431–439, 1991.

Edahiro, M. [1991]: Minimum skew and minimum path length routing in VLSI layout
design. NEC Research and Development 32, pp. 569–575, 1991.

Edahiro, M. [1992]: Minimum path-length equi-distant routing. In Proceedings of the
IEEE Asia-Pacific Conference on Circuits and Systems, pp. 41–46, 1992.

Epstein L. and Levin A. [2008]: On bin packing with conflicts. SIAM Journal on
Optimization, pp. 1270–1298, 2008.

Gabow, H., Glover, F., and Klingman, D. [1974]: A note on exchanges in matroid
bases. Technical Report C.S.184, Center for Cybernetic Studies, University of Texas,
Austin, Texas, USA, 1974.

Gallager, R.G. [1968]: Information theory and reliable communication. Wiley & Sons,
New York, 1968.

Garey, M. and Johnson, D. [1979]: Computers and Intractability: A guide to the theory
of NP-completeness. W.H. Freeman and Company, New York, 1979.

Garey, M. and Johnson, D. [1977]: The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32, pp. 826–834, 1977.

Gawrychowski, P. and Gagie, T. [2008]: Minimax trees in linear time. CoRR
abs/0812.2868, 2008.

van Ginneken, L.P.P.P. [1990]: Buffer placement in distributed RC-tree networks for
minimal Elmore delay . In Proceedings of the IEEE International Symposium on
Circuits and Systems, pp. 865–868, 1990.

Gester, M. [2009]: Voronoi-Diagramme von Achtecken in der Maximum-Metrik.
Diploma thesis (in german), University of Bonn, 2009.

Golumbic, M. [1976]: Combinatorial merging. IEEE Transactions on Computers 25,
pp. 1164–1167, 1976.



Bibliography 129

Hall, P. [1935]: On representatives of subsets. Journal of the London Mathematical
Society 10, pp. 26–30, 1935.

Hanan, M. [1966]: On Steiner’s problem with rectilinear distance. SIAM Journal on
Applied Mathematics 14, pp. 255–265, 1966.

Hentschke, R.F. Narasimham, J., Johann, M.O. and Reis, R.L. [2007]: Maze routing
Steiner trees with effective critical sink optimization. IN ISPD ’07: Proceedings of
the 2007 International Symposium on Physical Design, pp. 135–142, 2007.

Held, S. [2008]: Timing Closure in Chip Design. PhD thesis, University of Bonn, 2008.

Hoehn, L. and Ridenhour, J. [1989]: Summations involving computer-related functions.
Mathematics Magazine 62, pp. 191–196, 1989.

Hoover, H.J., Klawe, M.M., and Pippenger, N. [1984]: Bounding fan-out in logical
networks. Journal of the ACM 31, pp. 13–18, 1984.

Hrkic, M and Lillis J. [2002]: S-Tree: a technique for buffered routing tree synthesis. In
Proceedings of the IEEE/ACM International Conference on Computed-Aided Design,
pp. 578–583, 2002.

Hrkic, M. and Lillis, J. [2003]: Buffer tree synthesis with consideration of temporal
locality, sink polarity requirements, solution cost, congestion, and blockages. IEEE
Transactions on Computed-Aided Design of Integrated Circuits and Systems 22, pp.
481–491, 2003.

Huffman, D.A. [1952]: A method for the construction of minimum-redundancy codes.
In Proceedings of the IRE 40, pp. 1098–1101, 1952.

Hwang, F. [1976]: On Steiner minimal trees with rectilinear distance. SIAM Journal
of Applied Mathematics 30, pp. 104–114, 1976.

Hwang, H.-K. and Tsai, T.-H. [2003]: An asymptotic theory for recurrence relations
based on minimization and maximization, Theoretical Computer Science 290, pp.
1475–1501, 2003.

Johnson, D.B. and Mizoguchi, T. [1978]: Selecting the kth element in X + Y and
X1 +X2 + . . .+Xm. SIAM Journal on Computation 7, pp. 147–153, 1978.

