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Ecotoxicology is not normal.
A comparison of statistical approaches for analysis of count and proportion data in ecotoxicology.
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Abstract Ecotoxicologists often encounter count and pro-
portion data that are rarely normally distributed. To meet
the assumptions of the linear model such data are usually
transformed or non-parametric methods are used if the trans-
formed data still violate the assumptions. Generalised Lin-
ear Models (GLM) allow to directly model such data, with-
out the need for transformation. Here, we compare the per-
formance of two parametric methods, i.e., (1) the linear
model (assuming normality of transformed data), (2) GLMs
(assuming a Poisson, negative binomial, or binomially dis-
tibuted response), and (3) non-parametric methods.

We simulated typical data mimicking low replicated
ecotoxicological experiments of two common data types
(counts and proportions from counts). We compared the per-
formance of the different methods in terms of statistical
power and Type I error for detecting a general treatment ef-
fect and determining the lowest observed effect concentra-
tion (LOEC). In addition, we outlined differences on a real
world mesocosm data set.

For count data, we found that the quasi-Poisson model
yielded the highest power. The negative binomial GLM re-
sulted in increased Type I errors, which could be fixed using
the parametric bootstrap. For proportions, binomial GLMs
performed better than the linear model, except to determine
LOEC at extremely low sample sizes. The compared non-
parametric methods had generally lower power.

We recommend that counts in one-factorial experiments
should be analysed using quasi-Poisson models and propor-
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tions from counts by binomial GLMs. These methods should
become standard in ecotoxicology.
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Simulation · Power · Type I error

1 Introduction

Ecotoxicologists perform various kinds of experiments
yielding different types of data. Examples are animal counts
in mesocosm experiments (non-negative, integer-valued
data) or proportions of surviving animals (data bounded be-
tween 0 and 1, discrete). These data are typically not nor-
mally distributed. Nevertheless, such data are often anal-
ysed using methods that assume a normal distribution and
variance homogeneity (Wang and Riffel 2011). To meet
these assumptions data are usually transformed. For exam-
ple, ecotoxicological textbooks (Newman 2012) and guide-
lines (EPA 2002; OECD 2006) advise that survival data
should be transformed using an arcsine square root trans-
formation. For count data from mesocosm experiments a
log(Ay + C) transformation is usually applied, where the
constants A and C are either chosen arbitrarily or follow-
ing general recommendations. For example, van den Brink
et al (2000) suggest to set the term Ay to be 2 for the low-
est abundance value (y) greater than zero and C to 1. Other
transformations, like the square root or fourth root transfor-
mation, are also commonly applied in community ecology
(Anderson et al 2011). Note that there has been little evalu-
ation and advice for practitioners which transformations to
use. If the transformed data still do not meet the assumptions
of the linear model, non-parametric tests are usually applied
(Wang and Riffel 2011).

Generalised linear models (GLM) provide a method to
analyse counts or proportions from counts in a statistically
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sound way (Nelder and Wedderburn 1972). GLMs can han-
dle various types of data distributions, e.g., Poisson or nega-
tive binomial (for count data) or binomial (for proportions);
the normal distribution being a special case of GLMs. De-
spite GLMs being available for more than 40 years, ecotox-
icologists do not regularly make use of them. Recent stud-
ies concluded that the linear model should not be applied
on transformed data and GLMs be used as they have better
statistical properties (O’Hara and Kotze 2010; Warton 2005
(counts), Warton and Hui 2011 (proportions from counts)).

Ecotoxicological experiments often involve small sam-
ple sizes due to practical constraints. For example, ex-
tremely low samples sizes (n < 5) are common in many
mesocosm studies (Sanderson 2002; Szöcs et al 2015).
Small sample sizes lead to low power in statistical hypothe-
sis testing, on which many ecotoxiological approaches (e.g.
risk assessment for pesticides) rely. Such an endpoint are
L/NOEC values (Lowest / No observed effect concentra-
tion). Although their use has been heavily criticized in the
past (Laskowski 1995), they are the predominant endpoint
in mesocosm experiments (Brock et al 2015; EFSA PPR
2013).

