Rodrigo Costa do Amaral

DIMENSIONAMENTO DE FUNDAÇÕES PARA TORRES METÁLICAS DE LINHA DE TRANSMISSÃO DE ENERGIA ELÉTRICA

Trabalho de Conclusão de Curso submetido ao Departamento de Engenharia Civil da Universidade Federal de Santa Catarina para a obtenção do Grau de Engenheiro Civil. Orientador: Prof^o Jano D'Araujo Coelho, Dr. Coorientador: Paulo Celso Pamplona Silva Junior, Dr

Florianópolis 2015 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

```
Amaral, Rodrigo Costa do
  Dimensionamento de fundações para torres metálicas de
linha de transmissão de energia elétrica / Rodrigo Costa
do Amaral ; orientador, Jano D'Araújo Coelho ;
coorientador, Paulo Celso Pamplona Silva Junior. -
Florianópolis, SC, 2015.
  157 p.
  Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico.
Graduação em Engenharia Civil.
   Inclui referências
  1. Engenharia Civil. 2. Estruturas de fundações em
concreto. 3. Linha de transmissão de energia elétrica. 4.
Sapata. 5. Tubulão. I. Coelho, Jano D'Araújo. II. Silva
Junior, Paulo Celso Pamplona. III. Universidade Federal de
Santa Catarina. Graduação em Engenharia Civil. IV. Título.
```

Rodrigo Costa do Amaral

DIMENSIONAMENTO DE FUNDAÇÕES PARA TORRES METÁLICAS DE LINHA DE TRANSMISSÃO DE ENERGIA ELÉTRICA

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do grau de Engenharia Civil e aprovado em sua forma final pelo Departamento de Engenharia Civil da Universidade Federal de Santa Catarina

Local, 26 de novembro de 2015.

Prof. Luis Alberto Gomez, Dr. Coordenador do Curso

Banca Examinadora:

Prof^oJano D'Araujo Coelho, Dr. Orientador Universidade Federal de Santa Catarina

C.J.A

Eng. Paulo Celso Pariplona Silva Junior, Dr. Coorientador Fluxo Engenharia

Prof[®] Daniel Domingues Loriggio, Dr. Universidade Federal de Santa Catarina

Aos meus pais, José Almir e Ana Lúcia.

AGRADECIMENTOS

Agradeço em primeiro lugar a minha família, pelo incentivo e amor incondicional.

Ao meu orientador, professor Jano D'Araújo Coelho, pelos ensinamentos, disponibilidade e paciência que houvera para explicar-me conceitos relacionados ao presente trabalho.

Ao meu coorientador, engenheiro Paulo Celso Pamplona Silva Jr., por sua orientação, apoio e contribuição essencial neste trabalho.

Ao engenheiro Gabriel Cabrinni dos Santos, por suas sugestões e ser sempre solícito quando procurava sanar minhas dúvidas.

À CYMIMASA representada pelo engenheiro Johab Santiago da Silva, pela permissão para utilizar documentos e projetos para o Estudo de Caso neste presente trabalho.

E, por fim, aos meus queridos amigos, pelo companheirismo e momentos agradáveis ao longo dessa jornada inesquecível que é a graduação.

RESUMO

O dimensionamento de fundações de torres de linhas de transmissão de energia elétrica (LT) em grande parte são englobados nos denominados projetos-tipos. Tais projetos têm como objetivo viabilizar a produção de projetos executivos de um grande número de fundações em uma dada LT. Apesar de serem empregados fundações usuais na engenharia civil, peculiaridades exigem atenção quanto ao emprego delas em torres de linhas de transmissão. Entre essas tem-se a solicitação característica de fundações de torre de linhas de transmissão, a tração sobre a fundação, o chamado arrancamento. No presente trabalho fez-se o estudo e o dimensionamento, geotécnico e estrutural, de estruturas de fundações do tipo sapata e tubulão empregados em torres autoportantes que compõem uma linha de transmissão. Atentou-se em fazer um prefácio no que tange o assunto, mesmo que breve, sobre torres utilizadas e etapas que antecedem o dimensionamento. Aplicou-se o conteúdo apresentado ao longo do trabalho à prática, montando-se uma sequência de cálculo e, por fim, o dimensionamento de um estudo de caso. Para o presente trabalho, dois tipos de torres utilizadas na linha de transmissão serão objetos de estudo: a de suspensão (SP5) e a de ancoragem (AT5). O dimensionamento geotécnico dos tubulões demonstraram, tanto para as torres do tipo SP5 quanto para as do tipo AT5 que a solicitação de arrancamento foi a verificação determinante para a geometria da fundação em solos de melhor competência. Já para solos mais fracos a compressão do solo foi a verificação que determinou a geometria. O deslocamento do topo dessas fundações no estado limite de utilização foi de 4,0 e 2,7 cm, respectivamente, para as torres SP5 e AT5. Para as sapatas das torres do tipo SP5 assentadas sobre leito de qualidade inferior, a verificação ao arrancamento ditou as dimensões das fundações. Sapata em solo com maior porte foi limitado pela verificação ao tombamento. As fundações rasas para as AT5 tiveram como determinante a verificação ao arrancamento. Em se tratando do dimensionamento estrutural, o carregamento de flexo-tração que os fustes de tubulões e sapatas estão submetidos nas hipóteses de tração da fundação foi o que determinou a armadura longitudinal.

Palavras-chave: Estrutura de fundações em concreto, Linha de transmissão de energia elétrica, tubulão, sapata.

LISTA DE FIGURAS

Figura 1 – Componente transversal de torres em ângulo
Figura 2 - Torres de linha de transmissão do tipo autoportante (a) e
estaiada (b)
Figura 3 - Vão de peso de uma torre32
Figura 4 - Efeito cascata devido uma tempestade, maio de 2006, na
República Tcheca32
Figura 5 - Árvores de carregamentos em torres de LT33
Figura 6 - Ação do vento sobre um tronco de torre
Figura 7 - Ruptura de cabo e redistribuição de esforços longitudinais.
Figura 8 - Silhueta de torre autoportante com identificação de
constituinte35
Figura 9 - Ligação entre a torre autoportante e fundação37
Figura 10 - Esquemático de tubulão sem base com stub
Figura 11 – Esquemático da sapata com fuste com mesma inclinação
que o stub
Figura 12 - Poço de inspeção com 3 metros de profundidade,
Juazeiro/BA42
Figura 13 - Mecanismo de ruptura dos solos46
Figura 14 - Comportamento de uma sapata sob carga vertical46
Figura 15 - Diferença de reação do solo solicitado por um corpo
rígido do modelo Winkler e o meio contínuo49
Figura 16 - Reação do solo arenoso e argiloso, respectivamente50
Figura 17 - Mecanismos de ruptura52
Figura 18 - Distribuição de pressões e diagrama de momentos
fletores ao longo da estaca curta para solo arenosos e argiloso,
respectivamente53
Figura 19 - Reação do solo argiloso ao esforço horizontal54
Figura 20 - Superfície de ruptura do solo pelo Método do Cone 55
Figura 21 -Superfície de ruptura para fundação rasa proposta pelo
método do Cilindro de Atrito56
Figura 22 - Superfície de ruptura para tubulão sem base ou estaca e
tubulão com base, respectivamente, propostas pelo método do
Cilindro de Atrito57

Figura 23 - Superfície de ruptura equiva	alente para estaca ou
tubulão sem base.	
Figura 24 - Mecanismos de ruptura para sa	apatas em solos fracos com
D_Dc.	
Figura 25 - Mecanismos de ruptura para sa	apatas em solos fracos com
D>Dc.	
Figura 26 - Mecanismos de ruptura para sa	apatas em solos de boa
capacidade.	
Figura 27 - Esforços das fundações no eix	o global63
Figura 28 - Métodos de verificação da seg	urança em fundações65
Figura 29 - Localização da área de estudo.	
Figura 30 - Silhueta de seção transversal o	de torre autoportante do
SP5	69
Figura 31 - Silhueta de seção transversal o	le torre autoportante do
AT5	70
Figura 32 - Esquemático de tubulão com b	oase alargada com
dimensões indicadas.	74
Figura 33 - Base do tubulão	78
Figura 34 - Elemento de barra com os veto	pres de deslocamentos
translacionais e rotacionais	79
Figura 35 - Esforços internos em elemento	os de barra no software
SAP2000	80
Figura 36 - Área de influência do módulo	de reação do solo82
Figura 37 - Força de reação do solo em fu	nção do deslocamento82
Figura 38 – Segmentos de linha que corres	sponderão no SAP2000 a
elementos de barra	84
Figura 39 – Importando os segmentos de l	inha para o SAP2000 em
forma de elementos de barra (frame) em d	estaque84
Figura 40 – Modelo para verificação do de	eslocamento dos tubulões
proposto	86
Figura 41 - Esquemático de sapata com fu	ste inclinado com
dimensões indicadas.	
Figura 42 - Base da fundação retangular se	ubmetida a uma carga
vertical e a dois momentos.	
Figura 43 - Desenhos de tubulões com bas	se com dimensões para
torres SP5 com solos tipo I e II, respectiva	1.mente94

Figura 44 - Desenhos de tubulões com dimensões para torres AT5
com solos tipo I e II, respectivamente102
Figura 45 - Disposição das armaduras para tubulões
Figura 46 - Gráfico Reação de molas x Extensão do tubulão para
SP5
Figura 47 - Gráfico Reação de molas x Extensão do tubulão para SP5
Figura 48 - Variação das reações nas molas com a extensão dos
tubulões
Figura 49 – Variação dos momentos fletores com a extensão dos
tubulões
Figura 50 – Desenhos de sapatas com dimensões para torres SP5
com solos tipo I e II, respectivamente115
Figura 51 – Desenhos de sapatas com dimensões para torres AT5
com solos tipo I e II, respectivamente125
Figura 52 - Planta e disposição das armaduras na seção longitudinal
das sapatas136

LISTA DE TABELAS

Tabela 1 - Tabela dos estados de compacidade e de consistência	43
Tabela 2 - Índice de qualidade da rocha.	43
Tabela 3 - Limites para os parâmetros geotécnicos para solos	44
Tabela 4 - Limites para os parâmetros geotécnicos para rochas	45
Tabela 5 - Valores típicos do coeficiente de reação horizontal para	
areias propostos por Terzaghi	50
Tabela 6 - Valores típicos do coeficiente de reação horizontal para	
argilas sobreadensadas propostos por Terzaghi	51
Tabela 7 - Valores típicos do coeficiente de reação horizontal para	
argilas e solos orgânicos	51
Tabela 8 - Fatores de segurança globais mínimos	66
Tabela 9 - Parâmetros geotécnicos utilizados para o estudo de caso	•
	72
Tabela 10 – Módulo de elasticidade do solo (kN/m ²)	83
Tabela 11 - Resumo de cargas críticas nos eixos globais para torre	
SP5	94
Tabela 12 - Resumo de cargas máximas críticas nos eixos globais	
para torre AT51	02
Tabela 13 - Resumo de cargas críticas nos eixos globais para torre	
SP51	11
Tabela 14 - Resumo de cargas máximas críticas no eixo local para	
torre SP51	15
Tabela 15 - Resumo de cargas máximas críticas no eixo local para	
torre AT51	25

LISTA DE QUADROS

Quadro 31 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo I
Quadro 32 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo I95
Quadro 33 - Tensão de rupura e admissível para solo tipo I95
Quadro 34 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo II96
Quadro 35 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo II96
Quadro 36 - Tensão de rupura e admissível para solo tipo II96
Quadro 3 - Dados de entrada para a verificação da tensão média de
compressão para solo tipo I97
Quadro 4 - Dados de entrada para a verificação da tensão média de
compressão para solo tipo II97
Quadro 5 - Verificação à compressão do solo97
Quadro 6 - Verificação de tombamento do tubulão97
Quadro 7 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo I98
Quadro 8 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo II98
Quadro 9 - Verificação ao arrancamento do tubulão99
Quadro 10 - Dimensionamento da armadura longitudinal
Quadro 11 - Verificação do cisalhamento do fuste
Quadro 12 - Verificação da compressão da diagonal de concreto. 100
Quadro 13 - Verificação da tração na armadura transversal 100
Quadro 14 - Detalhamento de armaduras de tubulão para torre SP5
com solo tipo I100
Quadro 15 - Detalhamento de armaduras de tubulão para torre SP5
com solo tipo II101
Quadro 16 - Levantamento de quantidade de materiais para tubulão
para torre SP5101
Quadro 17 - Dados de entrada para a verificação da tensão média de
compressão para solo tipo I102

Quadro 31 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo I103
Quadro 32 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo I103
Quadro 33 - Tensão de rupura e admissível para solo tipo I103
Quadro 34 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo II104
Quadro 35 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo II104
Quadro 36 - Tensão de rupura e admissível para solo tipo II104
Quadro 18 - Dados de entrada para a verificação da tensão média de
compressão para solo tipo II105
Quadro 19 - Verificação à compressão do solo105
Quadro 20 - Verificação de tombamento do tubulão105
Quadro 21 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo I106
Quadro 22 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo II106
Quadro 23 - Verificação ao arrancamento do tubulão107
Quadro 24 - Dimensionamento da armadura longitudinal107
Quadro 25 - Verificação do cisalhamento do fuste108
Quadro 26 - Verificação da compressão da diagonal de concreto108
Quadro 27 - Verificação da tração na armadura transversal108
Quadro 28 - Detalhamento de armaduras de tubulão para torre AT5
com solo tipo I
Quadro 29 - Detalhamento de armaduras de tubulão para torre AT5
com solo tipo II109
Quadro 30 - Levantamento de quantidade de materiais para tubulão
para torre AT5109
Quadro 1 - Módulos de reação utilizados para tubulões de torre SP5.
Quadro 2 - Módulos de reação utilizados para tubulões de torre AT5.

Quadro 31 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo I
Quadro 32 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo I
Quadro 33 - Tensão de rupura e admissível para solo tipo I 116
Quadro 34 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo II117
Quadro 35 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo II117
Quadro 36 - Tensão de rupura e admissível para solo tipo II 117
Quadro 37 - Dados de entrada para a verificação da tensão média de
compressão, tensão de borda, deslizamento e tombamento para
fundações assentadas em solos tipo I118
Quadro 38 - Dados de entrada para a verificação da tensão média de
compressão, tensão de borda, deslizamento e tombamento para
fundações assentadas em solos tipo II118
Quadro 39 - Verificação à compressão do solo118
Quadro 40 - Verificação à compressão de borda no solo119
Quadro 41 - Verificação do deslizamento da sapata
Quadro 42 - Verificação do tombamento
Quadro 43 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo I119
Quadro 44 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo II120
Quadro 45 - Verificação do arrancamento
Quadro 46 - Armadura de flexão pelo método das bielas
Quadro 47 - Armadura de flexão inferior pelo método proposto no
item 17.3.5.2.1 da NBR:6118121
Quadro 48 - Armadura de flexão superior pelo método proposto no
item 17.3.5.2.1 da NBR-6118:2003
Quadro 49 - Cálculo de armadura longitudinal do fuste
Quadro 50 - Verificação do cisalhamento no fuste
Quadro 51 - Verificação da compressão da diagonal de concreto. 123
Quadro 52 - Verificação da tração na armadura transversal123

Quadro 53 – Detalhamento de armaduras de sapata para torre SP5
para solo tipo I
Quadro 54 – Detalhamento de armaduras de sapata para torre SP5
para solo tipo II124
Quadro 55- Levantamento de quantidade de materiais de sapata para
torre SP5124
Quadro 31 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo I126
Quadro 32 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo I126
Quadro 33 - Tensão de rupura e admissível para solo tipo I126
Quadro 34 - Parâmetros utilizados para a determinação da tensão de
ruptura pelo método de Terzaghi para fundação assentada em solos
tipo II127
Quadro 35 - Fatores de carga e forma utilizadas para determinação
de tensão de ruptura para solos tipo II127
Quadro 36 - Tensão de rupura e admissível para solo tipo II127
Quadro 56 - Dados de entrada para a verificação da tensão média de
compressão, tensão de borda, deslizamento e tombamento para
fundações assentadas em solos tipo I128
Quadro 57 - Dados de entrada para a verificação da tensão média de
compressão, tensão de borda, deslizamento e tombamento para
fundações assentadas em solos tipo II128
Quadro 58 - Verificação à compressão do solo129
Quadro 59 - Verificação à compressão de borda no solo129
Quadro 60 - Verificação do deslizamento da sapata129
Quadro 61 - Verificação do tombamento129
Quadro 62 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo I130
Quadro 63 - Parâmetros utilizados para verificação do arrancamento
de sapatas assentadas em solos do tipo II130
Quadro 64 - Verificação do arrancamento131
Quadro 65 - Armadura de flexão pelo método das bielas131
Quadro 66 - Armadura de flexão inferior pelo método proposto no
item 17.3.5.2.1 da NBR-6118:2003132

Quadro 67 - Armadura de flexão superior pelo método proposto no
item 17.3.5.2.1 da NBR-6118:2003
Quadro 68 - Cálculo de armadura longitudinal do fuste
Quadro 69 - Verificação do cisalhamento no fuste
Quadro 70 - Verificação da compressão da diagonal de concreto. 134
Quadro 71 - Verificação da tração na armadura transversal134
Quadro 72 – Detalhamento de armaduras de sapata para torre AT5
para solo tipo I
Quadro 73 – Detalhamento de armaduras de sapata para torre AT5
para solo tipo II
Quadro 74- Levantamento de quantidade de materiais de sapata para
torre AT5
Quadro 75 - Resumo de ângulos φ e raios equivalente149
Quadro 76 - Hipóteses de carregamentos para a torre SP5
Quadro 77 - Hipóteses de carregamentos para a torre AT5 com
função a ancoragem e terminal, respectivamente154

SUMÁRIO

INT	RODUÇÃO	27
1.1	Objetivo Geral	27
1.2	Objetivos Específicos	28
1.3	Apresentação do conteúdo	28
REV	VISÃO BIBLIOGRÁFICA	29
2.1	Torres de linhas de transmissão	29
2.2	Carregamentos	31
2.2.	1 Hipóteses de Carregamento	34
2.3	Ligação entre a torre e a fundação	36
2.4	Fundações utilizadas em linhas de transmissão	37
2.4.	1 Tubulões	38
2.4.	2 Sapatas	39
2.5	Investigação geológica e geotécnica	40
2.5.	1 Sondagem a trado	41
2.5.	2 Poços de inspeção	41
2.5.	3 Sondagem a percussão	42
2.5.	4 Sondagem rotativa	43
2.6	Tipificação dos solos	44
2.7 fundaç	Resistência do solo quanto às solicitações das estrutura ções	s de 45
2.7.	1 Resistência à compressão	45
2.7.	2 Resistência do solo a esforços laterais	48
2	.7.2.1 Winkler	48
2 E	.7.2.2 Análise no estado de serviço e verificações nos ELS proposto por Calvacanti e Falcão (2004)	51
2	.7.2.3 Método de Broms	52
	INT 1.1 1.2 1.3 REV 2.1 2.2 2.2 2.3 2.4 2.4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	INTRODUÇÃO 1.1 Objetivo Geral 1.2 Objetivos Específicos 1.3 Apresentação do conteúdo REVISÃO BIBLIOGRÁFICA

	2.7.	3	Resistência do solo ao esforço de arrancamento .	55
	2	.7.3.1	Método do Cone	55
	2	.7.3.2	Método do Cilindro de Atrito	56
	2	.7.3.3	Método Grenoble	57
	2.8	Trata	amento dos carregamentos das fundações	62
	2.9	Méto	odos de verificação da segurança das fundações	64
	2.10	Méto	odo das Tensões Admissíveis	65
3	ME	TODC	DLOGIA	67
	3.1	Estu	do de caso: LT 500 kV Quixadá– Açu III	67
	3.1.	1	Torres estudadas	67
	3.1.	2	Caracterização do solo	71
	3.2 fundaç	Cons ções	siderações gerais para os procedimentos de cálcu	lo das 73
	3.3	Cara	cterização dos materiais empregados	73
	3.4 e estru	Proc utural o	edimento de cálculo para dimensionamento geoté le fundações do tipo tubulão	écnico 74
	3.4.	1	Verificação à compressão do solo	74
	3.4.	2	Verificação ao tombamento	75
	3.4.	3	Verificação ao arrancamento da fundação	75
	3.4.	4	Cálculo estrutural da fundação	76
	3.4.	5	Base de tubulões com base alargada	78
	3.4.	6	Deslocamento dos tubulões	78
	3 S	.4.6.1 AP20	Simulação de interação entre solo e estrutura 1 00 81	10
	3 e	.4.6.2 lemen	Modelo de tubulão elaborado em programa de tos finitos	83
	3.5 e estru	Proce tural o	edimento de cálculo para dimensionamento geoté de fundações do tipo sapata	écnico 86

	3.5.1	Análise no estado limite último87
	3.5.2	Cálculo estrutural da fundação90
4	RES	ULTADOS
	4.1	Dimensionamento de tubulões para torre tipo SP594
	4.1.1	Cálculo da ruptura do solo pelo método de Terzaghi 95
	4.1.2	Dimensionamento geotécnico97
	4.1.3	Dimensionamento estrutural99
	4.2	Dimensionamento de tubulões para torre tipo AT5 101
	4.2.1	Cálculo da ruptura do solo pelo método de Terzaghi 103
	4.2.2	Dimensionamento geotécnico105
	4.2.3	Dimensionamento estrutural107
	4.3	Disposição das armaduras para tubulões110
	4.4	Resultados da análise do tubulão no SAP2000111
	4.5	Dimensionamento de sapata para torre tipo SP5115
	4.5.1	Cálculo da ruptura do solo pelo método de Terzaghi 116
	4.5.2	Dimensionamento geotécnico118
	4.5.3	Dimensionamento estrutural120
	4.6	Dimensionamento de sapata para torre tipo AT5124
	4.6.1	Cálculo da ruptura do solo pelo método de Terzaghi 126
	4.6.2	Dimensionamento geotécnico128
	4.6.3	Dimensionamento estrutural131
	4.7	Disposição das armaduras para sapatas136
5	CON	CLUSÃO E CONSIDERAÇÕES FINAIS 139
6	REFI	ERÊNCIAS BIBLIOGRÁFICAS141

1 INTRODUÇÃO

O Sistema Elétrico de Potência é caracterizado pela alta voltagem de seus integrantes. De maneira geral o sistema abrange os componentes da parte de Geração, Transmissão e Distribuição de Energia. A geração da energia no país faz uso do potencial eólico, termoelétrico, nuclear e, em grande parte, do hidroelétrico. A energia gerada é fornecida aos centros de distribuição de energia para consumo da população. A ligação entre as unidades geradoras à distribuição de energia elétrica para consumo será feita por linhas de transmissão de energia elétrica (LT).

Segundo Agência Nacional de Energia Elétrica (ANEEL), 13,7 mil quilômetros de novas linhas foram outorgadas desde 1999. Destes, 7,4 mil quilômetros estão em atividade desde junho 2004. Estima-se que o sistema de transmissão nacional conta com 90 mil quilômetros (ANEEL, 2008). Essas linhas de transmissão são formadas por torres metálicas treliçadas, compostas de cabos, para-raios e isoladores que perfazem longos percursos - centenas até milhares de quilômetros. Ao longo dos trajetos, as torres estão assentadas em solos de origem e qualidades geotécnicas diversificados. Tendo em vista que as unidades geradoras encontram-se em áreas cada vez mais longínguas dos centros de consumo, aumentando-se, deste modo, o número de torres a serem empregadas; medidas devem ser tomadas a fim de tornar viável a elaboração de projetos executivos de estruturas de fundações, pois a emissão de projetos por fundação de torre é impraticável. Entre as medidas adotadas tem-se o agrupamento de projeto de fundação para torres do mesmo tipo. Outra medida é o agrupamento de projetos de fundações de torres locadas em áreas cuja competência do solo são similares entre si.

