
Parallel Computing 37 (2011) 230–243
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
Parallel c-means algorithm for image segmentation
on a reconfigurable mesh computer

Omar Bouattane a,⇑, Bouchaib Cherradi b, Mohamed Youssfi c, Mohamed O. Bensalah c

a E.N.S.E.T, Bd Hassan II, BP 159, Mohammedia, Morocco
b Faculté des Sciences et Technique, Bd Hassan II, Mohammedia, Morocco
c Faculté des Sciences, Université Mohamed V Agdal, Rabat, Morocco

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 April 2009
Received in revised form 24 August 2010
Accepted 2 March 2011
Available online 9 March 2011

Keywords:
Image segmentation
Classification
MRI image
Parallel algorithm
c-means
0167-8191/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.parco.2011.03.001

⇑ Corresponding author. Tel.: +212 523 32 22 20;
E-mail address: o.bouattane@yahoo.fr (O. Bouatt
In this paper, we propose a parallel algorithm for data classification, and its application for
Magnetic Resonance Images (MRI) segmentation. The studied classification method is the
well-known c-means method. The use of the parallel architecture in the classification
domain is introduced in order to improve the complexities of the corresponding
algorithms, so that they will be considered as a pre-processing procedure. The proposed
algorithm is assigned to be implemented on a parallel machine, which is the reconfigurable
mesh computer (RMC). The image of size (m � n) to be processed must be stored on the
RMC of the same size, one pixel per processing element (PE).

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Image segmentation is a splitting process of images into a set of regions, classes or homogeneous sub-sets according to
some criteria. Usually, gray levels, texture or shapes constitute the well-used segmenting criteria. Their choice is frequently
based on the kind of images and the goals to be reached after processing. Image segmentation can be considered as an image
processing problem or a pattern recognition one.

In the case of image processing consideration, we distinguish two essential approaches that are: region approach and con-
tour approach. In the first approach, we look for homogeneous regions using some basic techniques such as thresholding,
region growing, morphological mathematics and others [1]. Thresholding technique discriminates pixels using their gray
levels. It supposes implicitly that intensity structures are sufficiently discriminative, and guarantee good separation [2]. In
[3] the authors propose a multi-modal histogram thresholding method for gray-level images.

Region growing technique is based on progressive aggregations of pixels starting from a given point named ‘‘germ’’. In [4]
the authors propose a region growing method for cervical 3-D MRI image segmentation. The proposed algorithm combines
the automatic selection of germs with a growing regions procedure that is based on the ‘‘watershed’’ principle.

Morphological mathematics techniques based on erosion, dilation, closure and opening operations are also used in seg-
mentation problems. It was used in [5] to isolate the cerebral overlap for MRI images. In [6] the authors propose an MR image
segmentation algorithm for classifying brain tissues. Their method associates the adaptive histogram analysis, morpholog-
ical operations and knowledge based rules to sort out various regions such as the brain matter and the cerebrospinal fluid,
and detect if there are any abnormal regions.
. All rights reserved.

mobile: +212 661 33 65 86; fax: +212 523 32 25 46.
ane).

http://dx.doi.org/10.1016/j.parco.2011.03.001
mailto:o.bouattane@yahoo.fr
http://dx.doi.org/10.1016/j.parco.2011.03.001
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 231
In the contour approach case, some derivative operators are used at first to sort out discontinuities on image, on the other
hand, some deformable models coming from dynamic contours methods are introduced in [7,8]. The latter have some advan-
tages comparing to the first by the fact that, they deliver the closed contours and surfaces.

In the case of the pattern recognition point of view, the problem is to classify a set of elements defined by a set of features
among which a set of classes can be previously known. In the MRI segmentation domain, the vector pattern X corresponds to
the gray level of the studied point (pixel). From these approaches, one distinguishes the supervised methods where the class
features are known a priori, and the unsupervised ones which use the features auto-learning. From this point of view, several
algorithms have been proposed such as: c-means, fuzzy c-means (FCM) [9], adaptive c-means [10], modified fuzzy c-means
[11] using illumination patterns and fuzzy c-means combined with neutrosophic set [12].

Segmentation is a very large problem; it requires several algorithmic techniques and different computational models,
which can be sequential or parallel using processor elements, cellular automata or neural networks. Improvement and par-
allelism of c-means clustering algorithm was presented in [19] to demonstrate the effectiveness and how the complexity of
the parallel algorithm can be reduced in the Single Instruction Multiple Data (SIMD) computational model.

In the literature, there are several parallel approaches to implement the clustering algorithms. The difference from one to
another method is how to exploit the parallelism feasibilities and the huge programming field offered by various parallel
architectures to achieve effective solutions and subsequently the reduced complexity algorithms. Notice that all the steps
of the well known c-means clustering algorithm are generally identical. They are implemented differently by authors accord-
ing to the parallel architecture used as a computational model. For example, in [20] authors have proposed a parallel ap-
proach using a hardware VLSI systolic architecture. In their proposed method, the c-means clustering problem is
subdivided into several elementary operations that are organized in a pipeline structure. The resulted schemes of the ob-
tained logic cells are also associated to design the processing modules of a hardware circuit for clustering problem. This solu-
tion was argued by a simulation experiments to evaluate the effectiveness of the proposed systolic architecture. Another
strategy was proposed in [21] where the authors have started by presenting a set of basic data manipulation operations
using reconfiguration properties of the reconfigurable mesh (RMESH). These basic operations are also used to elaborate some
parallel data processing procedures in order to implement the parallel clustering algorithm. The problem of data clustering
was studied and detailed in [21] for a general case of N vector patterns. The proposed complexity for their method is
O(Mk + k logN) where k is the number of clusters, M is the size of the vector features of each data point and N is the size
of the input data set which is the same as the RMESH size. In [22] the authors have proposed an optimal solution for parallel
clustering on a reconfigurable array of processors. The proposed approach is based on the same strategy that divides the
clustering problem into a set of elementary operations. Each of these elementary operations is implemented on wider com-
munication bus architecture to reach an optimal run time complexity. Also, some basic operations are translated into shifting
operation in the same wider bus network to achieve O(1) time complexity in order to optimize the global clustering algo-
rithm complexity.

