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Abstract—In a power system with high penetration of renewable
power sources, gas-fired units can be considered as a back-up
option to improve the balance between generation and consumption
in short-term scheduling. Therefore, closer coordination between
power and natural gas systems is anticipated. This article presents
a novel hybrid information gap decision theory (IGDT)-stochastic
cooptimization problem for integrating electricity and natural gas
networks to minimize total operation cost with the penetration of
wind energy. The proposed model considers not only the uncer-
tainties regarding electrical load demand and wind power output,
but also the uncertainties of gas load demands for the residential
consumers. The uncertainties of electric load and wind power are
handled through a scenario-based approach, and residential gas
load uncertainty is handled via IGDT approach with no need for
the probability density function. The introduced hybrid model
enables the system operator to consider the advantages of both
approaches simultaneously. The impact of gas load uncertainty
associated with the residential consumers is more significant on
the power dispatch of gas-fired plants and power system operation
cost since residential gas load demands are prior than gas load
demands of gas-fired units. The proposed framework is a bilevel
problem that can be reduced to a one-level problem. Also, it can be
solved by the implementation of a simple concept without the need
for Karush—Kuhn-Tucker conditions. Moreover, emerging flexible
energy sources such as the power to gas technology and demand
response program are considered in the proposed model for in-
creasing the wind power dispatch, decreasing the total operation
cost of the integrated network as well as reducing the effect of
system uncertainties on the total operating cost. Numerical results
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indicate the applicability and effectiveness of the proposed model
under different working conditions.

Index Terms—Co-optimization of integrated gas and power
system, demand response (DR) program, hybrid information gap
decision theory (IGDT)-stochastic, power-to-gas (P2G) technology,
wind power.

NOMENCLATURE
Indices
t Time periods.
iLr Thermal/wind power plants.
J,g Electrical/Natural gas loads.
s Scenarios.
sp Natural gas suppliers.
m, n Nodes in natural gas network.
k P2G technology.
b, b Electric buses.
L,pl Electrical/gas transmission lines.
Parameters
NT Number of time periods.
NG, NJ Number of residential gas/electrical loads.
NS Number of scenarios.
NSP Number of gas suppliers.
NR Number of wind power plants.
NGU, NEU  Number of gas-fired/nongas fired units.
pmin pmax Min/Max capacity of thermal unit i (MW).
RU;, RD; Ramp up/down of thermal unit i (MW).
o, TOf Minimum up/down time of unit i (h).
PFT** Maximum capacity of line L (MW).
Dj;s Expected hourly load (MW).
Ch Constant of pipeline pl (kcf/Psig).
qmax gmin Max/Min pressure (Psig).
Up™, US“I}“‘ Max/Min natural gas injection.
L [min Max/Min natural gas load (kcf).
Udnas Usif}nax Max release/store capacity of gas storage (kcf).
17;“2, no™ Storing/releasing efficiency of gas storage.
p2g

M, Efficiency of P2G technology.
ET® E™  Max/min gas stored in storage (kcf).
CSYP, C9ST Cost of gas supplier/storage ($).

s Probability of each scenario s.
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2
Variables
FZ-C Cost function of thermal unit .
Tes e Fuel function of gas-fired unit 4.
Foit,s Gas flow on pipe pl.
Py Dispatch of unit <.
L Binary on/off status indicator of unit .
Tm,t,s Pressure of natural gas node m.
Usp,t,s Gas delivery of supplier.
LGmys Natural gas load connected to node m.
Py Dispatch of wind power.
PFr s Line flow at line L.
Ob,t,s Voltage angle of network bus b.
P,gi%s Dispatch of P2G technology.
}C”zﬁ . Natural gas production of P2G technology.
in UMt Storing/rate of gas storage.
By, Natural gas stored in gas storage system.
DR;; s Adjustable load.
d2% . Load after implementation of DR program.
DR Load factor in percent.

I. INTRODUCTION

HE penetration of renewable energy sources such as wind
T turbines and photovoltaics have been dramatically in-
creased due to concerns on the reduction of fossil fuels and
global issues of bluehouse gases emissions [1], [2]. The specu-
lation of 2182 TWh wind power generation by 2030, reported
by International Energy Agency, highlights such contribution of
renewable sources in supplying demand in power systems [3].
However, the variation of wind power generation with respect
to the forecasted amount and uncertain nature of such energy
source makes it important to find an appropriate strategy to
control such situations. A practical solution for handling the
above-mentioned issue is to develop natural gas-fired generation
plants, which can not only decrease emissions of pollutant
gases up to 60% compared to the coal-fired plants, but also
can deal with the variation of renewable energy generation by
high ramp-rates and fast start-up characteristics [4]. In addition,
introduction of shale gas production technology in USA had
a significant effect on reducing the natural gas price leading
to extending gas combined-cycle plants. The statistics proves
considerable alteration in employing gas-fired plants in power
systems such as growth rate of gas consumption in USA for
power generation to 39% in 2012. The effective role of natural
gas is observed not only in expansion of natural gas-fired plants
but also in employment of power to gas (P2G) technology. P2G
as a novel approach for storing energy as natural gas plays an
important role for accommodation of renewable energy variabil-
ity [5]. Accordingly, a heated topic on integrated energy systems
has enlivened the previous studies regarding interdependency of
electrical and gas networks according to the influence of natural
gas-fired units and P2G systems.