As fundações para as torres que compõem esses empreendimentos são bem conhecidas na engenharia civil, tratam-se de sapata e de tubulão. O emprego de tais estruturas de fundações em torres de linhas de transmissão, contudo, exigem atenção as suas particularidades, em especial quanto a verificação ao arrancamento e tombamento.

1.1 Objetivo Geral

O objetivo do presente trabalho é o estudo e o dimensionamento fundações utilizadas em torres de linhas de transmissão de energia elétrica quando submetidas às suas principais solicitações: compressão, arrancamento e tombamento.

1.2 Objetivos Específicos

A seguir são apresentados os objetivos específicos deste trabalho:

- Estudar os diferentes métodos de estimativas de capacidade de carga das fundações típicas quando submetidas aos esforços de compressão, arrancamento e tombamento;
- Estudar e apresentar o dimensionamento geotécnico das fundações utilizando métodos consagrados.
- Estudar e apresentar o dimensionamento estrutural das fundações típicas;
- Identificar critérios técnicos, construtivos e econômicos na escolha das fundações correntes usadas em linhas de transmissão de energia elétrica;
- Elaborar um estudo de caso com aplicação dos conceitos e conhecimentos técnicos adquiridos na elaboração de projetos executivos de fundações típicas – tubulões e sapatas – para torres autoportantes pertencentes a uma linha de transmissão de energia elétrica em fase de execução.

1.3 Apresentação do conteúdo

Inicialmente, no Capítulo 2, é realizado uma revisão bibliográfica de teses, trabalhos de conclusão de curso, livros e artigos relacionados ao tema. A seguir fez estudo dos métodos de previsões de reações que o solo impõe sobre as estruturas de fundações típicas utilizadas em linhas de transmissão de energia elétrica.

No capítulo 3 é elaborado procedimentos de cálculo para o dimensionamento geotécnico e estrutural de fundações típica de uma LT. Por fim foi apresentado um estudo de caso, cujo conhecimento adquirido durante as pesquisas feitas sobre o tema foram empregados em uma situação prática de projeto de LT.

Finalizado o dimensionamento das estruturas de fundações, os, resultados estão apresentados no Capítulo 4.

2 REVISÃO BIBLIOGRÁFICA

As linhas de transmissão conduzem energia elétrica sob tensões que variam de 69 a 750 kV (QUENTAL, 2008), tensões apropriadas para uso no Brasil. As LT têm diferentes número de fases a serem conduzidos; sendo classificado em função desta quantidade: circuito simples, circuito duplo e circuito múltiplo.

2.1 Torres de linhas de transmissão

As torres de linhas de transmissão têm como finalidade sustentar os cabos condutores e para-raios, respeitando distância de segurança, desempenho e custo (VELOZO, 2010). No Brasil as torres mais usuais são as metálicas treliçadas, pois permite-se obter estruturas altas, esbeltas, mais leve e versáteis em um espaço limitado (VELOZO, 2010). Além disso tais estruturas são modulares, facilitando a implantação em terrenos de diferentes naturezas.

As estruturas das linhas de transmissão são classificados em três principais critérios (FUCHS, 1977): sua função na linha, sistema estrutural e o material empregado. As duas primeiras serão destacadas neste trabalho dado sua influência no tipo e na magnitude dos carregamentos transmitidos para as fundações da torres. Aquela classificação será dividida entre:

- Torres de ancoragem que possuem uma subdivisão entre torres de ancoragem intermediária e ancoragem total. As intermediárias servirão como pontos de tensionamento e localizadas em pontos intermediários da linha. Já as torres de ancoragem total terão a estrutura mais robusta para que portem cargas do cabos de maneira unilateral - sem equilíbrio das cargas de tração, circunstância que há no início e no fim das LTs. Por esse motivo essas estruturas também são denominadas de torres fim de linha
- Torres de suspensão que suportam carregamentos verticais e horizontais permanentes e carregamentos devidas à ação do vento no sentido longitudinal e transversal da LT. Esforços horizontais no sentido transversal também poderão ser previstos quando estruturas adjacentes proporcionam pequena mudança angular sobre a torre no trajeto da LT devido a resultante das componentes de tração dos cabos.
- Torres em ângulo serão locadas nos pontos onde há mudança no trajeto da linha de transmissão. Estas estruturas terão de ser dimensionadas para as solicitações horizontais, transversais à LT, oriundas da formação de ângulo (Figura 1).

Figura 1 - Componente transversal de torres em ângulo

Fonte: Chave (2004, p. 28)

A outra classificação das estruturas de linhas de transmissão é em relação ao sistema estrutural que é empregado: autoportante ou estaiada A primeira tem seu equilíbrio proporcionado pela própria estrutura, sem subestruturas para garanti-lo como os estais, (CHAVES, 2004). As estruturas estaiadas utilizam elementos que reagem à tração em decorrência dos carregamentos horizontais, em especial as ações devidas ao vento. Estes estais são fixados na parte superior da estrutura e possuem um espraiamento de geralmente 30° com a vertical (figura 2.b). O uso de uma estrutura em detrimento a outra é em função da topografia local. As autoportantes são utilizadas em terreno mais acidentados devido a sua forma mais compacta. Quando há terrenos com relevos mais suaves, poderá empregar a estrutura com estais, pois haverá o espaço necessário para a ancoragem dos estais. A vantagem em utilizar estes tipos de torres e dá pelo fato de serem mais leves, sendo menos onerosas que as autoportantes. Estas, por sua vez, são torres mais robustas que transmitirão ao solo cargas de magnitude elevada. Estas estruturas serão as torres objeto de estudo neste trabalho. As autoportantes são subdivididas de acordo com sua rigidez. Elas podem ser classificadas como flexíveis, semi-flexiveis e rígidas. Em anexo A, retirado de Quental (2008, p. 11), estão expostas as principais estruturas do tipo autoportantes rígidas aplicadas geralmente em LT's nacionais. Em relação ainda às autoportantes, Chaves (2004) afirma que são geralmente empregadas em mudanças de direção e ancoragens de início e fim das LTs, Dependendo da situação as mesmas podem ser utilizadas para suspensão de condutores, mesmo que tal função seja majoritariamente feita por torres estaiadas.

Figura 2 - Torres de linha de transmissão do tipo autoportante (a) e estaiada (b).

Fonte: Garcia (2005, p. 2)

2.2 Carregamentos

As solicitações que atuam sobre a fundação são os esforços que a torre está submetida. Elas possuem diferentes naturezas e sentidos de atuação vetorial sobre a torre da LT: vertical, longitudinal e transversal. O carregamento vertical advém da força gravitacional dos componentes da torre: peso próprio da ferragem da estrutura, as cadeias de isoladores, os cabos dos circuitos e pará-raios.

Para peso de cabos de circuitos atuando sobre uma torre toma-se o carregamento oriundo do vão de peso. Esse vão é considerado como a distância horizontal entre os pontos que têm tangente horizontal com as catenárias dos vão adjacentes à torre (vide Figura 3). Há também as cargas longitudinais que são consequência da tração que os cabos de circuitos e para-raios estão submetidos. Por fim tem-se as cargas transversais à LT. Essas ocorrerão devida à ação do vento sobre os componentes da torre ou mesmo em torres que têm função de mudar o ângulo de trajeto da LT, vide figura 1.

A ação do vento têm procedimentos de quantificação indicados pela IEC-60826. Além do carregamento permanente sobre a torre de transmissão e a ação do vento, as estruturas de fundação de linhas de transmissão terão também de contemplar carregamentos associados a outras ações periódica ou acidentais que poderão ocorrer ao longo da vida útil da estrutura. É caso de manutenção ou troca de cabos dos circuitos, montagem da estrutura da torre e possíveis sinistros como rompimento de cabos dos circuitos ou para-raios e o efeito cascata sobre a LT.

Figura 3 - Vão de peso de uma torre.

Fonte: Chave (2004, p. 23)

Figura 4 - Efeito cascata devido uma tempestade, maio de 2006, na República Tcheca.

Fonte: http://w3.ufsm.br/ppgec/wp-content/uploads/Dissertacao_Thiago_Brazeiro_Carlos.pdf.

Nas análises estruturais de torres de LT os esforços que as mesmas estão submetidas são agrupadas e dispostas em desenhos esquemáticos chamados de árvores de carregamentos. Conforme explicitado na figura a seguir:

Fonte: Chave (2004, p. 43)

2.2.1 Hipóteses de Carregamento

Barrichello (2011) apresentou em seu trabalho de conclusão de curso que as torres de transmissão e, consequentemente, suas fundações deverão garantir estabilidade mediante aos fatores climáticos e propagação de falhas. Chaves (2004) neste âmbito cita as recomendações por feitas por Gontijo que corroboram com as condições de estabilidade citados em quatro hipóteses básicas:

- Vento máximo em qualquer direção, sem ruptura de cabos;
- Vento com velocidade reduzida, com ruptura de um cabo do pára-raios;
- Vento com velocidade reduzida, com ruptura de um cabo condutor (Figura 7);
- Cargas devidas à construção ou montagem com lançamento do cabos condutores e para-raios.

Algumas observações são necessários sobre o que foi citado: a primeira hipótese, na prática, aplicam-se vento a 0° (sentido longitudinal), 45° (sentido diagonal) e 90° (sentido transversal) em relação à LT (Figura 6). Em hipóteses com ações devidas ao vento reduzido estas são cargas secundárias, minoradas por um fator ponderação, deste modo a carga principal ficará por conta do rompimento de algum cabo. As hipóteses identificados com "R" no final na figura 5 são as hipótese referentes as de vento reduzido.

Figura 6 - Ação do vento sobre um tronco de torre.

Fonte: Chave (2004, p. 40)

Figura 7 - Ruptura de cabo e redistribuição de esforços longitudinais.

Fonte: Chave (2004, p. 30)

Figura 8 - Silhueta de torre autoportante com identificação de constituinte.

Fonte: Chaves (2004, p. 16)

Para cada hipótese de carregamento escolhida de uma estrutura para se fazer a análise estrutural, a projetista estrutural das estruturas deve contemplar todas as possibilidades de montagem da estrutura (CHAVES, 2004); tendo em vista que para uma estrutura existe configurações diferentes quanto para altura. Há a possibilidade de acrescentar a mesma extensões em seu dorso ou diferentes alturas de pernas, devido à natureza modular da estrutura. Além da variação da estrutura quanto a altura que e faz necessária, pode-se haver o desnivelamento das pernas da torre, ou seja, aplicar pernas de diferente alturas para a mesma estrutura. A possibilidade de pernas da torres desniveladas ocorrem em terrenos muito acidentados o qual se há a necessidade de adequar-se ao relevo local. Na figura 8 é apresentado uma silhueta de uma torre autoportante identificando elementos básicos e o uso de extensão.

2.3 Ligação entre a torre e a fundação

Diferentemente das estruturas de fundações usuais utilizadas na construção civil, as fundações de torres autoportante de linhas de transmissão não possuem a armadura arranque. A ligação desta com a superestrutura é feita por uma cantoneira metálica munida de aletas que proverão uma melhor ancoragem na interface do concreto, tal peça é denominada de stub. Raramente este terá forma diferente da figura 9, formato retilíneo com inclinação igual aos montantes da estrutura.

O projeto desta peça geralmente é feito pela mesma projetista responsável pela estrutura da torre, cabendo-lhe fornecer informações referentes à geometria e composição dessa como: inclinação das faces da torre, tabela de locação do stub e desnível do parafuso de referência ao topo fundação com concreto acabado.

Fonte: Garcia (2005, p. 5)

2.4 Fundações utilizadas em linhas de transmissão

As estruturas de fundações serão os elementos responsáveis por transmitir os carregamentos oriundos da superestrutura para o solo de maneira que não haja sobrecarga excessiva. A sobrecarga poderá ocasionar a deformação excessiva do solo (recalque) ou provocar o cisalhamento do solo subjacente.

As fundações são divididas em dois grupos: fundações diretas (rasa ou ainda superficiais) e fundações profundas. A NBR-6122:1996 delineia como limite entre esses grupos que a razão de profundidade de assentamento com a menor dimensão da base da fundação seja maior que duas vezes para considerá-la profunda. Entre as fundações profundas com maior uso em linhas de transmissão são tubulões e estacas. Neste trabalho, contudo, as estacas não serão contempladas, restringindo-se aos tubulões, como fundações profundas. Para as fundações diretas é usual a implantação de sapatas. Além dos tipos de fundações já citados, há outras que não se enquadram na classificação apresentada, são elas: blocos ancorados, tubulões em rochas e fundações específicas para estais. Estas, entretanto, não serão abordadas no presente trabalho.

2.4.1 Tubulões

Quando não há uma capacidade de suporte do solo mais a superfície, o assentamento da fundação será feito em camadas mais subjacentes a fim de se adquirir uma capacidade de suporte razoável. Essa é a proposta do tubulão que poderá ainda ser de base alargada. Seu comprimento total – fuste mais base alargada, se houver – varia de 3 a 10, metros, variando de acordo com as características do solo em que é embutido e magnitude dos carregamentos na superestrutura (ASHCAR, 1999). Chaves (2004) relata que seu grande uso em LTs é garantido devido ao seu baixo custo. Isto advém do pequeno volume de escavação que se tem em relação a outras fundações; a inexistência de reaterro; ao mínimo consumo de fôrma; sua pequena interferência no meio durante sua execução, reduzindo ou mesmo eliminando a necessidade de recomposição vegetal. Outra vantagem deste tipo de fundação é a proteção proporcionada para a cantoneira de ancoragem, o stub. Devido à grande largura de seu fuste, há um grande cobrimento de concreto capaz envolver o stub, independente de sua inclinação.

Figura 10 - Esquemático de tubulão sem base com stub.

Fonte: Elaborado pelo autor (2015)

No dimensionamento estrutural dessas fundações tem-se os cálculo da armadura longitudinal do fuste. Os fustes são submetidos a flexo-compressão e a flexo-tração. Essa armadura são geralmente determinadas pela flexo-tração, dado o fato que a solicitação de tração ter a mesma magnitude que as solicitações de compressão e baixa competência do concreto submetido a tração.

2.4.2 Sapatas

Em planta, essas estruturas poderão assumir formas como retangulares, quadradas, circulares e corridas. Quando aplicadas em torres de LTs, as sapatas são assentadas em pequenas profundidades - de 2,0 a 3,0 metros de embutimento - devido à dificuldade de escavação; logo, não são recomendadas o uso em áreas sujeitas à erosões (ASHCAR, 1999).

Os fustes dessas fundações, quando utilizadas como base de torres do tipo autoportante podem ter a mesma inclinação que os pés da torre. Esta geometria permite que o ponto de aplicação dos esforços oriundos dos pés da torres coincidam com o centro da sapata, garantindo-lhe uma amenização do momento fletor, reduzindo o custo de implantação (ASHCAR, 1999). A inclinação do fuste de acordo com a inclinação da torre proverá, também, um cobrimento satisfatório do stub sem que haja necessidade do aumento de suas dimensões para esse fim.

Ao findar a execução da sapata deve-se ter atenção ao fazer o reaterro, pois a qualidade de compactação deste influenciará na resistência ao arrancamento. Davison Dias (apud GARCIA, 2005) constatou que reaterros feitos em camadas em sapatas com fuste inclinado tiveram uma melhora de 72% de resistência ao arrancamento em relação ao reaterro com compactação superficial.

Figura 11 – Esquemático da sapata com fuste com mesma inclinação que o stub.

Fonte: Elaborado pelo autor (2015)

A base da sapata deve ter espessura que torne dispensável o recurso de armadura de cisalhamento ou de punção. A armadura da base para sapatas de torres de linha de transmissão, diferentemente de sapatas de outras obras da construção civil, além da armadura de flexão inferior, a fundação possui a armadura de flexão superior devido ao esforço de tração que torres autoportantes submetem as estruturas de fundação.

2.5 Investigação geológica e geotécnica

Em obras lineares é de suma importância o reconhecimento da superfície em que serão assentados as fundações do empreendimento. Na construção das fundações de linhas de transmissão deve-se ater a estabilidade da estrutura, identificando e evitando áreas que possuem propensão aos escorregamentos ou deslizamentos. Segundo Chiossi (2013), a primeira etapa de conhecimento do solo deve ser o reconhecimento geológica de superfície pela fotointerpretação, imagens de satélite e trabalhos em campo, cujo o trajeto proposto para LT é percorrido. Chaves (2004) afirma que o relatório de inspeção de campo deverá ser feito por um profissional experiente a fim de coletar informações que calcem as definições das fundações e estratégia de execução de montagem das estruturas. Os relatórios feitos por eles profissionais pode conter informações de diferente natureza. Entre esses destaca-se: acessibilidade ao local; informações sobre a vegetação; existência de outras linhas de transmissão; documentação fotográfica; informações sobre topografia local.

Após o reconhecimento da superfície, métodos de investigação de subsolo são empregados a fim de obter características e parâmetros mecânicos do solo. Salienta-se que estas obras lineares possuem grandes extensões, dado o distanciamento normalmente tido das unidades geradoras de energia elétrica aos centros consumidores. Deste modo, os trajetos das LTs percorrerem diversos tipos de solos com diferentes origens, capacidades de carga e profundidades. Para estar a par destas informações para se definir os tipos de fundações mais aptas às situações encontradas, é preciso fazer a campanha de investigação geotécnica. Ashcar (1999) em seu artigo publicado na ERLAC (Encontro Regional Latino- Americano da Cigré) faz recomendações técnicas para a concepção de estruturas de linhas de transmissão. Segundo ele, as sondagens tipo SPT devem ser executadas próxima ao piquete central das estruturas da LT que passe por áreas notáveis como: travessias de rios, aterros, fundo de vale, alagados, erosões e encostas. Além disso, em todas as estruturas mais robustas da LT, como as de função de ancoragem de fim de linha, deve ser executado uma sondagem próximo ao seu piquete central. O mesmo autor afirma que a realização de ensaios de laboratório dependem do nível de conhecimento do solo da região do tipo da obra que será feita. Em relação a quantidade de sondagem a serem feitas ao longo da LT costuma-se adotar uma relação de uma sondagem a percussão cada 10 torres (ASHCAR, 1999) (CHAVES, 2004).

A campanha de investigação do subsolo pode conter métodos de investigação diversos onde são previstos implantações de torres. Os métodos de investigação correntes são: os poços inspeção, sondagens a trado, sondagens a percussão (SPT) e sondagens rotativas.

2.5.1 Sondagem a trado

Entre as sondagens usuais é mais simples. Trata-se de uma perfuração utilizando o trado manual. A profundidade máxima que deste instrumento é limitada a poucos metros – três metros geralmente, limitado pelo nível de água (NA) e o material escavado. Camadas tênues de materiais mais granulares, por exemplo, como pedregulhos ou seixo não serão passíveis de ser atravessadas por este equipamento. Este tipo de sondagem fornece amostra indeformável, portanto a caraterização limitase ao processo tátil-visual. Embora esta sondagem não forneça parâmetros mecânico do solo algum, poderá utilizar-se associado a sondagem SPT intercaladas a fim compor o perfil do subsolo (CHAVES, 2004). As informações obtidas pelo trado manual são:

- Tipo do solo;
- Profundidade do nível de água;
- Afloramento ou fragmentos de rocha

2.5.2 Poços de inspeção

Assim como a sondagem a trado, o poço de inspeção está limitado à profundidade máxima que poderá ser escavável à pá e picareta, além ser restrito pelo nível de água. Contudo esta inspeção permita o exame das camadas de solo pela parede da escavação, podendo ser registrado fotograficamente e deixar os projetistas a par.

Figura 12 - Poço de inspeção com 3 metros de profundidade, Juazeiro/BA.

Fonte: Acervo da Fluxo Engenharia (2015).

2.5.3 Sondagem a percussão

O SPT são sondagens que não limitam-se ao nível de água. Apesar de avançar sob solos muito compactos e rijos, esta sondagem tem seu avanço interrompido, assim como a sondagem a trado, por materiais mais granulares como seixo e pedregulho. A caracterização desta, contudo, fornece mais subsídios que as prospecções anteriores. Além da caracterização tátil-visual, determinação do nível de água e afloramento de rocha – se houverem; tem-se o parâmetro de resistência ao golpe, Índice de Resistência à penetração (N_{SPT}) que será de utilizado para a determinação da capacidade de carga do solo. Outra informação que é obtida são os estados de compacidade de solos arenosos e de consistência de solos argilosos. A NBR 6484:2001 fornece essas informações em uma tabela, de acordo com o N_{SPT} encontrado.

O ensaio SPT, normatizado pela NBR 6484:2001, é feito nos últimos 45 cm de cada metro de profundidade avançado. Para chegar aos 45 cm de cada metro utiliza-se o avanço por trépano com circulação de água. Após isso há o ensaio SPT que consiste na penetração de um amostrador em três etapas cada uma com 15 cm. O resultado do ensaio será a soma do número de golpes dados para o cravação dos 30 cm finais do metro. A sondagem a percussão é amplamente usada no Brasil. Correlações de vários parâmetros para diferentes tipos de solos são empregados, tendo como entrada o N_{SPT} ; dispensando a realização de ensaios mais rigorosos (CHAVES, 2004) para determinação particular de cada parâmetro.

Solo	Índice de resistência à penetração	Designação	
	<u>≤</u> 4	Fofa (o)	
Arraina a ailtea	5 a 8	Pouco compacta (o)	
arenosos	9 a 18	Mediamente compacta (o)	
	19 a 40	Compacta (o)	
	>40	Muito compacta (o)	
	≤ 2	Muito mole	
	3 a 5	Mole	
argiloso	6 a 10	Média (o)	
	11 a 19	Rija (o)	
	>19	Dura (o)	

Tabela 1 - Tabela dos estados de compacidade e de consistência.

Fonte: NBR 6484:2001, adaptado.

2.5.4 Sondagem rotativa

Quando há matacões ou blocos a serem ultrapassados a sondagem rotativa é utilizada. Esta sondagem consiste em um mecanismo que rotaciona a haste (Cabeçote de perfuração), forçando-a para baixo (VELLOSO e LOPES, 2010). Ela dispõe na extremidade inferior do barrilete uma coroa de diamante ou pastilhas de tungstênio que faz o corte da rocha. O barrilete reterá o testemunho – a amostra de rochas cortadas. Ao fim do ensaio tem-se em uma caixa o que conseguiu-se adquirir de testemunho das camadas perfuradas.

Um parâmetro que é de grande valia obtido por este ensaio é o índice de qualidade da rocha RQD (Rock Quality Designation). O índice consiste no coeficiente do número de rochas que foram recuperadas com fragmentos maiores que 10 cm por metro perfurado. Para Velozo (2010), este tipo de sondagem pode ser especificado quando a estrutura como travessias de grande vão obre curso de água e a natureza do maciço de fundações exijam maior detalhamento das suas propriedades para o projeto ou em zonas de taludes.

A seguir a tabela de classificação da qualidade da rocha pelo RQD para sondagem que utilizam barrilete de com 75,3 mm de diâmetro: Tabela 2 - Índice de qualidade da rocha.

RQD	Qualidade do Maciço Rochoso
0 - 25%	Muito fraco
25 - 50%	Fraco
50 - 75%	Regular
75 - 90%	Bom
90 - 100%	Excelente

Fonte: (VELLOSO e LOPES, 2010), adaptado.

2.6 Tipificação dos solos

Findada as campanhas de investigação geológica e geotécnico e definido o tracado da linha de transmissão, haverá subsidio para a tipificação dos solos ao longo do empreendimento. Esta etapa do projeto consiste no agrupamento dos diferentes tipos de solo do trajeto percorrido de similar competências geomecânicas em classes; cujos parâmetros geotécnicos definidos sejam confiáveis para o desenvolvimento e elaboração de fundações. Tal medida é adotada a fim de que projetista produza projetos-tipos de estruturas de fundações em função de parâmetros geotécnicos definidos para classe tipificada. Essa medida torna-se muito conveniente, pois englobará o conjunto de torres que estão inserido em uma dada classe de solo em apenas um projeto padronizado. Os chamados projetos-tipos resumem-se geralmente em tubulões, sapatas, blocos ancorados em rocha. A escolha do tipo de fundação leva em conta a altimetria do terreno, profundidade do solo, tipo da estrutura da torre e sua função na linha de transmissão. A seguir, FURNAS (2003) apresenta uma classificação de solos e rochas com faixas de valores sugeridos em sua Especificação Técnica de Projeto (EP).