We explore how GLMs may enhance, when appropri-
ately used, inference in ecotoxicological studies and com-
pared three types of statistical methods (linear model on
transformed data, GLM, non-parametric tests). We first il-
lustrate differences between statistical methods using a data
set from a mesocosm study. Then we further elaborate dif-
ferences in detecting a general treatment effect and deter-
mining the LOEC using simulations of two common data
types in ecotoxicology: counts and proportions from counts.

2 Methods

2.1 Models for count data

2.1.1 Linear model for transformed data

To meet the assumptions of the standard linear model, count
data usually needs to be transformed. We followed the rec-
ommendations of van den Brink et al (2000) and used a
log(Ay + 1) transformation (eqn. 1):

Ynew i = log(AYi +1) (1)

, where Yi is the measured and Ynew i the transformed
abundance of the ith observation. The factor A was chosen
in such way that AY equals 2 for the lowest non-zero abun-
dance value (Y).

Then we fitted the linear model to the transformed abun-
dances (hereafter LM):

Ynew i ∼ N(µi,σ
2)

E(Ynew i) = µi and var(Ynew i) = σ
2 (2)

µi = β ×Xi

This model assumes a normal distribution of the trans-
formed abundances. The expected value for each observa-
tion i is given by its mean (µi) and the variance (σ2) is con-
stant between treatments. We allow this mean to vary be-
tween treatments (Xi codes the treatments) and β are the es-
timated coefficients related to these changes in transformed
abundances between treatments (eqn. 2).

2.1.2 Generalised Linear Models

GLMs extend the linear model to variables that are not nor-
mally distributed. Instead of transforming the response vari-
able, the counts could be directly modeled by a Poisson
GLM (GLMp):

Yi ∼ P(µi)

E(Yi) = var(Yi) = µi (3)

log(µi) = β ×Xi

This model assumes Poisson distributed abundances
with mean µi ≥ 0. The expected value for each observation
i is given by its mean. Moreover, this model assumes that
mean and variance are equal. We are modeling the mean as
a function of treatment membership (Xi). However, to avoid
negative values of the mean this is done on a log scale.
Therefore, β also describes the differences between treat-
ments on a log scale (eqn. 3).

The assumption of equal mean and variance is rarely
met with ecological data, which is typically characterized
by greater variance than the mean (overdispersion). To over-
come this problem a quasi-Poisson model (GLMqp) could be
used, which models the variance as a linear function of the
mean (eqn. 4):

var(Yi) = φ µi (4)

Here, φ is used to account for additional variation and
is known as overdispersion parameter. The quasi-Poisson
model is a post hoc method, meaning that first a Poisson
model is estimated (eqn. 3) and than the standard errors are
scaled by the degree of overdispersion (Hilbe 2014).

Another possibility to deal with overdispersion is to
model abundances by a negative binomial distribution
(GLMnb, eqn. 5):

Yi ∼ NB(µi,κ)

E(Yi) = µi and var(Yi) = µi +µ
2
i /κ (5)

log(µi) = β ×Xi
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This models assumes that abundances are negative bi-
nomially distributed, with a mean of µi ≥ 0 and a variance
µi + µ2

i /κ . Similar to the Poisson model we use a log link
between mean and treatments. Note, that the quasi-Poisson
model assumes a linear mean-variance relationship (eqn. 4),
whereas the negative binomial model assumes a quadratic
relationship (eqn. 5).

The above described models are most commonly used
in ecology (Ver Hoef and Boveng 2007), although other
distributions for count data are possible, like the negative
binomial model with a linear mean-variance relationship
(also known as NB1) or the poisson inverse gaussian model
(Hilbe 2014).

2.2 Models for binomial data

A binomial variable counts how often an event x occurs in
a fixed number of independent trials N (e.g. ”5 out of 10
fish survived”), with an equal probability of occurrence π

between trials. The number of times an event occurs can also
be calculated as proportion x/N.

