A Biometric Study of some reproductive components of the male domestic Mongrel Cat’s
(Felis catus domestica) in northwest Nigeria.

Bello A. 1*, Umaru M.A2, Musa D3, Dare R.S4

1 Department of Veterinary Anatomy Usman Danfodiyo University Nigeria.
2Department of Theriogenology and Animal Production Usman Danfodiyo University Nigeria.
3Department of Agriculture, Sokoto state Polytechnic, Sokoto, Nigeria.

ABSTRACT

A biometrical study was conducted on some aspects of the reproductive system of 16 local breed Tomcats (Felis catus domestica) collected within Sokoto metropolis at different ages. The age of the cats was estimated from teeth eruption and wearing and grouped into groups A to E as A (3-6 months), B (6 months - 1 year), C (1- 1½ year), D (1½ - 2 years) and E (2-4 years) respectively. Age difference was the major consideration factor during this study. The mean live weight of the tom cats were 0.78 ± 0.02kg, 1.25 ± 0.0 7kg, 1.63 ± 0.06, 2.1± 0.06kg and 2.3 ± 0.08kg respectively. The percentage of the mean genitalia weight compared to the mean body weight in relation to their age showed a range of 0.5-1%. The mean weight, length and width of the testes were recorded with no significant difference between the right and left testis. The mean weight of the genitalia at an age of 3-6 months was 8.4±0.02g. The age at puberty of tomcats was about 6 months and the weight of the genitalia drastically increased with advancement in age from 8.88±0.07g at 6months-1year to 11.71±0.05g at above 4 years of age. The mean length and width of the penis were also recorded; the weights of the prostate gland were recorded with special consideration of their ages. The bulbourethral glands were present but hardly distinguishable grossly from the urethra both in length, width and in weight. It was concluded that the age of puberty of our domestic tomcats in this area is 6 months of age. It was recommended that a thorough investigation on the age related factor governing the development of anatomical features of the male reproductive tract of our domestic cat. The findings were discussed in the paper.

Key words: Age, Male, Biometry, Domestic Tom Cat, Reproduction, North-western Nigeria.

Introduction

The reproductive Anatomy of the cat is unique amongst the domestic species in many respects (Getty et al., 1975; Umaru and Bello, 2012). Domestic cats (Felis catus domestica), besides being a pet animal, also contribute as an experimental model in biomedical researches (Thomson and Marker, 2006), which helped in the study of approximately forty physiological anomalies in man and animals (Brewster, 1985); Including Immunological (Dyce et al., 1987; Emerson and Hess 1996; Hena et al., 2012), Reproduction (Amuller, 1998), toxicological (Emerson and Hess 1996), metabolic (HoEtzel et al., 1995; Hena et al., 2012), congenital (Dyce et al., 1987; Sanchez et al., 1993; Bello et al., 2012) and oncological (Smuts and Bezuïdenhout, 1987; Bello et al., 2012b) concerns. Cats are frequently involved in pharmaceutical developments for human and veterinary used (Brewster, 1985; Bello et al., 2012; Umaru and Bello, 2012) and are uses in toxicity and security test for new drugs (Elcock and Schoning, 1984).

Little information is available regarding the morphology and biometry of the male genitalia of the domestic tomcats in North-western Nigeria. This study describes the nature, types and dimensions of the tubular genitalia and some.
accessory sex glands of the tomcat. It examines if any the relationship between age
and dimension of the male genitalia, it also compared the size of the male genitalia of
the tomcat in relation to various age of the
cat. The research will provide a base line
data for the reproductive anatomy of the
local Tomcat in Northwest, Nigeria.

