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Abstract

In recent years large attention is being devoted to a new networking
trend focused on data centricity. The major motivation has been the
development of a framework able to mitigate the mismatch between the
current Internet architecture - host based - and the way most users use
the network - agnostic of content location. The first proposals were focus
on fix infrastructures in an attempt to devise a data-centric solution for
the global Internet. On the other hand, the number of available wireless
Internet access points and wireless mobile devices is growing significantly.
Hence, it is very important to have in mind scenarios where networked
pervasive systems need to communicate independently of the networking
conditions. In such pervasive networks, it is important to support the
development of communication services aware of users’ context: the goal
would be to increase data usefulness and delivery probability, as well as to
reduce cost and latency. This article presents an information and context
oriented networking framework (ICON) able to support the deployment
of pervasive networks by combining two networking paradigms that are
highly correlated to the efficiency of data sharing: data-centric networking
and opportunistic networking.

1 Introduction

Nowadays, most of us use the Internet for some kind of activity on a daily basis.
To support an increasing user demand, Internet evolved to include not only
the bulky desktop computer, but also more pervasive systems, like smartphones
and embedded devices found in intelligent buildings, vehicles, and public places.
The popularity of networked pervasive systems exacerbate problems related with
network and data management due to their mobility, intermittent availability,
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as well as software and hardware heterogeneity. These issues are more relevant
when users start to have an active role as a networking entity, and not just as
a consumer and producer of data [32, 33].

Besides the growth in the number of networked pervasive systems, the way
people make use of the Internet to access and share data is not aligned with
the way the Internet works. People care about obtaining content, while being
agnostic of its location and the mean needed to get it (e.g., access via a search
engine). However, from the Internet perspective data location is essential to the
networking process: when someone asks for content by name, that name has to
be resolved to a topologic location that the network can identify. Moreover, the
current mobile Internet architecture is mostly agnostic of users’ context. This
property makes the current Internet architecture far from ideal in pervasive
networking scenarios, where hosts are mobile, have multiple network interfaces,
and may have intermittent connectivity. The latter may happen in extreme
cases due to wireless fading, and the absence of Internet infrastructure.

When networked pervasive systems are deployed in urban scenarios, users
may have access to wireless Internet access with high probability. In such sce-
nario, data sharing may occur via the Internet. However, Internet access may
be avoided, leading to intermittent connectivity, due to two major reasons: ex-
pensive wireless Internet access (e.g., 3G systems); participatory wireless Inter-
net access (e.g., Wi-Fi systems). The latter requires frequent user intervention
(e.g., authentication), which is not compatible with the opportunistic behaviour
of some pervasive systems, such as sensing.

Hence, in a networking scenario where an increasing number of pervasive
systems may be used to share data anytime and anywhere, there are two net-
working paradigms that are highly correlated to the efficiency of pervasive data
sharing: data-centric networking and opportunistic networking. In the latter
case, opportunistic networking means the capability to exploit any potential
communication, which can be provided by mobile devices or by Internet access
points.

On the one hand, although some data-centric networking architectures con-
sider mobile access networks [11], where end devices are mobile, such proposals
assume the existence of a wired access network and, in some cases, of a cen-
tralized control infrastructure (e.g. rendezvous points [16]). Such networking
assumptions are not applicable to networked pervasive systems, which can op-
erate as end-devices or forwarders, can be mobile, and may have intermittent
connectivity. This is, current data-centric architectures are not suitable for
the operation of pervasive systems in opportunistic networking scenarios. On
the other hand, most opportunistic networking solutions [10, 27, 34, 13] are
host-centric: data is forwarded to specific destinations. However, data-centric
networking may bring advantages to the deployment of pervasive systems in
opportunistic networking scenarios, by reducing buffer occupation, since trans-
mitted data can be shared by different receivers.

To the best of the author’s knowledge, this is the first framework that aligns
the data-centric networking and opportunistic networking paradigms to support
the deployment of pervasive systems, by combining networking, data, and con-
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text management. The proposed information and context oriented networking
framework (ICON) extends CCN [15] alike data-centric architectures to allow
operation over opportunistic networking scenarios, based on the following ma-
jor contributions: dynamic configuration; sensing abstraction; social and motion
inference; opportunistic forwarding, and message encoder based on protobuffers.

The remainder of this paper is organized as follows. In Section 2 an analysis
of prior art related to data-centric networking and opportunistic networking
is provided, with special attention given to approaches that aim to combine
these two networking paradigms. Section 3 briefly describes a general scenario
that should be considered in the design of pervasive networks. In Section 4 the
ICON framework is described, including the building blocks related to data,
context, and networking management. In Section 5 a study of ICON usefulness
for different applications is provided, followed by an experimental analysis of
its efficiency to exchange data in pervasive networking scenarios. The article is
concluded in Section 6.

2 Related work

The deployment of networked pervasive systems requires a networking frame-
work able to allow pervasive systems to share data anytime and anywhere. Such
framework should be devised by combining two networking paradigms that are
highly correlated to the efficiency of pervasive systems: data-centric networking
and opportunistic networking. In this context, the goal of this section is two-
fold: first to analyze the limitations that current data-centric architectures and
opportunistic networking solutions have to support the deployment of pervasive
systems; Second, to analyze the properties of frameworks that may be used to
combine data-centric and opportunistic networking.

In the last couple of years several data-centric networking architectures have
been proposed to address the problems raised by the Internet dependency upon
the location of content, namely mobility and multihoming management. Among
them, the Content Centric Networking (CCN) [15], the Publish-Subscribe Inter-
net Routing Paradigm (PSIRP) [16], the Network of Information (NetInf) [11]
and the Data Oriented Network Architecture (DONA) [17]. These architectures
represent a major shift in what concerns IP networking architectures, by being
developed with the same receiver-oriented strategy presented in data-centric
architectures. Such strategy aimed to allow multiple consumers to use publish-
subscribe services to get data under specific usefulness expectations [8, 7].

Despite their differences regarding issues such as naming convention and
resolution, as well as security, all these data-centric approaches consider wired
access to the Internet. In the case of NetInf, mobile access networks are consid-
ered to investigate the potential instability caused by mobility of sources and
consumers of data. Nevertheless, NetInf still distinguishes between static data
forwarders and mobile data sources and consumers. In the case of CCN, it
presents some properties useful in pervasive scenarios: it is decentralized and
supports customization of operational aspects, by means of the strategy layer.
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However, the CCN concept is not aware of users’ behavior and does not support
forwarding in opportunistic networking scenarios.

