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Abstract

In the �rst part of this thesis, masses and strong decay widths of non-strange baryon
resonances are described in the framework of a covariant quark model. The model
is based on the solutions of the Bethe-Salpeter equation, considered in instantaneous
approximation and with e�ective free-quark propagators. Here, the underlying quark
interactions are parameterized by a con�nement potential with an appropriate spin
structure, supplemented by a residual spin- and �avor-dependent potential motivated
by instanton e�ects. In such an approach the strong decays of baryon resonances can
be described in a parameter-free calculation, by applying the Mandelstam formalism
in lowest-order of perturbation theory.

Whereas the resulting mass spectrum accounts for most of the features observed
experimentally, the theoretical decay widths are generally to small when compared to
the data. In this context, the aim of this work is to investigate corrections from �nal
state rescattering to these lowest-order results for strong decays. For this purpose we
limit the scope of our investigation to the decays of low-lying N and ∆ resonances
into the πN , π∆ and ηN channels. Accordingly, in the second part of the thesis we
implement a model for coupled-channel interactions involving these two-body states,
and then employ the resulting amplitudes to dress the strong decay vertices from the
quark model and re-evaluate the corresponding decay widths.

It was found, that this method does not improve the quark-model results for strong
baryon decays. After inclusion of �nal state interactions, the decay widths into πN
and ηN are roughly the same while those into π∆ are even smaller than before. Such
results indicate that the problem lies in the assumptions introduced in the quark model.
Accordingly, we suggest a possible modi�cation of the framework: We conjecture that
by employing full quark propagators � also taken in instantaneous approximation � in-
stead of the e�ective free-quark propagators utilized before, one would obtain di�erent
results for strong baryon decays as depicted in the present approach.
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Chapter 1

Introduction

With the discovery of the �rst nucleon excitation in the early 1950s, the ∆(1232) [1],
the physics of baryon resonances has become an important topic of research. Nowa-
days, the spectrum of light-�avored baryons, i.e. those containing up, down and strange
valence quarks, is still under intensive experimental investigation at several electron-
and photon-beam facilities, e.g. ELSA at Bonn, CEBAF at the Je�erson Lab or MAMI
at Mainz. In spite of the rich amount of data available � the last Review of Particle
Physics [2] lists more than 80 light-�avored resonances, see Figs. 1.1 and 1.2 � the
underlying mechanism leading to the observed spectra is still not completely under-
stood. Whereas some regularities such as Regge trajectories or alternating parity shells
indicate that the gross features of the baryon spectra predominantly emerge from the
underlying quark dynamics, the striking low position of some states, such as e.g. the
Roper N(1440) or the lowest negative-parity hyperon excitation Λ(1405), indicates that
the molecular nature of resonances, i.e. the contribution of meson-baryon components,
can also become very important.

In principle, the properties of baryon excitations should come out directly from
Quantum Chromodynamics (QCD), which is presently accepted as the underlying quan-
tum �eld theory of strong interactions. By construction it is a non-Abelian gauge
theory with a gauge SU(3) color group and has quarks and gluons as fundamental
�elds. In particular, QCD falls into the class of those non-Abelian theories that fea-
ture asymptotic freedom [3, 4], which means that for processes at su�ciently large
momentum transfer (& 10 GeV) quarks and gluons behave as free particles and QCD
is amenable to perturbative methods. At low and intermediate energies on the other
hand, the strong coupling constant becomes larger as the momentum transfer decreases
and QCD is then dominated by the phenomenon of quark con�nement, giving rise to
the rich spectrum of hadrons. In this region, theoretical investigations can only be
carried out with the use of non-perturbative methods.

Up to this day the only ab initio calculations of light-baryon properties has been
provided by numerical simulation of the non-Abelian QCD gauge theory into a space-
time lattice [5]. Few years ago complete agreement with experimental masses has been
achieved for ground states [6] and work on higher excitations up to spin 7/2 is currently
in progress, see e.g. Ref. [7]. The �rst results from simulating single-baryon states on
the lattice are very promising, but there are still some problems to overcome. Apart
from technical di�culties, such as reducing pion masses to the physical value and the
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Figure 1.1. Experimental status of positive parity (π = +) light-�avored baryon
resonances, according to the Particle Data Group [2]. The states are classi�ed by
spin J , isospin I and strangeness S. The excitation masses are indicated by a bar
and their uncertainties by a shaded box, which is darker for better established
states. The status of each resonance is additionally indicated by stars.

proper treatment of �nite volume e�ects [8�10], a major task now is the inclusion of
operators designed to couple to scattering states directly, in order to account for the
unstable nature of resonances [11]. For higher mass excitations, this issue becomes
increasingly important due to the opening of inelastic channels. In view of this situa-
tion, it is still worthwhile to formulate phenomenological models that incorporate the
relevant degrees of freedom for baryon spectroscopy and at the same time attempt to
cover as many aspects of QCD as possible.

Unitary coupled-channel methods

Since light baryons are mostly identi�ed in experiments of meson scattering or pro-
duction o� the proton, a common approach is to consider hadrons themselves as the
relevant degrees of freedom. In this case resonance parameters such as masses, decay
widths and pole-positions are derived from hadronic scattering amplitudes, which are
calculated in a coupled-channel framework and respect basic principles such as unitar-
ity and analyticity. The connection to the underlying theory is re�ected by the use of
interaction kernels based on chiral symmetry breaking of QCD.
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Figure 1.2. Experimental status of negative parity (π = −) light-�avored baryon
resonances, according to the Particle Data Group [2]. The notation is the same
as in Fig. 1.1.

As pointed out in Ref. [12], such unitarized coupled-channel methods can be roughly
categorized in three major groups, namely K-matrix approaches, unitary extensions of
Chiral Perturbation Theory (UχPT) and dynamical coupled-channel models (DCC).
The �rst group includes those models based on the K-matrix approximation, which
consists of reducing the full-scattering to an algebraic equation by neglecting the con-
tribution of o�-shell intermediate states. In this approximation, the scattering ampli-
tudes ful�ll unitarity but analyticity is violated because the real and imaginary parts
of the amplitudes are no longer related by dispersion relations. Moreover, all reso-
nances must be included explicitly, since the truncation of the basis states into on-shell
components alone does not provide su�cient strength for the dynamical generation of
resonances. Due to its simplicity, this method is widely used in partial-wave analy-
ses of meson production data, for instance in the analyses of the Bonn/Gatchina [13],
GWU/SAID [14], MAID [15] and Gieÿen [16] groups, with the purpose of extracting
single resonance parameters from the complex structures observed in cross sections and
polarization measurements [17].

If one wants to go deeper into the nature of baryon excitations, whose positions
may be strongly a�ected or even purely described by non-resonant interactions, the
contribution of o�-shell states has to be taken into consideration. In the framework of



4 Chapter 1. Introduction

UχPT this is done through di�erent methods, which extend from on-shell dispersive
methods [18, 19] to the solution of the full o�-shell Bethe-Salpeter equation [20]. The
kernel in the scattering equation is rigorously matched order-by-order to χPT and res-
onances are dynamically generated by chiral interactions. Excited baryon �elds might
be explicitly included [18], but in this case the kernel has to be modi�ed in order to
achieve a consistent power counting. Among the unitary methods, this one is certainly
as close as possible to an e�ective theory of QCD. However, exactly for this reason, its
scope of applicability has been tested for a few partial-waves only.

In contrast to UχPT, in DCC models resonant �elds are included in the Lagrangian
phenomenologically, covering this way several partial-waves at the same time. The
background interactions are given by t- and u-channel exchange potentials iterated in
the full scattering equation � hence dynamical generation of resonances is possible �
while those resonant structures present in the data that cannot be depicted by the
background alone are explicitly included as s-channel pole contributions. A drawback
of such a procedure is the large set of free parameters: Each resonant �eld introduced
in the Lagrangian brings its own bare mass and bare coupling constants, which have
no direct physical meaning and must be �tted to data. Nevertheless, these approaches
represent a powerful tool to systematically extract resonance parameters from a large
amount of data and, very importantly, to provide realistic background interactions for
other applications, for instance the inclusion of �nal state interactions in strong baryon
decays, which is the goal of the present thesis.

The unitary coupled-channel methods have provided many insights into the struc-
ture of baryon states, especially those which cannot be easily understood in the simple
three-quark picture, such as for instance the already mentioned Roper N(1440), which
is dynamically generated in the framework of the Jülich model [21], or the hyperon
excitation Λ(1405), whose double pole structure naturally emerges in the framework
of UχPT [19]. Besides, these methods enable the extraction of resonance parameters
from raw experimental data, which is obviously fundamental. But despite all this, they
cannot help with a better understanding of how those resonance parameters emerge
from quark dynamics and ultimately, which interquark interactions primarily lead to
the observed baryon spectrum. To this end, quarks themselves must be considered as
degrees of freedom.

Constituent Quark Models

In the picture of constituent quark models, light mesons (qq̄) and baryons (qqq) are
built of spin 1/2 quark �elds, which occur in the �avors u, d and s, combined in the
3-dimensional fundamental representation q of the SU(3) �avor group. The gluonic
degrees of freedom are replaced by an e�ective potential between quarks, while quark
self-interaction e�ects generated by QCD are assumed to be absorbed in an e�ective
quark mass contribution called constituent mass. In the most conventional versions,
quarks interact through a non-relativistic potential, consisting of a con�nement part
and an additional QCD-based hyper�ne interaction, such as one-gluon exchange or
instanton induced forces. For a review of several phenomenological models applied to
baryon spectroscopy, see Ref. [22].
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Since light quarks, even when adopting constituent, e�ective quark masses, move
in hadrons with velocities which are a signi�cant fraction of the velocity of light, the
quark model description should actually be based on the usual concepts of relativis-
tic quantum �eld theories. In this thesis we thus employ a covariant version of the
quark model, developed in Refs. [23�27] for mesons and [28�30] for baryons, where
hadronic excitations are described by the solutions of the quark-antiquark and three-
quark Bethe-Salpeter equations, respectively. Here, the quark dynamics is given by an
instantaneous con�nement potential, which includes an appropriate spin-structure and
rises linearly with interquark distances, and a residual spin-�avor dependent interaction
based on instanton e�ects. The resulting light-�avored baryon spectrum accounts for
many of the gross features observed experimentally, such as linear Regge trajectories,
mass splittings and parity doublets [31]. In contrast to the DCC models mentioned
before, the description of the complete spectrum is here achieved with seven parame-
ters only, which are adjusted to the ground-state masses and Regge trajectories. The
positions of all other excitations in the spectrum are then determined by the same
parameter set.

Another advantage of this covariant version over non-relativistic quark models is to
provide a natural framework for the calculation of non-static observables, which might
involve large momentum transfers and require a full relativistic treatment. In fact,
the scope of applicability of this approach has been tested through the evaluation of
several baryon observables, such as electroweak form factors and helicity amplitudes
[32�35], observables related to semileptonic decays [36] and also the structure of two-
body strong decays [37�39]. All these quantities can be calculated in lowest order
without any additional parameter and as such are genuine predictions of the model.

Among these applications the calculation of two-body strong decays of baryons is
particularly interesting, while being closely related to the problem of missing resonances
[17, 22]. All constituent quark models, including the present approach, predict a large
number of excited states in the region above 1800 MeV, whose experimental counter-
parts have not been detected in meson-induced scattering experiments. This question
was addressed in a systematic theoretical study of roughly 1700 strong two-body decays
of baryon resonances into a pseudoscalar octet meson and a (possibly excited) baryon
�nal state [39]. It was found that these missing excited states in general decouple
from πN or KN , i.e. the channels through which most baryon resonances have been
observed, o�ering a natural solution to the missing resonance problem this way.

Despite the success in clarifying why missing states have not been observed so far,
it is important to emphasize that up to now strong decay widths were merely calcu-
lated in lowest order of perturbation theory. Possibly due to the neglect of rescattering
e�ects in this approximation, the theoretical widths are in general quantitatively too
small when compared to the experiment � not only for states in the high-energy region
where missing resonances occur, but also for low-lying well-established resonances. In
this regard, it is still an open issue whether the discrepancy between predictions and
experiment results from neglecting �nal state interactions or it is a consequence of the
various phenomenological approximations employed in the model.
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Goals and outline of this thesis

Among the phenomenological methods discussed above both DCC approaches and the
relativistic constituent quark model (referred as RCQM below) seem to be the most
suitable for a systematic investigation of light-baryon spectra and their strong decays.
Interestingly these methods depict baryons in a complementary way: On the one hand,
DCC models account for the interplay between resonance properties and non-resonant
background interactions, however at the expense of a large parameter set consisting of
bare masses and bare coupling constants. On the other hand, in the framework of the
RCQM baryon masses and decay widths can be predictions on the basis of few param-
eters, but non-resonant contributions to these quantities are completely disregarded.

In view of this, the goal of the present thesis is to investigate whether the non-
resonant interactions of a DCC model, when employed as parameterization of meson-
baryon rescattering in strong two-body decays, provide enough strength to correct the
decay widths predicted by the RCQM. If so, the discrepancy between predicted and
experimental decay widths results from the neglect of �nal state interactions.

For a �rst investigation on this issue we limit the scope of this work to low-lying N
and ∆ resonances with masses MR . 1700 MeV and consider their strong decays into
some of the lightest two-body channels with vanishing strangeness, namely πN , π∆
and ηN . We have chosen this approach mainly because only decays involving pseu-
doscalar mesons have been calculated in the quark model so far. Note however, that
even only three rescattering channels form a large enough basis to illustrate coupled-
channel e�ects. The strangeness production channels KΛ and KΣ could be considered
as well, but here we neglect them since the theoretical states from the RQCM in general
decouple from these, see Ref. [39].

Among several DCC approaches found in the literature � see Ref. [40] for a bibli-
ographical survey � one particularly suitable for the applications we have in mind is
the Jülich model [21, 40�46], basically for two reasons: Firstly, its non-resonant back-
ground is realistic and well-constrained, due to the use of correlated ππ exchange in
the scalar and vector channels instead of the usual σ- and ρ-meson exchanges in πN
scattering. Secondly, in its current version of Ref. [40] this model includes e�ective
Lagrangians for resonances up to spin 3/2 plus phenomenological couplings for states
up to 9/2, covering the spectrum of non-strange baryons almost completely. This way,
our investigations might be extended to higher spins in the future.

As it stands, however, the Jülich model cannot be directly connected to the quan-
tities we calculate in the RCQM. As we shall see already in the next chapter, in
constituent quark models hadrons are considered to be quark bound-states in a strictly
physical sense, i.e. they are associated to on-shell, asymptotic momentum eigenstates.
Consequently, meson-baryon rescattering amplitudes for strong decays calculated in
the RCQM have to be necessarily evaluated on the mass shell. Since this is not the
case with the amplitudes from the Jülich model, in this thesis we elaborate an on-shell
reduction of their approach.

Accordingly, the present thesis is organized as follows:
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In Chapter 2 we review the formalism of the relativistic constituent quark model,
explaining which approximations and phenomenological interactions are used in the
framework. Although mesons are not our subject of study, they participate in strong
decays of baryons and therefore should be discussed as well. After this review, we end
the chapter with model predictions for non-strange hadron spectra, focusing on the
ingredients we need in this thesis, i.e. the spectrum of low-lying N and ∆ baryons as
well as the masses of ground-state hadrons present in the strong-decay πN , π∆ and
ηN channels.

In Chapter 3 we then describe how strong two-body decays of baryon resonances
are depicted in the framework of the RCQM. Speci�cally, we calculate the correspond-
ing widths by applying the Mandelstam formalism [47] in lowest order of perturbation
theory. We show that within such a method the resulting decay widths are fully de-
termined by the same parameter set �tted to hadronic spectra, and in this sense are
parameter-free predictions. Finally, we close the chapter with model results for strong
decays of non-strange baryon resonances, with special attention to the low-lying states.

After explaining how baryon spectra and strong decays are depicted in the quark
model, the purpose of Chapter 4 is to present the theoretical basis to relate such
properties to meson-baryon transition amplitudes, and thereby establish a procedure
to account for rescattering e�ects in baryon decays. This will be done by applying the
general concepts of scattering theory to meson-baryon systems. As we shall see in this
chapter, such a formalism not only allows for the inclusion of �nal state interactions
in strong decays, but also leads to the physical interpretation of the baryon masses as
evaluated in the relativistic quark model.

At this point, the only ingredient left before the calculation of rescattering e�ects
is an on-shell description of coupled-channel meson-baryon interactions. Such a model
will be implemented in Chapter 5 based on an on-shell reduction of the Jülich model.
We shall demonstrate in this chapter that, despite the on-shell approximation, we
achieve a very good description for non-resonant contributions in most of the partial
waves in πN → πN scattering, considering the energy range from πN threshold up to
1700 MeV and total angular momentum up to J = 5

2
; this provides a suitable param-

eterization for the rescattering matrix in the strong decays of low-lying baryons. One
exception is the P11 partial-wave, which due to the contribution of the Roper resonance
N(1440) cannot be described in the framework. For this reason, N states coupling to
the πN system in the P11 wave will be excluded from our analysis.

As we shall demonstrate in Chapter 6, the inclusion of �nal state interactions does
not improve the quark-model description of strong decay widths at all: Whereas the
decay widths into πN and ηN remain roughly the same after including rescattering
e�ects, those into π∆ turn out to be much smaller than before. These results show that
�nal state interactions as treated here do lead to sizable corrections in strong baryon
decays, at least concerning decays into π∆, but the e�ect is the opposite of what we
initially expected. As these results indicate that the couplings of baryon resonances to
the considered decay channels are too small in the RCQM, we �nish the chapter with
a suggestion of how the framework may be improved in the future.

Finally, we close this thesis in Chapter 7 with a concise summary and outlook.
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Chapter 2

The relativistic constituent quark

model

2.1 Introduction

The aim of this chapter is to review the formalism of the relativistic constituent quark
model and its predictions for hadron spectra, focusing on the ingredients we need in
this thesis, i.e. the spectra of the low-lying N and ∆ resonances, as well as the results
for ground-state π and η mesons, as these are present in the strong decay channels
πN , π∆ and ηN considered in the next chapter. The equations will be simply stated
for further reference, since their derivation can be found in greater detail in previous
works, see Refs. [23, 24, 26, 27] for meson and [28�30] for baryon spectra.

The formalism is based on the Bethe-Salpeter equation [48], which is a covariant
integral equation and provides a suitable framework for the description of hadrons as
relativistic bound states of quarks. In the case of strong interactions, however, this
equation cannot be directly applied since its basic ingredients, i.e. the full quark prop-
agators and interaction kernels, are still unknown functions in QCD. Moreover, even if
these functions were known, their dependence on relative energy variables as it occurs
in a relativistic treatment leads to a complicated pole structure, which prevents the
solution of the full integral equation. Therefore, to obtain a solvable bound-state equa-
tion which can be used in explicit calculations, one has to introduce phenomenological
approximations for the propagators and the interaction kernels.

In the present model we employ two approximations: Firstly, we parametrize the
full quark propagators by the usual free propagators with poles at e�ective constituent
quark masses, which enter as free parameters in the model and should account for a
part of the e�ects related to quark self-interactions. Secondly, we adopt instantaneous
interaction kernels in the hadron rest frame, simplifying the energy dependence of the
Bethe-Salpeter equation this way. As we shall see in this chapter, these assumptions
allow for the reduction of the Bethe-Salpeter equation to a three-dimensional Salpeter
equation [49], which can be formulated as an eigenvalue problem and solved by standard
methods once the underlying potential is speci�ed.

As already mentioned, is it still not possible to derive the interquark potential from
QCD in the con�nement regime, where hadron resonances occur (. 3 GeV). Hence,
we rely on the structure of the experimental hadron spectra in order to construct an

9
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appropriate phenomenological parameterization. On the one hand, the global features
of the mass spectra such as the occurrence of Regge trajectories suggest that quarks
interact through a �avor-independent con�nement potential, which rises linearly with
interquark distances. On the other hand, the existence of mass-splittings in the baryon
(N −∆, Λ− Σ− Σ∗, Ξ− Ξ∗) or likewise in the meson spectrum (π − η − η′, K −K∗)
indicate the presence of an additional spin-�avor-dependent interaction. Based on these
observations, we parametrize the underlying quark interactions by a linear con�nement
potential, which includes a suitable spin structure in a fully relativistic framework, as
well as a residual interaction motivated by instanton e�ects.

The Bethe-Salpeter formalism applied to the case of mesons as quark-antiquark (qq̄)
and baryons as three-quark (qqq) bound states is recapitulated in Sections 2.2 and 2.3,
respectively. The phenomenological potentials employed in the model are discussed in
more detail in the subsequent Section 2.4. Although mesons are not the subject of this
thesis, they are of course present in strong decay of baryons and therefore were also
taken into consideration. Moreover, the reduction to the Salpeter equation is simpler
in the case of treating qq̄ bound states and provides an instructive example before the
treatment of the more complicated qqq systems. Finally, we conclude this chapter in
Section 2.5 with an overview of the predictions of the model for non-strange hadrons,
focusing on those which are relevant for this thesis.

2.2 Mesons as quark-antiquark bound states

In constituent quark models mesons are considered to be strongly bound states of a
quark-antiquark qq̄ pair. In a relativistic treatment, this description should be based
on the principles of quantum �eld theory, according to which two-fermion bound states
emerge as poles in the four-point Green's function. In the Heisenberg picture, this
function is de�ned via quark �eld operators Ψi and their adjoints Ψ̄ = Ψ†γ0 by

G
(4)

α
′
1α
′
2α1α2

(x′1, x
′
2, x1, x2) := −〈Ω|TΨ1

α
′
1
(x′1)Ψ̄2

α
′
2
(x′2)Ψ2

α2
(x2)Ψ̄1

α1
(x1)|Ω〉, (2.1)

where |Ω〉 denotes the physical vacuum state, T denotes the time-ordering operator
and αi are multi-indices combining spin, �avor and color degrees of freedom. The
superscripts 1 and 2 label the quark and the antiquark �elds, respectively.

Using standard techniques of time-dependent perturbation theory (see for instance
the textbook [50]) the four-point Green's function can also be expressed in the inter-
action picture in the form of an in�nite power series

G(4)(x′1, x
′
2, x1, x2) =

−1

〈0|T exp
(
−i
∫∞
∞ d tĤI(t)

)
|0〉

∞∑
k=1

(−i)k

k!

∫
d 4y1 · · · d 4yk

×〈0|TΨ1
I(x
′
1)Ψ̄2

I(x
′
2)Ψ2

I(x2)Ψ̄1
I(x1)ĤI(y1) · · · ĤI(yk)|0〉,

(2.2)

suppressing the multi-indices αi. Now, the vector |0〉 denotes the unperturbed vacuum
state, Ĥ and Ĥ are the Hamiltonian and the Hamiltonian density operators and the
subscript I indicates that the corresponding operators are de�ned in the interaction
picture.
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2.2.1 The integral equation for the four-point Green's function

In the absence of bound states the in�nite sum in (2.2) might be evaluated through
perturbative calculations in ĤI up to some �nite order k. For the investigation of
bound states however, where poles in the Green's function are present, an in�nite set
of perturbative contributions must be taken into account. It was shown by Bethe and
Salpeter [48] and later rigorously proven by Gell-Mann and Low [51] that the sum of
all perturbative contributions to the four-point Green's function can be rearranged in
the form of an inhomogeneous integral equation

G(4)
α
′
1α
′
2α1α2

(x′1, x
′
2, x1, x2)

= G
(4)
0 α

′
1α
′
2α1α2

(x′1, x
′
2, x1, x2)− i

∫
d 4x′′1 d 4x′′2 d 4x′′′1 d 4x′′′2

×G(4)
0 α

′
1α
′
2α
′′
1α
′′
2
(x′1, x

′
2, x
′′
1, x

′′
2)K(2)

α
′′
1α
′′
2α
′′′
1 α
′′′
2

(x′′1, x
′′
2, x

′′′
1 , x

′′′
2 )

×G(4)

α
′′′
1 α
′′′
2 ,α1α2

(x′′′1 , x
′′′
2 , x1, x2)

(2.3)

by introducing the concept of irreducibility. Here, we use the convention of summing
over repeated multi-indices αi, the four-point function G

(4)
0 denotes the tensor product

G
(4)
0 (x′1, x

′
2, x1, x2) = S1

F (x′1, x1)⊗ S2
F (x2, x

′
2) (2.4)

of full fermion propagators

SiF αβ(x, y) := 〈Ω|TΨi
α(x)Ψ̄i

β(y)|Ω〉 (2.5)

and K(2) represents the irreducible two-body interaction kernel, which is de�ned as the
sum of all irreducible Feynman diagrams included in the perturbative series of G(4). A
two-fermion diagram is called irreducible when it cannot be split into simpler graphs
by cutting two fermion lines, as the examples depicted in Fig. 2.1.

Now, as bound-state poles appear in the total four-momentum of the qq̄ system,
for our purposes it is more convenient to formulate the integral equation for G(4) in
momentum space. For this we �rst introduce Jacobi coordinates, i.e. a set of variables
consisting of an external center-of-mass coordinate X and an internal relative coordi-
nate x, as well as their conjugate momenta P and p, in terms of which the translational
invariance of the four-point functions G(4), G

(4)
0 and K(2) can be formulated explicitly.

These coordinates are de�ned by the linear transformations(
X

x

)
=

(
1
2

1
2

1 −1

)(
x1

x2

)
(2.6)

−iK
(2) = + + + · · ·

Figure 2.1. Perturbative contributions to the two-body irreducible kernel K(2).
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and (
P

p

)
=

(
1 1
1
2
−1

2

)(
p1

p2

)
, (2.7)

where the variables p1 and p2 denote the four-momentum carried by q and q̄. In terms
of these new variables, the Fourier-transform for any four-point function A = G(4), G

(4)
0

and K(2) is de�ned by

A(x′1, x
′
2, x1, x2) ≡ A(X ′ −X, x′, x)

=:

∫
d4 P

(2π)4 e
−iP ·(X′−X)

∫
d4 p′

(2π)4 e
−ip′·x′

∫
d4 p

(2π)4 e
+ip·xAP (p′, p),

(2.8)

where the subscript in AP indicates that its dependence on the total four-momentum
is only parametric, in agreement with translational invariance. According to Eq. (2.8),
the integral equation for G(4) in momentum space then reads

G
(4)
P (p′, p) = G0

(4)
P (p′, p)− i

∫
d4 p′′

(2π)4

d4 p′′′

(2π)4G0
(4)
P (p′, p′′)K

(2)
P (p′′, p′′′)G

(4)
P (p′′′, p), (2.9)

where G0
(4)
P denotes the product

G0
(4)
P (p′, p) = (2π)4δ(4)(p′ − p)S1

F

(
P
2

+ p
)
⊗ S2

F

(
−P

2
+ p
)

(2.10)

of full fermion propagators in momentum space, de�ned by their Fourier-transform

SiF (x, y) =:

∫
d4 p

(2π)4 e
−ip·(x−y)SiF (p). (2.11)

2.2.2 Quark-antiquark bound state contributions

Depending on the time-ordering dictated by the operator T in Eq. (2.1) the four-point
Green's function accounts for all kinds of processes involving four quark �elds, as well
as related bound states such as mesons, diquarks and their antiparticles. Here we shall
consider the meson contributions only, which in quark models correspond to qq̄ bound
states with positive energy propagating forward in time. Accordingly, we focus on those
terms inG(4) corresponding to the particular time-ordering min{x′01 , x′02 } > max{x0

1, x
0
2},

i.e.

G(4)(x′1, x
′
2, x1, x2) = −〈Ω|

[
TΨ1(x′1)Ψ̄2(x′2)

] [
TΨ2(x2)Ψ̄1(x1)

]
|Ω〉

×θ
(
min{x′01 , x′02 } −max{x0

1, x
0
2}
)

+ other time-orderings,
(2.12)

and then investigate the contribution of bound states with total mass M and positive
energy

ωP̄ =
√

P2 +M2 (2.13)

by inserting a complete set of momentum eigenstates |P̄ 〉 between the time-ordered
products in Eq. (2.12). These states are normalized covariantly according to

〈P̄ ′|P̄ 〉 = (2π)32ωP̄ δ
(3)(P−P′), (2.14)
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where we introduced a speci�c notation for the on-shell momentum P̄ to emphasize
the di�erence with the generally o�-shell momentum P (cf. Eq. (2.7)). Following this
procedure, we arrive at

G(4)(x′1, x
′
2, x1, x2) = −

∫
d3 P̄

(2π)32ωP̄

[
χP̄ (x′1, x

′
2)⊗ χ̄P̄ (x1, x2)

]
×θ
(
min{x′01 , x′02 } −max{x0

1, x
0
2}
)

+ other terms,

(2.15)

where only the contribution of meson states |P̄ 〉 is written explicitly, whereas terms
arising from di�erent time-orderings and intermediate states are collected in �other
terms�. Here, the amplitudes χP̄ and χ̄P̄ denote the Bethe-Salpeter amplitude and
its adjoint, respectively, de�ned as the matrix elements

χP̄α1α2
(x1, x2) := 〈Ω|TΨ1

α1
(x1)Ψ̄2

α2
(x2)|P̄ 〉 (2.16)

and
χ̄P̄α2α1

(x1, x2) := 〈P̄ |TΨ2
α2

(x2)Ψ̄1
α1

(x1)|Ω〉 (2.17)

between the physical vacuum |Ω〉 and the bound state |P̄ 〉. In terms of Jacobi coordi-
nates, the Bethe-Salpeter amplitudes can be written as

χP̄ (x1, x2) = e−iP̄ ·XχP̄ (x) =: e−iP̄ ·X
∫

d4 p

(2π)4 e
−ip·xχP̄ (p) (2.18)

and

χ̄P̄ (x1, x2) = e+iP̄ ·X χ̄P̄ (x) =: e+iP̄ ·X
∫

d4 p

(2π)4 e
+ip·xχ̄P̄ (p), (2.19)

where the dependence on the center-of-mass variable factorizes.
The Heaviside function θ(min{x′01 , x′02 } −max{x0

1, x
0
2}) in Eq. (2.15), which speci�es

the time-ordering corresponding to mesons, gives rise to a pole in the total energy vari-
able at P 0 = ωP̄ or, equivalently, at P 2 = M2. Indeed, as shown in detail in Ref. [52],
by replacing the Heaviside function by its integral representation and applying inverse
Fourier-transforms on both sides of Eq. (2.15), one obtains the following expression for
the four-point Green's function in momentum space:

G
(4)
P (p′, p) =

−i
2ωP̄

ζP̄ (p′, P 0 − ωP̄ )⊗ ζ̄P̄ (p, P 0 − ωP̄ )

P 0 − ωP̄ + iε
+ other terms, (2.20)

which contains an explicit pole at ωP̄ . The amplitudes ζP̄ and ζ̄P̄ are de�ned by

ζP̄ (x, ω) :=χP̄ (x)eiω
|x0|
2 =:

∫
d4 p

(2π)4 e
−ip·xζP̄ (p, ω) (2.21)

and

ζ̄P̄ (x, ω) := χ̄P̄ (x)eiω
|x0|
2 =:

∫
d4 p

(2π)4 e
+ip·xζ̄P̄ (p, ω) (2.22)

as o�-shell generalizations of the Bethe-Salpeter amplitude and its adjoint, respectively,
and respect the conditions ζP̄ (p, 0) = χP̄ (p) and ζ̄P̄ (p, 0) = χ̄P̄ (p).
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2.2.3 The two-body Bethe-Salpeter equation

A set of bound-state equations, namely the Bethe-Salpeter equation and its ad-
joint for the amplitudes χP̄ and χ̄P̄ , as well as their normalization condition can be
derived in a simple and uniform way based on the analytical behavior of G(4) in the
vicinity of the pole P 0 = ωP̄ . In the following we shall merely sketch the main steps of
this derivation and refer to [52] for further details. The starting point is the integral
equation (2.9) for G(4) in momentum space, which can be more concisely written as an
operator equation

GP = G0P − iG0PKPGP (2.23)

by de�ning the product

[APBP ](p′, p) =

∫
d4 p′′

(2π)4AP (p′, p′′)BP (p′′, p) (2.24)

of two four-point functions AP and BP in momentum space. For the sake of clarity,
we suppress the superscripts on the four-point functions for now. It is straightforward
to show that the operator equation above is equivalent to[

G0
−1
P + iKP

]
GP = GP

[
G0
−1
P + iKP

]
= I, (2.25)

where the identity operator I is de�ned with respect to the product (2.24) and the
inverse operator G0

−1
P ful�lls G0

−1
P G0P = G0PG0

−1
P = I. Moreover, from Eq. (2.25) one

also obtains the inverse operator of GP , i.e.

G−1
P = G0

−1
P + iKP , (2.26)

such that G−1
P GP = GPG

−1
P = I. Now, to investigate the analytical behavior of the

four-point Green's function in the vicinity of the pole, we replace the operators GP

and G−1
P by their expansions

GP ≈
−i

2ωP̄

χP̄ ⊗ χ̄P̄
P 0 − ωP̄ + iε

+

[
∂

∂P 0

((
P 0 − ωP̄

)
GP

)]
P

0
=ωP̄

(2.27)

(cf. Eq. (2.20)) and

G−1
P ≈ G−1

P̄ +
(
P 0 − ωP̄

) [ ∂

∂P 0G
−1
P

]
P

0
=ωP̄

(2.28)

for P 0 ≈ ωP̄ into Eq. (2.25), and then compare the resulting Laurent expansions to
the identity operator on the right-hand side of this equation, order-by-order in powers
of (P 0 − ωP̄ ). From the comparison between terms of order O(−1) we arrive at the
Bethe-Salpeter equation

χP̄ = −iG0P̄KP̄χP̄ (2.29)

and its adjoint

χ̄P̄ = −iχ̄P̄KP̄G0P̄ . (2.30)
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The normalization condition

−iχ̄P̄
[
∂

∂P 0G
−1
P

]
P

0
=ωP̄

χP̄ = 2ωP̄ , (2.31)

in turn, follows from the comparison between terms of O(0). Although not explicitly
covariant, Eq. (2.31) might also be relativistically formulated as [53]

−iχ̄P̄
[
∂

∂Pµ
G−1
P

]
P=P̄

χP̄ = 2P̄ µ. (2.32)

Finally, with its full momentum dependence, the Bethe-Salpeter equation (2.29) is
given by

χP̄ (p) = −i
[
S1
F

(
P̄
2

+ p
)
⊗ S2

F

(
− P̄

2
+ p
)] ∫ d4 p′

(2π)4K
(2)

P̄
(p, p′)χP̄ (p′), (2.33)

where we used the de�nition (2.10) of G0
(4)
P and the product de�ned in (2.24).

2.2.4 Reduction to the two-body Salpeter equation

In principle, the Bethe-Salpeter equation (2.33) provides the theoretical basis for any
covariant quark model of mesons. In the case of strongly interacting systems however,
several di�culties prevent the exact solution of this equation. Firstly, as usually hap-
pens in any relativistic framework, each one of its basic ingredients depend on relative
energy variables, leading to an intricate pole structure in the complex plane. Moreover,
speci�cally in the case of strong interactions, neither the full quark propagators SiF nor
the interaction kernel K(2) are presently known. In fact, these quantities are only de-
�ned perturbatively as in�nite series of diagrams, which in the con�nement region of
QCD cannot be truncated in a meaningful way.

Therefore, in order to obtain an integral equation which can be directly applied for
practical calculations, some simplifying approximations and assumptions have to be in-
troduced. In the present model we employ two approximations: �rstly, we assume that
full quark propagators SiF can be parametrized by the usual free fermion propagator,
i.e.

SiF (pi)
!

=
i

6pi −mi + iε
, (2.34)

with poles at e�ective constituent quark masses mi. These are in turn considered to
be a reasonable parameterization for e�ects related to quark self-interactions. The
constituent masses mi enter as free parameters in the model, thus for the light-�avored
hadron spectrum in the isospin-conserving limit one has two free parameters: The non-
strange quark mass mn := mu ≡ md and the strange quark mass ms, where u, d and s
denote the up, down and strange quark �avors.