Integrated electricity and gas networks are hotly studied in
recent publications focusing on co-optimization models of such
networks, as well as technologies developed such as P2G sys-
tem and demand response (DR) programs. Several works have
concentrated on proposing approaches for relaxation of coupling
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constraints including a convex relaxation model [6], Lagrangian
relaxation [7], Benders decomposition [8], and alternating direc-
tion method of multipliers [9]. A security-constrained model for
integrated gas and electricity networks has been proposed inves-
tigating the effect of gas pipelines disruptions and power trans-
mission losses [10]. A bilevel framework for co-optimization
of integrated gas and electricity networks has been introduced
in [11] with two agents, where the former agent aims at minimiz-
ing the operation cost of the integrated network, and the latter
one seeks to maximize the profit of private owners. A bilevel
model for the optimal operation of integrated gas and electricity
networks is presented in [12], which intends to study the oper-
ation of the electricity network and supplying the gas network
in upper level and lower level, respectively. The authors have
analyzed the impact of cooperation of gas-fired power generation
plants in integrated networks and energy market considering
gas network constraints [13]. The role of the P2G system in
optimal management of integrated networks is studied proposing
a robust framework [14]. Zlotnik et al. in [15] proposed a novel
approach for controlling the gas flows within gas pipelines in
management of power plants and operation of gas compressor
by investigating various levels of combination, spanning from
separate prediction, and integrated optimal control. However, the
uncertainties associated with parameters of both power system
and gas network have not been studied in this reference.

Information gap-decision theory (IGDT) is introduced as a
high-performance modeling concept for studying uncertainties
of systems’ parameters and data, which does not need the
probability distribution function of the uncertain parameters
in contrast with conventional methods such as Monte Carlo
simulation method [16], [17] and scenario-based programming
procedure. Moreover, one other advantage of the IGDT is to
provide flexible different strategies for the operator since the
radius upper bound of the uncertain parameter is not needed to
be known when employing this method. In other words, IGDT
determines the maximum uncertainty radius of the uncertain
parameters by satisfying the objective function in the predefined
interval. Notable efforts have been made in the area of study-
ing uncertainty in electrical energy networks such as bidding
strategies in the power systems [18], unit commitment [19]
and restoration of electrical distribution systems [20], and self-
scheduling of generation companies [21].

Table I indicates the comparison of the main contributions of
the literature and the proposed model in studying the integrated
gas and electricity networks by providing summarized cases
on the remarkable contribution of models. In comparison with
the literature, this article presents a new IGDT-stochastic-based
model for the optimal operation of integrated power and gas sys-
tems in the presence of wind power and emerging technologies.
The proposed model makes it possible to deal with uncertainties
associated with both power and gas systems in contrast with the
recent studies, where robust and stochastic modeling methods
are applied to investigate the uncertain parameters in optimal
operation of integrated gas and power systems, and the uncer-
tainties of the gas network are not taken into account. The main
contributions of this article can be summarized as follows.

1) The proposed hybrid IGDT-stochastic framework takes

advantages of both IGDT and stochastic programming
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TABLE I
COMPARISON OF THE LITERATURE WITH THE CURRENT WORK
Reference | Co-optimization Uncertainties Uncerta.inty Flexible.
modeling Technologies
Gas load | Electric load | Wind | Line outage P2G DR
[22] v v Stochastic
[25] v v Stochastic
[26] v v Stochastic v
[14] v v v Robust v
[27] v v v Robust v
28] v v Robust
[24] v v v v Robust
[29] v v v Stochastic
Proposed v v v v IGDT-Stochastic v v

methods, which makes the use of two risk-seeker and
risk-averse strategies for modeling the uncertainty of
residential gas load. This is effective in increasing the
flexibility of the decision-making process of the network
operator in overcoming such uncertainties, however, the
robust model only considers the undesirable impact of the
uncertain parameter. Also, the proposed hybrid method
aims to determine the forecast error of uncertain parameter
(i.e., residential gas load) with respect to its predicted
value, where the error is obtained by the desirable op-
eration cost of the network operator. Accordingly, the
uncertainty radius is not known in contrast to the robust
optimization (RO) method.