2.2.1 Linear model for transformed data

To accommodate the assumptions for the standard linear
model with such proportions, a special arcsine square root
transformation (eqn. 6) is suggested (EPA 2002; Newman
2012):

Ynew i =


arcsin(1)−arcsin(

√
1
4n ) , if Yi = 1

arcsin(
√

1
4n ) , if Yi = 0

arcsin(
√

Yi) , otherwise

(6)

, where Yi are the untransformed proportions, Ynew i are
the transformed proportions, and n is the total number of
exposed animals per treatment. The transformed proportions
are then analysed using the standard linear model (LM, eqn.
2). Note, that the coefficients of the linear model are not
directly interpretable due to transformation.

2.2.2 Generalised Linear Models

A more natural way to model such data is the binomial dis-
tribution with parameters N and π (GLMbin):

Yi ∼ Bin(N,πi)

E(Yi) = πi×N and var(Yi) = πi(1−πi)/N (7)

logit (πi) = β ×Xi

This model assumes that the number of occurrences (Yi)
are binomially distributed, where N = number of trials (e.g.
exposed animals) and πi is the probability of occurrences

(fish survived), which together give the expected number of
occurrences. The variance of the binomial distribution is a
quadratic function of the mean. We are modeling the prob-
ability of occurrence as function of treatment membership
(Xi) and to ensure that 0 < πi < 1 we do this on a logit scale
(eqn. 7). The estimated coefficients (β ) of this model are
directly interpretable as changes in log odds between treat-
ments.

Non-independent trials (e.g. fish are grouped in aquaria)
may lead to overdispersion (Williams 1982). Methods to
deal with overdispersed binomial data are for example quasi
methods (see above) or Generalized Linear Mixed models
(GLMM). However, these are not further investigated in this
paper (see Warton and Hui (2011) for a comparison).

2.3 Statistical Inference

After model fitting the next step is statistical inference. Eco-
toxicologists are generally interested in two hypotheses: (i)
is there any treatment related effect? and (ii) which treat-
ments show a treatment effect (to determine the LOEC)?

Following general recommendations (Bolker et al 2009;
Faraway 2006), we used F-tests (LM and GLMqp) and
Likelihood-Ratio (LR) tests (GLMp, GLMnb and GLMbin)
to test the first hypothesis. However, it is well known that
the LR test is unreliable with small sample sizes (Wilks
1938). Therefore, we additionally explored the parametric
bootstrap (Faraway 2006) to assess the significance of the
LR. Bootstrapping is computationally very intensive and for
this reason we applied it only for the LR test of the negative
binomial models (using 500 bootstrap samples, denoted as
GLMnpb).

To assess the LOEC we used Dunnett contrasts (Dunnett
1955) with one-sided Wald t tests (normal and quasi-Poisson
models) and one-sided Wald Z tests (Poisson, negative bino-
mial and binomial models). Beside these parametric meth-
ods we also applied two, in ecotoxicology commonly used,
non-parametric methods: The Kruskal-Wallis test (KW ) to
test for a general treatment effect and a pairwise Wilcoxon
test (WT ) to determine the LOEC. We adjusted for multiple
testing using the method of Holm (1979).

2.4 Case study

Brock et al (2015) presents a typical example of data from
mesocosm studies, which we use to demonstrate differences
between methods. The data are mayfly larvae counts on arti-
ficial substrate samplers at one sampling date. A total of 18
mesocosms have been sampled from 6 treatments (Control
(n = 4), 0.1, 0.3, 1, 3 mg/L (n = 3) and 10 mg/L (n = 2))
(Figure 1).
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Fig. 1 Data from Brock et al (2015) (dots). Predicted values (triangles)
and 95% Wald Z or t confidence intervals from the fitted models (ver-
tical lines) are given beside. Horizontal bars above indicate treatments
statistically significant different from the control group (Dunnett con-
trasts). The data showed considerable overdispersion (κ = 3.91,φ =
22.41) and therefore, the Poisson model underestimates the width of
confidence intervals.