Tipo	N .T	Coesão	Ângulo	γ	σ_{adm}	α	Adesão
do NSPT Solo	do Solo	(kN/m²)	de atrito	(kN/m²)	(kN/m²)	(Método do Cone)	Solo/concreto (kN/m ²)
Ι	9 a 18	30 a 40	≤32°	16 a 18	200 a 400	20° a 25°	≤25
Π	6 a 12	25 a 30	≤28°	15 a 17	100 a 200	17,5° a 22,5°	≤20
III	6 a 12	25 a 30	≤25°	14 a 16	100 a 200	15° a 20°	≤20
IV	3 a 6	≤15	≤20°	12 a 14	≤100	10° a 15°	≤10

Tabela 3 - Limites para os parâmetros geotécnicos para solos.

Fonte: FURNAS (2003), adaptado.

Tipo de rocha	ïipo de rocha RQD		σ _{adm} (kN/m²)	Adesão Rocha/concreto (kN/m²)
V	75 a 100	24 a 29	1000 a 3000	1/10*Rck
VI	25 a 75	20 a 22	600 a 1200	1/10*Rck

Tabela 4 - Limites para os parâmetros geotécnicos para rochas.

Fonte: FURNAS (2003), adaptado.

Outro tipo de projeto que pode ser feito para uma LT são os projetos-especiais. Estes são feitos em função de uma particularidade de uma dada torre. Esta poderá ser devido a necessidade de um fuste de maior altura - uma solução utilizada, por exemplo, em localidades que estão sujeitas permanentemente ao nível de água (NA); uma especificidade do terreno ou do solo que não foi contemplada nas classes pré-definidas; ou por se ter um carregamento que se difere das demais torres.

2.7 Resistência do solo quanto às solicitações das estruturas de fundações

O dimensionamento de um elemento de fundação deverá contemplar as diferentes solicitações que está submetida. No que tange às fundações de torres para linhas de transmissão, os esforços correntes são os de arrancamento e de compressão (QUENTAL, 2008). Além desses, inclui-se o tombamento.

2.7.1 Resistência à compressão

A este respeito, a EP de FURNAS (2003, p. 26) exige como proprietária de linhas de transmissão que

A capacidade de carga da sapata deve ser avaliada através de método apropriado, com respaldo na Mecânica dos Solos (Terzaghi, Meyerof, Brich Hansen), sempre a partir dos valores garantidos dos seus parâmetros geotécnico. Os valores garantidos do parâmetro geotécnicos são valores de projeto obtido a partir dos seus valores característicos, com os coeficientes de minoração indicado na NBR 6112. Tal exigência é também feita para fundações do tipo tubulão na mesma EP (FURNAS, 2003, p. 36).

O modelo idealizado por Terzaghi para a ruptura do solo, baseado no estudo de ruptura plástica dos metais de Prandtl (CHAVES, 2004), consiste formação de uma cunha abaixo da fundação que "mobiliza o solo adjacente estimulando o aparecimento de duas zonas de cisalhamento" (CHAVES, 2004). As duas zonas, cisalhamento radial e cisalhamento linear - estão indicada na figura a seguir como 2 e 3, respectivamente.

Figura 13 - Mecanismo de ruptura dos solos.

Fonte: Chaves (2004, p. 82)

A ruptura do leito que o elemento de fundação está assentada ocorrerá após a resistência ao cisalhamento ao longo da cunha seja totalmente imobilizada, fase essa indicada na figura a seguir como III.

Figura 14 - Comportamento de uma sapata sob carga vertical

Fonte: (VELLOSO e LOPES apud KÉZDI, p. 55)

Antes da ruptura do leito, o solo passa de um comportamento elástico para o comportamento plástico, conforme salientado por Velloso e Lopes (2010) em

> [fase I] os recalques são reversíveis. Em uma segunda fase, surgern deslocamentos plásticos. O estado plástico aparece, inicialmente, junto as bordas da fundação. Crescendo o carregamento, cresce a zona plástica. Essa fase é caracterizada por recalques irreversíveis. (VELLOSO e LOPES, 2010, p. 55)

A ruptura pode ocorrer de forma geral ou local, conforme Terzaghi preconizou no início. Para ele, solos mais compactos ou rijos terão ruptura do tipo geral (Figura 13). "Essa ruptura ocorre repentinamente, e normalmente a estrutura apresenta tombamento, e o solo, de um lado da fundação apresenta o estufamento" (CHAVES, 2004). O segundo tipo de ruptura ocorre em solos mais fofos. Para solos com ruptura do tipo local, Terzaghi propôs fatores de minoração da capacidade de carga e redução do valor da coesão (VELLOSO e LOPES, 2010). Terzaghi, como observado por Chaves (2004), propõe uma fórmula para a determinação da tensão de ruptura do solo (tensão última) que leva em consideração a forma geométrica da fundação:

$$q_u = cN_c S_c + c0.5\gamma BN_\gamma S_\gamma + qN_q S_q \tag{1}$$

Onde:

 $q_u - \acute{e}$ a tensão de ruptura do solo;

 γ – é o peso específico do solo

c-coesão;

 N_C, N_γ, N_q – são fatores de capacidade de carga que estão em função do ângulo de atrito ϕ

B - é a menor dimensão da fundação

 S_C, S_{γ}, S_q – são fatores de forma.

Para a hipótese de ruptura local do solo, Terzaghi recomenda utilizar a mesma equação (3), porém com redução nos valores de coesão e ângulo de atrito, conforme explicitado a seguir:

$$c' = \frac{2}{3}c$$
 (2)

$$\varphi' = \tan^{-1}(2/3\tan\varphi) \tag{3}$$

Os fatores de capacidade de carga N_q , $N\gamma e N_c$ são adimensionais e dependem unicamente de ϕ . Os fatores são determinados com as equações seguintes equações (CINTRA, AOKI e ALBIERO, 2011):

$$N_a = \tan^2(45 + 0.5\varphi)e^{\pi \tan \varphi} \tag{4}$$

$$N_c = \cot\varphi \left(N_q - 1\right) \tag{5}$$

$$N_{\gamma} \cong 2 \tan \varphi \left(N_q + 1 \right) \tag{6}$$

Já os fatores de forma para fundações com base quadrangular e circular são calculadas com as equações a seguir:

$$S_q = 1 + \tan \varphi \tag{7}$$

$$S_c = 1 + \frac{N_q}{N_c} \tag{8}$$

$$S_{\gamma} = 0,60 \tag{9}$$

2.7.2 Resistência do solo a esforços laterais

A resistência lateral do solo é o amparo que as fundações profundas terão para resistir ao tombamento devido aos esforços horizontais; diferentemente das fundações rasas cuja a verificação ao tombamento despreza-se a resistência lateral do solo.

Para a verificação das fundações profundas submetidas a esforços transversais pode-se fazê-la considerando as hipóteses de reação do solo na fase plástica e elástica. A plástica é utilizada para a verificação da ruptura do solo, ou seja, analisam a capacidade do solo a carga última. Já para a verificação do estado limite de serviço utiliza-se métodos que consideram o solo elástico. Com estes procura-se analisar as deformações que são ocasionadas pelo carregamento.

2.7.2.1 Winkler

A maioria do modelos de comportamento elástico do solo, empregados nos processos de análises de estabilidade lateral de tubulões, tem em comum a opção simplificadora de Winkler e conceitos desenvolvidos por Terzaghi. (FURNAS, 2003, p. 37)

A hipótese de Winkler consiste na aplicação de molas ao longo da extensão da fundação com constante de proporcionalidade que simule a

reação do solo solicitado na fase elástica. Essas constantes são chamadas de coeficientes de reação. Para sua aplicação algumas simplificações deverão ser tomadas, entre elas: a consideração do solo como meio isotrópico; as pressões de contato possuem variação linear, de acordo com o recalque; e a independência das molas entre si, não considerando-se o solo como uma meio contínuo, assim a resposta do modelo o recalque ocorrerá apenas ao longo da extensão da fundação (VELLOSO e LOPES, 2010).

Figura 15 - Diferença de reação do solo solicitado por um corpo rígido do modelo Winkler e o meio contínuo.

Fonte: Velloso e Lopes (2010, p. 127), adaptado.

Para a aplicação do modelo de Winkler para fundações profundas sob carregamento transversal considera-se que a reação do solo se dá ao longo da projeção do diâmetro ou da largura da fundação. A pressão tensão normal atuando na fundação será escrita como:

$$p = k_h y \tag{10}$$

Em que: k_h é o coeficiente de reação horizontal; y é o deslocamento horizontal.

Terzaghi (1955) identificou que solos argilosos e arenosos têm reações dos solos diferentes (vide figura 16). Para solos argilosos adotase uma reação constante ao longo do fuste enterrado. Enquanto para solos arenosos admite-se uma reação do solo linearmente variável, logo, para solos arenosos, o kh será determinado por:

$$k_h = n_h \cdot Z/B \tag{11}$$

Em que:

 n_h é a taxa de crecimento do coeficiente de reação horizontal com a profundidade, incluindo a dimensão transversal B;

Figura 16 - Reação do solo arenoso e argiloso, respectivamente.

Fonte: Terzaghi (1955), adaptado.

Para areias Terzaghi propôs os seguintes valores para estacas com 30 cm de lado; dimensões diferentes disto devem ser multiplicados por b/B, sendo b= 30 cm e B igual a dimensão transversal da fundação.

Composidodo	nh (kN/m³)		
Compacidade	Acima do NA	Abaixo do NA	
Fofa	2300	1500	
Mediamenta compacta	7100	4400	
Compacta	17800	11100	

Tabela 5 - Valores típicos do coeficiente de reação horizontal para areias propostos por Terzaghi.

Fonte: Velloso e Lopes (2010, p. 338), adaptado.

Para solos argilosos sobreadensados Terzaghi (1955) sugere valores encontrados em ensaios com placas de 30 cm de dimensão. Para fundações de dimensões transversais diferentes disso, da mesma forma que para solos arenosos, multiplica-se kh da tabela 5 por b/B, sendo b igual a 30 cm.

Argilas	Rija	Muito Rija	Dura
qu (kN/m²)	100-200	200-400	>400
faixa de valores	160-320	320-640	>640
valor proposto	240	480	960

Tabela 6 - Valores típicos do coeficiente de reação horizontal para argilas sobreadensadas propostos por Terzaghi.

Fonte: Velloso e Lopes (2010, p. 128), adaptado.

Solos classificados como argilas normalmente adensadas poderão ter como valores:

Tabela 7 - Valores típicos do coeficiente de reação horizontal para argilas e solos orgânicos.

Tipo de solo	Faixa de valores de nh (kN/m ³)	Valores sugeridos para mh (kN/m ⁴)
Solo orgânicos recentes	1-10	>15
Argila orgânica, sedimentos recentes	10-60	>80
Argila siltosa mole, sedimentos consolidados	30-80	150

Fonte: Velloso e Lopes (2010, p. 338), adaptado.

2.7.2.2 Análise no estado de serviço e verificações nos ELS proposto por Calvacanti e Falcão (2004)

Calvacanti e Falcão (2004) propuseram verificações para estado de limite de utilização (ELS) para tubulões utilizados em linha de transmissão. As verificações propostas têm como objetivo evitar que as solicitações, com valores de projeto correspondentes aos convencionados como extremos nas condições de serviço, ultrapassem limites que comprometa a vida útil da estrutura.

Para a análise dos tubulões são admitidos como um corpo rígido, sendo desprezados seus encurvamentos por flexão. A reação do solo aos deslocamentos é admitida como em regime de proporcionalidade, segundo o modelo de Winkler.

O procedimento de análise propõe que o solo confinante reage aos deslocamentos do tubulão ao longo do fuste e da base. Em cada uma delas estão presentes esforços normais e de cisalhamento. A fim de simplificar o modelo, as contribuições da rigidez ai cisalhamento foram desconsideradas. Assim, a rigidez ao tombamento do solo frente às solicitações do tubulão se dará por:

$$S = S_f + S_b \tag{12}$$

Sendo S_f e S_b as contribuições da rigidez do solo aos deslocamentos lateral e vertical, respectivamente.

Em Anexo B está descrito o procedimento de cálculo proposto por Calvacanti e Falcão (2004) para se obter o deslocamento do topo do tubulão para solos arenosos, situação analisada no Estudo de Caso do presente trabalho.

2.7.2.3 Método de Broms

Broms propôs o mecanismo de ruptura de uma estaca está relacionado ao seu comprimento e ao tipo de restrição que há no topo da fundação. Velloso e Lopes (2010) lista as possibilidades de ruptura proposto por Broms em estaca longas impedidas (a), estacas curtas impedida (b e c), estacas longas livres (d) e estacas curtas livres (e), conforme exposta na figura 17.

Modelo utilizado admite que a ruptura das estacas longas é dado mediante a formação de uma ou duas rótulas plástica, enquanto em estacas curtas a ruptura ocorrerá quando a resistência do solo for vencida (VELLOSO e LOPES, 2010). Para caso particular deste trabalho é empregado o mecanismo de ruptura de estaca curta livre (e), situação encontrada para tubulões aplicados em LT's. Para tanto admite-se que o tubulão seja um corpo prismático rígido-plástico. Já o maciço de solo, supõe que esteja em estado de equilíbrio plástico.

Figura 17 - Mecanismos de ruptura.

Fonte: Velloso e Lopes (2010, p. 368).

Para hipótese de estaca curta as distribuições de pressões e os diagramas de momentos fletores são dependente do tipo do solo do maciço que a fundação está inserida. Para solos não coesivos (arenoso) tem-se a distribuição de pressões ao longo da estacas como sendo linearmente distribuída (figura 18), enquanto para solos de características argilosa ou coesivas ($\varphi=0$ e c $\neq 0$) a pressão do solo sobre a estaca será constante em todo seu comprimento. Para estacas curtas com o topo livre em solos arenosos a pressão do solo a profundidade qualquer é dada como 3 vezes a empuxo passivo proposto por Rankine, ou seja:

$$p_u = 3\mathrm{D}\gamma' K_P \tag{13}$$

$$K_P = (1 + \sin\varphi)/(1 - \sin\varphi) \tag{14}$$

A carga de ruptura é dada por um esforços com carga aplicada na ponta da estaca dado por:

$$H_u = (0.5\gamma' DL^3 K_p) / (e+L)$$
(15)

Logo, o momento é dado por:

$$M_u = 0.5\gamma' DL^3 K_p \tag{16}$$

Sendo,

D o diâmetro da estaca;

L o comprimento da estaca enterrado;

e o altura de aplicação da carga horizontal;

 γ' o peso específico efetivo do solo;

 K_P é o coeficiente de empuxo passivo;

 ϕ o ângulo de atrito interno.

Figura 18 - Distribuição de pressões e diagrama de momentos fletores ao longo da estaca curta para solo arenosos e argiloso, respectivamente.

Fonte: Velloso e Lopes (2010, p. 369).

Já para o caso que o solo do maciço seja argiloso Broms admite que a pressão que solo exerce seja constante e o comprimento inicial de 1,5D tenha sua reação desprezada por considerar, segundo (MACIEL, 2006), resistência do solo nesse região não muito significativa. O momento máximo será dado por:

$$M_{m\acute{a}x} = \frac{9}{4} cDg^2$$
 (17)

$$g = \sqrt{\frac{4P}{(9cD)}(e + 1,5D + 0,5f)}$$
(18)

$$f = \frac{P}{(9cD)} \tag{19}$$

O comprimento mínimo enterrado para um dado carregamento P será (MACIEL, 2006):

$$L = 1,5D + f + \sqrt{4f(e + 1,5D + 0,5f)}$$
(20)

Sendo,

D o diâmetro da estaca;

L o comprimento da estaca enterrado;

e o altura de aplicação da carga horizontal;

c a coesão do solo.

Figura 19 - Reação do solo argiloso ao esforço horizontal.

Fonte: Maciel (2006, p. 14).

2.7.3 Resistência do solo ao esforço de arrancamento

O arrancamento da fundação é o esforço que destoa das fundações de torres de linhas de transmissão em relação aos casos corriqueiros da construção civil. Embora se tenha bibliografia por volta da década de 10 para a determinação da capacidade de carga à tração, cujos modelos limitam-se em considerar o peso da fundação e a sobrecarga do solo sobre a mesma; os primeiros métodos racionais, baseados nas teorias de mecânica dos solos, surgiram apenas na década de 60. A partir desta década linhas de pesquisas surgiram, simultaneamente, relacionado ao tema com a aplicação das teorias de mecânica dos solos. Tais pesquisas embasaram-se em ensaios de modelo reduzidos de fundações e deram origem a metodologias de previsão de capacidade de carga (DANZIGER, 1983).

2.7.3.1 Método do Cone

O método é o mais simples usualmente aplicado é o Método do Cone. Este leva em consideração apenas o peso próprio somado ao peso do solo contido sobre a fundação em forma de tronco de cone para capacidade de carga. O solo contido sobre a fundação terá base menor do tronco cone as arestas da fundação. O tronco cone será limitado pela superfície do terreno e pela geratriz que é formada por um ângulo α .

Figura 20 - Superfície de ruptura do solo pelo Método do Cone.

Fonte: Garcia (2005, p. 9), adaptado.

FURNAS (2003), sugere uma faixa para valores para o ângulo de arrancamento em função do tipo de solo na tabela 3, já mencionada no presente trabalho no item 2.6. Contudo recomenda-se usá-los com perícia,

pois como Danziger (1983) salienta em sua tese de mestrado, tal método poderá conduzir a valores pouco confiáveis variando-se o ângulo α aos limites usualmente utilizados. Os resultados podem ser tanto muito conservativos como também contrários à segurança. O uso de tal método deve ser embasado no conhecimento de um projetista experiente ou mesmo, conforme lembra Garcia (2005), em resultados de prova de carga em escala natural. Estes, entretanto, considerando que os valores encontrados podem, ainda sim, terem sidos alterados devido à natureza do terreno ou pela geometria da fundação.

Destaca-se neste método a ausência da contribuição da resistência ao cisalhamento ao longo da superfície de ruptura do solo para a capacidade de carga. Isto devido a não utilização das teorias da mecânicas dos solos.

2.7.3.2 Método do Cilindro de Atrito

O método limita a superfície de ruptura rente à base da fundação, formando um cilindro ou um prisma, de acordo com a forma da base da fundação. Diferentemente que o Método do Cone, o Cilindro de Atrito admite a contribuição da resistência por aderência ao longo da superfície de ruptura. A capacidade de carga, portanto, é a soma do peso próprio da fundação acrescido da parcela de solo contido na superfície de ruptura, mais a resistência do solo.

Figura 21 -Superfície de ruptura para fundação rasa proposta pelo método do Cilindro de Atrito.

Fonte: Danziger (1983, p. 12), adaptado.

Figura 22 - Superfície de ruptura para tubulão sem base ou estaca e tubulão com base, respectivamente, propostas pelo método do Cilindro de Atrito.

Fonte: Danziger (1983, p. 12), adaptado.

2.7.3.3 Método Grenoble

Este foi desenvolvido na Universidade de Grenoble com apoio da *Eletricité de France* (EDF), organização estatal francesa de energia elétrica. O método está embasado em muitos ensaios de modelo reduzidos, além de contar com um grande número de testes de corpos-deprova em escala natural de outros países com auxílio da C.I.G.R.É. (*Conférence Internationale des Grands Réseaux Électrique à Haute Tension*) (DANZIGER, 1983). O Grenoble é abrangente e engloba as fundações mais correntes utilizadas em LT, tanto as superficiais quanto as profundas. Ressalta-se o uso do mesmo é muito empregado no meio, devido à grande confiabilidade que tem no método, calçado muitos estudos (GARCIA, 2005). Por esses motivos é o método empregado para verificação ao arrancamento no dimensionamento da fundações deste trabalho.

Apesar de abranger os casos de fundações do tipo placa, sapatas e estacas. O presente trabalho não abordará o modelo para placas. Estes são fundações que utilizam grelhas metálicas que não são objeto de estudos na presente pesquisa. Os dois últimos têm explanação devido seus usos em fundações do tipo sapata e tubulão. Para a hipótese de estacas ou tubulão a carga de ruptura será dada pela resistência ao cisalhamento do solo ao longo da superfície de ruptura somada ao peso próprio da fundação e ao peso do solo aderido à fundação. Além dessas parcelas, contabiliza-se a contribuição de sobrecarga, se houver, que incide sobre a superfície. A equação para tubulão é:

$$Q_{rt} = p.D[c.M_{c} + \gamma'.D(M_{\varphi} + M_{\gamma}) + q_{0}.M_{q}] + P$$
(21)

Sendo

 Q_{rt} a carga de ruptura p o perímetro da fundação D o profundidade de assentamento c a coesão do solo γ' o peso específico efetivo do solo q_0 a sobrecarga uniforme P o peso próprio da fundação M_c , $(M_{\varphi} + M_{\gamma})$, M_q os coeficientes de capacidade de carga à tração

Os coeficientes poderão ser obtidos por ábacos fornecidos em Danziger (1983) ou em Garcia (2005). Biarez e Barraud (1968) em seu artigo publicado na C.I.G.R.É. fornecem as equações para a determinação dos coeficientes. Essas equações para determinação dos coeficientes estão dispostas em Anexo C.1.

Figura 23 - Superfície de ruptura equivalente para estaca ou tubulão sem base.

Fonte: Danziger (1983, p. 51) adaptado.

O λ , ângulo formado entre a base da fundação e a superfície de ruptura do solo. Para estacas e tubulões sem base tem-se admitido como igual - $\varphi/8$ para qualquer tipo de solos. Experiências indicam esse ângulo como sendo similar ao encontrado à inclinação da superfície de ruptura real. Convencionou-se como sentido positivo de λ como sendo aquele cuja superfície de ruptura tende formar um tronco de cone ou piramidal com a menor base sobre a superfície do terreno. Para o presente caso o ângulo será negativo, tendo em vista que há a formação de uma cunha cuja maior base é a que intercepta a superfície do terreno.

No caso de sapatas, o Método de Grenoble agrupa duas categorias de solos que possuem processo de ruptura distintos:

a) Sapatas para solos de categoria 1:

Os solos menos competentes são classificados como o sendo de categoria 1. Essa categoria conterá solos fracos, argilosos com alto grau de saturação e ângulo de atrito igual ou inferior a 15°. A inclinação da superfície de ruptura para solos desta classe possuem ângulo λ igual a arctan0,2 positivo, ou seja, a superfície de ruptura se fechará ao passo que se aproxima da superfície do terreno. Essa categoria ainda é subdividida em três casos, conforme explicitada na figura a seguir, pela profundidade crítica Dc – superfície do terreno até a aresta superior da base. Essa profundidade define um limiar entre distintos mecanismo de ruptura. A profundidade crítica Dc é estimada como sendo:

2)
2

5(B-b), para sapatas retangulares (23)

Sendo:

R e Rf – os raios da base e do fuste, respectivamente

B - a metade da largura da fundação

b – a metade da largura do fuste

Para determinar-se a capacidade de carga Q_{rt} para sapatas cujo embutimento D seja menor ou igual a Dc, utiliza-se as mesmas equações para determinação de estacas ou tubulões sem base– equação 21. Para tanto λ =arctan0,20 e o raio R da base é substituído pelo raio equivalente Re para sapatas retangulares:

$$Re = \frac{Pb}{8} \tag{24}$$

Sendo Pb o perímetro da base da fundação.

Figura 24 - Mecanismos de ruptura para sapatas em solos fracos com D≤Dc.

Fonte: Garcia (2005, p. 16)

Para D>Dc, além da contribuição do solo sobre a base da sapata, tem-se um acréscimo da capacidade em virtude da porção de solo aderido no fuste da fundação:

$$Q_{rt} = Q_{rt}(base) + Q_{rt}(fuste)$$
(25)

As equações para a determinação da contribuição da base e do fuste estão dispostas em Anexo B.2.