2) The presented hybrid IGDT-stochastic model is a bilevel
problem, which can be changed to a single-level problem
and it can be solved with a simple approach without
requiring the Karush—Kuhn-Tucker (KKT) conditions.

3) The uncertainties of both gas and power networks are
considered in the proposed hybrid model. On the con-
trary, recent studies considered only the uncertainties of
the power system. The proposed hybrid IGDT-stochastic
model addresses the uncertainties regarding wind power
output and power and residential gas load demands, where
the Monte Carlo simulation method is applied for model-
ing the power system uncertainties, and IGDT is employed
to deal with the uncertainty of natural gas system.

4) The emerging technologies in power and gas networks
such as DR programs and P2G technology are taken into
account to boost the flexibility of the integrated network.
Moreover, the influence of such technologies is investi-
gated in increasing and decreasing the penetration of wind
power and the operation cost of the system, respectively.

This article is organized as follows: Section II deals with

coordinated operation strategies of power and gas systems.
Section III provides the problem formulation for the proposed
co-optimization of gas and power systems based on hybrid
IGDT-stochastic approach. The studied system and simulation
results are given in Section IV. The main findings and perfor-
mance of the proposed model is concluded in Section V.

II. COORDINATED OPERATION STRATEGIES OF POWER AND
GAS SYSTEMS

Considering the increasing level of interdependency between
the power network and the natural gas system, it may not be

reasonable or physically possible to model the two networks
separately and optimize them independently. Three types of
main approaches have been presented in the literature to ex-
amine the interdependency of the power grid and the natural
gas system. In the first approach, a network-constrained unit
commitment problem is solved by a power system operator
while considering natural gas network constraints [22]. In the
second approach, the optimization of power and gas systems are
implemented as a sequential optimization problem [23]. In the
third approach, unlike the sequential approach, co-optimization
problem considers the power network and the natural gas system
as a whole for minimizing the total operation cost concerning
both systems [24]. This article has focused on the third approach
to model interdependency between power and gas systems as a
co-optimization problem.

III. PROBLEM FORMULATION BASED ON HYBRID
IGDT-STOCHASTIC APPROACH

The mutual connection of gas and electricity networks has
been increased considering the increment of integrated gas-fired
plants in the power systems. Accordingly, the solution of optimal
management regarding the integrated network needs to consider
not only the uncertain parameters of the electricity network but
also the uncertainties associated with the gas network since the
consideration of uncertainties associated with the gas network
parameters plays a significant role in the commitment of gas-
fired plants in power systems. In this article, the uncertainties of
electrical load demand, wind power output, and the residential
gas load consumer have been estimated by IGDT approach.

A. Problem Formulation Based on Stochastic Programming

In this section, the co-optimization problem of integrated
gas and electricity networks is explained based on a stochastic
model that is performed by Monte Carlo simulation method. The
objective function and constraints are defined as follows.

1) Objective Function: The main objective of the presented
model is to minimize the operation cost in the integrated net-
works in presence of wind energy and emerging technologies.
Equation (1) indicates the objective function of the proposed
model, which is defined as the costs associated with coal-fueled
generation units, gas suppliers, operation cost of the gas storage
system, and the cost of lost electric load. It is notable that the
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cost of gas-fired units is considered in the cost of gas suppliers
o ns | 2oist [FE (Pit.s) + SUiy + SDi 4]
OF =min} » m | +3 00 C5 Uy + CF U
e + ZJNJ:1 CHOVoll;,
ey

The objective function should be optimized considering
several constraints including coal-fueled and natural gas-fired
plants, gas suppliers, natural gas storage, P2G system, DR pro-
gram, electrical network, and gas systems, which are described
in the following.

2) Unit Commitment Constraints: The power generated by
the nongas fired and gas-fired plants should be restricted to
the upper and lower bounds as stated in (2). Ramp-up and
ramp-down rates for generation plants are formulated as (3)
and (4), respectively. The relation between auxiliary variables
applied in ramp-up and ramp-down rates are pointed out in (5)
and (6). Equations (7) and (8) indicate that each generation
plant should be limited by minimum up-time and down-time
constraints. Also, (9)—(12) show the start-up and shut-down
cost of nongas-fired units and gas consumption associated with
start-up and shutdown of gas-fired plants [28]

Pimmli,t < Pi,t,s < Pimaxli,t (2)
Pits— P15 <(1—Yi )R +Y;, Pmn A3)

Pit1s—Pits<(1—2Zi)RM™ 4+ Zi PP (4)

Vit — Zin = Iss— Lo )
Yie +Zip > 1 6)
(Xitor = T7") i1 — Lig) 20 7)
(Xf,ifq ~ TP (L — T4 1) >0 (8)
SU; ¢ > su; (Iip — Iip1) 1 ¢ NGU )
SD;; > sd; (Ijjp—1 — I;;y) i ¢ NGU (10)
SUG;; > sug; (Ijy — Iiy—1) i€ NGU (11
SDG; ¢ > sdg; (Ii;t-1 — I;;y) i € NGU. (12)