2.5 Simulations

2.5.1 Count data

To further scrutinise the differences between methods we
simulated data sets with known properties. We simulated
count data that mimics the data of the case study with five
treatments (T1 - T5) and one control group (C). Counts were
drawn from a negative binomial distribution with overdis-
persion at all treatments (κ = 4, eqn. 5). We simulated data
sets with different number of replicates (N = {3, 6, 9}) and
different abundances in control treatments (µC = {2, 4, 8, 16,
32, 64, 128}). For Type I error estimation mean abundance
was equal between treatments. For power estimation, mean
abundance in treatments T2 - T5 was reduced to half of con-
trol and T1 (µT2 = ... = µT5 = 0.5 µC = 0.5 µT1), resulting
in a theoretical LOEC at T2. We generated 1000 data sets
for each combination of N and µC and analysed these using
the models outlined in section 2.1.

2.5.2 Binomial data

We simulated data from a commonly used design as de-
scribed in Weber et al (1989), with 5 treated (T1 - T5)
and one control group (C). Proportions were drawn from a
Bin(10, π) distribution, with varying probability of survival
(π = {0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}) and
varying number of replicates (N = {3, 6, 9}). For Type I er-
ror estimation, π was equal between treatments. For power
estimation π was fixed at 0.95 in C and T1 and varied only
in treatments T2 - T5. For each combination we simulated

1000 data sets and analysed these using the models outlined
in section 2.2.

2.6 Data Analysis

We analysed the case study and the simulated data using the
outlined methods. We compared the methods and models
in terms of Type I error (detection of an effect when there
is none) and power (ability to detect an effect when it is
present) at a significance level of α = 0.05.

All simulations were done in R (Version 3.1.2) (R Core
Team 2014) on an Amazon EC2 virtual Linux server (64bit,
15GB RAM, 8 cores, 2.8 GHz). Source code to reproduce
the simulations and paper is available online at https://
github.com/EDiLD/usetheglm. Moreover, Supplement 2
provides worked examples of the data of Brock et al (2015)
and Weber et al (1989).

3 Results

3.1 Case study

The data set showed considerably higher variance then ex-
pected by the Poisson model (φ = 22.41 (eqn. 4), κ = 3.91
(eqn. 5)). Therefore, the Poisson model did not fit to this data
and led to underestimated standard errors and confidence in-
tervals, as well as overestimated statistical significance (Fig-
ure 1). In this case, inferences on the Poisson model are not
valid and we do not further discuss its results. The normal (F
= 2.57, p = 0.084) and quasi-Poisson model (F = 2.90, p =
0.061), as well as the Kruskal test (p = 0.145) did not show
a statistically significant treatment effects. By contrast, the
LR test and parametric bootstrap of the negative binomial
model indicated a treatment-related effect (LR = 13.99, p =
0.016, bootstrap: p = 0.042).

All methods predicted similar values, except the nor-
mal model predicting always lower abundances (Figure 1).
95% confidence intervals (CI) were most narrow for the
negative binomial model and widest for the quasi-Poisson
model - especially at lower estimated abundances. Conse-
quently, the LOECs differed (Normal and quasi-Poisson: 3
mg/L, negative binomial: 0.3 mg/L). The pairwise Wilcoxon
test did not detect any treatment different from control.

3.2 Simulations

3.2.1 Count data

For detecting a general treatment effect, GLMnb and GLMp
showed inflated Type I error rates, whereas KW was con-
servative at low sample sizes. However, using the paramet-
ric bootstrap for the negative binomial model (GLMnpb), as
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well as LM and GLMqp resulted in appropriate Type I er-
ror rates. For detecting a treatment effect,GLMqp had the
highest power, followed by GLMnpb, LM and KW , the lat-
ter having least power (Figure 2). For our simulation design
(reduction in abundance by 50%) a sample size per treat-
ment of n = 9 was needed to achieve a power greater than
80%. At small sample sizes (n = 3, 6) and low abundances
(µC = 2, 4) many of the negative binomial models (GLMnb
and GLMnpb) did not converge to a solution (convergence
rate <85% of the simulations, Supplement 1).