Kapoor, S. and Reingold, E.M. [1989]: Optimum lopsided binary trees. Journal of the
ACM 36, pp. 573–590, 1989.

Korte, B., Rautenbach, D., and Vygen, J. [2007]: BonnTools: Mathematical innovation
for layout and timing closure of systems on a chip. In Proceedings of the IEEE 95,
pp. 555–572, 2007.

Korte, B. and Vygen, J. [2008]: Combinatorial Optimization: Theory and Algorithms.
Springer Berlin. Forth edition, 2008.



130 Bibliography

Kraft, L.G. [1949]: A device for quantizing grouping and coding amplitude modulated
pulses. Master’s thesis, EE Dept., MIT, Cambridge, 1949.

Lillis, J., Cheng, C.-K., Lin, T.-T. Y. and Ho, C.-Y. New performance driven rout-
ing techniques with explicit area/delay Tradeoff and simultaneous wire sizing. In
Proceedings of the ACM/IEEE Design Automation Conference, pp. 395–400, 1996.

Maßberg, J. and Rautenbach, D. [2009]: Binary trees with choosable edge lengths.
Information Processing Letters 109, pp. 1087–1092, 2009.

Maßberg, J. and Vygen, J. [2008]: Approximation algorithms for a facility location
problem with service capacities. ACM Transactions of Algorithms 4, pp. 1–15, 2008.

B. McMillan, Two inequalities implied by unique decipherability, IRE Transactions on
Information Theory 2, pp. 115–116, 1956.

Muuss, K. [1994]: Clockskew Optimierung. Diploma thesis (in german), University of
Bonn, 1994.

Okamoto, T. and Cong J. [1996]: Buffered Steiner tree construction with wire sizing
for interconnect layout optimization. InProceedings of the International Conference
on Computer Aided Design, pp. 44-49, 1996.

Pan, M., Chu, C. and Patra, P. [2007]: A novel performance-driven topology design
algorithm. In ASP-DAC ’07: Proceedings of the 2007 Asia and South Pacific Design
Automation Conference, pp. 244–249, 2007.

Parker, D.S., Jr. [1979]: Combinatorial merging and Huffman’s algorithm. IEEE Trans-
actions on Computers 28, pp. 365–367, 1979.

Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, pp. 1389–1401, 1957.

Reiser, A. [1978]: A linear selection algorithm for sets of elements with weights. Infor-
mation Processing Letters 7 , pp. 159–162, 1978.

Robins, G. and Zelikovsky, A. [2000]: Improved Steiner tree approximation in graphs.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 770–779, 2000.

Sedgewick, R. and Flajolet, P. [1996]: Analysis of Algorithms. Addison-Wesley, Read-
ing, 1996.

Shamos, M.I. [1976]: Geometry and statistics. In Algorithms and Complexity: New
Directions and Recent Results, Editor J.F. Traub, Academic Press, pp. 251–280,
1976.

Shelar, R.S. [2007]: An efficent clustering algorithm for low power clock tree synthesis.
In ISPD ’07: Proceedings of the 2007 International Symposium on Physical Design,
pp. 181–188, 2007.



Bibliography 131

Tsao, C.-W.A. and Koh, C.-K. [2002]: UST/DME: a clock tree router for general skew
constraints. ACM Transactions on Design Automation of Electronic Systems 7, pp.
359–379, 2002.

Tsay, R.-S. [1993]: An exact zero-skew clock routing algorithm. IEEE Transactions on
CAD of Integrated Circuits and Systems 12, pp. 242–249, 1993.

von Randow, R. [1975]: Introduction to the Theory of Matroids. Lecture Notes in
Economics and Mathematical Systems. Springer, 1975.

Vygen, J. [2001]: Theory of VLSI Layout. Habilitation thesis, University of Bonn, 2001.