3) DR Program Constraints: In this article, the proposed
DR program is modeled as a shiftable approach. In this con-
cept, the responsive loads can be programmed to run within a
particular time due to lower electricity prices. Equation (13)
demonstrates the network load after the execution of the DR
program. Equation (14) presents the limitation of the shiftable
load at each hour. Equations (15) and (16) indicate the boundary
of the variation rate of sensitive loads to price in continuous
time intervals. Finally, (17) shows that the curtailed load at a
time interval should be shifted to another time [26]

d‘]j)};as = Dj)tts + DRjat:S (]3)
IDR; ;5| < DR} Dj 4 (14)
it —dyy g < AdP (15)
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A5y s — Ay, < AdP (16)
NT
ZDRJ, s =0. a17)
t=1

4) Power System Security Constraints: Equation (18) shows
that the power balance of the network should be taken into
consideration to ensure the supply of power load demand by
the generation plants and power flow through system lines.
Moreover, (19) and (20) demonstrate dc power flow and the
line capacity limitation of dc power flow, respectively

NU, NR;, NKy,

Z Pi,t7s + Z Pr,t,s - Z Pls,ztg,s

i=1 r=1 k=1
NIy, NL,

- Z(d?};s —Voll;, ) = Z PFL s (18)
j=1 =1
51) s - (S /

PF,,, = —t b.te (19)
; Ty

— PF/** < PF. ;¢ < PFx. (20)

5) Natural Gas Storage: The natural gas storage system has
been considered in this article to inject the stored gas to the
integrated network for flattening the gas load profile. The gas
storage unit can be utilized as an appropriate option when the
gas load cannot be supplied due to the limitation of the gas
capacity supplier or gas transmission pipeline capacity. Equa-
tions (21) and (22) restrict the storage and release capacity of
the gas storage. The storage balance and capacity limitations
are provided by (23) and (24), respectively. Also, (25) and (26)
meet the initial and final requirements of the natural gas storage
unit

0 <UL < Upaxow 21)

0 < U < Uppain (22)
) ) ?It

Et, s — Etfl, s T+ nmUltrj s 7]0171: (23)

BN < By g < EM (24)

EO, s = E’intial7 s (25)

EO, s — E’end7 s (26)

6) Natural Gas Network Constraints: The natural gas flow
through the gas pipeline is provided in (27) and (28), which
is a function of gas pressure at two ends of the pipeline. Equa-
tion (29) specifies the connection of residential gas demands and
gas-fired units to each node of the gas system. The consumption
of gas by gas-fired generation plants is formulated in (30), which
is connected to a gas storage unit. Also, (31) considers the
P2G system as a gas supplier. The limitation of gas supplier
and node pressure are mentioned in (32) and (33). Finally, (34)
indicates the natural gas balance considering gas suppliers, gas
load, gas injected by P2G system, and gas flow through the gas
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pipeline [26]

Fpl,t,s = Sgn(ﬂ-nl,t,sa 7Tn,t,s) Cm,n |7r72n7t,5 - 7T,,217t’s| (27)
1 >
SN (T 1,5, Tnotys) = mits = Mnstys (28)
-1 Tm,t,s < Tnt,s
NGU,,
LG s = Z RG,,; + Z FE, ieGU  (29)
FES =i+ BiPyys + 7P o + SUG; ¢ + SDGi
T Z -U%) i€GU (30)
2, 2¢g 2
Upie=ePriom® 31
NSP,,, Nk, NPL,,
Y U,..~ LG+ Z U = Fuus (32
sp=1 pl=1
TR < s < TRAX (33)
Unt <U,,, . <UD (34)

B. Problem Formulation Based on Hybrid
IGDT-Stochastic Approach

In this article, an IGDT-stochastic model is proposed to
minimize the total operation cost, which is a co-optimization
problem for integrating electricity and natural gas networks.
The proposed hybrid model is described with details in Fig. 1.
In the field of day-ahead scheduling of coupled power and gas
systems, let us assume a set of gas demand forecasts for the next
day is accessible. An IGDT-based problem solution guarantees
a specified cost, provided the after-the-fact demand falls into a
maximized demand band centered at the forecast gas demands.
This band is often referred to as a robustness range. IGDT
technique has practical benefits over scenario-based models.
In the context of day-ahead scheduling, an IGDT-based model
determines optimal schedules in order to achieve a target cost,
whereas scenario-based approaches attain optimal schedules
based on a limited number of possible demands scenarios.
In addition, unlike scenario-based techniques, the IGDT-based
problem guarantees a predefined level of cost. In well-known
RO problems, the robustness range of the uncertain parameter
is defined before solving the problem. RO optimization and
risk-constrained stochastic programming often stated as a per-
formance maximization model, where cost is minimized regard-
ing an uncertainty budget and risk factor [32]. However, IGDT
categorized as a performance satisfying environment, where a
robust solution is determined such that specified expectations
are fulfilled [34]. Therefore, the IGDT method cannot be directly
compared to these techniques since they follow different objec-
tives and are in different categories. Moreover, it differs from the
stochastic programming method and RO in two aspects.

