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Abstract: Within recent years, many precision cancer medicine initiatives have been developed. 
Most of these have focused on solid cancers, while the potential of precision medicine for patients 
with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we 
present a demographic unbiased and observational prospective study at Aalborg University 
Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological 
precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. 
All steps involved are outlined in detail, illustrating how the developed workflow can provide 
relevant molecular information to multidisciplinary teams. A group of 174 hematological patients 
with progressive disease or relapse was included in a non-interventional and population-based 
study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, 
copy number variants, and fusion transcripts, we found variants with potential and strong clinical 
relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in 
individual disease entities were in concordance with previous studies. We did not find tumor 
mutational burden or micro satellite instability to be informative in our hematologic patient cohort. 

Keywords: precision medicine; hematology; next generation sequencing; somatic cancer variants; 
variant interpretation; bioinformatics workflow 
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1. Introduction 

With the emergence of affordable next generation sequencing, an increasing understanding of 
oncogenic driver mechanisms, and development of drugs targeting specific molecular changes, many 
precision medicine initiatives worldwide have been initiated [1,2]. The overall goal in precision 
cancer medicine is to match patients to treatments with higher efficacy using genomic information 
from the patient’s tumor [3]. This requires detection of somatic alterations and linking these to 
dysregulation of oncogenic genes or pathways, that in turn leads to sensitivity or resistance to cancer 
treatment agents or provide information on the prognosis of the patient. Precision cancer medicine 
needs to be performed in an unbiased manner, since the genomic landscapes of different cancers, and 
hence the relevant genetic biomarkers differ widely [4–9]. The number of known molecular targets 
and mechanisms evaluated have increased quickly, as methods have moved from single gene 
analysis to panel sequencing, Whole Exome Sequencing (WES), and/or Whole Genome Sequencing 
(WGS) in combination with global RNA-sequencing [10]. The molecular targets taken into 
consideration up till today have focused on cancer related DNA and RNA changes such as small 
nucleotide variants (SNV), fusion genes, translocations, copy number alterations (CNA), mutational 
signature patterns, gene expression levels, and pathway analysis. The identified genomic variants 
can refine or guide the diagnosis and provide information on prognosis in e.g., hematological 
malignancies [11]. High levels of micro satellite instability (MSI) of the tumor guide treatment with 
immune checkpoint inhibitors in some solid tumors, e.g., in metastatic colorectal carcinoma [12]. 
Tumor mutational burden (TMB) status appears to be able to stratify these patients according to the 
likelihood of response [13]. A subset of patients across various cancer types displays a high TMB, and 
could potentially benefit from immunotherapy [14,15]. The mutational signature of somatic variants 
in a tumor reveals the underlying development of the cancer and can influence choice of therapy [14]. 
In a few cases, the evidence of clinical relevance of a genetic alteration is strong, e.g., by a link directly 
to a treatment guideline recommending a specific treatment towards the alteration or the genetic 
alteration is an inclusion criteria for a clinical trial [16]. However, the majority of identified tumor 
specific molecular targets has an unknown or only in silico predicted effect on the corresponding 
protein. The type and strength of evidence for the clinical relevance need to be carefully evaluated by 
the treating physician, when treatment choice is recommended. 

Within the past five years, several interventional clinical studies based on genomic tumor 
profiling have been launched to assess the efficacy of precision medicine using end point parameters 
such as overall response rate, overall survival, and/or progression-free survival of cancer patients, as 
reviewed by Zimmer and colleagues [17]. Some studies have included patients with refractory solid 
cancers, but only a few studies have included patients with hematological malignancies [18–20]. 
Galanina and colleagues identified molecular alterations targetable with gene- or immune-targeted 
agents using targeted sequencing in 227 hematological cancer patients [20] and Laganà and 
colleagues presented a precision cancer medicine initiative of relapsed and/or refractory multiple 
myeloma (MM) patients based on DNA and RNA sequencing [21]. The study by Mody and 
colleagues is to our knowledge the only one using WES in combination with RNA-sequencing for the 
genomic profiling of refractory or relapsed solid and hematological cancer patients, but their study 
only included children and young adults [19]. Hence, little is known about the potential of DNA 
exome and RNA sequencing initiatives of precision medicine in adult patients with progression of or 
relapsed hematological malignancies.  

Here, we explore the potential of a precision medicine initiative based on WES and RNA 
sequencing in hematological patients with progressive disease or newly verified relapse. We present 
the hematological precision medicine workflow developed at Aalborg University Hospital in a 
prospective, consecutively, and therefore unbiased population-based non-interventional study 
including 174 patients enrolled between 2016 and 2019, of which 92 samples were sequenced. We 
elaborate on the developed logistics to enroll patients, collection of tumor/normal samples, laboratory 
choices, database and laboratory information management systems, the bioinformatics workflow, 
and the curation of identified genomic variants with a match to treatments or clinical trials. Moreover, 
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we also investigate the clinical relevance of TMB, MSI status, and mutational signature patterns in 
hematological malignancies.  

2. Results 

2.1. Patient Screening, Enrolment, and Sample Processing 

In total, 588 patient visits have been screened for potential participants to the ProGen protocol, 
Figure 1. In 395 (67%) of these visits, patients were offered enrollment, which was accepted in 341 
(86%) cases. In 277 (81%) of these cases, the patient had a verified clinical relapse or progressive 
disease. Since Feb 16, 2017, enrolment in the ProSeq protocol was offered in 271 cases to patients with 
verified relapse. Of these, 174 (64%) were enrolled, 45 (17%) are pending, 21 (8%) rejected enrollment, 
and 37 (14%) received study information, but died before enrollment. In 52 cases (30%), biological 
material suitable for sequencing analysis was missing. By Jan 31, 2019, 92 tumor samples (76%), from 
85 patients were sequenced, analyzed, and evaluated, Figure 1. 

 
Figure 1. Inclusion overview. Number of patient cases included in the ProGen and ProSeq studies by 
31 January 2019. Patient’s relapse status, presence of correct tumor tissue for analysis, and sample 
status is given. Color codes: green: yes, yellow: pending, and red: no. 

2.2. Patient Characteristics  

In total, 92 genomic profiles from 85 different patients with 18 different hematological diagnoses 
were stratified into six different hematological diagnosis groups, Table 1. Five patients had two and 
a single patient had three genomic profiles from different relapses. The median age was 70 years old 
(range 27–92), and the patient cohort had a slight majority of male patients (60%). 

Table 1. Patient characteristics per diagnosis group. 

