This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms & Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.
Engineering of Thiocyanate-free Ru(II) Sensitizers for High Efficiency Dye-Sensitized Solar Cells

Sheng-Wei Wang, Kuan-Lin Wu, Elham Ghadiri, Maria Grazia Lobello, Shu-Te Ho, Yun Chi*, Jacques-E. Moser, Filippo De Angelis, Michael Grätzel, Mohammad K. Nazeeruddin

S.-W.W. and K.-L.W. contributed equally to this work.

a Department of Chemistry and Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; E-mail: ychi@mx.nthu.edu.tw
b Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; E-mail: mdkhaja.nazeeruddin@epfl.ch
c Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), ISTM-CNR, Via Elce di Sotto 8, 06123, Perugia, Italy; E-mail: filippo@thch.unipg.it

We synthesized a series of Ru(II) metal complexes TFRS-1, -2, -4, -21, -22 and -24 with single 4,4’-dicarboxylic acid-2,2′-bipyridine together with two functionalized pyridyl azolate ancillary ligands consisting of pyrazolate or triazolate groups. Both photophysical measurements and DFT/TDDFT calculations were conducted to gain insight into their electronic and optical properties. The triazolate series of sensitizers TFRS-21, -22 and -24 showed an enlarged optical band gap with respect to their pyrazolate counterparts TFRS-1, -2 and -4. When employed in dye sensitized solar cells (DSCs), the triazolate sensitizers show slightly inferior J_{SC} due to the poor IPCE recorded compared to the pyrazolate series. Moreover, the endowed 5-(hexylthio)thiophen-2-yl substituents exert notable hyperchromic effect and bathochromic shift to the absorption spectra, which then improve the short circuit
current J_{SC} to 18.7 an 15.5 mAcm$^{-2}$ and overall conversion efficiency to $\eta = 10.2 \%$ and 8.25% for TFRS-4 and TFRS-24, respectively. For evaluation of V_{OC}, the transient photocurrent and photovoltage decay measurements were carried out to compare the rates of interfacial recombination of electrons from the TiO$_2$ conduction band to electrolyte.

As the situation for global warming continues, it is becoming obvious that the mankind must switch to the renewable energies, which then encourage our societies to place strong emphasis on the development of emerging photovoltaic technologies. However, the main barrier that prevents them to become the major electricity supplier is the higher manufacturing costs. Fortunately, the third-generation technology, i.e. the dye sensitized solar cell (DSC) may provide the needed breakthrough, by virtue of their low fabrication expenses and good power conversion efficiencies. Generally speaking, the DSC consists of a tailor-made light-absorbing sensitizer deposited on the nanocrystalline TiO$_2$ photoanode and the I$^-/I_3^-$ redox couple for transport of electrical charge, and a thin layer of platinum in the counter electrode. For the sensitizers, it has been reported that the Ru(II) metal complexes exhibit superior, double-digit efficiencies under AM 1.5 global illumination. However, the thiocyanate ligands incorporated in the typical Ru(II) sensitizers are believed to provide the weakest bonding of the whole molecule, making the sensitizers and, hence, the as-fabricated solar cells somewhat unstable under excessive thermal stress and/or light soaking. This latent inferiority then triggered studies in attempts to replace the thiocyanate ligands of Ru(II) sensitizers with different chelating anions, such as diketonate.
picolinate18 and heteroaromatic cyclometalates,19,20 among which the cyclometalates seem to be the most promising ancillary ligand. A prominent conversion efficiency of 10.1\% was documented for a tris-bidentate Ru(II) complex YE05, featuring a single 2,4-difluorophenyl pyridine cyclometalated ligand,21,22 see Scheme 1.

![Scheme 1](https://example.com/scheme1.png)

Scheme 1. Chemical structures of various thiocyanate-free Ru(II) complexes.

Encouraged by this finding, many attempts were executed to optimize the relevant cyclometalated Ru(II) complexes through modification of their structural and electrochemical properties. On the one hand, van Koten and coworkers19,20 and Berlinguette and coworkers23-25 utilized either tridentate or bidentate cyclometalated ligands to assemble Ru(II) sensitizers devoid of thiocyanate ligands, achieving the highest efficiency of ~8.8\%.26 On the other hand, our recent endeavors have showed that both functionalized pyridyl pyrazolate27,28 and 2,6-dipyrazolyl pyridine29 can be used as replacement for the aforementioned bidentate and tridentate aromatic cyclometalates. The resulting Ru(II) based sensitizers, named as TFRS-2 and TF-2, have showed outstanding device performances, together with excellent device stability under accelerated light-soaking test at 60°C for over 1000 h. Herein, we report a follow-up study on the search for the best design of the TFRS-sensitizers that possess a series of distinctive pyridyl azolate chelates.

Results and Discussion

Preparation and Characterization. All TFRS sensitizers are synthesized using single 4,4’-dicarboxylic acid-2,2’-bipyridine anchor plus two functionalized
pyridyl azolate ancillaries. Two classes of azole fragments, e.g. pyrazole and 1,2,4-triazole, along with three different appendages attached at the 4-position of the pyridyl group, cf. R = H, 5-hexylthiophen-2-yl and 5-(hexylthio)thiophen-2-yl, are employed for probing their combined influence on the UV/Vis spectral, electrochemical and photovoltaic properties. These variations then produce a total of six azolate chelates, for which the representative synthetic procedures are compiled in the supporting information.