Warme, D., Winter, P., and Zachariasen, M. [2003]: Geosteiner 3.1 home page.
www.diku.dk/geosteiner, 2003.

Welsh, D.J.A. [1976]: Matroid Theory. Academic Press London, 1976.



132 Bibliography



133

Summary

The construction of clock trees and repeater trees are major challenges in chip design.
Such trees distribute an electrical clock signal from a source to a set of sinks on a chip.
On recent designs there can be millions of repeater trees with only a few up to some
hundred sinks and several clock trees with up to some hundred thousand of sinks. In
repeater trees the signal has to arrive at each sink not later than an individual required
arrival time, while in clock trees it has to arrive at each sink within an individual
required arrival time window. In this thesis, we present new theory and algorithms
for the construction of clock trees and repeater trees and an essential sub-problem,
the Sink Clustering Problem. We also describe our clock tree construction tool
BonnClock, which has been used by IBM Microelectronics for the design of hundreds
of most complex chips.
First, we introduce the Sink Clustering Problem, the main sub-problem of clock
tree design. Given a metric space (V, c), a finite set D of terminals with positions
p(v) ∈ V and demands d(v) ∈ R≥0 for all v ∈ D, a facility opening cost f ∈ R>0 and
a load limit u ∈ R>0, the task is to find a partition D = D1∪̇ · · · ∪̇Dk of D and, for
all 1 ≤ i ≤ k, a Steiner tree Si for {p(v)| v ∈ Di}. Each cluster (Di, Si), 1 ≤ i ≤ k,
has to keep the load limit, that means

∑
e∈E(Si)

c(e) +
∑

s∈Di
d(s) ≤ u. The goal is

to minimize the weighted sum of the length of all Steiner trees plus the number of
clusters, i.e. minimize

∑k
i=1(
∑

e∈E(Si)
c(e)) + kf .