Diagnosis group 1 Patients 2 Age 3 Gender 4 
Chronic leukemia 
(CLL, SLL, T-LGL) 

14 (16.5%) 73.5 (46–87) 10 (71.4); 4 (28.6) 

Plasma cell diseases 
(MM) 

13 (15.3%) 70 (54–81) 7 (53.8); 6 (46.2) 

Acute leukemia 
(AML, ALL) 

7 (8.2%) 72 (40–76) 4 (57.1); 3 (42.9) 

Aggressive lymphomas (DLBCL, PTCL, AITL) 17 (20%) 69 (27–87) 10 (58.8); 7 (41.2) 
Indolent lymphomas 

(FL, LPL, NHL, SMZL, CFCL, WM, MCL) 
31 (36.5%) 69 (34–92) 20 (64.5); 11 (35.5) 

Chronic myeloid neoplasms (PV, MDS) 3 (3.5%) 72 (69–73) 0 (0); 3 (100) 
Overall 85 (100%) 70 (27–92) 51 (60); 34 (40) 

1 Diagnoses included in each group are indicated in parenthesis. 2 Number (% of total). 3 Median 
(range). 4 Number men (%); number women (%). CLL = chronic lymphocytic leukemia, SLL = small 
lymphocytic lymphoma, T-LGL = T-Cell large granular lymphocyte leukemia, MM = multiple 
myeloma, AML = acute myeloid leukemia, ALL = acute lymphoblastic leukemia, DLBCL = diffuse 
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large B-cell lymphoma, PTCL = peripheral T-cell lymphoma, AITL = angioimmunoblastic T-Cell 
lymphoma, FL = follicular lymphoma, LPL = lymphoplasmacytic lymphoma, NHL = indolent non-
Hodgkin B-cell lymphoma not otherwise specified, SMZL = splenic marginal zone lymphoma, CFCL 
= cutaneous follicle center lymphoma, WM = Waldenström's macroglobulinemia, MCL = mantle cell 
lymphoma, PV = Polycythemia Vera, MDS = myelodysplastic syndrome. 

2.3. DNA and RNA Purification from Different Flow Sorted Cell Types 

Differences in DNA yield were small between multi parameter flow cytometry (MFC) sorted 
cells from different disease entities (max = 1.6 fold) or sample types (max = 1.1 fold). As expected, for 
RNA yield, samples originating from patients with plasma cell disease had a median yield of up to 
5.4 fold larger than any other disease group, while an insignificant difference in yield was observed 
when comparing sample types, Figure S1.  

2.4. Sequencing Quality Control 

In total, 92 tumors with corresponding 85 normal samples were whole exome sequenced. All but 
one had a corresponding tumor RNAseq sample. The desired minimum average coverage of 75× and 
150× for normal and tumor WES samples, respectively, and 30M sequenced reads for RNAseq 
libraries enabled processing of two patient sample sets pr. sequencing run on an Illumina NextSeq500 
sequencer, which was available in-house. With a mean sequence coverage of 150×, the false negative 
rate of an alteration with an allele frequency of 10% would be less than 0.055% (the probability based 
on the binomial distribution that the alteration would be observed with less than 5 reads). Normal 
and tumor WES samples were sequenced to a median of sample mean coverages of 117× (range 31–
234) and 185× (range 47–331), respectively, Figure 2. Most samples were well above the minimal 
requirement. RNAseq samples contained between 26.7 and 354 million mapped reads (median 52.7 
million). The average target coverage was below the minimum sample depth for five normal samples 
(5.8%), eight tumor samples (8.7%), and five RNAseq samples (5.3%). To allow evaluation on a true 
prospective collected population, samples were still included in downstream analysis, keeping the 
lower coverage in mind during variant analysis. 

 
Figure 2. Histograms of sample sequencing depth. (a) Average target coverage of normal and tumor 
Whole Exome Sequencing (WES) samples. (b) Total mapped paired end RNAseq reads. Dashed lines 
indicate the minimum sample depth requirements. 
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2.5. Variant Classification 

The median number of SNV was 572 per WES tumor sample (range 78–17,256). Following 
additional filtering based primarily on variant consequence and population frequencies, 14% of 
detected variants were on average retained for variant evaluation (range 0.2%–66%). Samples from 
aggressive lymphomas and plasma cell disease had a significantly higher amount of retained variants 
compared to each of the four other diagnosis groups (p-value < 0.05). The number of variants and the 
relative number of retained variant types in each sequenced tumor sample, grouped by disease 
entities, can be seen in Figure 3. 

 
Figure 3. Small nucleotide variant (SNV) detection and filtering. Retained variants per patient 
grouped by type and divided into the six disease groups; ALE: Acute leukemia, CLE: Chronic 
leukemia, CME: Chronic Myeloid Neoplasms, ALY: Aggressive Lymphomas, ILY: Indolent 
Lymphomas, and PCD: Plasma Cell Diseases. * Sample contained 5061 variants and was not subjected 
to variant interpretation in Qiagen Clinical Insight Interpret. 

Variant interpretation was conducted in 91 cases from 84 different patients, Table S1. On 
average, somatic variants were reported in 3.3 genes (range 0–15) due to either their therapeutic, 
pathogenic, or prognostic clinical relevance, Figure 4. At least one somatic variant was reported in 81 
cases (89%). Variants with strong clinical significance (tier 1) were reported in eight patients (9.5%), 
Figure 4. Of these, six patients had variants that were targets for FDA- or EMA-approved clinical 
therapies and two had variants with prognostic value included in professional guidelines. Variants 
with strong therapeutic significance were found in either IDH1, IDH2, or TP53 in three different 
patients diagnosed with acute myeloid leukemia (AML) or in TP53 in three patients diagnosed with 
chronic lymphocytic leukemia (CLL). In two cases, loss of function variants in RUNX1 with strong 
prognostic significance were detected. All eight patients with tier 1 variants also had tier 2 variants 
that served as an inclusion criterion for one or more clinical trials. 
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Figure 4. Reportable somatic variants in hematological malignancies. (a) Number of genes with 
detected somatic variants reported per sample after manual verification. (b) Percentage of patients 
(grouped by diagnosis or overall) with at least one variant having strong clinical relevance (tier 1A 
and 1B), potential clinical relevance (tier 2C and 2D), or at most having unknown clinical significance, 
but with an associated clinical trial (tier 3 + CT). If multiple samples were sequenced for a patient, 
only the latest is represented in the figure. The single sample from a patient with CLL with more than 
5000 retained variants was not subjected to variant interpretation. ALE: Acute leukemia, CLE: Chronic 
leukemia, CME: Chronic Myeloid Neoplasms, ALY: Aggressive Lymphomas, ILY: Indolent 
Lymphomas, PCD: Plasma Cell Diseases. 