The corresponding ester derivatives of the TFRS sensitizers were prepared by reacting the Ru(diethyl 2,2’-bipyridine-4,4’-dicarboxylate)(p-cymene)Cl and respective 2-pyridyl azole in refluxing 2-methoxyethanol. In general, silica gel column chromatography is executed to separate the isomeric products, which is expected based on the statistical, random distribution of the asymmetric azoles. However, among three expected isomers, the one with trans-azolate fragments turned out to be the major product. The yields (28 ~ 33%) of the trans-pyrazolate complexes, i.e. TFRS-1, -2 and -4, are notably higher than those recorded for the corresponding triazolate counterparts TFRS-21, -22 and -24 (15 ~ 20%), showing the first influence of the ancillary chelates.

Subsequently, these ester derivatives are hydrolyzed in 1M NaOH solution at 100°C for 24 hours. The TFRS sensitizers were obtained by acidification and trituration with deionized water and diethyl ether in sequence. The molecular structures of these complexes are depicted in Scheme 2. It is notable that the azolate and pyridyl fragments in TFRS-1 – 24 are all located at the mutual trans and cis-disposition, respectively reminiscent of the ligand arrangement of analogous Ru(II) and Ir(III) complexes carrying two pyridyl azolate chelates.30,31
Scheme 2. Structural drawings of the studied Ru(II) sensitizers.

The absorption spectra of pyrazolate sensitizers TFRS-1, -2 and -4 with a concentration of 1.2×10^{-5} M in DMF are depicted in Figure 1a, for which the numerical data are summarized in Table 1. In addition to the higher energy $\pi\pi^*$ absorptions, the parent complex TFRS-1 exhibits two peak maxima at 405 and 515 nm, which are attributable to the metal-to-ligand charge transfer bands (MLCT) mixed with small amount of ligand-to-ligand charge transfer contribution (vide infra). Moreover, upon introduction of 5-hexylthiophen-2-yl substituents to TFRS-1, the lower energy MLCT absorption mainly displays increase in absorptivity and split to two peak maxima at 481 and 516 nm upon forming TFRS-2 and, next upon switching to the 5-(hexylthio)thiophen-2-yl group, afforded a highly intense MLCT absorption at 501 nm in forming the sensitizer TFRS-4. Similar variation of spectral pattern and peak maxima were observed for the triazolate series of sensitizers TFRS-21, -22 and -24, for which their UV-Vis spectra are illustrated in Figure 1b. As it can be seen, despite that all triazolate analogues showed relatively blue-shifted absorptions compared to their pyrazolate counterparts. The 5-(hexylthio)thiophen-2-yl substituted TFRS-24 sensitizer showed the most red-shifted, intense absorption with maximum at 485 nm, for which a similar effect has been observed for the Ru(II) sensitizer C106.32

The UV-Vis spectral analysis was also performed under different concentrations to reveal the possible aggregation in solution as well as the proton dissociation from carboxylic acid groups. As showed in Figures 2, the spectral profile of both TFRS-4...
and -24 in DMF changed substantially by varying concentration from 12 to 1.2×10^{-5} M. For **TFRS-4**, its spectral pattern at 1.2×10^{-4} M is akin to that of **TFRS-1** at a much lower concentration of 1.2×10^{-5} M, showing two well separated MLCT transitions at 430 and 550 nm, respectively. Moreover, their intensity is found to gradually decrease, together with the emergence of a new absorption band at ~500 nm upon dilution. Since the absorptions at both 430 and 550 nm involve a predominant MLCT contribution to the 4,4’-dicarboxylic acid-2,2’-bipyridine, the decrease in intensity can be explained by the gradual dissociation of the carboxylic acid protons and formation of carboxylates at the bipyridine anchor. The resulting negative charge on carboxylates then destabilizes the π^* orbital energy of the bipyridine, which is consistent with the gradual increase in absorption intensity of the higher energy new MLCT peak at around 500 nm. In sharp contrast, minor variation of extinction coefficients is observed for the transitions above 400 nm, which are mainly due to the $\pi\pi^*$ transition as confirmed by their greater optical densities, and independence to the solution concentration. As for the triazolate **TFRS-24**, shifting of the lowest energy MLCT band follows the same trend established, except that the variation of extinction coefficient for all absorption bands looked much irregular compared to that of the pyrazolate analogue **TFRS-4**. We attribute this to the third nitrogen atom of the triazolate entities, which could foster bonding interaction to either the dissociated or undissociated proton from carboxylic acids.

Cyclic voltammetry was then performed to ensure that the excited state oxidation potential ($E^{\circ*}$) of the investigated complexes is sufficient for efficient injection of electrons into the conduction band of TiO$_2$ and to verify whether their oxidation potential at the ground state ($E^{\circ\text{ox}}$) match the redox potential of electrolyte. As shown in Table 1, the $E^{\circ\text{ox}}$, which is the potential for the Ru(II) metal oxidation, appeared in the range 0.90 ~ 0.93 V and 1.10 ~ 1.16 V (vs. NHE) for the pyrazolate derivatives **TFRS-1, 2** and **4** and triazolate derivatives **TFRS-21, 22** and **24**, respectively. The positive shift for **TFRS-21, 22** and **24** is apparently caused by the more electronegative triazolate chelates. Disregarding their intrinsic difference, all data are
found to be more positive than that of the Γ/Γ_{3}^{-} redox couple (ca. 0.4 V vs. NHE) and the hypothetical $\Gamma^{-}/I_{2}^{\cdot -}$ couple (ca. 0.79 ~ 0.93 V vs. NHE), warranting fast dye regeneration.33-36 Next, the E_{0-0}° was determined from the intersection of the absorption and tangent of the emission peak in DMF, for which the energy gaps obtained for the triazolate sensitizers (2.05 ~ 2.07 eV) are found to be sizably larger than the pyrazolate counterparts (1.91 ~ 1.98 eV). The larger E_{0-0} gap of triazolate derivatives counterbalanced the more positive $E_{\text{ox}}^{\circ \ast}$ value, which then afforded a lower $E_{\text{ox}}^{\circ \ast}$ values (i.e. $E_{\text{ox}}^{\circ \ast} - E_{0-0}$) for triazolate derivatives TFRS-21, 22 and 24 (−0.91 ~ −0.99 V) versus those of the pyrazolate derivatives TFRS-1, 2 and 4 (−1.01 ~ −1.07 V), for which the trend is consistent with the electronic properties of azolates. Despite of this difference, all data are more negative than the conduction band edge of the TiO$_2$ electrode (ca. −0.5 V vs. NHE), confirming the occurrence of fast electron injection in all cases.