60

Figura 25 - Mecanismos de ruptura para sapatas em solos fracos com D>Dc.

Fonte: Garcia (2005, p. 16)

b) Sapatas para solos de categoria 2:

Figura 26 - Mecanismos de ruptura para sapatas em solos de boa capacidade.

Fonte: Garcia (2005, p. 18).

Assim como para sapatas em solos de categoria 1, a profundidade crítica divide a categoria 1 em dois. Para D≤Dc:

 $Q_{rt} = Pb.D[c.M_c + \gamma.D(M_{\varphi} + M_{\gamma}) + q_0.M_q] + P + \gamma D(Sb - Sf) \quad (26)$ Os coeficientes M_c , $(M_{\varphi} + M_{\gamma}) \in M_q$ são determinados com $\lambda = -\varphi/4 \in Re = Pb/2\pi$.

Em relação aos solos arenosos (c=0), Danziger (1983, p. 61) esclarece que "para solos arenosos (c = 0), observou-se que o ângulo λ se aproxima do valor do ângulo de atrito interno do solo (ϕ), o que implica dizer que os coeficientes Mc, M ϕ e Mq se anulem", portanto a equação será reduzida para:

$$Q_{rt} = Pb.D^2\gamma M_{\gamma} + P + \gamma D(Sb - Sf)$$
⁽²⁷⁾

Sendo M_{γ} igual:

$$M_{\gamma} = -\frac{1}{2} \tan \lambda \left(1 - \frac{\tan \lambda}{3} D/R \right)$$
⁽²⁸⁾

Para D>Dc haverá contribuição do fuste, assim:

$$Q_{rt} = Q_{rt}(base) + Q_{rt}(fuste) + P$$
(29)

A equações utilizadas para determinar a contribuição da base e do fuste estão disponíveis em Anexo B.3.

2.8 Tratamento dos carregamentos das fundações

As cargas transmitidas à fundação são obtidas nas memórias de cálculo fornecidas pela projetista da estrutura da torre (FURNAS, 2003). Nas análises estruturais as reações de apoio sobre as fundações, levandose em conta as diferentes hipóteses de carregamento e composições de torres, tal como já mencionado anteriormente no item 2.2.1.. No fim destas, geralmente, apresentam resumos das reações, no qual tem-se os valores críticos que solicitarão as fundações. Dentre este, os valores extremos de tração e compressão. Salienta-se, contudo, a atenção que o responsável pelo projeto da fundações deve ter com o resumo. A projetista pode fornecer tanto os resultados como as reações da fundação quanto as ações nas fundações, o sentido das cargas, portanto, depende desta informação. Outro fato que se deve ter cuidado em relação aos esforços fornecidos que as mesmas estão função dos eixos ortogonais, conforme figura a seguir.

Figura 27 - Esforços das fundações no eixo global.

Este sentido dos esforços é conveniente para se fazer o dimensionamento de fundações cujo fuste seja retilíneo (VELOZO, 2010). Para os casos que o fuste tem a mesma inclinação que o montantes da torre, é apropriado se fazer a decomposição dos esforços verticais para que elas tenham o mesmo sentido do montante. Já para os esforço cortantes é preferível que se mantenham no mesmo plano de ação, tal como os esforços do eixo global.

Outro fato pertinente nas memórias de cálculo das torres é que são geralmente dimensionadas com as composições de carga já ponderadas. Os valores utilizados para a análise estrutural da torre, nas árvores de carregamento, portanto, já têm fatores de ponderação inerentes às ações. Além desta ponderação dos carregamentos utilizada para a análise estrutural das torres, as cargas que são transferidas paras as fundações têm de receber fatores adicionais de 1,1 para fundações de estruturas de suspensão e 1,2 para estruturas terminal ou de ancoragem. A majoração das cargas de cálculo para o dimensionamento de fundações tem fins prático-construtivos. A segurança global da fundação deve ser maior que a estrutura da torre, pois, mediante a um colapso da torre, a restauração da linha de transmissão interrompida será mais ágil e fácil quando a fundação da estrutura afetada não tenha sido danificada. Além da cargas oriundas da superestrutura, tem-se o a carga inerente à fundação, o peso do concreto da fundação e o solo sobrejacente. FURNAS (2003), como proprietária de LT, sugere que estes esforços devem ser inclusos na composição de carregamentos e receberem fatores de acordo com sua contribuição para estabilidade da fundação. Quando o peso de tais materiais contribuem de forma positiva à estabilidade da peça, a carga é minorada por um fator igual 0,9. Caso contrário, quando o carregamento contribuir desfavoravelmente, a mesma deve ser majorada com pelo fator de 1,1.

Outra medida especificado pela mesma EP é em relação à verificação do estado limite de serviço. Como já citado, as memórias de cálculo podem deixar de fornecer os carregamentos sem as majorações. Assim FURNAS sugere uma medida mitigadora: quando não houver indicação de carregamentos sem majorações. Em torres de suspensão, 50% do carregamento fornecido na memória de cálculo correspondente ao carregamento de serviço; torres de ancoragem média (deflexão de até 30°) e pesada (deflexão acima da 30°) este percentual corresponderá a 70% e 80%, respectivamente.

2.9 Métodos de verificação da segurança das fundações

Os métodos de segurança adotados pelas normas mensuram a segurança de forma quantitativa, através do fator de segurança. Na figura 28 mostra-se os métodos de cálculo utilizados nos projetos de engenharia, em função das variáveis solicitação e resistência, curvas S e R. Fixadas as curvas S e R, observa-se que, independentemente do método de verificação de segurança, o fator de segurança global deverá ter o mesmo valor, já que tal fator é o quociente entre os valores mais prováveis da resistência e solicitação (AZEVEDO, 2010). A desvantagem nesta abordagem do fator de segurança é a não avaliação da forma das curvas de solicitação e resistência, ou seja, a dispersão é desprezada. Os métodos de verificação da segurança das fundações podem ser divididos basicamente em três grupos: determinísticos, semi-probabilísticos e probabilísticos (AZEVEDO, 2010).

Para o método determinístico tem-se o método de verificação da estabilidade das fundações é o chamado Método das Tensões Admissíveis; cuja maior solicitação da estrutura não provoque uma tensão que ultrapasse a tensão admissível do material, afastada da tensão de ruptura por um fator de segurança (AZEVEDO, 2010).

Método semi-probabilístico utiliza valores característicos de carregamento com da aplicação de combinações de fatores de

ponderação. A condição de verificação de segurança é de que as solicitações de cálculo sejam inferiores ou no máximo iguais às resistências de cálculo dos materiais empregados (AZEVEDO, 2010).

Figura 28 - Métodos de verificação da segurança em fundações.

Fonte: Azevedo (2010).

2.10 Método das Tensões Admissíveis

O solo assim como o concreto e o aço devem ter parâmetros de resistência com grande confiabilidade para serem utilizados no dimensionamento. No caso do concreto e do aço as suas resistências características fck e fyk – respectivamente – adquiridas em ensaios laboratoriais são minoradas, conforme prescrição da NBR-6118:2003, para resistências, cuja probabilidade de ocorrência seja contida no quartil inferior de 5%.

Os solos têm seus valores característicos obtidos por ensaios laboratoriais e de campo ou por investigações do subsolo. Na NBR-6122:1996 são descritos os métodos para se adquirir resistências características do solo que podem ser teóricos, semi-empíricos e empíricos. Naquele a resistência característica por este método é adquirida por meio de teoria desenvolvida na Mecânica dos Solos; o semiempírico as propriedade dos materiais são estimadas mediante correlações e são adaptadas para as teoria Mecânica do Solo; enquanto que no último a pressão admissível é dada com base na descrição do terreno. Para obter valores confiáveis a serem utilizados como pressão admissível na fundação, pode-se utilizar fator de segurança global ou parcial. Os fatores de segurança (FS) globais para minorar os valores de capacidade de carga último obtido por cálculo ou experimentalmente, de acordo com a NBR-6122:1996, têm valores, conforme a tabela a seguir:

Condição	Fator de segurança
Capacidade de carga de fundações superficiais	3,0
Capacidade de carga de estaca ou tubulões sem prova de carga	2,0
Capacidade de carga de estaca ou tubulões com prova de carga	1,6
Fonte: NBP 6122 (1006 n 6) Adaptado	

Fonte: NBR-6122 (1996, p. 6) Adaptado.

Tabela 8 - Fatores de segurança globais mínimos.

Na engenharia civil, de forma geral, utiliza-se um dos métodos: o determinístico (Método das Tensões Admissíveis) ou semi-probabilístico. Embora seja conhecido que a análise estrutural das torres são feitas com cargas de trabalho com ponderações, as verificações de estabilidade das fundações são minoradas ainda com um fator global, ou seja, há uma mescla dos métodos.

Para o estudo de caso do presente trabalho, tendo em vista que a resistência das fundações são obtidas mediante correlações a partir de sondagens à percussão, sem prova de carga, os fatores de segurança utilizados para os tubulões e sapatas são, respectivamente, 2,0 e 3,0, tal como sugerido pela NBR-6122:1996. Ainda tem-se as majorações adicionais dos carregamentos das memórias de cálculo das torres e as majorações e minorações do peso da fundação (peso próprio da fundação mais o solo aderido), conforme comentado no item 2.8.

3 METODOLOGIA

No presente Capítulo é apresentado o Estudo de Caso proposto para a aplicação do conteúdo exposto. Por fim é desenvolvido procedimento de cálculos para as fundações do tipo tubulão e sapata para as torres propostas.

3.1 Estudo de caso: LT 500 kV Quixadá- Açu III

Devido ao potencial futuro de geração de energia eólica no estado da Bahia, vislumbra-se a necessidade de ampliação do sistema de transmissão existente no estado, de forma a escoar os excedentes entre a geração e carga local. Tendo vista disto, será implementado a LT 500 kV Quixadá – Açu III (Figura 28). A linha de transmissão de energia terá circuitos simples e se estenderá por cerca de 240 km quilômetros, do estado de Ceará a Rio Grande do Norte.

A operação da linha de transmissão era prevista inicialmente para 2018; porém foi adiantada para 2016 em virtude da demanda de escoamento da geradora eólica existente.

3.1.1 Torres estudadas

Ao longo da LT são previstos a construção de torres do tipo autoportante e estaiadas. Neste trabalho foram objetos de estudo apenas as autoportante de suspensão pesada (SP5) e ancoragem terminal com deflexão máxima de 30° (AT5). Torres estaiadas não foram contempladas neste estudo. As autoportante que serão utilizadas no empreendimento são da família Delta, conforme as figuras 30 e 31. As fundações dimensionadas para as torres foram tubulões e sapatas.

As hipóteses de carregamentos que foram contemplados pela projetista das torres SP5 e AT5 estão dispostas Anexo D. As solicitações que são utilizadas são as fornecidas na memória de cálculo pela projetitas da estruturas. Nas análises estruturais feitas as torres SP5 e AT5 estão submetidas a velocidade máxima de vento de projeto correspondente a um tempo de retorno de 250 anos.

Conforme constatou-se, estão nos eixos ortogonais, condição utilizada para o dimensionamento de fundações com o fuste reto. Portanto os carregamentos fornecidos serão utilizados para o dimensionamento dos tubulões. Os carregamentos fornecidos pela fabricante das estruturas deverão passar por uma transformação de modo que as cargas estejam de acordo com os eixos locais das sapatas, considerando a inclinação do fuste de cada torre.

Figura 29 - Localização da área de estudo.

Fontel: RESERVE Engenharia e Meio Ambiente (2013).

Figura 30 - Silhueta de seção transversal de torre autoportante do SP5.

Fonte: Acervo da CYMIMASA (2014).

Figura 31 – Silhueta de seção transversal de torre autoportante do AT5.

Fonte: Acervo da CYMIMASA (2014).

As combinações tomadas para se fazer o dimensionamento das fundações são aqueles cujo atinge-se o valor máximo para compressão arrancamento e esforço horizontal. Estas hipóteses, respectivamente, podem ser responsáveis pela máxima compressão aplicada sobre o leito, máxima solicitação ao arrancamento da fundação e maior esforço cortante sobre o fuste. Entretanto, além dos carregamentos críticos, tem-se a necessidade de se tomar carregamentos cujas as cargas não são os encontrados nos carregamentos críticos. A importância de se tomar as combinações de carregamento sem que sejam as solicitações críticas se dá pelo fato que a solicitação conjugada de dois esforcos aplicados pode ocasionar a hipótese crítica para certas verificações nas quais as fundações devem garantir estabilidade. É o caso da verificação da tensão de borda que ocorre mediante um carregamento de grande magnitude de compressão e esforço horizontal. Quando se há um carregamento que propicie um baixo esforço de vertical e um grande valor para o esforço horizontal, tem-se a possibilidade de ocorrer a situação crítica para a verificação do tombamento da fundação. Para as verificações estruturais o caso crítico de flexo-compressão ou flexo-tração sobre o fuste pode ser mediante as solicitações altas de esforços horizontal e vertical.

3.1.2 Caracterização do solo

Os parâmetros geotécnicos utilizados no estudo de caso foram obtidos a partir de correlações dos N_{spt} das sondagens à percussão da investigação do subsolo feitas ao longo da linha de transmissão. Nos relatórios de sondagem notou-se que o empreendimento terá muita ocorrência de solos de boa competência e, de modo geral, com profundidades baixas. Além disso, os relatórios das investigações do subsolo mostram que o perfil do empreendimento tem grande incidência de areias argilosas. Nas análises táctil visuais relatou-se presença de solos com tons avermelhados, amarelados e variegados e a presença de minerais da rocha de origem. Tais constatações levam a crer que o solo passou por um processo de oxidação, típico de solos residuais. Tendo em isso em vista, as classes do solos foram divididas em dois diferentes faixas de qualidade do material: De bom para excelente para classe I e solos não tão competentes para classe II, conforme tabela 9.

As fundações dimensionadas para o empreendimento serão do tipo profunda e rasa. O intuito de se produzir diferentes fundações é de contemplar as diferentes profundidades encontradas onde serão previstas instalação de torres ao longo da LT. Para fundações do tipo profundas serão dimensionados tubulões para torres do estudo de caso – SP5 E AT5.

Já para contemplar áreas, cuja profundidade inviabilize a construção de tubulões; sapatas serão dimensionadas para suprir tal necessidade. Notase a preferência por parte da empresa que executa empreendimentos de linhas de transmissão a preferência de se construir tubulões. A preferência é em virtude da escavação menor e a quase inexistência de produção de formas, além das vantagens apontada por Chaves (2004), no item 2.4.1. do presente trabalho.

Tipo de Fundação	Classe do solo	N _{SPT}	c (kN/m²)	φ	γ' (kN/m³)	μ (kN/m²)
Sapata e Tubulão	Ι	≥15	30	25°	17	30
Sapata	II	15 -5	15	15°	15	-
Tubulão	II	15 -5	20	20°	15	20

Tabela 9 - Parâmetros geotécnicos utilizados para o estudo de caso.

Fonte: Elaborado pelo autor (2015).

Em que:

c é a coesão do solo; φ é o ângulo de atrito do solo; γ' é o peso específico do solo; μ é a aderência do solo sobre o tubulão ao longo do fuste;

As fundações para solos do tipo I foram dimensionadas para serem implementadas em locais os quais se tem garantia que se trata de solos residuais jovem ou bem desenvolvidos. Esses solos apresentam aumento de resistência à golpe com a profundidade. Em Anexo E é possível conferir uma sondagem à percussão do empreendimento com perfil com tais características.

Já para fundações dimensionadas para solos classificados como solo II são para serem construídas em locais onde pode-se ocorrer alagamentos quando houver a cheia de um corpo hídrico, brejos, áreas próxima a talude, cicatrizes de erosões passadas e superfícies de baixada onde se tem suspeita de se tratar áreas de acúmulo de sedimentar. Em Anexo F é demostrado um perfil de sondagem à percussão do empreendimento com características cuja classe do solo pretende-se contemplar.
3.2 Considerações gerais para os procedimentos de cálculo das fundações

As fundações típicas devem englobar as diferentes alturas de fuste. O objetivo de se ter diferentes comprimentos de fuste aflorado é adaptar-se às peculiaridades do terreno ao longo da LT: Seja pelo desnivelamento das perna da torre ou mesmo a possibilidade da subida do nível de água a fim de proteger o stub. Foram adotados os seguinte afloramentos das fundações em relação ao nível de solo: 30 cm a 180 cm. Devido a essa variação do fuste, também houve diferentes pesos próprios para a sapata ou tubulão. Portanto, para o dimensionamento das fundações serão tomados os pesos extremos da máximo e mínimo para dimensionamento, cada um sendo utilizado sob a premissa de se dimensionar a fundação no caso crítico. Para a verificação de compressão do solo, por exemplo, usou-se peso máximo, pois, além de se ter a maior solicitação sobre o solo devido à maior carga, tem-se um maior braço de alavanca para a aplicação dos esforços horizontais e, portanto, maior é o momento aplicado. Para a verificação do arrancamento o peso mínimo da fundação é tomado para o dimensionamento a fim de garantir a segurança da estrutura no caso de menor contribuição do peso próprio da fundação.

As cargas das estruturas de fundações receberam o tratamento especificado pela EP de FURNAS (2003), conforme explanado anteriormente no item 2.8.: Majoração de cargas oriundas da superestruturas em 1,1 e 1,2 para torres do tipo suspensão e ancoragem terminal, respectivamente; minoração de 0,9 do conjunto formado pelo peso próprio da fundação mais o solo sobrejacente para a verificação à arrancamento e majoração do mesmo conjunto em 1,1 para verificações de compressão do solo.

Para o dimensionamento estrutural dos tubulões e das sapatas utilizou-se um cobrimento de armadura de 5 cm. Os materiais empregado estão discriminados a seguir.

3.3 Caracterização dos materiais empregados

Resistência característica do concreto (fck): 20 MPa;

Resistência característica do aço à tração (fyk): 500 MPa;

Peso específico do concreto (γ_c): 25 kN/m³.

Os outros parâmetros necessários foram obtidos a partir de equações especificadas pela NBR-6118:2003:

$$f_{cd} = \frac{f_{ck}}{\gamma_{conc}} \div f_{cd} = \frac{200}{1.4} \div f_{cd} = 1.4 \ kN/cm^2$$
$$f_{cfk,inf} = 0.21. \ f_{ck}^{\frac{2}{3}} = \left(0.21. \ 20^{\frac{2}{3}}\right)$$
$$\therefore \ f_{cfk,inf} = 1.5 \ kN/cm^2$$
$$f_{yd} = \frac{f_{yk}}{\gamma_s} \div f_{yd} = \frac{5000}{1.15} \div f_{yd} = 43.5 \ kN/cm^2$$

3.4 Procedimento de cálculo para dimensionamento geotécnico e estrutural de fundações do tipo tubulão

Figura 32 - Esquemático de tubulão com base alargada com dimensões indicadas.

Fonte: Elaborado pelo autor (2015)

3.4.1 Verificação à compressão do solo

A tensão de cálculo atuante de compressão (σ_{calc}) deve ser igual ou inferior à pressão admissível do solo ao nível da base do tubulão, conforme fórmula abaixo:

$$\sigma_{calc} = \frac{(C + P_{fm} + P_S - \pi. D. Lf. \tau)}{(\pi. Db^2/_4)} \le \sigma_{adm}$$
(30)

$$\sigma_{adm} = \frac{1}{2} \left[cN_c S_c + c0.5\gamma BN_\gamma S_\gamma + qN_q S_q \right]$$
(31)

3.4.2 Verificação ao tombamento

A verificação ao tombamento da fundação do tipo tubulão é baseado no método de Broms (1964) proposto para solos arenosos, como visto no item 2.7.2.2:

$$p_u = 3\mathrm{D}\gamma' K_P \tag{32}$$

$$K_P = (1 + \sin\varphi)/(1 - \sin\varphi) \tag{33}$$

A carga de ruptura é dada por um esforços com carga aplicada no topo do tubulão é dado por:

$$H_{u} = (0.5\gamma' DL^{3}K_{p})/(G + Lf + La + Lb)$$
(34)

Logo, o momento é dado por:

$$M_u = 0.5\gamma' DL^3 K_p \tag{35}$$

Para a verificação foi utilizado um fator de segurança de 1,5:

$$FS \ge 1.5 \therefore FS = \frac{M_u}{M_t} \therefore FS = \frac{M_u}{[H(G + Lf + La + Lb)]}$$
(36)

Sendo H o carregamento horizontal.

3.4.3 Verificação ao arrancamento da fundação

Para o tubulão, o ângulo de ruptura de cálculo (λ) é $-\phi/4$ e os coeficientes de capacidade de carga pelo método de Grenoble pelas equações apresentada no item 2.7.3.3.

$$Q_{rt} = Pb.Lf[c.M_c + \gamma'.D(M_{\varphi} + M_{\gamma}) + q_0.M_q] + P_{mf}$$
(37)

A capacidade de carga a tração (Q_{rt}) deve ser maior ou igual à 1,5 vezes a tração máxima de cálculo da tubulão, ou seja:

$$1,5 \le \left(\frac{Q_{rt}}{T}\right) \tag{38}$$

Já para o tubulão com base deve ser será de acordo com a competência do solo, conforme comentado no item 2.7.3.3.a. e 2.7.3.3.b. A verificação é atendida se estiver de acordo com equação 38.

3.4.4 Cálculo estrutural da fundação

A escolha e a disposição das armaduras devem atender não só à função estrutural como também às condições de execução, particularmente com relação ao lançamento e adensamento do concreto. (SCADELAI, 2004). A armadura resistirá aos esforços de flexo-compressão e flexo-tração que o fuste está submetido devido aos esforços verticais e horizontais aplicados no topo da fundação. Essa armadura é distribuída de forma simétrica ao longo do fuste e tem área de aço proporcional à hipótese de carregamento que exigir maior porcentagem mecânica de armadura longitudinal (ω). O ábaco utilizado será o 6.2. de Pfeil (1989). Os coeficiente utilizados como entrada, são:

$$v = {N_d}/{(f_c.D^2)}$$
 (39)

$$\mu = \nu \left(\frac{e}{D}\right) \tag{40}$$

$$e = {}^{M_d} / {}_{N_d} \tag{41}$$

$$\rho = \omega \cdot \left(\frac{f_c}{f_s}\right) \tag{42}$$

$$M_{d} = H \left\{ G + 0.545 \sqrt{\frac{H}{\left[\gamma' + D. \tan^{2}\left(45 + \frac{\varphi}{2}\right)\right]}} \right\}$$
(43)

Os tubulões devem ter a seção transversal verificada, conforme NBR-6118:2003. As verificações da seção transversal do fuste são feitas utilizando-se o modelo I de cálculo, prevista pela NBR-6118:2003, no item 17.4.2.2.. Nele a diagonal de compressão inclinada tem o ângulo de 45° em relação ao eixo longitudinal do fuste e ainda admite-se que a parcela Vc tenha valor constante, independente de Vsd. Para que haja garantia de segurança da estrutura mediante o esforços transversais, tem-se a obrigatoriedade em respeitar-se, simultaneamente, as duas seguintes condições:

$$V_{sd} \le V_{rd2} \tag{44}$$

$$V_{rd2} = 0,27.\,\alpha_{v2}.\,f_{cd}.\,b_{w}.\,d\tag{45}$$

$$\alpha_{\nu 2} = 1 - \frac{f_{ck}}{250} \tag{46}$$

$$V_{sd} \le V_c + V_{sw} \tag{47}$$

$$V_{sw} = \begin{pmatrix} A_{sw}/_{S} \end{pmatrix} . 0.9. d. f_{yd}$$
(48)

$$V_c = \begin{pmatrix} f_{ctk,inf} / \gamma_{conc} \end{pmatrix} \cdot b_w \cdot d$$
(49)

O fuste deverá ter armadura mínima transversal, tal como indicado em NBR-6118:2003, no item 17.4.1.1.1: A armadura transversal é constituída de estribos distribuídas ao longo do fuste. Os estribos devem ser fechados em torno das barras da armadura longitudinal, ancorados com ganchos que se transpassem (SCADELAI, 2004). Essa armadura tem função de impedir flambagem da barras longitudinais e garantir seu posicionamento; garantir a costura de barras longitudinais e o confinamento do concreto. A seguir a condição que é respeitada para respeitar-se a condição de armadura mínima transversal:

$$\binom{A_{sw}}{s} \ge 0.2 \frac{f_{ctm}}{f_{ywk}} \tag{50}$$

A distribuição dos estribos é feito da seguinte maneira: os primeiros 20 cm do topo do tubulão possuem cinco estribos com espaçamento de 5 cm; os 90 cm subjacentes tem-se uma distribuição de nove estribos com espaçamento de 10 cm; e o comprimento restante, do

trecho intermediário de 90 cm até o início da seção tronco-piramidal da base do tubulão, a distribuição dos estribos têm espaçamento maior que 10 cm. Tal medida visa ter uma maior segurança no topo fundação onde tem-se o comprimento do fuste aflorado.