As a second approximation, the irreducible kernel K(2) is assumed to be instanta-
neous in the meson rest frame. This is equivalent to neglecting retardation e�ects in
the center-of-mass of the qq̄ system and is explicitly formulated as

K
(2)
M (p′, p)

!
= V (2)(p′,p), (2.35)
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where the subscript M indicates that the corresponding quantity is evaluated at the
center-of-mass where P̄ = (M,0). Although Eq. (2.35) is not explicitly covariant, the
instantaneous approximation can be covariantly written as well. For simplicity here we
work in the center-of-mass and refer to [52] for details on the relativistic formulation.

These two approximations together enable the reduction of the full four-dimensional
Bethe-Salpeter equation to an equivalent three-dimensional problem. To show this, we
evaluate Eq. (2.33) in instantaneous approximation and integrate both its sides over
the relative energy variable p0, leading to

Φ(p) = −i
[∫

d p0

2π
S1
F

(
M
2

+ p
)
⊗ S2

F

(
−M

2
+ p
)] [∫ d3 p′

(2π)3V
(2)(p′,p)Φ(p′)

]
, (2.36)

where we de�ned the Salpeter amplitude

Φ(p) :=

∫
d p0

2π
χM(p0,p). (2.37)

Now, we note that due to the instantaneous approximation the relative energy depen-
dence of the integrand in (2.36) is a factor inside the full quark propagators SiF only.
As these are unknown functions in the con�nement regime of QCD, we employ the
e�ective free quark parameterization (2.34) to perform the remaining integral over p0

analytically. To this end, it is more convenient to use the following decomposition of
the free quark propagators (see e.g. the textbook [54]):

SiF (pi) = i

[
Λ+
i (pi)

p0
i − ωi(pi) + iε

+
Λ−i (pi)

p0
i + ωi(pi)− iε

]
γ0, (2.38)

which separates the two poles p0
i = ±ωi, located at the on-shell quark energy

ωi(pi) :=

√
|pi|

2 +m2
i . (2.39)

The operators Λ±i in Eq. (2.38) denote the projectors

Λ±i (pi) :=
ωi(pi)I ±Hi(pi)

2ωi(pi)
(2.40)

onto positive and negative energy solutions of the Dirac equation, and are de�ned in
terms of the on-shell energies wi and the usual Dirac Hamiltonian

Hi(pi) := γ0 (γ · pi +mi) . (2.41)

After integrating the e�ective propagators over p0, Eq. (2.36) �nally reduces to

Φ(p) =− 1

M − ω1 − ω2

Λ+
1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ−2 (−p)

+
1

M + ω1 + ω2

Λ−1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ+

2 (−p),

(2.42)

which is the so-called Salpeter equation [49] for the Salpeter amplitude Φ.
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Thus we have shown that the four-dimensional Bethe-Salpeter equation (2.33) when
considered with the approximations given in Eqs. (2.35) and (2.34) can be reduced to an
equivalent three-dimensional Salpeter equation (2.42). Furthermore, note in the latter
expression that the use of e�ective quark propagators leads to some projection prop-
erties which constrain the Salpeter amplitudes, implying that Φ respects the relation

Λ+
1 (p)Φ(p)Λ+

2 (−p) = Λ−1 (p)Φ(p)Λ−2 (−p) = 0, (2.43)

as can be easily veri�ed by applying the operators Λ±(p) from the left and Λ±(−p)
from the right side on Eq. (2.42). This is an important remark since, as discussed in
Ref. [55], the Salpeter equation can be conveniently reformulated in the Hamiltonian
form of an eigenvalue equation

H(2)Φ := MΦ (2.44)

with the Hamiltonian operator[
H(2)Φ

]
(p) := H1(p)Φ(p)− Φ(p)H2(−p)

− Λ+
1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ−2 (−p)

+ Λ−1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ+

2 (−p),

(2.45)

provided that Φ ful�lls the constraint (2.43).
For the sake of completeness, we also give here the normalization condition for the

Salpeter amplitudes, which is written as [52]∫
d3 p

(2π)3 Tr
[
Φ†(p)Λ+

1 (p)Φ(p)Λ−2 (−p)− Φ†(p)Λ−1 (p)Φ(p)Λ+
2 (−p)

]
= 2M (2.46)

and is derived from the normalization condition (2.32) for the Bethe-Salpeter ampli-
tudes evaluated with the same approximations.

The Salpeter equation in the Hamiltonian form of Eq. (2.44) and the normaliza-
tion condition (2.46) constitute the basis of our relativistic quark model of mesons.
Once the underlying potential V (2) is speci�ed, this equation can be numerically solved
by standard techniques, resulting in a spectrum of eigenvalues M which is associated
to the possible masses in the meson spectrum. The phenomenological potentials em-
ployed in our model are discussed later in Section 2.4. For details on the numerical
implementation, see Ref. [56]. Before proceeding further, we would like to point out
that, although an important ingredient for the derivation presented here, the use of
free quark propagators seems to be inconsistent with the picture of interacting quark
�elds con�ned in a hadronic state. Moreover, it has been already demonstrated by
Lucha and Schöberl [55] that the reduction to the two-body Salpeter equation is in
fact possible with full quark propagators, as long as they are also considered to be
instantaneous in the meson rest frame. This result, as well as its generalization to the
case of baryons, has not been implemented in our model yet and should be discussed
in a future project.
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2.3 Baryons as three-quark bound states

In the previous section the description of mesons as relativistic qq̄ bound states has
been discussed in some detail. Let us now generalize to the case of baryons, following
basically the same lines, but pointing out the di�culties arising from the treatment of
these more complicated systems. In our framework, baryon excitations are considered
to be relativistic bound states of three quarks qqq and as such, are related to the poles
of the six-point Green's function

G
(6)

α
′
1α
′
2α
′
3,α1α2α3

(x′1, x
′
2, x
′
3, x1, x2, x3)

:=− 〈Ω|TΨ1
α
′
1
(x′1)Ψ2

α
′
2
(x′2)Ψ3

α
′
3
(x′3)Ψ̄1

α1
(x1)Ψ̄2

α2
(x2)Ψ̄3

α3
(x3)|Ω〉,

(2.47)

as it is de�ned in the Heisenberg picture, or

G(6)(x′1, x
′
2, x
′
3, x1, x2, x3)

=
−1

〈0|T exp
(
−i
∫∞
∞ d tĤI(t)

)
|0〉

∞∑
k=1

(−i)k

k!

∫
d 4y1 · · · d 4yk

× 〈0|TΨ1
I(x
′
1)Ψ2

I(x
′
2)Ψ3

I(x
′
3)Ψ̄1

I(x1)Ψ̄2
I(x2)Ψ̄3

I(x3)ĤI(y1) · · · ĤI(yk)|0〉,

(2.48)

given in the interaction picture. In these equations, the superscripts i = 1, 2, 3 label
the three constituent quark �elds qi.

2.3.1 The integral equation for the six-point Green's function

Similarly to the case of G(4), the in�nite sum of perturbative contributions to G(6) may
also be expressed in the form of an inhomogeneous integral equation by introducing the
concept of irreducibility. However, in contrast to (2.2) the perturbative series in (2.48)
comprises two di�erent classes of irreducible contributions, which should be properly
summed into distinct interaction kernels. On the one hand, it contains fully connected
diagrams in which all the three constituent quarks interact; these are collected into the
kernel

K
(3)

α
′
1α
′
2α
′
3,α1α2α3

(x′1, x
′
2, x
′
3, x1, x2, x3), (2.49)

where we call a connected three-quark diagram irreducible when it cannot be split into
simpler graphs by cutting three fermion lines, as the examples depicted in Fig. 2.2.
On the other hand, the perturbative series of G(6) also contains two-body irreducible
interactions which occur for each possible qq pair within the qqq system in conjunction

−iK
(3) = + + + · · ·

Figure 2.2. Perturbative contributions to the three-body irreducible kernelK(3).
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with a third unconnected, non-interacting quark. Such contributions are collected into
three distinct kernels

K
(2)

α
′
iα
′
j ,αiαj

(x′i, x
′
j, xi, xj), (2.50)

with i, j = 1, 2 or 3, where irreducibility is de�ned in the same manner as in the case
of mesons (cf. Fig. 2.1). In addition, to concisely formulate an integral equation for
G(6) we de�ne an integral kernel

K̄(2)(x′1, x
′
2, x
′
3, x1, x2, x3) :=

∑
cycl.perm.
{i,j,k}

K(2)(x′i, x
′
j, xi, xj)S

k
F

−1
(x′k, xk) (2.51)

which includes all the two-body irreducible kernels in the form of a six-point function.
Here, the inverse of fermion propagators are de�ned according to∫

d4 x′′kS
k
F α
′
kα
′′
k
(x′k, x

′′
k)S

k
F

−1

α
′′
kαk

(x′′k, xk) = δα′kαkδ
(4)(x′k − xk). (2.52)

Hence, in terms of the kernels K̄(2) and K(3), the integral equation for G(6) reads:

G(6)(x′1, x
′
2, x
′
3, x1, x2, x3)

= G
(6)
0 (x′1, x

′
2, x
′
3, x1, x2, x3)− i

∫
d 4x′′1 d 4x′′2 d 4x′′3 d 4x′′′1 d 4x′′′2 d 4x′′′3

×G(6)
0 (x′1, x

′
2, x
′
3, x
′′
1, x

′′
2, x

′′
3)
[
K̄(2) +K(3)

]
(x′′1, x

′′
2, x

′′
3, x

′′′
1 , x

′′′
2 , x

′′′
3 )

×G(6)(x′′′1 , x
′′′
2 , x

′′′
3 , x1, x2, x3),

(2.53)

where G
(6)
0 denotes the tensor product

G
(6)
0 (x′1, x

′
2, x
′
3, x1, x2, x3) = S1

F (x′1, x1)⊗ S2
F (x′2, x2)⊗ S3

F (x′3, x3) (2.54)

of full fermion propagators.
Now, to formulate the integral equation for G(6) in momentum space, we introduce

a set of three-body Jacobi coordinates consisting of a center-of-mass variable X and
relative coordinates xξ and xη, as well as their conjugate momenta P , pξ and pη, by
means of the linear transformations X

xξ

xη

 =


1
3

1
3

1
3

1 −1 0
1
2

1
2
−1


 x1

x2

x3

 (2.55)

and  P

pξ

pη

 =

 1 1 1
1
2
−1

2
0

1
3

1
3
−2

3


 p1

p2

p3

 (2.56)

where pi denotes the four-momentum carried by the constituent quark qi. Moreover,
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due to the contribution of unconnected two-quark interactions a set of two-body Jacobi
coordinates has to be considered here as well. In analogy to the linear transformations
in Eqs. (2.6) and (2.7) we thus de�ne for each possible qiqj pair in the qqq system the
coordinates (

Xk

xξk

)
=

(
1
2

1
2

1 −1

)(
xi

xj

)
(2.57)

and respective momenta (
Pk

pξk

)
=

(
1 1
1
2
−1

2

)(
pi

pj

)
, (2.58)

such that three di�erent sets of coordinates are generated by cyclical permutations
of {i, j, k} = {1, 2, 3}. Finally, in order to relate the two- and three-body momenta
variables we de�ne

pηk := 1
3

(
pi + pj − 2pk

)
, (2.59)

so that the total two-body momenta Pk is related to P according to

Pk = 2
3
P + pηk , (2.60)

while the two-body relative momenta pξk and pηk are obtained by the transformations

(
pξ

pη

)
=

(
pξ3
pη3

)
=

(
−1

2
−3

4

1 −1
2

)(
pξ1
pη1

)
=

(
−1

2
3
4

−1 −1
2

)(
pξ2
pη2

)
. (2.61)

In terms of the Jacobi coordinates (2.55) and (2.56), the Fourier-transform for any
six-point function A = G(6), G

(6)
0 , K̄(2) and K(3) is de�ned by

A(x′1, x
′
2, x
′
3, x1, x2, x3) ≡ A(X ′ −X, x′ξ, x′η, xξ, xη)

=:

∫
d4 P

(2π)4 e
−iP ·(X′−X)

∫
d4 p′ξ

(2π)4

d4 p′η

(2π)4 e
−ip′ξ·x

′
ξ−ip

′
η ·x
′
η

×
∫

d4 pξ

(2π)4

d4 pη

(2π)4 e
+ipξ·xξ+ipη ·xηAP (p′ξ, p

′
η, pξ, pη)

(2.62)

where, as before, the subscript in AP indicates that its dependence on the total four-
momentum is purely parametric. On the other hand, using de�nitions (2.57) to (2.61)
and exploiting translational invariance, we write the following Fourier-transforms

K(2)(x′i, x
′
j, xi, xj) ≡ K(2)(X ′k −Xk, x

′
ξk
, xξk)

=:

∫
d4 Pk

(2π)4 e
−iPk·(X

′
k−Xk)

∫
d4 p′ξk
(2π)4 e

−ip′ξk ·x
′
ξk

×
∫

d4 pξk
(2π)4 e

+ipξk
·xξkK

(2)
Pk

(p′ξk , pξk)

(2.63)

for the two-body irreducible kernels. In the equation above, one should note that the
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kernels K(2) do not depend on P in the same way as K(3) does. In fact, the two-body
kernels in momentum space depend parametrically on Pk, which according to Eq. (2.60)
is a combination of P and the relative momentum pηk . This leads to retardation e�ects
between the two- and three-body interactions and, consequently, the reduction to the
Salpeter equation in the case of baryons is not as straightforward as it is for mesons.
We return to this matter below.

Finally, according to the de�nitions (2.62) and (2.63), the integral equation for G(6)

in momentum space takes the form

G
(6)
P (p′ξ, p

′
η, pξ, pη) = G0

(6)
P (p′ξ, p

′
η, pξ, pη)− i

∫
d4 p′′ξ

(2π)4

d4 p′′η

(2π)4

d4 p′′′ξ

(2π)4

d4 p′′′η

(2π)4

×G0
(6)
P (p′ξ, p

′
η, p
′′
ξ , p
′′
η)
[
K̄

(2)
P +K

(3)
P

]
(p′′ξ , p

′′
η, p
′′′
ξ , p

′′′
η )G

(6)
P (p′′′ξ , p

′′′
η , pξ, pη),

(2.64)

where G0
(6)
P denotes the tensor product

G0
(6)
P (p′ξ, p

′
η, pξ, pη)

= S1
F

(
1
3
P + pξ + 1

2
pη
)
⊗ S2

F

(
1
3
P − pξ + 1

2
pη
)
⊗ S3

F

(
1
3
P − pη

)
× (2π)4δ(4)(p′ξ − pξ)(2π)4δ(4)(p′η − pη)

(2.65)

and the integral kernel K̄
(2)
P is explicitly given by

K̄
(2)

Pα
′
1α
′
2α
′
3,α1α2α3

(p′ξ, p
′
η, pξ, pη) :=

∑
cycl.perm.
{i,j,k}

K
(2)(
2
3
P+pηk

)
α
′
iα
′
j ,αiαj

(p′ξk , pξk)

×Sk−1

Fα
′
kαk

(
1
3
P − pηk

)
(2π)4δ(4)(p′ηk − pηk),

(2.66)

where the inverse of full quark propagators ful�ll the relation

SkF α′kα
′′
k
(pk)S

k
F

−1

α
′′
kαk

(pk) = δα′kαk . (2.67)

2.3.2 Three-quark bound state contributions

To isolate the baryon contributions from G(6) we proceed in a similar way as before, i.e.
we choose only terms with the speci�c time-ordering min{x′01 , x′02 , x′03 } > max{x0

1, x
0
2, x

0
3}

and insert a complete set of intermediate states |P̄ 〉. In this way,

G(6)(x′1, x
′
2, x
′
3, x1, x2, x3)

= −
∫

d3 P̄

(2π)32ωP̄

[
χP̄ (x′1, x

′
2, x
′
3)⊗ χ̄P̄ (x1, x2, x3)

]
× θ

(
min{x′01 , x′02 , x′03 } −max{x0

1, x
0
2, x

0
3}
)

+ other terms,

(2.68)

where the on-shell energy ωP̄ and the normalization of |P̄ 〉 were previously de�ned in
Eqs. (2.13) and (2.14). In analogy to Eqs. (2.16) and (2.17), here we also introduced
the three-quark Bethe-Salpeter amplitudes

χP̄α1α2α3
(x1, x2, x3) := 〈Ω|TΨ1

α1
(x1)Ψ2

α2
(x2)Ψ3

α3
(x3)|P̄ 〉 (2.69)
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and
χ̄P̄α1α2α3

(x1, x2, x3) := 〈P̄ |T Ψ̄α1
(x1)Ψ̄α2

(x2)Ψ̄α3
(x3)|Ω〉, (2.70)

which can be expressed in terms of Jacobi coordinates as

χP̄ (x1, x2, x3) = e−iP̄ ·XχP̄ (xξ, xη)

=: e−iP̄ ·X
∫

d4 pξ

(2π)4

d4 pη

(2π)4 e
−ipξ·xξe−ipη ·xηχP̄ (pξ, pη)

(2.71)

and
χ̄P̄ (x1, x2, x3) = e+iP̄ ·X χ̄P̄ (xξ, xη)

=: e+iP̄ ·X
∫

d4 pξ

(2π)4

d4 pη

(2π)4 e
+ipξ·xξe+ipη ·xη χ̄P̄ (pξ, pη).

(2.72)

As shown in Ref. [57], the Heaviside function in Eq. (2.68) produces a pole on the total
energy variable of the qqq system, such that one obtains the following expression

G
(6)
P (p′ξ, p

′
η, pξ, pη) =

−i
2ωP̄

ζP̄ (p′ξ, p
′
η, P

0 − ωP̄ )⊗ ζ̄P̄ (pξ, pη, P
0 − ωP̄ )

P 0 − ωP̄ + iε

+ other terms

(2.73)

for the six-point Green's function in momentum space. Here, the amplitudes ζP̄ and
ζ̄P̄ are de�ned by

ζP̄ (xξ, xη, ω) := χP̄ (xξ, xη)e
−iωf(x

0
ξ ,x

0
η)

=:

∫
d4 pξ

(2π)4

d4 pη

(2π)4 e
−ipξ·xξ−ipη ·xηζP̄ (pξ, pη, ω)

(2.74)

and
ζ̄P̄ (xξ, xη, ω) := χ̄P̄ (xξ, xη)e

+iωg(x
0
ξ ,x

0
η)

=:

∫
d4 pξ

(2π)4

d4 pη

(2π)4 e
+ipξ·xξ+ipη ·xη ζ̄P̄ (pξ, pη, ω),

(2.75)

with

f(x0
ξ , x

0
η) := min

{
x

0
ξ

2
+

x
0
η

3
,−x

0
ξ

2
+

x
0
η

3
,−2x

0
η

3

}
(2.76)

and

g(x0
ξ , x

0
η) := max

{
x

0
ξ

2
+

x
0
η

3
,−x

0
ξ

2
+

x
0
η

3
,−2x

0
η

3

}
, (2.77)

and ful�ll the conditions ζP̄ (pξ, pη, 0) = χP̄ (pξ, pη) and ζ̄P̄ (pξ, pη, 0) = χ̄P̄ (pξ, pη).
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2.3.3 The three-body Bethe-Salpeter equation

The integral equation for G(6) in momentum space can be formulated in a concise
operator form

G
(6)
P = G0

(6)
P − iG0

(6)
P

[
K̄

(2)
P +K

(3)
P

]
G

(6)
P (2.78)

by de�ning the product

[APBP ](p′ξ, p
′
η, pξ, pη) =

∫
d4 p′′ξ

(2π)4

d4 p′′η

(2π)4AP (p′ξ, p
′
η, p
′′
ξ , p
′′
η)BP (p′′ξ , p

′′
η, pξ, pη) (2.79)

of two six-point functions AP and BP . A comparison between Eqs. (2.23) and (2.78)
shows that the derivation of the three-body Bethe-Salpeter equation and its adjoint,
together with the normalization condition, proceeds exactly in the same way as for
mesons. Therefore we simply state the results of this procedure below and refer to [58]
for further details. It leads to the Bethe-Salpeter equation

χP̄ = −iG0
(6)

P̄

[
K̄

(2)

P̄
+K

(3)

P̄

]
χP̄ (2.80)

and its adjoint

χ̄P̄ = −iχ̄P̄
[
K̄

(2)

P̄
+K

(3)

P̄

]
G0

(6)

P̄
, (2.81)

as well as to the normalization condition

−iχ̄P̄
[
∂

∂Pµ
G−1
P

]
P=P̄

χP̄ = 2P̄ µ (2.82)

as given in a covariant form. With its full momentum dependence the Bethe-Salpeter
equation (2.80) reads:

χP̄ (pξ, pη) = S1
F

(
1
3
P̄ + pξ + 1

2
pξ
)
⊗ S2

F

(
1
3
P̄ − pξ + 1

2
pξ
)
⊗ S3

F

(
1
3
P̄ − pξ

)
×
∫

d4 p′ξ

(2π)4

d4 p′η

(2π)4 (−i)
[
K̄

(2)
P +K

(3)
P

]
(pξ, pη, p

′
ξ, p
′
η)χP̄ (p′ξ, p

′
η).

(2.83)

2.3.4 Reduction to the three-body Salpeter Equation

Due to the lack of knowledge about full propagators and interaction kernels, as it
stands the three-body Bethe-Salpeter equation (2.83) cannot be directly applied to the
description of strong-interacting bound states either. We thus consider this equation
with the same approximations employed for the two-body case, i.e. we replace full
quark propagators SiF by e�ective free-quark parameterizations

SiF (pi)
!

=
i

6pi −mi + iε
= i

[
Λ+
i (pi)

p0
i − ωi(pi) + iε

+
Λ−i (pi)

p0
i + ωi(pi)− iε

]
γ0 (2.84)

and assume instantaneous two- and three-body interactions in the baryon rest frame,
i.e.

K
(3)
M (pξ, pη, p

′
ξ, p

′
η)

!
= V (3)(pξ,pη,p

′
ξ,p

′
η) (2.85)
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and
K

(2)(
2
3
M+pηk

)(pξk , p
′
ξk

)
!

= V (2)(pξk ,p
′
ξk

). (2.86)

Recall that the projectors Λ±i and the on-shell energies ωi appearing in Eq. (2.84) were
previously de�ned in Eqs. (2.38) and (2.39), respectively.

In the absence of two-body interactions (K(2) = 0) the two approximations above
are su�cient to enable the reduction of the full Bethe-Salpeter equation to the Salpeter
equation. In this speci�c case we proceed as before and thereby obtain

Φ(pξ,pη) = −i
∫

d3 p′ξ

(2π)3

d3 p′η

(2π)3

d3 p′′ξ

(2π)3

d3 p′′η

(2π)3 〈G0
(6)
M〉(pξ,pη,p

′
ξ,p

′
η)

×V (3)(p′ξ,p
′
η,p

′′
ξ ,p

′′
η)Φ(p′′ξ ,p

′′
η)

(2.87)

for the Salpeter amplitudes

Φ(pξ,pη) :=

∫
d p0

ξ

2π

d p0
η

2π
χM(pξ, pη), (2.88)

where we introduced the short-hand notation

〈AP 〉(p′ξ,p′η,pξ,pη) :=

∫
d p0

ξ

2π

d p0
η

2π

∫
d p′ 0ξ
2π

d p′ 0η
2π

AP (p′ξ, p
′
η, pξ, pη) (2.89)

for the three-dimensional reduction of a six-point function AP . Thus, 〈G0
(6)
M〉 denotes

the reduction of the product (2.65) of three fermion propagators, which considered in
the free-quark approximation can be evaluated analytically and expressed as

〈G0
(6)
M〉(p

′
ξ,p
′
η,pξ,pη) = i (2π)3δ(3)(p′ξ − pξ)(2π)3δ(3)(p′η − pη)

×
[

Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3)

M − ω1 − ω2 − ω3 + iε
+

Λ−1 (p1)⊗ Λ−2 (p2)⊗ Λ−3 (p3)

M + ω1 + ω2 + ω3 + iε

]
×
(
γ0 ⊗ γ0 ⊗ γ0

)
.

(2.90)

According to these results, when the two-body kernels are set to zero the Salpeter
equation again exhibits projection properties which constrain the Salpeter amplitudes.
In particular, due to the projector structure observed in Eq. (2.90), the solutions Φ of
Eq. (2.87) consist of purely positive and purely negative energy components, i.e.

Φ =
[
Λ+

1 ⊗ Λ+
2 ⊗ Λ+

3

]
Φ +

[
Λ−1 ⊗ Λ−2 ⊗ Λ−3

]
Φ, (2.91)

while all mixed energy components vanish. Consequently, only the projected part

V
(3)

Λ (p′ξ,p
′
η,pξ,pη) := Λ̄(p′ξ,p

′
η)V

(3)(p′ξ,p
′
η,pξ,pη)Λ(pξ,pη) (2.92)

of the three-body potential V (3), de�ned by the projection operators

Λ(pξ,pη) := Λ+
1 (p1)⊗ Λ+

2 (p2)⊗ Λ+
3 (p3) + Λ−1 (p1)⊗ Λ−2 (p2)⊗ Λ−3 (p3) (2.93)

and
Λ̄(pξ,pη) :=

[
γ0 ⊗ γ0 ⊗ γ0

]
Λ(pξ,pη)

[
γ0 ⊗ γ0 ⊗ γ0

]
, (2.94)
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is relevant for the dynamics of qqq bound states, whereas the residual part

V
(3)
R := V (3) − V (3)

Λ ⇔ Λ̄V
(3)
R Λ = 0 (2.95)

does not couple to the amplitudes Φ as these ful�ll the constraint (2.91).
However, if also two-body irreducible kernels are taken into account, the projection

properties discussed above do not hold anymore. In this case, despite the instanta-
neous approximation the dependence on the relative energies p0

ξ and p
0
η remains in the

two-body kernel

K̄
(2)
M (p′ξ, p

′
η, pξ, pη)

!
=

∑
cycl.perm.
{i,j,k}

V
(2)(
2
3
M+pηk

)(p′ξk ,pξk)

⊗Sk−1

F

(
M − pηk

)
(2π)4δ(4)(p′ηk − pηk)

(2.96)

inside the relative momenta variables pηk and p′ηk , de�ned in Eq. (2.61). This leads
to retardation e�ects between the two- and three-body potentials and, consequently,
induces the contribution of mixed energy components to the Salpeter amplitudes. In
other words, the amplitudes Φ no longer ful�ll the constraint (2.91) and, therefore, the
residual part V

(3)
R also contributes.

Nevertheless, it was shown in Ref. [58] that the reduction of the Bethe-Salpeter
equation to an equivalent three-dimensional problem can still be achieved. The method
is based on the fact that the decomposition

V (3) = V
(3)

Λ + V
(3)
R (2.97)

is still valid and, very importantly, that the residual part V
(3)
R only becomes relevant

when two-body potentials are also present. For this reason, it is more appropriate to
recast the instantaneous Bethe-Salpeter equation into the equivalent expression

χM = −iGMV
(3)

Λ χM , (2.98)

where the di�cult relative energy dependencies were isolated inside a new Green's
function

GM :=
[
I + iG0

(6)
M

(
V

(3)
R + K̄

(2)
M

)]
G0

(6)
M . (2.99)

Now, the Bethe-Salpeter equation in the form (2.98) can be reduced in the same way
as before, since its integral kernel V

(3)
Λ is instantaneous, i.e. it does not a�ect mixed-

energy components. Indeed, by integrating both sides of Eq. (2.98) over the relative
energy variables p0

ξ and p
0
η one already obtains the Salpeter equation

Φ(pξ,pη) = −i
∫

d3 p′ξ

(2π)3

d3 p′η

(2π)3

d3 p′′ξ

(2π)3

d3 p′′η

(2π)3 〈GM〉(pξ,pη,p
′
ξ,p

′
η)

×V (3)
Λ (p′ξ,p

′
η,p

′′
ξ ,p

′′
η)Φ(p′′ξ ,p

′′
η)

(2.100)

for the three-body Salpeter amplitudes Φ, where we introduced the notation

〈AP 〉Λ := Λ〈AP 〉Λ̄ (2.101)
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for the projection of the reduced function 〈AP 〉. Moreover, it is interesting to write the
Salpeter equation above as an integral equation

ΦΛ(pξ,pη) = −i
∫

d3 p′ξ

(2π)3

d3 p′η

(2π)3

d3 p′′ξ

(2π)3

d3 p′′η

(2π)3 〈GM〉Λ(pξ,pη,p
′
ξ,p

′
η)

×V (3)(p′ξ,p
′
η,p

′′
ξ ,p

′′
η)ΦΛ(p′′ξ ,p

′′
η)

(2.102)

for the projected Salpeter amplitudes given by

ΦΛ(pξ,pη) := Λ(pξ,pη)Φ(pξ,pη) (2.103)

by exploiting the projection properties of V
(3)

Λ . Note that this last step represents a
great advantage numerically, by reducing the number of energy components necessary
to describe the amplitudes Φ.

Hence, the problem of reducing the Bethe-Salpeter equation (2.83) has now been
simpli�ed to the problem of �nding an explicit expression for 〈GM〉Λ, which according
to its de�nition (2.99) is solution of

〈GM〉Λ = 〈G0
(6)
M〉 − i〈G0

(6)
M

(
V

(3)
R + K̄

(2)
M

)
GM〉Λ. (2.104)

For our purposes, only the projected part of 〈GM〉 is actually needed. Therefore, it
is not necessary to solve Eq. (2.104) completely, but only to determine an e�ective
potential V e�

M which ful�lls the relation

〈GM〉Λ
!

= 〈G0
(6)
M〉 − i〈G0

(6)
M〉V

e�
M 〈GM〉Λ (2.105)

and has the projection properties

V e�
M = Λ̄V e�

M = V e�
M Λ. (2.106)

In Ref. [58] it was demonstrated in detail that such potential indeed exists and is given
by the perturbative series

V e�
M =

∞∑
k=1

V e�
M

(k)
. (2.107)

Finally, by substituting the formal solution of Eq. (2.105) into Eq. (2.102), together
with Eq. (2.107) for the e�ective potential, we can write the following Salpeter equation

ΦΛ(pξ,pη) = −i
∫

d3 p′ξ

(2π)3

d3 p′η

(2π)3

d3 p′′ξ

(2π)3

d3 p′′η

(2π)3 〈G0
(6)
M〉(pξ,pη,p

′
ξ,p

′
η)

×

[
V (3) +

∞∑
k=0

V e�
M

(k)

]
(p′ξ,p

′
η,p

′′
ξ ,p

′′
η)ΦΛ(p′′ξ ,p

′′
η)

(2.108)

for the projected Salpeter amplitudes, which has the same structure of Eq. (2.87)
except for the contribution of V e�

M . In summary, the procedure presented here thus
corresponds to consider only purely positive and purely negative energy components
of the Salpeter amplitudes and treat the di�cult mixed components by means of an
e�ective potential which features projection properties as well.
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For practical calculations, the perturbative series of Eq. (2.107) must be truncated
at some �nite order in k. In our model, this is done with the aim of expressing the
Salpeter equation (2.108) in the form of a simple eigenvalue problem. As discussed
in Ref. [58], this can be achieved just in Born approximation (i.e. up to k = 1), since
higher order terms lead to generalized Hamiltonian equations whose numerical solu-
tion is much more involved. For this reason, we consider the e�ective potential V e�

M

up to the Born term only, such that the Salpeter equation (2.108) is equivalent to the
eigenvalue problem

H(3)ΦΛ := MΦΛ (2.109)

with the Hamiltonian operator[
H(3)ΦΛ

]
(pξ,pη) := H(3)

0 (pξ,pη)ΦΛ(pξ,pη)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3) + Λ−1 (p1)⊗ Λ−2 (p2)⊗ Λ−3 (p3)
]

×
[
γ0 ⊗ γ0 ⊗ γ0

] ∫ d3 p′ξ

(2π)3

d3 p′η

(2π)3V
(3)(pξ,pη,p

′
ξ,p

′
η)ΦΛ(p′ξ,p

′
η)

+
[
Λ+

1 (p1)⊗ Λ+
2 (p2)⊗ Λ+

3 (p3)− Λ−1 (p1)⊗ Λ−2 (p2)⊗ Λ−3 (p3)
]

×
[
γ0 ⊗ γ0 ⊗ I

] ∫ d3 p′ξ

(2π)3V
(2)(pξ,p

′
ξ)⊗ IΦΛ(p′ξ,pη)

+ corresponding terms for the quark pairs (23) and (31),

(2.110)

where the free Hamiltonian operator H(3)
0 is de�ned as

H(3)
0 (pξ,pη) := H1(p1)⊗ I ⊗ I + I ⊗H2(p2)⊗ I + I ⊗ I ⊗H3(p3). (2.111)

For completeness, we �nally give the normalization condition for the projected
Salpeter amplitudes, which reads:∫

d3 pξ

(2π)3

d3 pη

(2π)3 Φ†Λ(pξ,pη)ΦΛ(pξ,pη) = 2M (2.112)

and together with the Salpeter equation (2.109) for the amplitudes ΦΛ, constitutes the
basis of our quark model for baryons. The phenomenological parameterizations for the
potentials shall be discussed in the next section. For the numerical treatment in the
case of baryons, see Ref. [57].

2.4 Model Interactions

Since quark dynamics in the con�nement regime cannot be directly derived from QCD,
in order to solve the Salpeter equations obtained in the previous Sections 2.2 and 2.3
one has to �nd suitable parameterizations for the instantaneous potentials. This is done
on the basis of some structures observed in the experimental light-�avored hadron spec-
trum which, as we shall see below, lead to the picture of quarks interacting through a
linearly rising, �avor-independent con�nement potential, supplemented by a residual
�avor-dependent force which acts only on speci�c sectors of the spectrum.
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2.4.1 Quark con�nement

Let us start our discussion with the meson spectrum. Considering at �rst only mesons
with spin J 6= 0, one observes some general features which apply for all �avor states.
Among them, one of the most prominent is the occurrence of Regge trajectories for the
ground states, whose masses M are related to the corresponding spin J according to
M2 ∝ J . Another example is the existence of nearly degenerate partners between the
isovector and the isoscalar sectors, for instance the pair ρ(770)− ω(782). Such gen-
eral properties suggest that quark-antiquark con�nement is realized through a linear,
�avor-independent potential, which can be parametrized according to

V
(2)
conf(x1,x2) = a(2)Wo� + b(2) |x1 − x2|Wstr, (2.113)

where the o�set a(2) and the slope b(2) are treated as free parameters.
As indicated in Eq. (2.113), in a full relativistic treatment the con�nement poten-

tial must be provided with appropriate spin structures Wo� and Wstr. Possible choices
must satisfy some basic constraints (e.g. Lorentz invariance) and show the correct non-
relativistic limit, where the potential is assumed to be spin-independent. Moreover,
the spin structure should be such that it does not induce too large spin-orbit e�ects,
as these are not observed in the spectrum. According to the �ndings of Refs. [26, 27],
the spin structure

Wo� =Wstr =
1

2

[
I ⊗ I − γ0 ⊗ γ0

]
(2.114)

ful�lls the requirements above and, when chosen for both o�set and slope components,
provides a good description of the experimental data.