Computational Investigation

To gain insight into the electronic and optical properties of the investigated series of sensitizers, we performed DFT/TDDFT calculations in DMF solution on both pyrazolate series TFRS-1, -2 and -4 and triazolate series TFRS-21, -22 and -24, considering for all systems a number of protons carried by the carboxylic acid anchoring groups of the 4-4'-bipyridine ranging from 0 to 2. Geometry optimizations were performed employing a 3-21G* basis set,37 while a larger DGDZVP basis38 was employed for the subsequent TDDFT calculations. In all cases, the B3LYP exchange-correlation functional39 and the C-PCM solvation model40-42 was used, as implemented in the Gaussian 09 program suite.43 The isodensity plots of selected molecular orbitals for the doubly protonated species of TFRS-4 and -24 are reported in Figure 3, while a survey of the frontier molecular orbital energies for the investigated systems is schematically reported in Figure 4, see also Figures S1 and S2 as well as Tables S1 and S2 of Supporting Information for the frontier orbitals and relevant data of other TFRS sensitizers. The
HOMO is in all cases a Ru(II) t_{2g} orbital, which acquires some mixing with ligand π orbitals for the thiophene appendages. A similar mixing was found for Ru(II) sensitizers carrying π-excessive heteroaromatic substituents.44 The localization of the LUMOs depends on the degree of protonation of the carboxy-substituted bipyridine ligand, which are the LUMOs for the protonated dyes but are shifted at higher energy upon deprotonation, see below.

Within a given pyrazolate and triazolate series we notice that the LUMO energy is essentially unaltered, while the HOMO energy becomes more positive (vs. NHE) on going from pyrazolate TFRS-4 and to TFRS-24, see Figure 4. Upon deprotonation of the carboxylic acid groups, both the HOMOs and LUMOs are shifted to less negative energies at the same time, as a result of the increased electron donation. However, the LUMOs are relatively more sensitive, so that the overall result reveals an increase of HOMO-LUMO gap upon deprotonation.45 Comparing homologous data for the two series of dyes, we notice that in triazolate sensitizers represented by TFRS-24 the HOMOs are found ca. 0.2 eV lower in energy than in the corresponding pyrazolate sensitizers, in agreement with the trend of cyclic voltammetry data showing a 0.15 ~ 0.23 V shift. It is also interesting to notice that the LUMOs for the triazolate sensitizers are calculated at lower energy (ca. 0.08 eV) compared to those of the pyrazolate series. Although not directly comparable to E° data reported in Table 1, our results are fully consistent with such results, showing a higher (i.e. more negative vs. the reference electrode) excited state energy for the pyrazolate series.

We now move to the optical properties of the investigated systems. The absorption spectra for the doubly protonated mono and doubly deprotonated dyes have been computed for all the investigated species throughout the visible and UV region, thus allowing us to compare calculated and experimental data. The results for the pyrazolate and triazolate series, represented by TFRS-4 and TFRS-24, are reported in Figure 5.

As it can be noticed from Figure 5, a generally good agreement is observed between calculated and experimental spectra. As it could be anticipated from the HOMO-LUMO gap variation, deprotonation of the bipyridine carboxylic acid groups
leads to a blue shift of the visible transitions. Interestingly, the calculated absorption spectra for the deprotonated sensitizers show a better agreement with the experimental spectra than those for the protonated analogues, suggesting that the sensitizers are effectively (partially) deprotonated in the experimental conditions. This is somehow expected, considering the substantial acidic strength of the involved carboxylic groups. It is however possible that equilibrium among various possible deprotonated species also exists in solution, so that the resulting absorption spectrum is an average of the three differently protonated forms. A detailed analysis of the involved transitions is reported in Tables S3-S8 of Supporting Information, here it suffices to note that the lowest transitions have mainly the MLCT character, being originated from the metal-based HOMO to the bipyridine π^* LUMOs. Our calculations nicely reproduce the increased intensity experimentally observed on going from parent TFRS-1 and -21 to 5-hexylthiophen-2-yl substituted TFRS-2 and -22 and, finally, 5-(hexylthio)thiophen-2-yl substituted TFRS-4 and -24 sensitizers (Supporting Information), which is due to the admixture of metal and ligand states in the HOMOs, as discussed above. This mixture imparts a partial ligand-centered $\pi\pi^*$ character to these otherwise pure MLCT excitations, contributing to the increased absorption intensity.

We also investigated the redox properties of the entire series of sensitizers by calculating the ground and excited state oxidation potentials of the dyes, obtained as previously described,46 as a function of the protonation of the carboxylic groups. The results are reported in Table 2, along with experimental data converted to the vacuum scale. A general trend which can be outlined is that by decreasing the number of protons the ground state oxidation potential becomes less positive, while the lowest excitation energy (of singlet character) increases, so that a higher lying excited state oxidation potential is consistently retrieved by decreasing the number of protons carried by the carboxylic groups. We also notice as our estimate ground and excited state potentials follow the trend of the experimental data. As an example, for TFRS-4 and TFRS-24 our data predict a more positive ground and excited state oxidation potential at all levels.
of protonation for the former dye, as it is experimentally found.