This article is looking at more dynamic networking scenarios, where all nodes
(sources, consumers and forwarders) are or may be mobile and may be intermit-
tently available or connected. In such dynamic scenarios, some effort has been
done to show that data-centric architectures can also handle real-time data [14]
and work with dynamic networks like MANETs [21, 20, 30]. Although MANETs
operate in scenarios more dynamic than the wired Internet, they assume that
it is possible to find a path among any pair of nodes, in any moment in time.
However, such connectivity scenario may not occur in pervasive networks. In
pervasive networks, devices should be able to exploit any wireless contact op-
portunity to forward messages based on some criteria (e.g., always forward;
analyze the likelihood of finding the destination node; only forward if the node
is the destination) in a deterministic or probabilistic way: this is, pervasive
deployment requires an opportunistic networking approach.

Moreover, it has been shown the advantages of using context-awareness to
improve networking operations in mobile systems, such as handover [37]. How-
ever, existing data-centric networking proposals are in general agnostic of the
context of sources, consumers and forwarders of data. To support networked
pervasive systems that may forward data opportunistically, it is important to
make use of the sensing capabilities of such systems to extract context infor-
mation, which can be used to improve the efficiency of data exchange. Among
pervasive systems, smartphones are of particular importance, since they exist
in a large number, and are used in a ubiquitous way. Smartphones are the
right pervasive system to extract information about people daily habits, as well
as their surroundings (e.g., smartphones can be plugged in to other sources of
context, such as vehicles).

Hence, combining content knowledge, as did by data-centric approaches,
with context information, such as behavior and social proximity, shall bring
benefits (faster, better content reachability) to networked pervasive systems [26].
This statement is supported by prior analysis that shows that an increase of
the performance of opportunistic forwarding can be achieved by: i) focusing on
content rather then on hosts [10, 6]; ii) and being aware of social communities [13]
or users’ habits [27, 25, 29, 28].

In what concerns context awareness in data-centric networks, some prior
work aims to exploit users’ contextualization in data-centric networks, being
context limited to the service type requested by a potential data receiver in fix
networks, such as home network [5]. In what concerns more dynamic scenarios,
ICAN [38] aims to enable a context-aware ad-hoc network, where application
context is used to select the most suitable transport operation (push or pull
based).

Currently there is no published research that combines data-centric net-
working and opportunistic networking by providing a solution that coordinates
networking (opportunistic forwarding), data (in-network caching) and context
(social inference, motion inference) management, aiming to deploy an efficient
data-centric pervasive network, by exploiting the sensing properties of networked
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personal devices.
Following this challenging of combining data-centric and opportunistic net-

working, G. Tyson et al. [35] explores the potential of combining the information-
centric networking and delay-tolerant networking concepts, with focus on pocket
switched networks. However, the proposed ICDTN model is just focus on for-
warding, lacking any information about data management and context manage-
ment, which are required to allow pervasive systems to adjust to different sce-
narios. Moreover, the opportunistic forwarding of ICDTN is based on flooding.
Contrary to the ICDTN proposal, the ICON framework provides a specification
of the data, context, and networking management. In the latter case ICON
incorporates a social-aware forwarding mechanism in a data-centric approach,
based on the capability to sense users’ daily routines. Results show that the pro-
posed opportunistic forwarding scheme presents better performance than other
opportunistic forwarding approaches.

Another contribution aiming to combine data-centric and opportunistic net-
working is provided by I. Psaras et al. [31]. Authors aim to propose a mobile
name-based replication system (NREP), where message replication is limited
by time and space: that is, data sharing occurs within a certain geographic
area and with specific life expectancy. As occurs with ICON, NREP focus on
data dissemination and not on point-to-point communications. To achieve the
proposed goal NREP analyzes the usefulness of exploring parameters such as
priority, time-to-live and geographical constraints in the name. This correlation
between name design and forwarding is a major different towards ICON. With
ICON, name design is application driven and may include context information,
such as geolocation (in the case of sensing applications), but name design does
not have an impact on forwarding. Forwarding is based on context related to
social proximity and data-interest similarity and not on context related to data,
such as priority and geographical visibility. This uncorrelation allows ICON to
support different applications (c.f., section 5.1), while NREP focus towards a
specific type of application.

Finally, C. Anastasiades et al. [1] introduces and motivates the usage of ICN
in mobile and opportunistic networks, and reviews several ICN approaches. The
authors follow a tutorial approach, aiming to point out the benefits of using ICN
in two distinct scenarios: mobile and opportunistic networking. In the latter
case, the authors focus on content discovery and transfer. Content discovery
is performed using multicast to quickly detect nearby available sources. This
means that the proposed solution requires the dissemination of interest mes-
sages, which may lead to an increase of network traffic. In cases where a data
requester never meets a valid content source, the proposed solution is to use
an agent-based content retrieval: requesters can delegate content retrieval to
agents, which retrieve content on behalf of the requesters. However, delega-
tion of data retrieval may lead to a high computational and network burden.
ICON follows a different approach: interest messages are not disseminated in
the network. ICON proves that a good performance can be achieved by devising
a social-aware forwarding mechanism, without the need to propagate interest
messages in the network or to create agents.

5



Figure 1: Heterogeneous pervasive networking scenario

3 The Case of Pervasive Networks

A pervasive networking use-case is generally characterized by having a high di-
versity of mobile and intermittently available devices, which communicate in a
network where wireless connectivity may be also intermittent. Such use-case
can be related with networking in challenged scenarios (e.g., critical-mission
networks), as well as in urban scenarios. In the latter case, pervasive network-
ing can be associated with scenarios where direct wireless communications are
analyzed from the perspective of mobile operators to reduce operational costs
(e.g., D2D technology), as well as from the perspective of end-users to reduce
communication costs and disruption (e.g., wireless direct, adhoc networking).

Figure 1 illustrates an heterogeneous scenario that can be considered to eval-
uate the applicability of data-centric solutions in pervasive networking environ-
ments. This scenario is composed by different networking situations: communi-
cation over a fix global infrastructure to access cloud systems; communication
over a wireless local network (WLAN) used mainly for wireless Internet access;
direct communication between devices.

The networking scenario based on Internet communications and WLANs is
today operational based on an host-to-host IP network able to sustain access
to data, as well as real-time communications. A more pervasive networking
scenario involving direct communication between embedded and personal de-
vices (e.g., Internet-of-things or content driven delay-tolerant networking) is
not fully deployed in the real world, mainly due to the limitations posed by the
host-to-host communication model for pervasive operations over more dynamic
networking scenarios.

Therefore a data-centric networking framework needs to be able to support
a wide set of applications over dynamic networking scenarios. This provides the
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Figure 2: ICON node design

strategic motivation for the development of ICON.
The deployment of data-centric pervasive networks requires a framework

that is: i) easily implemented in different devices; ii) easily extended to sup-
port novel functionality (e.g., naming schemes); iii) able to exchange data in
networking disruptive situations; iv) able to insure data usefulness for the user
(mapping data exchange and users’ behavior). These are the major requirements
considered in the design of ICON.