Turning to the baryon sector, one also observes some general features which support
the hypothesis of a linearly rising con�nement. An analysis of the experimental baryon
spectrum up to the highest spin shows that the ground states for each total angular
momentum also lie on Regge trajectories. To account for this feature, an appropriate
parameterization for the three-quark con�nement potential is

V
(3)
conf(x1,x2,x3) = a(3)Wo� + b(3)

∑
i<j

∣∣xi − xj
∣∣Wstr, (2.115)

where a(3) and b(3) enter as free parameters. According to the results of Refs. [29, 30],
some of which we brie�y discuss in the following Section 2.5, the spin structures

Wo� =
3

4

[
I ⊗ I ⊗ I + γ0 ⊗ γ0 ⊗ I + γ0 ⊗ I ⊗ γ0 + I ⊗ γ0 ⊗ γ0

]
, (2.116)

Wstr =
1

2

[
−I ⊗ I ⊗ I + γ0 ⊗ γ0 ⊗ I + γ0 ⊗ I ⊗ γ0 + I ⊗ γ0 ⊗ γ0

]
, (2.117)

lead to a satisfactory overall description of the light-�avored baryon spectrum.
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2.4.2 Instanton-induced interactions

The situation for scalar and pseudoscalar mesons is quite di�erent from the case J 6= 0
discussed before. In the J = 0 sector of the meson spectrum larger mass-splittings
occur, for instance the splitting π − η − η′, revealing the in�uence of a residual �avor-
dependent interaction acting on J = 0 states only. A QCD-based candidate with the
appropriate �avor- and spin-dependence to describe this e�ect is the instanton-induced
interaction. As �rstly shown by 't Hooft [59], instantons lead to an e�ective interquark
potential which acts only on very speci�c qq̄ states. The instanton e�ective Lagrangian
in the two-fermion channel is given by [58]

∆L(2)
e� (y) = Ψ̄α

′
1
(y)Ψ̄α

′
2
(y)W(2)

α
′
1α
′
2α1α2

Ψα1
(y)Ψα2

(y), (2.118)

with the interaction vertex

W(2)

α
′
1α
′
2α1α2

= −1

2
Gf
′
1f
′
2f1f2

{
2

3

[
I ⊗ I + γ5 ⊗ γ5

]
s
′
1s
′
2s1s2

[I ⊗ I]c′1c
′
2c1c2

+
1

16

[
I ⊗ I + γ5 ⊗ γ5 − 3

2
σµν ⊗ σµν

]
s
′
1s
′
2s1s2

[
8∑

a=1

λa ⊗ λa
]
c
′
1c
′
2c1c2

}
,

(2.119)

where the matrices λa are the usual Gell-Mann matrices, the multi-indices αi combine
the quantum numbers si, fi and ci in spin, �avor and color space, respectively, and the
�avor matrix

Gf
′
1f
′
2f1f2

=
3

8

∑
f=u,d,s

ge�(f)εf f ′1f
′
2
εf f1f2

(2.120)

includes the �avor-dependent e�ective couplings ge�(f). In the case of exact isospin
symmetry, it is more convenient to de�ne new coupling constants

gnn :=
3

8
ge�(s), gns :=

3

8
ge�(u) =

3

8
ge�(d), (2.121)

such that

Gf
′
1f
′
2f1f2

≡ G(gnn, gns) =


gf1f2

, if f1 = f ′1 6= f2 = f ′2

−gf ′1f2
, if f1 = f ′2 6= f2 = f ′1

0, otherwise.

(2.122)

From the interaction vertex W(2) and the �avor matrix G above, one easily reads
o� which meson states are a�ected by instanton interactions: Firstly, as mesons are
necessarily color-singlets, only the �rst term on the right-hand side of Eq. (2.119) is
relevant for meson spectroscopy in terms of qq̄-con�gurations, and the spin structure
of this term shows that it acts on J = 0 states exclusively. Moreover, due to the Levi-
Civita tensors in Eq. (2.120), the interaction leads to uū↔ dd̄, uū↔ ss̄ and dd̄↔ ss̄
transition matrix elements which then explain the mass-splittings in the J = 0 sector.
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Due to these desirable properties, in the present model we employ as residual inter-
action a spin-dependent potential based on instanton e�ects, which for qq̄ states can
be directly calculated from the two-fermion Lagrangian in Eq. (2.118). In lowest order
of perturbation theory, this potential reads:∫

d3 p′

(2π)3V
(qq̄)
't Hooft(p,p

′)Φ(p′) = 4G(gnn, gns)

∫
d3 p′

(2π)3vreg(p,p
′)

×
(
I Tr

[
Φ(p′)

]
+ γ5 Tr

[
Φ(p′)γ5

])
.

(2.123)

As it stands, see the Lagrangian of Eq. (2.118), the instanton force is a point-like inter-
action and has to be regularized. In Eq. (2.123) this is done by means of a regularizing
Gaussian function vreg, which in con�guration space is given by

vreg(x) =
1

(λ
√
π )3 e

− |x|
2

λ
2 , (2.124)

introducing an e�ective range λ to the interaction. As the constituent quark masses
and con�nement parameters, the couplings gnn and gns and the e�ective range λ enter
the model as free parameters, leading to a total of seven free parameters to be adjusted
to experimental data.

In the case of baryons, the description of the mass splittings N −∆, Λ− Σ− Σ∗

and Ξ− Ξ∗ between the octet and decuplet ground-states also requires the contribution
of a residual spin-dependent force. Because of its antisymmetric �avor-dependence, the
two-body 't Hooft's interaction can be used to explain this e�ect too, since it acts exclu-
sively on octet ground-states, leaving the �avor-symmetric decuplet states una�ected.
For the analysis of instanton e�ects in the two-quark channel, it is more convenient to
write the vertex W(2) in terms of projection operators in �avor, spin and color spaces
according to [58]

W(2) =− 2
[(
I ⊗ I + γ5 ⊗ γ5

)
PsS=0 ⊗

(
gnnPfA(nn) + gnsPfA(ns)

)
⊗ Pc3̄

]
−

[(
I ⊗ I + γ5 ⊗ γ5

)
PsS=1 ⊗

(
gnnPfA(nn) + gnsPfA(ns)

)
⊗ Pc6

]
,

(2.125)

where the operators Pc3̄ and Pc6 are projectors on color-antitriplets and sextets, PsS=0

and PsS=1 on spin-singlets and triplets and, �nally, PfA(nn) and PfA(ns) on �avor-
antisymmetric nn and ns quark pairs. Again, only the �rst term on the right-hand
side of Eq. (2.125) contributes spectroscopically, since the qq pairs inside a color-singlet
qqq state are necessarily color-antitriplets. From the projector structure of this �rst
term, we conclude that the 't Hooft's interaction acts just on those scalar and pseu-
doscalar qq pairs which are antisymmetric in �avor space, with di�erent strengths for
non-strange and non-strange-strange pairs.

The instanton interaction leads to an e�ective potential between the quark �elds
within qq pairs, which in lowest order is given by

V qq
't Hooft(x) = −4vreg(x)

(
I ⊗ I + γ5 ⊗ γ5

)
PsS=0

⊗
(
gnnPfA(nn) + gnsPfA(ns)

)
⊗ Pc3̄,

(2.126)
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and which we use as a phenomenological parameterization for the unconnected two-
body potentials in our model for baryons.

Instantons also induce an e�ective three-quark potential, derived from the three-
fermion e�ective Lagrangian

∆L(3)
e� =

27

80
g

(3)
e� Ψ̄⊗ Ψ̄⊗ Ψ̄

×
[
I ⊗ I ⊗ I + γ5 ⊗ γ5 ⊗ I + γ5 ⊗ I ⊗ γ5 + I ⊗ γ5 ⊗ γ5

]
⊗ PfA ⊗ [2Pc10 + 5Pc8] Ψ⊗Ψ⊗Ψ,

(2.127)

where Pc8 and Pc10 are projectors on color-octets and decuplets and PfA a projector on
the completely �avor-antisymmetric three-quark state uds. The three-body instanton
force does not act on color-singlets and, therefore, is irrelevant for spectroscopic cal-
culations. Nevertheless, it leads to a highly selective contribution to strong two-body
decays of mesons (see Ref. [60]) and of baryons as well, as we shall discuss in Chapter 3.

2.5 Mass spectra of non-strange hadrons

In this section we compare the calculated mass spectra of non-strange hadrons to the
experimental data from the Review of Particle Physics published by the Particle Data
Group (PDG) in 2012 [2]. More speci�cally, we compare bound-state mass parameters
corresponding to poles of Green's functions (cf. Eqs. (2.20) and (2.73)) to experimental
estimates for Breit-Wigner masses as provided by the PDG. It should be mentioned,
however, that both mass parameters are only equivalent in the absence of higher-order
contributions to baryon properties. We shall return to this issue later in Chapter 4.

The notation for the baryon resonances is given as follows: The experimental states
are in general denoted by B[Jπ](M), where B is either a N (isospin I = 1/2) or a ∆
resonance (I = 3/2). Moreover, J denotes the spin, π the parity and M the mass of
the state. If necessary, the status of the resonance is explicitly given by one to four
stars, according to the classi�cation of the PDG. The theoretical states, in turn, are
denoted by B[Jπ]n(M), where the additional label n represents the principal quantum
number or radial excitation of the state, with n = 0 for ground-state baryons. We start
our discussion with the free parameters of the model and how these are adjusted to
the experimental data and then present the resulting hadron spectra, focusing on those
states which are the subject of investigation in this thesis.

2.5.1 Parameters of the model

Both quark models for mesons and baryons contain seven free parameters each, namely
the o�set a(2,3) and the slope b(2,3) stemming from the two- or three-body con�nement
potentials, the constituent quark masses mn and ms from the e�ective free-quark prop-
agators and, �nally, the couplings gnn and gns and the e�ective range λ from the
residual instanton interactions. Although the parameters related to strange quarks are
not necessary for the calculation non-strange baryon spectra, the ground-state η-meson
is present in the strong decays into ηN considered in the next chapter. Therefore, also
the constituent quark mass ms and the coupling gns are considered here.
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Table 2.1. Parameters of the model for baryons, taken from Ref. [29]. The last
column indicates to which states or mass-splittings the parameters were adjusted.

Parameter Value Adjusted to

Con�nement
potential

o�set a(3) -744 MeV
well-established

∆ baryons
slope b(3) 470 MeV fm−1

Constituent
quark masses

non-strange mn 330 MeV

strange ms 670 MeV ∆− Σ∗ − Ξ∗ − Ω

't Hooft's
Lagrangian

nn-coupling gnn 136 MeV fm3

N −∆
Λ− Σ− Σ∗

Ξ− Ξ∗
ns-coupling gns 94 MeV fm3

e�ective range λ 0.4 fm

Let us start by explaining how these parameters were �tted to the light-�avored
baryon spectrum, according to Ref. [29]. The procedure was based on the fact that
instantons act only on �avor octet states, leaving the totally symmetric decuplet states
una�ected. Consequently, the whole spectrum of decuplet baryons should be deter-
mined by the parameters from the con�nement potential and the constituent quark
masses alone, while the parameters from the 't Hooft's interaction have to account for
the mass-splittings between the decuplet and octet states. In this way, the �rst step
was to adjust a(3), b(3) and mn to well-established ∆ resonances, choosing those which
have small experimental uncertainties on the excitation mass: These are the four-star
∆[3

2

+
](1232), ∆[5

2

+
](1950) and ∆[7

2

+
](2420) resonances from the positive-parity Regge-

trajectory, as well as the two negative-parity resonances ∆[1
2

−
](1600) and ∆[3

2

−
](1720),

which were included in the �t so that the energy di�erence between the ground-state
∆(1232) and the lowest negative-parity states is correctly described. Subsequently,
the strange quark mass ms was adjusted to the mass-splittings ∆− Σ∗ − Ξ∗ − Ω be-
tween the decuplet ground-states, since they are una�ected by instantons. Finally, the
remaining three parameters gnn, gns and λ were �tted to the mass-splittings N −∆,
Σ− Σ∗ and Ξ− Ξ∗ between octet and decuplet ground-states, as well as to the split-
ting Λ− Σ between the isoscalar and isovector hyperons. The �tting procedure and
the numerical values of the parameters, taken from Ref. [29], are collected in Table 2.1.

In the case of mesons, the �t is usually performed in a similar way, considering
that instanton e�ects are relevant only for scalar and pseudoscalar states, while all
other mesons with J > 0 should be well described by the parameters of the con�ne-
ment potential and the constituent quark masses alone. For details on the procedure
and numerical values for the complete meson spectrum, see Refs. [26, 27]. Here, we are
only interested in π and η ground states because they are present in the decay channels
considered in this thesis and, in this case, the �t has to be done in a slightly di�erent
way.
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Table 2.2. Parameters of the model for mesons, according to Ref. [39]. The
constituent quark masses were not included in the �t, but kept �xed to the values
of Table 2.1.

Parameter Value

Con�nement
potential

o�set a(2) -1810 MeV

slope b(2) 2118 MeV fm−1

't Hooft's
Lagrangian

nn-coupling gnn 12.7 MeV fm3

ns-coupling gns 13.4 MeV fm3

e�ective range λ 0.3 fm

As we shall see in the next chapter, the matrix elements corresponding to strong
decays of baryons involve quark loop contributions in which baryon and meson am-
plitudes are connected through quark propagators. Consequently, in such calculations
at least the constituent quark masses mn and ms should be the same in both models.
According to the �ndings of Refs. [26, 27], however, this is unfortunately not the case:
The best �t found in their analysis of the meson spectrum was for constituent masses
mn = 306 MeV and ms = 503 MeV, below the values presented in Table 2.1. Therefore,
in former investigations of strong decays of baryons [37�39] the parameters of the model
for mesons were readjusted, keeping the constituent quark masses �xed to the values
of Table 2.1 and paying special attention to the correct description of the ground-state
pseudoscalar mesons. In Table 2.2 we present the results of this procedure, taken from
Ref. [39].

2.5.2 N and ∆ baryons

The results for the spectra of N and ∆ resonances, calculated within the framework
discussed here and with the parameters listed in Table 2.1, are shown in Figs. 2.3 and
2.4, respectively. These results were originally published in Ref. [29]; the theoretical
masses shown in the �gures slightly di�er from those of this reference, due to a di�erent
dimension of the �nite basis used to solve the Bethe-Salpeter equation as an eigenvalue
problem. In the �gures, the baryon states are placed in di�erent columns according to
their spin J , parity π and corresponding partial-wave L2I 2J in πN scattering, where I
denotes the isospin and L the orbital angular momentum. The theoretical predictions
for the position of the resonances in the spectrum are on the left side of each column
and the experimental masses and uncertainties, on the right side. In the cases where
the PDG does not give estimates to the experimental masses and uncertainties, we use
our own estimates based on the data available in their Review [2]. The position of
the states is indicated by a bar, while the experimental uncertainties are denoted by a
shaded box, which is darker for better established resonances. Additionally, the status
of each experimental state is given by stars, according to the notation and classi�cation
of the PDG.
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Figure 2.3. The calculated N spectrum (on the left of each column) in comparison to the experimental data from the Particle
Data Group [2] (on the right). The states are classi�ed by spin J , parity π and the corresponding partial-wave in πN scattering.
The excitation masses are indicated by a bar and the experimental uncertainties by a shaded box, which is darker for better
established states. The status of each resonance is additionally indicated by stars. The theoretical masses were calculated with
the parameters taken from Ref. [29] (cf. Table 2.1); the results presented above slightly di�er from those of this reference due to
a di�erent dimension of the basis used to solve the Bethe-Salpeter equation.
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Concerning the results for N resonances, the spectrum of Fig. 2.3 shows that the
present framework provides a very good description of the gross features observed in the
experimental spectrum. In the lower energy region for instance, there is a remarkable
agreement with the experimental mass-splittings between the negative-parity states
with masses from 1500 to 1700 MeV. In the positive-parity sector, in turn, the model
also accounts for the almost degenerate states around 1700 MeV, and even the low
position of the Roper N [1

2

+
](1440) is at least qualitatively well described. Recalling

that from the N spectrum only the ground-state N(939) was included in the �t, this
should be considered a success of the model.

In the high energy region of the N spectrum (M & 1800 MeV), one still �nds a
reasonable agreement with the data: The model predicts at least one theoretical state
for each one of the three- and four-star resonances, and in some cases the correspon-
dence between model and experiment is even one-to-one. However, the multiplicity of
theoretical states with higher masses becomes very large and leads to the problem of
missing resonances. As mentioned before, this is a feature common to all constituent
quark models in which the degrees of freedom are quark �elds q occurring in the �avors
f = u, d, s and with spin s = +1

2
,−1

2
. In this way, such models predict all the states

allowed by the symmetry SU(6) = SUf (3)⊗ SUs(2).
The same analysis for ∆ resonances, represented in the spectrum of Fig. 2.4, shows

that this sector of the spectrum is also quite well described. Noticeably, for each one
of the seven four-stars resonances the model predicts a corresponding theoretical state
and, except for the ∆[1

2

+
](1910, ∗ ∗ ∗∗), all the assignments are clearly one-to-one.

Moreover, the several even- and odd-parity bands are in general in good agreement
with the position of the experimental states, considering the experimental uncertainty.
Exceptions to this rule are however the negative-parity states from 1900 to 1940 MeV
and the positive-parity ∆[3

2

+
](1600), to which there are no obvious theoretical coun-

terparts. The same happens to the resonance ∆[1
2

+
](1750, ∗), although the existence

of this state is only poorly established. Finally, in the high energy region (M & 2000
MeV) of the ∆ spectrum, one again �nds a large multiplicity of theoretical states as
usually expected from constituent quark models.

After this short overview on the complete theoretical spectrum of N and ∆ baryons,
we turn to the results for low-lying resonances speci�cally. All these states are either
three- or four-stars resonances and for those there is always an one-to-one assignment
between theoretical predictions and experiment. As already mentioned, one exception
is the ∆[3

2

+
](1600) state, to which � together with the negative-parity ∆[1

2

−
](1900),

∆[3
2

−
](1940) and ∆[5

2

−
](1930) as well as the positive-parity ∆[1

2

+
](1750) � apparently

there is no theoretical state assignable.
In a recent study [61], Ronniger and Metsch addressed the problematic ∆ states

listed above. They pointed out that the poor description of these resonances in the
present framework can be improved by phenomenologically introducing a �avor-depen-
dent interaction which acts on the ∆ sector of the spectrum as well. In this study, they
showed that this additional residual interaction systematically improves the description
of the excited negative-parity ∆ resonances and, at the same time, gives a much better
description of the �rst radial excitations of the ground-states in each sector. Based on
their results, we thus associate the ∆[3

2

+
](1600) resonance to the �rst theoretical radial

excitation ∆[3
2

+
]1(1811).
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Table 2.3. Calculated positions of low-lying N and ∆ baryons (given in the last
column) in comparison to the experimental data from the Particle Data Group [2]
(PDG). The states are classi�ed by their spin J , parity π and the corresponding
partial-wave in πN scattering. The theoretical masses were calculated with the
parameters taken from Ref. [29] (cf. Table 2.1); the results below slightly di�er
from those of this reference due to a di�erent dimension of the basis used to solve
the Bethe-Salpeter equation.

L2I 2J Jπ
PDG

Quark Model
Label Status Mass range (MeV)

S11
1
2

− N(1535) **** 1525 - 1545 [N 1
2

−
]0(1441)

N(1650) **** 1645 - 1670 [N 1
2

−
]1(1669)

P11
1
2

+

N(939) **** 939 - 939 [N 1
2

+
]0(946)

N(1440) **** 1420 - 1470 [N 1
2

+
]1(1539)

N(1710) *** 1680 - 1740 [N 1
2

+
]2(1741)

P13
3
2

+
N(1720) **** 1700 - 1750 [N 3

2

+
]0(1689)

D13
3
2

− N(1520) **** 1515 - 1525 [N 3
2

−
]0(1471)

N(1700) *** 1650 - 1750 [N 3
2

−
]1(1609)

D15
5
2

−
N(1675) **** 1670 - 1680 [N 5

2

−
]0(1651)

F15
5
2

+
N(1680) **** 1680 - 1690 [N 5

2

+
]0(1715)

S31
1
2

−
∆(1620) **** 1600 - 1660 [∆1

2

−
]0(1654)

P33
3
2

+ ∆(1232) **** 1230 - 1234 [∆3
2

+
]0(1262)

∆(1600) *** 1500 - 1700 [∆1
2

+
]1(1811)

D33
3
2

−
∆(1700) **** 1670 - 1750 [∆3

2

−
]0(1628)

The calculated positions of low-lying N and ∆ baryons in the spectrum and the
corresponding experimental assignments are collected in Table 2.3, as well as the mass
uncertainties (or range) and the status of the experimental resonances. In addition,
the theoretical mass of the N(939) ground-state is also given there, as it participates
in the strong decay channels considered in the next chapter. According to the results
shown in the table, the calculated masses are in reasonable agreement with the data,
considering experimental uncertainties. For the majority of the states the deviation is
in general below 85 MeV, which is a good result in view of the typical values for the
widths of baryon resonances. The only exception is the aforementioned ∆[3

2

+
]1(1811),

whose position deviates from the experimental range by around 110 MeV.
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2.5.3 π and η mesons

For the sake of completeness, we compare in Fig. 2.5 the experimental spectra of π and
η mesons to the predicted spectra calculated with the parameters of Table 2.2. The
theoretical values shown in the �gure were taken from Ref. [39]. The spin J , parity
π and charge conjugation quantum number c of the states are given in each column
according to the notation Jπc. The representation of both theoretical and experimental
positions, as well as of experimental uncertainties, is the same as we used for baryon
resonances. In the resulting spectra, one observes that the calculated masses are in
general larger than the experimental values. This e�ect is due to reasons already ex-
plained in the text: Here, the constituent quark masses mn and specially ms are higher
than the values leading to the best �t of the meson spectrum. Nonetheless, a good de-
scription of the ground states, necessary for the calculation of strong decays of baryons
into πN , π∆ and ηN , could still be achieved. As shown in the picture, the calculated
values are

mRCQM
π = 139 MeV,

mRCQM
η = 503 MeV.

(2.128)

Figure 2.5. The calculated π and η spectra (on the left side of
each column) in comparison to the experimental values from the
Particle Data Group [2] (on the right). The theoretical masses
were taken from Ref. [39]. The spin J , parity π and charge conju-
gation quantum number c of the states are given in each column
according to the notation Jπc. The positions and experimental
uncertainties are denoted as in Fig. 2.3.
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Chapter 3

Strong two-body decays of baryons

3.1 Introduction

In the baryon spectrum at higher energies (M & 1800 MeV), the relativistic quark
model reviewed in Chapter 2 predicts many excitations for which no experimental
counterpart has been detected. These are the so-called missing resonances, common
to all constituent quark models on the basis of three quarks as degrees of freedom. As
pointed out e.g. by Capstick and Roberts [22], a possible explanation to the problem of
the missing states might be that these simply decouple from the strong decay channels
measured in π- or K-induced reactions.

To investigate this possibility, an extensive study of strong baryon decays has been
done in the framework of the quark model [39], and the results indeed show that miss-
ing states in general decouple from πN and KN , thus o�ering a natural solution to
the problem. However, despite the success in clarifying the matter, there are some
important issues demanding further investigation. Up to now, the strong decay widths
have been calculated only in lowest order of perturbation theory, and possibly due to
the neglect of important �nal state interactions in this approximation, the calculated
widths are in general too small in comparison to experimental data. Concerning this
matter, one still has to verify whether the inclusion of rescattering e�ects provides
su�cient strength to correct the calculated widths. On the other hand, the results in-
dicate that the contribution of coupled-channel e�ects might be very important too: as
we shall see in this chapter, some low-lying N and ∆ states with sizable experimental
partial decay widths into πN almost decouple from this channel theoretically, but at
the same time show substantial theoretical partial decay widths into π∆.

The main goal of this thesis is to provide a framework in which �nal state interac-
tions and coupled-channel e�ects can be taken into account. In a �rst study, however,
we shall not investigate missing resonances directly: as they occur at higher energies in
the spectrum, this would require the complete treatment of meson-baryon scattering
up to the highest inelastic channels. Instead, here we only consider strong decays of
low-lying N and ∆ resonances into πN , π∆ and ηN and investigate in how far the
inclusion of rescattering e�ects improves the description of the corresponding widths.
Accordingly, we dedicate this chapter to explain how strong baryon decays have been
investigated so far and give an overview of the results for strong decays of non-strange
resonances, focusing on the low-energy sector of the spectrum.

39
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In the following Section 3.2 we show a detailed derivation of decay matrix ele-
ments in the framework of the relativistic quark model. For this purpose, we apply the
Mandelstam formalism [47] in lowest order of perturbation theory, which introduces
no further parameters in the model and therefore leads to parameter-free predictions.
Next, in Section 3.3 we recall the basic formulae for two-body decay widths, calculated
from the matrix elements considered before, and then summarize the results for strong
decays of N - and ∆-baryons with special attention to low-energy states.

3.2 Strong decay matrix elements

In this section we consider the strong two-body decay

MR(Q̄, µQ̄)→M(P̄ , µP̄ ) +m(K̄, µK̄) (3.1)

of a initial baryon resonance with massMR into a �nal baryon and a meson with masses
M and m, respectively. In the center-of-mass frame, the corresponding four-momenta
variables Q̄, P̄ and K̄ are given by

Q̄ =


MR

0

0

0

 , P̄ =


ωP̄
0

0

|P|

 and K̄ =


ωK̄
0

0

−|P|

 , (3.2)

where the P denotes the relative three-momentum and

ωP̄ =
√

P2 +M2 and ωK̄ =
√

P2 +m2 (3.3)

are the on-shell energies of the outgoing states. The variables µQ̄, µP̄ and µK̄ represent
additional quantum numbers necessary to label the states, such as helicities and isospin
projections, and are explicitly written only when needed. In the following we apply the
Mandelstam formalism [47] in lowest order of perturbation theory in order to extract
the corresponding decay matrix element

〈P̄ K̄|Q̄〉 (3.4)

from the eight-point Green's function

G(8)(x1,x2, x3, y1, y2, z1, z2, z3) :=

− 〈Ω|TΨ1(x1)Ψ2(x2)Ψ3(x3)Ψq(y1)Ψ̄q̄(y2)Ψ̄1
′
(z1)Ψ̄2

′
(z2)Ψ̄3

′
(z3)|Ω〉,

(3.5)

both de�ned in the Heisenberg picture. Here, the superscripts i = 1, 2, 3 (i′ = 1′, 2′, 3′)
label the constituent quarks in the �nal (initial) baryon state and the superscripts q̄
and q label the quark-antiquark pair in the meson.

To proceed, we recall that the momentum eigenstates |Q̄〉 and |P̄ K̄〉 ≡ |P̄ 〉 ⊗ |K̄〉
correspond to on-shell, asymptotic states. Therefore, it is meaningful to consider in
particular

x0
1, x

0
2, x

0
3, y

0
1, y

0
2 → +∞ and z0

1 , z
0
2 , z

0
3 → −∞ (3.6)
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for the time-ordering in the Green's function G(8) since we want to isolate the 〈P̄ K̄|Q̄〉
contribution. Moreover, we here neglect rescattering e�ects completely, by assuming
that after the meson creation the quarks con�ned in the �nal baryon do not interact
with those con�ned in the meson. Based on these arguments, we obtain

G(8)(x1, x2, x3, y1, y2, z1, z2, z3) =

− 〈Ω|
[
TΨ1(x1)Ψ2(x2)Ψ3(x3)

][
TΨq(y1)Ψ̄q̄(y2)

][
T Ψ̄1

′
(z1)Ψ̄2

′
(z2)Ψ̄3

′
(z3)

]
|Ω〉

+ other time-orderings.

(3.7)

Finally, the contribution of 〈P̄ K̄|Q̄〉 can then be isolated by inserting complete sets
of momentum eigenstates between the time-ordered products in Eq. (3.7). In this way,

G(8)(x1, x2, x3, y1,y2, z1, z2, z3) =

−
∫

d3 P̄

(2π)3

d3 K̄

(2π)3

d3 Q̄

(2π)3

1

8ωQ̄ωP̄ωK̄

× [χP̄ (x1, x2, x3)⊗ χK̄(y1, y2)] 〈P̄ K̄|Q̄〉χ̄Q̄(z1, z2, z3)

+ other decay processes,

(3.8)

where we employed the de�nitions of the Bethe-Salpeter amplitudes and their adjoints,
given by Eqs. (2.16) and (2.17) for mesons and Eqs. (2.69) and (2.70) for baryons.

3.2.1 The current interaction kernel

To describe the interactions leading to strong decays in our framework we de�ne a
current interaction kernel K(4) according to the integral equation

G(8)(x1, x2, x3, y1,y2, z1, z2, z3) =∫
d4 x′1 d4 x′2 d4 x′3 d4 y′1 d4 y′2 d4 z′1 d4 z′2 d4 z′3

×G(10)(x1, x2, x3, y1, y2, x
′
1, x
′
2, x
′
3, y
′
1, y
′
2)

×K(4)(x′1, x
′
2, x
′
3, y
′
1, y
′
2, z
′
1, z
′
2, z
′
3)

×G(6)(z′1, z
′
2, z
′
3, z1, z2, z3),

(3.9)

where we introduced the ten-point Green's function

G(10)(x1, x2, x3, y1, y2, x
′
1, x
′
2,x
′
3, y
′
1, y
′
2) :=

−〈Ω|T Ψ1(x1)Ψ2(x2)Ψ3(x3)Ψq(y1)Ψ̄q̄(y2)

× Ψ̄1(x′1)Ψ̄2(x′2)Ψ̄3(x′3)Ψq̄(y′2)Ψ̄q(y′1)|Ω〉.
(3.10)
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Since �nal state interactions are completely neglected here, the ten-point function
G(10) separates into the tensor product G(6) ⊗G(4), such that

G(8)(x1, x2, x3, y1,y2, z1, z2, z3) ≈∫
d4 x′1 d4 x′2 d4 x′3 d4 y′1 d4 y′2 d4 z′1 d4 z′2 d4 z′3

×G(6)(x1, x2, x3, x
′
1, x
′
2, x
′
3)⊗G(4)(y1, y2, y

′
1, y
′
2)

×K(4)(x′1, x
′
2, x
′
3, y
′
1, y
′
2, z
′
1, z
′
2, z
′
3)

×G(6)(z′1, z
′
2, z
′
3, z1, z2, z3).

(3.11)

To �nd a relation between the matrix element 〈P̄ K̄|Q̄〉 and the kernel K(4), we now
assume the same time-dependence of Eq. (3.6) for all Green's functions in Eq. (3.11)
and then introduce complete sets of momentum eigenstates. In this way, we obtain

G(8)(x1, x2, x3, y1, y2, z1, z2, z3) ≈

−
∫

d3 P̄

(2π)3

d3 K̄

(2π)3

d3 Q̄

(2π)3

1

8ωQ̄ωP̄ωK̄
[χP̄ (x1, x2, x3)⊗ χK̄(y1, y2)]

×
∫

d4 x′1 d4 x′2 d4 x′3 d4 y′1 d4 y′2 d4 z′1 d4 z′2 d4 z′3

×
[
χ̄P̄ (x′1, x

′
2, x
′
3)⊗ χ̄K̄(y′1, y

′
2)
]

×K(4)(x′1, x
′
2, x
′
3, y
′
1, y
′
2, z
′
1, z
′
2, z
′
3)

×
[
χ̄Q̄(z′1, z

′
2, z
′
3)χQ̄(z1, z2, z3)

]
+ other decay processes,

(3.12)

where we again use the de�nitions of the Bethe-Salpeter amplitudes, as well as the
de�nitions of the four- and six-point Green's functions, given by Eqs. (2.1) and (2.47)
respectively. Finally, from the comparison between Eqs. (3.8) and (3.12), it follows
that the decay matrix element is given in terms of the current kernel according to

〈P̄ K̄|Q̄〉 ≈
∫

d4 x1 d4 x2 d4 x3 d4 y1 d4 y2 d4 z1 d4 z2 d4 z3

× χ̄P̄ (x1, x2, x3)⊗ χ̄K̄(y1, y2)

×K(4)(x1, x2, x3, y1, y2, z1, z2, z3)

× χQ̄(z1, z2, z3).

(3.13)

3.2.2 Model interactions

For the sake of consistency, both baryon spectra and strong decays should be described
by the same interactions in the same order of perturbation theory. Assuming that the
con�nement potential plays no role in decays, this means that in our framework the
kernel K(4) has to be parametrized by e�ective instanton interactions up to �rst order
in the couplings g

(2)
e� ≡ gnn, gns and g

(3)
e� of the 't Hooft's Lagrangian (cf. Section 2.4).

Thus, expanding both sides of Eq. (3.11) in the 't Hooft's couplings, applying Wick's
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theorem and �nally collecting terms up O(g
(2,3)
e� ), we obtain two contributions. Firstly,

zeroth order quark loops, given explicitly by

K
(4)
0 (x1,x2, x3, y1, y2, z1, z2, z3)

= S1
F
−1

(x1, z1)⊗ S2
F
−1

(x2, z2)⊗ S q̄F
−1

(x3, y2)⊗ SqF
−1(y1, z3)

+ S2
F
−1

(x2, z2)⊗ S3
F
−1

(x3, z3)⊗ S q̄F
−1

(x1, y2)⊗ SqF
−1(y1, z1)

+ S3
F
−1

(x3, z3)⊗ S1
F
−1

(x1, z1)⊗ S q̄F
−1

(x2, y2)⊗ SqF
−1(y1, z2),

(3.14)

and represented by the diagram of Fig. 3.1a, as well as three-body forces induced by
instantons, as depicted in Fig. 3.1b. Up to �rst order no further terms contribute, since
all other possible two- and three-particle instanton diagrams can be reabsorbed into
the integral equation for the Bethe-Salpeter amplitudes appearing in Eq. (3.13).

Unfortunately, as shown in Ref. [39] the numerical implementation of instanton
three-body forces in strong baryon decays turns out to be much involved and not fea-
sible with a reasonable e�ort. In this respect however, we note that instantons would
e�ectively contribute to very few decays only, due to the occurrence of the totally anti-
symmetric �avor-projector PfA in the Lagrangian of Eq. (2.127). Among decays into
πN , π∆ and ηN , i.e. the channels considered in this thesis, only the latter would be
a�ected. For this reason, the current kernel is here approximated by quark loops only,
such that the strong decay matrix element is given by

〈P̄ K̄|Q̄〉 ≈
∫

d4 x1 d4 x2 d4 x3 d4 y1 d4 y2 d4 z1 d4 z2 d4 z3

× χ̄P̄ (x1, x2, x3)
[
S1
F
−1

(x1, z1)⊗ S2
F
−1

(x2, z2)
]

⊗
[
S q̄F
−1

(x3, y2)χ̄K̄(y1, y2)SqF
−1(y1, z3)

]
× χQ̄(z1, z2, z3)

+ meson couplings to quarks 1 and 2.

(3.15)

χ̄P̄

χQ̄

χ̄K̄

(a) Quark-Loops.

χ̄P̄

χQ̄

χ̄K̄

g
(3)

e�

(b) Instanton induced decay.

Figure 3.1. Perturbative contributions to the decay matrix element 〈P̄ K̄|Q̄〉.
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3.2.3 Approximations and reduction

Having de�ned the phenomenological interactions contributing to strong baryon decays,
we now evaluate Eq. (3.15) in the same instantaneous approximation and free-quark
parametrization as discussed in Section 2.3.4. Therefore, it is clear that the full propa-
gators in Eq. (3.15) will be replaced by free e�ective propagators; we shortly comment
on this subject later in this section. Concerning the interaction kernels, recall from
Section 2.3.4 that in our framework we evaluate the Salpeter amplitudes only, whereas
Eq. (3.15) is written in terms of the full Bethe-Salpeter amplitudes. Accordingly, we
now need a relation between both.

In the case of mesons it is straightforward to derive such a relation directly from
the two-body Bethe-Salpeter equation. To see this, note that the quantity

ΓK̄(k) :=
[
SqF
−1
(
K̄
2

+ k
)
⊗ S q̄F

−1
(
− K̄

2
+ k
)]
χK̄(k), (3.16)

called vertex function or amputated Bethe-Salpeter amplitude, is calculated
from the Salpeter amplitude in the rest frame of the meson. Indeed, from the Bethe-
Salpeter equation (2.33) evaluated in instantaneous approximation and the de�nition
(2.37) of the two-body Salpeter amplitudes, one easily shows that

Γm(k) = −i
∫

d3 k′

(2π)3V
(2)(k,k′)Φ(k′) ≡ Γm(k) (3.17)

in the rest frame. Moreover, vertex functions are relativistically covariant by de�nition
(cf. Eq. (3.16)) and therefore can be evaluated in any reference system by an appro-
priate Lorentz transformation. This is of course crucial for calculations of observables
involving multiple hadron states, such as strong decay widths.