Fabrication of Devices

The DSC devices were fabricated using a 12+6 µm TiO$_2$ anode and with a 4 × 4 mm2 working area. The photoanode was stained in the 0.3 mM dye solution in ethanol with addition of 20% of DMSO for increasing solubility. Electrolyte consists of 0.6 M PMII, 0.03 M I$_2$, 0.5 M TBP, 0.1 M GNCS and 0.05 M LiI in mixture of valeronitrile/acetonitrile with volume ratio of 15:85. Device performances were measured under a 6 × 6 mm2 shadow mask for supressing diffused solar irradiation. As the reference, the DSC fabricated using TFRS-1 afforded performance parameters of $J_{SC} = 16.0$ mA/cm2, $V_{OC} = 0.76$ V, $FF = 0.712$ and $\eta = 8.66\%$ under AM 1.5G simulated one-sun condition; pertinent data are listed in Table 2. Furthermore, upon switching sensitizer to TFRS-2 and then to TFRS-4, a better set of parameters $J_{SC} = 17.3$ mA/cm2, $V_{OC} = 0.77$ V and $FF = 0.723$, and $J_{SC} = 18.7$ mA/cm2, $V_{OC} = 0.75$ mV and $FF = 0.729$ were achieved, affording an overall conversion efficiency of $\eta = 9.63\%$ and 10.2%, respectively. It seems that the reported trend is mainly derived from the increase of short-circuit current J_{SC}, which is consistent with the higher absorptivity and bathochromic shift of absorptions, by switching to the R substituents with extended π-conjugation and higher polarizability.

The DSCs using the triazolate sensitizers TFRS-21, -22 and -24 yielded lower short-circuit current J_{SC} to the level of 14.1 – 15.5 mA/cm2, compared to the TFRS-1, -2 and -4 sensitizers, albeit with minor variation on the V_{OC} and FF, resulting the efficiencies in the range of 7.74 to 8.30%. The reduced J_{SC} can be rationalized by the blue-shifted absorption, which decreases the overlap with the solar spectrum and lowering the light harvesting capability.

The graphs of incident photon-to-current conversion efficiencies (IPCEs) are shown in Figure 6a. The onsets of the IPCE spectra of pyrazolate series TFRS-1, -2 and -4 are all close to ~810 nm, and excellent IPCE performance was observed in the range from 420 to 570 nm, among which the best sensitizer is TFRS-4, which shows
the maximum of 40% at 700 nm and steadily increases to ~72% at 600 nm and then maintained a similar IPCE efficiencies until getting 420 nm and then started to drop. For the triazolate series TFRS-21, -22 and -24, the onset only started at 750 nm, but quickly went up to 40% at 640 ~ 650 nm and clinched their maxima of ~ 70% at 550 ~ 570 nm. These trends of IPCE clearly reveal that the triazolate sensitizers would exhibit relatively inferior J_{SC} values compared to those of the pyrazolate counterparts, and are consistent with the optical and electrochemical properties investigated in previous section. Figure 6b shows the photocurrent density–voltage curve of the DSC devices. The TFRS-4 solar cells showed the best set of short-circuit current density (J_{SC}), open-circuit voltage (V_{OC}), fill factor (FF) and overall conversion efficiency (η) which are measured to be 18.7 mA·cm$^{-2}$, 0.75 V, 0.729 and 10.2 %, respectively. These results are notably better than the control devices of its kinds. For instance, the cells with TFRS-1 and -2 sensitizers afford $J_{SC} = 16.0$ and 17.3 mA·cm$^{-2}$, $V_{OC} = 0.76$ and 0.77 V, and $FF = 0.712$ and 0.723, corresponding to an overall $\eta = 8.66$ and 9.63 %. These data are comparable to our original data,28 although they were initially recorded without the shading mask, such that the quoted performances of TFRS-1 and -2 are approximately 6% lower than that of TFRS-4, which stands for the best sensitizer for this class of materials.

However, we wish to pointed out that the pyrazolate series of sensitizers TFRS-1 ~ -4 all showed much superior device performances versus those of their triazolate counterparts TFRS-21 ~ -24. This trend is in sharp contrast to that of the recently reported analogues TFRS-11 ~ -14, for which the conjugated 4,4’-dicarboxyvinyl-2,2’-bipyridine is employed as the anchoring group.47 It is believed that the extra pairs of vinyl groups on TFRS-11 ~ -14 have destabilized their ground state oxidation potentials, which are verified by the respective electrochemical studies. Thus, TFRS-11 ~ -14 sensitizers will need more electron deficient triazolate fragments to bring down the ground state oxidation potential and to allow a sufficient driving force for efficient dye regeneration.

The transient photocurrent and photovoltage decay measurements were carried
out in order to investigate the rates of interfacial recombination of electrons from the TiO₂ conduction band to electrolyte. It is worth noting that V_{OC} decays are measurements dependent on the accumulated charge at the TiO₂ conduction band, and hence, to obtain a fair comparison of the $e^-\text{TiO}_2/\text{electolyte}^+$ recombination dynamics between different dyes, the charge density on both dyes must be equal. The density of states (DOS) of the films loaded with the TFRS-4 and TFRS-24 sensitizers were determined from transient photocurrent decay measurements. As presented in Figure 7a, the chemical capacitance $C_μ$ of devices rises exponentially with the increased V_{OC}. $C_μ$ is directly proportional to the density of state (DOS) ($C_μ = q(e)\text{DOS}$, where $q(e)$ is electron charge). 48, 49 It is clear that very similar electron densities are measured for the two between TFRS-4 and -24 sensitizers, which served as representative examples for all TFRS sensitizers. This observation can discard the contribution of a conduction band shift to the observed decrease in the back-electron transfer rate. The electron lifetimes measured at identical electron densities using transient photovoltage measurements. Figure 7b illustrates electron lifetime as a function of V_{OC} for the different sensitizers. The V_{OC} was adjusted by varying the intensity of the bias light impinging on the cell. The trend correlates rather well with the V_{OC} values obtained for these devices, i.e. as electron lifetime gets shorter, V_{OC} decreases. Longer electron lifetimes were observed for TFRS-4, compared to the TFRS-24. The difference was explained by the iodine binding ability with the pyrazolate and triazolate chelate, would be leading to faster recombination. 50-52

The electron injection process was studied using femtosecond transient absorption spectroscopy technique on representative pyrazolate TFRS-4 and triazolate sensitizer TFRS-24, see Figure 8. The electron injection process in two identical samples of pyrazolate and triazolate series superimposes quite well and showed no obvious difference at all.