1) In stochastic optimization problem [30], [31], the prob-

ability distribution of uncertain parameter is needed to
be known. However, such function is not required in the

Start
Y

Generating scenario for wind power and electric demand using Monte Carlo

simulation
A4

Solving stochastic programming model to minimize the total operation cost
Eqs.(1)-(34)

Y
Saving the total operation cost
Y
Modeling the uncertainty of residential gas load using IGDT approach
Y Y
Applying risk-averse strategy Applying risk-seeker strategy
Eqs.(36)-(44) Eqs.(45)-(53)
A4 Y
Increasing the saved operation cost Decreasing the saved operation cost
- deviation factor deviation factor <
dr=dr-1 r=1,...,Nr dp=dp-1 p=1,...Np
Determining optimum robustness [Determining optimum opportuneness|
function () function (B)
—No( dr=dr-1 > < dp =dp-1 )No—
I Ye Ye I
Y
End
Fig. 1. Flowchart of proposed hybrid IGDT-stochastic framework.

IGDT model. In addition, this technique does not need to
generate scenarios. Therefore, the problem execution time
is less than the stochastic model.

2) Compared with the RO [32], [33] that includes just one
risk-averse approach for an uncertain parameter (worst
case), in an IGDT approach, the decision makers can
decide on two various strategies when encountering with
the uncertain parameter, which increases the flexibility of
decision making in response to the uncertainties of the
system parameters.

The uncertainty in an optimization problem using IGDT is
modeled as (35) [34], where U is the set of input uncertain
parameter. W is the predicted amount of the uncertain parameter
. Also, the deviation of lower bound of the uncertain parameter
from the predicted amount is defined by e. This parameter is
introduced as an uncertain unknown radius of the decision maker

_ U —
U=U(U,e) =1 ¥: vov <e

v

(35)

In the proposed hybrid IGDT-stochastic model, the system
operator can present two strategies to control the uncertainty of
the system, which is discussed as follows.

1) Risk-Averse Strategy: In this strategy, the operator sepa-
rates the uncertain parameter having an undesirable effect on
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the objective function. Given that the main goal of this article
is to reduce the total operation cost, the risk-averse utilizes a
schedule to overcome the decrement of operation cost resulting
from the undesirable variation of the residential gas load from
the predicted value. Hence, the mathematical model of the
risk-averse strategy can be formulated as follows [34]:

Oé(X, Ac)

min{s: < Max OF < Ag = (1+dr)OFb>} .
Vel (w,¢)

(36)

A defines the acceptable value of operation cost. d,. is the
critical level of operation cost. Also, OF, is the operation cost
in the base condition, where the uncertain parameter has no
variation concerning the predicted value. Moreover, renewable
sources are not considered in the base condition. X is also
an array containing the decision variables. The main aim of
implementing the IGDT model for the operator is to decrease
the radius of the uncertain parameter between the uncertain and
forecasted values, which is proposed as a bilevel problem in

a = Max ¢ 37
Subject to:

NEU
NT NS dic1 [FiC(Pi,t,s) +SU; ¢ + SDi,t}
max Y D | + 0, OSPU,,,  + COSTUR | <Ac

t=1 =1 + 30 ctovoll, ,
(38)
A A
(1-e)RGyt < RGyy < (14€)RGy, (39)
(2)—(34). (40)

Bilevel optimization is described as a mathematical problem,
where an optimization problem includes another optimization
problem as a constraint. Solving a bilevel optimization problem
is complex by using common optimization software. To this
end, it can be converted to a single-level problem applying KKT
conditions [34] or an innovative approach since the decrement of
residential gas load has positive influence on operation cost. On
the other hand, increment of the gas load has undesirable effect
on the operation cost. Accordingly, in the proposed risk-averse
model, the maximum operation cost is related to the condition
that gas load is increased with respect to the predicted value.
Thus, the proposed bilevel model in (37)—(40) is converted to a
single-level problem as pointed out by

a(X,A¢) = Max ¢ 41

Subject to:
NT NS Sty [FE(Pit.s) + SUiy + SDi 4]
SN w3 oSy, COTURS | <Ac

e + Z;\Uﬂ CLOVOHj,t,s
(42)