Turning to the case of baryons, the connection between Bethe-Salpeter and Salpeter
amplitudes is not that obvious. Due to the retardation e�ects in three-quark systems
as discussed in Section 2.3.4, only the projected part of the Salpeter amplitudes in Born
approximation is evaluated in our framework. Therefore, an explicit relation between
the three-body vertex function

ΓP̄ (pξ, pη) :=S1
F
−1 (1

3
P̄ + pξ + 1

2
pη
)
⊗ S2

F
−1 (1

3
P̄ − pξ + 1

2
pη
)

⊗S3
F
−1 (1

3
P̄ − pη

)
χP̄ (pξ, pη)

(3.18)

and three-body Salpeter amplitudes requires a lengthy and careful derivation. This
has been carried out in Ref. [32], leading to the result

ΓM(pξ, pη) ≈ −i
∫

d3 p′ξ

(2π)3

d3 p′η

(2π)3

[
V

(3)
Λ + V e�

M

(1)
]

(pξ,pη,p
′
ξ,p

′
η)Φ

(1)
Λ (p′ξ,p

′
η)

≡ ΓM(pξ,pη),

(3.19)

where the superscripts in V e�
M and ΦΛ indicate that these quantities are evaluated by

including up to the leading Born term only.
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From the discussion above, it follows that vertex functions are the appropriate
quantities to express 〈P̄ K̄|Q̄〉, since they can be evaluated from Salpeter amplitudes
in the rest frame of the corresponding meson or baryon state and then boosted to the
rest frame of the decaying resonance. We thus write Eq. (3.15) in terms of the vertex
functions de�ned in (3.16) and (3.18) and the corresponding adjoints, arriving at

〈P̄ K̄|Q̄〉 ≈ 3

∫
d4 pξ

(2π)4

d4 pη

(2π)4

× (2π)4δ(4)(P̄ + K̄ − Q̄)Γ̄P̄
(
pξ, pη + 2

3
K̄
)

× S1
F

(
1
3
MR + pξ + 1

2
pη
)
⊗ S2

F

(
1
3
MR − pξ + 1

2
pη
)

⊗ S q̄F
(

1
3
MR + pη − K̄

)
Γ̄K̄
(

1
3
MR − pη − 1

2
K̄
)

⊗ SqF
(

1
3
MR − pη

)
ΓMR

(pξ, pη),

(3.20)

where we employed the Fourier-transforms and Jacobi coordinates de�ned in Sections
2.2 and 2.3. The result above is our �nal expression for strong decay matrix elements,
and the only step left is to substitute the full propagators by their e�ective free-quark
parameterizations and then solve the integral numerically. Details on this procedure
can be found in Refs. [39, 62]. As we see from Eq. (3.20), the formalism applied here
leads to no further parameters other than those listed in Tables 2.1 and 2.2, allowing
for the calculation of strong decay matrix elements from the same parameters adjusted
to hadronic spectra this way. In this sense, the resulting decay widths are predictions
of the model.

Before proceeding further, an important remark concerning the matrix elements in
(3.20) and the use of these quantities in the next chapters is in order. As a matter
of fact, Eq. (3.20) allows for the determination of the magnitude of 〈P̄ K̄|Q̄〉 but not
of its absolute sign. This results from the fact that the eigenvalue Salpeter equations
(2.45) and (2.109) determine Salpeter amplitudes up to a phase only, and it also holds
for vertex functions as these are obtained from the former according to Eqs. (3.17)
and (3.19). Although irrelevant for the calculation of lowest-order decay widths (see
the formulae in Section 3.3), the relative sign of matrix elements corresponding to de-
cays into di�erent channels plays an important role in the investigation of �nal state
interactions. This point shall be further clari�ed later in Section 4.4.

3.3 Strong decay widths of non-strange baryons

Below we summarize the main �ndings of Ref. [39] concerning strong two-body decays
of non-strange baryons into πN , π∆ and ηN . Before presenting the results, we shortly
review the basic formulae for the calculation of two-body decay widths.

3.3.1 Two-body decay widths

The di�erential decay width related to two-body decays is calculated according to the
standard formula:

d ΓP̄ K̄←Q̄ = (2π)4δ(4)(P̄ + K̄ − Q̄)
1

2MR

d3 P̄

(2π)32ωP̄

d3 K̄

(2π)32ωK̄
|γP̄ K̄←Q̄|2, (3.21)
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see e.g. the textbook [63], where the decay amplitude γP̄ K̄←Q̄ is related to the matrix
element 〈P̄ K̄|Q̄〉 by

〈P̄ K̄|Q̄〉 =: (2π)4δ(4)(P̄ + K̄ − Q̄)γP̄ K̄←Q̄. (3.22)

The total decay width in turn is easily obtained from these expressions by considering
the kinematics of the center-of-mass frame (cf. Eq. (3.2)) and integrating both sides of
Eq. (3.21). In this way,

ΓP̄ K̄←Q̄ =
|P|

8πM2
R

|γP̄ K̄←Q̄|2. (3.23)

In the calculations of Ref. [39] only unpolarized widths have been considered, and
therefore we now have to carry out sums and averages over the possible initial and
�nal helicity states. The same applies for isospin projections, since isospin symmetry
is considered to be exact in the relativistic quark model. Hence, following the notation
of Eq. (3.1) we obtain

ΓP̄ K̄←Q̄ =
|P|

8πM2
R

1

2J + 1

1

2I + 1

∑
µQ̄, µP̄ , µK̄

|γP̄ K̄←Q̄(µQ̄, µP̄ , µK̄)|2, (3.24)

where J denotes the spin of the decaying resonance and I represents its isospin.

3.3.2 N and ∆ baryons

Concerning the calculation of strong decays of non-strange baryons in general, the
�ndings of Ref. [39] can be summarized as follows:

• Firstly, the theoretical πN -decay widths fall into three categories: Those which
represent a substantial fraction of the experimental value, those which are too
small but still clearly �nite, and �nally those which vanish numerically (i.e. are
by several orders of magnitude smaller than 1 MeV). All resonances with decay
widths belonging to the �rst and second categories have indeed been observed
experimentally.

• Moreover, clear selection rules for decays into ground-state baryons under emis-
sion of a pseudoscalar meson have been observed: N resonances preferably decay
into πN and π∆ and rarely decay into ηN (but recall that the latter would
be a�ected by instantons); ∆ resonances in turn mostly decay into π∆ and η∆
and occasionally into πN . In both cases, strangeness production channels are in
general suppressed.

• Despite the qualitative description of experimental data, even the non-vanishing
decay widths are generally too small when compared to experimental data. How-
ever, decay widths for the missing resonances are usually smaller by several orders
of magnitude.
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According to these results, the framework does o�er a solution to the problem of
the missing resonances, as such states simply decouple from πN . To illustrate this fact,
we again present the spectra of N and ∆ baryons in Figs. 3.2 and 3.3 with a slightly
di�erent emphasis. Based on the results and the notation of Ref. [39], we denote by
dashed lines those resonances which decouple from πN and by full lines the states
whose πN -decay widths are at least in qualitative agreement with the experimental
values. In these �gures, we clearly see that the results provide an explanation to the
missing resonances, and in addition allow for many unique assignments between theo-
retical and experimental states which would not have been possible based on the mass
spectra alone.

Nevertheless, we still have to understand why the calculated decay widths tend
to be smaller than the experimental value. Larger discrepancies are mostly found for
high-energy states, but even for low-lying states a quantitative description of decay
widths could not be achieved. To further investigate this topic, from now on we focus
on strong decays of low-lying N and ∆ baryons (whose masses were listed in Table
2.3) into πN , π∆ and ηN . Decays into KΛ and KΣ will not be considered here, as
strangeness production was found to be negligible [39].

The calculated decay widths into the channels of interest in comparison to the
experimental data are given in Table 3.1. The theoretical values shown in the table
slightly di�er from those of Ref. [39], due to a di�erent dimension of the basis used to
solve the Bethe-Salpeter equation for the initial and �nal baryon states. Concerning
the empirical data, it should be mentioned that the values quoted as experimental are
estimates of the Particle Data Group for total (Breit-Wigner) widths multiplied by
branching ratios, considering experimental uncertainties.

The values presented in the table show a reasonable description of πN and π∆
decays for most low-lying states, albeit with calculated widths in general below or
at best very close to the lower experimental limit. An exception is the N [3

2

−
](1700),

which theoretically decouples from πN . Interestingly, the calculated π∆-decay width
for this resonance is relatively large, indicating that coupled-channel rescattering ef-
fects might provide a �nite value for the πN width. The calculated ηN widths, on the
other hand, do not describe the data and most resonances simply decouple from this
channel. For most of the states this might be a consequence of neglecting instanton
three-body contributions to strong decays, which could contribute to the ηN chan-
nel speci�cally. In this respect, however, we note that the theoretical N [1

2

−
]0(1441)

state, which corresponds to the experimental N [1
2

−
](1535), lies below the theoretical

ηN threshold (ωηNthr = 1448 MeV, c.f. Table 2.3 and Eq. (2.128)) and in any case would
not couple to this channel in the present framework.
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Table 3.1. Strong decay widths of low-lying N and ∆ baryons into πN , π∆ and
ηN . The quark-model predictions (Q.M.) are compared to the estimates from
the Particle Data Group [2] (PDG). A long dash (��) indicates that the decay is
kinematically forbidden. The theoretical values below slightly di�er from those of
Ref. [39] due to a di�erent dimension of the basis used to solve the Bethe-Salpeter
equation for the initial and �nal baryon states.

L2I 2J Jπ Label
ΓπN (MeV) Γπ∆ (MeV) ΓηN (MeV)

Q.M. PDG Q.M. PDG Q.M. PDG

S11
1
2

− N(1535) 32 44 � 97 0 0 � 2 �� 40 � 91

N(1650) 3 60 � 162 5 0 � 45 0 6 � 27

P11
1
2

+ N(1440) 38 110 � 338 33 40 � 135 0 0 � 5

N(1710) 5 3 � 50 44 8 � 100 4 5 � 75

P13
3
2

+
N(1720) 14 12 � 56 2 90 � 360 0 5 � 20

D13
3
2

− N(1520) 35 55 � 81 58 15 � 31 0 0

N(1700) 0 7 � 43 104 10 � 225, S-wave
< 50, D-wave

1 0 � 3

D15
5
2

−
N(1675) 3 46 � 74 35 65 � 99 6 0 � 2

F15
5
2

+
N(1680) 35 78 � 98 5 6 � 21 3 0 � 1

S31
1
2

−
∆(1620) 4 26 � 45 73 39 � 90

isospin
violation

P33
3
2

+ ∆(1232) 63 114 � 120 �� ��

∆(1600) 15 22 � 105 3 88 � 294

D33
3
2

−
∆(1700) 2 20 � 80 53 60 � 240



Chapter 4

Baryon resonances in scattering

theory

4.1 Introduction

In the model of Chapter 2 baryon resonances were described as relativistic bound states
of three constituent quarks, whose masses correspond to simple poles of the six-point
Green's function in the total energy variable of the three-fermion system. Theoretical
masses de�ned this way were compared to experimental estimates for Breit-Wigner
masses, providing a good description of the light-baryon spectrum. So far, however,
we have not discussed the relation between poles of the six-point Green's function
and Breit-Wigner masses at all: As we shall eventually see in this chapter, both mass
parameters are only equivalent if non-resonant contributions to baryon properties are
completely neglected, which is the case in our constituent quark model.

Subsequently, in Chapter 3 the same framework was used in the description of
strong two-body decays of baryons. The corresponding decay widths were evaluated
in lowest order of perturbation theory, thus disregarding (non-resonant) rescattering
e�ects as well, with the same parameter set �tted to hadronic spectra. Unfortunately,
in contrast to the good results for baryon masses, the theoretical strong decay widths
turn out to be too small in comparison to data, suggesting that non-resonant contri-
butions possibly lead to sizable corrections in strong decays. In view of this situation,
the question arises how to include �nal state rescattering in strong decays and, at the
same time, still have a meaningful interpretation of the baryon masses calculated in
the approach.

Ultimately the properties of baryon resonances such as masses and strong decay
widths should be inferred from a genuine description based on the fundamental prin-
ciples of scattering theory. According to this latter, unstable hadrons are related to
simple poles appearing in unphysical Riemann sheets of analytic hadronic amplitudes,
which respect at least two-body unitarity and, while describing strong interacting sys-
tems in processes with an appreciable momentum transfer, full Poincaré invariance
as well. Breit-Wigner masses and widths in turn are only de�ned from the analytic
behavior of the amplitudes in the vicinity of these poles. That said, it is clear that
a study of scattering at the hadronic level provides both a framework to include �nal

51
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state interactions consistently and, in the presence of these, the correct interpretation
of the baryon masses as de�ned in the quark model.

The aim of this chapter is therefore to review some aspects of scattering theory
applied to the case of meson-baryon systems, and thereby investigate how baryon
properties emerge from this context. In addition, the contents below provide the ba-
sic formulae for Chapters 5 and 6, where we implement a hadronic coupled-channel
model for πN , π∆ and ηN scattering and then account for �nal state interactions in
the decays into these channels. To introduce the notation and the normalization, we
start Section 4.2 with an overview of two-body kinematics and relativistic amplitudes.
Furthermore, based on the helicity formalism of Jacob and Wick [64], we present the
implications of Poincaré invariance for meson-baryon systems, which in particular leads
to partial-wave expansions for the transition amplitudes. After this, we �nish Section
4.2 with some additional constraints imposed by unitarity.

As discussed in Chapter 2, the investigation of resonant states always demands the
use of non-perturbative methods which iteratively generate an in�nite sum of Feynman
diagrams. We therefore introduce in Section 4.3 the fundamental scattering equation,
i.e. the Bethe-Salpeter equation for a meson-baryon system, and explain the method
and the approximations we employ here to solve it. We speci�cally consider the scatter-
ing equation in on-shell approximation, since all quark-model quantities are de�ned on
the mass-shell, include lowest-order (tree-level) diagrams in the interaction kernel only,
and �nally introduce a commonly used decomposition into resonant and non-resonant
terms in order to relate quark-model quantities and non-resonant hadronic contribu-
tions. For further discussion on the latter method, see for instance Ref. [65]. Based on
such a decomposition of the scattering equation, we close this chapter in Section 4.4
with the interpretation of baryon properties as de�ned in the relativistic quark model
and the relation of these quantities to meson-baryon amplitudes, �nally establishing
the method to account for �nal state interactions in strong baryon decays this way.

4.2 Meson-baryon relativistic amplitudes

In the following we consider the meson-baryon scattering process

M(p, µ1) +m(k, µ2) −→M ′(p′, µ′1) +m′(k′, µ′2), (4.1)

where M and m are the masses of the initial baryon and meson states,

p =

(
ωp

p

)
with ωp =

√
M2 + |p|2 (4.2)

and

k =

(
ωk

k

)
with ωk =

√
m2 + |k|2 (4.3)

denote the on-shell four-momenta of these hadrons, and primed variables refer to the
same quantities for particles in the �nal state. The variables µi and µ

′
i represent the

helicity of the states, and for shortness we also introduce the initial and �nal helicity
labels

λ := µ1 − µ2 and λ′ := µ′1 − µ′2. (4.4)
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In the notation above, the extension to coupled-channel scattering is as follows: It is
then understood that λ and λ′ label the charge states (or isospin) as well. For instance
for the scattering investigated in Chapter 5 we would have

λ, λ′ ∈
{

(πN)±1/2 , (π∆)±1/2 , (π∆)±3/2 , (ηN)±1/2

}
. (4.5)

4.2.1 Kinematics in the center-of-mass frame

A natural reference system for two-body scattering is the center-of-mass frame, where

p + k = p′ + k′ = 0 (4.6)

and for the total four-momentum

P = p+ k = p′ + k′ ≡

(
ω

0

)
(4.7)

holds, where we introduced the total energy (or invariant mass)

ω := ωp + ωk = ωp′ + ωk′ . (4.8)

From the equations above one shows that in the center-of-mass frame the four-momenta
of the initial particles can be written as

p =

(
ωp

|p|R(Ω)êz

)
and k =

(
ωk

−|p|R(Ω)êz

)
, (4.9)

the on-shell energies as

ωp =
ω2 +M2 −m2

2ω
and ωk =

ω2 −M2 +m2

2ω
= ω − ωp, (4.10)

and �nally the absolute value of the three-momenta as

|p| = |k| = 1

2ω

√[
ω2 − (M +m)2] [ω2 − (M −m)2] , (4.11)

with similar relations for the primed variables. In our notation, Ω = (θ, φ) denotes the
direction of p, êz is the unit vector in the z-direction and R(Ω) ∈ SO(3) is the rotation
matrix which takes the z-axis into the direction of p. In the phase convention of Jacob
and Wick [64] the matrix R(Ω) is explicitly given by

R(Ω) = Rz(φ)Ry(θ)Rz(−φ), (4.12)

where Ri(α) represents a rotation through angle α about the i-axis.
Finally, for practical calculations one usually chooses the coordinate system such

that the initial three-momentum p is parallel to the z-axis, whereas the reaction plane
coincides with the y = 0 plane. This is equivalent to the choice

φ = φ′
!

= 0, θ
!

= 0 and θ′ ≡ θ̄, (4.13)

where θ̄ is the scattering angle de�ned by

p̂ · p̂′ =: cos θ̄. (4.14)
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4.2.2 Scattering and transition amplitudes

The probability amplitude for the scattering reaction of Eq. (4.1) is given by the matrix
element

Sfi := 〈f |S|i〉 (4.15)

of the scattering operator S between the initial and �nal states

|i〉 = |p , µ1〉 ⊗ |k , µ2〉 and |f〉 = |p′, µ′1〉 ⊗ |k′, µ′2〉. (4.16)

For coupled-channel scattering and processes involving particles with spin, S is de�ned
by its matrix elements between all possible initial and �nal states and in this form
is called the S-matrix. In order to separate the trivial contribution to the amplitude
Sfi where no interaction takes place, we also introduce the transition operator T ,
de�ned by its matrix elements

Tfi := 〈f |T |i〉 (4.17)

and related to S by
S = I + iT, (4.18)

where I represents the identity operator.
Now, one should note that the two-body states de�ned in Eq. (4.16) correspond to

asymptotic, non-interacting momentum eigenstates, whose normalization

〈f |i〉 = 4ωpωk(2π)6δ(3)
(
p′ − p

)
δ(3)

(
k′ − k

)
δλ′λ (4.19)

follows from the normalization of single-particle momentum eigenstates, cf. Eq. (2.14).
In the center-of-mass frame one may employ the variable transformation

ωpωkδ
(3)
(
p′ − p

)
δ(3)

(
k′ − k

)
=

ω√
|p||p′|

δ(4)
(
P ′ − P

)
δ(2)

(
Ω′ − Ω

)
, (4.20)

see e.g. Eq. (3.80) of Ref. [66], to show that (4.19) is equivalent to

〈f |i〉 =
16π2ω√
|p||p′|

(2π)4δ(4)
(
P ′ − P

)
δ(2)

(
Ω′ − Ω

)
δλ′λ. (4.21)

Consequently, the initial and �nal two-body states can be denoted as

|i〉 = 4π

√
ω

|p |
|P 〉 ⊗ |Ω , λ 〉 and |f〉 = 4π

√
ω

|p′|
|P ′〉 ⊗ |Ω′, λ′〉, (4.22)

where |P 〉 are eigenstates of total four-momenta, normalized as

〈P ′|P 〉 = (2π)4δ(4)(P ′ − P ), (4.23)

and |Ω, λ〉 describe the full angular dependence and total helicity of the meson-baryon
states. These latter are normalized according to

〈Ω′, λ′|Ω, λ〉 = δ(2)(Ω′ − Ω)δλ′λ. (4.24)

The representations in Eq. (4.22) are in fact the most appropriate for two-body states:
Firstly, because the trivial dependence on total four-momentum factorizes, reducing
the number of variables in the problem. Moreover, as we shall see in the next section,
states |Ω, λ〉 can be expanded in terms of angular momentum eigenstates, allowing for
partial-wave analyses of the transition amplitudes.
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4.2.3 Invariance under Poincaré transformations

Due to the symmetries ful�lled by strong interactions the various amplitudes related
to coupled-channel scattering are not mutually independent but constrained by invari-
ance properties. Some of these properties result from the fact that probability cannot
depend on the choice of reference frame and are therefore common to all interactions
observed in nature. These include invariance under translations and (proper) Lorentz
transformations, where the latter include both Lorentz boosts and rotations. In the
particular case of strong interactions all the symmetries of the full Poincaré group are
respected, i.e. including parity and time-reversal transformations as well. Since the ap-
plication of invariance principles greatly reduces the number of amplitudes necessary
to describe the full scattering matrix, in this section we investigate the implications of
Poincaré invariance for meson-baryon systems.

Translational invariance

As a consequence of translational invariance the scattering and transition operators
commute with the total four-momentum operator, i.e.

[S, P ] = [T, P ] = 0. (4.25)

For this reason, it is customary to introduce the invariant transition amplitudes
Tλ

′
λ, which are related to Tfi according to

Tfi =: (2π)4δ(4)(P ′ − P )Tλ′λ
(
p′, p

)
. (4.26)

In the center-of-mass frame an explicit expression for Tλ′λ may be derived by inserting
the representations (4.22) for the states |i〉 and |f〉 into the de�nition (4.17) for Tfi,
and then applying the invariance property (4.25). This procedure leads to

Tλ′λ
(
p′, p

) ∣∣∣∣
P=(ω,0)

≡ Tλ′λ
(
ω,Ω′,Ω

)
=

16π2ω√
|p||p′|

〈Ω′, λ′|T (ω)|Ω, λ〉, (4.27)

where we employed the normalization (4.23) of the states |P 〉 and the fact that |p| and
|p′| are merely functions of ω, see Eq. (4.11).

Invariance under (proper) Lorentz transformations

Lorentz invariance implies that scattering and transition amplitudes depend on Lorentz
scalars only. Hence, apart from tensorial products related to the internal quantum
numbers of scattering particles (see e.g. Eqs. (5.1), (5.2) and (5.3)), all other functions
describing the amplitudes should depend on scalar combinations of the four-momenta
involved in the process. Due to four-momentum conservation and the mass-shell con-
dition of scattering states, there are only two possible independent scalar combinations
in two-body scattering. These are commonly chosen among the Mandelstam variables

s =
(
p+ k

)2
, t =

(
p− p′

)2
and u =

(
p− k′

)2
(4.28)

which are related by

s+ t+ u = M2 +M ′2 +m2 +m′
2
. (4.29)
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Now, due to Eqs. (4.28) and (4.29), the kinematic variables in any reference system
can always be expressed in terms of Mandelstam invariants. This allows us to choose a
particular reference frame to evaluate the amplitudes Tλ′λ and further investigate their
invariance properties. For the sake of simplicity we choose the center-of-mass frame,
where the Mandelstam variable s is related to the total energy of the system by

s = ω2 (4.30)

while the other two variables can be written as

t = M2 +M ′2 − 2ωpωp′ + 2|p||p′| cos θ̄ (4.31)

and
u = m2 +m′

2 − s+ 2ωpωp′ − 2|p||p′| cos θ̄, (4.32)

according to the kinematics de�ned in Section 4.2.1.

Rotational invariance

The spherical states |Ω, λ〉 appearing in Eq. (4.27) describe the angular dependence
and total helicity of meson-baryon systems. As such, these states cannot be angular
momentum eigenstates, but admit any total angular momentum J = (Jx, Jy, Jz) in the
range

|j1 − j2| ≤ |J| ≤ |j1 + j2| (4.33)

de�ned by the total angular momenta j1 and j2 of the single baryon and meson states.
Nevertheless, due to the property (4.33) we can expand |Ω, λ〉 in terms of a complete
set of angular momentum eigenstates

|JMJ , λ〉, (4.34)

which are de�ned by the properties

J2|JMJ , λ〉 = J(J + 1)|JMJ , λ〉
Jz|JMJ , λ〉 = MJ |JMJ , λ〉

(4.35)

and normalized as
〈J ′M ′

J , λ|JMJ , λ〉 = δJ ′JδM ′JMJ
. (4.36)

Because the normalization of |Ω, λ〉 and |JMJ , λ〉 is given by Eqs. (4.24) and (4.36)
respectively, as shown in Ref. [66] this expansion reads:

|Ω, λ〉 =
∑
J,MJ

√
2J + 1

4π
DJ
MJλ

(φ, θ,−φ)|JMJ , λ〉, (4.37)

where
DJ
M
′
JMJ

(α, β, γ) := 〈JM ′
J , λ

′|R(α, β, γ)|JMJ , λ〉

= e−iM
′
Jα〈JM ′

J , λ
′|e−iβJy |JMJ , λ〉(β)e−iMJγ

=: e−iM
′
JαdJ

M
′
JMJ

(β)e−iMJγ

(4.38)

denote the usual Wigner rotation matrices.
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Using the expansion in Eq. (4.37) we are now able to investigate the consequences
of rotational invariance, i.e.

[S,J] = [T,J] = 0, (4.39)

for the invariant amplitudes Tλ′λ. For this we replace the states |Ω, λ〉 appearing in
(4.27) by the corresponding partial-wave expansions as in (4.37), which leads to

Tλ′λ
(
ω,Ω′,Ω

)
=

16π2ω√
|p||p′|

∑
J
′
,M
′
J

√
2J ′ + 1

4π

∑
J,MJ

√
2J + 1

4π

×D J
′∗

M
′
Jλ
′(φ′, θ′,−φ′)DJ

MJλ
(φ, θ,−φ)〈J ′M ′

J , λ
′|T (ω)|JMJ , λ〉,

(4.40)

and then apply the properties (4.35), (4.36) and (4.39) to show that

Tλ′λ
(
ω,Ω′,Ω

)
=
∑
J,MJ

(2J + 1)DJ∗
MJλ

′(φ′, θ′,−φ′)DJ
MJλ

(φ, θ,−φ)T J
λ
′
λ
(ω), (4.41)

where we de�ned the partial-wave amplitudes

T J
λ
′
λ
(ω) :=

4πω√
|p||p′|

〈JMJ , λ
′|T (ω)|JMJ , λ〉 ≡

4πω√
|p||p′|

〈λ′|T J(ω)|λ〉. (4.42)

Finally, to simplify the treatment of Eq. (4.41), we choose the coordinate system as in
Eq. (4.13) such that

Tλ′λ
(
ω, θ̄
)

=
∑
J

(2J + 1) dJ
λλ
′(θ̄)T J

λ
′
λ
(ω), (4.43)

where we employed the de�nition (4.38), the fact that Wigner d-functions are real and
also the property

dJ
M
′
JMJ

(0) = δM ′JMJ
. (4.44)

Time-reversal and parity symmetries

As shown in Ref. [66] the angular momentum states |JMJ , λ〉 introduced in (4.34)
transform under the time-reversal operator τ and the parity operator π as

τ |JMJ , λ〉 = (−1)J−MJ |J −MJ , λ〉 (4.45)

and

π|JMJ , λ〉 = η1η2(−1)J−j1−j2|JMJ ,−λ〉, (4.46)

respectively, where η1 and η2 represent the intrinsic parities of the baryon and meson
belonging to the state |JMJ , λ〉. Hence, from the invariance properties

S = τ †S†τ,

T = τ †T †τ
(4.47)

and
[S, π] = [T, π] = 0, (4.48)
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where the former result from the anti-unitarity of τ , the following symmetry properties
for the matrix elements appearing in Eq. (4.42) hold:

〈λ′|T J(ω)|λ〉 ≡ 〈JMJ , λ
′|τ †T †τ |JMJ , λ〉

= 〈JMJ , λ|τ †Tτ |JMJ , λ
′〉

= (−1)J−MJ (−1)J−MJ 〈J −MJ , λ|T |J −MJ , λ
′〉

≡ 〈λ|T J(ω)|λ′〉

(4.49)

and

〈λ′|T J(ω)|λ〉 ≡ 〈JMJ , λ
′|π†Tπ|JMJ , λ〉

= η′1η
′
2η1η2(−1)j

′
1+j

′
2−j1−j2〈JMJ ,−λ′|T |JMJ ,−λ〉

≡ η′1η
′
2η1η2(−1)j

′
1+j

′
2−j1−j2〈−λ′|T J(ω)|−λ〉.

(4.50)

Accordingly, we have

T J
λ
′
λ
(ω) = T J

λλ
′(ω) (4.51)

and

T J
λ
′
λ
(ω) = η′1η

′
2η1η2(−1)j

′
1+j

′
2−j1−j2T J−λ′−λ(ω) (4.52)

for the partial-wave amplitudes T J
λ
′
λ
.

The �rst of these equations implies that a time-reversal invariant matrix T J should
be symmetric, whereas the second shows that parity conservation reduces the number
of independent amplitudes by a factor of two, since λ and λ′ are necessarily half-integers
in the case of meson-baryon states. A further consequence of (4.52) is however that
the partial-waves de�ned in Eq. (4.42) do not conserve parity, and are therefore not a
suitable choice to represent hadronic scattering. Following Ref. [67] we thus introduce
the linear combinations

|JMJ , λ±〉 :=

√
1

2
[ |JMJ , λ〉 ± η|JMJ ,−λ〉 ] (4.53)

with
η := η1η2(−1)j1+j2+ 1

2 , (4.54)

which transform as |JMJ , λ〉 under time-reversal operations but according to

π|JMJ , λ±〉 = (−1)J±
1
2 |JMJ , λ±〉 (4.55)

under parity. Hence, in terms of these new basis states, we de�ne the parity-invariant
partial-wave amplitudes

T J±
λ
′
λ
(ω) :=

4πω√
|p||p′|

〈JMJ , λ
′±|T (ω)|JMJ , λ±〉 ≡

4πω√
|p||p′|

〈λ′±|T J(ω)|λ±〉 (4.56)

which now have de�nite parity π = (−1)J±
1
2 .

Finally, we close this section with some useful symmetry relations applicable to the
amplitudes T J±

λ
′
λ
. Firstly from the de�nition (4.54), we rewrite Eq. (4.52) as

T J
λ
′
λ

= η′ηT J−λ′−λ. (4.57)
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Furthermore, from Eqs. (4.53) and (4.57), we show that the amplitudes T J
λ
′
λ
and T J±

λ
′
λ

are related by

T J±
λ
′
λ

=
1

2

[
T J
λ
′
λ
± η′T J−λ′λ ± ηT

J
λ
′−λ + η′ηT J−λ′−λ

]
=

1

2

[
T J
λ
′
λ
± ηT J

λ
′−λ ± ηT

J
λ
′−λ + T J

λ
′
λ

]
= T J

λ
′
λ
± ηT J

λ
′−λ.

(4.58)

Then, from Eqs. (4.57) and (4.58), we derive the parity invariance condition

T J±
λ
′
λ

= T J
λ
′
λ
± ηT J

λ
′−λ

= η′ηT J−λ′−λ ± η
′T J−λ′λ

= ±η′
[
T J−λ′λ ± ηT

J
−λ′−λ

]
= ±η′T J±−λ′λ,

(4.59)

which constraints the number of independent amplitudes T J±
λ
′
λ
. According to (4.51),

(4.57) and (4.58), we also see that

T J±
λ
′
λ

= T J±
λ
′
λ
± η T J±

λ
′−λ

= T J±
λλ
′ ± η T J±−λλ′

= T J±
λλ
′ ± η′T J±

λ−λ′ = T J±
λλ
′ ,

(4.60)

and thus the time-reversal invariance condition for the amplitudes T J±
λ
′
λ
reads the same

as for T J
λ
′
λ
.

Partial-wave helicity amplitudes

In hadronic models one usually employs e�ective Lagrangians to determine invariant
amplitudes Tλ′λ, see for instance the model implemented in Chapter 5. However, since
baryons have de�nite spin and parity, the properties of a speci�c baryon state should
emerge from the partial-wave amplitude T J±

λ
′
λ
with the same quantum numbers as the

resonance. Accordingly, for partial-wave analyses it is often necessary to calculate T J±
λ
′
λ

in terms of Tλ′λ. In the helicity formalism employed here this is done by �rst applying
the orthogonality relation∫ 1

−1

d(cos β) dJ
λλ
′(β) dJ

′

λλ
′(β) =

2

2J + 1
δJJ ′ (4.61)

of the Wigner d-functions [68] to invert Eq. (4.43), leading to

T J
λ
′
λ
(ω) =

1

2

∫ 1

−1

d(cos θ̄) dJ
λλ
′(θ̄)Tλ′λ(p

′, p), (4.62)

and then substituting Eq. (4.62) into (4.58). In this way it immediately follows that

T J±
λ
′
λ
(ω) =

1

2

∫ 1

−1

d(cos θ̄)
[
dJ
λλ
′(θ̄)Tλ′λ(ω, θ̄)± η d

J
−λλ′(θ̄)Tλ′−λ(ω, θ̄)

]
, (4.63)

with η previously de�ned in Eq. (4.54).
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4.2.4 Unitarity condition for partial-waves

For interactions characterized by a su�ciently small strength the transition amplitudes
may be determined by a sum of Feynman diagrams. However, meson-baryon scatter-
ing in the low-energy region is characterized by residual strong forces which might
even generate resonances, requiring the application of non-perturbative methods. In
this sense, general scattering theory principles are of particular relevance for strong
interactions.

The very �rst of these principles is probability conservation, which implies that the
scattering operator S is unitary, i.e.

SS† = S†S = I. (4.64)

For the transition operator T , the condition above reads

(T − T †) = iT †T, (4.65)

where we used relation (4.18) between S and T . Now, since baryon properties emerge
from partial-waves which conserve parity, we shall derive the unitarity condition (4.65)
directly for amplitudes T J±

λ
′
λ
.

For this purpose we �rst consider a complete set of meson-baryon states normalized
as in (4.21), i.e.

1 =
∑
λn

|pn|
16π2ω

∫
d4 Pn

(2π)4

∫
d2 Ωn|n〉〈n|, (4.66)

between the product on the right-hand side of (4.65), and then evaluate both sides of
this equation between the initial and �nal states |i〉 and |f〉. In this way,

Tλ′λ(p
′, p)− T ∗

λλ
′(p, p′) = i

∑
λn

|pn|
16π2ω

∫
d2 ΩnT

∗
λnλ

′(pn, p
′)Tλnλ(pn, p), (4.67)

where we also used Eq. (4.26) to identify the invariant amplitudes Tλ′λ. The next step
is to decompose Eq. (4.67) in terms of partial-wave amplitudes; however, before doing
this we note that the simpli�ed expansion (4.43) cannot be used here since the three-
momenta pn, p and p′ are not necessarily coplanar. We therefore use the most general
expansion (4.41), together with the orthogonality relation∫

d2 ΩDJ∗
MJλn

(φ, θ,−φ)DJ
′

M
′
Jλn

(φ, θ,−φ) =
4π

2J + 1
δMJM

′
J
δJJ ′ (4.68)

of the Wigner rotation matrices [68], to rewrite (4.67) as

T J
λ
′
λ
(ω)− T J∗

λλ
′(ω) = i

∑
λn

2ρnn(ω)T J∗
λnλ

′(ω)T J
λnλ

(ω), (4.69)

where we de�ned the phase-space matrix ρ by its elements

ρab(ω) :=

√
|pa||pb|
8πω

δab. (4.70)
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Finally, an analogous expression for the amplitudes T J±
λ
′
λ
can now be derived from

Eq. (4.69) and the properties (4.57), (4.58) and (4.59) as follows:

T J±
λ
′
λ
(ω)−T J±∗

λλ
′ (ω)

(4.58)
=
[
T J
λ
′
λ
± ηT J

λ
′−λ

]
−
[
T J∗
λλ
′ ± η′T J∗

λ−λ′
]

(4.57)
=
[
T J
λ
′
λ
− T J∗

λλ
′

]
± η

[
T J
λ
′−λ − T

J∗
−λλ′

]
(4.69)
= i

∑
λn

2ρnn

{
T J∗
λnλ

′T J
λnλ
± ηT J∗

λnλ
′T J
λn−λ

}
(4.58)
= i

∑
λn

2ρnn T
J∗
λnλ

′T J±
λnλ

≡ i
∑
λn>0

2ρnn

{
T J∗−λnλ

′T J±−λnλ
+ T J∗

λnλ
′T J±
λnλ

}
(4.57)
= i

∑
λn>0

2ρnn

{
ηnη

′T J∗
λn−λ

′T J±−λnλ + T J∗
λnλ

′T J±
λnλ

}
(4.59)
= i

∑
λn>0

2ρnn

{
±η′T J∗

λn−λ
′T J±
λnλ

+ T J∗
λnλ

′T J±
λnλ

}
(4.58)
= i

∑
λn>0

2ρnn(ω)T J±∗
λnλ

′(ω)T J±
λnλ

(ω).