Although the LUMO level has been slightly shifted, this has not affected the overall electron injection process. This data can support the DFT simulations where the extension of LUMO is observed similar in both cases. To gain insight into dye
regeneration process having these thiocyanate-free sensitizers, and electron back
reaction process, nanosecond flash photolysis measurements were performed on both
series. The dynamics of the oxidized state of the dye after its initial generation was
monitored by measuring transient changes of its optical absorption at the wavelength
\(\lambda = 720 \text{ nm} \). In the absence of a redox mediator, that is, in pure MPN solvent and
without the redox couple, the decay of the absorption signal recorded at 720 nm
reflects the dynamics of the recombination of injected electrons with \(S^+ \). In Figure 9a,
the black curve decays with a typical lifetime \(\tau = 1 \text{ ms} \) for both TFRS-4 and
TFRS-24. In the presence of the redox couple, the decay of the oxidized dye signal
was significantly accelerated. The fit to first exponential function gives a rate constant
of 59000 s\(^{-1}\) and 110000 s\(^{-1}\), giving a half life time of 17 and 9 \(\mu \text{s} \) for dye regeneration
on TFRS-4 and TFRS-24 respectively. Although the efficient regeneration rate in is
in agreement with photovoltaic measurements and a higher dye regeneration on
TFRS-24 respect to TFRS-4 is in agreement with the more positive oxidation
potential, it should be noted that in iodide based redox electrolytes, the dye
regeneration is a two electron transfer process and it cannot be simply directly linked
to the thermodynamics of the system.

Conclusion

The Ru(II) metal complexes with 4,4’-dicarboxylic acid-2,2’-bipyridine anchor
with two functionalized 2-pyridyl azolate ancillaries were systematically modified with
a goal of finding better and more stable sensitizers for DSC applications. The
sensitizer TFRS-4 featuring a hexylthiophene appendage on pyrazolate chelates
shows the distinctive red-shifted MLCT absorption, which improve the
light-capturing ability in the visible and near infrared regions resulting the best overall
conversion efficiency (\(\eta = 10.2\% \)) among all sensitizers studied. In sharp contrast, the
triazolate sensitizers TFRS-21, -22 and -24 exhibit relatively inferior \(J_{SC} \) and \(V_{OC} \)
values compared to those of the pyrazolate counterparts due to the enlarged optical
gap caused by the electron withdrawing behaviour of triazolate chelates, and the
possible interaction between triazolate group of sensitizer and iodine in electrolyte that induced the rapid charge recombination. Finally, despite of needing more research, TFRS-4 could be of useful for future pilot applications, based on the performance data shown in this work.

Acknowledgments: MGL and FDA thank FP7-ENERGY-2010 project 261920 “ESCORT” for financial support, while YC thanks National Science Council of Taiwan for funding. KLW is a recipient of the Graduate Students Study Abroad Program sponsored by National Science Council of Taiwan (NSC-101-2917-I-007-017).

Experimental Section

General Synthetic Procedures: All reactions were performed under argon atmosphere and solvents were distilled from appropriate drying agents prior to use. Commercially available reagents were used without further purification unless otherwise stated. All reactions were monitored using pre-coated TLC plates (0.20 mm with fluorescent indicator UV254). Mass spectra were obtained on a JEOL SX-102A instrument operating in electron impact (EI) or fast atom bombardment (FAB) mode. 1H NMR spectra were recorded on a Varian Mercury-400 or an INOVA-500 instrument. Elemental analysis was carried out with a Heraeus CHN-O Rapid Elementary Analyzer.

Synthesis of TFRS-4. 4-(5-(hexylthio)thiophen-2-yl)-2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridine (145 mg, 0.35 mmol), Ru(diethyl 2,2’-bipyridine-4,4’-dicarboxylate)(p-cymene)Cl (100 mg, 0.17 mmol) and sodium acetate (98 mg, 1.00 mmol) were dissolved in 2-methoxyethanol (20 mL), and the reaction mixture was heated to reflux under stirring overnight. After evaporating the solvent, the aqueous phase was separated and extracted with dichloromethane (3×25 mL). The crude compound was purified by silica gel column chromatography eluting
with a 3:2 mixture of hexane and ethyl acetate. Finally, the resulting solid was dissolved in a mixture of acetone (5 mL) and 1M NaOH solution (5 mL). The solution was heated to reflux under N₂ for 12 h. After completing the hydrolysis, the solvent was removed and solid was dissolved in water (10 mL) and was titrated with 2 M HCl to pH 3 to afford a brown precipitate. This brown product was washed with ethyl acetate and acetone in sequence, yield: 67 mg, 33%.