IEEE SYSTEMS JOURNAL
NG, NGU,,
LGts= Y RGyi(1+e)+ Y FE5 43)
g=1 i=1
(2)—(28) and (30)—(34). (44)

2) Risk-Seeker Strategy: It should be mentioned that the
uncertainty of parameters does not always have the detrimen-
tal effect on the objective function. Consequently, risk-seeker
strategy is introduced for taking into account the situation that
the objective function takes advantage of positive effect of the
uncertain parameter. Actually, the aim of the decision maker
is to provide lower objective function than the basic condition
value. The formulation of the objective function regarding the
RS strategy called opportunity function is stated as follows [34]:

/B(X7AC)

= min{g : < Min OF < Ag =(1-— dp)OFb> } (45)
VelU(v,e)

B(X,A¢) = Min ¢ (46)
Subject to:
NT NS Sy [FE(Pirs) +SUiy + SD; 4

. NSP
min 3" 3| S, O+ COT R | < A

t=1 s=1 + 30 CHOVoll
(47)
A A
(1-€)RGy: <RGy < (14 2)RGyy (48)
(2)—(34). (49)

d,, is the optimistic level of operation cost. As mentioned
before, the decrease of residential gas load shows a positive
influence on the operation cost. Therefore, in the introduced
risk-seeker framework, the minimum operation cost is achieved
when the gas load is decreased with respect to the forecasted
amount. Consequently, the single-level problem in (50)—(53) can
be presented instead of the proposed bilevel model in (45)—(48)

B(X,Ac) = Min « (50)
Subject to:
NT NS ZIZ\I:EEJ [FiC(Piatvs) +SU; ¢ + SDM]
SN m |+ O, + COTUR | < Ag
t=1 s=1 + leﬂil CLOVOHj,t,S
(51
G NGU,,
LGmts= Y RGei(1—2)+ Y FES (52)
g=1 i=1
(2)—(28) and (30)—(34). (53)

IV. CASE STUDY AND SIMULATION RESULTS

The introduced framework has been implemented on a test
system for determining the efficiency of the model. The proposed
case study, which is depicted in Fig. 2, is an integrated 6-bus
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Fig. 3. Forecasted wind power, electric load, and residential gas load.

electrical network to a 6-node gas system. The coefficients of
operation cost and operational characteristics of the thermal
plants are adapted from [22]. The information of forecasted wind
power generation, the electricity load, and residential gas load
demands are demonstrated in Fig. 3.

The proposed mixed integer nonlinear programming model
is solved in general algebraic modeling system environment
using discrete and continuous optimizer solver. The forecasted
error of electric load is based on a normal distribution function
with a 5% standard deviation. Additionally, a normal probability
distribution function was applied for the prediction error of

power output of unit G1 has decreased in peak hours due to
priority of residential gas load and accordingly shortage of gas
supply by the natural gas network, which necessitates dispatch of
units G2 and G3 to meet the system load. It should be noted that
G3 has received gas supply to generate power at peak hours due
to the location of such unit in gas network, which relates to the
pressure condition of the gas network nodes and consequently
gas flow through pipelines. The interaction between the wind
power dispatch and natural gas storage without considering P2G
is shown in Fig. 5. The analysis of this figure proves the extreme
dependency of the gas and power networks to each other. In
other words, the gas storage stored the natural gas when wind
power dispatch is increased, and injected the stored gas to node
1 of the gas network when the wind power dispatch is decreased.
Accordingly, the natural gas storage makes it possible to supply
gas to the gas-fired plant G1 in peak hours when encountering
gas supply shortage in the gas network. This is effective in
co-operation of high-cost generation plants and decrement of
the system operation cost. The operation cost of the system in
this case study is equal to $144604.998. We also investigate the

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 27,2020 at 09:57:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1200

= Gas storage

= Wind power dispatch

® 2
S 2
S 3

Gas storage (kef)
& =
(=3 (=3
(=] (=]

N
3
Wind power dispatch MW)

4]

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24
Time (h)

Fig. 5. Relation between energy level stored in gas storage and wind power
dispatch in case 1.

TABLE I
IMPACT OF THE SCENARIO REDUCTION ON THE OPERATION COST

Selected the number of scenarios 5 10 15 20
Total system operation cost ($) 144604.998 145212.310 | 146025.252 146892.161
Computation time (Second) 29.563 73.689 209.735 338.452
350 Electric load with demand response 80
Original electric load 0
300 G2(case 2) =
— — G2(case 1) I—'ﬂ 60 =

wu
=)

WA
=l
Generated power
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TABLE III
IMPACT OF LPF OF DR ON THE OPERATION COST AND DISPATCHED
‘WIND POWER

LPF in DR program (%) 2 4 6 8
Gas system operation cost ($) 134545.4 134554.14 | 134689.51 | 134810.37
Power system operation cost ($) 10207.96 8067.604 6974.621 5962.375
Total operation cost ($) 14374491 142621.74 | 141664.13 | 140772.75
Dispatched wind power (MWh) 1451.133 1471.767 1492.364 1511.973
160 e Case 1 e Casec 2 Case 3
= 140

= 120
100

Wind power dispatch (MW)
)
(=]

=}

1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24
Time (h)

Fig. 7. Expected wind power dispatch for cases 1, 2, and 3.