3.4.5 Base de tubulões com base alargada

A base do tubulão será dimensionada tal como um bloco de concreto simples, sem armadura. A transição do fuste para a base é feito por meio da superfície tronco-cônica do alargamento:

$$(Db+D) \le \frac{\tan(60^\circ)}{2}$$
(51)

Sendo que a altura do rodapé da base alargada tem o mínimo, conforme previsto em NBR-6122:1996, 20 cm.

Figura 33 - Base do tubulão

Fonte: Campos (2015, p. 317), adaptado.

Outra consideração que é feita como previsto em NBR-6122:1996 é desprezar-se a contribuição do atrito lateral do comprimento igual ao diâmetro da base acima do início da base.

3.4.6 Deslocamento dos tubulões

A fim de obter-se o deslocamento que o tubulão pode ter ao longo de sua vida útil quando submetido à carregamento extremos, modelou-se a estrutura no programa SAP2000. Este é um software que permite criação de modelos estruturais, fornecendo o estado de tensão de deformação de sólidos da diversas geometrias sujeito a diferente tipos de ações Azevedo (2013 apud Almeida, 2014). O programa utiliza o método de elementos finitos para o cálculo estrutural. A análise estrutural baseiase em três geometrias de elementos: modelo de barras, placas e cascas (Almeida, 2014). Especificamente no presente trabalho o modelo é pela análise em elementos em barras.

O programa funciona com a discretização do elemento em malhas fornecidas pelo usuário (Almeida, 2014). De maneira geral, a descrição da malha pelo usuário será em quatro etapas:

- Descrição da coordenada dos nós;
- Fornecimento das informações do material utilizado;
- Fornecimento da conectividade nodal e do índice de material;
- Fornecimento das carga a serem atribuídas diretamente nos nós.

Figura 34 - Elemento de barra com os vetores de deslocamentos translacionais e rotacionais.

Fonte: Elaborado pelo autor (2015)

No SAP2000, conforme a Computers & structures inc (CSI) (2011), os esforços internos nos elementos de barra consistem em forças e momentos que resultam da integração das tensões das seção transversal de cada elemento. Os esforços internos são:

- Força axial (P);
- Força cortante no plano 1-2 (V2);
- Força cortante no plano 1-3 (V3);
- Torque axial (T).

Estas forças internas e momentos estão presentes em todas seções transversais ao longo do comprimento do elemento de barra.

Figura 35 - Esforços internos em elementos de barra no software SAP2000.

Fonte: Computers & structures inc. (2011)

3.4.6.1 Simulação de interação entre solo e estrutura no SAP2000

Após o dimensionamento geotécnico e estrutural, é feito a análise de deformação dos tubulões para torres tipo SP5 e AT5 em SAP2000. No programa uma das alternativas para elaboração dos modelos da tubulões é simular o comportamento do solo através de coeficiente de reação horizontais, proposto por Winkler em 1867. O modelo o solo é discriminado como uma série de molas elástica lineares independente entre si. As molas a serem implementadas ao longo do tubulão são os coeficientes de reação do solo horizontal proposto por Terzaghi (1955), tal como prescrito no item 2.7.2.1..

A interação do sistema solo-tubulão envolve muitas variáveis, tornando-a complexa. Portanto, neste presente trabalho, adotou-se algumas simplificações para a aplicação do modelo, semelhantes às de Christan (2012) em sua dissertação, que consiste em:

- Sistema solo-tubulão trabalha em regime elástico-linear;
- Considerar o tubulão imerso em um meio isotrópico;
- Admitir que o tubulão possui superfície rugosa o suficiente para que não haja deslocamentos relativos entre o tubulão e o solo.

Os tubulões foram discriminados como elemento de barra no SAP2000. As molas que representam a reação do solo são espaçadas entre si a cada 1,0 m aplicadas nos nós dos elementos de barra.

A escolha dos coeficientes se é de acordo com a resistência Nspt o relatório de investigação do subsolo cujos perfil corresponde ao solo menos competente tipificado no empreendimento. Como trata-se de solos arenosos, os coeficientes de reação horizontal são dados por:

$$k_h = n_h' y \tag{52}$$

$$n_h' = n_h^{0,30} /_D \tag{53}$$

Em que:

 $n_{h'}$ é a taxa de crescimento do coeficiente de reação horizontal com a profundidade, considerando a dimensão transversal do tubulão obtida ; D é diâmetro do fuste do tubulão, em metros.

Para a simular o solo no SAP2000 utilizou-se molas independentes e lineares ao longo do tubulão. A medida visa limitar a área de influência de mola em módulos dada por:

$$K_h = k_h \cdot Ai \therefore K_h = k_h \cdot (D \cdot \Delta l) \tag{54}$$

Deste modo a reação do solo, por módulos, é:

$$R = K_h.\delta\tag{55}$$

Em que:

 Δl é o comprimento enterrado da área de influência; δ é a deformação do solo.

Figura 36 - Área de influência do módulo de reação do solo.

Fonte: Elaborado pelo autor (2015).

Figura 37 - Força de reação do solo em função do deslocamento.

Fonte: Elaborado pelo autor (2015).

Para coeficiente reação vertical do solo (K_s) utilizou-se um valor médio da determinação empírica proposta por Beer (1965 apud Campos, 2015) cujo ks é influenciado pelo módulo de rigidez do solo (E_{solo}) e pela forma da base da fundação (A_c). Para elemento estrutural circular com grande rigidez, tem-se:

$$k_s = 1,50. \left(\frac{E_{solo}}{A_c}\right) \tag{56}$$

Para o módulo de elasticidade do solo Kogler (1938 apud Campos, 2015) sugere os valores da tabela a seguir:

Tabela 10 – Módulo de elasticidade do solo (kN/m²).

Solos	Esolo x10 ⁴
Solo arenoso muito compacto	9807 a 19613
Areia compacta	4903 a 7845
Areia solta	981 a 1961
Argila semidura	784 a 1471
Argila plástica	294 a 392
Argila média	147 a 392
Lodo argiloso	49 a 294
Turfa	9,8 a 49

Fonte: Kogler (1938 apud Campos, 2015), adaptado.

O módulo de reação vertical do solo para a área da base do tubulão será dado por:

$$K_s = k_s. Ac \tag{57}$$

3.4.6.2 Modelo de tubulão elaborado em programa de elementos finitos

Para simular a reação do solo sobre o tubulão no SAP2000, foi importado do AutoCAD segmentos de linhas que corresponderão aos elementos de barra no SAP2000.

Figura 38 – Segmentos de linha que corresponderão no SAP2000 a elementos de barra.

Fonte: Elaborado pelo autor (2015).

Figura 39 – Importando os segmentos de linha para o SAP2000 em forma de elementos de barra (*frame*) em destaque.

Fonte: Elaborado pelo autor (2015).

Os materiais utilizado para modelar a estrutura foram o concreto e o aço. Para o concreto, segundo NBR-6118:2003, utilizou-se as seguintes propriedades:

- *fck* = 20 *MPa* é a resistência característica à compreão do concreto;
- Massa específica: $\rho = 25 \ kN/m^3$;
- Módulo de elasticidade: E = 21287 MPa ;
- Coeficiente de Poisson: v = 0,20.

Para o aço, segundo NBR-6118:2003, utilizou-se as seguintes propriedades:

- Massa específica: $\rho = 78,5 \ kN/m^3$;
- Módulo de elasticidade: E = 210 GPa .

Para o cálculo dos coeficientes de reação horizontal, utilizou-se o método recomendado por Terzaghi (1955), explicado em 3.4.6.1. e 2.7.2.1.. O coeficiente de reação vertical adotado foi conforme o item 3.4.6.1.. Na tabela 10 adotou-se o módulo de elasticidade com o valor médio do que corresponde ao solo arenoso solto para os tubulões da torres SP5 e AT5.

Os módulos de reação horizontal são aplicados em cada nó na forma de molas lineares nodais (*springs*) espaçadas entre si, conforme já especificado, e com profundidades (z) pré-estabelecidas pelos quadros anteriores.

A cargas que os tubulões estão submetido têm tratamento conforme explicitado no item 2.8. quando não há fornecimento de cargas sem as majorações por parte da fabricante da estrutura da torre. A torre do tipo SP5 tem minoração de 0,50 enquanto a torre do tipo AT5 tem minoração de 0,70.

Figura 40 – Modelo para verificação do deslocamento dos tubulões proposto.

Fonte: Elaborado pelo autor (2015).

3.5 Procedimento de cálculo para dimensionamento geotécnico e estrutural de fundações do tipo sapata

Figura 41 - Esquemático de sapata com fuste inclinado com dimensões indicadas.

Fonte: Elaborado pelo autor (2015)

A sapata que é dimensionada sob a hipótese de sapata rígida. Para tal, a altura da sapata, descontando o fuste, deve:

$$h \ge \frac{(A-a)}{3} \tag{(5845)}$$

$$h = (La + Lb) \tag{59}$$

Sendo:

La a altura do tronco piramidal da sapata; Lb a altura da base da sapata.

3.5.1 Análise no estado limite último

As verificações que são feitas em relação à compressão do solo são as tensão média admissível σ_{adm} e tensão de borda σ_{borda} (Flexo-Compressão). A tensão de cálculo atuante de compressão (σ_{calc}) deve ser igual ou inferior à pressão admissível do solo ao nível da base da sapata, conforme fórmula equação abaixo:

$$\sigma_{calc} = \frac{(C + P_{mf} + P_S)}{A^2} \le \sigma_{adm}$$
(60)

$$\sigma_{calc} = \frac{(C + P_{MF} + P_S)}{A^2} \le \sigma_{adm}$$
(61)

$$\sigma_{calc} = \frac{1}{3} \cdot \left[cN_c S_c + c0.5\gamma BN_\gamma S_\gamma + qN_q S_q \right]$$
(62)

Quando a base da sapata estiver totalmente comprimida, ou seja, a carga vertical está aplicado dentro do núcleo central de inércia, zona 1 indicada na figura 41. Para esta situação a tensão de borda, σ_{borda} , é determinada pela equação a seguir:

$$\sigma_{borda} = \left[\frac{(C + P_{MF} + P_S)}{A^2} \right]$$
(63)

Figura 42 - Base da fundação retangular submetida a uma carga vertical e a dois momentos.

Fonte: Velloso e Lopes (2010, p. 134) adaptado.

Para a sapata com a base não totalmente comprimida (com 50% ou mais da base comprimida), carga vertical sendo aplicado nas zonas 3, 4 e 5 (vide figura anteior); a equação para se determinar a tensão de borda, σ_{borda} , é:

$$\sigma_{borda} = k \left[\frac{(C + P_{MF} + P_S)}{A^2} \right]$$
(64)

Sendo k o coeficiente dependente da excentricidade relativas e_x e e_y :

$$e_X = \frac{M_X}{(C + P_{FM} + P_S)}$$
 (65)

$$e_{Y} = \frac{M_{Y}}{(C + P_{FM} + P_{S})}$$
(66)

A verificação da tensão de borda é satisfeita quando:

$$\sigma_{borda} \le 1.3. \, \sigma_{adm} \tag{67}$$

A verificação da estabilidade e segurança ao tombamento da sapata ficará por conta da obrigatoriedade da satisfação da equação:

$$0,111 = \frac{1}{9} \ge e_{resultante} = \frac{(e_x + e_y)^2}{A^2}$$
(68)

Já a verificação ao deslizamento da sapata será:

$$1,5 \le \begin{bmatrix} (C + P_{fm} + P_S)tan\varphi / \\ / H \end{bmatrix}$$
(69)

Sendo:

C o esforço de compressão; P_{MF} o peso próprio máximo da fundação; P_{mf} o peso próprio mínimo da fundação; P_{S} o peso do solos sobre a fundação; A a largura da base da fundação; k é o coeficiente adquirido em função de $e_x/A e_y/A$; e_x a excentricidade na direção x; e_y a excentricidade na direção y; M_X o momento fletor na direção y; H_y o momento fletor na direção y; H o esforço transversal;

A resistência ao arrancamento pelo Método de Grenoble, dado pela equação 70, e será dada como satisfeita pela equação 71:

$$Q_{rt} = p. D[c. M_C + \gamma'. D(M_{\varphi} + M_{\gamma}) + q_0. M_q] + P_{mf} + P_s$$
(7046)
$$1,5 \le {Q_{rt}/T}$$
(71)

Sendo:

T o esforço de tração;

p o perímetro da sapata;

D a profundidade de assentamento;

c a coesão do solo;

 γ' o peso específico efetivo do solo;

 q_0 a sobrecarga uniforme;

 M_c , $(M_{\varphi} + M_{\gamma})$, M_q os coeficientes de capacidade de carga à tração.

3.5.2 Cálculo estrutural da fundação

O dimensionamento estrutural da sapata consiste na verificação das tensões nas bielas de compressão, verificação da armadura longitudinal e transversal do fuste e a verificação armadura à flexão da base do sapata.

Devido a existência de esforços de tração sobre a sapata, como citado no item 2.4.2., tem-se o uso de armadura de flexão ao longo da porção tronco-piramidal. A verificação da armadura de flexão é feita pelo por métodos diferentes: método de bielas e tirantes proposto por Alonso (1983) e o método proposto pela NBR-6118 no item 17.3.5.2.1 – armadura inferior e superior. Emprega-se a maior área de aço entre os três métodos.

A seguir apresenta-se a sequência de cálculo proposto por Alonso (1983):

$$(L_{a} + L_{b} - cob) \ge \begin{cases} \frac{(A - a)}{3} \\ 1,44\sqrt{(C + P_{fm} + P_{S})} / \sigma_{a} \end{cases}$$
(72)

$$\sigma_a = 0.85. \left(\frac{f_{ck}}{1.96}\right) \tag{73}$$

$$Tb = (C + P_{fm} + P_S) \cdot \left[\frac{(A-a)}{8(L_a + L_b - 3\emptyset/2 - cob)} \right]$$
(74)

$$As = 1,61. \left(\frac{T}{f_{yk}}\right)$$
(75)

Sendo:

cob é o cobrimento da armadura da fundação; *Tb* é a tração na base da fundação;

As é a área de aço calculada para resistir ao esforço de tração na base.

Para o método proposto no item 17.3.5.2 da NBR-6118:2003, tem-se:

$$M_{inf} = \left[\frac{(C + P_{FM})}{A} \right] \cdot \frac{X^2}{2}$$
(76)

$$M_{sup} = T/A \cdot X^2/2$$
(77)

$$X = \frac{(A-a)}{2} \tag{78}$$

$$M_{min} = 0.8W.f_{ctk,sup} \tag{79}$$

$$A_{s,inf} = \begin{bmatrix} k_s \cdot M_{inf} / (L_a + L_b + 3 \cdot \emptyset / (L_a - Cob)) \end{bmatrix}$$
(80)

$$k_c = \left(\frac{a.\,d^2}{Md}\right) \tag{82}$$

Sendo:

T a solicitação de arrancamento da superestrutura sobre a fundação;

 k_s coeficiente tabelado encontrado em função de k_c,f_{ck} e f_{yk};

W o módulo resistente;

 \emptyset a bitola da armadura utilizada para resistir à flexão na base da fundação;

 $A_{s,inf}$ e $A_{s,sup}$ áreas de aço calculada para resistir à flexão quando a fundação é solicitada por esforços de compressão e tração, respectivamente.

Os fustes das sapatas devem ter a seção transversal verificada, conforme NBR-6118:2003. As verificações da seção transversal do fuste são feitas utilizando-se o modelo I de cálculo, prevista pela NBR-6118 :2003, no item 17.4.2.2.. Nele a diagonal de compressão inclinada tem o ângulo de 45° em relação ao eixo longitudinal do fuste e ainda admite-se que a parcela Vc tenha valor constante, independente de Vsd. Para que haja garantia de segurança da estrutura mediante o esforços transversais, tem-se a obrigatoriedade em respeitar-se, simultaneamente, as duas seguintes condições:

$$V_{sd} \le V_{rd2} \tag{82}$$

$$V_{rd2} = 0,27. \,\alpha_{\nu 2}. \,f_{cd}. \,b_{w}. \,d \tag{83}$$

$$\alpha_{\nu 2} = 1 - \frac{f_{ck}}{250} \tag{84}$$

$$V_{sd} \le V_c + V_{sw} \tag{85}$$

$$V_{sw} = \left(\frac{A_{sw}}{s}\right) . 0.9. d. f_{yd}$$
(86)

$$V_c = \left(\frac{f_{ctk,inf}}{\gamma_{conc}}\right) \cdot b_w \cdot d \tag{87}$$

O fuste deverá ter armadura mínima transversal, tal como indicado em NBR-6118:2003, no item 17.4.1.1.1: A armadura transversal é constituída de estribos distribuídas ao longo do fuste. Os estribos devem ser fechados em torno das barras da armadura longitudinal, ancorados com ganchos que se transpassem (SCADELAI, 2004). Essa armadura tem função de impedir flambagem da barras longitudinais e garantir seu posicionamento; garantir a costura de barras longitudinais e o confinamento do concreto. A seguir a condição que é respeitada para respeitar-se a condição de armadura mínima transversal:

$$\binom{A_{sw}}{s} \ge 0.2^{f_{ctm}} / f_{ywk} \tag{88}$$

A distribuição dos estribos é feito da seguinte maneira: os primeiros 20 cm do topo dos fustes das sapatas possuem cinco estribos com espaçamento de 5 cm; os 90 cm subjacentes tem-se uma distribuição de nove estribos com espaçamento de 10 cm; e o comprimento restante, do trecho intermediário de 90 cm até o início da seção tronco-piramidal da base da sapata, a distribuição dos estribos têm espaçamento maior que 10 cm. Tal medida visa ter uma maior segurança no topo fundação onde tem-se o comprimento do fuste aflorado. Para o cálculo da armadura longitudinal, será verificado a flexão oblíqua utilizando o ábaco 5.4. de Pfeil (1989) para a obtenção da porcentagem mecânica da armadura longitudinal (ω), utilizando os seguintes coeficiente como entrada:

$$\nu = \frac{N_d}{(f_c. a^2)} \tag{89}$$

$$\mu = \nu(e/a) \tag{90}$$

$$M_d = H. \left(Lf + G \right) \tag{91}$$

$$e = {}^{M_d} / {}_{N_d} \tag{92}$$

$$\rho = \omega . \left(\frac{f_c}{f_s} \right) \tag{93}$$

Por fim, a armadura longitudinal será dada por:

$$As, long \ge \begin{cases} \rho. a^2\\ As, min = 0,4\%. a^2 \end{cases}$$
(94)

Sendo:

e a excentricidade geométrica do centro da fundação em relação ao esforço normal atuante ;

Nd a carga axial de cálculo.

A armadura será distribuída de forma uniforme por toda seção transversal do fuste.

4 RESULTADOS

4.1 Dimensionamento de tubulões para torre tipo SP5

A seguir a tabela resumo das hipóteses de carregamentos que foram apurados para o dimensionamento dos tubulões. Ressalta-se que as hipóteses apresentadas ainda não possuem majoração de 1,1. As hipóteses de carregamento com valores positivos para o esforço vertical indicam a solicitação de flexo-tração sobre a fundação. Caso contrário, quando se há valor negativo para o esforço vertical, indica que a fundação está submetida a flexo-compressão. O esforço horizontal consiste na soma vetorial dos esforços transversais e longitudinais. Esses referem-se ao sentido de solicitação em relação ao trajeto da linha de transmissão.

Hipótese de	Vertical	Transversal	Longitudinal	Horizontal
Carregamento	(kN)	(kN)	(kN)	(kN)
1	-640,37	-109,76	60,27	125,22
3R	509,46	-23,39	-0,88	23,41
1 D	506 79	102 70	56.20	117 15
IK	500,78	-102,79	50,20	117,15

Tabela 11 - Resumo de cargas críticas nos eixos globais para torre SP5.

Fonte: Elaborado pelo autor (2015)

A seguir, os desenhos dos tubulões com as dimensões para solos tipo I e II:

Figura 43 - Desenhos de tubulões com base com dimensões para torres SP5 com solos tipo I e II, respectivamente.

Fonte: Elaborado pelo autor (2015)

4.1.1 Cálculo da ruptura do solo pelo método de Terzaghi

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo I, utilizou-se os parâmetros a seguir:

Quadro 1 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo I.

Db	Lf+La+Lb	Coesão	$\gamma \ (kN/m^3)$	$q = \gamma . L$	φ
(m)	(m)	(kN/m ²)		(kN/m ²)	(graus)
1,40	4,50	30	17	73,10	25

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo I, tem-se:

Quadro 2 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo I.

Fatores de Carga				
Nc Nγ Nq				
20,72 10,88 10,66				
Fatores de Forma				
Sc Sγ Sq				
1,51	1,47	0,60		

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 2,0:

Quadro 3 - Tensão de rupura e admissível para solo tipo I.

Tensão de	Tensão Admissível
Ruptura(N/cm ²)	(N/cm^2)
156,86	78,43

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo II, utilizou-se os parâmetros a seguir:

Quadro 4 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo II.

Db (m)	Lf+La+Lb (m)	Coesão (kN/m²)	$\gamma (kN/m^3)$	$\begin{array}{l} q=\gamma \;.\; L \\ (kN/m^2) \end{array}$	φ (graus)
1,60	5,50	20	13	68,90	20

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo II, tem-se:

Quadro 5 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo II.

Fatores de Carga				
Nc Nγ Nq				
14,83 5,39 6,40				
Fatores de Forma				
Sc Sγ Sq				
1,43 1,36 0,60				

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 2,0:

Quadro 6 - Tensão de rupura e admissível para solo tipo II.

Tensão de	Tensão Admissível
Ruptura(N/cm²)	(N/cm²)
75,12	37,56

4.1.2 Dimensionamento geotécnico

Descrição	Valor	Unidade
P _{fM}	87,37	kN
PS	71,20	kN
С	640,37	kN

Quadro 7 - Dados de entrada para a verificação da tensão média de compressão para solo tipo I.

Fonte: Elaborado pelo autor (2015)

Quadro 8 - Dados de entrada para a verificação da tensão média de compressão para solo tipo II.

Descrição	Valor	Unidade
P _{fM}	124,67	kN
PS	79,21	kN
С	640,37	kN

Fonte: Elaborado pelo autor (2015)

A hipótese de carregamento crítica de compressão do solo subjacente foi a Hipótese 1. A seguir, a verificação feita para compressão do solo para fundação profunda para torres tipo SP5:

3	P		
Decrição	Solo I	Solo II	Unidade
σadm	78,43	37,56	N/cm ²
σ _{calc}	43,16	36,43	N/cm ²

Quadro 9 - Verificação à compressão do solo.