4 ICON Framework

The Information and Context Oriented Networking framework (ICON) aims to
support data-centric networking virtually in any networking scenario. This goal
is pursuit by combining the data resilience properties of data-centric networking,
with the connectivity resilience provided by opportunistic networking. With
ICON, networked pervasive systems make use of any available communication
opportunity, which can be provided by another mobile device or by an Internet
access point (e.g., a ICON aware Wi-Fi access point). To achieve an efficient
operation in pervasive network scenarios, ICON incorporates four components,
as illustrated in Figure 2: Decision Engine, Data Engine, Context Engine and
Network Engine.

An efficient data sharing over opportunistic networks is ensured by the Net-
work Engine, which encompasses a social-aware opportunistic algorithm that
does not require the usage of bread crumbs reverse paths, as done by CCN. The
proposed Network Engine also differs from the networking set up of CCN in the
following aspects: ICON forwarding mechanism does not require a Forward-
ing Information Base (FIB); does not use ‘bread crumbs’; data packets do not
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consume interests; and data and interests have explicit Time-To-Live (TTL).
The implementation of social-aware forwarding schemes require the capabil-

ity to infer about the social and mobility context of pervasive devices, in order
to allow local decisions about potential next hops. For instance from a set of
neighbours with similar probability to meet nodes with a certain set of data in-
terests, the ones that present a fast motion profile may be the best forwarders.
Such context awareness is provided by the Context Engine, which encompasses:
i) a sensing abstraction that allows sensors to be shared among different de-
vices; ii) a social inference algorithm that allows nodes to gather information
about social proximity based on the time and duration of wireless contacts; iii)
a motion inference algorithm, which is implemented based on Support Vector
Machines. The motion inference algorithm allows ICON to use mobility behav-
ior patterns to control the way data interests are present in the network, as well
as to influence data forwarding decisions.

Besides the support for reliable data exchange over opportunistic networks,
ICON also fulfills other major requirement of pervasive systems: adaptation
without disruption of operation. This goal is achieved by the Decision Engine,
which allows modules to be replaced at runtime, by using dependency injection,
and to be configured by a set of management rules.

The Data Engine allows an ICON node to control the storage of data el-
ements within networked devices, by means of an in-network caching system.
Such data elements can be encrypted when they are added to messages. Data
messages are then segmented, and exchanged based on the social-aware oppor-
tunistic forwarding algorithm implemented by the networking engine. The latter
is also responsible for encoding data messages before transmission: ICON uses
protobuffers as message encoder, instead of the binary scheme used by CCN.

The in-network caching used in the Data Engine is based on a simple LRU
replacement policy, in order to show that a good network performance can
be achieved with a simple caching implementation. As future work, the Data
Engine will allow cache entries to be removed based on the inference about their
importance to neighbour devices, as mentioned in section 6.

The remainder of this section provides detailed information about the four
components of the ICON framework: decision, data, networking and context
engines.

4.1 Decision Engine

This section describes the software engineering aspects that aim to implement
the dynamic nature of ICON. First of all, sensors and communication interfaces
are bootstrapped at runtime, through type bindings previously defined on an
existing xml settings file. Such interfaces are then seen to the application as
plugins for creating device profiles. Since the active interfaces can change at
runtime, it is necessary to reduce the number of dependencies among all the
software modules. This is achieved by implementing component containers,
which are part of a common software engineering pattern called Dependency
Injection, also known as Inversion of Control. Dependency Injection enables
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registration of concrete interface implementations on a container and injecting
them when appropriate, resolving all the dependencies needed, whether they are
constructor parameters or properties. All active sensing and communication
interfaces can be used simultaneously by making use of the multi-threading
property of the .NET framework.

At runtime, running modules can be customized by the rule management
module, which allows the introduction, at any moment, of rules that can alter
the internal or external behavior of a node. These rules can be static or dynamic:
in the former case, the user establishes a set of rules that can only be changed
by him/herself; in the latter case rules can be changed by the Decision Engine
itself, based on the information that it gets from other modules, such as the
social and motion inference modules. Since ICON is built to take advantage of
social similarities, and to be aware of users’ behavior (motion), it is configured
with two default rules:

Rule 1: forwarding decisions must consider the social strength among users.
This rule takes advantage of the principle that says that people with strong
social similarities have high probability to meet.

Rule 2: interests that applications have on data (video, audio, text, sensing)
should be mapped to the user’s motion state. This rule insures that data
has a good usefulness level at any moment in time.

As occurred with the definition of interfaces, operational rules are configured
through type bindings previously defined on an existing xml configuration file.
Rules are used to change the operation of existing module at runtime or to force
the replacement of modules, making use of the Dependency Injection property.
For instance, the forwarding algorithm is bootstrapped based on the defined
rules: the proposed social-aware forwarding algorithm is used in combination
with the social inference model by default, due to rule number one. The motion
inference module is activated due to the rule number two.

ICON provides an open API for customization. The main user interface
has two main functionalities: one activate/deactivate sensor readings, configure
sensor settings (e.g., broadcast interval), and add virtual sensors (encapsulate
sensors from other devices on the network). The other interface functionality
is used to configure general settings (e.g., set memory maxsize, select internal
database, insert rules).

4.2 Data Engine

The data engine is composed by three modules responsible for in-network data
caching, segmentation and protection. The caching module is responsible for
managing how and where the node stores data, gathered through networking
and sensing interfaces. Currently, the cache keeps all data in memory to improve
the performance in what concerns data search and delivery. When a new interest
arrives to a node, the first place (unless there is a rule that says otherwise) to look
for the matching data is on the local cache. The default cache replacement police
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used in ICON is Least Recently Used (LRU): the items that are less requested
are the ones that are removed first from the cache. Essentially a cache hit
immediately returns a content message from the cache, while a cache miss forces
the execution pipeline of the interest message to proceed (c.f. Section 4.4.1).

The data engine is also responsible for segmenting the data that needs to
be made available to the Network Engine, as well as for rebuilding fragmented
data received in any interface. The segment size is configurable and is inline
with the communication protocol to avoid double segmentation.

In what concerns security, applications using the ICON framework have the
opportunity to encrypt their data when it is added to messages, as happens in
the CCN framework [15]. Such security procedure does not raise problems for
the Networking Engine, since the networking operation is completely agnostic
of the carried data.

An important ICON property, worth to be mentioned, is that locally stored
data does not hold any information related to its origin or destination. This
information is actually not needed by the proposed forwarding mechanism.