In the same way, using the same strategy and the same computational model as in [21], we propose in this paper an
OðkM þ logðkðN=kÞkÞ times parallel algorithm for c-means clustering problem and its application to the MRI cerebral images.
The presented algorithm is assigned to be implemented on a massively parallel reconfigurable mesh computer of the same
size as the input image. The corresponding parallel program of the proposed algorithm is validated on a 2-D reconfigurable
mesh emulator [23]. Some interesting obtained results and the complexity analysis and an effectiveness features study of the
proposed method are also presented.

This paper is organized as follows: Section 2 presents the computational model used to implement our parallel algorithm.
The parallel segmentation c-means algorithm is described in more details in Section 3. The complexity analysis of the pro-
posed parallel c-means algorithm is presented in the next section. Section 5 is devoted to the program code implementation
and to the obtained results on an MRI image. Finally, the last section gives some concluding remarks on this work.
2. Parallel computational model

2.1. Presentation

A reconfigurable mesh computer (RMC) of size n � n, is a massively parallel machine having n2 processing elements (PEs)
arranged on a 2-D matrix as shown in Fig. 1. It is a Single Instruction Multiple Data (SIMD) structure, in which each PE(i, j) is
localized in row i and column j and has an identifier defined by ID = n � i + j. Each PE of the mesh is connected to its four
neighbors (if they exist) by communication channels. It has a finite number of registers of size (log2n) bits. The PEs can carry
out arithmetic and logical operations. They can also carry out reconfiguration operations to exchange data over the mesh.
2.2. Basic operations of a PE

2.2.1. Arithmetic operations
Like any processor, each processing element (PE) of the RMC possesses an instruction set relating to the arithmetic and

logical operations. The operands concerned can be the local data of a PE or the data arising on its communication channels
after any data exchange operation between the PEs.

Fig. 1. A reconfigurable mesh computer of size 8 � 8.

232 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
2.2.2. Configuration operations
In order to facilitate data exchange between the PE’s over the RMC, each PE possesses an instruction set relating to the

reconfiguration and switching operations. Below, we enumerate all the possible reconfiguration operations that can carry
out any PE of the RMC according to its usefulness in any stage of any algorithm.

– Simple bridge (SB):
A PE of the RMC is in a given state of SB if it establishes connections between two of its communication channels. This PE
can connect itself to each bit of its channels, either in transmitting mode, or in receiving mode, as it can be isolated from
some of its bits (i.e. neither transmitter, nor receiver). Various SB configurations of Fig. 2a) are described by the following
formats:
F

fEW; S;Ng; fE;W; SNg; fES;W;Ng; fNW; S; Eg; fE N; S;Wg and fWS; E;Ng

E, W, N and S indicate the East, West, North and South Ports of a PE, respectively.

– Double bridge (DB):

A PE is in a DB state when it carries out a configuration having two independent buses. In the same way as in the simple
bridge configuration, each PE can connect itself to each bit of its channels, either in transmitting mode, or in receiving
mode. Also, it can be isolated from some of its bits (i.e. neither transmitter, nor receiver). The various possible DB con-
figurations of Fig. 2b are:
fEW;NSg; fES;NWg and fEN; SWg
– Crossed bridge (CB):
A PE is in CB state when it connects all its active communication channels in only one; each bit with its correspondent.
This operation is generally used when we want to transmit information to a set of PEs at the same time.
The full CB of Fig. 2c.2 is defined by the configuration: {NESW}. But, the other CB configurations defined by the following
formats {E,WNS}, {EWN,S}, {ENS,W}, {EWS,N} are considered as the partial CB configurations, because, in each case, one
of the four communication channel of the PE is locked.
ig. 2. Different configurations carried out by the PE’s of the RMC. (a) Simple bridge (SB), (b) double bridge (DB) and (c) crossed bridge (CB).

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 233
3. Parallel segmentation algorithm

3.1. Standard c-means algorithm

Hard classification called k-means is also known by c-means classification. It consists on a partitioned groups of a set S of
n attribute vectors into c classes (clusters Ci i = 1, . . .,c). The goal of the classification algorithm is to find the class centers
(centroïd) that minimize the objective function given by the following equation:
J ¼
Xc

i¼1

Ji ¼
Xc

i¼1

X
k;xk2Ci

dðxk; ciÞ ð1Þ
ci is the center of the ith class; dðxk; ciÞ is the distance between ith center ci and the kth data of S.
We use the Euclidean distance to define the objective function as follows:
J ¼
Xc

i¼1

Ji ¼
Xc

i¼1

X
k;xk2Ci

kxk � cik2

0
@

1
A ð2Þ
The partitioned groups can be defined by a binary membership matrix U(c,n), where each element uij is formulated by:
uij ¼
1 if kxj � cik2

6 kxj � ckk2
; 8k – i;