Spectral data of TFRS-4: MS (FAB, ¹⁰²Ru): m/z 1167 (M)+. ¹H NMR (400 MHz, d₆-DMSO, 298 K): δ 8.95 (s, 2H), 8.24 (d, J = 6.0 Hz, 4H), 7.80 (d, J = 4.0 Hz, 2H), 7.76 (dd, J = 1.6, 6.0 Hz, 2H), 7.45 ~ 7.43 (m, 4H), 7.21 (d, J = 4.0 Hz, 2H), 7.04 (d, J = 6.0 Hz, 2H), 2.89 (t, J = 7.2 Hz, 4H), 1.57 ~ 1.49 (m, 4H), 1.35 ~ 1.15 (m, 12H), 0.79 (t, J = 7.0 Hz, 6H). Anal. Calcd. for C₅₀H₄₆F₆N₈O₄RuS₄·3H₂O: C, 49.21; N, 9.18, H, 4.30. Found: C, 48.98; N, 8.97, H, 4.01.

Synthesis of TFRS-21. A similar procedure was used as described for TFRS-4, starting from 3-trifluoromethyl-5-(2-pyridyl)triazole (75 mg, 0.350 mmol). The residue was purified by silica gel column chromatography and eluting with a 3:2 mixture of hexane and ethyl acetate. The sensitizer **TFRS-21** was obtained as a dark red solid; yield: 25 mg, 20%.

Spectral data of TFRS-21: MS (FAB, ¹⁰²Ru): m/z 772 (M)+. ¹H NMR (400 MHz, d₆-DMSO, 298 K): δ 9.01 (s, 2H), 8.10 (t, J = 8.0 Hz, 4H), 7.97 (t, J = 7.6 Hz, 2H), 7.79 (d, J = 6.0 Hz, 2H), 7.24 (t, J = 7.2Hz, 4H), 7.33 (d, J = 6.0 Hz, 2H). Anal. Calcd. for C₂₈H₁₆F₆N₁₀O₄Ru·2H₂O: C,41.64 N,17.34; H,2.50. Found: C,41.64; N,16.84; H,2.62.

Synthesis of TFRS-22 and -24. These sensitizers were obtained as a dark red solid in 18% and 15%, respectively.

Spectral data of TFRS-22: MS (FAB, ¹⁰²Ru): m/z 1104 (M)+. ¹H NMR (400 MHz, d₆-DMSO, 298 K): δ 9.01 (s, 2H), 8.23 (d, J = 6.0 Hz, 4H), 8.17 (s, 2H), 7.81 ~ 7.79 (m, 4H), 7.63 (dd, J = 1.6, 8.0 Hz, 2H), 7.23 (d, J = 6.0 Hz, 2H), 6.94 (d, J = 3.2 Hz, 2H), 2.80 (t, J = 7.2 Hz, 4H), 1.61 ~ 1.55 (m, 4H), 1.23 (s, 12H), 0.81 (t, J = 6.0 Hz, 6H).
Anal. Calcd. for C$_{48}$H$_{44}$F$_{6}$N$_{10}$O$_{4}$RuS$_{2}$·3H$_2$O: C, 49.78; N, 12.09; H, 4.35. Found: C, 49.61; N, 11.74; H, 4.36.

Spectral data of TFRS-24: MS (FAB, 102Ru): m/z 1169 (M)$^+$. 1H NMR (400 MHz, d$_6$-DMSO, 298 K): δ 9.04 (d, J = 1.6, 2H), 8.26 (d, J = 6.0 Hz, 2H), 8.22 (d, J = 2.4, 2H), 7.92 (d, J = 4.0, 2H), 7.82 (dd, J = 1.6, 8.0 Hz, 2H), 7.68 (dd, J = 2.0, 4.0 Hz, 2H), 7.27 (d, J = 6.0 Hz, 2H), 7.23 (d, J = 4.0 Hz, 2H), 2.94 (t, J = 7.2 Hz, 4H), 1.60 ~ 1.53 (m, 4H), 1.39 ~ 1.20 (m, 12H), 0.82 (t, J = 6.9 Hz, 6H). Anal. Calcd. for C$_{48}$H$_{44}$F$_{6}$N$_{10}$O$_{4}$RuS$_{2}$·2H$_2$O: C, 47.87; N, 11.63; H, 4.02. Found: C, 47.70; N, 11.42; H, 4.01.

Device fabrication

Fluorine-doped tin oxide (FTO) coated glasses (3.2 mm thickness, sheet resistance of 9 Ω/cm2, Pilkington) were washed with detergent, water, acetone and ethanol, sequentially. After treatment in a UV-O$_3$ system for 15 min (PSD series UV-ozone cleaning, Novascan Technologies, Inc.), the FTO glass plates were immersed into a 40 mM aqueous TiCl$_4$ solution at 70 °C for 30 min and rinsed with water and ethanol. The photoanodes composed of nanocrystalline TiO$_2$ were prepared using literature procedures.53 The TiO$_2$ electrodes of 12 µm thickness were deposited on transparent conducting glass, on which a 6 µm light-scattering layer containing 400 nm TiO$_2$ particles (PST-400, JGC Catalysts and Chemicals, Japan) was screen-printed (active area, 0.16 cm2). The TiO$_2$ electrodes were heated under air flow at 325 °C for 30 min, followed by heating at 375 °C for 5 min, 450 °C for 15 min, and 500 °C for 30 min. The TiO$_2$ electrodes were treated with a 40 mM aqueous solution of TiCl$_4$ at 70 °C for 30 min and then washed with water and ethanol. The electrodes were sintered again at 500 °C for 30 min and left to cool to 80 °C before dipping them into the dye solution (0.3 mM) for 18 h at 25 °C. The dye solution was prepared in absolute ethanol with 20% (v/v) dimethyl sulfoxide (DMSO). The Pt-coated counter electrodes were prepared using a 5 mM H$_3$PtCl$_6$ solution in isopropyl alcohol, followed by heating at 400 °C for 15 min. The dye sensitized TiO$_2$ electrodes were assembled with Pt counter electrodes by
inserting a hot-melt Surlyn film (Meltonix 1170-25, 25 µm, Solaronix) as spacer. The electrolyte solution, which consists of 0.6 M 1-methyl-3-propylimidazolium iodide (PMII), 0.03 M iodine, 0.5 M tert-butylpyridine (TBP), 0.1 M guanidinium thiocyanate (GNCS) and 0.05 M LiI in a 15:85 (v/v) mixture of valeronitrile and acetonitrile, is injected into the cell through a pre-drilled hole at the counter electrode. Finally, the hole was sealed using a hot-melt Surlyn film and a cover glass. In order to reduce scattered light from the edge of glass electrodes of dyed TiO$_2$ layer, all devices were covered with a light-shading mask with size of 0.6 × 0.6 cm2.