4.3 Context Engine

The recent trend of incorporating sensors into mobile phones may have an in-
creasing impact in many aspects of our everyday life. Namely, the impact of
data sharing models depends on the method used to map users’ context (e.g.,
social affinities) and users’ interests on data. Existing data-centric models are
not able to exploit users’ social affinities, for instance, to augment the perfor-
mance of data sharing. Second, reception of data does not consider the users’
physical context: for instance, it is not useful for a user to receive video data
when moving fast, since the content cannot be consumed at once, meaning that
in such situation priority may be given to the reception of other sort of data,
such as audio.

To mitigate these issues, ICON provides a software suite able to map context
information (social similarities and motion patterns) to data tagging provided
via the ICON application interface. The goal of combining context awareness
and data-centric networking is two fold: i) data interests injected in the network
should reflect users’ motion context; ii) data forwarding may be done with high
probability, low cost and low latency when based on users’ social similarities.

In order to augment the device awareness about users’ context, the ICON
Context Engine includes three modules: context collector; social inference; mo-
tion inference.

4.3.1 Context Collector

The context collector is responsible for controlling sensing probes able to ex-
tract data about several aspects of users’ context. In the current version, the
context collector is configured with probes to capture social (relationships and
communication patterns) and motion (users’ moving patterns) information.
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Figure 3: Context collector design

The goal of the context collector is two fold: i) to enable data-centric net-
working based on a real-time knowledge about users’ context; ii) to allow sharing
of information about users’ context.

The context collector is based on a sensing abstraction called Maestroo [4,
3, 22] that makes use of opportunistic sensing methods [18] to control sampling
from any sensor configured in a smartphone. The context collector is able to
establish a level of sensing priority big enough to ensure a good sensing perfor-
mance, and small enough to avoid sluggishness of other applications. Moreover,
it introduces the concept of virtual sensors, which mitigates the difficulty in
assigning application requests to suitable sensors. Virtual sensing is a novel
concept that allows a device to borrow external sensors, presenting them as lo-
cal sensors to the application. In the context of pervasive networks, the usage
of virtual sensors is done by sending query messages to any ICON device in the
vicinity (Bluetooth range).

As illustrated in Figure 3, the context collector encompasses three modules:
Kernel, Sensors, and Data. This modular approach allows a proper compart-
mentalization of each functionality, making it easier to maintain and extend.

The kernel module is the one where all the remaining assemblies get refer-
enced. The ControlHandler instantiates and controls sensing operations by: i)
configuring sampling intervals and virtual sensors; ii) configuring general device
settings (e.g., identifier and type), the memory size and export types; iii) man-
aging the SQLite internal database, and the interval for making sensing data
available for sharing.

In terms of data handling, the context collector ensures the persistence re-
quired to develop large-scale sensing systems, by providing a set of wrappers for
interaction with local databases in a SQLite manner (e.g., Windows phones do
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not work natively with SQLite).
In the sensor module, the EasySensor abstraction builds a common interface

for multiple sensors available on different devices. The EasySensor abstraction
also serves as the basis for the creation of the necessary connectors to both
real and virtual sensors. When entering a sensing phase all configured sensors
are sampled based on the defined sampling interval, and sensing data is shared
based on the configured sharing interval. The sampling interval for each sensor
can be statically configured by the user, by an application, or can be configured
on-demand by a continuous sensing algorithm [19]. In its current version, the
context collector is configured with:

• Wi-Fi sensor: used to collect information related to the ID of neighbor
node, as well as time and duration of wireless contacts.

• 3-axes accelerometer sensor: used to collect information related to instan-
taneous acceleration of the phone.

• GPS sensor: used to collect information related to geoposition (latitude,
longitude and range).

In the device module, the EasyDevices abstraction supports different devices
(e.g., Windows mobile phones [3]) and their specific capabilities in terms of
sensors and computational resources. It also enables the creation of different
profiles based on sensor and communication interfaces discovered during boot
time.

4.3.2 Social Inference

The social inference module allows devices to use wireless context information to
infer social affinities. Social affinities are used by the forwarding mechanism (c.f.
Section4.4.1) to create rules that make data dissemination aware of social ties,
aiming to improve the way ICON handles data exchange in pervasive networks.

The social inference module makes use of information collected from the Wi-
Fi sensor abstraction: neighbor ID; time and duration of wireless contact. The
sampling is done for each contact and information is collected when the contact
ends.

The collected information is used to infer about the social strength of a
node towards other nodes in relation to a defined set of data interests. Such
inference is done in specific time intervals, which defines daily samples. ICON
is configured by default to work with daily samples of one hour [27].

Lets us assume that in a daily sample ∆Ti, a node A has n contacts with
another nodes having an interest x, where each contact k has a certain duration
(Contact Duration - CD (a, x)k). At the end of ∆Ti, the social inference module
starts by computing the Total Connected Time to Interest x (TCTI (a, x)i) of
node A as given by Eq. 1.

TCTI (a, x)i =

n∑

k=1

CD (a, x)k (1)
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The Total Connected Time to Interest x in the same daily sample over con-
secutive days is used to predict the average duration of contacts towards the
data interest x for that specific daily sample. Thus, from the perspective of
node A, the Average Total Connected Time to Interest x (ATCTI ) during a
daily sample ∆Ti in a day j is given by a cumulative moving average of TCTI
in that daily sample (TCTI(a, x)ji), and the ATCTI in the same daily sample
∆Ti of the previous day (ATCTI(a, x)(j−1)i), as illustrated in Eq. 2.

ATCTI (a, x)ji =
TCTI (a, x)ji + (j − 1)ATCTI (a, x)(j−1)i

j
(2)

Based on ATCTI, a node A can infer about the Time-Evolving Contact to
Interest x (TECI) (cf. Eq. 3) to determine its social strength (w(a, x)i) towards
nodes tagged with interest x in a daily sample ∆Ti. Such inference is done based
on the ATCTI computed in that daily sample and consecutive t − 1 samples,
where t is the total number of samples. The usage of t− 1 consecutive samples
defines a time transitive property [27], represented by the function t

t+k-i
in Eq.

3. The transitive property refers to the probability of two neighbor nodes in a
daily sample ∆Ti to continue in contact in consecutive ∆Ti+x daily samples.

TECI = w (a, x)i =

i+t−1∑

k=i

t

t+ k − i
ATCTI (a, x)k (3)

4.3.3 Motion Inference

The motion inference module allows the usage of behaviour patterns to control
the way data interests are presented to the network, as well as to influence
data forwarding decisions. In the former case, motion inference can be used to
allow an automatically alignment between reception of data and users’ context,
leading to an increase in the usefulness that data has to the user. Such alignment
is based on data tagging: users map data usefulness to types of motion (e.g.,
video has highest priority when nodes are stationary, sound when in fast motion,
and text when moving slowly).

