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 ABSTRACT  

The load and resistance factors in the AASHTO LRFD bridge design specifications were calibrated, 

in some specific instances, to achieve uniform levels of reliability. The resulting system reliability 

index is affected not only by the reliability of its components, but also by other parameters, such 

as correlation among resistances of components and system arrangement, among others. Therefore, 

it is necessary to study the reliability of systems whose components are designed to have a uniform 

reliability level.  

This report investigates this problem by using idealized systems consisting of up to 500 equally 

reliable components (e.g., all components have the same reliability index βc). In this case, idealized 

systems are schematic system reliability diagrams that consider a specific system arrangement, 

which dictates the position of components (i.e., series, parallel, or mixed configuration). The 

system arrangement describes the definition of system failure events. The effects of system 

arrangement, correlations among the resistances of components, number of components in a 

system, coefficients of variation of load and resistances, and the mean value of the load on the 

system reliability index are studied. Within this report, various correlation conditions are imposed 

on the component resistances in order to simulate realistic dependence among components and 

study the correlation effect on resulting system reliability and redundancy factors. Standard tables 

of system reliability index associated with different system arrangements and correlation cases are 

generated with respect to representative cases in which the coefficients of variation of resistance 

and load are set to commonly used values. 

The results obtained from this report indicate that the design of components based on the same 

reliability level might cause low system reliability in series systems and high system reliability in 
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parallel systems. Perfect correlation among failure modes of components occurs when both their 

resistances and load effects are perfectly correlated; if either the resistances or load effects 

associated with the components are not perfectly correlated, the failure modes of components will 

not be perfectly correlated. Therefore, in order to achieve a safe and economic design, modifier 

factors which take into account the effects of system arrangement, correlation among the 

resistances of components, coefficients of variation, and probability distribution type of resistance 

and load on the system reliability need to be considered during component design. The modifier 

factor proposed in this report and the factor relating to redundancy in AASHTO LRFD bridge 

design specifications are actually of the same nature because both factors reflect the effect of 

system redundancy on the component design. Nevertheless, the redundancy-related load modifier 

in the current AASHTO LRFD specifications is determined based on a very general classification 

of redundancy levels, without considering the effects of the aforementioned parameters.  

For this reason, this report proposes a new definition of redundancy factor to provide an 

improved quantification of system redundancy levels in component design. Examples are 

presented to illustrate this definition. By virtue of the proposed approach for system reliability 

analysis, the redundancy factors of N-component systems with up to N = 500 components are 

evaluated considering various system arrangements, correlations among the resistances of 

components, coefficients of variation of load and resistances, and mean values of the load. Strength 

limit states in which system redundancy is taken into account from both the load side and the 

resistance side are also investigated. 

Since structural components used in practice have their own behavior, redundancy factors of 

ductile, brittle, and mixed (i.e., ductile-brittle) systems are investigated. In general, material 

behavior can be broadly classified into two categories: brittle and ductile. Ductile materials exhibit 
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large strains and yielding before they lose all load-carry capacities, while brittle materials reach 

such a state without warning. The effect of post-failure behavior on the redundancy factor of 

components of parallel systems is captured via an illustrative example. 

In order to provide guidance to bridge designers, an Appendix containing notations, definitions 

of relevant terms, and examples is provided. A commentary containing the procedures for applying 

redundancy factors in bridge design and examples of system modeling of bridges is also enclosed 

at the end of the report. 

In summary, a new approach based on system engineering is proposed in this report to properly 

consider structural redundancy of bridges. The proposed approach adopts a "pure" reliability 

analysis and does not require extensive studies of structural responses and load-carrying capacities. 