Photovoltaic Characterization

Photovoltaic measurements were recorded with a Newport Oriel Class A Solar Simulator (Model 91159) equipped with a class A 150 W xenon light source powered by a Newport power supply (Model 69907). The light output (area: 2 × 2 in2) was calibrated to AM 1.5 using a Newport Oriel correction filter to reduce the spectra mismatch in the region of 350–750 nm to less than 4 %. The power output of the lamp was measured to 1 Sun (100 mW cm$^{-2}$) using a certified Si reference cell (SRC-1000-TC-QZ, VLSI standard S/N: 10510-0031). The current voltage characteristic of each cell was obtained by applying an external potential bias to the cell and measuring the generated photocurrent with a Keithley digital source meter (Model 2400). The spectra of incident photon-to-current conversion efficiency (IPCE) were calculated with the equation of $1240 \cdot J_{SC}(\lambda)/(\lambda \cdot P_{in}(\lambda))$ and were plotted as a function of incident wavelength with an increment of 10 nm. It should be noted that 20 sets of J_{SC} (interval 50 ms) were collected after each illumination of 3 seconds and were averaged for calculation of IPCE.55 A 300 W Xe lamp (Model 6258, Newport Oriel) combined with an Oriel cornerstone 260 1/4 m monochromator (Model 74100) provided an unchopped monochromatic beam onto a photovoltaic cell. The beam intensity was calibrated with a power meter (Model 1936-C, Newport) equipped with a Newport 818-UV photodetector. Photovoltaic performance was measured using a metal mask with an aperture area of 0.36 cm2.
Laser spectroscopy

Dye-loaded, 3-um-thick transparent nanocrystalline TiO$_2$ films were used to study electron injection, electron back reaction and dye regeneration processes using Nanosecond and femtosecond transient absorption spectrophotometer. Pulsed excitation (λ) 550 nm, 5 ns fwhm pulse duration, 20 μJ/cm2 pulse energy fluence, 30 Hz repetition rate) was provided by an optical parametric oscillator (OPO, GWU OPO-355) pumped by a frequency-tripled, Q-switched Nd:YAG laser (Continuum, Powerlite 7030). These conditions ensure that, at most, one electron is injected per TiO$_2$ particle at a time. The probe light from a Xe arc lamp was passed through filters, various optical elements, the sample, and a second grating mono-chromator, before being detected by a fast photomultiplier tube and recorded by a digital oscilloscope. The transient probe signal measured at $\lambda = 700$ nm corresponds to the time evolution of the absorbance of the oxidized state of the dye (S^+) as deduced from previously recorded transient absorption spectra. The transient decay observed corresponds to the lifetime of S^+ in the presence or absence of a redox electrolyte. Traces were obtained by averaging over 3000 laser shots.
Table 1. Photophysical and electrochemical data of the studied TFRS sensizers.

<table>
<thead>
<tr>
<th>dye</th>
<th>λ_{abs} [nm] ($\varepsilon \times 10^3$ [Lmol$^{-1}$cm$^{-1}$])</th>
<th>$E_{\text{oxygen}}^{\text{ox}}$ [a]</th>
<th>E_{0-0}</th>
<th>$E_{\text{oxygen}}^{\text{ox}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFRS-1</td>
<td>300 (40), 405 (15), 515 (9)</td>
<td>0.91</td>
<td>1.98</td>
<td>−1.07</td>
</tr>
<tr>
<td>TFRS-2</td>
<td>309 (48), 328 (40, sh), 426 (16), 481 (19, sh), 516 (15, sh)</td>
<td>0.90</td>
<td>1.91</td>
<td>−1.01</td>
</tr>
<tr>
<td>TFRS-4</td>
<td>309 (33), 341 (32), 433 (15), 501 (22)</td>
<td>0.93</td>
<td>1.97</td>
<td>−1.04</td>
</tr>
<tr>
<td>TFRS-21</td>
<td>303 (17), 396 (11), 499 (8)</td>
<td>1.16</td>
<td>2.07</td>
<td>−0.91</td>
</tr>
<tr>
<td>TFRS-22</td>
<td>308 (27), 318 (26, sh), 417 (10), 473 (17)</td>
<td>1.10</td>
<td>2.05</td>
<td>−0.95</td>
</tr>
<tr>
<td>TFRS-24</td>
<td>304 (20), 334 (14), 360 (12, sh), 429 (8), 485 (17)</td>
<td>1.08</td>
<td>2.07</td>
<td>−0.99</td>
</tr>
</tbody>
</table>

[a] Oxidation potential was measured in DMF with 0.1 M [TBA][PF$_6$] and with a scan rate of 50 mVs$^{-1}$. It was calibrated with Fc/Fc$^+$ as internal reference and converted to NHE by addition of 0.63 V.
Table 2. Comparison of the calculated ground (E_{ox}^{c}) and excited ($E_{ox}^{\text{c*}}$) state oxidation potentials of the studied TFRS sensitizers.