Motion inference can also be used to influence forwarding decisions, since:
a device that is stationary most of the time may not be a good carrier; within
devices with similar probability to meet nodes with a certain set of data interests,
the ones that present a fast motion profile may be better forwarders; devices
with wide movement range may be good elements to spread data.

The initial assumption to infer about users’ motion is that the type of human
movement is influenced by the place where the user is. For instance, in general
people move faster outside (by walking, running or driving) than when moving
inside a location. In the latter case, people can be stationary for long periods
of time in restaurants, move slowly while within a grocery store, or faster if
they are in a shopping mall, for instance. However, it is know that users’ type
of movement is subject to variations within the same location, depending on
people behavior [2]. Therefore, to identify specific behavior, the type of location
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is not enough to infer about the type of user’s movement. In this case, GPS
and accelerometers can be used as a filtering mechanism.

Therefore, the design of the motion inference module is done based on three
states of motion: stationary; slow pace; fast moving. If GPS values are valid,
identifying an outside location, they are used to estimate the type of user’s
movement. In this case, GPS readings must come from a local sensor and not
from virtual ones, since readings must reflect the user’s behavior. On contrary,
an inside location is assumed if GPS values are not valid, in which case the
outcome of the accelerometer is used.

When in an outside location, GPS sensor reports are used to infer about the
user profile in terms of speed and range. From the format of the GPS report
the following variables are analyzed: latitude and longitude (in decimal degree);
timestamp (seconds); current ground speed (meters per second). Based on these
values, the moving profile is estimated based on an exponential moving average
of the ground speed, where a value higher than 5 Km/h is used to tag the
motion as fast: in the absence of significant external factors, humans tend to
walk at about 1.4 m/s (5.0 km/h) [24]. The device range is computed based on
the Euclidean distance between the average values of the latitude and longitude:
average values are estimated based on an exponential moving average.

When in an inside location, the classification of the three motion states is
done based on Support Vector Machines (SVM) [9]. In this case, the training
period of SVM can be done first by using readings from a statically phone,
and later from readings collected when the user is moving (slow, fast) with
the phone [2]. Once the training is accomplished, samples from the 3-axes ac-
celerometer can be fed to the SVM, which then classifies each of these samples
to be either in a stationary or moving state. The accelerometer is sampled n
times per second, being n defined by configuration. Each sample records the
instantaneous acceleration of the phone, and a moving average over a window
of 10 recent samples is done to reduce the impact of noise floor, which makes
accurate measurements difficult.

To distinguish the three states of users’ movement indoors, it is necessary
first of all to differentiate between sitting and moving, which can then be further
divided into slow pace and fast moving. For this propose, a large number of
accelerometer traces can be used to compute the ratio R = tmoving

tstatic
, where

tmoving and tstatic are total durations during which the SVM classified the
user as moving or static. Plotting values of R on a real line reveals three groups
of accelerometer fingerprints [2]: values of R between 0 and 2 denote a stationary
state; between 0.2 and 2 denote slow pace; and higher than 2 denote while fast
moving. Based on these thresholds the accelerometer moving average is used to
identify the state of the user when moving indoors.

4.4 Networking Engine

The network engine is responsible for supporting data sharing among pervasive
devices. Optimization is achieved by a data sharing system that uses data usage
patterns and social interaction patterns (provided by the Context Engine) to
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decide about the most suitable places in the network to store data in order to
allow fast search and retrieval by the end user.

Due to the dynamic nature of pervasive networks, data forwarding is done
in a different way than in CCN. In the latter case a consumer asks for content
by forwarding interest packets. The Forwarding Information Base (FIB) is used
to control forwarding of interest packets toward sources that might match the
requested data. It allows multiple sources of data and can query them all in
parallel (including broadcast), based on the strategy layer. Any node hearing
an interest packet, and having data that satisfies it, can respond with a data
packet. When a data packet arrives on an interface, a longest-match look-up is
done on its name, based on the Pending Interest Table (PIT). The PIT keeps
track of interfaces over which interests packets were received so that returned
data can be sent downstream to its(their) requester(s).

In CCN, only interest packets are forwarded and, as they propagate upstream
toward potential data sources, they leave a trail of ‘bread crumbs’ allowing data
packets to follow back to the original requester(s). Each PIT entry is a bread
crumb. PIT entries are erased as soon as they are used to forward a matching
data packet (the data packets ‘consumes’ the interest). PIT entries for interests
that never find a matching data are eventually timed out.

A forwarding scheme based on bread crumbs is not efficient in a pervasive
networking scenario, where there is no insurance about the existence of an end-
to-end path between any pair of nodes for the duration of a communication
section. Moreover, a forwarding scheme in which data packets consume interests
may lead to higher latencies in disruptive networks, since devices may not be
able to take advantage of sporadic contacts to forward data, if an interest is
not present in a neighbor node. Hence, in pervasive systems it is desirable to
associate an interest to any packet of a certain data flow (under the same name).
This allows the same interest to be used to opportunistically forward any data
packet of that flow while the interest is present in a carrier node. In addition, in
a pervasive network the forwarding engine can exploit the mobility of nodes to
carry data towards interested parties, avoiding the forward of interest packets
and the creation of ‘bread crumbs’.

Being created to support pervasive networks, ICON encompasses a forward-
ing mechanism that, as in CCN, is based on data and interest messages, but:
does not require FIB; does not use ‘bread crumbs’; data packets do not consume
interests; data and interests have explicit time to live (TTL). Contrary to CCN,
the forwarding mechanism used in ICON is based on the forward of data packets
and not of interest packets, which are carried by mobile devices. Any encounter
node having data that satisfies carried interests can share data packets with the
node carrying such interests, if the latter has higher probability to met nodes
with similar interests, than the node that currently carries the data.

Figure 4 illustrates the forwarding engine model used by ICON based on a
name syntax following the CCN convention (c.f. Section 5.1 for further informa-
tion about the naming schemes supported by ICON). The proposed forwarding
mechanism makes use of two type of structure: persistent and temporal. Persis-
tent structures are used to store data and interests that are carried by the node:
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Figure 4: ICON forwarding engine model

data and interest may have been generated by local applications or received
via a networking interface. In any of the two persistent caches, an entry has a
defined TTL: data TTL defines the time usefulness that the source tagged data
with; interest TTL defines the time period over which some node is interested
in a specific type of data. By erasing carried data and interests based on TTL,
ICON ensures that the pervasive network only transports useful data.

The temporary structures are used to store information that the forwarding
mechanism (c.f. Section 4.4.1) collects from neighbor nodes: pending interests
and carried data. As for the former, when a Nodei meets a neighbor Nodej
it creates temporary PIT entries for the list of all interests (INT in Figure 4)
carried by Nodej (c.f. steps 1, 2 and 7 in Figure 4). Each PIT entry encompasses
the social weights (SW in Figure 4) towards the nodes having such interests.
Additionally Nodei creates temporary CDT (Carried Data Table) entries, each
one for a message (MSG in Figure 4) that Nodej already carries (c.f. steps 3, 4
and 8 in Figure 4). These entries are temporary since they are erased as soon
as the contact between neighbor nodes is broken.