Fonte: Elaborado pelo autor (2015)

A hipótese de carregamento crítica para o tombamento da fundação foi a Hipótese 1. A seguir, verificação ao tombamento do tubulão para torre tipo SP5:

Quadro 10 - Verificação de tombamento do tubulão

Decrição	Solo I	Solo II	Unidade
Me	1497,76	2163,8	kN.m
Mt	866,82	1004,41	kN.m
FS	1,73	2,15	-

Descrição	Valor	Unidade
λ	-0,055	Radianos
μ	-0,622	Radianos
SEN n	-0,246	-
n	-0,00396	Radianos
TAN(180/4+φ/2)	1,570	-
COS(n)	1,000	-
SEN(φ)	0,423	-
COS(µ)	0,813	-
ſ∕H	0,767	-
$(M_{\phi}+M_{\gamma})3$	0,223	-
Mc3	0,853	-
L'f	4,300	m
Qft	903,35	kN
2*L´f/Db	6,143	-

Quadro 11 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo I.

Fonte: Elaborado pelo autor (2015)

Quadro 12 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo II.

Descrição	Valor	Unidade
λ	-0,044	Radianos
μ	-0,654	Radianos
SEN n	-0,208	-
n	-0,00334	Radianos
TAN(180/4+\psi/2)	1,428	-
COS(n)	1,000	-
SEN(ϕ)	0,342	-
COS(µ)	0,793	-
<i>f</i> /H	0,819	-
(M _φ +M _γ)3	0,181	-
Mc3	0,912	-
L'f	5,300	m
Qft	986,63	kN
2*L ^f /Db	6,625	-

A hipótese de carregamento crítica de tração que a fundação pode estar submetida é a Hipótese 3R, logo, a verificação ao arrancamento foi:

Verificação ao arrancamento do tubulão para torre tipo SP5:

Decrição	Solo I	Solo II	Unidade
Qrt	903,35	986,63	kN
Т	560,22	560,22	kN
FS	1,61	1,76	-

Quadro 13 - Verificação ao arrancamento do tubulão.

Fonte: Elaborado pelo autor (2015)

4.1.3 Dimensionamento estrutural

A seguir, o cálculo da armadura longitudinal dos fustes dos tubulões. A hipótese de carregamento que foi determinante para o cálculo da armadura longitudinal foi a Hipótese 1R que submete o fuste da fundação à flexo-tração.

		0	
Decrição	Solo I	Solo II	Unidade
М	231,88	231,96	kN.m
Nd	557,27	557,46	kN
е	0,42	0,42	-
ν	0,07	0,05	-
μ	0,04	0,02	-
ω(tabela)	0,20	0,20	-
AsT	28,15	26,70	cm ²
As,min	20,11	31,42	cm ²
As,adotado	30,16	32,17	cm ²

Quadro 14 - Dimensionamento da armadura longitudinal.

Fonte: Elaborado pelo autor (2015)

As verificações de cisalhamento dos fustes de compressão da diagonal de concreto e tração a armadura transversal, respectivamente, a seguir. A hipótese de carregamento crítica para as verificações de cisalhamento dos fustes foi a Hipótese 1.

Descrição	Solo I	Solo II	Unidade
ø st	6,3	6,3	mm
Asw, 1 ramo	0,312	0,312	cm ²
S	15	15	cm
Ramos	2	2	-
Asw / s calculado	4,16	4,16	cm²/m
Asw / s mínimo	3,54	4,42	cm²/m
Asw, mínimo 1 ramo	0,27	0,33	cm ²

Quadro 15 - Verificação do cisalhamento do fuste.

Fonte: Elaborado pelo autor (2015).

Verificação da compressão da diagonal de concreto:

Quadro 16 - Verificação da compressão da diagonal de concreto.

Descrição	Solo I	Solo II	Unidade
Н	137,59	137,59	kN
V_{rd2}	2088,67	3307,09	kN

Fonte: Elaborado pelo autor (2015).

Verificação da tração na armadura transversal:

ro r, vernieuşuo uu nuguo nu urmuburu nuno verburi			
Descrição	Solo I	Solo II	Unidade
Н	137,59	137,59	kN
Vsw	181,38	229,75	kN
fctk,inf	1,55	1,55	MPa
Vc	390,32	618,00	kN
Vc+Vsw	571,70	847,75	kN

Quadro 17 - Verificação da tração na armadura transversal.

Fonte: Elaborado pelo autor (2015)

O detalhamento da armadura que resistirá às solicitações atuantes no tubulão para tubulões para solo tipo I e II:

Quadro 18 - Detalhamento de armaduras de tubulão para torre SP5 com solo tipo I.

Detalhamento de Armaduras			
Longitudinal do fuste 17\phi16c.12,57 cm			
T	Topo-do fuste (20 cm)	5¢6,3c.5cm	
Transversal —	Intermediário do fuste (90 cm)	9¢6,3c.10cm	
do fusie	Base do fuste (350-500 cm)	24 - 34¢6,3c.15cm	

1				
Detalhamento de Armaduras				
Longitudinal do fuste 16\u00f616c.12,57 cm				
Transversal do fuste	Topo-do fuste (20 cm)	5¢6,3c.5cm		
	Intermediário do fuste (90 cm)	9¢6,3c.10cm		
	Base do fuste (450-600 cm)	33-44\06,3c.14cm		

Quadro 19 - Detalhamento de armaduras de tubulão para torre SP5 com solo tipo II.

Fonte: Elaborado pelo autor (2015).

Por fim, o levantamento da quantidade de material para a construção dos tubulões para solo tipo I e II.

Quadro 20 - Levantamento de quantidade de materiais para tubulão para torre SP5.

Descrição	Solo		Unidada
Descrição	Tipo I	Tipo II	Unituate
Concreto (Gmáx)	3,56	6,26	m³
Concreto (Gmín)	2,81	5,08	m ³
Escavação	2,66	4,85	m ³
Aço (Gmáx)	196	224	kg
Aço (Gmín)	150	178	kg

Fonte: Elaborado pelo autor (2015).

4.2 Dimensionamento de tubulões para torre tipo AT5

A seguir a tabela resumo das hipóteses de carregamentos que foram apurados para o dimensionamento dos tubulões. Ressalta-se que as hipóteses apresentadas ainda não possuem o fator de majoração de 1,2. As hipóteses de carregamento com valores positivos para o esforço vertical indicam a solicitação de flexo-tração sobre a fundação. Caso contrário, quando se há valor negativo para o esforço vertical, indica que a fundação está submetida a flexo-compressão. O esforço horizontal consiste na soma vetorial dos esforços transversais e longitudinais. Esses referem-se ao sentido de solicitação em relação ao trajeto da linha de transmissão.

Hipótese de Carregamento	Vertical (kN)	Transversal (kN)	Longitudinal (kN)	Horizontal (kN)
9T	-1262,46	-277,91	-255,36	377,42
9RT	1200,65	56,08	-77,32	95,52
1 R	875,92	-234,24	212,34	316,16

Tabela 12 - Resumo de cargas máximas críticas nos eixos globais para torre AT5.

Fonte: Elaborado pelo autor (2015)

A seguir, os desenhos dos tubulões com as dimensões para solos tipo I e II:

Figura 44 - Desenhos de tubulões com dimensões para torres AT5 com solos tipo I e II, respectivamente.

Fonte: Elaborado pelo autor (2015)

Quadro 21 - Dados de entrada para a verificação da tensão média de compressão para solo tipo I.

Descrição	Valor	Unidade
$P_{\rm fM}$	247,17	kN
PS	246,24	kN
С	1262,46	kN

4.2.1 Cálculo da ruptura do solo pelo método de Terzaghi

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo I, utilizou-se os parâmetros a seguir:

Quadro 22 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo I.

Db	Lf+La+Lb	Coesão	$\gamma \ (kN/m^3)$	$q = \gamma . L$	φ
(m)	(m)	(kN/m ²)		(kN/m ²)	(graus)
2,20	6,00	30	17	98,60	25

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo I, tem-se:

Quadro 23 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo I.

Fatores de Carga					
Νς Νγ Νq					
20,72	10,88	10,66			
Fatores de Forma					
Sc	Sγ	Sq			
1,51	1,47	0,60			

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 2,0:

Quadro 24 - Tensão de rupura e admissível para solo tipo I.

Tensão de	Tensão Admissível
Ruptura(N/cm²)	(N/cm ²)
183,50	91,75

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo II, utilizou-se os parâmetros a seguir:

Quadro 25 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo II.

Db (m)	Lf+La+Lb (m)	Coesão (kN/m²)	$\gamma (kN/m^3)$	$\begin{array}{l} q=\gamma \;.\; L \\ (kN/m^2) \end{array}$	φ (graus)
2,20	8,50	20	13	107,90	20

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo II, tem-se:

Quadro 26 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo II.

Fatores de Carga					
Nc Nγ Nq					
14,83	5,39	6,40			
Fatores de Forma					
Sc Sy Sq					
1,43	1,36	0,60			

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 2,0:

Quadro 27 - Tensão de rupura e admissível para solo tipo II.

Tensão de	Tensão Admissível	
Ruptura(N/cm²)	(N/cm ²)	
92,62	46,31	

4.2.2 Dimensionamento geotécnico

Descrição	Valor	Unidade
P_{fM}	319,46	kN
PS	271,90	kN
С	1262,46	kN

Quadro 28 - Dados de entrada para a verificação da tensão média de compressão para solo tipo II.

Fonte: Elaborado pelo autor (2015)

A hipótese de carregamento crítica de compressão do solo subjacente foi a Hipótese 9T.A seguir a verificação feita para compressão do solo para fundação profunda para torres tipo AT5:

Quadro 29 - Verificação à compressão do solo.

Decrição	Solo I	Solo II	Unidade
σadm	91,75	46,31	N/cm ²
σ_{calc}	43,62	45,10	N/cm ²

Fonte: Elaborado pelo autor (2015)

A hipótese de carregamento crítica para o tombamento da fundação foi a Hipótese 1. A seguir, verificação ao tombamento do tubulão para torre tipo AT5:

Quadro 30 - Verificação de tombamento do tubulão

Decrição	Solo I	Solo II	Unidade
Me	5325,35	9584,44	kN.m
Mt	3532,62	4664,87	kN.m
FS	1,51	2,05	-

Descrição	Valor	Unidade
λ	-0,055	Radianos
μ	-0,622	Radianos
SEN n	-0,246	-
n	-0,00396	Radianos
TAN(180/4+φ/2)	1,570	-
COS(n)	1,000	-
SEN(φ)	0,423	-
COS(µ)	0,813	-
<i>f</i> /H	0,767	-
(M _φ +M _γ)3	0,220	-
Mc3	0,836	-
L'f	5,800	m
Qft	2244,97	kN
2*L´f/Db	5,273	-

Quadro 31 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo I.

Fonte: Elaborado pelo autor (2015)

Quadro 32 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo II.

Descrição	Valor	Unidade
λ	-0,044	Radianos
μ	-0,654	Radianos
SEN n	-0,208	-
n	-0,00334	Radianos
TAN(180/4+ \phi/2)	1,428	-
COS(n)	1,000	-
SEN(ϕ)	0,342	-
COS(µ)	0,793	-
ſ∕H	0,819	-
(M _φ +M _γ)3	0,184	-
Mc3	0,928	-
L'f	8,300	m
Qft	2653,76	kN
2*L´f/Db	7,545	-

A hipótese de carregamento crítica de tração que a fundação pode estar submetida é a Hipótese 9RT, logo, a verificação ao arrancamento foi:

Decrição	Solo I	Solo II	Unidade
Qrt	2244,97	2653,76	kN
Т	1440,28	1440,26	kN
FS	1,56	1,84	-

Quadro 33 - Verificação ao arrancamento do tubulão.

Fonte: Elaborado pelo autor (2015)

4.2.3 Dimensionamento estrutural

A seguir, o cálculo da armadura longitudinal dos fustes dos tubulões. A hipótese de carregamento que foi determinante para o cálculo da armadura longitudinal foi a Hipótese 9RT que submete o fuste da fundação à flexo-tração.

Decrição	Solo I	Solo II	Unidade
М	625,78	682,67	kN.m
Nd	963,18	1050,74	kN
e	0,65	0,65	-
ν	0,06	0,06	-
μ	0,03	0,03	-
ω(tabela)	0,17	0,17	-
AsT	53,16	53,16	cm ²
As,min	45,24	45,24	cm ²
As,adotado	54,29	54,29	cm ²

Quadro 34 - Dimensionamento da armadura longitudinal.

As verificações de cisalhamento dos fustes de compressão da diagonal de concreto e tração a armadura transversal, respectivamente, a seguir. A hipótese de carregamento crítica para as verificações de cisalhamento dos fustes foi a Hipótese 9T.

Descrição	Solo I	Solo II	Unidade
φst	8	8	mm
Asw, 1 ramo	0,503	0,503	cm ²
S	15	15	cm
Ramos	2	2	-
Asw / s calculado	6,71	6,71	cm²/m
Asw / s mínimo	5,31	5,31	cm²/m
Asw, mínimo 1 ramo	0,40	0,40	cm ²

Quadro 35 - Verificação do cisalhamento do fuste.

Fonte: Elaborado pelo autor (2015).

Verificação da compressão da diagonal de concreto:

Quadro 36 - Verificação da compressão da diagonal de concreto.

Descrição	Solo I	Solo II	Unidade
Н	452,90	452,90	kN
V _{rd2}	4803,99	4803,99	kN

Fonte: Elaborado pelo autor (2015).

Verificação da tração na armadura transversal:

Quadro 37 - Verificação da tração na armadura transversal.

3			
Descrição	Solo I	Solo II	Unidade
Н	452,9	452,9	kN
Vsw	353,16	353,16	kN
fctk,inf	1,55	1,55	MPa
Vc	897,72	897,72	kN
Vc+Vsw	1250,88	1250,88	kN
A seguir, o detalhamento da armadura que resistirá às solicitações atuantes em tubulões para solo tipo I e II.

Quadro 38 - Detalhamento de armaduras de tubulão para torre AT5 com solo tipo I.

Detalhamento de Armaduras			
Longitudinal do fuste 27\phi16c.12,6 cm			
	Topo-do fuste (20 cm)	5¢8c.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢8c.10cm	
	Base do fuste (500-650 cm)	34-44\phi 8c.15cm	

Fonte: Elaborado pelo autor (2015).

Quadro 39 - Detalhamento de armaduras de tubulão para torre AT5 com solo tipo II.

Detalhamento de Armaduras			
Longitudinal do fuste 27\phi16c.12,6 cm			
	Topo-do fuste (20 cm)	5¢8c.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢8c.10cm	
	Base do fuste (750-900 cm)	51 - 61ø8c.15cm	

Fonte: Elaborado pelo autor (2015).

Por fim, o levantamento da quantidade de material para a construção dos tubulões para solo tipo I e II.

Quadro 40 - Levantamento de quantidade de materiais para tubulão para torre AT5.

Descrição	Solo		Unidada
Descrição	Tipo I	Tipo II	Unitade
Concreto (Gmáx)	10,08	13,03	m³
Concreto (Gmín)	8,38	11,33	m³
Escavação	8,04	10,99	m³
Aço (Gmáx)	415	546	kg
Aço (Gmín)	336	467	kg

4.3 Disposição das armaduras para tubulões

A seguir apresenta-se o desenhos esquemático de como é previsto a disposição das armaduras dos tubulões paras as torres tipo SP5 e AT5. As armaduras denominadas de N1 e N2 são, respectivamente, a armadura longitudinal e armadura transversal (estribos) do fuste dos tubulões.

Figura 45 - Disposição das armaduras para tubulões.

Fonte: Elaborado pelo autor (2015).

4.4 Resultados da análise do tubulão no SAP2000

A hipóteses de carregamento utilizadas para verificar o deslocamento do topo dos tubulões das torres SP5 e AT5 são correspondentes aos seus maiores carregamentos horizontais, hipótese 1 da tabela 11 e 9T da tabela 12, respectivamente. A seguir, a hipóteses utilizadas com as respectivas minorações:

Torre	Vertical (kN)	Transversal (kN)	Longitudinal (kN)	Horizontal (kN)
SP5	-320,19	-54,88	30,14	62,61
AT5	-883,72	-194,54	-178,75	264,19

Tabela 13 - Resumo de cargas críticas nos eixos globais para torre SP5.

Fonte: Elaborado pelo autor (2015)

Nos quadros a seguir, os módulos de reação horizontal utilizados por nó no modelo no SAP2000 para o tubulões da torres AT5 e SP5.

Ná	Nont	nh (i)	z (i)	kh (i)	$\Delta l(i)$	A (i)	Kh (i)
INO	Inspi	(kN/m³)	(m)	(kN/m²)	(m)	(m²)	(kN/m)
1	-	-	1,80	-	-	-	-
2	-	-	0,00	-	-	-	-
3	4	2300	-0,50	345,0	1,0	1,00	345
4	5	7100	-1,50	3195,0	1,0	1,00	3195
5	6	7100	-2,50	5325,0	1,0	1,00	5325
6	10	7100	-3,50	7455,0	1,0	1,00	7455
7	10	7100	-4,50	9585,0	1,0	1,00	9585
8	9	17800	-5,25	28035,0	0,5	0,50	14017,5
9	-	-	-5,50	-	-	-	-

Quadro 41 - Módulos de reação utilizados para tubulões de torre SP5.

Ná	Nont	nh (i)	z (i)	kh (i)	$\Delta l(i)$	A (i)	Kh (i)
INO	Inspi	(kN/m³)	(m)	(kN/m²)	(m)	(m²)	(kN/m)
1	-	-	1,80	-	-	-	-
2	-	-	0,00	-	-	I	-
3	4	2300	-0,50	287,5	1,0	1,2	345
4	5	7100	-1,50	2662,5	1,0	1,2	3195
5	6	7100	-2,50	4437,5	1,0	1,2	5325
6	10	7100	-3,50	6212,5	1,0	1,2	7455
7	10	7100	-4,50	7987,5	1,0	1,2	9585
8	9	4400	-5,50	6050	1,0	1,2	7260
9	13	4400	-6,50	7150	1,0	1,2	8580
10	16	11100	-7,50	20813	1,0	1,2	24975
11	9	17800	-8,25	36713	0,5	0,6	22028
12	-	-	-8,50	-	-	-	-

Quadro 42 - Módulos de reação utilizados para tubulões de torre AT5.

Fonte: Elaborado pelo autor (2015).

Nas figuras a seguir, os gráficos das reações das molas ao longo dos fustes dos tubulões para torres SP5 e AT5, respectivamente:

Figura 46 - Gráfico Reação de molas x Extensão do tubulão para SP5.

Reação das molas (kN)

Fonte: Elaborado pelo autor (2015).

Figura 47 - Gráfico Reação de molas x Extensão do tubulão para SP5

Fonte: Elaborado pelo autor (2015).

No gráfico a seguir a comparação dos deslocamentos dos nós ao longo do fuste dos tubulões das torres analisadas:

Figura 48 - Variação das reações nas molas com a extensão dos tubulões.

Fonte: Elaborado pelo autor (2015).

Os deslocamentos negativos do gráfico anterior indicam que houve um movimento de rotação dos tubulões cujo centro de rotação ocorrera no ponto de deslocamento horizontal nulo.

A torre AT5 obteve um deslocamento de 3,98 cm enquanto a SP5, 2,65 cm. Utilizando o modelo proposto por Calvacanti e Falcão (2004), kh igual a 4400 kN/m³, obtiveram-se como deslocamento do topo do tubulão 4,9 e 3,4 cm, respectivamente, para AT5 e SP5.

A comparação da variação dos momentos fletores com a extensão dos tubulões para AT5 e SP5 é apresentada a seguir:

Figura 49 - Variação dos momentos fletores com a extensão dos tubulões.

Fonte: Elaborado pelo autor (2015).

4.5 Dimensionamento de sapata para torre tipo SP5

Para o dimensionamento das sapatas são utilizadas as cargas das hipóteses de carregamentos para o eixo local devido a inclinação do fuste, conforme o stub de cada torre. A seguir a tabela resumo dos carregamentos críticos nos eixos locais para torre tipo SP5. Ressalta-se que as hipóteses apresentadas ainda não possuem o fator de majoração de 1,1. As hipóteses de carregamento com valores positivos para o esforço vertical indicam a solicitação de flexo-tração sobre a fundação. Caso contrário, quando se há valor negativo para o esforço vertical, indica que a fundação está submetida a flexo-compressão. O esforço horizontal consiste na soma vetorial dos esforços transversais e longitudinais. Esses referem-se ao sentido de solicitação em relação ao trajeto da linha de transmissão.

Hipótese de Carregamento	Vertical (kN)	Transversal (kN)	Longitudinal (kN)	Horizontal (kN)
1	-647,53	-32,93	-2,64	33,03
4CR	-147,00	-79,24	-14,41	80,54
1R	512,45	-9,28	-0,94	9,33
9R	462,13	-31,29	-31,00	44,05
4A	22,39	-56,74	-28,10	63,32

Tabela 14 - Resumo de cargas máximas críticas no eixo local para torre SP5.

Fonte: Elaborado pelo autor (2015).

Figura 50 – Desenhos de sapatas com dimensões para torres SP5 com solos tipo I e II, respectivamente.

a 180

320 310 310

Fonte: Elaborado pelo autor (2015)

4.5.1 Cálculo da ruptura do solo pelo método de Terzaghi

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo I, utilizou-se os parâmetros a seguir:

Quadro 43 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo I.

A (m)	Lf+La+Lb (m)	Coesão (kN/m ²)	$\gamma \ (kN/m^3)$	$\begin{array}{l} q=\gamma \;.\;L\\ (kN/m^2) \end{array}$	φ (graus)
2,60	2,60	30	17	44,2	25

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo I, tem-se:

Quadro 44 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo I.

Fatores de Carga				
Nc Nγ Nq				
25,10	9,70	12,70		
F	atores de Forn	na		
Sc	Sγ	Sq		
1,30	0,80	1,00		

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 3,0:

Quadro 45 - Tensão de rupura e admissível para solo tipo I.

Tensão de	Tensão Admissível	
Ruptura(N/cm ²)	(N/cm ²)	
167,91	55,97	

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo II, utilizou-se os parâmetros a seguir:

Quadro 46 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo II.

A (m)	Lf+La+Lb (m)	Coesão (kN/m ²)	$\gamma \ (kN/m^3)$	$\begin{array}{l} q=\gamma \ . \ L \\ (kN/m^2) \end{array}$	φ (graus)
3,20	3,10	15	15	41,6	15

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo II, tem-se:

Quadro 47 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo II.

Fatores de Carga				
Nc Nγ Nq				
12,90	2,50	4,40		
F	atores de Forn	na		
Sc	Sγ	Sq		
1,30	0,80	1,00		

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 3,0:

Quadro 48 - Tensão de rupura e admissível para solo tipo II.

Tensão de	Tensão Admissível
Ruptura(N/cm ²)	(N/cm ²)
46,71	15,57

4.5.2 Dimensionamento geotécnico

Quadro 49 - Dados de entrada para a verificação da tensão média de compressão, tensão de borda, deslizamento e tombamento para fundações assentadas em solos tipo I.

Descrição	Hipótese 1R	Hipótese 4CR	Unidade
C+PfM+PS	1008,36	457,97	kN
Mx	159,29	383,37	kN.m
ex	0,158	0,837	m
My	12,77	69,72	kN.m
ey	0,013	0,152	m
ex/A	0,07	0,33	-
ey/A	0,01	0,06	-
e resultante	0,004	0,107	-
k	-	4,43	-

Fonte: Elaborado pelo autor (2015)

Quadro 50 - Dados de entrada para a verificação da tensão média de compressão, tensão de borda, deslizamento e tombamento para fundações assentadas em solos tipo II.

Descrição	Hipótese 1R	Hipótese 4CR	Unidade
C+PfM+PS	1155,60	605,21	kN
Mx	181,01	435,65	kN.m
ex	0,157	0,720	m
My	14,51	79,23	kN.m
ey	0,013	0,131	m
ex/A	0,05	0,23	-
ey/A	0,01	0,05	-
e resultante	0,002	0,052	-
k	-	4,43	-

Fonte: Elaborado pelo autor (2015)

A seguir, a verificação feita para compressão do solo sapata para torres tipo SP5:

Quadro 51 -Verificação à compressão do solo.