Additionally, 53 patients (62%) lacking tier 1 variants had at least one variant with potential 
clinical relevance (tier 2), Figure 4. Of these, 29 had potential relevant therapeutic variants, which 
were associated with resistance or sensitivity to FDA or EMA approved clinical therapies for a 
different diagnosis, and 48 patients had variants that served as an inclusion criterion for one or more 
clinical trials. Tier 2 therapeutic relevant variants where found in seven different well-known cancer 
genes [22] (no. patients given in parenthesis): TP53 (8), EZH2 (8) KRAS (4), NRAS (3), TET2 (2), SRSF2 
(1), NOTCH1 (1), and BRAF (1). Overall, 11,857 different SNVs from 7250 different genes were 
subjected to variant interpretation. Only 47 variants (0.3%) were detected in multiple patients, while 
34% of genes with reported variants were observed in > 1 patient. Variants interpreted to be clinical 
relevant were found in 136 different genes. Of these genes, 44 appeared in > 1 patient, Figure 5. 
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Figure 5. Occurrence of genes with clinically relevant alterations. The genomic landscape of distinct, 
clinically relevant gene alterations across various hematologic cancers if observed in more than one 
patient. Each row represents a patient sample. These are grouped by diagnosis group. Each column 
represents gene with clinical relevant alterations. Genes are organized by gene sets derived from 
MSigDB Collection2 (Version 6.2) [23–25]. 

Fusion genes were reported in 14 cases (17%). In most cases, the fusion genes were classified as 
unknown clinical relevance (tier 3), but were reported due to a potential pathogenic effect, caused by 
one of the fusion gene partners being a known oncogene. However, a few had potential clinical 
relevance. Three fusion genes, CIITA-BCL6, MBNL1-BCL6, and CUX1-BRAF, served as inclusion 
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criteria for one or more clinical trials, and an AML patient had a NUP98-NSD1 gene fusion indicative 
of poor prognosis [26]. 

In ten different patients (12%), 14 gene losses or amplifications were reported. Most CNA had 
uncertain clinical relevance (tier 3). Only two CNA had potential clinical relevance (tier 2), namely 
MTAP or CDKN2A loss. Both of these served as inclusion criteria for one or more clinical trials, and 
the latter also showed plausible resistance in a case study [27].  

In addition to detection of clinically relevant somatic mutations, other genomic measures with 
potential clinical relevance were measured, Figure 6. None of our cases had more than 2% instable 
microsatellite sites. In line with this, the TMB score was also low in all cases, and the MSI/TMB ratio 
was not found to be significantly different between diagnosis groups. Only in a single case a TMB 
score > 5 variants/Mb could be detected. 

 
Figure 6. Other potential clinically relevant genomic measurements. (a) The relative contribution of 
the COMSIC mutational signatures to each tumor sample grouped as either Deamination of 
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5−methylcytosine, defective DNA mismatch repair, activation-induced cytidine deaminase (AID) 
activity, DNA polymerase epsilon (POLE) activity, UV light exposure, tobacco carcinogen exposure, 
tobacco chewing, alkylating agent association, aristolochic acid exposure, or aflatoxin exposure 
according to their proposed aetiology. ALE: Acute leukemia, CLE: Chronic leukemia, CMNE: Chronic 
Myeloid Neoplasms, ALY: Aggressive Lymphomas, ILY: Indolent Lymphomas and PCD: Plasma Cell 
Diseases. (b) Comparison of the relative contribution of the tobacco carcinogen exposure signature in 
the smoker vs. non-smoker groups. (c) Micro satellite instability (MSI) status vs. tumor mutational 
burden (TMB) status. 

The contribution of the COSMIC mutational signatures was investigated in order to detect 
potential signals in regards to, e.g., defective DNA mismatch repair, which is highly relevant in the 
light of immunotherapy treatments, Figure 6. In two patients, we identified a high amount of 
mutations associated to defective DNA mismatch repair, and surprisingly one of these patients did 
not have reported SNV. However, no significant correlation between the contribution of defective 
DNA mismatch repair signatures and MSI or diagnosis group could be found. When possible, we 
collected patient data on smoking habits (n = 82), Figure 6. Here, a comparison between non-smokers 
and current or former smokers revealed an increased relative contribution of the tobacco carcinogen 
exposure signature (p-value = 0.039, Student’s t-test) in the current/former smokers group. 

3. Discussion 

This study outlines in detail all steps involved in setting up the logistic, laboratory, and 
bioinformatics workflow of a hematological precision medicine initiative developed at Aalborg 
University Hospital. We chose to utilize WES and RNAseq as the basis for our genomic analyses, 
facilitating an unbiased and exploratory survey of the entire exome. This enabled us to discover 
cancer specific alterations in all regions of the exome, which can provide relevant molecular 
information to a multidisciplinary team.  

We reported somatic variants in 136 different genes, of which 44 genes were altered in more than 
one patient. Overall our findings are in line with the genomic landscape of somatic alterations found 
in larger hematological genomic studies [28–31], even though some hematological subtypes are only 
represented by a few patients in our cohort. In detail, the six most frequently altered genes in the 
entire patient cohort were (in descending order) KMT2D, TP53, MYD88, BCL2, CREBBP, and EZH2, 
which were altered in between 19 and 11% of all cases. All these are well-known cancer driver genes 
often mutated in lymphomas, which represented the largest proportion of patients in our cohort. Of 
the recurrently altered genes in our cohort, we identified variants in TP53, RUNX1, and DNMT3A in 
our small cohort of acute leukemias, Figure 5, which are known to be frequently mutated in AML 
[28]. For the aggressive lymphomas, the majority of the nine genes mutated in three or more patients, 
were also identified as frequently mutated in diffuse large B-cell lymphoma (DLBCL) by Reddy and 
colleagues [32] and by Karube and colleagues [6]. Four of the ten genes observed in the chronic 
leukemias group were also found by Burns and colleagues to be frequently mutated in CLL [30]. For 
the indolent lymphomas, the patients with Waldenström's macroglobulinemia all had the hallmark 
MYD88 mutation, and three of those also had a CXCR4 mutation, both very frequent mutations in 
this disease [29]. In patients with follicular lymphoma (FL), we, as others [33], identified frequent 
mutations in KMT2D, CREBBP, and EZH2 with frequencies of 8/10, 5/10, and 4/10, respectively. In 
agreement with Lohr and colleagues, we observed NRAS, KRAS, and BRAF to be the most frequently 
mutated genes in plasma cell disease [7]. The group of chronic myeloid neoplasms only included 
three patients, and only in one patient, a recurrent clinically relevant mutation in RUNX1 was 
observed. In a study by Haferlach and colleagues, the RUNX1 gene was mutated in around 10% of 
patients with myelodysplastic syndrome [31].  