Data that is stored in the persistent cache is forwarded to a neighbor node
with a certain probability (c.f. steps 5 and 6 in Figure 4) if two conditions are
met: i) such data is not present in the CDT; ii) it satisfy a shortest-match look-
up on PIT. The next section provides a detailed description of the forwarding
mechanism.

4.4.1 Forwarding

With ICON, data is shared taking into account users’ social affinities, and not
the capability of devices. In this sense, ICON incorporates a data-centric for-
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Figure 5: Illustration of daily wireless contacts of a node A

warding algorithm (SCORP) [28]1 that takes into account social weights (pro-
vided by the social inference feature of the Context Engine) and content knowl-
edge (received from neighbor nodes) to take forwarding decisions.

SCORP is based on a utility function that reflects the probability of en-
countering nodes with a certain interest among the ones that have similar daily
social habits. The reason to use social proximity with content knowledge is
two-fold: first, nodes with similar daily habits have higher probability of having
similar (content) interests [10]; second, social proximity metrics allow a faster
dissemination of data, by taking advantage of more frequent and longer contacts
between socially closer nodes.

Fig. 5 illustrates the forwarding assumptions done by ICON, which are re-
lated to the mobility and social behavior of a node A, namely its interaction
with nodes having data interests x in different daily samples, ∆Ti, throughout
its daily routine: Eagle and Pentland [12] show that users have routines that
can be used to identify future behavior and interaction with others with whom
they share similar behavior.

In the example illustrated in Figure 5, each node encountered by nodeA only
has one type of data interest (nodes B and F have interest on data 1, and nodes
C, D and E have interest on data 2, 3, and 4, respectively). Data is carried by
node A while the data lifetime, stipulated by the source application, does not
expire.

The operation of SCORP is based on the information about the social
strength indexed to data interests that those nodes have during daily sam-
ples (cf. CD(a, b1) in Fig. 5). This way, forwarding can be done based on the
different weights (intermittency of lines in Fig. 5) of social interaction that they
have with nodes having different data interests (w(a, 1)), during specific time
periods of their daily activities.

The operation of SCORP is very simple: when a CurrentNode meets a
Nodei in a daily sample ∆Tk, it gets acquainted with: i) the interests that
Nodei has during that daily sample; ii) the social weights that Nodei has to-
wards its neighbours having such interests (Nodei.weightsToAllinterests). Ad-
ditionally, Nodei provides the CurrentNode with a list of data that it carries
(Nodei.carriedMessages). It is worth to mention that none to the information
that Nodei provides CurrentNode with is stored and carried by the latter. Such
information is only used by the CurrentNode to make local decision, being dis-
carded afterwards.

1Simulation code at http://copelabs.ulusofona.pt/scicommons/index.php/attachments/single/602
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After getting all the mentioned information, CurrentNode replicates each
Messagej in its buffer to Nodei if:

• Nodei has interest (Nodei.getInterests) in the data carried in the message
(Messagej.getContentType); or

• The social weight of Nodei towards a node having that interest (i.e.,
Messagej.getContentType) is higher than the social weight that the CurrentNode
has towards any node with the same interest.

With this, SCORP is expected to forward messages only to nodes that indeed
have interest in the data carried by a message, or that have a strong social
relationship with nodes that have that specific interest.

Simulation results (c.f. section 5.2) shown that SCORP has better perfor-
mance than previous social-aware content-oblivious forwarding proposals, such
as Bubble Rap [13], and dLife [27]. Moreover, results about cost show that
SCORP is able to avoid network flooding, which might happen since an interest
packet may potentially match the data stored in a number of different locations.

Although flooding is avoided, SCORP still keeps a suitable level of packet
replication to allow data accuracy. This property is importance since a certain
percentage of the received data can be inaccurate or even contain false value due
to malfunctioning of data sources or highly dynamic environments. Hence, by
allowing nodes to get more than one copy of the same data, SCORP is increasing
data redundancy in order to support accuracy methods to be implemented by
applications.

4.4.2 Message Encoding

Different pervasive applications may use different naming syntaxes. This is
illustrated in Section 5.1 by looking at data files, as referred in CCN, and sensing
data. The major difference between these two type of data is three fold: size;
usefulness; updates. Data files may be very large, meaning that they may need
to be segmented, while sensing data normally has small formats; sensing data
has a clear usefulness period, which does not happen with data files; sensing
data is updated more frequently than data files.

Independently of the enumerated differences, the naming schemes used by
ICON follow a hierarchical structure with a variable number of components,
as in CCN. However, while CCN uses a binary scheme for message encoding
and sequencing, ICON uses a message encoder that has proven to be reliable,
extensible, easy to use and freely available: Protocol Buffers (protobuffers).

Protobuffers is a data interchange format that is being used by Google for
almost all of its internal RPC protocols and file formats. Moreover, there are
several implementations available for different languages and platforms. Any
implementation of protobuffers can be used in ICON, as what effectively matters
is what is encoded. However, since ICON targets the .Net platform, the .NET
serialized is currently used, since it is already based on protobuffers, and this way
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consistency with the remaining .NET serializers is ensured and extra complexity
avoided.

Currently, the protobuffer encoder is used to codify the following two hier-
archical name syntaxes:

• File transfer (following the CCN proposal):

/ccn/comp1/compn/−v < timestamp > /
−
sn

• Sensing (general syntax for sensing data):

/sensing/geolocation/timestamp/tag1/tagn

More information about the naming schemes used by ICON can be found in
Section 5.1. The inclusion of other naming schemes, to support new applica-
tions, requires the update of the message encoder, which can be done without
rebooting the ICON device, reducing the disruption to running applications
(c.f., Section 4).

As mentioned before, name syntax and forwarding are uncorrelated in what
concerns the used context: forwarding uses social proximity and data-interest
similarity, while name syntax may include application specific context, such as
geolocation (in the case of sensing applications). This uncorrelation allows the
proposed message encoding to be used by other data-centric architectures.

5 Applicability and Feasibility Study

In a data-centric network, data transmission starts by having a consumer send-
ing an interest packet that includes a name to identify the desired data. How-
ever, different applications have different requirements about the naming syntax:
for instance, file transfer applications need to differentiate different versions of
the same data, as well as different segments, since data files may be large; sensing
data may need to be differentiated by they location, and time usefulness.