Decrição	Solo I	Solo II	Unidade
σadm	55,97	15,57	N/cm ²
σcalc	15,90	12,25	N/cm ²

A seguir, a verificação feita para compressão da borda do solo sapata para torres tipo SP5:

		144 110 00101	
Decrição	Solo I	Solo II	Unidade
1,3.σ _{adm}	72,77	20,24	N/cm ²
σborda	30,02	16,29	N/cm ²

Quadro 52 -Verificação à compressão de borda no solo.

Fonte: Elaborado pelo autor (2015)

A verificação ao deslizamento da sapata:

Quadro 53 - Verificação do deslizamento da sapata.

Decrição	Solo I	Solo II	Unidade
FS	2,41	1,83	-

Fonte: Elaborado pelo autor (2015)

Quadro 54 - Verificação do tombamento.

	~	~	** • • •
Decrição	Solo I	Solo II	Unidade
ex/A	0,330	0,230	-
ey/A	0,060	0,050	-
eresultante	0,107	0,052	-

Fonte: Elaborado pelo autor (2015)

Quadro 55 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo I.

Descrição	Valores	Unidade
λ	-0,11	Radianos
μ	-0,676	Radianos
SEN n	-0,265	-
n	-0,268	Radianos
TAN(180/4+\$\phi/2)	1,570	-
COS(n)	0,964	-
SEN(\$)	0,423	-
COS(µ)	0,780	-
ſ∕H	0,770	-
(M _φ +M _γ)3	0,220	-
Mc3	0,830	-
L'f	2,400	m
$(\pi xLf)/(2xA)$	1,450	-
Qft	1117,62	kN

Descrição	Valores	Unidade
λ	0,20	Radianos
μ	-0,457	Radianos
SEN n	-0,114	-
n	-0,114	Radianos
TAN(180/4+¢/2)	1,303	-
COS(n)	0,993	-
SEN(ø)	0,259	-
COS(µ)	0,897	-
ſ∕H	0,809	-
(M _φ +M _γ)3	0,090	-
Mc3	0,503	-
L'f	1,880	m
(πxLf) / (2xA)	3,000	-
Qft	851,88	kN

Quadro 56 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo II.

Fonte: Elaborado pelo autor (2015)

A hipótese de carregamento crítica de tração que a fundação pode estar submetida é a Hipótese 1R, logo, a verificação ao arrancamento foi:

Quadro 57 - Verificação do arrancamento.

Decrição	Solo I	Solo II	Unidade
Qrt	1117,62	851,88	kN
Т	563,70	563,70	kN
FS	1,98	1,51	-

Fonte: Elaborado pelo autor (2015)

4.5.3 Dimensionamento estrutural

A seguir, o dimensionamento da armadura de flexão da base da sapata pelo método das bielas, método proposto em NBR-6118:2003 tanto para armadura inferior quanto para armadura superior, respectivamente. Para o cálculo da armadura inferior de flexão, a hipótese

121

de carregamento crítica foi a Hipótese 1. Para o dimensionamento da armadura superior de flexão a Hipótese 9R foi a crítica.

Decrição	Solo I	Solo II	Unidade
σa	850,82	850,82	kN/cm ²
$d_{\text{mínimo}} \geq$	52,5	67,5	cm
dadotado	63,5	83,5	cm
φ adotado	10	10	mm
$T_x = T_y$	430,60	487,17	kN
$A_{sx} = A_{sy}$	14,13	15,99	cm ²
$A_{sx} = A_{sy,minimo}$	13,07	22,51	cm ²
Quantidade	18	29	-
Espaçamento	15,16	11,00	cm
$A_{sx} = A_{sy adot}$	14,14	22,78	cm ²

Quadro 58 - Armadura de flexão pelo método das bielas.

Fonte: Elaborado pelo autor (2015)

Quadro 59 - Armadura de flexão inferior pelo método proposto no item 17.3.5.2.1 da NBR:6118.

Decrição	Solo I	Solo II	Unidade
Md, inferior	17005,64	24400,00	kN.cm
Md,mín	48800,00	99300,00	kN.cm
Md,adotado	48800,00	99300,00	kN.cm
φ adotado	10	10	mm
dadotado	63,5	83,5	cm
kc	21,48	22,47	cm²/kN
ks	0,02	0,02	cm²/kN
Asx = Asy	17,68	27,35	cm ²
Asx = Asy,mínimo	18,29	28,94	cm ²
Quantidade	24	37	-
Espaçamento	10,80	8,57	cm
Asx = Asy adot	18,85	29,06	cm ²

Decrição	Solo I	Solo II	Unidade
Md, superior	11951,52	16052,00	kN.cm
Md,mín	24900,00	60100,00	kN.cm
Md,adotado	24900,00	60100,00	kN.cm
φ adotado	10	10	mm
dadotado	43,5	63,5	cm
kc	10,08	12,99	cm²/kN
ks	0,02	0,02	cm²/kN
Asx = Asy	13,74	22,71	cm ²
Asx = Asy,mínimo	19,50	33,60	cm ²
Quantidade	25	43	-
Espaçamento	10,35	7,35	cm
Asx = Asy adot	19,63	33,77	cm ²

Quadro 60 - Armadura de flexão superior pelo método proposto no item 17.3.5.2.1 da NBR-6118:2003.

Fonte: Elaborado pelo autor (2015)

A seguir, o cálculo da armadura longitudinal do fuste da sapata. A hipótese de carregamento que foi determinante para o cálculo da armadura longitudinal foi a Hipótese 9R que submete o fuste da fundação à flexo-tração.

Decrição	Solo I	Solo II	Unidade
М	253,54	280,95	kN.m
Nd	508,34	508,34	kN
e	0,50	0,55	-
ν	0,17	0,17	-
μ	0,17	0,19	-
ω(tabela)	0,56	0,60	-
AsT	39,00	41,75	cm ²
As,min	10,00	10,00	cm ²
As,adotado	40,21	48,25	cm ²

Quadro 61 - Cálculo de armadura longitudinal do fuste.

Fonte: Elaborado pelo autor (2015)

As verificações de cisalhamento dos fustes de compressão da diagonal de concreto e tração a armadura transversal, respectivamente, a seguir. A hipótese de carregamento crítica para as verificações de cisalhamento dos fustes foi a Hipótese 4CR.

Descrição	Solo I	Solo II	Unidade
φst	6,3	6,3	mm
Asw, 1 ramo	0,312	0,312	cm ²
S	14	14	cm
Ramos	2	2	-
Asw / s calculado	4,46	4,46	cm²/m
Asw / s mínimo	4,42	4,42	cm²/m
Asw, mínimo 1 ramo	0,31	0,31	cm ²

Quadro 62 - Verificação do cisalhamento no fuste.

Fonte: Elaborado pelo autor (2015)

Quadro 63 - Verificação da compressão da diagonal de concreto.

		<u> </u>	
Descrição	Solo I	Solo II	Unidade
Н	88,59	88,59	kN
V _{rd2}	851,37	851,37	kN
F11 1 1 4 4	2015)		

Fonte: Elaborado pelo autor (2015)

Quadro 64 - Verificação da tração na armadura transversal.

Descrição	Solo I	Solo II	Unidade
Н	88,59	88,59	kN
Vsw	85,55	85,55	kN
fctk,inf	1,55	1,55	MPa
Vc	146,37	146,37	kN
Vc+Vsw	231,91	231,91	kN

Fonte: Elaborado pelo autor (2015)

O detalhamento da armadura que resistirá às solicitações atuantes em sapatas para solo tipo I e II dispostas a seguir:

Quadro 65 – Detalhamento de armaduras de sapata para torre SP5 para solo tipo I.

Detalhamento de Armaduras			
Longitudinal do fuste 20\phi16c.7,4 cm			
T 1	Topo-do fuste (20 cm)	5¢6,3c.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢6,3c.10cm	
Base do fuste (100-250 cm)		7 - 17¢6,3c.15cm	
Flexão da b	25\phi10c.10,4 cm		
Fonto: Elaborado polo autor (2015)			

Detalhamento de Armaduras			
Longitudinal do fuste 24\phi16c.6,2 cm			
	Topo-do fuste (20 cm)	5¢6,3c.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢6,3c.10cm	
	Base do fuste (100-250 cm)	7 - 17¢6,3c.15cm	
Flexão da base superior e inferior (por direção) 43\phi10c.7,4 cm			

Quadro 66 – Detalhamento de armaduras de sapata para torre SP5 para solo tipo II.

Fonte: Elaborado pelo autor (2015)

A quantidade de materiais utilizadas para fundação estão dispostas a seguir:

Quadro 67- Levantamento de quantidade de materiais de sapata para torre SP5.

Descrição -		Solo	
		Tipo II	Unidade
Altura do concreto magro	0,05	0,05	m
Concreto magro	0,34	0,51	m³
Concreto (Gmáx)	3,3	5,5	m³
Concreto (Gmín)	3,7	5,9	m³
Escavação	17,9	33,3	m³
Reaterro	14,7	27,8	m³
Aço (Gmáx)	305	468	kg
Aço (Gmín)	253	406	kg

Fonte: Elaborado pelo autor (2015).

4.6 Dimensionamento de sapata para torre tipo AT5

Para o dimensionamento das sapatas projetar-se-á as cargas das hipóteses de carregamentos para o eixo local devido a inclinação do fuste, conforme o stub de cada torre. A seguir a tabela resumo dos carregamentos críticos nos eixos locais para torre tipo AT5. Ressalta-se que as hipóteses apresentadas ainda não possuem o fator de majoração de 1,2As hipóteses de carregamento com valores positivos para o esforço vertical indicam a solicitação de flexo-tração sobre a fundação. Caso contrário, quando se há valor negativo para o esforço vertical, indica que a fundação está submetida a flexo-compressão. O esforço horizontal consiste na soma vetorial dos esforços transversais e longitudinais. Esses referem-se ao sentido de solicitação em relação ao trajeto da linha de transmissão.

Hipótese de Carregamento	Vertical (kN)	Transversal (kN)	Longitudinal (kN)	Horizontal (kN)
9T	-1314,51	-18,94	3,60	19,28
1	-1056,16	-42,04	-20,14	46,61
9TR	1255,99	-17,97	-41,46	45,18
4AR	590,46	102,75	-78,23	129,14
4F	404,58	-123,15	54,42	134,64

Tabela 15 - Resumo de cargas máximas críticas no eixo local para torre AT5.

Figura 51 – Desenhos de sapatas com dimensões para torres AT5 com solos tipo I e II, respectivamente.

Fonte: Elaborado pelo autor (2015)

4.6.1 Cálculo da ruptura do solo pelo método de Terzaghi

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo I, utilizou-se os parâmetros a seguir:

Quadro 68 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo I.

A (m)	Lf+La+Lb (m)	Coesão (kN/m ²)	$\gamma \ (kN/m^3)$	$\begin{array}{l} q=\gamma \;.\;L\\ (kN/m^2) \end{array}$	φ (graus)
3,50	3,40	30	17	57,80	25

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo I, tem-se:

Quadro 69 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo I.

Fatores de Carga			
Nc	Νγ	Nq	
25,10	9,70	12,70	
Fatores de Forma			
Sc	Sγ	Sq	
1,30	0,80	1,00	

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 3,0:

Quadro 70 - Tensão de rupura e admissível para solo tipo I.

Tensão de	Tensão Admissível
Ruptura(N/cm ²)	(N/cm²)
190,68	63,56

Para a determinação da tensão admissível utilizando método de Terzaghi para fundações assentadas em solo do tipo II, utilizou-se os parâmetros a seguir:

Quadro 71 - Parâmetros utilizados para a determinação da tensão de ruptura pelo método de Terzaghi para fundação assentada em solos tipo II.

A (m)	Lf+La+Lb (m)	Coesão (kN/m ²)	$\gamma (kN/m^3)$	$\begin{array}{l} q=\gamma \ . \ L \\ (kN/m^2) \end{array}$	φ (graus)
4,40	4,50	15	15	67,5	15

Fonte: Elaborado pelo autor (2015)

Os fatores dependentes das dimensões da fundação e do ângulo de atrito para solo tipo II, tem-se:

Quadro 72 - Fatores de carga e forma utilizadas para determinação de tensão de ruptura para solos tipo II.

Fatores de Carga				
Nc Nγ Nq				
12,90	2,50	4,40		
Fatores de Forma				
Sc	Sγ	Sq		
1,30	0,80	1,00		

Fonte: Elaborado pelo autor (2015)

A tensão admissível é a tensão de ruptura minorada por um fator de segurança global. Para sapata o coeficiente de segurança utilizado foi de 3,0:

Quadro 73 - Tensão de rupura e admissível para solo tipo II.

Tensão de	Tensão Admissível
Ruptura(N/cm ²)	(N/cm ²)
60,30	20,10

4.6.2 Dimensionamento geotécnico

Quadro 74 - Dados de entrada para a verificação da tensão média de compressão, tensão de borda, deslizamento e tombamento para fundações assentadas em solos tipo I.

Descrição	Hipótese 1R	Hipótese 4CR	Unidade
C+PfM+PS	2273,85	1963,94	kN
Mx	118,16	262,21	kN.m
ex	0,052	0,134	m
Му	22,46	125,63	kN.m
ey	0,010	0,064	m
ex/A	0,02	0,04	-
ey/A	0,01	0,02	-
e resultante	0,000	0,002	-
k	-	-	-

Fonte: Elaborado pelo autor (2015)

Quadro 75 - Dados de entrada para a verificação da tensão média de compressão, tensão de borda, deslizamento e tombamento para fundações assentadas em solos tipo II.

Descrição	Hipótese 1R	Hipótese 4CR	Unidade
C+PfM+PS	2868,78	2558,87	kN
Mx	143,16	317,68	kN.m
ex	0,050	0,124	m
Му	27,21	152,21	kN.m
ey	0,009	0,059	m
ex/A	0,02	0,03	-
ey/A	0,01	0,02	-
e resultante	0,000	0,001	_
k	_	-	_

Fonte: Elaborado pelo autor (2015)

A seguir, a verificação feita para compressão do solo sapata para torres tipo AT5:

Decrição	Solo I	Solo II	Unidade
σadm	63,56	20,10	N/cm ²
σcalc	19,83	16,31	N/cm ²

Quadro 76 - Verificação à compressão do solo.

Fonte: Elaborado pelo autor (2015)

A seguir, a verificação feita para compressão da borda do solo sapata para torres tipo AT5:

Quadro 77 - Verificação à compressão de borda no solo.

Decrição	Solo I	Solo II	Unidade
$1,3.\sigma_{adm}$	82,63	26,13	N/cm ²
σborda	25,87	18,05	N/cm ²

Fonte: Elaborado pelo autor (2015)

A verificação ao deslizamento da sapata:

Quadro 78 - Verificação do deslizamento da sapata.

Decrição	Solo I	Solo II	Unidade
FS	2,33	2,47	-

Fonte: Elaborado pelo autor (2015)

Quadro 79 - Verificação do tombamento.

Decrição	Solo I	Solo II	Unidade
ex/A	0,250	0,130	-
ey/A	0,170	0,090	-
eresultante	0,088	0,024	-

Descrição	Valores	Unidade
λ	-0,11	Radianos
μ	-0,676	Radianos
SEN n	-0,265	-
n	-0,268	Radianos
TAN(180/4+φ/2)	1,570	-
COS(n)	0,964	-
SEN(φ)	0,423	-
COS(µ)	0,780	-
ſ∕H	0,770	-
(M _φ + M _γ)3	0,220	-
Mc3	0,829	-
L'f	3,200	m
(πxLf) / (2xA)	1,436	-
Qft	2299,97	kN

Quadro 80 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo I.

Fonte: Elaborado pelo autor (2015)

Quadro 81 - Parâmetros utilizados para verificação do arrancamento de sapatas assentadas em solos do tipo II.

Descrição	Valores	Unidade
λ	0,20	Radianos
μ	-0,457	Radianos
SEN n	-0,114	-
n	-0,114	Radianos
TAN(180/4+\phi/2)	1,303	-
COS(n)	0,993	-
SEN(ϕ)	0,259	-
COS(µ)	0,897	-
ſ∕H	0,809	-
$(M_{\phi}+M_{\gamma})3$	0,090	-
Mc3	0,498	-
L'f	1,950	m
$(\pi x Lf) / (2xA)$	4,300	-
Qft	2261,69	kN

A hipótese de carregamento crítica de tração que a fundação pode estar submetida é a Hipótese 9TR, logo, a verificação ao arrancamento foi:

Decrição	Solo I	Solo II	Unidade
Qrt	2299,97	2261,69	kN
Т	1507,19	1507,19	kN
FS	1,53	1,50	-

Quadro 82 - Verificação do arrancamento.

Fonte: Elaborado pelo autor (2015)

4.6.3 Dimensionamento estrutural

A seguir, o dimensionamento da armadura de flexão da base da sapata pelo método das bielas, método proposto em NBR-6118:2003 tanto para armadura inferior quanto para armadura superior, repectivamente. Para o cálculo da armadura inferior de flexão, a hipótese de carregamento crítica foi a Hipótese 9T. Para o dimensionamento da armadura superior de flexão a Hipótese 9TR foi a crítica.

Decrição	Solo I	Solo II	Unidade
σa	850,82	850,82	kN/cm ²
dmínimo ≥	75,7	92,5	cm
dadotado	88,1	118,1	cm
φ adotado	12,5	12,5	mm
$T_x = T_y$	934,11	1179,78	kN
$A_{sx} = A_{sy}$	30,66	38,72	cm ²
$A_{sx} = A_{sy,minimo}$	26,38	46,43	cm ²
Quantidade	25	38	-
Espaçamento	14,00	12,00	cm
$A_{sx} = A_{sy adot}$	30,68	46,63	cm ²

Quadro 83 - Armadura de flexão pelo método das bielas.

Decrição	Solo I	Solo II	Unidade
Md, inferior	49888,00	75058,00	kN.cm
Md,mín	121000,00	263400,00	kN.cm
Md,adotado	121000,00	263400,00	kN.cm
φ adotado	12,5	12,5	mm
dadotado	88,1	118,1	cm
kc	22,47	23,31	cm²/kN
ks	0,023	0,023	cm²/kN
Asx = Asy	31,58	51,28	cm ²
Asx = Asy,mínimo	33,42	55,28	cm ²
Quantidade	28	46	-
Espaçamento	12,50	9,50	cm
Asx = Asy adot	34,36	56,45	cm ²

Quadro 84 - Armadura de flexão inferior pelo método proposto no item 17.3.5.2.1 da NBR-6118:2003.

Fonte: Elaborado pelo autor (2015)

Quadro 85 - Armadura de flexão superior pelo método proposto no item 17.3.5.2.1 da NBR-6118:2003

Decrição	Solo I	Solo II	Unidade
Md, superior	42202,00	58618,00	kN.cm
Md,mín	75400,00	185900,00	kN.cm
Md,adotado	75400,00	185900,00	kN.cm
φ adotado	12,5	12,5	mm
dadotado	68,1	98,1	cm
kc	13,43	16,09	cm²/kN
ks	0,024	0,024	cm²/kN
Asx = Asy	26,56	45,47	cm ²
Asx = Asy,mínimo	39,38	69,30	cm ²
Quantidade	33	57	-
Espaçamento	10,60	7,60	cm
Asx = Asy adot	40,50	69,95	cm ²

A seguir, o cálculo da armadura longitudinal do fuste da sapata. A seguir, o cálculo da armadura longitudinal do fuste da sapata. A hipótese de carregamento que foi determinante para o cálculo da armadura longitudinal foi a Hipótese 4AR que submete o fuste da fundação à flexo-tração.

Decrição	Solo I	Solo II	Unidade
М	923,02	1096,77	kN.m
Nd	708,56	708,56	kN
е	1,30	1,55	-
ν	0,12	0,12	-
μ	0,23	0,27	-
ω(tabela)	0,68	0,78	-
AsT	92,61	106,33	cm ²
As,min	19,60	19,60	cm ²
As,adotado	100,53	113,10	cm ²

Quadro 86 - Cálculo de armadura longitudinal do fuste.

Fonte: Elaborado pelo autor (2015)

As verificações de cisalhamento dos fustes de compressão da diagonal de concreto e tração a armadura transversal, respectivamente, a seguir. A hipótese de carregamento crítica para as verificações de cisalhamento dos fustes foi a Hipótese 4F.

Quadro 87 - Verificação do cisalhamento no fuste.

Descrição	Solo I	Solo II	Unidade
φst	8	8	mm
Asw, 1 ramo	0,503	0,503	cm ²
S	15	15	cm
Ramos	2	2	-
Asw / s calculado	6,71	6,71	cm²/m
Asw / s mínimo	6,19	6,19	cm²/m
Asw, mínimo 1 ramo	0,464	0,464	cm ²

Descrição	Solo I	Solo II	Unidade
Н	161,57	161,57	kN
V _{rd2}	1721,66	1721,66	kN

Quadro 88 - Verificação da compressão da diagonal de concreto.

Fonte: Elaborado pelo autor (2015)

Quadro 89 - Verificação da tração na armadura transversal.

Descrição	Solo I	Solo II	Unidade
Н	161,57	161,57	kN
Vsw	180,21	180,21	kN
fctk,inf	1,55	1,55	MPa
Vc	295,99	295,99	kN
Vc+Vsw	476,20	476,20	kN

Fonte: Elaborado pelo autor (2015)

O detalhamento da armadura que resistirá às solicitações atuantes em sapatas para solo tipo I e II dispostas a seguir:

Quadro 90 – Detalhamento de armaduras de sapata para torre AT5 para solo tipo I.

Detalhamento de Armaduras			
Longitudinal do fuste 32\u00e920c.7,1 cm			
	Topo-do fuste (20 cm)	5¢8.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢8c.10cm	
	Base do fuste (245-395 cm)	16 - 26¢8c.15cm	
Flexão da base superior e inferior (por direção)		33\phi12,5c.10,6 cm	
Fonte: Elaborado pelo autor (2015)			

Detalhamento de Armaduras			
Longitudinal do fuste 36\u00f620c.6,3 cm			
	Topo-do fuste (20 cm)	5¢8.5cm	
Transversal do fuste	Intermediário do fuste (90 cm)	9¢8c.10cm	
	Base do fuste (245-395 cm)	16 - 26¢8c.15cm	
Flexão da b	37¢12,5c.11,9 cm		

Quadro 91 – Detalhamento de armaduras de sapata para torre AT5 para solo tipo II.

Fonte: Elaborado pelo autor (2015)

A quantidade de materiais utilizadas para fundação estão dispostas a seguir:

Quadro 92- Levantamento de quantidade de materiais de sapata para torre AT5.

Decerição		Solo	
Descrição	Tipo I	Tipo II	Unidade
Altura do concreto magro	0,05	0,05	m
Concreto magro	0,61	0,97	m³
Concreto (Gmáx)	7,6	13,6	m³
Concreto (Gmín)	8,3	14,4	m³
Escavação	42,3	88,1	m³
Reaterro	34,8	74,6	m³
Aço (Gmáx)	816	1097	kg
Aço (Gmín)	686	953	kg

4.7 Disposição das armaduras para sapatas

A seguir apresenta-se o desenhos esquemático de como é previsto a disposição das armaduras das sapatas para as torres tipo SP5 e AT5.

Figura 52 - Planta e disposição das armaduras na seção longitudinal das sapatas.

SEÇÃO LONGITUDINAL DA SAPATA "A-A" Fonte: Elaborado pelo autor (2015).

As armaduras denominadas de N1 e N2 são, respectivamente, a armadura longitudinal e armadura transversal (estribos) do fuste das sapatas. Já as armaduras denominadas de N3 e N4 são as armaduras de flexão inferior e superior, respectivamente. A armadura de flexão superior N4 tem formato que acompanha a porção tronco-piramidal da base da sapata.

Figura 53 - Disposição das armaduras longitudinais do fuste e armaduras de flexão na base da sapata.