0 Otherwise

(
ð3Þ
ði ¼ 1 to c; j ¼ 1 to n; n is the total number of points in SÞ.
Since a data must belong to only one class, the membership matrix U has two properties which are given in the following

equations:
Xc

i¼1

uij ¼ 1; 8j ¼ 1; . . . ;n ð4Þ

Xc

i¼1

Xn

j¼1

uij ¼ n ð5Þ
The value ci of each class center is computed by the average of all its attribute vectors:
ci ¼
1
jCij

X
k;xk2Ci

xk ð6Þ
jCij is the size or the cardinal of Ci.
As presented in [9], the c-means classification is achieved using the following algorithm stages:

Stage 1: Initialize the class centers Ci, (i = 1, . . .,c). This is carried out by selecting randomly c points in the gray level scale
[0 � � � 255].
For each iteration i:

Stage 2: Determine the membership matrix using Eq. 3.
Stage 3: Compute the objective function J by Eq. 2.
Stage 4: Compare the obtained objective function J to the one computed at iteration i � 1 and stop the loop (i.e. go to stage

6) if the absolute value of the difference between the successive objectives functions is lower than an arbitrary
defined threshold (Sth).

Stage 5: Calculate the new class centers using Eq. 6, and return back to perform stages 2, 3 and 4.
Stage 6: End.

3.2. Parallel c-means algorithm

In this part, we propose a parallel implementation of the c-means algorithm on a reconfigurable mesh. The input data of the
algorithm is an m� n MRI cerebral image of 256 gray levels, stored in a reconfigurable mesh of the same size one pixel per PE.

In the used computational model, each PE must be equipped by a set of internal registers. These registers will be used
during the different stages of the algorithm. They are defined as in the following Table 1.

Our algorithm is composed of the set of following procedures.

3.2.1. Initialization procedure
This procedure consists on initializing the set of registers of each PE of the mesh. We have:

– Ri ¼ i; Rj ¼ j and Rg ¼ Ng:

Table 1
The different registers required by a PE to perform the parallel c-means algorithm.

Register
name

Variable
content

Description

Ri I Line index of the PE in the mesh
Rj j Column index of the PE in the mesh
Rg Ng Gray level of the pixel (i, j) stored in the PE(i, j)
Rcm (m = 1

to c)
Um,n Membership class register: if Um,n = 1, then m is the index of the class to which the PE belongs during iteration n. The

content of this register can be changed at each iteration in the set {0,1}
Rxm (m = 1

to c)
Xm,n Class center register: each Rxm contains the value Xm,n of the class center m during iteration n. The content of this

register can be changed at each iteration in the range [0� � �255]

234 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
This means that these registers are initialized by the values of the coordinates i, j of the PE and the gray level Ng of its
associated pixel.

– Rcm ¼ C00 ¼ 0 (i.e. for m ¼ 0 at iteration n ¼ 0).
This means that, initially, each PE does not know the index of the class to which it belongs.

– Rxm ¼ Xm;n:

The initial value of Xm0 (at iteration n = 0) is randomly the one of the m gray levels (ng) that are randomly chosen among
the 256 gray levels of the image.

3.2.2. Class determination procedure
This procedure consists of six essential stages which are:

1. Data broadcasting.
2. Distance computation.
3. Membership decision.
4. Objective function computation.
5. Loop stop test.
6. New class center determination.

These various stages are included in a loop as follows:
<Beginning of iteration (n)>

1. Data broadcasting

For (m = 1 to c)
{
� All the PEs of the mesh configure themselves in cross bridge (CB) state.
� The representative PE of the class Cm broadcasts its value Xm,n through the mesh.

� All the PEs of the mesh store in their Rxm the value Xm,n received through the mesh.

}

It should be noted that the representative PE of a class is the PE having the smallest identifier ID in its class. The search for
this smallest identifier calls a procedure of the Min-search in a group of PEs as in [13,14]. The used procedure of min-
search has a complexity of O(1) time. Thus, for one pass data broadcasting stage the complexity is O(c) times for c-means
problem.

2. Distance computation
At each iteration n:
� Each PE computes the distances d(Ng,Xm,n) between its gray level Ng and the values of the c class centers. These values

are stored in its c registers (X1,n,X2,n, . . .,Xc,n). The distance computation at each PE has a complexity of O(c) times.
� Each PE determines the smallest distance dmin among those calculated previously
dmin ¼ MinðdðNg;Xm;nÞÞ; m ¼ 1; . . . ; c ð7Þ

As stated in the dmin equation, the dmin of each PE is achieved after O(log2 c) times using a hierarchical Min-Search pro-
cedure.
3. Membership decision
Each PE determines the new index m of the class Cm to which it belongs. Subsequently, it updates its Rcm registers by

assigning the value 1 to the variable Um,n and 0 to its other Rc registers. It should be noted that the index value m corre-
sponds to mmin for which we have:
dðNg;Xmmin;nÞ ¼ dmin ð8Þ
The membership decision is a stage of bit assignment. It is completed in O(1) time.

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 235
4. Objective function computation

For (m = 1 to c)
{
� All the PEs that are not belonging to the class Cm configure themselves in the full cross bridge (CB) of Fig. 2c.2) and

remain in standby.
� All PEs belonging to the class Cm participate in the parallel summation to compute local objective function (Jm)

using their selected minimal distances dmin. This summation procedure was detailed in [15], it has a complexity
of O(log2 (Card (Cm))) iterations; Card(Cm) is the cardinality of the class Cm.