Retrieving data by name is suitable for an environment of networked per-
vasive systems, when compared to retrieving data from a specific location, as
happens with the Internet Protocol. However, the disruptive properties of per-
vasive networks (e.g., devices on/off; absence of Internet access; wireless shad-
owing; costs of mobile communications) require a data exchange system able
to take advantage of any communication opportunity, even if that means repli-
cating data among wireless peers that are met in a probabilistic way. This
type of opportunistic forwarding should be considered as a basic property for
the deployment of networked pervasive systems, in order to avoid disruption on
communications.

This section provides a study about the support that ICON can give to dif-
ferent applications, and about its forwarding efficiency in pervasive networking
scenarios in terms of delivery probability, cost and latency.

Since the goal is to have ICON running independently of the hardware and
operating system, ICON is programmed in C# over the .NET framework. Cur-
rently ICON can be seamlessly executed in Windows mobile, Android (with
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MonoDroid), and iPhones (with MonoTouch). With the .NET Micro frame-
work, ICON can also run in embedded devices. The C# language (ISO/IEC
23270:2006) is a multi-paradigm programming language encompassing strong
imperative, as well as declarative and component-oriented programming dis-
ciplines. This aspect allows computational logic to be expressed without de-
scribing its control flow, which this is a major requirement to develop pervasive
computational systems.

5.1 Applicability

In order to keep application compatibility with CCN applications, ICON sup-
ports the same hierarchical name structure for file transfer. As proposed by Van
Jacobson et al. [15] names are hierarchically structured encompassing a number
of components, which may be encrypted for privacy. For notation proposes,
names are presented as URIs with / characters separating components.

For file transfer, the naming syntax used by ICON follows the structure
/ccn/comp1/compn/−v < timestamp > /

−
sn. This illustrates a CCN compat-

ible syntax with the identification of the type of application, n string compo-
nents (names) of variable length, and two fields used to capture the temporal
evolution of the content: a version marker, _v, followed by an integer version
number; a segment marker, _s, followed by an integer value that may be the
frame number of a video file, for instance. The final component of every packet
name implicitly includes a SHA256 digest of the packet.

Although the CCN syntax is included in ICON to support data transfer ser-
vices, it is clear that different pervasive type of applications may need to refer to
data in different ways and different granularities. Therefore, the basic version of
ICON includes also a name syntax to refer to data used by sensing applications,
which are common in pervasive systems, such as: applications related to so-
cial sensing and applications related to vehicle-to-vehicle communication. The
motivation to support sensing data is two fold: sensing services are becomes
common in mobile applications; the data syntax is very different from the data
transfer example.

The naming design proposed to describe sensing data also follows an hier-
archical syntax structure, to avoid the inclusion of more than one sequencing
mechanism in the networking module. Nevertheless, one major difference to-
wards the name used by file transfer applications, is that the syntax used by
sensing applications include context information (captured by the context col-
lector module): the inclusion of geolocation information is needed since the
usefulness of sensing data has a space constraint.

The syntax /sensing/geolocation/timestamp/tag1/tagn is used for sensing
data, where:

• Sensing: is a string field identifying the type of application (two examples
are provided in this section). Different pervasive applications may use
different instantiations of the naming syntax.
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• Geolocation: is a numeric field composed of three integers in the format
< lat, long, range >, allowing data to be mapped to a specific geographical
area. The location component < lat, long > represents the geographic
center of the reported area. This component is implemented based on
information collected from a local GPS sensor. The range component
(in meters) represents the ratio over which the information is meaningful.
This component is implemented based on the standard Wi-Fi range of
the device: a typical device using 802.11b or 802.11g might have a range
of 35 m indoors and 100 m outdoors, while a device with 802.11n can
double that range. The inference about the location (indoor and outdoor)
is provided by the availability or not of GPS signal.

• Timestamp: is a numeric field composed of two integers in the format of
< start, end >, allowing data to be mapped to a specified time period.
This is needed, since sensing data is normally useful only for a certain pe-
riod of time. Each of the two integers follow a UNIX type of format (e.g.,
1387457545, meaning Thursday, December 19th 2013, 13:10:05). Two con-
figurations are possible: i) single timestamp (with null end) to collect data
about a specific moment; ii) double timestamp, to collect data within a
specific time period.

• Tagging: The tag components indicate the meaning of the sensing data
itself. Each one of the n integers represent the code of a tag that is
meaningful to a specific application. The order of the tags must respect
the requirements of each application.

If a source of sensing data has no GPS, a virtual sensor can be configured to
make locally available information collected from other GPS-enabled device in
the vicinity (c.f. Section 4.3.1). If no GPS-enabled device is in range, the user
is prompt to enter a post address.

As an applicability example, the instantiation of the sensing name syntax
for social sensing and traffic applications is provided. The former type of appli-
cations require social context related to the users’ physical and social settings
(e.g., VibN [23]). It should include information able to allow inference about
people mood in relation to their surroundings and with whom they interact.
The instantiation of the sensing name syntax to support social sensing appli-
cations, such as a social dashboard, making use of three type of tags, may be
/socialdash/geolocation/timestamp/audiotag/videotag/physicaltag, where:

• Audio tags: reference to short audio clip with a description of the place
and the mood of people. May be collected automatically or by demand of
the user.

• Visual tags: reference to photo or short video with a brief illustration of
the place. Are collected by demand of the user.

• Physical tags: reference to information aiming to allow inference about
the social vibe (e.g., running, walking).
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Double timestamps are useful for social sensing services, since the mentioned
data (audio and video tags, as well as physical activity) may be requested for
a specific time frame. For instance to socially characterize places by recent
activity or to check the history of a place.

Applications related to vehicular networks can also use the hierarchical sens-
ing name syntax, since vehicle related data is normally useful in a certain geo-
graphic area and for a certain time period. The instantiation of the sensing name
syntax for the dissemination of traffic information may be as defined by L. Wang
et al. [36], based on two tags (datatype and nonce): /traffic/geolocation/timestamp/datatype/nonce.

In the case of the sensing syntax used by L. Wang et al., the three tuple
identifying the geolocation component does not follow the < lat, long, range >
format, but the format < ID, direction, section >, where, ID represents the
road name; direction represents the traffic direction; and section can be the
exit numbers of highways. The data type component indicates the meaning of
the data itself, such as closed lane and vehicle speed. The last tag is a nonce,
which is a large random number used to distinguish data generated by different
producers.

A similar traffic information system based on ICON would not need the tail-
ing component “nonce”, since there is no need to explicitly distinguish between
data sources generating data with identical values: the forwarding mechanism
used by ICON (c.f. Section 4.4.1) is able to avoid the network to be flooded
with similar data generated by different devices.