<table>
<thead>
<tr>
<th>Dye</th>
<th># H$^+$</th>
<th>E_{ox}^{c} a</th>
<th>$S_0 \rightarrow S_1$</th>
<th>$E_{ox}^{\text{c*}}$ b</th>
<th>E_{ox}^{c} c (V vs. NHE / eV vs. vacuum)</th>
<th>$E_{ox}^{\text{c*}}$ c (V vs. NHE / eV vs. vacuum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFRS-1</td>
<td>2</td>
<td>5.78</td>
<td>1.88</td>
<td>3.90</td>
<td>0.91 / 5.35</td>
<td>-1.07 / 3.37</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.55</td>
<td>1.99</td>
<td>3.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.34</td>
<td>2.35</td>
<td>2.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRS-2</td>
<td>2</td>
<td>5.75</td>
<td>1.87</td>
<td>3.88</td>
<td>0.90 / 5.34</td>
<td>-1.01 / 3.43</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.53</td>
<td>1.98</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.32</td>
<td>2.34</td>
<td>3.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRS-4</td>
<td>2</td>
<td>5.67</td>
<td>1.87</td>
<td>3.80</td>
<td>0.93 / 5.37</td>
<td>-1.04 / 3.40</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.52</td>
<td>1.97</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.32</td>
<td>2.34</td>
<td>2.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRS-21</td>
<td>2</td>
<td>6.01</td>
<td>2.03</td>
<td>3.98</td>
<td>1.16 / 5.60</td>
<td>-0.91 / 3.53</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.77</td>
<td>2.14</td>
<td>3.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.57</td>
<td>2.51</td>
<td>3.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRS-22</td>
<td>2</td>
<td>5.95</td>
<td>2.01</td>
<td>3.94</td>
<td>1.10 / 5.54</td>
<td>-0.95 / 3.49</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.74</td>
<td>2.12</td>
<td>3.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.54</td>
<td>2.49</td>
<td>3.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFRS-24</td>
<td>2</td>
<td>5.74</td>
<td>2.00</td>
<td>3.74</td>
<td>1.08 / 5.52</td>
<td>-0.99 / 3.45</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.63</td>
<td>2.12</td>
<td>3.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5.49</td>
<td>2.48</td>
<td>3.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The calculated E_{ox}^{c} values are obtained by taking the negative of the HOMO energy.

b $E_{ox}^{\text{c*}}$ is calculated as $E_{ox}^{\text{c}} - (S_0 \rightarrow S_1)$

c Oxidation potentials vs. NHE have been converted on the vacuum scale by addition of 4.44 V.
Table 3. The performances for DSCs measured under AM 1.5G one sun irradiation.

<table>
<thead>
<tr>
<th>Dye</th>
<th>J_{sc} [mAcm$^{-2}$]</th>
<th>V_{oc} [V]</th>
<th>FF</th>
<th>η [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFRS-1</td>
<td>16.0</td>
<td>0.76</td>
<td>0.712</td>
<td>8.66</td>
</tr>
<tr>
<td>TFRS-2</td>
<td>17.3</td>
<td>0.77</td>
<td>0.723</td>
<td>9.63</td>
</tr>
<tr>
<td>TFRS-4</td>
<td>18.7</td>
<td>0.75</td>
<td>0.729</td>
<td>10.2</td>
</tr>
<tr>
<td>TFRS-21</td>
<td>14.1</td>
<td>0.79</td>
<td>0.695</td>
<td>7.74</td>
</tr>
<tr>
<td>TFRS-22</td>
<td>15.4</td>
<td>0.74</td>
<td>0.728</td>
<td>8.30</td>
</tr>
<tr>
<td>TFRS-24</td>
<td>15.5</td>
<td>0.72</td>
<td>0.739</td>
<td>8.25</td>
</tr>
<tr>
<td>N719</td>
<td>17.4</td>
<td>0.72</td>
<td>0.761</td>
<td>9.52</td>
</tr>
</tbody>
</table>
Figure 1. (a) UV-Vis absorption spectra of a 1.2×10^{-5} M solution of TFRS-1, -2 and -4 in DMF; (b) the spectra of TFRS-21, -22 and -24 recorded under the identical condition.
Figure 2. UV-Vis spectra of (a) TFRS-4 and (b) TFRS-24 recorded in DMF and at different concentrations.
Figure 3. Isodensity plot (isodensity value 0.035) of the HOMO and selected LUMOs of TFRS-4 and -24.
Figure 4. Schematic representation of the energy levels of the doubly protonated (a), mono protonated (b), and doubly deprotonated (c), of TFRS-4 and -24 sensitizers.
Figure 5. Comparison between the experimental (blue lines) and calculated (red lines) optical absorption spectra for the sensitizers TFRS-4 and -24. The intensity of the experimental spectra was rescaled to match those of the computed visible maximum. Vertical lines correspond to unbroadened oscillator strengths.
Figure 6. (a) IPCE spectra for DSCs sensitized with various TFRS dyes, and (b) J-V characteristics measured under AM 1.5 condition.
Figure 7. Electron (a) capacitance and (b) lifetime determined with photocurrent and photovoltage decay measurements of devices with TFRS-4 and -24.
Figure 8. Transient absorbance kinetics of TFRS-4 and TFRS-24, adsorbed on a nanocrystalline TiO$_2$ film in presence of redox inactive medium monitored at 530 nm, reflecting ultrafast electron injection from dye to conduction band of TiO$_2$.
Figure 9. Transient absorbance decay kinetics of oxidized state of dye adsorbed on TiO$_2$ nanocrystalline film (a) in presence of MPN solvent (black) and (b) iodide based electrolyte for TFRS-4 and TFRS-24 highlighted in red and blue respectively. The solid lines are fits to first order exponential function giving fitting rate constants of 60000 s$^{-1}$ and 110000 s$^{-1}$ respectively TFRS-4 and TFRS-24.