The analyses are not limited to specific bridge types (girder, box, truss, cable stayed, etc.) but, 

rather, use idealized series or parallel systems with different numbers of components, various 

arrangements, and different post-failure behaviors (ductility or brittle failure) to represent failure 

modes of bridges. Due to the flexibility of system modeling, the proposed approach can use 

different system failure modes to accommodate different consequence-acceptance attitudes of 

stakeholders. It provides the missing link between member-level reliability and system level 

reliability. Using the proposed approach, this report provides appropriate redundancy factors in 

tabular forms for different bridge characteristics (series/parallel, brittle/ductile, and number of 

elements). The work in this report focuses on strength limit states. Future work is needed to identify 

the system failure modes for other limit states and different bridge types as well as ad hoc system 

arrangements for tailored client needs and risk attitudes.  
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CHAPTER 1. INTRODUCTION 

The most important task in structural design is to maximize the safety of structures within 

economic constraints. This is achieved by making the difference between the designed resistance 

and the load effect as large as economically practical. A large safety margin needs to be provided 

to allow for abnormal situations, unexpected loads, misuse, degradation, and ineffective 

maintenance, among others.(6) Along with the increased understanding of structural behavior and 

loading processes, the field of structural design has evolved significantly in the past decades. Since 

approximately 1931, the sole design philosophy associated with the bridge design standards 

prescribed by the American Association of State Highway and Transportation Officials (AASHTO) 

was allowable stress design (ASD). In this conventional design, the structural safety is considered 

by using a single safety factor subjectively determined to account for uncertainties.  

Beginning in early 1970s, a new design philosophy referred to as load factor design (LFD) was 

introduced. LFD recognized that the live load was more variable than the dead load and 

uncertainties in load prediction are considered through the load factors.(15) However, no 

probabilistic concept was involved in the calibration of the factors for loads and resistances in LFD. 

Around 1990s, with the development and application of probability-based reliability theory in civil 

engineering, the bridge design philosophy moved from LFD to the load and resistance factor 

design (LRFD). (2,3,30,31)  

LRFD represents a more rational approach by which the uncertainties associated with resistance 

and load are incorporated quantitatively into the design process.(16,21,27,4) In the LRFD bridge 

design specifications,(1) load and resistance factors in the strength limit state are developed from 
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the theory of reliability based on current statistical knowledge of the variability of loads and 

structural performance. In the calibration process, a target reliability index is first selected to 

provide a minimum acceptable safety margin and then the load and resistances factors are 

determined to achieve a uniform reliability level of components.(19) The target reliability index is 

currently provided only for the design of individual components of the bridge instead of the bridge 

system. Generally, the target reliability index of bridge components (e.g., bridge girders) is taken 

as 3.5.(19,20) Component reliability currently considered in AASHTO LRFD Bridge Design 

Specifications is associated with component failure, usually resulting from load effects that exceed 

the resistance, e.g. the failure of a bridge girder or a connection. The reliability of a bridge system 

is greater than the reliability of its components, except when the system is non-redundant (i.e. 

weakest-link, also called series system). 

System reliability is an important performance indicator for structures because it reflects the 

overall level of structural safety.(5,9,10,18,24,25,28) However, with all the components having the same 

reliability index (also called “equally reliable”), the system reliability is affected not only by its 

components reliability, but also by several other parameters, such as correlation among resistances 

of components and system arrangement, among others. The correlation coefficient among 

resistances of components is a statistical measure of the degree to which changes to the resistance 

value of one component predict change to the resistance value of another. System arrangement 

(i.e., series, parallel, or series-parallel system) describes the definition of system failure. For 

example, a system can be modeled as a series system if the system failure is defined as failure of 

any component. Alternatively, a system can be modeled as a parallel system if the system failure 

is defined as the failure of all components. Therefore, system reliability is affected by the system 
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arrangement, which is mainly controlled by the number of components and the alternative load 

paths.   

Therefore, it is necessary to investigate the reliability of systems with equally reliable 

components. For some structures that have dozens or hundreds of members (i.e., truss bridge), as 

is often the case, it is time-consuming to calculate the system reliability to check if it satisfies the 

predefined reliability threshold in the preliminary design stage. In this context, generating standard 

tables of reliability index for various types of systems consisting of different numbers of 

component in different correlation cases when all components have the same reliability level will 

be helpful in facilitating the design process.   