In our precision medicine analysis, we found a significantly higher number of retained variants 
in the aggressive lymphomas and plasma cell disease groups. This could indicate that tumor cells 
from relapsed patients of aggressive cancer types have obtained more somatic mutations than tumors 
from chronic/indolent cancer types, or that malignancies, which originate in more mature B-cells have 
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a higher load of retained variants compared to leukemias and myeloid derived neoplasms. In the 
majority (71%) of the 84 patients investigated, we identified clinically relevant somatic variants (tier 
1 or 2). In 42% of cases, potential relevant therapeutic variants associated with resistance or sensitivity 
to FDA- or EMA-approved clinical therapies were detected. In six patients, variants with strong 
clinical therapeutic relevance were found. These were either gain of function alterations in IDH1 or 
IDH2, which could indicate sensitivity towards IDH inhibitors, or gain of function alterations in TP53, 
which could indicate sensitivity towards the BCL2 inhibitor Venetoclax and sensitivity towards the 
kinase inhibitor Idelalisib. Patients harboring variants with strong clinical therapeutic relevance were 
either diagnosed with AML or CLL, indicating that the treatment potential of precision medicine in 
hematology greatly varies between diagnose entities. Variants with potential clinical therapeutic 
relevance were found in seven different well-known cancer genes, potentially giving rise to 
treatment. For instance, point mutations leading to EZH2 Y641 substitutions, which are gain of 
function alterations of EZH2, were found in both DLBCL and FL patients, potentially giving rise to 
treatment with EZH2 inhibitors such as Tazemetostat [5,34]. A patient with AITL and a patient with 
CLL had loss of function TET2 mutations, which indicates sensitivity towards DNMT inhibitors such 
as Decitabine or Azacitidine, which both are tested in clinical trials for treatment in different 
lymphoma sub types [34]. In six patients diagnosed with MM, we found gain of function mutations 
in KRAS or NRAS, which are inclusion criteria for a clinical study (NCT03091257) of treatment with 
the BRAF inhibitor Dabrafenib and/or the MEK inhibitor Trametinib in patients with relapsed and/or 
refractory MM. In three patients diagnosed with CLL or SLL we found loss of function mutations of 
the NOTCH1 gene. These alterations are indicative of resistance to treatment with Rituximab, but 
serves as an inclusion criterion for a clinical study (NCT03204188) investigating the combination of 
Ibrutinib, Fludarabine, and Pembrolizumab for treatment of CLL. The above examples of detected 
genetic alterations with clinical therapeutic relevance show the diversity of treatment options and 
complexity of hematological malignancies. This highlights the necessity for variant interpretation 
support tools, which automatically links genetic alterations with the most current clinical information 
available. 

In 64% of cases, variants that potentially served as an inclusion criterion for one or more clinical 
trials were detected. This is in line with previous studies of precision medicine within hematology. 
Bryce and colleagues e.g., found, actionable alterations in 66% of patients (both solid tumors and 
hematological malignancies) [18], and a recent study by Galanina and colleagues where 227 
hematological patients were sequenced, a possible drug based on molecular alterations were 
identified in 75% of patients [20]. However, the results might not be directly comparable, since we 
have slight differences in the utilized methodology and hence detection limits, and different ratios of 
the individual hematological malignancies, where the number of somatic alterations differ greatly 
between patients and diagnosis groups, Figure 3. In our patient population, all have a newly verified 
relapse or progression of disease at time of biological sampling. These sampling details are not 
included in the study by Galanina and colleagues [20]. Our study was observational, and hence did 
not include treatment intervention. Barriers to deliver targeted treatment include drug availability, 
patient performance and comorbidities, and distance to sites of potential clinical trial sites, as 
experienced in other precision cancer medicine initiative studies [11,18,35,36]. Most patients within 
our cohort were at time of sampling still eligible for guideline recommended treatment, as there are 
multiple different treatment regimens for most hematological diagnoses. Hence, the target group for 
a precision medicine initiative within hematology (early diagnosed, relapsed, or patients with no 
other treatment offers) needs to be determined in future initiatives. 

Biomarkers such as TMB, MSI, and mutational signature status have been found to be 
informative across cancer types, but is mostly investigated within solid tumors [13,14]. In a study 
with over 7000 cancer patients, Samstein and colleagues found that diagnosis entity dependent high 
TMB status were associated with improved overall survival [13]. In hematological cancers, TMB 
levels are low compared to solid tumors, with TMB level of leukemias and myeloid neoplasms being 
lowest, followed by MM, mantle cell, and T-cell lymphomas, and the highest TMB is found in DLBCL 
and FL [14,15]. Our results are in line with these studies. In general, we also found the highest TMB 



Cancers 2020, 12, 312 11 of 23 

 

levels in hematological patients with MM, FL, or DLBCL. However, a single CLL patient had a 6-fold 
higher TMB level than others in the group. In agreement with previous publications, we did not 
identify high MSI status in any of our 92 hematological tumors [37,38]. The mutational signatures of 
a cancer sample can guide the choice of immunotherapy if the signature displays a DNA repair 
deficiency profile [39]. Both MSI and the abundance of defective DNA mismatch repair related 
signatures might be indications of cancer where immunotherapy would be usable treatment options. 
However, we found no correlation between the abundance of defective DNA mismatch repair related 
signatures and MSI. The significant difference in the abundance of the tobacco carcinogen exposure 
signature between smokers and non-smokers indicates that mutational signatures could have a 
potential as an informative measure for hematological patients. However, additional studies are 
needed to elucidate the potential of mutational signatures in precision medicine of hematological 
cancers. 

Time to clinical answer is a major issue for some hematological patients. A realistic time frame 
in an implemented clinical setting of the presented initiative would be 3–5 weeks. However, relapsed 
hematological patients often cannot wait this long before treatment initiation. Stringent and correct 
tissue sampling, which is an obvious necessity, can be challenging in a clinical routine setting. Of the 
174 patients enrolled, 54 patients did not have the correct tissue donated for sequencing analysis. 
Bone marrow aspirates and lymph node biopsies were only collected to the study, if the particular 
tissue type was needed in the clinical evaluation of the suspected disease progression. In other cases, 
e.g., MM patients, the donated bone marrow did not contain enough malignant cells to perform 
sequencing, why a re-sampling would be a necessity—costing precious time. This could be 
circumvented by collecting more bone marrow at the first visit.  