� The representative PE (RPE) of the class Cm retains the result of the summation (Jm).

}

In order to compute the global cost function J, we must prepare at each PE its local function Jm. So, for a given pass of the
algorithm this stage requires Oð

Pc
m¼1log2ðCardðCmÞÞÞ times.

Thus, the c representative PEs of c classes carry out a parallel summation on their results (Jm) by using the same procedure
of sum on tree used in [15], this summation is completed in O(log2 c) times.
The final result J of this summation which represents the cost function will be stored in the representative PE of these
representative PEs noted RRPE.

5. Loop stopping test
The RRPE calculates the absolute value jJn � Jn�1j and compares it with an arbitrary threshold Sth.
� If jJn � Jn�1j < Sth then go to the end of procedure.
� Else, return back to the procedure of new class centers computation.

This stage corresponds to a simple comparison operation, it is achieved in O(1) time.
6. Class center computation
For (m = 1 to c)
{
� All the PEs that are not belonging to the class m, go to the full crossed bridge (CB) state of Fig. 2c.2) and remain in

standby.
� All the PEs belonging to the class m, carry out a parallel summation to sort out the cardinal of the class Cm,

(Card(Cm)), we propose the method used in [16] that is achieved in O(1) time.
� All the PEs belonging to the class m must compute the value Sm using a parallel summation procedure on their Ngm

gray levels. The summation procedure used has a complexity of O(log2(Card(Cm))) iterations. It is the same proce-
dure as in [15].

� The RPE of the class m carries out the ratio: X = (Sm/Card(Cm)) which corresponds to the new center of its class. It
will then broadcast this result to all the PEs of the mesh to update their Rxm registers.
}
Notice that, for each class Cm, the complexity of the different steps of this stage depends essentially on the cardinality of Cm

class. This stage is then achieved in OðcÞ þ Oð
Pc

m¼1log2ðCardðCmÞÞÞ times.

– Return to the stage 2 of the distance computation

<End of iteration (n)>.
It is clear that, for each of the six stages of the class determination procedure, the reconfigurable mesh allows us to

choose the rapid and safe parallel procedures. We will report the global complexity for one pass of the proposed
algorithm to make comparison with the previous works on the similar computational model. Also, we will make a
rigorous complexity analysis for one pass and sort out other aspects related to the dynamic evolution of the class
cardinality during each pass. This evolution is pursued until the convergence of the algorithm. This aspect will be
studied by the proposed parallel classification algorithm for MRI images. Indeed, the MRI images represent interesting
data sets which require real time algorithms and high performance computational models such as the massively recon-
figurable mesh computers.
4. Complexity analysis

In order to evaluate the complexity of our parallel algorithm, it is useful to report the complexities of all its stages. They
are summarized in Table 2.

The resulted complexity is:
O c þ log2c þ
Xc

m¼1

log2ðCardðCmÞÞ
 !

times ð9Þ
This complexity depends on the unknown cardinalities of the Cm classes. So, it must be studied according to the c variable to
look for its maximum in order to compare it with the well known previous works.

Table 2
The complexities of each stage of the proposed parallel algorithm.

Stage Time complexity

1. Data broadcasting Oð1Þ þ OðcÞ
2. Distance computation OðcÞ þ Oðlog2cÞ
3. Membership decision Oð1Þ
4. Objective function computation Oðlog2cÞ þ Oð

Pc
m¼1log2ðCardðCmÞÞÞ

5. Loop stop test Oð1Þ
6. New class center determination OðcÞ þ Oð

Pc
m¼1log2ðCardðCmÞÞÞ

The complexity of the proposed
algorithm

OðcÞ þ Oðlog2cÞ þ Oð
Pc

m¼1log2ðCardðCmÞÞÞ

236 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
For a given c, to reach the maximum of 9 it is necessary to solve the following problem:
Maximize E ¼
Xc

m¼1

log2ðCardðCmÞÞ
 !

ð10Þ

Subject to
Xc

m¼1

CardðCmÞ ¼ N ð100Þ

and
\c

m¼1

Cm ¼ U ð1000Þ
where N is the total number of points of the input image.
Let Xm = Card(Cm); the problem (10) is viewed as:
Maximize F ¼
Yc

m¼1

Xm

 !
ð11Þ

Subject to
Xc

m¼1

Xm ¼ N ð110Þ

and
\c

m¼1

Cm ¼ U ð1100Þ
Combining (11) and (110) leads to:
F ¼ N �
Xc�1

m¼1

Xm

 !
�
Yc�1

m¼1

Xm ¼ N �
Yc�1

m¼1

Xm �
Yc�1

m¼1

Xm

 !
�
Xc�1

m¼1

Xm

 !
ð12Þ
The maximum of F is obtained when
@F
@X1
¼ @F
@X2
¼ � � � ¼ @F

@Xc
¼ 0 ð13Þ
This leads to: X1 = X2 = � � � = Xc = N/c.
In this condition (10) becomes: Emax ¼

Pc
m¼1log2ðXmÞ ¼

Pc
m¼1log2ðN=cÞ ¼ c � log2ðN=cÞ.