The fundamental concepts involved in the technical approach presented are introduced in 

Chapter 2; the reliability of systems with equally reliable components is evaluated and standard 

reliability index tables associated with different types of idealized systems are generated. The 

domain , representing system failure is expressed in terms of component failure events as: 

(a) for series system   
n

k

kg
1

0


 X  

(b) for parallel system   
n

k

kg
1

0


 X  

(c) for series-parallel system   
n

k

c

j

jk

n

g
1 1

, 0
 

 X  

where g is the performance function for a component, X is the set of random variables associated 

with g, and cn is the number of components in the n-th cut set.(3) Several idealized system models 

are illustrated in Figure 1. The reliability results of systems with up to 100 components associated 

with different system arrangements, three correlation cases, and two distribution types of 

resistance and load are presented in the format shown in Table 1.  
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Figure 1. Graph. Idealized system models. 

Research on bridge system reliability and redundancy has been extensively performed in the 

past decades.(11,12, 14,17,22,26,29,32) Redundancy is often separated into three different types: internal 

redundancy, structural redundancy, and load-path redundancy, described as follows:  

(a) internal (member) redundancy describes multiple parallel elements within a member, such as 

a built-up member made from many different plates and other structural shapes that are bolted 

or riveted together. If one element were to fracture, the crack is expected to arrest and not 

propagate to the adjoining elements within the member; 

(b) structural redundancy is based on static indeterminacy of the structure as a whole; often, 

continuous-span structures would have structural redundancy. Further, the system performance 
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of the bridge also provides structural redundancy, such as the participation of secondary 

members, the deck, parapets, etc. Though similar to load-path redundancy in some ways, 

structural redundancy is not always as obvious as load-path redundancy; 

(c) load-path redundancy is the simplest to identify because it is based on the number of primary 

load-carrying members in a span. Generally, to satisfy load-path redundancy constraints, there 

must be more than two primary load-carrying members. 

Based on these studies, the AASHTO LRFD bridge design specifications include a factor 

relating to redundancy 
R  on the load side in the strength limit state. Its value is determined as 

follows: 

(a) ηR ≥ 1.05 for nonredundant members;  

(b) ηR = 1.00 for conventional level of redundancy; and  

(c) ηR ≥ 0.95 for exceptional levels of redundancy.  

However, the AASHTO classification of redundancy levels is very general and subjective. In fact, 

the value of this factor relating to redundancy is affected by several parameters, such as system 

type, number of components in a structure, and correlations among the resistances of components, 

among others.(13,17) Past research efforts have been devoted to improve structural redundancy by 

calibrating 𝜂𝑅 values based on different bridge configurations. For instance, NCHRP 406 provided 

a series of 𝜂𝑅 values for girder bridges with different spans. Though such approaches provided 

somehow improved estimation of the safety of specific bridges, the application scope is severely 

limited within the bridges that were analyzed. Even for these bridges, assumptions in the analysis 

(e.g. live load models) can invalidate the adoption of certain 𝜂𝑅  values in practice. For more 

general cases, nonlinear finite element modeling was usually used as the last resort for quantifying 

structural redundancy, which hinders the application of these approaches in bridge design. 
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Different from the previous studies (including NCHRP 406), the approach used in this report 

adopts a “pure” reliability analysis on the basis of component reliability without restricting the 

definition of such a component. As a result, this approach has the capability to represent different 

types of bridges including both bridge super- and substructures. Redundancy is analyzed by 

assembling series, parallel and series-parallel systems using such components. Since structures are 

directly represented by these system models, the redundancy factors proposed herein are supported 

by rigorous theoretical backbones. 

The bridge system reliability modeling approach used in the report is the classical, also called 

pure, approach used in system analysis in the field of reliability engineering. The bridge 

components and their connectivity (series, parallel, and mixed, i.e. series-parallel) provide a 

representation of the real bridge system for the purposes of quantifying its system reliability and 

redundancy. Similar approaches have been extensively used for reliability analysis of other civil 

structures such as hydraulic structures, pipelines, and nuclear power plants. The work in this report 

aims to use this classical system reliability modeling approach to propose redundancy factors that 

can fit into the current practice of bridge design.  
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Table 1. Example standard table. 