5.2 Feasibility

This section evaluates the ICON capability to share sensing data in a perva-
sive networking scenario. This feasibility analysis allows the evaluation of five
components of the ICON framework: the social-aware forwarding algorithm
and message encoding of the Network Engine; the social inference of the Con-
text Engine; and the in-network caching and data segmentation of of the Data
Engine.

SCORP is evaluated against dLife [27], a social-aware opportunistic forward-
ing mechanism based on users’ daily life routines; Bubble Rap [13], a community-
aware proposal; and Spray and Wait [34], a social-oblivious solution that serves
as lower bound reference in what concerns delivery cost.

The full evaluation [28] is done in the Opportunistic Network Environment
(ONE) simulator with a 95% confidence interval. Evaluation is done in terms
of averaged delivery probability (i.e., ratio between the number of delivered
messages and the number of messages that should have been delivered), cost
(i.e., number of replicas per delivered message), and latency (i.e., time elapsed
between message creation and delivery).

The used scenario is based on human traces (Cambridge traces) and encom-
passes varying network load, represented by the number of messages/interests
(msg/int) per node. Message size ranges from 1 to 100 kB and nodes have only
a 2 MB buffer space: we assume that users may not be willing to share all the
storage capacity of their devices. All results are taken for a 1-day message TTL:
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the complete performance study [28] shows that such value allows the analyzed
forwarding proposals to deliver the most messages in less time and with the
least associated cost.

The used human traces including 36 nodes, for two months while Cambridge
University students moved throughout their daily routines. As general remark
regarding this dataset, the measurements that we did to prepare the configu-
ration of the experiments show that it has an average of 32 contacts per hour
among nodes and such contacts happen sporadically. Additionally, the average
number of formed community (with Bubble Rap) is approx. 6.7, where most of
them comprise almost all nodes.

In what concerns traffic load, with the Spray and Wait, Bubble Rap and dLife
proposals, each source creates and sends 1, 5, 10, 20 and 35 different messages
towards each of the 35 destinations. In the case of SCORP, the source creates
35 messages with different interests once, and each receiver is configured with 1,
5, 10, 20, and 35 different interests. Since node 0 is the source of these messages
to the remaining 35 nodes, it means that a total of 35, 175, 350, 700, and 1225
messages reach the destinations in any of the simulations. The goal is to use
a generic traffic load setting in order to create a fair evaluation environment
among such a different set of forwarding mechanisms: the configurations of
messages and interests are done to guarantee the same amount of potential
messages being delivered by any proposal.

As for the proposals, Spray and Wait runs in binary mode with number of
copies L set to 10. Bubble Rap uses algorithms for community formation and
node centrality computation (K-Clique and cumulative window) [13]. dLife and
SCORP consider 24 daily samples of one hour as mentioned in dLife’s paper
[27].
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Fig. 6 presents the results about the average delivery probability. The msg/int
notation denotes the number of different messages sent by Spray and Wait, Bub-
ble Rap and dLife sources or the number of different interests of each of the
SCORP receivers.

The forwarding performance of ICON shows the advantage of using content-
awareness in pervasive networks: the delivery ratio increases as the ability of
nodes to become good message carriers increases: the more interests a node
has, the better it is to deliver sensing data to others since they potentially share
interests.

Regarding average cost (cf. Fig. 7), it is observable that with a greater list
of data interests, an ICON node can act as carrier for a larger number of nodes,
which means that unwanted replicas observed in the one msg/int configuration
have a positive effect while spreading content. Moreover, the cost is reduced
since messages are only replicated to interested nodes or to nodes that have
a stronger social weight towards other nodes with higher interest in the data
than the current carrier. Moreover, SCORP keeps resource usage (i.e., buffer)
at a low usage rate: with content awareness, the estimated maximum buffer
occupancy varies between ~0.03 MB (1 msg/int) and 0.15 MB (35 msg/int).

Fig. 8 shows the average latency that messages experience. By looking at the
delivered messages, we observe that dLife and SCORP perform mostly (90%)
direct deliveries as the source node meets destinations within the first two hours
of simulation. This surely reduces the overall latency, explaining why they take
the same time to perform a delivery.

SCORP experiences up to 93.61%, 90.25% and 89.94% less latency than
Spray and Wait, Bubble Rap and dLife, respectively. Based on SCORP, an ICON
node can receive more data, since it is interested in the data being replicated,
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and becomes a better forwarder as the probability of meeting nodes sharing the
same interest is high.

As conclusion, our findings show that an efficient dissemination of data over
pervasive networks is ensured by ICON, since forwarding is designed having con-
tent knowledge and social proximity in mind. Its forwarding module, SCORP,
has better performance than previous social-aware content-oblivious forward-
ing proposals (e.g,. Bubble Rap and dLife): SCORP delivers up to 97% of
its content in an average of 46.9 minutes, against the 335.5 and 343.7 minutes
needed by Bubble Rap and dLife, respectively. Additionally, SCORP produces
up to approximately 13.9 and 4.7 times less replicas than Bubble Rap and dLife,
respectively.

6 Conclusion

This paper describes a data-centric networking framework for pervasive net-
works, called ICON. The major motivation for this work is the lack of a data-
centric networking solution to support communication in challenge networking
scenarios. A suitable data-centric framework for pervasive networks needs to ful-
fill the requirements related with the exchange of data over dynamic networks
(high delivery probability, low cost and latency), and related with software de-
sign (fast deployment).

The ICON framework is designed having in mind all the specific require-
ments of a dynamic network of pervasive devices, namely two: i) the need to
have a flexible, extendable, and easy to port software design, in order to motivate
people to install and use ICON; ii) the capability to forward data by exploit-
ing any wireless contact opportunity, ensuring a good networking experience.
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Simulations done based on real traces show that the social-aware forwarding
mechanism proposed for ICON has higher delivery probability, and lower cost
and latency than other social-aware and social-oblivious forwarding schemes.

As next steps, the current design of ICON will be improved by further analyz-
ing the correlation between TTLs (for data and interests) and motion inference:
when new interests are injected in the network after detecting a change in the
user’s motion pattern, the TTL associated with those interests should reflect the
time over which the user will stay on that motion state, since the importance
of data is linked with that situation. Another improvement is the development
of a ICON/CCN gateway module, to be included in the networking engine.
This gateway is needed since ICON and CCN use different message encoders:
protobuffers in the case of ICON and binary encoding in the case of CCN.

In what concerns caching, the current cache replacement policy (Least Re-
cently Used) will be replaced by a system that allows cache entries to be removed
based on the inference about their importance to neighbor devices. For instance
a data segment that complements data stored in neighbor devices should be re-
moved with low probability.

In what concerns the evaluation of ICON, its performance will be tested in a
real testbed. In order to make the evaluation scenario scalable, real equipment
will be combined with mobility and traffic models simulated in MatLab, and a
large number of ICON nodes will be used based on virtual machines.
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