Then, the maximum value of the complexity expressed in 9 is:
Oðcþ log2cþ c:log2ðN=cÞÞtimes: ð14Þ
In order to compare our complexity with those of the previous works, we use the comparison Table 3 as stated in [22]. In this
table the authors were studied the clustering problem by taking into account that each data point must have a number of M
features. The number M is used in all the steps of their algorithms. Furthermore, some authors proposed some enhanced
solutions by extending the sizes of their computational models. In this paper, the input data set of our algorithm is a gray
leveled image, where each point has M = 1 feature (its gray level). This algorithm can be extended easily for any (M > 1)
features. In this case the complexities of the two first stages of the algorithm (data broadcasting and the first step of the dis-
tance computation stage) are altered. They are multiplied by M. Hence, the maximum value of our algorithm complexity
becomes:
OðMc þ log2c þ clog2ðN=cÞÞ times ¼ OðMc þ log2ðcðN=cÞcÞ times ð15Þ

Table 3
Results of the complexities comparison for parallel clustering.

Algorithm Architecture Bus width (bit) Processors Time complexity

Li and Fang [24] Hypercube Oðlog NÞ MN Oðk log MNÞ
Hwang et al. [25] OMP Oðlog NÞ p OðkM þ kMN=pÞ
Ranka and Sahni [26] Hypercube Oðlog NÞ MN Oðkþ log MNÞ

kMN Oðlog kMNÞ
Jenq and Sahni [21] RMESH Oðlog NÞ N OðkM þ k log NÞ

MN Oðk log MNÞ
kMN OðM þ log kMNÞ

Tsai and Horng [22] RAPWBN N1=c N1þ1=c OðkMÞ
MN1þ1=c OðkÞ

kMN1þ1=c Oð1Þ
This paper RMESH Oðlog NÞ N OðkM þ logðkðN=kÞkÞ

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 237
Notice that, in the results comparison Table 3, the variable k is used instead of c to represent the same thing. It represents the
number of clusters.

Table 3 shows the different time complexities for the same clustering problem, using different architectures of the com-
putational models. In this table N represents the size of the input data set also it corresponds to size of the parallel architec-
ture used. For a reduced size computational model, N remains the size of the data set and P is the size of parallel architecture
used. M is the vector features size of the data point.

For a rigorous comparison, we must compare our results with those obtained by authors of [21], because they used the
same computational model RMESH of the same size and the same Bus width. Thus, we can easily show that the obtained
complexity OðkM þ logðkðN=kÞkÞ is less than OðkM þ k log NÞ obtained in [21].

5. Implementation and results

The parallel algorithm, described in Section 3, is implemented in our emulating framework [23] using its parallel pro-
gramming language. The program code presented in Fig. 3 is performed using the MRI cerebral image as data input. Before
its execution, we define in the initialization phase the number of classes by c = 3. This means that the classes looked for in the
image are the white matter, the gray matter and the cerebrospinal fluid. The background of the image is not considered by
the algorithm.

Parallel c-means program code:

<prog>

<!–
Load data and initialization phase

–>
<loadImage file="cerveau3.jpg" reg="0" codage="8"/>

<hote>

<loadValue reg="0" value="140"/><!— reg[0]contains the initial value of C1 center–>

<loadValue reg="1" value="149"/> <!— reg[1]contains the initial value of C2 center–>
<loadValue reg="2" value="150"/><!— reg[2]contains the initial value of C3center–>
<loadValue reg="3" value="0"/><!— reg[3]contains the initial value of Jn�1–>
<loadValue reg="4" value="0"/><!— reg[4]contains the initial value of Jn –>
<loadValue reg="5" value="0.1"/><!— reg[5]contains the initial value of Sth–>

</hote>

<!–
loop test with reg[30] having the absolute value of (Jn � Jn�1) to be compared with Sth

–>
<doWhile test="Math.abs (reg[30])>reg[5]" target="hote">

<for-eachPE test="reg[0]!=0">

<mark type="true"/>

<!–
All the PE’s load the three class centers from the hote

–>
<loadValue reg="8" value="hote.reg[0]"/>

<loadValue reg="9" value="hote.reg[1]"/>

<loadValue reg="10" value="hote.reg[2]"/>

Fig. 3. Segmentation results by the elaborated parallel program.

238 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
<!——
Each PE computes the three distances separating it from the three class centers

–>
<doOperation expression="reg[11]=(reg[0]-reg[8])*(reg[0]-reg[8])"/>

<doOperation expression="reg[12]=(reg[0]-reg[9])*(reg[0]-reg[9])"/>

<doOperation expression="reg[13]=(reg[0]-reg[10])*(reg[0]-reg[10])"/>

<!–
Membership decision:Each PE decides to belong to its nearest neighbor class

–>
<loadValue reg="7" value="reg[10]"/>

<loadValue reg="16" value="0"/>

<loadValue reg="17" value="0"/>

<loadValue reg="18" value="1"/>

<loadValue reg="15" value="reg[13]"/>

<if test="reg[15]>reg[12]">

<loadValue reg="15" value="reg[12]"/>

<loadValue reg="7" value="reg[9]"/>

<loadValue reg="16" value="0"/>

<loadValue reg="17" value="1"/>

<loadValue reg="18" value="0"/>

</if>

<if test="reg[15]>reg[11]">

<loadValue reg="15" value="reg[11]"/>

<loadValue reg="7" value="reg[8]"/>

<loadValue reg="16" value="1"/>

<loadValue reg="17" value="0"/>

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 239
<loadValue reg="18" value="0"/>

</if>

<mark type="false"/>

</for-eachPE>

<!–
All the PEs of the first class are marked to participate to the hierarchicalsum.The result of this sum

is stored in the hote.

Hregs[20]contains the gray levels sum of all the points of C1 class.

Hregs[21]contains the distances sum from all the points of C1 class to its center.

Hregs[22]contains the cardinality of C1 class.