Material and Method
Sixteen (16) Tomcat genitalia were used for
the study, the cats were caught alive from
Sokoto metropolitan area (Sokoto North and
Sokoto South local government area) Sokoto
State, Nigeria. Age difference was the major
consideration during this study. The cats
were weighted alive using compression
spring balance (AT-1422), size C-1,
sensitivity of 20kg X 50g in Kilogram
(Ohaus scale crop) and were grouped and
sacrifice according to through interval daily,
the cat were grouped into groups from A to
D as A(3- 6 months), B(6 months - 1 year),
C(1- 1½ year), D(1½ -2 years) and E(2-4
years) respectively using their dentition as
documented by Getty, (1986). All the cats
were humanely euthanized.
A mid ventral abdomen incision was made
on each animal, the peritoneum reflected,
and the intestine displaced to gain access to
the root of the reproductive system. A
through morphometric observation of the
external and internal genitalia were made
insitu, before the consideration of the
biometry. The length, weight, thickness and
width or diameter of the various segments of
the genitalia were measured using a meter
ruled, measuring tape, dividers Vernier
caliper and electrical weighing balance
(Metler® 01210 instrument AG, Switzerland) with a sensitivity of 0.01g. The
data obtained were subjected to statistical
analysis using spss statistical software.
Value of p<0.05 were considered significant

Result
Table 1-3 shows the results obtained. The
mean live weight of the tom cat were 0.78 ±
0.02kg, 1.25 ± 0.077kg, 1.63 ± 0.06, 2.1±
0.06kg and 2.3 ± 0.08kg respectively (Table
1). The percentage of the mean genitalia
weight compared to the mean body weight
showed a range of 0.5-1%. The mean
weight, length and width of the testes were
recorded with no significant difference
between the right and left testis (Table 3).
The mean length and width of the penis
were also recorded the weight of the prostate
gland were recorded with special
consideration of their ages. The
bulbourethral glands were present but hardly
to differentiate with the urethra both in
length, width and in weight (Table 2).

Table 1: Relationship between age, body weight and the weight of genitalia

<table>
<thead>
<tr>
<th>Group</th>
<th>Age</th>
<th>No. of Animals</th>
<th>Mean body weight (kg) ± SEM</th>
<th>Mean-genital weight(g) ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3-6 m</td>
<td>3</td>
<td>0.78±0.03 a</td>
<td>8.4 ± 0.02 b</td>
</tr>
<tr>
<td>B</td>
<td>6m-1 y</td>
<td>3</td>
<td>1.25 ± 0.07 a</td>
<td>8.88 ± 0.03b</td>
</tr>
<tr>
<td>C</td>
<td>1-1½y</td>
<td>3</td>
<td>1.63 ± 0.06 a</td>
<td>9.89 ± 0.05b</td>
</tr>
<tr>
<td>D</td>
<td>1½-2 y</td>
<td>3</td>
<td>2.1 ± 0.06 a</td>
<td>11.48 ± 0.09 b</td>
</tr>
<tr>
<td>E</td>
<td>2½-4 y</td>
<td>4</td>
<td>1.3 ± 0.08 a</td>
<td>11.71 ± 0.05 b</td>
</tr>
</tbody>
</table>

ab: means on the same row with different superscripts are significantly different (P < 0.05).

Table 2: Biometric values of the genitalia in relation to age

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of animals (n)</th>
<th>Mean body weight (kg) ±SEM</th>
<th>Mean weight of testis (g) ±SEM</th>
<th>Mean weight of prostate gland (g) ±SEM</th>
<th>Mean weight of genitalia (g) ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>0.78 ± 0.02 a</td>
<td>1.12 ± 0.03 a</td>
<td>0.84 ± 0.01 a</td>
<td>8.4 ± 0.02 *</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>1.25 ± 0.07 b</td>
<td>1.26 ± 0.02 b</td>
<td>0.97 ± 0.03 b</td>
<td>8.88 ± 0.03 b</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>1.63 ± 0.06 c</td>
<td>1.48 ± 0.02 c</td>
<td>1.00 ± 0.02 c</td>
<td>9.89 ± 0.05 *</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>2.1 ± 0.06 d</td>
<td>1.92 ± 0.03 d</td>
<td>1.28 ± 0.01 d</td>
<td>11.48 ± 0.09 d</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>2.3 ± 0.08 e</td>
<td>2.08 ± 0.04 e</td>
<td>1.48 ± 0.05 e</td>
<td>11.71 ± 0.05 e</td>
</tr>
</tbody>
</table>

abcde: means on the same row with different superscripts are significantly different (P < 0.05).
Table 3: Dimension of the prostate and penis of cat.