TABLE IV
OPERATION COST AND WIND POWER DISPATCH IN DIFFERENT CASES

Cases Case 1 Case 2 Case 3
20 Gas system operation cost ($) 134397.039 | 134898.33 | 134335.406
(‘)0 Power system operation cost (3) | 10207.050 | 4459.1 44591
1 2 34 56 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 Total operation cost ($) 144604.998 139357.43 138794.506
Time (h) Dispatched wind power (MWh) 1429.668 1531.450 1756.619

Fig. 6. Impact of DR program on electricity load profile and power dispatch
of unit G2 in case 2.

total operation cost without natural gas storage, which results in
a higher operation cost of $146511.861. In addition, Table II
shows the effect of the selected number of scenarios on the
total operation cost. As can be seen, the daily operation cost
depends on the number of scenarios chosen and increases with
the number of scenarios. This increase is due to the larger range
of uncertainty achieved by a greater number of scenarios. Also,
by expanding the number of scenarios, computation time rises
due to increasing of problem variables.

B. Case 2: Stochastic Co-Optimization of Integrated Gas and
Electricity Networks Considering DR Program

In this case study, the effect of DR programs is investigated
on the operation of integrated gas and power networks. The
load participation factor (LPF) of the DR program is assumed
to be 10%. The impact of the DR program on the load profile
concerning the system and power dispatch of the expensive
generation plant G2 is depicted in Fig. 6. As seen in this
figure, the electric load demand is shifted from on-peak hours
to off-peak hours, which leads to the participation reduction of
plant G2 in supplying electric load demand. At time intervals
t = 10 and ¢ = 11, the electric demand has been shifted to other
time intervals by the increase of electric demand and reduction
of produced wind power. Also, load consumption is increased by
the increase of produced wind power at time intervals between
t =12 and ¢ = 14. It should be mentioned that the generation
of plant G2 is decreased to 82.933 MWh with regards to the
production of 320.85 MWh in Case 1. Table III indicates the
influence of the application of DR program with various LPF on

the operation cost of the power and gas systems. As it is obvious
from the results, the operation cost of power and gas systems
and consequently total operation cost is reduced. Moreover, by
enhancing the LPF, the wind power dispatch is increased due to
the increment of load demand in off-peak hours.

C. Case 3: Stochastic Co-Optimization of Integrated Gas and
Electricity Networks Considering P2G Technology and
DR Program

In this situation, P2G technology and DR program are con-
sidered simultaneously. Fig. 7 and Table IV provide the effect of
P2G technology on the wind power dispatch and total operation
cost of the system in comparison with recent case studies,
respectively. As can be seen, wind power dispatch is increased
in this case study with respect to recent cases since P2G converts
the extra wind P2G in off-peak hours, and the generated gas is
used by natural gas consumers. The operation cost of this case
is decreased because the natural gas is produced by extra wind
power, which would be lost if it is not used. The operation cost
of the system, in this case, is equal to $138 794.506.

D. Case 4: Hybrid IGDT-Stochastic Co-Optimization for
Cases 1-3

Under these circumstances, the uncertainty of residential gas
load is considered using IGDT. The operation cost in base
condition (i.e., Case 1) equals to $144 604.998. The parameter
d, is increased from 0.01 to 0.1 by 0.01 steps to implement the
risk-averse strategy of IGDT. As it is obvious from Fig. 8, the
robustness function « is boosted, which means that the system
operator can tolerate a wider range of gas load uncertainty by
the increment of d,. Also, the operator attains a more robust
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decision making considering the uncertainty of gas load demand
by the increment of robustness parameter d,. For instance,
the robustness function for a value of 0.05 for d,. without the
presence of flexible units, is 0.065, which means that a forecast
error of 0.065 for gas load unacceptable for the system operator
by increasing the operation cost of the network by 5%. Moreover,
ascanbe seen in Fig. 8, the robustness function has greater values
in the presence of flexible units that means the system operator
can tolerate wider ranges of uncertainty and consequently the
uncertainty of gas demand has a lower influence on the operation
cost of the system. The effect of robustness function on power
generation of units is demonstrated in Fig. 9, which indicates
that the power dispatch of gas-fired unit G1 is decreased by the
increment of the density of gas pipelines and lack of gas served to
this unit. The opportunity parameter d,, is raised from 0.01 to 0.1
to address the risk-seeker strategy, which resulted in a decrease
of operation cost from its base condition (i.e., $144 604.998). It
can be observed from Fig. 10 that the network operator should
consider the gas load demand reduction by 4.35% concerning its
predicted value to attain an optimistic desirable operation cost of
(1-0.03)x $144 604.998 without considering flexible units. The
opportuneness function 3 has a direct relation with increasing
the amount of opportunity parameter d,. Moreover, as can be
seen in this figure, when the emerging flexible units are taken into
account, the network operator attains to the desired operation