–>
<for-eachPE test="(reg[7]==reg[8]) and (reg[0]!=0)">

<mark type="true"/>

<defineRepresentativePE/>

<doHSum PEregs="0,11,16" Hregs="20,21,22"/>

<mark type="false"/>

</for-eachPE>

<inialiseRepresentativePE/>

<!–
All the PEs of the second class are marked to participate to the hierarchical sum.The result of this

sum is stored in the hote.

Hregs[23]contains the gray levels sum of all the points of C2 class.

Hregs[24]contains the distances sum from all the points of C2 class to its center.

Hregs[25]contains the cardinality of C2 class.

–>
<for-eachPE test="(reg[7]==reg[9]) and (reg[0]!=0)">

<mark type="true"/>

<defineRepresentativePE/>

<doHSum PEregs="0,12,17" Hregs="23,24,25"/>

<mark type="false"/>

</for-eachPE>

<inialiseRepresentativePE/>

<!–
All the PEs of the third class are marked to participate to the hierarchicalsum.The result of this sum

is stored in the hote.

Hregs[26]contains the gray levels sum of all the points of C3 class.

Hregs[27]contains the distances sum from all the points of C3 class to its center.

Hregs[28]contains the cardinality of C3 class.

–>
<for-eachPE test="(reg[7]==reg[10]) and (reg[0]!=0)">

<mark type="true"/>

<defineRepresentativePE/>

<doHSum PEregs="0,13,18" Hregs="26,27,28"/>

<mark type="false"/>

</for-eachPE>

<inialiseRepresentativePE/>

<!–
The hote computes the global cost function J, the three new class centers and sets up the iteration

counter.

reg[21]contains the value of J1

reg[24]contains the value of J2

reg[27]contains the value of J3

–>
<hote>

<doOperation expression="reg[3]=reg[4]"/>

<doOperation expression="reg[4]=reg[21]+reg[24]+reg[27]"/>

<doOperation expression="reg[0]=reg[20]/reg[22]"/><!—New class center of C1 –>

<doOperation expression="reg[1]=reg[23]/reg[25]"/><!—New class center of C2 –>

<doOperation expression="reg[2]=reg[26]/reg[28]"/><!—New class center of C3 –>

<doOperation expression="reg[30]=reg[4]-reg[3]"/>

<doOperation expression="reg[31]=reg[31]+1"/>

240 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
</hote>

<!–
End loop do while

–>
</doWhile>

<!–
Labelling the different image components:assigning to each PE the index of the class to which it

belongs

–>
<for-eachPE test="reg[0]!=0">

<mark type="true"/>

<if test="reg[7]==reg[8]">

<loadValue reg="1" value="hote.reg[0]"/>

</if>

<if test="reg[7]==reg[9]">

<loadValue reg="2" value="hote.reg[1]"/>

</if>

<if test="reg[7]==reg[10]">

<loadValue reg="3" value="hote.reg[2]"/>

</if>

</for-eachPE>

<!–
End of the program

–>
</prog>

Program results:
After performing the presented parallel program, we obtain the following results: the image of Fig. 3a corresponds to a

human brain cut, it is the original input image of the program. Figs. 3b–d represent the three matters of the brain. They are
named respectively the gray matter, cerebrospinal fluid and white matter.

After performing the proposed parallel algorithm, we complete its effectiveness features by the following study which is
focused on its dynamic convergence analysis. To do so, we present three cases of study. For each case we use the same input
MRI image, but the initial class centers are changed. The results are presented by tables and figures. In the first case, the ini-
tial class centers are arbitrarily chosen as: (c1,c2,c3) = (1,2,3).

In Table 4, the class centers do not change after 14 iterations and the algorithm converges to the final class centers
(c1,c2,c3) = (28.6,101.6,146.03).

Notice that, for any iteration, the total number of the image points N is constant.
N = Card(C1 [C2 [C3). In our image case, N = NC1 + NC2 + NC3 = 19,273 pixels.
Fig. 4 shows the curves of the different data of Table 4. Theses curves represent the dynamic changes of each class center

value and the cardinality of its corresponding class. In Fig. 4a we see clearly the convergence of the class centers. Also, the
cardinality of each class is presented in Fig. 4b and the absolute value of the objective function error jJn � Jn�1j in Fig. 4c.

In the second case, the initial class centers are arbitrarily chosen as: (c1,c2,c3) = (1,30,255).
Table 4
Different states of the classification algorithm starting from class centers (c1,c2,c3) = (1,2,3).

Iteration Value of each class center Number of points in each class Absolute value of the error

c1 c2 c3 NC1 NC2 NC3 jJn � Jn�1j

1 1.00 2.00 3.00 367 47 18,859 2.84E+08
2 1.00 2.00 120.14 367 1922 16,984 2.70E+08
3 1.00 33.86 129.57 810 2188 16,275 4.96E+06
4 4.38 51.91 132.04 906 2491 15,876 1.33E+06
5 6.15 58.40 133.23 946 2534 15,793 1.50E+05
6 7.14 60.05 133.43 946 2952 15,375 5.36E+04
7 7.14 65.14 134.44 1460 2517 15,296 2.34E+05
8 16.70 72.44 134.64 1801 4713 12,759 9.02E+05
9 21.49 90.47 141.16 2019 4912 12,342 2.76E+06