For LOEC determination GLMnb and GLMp showed an
increased Type I error and all other methods were slightly
conservative. The inferences on LOEC generally showed
less power. LM showed a mean reduction of 20.7% and
GLMqp of 24.3 %. Power to detect the LOEC was highest
for GLMqp. LM and WT showed less power, with WT hav-
ing no power to detect the LOEC at low sample sizes (Figure
3).

3.2.2 Binomial data

GLMbin showed slightly increased Type I error rates at low
sample sizes and small effect sizes. KW was more conser-
vative than LM and GLMbin. In addition, GLMbin exhibited
the greatest power for testing the treatment effect. This was
especially apparent at low sample sizes (n = 3), with up
to 27% higher power compared to LM. However, the dif-
ferences between methods quickly vanished with increasing
samples sizes (Figure 4).

For inference on LOEC we found that all methods were
slightly conservative. WT was generally more conservative
and GLMbin especially at low effect sizes (pE > 0.7). In-
ference on LOEC was not as powerful as inference on the
general treatment effect. Contrary to the general treatment
effect, LM showed the higher power than GLMbin at small
sample sizes (n = 3, 6). WT had no power for n = 3 and
showed less power in the other simulation runs (Figure 5).

4 Discussion

4.1 Case study

The outlined case study demonstrates that the choice of the
statistical model and procedure can have substantial im-
pact on ecotoxicological inferences and endpoints like the
LOEC. Therefore, ecotoxicologists should not base their
inferences solely on statistical significance tests, but also
on model estimates, their uncertainty and importance (Gel-
man and Stern 2006). O’Hara and Kotze (2010) showed
that the linear model on log transformed data gave unreli-
able and biased estimates, whereas GLMs performed well
with little bias. Bias occurs also when back-transforming fit-
ted means to the original scale, which explains the lower

predicted means by LM in Figure 1 (Rothery 1988) and
should be corrected for (Newman 1993). When applied to
non-transformed data, the linear model would predict iden-
tical treatment means as GLMs, because for a categorical
predictor the predicted means of the LM and GLM are
identical. When applied to non-transformed data, the linear
model would result in identical predicted treatment means
as GLMs. However, predictions would differ with continu-
ous predictors and GLMs are particularly advantageous in
this case.

This is further highlighted by the fact that for the same
model (linear model applied to transformed data), Brock
et al (2015) reported a 10-fold lower LOEC (0.3 mg/L) then
found in our study (3 mg/L, Figure 1). The reasons are man-
ifold: (i) Brock et al (2015) used a log(2 y+1) transforma-
tion, whereas we used a log(A y+1) transformation, where
A = 2 / 11 = 0.182 (van den Brink et al 2000). (ii) We
adjusted for multiple testing using Holm’s (1979) method.
(iii) Brock et al (2015) used a one-sided Williams test
(Williams 1972), whereas we used one-sided comparisons
to the control (Dunnett contrasts). The choice of transforma-
tion contributed only little to the differences. If the assump-
tions of Williams test are met it has strictly greater power
than Dunnett contrasts (Jaki and Hothorn 2013), which ex-
plains the differences in the case study. A generalisation of
the Williams test as multiple contrast test (MCT) can be used
in a GLM framework (Hothorn et al 2008). Nevertheless,
such a Williams-type MCT is not a panacea (Hothorn 2014)
and our simulated semi-concave dose-response relationship
is a situation where it fails and likely underestimates the
LOEC (Kuiper et al 2014).

Overdispersion is common for ecological datasets
(Warton 2005) and the case study illustrates the potential
effects of overdispersion that is not accounted for: standard
errors will be underestimated and significance overestimated
(Figures 1). This is also shown by our simulations (Fig-
ures 2, 3) where GLMp showed increased Type I error rates
because of overdispersed simulated data. However, in fac-
torial designs the mean-variance relationship can be easily
checked by plotting mean versus variance of the treatment
groups or by inspecting residual versus fitted values plots
(see Supplement 2). Our simulations revealed that the LR
test for GLMnb is invalid because of increased Type I errors.
This explains why it had the lowest p-value in the case study.