TABLE V

COMPARISON BETWEEN IGDT, DETERMINISTIC, AND
STOCHASTIC APPROACHES

Approaches

Deterministic

Stochastic with 5 scenarios

Stochastic with 10 scenarios

IGDT

Day-ahead operation cost ($)

143633.31

145919.47

148161.96

150814.97

Single variables

1890

9718

19503

1891

Computation time (Second)

1.5

26.5

69.7

1.8

TABLE VI
REAL-TIME DISPATCH COST OF THE INTEGRATED SYSTEM UNDER
DIFFERENT APPROACHES
Approaches Deterministic | Stochastic IGDT
Real-time dispatch cost ($) 152886.97 151284.97 | 150814.97

cost with a lesser optimistic error concerning the condition that
such units do not exist.

E. Case 5: Comparison of IGDT With Deterministic and
Stochastic Programming Technique

This part investigates the advantages of the proposed IGDT
approach over existing stochastic programming models for man-
aging the uncertainty of residential gas load as presented in
Table V. The maximum forecast error in all these scenarios
is 7.5%, which is equal « at d, = 0.05 in the risk-averse
strategy. It is noticeable that the uncertainties of wind power
and electric load are not considered in this part. In addition,
emerging technologies consisting of DR program, P2G technol-
ogy, and gas storage have not been included in this case. The
total execution time, single variables, and operation cost for the
different approaches are indicated in Table V. According to the
investigations carried out by Table V, some shortcomings of the
stochastic method are classified as follows.

1) The outputs depend on the scenarios representing the

uncertain parameters.

2) To accurately represent the uncertain parameter, the
decision-maker requires a large number of scenarios. The
computation time increases with the number of scenarios.
For instance, in the analyzed case, the number of operating
variables of power generation units will increase from
(3x4)inIGDT to (3x4 x NS) in the stochastic technique.

3) The stochastic programming cannot present a confidence
level for decision makers about the operating cost.

After determining the ON/OFFstates of power generation units
by solving the mentioned approaches in Table V, an after-
the-fact analysis is applied to represent the benefits of IGDT-
based robust approach compared to deterministic and stochastic
approach. The cost of lost load is assumed 3000 $/MWh. It
is assumed that the gas demand in real time is equal to the
determined residential gas demand value in the risk averse
strategy (d,, = 0.05). Table VI shows the real-time dispatch cost
of the integrated system after realistic gas demand occurs. It can
be seen in this figure, when residential gas demand happens
in reality, the ON/OFFstate scheduling of units in risk-averse
based IGDT approach causes a lower dispatch cost to supply
demands in comparison with other approaches. In fact, no load
shedding occurs in this technique, while in the deterministic
model, the most load shedding happens. In addition, in the
scenario-based stochastic approach due to no cover all possible
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happens in reality, some load has been lost, which is less than
the deterministic approach.

V. CONCLUSION

This article proposed a novel hybrid IGDT-stochastic frame-
work for co-optimization of integrated gas and power networks
with penetration of wind turbines. The proposed model consid-
ered uncertainties associated with both gas and power networks,
where the uncertainty of power system including wind power
output and load demand was modeled using the scenario-based
method, and the uncertainty of gas network containing resi-
dential gas consumers was estimated by applying IGDT. The
proposed hybrid model took advantages of both scenario-based
modeling method and IGDT and applied two risk-seeker and
risk-averse strategies enabling the network operator to make
decisions on system operation with higher inflexibility rate.
Moreover, the effect of emerging technologies such as DR
program and P2G unit was studied in the proposed model. The
investigation of the presented model provides some remarkable
achievements in co-optimization of integrated gas and power
networks as follows.

1) The simultaneous consideration of emerging flexible tech-
nologies was influential in decreasing total operation cost
of the system in comparison with the consideration of such
technologies individually.

2) The simultaneous presence of emerging flexible technolo-
gies was beneficial in increasing the penetration of wind
power in the power system.

3) The network operator reaches the profit regarding the
emerging flexible technologies in both risk-averse and
risk-seeker strategies in a way that the operator was
able to take into consideration the risk against the un-
certainty of gas network in risk-averse strategy with the
lower cost. Also, the operator benefited from the risk
in better condition against the uncertainty in risk-seeker
strategy.
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