10 24.68 93.37 142.41 2289 4644 12,340 1.24E+05
11 28.60 95.44 142.42 2289 4921 12,063 7.92E+04
12 28.60 96.71 142.98 2289 6074 10,910 1.02E+05
13 28.60 100.94 145.51 2289 6292 10,692 2.41E+05
14 28.60 101.60 146.03 2289 6292 10,692 5.64E+03
15 28.60 101.60 146.03 2289 6292 10,692 0.00E+00

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

1 3 5 7 9 11 13 15

C1

C2

C3

0,00E+00

2,00E+03

4,00E+03

6,00E+03

8,00E+03

1,00E+04

1,20E+04

1,40E+04

1,60E+04

1,80E+04

2,00E+04

1 3 5 7 9 11 13 15

NC1

NC2

NC3

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

1 2 3 4 5 6 7 8 9 10 11 12 13

Err

(a) (b) (c)

Fig. 4. Dynamic changes of the different classification parameters starting from class centers (c1,c2,c3) = (1,2,3). (a) Class centers, (b) cardinality of each
class and (c) absolute value of error of the objective function.

Table 5
Different states of the classification algorithm starting from class centers (c1,c2,c3) = (1,30, 255).

Iteration Value of each class center Number of points in each class Error value

c1 c2 c3 NC1 NC2 NC3 (Jn � Jn�1)

1 1.00 30.00 255.00 806 10,933 7534 1.47E+08
2 4.32 102.35 151.79 2019 6703 10,551 �1.43E+08
3 24.68 100.37 146.29 2289 6292 10,692 �1.42E+06
4 28.60 101.60 146.03 2289 6292 10,692 �4.53E+04
5 28.60 101.60 146.03 2289 6292 10,692 0.00E+00

Table 6
Different states of the classification algorithm starting from class centers (c1,c2,c3) = (140, 149,150).

Iteration Value of each class center Number of points in each class Error value

c1 c2 c3 NC1 NC2 NC3 (Jn � Jn�1)

1 140.00 149.00 150.00 11,739 409 7125 4.01E+07
2 95.62 148.99 151.95 8581 5783 4909 �2.65E+07
3 82.13 140.26 152.83 6931 4808 7534 �3.72E+06
4 73.36 127.72 151.79 3977 7762 7534 �1.81E+06
5 51.98 117.99 151.79 3066 8372 7835 �3.41E+06
6 40.07 114.55 151.15 2667 6944 9662 �7.80E+05
7 34.22 107.44 147.88 2615 6107 10,551 �6.90E+05
8 33.37 104.04 146.29 2615 5966 10,692 �1.21E+05
9 33.37 103.50 146.03 2615 5966 10,692 �2.45E+03

10 33.37 103.50 146.03 2615 5966 10,692 0.00E+00

(a) (b) (c)

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 2 3 4 5

C1
C2
C3

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

NC1
NC2
NC3

-2,00E+08

-1,50E+08

-1,00E+08

-5,00E+07

0,00E+00

5,00E+07

1,00E+08

1,50E+08

2,00E+08

1 2 3 4 5

Err

Fig. 5. Dynamic changes of the different classification parameters starting from the class centers (c1,c2,c3) = (1,30,255). (a) Class centers, (b) cardinality of
each class and (c) error of objective function.

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 241

(a) (b) (c)

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

1 2 3 4 5 6 7 8 9 10

C1
C2
C3

0,00E+00

2,00E+03

4,00E+03

6,00E+03

8,00E+03

1,00E+04

1,20E+04

1,40E+04

1 2 3 4 5 6 7 8 9 10

NB C1
NB C2
NB C3

-3,00E+07

-2,00E+07

-1,00E+07

0,00E+00

1,00E+07

2,00E+07

3,00E+07

4,00E+07

1 3 5 7 9

Err

Fig. 6. Dynamic changes of the different classification parameters starting from class centers (c1,c2,c3) = (140,149,150). (a) Class centers, (b) cardinality of
each class and (c) error of objective function.

242 O. Bouattane et al. / Parallel Computing 37 (2011) 230–243
In the third case, the initial class centers are arbitrarily chosen as: (c1,c2,c3) = (140,149,150).
Through the obtained results of the three cases of study of Tables 4–6 and represented in Figs. 4–6, we can conclude that

the complexity of the presented algorithm is low in term of iteration number, but it depends on the initial class centers. It
was discussed in the literature that the c-means algorithm complexity for sequential and parallel strategies can be reduced
using some additional preprocessing phases to start from some appropriate class centers. Among the mentioned preprocess-
ing phase, we find the histogramming procedure that orients the class centers towards the histogram modes of the image. In
this paper we do not introduce any preprocessing phase, because our goal is at first, the parallelization of the c-means algo-
rithm and its implementation on a reconfigurable mesh computer emulator to validate the corresponding parallel proce-
dures. In the second time, by the obtained results, we will focus our further studies on the dynamic evolution of the class
cardinality from one pass to another until the convergence of the algorithm. Parallel histogram computation algorithms
can be easily implemented on the used emulator. The proposed algorithms in [17,18] are well suited to our computational
model.

6. Conclusion

In this paper, we have presented a method for parallelizing the c-means classification algorithm and its implementation
on a massively parallel reconfigurable mesh computer. An application of this algorithm to the MRI images segmentation was
considered. The elaborated program was performed on the reconfigurable mesh computer emulator. The obtained results
show that, in little number of iterations, the algorithm converges to the final class centers. Hence, the parallel computation
method is proposed essentially to reduce the complexity of the classification and clustering algorithms. To enhance the effec-
tiveness of this work, it is useful to improve the complexity of this algorithm by avoiding random initializations of the class
centers. Moreover, the extension of this parallel technique to other classification methods is very possible. It can be easily
oriented to parallelize the well known algorithms such as: the fuzzy c-means, the adaptive fuzzy c-means and others based
on neural networks.