In the introduction we pointed out that there is little ad-
vice how to choose between the plenty of possible transfor-
mations - how do GLMs simplify this problem? The distri-
bution modeled can be chosen using knowledge about the
data (e.g. bounds, integer or continuous data etc). Know-
ing what type of data is modeled (see Methods section), the
model selection process can be completely guided by the
data and diagnostic tools. Therefore, choosing an appropri-
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Fig. 2 Count data simulations: Type I error (top) and Power (bottom) for the test of a treatment effect. Type I errors are displayed on a logarithmic
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nominal Type I error rate at α = 0.05.

n = 3 n = 6 n = 9

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

0.000

0.025

0.050

0.075

0.100

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Ty
pe

 1
 e

rr
or

 (
LO

E
C

 , 
α 

=
 0

.0
5)

n = 3 n = 6 n = 9

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

● ● ●
●

●

●

●

●0.00

0.25

0.50

0.75

1.00

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
πC

P
ow

er
 (

LO
E

C
 , 

α 
=

 0
.0

5)

Method ● LM GLMbin WT

Fig. 5 Binomial data simulations: Type I error (top) and power (bottom) for the test for determination of LOEC. Dashed horizontal line denotes
the nominal Type I error rate at α = 0.05.
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ate model is easier than choosing between possible transfor-
mations.

4.2 Simulations

Our simulations showed that GLMs have generally greater
power than the linear model applied to transformed data.
However, the simulations also suggest that the power at the
population level in common mesocosm experiments is low.
For common samples sizes (n≤ 4 ) and a reduction in abun-
dance of 50% we found a low power to detect any treatment-
related effect (<50% for methods with appropriate Type I
error, Figure 2). Statistical power to detect the correct LOEC
was even lower (less than 25%), which can be attributed
to multiple testing. The low power of all methods to de-
tect significant treatment levels such as the LOEC or NOEC
suggests that these endpoints from ecotoxicological studies
should be interpreted with caution and underpins their criti-
cism (Laskowski 1995; Landis and Chapman 2011).

Mesocosm studies allow also for inferences on the com-
munity level. For community analyses GLM for multivariate
data (Warton et al 2012) have been proposed as alternative
to Principal Response Curves (PRC) and yielded similar in-
ferences, but better indication of responsive taxa (Szöcs et al
2015). However, ter Braak and Šmilauer (2014) argue to use
data transformations with community data because of their
simplicity and robustness. Although our simulations covered
only simple experimental designs at the population level,
findings may also extend to more complex situations. Nested
or repeated designs with non-normal data could be analysed
using Generalised Linear Mixed Models (GLMM) and may
have advantages with respect to power (Stroup 2014).

To counteract the problems with low power at the pop-
ulation level Brock et al (2015) proposed to take the Min-
imum Detectable Difference (MDD), a method to assess
statistical power a posteriori, for inference into account.
However, a priori power analyses can be performed easily
using simulations, even for complex experimental designs
(Johnson et al 2015), and might help to design, interpret
and evaluate ecotoxicological studies. Moreover, Brock et al
(2015) proposed that statistical power of mesocosm exper-
iments can be increased by reducing sampling variability
through improved sampling techniques and quantification
methods, though they also caution against depleting popu-
lations through more exhaustive sampling. As we showed,
using GLMs can enhance the power at no extra costs.

Wang and Riffel (2011) advocated that in the typical
case of small sample sizes (n <20) and non-normal data,
non-parametric tests perform better than parametric tests as-
suming normality. In contrast, our results showed that the
often applied KW and WT have less power compared to
LM. Moreover, GLMs always performed better than non-
parametric tests. Though more powerful non-parametric

tests may be available (Konietschke et al 2012), these are
focused on hypothesis testing and do not provide estimation
of effect sizes. Additionally to testing, GLMs allow the esti-
mation and interpretation of effects that might not be statis-
tically significant, but ecologically relevant. Therefore, we
advise using GLMs instead of non-parametric tests for non-
normal data.