The choice of WES and RNAseq as methods for our genomic analyses, was based on a desire of 
the analysis to be as unbiased as possible, even though panel sequencing would give a higher 
detection limit, and the ability to detect larger structural variants such as CNA and translocations. 
For detection of translocations, we utilized detection of fusion transcripts by RNAseq. This is 
obviously a suboptimal method since only breakpoints within gene regions can be detected. 
Therefore, we see detection of translocations using RNAseq as a complementary method to existing 
cytogenetic assays such as karyotyping and fluorescence in situ hybridization. Moreover, RNAseq 
data can provide information on gene expression levels. Others have found this informative in 
genomic cancer profiling and provided treatment recommendations based on gene expression 
profiles [21] and predictions of patient response to treatment agents [40–42]. However, these methods 
are based on and validated in larger microarray expression datasets of diagnostic samples. Currently, 
there is a lack of RNAseq based gene expression datasets originating from hematological malignant 
samples with corresponding clinical information. These could be used to determine a reference gene 
expression level in tumor samples for determination of differential expression, and validation cohorts 
for treatment response prediction algorithms. However, we see a great potential of implementing 
these methods in future precision medicine initiatives. Likewise, detection of CNA by the use of WES 
data is uncertain. A shift to WGS of the sample would improve the detection of translocation 
breakpoints often spread across several hundred kilobases and improve the detection of CNAs due 
to the more even sequence coverage across the entire genome. Time would also be saved, as the 
sequence capture step in library preparation would disappear. However, besides the added cost of 
sequencing, this would also require access to or purchase of a more powerful high performance 
computer environment, adding both cost and time for bioinformatical processing. We estimate that 
the data pre-processing step from raw sequence data to a set of filtered variants for biological 
interpretation using WES and RNAseq data can be performed in less than 24 hours [43]. The same 
requirement would apply to WGS data pre-processing, but this would require optimization of the 
bioinformatical workflow, e.g., in regards to input/output options and data-level parallelization. 
Following data pre-processing, the manual evaluation of each somatic variant according to clinical 
guidelines is the next major time consuming step [44,45]. Variant interpretation is a major challenge 
for precision medicine in somatic cancers [46]. Only a few hundred DNA variants are well annotated 
as cancer drivers and targetable with drugs [22,47,48]. The vast majority of somatic variants can still 
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only be classified as “variants of unknown significance” or has conflicting literature information on 
cancer relevance. This call for data sharing initiatives, to improve cancer related public databases and 
provide information to automated classification of variants. Within the past few years, several large 
data sharing initiatives have emerged which have the potential to overcome this challenge [49]. The 
interactive knowledge system Genomic Data Commons (GDC), from The National Cancer Institute, 
is a good example. Here, the goal is to democratize the access to cancer genomic data and facilitate 
sharing of these data. The GDC contains large hematologic data sets, e.g., nearly 2000 AML cases and 
more than 1000 ALL cases. However, the case number for other hematologic sub types is still low. 
Although data sharing initiatives exists, challenges such as patient’s trust in sharing their clinical and 
genomic data for research [50] and regulations of data privacy such as the EU general data protection 
regulation [51] needs to be met, for hematologic precision medicine to become a success. 

4. Materials and Methods  

A detailed version of the materials and methods section is available in Appendix A. 

4.1. Study Protocols, Screening, and Inclusion 

Patients from the Department of Hematology, Aalborg University Hospital, Denmark with 
suspected progression or relapse of a hematological malignancy were offered participation in the 
ProGen (N-20150042) and ProSeq (N-20160089) studies approved by the North Denmark Region 
Committee on Health Research Ethics. Participants gave written informed consent in accordance with 
the Declaration of Helsinki. ProGen included single gene analysis. Patients were enrolled in ProGen 
from 1 February 2016. ProSeq included WES and RNA sequencing, and patients were enrolled from 
16 February 2017. All included patients in this study were enrolled before 1 February 2019. Patients 
were offered participation at every suspected relapse or progression of disease in the project period, 
and hence could be enrolled multiple times. Both studies were observational and non-interventional 
studies.  

4.2. Biobank, Cell Sorting, and Purification 

Tumor tissue included lymph node biopsies, peripheral blood, and bone marrow and as 
germline DNA source saliva or mouth swabs were obtained. When the cancer cell frequency was 
below 80%, we used multi parameter flow cytometry (MFC) and sorting with selected panels from 
the “Euroflow antibody panel list” [52] to purify the bulk of malignant cells from peripheral blood 
and bone marrow samples, Table A1. DNA and RNA were purified from vital frozen mononuclear 
cells, flow sorted malignant cells, or homogenized biopsies using Qiagen’s All Prep 
DNA/RNA/miRNA kit, following the manufacturer’s guidelines. DNA from saliva and mouth swabs 
were purified using the kits: PrepIT•L2P (DNA Genotek, Ottawa, Canada), and DNeasy Blood & 
Tissue Kit (Qiagen, Germantown, MD, USA), respectively, following the manufacturer’s guidelines. 
Preparation of WES and RNA libraries were performed, followed by Illumina paired end sequencing 
producing minimum 26 Gb, 18 Gb, or 33 million reads of raw sequence data for tumor DNA, normal 
DNA, or tumor RNA samples, respectively. 

4.3. Bioinformatics Workflow 

We developed an in-house bioinformatics workflow for data processing and analysis, Figure 7. 
For a detailed description, see the online supplementary material. The workflow utilizes the Genome 
Analysis Tool Kit (GATK) v3.8 framework [53], predominantly following the GATK best practices 
[54,55]. Additionally, using WES data CNA, TMB, MSI status, and mutational signature analyses 
were performed. Fusion transcript detection was performed using RNAseq data. Finally, detected 
somatic variants, along with patient information (age, gender, and diagnosis) were uploaded to 
Qiagen Clinical Insight Interpret (www.qiagenbioinformatics.com) for automatic classification. 
Classification was performed in an unbiased manner, where each detected variant was classified by 
pathogenicity as either pathogen, likely pathogen, unknown, or benign and by clinically actionability 
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as either having strong (tier 1), potential (tier 2), or unknown (tier 3) clinical relevance based on its 
therapeutic, prognostic, or diagnostic potential. The evaluation was based on, current clinical 
evidence from drug labels, clinical guidelines (e.g., NCCN [56], ASCO [57], and ESMO [58]), and 
clinical trials at clinicaltrials.gov according to the 2015 ACMG/AMP [45] and the 2017 
AMP/ASCO/CAP guidelines [16]. Final manual variant curation was performed by two trained 
molecular biologists. To enable workflow monitoring and facilitate the FAIR data principles [59,60], 
a laboratory information management systems solution based on the REDCap application was 
developed [61,62]. 