(4.71)

The unitarity condition in Eq. (4.71) for partial-wave transition amplitudes may be
written in a suitable matrix form by exploiting parity and time-reversal invariance once
more. Because parity conservation reduces the number of independent amplitudes by
half, in Eq. (4.71) it is su�cient to consider positive-parity initial and �nal states only,
thus λ, λ′ > 0 just as λn > 0. In addition, we recall from Eq. (4.60) that time-reversal
invariance requires the matrix T J± to be symmetric. In agreement with these two
properties the unitarity condition (4.71) �nally reads:

1

2i

[
(T J±)− (T J±)†

]
≡ Im

[
T J±

]
= (T J±)†ρ(T J±) , (4.72)

or, equivalently,

Im
[
(T J±)−1

]
= −ρ. (4.73)

The important result in (4.73) shows that the imaginary part of (T J±)−1 is �xed
by unitarity and depends on kinematic variables only. Consequently all the dynamics
involved in the process should be contained in the real part. The latter is related to the
imaginary part through dispersion relations resulting from the analytical properties of
the transition amplitudes and is, therefore, determined up to a subtraction constant
which is model dependent. In this work we shall not discuss analytical properties
of the amplitudes directly; see for instance the textbook [66] for details on the sub-
ject. Instead, in Section 4.3 we show how the unitarity condition (4.73) emerges from
scattering equations.
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4.3 Meson-baryon scattering equations

In the literature several methods to implement unitarity in hadronic scattering have
been suggested, for instance the N/D method [18, 19], the inverse amplitude method
[69], or also approaches based on the coupled-channel Lippmann-Schwinger [70] and
Bethe-Salpeter equations [71]. In the following we adopt the latter, where two-body
unitarity in meson-baryon scattering is implemented by means of the integral equation

Mfi(p
′, p) = M irr

fi (p′, p) + i
∑
n

∫
d4 pn

(2π)4M
irr
fn(p′, pn)Gn(pn)Mni(pn, p) (4.74)

as represented in the diagram of Fig. 4.1. The summation above includes all possible
meson-baryon states with relative four-momentum pn which couple to both initial and
�nal scattering states. Moreover, for all the matrices M , M irr and G a parametric de-
pendence on the total four-momentum variable P should be understood. The Feynman
propagator or Green's function of an intermediate state n is here denoted by Gn, while
M represents an operator in spin space which evaluated on a basis of spinors gives
the corresponding transition amplitudes. Omitting Lorentz indices related to possible
higher-spin �elds we have

Gn(pn) := Sn(pn)∆n(P − pn) (4.75)

where Sn and ∆n denote the full propagators of the intermediate baryon and meson
states, respectively, and

Tλ′λ(p
′, p) =: ūλ′(p

′)M(p′, p)uλ(p) (4.76)

where u and ū denote spinors for arbitrary spin. Finally, in the scattering equation
(4.74) M irr stands for the meson-baryon irreducible interaction kernel which, similarly
to the kernels introduced in Chapter 2, is given by the sum of all contributions to M
which cannot be split into two simpler diagrams by cutting a meson and a baryon line.
We accordingly de�ne the matrix elements

Vλ′λ(p
′, p) := ūλ′(p

′)M irr(p′, p)uλ(p), (4.77)

now of a meson-baryon potential V , which comprise all irreducible contributions to the
transition amplitudes Tλ′λ.

M = M
irr + M

G

M
irr

Figure 4.1. The Bethe-Salpeter equation for a meson-baryon system. Full and
dashed lines represent baryon and meson �elds, respectively.
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Analogously to the two- and three-body Bethe-Salpeter equations investigated in
Chapter 2, applying Eq. (4.74) in the description of meson-baryon scattering requires
the use of some simplifying approximations. In other words, here we also have to deal
with the full dependence on the relative energy p0

n and have to �nd suitable parametriza-
tions for the interaction kernel M irr and the meson-baryon propagator G. Moreover,
for practical calculations the sum over intermediate states has of course to be truncated
to some �nite set of contributions. In the following Sections 4.3.1 and 4.3.2 we discuss
the approximations employed in this work.

4.3.1 The on-shell approximation

The main purpose of investigating meson-baryon scattering in this thesis is to account
for �nal state interactions in strong two-body decays as calculated in the quark model.
However, due to the approximations introduced in that framework, the o�-shell be-
havior of hadronic amplitudes (e.g. the strong decay matrix elements in (3.20)) cannot
be addressed at all: in fact, in that approach all matrix elements are determined from
Salpeter amplitudes (or, equivalently, amputated Bethe-Salpeter amplitudes) which are
on-shell objects by de�nition. Hence, for our purposes it makes little sense to consider
the full o�-shell behavior of the integrand in the Bethe-Salpeter equation (4.74). We
instead approximate this equation by

Mfi(p
′, p)

!
= M irr

fi (p′, p)

+ i
∑
n

∫
d4 pn

(2π)4M
irr
fn(p′, ponn )Gfree

n (pn)Mni(p
on
n , p),

(4.78)

where the intermediate states n are assumed to be on mass-shell.
Accordingly, the matrix elements M irr

fn and Mni are here evaluated at the on-shell
four-momentum

ponn := pn

∣∣∣∣
p

2
n=M

2
n

=

(
ωpn
pon
n

)
(4.79)

and energy

ωpn =

√
M2

n + |pon
n |2 = ω −

√
m2
n + |pon

n |2 , (4.80)

where Mn and mn denote the physical masses of the baryon and meson belonging to
the intermediate state n, respectively. The full propagator in turn here reduces to its
free form Gfree

n , describing the propagation of non-interacting meson-baryon systems.
For coupled-channel scattering involving pseudoscalar mesons only, i.e. the case of the
process studied in Chapter 5, the latter is given by

Gfree
n (pn) = −

∑
λn
uλn(pn)ūλn(pn)[

p2
n −M2

n + iε
] [

(P − pn)2 −m2
n + iε

] (4.81)

where we used the free forms of the scalar propagator

∆free
n (P − pn) =

i

(P − pn)2 −m2
n + iε

(4.82)
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and the fermion propagator

Gfree
n (pn) = i

6pn +Mn

p2
n −M2

n + iε
Θ̄s(pn) (4.83)

for arbitrary (half-integer) spin s [72], and also the fact that for non-interacting spinor
�elds the identity

(6pn +Mn) Θ̄s(pn) =
∑
λn

uλn(pn)ūλn(pn) (4.84)

holds. Here, Θ̄s represents the projection operator on spin-s states.
Using the general expression for the free propagator we now simplify the solution

of the on-shell scattering equation as follows. Firstly, we substitute the propagator
appearing in Eq. (4.78) by its explicit form as given in Eq. (4.81). Next, we evaluate
the former expression between spinors and utilize the de�nitions (4.76) and (4.77) in
order to identify the T - and V -matrix elements. In this way, we write the scattering
equation (4.78) as an integral equation for the transition amplitudes, i.e.

Tλ′λ(p
′, p) = Vλ′λ(p

′, p) + i
∑
λn

∫
d4 pn

(2π)4 Vλ′λn(p′, ponn )

× G̃n(p0
n, |pn|)Tλnλ(p

on
n , p),

(4.85)

where we introduced the scalar propagator

G̃n(p0
n, |pn|) := − 1

p2
n −M2

n + iε

1

(P − pn)2 −m2
n + iε

. (4.86)

At this point, one should note that in contrast to Gfree
n the propagator G̃n depends

on Lorentz invariants only, so that the on-shell equation, when written for transition
amplitudes, can be easily solved by means of a partial-wave decomposition. To show
this we consider Eq. (4.85) in the center-of-mass frame where

ponn

∣∣∣∣
P=(ω,0)

≡ ponn (ω,Ωn), (4.87)

cf. Eqs. (4.9), (4.10) and (4.11), and therefore

Tλ′λ(ω,Ω
′,Ω) = Vλ′λ(ω,Ω

′,Ω) +
i

(2π)4

∑
λn

∫
d2 ΩnVλ′λn(ω,Ω′,Ωn)

×
[∫

d p0
n

∫
d |pn||pn|2G̃n(p0

n, |pn|)
]
Tλnλ(ω,Ωn,Ω).

(4.88)

From this result it is then clear that by expanding all V - and T -matrix elements in
Eq. (4.88) according to Eq. (4.41), and also applying the orthogonality relation (4.68)
of the Wigner rotation matrices, one can evaluate the remaining integral over Ωn and
obtain

T J
λ
′
λ
(ω) = V J

λ
′
λ
(ω) +

∑
λn

V J
λ
′
λn

(ω)Gn(ω)T Jλnλ(ω), (4.89)
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where we introduced the meson-baryon scalar-loop integral

Gn(P )

∣∣∣∣
P=(ω,0)

≡ Gn(ω) :=
i

(2π)4 (4π)

∫
d p0

n

∫
d |pn||pn|2G̃n(p0

n, |pn|). (4.90)

The latter may also be recast in the familiar form

Gn(ω) = −i
∫

d4 pn

(2π)4

1

p2
n −M2

n + iε

1

(P − pn)2 −m2
n + iε

(4.91)

by inserting (4.86) into (4.90) and using 4π =
∫

d2 Ωn to recover the four-dimensional
notation. Later in Section 4.3.3 we discuss the solution of the integral above.

As it stands the on-shell scattering equation (4.89) is still of limited practical value
for the applications we aim at in this work: recall from our former discussions that
to investigate baryon properties we need to construct parity-conserving partial-wave
amplitudes. We therefore proceed with the derivation of an equation for T J±

λ
′
λ
, and to

this end we exploit the consequences of parity invariance in a calculation similar to
Eq. (4.71) as below:

T J±
λ
′
λ
(ω)

(4.58)
= T J

λ
′
λ
± ηT J

λ
′−λ

(4.89)
= V J

λ
′
λ

+
∑
λn

V J
λ
′
λn
GnT

J
λnλ
± ηV J

λ
′−λ ± η

∑
λn

V J
λ
′
λn
GnT Jλn−λ

(4.58)
= V J±

λ
′
λ

+
∑
λn

V J
λ
′
λn
GnT J±λnλ

≡ V J±
λ
′
λ

+
∑
λn>0

[
V J±
λ
′−λn
GnT J±−λnλ + V J±

λ
′
λn
GnT J±λnλ

]
(4.59)
= V J±

λ
′
λ

+
∑
λn>0

[
V J±
λ
′−λn
Gn (±ηn)T J±

λnλ
+ V J±

λ
′
λn
GnT J±λnλ

]
(4.58)
= V J±

λ
′
λ

+
∑
λn>0

V J±
λ
′
λn
GnT J±λnλ.

(4.92)

Then, by recalling that due to parity invariance it is su�cient to consider λ, λ′ > 0,
and also de�ning the matrix elements

Gn′n(ω) := Gn (ω)δn′n (4.93)

of a diagonal matrix G, we rewrite Eq. (4.92) in the matrix form

T J± = V J± + V J±GT J± (4.94)

whose solutions are formally given by

T J± =
[
V J±−1 − G

]−1

. (4.95)
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Hence, as we see from the results above, the advantage of the on-shell approach is
that the dependence on the relative four-momentum pn remains inside the integrand
of Gn only (cf. Eq. (4.90)), so that the full scattering equation (4.74) reduces to an
algebraic expression whose solution is of course much simpler. As demonstrated in
Refs. [70, 73] (there speci�cally for S-waves only) such an approximation is equivalent
to accounting for o�-shell �uctuations by means of the renormalization of the coupling
constants in V . In this respect it is also worth mentioning that even without a general
proof the same method has been successfully applied to D-waves as well [74]. Now, to
calculate the T J±-matrix from Eq. (4.95) we basically need two ingredients: an expres-
sion for the potential V J± and the solution of the loop integral Gn. The former issue
is extensively investigated in Chapter 5 in the framework of an e�ective Lagrangian
approach; in the next Section 4.3.2 we just present some general remarks concerning
the construction of V J± without going into detail regarding its explicit form. For the
analytical solution of Gn we refer the reader to Section 4.3.3.

4.3.2 Lowest-order background and resonant contributions

Even when approximating the kernel by its on-shell components only, it still contains
an in�nite number of two-body irreducible contributions which evidently cannot all
be evaluated in an e�ective Lagrangian model. Therefore for practical calculations we
need to truncate the summation in M irr to some �nite order in the coupling constants
appearing in the Lagrangian. Following the same method as in Refs. [18, 19, 67, 75]
for example, in Chapter 5 we strictly consider lowest-order (tree-level) contributions
to the kernel. More speci�cally, as represented in Fig. 4.2 we include (I) one-particle
reducible diagrams consisting of a single baryon in the intermediate state, which are
called s-channel or pole graphs, as well as (II) diagrams corresponding to t- and u-
channel exchanges, which in relation to the former pole terms are usually referred as
non-resonant or background contributions. Accordingly, we separate the kernel as

M irr = MP +MNP, (4.96)

where the pole (MP) and non-pole (MNP) parts include only resonant and background
diagrams, respectively.

M
irr

≈

∑
+ +

s-channel t-channel u-channel

Figure 4.2. Lowest-order diagrams included in the kernel. Asymptotic baryons
(mesons) are denoted by full (dashed) lines. Intermediate baryons (mesons) in
turn are represented by double (wavy) lines.
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Such a decomposition of the interaction kernel is often used in the literature to sim-
plify the solution of the full (o�-shell) scattering equation, see e.g. Refs. [45, 76, 77].
Our interest in writing the kernel this way, on the other hand, lies in the fact that it is
a convenient manner to relate quark-model quantities to those derived from a hadronic
Lagrangian approach. To show this we �rst note that baryon resonances have de�nite
spin and parity and thus contribute to a single partial-wave. Moreover, we recall that
s-channel diagrams are one-particle reducible and therefore separable in the momenta
of the external particles. For these reasons we write:

MP =
∑
J

∑
R(J)

v0RS0R(P )v0
†
R, (4.97)

where the summation includes resonances with all possible angular momenta coupling
to both initial and �nal states, and S0R, v0R and v0

†
R represent the propagator, the

annihilation and the creation operators for a bare resonance R, respectively. Hence,
by evaluating (4.96) between spinors and employing the general form of bare fermion
propagators (i.e. Eqs. (4.83) and (4.84) with Mn →M0), from (4.77) we obtain

V = V P + V NP (4.98)

where
V NP

λ
′
λ

(p′, p) := ūλ′(p
′)MNP(p′, p)uλ(p) (4.99)

and for the pole part

V P

λ
′
λ
(p′, p) := ūλ′(p

′)MP(p′, p)uλ(p) =
∑
J

∑
R(J)

∑
µR

γλ′µR(p′)γ†µRλ(p)

s−M0
2
R + iε

(4.100)

holds. Here, M0R is the bare mass and µR the helicity of an intermediate baryon R.
We also de�ned the bare vertex functions

γλµR(p) := ūλ(p)v0R(p)uµR(P )
c.m.≡ 4π

√
ω

|p|
〈Ω, λ|γ|µR〉 (4.101)

which, as should be noted, are equivalent to the strong decay amplitudes de�ned in
(3.22) and calculated in the framework of the relativistic quark model. To check this
last argument, one evaluates the left-hand side of (3.22) in the center-of-mass frame,
describes meson-baryon by spherical states as those in (4.22), and then compares the
�nal result to the right-hand side of that equation.

From the discussion above it becomes clear that the matching between our quark
model and a Lagrangian description of meson-baryon scattering should be performed
by comparing the matrix elements of γ as evaluated in both frameworks. This topic
will be addressed later in Chapter 6, where we eventually consider the e�ect of �nal
state interactions for the decay widths calculated in Chapter 3. In the present chapter
we wish to focus on an interesting consequence of the decomposition (4.98) concerning
the scattering equation (4.94): As we shall see in Section 4.3.4, provided that the ma-
trix elements of γ are known, the solutions T J± of Eq. (4.94) are fully determined from
background quantities. Please note that this result is very important in this context,
as it gives the prescription for how to connect strong decay amplitudes, in particular
those from the quark model, to non-resonant hadronic rescattering amplitudes.



68 Chapter 4. Baryon resonances in scattering theory

Resonant amplitude in the |JMJ , λ±〉 basis

Before �nishing this section a few comments about the partial-wave expansion of the
potential in the form given in Eq. (4.98) are in order. Evidently, both the potential
and its non-resonant part can be expanded with the formalism of Section 4.2.3. On the
other hand, since resonances have de�nite spin and parity, the contributions to the pole
part in Eq. (4.100) have by construction well-de�ned quantum numbers Jπ and would
not have to be expanded at all. To study the implications of Eq. (4.98) however, we
should write the whole potential in the same basis we use for the scattering equation
(4.94), i.e. the basis of the states |JMJ , λ±〉 introduced in Eq. (4.53). Hence, we now
employ Eq. (4.37) to expand the bare vertices as

γλµR(p)
c.m.
= (2J + 1)1/2DJ∗

µRλ
(φ, θ,−φ)γJλ (ω), (4.102)

where we used rotational invariance and de�ned

γJλ (ω) :=

√
4πω

|p|
〈JµR|γ(ω)|JµR, λ〉 ≡

√
4πω

|p|
〈µR|γJ(ω)|λ〉, (4.103)

such that the resonant part of the potential can be written as

V P

λ
′
λ

(
ω,Ω′,Ω

)
=
∑
J,µR

(2J + 1)DJ∗
µRλ

′(φ′, θ′,−φ′)DJ
µRλ

(φ, θ,−φ)
[
V P
]J
λ
′
λ

(ω) (4.104)

with [
V P
]J
λ
′
λ

(ω) =
∑
R(J)

γJ
λ
′(ω)γJ

λ

†
(ω)

s−M0
2
R + iε

. (4.105)

Then, we introduce new vertex functions

γJ±λ (ω) :=

√
4πω

|p|
〈JµR|γ(ω)|JµR, λ±〉 ≡

√
4πω

|p|
〈µR|γJ(ω)|λ±〉, (4.106)

now in terms of states |JMJ , λ±〉, which are related to the former according to

γJ±λ
(4.53)
=

√
1

2

[
γJλ ± ηγJ−λ

]
. (4.107)

The relation above may be simpli�ed by exploiting parity invariance to show that

〈µR|γJ |λ〉
(4.46)
= ηRη1η2(−1)J−j1−j2〈µR|γJ |−λ〉

(4.54)
= ±ηR(−1)J±

1
2η〈µR|γJ |−λ〉 = ±η〈µR|γJ |−λ〉

(4.108)

and therefore
γJ±λ =

√
2 γJλ , (4.109)

where ηR denotes the intrinsic parity of a resonance R and where we used

〈µR|γJ |λ±〉
(4.55)
= ηR(−1)J±

1
2 〈µR|γJ |λ±〉 ⇔ ηR = (−1)J±

1
2 . (4.110)
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Finally, by applying the equations above together with the formalism of Section 4.2.3,
we write the potential in the |JMJ , λ±〉 basis, i.e.[

V
]J±
λ
′
λ

=
[
V P + V NP

]J±
λ
′
λ
, (4.111)

whose resonant part reads:[
V P
]J±
λ
′
λ

(ω)
(4.58)
=
[
V P
]J
λ
′
λ
± η

[
V P
]J
λ
′−λ

=
∑
R(J)

γJ±
λ
′ (ω)γJ±

λ

†
(ω)

s−M0
2
R + iε

(4.112)

since

γJ
λ
′

[
γJ
λ

† ± ηγJ−λ
†
]

(4.107)
=

1√
2
γJ
λ
′γJ±
λ

† (4.109)
= γJ±

λ
′ γ

J±
λ

†
. (4.113)

As a last remark, an expression for γJ± in terms of γ is relevant in Chapter 5 in order
to obtain the potential in the basis of the states |JMJ , λ±〉. It is given by

γJ±λ (ω) =

√
2J + 1

2

∫ 1

−1

d(cos θ̄) dJµRλ(θ̄) γλµR(ω, θ̄) (4.114)

and derived by evaluating (4.102) with y = 0 as the reaction plane, then using (4.61)
to invert the result and �nally applying (4.109) to relate γJ to γJ±.

4.3.3 The scalar-loop integral

After explaining a general formalism to construct the potential V J± we now elaborate
on the analytical solution of the scalar-loop integral Gn de�ned in Eq. (4.91). For this
purpose we note that for large momentum transfers and in four space-time dimensions
the integral Gn is logarithmically divergent, and thus needs to be regularized. In the
literature there are various methods to regulate this integral, e.g. by the introduction
of a cuto� parameter, the method of Pauli-Villars [78] or dimensional regularization
[79]. Among these we utilize the latter in the so-calledMS scheme, where one extracts
the �nite part

[G�n]n (ω, µn) :=
1

16π2

{
1− log

(
m2
n

µ2
n

)
−
(
M2

n −m2
n + ω2

2ω2

)
log

(
M2

n

m2
n

)

−|pn|
ω

log

(
M2

n +m2
n − s− 2ω|pn|

M2
n +m2

n − s+ 2ω|pn|

)} (4.115)

of the loop integral, while collecting divergent terms and further constants stemming
from dimensional regularization into the subtraction constant

[G∞]n (µn) := lim
δ→0

µ−2δ

16π2

[
1

δ
− γE + log(4π) + 1

]
(4.116)

for
Gn(ω) = [G�n]n (ω, µn) + [G∞]n (µn). (4.117)

Here, µn is the regularization scale, γE ≈ 0.5772 is the Euler-Mascheroni constant and
2δ = 4− d where d indicates the number of space-time dimensions.
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Deriving the latter results is a well-known procedure in quantum �eld theory and
details can be found in many textbooks, e.g. in Ref. [63]. For our purposes, it is enough
to say that one starts with the generalization of the Minkowski space to a d-dimensional
space, where Gn converges and is thus solvable in the standard way, i.e. by Feynman
parametrization and Wick rotation. After evaluating the integral in d dimensions, the
physical picture is then recovered by taking the limit d→ 4 and collecting remaining
singularities in the subtraction constant G∞ as in Eq. (4.116). However, if p2

n = M2
n or

(P − pn)2 = m2
n, the loop integral of Eq. (4.91) is still divergent in d dimensions and

the Wick rotation can be no longer justi�ed. In this case the �nite part of the loop has
an imaginary part, i.e.

[G�n]n (ω, µn) = Re [G�n]n (ω, µn) + i ρnn(ω) (4.118)

which may be deduced by applying Cutkosky rules in Eq. (4.91). Here, ρ represents
the phase-space matrix previously de�ned in Eq. (4.70).

There are two important consequences of the resulting loop integral concerning
the solutions of the Bethe-Salpeter equation (4.94): Firstly, provided the potential is
Hermitian (V † = V ) any solution of (4.94) satis�es the two-body unitarity condition
(4.72). It indeed follows from Eq. (4.94) that[

T − T †
]

= V GT − T †G†V = V GT − T †G†
[
T − V GT

]
=
[
V + T †G†V

]
GT − T †G†T = T †

[
G − G†

]
T,

(4.119)

where we omitted spin and parity labels for clarity, and then from Eq. (4.118)

Im
[
T J±

]
= (T J±)†Im [G] (T J±) = (T J±)†ρ(T J±) , (4.120)

which is the same result as in Eq. (4.72). As the second important point both �nite
and divergent parts of the loop depend on the regularization scale µn, while their sum
is evidently scale-independent, cf. Eqs. (4.115) to (4.117). Therefore the T J±-matrix
should not depend on the scale either, since from Eqs. (4.94) and (4.117) we have

T J± =
[
V J±−1 − G�n(µ)− G∞(µ)

]−1

, (4.121)

where µ denotes the set or renormalization scales µn. In this regard however we note
that the scattering equation (4.121) contains the divergence G∞ and in this form is
not suitable for explicit calculations. To formulate the scattering equation in terms of
�nite quantities, we follow the argument from Ref. [80] and decompose the potential
as

V = V�n + V∞ (4.122)

for which we demand that

T J± =
[
V J±
�n

−1
(µ)− G�n(µ)

]−1

. (4.123)

Using this method, it is in principle possible to cancel the divergent part G∞ by the
appropriate term V∞ in the potential, such that the T J±-matrix is derived from �nite
quantities and is still scale-independent. In practice though a residual scale dependence
remains, re�ecting the in�uence of higher-order processes which cannot be included in
an explicit potential. This issue shall be discussed in more detail later in Chapter 5.
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4.3.4 Decomposition of the scattering equation

In this section we return to the decomposition (4.111) and investigate its implications
for the Bethe-Salpeter equation, speci�cally in the form given in (4.123), i.e. after re-
absorbing the divergent part of the loop inside the potential. For this purpose we look
for the solutions of Eq. (4.123) which similarly to the potential can be separated as[

T
]J±

=
[
TP + TNP

]J±
(4.124)

into a pole and a non-pole part. In addition, to ensure that the T J±-matrix satis�es
the scattering equation even in the absence of explicit resonant �elds, the background
contribution TNP should be a solution of[

TNP
]J±

=
[
V NP
�n + V NP

�n G�nTNP
]J±

. (4.125)

For the sake of clarity, we now omit angular momentum and parity superscripts and
also the subscripts in V and G denoting that these are �nite quantities. Nevertheless,
it should kept in mind that here we deal with matrices in the |JMJ , λ±〉 basis and
that both the potential and the loop are from now on scale dependent. Furthermore,
we shall here use a concise matrix notation in which the resonant part of the potential
reads:

V P = γ · S0 · γ†, (4.126)

cf. Eq. (4.112), where S0 is a diagonal matrix de�ned by its elements

[S0]R′R :=
1

s−M0
2
R + iε

δR′R. (4.127)

The derivation of a transition matrix T J± satisfying both the scattering equation
and the conditions (4.124) and (4.125) is a standard procedure which will not be elab-
orated here. A more comprehensive derivation can be found in Section 2.6 of Ref. [75]
and we shall merely sketch the method used there. The �rst step is to replace (4.124)
and (4.125) into the scattering equation (4.123), so that after some basic algebra the
latter is formulated as[

I − V NPG
]
TP = V P

[
I + GTNP

]
+ V P

[
I + GTNP

]
G
[
I + TNPG

]−1

TP.
(4.128)

Then, we exploit the formal solution of (4.125) to eliminate V NP from the left-hand
side of Eq. (4.128) and thereby rewrite this equation as

T ′ = V ′ + V ′GT ′, (4.129)

where we also introduced the auxiliary quantities

T ′ =
[
I + TNPG

]−1

TP and V ′ = V P
[
I + GTNP

]
. (4.130)



72 Chapter 4. Baryon resonances in scattering theory

At this point, we note that Eqs. (4.129) and (4.130) may be solved for TP if V ′

and T ′ are known. Therefore, to obtain these quantities, we now employ the explicit
form (4.126) of V P to calculate V ′ and then use the result to solve Eq. (4.129) for T ′.
Proceeding this way and also de�ning:

• dressed vertex functions

Γ := γ + TNPGγ (4.125)
=

[
I − V NPG

]−1

γ (4.131)

and

Γ̃ := γ† + γ†GTNP (4.125)
= γ†

[
I − GV NP

]−1

, (4.132)

• self-energy contributions

Σ := Γ̃Gγ (4.132)
= γ†

[
I + GTNP

]
Gγ

≡ γ†G
[
I + TNPG

]
γ

(4.131)
= γ†GΓ

(4.133)

• and dressed resonance propagators

SD :=
[
S−1

0 − Σ
]−1

, (4.134)

we �nally arrive at the following expression for the resonant amplitude:

TP = Γ · SD · Γ̃. (4.135)

For convenience, we depict the results above as graphs in Fig. 4.3. Note that these
graphs do not correspond to Feynman diagrams, as we solve the scattering equation
in on-shell approximation. Nevertheless, a similar representation would be valid for
the full Bethe-Salpeter equation (4.74) as well, since it may also be expressed in a
matrix form, separated into pole and non-pole parts and thus formally decomposed
as explained in this section. As shown in Fig. 4.3, provided the background potential
V NP and the bare vertex functions γ from a theoretical model are known, all quantities
related to resonant contributions can be evaluated from these, in a calculation which
follows the same order in which the graphs appear in the �gure.

Finally, we should mention that such a treatment of the scattering equation is not
only useful to study the in�uence of background contributions for baryon properties.
It also provides a manner to clearly see both mechanisms through which a baryon
resonance might be produced: Either the state is explicitly included in the underlying
potential by means of bare vertex functions, or it is dynamically generated by unitary
non-resonant interactions. Indeed, the non-pole part TNP of the transition matrix as
de�ned in (4.125) is itself unitary and, therefore, might also contain poles corresponding
to the so-called dynamically generated resonances.
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T
NP = V

NP + T
NP

G

V
NP

(a) Background amplitudes.

Γ =
γ

+
γ

G

T
NP

(b) Dressed resonance annihilation.

Γ̃ =

γ
†

+ T
NP

G

γ
†

(c) Dressed resonance creation.

≡ Γ

G

γ
†

Σ =
γ

G

Γ̃

(d) Resonance self-energy.

SD
=

S0

+
S0
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(e) Dressed Propagator.

T
P = Γ̃ SD Γ

(f) Resonant amplitude.

Figure 4.3. Decomposition of the on-shell Bethe-Salpeter equation.
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4.4 Masses and widths of baryon resonances

Using the results of Section 4.3.4, we can �nally explain how the masses and strong
decay widths of baryon resonances can be evaluated from transition amplitudes and
vertex functions. More importantly, we are now able to discuss the interpretation of
such properties as de�ned in the relativistic quark model, and �nally explain how we
here include �nal state interactions in strong decays. To this end, it is instructive to
�rst analyse the case where (I) the center-of-mass energy is close to the physical mass of
a speci�c resonance, so that it is su�cient to consider the contribution of a single bare
state to the partial-wave T J±, and (II) non-resonant contributions to the underlying
potential can be neglected. In this instance the resonant part of T J± reduces to

[
TP
]J±
λ
′
λ

(ω) =
γJ±
λ
′ (ω)γJ±

λ

†
(ω)

s−M2(ω, µ)− iωΓ(ω)
, (4.136)

with

M2(ω, µ) := M2
0 +

∑
λn

Re [G]n (ω, µn)
∣∣∣γJ±λn (ω)

∣∣∣2 (4.137)

and

Γ(ω) :=
∑
λn

|pn|
8πω2

∣∣∣γJ±λn (ω)
∣∣∣2 , (4.138)

where we evaluated Eqs. (4.131) to (4.135) for V NP = 0 and a single baryon state with
bare mass M0, and also employed Eqs. (4.118) and (4.70) to decompose G into its real
and imaginary parts and write the latter explicitly.

The resonant amplitude (4.136) resembles the well-known Breit-Wigner formula,
and for M ≈ ω ≡

√
s it justi�es the use of Eq. (3.23) to evaluate strong decay widths

in the absence of rescattering e�ects, as it was done in Chapter 3. Now returning to
the general case where V NP 6= 0 and bare states contributing to a single partial-wave
may interfere, in analogy to (4.138) we de�ne the corrected decay widths according
to the formula:

Γcorr(µ) :=
∑
λn

|pn|
8πM2

∣∣∣ΓJ±λn (ω = M,µ)
∣∣∣2 . (4.139)

A few remarks regarding the important expression (4.139) and its application in
the following chapters are in order. First of all, this de�nition implies that to obtain
the corrected decay widths one basically has to determine the matrix elements of

Γ(ω = M,µ) =
[
I − V NP(ω = M,µ)G(ω = M,µ)

]−1

γ(ω = M), (4.140)

cf. Eq. (4.131), whose ingredients are bare vertices and the non-resonant part of the
potential. As stated before, in this work we use the bare vertices from the relativistic
quark model (as calculated in Chapter 3), while the background potential is derived
from e�ective meson-baryon interactions (to be detailed in Chapter 5). On the other
hand, to solve the matrix equation (4.140) one evidently needs the relative signs of the
bare vertex functions as well.
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As explained in Section 3.3, however, in the framework of the relativistic quark
model it is not possible to determine the sign of γ-matrix elements, but only the mag-
nitude of these amplitudes. In order to circumvent this problem here we proceed as
follows: Besides background contributions we also include resonant terms in our model
for meson-baryon interactions. In this way, from an adjustment of the resulting transi-
tion amplitudes to experimental data, we expect to determine the relative signs of the
several γ-matrix elements.

Having established the method to account for rescattering in strong decays, we now
turn to the interpretation of the baryon masses as calculated in the relativistic quark
model. For this purpose, we recall from Chapter 2 that the baryon masses de�ned in
that approach correspond to poles of the six-point Green's function in the real energy
variable of the three-quark system, cf. Eq. (2.73). As such, these mass parameters are
then equivalent to bare massesM0 and, according to the result (4.137), to Breit-Wigner
masses only in the limit where (I) non-resonant contributions to baryon properties can
be neglected, and (II) the real part of the loop vanishes, i.e. the resonant amplitude is
calculated in the so-called K-matrix approximation.

Accordingly, one should in principle apply the formalism of Section 4.3 not only to
correct the decay widths but also to dress the baryon masses from the quark model. In
the present thesis however, we will not investigate this matter for the following reason:
As the parameters of the quark model are �tted to Breit-Wigner masses directly, it
would require a readjustment of model parameters and a further correction of baryon
masses in an iterative process, which is beyond the scope of this work. Instead, we
here focus exclusively on including �nal state interactions in the strong decays via
Eq. (4.139). Nevertheless, considering that the quark model does provide a reason-
able description of experimental Breit-Wigner masses of low-lying N and ∆ resonances
(cf. Table 2.3), we employ those values calculated in Chapter 2 as the mass parameters
M appearing in Eq. (4.139).

4.5 Summary

In this chapter we reviewed the most important points concerning the description of
meson-baryon interactions in scattering theory. By applying basic physical principles
such as Poincaré invariance and unitarity, we obtained a general expression for the
corresponding partial-wave amplitudes T J±. These amplitudes were then decomposed
into background and resonant contributions, allowing for a clear understanding of how
non-resonant terms contribute to the masses and the strong decay widths of baryon
resonances. By investigating these issues, we �nally established a method to include
�nal state interactions in strong baryon decays: Together with Eq. (4.139) the result
(4.140) gives us the calculational prescription. Firstly we need an e�ective model for
meson-baryon interactions, in order to parametrize the non-resonant part of the po-
tential and obtain the relative signs of bare resonance vertices. This model will be
implemented in the next Chapter 5. After this, we then use the absolute value of bare
vertex functions as calculated in the quark model, to �nally account for �nal state
interactions in strong baryon decays. The results of such a procedure will be discussed
in Chapter 6.
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Chapter 5

A coupled-channel model for πN
scattering

5.1 Introduction

After describing strong properties of baryons resonances in a relativistic constituent
quark model and discussing how these are related to the quantities from a hadronic
approach, we now wish to elaborate on the last ingredient necessary to include �nal
state interactions in strong baryon decays, i.e. a dynamical model for meson-baryon
interactions. As explained in Section 4.4, this model has to include both background
and resonant contributions, in order to both parameterize rescattering e�ects in strong
decays and determine the sign of bare vertex functions. In addition, recalling that in
Chapter 2 baryons were considered to be on-shell states, the framework implemented
here should be an on-shell approach as well.