References

[1] H.D. Heng, X.H. Jiang, Y. Sun, J. Wang, Color image segmentation: advances and prosoects, Pattern Recognition 34 (2001) 2259–2281.
[2] A. Zijdenbos, B.M. Dawant, Brain segmentation and white matter lesion detection in MR images, Critical Reviews in Biomedical Engineering 22 (5/6)

(1994) 401–465.
[3] J.H. Chang, K.C. Fan, Y.L. Chang, Multi-modal gray-level histogram modeling and decomposition, Image and Vision Computing 20 (2002) 203–216.
[4] J.P. Thiran et al, A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images, Signal Processing 60 (1997)

1–10.
[5] J.-F. Mangin, Robust brain segmentation using histogram scale-space analysis and mathematical morphology, in: MICCAI’98 First International

Conference on Medical Image Computing and Computer Assisted Intervention, 1998, pp. 1230–1241.
[6] C. Tsai, B.S. Manjunath, R. Jagadeesan, Automated segmentation of brain MR images, Pattern Recognition 28 (12) (1995) 1825–1837.
[7] D. Terzopoulos et al, Snakes: active contour models, International Journal of Computer Vision (1988) 321–331.
[8] D. Terzopoulos et al, Deformable models in medical image analysis: a survey, Medical Image Analysis 1 (2) (1996) 91–108.
[9] J.S.R. Jang, C. Sun, T.E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997. pp. 426–427.

[10] L. Dzung Pham, L.P. Jerry, An adaptative fuzzy c means algorithm for image segmentation in the presence of intensity inhomogeneities, Pattern
Recognition Letters 20 (1999) 57–68.

[11] L. Ma, R.C. Staunton, A modified fuzzy c-means image segmentation algorithm for use with uneven illumination patterns, Pattern Recognition 40
(2007) 3005–3011.

[12] Y. Guo, H.D. Cheng, W. Zaho, Y. Zhang, A novel image segmentation algorithm based on fuzzy c-means algorithm and neutrosophic set, in: Proceeding
of the 11th Joint Conference on Information Sciences, Atlantis Press, 2008.

[13] H. Li, M. Maresca, Polymorphic torus network, IEEE Transaction on Computer C-38 (9) (1989) 1345–1351.
[14] H. Li, M. Maresca, Polymorphic torus architecture for computer vision, IEEE Transaction on PAMI 11 (3) (1989) 233–242.

O. Bouattane et al. / Parallel Computing 37 (2011) 230–243 243
[15] J. Elmesbahi, O. Bouattane, M. Sabri, M. Chaibi, A fast algorithm for ranking and perimeter computation on a reconfigurable mesh computer, in:
Proceedings of the IEEE International Conference on Systems Man and Cybernetics, Texas, October 2–5, 1994, pp. 1898–1902.

[16] Y. Ben-Asher et al, The power of reconfiguration, Journal of Parallel and Distributed Computing 13 (1991) 139–153.
[17] M. Eshaghian-Wilner Mary, R. Miller, The systolic reconfigurable mesh, Parallel Processing Letters 14 (3–4) (2004) 337–350. ISSN 0129-6264.
[18] J. Jang, H. Park, V.K. Prasanna, A fast algorithm for computing histograms on a reconfigurable mesh, in: Fourth Symposium on the Frontiers of

Massively Parallel Computation, 19–21 October 1992, pp. 244–251.
[19] J. Tian et al, Improvement and parallelism of k-means clustering algorithm, Tsinghua Science and Technology 10 (3) (2005) 277–281. ISSN 1007-0214,

01/21.
[20] L.M. Ni, A.K. Jain, A VLSI systolic architecture for pattern clustering, IEEE Transaction on Pattern Analysis and Machine Intelligence (1985) 79–89.
[21] J.F. Jenq, S. Sahni, Reconfigurable mesh algorithms for image shrinking, expanding, clustering and template matching, International Parallel Processing

Symposium (1991) 208–215.
[22] H.R. Tsai, S.J. Horng, Optimal parallel clustering algorithms on a reconfigurable array of processors with wider bus networks, Image and Vision

Computing (1999) 925–936.
[23] M. Youssfi, O. Bouattane, M.O. Bensalah, A massively parallel re-configurable mesh computer emulator: design, modeling and realization, Journal of

Software Engineering and Applications 3 (2010) 11–26.
[24] X. Li, Z. Fang, Parallel clustering algorithms, Parallel Computing 11 (1989) 275–290.
[25] K. Hwang, H.M. Alnuweiri, V.K.P. Kumar, D. Kim, Orthogonal multiprocessor sharing memory with an enhanced mesh for integrated image

understanding, CVGIP Image Understanding 53 (1991) 31–45.
[26] S. Ranka, S. Sahni, Clustering on a hypercube multicomputer, IEEE Transaction on Parallel and Distributed Systems 2 (2) (1991) 129–137.

	Parallel c-means algorithm for image segmentation on a reconfigurable mesh computer
	Introduction
	Parallel computational model
	Presentation
	Basic operations of a PE
	Arithmetic operations
	Configuration operations

	Parallel segmentation algorithm
	Standard c-means algorithm
	Parallel c-means algorithm
	Initialization procedure
	Class determination procedure

	Complexity analysis
	Implementation and results
	Conclusion
	References