 
Figure 7. Overview of the bioinformatics workflow for processing of WES and RNA sequencing data 
in the ProSeq study. The workflow is based on the Genome Analysis Tool Kit (GATK) framework, 
and Qiagen Clinical Insight Interpret is used to support the manual variant interpretation performed 
by molecular biologists. Genomic data results are stored in a precision cancer medicine database, 
potentially enabling results to be shared with other hospital organizations and the scientific 
community. 

5. Conclusions 

This demographic, unbiased, observational, and prospective precision cancer medicine study 
included hematological patients with disease progression or relapse at Aalborg University Hospital, 
Denmark. The analysis workflow was based on WES and RNA sequencing and results of 92 patient 
samples from 85 patients are presented here. In conclusion, the most frequently mutated genes in 
individual disease entities were in concordance with previous studies. In our hematologic patient 
cohort, TMB and MSI were not found to be informative. Based on analysis of small nucleotide 
variants, copy number variants, and fusion transcripts, we found variants with potential and strong 
clinical relevance in 62% and 9.5% of the hematological patients, respectively. The developed 
workflow provides genomic information ready for interpretation by the treating clinician or a 
multidisciplinary team, who can create an overview of the clinical and genomic status of the patient 
and decide if, e.g., off label treatment or enrolment in a clinical trial is a possibility for the patient. 
The patient group in our study was hematological patients, but the workflow can easily be extended 
to other cancer types where tumor tissue is available and DNA/RNA can be extracted. 
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Appendix A: Detailed Materials and methods 

Study Protocols, Screening, and Inclusion 

Patients from Department of Haematology, Aalborg University Hospital, Denmark with 
suspected progression or relapse of hematological malignancy were offered participation in the 
ProGen protocol. ProGen grants permission to perform single gene analysis on the collected 
biological material. Eligible for ProGen were patients: Age ≥ 18 years, having suspected relapse or 
progression of hematologic malignancy, and not receiving relapse treatment at the time of inclusion. 
Project nurses screened patients, who were hospitalized or had an acute or planned referral through 
outpatient clinics, for inclusion. Based on clinical information, the patient’s associated clinical 
hematologist decided, if the identified patient was an eligible candidate for the study. Patients were 
enrolled in ProGen after signing of informed consent. Biological material for the study and routine 
diagnostic testing was collected simultaneously.  

Patients enrolled in ProGen, who after routine diagnostics were diagnosed with a relapse or 
progression of a hematologic malignancy, were subsequently offered participation in the ProSeq 
protocol, which allows broad genomic sequence analysis of tumor DNA of the biological material 
collected in ProGen. Upon ProSeq enrolment, a patient sample of saliva or a mouth swab was 
acquired for the sole use as germline DNA. Hence, no germline screenings for cancer predispositions 
or other genetic diseases were performed. The patient had at least two days from when information 
about ProSeq was given, to provide informed consent to participate in the study. An assessor could 
participate in the information process and specific emphasis was put on the risk of incidental findings 
in the normal DNA, which could reveal an unknown disease predisposition in the host genome[63]. 
In case of incidental findings, patient and family genetic counselling was warranted by the 
Department of Clinical Genetics, Aalborg University Hospital. However, the resource was not 
activated for any of the 85 sequenced patients. A patient could be included in the study at every 
suspected relapse experienced in the study period. 

The ProGen (N-20150042) and ProSeq (N-20160089) studies were approved by the North 
Denmark Region Committee on Health Research Ethics. ProGen started enrolment of patients Feb 1, 
2016 and ProSeq began enrolment of patients 16 February 2017. Participants gave written informed 
consent in accordance with the Declaration of Helsinki. Patients enrolled until 31 January 2019 were 
included in this publication. Both studies were observational and non-interventional studies. 
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Biobank 

Biological material donated included peripheral blood (PB), bone marrow (BM), lymph node 
biopsies, and saliva or mouth swabs. Methods to purify fractions from PB and BM followed the 
national guidelines from the Hematological Section of the Danish Cancer Biobank, Bio- and Genome 
Bank Denmark (RBGB) [64]. In short, PB and BM samples were processed at an in-house biobank 
within 24 h. BM (2 × 4–5 mL) was aspirated from the iliac crest into EDTA stabilized tubes, and 
fractions of 2 × 1 mL plasma and 1-8 × 5–10 millions of mononuclear cells (MNC) were isolated. PB 
was drawn in EDTA stabilized tubes (2 × 9 mL), in serum tubes (1 × 9 mL, no coating or stabilizer), 
and in cell-free DNA PB collection tubes (1 × 9 mL) (Streck, La Vista, NE, USA). The following 
fractions were isolated: 2 × 1.5 mL plasma, 1 × 1.5 mL buffy coat, 2 × 1.5 mL serum, and 1-8 × 5–10 
millions of MNC. Fractions of plasma, buffy coat, and MNC were isolated using density gradient 
centrifugation with Ficoll-paque plus solution (GE Healthcare Bio-Science AB, Uppsala, Sweden) and 
LeucoSep tubes with a membrane (In Vitro, Fredensborg, Denmark). The serum fraction was isolated 
after centrifugation of the non-stabilized PB sample. MNC fractions were frozen as single cell 
suspension vital stocks in culture medium containing 10% DMSO. From the cell-free DNA, blood 
collection tubes 2 × 1.8 mL plasma and 2 × 1.8 mL of the cellular fraction were purified following 
manufacturer’s descriptions.  

Lymph node biopsies were either excised in totos or as an 18G/1 mm needle ultrasound guided 
biopsy. One needle biopsy was sent for histopathological evaluation, and one needle biopsy for the 
study was placed directly in the RNAlater solution, kept for 24–72 h at 4 °C, and subsequently stored 
at −80 °C. Whole biopsies underwent routine clinical diagnostics tests by an experienced 
hematopathologist, and excess lymph node material was stored in an RNAlater solution at −80 °C.  

Saliva samples were collected in a tube from Oragene DNA (DNA Genotek, Ottawa, Canada), 
heat inactivated 2 h at 56 °C, and frozen at −20 °C until purification. Mouth swabs were collected 
using 4 sterile polyester tipped applicators (Puritan Medical Products Company, Guilford, ME, USA) 
per patient and then tip frozen at −80 °C until purification. 