Among several models available in the literature the approach developed by the
Jülich group [21, 40�46] is particularly suitable for this application, basically for two
reasons: Firstly, the σ- and ρ-meson exchanges in elastic πN scattering are described
by correlated ππ exchanges in the spin J = 0, 1 channels instead of the usual meson-
exchange picture, providing realistic and well-constrained background amplitudes this
way. Moreover, besides bare resonances of spin 1/2 and 3/2 in the e�ective Lagrangian
this model includes phenomenological couplings for higher spins up to 9/2, allowing
for a systematical extension of our approach in the future. As it stands, however, the
Jülich model cannot be directly employed here, as it provides transition amplitudes
which are in general constructed o�-shell (see aforementioned references). Therefore,
in the present chapter we perform an on-shell reduction of their approach.

Originally designed to describe elastic πN scattering [41, 42] the Jülich model had
been extended over the years through inclusion of the inelastic ηN , σN , π∆ and ρN
channels [21, 43]. Later improvements in the treatment of correlated ππ exchanges and
in the underlying Lagrangian [44, 45] led to a better agreement with the partial-wave
πN amplitudes resulting from the analysis of the GWU/SAID group [14]. Nowadays,
after inclusion of strangeness production and couplings to high-spin baryons [40, 46]
the Jülich model contains most of the decay channels coupling to non-strange baryons
and describes πN amplitudes for center-of-mass energies even beyond 2000 MeV.

77
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In this �rst study of rescattering e�ects, however, it is not necessary to consider
energies up to these values. As stated before, here we only include couplings to the πN
and ηN channels and also to the e�ective π∆ channel, which parameterizes a part of
the three-body state ππN and provides inelasticity in both isospin states I = 1

2
and 3

2

of the πN system. Accordingly, here we utilize a version of the Jülich model which al-
ready uses its �nal e�ective Lagrangian, but is still the closest possible to our approach
in terms of the coupled-channel basis. This is the version published in Ref. [45], which
besides the states considered here includes couplings to ρN and σN as well.

As we shall see in this chapter, considering only the states πN , π∆ and ηN in
an on-shell coupled-channel approach leads to an adequate description of πN partial-
waves for energies up to ω ≈ 1700 MeV, allowing for the study of rescattering e�ects in
strong decays of most of the low-lying states listed in Tables 2.3 and 3.1. Exceptions
are the N(1720) and the ∆(1700) states which couple too strongly to the ρN channel,
as well as any resonance coupling to the P11 πN -wave. In fact, due to the contribution
of the Roper resonance N(1440) to this wave, inelasticity is present at much lower
energies than the threshold energies of the inelastic channels included in the model,
which prevents a reasonable description of the amplitude.

This chapter is organized as follows: In Section 5.2 we explain the construction of
the underlying potential entering in the on-shell scattering equations of Chapter 4 (see
diagrams of Fig. 4.3) based on the Lagrangian of the Jülich model. In addition, we
show in more detail why P11 resonances cannot be addressed in our framework. After
describing the potential for both background and resonant interactions, we then discuss
in Section 5.3 the unitarization method and the treatment of the renormalization scale
dependence entering in both the potential and the scalar loop integrals (see e.g. the
scattering equation (4.123)). As we shall see, in our model it is unfortunately not
possible to treat the scale dependence in both these quantities simultaneously, because
here we utilize an on-shell framework. For this reason, we �rst set the renormalization
scales to a suitable mass parameter (of order of hadronic masses) and only then treat
the scale dependence of the potential by means of cuto�-dependent form factors.

The model constructed in Section 5.2 and the unitarization of the corresponding
transition amplitudes lead to a set of parameters, consisting of coupling constants,
cuto� masses and bare resonance masses and couplings, which has to be determined
from a �t to experimental data. In Section 5.4 we detail our procedure to adjust these
parameters. In short, the coupling constants related to background contributions are
set to the values from the Jülich model (speci�cally from its version of Ref. [45]) while
the remaining parameters are adjusted in such a way to describe the solutions of the
GWU/SAID partial-wave analysis [14]. As pointed out in Refs. [12, 75], this particular
analysis can be considered model independent, in contrast to those from the MAID
[15] or Bonn/Gatchina [13] groups which use model-dependent parameterizations. The
resulting partial-wave amplitudes are �nally presented in Section 5.4.
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5.2 Construction of the potential

According to the formalism presented in Section 4.3.2, the hadronic potential employed
in this work consists of tree-level diagrams which can be classi�ed into background or
resonant contributions. The �rst include pole graphs related to the exchange of a single
baryon in the intermediate state, whereas the second consist of hadron exchanges in
the t- and u-channels. In this section, we show which speci�c diagrams are included in
both background and resonant parts of the potential and explain the derivation of the
corresponding amplitudes.

5.2.1 Background contributions

For reactions involving the coupled-channels πN , π∆ and ηN the Jülich model of
Ref. [45] includes the background contributions depicted in of Fig. 5.1. As we can see
in the �gure, transitions between π∆ and ηN as well as σ-exchange in π∆→ π∆ and
f0-exchange in ηN → ηN are disregarded in the framework. In our on-shell model for
meson-baryon interactions, in principle we want to employ the same set of diagrams
to construct the non-resonant potential. As we shall see in this section, this will be
possible for all the diagrams shown in Fig. 5.1 except however for the contribution of
N -exchange to π∆→ π∆.

Due to Lorentz invariance and parity conservation the amplitudes related to the
graphs of Fig. 5.1 admit the following parameterizations:

• For the reactions πN → πN , πN → ηN and ηN → ηN

V NP

λ
′
λ

(
p′, p

)
= ūλ′

(
p′
) [
A (s, t, u) 14 +B (s, t, u)

6k+ 6k′

2

]
uλ (p) (IF), (5.1)

• for πN → π∆

V NP

λ
′
λ

(
p′, p

)
= ūµ

λ
′

(
p′
)
γ5

[
Aµ (s, t, u) 14 +Bµ (s, t, u)

6k+ 6k′

2

]
uλ (p) (IF), (5.2)

• and �nally for π∆→ π∆

V NP

λ
′
λ

(
p′, p

)
= ūµ

λ
′

(
p′
) [
Aµν (s, t, u) 14 +Bµν (s, t, u)

6k+ 6k′

2

]
uνλ (p) (IF), (5.3)

where we use the four-momentum variables and helicity labels previously de�ned in
Section 4.2. In the equations above, uλ and uµλ represent Dirac and Rarita-Schwinger
spinors (explicit forms are given in Appendix A), whereas A and B denote Lorentz
invariant functions which in general depend on the Mandelstam variables s, t and u.
Moreover, to each amplitude there is an isospin factor (IF) associated, resulting from
the fact that isospin symmetry is considered to be exact in this work. The isospin
factors for the diagrams of Fig. 5.1 are calculated in Appendix C.
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Figure 5.1. Background contributions to the potential. Although considered in
the Jülich model of Ref. [45], the contribution of N -exchange to π∆→ π∆ cannot
be included in our on-shell approach. See text for explanation.
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Table 5.1. E�ective Lagrangians for background contributions.

Vertex Lint

NNπ −fNNπ
mπ

N̄γ5γµ~τ∂µ~πN

NNη −fNNη
mπ

N̄γ5γµ∂µηN

NNa0 gNNa0
mπN̄~τN ~a0

N∆π fN∆π

mπ
∆̄µ~S†∂µ~πN + H.c.

N∆ρ −ifN∆ρ

mρ
∆̄µγ5γν ~S†

(
∂µ~ρν − ∂ν~ρµ

)
N + H.c.

∆∆π f∆∆π

mπ
∆̄µγ

5γν ~T∂ν~π∆µ

∆∆ρ −g∆∆ρ∆̄λ

[
γµ − κ∆∆ρ

2M∆
σµν∂ν

]
~ρµ ~T∆λ

ππρ −gππρ
(
~π × ∂µ~π

)
~ρ µ

πηa0 gπηa0
mπη~π ~a0

Except for correlated ππ exchange in elastic πN scattering (on the right in Fig. 5.1a)
all the diagrams in Fig. 5.1 are evaluated using standard Feynman rules, derived from
the e�ective Lagrangian of the Jülich model in its version of Ref. [45]. The relevant
interaction terms are listed in Table 5.1 for convenience. After evaluating the graphs,
partial-wave amplitudes of de�nite parity π = (−)J±

1
2 are then obtained according to

the formula:[
V NP

]J±
λ
′
λ

(ω) =
1

2

∫ 1

−1

d(cos θ̄)

[
dJ
λλ
′(θ̄)

[
V NP

]
λ
′
λ

(ω, θ̄)

± η dJ−λλ′(θ̄)
[
V NP

]
λ
′−λ

(ω, θ̄)

]
,

(5.4)

cf. Eq. (4.63), where ω =
√
s is the total energy, θ̄ denotes the scattering angle in the

center-of-mass frame and η = η1η2(−1)j1+j2+ 1
2 .

In the following we proceed with further details about the correlated ππ-exchange
potential since it is derived in a distinct way. The amplitudes related to all other
diagrams are presented in Appendix B. After this, we then inspect which of the contri-
butions in Fig. 5.1 can be included in an on-shell approach as well. In fact, as one may
already infer from Eq. (5.4), it will be possible to include only those diagrams whose
invariant amplitudes V NP

λ
′
λ

(ω, θ̄) have no poles in the variable z = cos θ̄ in the physical
region above the threshold energy.
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Correlated ππ-exchange in πN scattering

In contrast to all other t-channel contributions to the potential, meson exchanges in
elastic πN scattering are described in the Jülich model by correlated ππ exchanges
in the spin J = 0, 1 channels. Such a description was introduced in Ref. [41] to avoid
the ambiguities arising from usual σ- and ρ-meson parameterizations: In fact, a few
πN models compared in that work [81�84] di�er even in the sign of the σ-exchange
potential, whereas the use of ππ exchange in a dispersion theoretical approach allows
one to constrain the σ and ρ contributions from experimental data. This is evidently a
desirable feature of the model, especially concerning its application in the description
of �nal state interactions in baryon decays.

The derivation of the correlated ππ-exchange potential (denoted by V in Fig. 5.1a)
basically consists in writing dispersion relations for N̄N → ππ amplitudes, which are
then projected on spin J = 0, 1 and analytically continued to the physical region of the
πN → πN process. While constructing the dispersion relations, one also introduces
suitable subtractions in such a way to ful�ll low-energy theorems for πN scattering
[85]. The procedure is explained in detail e.g. in Chapter 3 of Ref. [75], and leads to
the invariant amplitudes

Atσ(t) = A0−16(t− 2m2
π)

×
∫ ∞

4m
2
π

d t′
Im
[
f 0

+(t′)
]

(t′ − t)(t′ − 4M2
N)(t′ − 2m2

π)

(5.5)

and
Bt
σ = 0 (5.6)

in the σ-channel, where

A0 = −4πf 0
+(2m2

π)
1
2
m2
π −M2

N

(5.7)

is a constant which is treated as free parameter, and for the ρ-channel1

Atρ(s, t) = i6(2s+ t−2M2
N − 2m2

π)

×
∫ ∞

4m
2
π

d t′
Im
[√

2MNf
1
−(t′)− 2f 1

+(t′)
]

(t′ − t)(t′ − 4M2
N)

(5.8)

and

Bt
ρ(t) = i6

√
2

∫ ∞
4m

2
π

d t′
Im
[
f 1
−(t′)

]
t′ − t

. (5.9)

In the equations above, fJ± are partial-wave NN̄ → ππ amplitudes free of kinematic
singularities [86], introduced in the derivation to allow for the analytical continuation
from the NN̄ → ππ to the πN → πN reaction channel.

1The ρ-channel amplitudes di�er from those of Ref. [75] by a factor i resulting from a di�erent
de�nition of isospin factors.
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To evaluate the integrals in Eq. (5.5) to (5.9) we now need the imaginary parts of
f 0

+ and f 1
± given as functions of the Mandelstam variable t for t ≥ 4m2

π. In contrast
to the Jülich model where these are derived from a dynamical model for ππ scatter-
ing [42], we choose a simpler approach and utilize parameterizations of experimental
data as input. In this regard, empirical information about NN̄ → ππ amplitudes for
t ≥ 4m2

π was obtained by Höhler and Pietarinen [87] from analytical continuation of
both ππ and πN data. The pseudo-empirical amplitudes resulting from their analysis
are shown in the graphs of Fig. 5.2.

As we can see in the �gure, the imaginary part of f 0
+ is a rather broad function of the

variable t, as one could expect from the large decay width the σ-meson: Γσ = 400− 700
MeV [2]. In this case, we simply parameterize the data by �tting a polynomial

Im[f+
0 (t)]

!
=

m∑
k=0

akt
k. (5.10)

The best �t was found for a polynomial of order m = 5 with coe�cients

a0 = +0.57 (19) GeV
a1 = −22 (3) GeV−1

a2 = +367 (17) GeV−3

a3 = −1010 (42) GeV−5

a4 = +1050 (49) GeV−7

a5 = −398 (22) GeV−9,

(5.11)

merely listed here for reproducibility. The imaginary parts of f 1
± on the other hand

clearly suggest a Breit-Wigner parameterization of these amplitudes. We thus �t the
imaginary part of a Breit-Wigner amplitude to the data in the J = 1 channel, i.e.

Im[f±1 (t)]
!

= α±
M2
±Γ2
±

M2
±Γ2
± + (t−M2

±)2 , (5.12)

and thereby obtain the parameters

α+ = 15.9 (7) GeV−1

M+ = 758.8 (3) MeV
Γ+ = 149.0 (11) MeV

α− = 86.1 (8) GeV−2

M− = 753.7 (7) MeV
Γ− = 144 (2) MeV,

(5.13)

which are in a fair agreement with the experimental (Breit-Wigner) mass and width
parameters of the ρ meson: mρ = 775.26 (25) MeV and Γρ = 149.1 (8) MeV [2].

The resulting parameterizations for both J = 0, 1 channels are depicted in Fig. 5.2
in comparison to the pseudo-empirical data from Ref. [87]. Before using these results
to �nally evaluate the integrals in Eq. (5.5) to (5.9), we note that these run over the
variable t′ until in�nity and therefore have to be truncated in a numerical evaluation
to a �nite value t′ = tc. Fortunately the truncation is possible, due to the suppression
factors 1/t′ and 1/t′

2
appearing in the integrand. Here, since we employ the pseudo-

empirical data up to 40m2
π as input to obtain the parameterizations for Im[f 0

+] and
Im[f 1

±], the integrals are evaluated in the range from t′ = 4m2
π to t′ = tc = 40m2

π.
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Figure 5.2. Partial-wave N̄N → ππ amplitudes in the J = 0, 1 channels. The
pseudo-empirical data are from Ref. [87].
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Logarithmic singularities in the partial-wave potential

After summarizing the construction of the background potential, we shall investigate
which of the diagrams in Fig. 5.1 can be included in an on-shell framework. For this
purpose we will show that any t- or u-channel amplitude may be considered as long as
it has no poles in the physical region above the threshold energy of the corresponding
process: In this instance, one easily solves the integrals in Eq. (5.4) and obtains the
corresponding contribution to the partial-wave potential. If this is not the case, how-
ever, the integrals lead to logarithmic singularities in the potential which cannot be
handled numerically in an on-shell approach.

To show this we consider t- and u-channel amplitudes simultaneously and denote
the mass of the exchanged particle by mx with x = t, u. For the masses of the initial
and �nal states we use the same notation as in Eq. (4.1). Due to the propagator of the
exchanged particle, the invariant amplitude related to a x-channel contribution has a
pole at x = m2

x or, equivalently, at

cos θ̄ = zx0 (ω) =


2ωpωp′ − (M2 +M ′2 −m2

x)

2|p||p′|
for x = t and

2ωpωp′ + (m2 +m′
2 −m2

x)− s
2|p||p′|

for x = u,

(5.14)

where we used Eqs. (4.31) and (4.32) to express the Mandelstam variables t and u in
terms of cos θ̄, |p| and |p′| and �nally the energies ωp and ωp′ . Recall from Eqs. (4.10)
and (4.11) that both ωp and |p| (as well as the corresponding primed quantities) are
functions of the total energy ω =

√
s .

As we can see from Eqs. (5.4) and (5.14), the (on-shell) partial-wave potential can
be easily evaluated as long as

|zx0 (ω)| > 1 (5.15)

for any value of ω above threshold. Otherwise, the integrals in Eq. (5.4) have to be
calculated using the formula∫ 1

−1

d cos θ̄
f(ω, θ̄)

cos θ̄ − zx0 ± iε
= P

∫ 1

−1

d cos θ̄
f(ω, θ̄)

cos θ̄ − zx0
∓ iπf(ω, θ̄x0) (5.16)

where θ̄x0 = arccos zx0 . After integration the pole turns into logarithmic singularities
at zx0 = ±1, because for these values the pole position coincides with the limits of the
principal value integral in Eq. (5.16). Such singularities are rather di�cult to handle
numerically since for t- and u-channel contributions the pole position depends on the
energy of the process, cf. Eq. (5.14).

In the framework of the Jülich model this problem is treated using the method of
contour rotation, as explained e.g. in Chapter 4 of Ref. [75]. This procedure consists
in analytically continuing the singular contributions to the non-resonant potential to
a region in the complex |q|-plane where these are regular functions (q is the o�-shell
momentum of the exchanged particle). Following this method, the integrals appearing
in o�-shell scattering equations can then be evaluated by deforming the integration
contour in the |q|-plane, allowing one to obtain �nite transition amplitudes despite the
singularities in the underlying potential.
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Such a procedure obviously cannot be applied in an on-shell framework, since the
(algebraic) scattering equations of Section 4.3.4 can only be solved if the partial-wave
potential is �nite itself. Accordingly, we now have to inspect for which of the diagrams
in Fig. 5.1 the condition (5.15) holds true. For this purpose, we plot in Fig. 5.3 the
value of |zx0 | for all those contributions as a function of the total energy variable ω. The
curves were evaluated using the physical masses provided by the Particle Data Group
[2]. Concerning ππ-exchanges in elastic πN -scattering, one should note that the inte-
grands in Eqs. (5.5) to (5.9) when considered in the range from 4m2

π to tc = 40m2
π may

have poles at t = t′. We therefore plot |zx0 | for correlated ππ-exchanges using m2
x = t′

with t′ considered within that range.
From Fig. 5.3 it turns out that among all contributions the only singular term

comes from N -exchange in π∆→ π∆ scattering. In the present model we choose to
neglect this contribution since it is the single term which violates the condition (5.15).
Our procedure shall be justi�ed later in Section 5.4, where we show that a reasonable
description of experimental partial-wave πN → πN amplitudes can still be achieved
nonetheless. We should mention, however, that further singular terms may arise with
the inclusion of couplings to meson-baryon channels with higher thresholds.
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Figure 5.3. |zx0 (ω)| (cf. Eq. (5.14)) for the contributions depicted in Fig. 5.1.
Dashed lines indicate the threshold energy of the corresponding reaction channel.
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5.2.2 Resonant contributions

As explained in Section 4.3.4, we will determine the relative signs of the bare vertex
functions considered in Chapter 3 by including resonant terms in the meson-baryon
potential, and then �tting the resulting unitary amplitudes to data. The purpose of
doing this is to account for rescattering e�ects in the strong decays of low-lying N and
∆ baryons, if possible for all the states listed in Tables 2.3 and 3.1. Accordingly, we
shall now investigate which of those states may be included in the present framework,
in which only couplings to πN , π∆ and ηN are taken into consideration.

For further discussion we show in Fig. 5.4 the threshold energies of strong decay
channels with total strangeness S = 0, involving hadron ground-states only, for energy
ω . 1720 MeV. The values were obtained from the experimental Breit-Wigner masses
given by the Particle Data Group [2]. It should be noted that some of the channels
depicted in the �gure, i.e. π∆, σN and ρN are not two-body channels in a strict sense,
but e�ective parameterizations of the three-body channel ππN . As such, their in�u-
ence extends to somewhat lower energies than the nominal thresholds indicated in the
�gure. This is particularly important for the e�ective σN channel, corresponding to
ππN with two pions in the scalar-isoscalar state (ππ)I=0

S-wave, due to the broad ππ mass
distribution in the scalar channel (cf. Fig. 5.2). Here we used mσ = 500 MeV for the
mass of the σ meson.

Thus, considering the values presented in the �gure, we should be able to include
non-strange baryons with masses MR . 1700 MeV, i.e. still below the ρN threshold,
which do not couple too strongly to σN , to ρN itself or to the strangeness production
channels KΛ and KΣ. To �nd out which resonances ful�ll these conditions we list
the experimental Breit-Wigner widths and branching ratios of the lowest N and ∆
baryons in Table 5.2 (the data are from Ref. [2]). In agreement with the data, we will
not include the states N(1720) and ∆(1700) since for these the experimental branching
ratios into ρN are quite large. Strangeness production, on the other hand, seems to
be a minor e�ect in strong decays of low-lying states. Concerning decays into σN , the
only state coupling substantially to this channel is the N(1710) which, in particular,
contributes to the P11 partial-wave in πN scattering. In this regard, however, there is
a more important issue preventing the inclusion of any P11 resonance as we shall see
below.

- ω (MeV)
1077

πN

1215

ππN

1370

π∆

1439

σN

1487

ηN

1611

KΛ

1688

KΣ

1714

ρN

Figure 5.4. Experimental threshold energies of hadronic decay channels with
total strangeness S = 0.



8
8

C
h
ap
ter

5.
A
cou

p
led

-ch
an
n
el
m
o
d
el
for

π
N

scatterin
g

Table 5.2. Breit-Wigner widths (Γ) and branching ratios of low-lying N and ∆ resonances. The data is from the Particle Data
Group [2]. The states are classi�ed by spin J , parity π and the corresponding partial-wave in πN scattering. A long dash (��)
indicates that no coupling to the channel has been observed and a blank space that the Particle Data Group gives no estimates
based on the available data.

L2I 2J Jπ State Γ (MeV)
Branching ratios (%)

πN π∆ σN ηN KΛ KΣ ρN

S11
1
2

− N(1535) 125 � 175 35 � 55 < 1 (2 ± 1) (42 ± 10) �� �� < 4

N(1650) 120 � 180 50 � 90 0 � 25 < 4 5 � 15 3 � 11 4 � 12

P11
1
2

+ N(1440) 200 � 450 55 � 75 20 � 30 10 � 20 (0.0 ± 1.0) �� �� < 8

N(1710) 50 � 250 5 � 20 15 � 40 10 � 40 10 � 30 5 � 25 5 � 25

P13
3
2

+
N(1720) 150 � 400 8 � 14 60 � 90, P -wave 3 � 5 1 � 15 70 � 85

D13
3
2

− N(1520) 100 � 125 55 � 65 15 � 25 < 8 (0.23 ± 0.04) �� �� 15 � 25

N(1700) 100 � 250 (12 ± 5) 10 � 90, S-wave
< 20, D-wave (0.0 ± 1.0) < 3 < 35

D15
5
2

−
N(1675) 130 � 165 35 � 45 50 � 60 (7 ± 3) (0.0 ± 1.0) < 1 < 1 � 3

F15
5
2

+
N(1680) 120 � 140 65 � 70 5 � 15 (11 ± 5) (0.0 ± 1.0) 3 � 15

S31
1
2

−
∆(1620) 130 � 150 20 � 30 30 � 60

isospin
violation

�� 7 � 25

P33
3
2

+ ∆(1232) 114 � 120 100 �� �� ��

∆(1600) 220 � 420 10 � 15 40 � 70 < 25

D33
3
2

−
∆(1700) 200 � 400 10 � 20 30 � 60 30 � 55



5.2. Construction of the potential 89

The P11 partial-wave in πN → πN scattering

Resonances appearing in the P11 wave of the πN system cannot be considered in the
present model. To clarify the matter, let us introduce an alternative representation for
(unitary) partial-wave πN → πN amplitudes based on the unitarity condition (4.72).
It is well known that the solutions of (4.72) in the πN → πN channel can be written
as (see e.g. the textbook [66]):

T J±πN←πN =
8πω

|p|

[
ηJ±e

2iδJ±(ω) − 1

2i

]
(5.17)

where δJ± is the phase shift and ηJ± the inelasticity parameter. The latter satis�es

|ηJ±(ω)| ≤ 1 and |ηJ±(ω)| = 1 for ω < ωthr (5.18)

where ωthr denotes the threshold energy of the lowest inelastic channel coupling to the
πN system. Experimentally the value of ωthr might be as low as the threshold of the
three-body channel ππN (cf. Fig. 5.4), depending on the partial-wave amplitude under
consideration. In a theoretical model on the other hand, it obviously depends on which
channels are included in the framework.

Particularly in the current framework, we could not expect to describe πN → πN
partial-waves for which |ηJ±| < 1 below the π∆ threshold, i.e. for ω . 1370 MeV as
we use an on-shell approach. Unfortunately, this is the case of the P11 partial-wave:
Due to the contribution of the Roper N(1440) resonance, whose mass is remarkably
low, inelasticity is present in this wave already closely above the ππN threshold (see
Fig. 5.5). In the (o�-shell) framework of the Jülich model the Roper resonance is dy-
namically generated by non-resonant contributions only, among which the transition
πN → σN primarily leads to the correct behavior of the amplitude [21]. Here though,
even if we included couplings to the σN channel, we would not be able to account for
the width of the σ meson and provide inelasticity close to the ππN threshold this way.
For these reasons we will exclude P11 resonances from our analysis.

0.0
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0.4
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0.8
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1100 1200 1300 1400 1500 1600

(1
−
η

2
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Figure 5.5. Inelasticity for the P11 wave in πN → πN scattering. The data are
from the analysis of the GWU/SAID [14] group.
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Calculation of the pole diagrams

Summarizing the former discussion, in our description of meson-baryon scattering we
include bare resonant �elds for the following states:

N [1
2

−
](1535, 1650)

N [3
2

−
](1520, 1700)

N [5
2

−
](1675)

N [5
2

+
](1680)

and
∆[1

2

−
](1620)

∆[3
2

+
](1232, 1600),

(5.19)

where we use the notation B[Jπ](M) introduced in Section 2.5. The corresponding
s-channel contributions, resulting from couplings to πN , π∆ and ηN , are depicted in
the graphs of Fig. 5.6. There, it should be noted that we also include the N -pole graph
in πN → πN scattering (on the right in Fig. 5.6a). Although this diagram a�ects the
P11 wave only, which we exclude from our analysis, it will be considered in order to
obtain at least the correct low-energy behavior of the amplitude in this wave.

As explained in Section 4.3.2, s-channel amplitudes are separable in the momenta
of the scattering particles and thus completely determined by bare vertex functions.
In the framework of the Jülich model these are evaluated using two distinct methods
depending on the spin of the resonance: For baryons of spin J = 1

2
and 3

2
one applies

standard Feynman rules (derived from the Lagrangian of Ref. [45]) to decay diagrams
such as the graph in Fig. 5.7. The resulting bare vertices γλµR can then be transformed
to the |JMJ , λ±〉 basis according to

γJ±λ (ω) =

√
2J + 1

2

∫ 1

−1

d(cos θ̄) dJµRλ(θ̄) γλµR(ω, θ̄)(IF), (5.20)

cf. Eq. (4.114), where µR and λ denote the helicity of the decaying resonance and the
�nal meson-baryon state, respectively. Here, (IF) are isospin factors which evidently
appear in resonant contributions too. For higher-spin resonances, on the other hand,
one introduces phenomenological couplings

γJ± =

[
|p|
MB

∗

]n
γ

3
2
± with n =

(
2J + 1

2

)
− 2 (5.21)

based on kinematics and parity considerations [12, 40]. Here, recall that in our notation
the superscript J± indicates that the corresponding amplitude has parity π = (−)J±

1
2 ,

which should not be confused with the notation B[Jπ] for resonant states.
In our on-shell reduction we shall apply this method using the same underlying

Lagrangian and phenomenological couplings. The relevant interaction terms are col-
lected in Table 5.3, including the couplings to N∗(P13) states; according to Eq. (5.21),
the latter enter in the couplings to N∗(D15). The resulting bare vertices γJ± are given
in Appendix B and the isospin factors in Appendix C. As a �nal remark, the N -pole
diagram will be treated in the same way as the other resonant contributions, except
for the di�erence that the bare parameters cannot be considered as free because the
(dressed) coupling fNππ and nucleon mass MN are well-known physical quantities. We
return to this topic later in Section 5.4.1, where we explain the method to adjust the
model parameters.
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Figure 5.6. Resonant contributions to the potential. The resonant states N∗

and ∆∗ included in the model are listed in (5.19).

B
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M

Figure 5.7. Decay of a baryon resonance B∗ = N∗ or ∆∗ into a meson-baryon
state MB ∈ {πN, π∆, ηN} possibly coupling to the resonance.
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Table 5.3. E�ective Lagrangians for resonant contributions.

Vertex Lint

N∗ (S11)Nπ
f
N
∗
Nπ

mπ
N̄∗γµ~τ∂µ~πN + H.c.

N∗ (S11)Nη
f
N
∗
Nη

mπ
N̄∗γµ∂µηN + H.c.

N∗ (S11) ∆π
f
N
∗

∆π

mπ
N̄∗γ5~S∂µ~π∆µ + H.c.

NNπ (see Table 5.1)

N∗ (P13)Nπ
f
N
∗
Nπ

mπ

(
N̄∗
)µ
~τ∂µ~πN + H.c.

N∗ (P13)Nη
f
N
∗
Nη

mπ

(
N̄∗
)µ
∂µηN + H.c.

N∗ (P13) ∆π
f
N
∗

∆π

mπ

(
N̄∗
)µ
γ5γν ~S∂ν~π∆µ + H.c.

N∗ (D13)Nπ
f
N
∗
Nπ

m
2
π

N̄γ5γν~τ∂ν∂µ~π (N∗)
µ

+ H.c.

N∗ (D13)Nη
f
N
∗
Nη

m
2
π

N̄γ5γν∂ν∂µη (N∗)
µ

+ H.c.

N∗ (D13) ∆π i
f
N
∗

∆π

mπ

(
N̄∗
)
ν
~Sγµ∂µ~π∆ν + H.c.

∆∗ (S31)Nπ
f
∆
∗
Nπ

mπ
∆̄∗γµ~S†∂µ~πN + H.c.

∆∗ (S31) ∆π
f
∆
∗

∆π

mπ
∆̄∗γ5 ~T∂µ~π∆µ + H.c.

∆∗ (P33)Nπ analogous to N∆π and ∆∆π
(see Table 5.1)

∆∗ (P33) ∆π
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5.3 Unitarization and scale dependence

After constructing the partial-wave potential we are now able to solve the on-shell
scattering equations of Section 4.3.4, or equivalently to unitarize the full potential
according to

T J±(ω) =
[
V J±
�n

−1
(ω, µ)− [G�n] (ω, µ)

]−1

(5.22)

(cf. Eq. (4.123)). In this equation, G�n is the diagonal matrix in channel space whose
matrix elements are given by the �nite contributions (4.115) to the meson-baryon loop
integrals (4.91). In this context, µ denotes the set of renormalization scales µn resulting
from the solution of these integrals for the meson-baryon channels n (n = πN , π∆ and
ηN in our model). Finally, the divergent contributions to the loops were reabsorbed
in the potential V�n (cf. Eqs. (4.121) to (4.123)) which therefore depends on µ.

That said, we recall from Section 4.3.3 that the scale dependence was introduced
in V�n in such a way to formally obtain a scale-independent T J±-matrix from (5.22).
This would be the case if it was possible to evaluate Eq. (5.22) from the underlying
interactions order-by-order in perturbation theory. However, in any explicit model for
hadronic scattering, the potential has to be truncated to a �nite set of contributions
and therefore such a cancellation cannot be exact. As a result, a residual scale depen-
dence in the T J±-matrix should be expected, re�ecting the in�uence of higher-order
diagrams not included in the potential.

In the present model where we include lowest-order diagrams only, the potential
does not even depend on the scale. A common method to introduce scale dependence
in a tree-level potential V is by inserting form factors in the corresponding matrix
elements, i.e.

[V�n]J±
λ
′
λ

(ω, µ) ≡ F (ω,Λ) [V ]J±
λ
′
λ

(ω), (5.23)

which depend on cuto� mass parameters Λ. Here we shall use the same form factors
as in Ref. [45], which depend on the type of contribution as presented below:

• For the pole graphs the form factors are given by

F (p′, p) =

(
Λ4 +M4

R

Λ4 + (ωp′ + ωk′)
4

)n
′ (

Λ4 +M4
R

Λ4 + (ωp + ωk)4

)n

(5.24)

and are normalized at the position of the resonance. We choose n, n′ = 1 when
the particles couple to the resonance in S or P waves and n, n′ = 2 when they
couple in D or F waves.

• For t- and u-channel diagrams we employ conventional monopole (n = 1) and
dipole (n = 2) form factors at each vertex, i.e.

F (q) =

(
Λ2 −m2

x

Λ2 + |q|2

)n
(5.25)

where mx and q denote the mass and the three-momentum of the exchanged
particle, respectively. A dipole type is used whenever ρ or ∆ are present at the
vertex and a monopole type is used otherwise.



94 Chapter 5. A coupled-channel model for πN scattering

• One exception to the previous case is the N -exchange in πN → πN , for which
the monopole form factor is modi�ed to

F (q) =
Λ2 −M2

N

Λ2 − ((M2
N −m2

π)/MN)2 + |q|2
. (5.26)

This choice ensures that the N -pole and N -exchange contributions to πN → πN
cancel each other at the Cheng-Dashen point as required by low-energy theorems
for πN scattering [85].

• Another exception is the correlated ππ-exchange potential, which is multiplied
by the form factor

F (p′, p) =
Λ2

Λ2 + |p′|2
Λ2

Λ2 + |p|2
. (5.27)

The cuto� masses Λ are treated as free parameters in the model and will be adjusted to
data for πN → πN partial-wave amplitudes. These have values of a typical hadronic
scale (of the order of 1 GeV) and are understood as a parameterization of the unknown
high-momentum physics disregarded in lowest-order interactions at low energies.

Now, apart from the potential the �nite parts of the loop integrals in Eq. (5.22)
also depend on the renormalization scales µn. Although the scale dependence in both
these quantities should be in principle treated simultaneously, this is not possible in the
our framework because Eq. (5.22) is not an integral but an algebraic, on-shell approxi-
mated scattering equation. On the other hand, it would not be consistent to treat both
the scales and the cuto�s as independent free parameters, since these are correlated in
some way we cannot investigate here. Therefore we here proceed as follows: Firstly
all the regularization scales are �xed to some mass parameter of the order of hadronic
masses, say

µn
!

= µ0 ∼ 1 GeV with n = πN, π∆, ηN, (5.28)

using the same value of µ0 for all possible πN → πN partial-waves, and only then the
cuto� masses from the form factors are adjusted to experimental data. In this respect,
small changes in the scale µ0 should correspond to slight variations in the cuto�s so
the result remains approximately the same regardless a particular choice for µ0.

5.4 Partial-wave πN amplitudes

In this section we �nally present the results of our model for partial-wave πN → πN
amplitudes in the energy range from πN threshold up to ω = 1700 MeV. To obtain the
model parameters we speci�cally adjust the normalized amplitudes

T J± :=
|p|

8πω
T J±
λ
′
λ

with λ = λ′ = (πN)+1/2 (5.29)

to data, where T J±
λ
′
λ
are the partial-wave amplitudes of parity π = (−)J±

1
2 de�ned in

the helicity basis |JMJ , λ±〉, cf. Eqs. (4.53) to (4.56). Concerning de�nition (5.29),
we recall from Section 4.2.3 that due to parity invariance it is su�cient to consider
positive-helicity states only.
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Table 5.4. Equivalence between πN partial-wave amplitudes given in the L2I 2J

representation and in the helicity basis.