<table>
<thead>
<tr>
<th>Organs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Mean length (cm) ±SEM</td>
<td>0.3 ± 0.01a</td>
<td>0.8 ±0.02b</td>
<td>0.9 ± 0.01c</td>
<td>1.0 ± 0.03d</td>
<td>1.2 ± 0.07e</td>
</tr>
<tr>
<td>Prostate Mean Width (cm) ±SEM</td>
<td>0.3 ± 0.01a</td>
<td>0.3 ± 0.01b</td>
<td>0.4 ± 0.01c</td>
<td>0.4 ± 0.02d</td>
<td>0.5 ± 0.02c</td>
</tr>
<tr>
<td>Penis Mean length (cm) ±SEM</td>
<td>1.2 ± 0.01a</td>
<td>1.4 ± 0.02b</td>
<td>1.6 ± 0.01c</td>
<td>2.0 ± 0.01d</td>
<td>2.1 ± 0.04e</td>
</tr>
<tr>
<td>Penis Mean Width (cm) ±SEM</td>
<td>0.5 ± 0.01a</td>
<td>0.5 ± 0.01b</td>
<td>0.5 ± 0.02c</td>
<td>0.5 ± 0.02d</td>
<td>0.6 ± 0.03c</td>
</tr>
</tbody>
</table>

abcde: means on the same row with different superscripts are significantly different (P < 0.05).

Discussion
Grossly, the testes of the domestic cats are oval in shape, with the epididymis being clearly distinguished into the body and the tail. When viewed insitu, the testes and the epididymis are arranged in horizontal axis with the body of the epididymis being dorsal. The mean weight of the genitalia at an age of 3-6 months was shown to be 8.4±0.02g. The age of puberty of tomcat is 6-months and the weight of the genitalia increased with advancement in age from 8.88±0.07 at 6months-1year to 11.71±0.05g at above 4 years of age. The weight of the testes was shown increasing simultaneously with advancement in age from 1.12±0.03g at 3-6months to 2.08±0.04g at above 4 years. At this age an average of 1.60±0.25g were obtained. These findings show to be contrast to the work of Franco and Godinho, (2003) who showed that the testes of matured domestic cat weighs 1.2g though they showed that the domestic cat showed seasonality in testicular function hence the weight and size variation; depending on the time in the year. Blottner and Jewgenow, (2007); and Sturnelli et al., (2009) emphasized that there is greater spermatogenic activity and higher testosterone concentration in long days than the short days and more in spring than in winter hence emphasizing the seasonal variation.

As shown in the table 3, the mean length of the prostate gland was found to be increasing from group A (0.3±0.001cm) to group E (1.2±0.007cm) while the mean width from group A (0.3±0.01) to group E (0.5±0.02cm). The mean length of the penis was shown to be increasing in both width and length from group A (1.2±0.01cm) to E (2.1±0.04cm) and (0.5±0.01cm) to E (0.6±0.03cm) respectively. There was no specific data seen for these glands in domestic cat.

Conclusion
It was concluded that the age of puberty of our domestic tom cat is 6months of age depending on the nutritional status and it is also recommended that further investigation of the age related factors governing the development of anatomical features of male reproductive tract of our domestic cat in this area should be conducted in order to enhance better understanding of reproduction in cats.

Acknowledgement
I wish to show my sincere gratitude to Mr. J. I Imobhio and Mr. O. Olusola of the department of veterinary Anatomy, Faculty of veterinary medicine, Usmanu Danfodiyo university Sokoto, for a job well-done in stabilising, handling and restraining the animals during the research.

References