Information on collected biological fractions were stored in the database of RBGB and/or in an 
in-house REDCap database, Figure A1. 

 
Figure A1. Laboratory Information Management. An overview of the data flow in the ProGen and 
ProSeq studies. Patient consent is stored in a REDCap database (DB), and clinical data of the patient 
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was from the electronic health records (EHRs) are transferred into the REDCap database. Donated 
tissue samples are handled and stored in the biobank, and sample information is subsequently placed 
in the national RBGB database, and automatically imported into the RedCap database, minimizing 
the time consumption for patient registration. In the laboratory (lab), DNA and RNA is purified from 
tissue samples or from sorted malignant cells and subsequently sequenced. Raw genomic data is 
processed using the bioinformatics workflow, and the resulting genomic profile is annotated using 
online cancer database resources. Following, quality control (QC) data from the Lab and the 
Bioinformatics analysis is recorded in the REDcap database. Variant interpretation is performed by 
trained molecular biologists and the resulting interpreted genomic data is transferred to REDCap. 
Finally, a report for multidisciplinary team conferences (MDT Report) can be generated for each 
patient. 

Cell Sorting and DNA/RNA Purification 

Multi parameter flow cytometry (MFC) and sorting was used to concentrate the bulk of 
malignant cell populations when its frequency was below 80 %. For phenotype characterization and 
sorting panel selection, available information from routine clinical diagnostics was used. This 
included disease status, frequency of malignancy in unpurified fresh tissue, and diagnostic 
flowcytometric immunophenotyping/immunohistochemical analysis from the fresh analyzed 
relapsed material (before cryopreservation) or from previous disease stages. If not available, this 
information was generated by performing an immunophenotyping analysis using selected panels 
from the “Euroflow antibody panel list” [52] matching the specific disease. A minimal antibody panel 
was selected for cell enrichment purposes, Table A1. MNC were thawed, DNAse-treated, stained 
with relevant surface antibodies, washed, and sorted using a FACSAria Cell Sorter (BD Biosciences, 
San Jose, CA, USA). Sort decision gates were placed to ensure sufficient purity of the malignant cell 
populations (>80%) without sacrificing malignant subpopulations based on disease heterogeneity 
(bulk malignancy). Subsequently, the cells were collected, centrifuged, and suspended in lysis buffer 
for downstream RNA and DNA purification. 

Table A1. Sorting and staining panels. Minimum sorting panels listing basic targeted antigens as well 
as optional/custom additions of antigens. 

Disease Group Basic Staining Panel Optional/Custom additions * 
ALL CD45/CD34/CD19 CD10, CD20, CD38, IgM, sKappa, sLambda 

AML/MDS/PV CD45/CD34/CD117 HLDAR, CD10, CD13, CD14, CD33 and others 
LPL/WM CD45/CD19/CD20 sKappa, sLambda, IgM, CD5, CD79a 

MM CD45/CD19/CD38 CD138, CD56 
SMZL CD45/CD19/CD20 sKappa, sLambda, IgM, CD22 

T-LGLL CD45/CD5/CD3 CD8, CD4 
ALL = acute lymphoblastic leukemia, AML = acute myeloid leukemia, MDS = myelodysplastic 
syndrome, PV = polycythemia vera, LPL = lymphoplasmacytic lymphoma, WM = Waldenström's 
macroglobulinemia, MM = multiple myeloma, SMZL = splenic marginal zone lymphoma, T-LGLL = 
T-Cell large granular lymphocyte leukemia. * Additional antibodies were selected from the 
corresponding Euroflow panel. 

Lymph node biopsies of maximum 30 mg were homogenized using a Tissuelyser (Qiagen, 
Germantown, MD, USA). DNA and RNA were purified from MNC, flow sorted malignant cells, or 
homogenized biopsies using Qiagen’s All Prep DNA/RNA/miRNA kit, following manufacturer’s 
guidelines. DNA from saliva and mouth swabs were purified using the kits: PrepIT•L2P (DNA 
Genotek, Ottawa, Canada), and DNeasy Blood & Tissue Kit (Qiagen), respectively, following 
manufactures guidelines. The quality and quantity of the DNA and RNA were tested using Qubit 
(Invitrogen, Carlsbad, CA, USA), Bioanalyzer (Agilent, Santa Clara, CA, USA), and Nanodrop 
(Thermo Scientific, Waltham, MA, USA). 
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Sequencing 

Whole exome sequencing (WES) library preparation was performed using either NEBNext® 
Ultra™ II DNA Library Prep Kit for Illumina (New England Bio Labs, Ipswich, MA, USA), the 
Sureselect XT or XT HS Library Prep Kits (Agilent, Santa Clara, CA, USA), the Accel-NGS 2S Hyb 
DNA Library Kit (SWIFT Biosciences, Ann Arbor, MI, USA), or the Twist Library Preparation EF Kit 
(TWIST Biosciences, San Francisco, CA, USA). Additional contaminant removal was performed for 
the majority of samples > 240 ng using the PCR Inhibitor Removal Kit (Zymo Research, Irvine, CA, 
USA). Exome capture was performed using either the SureSelect XT Clinical Research Exome, the 
SureSelect XT HS Clinical Research Exome V2 (Agilent), or the Twist Human Core Exome Kit (TWIST 
Biosciences, San Francisco, CA, USA). For RNAseq library production, TruSeq Stranded mRNA 
Library Prep Kit (Illumina, San Diego, CA, USA) or NEBNext Ultra II Directional RNA Library Prep 
Kit for Illumina (New England Biolabs, Ipswich, MA, USA) were used. Sequencing was performed 
as either 2 × 100 bp or 2 × 150 bp paired-end on either a NextSeq 500 or a NovaSeq 6000 (Illumina, 
San Diego, CA, USA) producing minimum 26 Gb, 18 Gb, or 33 million reads of raw sequence data for 
tumor DNA, normal DNA, or tumor RNA samples, respectively. 

Bioinformatics Workflow 

An in-house workflow for data processing and analysis was developed by integration of several 
existing programs. Raw FASTQ files were quality trimmed and checked using trimgalore v0.4.3 [65]. 
Reads were aligned against the GDC GRCh38.d1.vd1 human reference genome sequence using BWA 
mem v0.7.12 [66] for WES normal and tumor samples and STAR v2.5.3a in 2-pass mode for RNAseq 
samples. Following marking of duplicates, indel re-alignment, base quality re-calibration, and 
calculations of general and sequence artefact metrics were performed using GATK v3.8 [53] following 
the GATK best practices [54,55]. In line with similar studies [36,67], we chose a desired minimum 
average coverage of 75× and 150× for normal and tumor WES samples, respectively, and 30M 
sequenced reads for RNAseq libraries. The latter was based on the 2016 ENCODE Experiment 
Guidelines [68].  