Spin Parity L2I 2J T J±

1
2

- S11, S31 T
1
2

+

1
2

+ P11, P31 T
1
2
−

3
2

+ P13, P33 T
3
2

+

3
2

- D13, D33 T
3
2
−

5
2

- D15, D35 T
5
2

+

5
2

+ F15, F35 T
5
2
−

Experimental information about the πN amplitudes is provided by partial-wave
analyses of meson scattering and production data, see for instance Refs. [13�16]. Fol-
lowing the Jülich model we utilize the GWU/SAID solutions [14] as input to deter-
mine the parameters. Before proceeding with the �t, we should mention that the
GWU/SAID solutions are given for partial-wave amplitudes in the usual L2I 2J repre-
sentation (where L is the orbital angular momentum of the πN system) and not for
helicity amplitudes T J± as evaluated here. Nonetheless, a one-to-one relation exists
between both representations because in the former the amplitudes are uniquely deter-
mined by the total angular momentum J and parity π = (−1)L+1. It is thus unneces-
sary to perform a change of basis before adjusting our amplitudes to the GWU/SAID
data. For convenience, we show the correspondence between the amplitudes in Table
5.4 as written in both bases up to angular momentum J = 5/2.

5.4.1 Parameters and �tting strategy

The potential constructed in Section 5.2 and the subsequent unitarization procedure
lead to a set of parameters which we categorize as follows:

(I) The hadron masses from the propagators in t- and u-channel exchanges and the
e�ective coupling constants from the non-resonant Lagrangian of Table 5.1,

(II) the subtraction constant A0 from correlated ππ exchanges in the J = 0 channel
(de�ned in Eq. (5.7) but treated here as a free parameter as in Ref. [45]),

(III) a set of cuto� masses and the renormalization scale µ0 from unitarization of the
non-resonant contributions,

(IV) the bare masses and couplings from the resonant Lagrangian of Table 5.3 and
cuto� masses related to pole contributions.

The parameters will be �xed following the same order they appear in the categories
above. We chose to start with the parameters related to non-resonant contributions,
i.e. those collected in (I) to (III), because in contrast to bare resonance parameters
the former a�ect all partial-waves in πN scattering. Note that once the background
is �xed by experimental data it is much simpler to �t each resonant amplitude to the
single partial-wave it contributes to, which motivates the method applied here.
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Regarding the set included in (I), the hadron masses appearing in t- and u-channel
amplitudes are �xed to the physical values provided by the Particle Data Group [2],
more speci�cally to averages over the masses of the possible charge (or isospin) states
of each particle. The e�ective coupling constants from the non-resonant Lagrangian,
in turn, are all set to the values of the Jülich model of Ref. [45] and references therein.
From background contributions the only parameters considered as free in our model
are those included in (II) and (III), i.e. the subtraction constant A0, the regularization
scale µ0 and �nally the cuto� masses related to t- and u-channel amplitudes. These
are here adjusted by hand, in such a way to provide a reasonable description of the
background in all partial-waves simultaneously.

The constant A0 in�uences predominantly the S11 and S31 waves in πN scattering
(specially the low-energy region close to the πN threshold) and is therefore adjusted
to these both S waves. Concerning the regularization scale µ0, the background in all
partial-waves can be reasonably described as long as its value is around the physical
mass of the ρ meson (mρ ≈ 770 MeV [2]). For values of µ0 below 600 MeV or above
900 MeV, on the other hand, the low-energy behavior of the S31 wave is no longer in
agreement with the data. For this reason we choose the value µ0 = 700 MeV.

At this point we shall adjust the cuto� parameters from t- and u-channel hadron
exchanges. In this procedure, considering independent cuto� values for each vertex
in the graphs of Fig. 5.1 would be in principle possible (cf. Ref. [45]), however at the
expense of a large set of free parameters. It turns out though that a quite small set
of cuto� parameters in�uence our results considerably, namely the cuto� masses from
the correlated ππ-exchange and N -exchange potentials in elastic πN scattering. Apart
from these, a �ne tunning of cuto� parameters could improve the description of the
data in detail, but with a minor in�uence in the overall behavior of the amplitudes.
Here, since our purpose is to obtain a simple description of the rescattering matrix in
strong decays, to reduce the number of parameters we employ the same cuto� value
for diagrams related to the exchange of the same particle (e.g. Λ = Λu

∆ for all ∆-
exchange diagrams an so on). The only exception is the cuto� related to N exchange
in πN → πN , which is set separately as in this case the form factor is also given by a
di�erent expression (cf. Eqs. (5.25) and (5.26)).

The �nal background parameters are given in Table 5.5, as well as the reference
from which we take either the parameter value or the experimental data as applicable.
The coupling constants f and g from the non-resonant Lagrangian are there expressed
as f̃ = f 2/(4π) and g̃ = g2/(4π), merely to utilize the same notation as in Ref. [45].
Regarding the cuto� masses shown in the table, one should note that in most cases we
restricted ourselves to values from 1100 MeV up to 1500 MeV, i.e. values in line with
typical hadron scales as previously discussed in Section 5.3. For ∆ exchange however
we utilize a somewhat higher cuto� of 1700 MeV.

The last step now is to adjust those parameters collected in (IV) consisting of bare
resonance masses and couplings as well as cuto� masses related to pole diagrams. As
mentioned before, in contrast to the background (whose parameters were adjusted by
hand) each resonant amplitude contributes to a single partial-wave only and therefore
the �tting procedure in this case can be easily performed numerically. The resulting
parameters for resonant contributions are presented in Table 5.6 and details on the
numerical �t are given below.
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Table 5.5. Model parameters for background contributions.

Parameter Value Ref.

Masses
(MeV)

mπ 138

Experimental
values from
PDG [2]

mη 548

mρ 769

ma0
983

MN 939

M∆ 1232

Couplings(
f̃ = f

2

4π

)

f̃NNπ 0.0778

Jülich model
of Ref. [45]

f̃NNη 0.00934

f̃N∆π 0.36

f̃N∆ρ 20.45

f̃∆∆π 0.252

g̃∆∆ρ 4.69

g̃ππρ 2.9√
g̃NNa0

g̃πηa0
8.0

κ∆∆ρ 6.1

Sub. constant
(MeV−1)

A0 0.006

Adjusted to
the solutions
from the

GWU/SAID
analysis [14]

Cuto�s
(MeV)

Λt
ππ (J = 0) 1100

Λt
ππ (J = 1) 1350

Λu
N (in πN → πN) 1100

Λu
N (in other processes) 1400

Λu
∆ 1700

Λt
ρ 1350

Λt
a0

1300

Reg. scale
(MeV)

µ0 700



98 Chapter 5. A coupled-channel model for πN scattering

Table 5.6. Model parameters for resonant contributions. The states are classi�ed
by spin J , parity π and the corresponding partial-wave in πN scattering.

L2I 2J Jπ State
Bare mass
(MeV)

fMBB
∗ Cuto�

(MeV)πN π∆ ηN

S11
1
2

− N(1535) 1596 0.094 −2.817 0.485 1800

N(1650) 1668 0.270 6.101 0.171 1800

D13
3
2

− N(1520) 1516 0.090 −0.684 0.084 2200

N(1700) 1834 0.021 −0.583 0.090 2200

D15
5
2

−
N(1675) 1668 0.674 −2.215 0.517 2200

F15
5
2

+
N(1680) 1676 0.176 −1.533 0.051 2000

S31
1
2

−
∆(1620) 1586 0.209 −5.509

isospin
violation

1800

P33
3
2

+ ∆(1232) 1265 1.879 �� 1500

∆(1600) 1622 −0.350 1.106 1800

While �tting resonant amplitudes the cuto� masses were allowed to vary between
1800 and 2200 MeV. The only exception is the cuto� related to the ∆-pole diagram,
which had to be lowered to 1500 MeV so that we could describe the P33 partial-wave.
In comparison to the cuto� masses used for background contributions (see Table 5.5),
here we use higher cuto�s because the form factor (5.24) for pole diagrams falls o�
rapidly even for such large values [75]. In addition, the cuto� parameters given in
Table 5.6 are in line with the general value of 2000 MeV utilized in the Jülich model
for all resonant terms [40, 45].

By default we adopt positive bare coupling constants and use negative couplings
when required by experimental data only. Using the GWU/SAID solutions for partial-
wave πN → πN amplitudes allows one to uniquely determine the sign (and also obtain
the strength) of the couplings to the πN and π∆ channels. At this point, we should
mention that it is possible to �nd an unique solution as long as the resonance does not
couple too strongly to ρN . This is in fact the reason why we excluded the N(1720)
and ∆(1700) states from our analysis: Although it is possible to roughly describe the
data in the corresponding P13 and D33 waves, we could not �nd a single solution which
de�nitely leads to the best results.

Now concerning the couplings to the ηN channel, most of the resonances listed in
(5.19) couple very weakly to this state (cf. also Table 5.2). As a result the description
of the πN → πN amplitudes should not depend too much on the corresponding bare
couplings, and we indeed obtain di�erent �ts which are equally good regardless the
sign of these constants. As expected the only exceptions are the S11 resonances, whose
decay widths into ηN are relatively large. Here, to introduce an additional constraint,
we employ the solutions from the Bonn/Gatchina partial-wave analysis for the reaction
πN → ηN [13, 88]. It is important to emphasize that we do not perform a numerical
�t to their results, but only use their data to determine the sign of the couplings to the
ηN channel. Please note that obtaining the signs of bare vertex functions is actually
the reason why we include resonant contributions in our πN model.
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Finally, before we proceed with the results of the model some remarks about the
calculation of the N -pole diagram are in order. As mentioned before, this contribution
can be evaluated in the same fashion as the other resonant terms, but here the bare
mass and coupling constant cannot be treated as free parameters. In the Jülich model
the bare parameters for this contribution are �xed in such a way to obtain the physical
values of fNNπ and MN after unitarization [40, 45]. Here, since P11 resonances are
excluded from our analysis anyway, we simply set the bare parameters to their phys-
ical values from the beginning and then adjust the corresponding cuto� mass Λs

N to
describe the low-energy behavior of the amplitude in this wave. The best value found
in this procedure was

Λs
N = 1550 MeV. (5.30)

5.4.2 Results for background amplitudes

Our results for background contributions to partial-wave πN → πN amplitudes in the
isospin channels I = 1

2
and 3

2
are presented in Figs. 5.8 and 5.9, respectively. In these

graphs we also compare our amplitudes to the GWU/SAID solutions and to the non-
resonant amplitudes from the Jülich model of Ref. [45]2. According to these results,
despite the on-shell approximation, the exclusion of the N -exchange diagram in the
π∆→ π∆ potential and �nally the reduced coupled-channel basis (in contrast to that
model we disregard couplings to σN and ρN), a reasonable agreement between both
models was achieved for most partial-waves up to J = 5

2
within the energy range un-

der consideration. As expected the only exception is the P11 partial-wave, because
in the Jülich model the Roper resonance N(1440) is dynamically generated by non-
resonant interactions involving the coupling to an (o�-shell) σN state [21]. Considering
all other partial-waves, the two models di�er for higher energies only and not in the
overall behavior of the amplitudes.

Regarding the P11 amplitude as shown in Fig. 5.8 the contribution of the N -pole
diagram was already included in the result, without which it would not be possible to
describe the low-energy behavior of the real part of the amplitude. In this partial-wave
one observes a large attraction for energies close to the position of the Roper N(1440),
which results from the correlated ππ-exchange potential in the J = 1 channel [75]. In
fact, this contribution almost provides su�cient strength for the dynamical generation
of the resonance, but it is only from the coupling to the σN channel that the correct
resonant behavior appears in the P11 wave [21].

In conclusion, given the reasonable agreement between our results and those from
the Jülich model, we consider our on-shell reduction to be a good parameterization
for rescattering e�ects in strong decays of N and ∆ baryons, excluding decays of P11

resonances. From the behavior of the P13 and D33 amplitudes we see that the N(1720)
and ∆(1700) states, respectively contributing to these partial waves, could be included
in our model as well. However, since here we are interested not only in describing the
partial waves but also in obtaining the sign of the bare vertex functions as precisely
as possible, including these two states (which couple too strongly to the ρN channel)
would not be meaningful in this context.

2In this reference the partial-waves are given in terms of phase shifts δJ± and inelasticities ηJ±,
see de�nitions in Section 5.2.2.
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Figure 5.8. Background contributions to partial-wave πN → πN amplitudes of
isospin I = 1/2. Full red lines indicate the results of our model and black dashed
lines the results of the Jülich model of Ref. [45]. The data points are the solutions
of the GWU/SAID partial-wave analysis for the full amplitude [14].
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isospin I = 3/2. The notation is the same as in Fig. 5.8.
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5.4.3 Results for the full model

Finally, our results for the full partial-wave πN → πN amplitudes given in comparison
to the data points from the GWU/SAID analysis are presented in Figs. 5.10 and 5.11,
for isospin I = 1

2
and 3

2
respectively. As one can see in these graphs, we could achieve

a very good description of the data in all partial-waves for which we included resonant
contributions, in particular for the D13, D15 and F15 waves in the N sector and the
P33 wave in the ∆ sector. For the S31 wave the model slightly di�ers from the data,
but the overall description of the amplitude is still very good. For the corresponding
S11 wave in the N sector, on the other hand, the di�erence between model and data is
somewhat larger in the energy region of the second resonance N(1650). This e�ect can
be traced back to the calculated background amplitude in this wave, for which (apart
from the P11 wave) we found the largest discrepancy between our approach and the
amplitudes from the Jülich model (cf. Fig. 5.8 and 5.9).

As mentioned before, we utilize the solutions of the Bonn/Gatchina partial-wave
analysis to constraint the signs of the bare couplings to the ηN channel. According to
Ref. [88] the Bonn/Gatchina analysis leads to two di�erent classes of solutions, called
BG2011-01 and BG2011-02, which basically di�er in the number and properties of
some positive-parity N resonances at masses above 1900 MeV. Within each class a
number of di�erent solutions is also found in their analysis, which for the πN → ηN
reaction channel lead to the boundaries depicted in Fig. 5.12. In our model, we adjust
the sign of the bare ηN couplings to qualitatively describe the boundaries related to
BG2011-01 solutions (the resulting amplitudes are also presented in Fig. 5.12) for the
reasons we explain below. We emphasize that the results are here considered to be
qualitatively good if the signs of the corresponding amplitudes agree with those from
the Bonn/Gatchina solutions.

On the one hand, the magnitude of the ηN couplings to the N(1520) and N(1720)
states could be adjusted to roughly describe both classes of solutions for the D13 wave,
provided these coupling constants are positive. For the F15 wave, on the other hand,
we are able to describe both classes of solutions for the real but not for the imaginary
part of the amplitude, whose negative sign close to the ηN threshold and subsequent
change of sign at higher energies, occurring in both solutions, cannot be accounted for
in our model. In this case we thus choose a positive coupling to the N(1680) state,
in order to at least describe the real part of this amplitude. Finally, in contrast to
the partial waves discussed above, just the BG2011-01 solutions for the D15 wave can
be depicted in our model, using for this a positive coupling to the N(1675) resonance.
This is the reason why we choose this class of solutions to determine the couplings to
all partial waves or, more speci�cally, to �rst adjust the ηN couplings to data, �x the
signs as explained above and then use the magnitude as input parameter for the �t to
the πN → πN partial-waves from the GWU/SAID analysis.

Although the agreement with the πN → ηN data is just qualitative the method
above does constraint the signs of the bare ηN couplings to D13, D15 and F15 states,
which would not be possible from a �t to πN → πN amplitudes alone. We recall that
the procedure is not necessary for S11 resonances as these substantially decay into the
ηN channel (see Table 5.2). In this sense, the description of the S11 wave in πN → ηN
scattering as shown in Fig. 5.12 consists of a pure prediction of the model.
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Figure 5.10. Full model results for partial-wave πN → πN amplitudes of isospin
I = 1/2. The data points are the same as in Fig. 5.8.
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5.5 Summary

In this chapter we implemented a coupled-channel model for meson-baryon scattering,
including the πN , ηN and π∆ channels. The model was based on an on-shell reduction
of the Jülich model in the version of Ref. [45], which besides the channels above also
includes σN and ρN . Despite the on-shell approximation and the exclusion of the σN
and ρN channels, our results for background πN → πN amplitudes turned out to be
quite similar to those of Ref. [45], within the energy range from πN threshold up to
ω ≈ 1700 MeV and for most partial waves with total angular momentum J ≤ 5

2
.

The only exception is unfortunately the P11 partial-wave. Due to the contribution
of the very low Roper resonance N(1440) to this wave, inelasticity is present already
at energies closely above the ππN threshold. Whereas in the Jülich model this e�ect
is parameterized by non-resonant interactions involving an (o�-shell) σN state, which
eventually leads to the dynamical generation of the Roper resonance, our formulation
lacks a mechanism to account for inelasticity at such low energies. Consequently we
are not able to describe the non-resonant amplitude in this wave, which represents the
major drawback of the present on-shell approach.

Our purpose was to provide a suitable parameterization for �nal state interactions
in the strong decays of low-lying N and ∆ baryons (as described in the quark model
of Chapters 2 and 3) as well as to determine the sign of the bare couplings to the
channels included here (which cannot be done directly from the quark model). Given
the reasonable description of non-resonant πN → πN amplitudes, we could achieve a
very good agreement with experimental data in all partial waves for which we included
resonant contributions, namely the S11, D13, D15 and F15 waves in the N sector and
the S31 and P33 waves in the ∆ sector. Accordingly we are now able to investigate
rescattering e�ects in the strong decays of all low-lying N and ∆ baryons which couple
to the πN system in these partial waves.



Chapter 6

Final state interactions in strong

baryon decays

6.1 Introduction

At this point, we �nally use the model of Chapter 5 to include �nal state rescattering
in the strong decays depicted in Chapter 3. The calculational procedure was detailed
in Section 4.4 and consists of evaluating baryon dressed vertices Γλn from

ΓJ±(ω = M,µ) =
[
I − (V NP)J±(ω = M,µ)G(ω = M,µ)

]−1

γJ±(ω = M), (6.1)

in terms of which the corrected decay widths are then given by

Γcorr(µ) :=
∑
λn

|pn|
8πM2

∣∣∣ΓJ±λn (ω = M,µn)
∣∣∣2 . (6.2)

For the decays into a speci�c helicity-channel state λn, we de�ne (corrected) partial
decay widths by

[Γcorr]λn (µ) :=
|pn|

8πM2

∣∣∣ΓJ±λn (ω = M,µ)
∣∣∣2 , (6.3)

such that
Γcorr(µ) =

∑
λn

[Γcorr]λn (µ). (6.4)

Here, pn is the relative momentum between the �nal (asymptotic) meson and baryon
states, V NP is the non-resonant meson-baryon potential constructed in Section 5.2.1
and γ are the bare vertex functions calculated from Eq. (3.20) in the relativistic quark
model. The baryon masses M at which these equations are evaluated are also taken
from the latter framework, cf. Chapter 2. As discussed before, the relative signs of the
various γ-matrix elements cannot be directly determined from Eq. (3.20) and are thus
�xed to those obtained from the meson-baryon model by �tting resonant amplitudes
to data. Finally, µ denotes the set of renormalization scales of the scalar loop integrals
Gn, which were all �xed to the same value µn

!
= µ0 = 700 MeV in such a way to describe

non-resonant contributions to several πN → πN waves simultaneously.

107
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The results of the procedure above for the decays of low-lying N and ∆ baryons
(i.e. those listed in Table 5.6 only) into πN , π∆ and ηN are presented in Section 6.2.
According to Eq. (6.3) the corrected widths were obtained from

[Γcorr]πN (µ) :=
|pπN |
8πM2

∣∣∣ΓJ±πN+1/2
(ω = M,µ)

∣∣∣2 (6.5)

and similarly for ηN , while for decays into π∆ we employed

[Γcorr]π∆ (µ) :=
|pπ∆|
8πM2

(∣∣∣ΓJ±π∆+1/2
(ω = M,µ)

∣∣∣2 +
∣∣∣ΓJ±π∆+3/2

(ω = M,µ)
∣∣∣2) (6.6)

since both helicity π∆+1/2 and π∆+3/2 states contribute to the latter. Unfortunately,
it turns out that the method does not improve the description of strong decay widths
at all: After inclusion of rescattering e�ects, the values are roughly the same for the
decays into πN and ηN and considerably smaller than before for most of the decays
into π∆. In view of the good description for non-resonant πN → πN amplitudes as
achieved in Chapter 5 (see Figs. 5.8 and 5.9), such results suggest that the problem
lies in the quark-model description of strong baryon decays.

As a matter of fact, it has been argued (see resonances review of the Particle Data
Group in [2]) that unitarity imposes di�erent constraints over transition amplitudes
and dressed vertex functions: Whereas the imaginary part of a partial-wave T -matrix
is proportional to its square (cf. Eq. (4.72)), the unitarity relation for a dressed vertex
Γ is linear:

i
[
(ΓJ±)− (ΓJ±)∗

]
= ρ

[
(TNP)J±

]†
ΓJ± (6.7)

where ρ is the phase-space matrix de�ned in (4.70). Consequently, decay widths as
calculated here are model dependent � as it could be inferred from the µ-dependence
in de�nition (6.1) �, which becomes an issue especially in our approach where bare
vertex functions are evaluated in one model and the rescattering matrix in another. In
fact, it is well-known that masses and decay widths of resonances are more properly
de�ned in terms of the poles

√
sR = MR − iΓR/2 appearing in the unphysical sheets

of an analytic transition matrix, while partial decay widths are evaluated from the
corresponding residua at these poles [46].

In principle, it would be possible to determine the poles of the transition matrix
from the relativistic quark model by deriving the meson-baryon potential (or at least
its resonant part) directly in that framework; the method is sketched in Appendix D.
After unitarization, the approach would allow one to de�ne baryon properties from the
poles and residua of the resulting transition matrix instead of the phenomenological
de�nitions for baryon masses (see Chapter 2) and corrected decay widths utilized here,
even if the non-resonant potential was still taken from the model of Chapter 5. Such a
self-consistent calculation, in which contributions to baryon masses and decay widths
are considered simultaneously, could lead to di�erent results for the corrected decay
widths. It is however unclear if such a method could be implemented numerically,
since in the quark model the evaluation of bare vertices at a single energy value is
already a very computer-demanding task. Moreover, regardless the method we de�ne
the corrected decay widths, the present results strongly indicate that the quark-model
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couplings of baryon excitations to strong decay channels are much too small and should
be improved before any further investigation on the issue.

In this context, a possible modi�cation in the relativistic quark model was already
pointed out in Chapter 2: As shown by Lucha and Schöberl in Ref. [55], there for the
case of mesons only, the reduction of the Bethe-Salpeter to the Salpeter equation as
performed in Section 2.2.4 is also possible with full quark propagators as long as these
are considered to be instantaneous in the hadron rest frame, in the same fashion as the
underlying quark interactions. We recall that in our quark model we parameterized
the full propagators by their usual free forms with poles at constituent quark masses.
Such a modi�cation would introduce more freedom in the framework without changing
the underlying instanton-based interactions, perhaps allowing for a better description
of strong decay couplings this way. In Section 6.3 we shall shortly comment about this
possibility and its e�ects in the description of strong decays.

6.2 Results and discussion

Before proceeding with the results, let us �rst inspect to which extent the πN , π∆ and
ηN threshold energies as calculated in the quark model di�er from the corresponding
experimental values. The former are obtained from the ground-state masses given in
Table 2.3 and Eq. (2.128) and the latter from the empirical masses provided by the
Particle Data Group [2]. For convenience, all these values are collected in Table 6.1,
from which we see that the di�erence between theoretical and experimental thresholds
is rather small and never larger then 40 MeV.

Next, we investigate if such di�erences would considerably a�ect the non-resonant
potential we employ to parameterize rescattering in baryon decays. For this purpose
we evaluate the background πN → πN amplitudes using two distinct parameter sets:
Firstly with the parameters of Table 5.5 and then with the N , ∆, π and η masses set to
the corresponding quark-model values. It turns out that in both cases the amplitudes
are almost the same, with the most noticeable di�erence being for the S11 partial-wave
(shown in Fig. 6.1 as an example). Hence, to evaluate the non-resonant potential V NP

and then the corrected decay widths using Eqs. (6.1), (6.5) and (6.6), we simply set
the ground-state N , ∆, π and η masses to the values from the quark model.

Finally, the results of the calculation are presented in Table 6.2, in comparison to
the widths without �nal state interactions and also to the experimental values from the
review of the Particle Data Group [2]. Recall from Section 3.3 that we call empirical
data the product between branching ratios and total Breit-Wigner widths as estimated
in their review, considered within the corresponding experimental uncertainties. As
we can see from these results, the decay widths into πN and ηN remain basically
unchanged after inclusion of rescattering e�ects; the only signi�cant correction was
obtained for the width of the ∆(1232) resonance which decays into πN only. On the
other hand, the corrected widths for the decays into π∆ turn out to be much smaller
than before for most of the states considered in this work, specially for the decay of
the N(1700) resonance. This latter example shows that �nal state interactions might
lead to very large corrections in strong decays of baryons (at least concerning decays
into π∆) although the e�ect is the opposite of what we initially expected.
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Table 6.1. Quark-model thresholds for the πN , π∆ and ηN channels compared
to the experimental values [2] (PDG). Baryon (meson) masses and thresholds are
denoted by M (m) and ωthr, respectively. All the values are given in MeV.

Channel
PDG Quark Model

|ωQ.M.
thr − ω

PDG
thr |

M m ωthr M m ωthr

πN 939 138 1077 945 139 1084 7

π∆ 1232 138 1370 1262 139 1401 31

ηN 939 548 1487 945 503 1448 39
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Figure 6.1. Background contributions to the S11 πN → πN wave as calculated
in the model of Chapter 5, using the empirical threshold energies (dashed lines)
and those from the quark model (full lines). The data are the same as in Fig. 5.8.
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Table 6.2. Strong decay widths of low-lying N and ∆ baryons into πN , π∆ and ηN . The quark-model predictions with and
without rescattering e�ects (Γcorr and Γ0, respectively) are compared to the estimates from the Particle Data Group [2] (PDG).
A long dash (��) indicates that the decay is kinematically forbidden.

L2I 2J Jπ Label
ΓπN (MeV) Γπ∆ (MeV) ΓηN (MeV)

Γ0 Γcorr PDG Γ0 Γcorr PDG Γ0 Γcorr PDG

S11
1
2

− N(1535) 32 31 44 � 97 0 1 0 � 2 �� �� 40 � 91

N(1650) 3 3 60 � 162 5 0 0 � 45 0 0 6 � 27

D13
3
2

− N(1520) 35 36 55 � 81 58 34 15 � 31 0 0 0

N(1700) 0 0 7 � 43 104 3 10 � 225, S-wave
< 50, D-wave 1 1 0 � 3

D15
5
2

−
N(1675) 3 3 46 � 74 35 30 65 � 99 6 6 0 � 2

F15
5
2

+
N(1680) 35 34 78 � 98 5 4 6 � 21 3 3 0 � 1

S31
1
2

−
∆(1620) 4 3 26 � 45 73 19 39 � 90

isospin
violationP33

3
2

+ ∆(1232) 63 75 114 � 120 �� �� ��

∆(1600) 15 13 22 � 105 3 4 88 � 294
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6.3 Further developments

Since the outcome of our investigations shows no improvement in the quark-model
description of strong decays, we now wish to discuss a possible modi�cation in that
framework which might lead to better results. For this purpose, let us return to the
derivations in Chapters 2 and 3 and recall that, �rstly in the calculation of hadron
spectra, (I) the underlying quark interactions were assumed to be instantaneous in the
hadron rest frame and (II) full quark propagators were parameterized by their usual
free forms

SiF (pi)
!

=
i

6pi −mi + iε
= i

[
Λ+
i (pi)

p0
i − ωi(pi) + iε

+
Λ−i (pi)

p0
i + ωi(pi)− iε

]
γ0 (6.8)

(cf. Eq. (2.84)) with poles at constituent quarks mi. Concerning strong baryon decays,
(III) the bare vertex functions were evaluated in lowest-order (quark-loops) only, due
to the impossibility of implementing higher-order terms from the underlying instanton
interactions numerically (see Appendix B of Ref. [39]). In this respect, however, we
recall that instanton interactions are highly selective in �avor space and, among the
processes considered in this thesis, a�ects decays into ηN only. Therefore, including
higher-order terms in the expansion of the strong decay kernel would not change the
results for decays into πN and π∆.

Whereas approximations (I) and (III) consist of truncating the in�nite series in the
corresponding interaction kernels, as usual in phenomenological descriptions of hadron
properties, approximation (II) is in conceptual inconsistency with the picture of quarks
being con�ned in hadronic states. As pointed out in Ref. [55], in quantum �eld theory
quark propagators (i.e. two-point Green's functions) are connected to other Green's
functions describing quark interactions via Dyson-Schwinger equations. Accordingly,
the propagators and interaction kernels in the Bethe-Salpeter equation could not in
principle be chosen independently of each other, as it was done in Chapter 2.

On the other hand, we recall that the free-quark approximation was employed in
the framework to allow for analytic integration over relative energy variables and also
introduce some projection properties, which ultimately enable the formulation of the
Bethe-Salpeter equation as an equivalent eigenvalue problem (cf. Sections 2.2.4 and
2.3.4 for the procedure in the case of quark-antiquark and three-quark bound states,
respectively). In this regard, however, Lucha and Schöberl demonstrated [55] (there
for quark-antiquark states only) that this derivation is also possible with full quark
propagators, as long as these � in consonance with approximation (I) � are assumed to
be instantaneous in the hadron rest frame. Their argument lies on the fact that exact
quark propagators

SiF (pi) =
iZi(p

2
i )

6pi −Mi(p
2
i ) + iε

(6.9)

may be recast in a form which is similar to (6.8) by neglecting the p0
i -dependence of

the two Lorentz-scalar functions Zi(p
2
i ) and Mi(p

2
i ) in the hadron rest frame, i.e.

Zi(p
2
i )

!
= Zi(p

2
i )

Mi(p
2
i )

!
= Mi(p

2
i )

for P̄ =:

(
M

0

)
(6.10)
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where P̄ denotes the total four-momentum of the hadron. In this instance, one may
de�ne new projection operators

Λ̃±i (pi) :=
ω̃i(pi)I ± H̃i(pi)

2ω̃i(pi)
(6.11)

in terms of single-quark energies

ω̃i(pi) :=

√
|pi|

2 +M2
i (p2

i ) (6.12)

and generalized Dirac Hamiltonians

H̃i(pi) := γ0 (γ · pi +Mi(pi)) (6.13)

� see Eqs. (2.39) to (2.41) for the corresponding de�nitions in the free-quark case �,
such that the exact propagator can �nally be expressed in the form of

SiF (pi) = iZi(p
2
i )

[
Λ̃+
i (pi)

p0
i − ω̃i(pi) + iε

+
Λ̃−i (pi)

p0
i + ω̃i(pi)− iε

]
γ0, (6.14)

which features similar pole structure and projection properties as Eq. (6.8). Thus, the
reduction from the Bethe-Salpeter to the Salpeter equation with (instantaneous) full
propagators proceeds in the same way as in Chapter 2, and for quark-antiquark bound
states one ends up with [55]

Φ(p) =− Z1(p2
1)Z2(p2

2)

M − ω1 − ω2

Λ̃+
1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ̃−2 (−p)

+
Z1(p2

1)Z2(p2
2)

M + ω1 + ω2

Λ̃−1 (p)γ0

[∫
d3 p′

(2π)3V
(2)(p,p′)Φ(p′)

]
γ0Λ̃+

2 (−p)

(6.15)

for the Salpeter amplitudes Φ, where p = (p1 − p2)/2. The derivation for three-quark
states was not performed in Ref. [55] but should be possible within the same method.

Based on the former discussion, we �nally inspect the consequences of using full
propagators for the description of strong baryon decays. To this end we recall that
strong decay widths were calculated in Chapter 3 from the vertex functions

γP̄ K̄←Q̄ ≈ 3

∫
d4 pξ

(2π)4

d4 pη

(2π)4 Γ̄P̄
(
pξ, pη + 2

3
K̄
)

× S1
F

(
1
3
MR + pξ + 1

2
pη
)
⊗ S2

F

(
1
3
MR − pξ + 1

2
pη
)

⊗ S q̄F
(

1
3
MR + pη − K̄

)
Γ̄K̄
(

1
3
MR − pη − 1

2
K̄
)

⊗ SqF
(

1
3
MR − pη

)
ΓMR

(pξ, pη),

(6.16)

cf. Eqs. (3.20) and (3.22), in which the amputated Bethe-Salpeter amplitudes Γ are
determined from Salpeter amplitudes according to Eqs. (3.16) and (3.18). From the
expression above, it is clear that extending the formalism in the way explained in this
section would lead to di�erent results for strong decay widths, as in this case both
propagators and amputated amplitudes (via Salpeter amplitudes) would depend on
the functions Zi(p

2
i ) and Mi(p

2
i ).
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To close the discussion, we emphasize that using full propagators in the relativistic
quark model not only opens the possibility for a better description of strong decays:
It also improves the framework conceptually since both quark propagators and inter-
action kernels would be treated in the same instantaneous approximation. Another
interesting point to be mentioned is that, as discussed in Section 2.5, the light-�avored
meson and baryon spectra could not be described within the same set of constituent
quark-mass parameters yet. We remind the reader that the constituent masses in the
model for mesons have been readjusted to those from the model for baryons, in order
to enable the calculation of bare vertex functions as in Eq. (6.16). In this respect,
extending the framework as suggested here allows for the investigation of this latter
issue as well.

6.4 Summary

In this chapter we concluded our investigation of rescattering e�ects in strong decays
of baryon resonances as depicted in the quark model. Unfortunately, the results show
no improvement in the theoretical decay widths: In the only case where �nal state
interactions lead to sizable corrections, i.e. decays into the π∆ channel, the widths
turn out to be even smaller than before. In view of these results we closed the chapter
with a suggestion for a possible extension of the framework, based on the reduction
of the Bethe-Salpeter to the Salpeter equation with full quark propagators, which in
line with the underlying quark interactions are assumed to be the instantaneous in the
hadron rest frame. Such a modi�cation would improve the model conceptually and, in
addition, might lead to a better description of strong baryon decays.



Chapter 7

Summary and outlook

The aim of this work was to investigate the e�ect of �nal state interactions in strong
two-body decays of baryons, speci�cally in the way these are described in Ref. [39],
i.e. on the basis of the relativistic constituent quark model of Refs. [23�30]. For this
purpose we limited the scope of our study to strong decays of low-lying N and ∆ reso-
nances (with masses M . 1700 MeV) into the πN , π∆ and ηN channels, which should
form a su�ciently large basis to estimate the e�ect of (coupled-channel) rescattering.

In Chapter 2 we reviewed the quark-model framework, in which meson and baryon
resonances are described by the solutions of the corresponding fermion-antifermion
and three-fermion Bethe-Salpeter equations, taken in instantaneous approximation and
with e�ective free-quark propagators. Based on the general structure of the empirical
light-�avored hadron spectrum, the interaction kernels were there parameterized by
a con�nement potential supplemented by a residual spin- and �avor-dependent force
motivated by instanton e�ects. The results for N and ∆ resonances and for π and η
mesons were presented in this chapter, showing that the model accounts for the gross
features observed in the non-strange baryon spectra, e.g. Regge trajectories M2 ∝ J
and mass splittings between octet and decuplet states, and also for the π − η splitting
in the pseudoscalar meson sector. In particular the masses of the low-lying N and ∆
states (whose decays were investigated in this thesis) are properly described, with a
deviation between theoretical and experimental values of at most 110 MeV.