We found an increased Type-I error for GLMnb at low
sample sizes. However, it is well known that the LR statistic
is not reliable at small sample sizes (Bolker et al 2009; Wilks
1938). Parametric bootstrap (GLMnpb) is a valuable alterna-
tive in such situations and maintains appropriate levels (Fig-
ure 2). Moreover, at small sample sizes and low abundances
a significant amount of negative binomial models did not
converge. We used an iterative algorithm to fit these models
(Venables and Ripley 2002) and other methods assessing the
likelihood directly may perform better.

GLMqp showed higher statistical power than GLMnpb
(Figure 2, bottom). This could be explained by the simpler
mean-variance relationship of GLMqp (eqn. 4 and 5), be-
cause at small samples sizes, low abundances or few treat-
ment groups it is difficult to determine the mean-variance re-
lationship. Our results are similar to Ives (2015), who com-
pared GLMs to LM applied to transformed data for testing
regression coefficients. Because of inflated Type I errors for
GLMnb and, in the case of multiple explanatory variables in
the model, inflated Type I errors of GLMqp he considered the
LM on transformed data as most robust and recommended
its preferred use. However, we showed that the parametric
bootstrap LR test of GLMnb provides appropriate Type I er-
rors and bootstrapping might be an alternative for testing
coefficients. Nevertheless, bootstrapping is computationally
very intensive and we found no gains in power compared
to GLMqp (Figure 2). Given the higher power, appropriate
Type I errors, stable convergence and reduced bias (O’Hara
and Kotze 2010) we suggest that count data in one facto-
rial experiments should be analysed using the quasi-Poisson
model.

Binomial data are often collected in lab trials, where in-
creasing the sample size may be relatively easy to accom-
plish. We found notable differences in power to detect a
treatment effect for all simulated sample sizes. Similarly,
Warton and Hui (2011) also found that GLMs have higher
power than arcsine transformed linear models. Though we
did not simulate overdispersed binomial data, this should be
checked and accounted for. In such situations a GLMM may
offer an appealing alternative (Warton and Hui 2011). At
low effect sizes GLMbin became conservative with increas-
ing πC, although this effect lessened as sample size increased
(Figure 5). This is because π approaches its boundary and is
also known as the Hauck-Donner effect (Hauck and Donner
1977). A LR-Test or parametric bootstrap may provide an
alternative in such situations (Bolker et al 2009). This can
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also explain why LM performed better for deriving LOECs
at low sample sizes.

GLMs can be fitted with several statistical software
packages and many textbooks are available to introduce eco-
toxicologists to these models (e.g. Zuur 2013 or Quinn and
Keough 2009). We recommend that ecotoxicologists should
change their models instead of their data. GLMs should be-
come a standard method in ecotoxicology and incorporated
into respective guidelines.

5 Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no
conflict of interest.

References

Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone
AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP,
Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multi-
ple meanings of beta diversity: a roadmap for the practicing ecol-
ogist. Ecology Letters 14(1):19–28

Bolker B, Brooks M, Clark C, Geange S, Poulsen J, Stevens M, White
J (2009) Generalized linear mixed models: a practical guide for
ecology and evolution. Trends in Ecology & Evolution 24(3):127–
135
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TCM, Schäfer RB (2015) Analysing chemical-induced changes
in macroinvertebrate communities in aquatic mesocosm experi-
ments: a comparison of methods. Ecotoxicology 24(4):760–769

Venables WN, Ripley BD (2002) Modern Applied Statistics with S,
4th edn. Springer, New York

Ver Hoef JM, Boveng PL (2007) Quasi-Poisson vs. negative binomial
regression: how should we model overdispersed count data? Ecol-
ogy 88(11):2766–2772

Wang M, Riffel M (2011) Making the right conclusions based on
wrong results and small sample sizes: interpretation of statistical
tests in ecotoxicology. Ecotoxicology and Environmental Safety
74(4):684–92
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