For WES data, detection of somatic variants was performed using a combination of Mutect2 v3.8 
[69] and Varscan v2.4.1 [70]. Variants marked “PASS” from Mutect2 and ”high confidence” variants 
from Varscan were combined and filtered using a minimum QSS score of 25, a minimum allele 
frequency (AF) of 0.02, and a minimum allele ratio (AF tumor/AF normal) of 4. Variants were 
annotated with class, population allele frequencies, sift and polyphen predictions, genomic region 
and protein domains using the Ensembl variant effect predictor [71]. Following, annotations from the 
cancer databases OncoKB [22], COSMIC Cancer Gene Census [72], ONgene [73], and CIViC [48] was 
automatically assigned each variant when applicable. For variant evaluation using Qiagen Clinical 
Insight Interpret (QCI) (www.qiagenbioinformatics.com), the following criteria had to be met: The 
variant was exonic ± 10 bp in an exome capture target region. The minimum allele frequency of the 
alternative allele was ≥10% and supported by ≥ 5 reads. The variant was non-synonymous, and the 
allele frequency of the variant <5% in any population from 1000 genomes, ESP or gnomAD. For 
calculation of tumor mutational burden (TMB) a similar filtration was used, only keeping non-
synonomus, mis-splicing and indel variants. The total region of interest (ROI) was defined as the sum 
of exonic ± 2 bp regions within target capture regions. TMB was calculated as number variants/ROI 
[Mb]. Micro satellite instability (MSI) status was detected using MSISensor v0.2 [74]. Microsatellites 
in the exome capture target regions with a repeat length ≥ 2 and read coverage in both tumor and 
normal samples ≥ 20 are examined for instability (FDR threshold = 0.05). The MSI status was given as 
a percentage of instable sites to the total number of measured sites. 

Copy number alterations were inferred using CNVKit 0.9.6 [75]. Off-target bin sizes were 
estimated from the tumor alignment file and the coverage in these regions was estimated in the tumor 
and normal samples. Corrections for biases in regional coverage and GC content were performed, 
and discrete copy number segments from the resulting coverage table were calculated using the CBS 
segmentation method [76]. Each segment’s absolute integer copy number was derived and filtered, 
only keeping high-level amplifications (≥ 5 copies) and homozygous deletions (0 copies). Only genes 
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with annotations in either the OncoKB, COSMIC Cancer Gene Census, ONgene, or CIViC database 
within these segments were reported as either amplified or lost. 

Mutational signature analysis was performed using the R package MutationalPatterns V 1.4.3 
[77]. The contribution of the COSMIC Mutational Signatures (version 2) [14] to the initial set of 
somatic variants of each tumor sample was quantified. Mutational signature contributions were 
grouped as either Deamination of 5−methylcytosine, defective DNA mismatch repair, activation-
induced cytidine deaminase activity, polymerase epsilon activity, UV light exposure, tobacco 
carcinogen exposure, tobacco chewing, alkylating agent association, aristolochic acid exposure, or 
aflatoxin exposure according to their proposed aetiology. 

For RNAseq data, splitting and trimming of reads were performed prior to indel re-alignment. 
Detection of variants was performed using HaplotypeCaller v3.8 following the GATK best practices. 
Detection of fusion transcripts (FTs) was performed in the Oshell/OmicSoft Project Environment 
v10.0.1.29 [78] using both MapFusionReads (MFP) considering the data as single reads and 
ReportPairedEndFusionGenes (RPEFG) utilizing the paired-end information. Minimal read coverage 
was set to 5 and the minimal distance between potential fusion genes was set to 5000 bp. Due to a 
high false positive rate especially using RPEFG, and a high amount of non-informative FTs, further 
filtering was made. Both gene partners must have an approved HGNC symbol, and FTs were filtered 
if they did not have an entry in either COSMIC fusion genes, TICdb [79], or 
Atlasgeneticsoncology.org [80] or if at least one of the fusion partners had and entry in either the 
OncoKB, COSMIC Cancer Gene Census, ONgene, or CIViC database. 

Variant Classification and Evaluation 

The filtered variant call file (VCF), along with patient information (age, gender, and diagnosis) 
and information regarding detected fusion transcripts, gene losses, and gains were uploaded to the 
decision support tool QCI for variant evaluation. Filtered variants were on the basis of their 
therapeutic, prognostic or diagnostic potential automatically classified into the following groups 
using the 2017 AMP/ASCO/CAP tier system [16]: Variants with strong clinical significance (tier 1A 
and 1B), variants with potential clinical significance (tier 2C and 2D), variants of unknown clinical 
significance (tier 3), or benign or likely benign variants (tier 4). Based on clinical guidelines and 
information from clinicaltrials.gov, guideline recommended therapies and clinical trials were 
associated to variants by QCI, when available. Two trained molecular biologists manually 
investigated or verified the clinical significance of all potentially informative variants. These included 
all fusion transcripts, gain or loss CNA, and all SNV automatic classified as pathogenic, actionable, 
or prognostic by QCI or variants with an entry in either the OncoKB, COSMIC Cancer Gene Census, 
ONGene, or CIViC databases. All variants found to be reportable were manually verified by visual 
inspection of supporting reads in the WES data, and if possible in the RNAseq data in IGV, Table S1 
[81]. A report of reportable variants could subsequently be generated for presentation at 
multidisciplinary team conferences.  

Laboratory Information Management Systems 

In order to allow a proper workflow monitoring, a Laboratory Information Management System 
(LIMS) was developed. The system utilizes REDCap [61,62] to store the workflow metadata from 
inclusions of patients to the final results of the genomic analysis, which can be exported to a 
multidisciplinary teams report, Figure A1. The REDCap part encompasses three projects: Patient 
inclusion focusing on patient’s consents and tissue sampling, laboratory management recording the 
various handling steps in the laboratory, and clinical data recording the patient’s clinical history 
related to their hematological malignancy containing information about treatment, laboratory test 
results, comorbidities, medication, etc. A web platform was developed to aggregate the information 
from the three REDCap databases, hereby circumventing limitations for the implementation of a 
LIMS solution. This platform enabled monitorization and validation of the quality of the data, Figure 
A1. The platform utilizes the REDCap Application Programming Interface (API) for a seamless 
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integration and a tool was integrated to upload information on biological fractions stored in the RBGB 
database.  
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