As any constituent quark model, in the high-energy sector of the baryon spectrum
the model above leads to theoretical states whose experimental counterparts have not
been observed, the so-called missing resonances. In this context, the investigation of
strong decays is mandatory, as baryon resonances are detected in meson-production
experiments and thus only observed if they couple to the measured decay channels.
The description of strong two-body decays of baryons within the approach, achieved
by means of the Mandelstam formalism [47] in lowest-order of perturbation theory,
was explained in Chapter 3. There we showed that, in contrast to the good results
for hadronic spectra, the theoretical decay widths are generally too small and only in
qualitative agreement with experimental data. Whereas these results o�er a natural
solution to the missing resonance problem (e.g. missing N and ∆ resonances simply
decouple from πN), also the decay widths of well-established, low-lying states were
found to be too small in comparison to the data.
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Since the strong decay widths were just evaluated in lowest-order of perturbation
theory, the purpose of this work was to �nd out if such an outcome results from the
absence of rescattering e�ects, which are neglected in this approximation. Such an
investigation requires the study of meson-baryon scattering equations, as carried out
in Chapter 4, in order to connect strong decay amplitudes to the meson-baryon rescat-
tering matrix. After solving the scattering equation in on-shell approximation and
decomposing the result into resonant and non-resonant (or background) contributions,
we could establish the method to include �nal state interactions: The procedure corre-
sponds to dressing the decay amplitudes (or bare vertices) obtained in the quark model
and subsequent re-evaluation of the decay widths from the resulting dressed vertices.

For the procedure above a suitable parameterization of non-resonant meson-baryon
amplitudes was necessary, and therefore in Chapter 5 we implemented a model for
coupled-channel πN , π∆ and ηN scattering. The approach was based on an on-shell
reduction of the Jülich model [21, 40�46] which, among the several dynamical models
available in the literature, is very suitable for describing �nal state interactions as it
provides well-constrained non-resonant amplitudes. In that chapter we demonstrated
that despite the on-shell approximation the resulting amplitudes are very similar to
those from Jülich model, within the energy range from πN threshold up to 1700 MeV
and partial waves with total angular momentum J ≤ 5

2
. One exception was however

the P11 wave, which due to the contribution of the Roper resonance N(1440) cannot be
described in our on-shell framework. This could be expected since in the Jülich model
the Roper resonance is dynamically generated by non-resonant interactions involving
an (o�-shell) σN state [21], whereas in our approach such a mechanism is absent.

Using the formalism of Chapter 4 and the amplitudes from Chapter 5 we were able
to account for rescattering e�ects in the decays of most of the N and ∆ resonances
with masses up to 1700 MeV. For the reasons mentioned above, the states coupling to
πN in P11 wave were excluded from our analysis. The results for the corrected decay
widths (i.e. after including �nal state interactions) were presented in Chapter 6 and
can be summarized as follows: Whereas rescattering e�ects are practically irrelevant
for the decays into πN and ηN , these lead to large corrections for the decays into π∆,
however in the opposite direction of what we expected. In the latter case, the corrected
decay widths turned out to be much smaller than before. According to this outcome,
including �nal state interactions does not lead to any better results for strong decay
widths in the way these are described in the relativistic quark model.

On the one hand, one may argue that our method to include �nal state interactions
is too phenomenological, since masses and decay widths of resonances are properly
de�ned from the poles of an unitary, analytical transition matrix and corresponding
residua. Indeed, we pointed out in Chapter 6 that in this method the corrected de-
cay widths are model dependent, which becomes an issue specially in our framework
where bare vertices are obtained from one model and the rescattering matrix from an-
other. Whereas a self-consistent calculation of baryon properties from the poles of the
transition matrix might lead to substantial corrections to the strong decay widths, the
present results allow us to estimate the e�ect of �nal state interactions and thereby
infer that the strong decay amplitudes in the quark model are in fact too small.
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In this regard, a possible modi�cation in the model was suggested in Chapter 6.
We recall that in the approach the full quark propagators were parameterized by their
usual free forms, with poles at constituent quark masses, which allowed us to obtain
a solvable bound-state equation to describe hadrons in terms of constituent quarks.
However, such an approximation is in principle inconsistent with the picture of quarks
being bound in hadronic states. In addition, it was shown in Ref. [55] (there for the
case of mesons) that the use of full quark propagators would also lead to a solvable
bound-state equation in case that the propagators are also taken in the instantaneous
approximation, in line with the quark interactions used in the approach. Concerning
the description of strong decays, we showed that the formalism with full propagators
would in fact lead to di�erent results for the strong decay widths and, therefore, should
be investigated in the future.



118 Chapter 7. Summary and outlook



Appendix A

Conventions and normalization

We summarize below the conventions and normalization used in this thesis. For this
purpose we denote

• four-vectors by italic letters p,

• three-vectors by bold letters p and

• unit vectors by p̂.

Following the Jacob and Wick convention [64], p̂ is de�ned by the rotation matrix

R(Ωp) = Rz(φp)Ry(θp)Rz(−φp) ∈ SO(3)

such that p̂ = R(Ωp)êz. Here, Ω = (θp, φp) indicates the direction of p, êz denotes the
unit vector in the z-direction and Ri(α) represents a rotation through angle α about
the i-axis.

To present the explicit forms of Dirac and Rarita-Schwinger spinors, polarization
vectors and �nally Feynman propagators, we consider single-particle states of mass m,
helicity λ and four-momentum p. In case that such a state is on the mass-shell, i.e.

p =

(
ωp

p

)
with ωp =

√
m2 + p2 , (A.1)

it can be represented by the simultaneous eigenstates of four-momentum and helicity.
In this work these are denoted by |p, λ〉 and covariantly normalized according to

〈p′, λ′|p , λ 〉 = (2π)32ωpδ
(3)(p′ − p)δλ′λ. (A.2)

Metric tensor

Scalar products p · k := gµνp
µkν in Minkowski space are de�ned in relation to the metric

tensor

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.3)
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Pauli and Dirac matrices

The Pauli spin matrices σ = (σ1, σ2, σ3) are given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
(A.4)

and ful�ll the relations

[σi, σj] = 2iεijkσk and {σi, σj} = 2δij12, (A.5)

where εijk is the Levi-Civita symbol and 1n represents the n×n identity matrix. The
Dirac matrices γµ = (γ0,γ) are de�ned by the anticommutator

{γµ, γν} = 2gµν14 (A.6)

and in the standard Dirac representation are given by

γ0 =

(
12 0

0 −12

)
and γ =

(
0 σ

−σ 0

)
. (A.7)

Further important combinations of the Dirac matrices are

γ5 = iγ0γ1γ2γ3 =

(
0 12

12 0

)
(A.8)

and the commutator

σµν =
i

2
[γµ, γν ] . (A.9)

Spinors and polarization vectors

• The spin-1/2 Dirac spinors are solutions of the Dirac equation

( 6p−m)uλ(p) = 0, (A.10)

and according to Eq. (A.2) are normalized by

u†
λ
′(p)uλ(p) = 2ωpδλ′λ. (A.11)

The latter equation might also be written as

ūλ′(p)uλ(p) = 2mδλ′λ (A.12)

by using the de�nition ū := u†γ0. In agreement with (A.10) and (A.11) the Dirac
spinors can be written as

uλ(p) =
√
ωp +m

(
12
σ·p
ωp+m

)
χλ (A.13)

where χλ represent Pauli spinors.
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• The spin-1/2 Pauli spinors appearing in Eq. (A.13) take the form

χ+1/2(Ωp) =

(
cos (θp/2) e−i(φp/2)

sin (θp/2) e+i(φp/2)

)
if λ = +1/2 (A.14)

and

χ−1/2(Ωp) =

(
− sin (θp/2) e−i(φp/2)

cos (θp/2) e+i(φp/2)

)
if λ = −1/2. (A.15)

Moreover, they represent eigenstates of the helicity operator, i.e.

σ · p
2|p|

χλ = λχλ, (A.16)

which are normalized according to

χ†
λ
′χ
λ

= δλ′λ. (A.17)

• The spin-1 polarization four-vectors ελ are de�ned by

εµ±1(p) =
1√
2


0

∓ cos θp cosφp + i sinφp

∓ cos θp sinφp − i cosφp

± sin θp

 for λ = ±1 (A.18)

and

εµ0(p) =
1

m


|p|

ωp sin θp cosφp

ωp sin θp sinφp

ωp cos θp

 for λ = 0. (A.19)

In addition, they ful�ll the normalization

ε†µε
µ = −1 (A.20)

for each λ ∈ {0,−1, 1}.

• The spin-3/2 Rarita-Schwinger spinors result from the coupling of Dirac spinors
and polarization vectors, i.e.

uµλ(p) =
∑
λ1,λ2

〈1λ1,
1

2
λ2|

3

2
λ〉εµλ1

(p)uλ2
(p), (A.21)

where the matrix elements denote the usual Clebsch-Gordan coe�cients. These
spinors ful�ll the Rarita-Schwinger equations

(6p−m)uµλ(p) = 0

p · uλ(p) = 0

γ · uλ(p) = 0

(A.22)
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and also the normalization

ūλ′(p) · uλ (p) = −2mδλ′λ, (A.23)

which follows from Eq. (A.12), (A.17) and (A.20).

Feynman propagators

The propagation of a spin-s particle is described by

• the scalar propagator

∆(p) =
i

p2 −m2 + iε
if s = 0, (A.24)

• the Dirac propagator

S(p) = i
6p+m

p2 −m2 + iε
if s = 1/2, (A.25)

• the vector propagator

∆µν(p) = ∆(p)

[
−gµν +

pµpν

m2

]
if s = 1, (A.26)

• and �nally the Rarita-Schwinger propagator

Sµν(p) = S(p)

[
−gµν +

γµγν

3
+

2pµpν

3m2 −
pµγν − pνγµ

3m

]
if s = 3/2. (A.27)



Appendix B

The e�ective meson-baryon potential

We give below the transition amplitudes related to the diagrams of Figs. 5.1 and 5.6.
Recall from Chapter 5 that each amplitude has to be multiplied by the corresponding
form factor (see Section 5.3) and isospin factor (see Appendix C).

B.1 Background contributions

Given the parametrizations (5.1) to (5.3) of the non-resonant amplitudes, we list the
Lorentz invariant functions A and B for the diagrams of Fig. 5.1. Except for the case
of correlated ππ exchange these are derived from the Lagrangian of Table 5.1.

Elastic πN -scattering, Fig. 5.1a

• N -exchange:

AuN =
f 2
NNπ

m2
π

2MN , Bu
N =

f 2
NNπ

m2
π

(
1 +

4M2
N

u−M2
N

)
. (B.1)

• ∆-exchange:

Au∆ =
f 2
NNπ

m2
π

a∆(u, t)

6M2
∆(u−M2

∆)
, Bu

∆ = −f
2
NNπ

m2
π

b∆(u, t)

6M2
∆(u−M2

∆)
, (B.2)

where

a∆(u, t) = M2
∆(M∆ +MN)(6m2

π − 3t− 2u+ 2M2
N)

− 2m2
πM∆(u−M2

N +m2
π)−MN(u−M2

N +m2
π)2

and
b∆(u, t) = 4M3

∆MN +M2
∆(4m2

π − 3t+ 4M2
N)

− 2M∆MN(u−M2
N +m2

π)− (u−M2
N +m2

π)2.

The invariant amplitudes corresponding to correlated ππ exchange in the σ and
ρ channels are given in Eq. (5.5) to (5.9).
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Coupling to π∆, Fig. 5.1b

• N -exchange in πN → π∆:

(AuN)µ =
fN∆πfNNπ

m2
π

u+MNM∆

u−M2
N

kµ,

(Bu
N)µ =

fN∆πfNNπ

m2
π

2MN

u−M2
N

kµ.

(B.3)

• ∆-exchange in πN → π∆:

(Au∆)µ = −f∆∆πfN∆π

m2
π

[
a1(u)k′µ + a2(u)kµ

6M2
∆(u−M2

∆)

]
,

(Bu
∆)µ =

f∆∆πfN∆π

m2
π

[
b1(u)k′µ + b2(u)kµ

6M2
∆(u−M2

∆)

]
,

(B.4)

where

a1(u) = 6M2
∆(u+M∆MN),

a2(u) = 3M4
∆ + 5M3

∆MN +M2
∆

(
2M2

N − 4m2
π − u

)
+M∆MN

(
2M2

N − 2m2
π − 3u

)
+ 2u

(
M2

N −m2
π − u

)
,

b1(u) = 12M3
∆

and

b2(u) = −6M3
∆ − 4M2

∆MN + 2M∆

(
2M2

N − 2m2
π − u

)
.

• ρ-exchange in πN → π∆:

(
Atρ
)
µ

= i
fN∆ρfρππ

mρ

MN +M∆

t−m2
ρ

(
k + k′

)
µ
,

(
Bt
ρ

)
µ

= i
fN∆ρfρππ

mρ

2

t−m2
ρ

(
k − k′

)
µ
.

(B.5)

Although considered in the Jülich model of Ref. [45], N -exchange in π∆→ π∆
cannot be included in our approach (see Section 5.2.1).

• ∆-exchange in π∆→ π∆:

(Au∆)µν = −f
2
∆∆π

m2
π

6M3
∆(u−M2

∆)gµν − 2M∆(3M2
∆ + u)kµk

′
ν

3M2
∆(u−M2

∆)
,

(Bu
∆)µν = −f

2
∆∆π

m2
π

3M2
∆(3M2

∆ + u)gµν − 2(3M2
∆ + u)kµk

′
ν

3M2
∆(u−M2

∆)
.

(B.6)
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• ρ-exchange in π∆→ π∆:

(Aρt )µν = i
g∆∆ρgππρκ∆∆ρ

2M∆

u− s
t−m2

ρ

gµν ,

(Bρ
t )µν = i g∆∆ρgππρ(1 + κ∆∆ρ)

2

t−m2
ρ

gµν

(B.7)

Coupling to ηN , Fig. 5.1c

• N -exchange in πN → ηN :

AuN =
fNNηfNNπ

m2
π

2MN , Bu
N =

fNNηfNNπ

m2
π

(
1 +

4M2
N

u−M2
N

)
. (B.8)

• a0-exchange in πN → ηN :

Ata0
= −

gNNa0
gπηa0

mπ

t−m2
a0

(B.9)

and Bt
a0

= 0 in the scalar channel.

• N -exchange in πN → ηN :

AuN =
f 2
NNη

m2
π

2MN , Bu
N =

f 2
NNπ

m2
π

(
1 +

4M2
N

u−M2
N

)
. (B.10)

B.2 Resonant contributions

As explained in Section 4.3.2 resonant amplitudes are fully determined by bare vertex
functions. In the following we give the bare vertices entering in the calculation of the
graphs depicted in Fig. 5.6 which are derived from the Lagrangian of Table 5.3 and
transformed to the basis of the helicity and parity eigenstates |JMJ , λ±〉 according
to Eq. (4.114). Since bare vertex functions are equal (up to isospin factors) for two
diagrams which di�er only in the isospin quantum numbers of the particles, we give
just one expression for both cases and denote the bare coupling constants by f without
subscripts. As a last remark about our notation, we recall from Chapter 4 that the
superscript J± indicates that the corresponding amplitude has parity π = (−)J±

1
2 .

Coupling to πN (ηN), λ = 1/2

• S11 (S31):

γ
1
2

+

λ =
if

mπ

(ω −MN)
√

2ω
√
EN +MN δλ 1

2
, (B.11)

• P11 (P31):

γ
1
2
−

λ =
if

mπ

(ω +MN)
√

2ω
√
EN −MN δλ 1

2
, (B.12)
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• P13 (P33):

γ
3
2

+

λ =

√
1

3

if

mπ

√
2ω
√
EN +MN |p| δλ 1

2
, (B.13)

• D13 (D33):

γ
3
2
−

λ =

√
1

3

f

m2
π

(ω +MN)
√

2ω
√
EN −MN |p| δλ 1

2
, (B.14)

where EN and p are the on-shell energy and the three-momentum of the N belonging
to the πN (ηN) state, respectively.

Coupling to π∆, λ = 1/2 or 3/2

• S11 (S31):

γ
1
2

+

λ =

√
2

3

(
− if

mπ

)
ω

M∆

√
2ω
√
E∆ −M∆ |p| δλ 1

2
, (B.15)

• P11 (P31):

γ
1
2
−

λ =

√
2

3

(
− if

mπ

)
ω

M∆

√
2ω
√
E∆ +M∆ |p| δλ 1

2
, (B.16)

• P13 (P33):

γ
3
2

+

λ =

√
1

2

if

mπ

(ω +M∆)
√

2ω
√
E∆ −M∆[(

2E∆ −M∆

3M∆

)
δλ 1

2
+ δλ 3

2

]
,

(B.17)

• D13 (D33):

γ
3
2
−

λ =

√
1

2

(
− f

mπ

)
(ω −M∆)

√
2ω
√
E∆ +M∆[(

2E∆ +M∆

3M∆

)
δλ 1

2
+ δλ 3

2

]
,

(B.18)

where E∆ and p are the on-shell energy and the three-momentum of the ∆ belonging
to the π∆ state, respectively.

Finally, we recall that the bare vertex functions related to couplings to higher spin
resonances are given by the phenomenological couplings of Eq. (5.21).



Appendix C

Isospin factors

Since isospin symmetry is considered to be exact in this thesis, the contributions to
the meson-baryon potential constructed in Chapter 5 have to be multiplied by isospin
factors. Accordingly, in this appendix we detail the calculation of the isospin factors
related to the diagrams depicted in Figs. 5.11 and 5.6. For this purpose we consider
isospin states given in the spherical basis, i.e.

χ+ 1
2

= |1
2

+ 1
2
〉

χ− 1
2

= |1
2
− 1

2
〉
,

φ+1 = |1 + 1〉
φ0 = |1 0〉
φ−1 = |1 − 1〉

and

∆+ 3
2

= |3
2

+ 3
2
〉

∆+ 1
2

= |1
2

+ 1
2
〉

∆− 1
2

= |1
2
− 1

2
〉

∆− 3
2

= |3
2
− 3

2
〉

(C.1)

for particles with isospin I = 1
2
, 1 and 3

2
, respectively.

The isospin amplitudes associated to the graphs of Figs. 5.1 and 5.6 are obtained
from the structures appearing in the underlying Lagrangian (see Tables 5.1 and 5.3)
and the summation over the possible isospin states of the corresponding exchanged
particles. For instance in the case of N exchange in πN → πN scattering, by applying
the NNπ Lagrangian at each vertex we obtain

〈1
2
β, 1b|T (I)|1

2
α, 1a〉 =

∑
µ

[
χ†β~τ

~φaχµ

] [
χ†µ~τ ~φ

∗
bχα

]
(C.2)

where α (β) and a (b) denote the isospin states of the N and the π in the initial (�nal)
con�guration. For the isospin amplitude for ππ exchange in πN → πN scattering in
the J = 0(1) channel, we use Lagrangians describing the NNσ(ρ) and ππσ(ρ) vertices.
In the Jülich model these are given by [40, 45]

LNNσ = −gNNσN̄Nσ,
Lππσ = gππσ

2mπ
(∂µ~π)(∂µ~π)σ,

LNNρ = −gNNρN̄
[
γµ − κNNρ

2MN
σµν∂ν

]
~τ~ρµN

(C.3)

and Lππρ as given in Table 5.1.

1Except for N exchange in πN → πN which is not included in the model.
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In the course of the calculation some typical isospin structures appear, which in the
spherical basis can be evaluated using the formulae [75]:

~φa~φb = (−)aδa,−b
~φa × ~φb =

∑
c=0,±1 i

√
2 〈1a, 1b|1c〉~φc

χ†αχβ = δαβ

χ†α~τ ~φcχβ =
√

3 〈1
2
β, 1c|1

2
α〉

∆†α~S
†~φcχβ = 〈1

2
β, 1c|3

2
α〉

∆†α ~T ~φc∆β =
√

5
3
〈3

2
β, 1c|3

2
α〉.

(C.4)

Here, the matrix elements on the right-hand sides denote Clebsch-Gordan coe�cients
and τ , S and T represent the isospin transition operators for 1/2→ 1/2, 1/2→ 3/2
and 3/2→ 3/2, respectively.

Finally, once the amplitude for each graph is obtained, the corresponding isospin
factors are given by the matrix element of T (I) between initial and �nal meson-baryon
states |IM〉 with �xed total isospin [75]:

IF (I) := 〈IM |T (I)|IM〉

=
∑
β,b

∑
α,a

〈IM |1
2
β, 1b〉〈1

2
β, 1b|T (I)|1

2
α, 1a〉〈1

2
α, 1a|IM〉, (C.5)

where we employ the same notation as in Eq. (C.2). Using this expression, one obtains
the same result regardless of the choice of the quantum numberM . Moreover, it should
be noted that in the Clebsch-Gordan coe�cients in (C.5) the baryon isospin quantum
numbers appear before those related to mesons, in consonance with de�nition (4.16)
for meson-baryon helicity states.

The resulting isospin factors for background and resonant diagrams are collected in
Tables C.1 and C.2, respectively. Since the isospin factors for resonant contributions
factorize, in Table C.2 we present the factors related to each one of the vertex functions
appearing in the pole diagrams. In this case the factor for a full resonant amplitude is
then given by the product of the factors at each vertex.
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Table C.1. Isospin factors for background contributions.

Reaction channel Diagram IF(1/2) IF(3/2)

πN → πN

N exchange −1 2

∆ exchange 4
3

1
3

ππ exchange (J = 0) 1 1

ππ exchange (J = 1) 2i −i

πN → π∆

N exchange −
√

8
3

√
5
3

∆ exchange −5
3

√
2
3

−2
3

√
5
3

ρ exchange i
√

2
3

i
√

5
3

π∆→ π∆
∆ exchange −10

9
11
9

ρ exchange 5i
3

2i
3

πN → ηN
N exchange

√
3

isospin
violation

a0 exchange
√

3

ηN → ηN
N exchange 1

f0 exchange 1

Table C.2. Isospin factors for resonant contributions (at each vertex).

Decay channel IF(1/2) IF(3/2)

πN
√

3 1

π∆ −
√

2
√

5
3

ηN 1
isospin
violation
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Appendix D

Pole diagrams in the quark model

As pointed out in Chapter 6, deriving the resonant part of a meson-baryon potential
in the framework of the relativistic quark model would allow one to rede�ne baryon
properties directly from the poles and residua of an unitary transition matrix. In this
appendix we sketch this derivation which is analogous to the Mandelstam formalism
presented in Chapter 3.

We start by considering that meson-baryon scattering in a constituent quark model
may be depicted as a �ve-body interaction involving four quarks and one antiquark
which, at large times before and after the reaction, appear con�ned in asymptotic
meson (qq̄) and baryon (qqq) states. Such a process in quantum �eld theory is a
contribution to the ten-point Green's function, which is de�ned by (cf. Eq. (3.10))

G(10)(x′1, x
′
2, x
′
3, y
′
1, y
′
2;x1, x2,x3, y1, y2) :=

−〈Ω|T Ψ1
′
(x′1)Ψ2

′
(x′2)Ψ3

′
(x′3)Ψq

′
(y′1)Ψ̄q̄

′
(y′2)

×Ψq̄ (y2)Ψ̄q (y1)Ψ̄1 (x1)Ψ̄2 (x2)Ψ̄3 (x3)|Ω〉

(D.1)

in the Heisenberg picture. In the equation above, we employed the same notation as
in Chapters 2 and 3, thus Ψ and Ψ̄ are quark �eld operators, T is the time-ordering
operator and |Ω〉 is the physical vacuum state. Moreover, the superscripts i = 1, 2, 3
(i′ = 1′, 2′, 3′) and j = q, q̄ (j = q′, q̄′) label the constituent quarks in the initial (�nal)
baryon and meson, respectively.

Since the initial and �nal meson-baryon states are asymptotic, we shall choose the
time-dependence

x′01 , x
′0
2 , x

′0
3 , y

′0
1 , y

′0
2→+∞ and x0

1, x
0
2, x

0
3, y

0
1, y

0
2→−∞ (D.2)

for the ten-point Green's function (D.1), so that it can be written as

G(10)(x′1, x
′
2, x
′
3, y
′
1, y
′
2;x1, x2,x3, y1, y2) :=

−〈Ω|
(
TΨ1

′
(x′1)Ψ2

′
(x′2)Ψ3

′
(x′3)Ψq

′
(y′1)Ψ̄q̄

′
(y′2)

)
×
(
TΨq̄ (y2)Ψ̄q (y1)Ψ̄1 (x1)Ψ̄2 (x2)Ψ̄3 (x3)

)
|Ω〉.

(D.3)

The contribution from meson-baryon scattering is then isolated by inserting complete
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sets ∫
d3 P̄

(2π)32ωP̄

∫
d3 K̄

(2π)32ωK̄
|P̄ K̄〉〈P̄ K̄| = 1 (D.4)

of two-particle momentum eigenstates |P̄ K̄〉 := |P̄ 〉 ⊗ |K̄〉 between the time-ordered
products in (D.3). Following this procedure we arrive at

G(10)(x′1, x
′
2, x
′
3, y
′
1, y
′
2;x1, x2, x3, y1, y2) =

−
∫

d3 P̄ ′

(2π)32ωP̄ ′

d3 K̄ ′

(2π)32ωK̄′

d3 P̄

(2π)32ωP̄

d3 K̄

(2π)32ωK̄

×
[
χP̄ ′(x

′
1, x
′
2, x
′
3)⊗ χK̄′(y

′
1, y
′
2)
]
〈P̄ ′K̄ ′|P̄ K̄〉

× [χ̄P̄ (x1, x2, x3)⊗ χ̄K̄(y1, y2)] ,

(D.5)

where we also used Eqs. (2.16), (2.17), (2.69) and (2.70) to identify the Bethe-Salpeter
amplitudes χ and χ̄. Here, 〈P̄ ′K̄ ′|P̄ K̄〉 is the scattering matrix element between the
initial and �nal meson-baryon states as de�ned in the Heisenberg picture.

Now, by assuming that the scattering occurs via s-channel resonance exchange we
decompose the ten-point Green's function in terms of an integral interaction kernel
K(4) as follows (cf. Fig. D.1):

G(10)(x′1, x
′
2, x
′
3, y
′
1, y
′
2;x1, x2, x3, y1, y2) =:∫

d4 x′′′1 d4 x′′′2 d4 x′′′3 d4 y′′′1 d4 y′′′2 d4 z′′′1 d4 z′′′2 d4 z′′′3

×
∫

d4 x′′1d4 x′′2d4 x′′3d4 y′′1d4 y′′2d4 z′′1d4 z′′2d4 z′′3

×G(6)(x′1, x
′
2, x
′
3;x′′′1 , x

′′′
2 , x

′′′
3 )⊗G(4)(y′1, y

′
2; y′′′1 , y

′′′
2 )

×K(4)(x′′′1 , x
′′′
2 , x

′′′
3 , y

′′′
1 , y

′′′
2 ; z′′′1 , z

′′′
2 , z

′′′
3 )

×G(6)(z′′′1 , z
′′′
2 , z

′′′
3 ; z′′1 , z

′′
2 , z
′′
3 )

×K(4)†(z′′1 , z
′′
2 , z
′′
3 ; y′′1 , y

′′
2 , x

′′
1, x

′′
2, x

′′
3)

×G(6)(x′′1, x
′′
2, x

′′
3;x1, x2, x3)⊗G(4)(y′′1 , y

′′
2 ; y1, y2),

(D.6)

where G(4) and G(6) are the four- and six-point Green's functions de�ned in Eqs. (2.1)
and (2.47), respectively. Then, by considering the time-dependence (D.2) for all the
Green's functions in (D.6) and inserting complete sets (D.4) of momentum eigenstates

G
(10) =:

G
(6)

G
(4)

K
(4)†

G
(6)

K
(4)

G
(6)

G
(4)

Figure D.1. The contribution of s-channel resonance exchange to the ten-point
Green's function G(10).
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into the result, we end up with

G(10)(x′1, x
′
2, x
′
3, y
′
1, y
′
2;x1, x2, x3, y1, y2) =:∫

d4 x′′′1 d4 x′′′2 d4 x′′′3 d4 y′′′1 d4 y′′′2 d4 z′′′1 d4 z′′′2 d4 z′′′3

×
∫

d4 x′′1d4 x′′2d4 x′′3d4 y′′1d4 y′′2d4 z′′1d4 z′′2d4 z′′3

×
(
−
∫

d3 P̄ ′

(2π)32ωP̄ ′
χ ¯
P
′(x′1, x

′
2, x
′
3)⊗ χ̄P̄ ′(x

′′′
1 , x

′′′
2 , x

′′′
3 )

)
×
(
−
∫

d3 K̄ ′

(2π)32ωK̄′
χ ¯
K
′(y′1, y

′
2)⊗ χ̄ ¯

K
′(y′′′1 , y

′′′
2 )

)
×K(4)(x′′′1 , x

′′′
2 , x

′′′
3 , y

′′′
1 , y

′′′
2 ; z′′′1 , z

′′′
2 , z

′′′
3 )

×G(6)(z′′′1 , z
′′′
2 , z

′′′
3 ; z′′1 , z

′′
2 , z
′′
3 )

×K(4)†(z′′1 , z
′′
2 , z
′′
3 ;x′′1, x

′′
2, x

′′
3, y
′′
1 , y
′′
2)

×
(
−
∫

d3 P̄

(2π)32ωP̄
χP̄ (x′′1, x

′′
2, x

′′
3)⊗ χ̄P̄ (x1, x2, x3)

)
×
(
−
∫

d3 K̄

(2π)32ωK̄
χK̄(y′′1 , y

′′
2)⊗ χ̄K̄(y1, y2)

)
,

(D.7)

which in comparison to (D.5) gives

SP̄ ′K̄′←P̄ K̄ := 〈P̄ ′K̄ ′|P̄ K̄〉

= −
∫

d4 x′1d4 x′2d4 x′3d4 y′1d4 y′2d4 z′1d4 z′2d4 z′3

×
∫

d4 x1d4 x2d4 x3d4 y1d4 y2d4 z1d4 z2d4 z3

×
[
χ̄P̄ ′(x

′
1, x
′
2, x
′
3)⊗ χ̄K̄′(y

′
1, y
′
2)
]

×K(4)(x′1, x
′
2, x
′
3, y
′
1, y
′
2; z′1, z

′
2, z
′
3)

×G(6)(z′1, z
′
2, z
′
3z1, z2, z3)

×K(4)†(z1, z2, z3;x1, x2, x3, y1, y2);

× [χP̄ (x1, x2, x3)⊗ χK̄(y1, y2)] .

(D.8)

To simplify the integrals above, we now approximate the interaction kernel by its
lowest-order quark-loop contributions (cf. Eq. (3.14))

K
(4)
0 (x1,x2, x3, y1, y2, z1, z2, z3)

= S1
F
−1

(x1, z1)⊗ S2
F
−1

(x2, z2)⊗ S q̄F
−1

(x3, y2)⊗ SqF
−1(y1, z3)

+ S2
F
−1

(x2, z2)⊗ S3
F
−1

(x3, z3)⊗ S q̄F
−1

(x1, y2)⊗ SqF
−1(y1, z1)

+ S3
F
−1

(x3, z3)⊗ S1
F
−1

(x1, z1)⊗ S q̄F
−1

(x2, y2)⊗ SqF
−1(y1, z2),

(D.9)

where SF denote quark propagators, in line with the formalism of Chapter 3. Recall
from that chapter that higher-order terms from the underlying instanton interactions
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a�ect decays into ηN only and were not numerically evaluated yet. After inserting
Eq. (D.9) into (D.8), the integrals in the latter can then be performed by using the
Jacobi coordinates and Fourier-transforms from Chapter 2. This is a straightforward
procedure which leads to

SP̄ ′K̄′←P̄ K̄ = − 32(2π)4δ(4)(P̄ ′ + K̄ ′ − P̄ − K̄)

×
∫

d4 q′ξ

(2π)4

d4 q′η

(2π)4

d4 qξ

(2π)4

d4 qη

(2π)4

× χ̄P̄ ′
(
q′ξ, q

′
η + 2

3
K̄ ′
)
S1
′

F

−1 (
1
3
Q+ q′ξ + 1

2
q′η
)

⊗ S2
′

F

−1 (
1
3
Q− q′ξ + 1

2
q′η
)
⊗ S q̄

′

F

−1 (
1
3
Q− q′η − K̄ ′

)
× χ̄K̄′

(
1
3
Q− q′η + 1

2
K̄ ′
)
Sq
′

F

−1 (
1
3
Q− q′η

)
×G(6)

Q (q′ξ, q
′
η, qξ, qη)

× S1
F
−1 (1

3
Q+ qξ + 1

2
qη
)
S2
F
−1 (1

3
Q− qξ + 1

2
qη
)

× SqF
−1 (1

3
Q− qη

)
χK̄
(

1
3
Q− qη + 1

2
K̄
)

× S q̄F
−1 (1

3
Q− qη − K̄

)
χP̄
(
qξ, qη + 2

3
K̄
)
,

(D.10)

where we de�ned Q := P̄ + K̄ = P̄ ′ + K̄ ′, and thus ω :=
√
s ≡

√
Q2 gives the total

energy of the system. The remaining six-point Green's function in (D.10) corresponds
to the resonance propagator, which in the quark model is given by

G
(6)
Q (q′ξ, q

′
η, qξ, qη) ≈

−i
2ωQ̄

ζQ̄(q′ξ, q
′
η, Q

0 − ωQ̄)⊗ ζ̄Q̄(qξ, qη, Q
0 − ωQ̄)

Q0 − ωQ̄ + iε
(D.11)

as detailed in Section 2.3.2. Here, ζ and ζ̄ represent the generalized Bethe-Salpeter
amplitudes (2.74) and (2.75). which ful�ll the conditions ζP̄ (pξ, pη, 0) = χP̄ (pξ, pη) and
ζ̄P̄ (pξ, pη, 0) = χ̄P̄ (pξ, pη), and ωQ̄ =

√
M2 + Q2 where M is the resonance bare mass.

As we included no trivial contributions in the interaction kernel, the (tree-level)
scattering and transition matrices are here related by

S = i(2π)4δ(4)(P̄ ′ + K̄ ′ − P̄ − K̄)V. (D.12)

Hence, by replacing Eq. (D.11) into (D.10) and employing relation (D.12), we �nally
arrive at the expression for resonant contributions to the meson-baryon potential as
depicted in the quark model:

V P

P̄
′
K̄
′←P̄ K̄ =

γP̄ ′K̄′←Q γ
†
Q←P̄ K̄

s−M2 + iε
, (D.13)

where we used the relation

1

2ωQ̄

1

Q0 − ωQ̄ + iε
=

1

2ωQ̄

Q0 + ωQ̄

(Q0)2 − ω2
Q̄ + iε

≈ 1

ω2 −M2 + iε
(D.14)
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to obtain the denominator of a relativistic Feynman propagator and also de�ned the
(energy-dependent) bare vertex functions

γP̄ K̄←Q := 3

∫
d4qξ

(2π)4

d4qη

(2π)4 χ̄P̄
(
qξ, qη + 2

3
K̄
)

×
[
S1
F
−1 (1

3
Q+ qξ + 1

2
qη
)
⊗ S2

F
−1 (1

3
Q− qξ + 1

2
qη
)]

⊗
[
S q̄F
−1 (1

3
Q− qη − K̄

)
χ̄K̄
(

1
3
Q− qη + 1

2
K̄
)
SqF
−1 (1

3
Q− qη

)]
× ζQ̄(qξ, qη, Q

0 − ωQ̄),

(D.15)

which considered in the limit Q0 →M and thus ζ → χ correspond to those calculated
in Chapter 3, cf. Eq. (3.15).

In case that the bare vertex functions above can be evaluated, one may apply the
formulae of Section 4.3.4 to write the resonant part of the meson-baryon transition
matrix in terms of quark-model quantities. Due to the energy dependence in (D.15)
(with Q0 = ω in the center-of-mass frame) the procedure would allow one to search
for the poles of the transition matrix, even if the non-resonant contributions to the
potential were still taken from the model of Chapter 5. Investigating this possibility
though is beyond the scope of the present work: The idea was simply to show that
de�ning baryon masses and decay widths in terms of poles of a resonant transition
matrix is in principle possible in the relativistic quark model.
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