We present the first constant-factor approximation algorithm for the Sink Cluster-
ing Problem. It is based on decomposing a minimum spanning tree on the sinks and
has an approximation guarantee of 1+2α, where α is the Steiner ratio of the underlying
metric. Moreover, we introduce two variants of the algorithm that rely on decomposing
an approximate minimum Steiner tree and an approximate minimum traveling sales-
man tour. These algorithms have approximation guarantees of 3β and 3γ, respectively,
where β and γ are the approximation guarantees of the Steiner tree and TSP approx-
imation algorithms, respectively. We also propose two post-optimization algorithms
that can further improve an existing clustering.
We analyze the structure of the Sink Clustering Problem and exhibit its connec-
tions to matroid theory. In particular, we use the property of matroids that for any
two bases B1, B2 there is a bijection π : B1 → B2 so that (B1 \ {b}) ∪ {π(b)} is again
a basis for each b ∈ B1.
We replace each Steiner tree of an optimum solution by a minimum spanning tree and
connect all trees to a new artificial vertex s and get a tree S. In a modified metric the
total length of S is a good lower bound for the cost of an optimum solution. Due to
the matroid property we can compare a minimum spanning tree T on D ∪ {s} with S;
the length of any edge of T is bounded by the length of an edge of S. We introduce the
concept of K-dominated functions that helps us to increase the ‘cost’ of certain edges
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of T while still having the property that the total length of all edges of T ending in a
vertex of K ⊆ D is bounded by the total length of all edges of S ending in a vertex of
K. Applying this procedure to the sets of a laminar family on D yields an improved
lower bound.
The bound can be further improved by combining it with a lower bound for the length
of a minimum Steiner tree on D. For this bound we prove the following lemma: For
any family of trees T = {T1, . . . , Tk} with V (Ti) ⊂ D, 1 ≤ i ≤ k, with the property
that for any subset T ′ ⊆ T the trees in T ′ cover at least |T ′|+ 1 vertices, there exists
an edge ei ∈ E(Ti) for i = 1, . . . , k such that these edges E = {ei| 1 ≤ i ≤ k} form a
forest, i.e. the set does not contain an edge twice and it does not contain a circuit.
Our experimental results on real-world instances from clock tree design show that the
cost of the solutions computed by our algorithms is in average only 10% over the best
lower bound. Moreover, we compare our algorithm to another clustering algorithm
used in industry. The results show that the total cost of our solutions is 10% less than
the cost of the solutions computed by the competitive tool.
Clock trees have to satisfy several timing constraints. More precisely, the signal has
to reach each sink within an individual required arrival time window. Sinks can only
be clustered together if their required arrival time windows have a point of time in
common. Typically, all required arrival time windows are the same. In this case
we have the Sink Clustering Problem defined above. However, there are clock
trees where the sinks have different required arrival time windows. This motivates a
generalization of the Sink Clustering Problem where each sink additionally has an
individual time window. As further constraint the time windows of the sinks of a cluster
must have at least one point of time in common. We study the Sink Clustering
Problem with Time Windows and present a polynomial O(log s)-approximation
algorithm for this problem, where s is the size of a minimum clique partition in the
interval graph induced by the time windows. Our algorithm is based on a divide and
conquer approach and uses the approximation algorithms for the Sink Clustering
Problem on sub-sets of the instance. We show that the approximation guarantee of
the algorithm is tight.
For the practical construction of clock trees we present our algorithm BonnClock.
BonnClock builds a clock tree combining a bottom-up clustering and a top-down par-
titioning strategy. In the bottom-up phase BonnClock is using the Sink Clustering
Algorithm in order to determine the drivers of unconnected sinks or inverters. The
‘global’ topology of the tree is determined by the top-down partitioning considering
big blockages and timing restrictions. BonnClock uses a dynamic program in order to
determine the sizes of the inverters that are inserted. All components of the algorithm
are discussed in detail.
As part of this thesis, we have also implemented this algorithm. BonnClock has become
the standard tool to construct clock trees within IBM. We show experimental results
with comparisons to another industrial clock tree construction tool and to lower bounds
for the power consumption. It turns out that – mainly due to the Sink Clustering
Algorithm – our power consumption is much smaller than with the other tool and
only one third over the lower bound.
Finally, we consider the repeater tree construction problem. In contrast to clock trees,
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each sink has a latest required arrival time instead of a time window. We describe a
simple algorithm to build such trees where we insert the sinks one by one into an existing
tree. Depending on the optimization goal we show a variant of the algorithm computing
trees of almost optimal length or trees with guaranteed best possible performance.
Moreover, we analyze the topology of trees with best or almost best performance
more closely. Such trees are equivalent to minimax and almost minimax trees: Let
a1, . . . , an ∈ N≥0 be a set of numbers. The weight of a tree with n leaves is the
maximum over all leaves i of the depth of leaf i plus ai. For a non-negative integral
constant c the goal is to build a binary tree with weight at most the optimum weight
plus c. This problem can be solved optimally by a greedy algorithm. However, we are
interested in the online version of this problem where we have to insert the leaf i with
weight ai into the tree without knowing n and the following weights aj, j > i.
We give necessary and sufficient conditions for an online algorithm to compute trees of
weight at most the optimum weight plus c. Moreover, we show how these conditions
can be verified efficiently. We obtain an online algorithm that computes an optimum
tree in O(n log n) time.
Finally, we study a further mathematical model of repeater trees that considers that
additional delay caused by a bifurcation of a tree can be distributed partially to the
two branches. For c ∈ R>0 and a set L ⊆ {(l1, l2) ∈ R2

≥0| l1 + l2 = c} of two-element
sets of non-negative real numbers we consider rooted binary trees with the property
that the two edges emanating from every non-leaf are assigned lengths l1 and l2 with
{l1, l2} ∈ L.
We study the asymptotic growth of the maximum number of leaves of bounded depths
in such trees and the existence of such trees with leaves at individually specified max-
imum depths. Our results yield better lower bounds for repeater trees.
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