 $\label{eq:ARMADURA DA BASE DA SAPATA} \mbox{Fonte: Elaborado pelo autor (2015).}$

5 CONCLUSÃO E CONSIDERAÇÕES FINAIS

Os objetivos do trabalho, de forma geral, foram atingidos. Apresentou-se os dimensionamentos geotécnico para as principais solicitações de tubulões e sapatas quando utilizadas em torres de linhas de transmissão de energia elétrica. Além disso apresentou-se o procedimento de cálculo da armaduras necessária para resistir aos esforços solicitantes atuante nas estruturas de fundações estudadas no presente trabalho.

As divergências quanto as dimensões das estruturas de fundações dimensionadas para as torres SP5 e AT5 são notáveis tanto para tubulões quanto para sapatas, fazendo jus à diferença de magnitude dos carregamentos das torres que desempenham funções distintas na LT.

O dimensionamento geotécnico dos tubulões teve como hipóteses de carregamento limiar para as torres SP5 e AT5, vento extremo a 45 graus e vento transversal extremo, respectivamente. Para as torres do tipo SP5 a solicitação de arrancamento foi a verificação determinante para a geometria da fundação em solos de melhor competência. Já para torre tipo AT5 o que ditou suas dimensões foi a verificação ao tombamento, para solo de melhor qualidade. Já para solos mais fracos a compressão do solo foi a verificação que determinou a geometria para os tubulões de ambas torres.

Por meio da avaliação feita pelo programa computacional SAP2000, proveniente da interação entre o solo e o tubulão para a condição de maior afloramento (180cm), obteve-se como deslocamentos no topo dos tubulões para as torres SP5 e AT5, 2,7 e 4,0 cm, respectivamente. Com objetivo de validar os resultados obtidos pelo modelo proposto neste trabalho, comparou-se os resultados deste com os obtidos pelo método proposto por Calvacanti e Falcão (2004). Os resultados oriundos do método destes autores tiveram valores de 3,4 e 4,9 cm, respectivamente, para as torre SP5 e AT5, apresentando mesma ordem de grandeza para os deslocamentos apresentados pelo módelo proposto no presente trabalho, Apesar dos erros inerentes aos métodos, em virtude da adoção de valores empíricos para o coeficiente de reação, avalia-se que a ordem de grandeza dos deslocamentos em uma situação real não ficará muito além dos resultados obtidos.

As sapatas dimensionadas para torres SP5, assentadas sobre leito de qualidade inferior, tiveram as dimensões das fundações ditadas pela verificação ao arrancamento. Contudo, as sapatas para as torres SP5, embutidas em solo mais competente, foram limitadas pela verificação ao tombamento. Já para as fundações rasas pertencentes às torres AT5, as mesmas foram dimensionadas pela verificação ao arrancamento, para solos de ambas categorias, ou seja, solos tipo I e II.

Em termos de dimensionamento estrutural, constatou-se que as armaduras longitudinais dos fustes de todas as fundações dimensionadas no presente trabalho foram pautadas pela flexo-tração que as superestruturas submetem as suas bases. Já para as solicitações de flexo-compressão os pré-dimensionamentos ficaram aquém da área de aço mínima. Tais fatos estão de acordo com as aptidões conhecidas do concreto – competência em resistir à compressão e resistência à tração baixa, além de observar que as solicitações à tração que estão submetidas as fundações têm mesma ordem de grandeza das forças verticais de compressão.

A preferência por parte da construtora em optar pela execução de tubulões em detrimento às outras fundações confirma o que Chaves (2004) citou em sua dissertação. Por não haver necessidade de grandes volumes de escavação e de reaterro, assim como do mínimo consumo de área de fôrmas, esta alternativa torna-se mais atrativa quando comparada a outros tipos de fundação, mesmo às custas de um maior volume de concreto. No presente trabalho pode-se observar que são necessários grandes volumes de escavação e de reaterro por fundação para implementação de sapatas, assim como o maior consumo de concreto quando opta-se pelo uso de tubulões.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ALMEIDA, T. D. **Análise, projeto e execução de parede diafragma moldada in loco**. 2013. 127 p. Trabalho de conclusão de curso para obtenção de graduação no curso de Engenharia Civil, Universidade Federal de Santa Catarina. Florianópolis, 2013.

ALONSO, U. R. Exercícios de Fundações. 2^a. ed. São Paulo: Edgard Blucher Ltda, 1983.

ASHCAR, R. Recomendações e informações técnicas sobre fundações de linhas de transmissão. In: VIII ENCONTRO REGIONAL LATINOAMERICANO DO CIGRÉ, Ciudad del Este. **Anais...** Ciudad del Este : CIGRÉ, 1999.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR-5422: Projeto de Linhas Aéreas de Transmissão de Energia Elétrica: Procedimento. Rio de Janeiro, 1985. 58. p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR-6122: Projeto e execução de fundações. Rio de Janeiro, 1996. 22 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR-6484:** Solo - Sondagem de simples reconhecimento com SPT - Método de ensaio. Rio de Janeiro, 2001. 17 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR-6118:** Projeto de estrutura de concreto: Procedimento. Rio de Janeiro, 2003. 221 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR-8681: Ações e segurança nas estruturas: Procedimentos. Rio de Janeiro, 2003. p. 15.

AZEVEDO, C. P. B. Projeto de Fundações de Linhas de Transmissão Baseado em Confiabilidade. In: 52° CONGRESSO BRASILEIRO DO CONCRETO., 2010, Fortaleza, CE. **Anais...** Rio de Janeiro: IBRACON.

BARRICHELLO, C. **Dimensionamento de torre autoportante para linhas de transmissão de energia**. 2011. 138 p. Trabalho de concluão de curso para obtenção de graduação no curso de Engenharia Civil, Universidade Federal de Santa Catarina. Florianópolis, 2011.

BIAREZ, J.; BARRAUD, Y. The use of mehanics methods for adapting tower foundations to soil conditions. **International Conference on Large High Tension Electric Systems**, Paris, 20 Junho 1968.

CALVACANTI, J. B.; FALCÃO, M. Fundações com tubulões para linhas de transmisão: Proposta de um procedimento de projeto. **Revista Solos e Rochas**, Rio de Janeiro, p. 39, 2004.

CAMPOS, J. C. D. **Elemento da fundações em concreto**. 1. ed. São Paulo: Oficina de Textos, v. Único, 2015.

CHAVES, R. A. **Fundações de Torre de Linhas de Transmissão e de Telecomunicação**. 2004. 214 p. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais. Belo Horizonte, 2004.

CHIOSSI, N. **Geologia de engenharia**. 3°. ed. São Paulo: Oficina de Textos, 2013.

CHRISTAN, P. D. **Estudo da interação solo-estaca sujeito a carregamento horizontal em ambientes submersos**. 2012. 192 p. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná. Curitiba, 2012.

CINTRA, J. C. A.; AOKI, N.; ALBIERO, J. H. Fundaçõe diretas: projeto geotécnico. São Paulo: Oficina de Textos, 2011.

COMPUTERS & STRUCTURE INC. **CSI Analysis Reference Manual:** For SAP2000, ETABS, SAFE and CSiBridge. California: , 2011. 496 p.

DANZIGER, F. A. B. **Capacidade de Carga de Fundações Submetidasa Esforço Verticais de Tração**. 1983. 331 p. Tese (Mestrado) - Universidade Federal do Rio de Janeiro, Faculdade de Engenharia, 1983.

FUCHS, R. D. **Transmissão de energia elétrica:** Linhas Aéreas. Rio de Janeiro: Livros Técnicos e Científicos Editora S.A., v. I, 1977.

FURNAS. Especificação para elaboração de projetos de fundações de linhas de transmissão - EP 5029. [S.1.], p. 49. 2003.

FURNAS. **Construção de Linha de Transmissão: Fundações**. DACQ.T - Divisão de Apoio e Controle de Qualidade. [S.l.], p. 156. 2005.

GARCIA, O. D. C. Influência da qualidade da compactação dos reaterros na capacaidade de carga de fundações submetidas a esforços de tração. 2005. 113 p. Tese (Mestrado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2005.

JUNG, J. G. Fundações superficiais de linhas de transmissão submetidas a esforços de tração: Comparação entre métodos de previsão de capacidade de carga. 2009. 59 p. Trabalho de Diplomação (Graduação em Engenharia Civil) - Departamento de Engenharia Civil. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2009.

MACIEL, A. J. S. **Proposição de metodologia para a estimativa da reisstência lateral última de estacas e tubulões curto em solo argilosos.** 2006. 125 p. Tese (Mestrado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2006.

MENDES, C. G. **Comportamento de estaca rígida instalada em solo tropical submetida a prova de carga com esforço horizontal**., 2013. Rio de Janeiro. Disponivel em:

<http://monografias.poli.ufrj.br/monografias/monopoli10008047.pdf>. Projeto de Graduação - UFRJ/ Escola Politécnica/ Curso de Engenharia Civil.

PFEIL, W. **Concreto Armado**. 5^a. ed. Rio de Janeiro: Livros Técnicos e Científicos, v. II, 1989.

QUENTAL, J. C. Comportamento Geomecânico dos Solos de Fundações das Torre da Linha de Transmissão Recife II/Bongi. 2008. Dissertação (Mestrado) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Pernambuco, CTG. Recife, 2008. RESERVE ENGENHARIA E MEIO AMBIENTE. **Reforço na rede** básica: Linha de transmissão 500 kV Quixadá - Açu III e Açu III -João Câmara III. [S.1.]. 2013.

SCADELAI, A. S. **Dimensionamento de pilares de acordo com NBR 6118:2003.** 2004 136 p. Dissertação (Mestrado) –Programa de Pós-Graduação em Engenharia de Estruturas, Universidadede São Paulo. São Paulo, 2004.

TERZAGHI, K. Evalution of coefficientes of subgrade reaction. **Geotechnique**, v. 5, p. 298-326, 1955. ISSN 4.

VELLOSO, D. D. A.; LOPES, F. D. R. **Fundações:** Critérios de Projeto, Investigação do Subsolo, Fundações Superficiais, Fundações Profundas. São Paulo: Oficina de Textos, v. Completo, 2010.

VELOZO, L. T. **Metodização do estudo das fundações para suportes de linhas de transmissão**.: 2010. Rio de Janeiro. Disponivel em: http://www.maxwell.vrac.puc-

rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16178@1>. Acesso em: 5 Setembro 2015. Tese (Doutorado) - Pontífica Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.
Tipo de E	istrutura	Configuração	Características	Esquemas
Rigida/ Auto- portante	Circuito Simples	Hortzontal	Estruturas mais baixas	त्रीय कार्यन
			Carges mais reduzides nas fundações	XXX.
		Vertical	Menor largura de Tabla	T T
		Delta	Reduz as perdas elétricas	A
		Compacta	Permite uma maior transmissão de energia	
	Circuito Duplo	Vertical	Menor largura de feixa	南
			Cargas maiores nas tundações	
		Triangular	Reduz as perdas elétricas	

ANEXOS A – Tipo de estruturas rígidas.

Fonte: Quental (2008, p. 11).

B.1. Propriedades do diagrama de rigidez lateral do solo:

$$A = \frac{1}{2}n_h(L^2 - e^2)$$
$$M_0 = \frac{1}{3}n_h(L^3 - e^3)$$
$$J_0 = \frac{1}{4}n_h(L^4 - e^4)$$

Sendo:

A a área da parte efetiva do diagrama;

 M_0 o momento estático em relação a um eixo situado no nível do terreno; J_0 o momento de inercia em relação a um eixo situado no nível do terreno; L o comprimento do trecho enterrado do tubulão;

e é a espessura do solo cujo efeito confinante é desprezado, por ineficaz ou de eficácia duvidosa;

n_h a taxa do coeficiente de reação do solo.

B.2. Centro elástico transversal:

$$z_{CE} = M_0 / A$$

B.3. Determinação da rigidez do sistema ao tombamento:

$$S_{f} = J_{0} - \frac{M_{0}^{2}}{A} + A \cdot \left(z_{CE} - \frac{M_{0}}{A}\right)^{2}$$
$$S_{b} = \frac{\pi}{64} k_{v} D_{b}^{4}$$
$$k_{v} = \frac{L - e}{Df} n_{h} \left(\frac{Df + 0.3}{2.Df}\right)^{2}$$
$$S = S_{b} + S_{f}$$

Sendo:

 S_b a rigidez do solo ao deslocamento vertical; S_f a rigidez do solo ao deslocamento lateral; Df o diâmetro do fuste do tubulão.

$$M_{CE} = F_H(a + e + z_{CE})$$

Em que a é o afloramento do tubulão.

B.5. Rotação do tubulão:

$$\xi = \frac{M_{CE}}{S}$$

B.6. Deslocamento lateral do centro elástico:

$$u_{CE} = \frac{F_H}{A}$$

B.7. Determinação do centro de rotação:

$$z_{CR} = z_{CE} + \frac{u_{CE}}{\xi}$$

B.7. Deslocamento do topo do tubulão:

$$u_0 = \xi(a + e + z_{CR})$$

ANEXOS C

O quadro seguir tem-se um resumo para ilustrar o uso de λ e Re, para fundações de seções retangulares, de acordo com a categoria de solo:

Categoria	Tipo de ruptura		λ	Re
φ≤15°	Argila D≤Dc		arctan0,2	B/2
	Argila D>Dc	Base	arctan0,2	B/2
		Fuste	-φ/8	2b/π
	D <da< td=""><td>Argila</td><td>-φ/4</td><td rowspan="2">2Β/π</td></da<>	Argila	-φ/4	2Β/π
	D≤DC	Areia	-φ	
φ>15°	Argila D>Dc	Base	-	2b/π
		Fuste	-φ/8	

Quadro 93 - Resumo de ângulos ϕ e raios equivalente.

Fonte: Garcia (2005, p. 104), adaptado.

C.1. Para a hipótese de estacas ou tubulão sem base:

$$M_{\varphi} = \left(1 - \frac{D}{3R} \tan \lambda\right) \left[\frac{\sin 2(\varphi + \lambda)}{4 \cos^2 \lambda}\right]$$

$$M_{c} = \left(1 - \frac{\tan \lambda . D}{2R}\right) \left[-\frac{\tan \lambda}{\tan \varphi} + \left(\frac{f}{H}\right) \cos \varphi \left(1 + \frac{\tan \lambda}{\tan \varphi}\right)\right]$$

Para se determinar (f/H), Garcia (2005, p. 103) apresenta as equações:

$$\left(\frac{f}{H}\right) = \tan(45^{\circ} + \frac{\varphi}{2}) \left[\frac{(\cos\mu - \sin\mu \cdot \cos\mu)}{((\cos\mu - \sin\mu \cdot \cos\mu))}\right]$$

$$\mu = -45^\circ + \frac{\varphi}{2} + \lambda$$

$$(M_{\varphi} + M_{\gamma}) = (1 - D/_{3R} \cdot \tan \lambda) \left[\frac{sen\varphi \cdot \cos(\varphi + 2\lambda)}{2\cos^2 \lambda} \right]$$

Sendo D o profundidade de assentamento; φ o ângulo de atrito do solo; Ro raio da base da fundação.

C.2. Sapata com D<Dc embutido em solo tipo 1:

Para parcela da base $Q_{rt}(base)$, tem-se:

$$Q_{rt} = Pb.Dc[c.M_c + \gamma'.Dc(M_{\varphi} + M_{\gamma}) + (q_0 + \gamma'(D - Dc))M_q] + \gamma.Dc(Sb - Sf)$$

Os coeficientes M_c , $(M_{\varphi} + M_{\gamma})$ e M_q são determinados da mesma forma que as situações anteriores, porém D será substituído por Dc.

Para a contribuição do fuste $Q_{rt}(fuste)$:

 $Q_{rt} = Pf(D - Dc) [c.M_C + \gamma.(D - Dc)(M_{\varphi} + M_{\gamma}) + q_0.M_q]$

Sendo:

 Q_{rt} a carga de ruptura; Pb o perímetro da base; Pf o perímetro do fuste; c a coesão do solo; Dc o profundidade crítica; D o profundidade de assentamento; γ' o peso específico efetivo do solo; q_0 a sobrecarga uniforme; Sb a área da base; Sf a área da seção do fuste.

Já para a contribuição para a capacidade de carga do fuste os coeficientes M_c , $(M_{\varphi} + M_{\gamma})$ e M_q serão as mesmas equações usadas para hipótese de estacas ou tubulão sem base, com λ será igual a $-\varphi/8$, D sendo trocado por (D-Dc) e para R será utilizado o raio equivalente igual a Pf/2 π .

C.3. Sapata com D>Dc embutido em solo tipo 1:

$$Q_{rt}(base) = (Sb - Sf)mM(\gamma Dtan\varphi + c)$$

$$m = \begin{cases} 1 - \left(\frac{1}{2\pi} \arcsin\left(\frac{e}{R} - Rf\right)\right) & para \ e < R - Rf\\ 0.75 & para \ e \ge R - Rf \end{cases}$$

$$M = \frac{12\pi}{1 + 6tan\varphi\left(\frac{\pi}{4} - \frac{2}{\pi}\right)} - 1, 6\left(1 - \frac{1,9Rf}{R} + \frac{0,9Rf^2}{R^2}\right) \text{ para base circular}$$

$$M = \frac{4\pi}{1 + \pi/2 \tan \varphi}$$
 para base retangular

$$Q_{rt}(fuste) = Pf.D(cM_c + \gamma D(M_{\varphi} + M_{\gamma}) + q_0M_q$$

Os coeficientes M_c , $(M_{\varphi} + M_{\gamma})$ e M_q serão a determinados, tendo em vista que: λ será igual a $-\varphi/8$ e Rf, para fuste retangulares, seja $Re = Pb/2\pi$.

ANEXO D – Quadros de hipóteses de carregamentos das torres analisadas pela fabricante

HIPÓTESE	DESCRIÇÃO	
1	VENTO EXTREMO TRANSVERSAL	
2	VENTO EXTREMO LONGITUDINAL	
3	VENTO EXTREMO À 45°	
4A	ROMPIMENTO DA FASE EM C - SEM VENTO	
4B	ROMPIMENTO DA FASE EM D - SEM VENTO	
4C	ROMPIMENTO DA FASE EM E - SEM VENTO	
5A	ROMPIMENTO DO PARA-RAIS EM A - SEM VENTO	
5B	ROMPIMENTO DO PARA-RAIS EM B - SEM VENTO	
6A	VERTICAL DE CONSTRUÇÃO EM B – SEM VENTO	
6B	VERTICAL DE CONSTRUÇÃO EM A e B – SEM VENTO	
6C	VERTICAL DE CONSTRUÇÃO EM A, B e C – SEM VENTO	
6D	VERTICAL DE CONSTRUÇÃO EM A, B e D – SEM VENTO	
6E	VERTICAL DE CONSTRUÇÃO EM A, B e E – SEM VENTO	
6F	VERTICAL DE CONSTRUÇÃO EM A, B, C e D – SEM VENTO	
6G	VERTICAL DE CONSTRUÇÃO EM A, B, D e E – SEM VENTO	
6H	VERTICAL DE CONSTRUÇÃO EM A, B, C e E – SEM VENTO	
61	VERTICAL DE CONSTRUÇÃO EM A, B, C, D e E – SEM VENTO	
7	VENTO DE ALTA INTENSIDADE TRANSVERSAL	
8	VENTO DE ALTA INTENSIDADE LONGITUDINAL	
9	VENTO DE ALTA INTENSIDADE À 45°	
10	CONTENÇÃO DE CASCATA – SEM VENTO	

Quadro 94 - Hipóteses de carregamentos para a torre SP5.

HIPÓTESE	DESCRIÇÃO	
1	VENTO EXTREMO TRANSVERSAL	
2	VENTO EXTREMO LONGITUDINAL	
3	VENTO EXTREMO À 45°	
4A	Rompimento do P.RAIO em A e Rompimento da FASE em C - Sem vento	
4B	Rompimento do P.RAIO em A e Rompimento da FASE em D - Sem vento	
4C	Rompimento do P.RAIO em A e Rompimento da FASE em E – Sem vento	
4D	Rompimento do P.RAIO em B e Rompimento da FASE em C – Sem vento	
4E	Rompimento do P.RAIO em B e Rompimento da FASE em D - Sem vento	
4F	Rompimento do P.RAIO em B e Rompimento da FASE em E – Sem vento	
4G	Rompimento do P.RAIO em A e B e Rompimento da FASE em C - Sem vento	
4H	Rompimento do P.RAIO em A e B e Rompimento da FASE em D - Sem vento	
41	Rompimento do P.RAIO em A e B e Rompimento da FASE em E - Sem vento	
5A	VERTICAL DE CONSTRUÇÃO EM A e B – SEM VENTO	
5B	VERTICAL DE CONSTRUÇÃO EM A, B e C – SEM VENTO	
5C	VERTICAL DE CONSTRUÇÃO EM A, B e D – SEM VENTO	
5D	VERTICAL DE CONSTRUÇÃO EM A, B e E – SEM VENTO	
5E	VERTICAL DE CONSTRUÇÃO EM A, B, C e D – SEM VENTO	
5F	VERTICAL DE CONSTRUÇÃO EM A, B, D e E – SEM VENTO	
5G	VERTICAL DE CONSTRUÇÃO EM A, B, C e E – SEM VENTO	
5H	VERTICAL DE CONSTRUÇÃO EM A, B, C, D e E – SEM VENTO	
6	VENTO DE ALTA INTENSIDADE TRANSVERSAL	
7	VENTO DE ALTA INTENSIDADE LONGITUDINAL	
8	VENTO DE ALTA INTENSIDADE À 45°	
9	DESEQUILÍBRIO LONGITUDINAL – VENTO EXTREMO TRANSVERSAL	

Quadro 95 - Hipóteses de carregamentos para a torre AT5 com função a ancoragem e terminal, respectivamente.

HIPÓTESE	DESCRIÇÃO		
1T	VENTO EXTREMO TRANSVERSAL		
2T	VENTO EXTREMO LONGITUDINAL		
3T	VENTO EXTREMO À 45°		
4TA	Rompimento do P.RAIO em A e Rompimento da FASE em C - Sem vento		
4TB	Rompimento do P.RAIO em A e Rompimento da FASE em D - Sem vento		
4TC	Rompimento do P.RAIO em A e Rompimento da FASE em E - Sem vento		
4TD	Rompimento do P.RAIO em B e Rompimento da FASE em C - Sem vento		
4TE	Rompimento do P.RAIO em B e Rompimento da FASE em D - Sem vento		
4TF	Rompimento do P.RAIO em B e Rompimento da FASE em E - Sem vento		
4TG	Rompimento do P.RAIO em A e B e Rompimento da FASE em C - Sem vento		
4TH	Rompimento do P.RAIO em A e B e Rompimento da FASE em D - Sem vento		
4TI	Rompimento do P.RAIO em A e B e Rompimento da FASE em E - Sem vento		
5TA	VERTICAL DE CONSTRUÇÃO EM A e B – SEM VENTO		
5TB	VERTICAL DE CONSTRUÇÃO EM A, B e C – SEM VENTO		
5TC	VERTICAL DE CONSTRUÇÃO EM A, B e D – SEM VENTO		
5TD	VERTICAL DE CONSTRUÇÃO EM A, B e E – SEM VENTO		
5TE	VERTICAL DE CONSTRUÇÃO EM A, B, C e D – SEM VENTO		
5TF	VERTICAL DE CONSTRUÇÃO EM A, B, D e E – SEM VENTO		
5TG	VERTICAL DE CONSTRUÇÃO EM A, B, C e E – SEM VENTO		
5TH	VERTICAL DE CONSTRUÇÃO EM A, B, C, D e E – SEM VENTO		
6T	VENTO DE ALTA INTENSIDADE TRANSVERSAL		
7T	VENTO DE ALTA INTENSIDADE LONGITUDINAL		
8T	VENTO DE ALTA INTENSIDADE À 45°		
9T	TERMINAL – VENTO EXTREMO TRANSVERSAL		

ANEXO E - Sondagem à percussão com perfil de solo residual

ANEXO F – Sondagem à percussão com perfil que a classe de solo tipo II busca contemplar.