Number of 

components 
System type 

Normal 

distrib.  

N 

Normal 

distrib. 

P 

Normal 

distrib.  

F 

Lognor

mal 

distrib.  

N 

Lognor

mal 

distrib. 

P 

Lognor

mal 

distrib.  

F 

        

2-10 All Parallel       

10-50 All Series       

10-50 All Parallel       

10-50 5 Parallel ×n Series       

10-50 10 Parallel ×n Series       

10-50 5 Series ×n Parallel       

10-50 10 Series ×n Parallel       

50-100 All Series       

50-100 All Parallel       

50-100 5 Parallel ×n Series       

50-100 10 Parallel ×n Series       

50-100 20 Parallel ×n Series       

50-100 5 Series ×n Parallel       

50-100 10 Series ×n Parallel       

50-100 20 Series ×n Parallel       

Note: N = no correlation; P = partially correlated; F = fully correlated. 

 

As mentioned in section 1.3.2.1 in AASHTO(1): “improved quantification of ductility, 

redundancy, and operational classification may be attained with time, and possibly leading to a 

rearranging of Eq. 1.3.2.1-1, in which these effects may appear on either side of the equation or on 

both sides”. Taking this into account, Chapter 3 proposes a redundancy factor ηR to account for the 

redundancy from the resistance side and considers a more detailed redundancy classification to 

provide an improved and rational basis for reliability-based design of structural components. This 
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redundancy factor is defined as the ratio of the mean resistance of a component in a system when 

the system reliability index is prescribed (e.g., βsys = 3.5), Ecs(R), to the mean resistance of the same 

component when its reliability index is the same as that of the system (e.g., βc = 3.5), Ec(R). In 

addition to investigating the effects of the aforementioned parameters on the redundancy factor, 

the redundancy factors of N-component systems (N ≤ 100) associated with different correlation 

cases and system arrangements are evaluated with respect to the representative case.  

The materials used for structural components in practical cases have their own behavior. The 

materials behavior can be broadly classified into two categories: brittle and ductile. Ductile 

materials exhibit large strains and yielding before they fail. On the contrary, brittle materials fail 

suddenly and without warning. Due to the significant difference in the material’s performance 

under load, it is necessary to take into account the material behavior of components in the 

evaluation of redundancy factor. Therefore, Chapter 3 investigates the redundancy factors of 

ductile, brittle, and mixed systems with no more than four components and studies the effects of 

post-failure behavior factor on the redundancy factor of parallel systems. Finally, Chapter 3 

provides two types of limit states in which system redundancy is taken into account from the load 

and resistance side, respectively.  

In summary, this report proposes a new definition of redundancy factor to provide an improved 

quantification of system redundancy levels in component design. Using idealized systems 

consisting of equally reliable components, the effects of system arrangement, correlations among 

the resistances of components, number of components in a system, coefficients of variation of load 

and resistances, and the mean value of the load on the system reliability index are studied. Standard 

tables of system reliability index associated with system arrangements, material behavior, and 

correlation cases are generated. Moreover, various correlation conditions are imposed on the 
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component resistances in order to simulate realistic dependence among components and study the 

effect on resulting system reliability and redundancy factors. Overall, the analyses in this report 

are not directly related to bridge type. In practice, the design engineers would have to apply their 

judgment to decide what type of system their unique bridge should be considered.  
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CHAPTER 2. RELIABILITY OF SYSTEMS WITH EQUALLY RELIABLE 

COMPONENTS 

In this chapter, firstly, the procedure for calculating the reliability of a system with equally reliable 

components is presented; then, a brief example is provided to illustrate the procedure; next, the 

effects of several parameters on the system reliability when the reliability indices of all 

components are designed to be 3.5 are studied by using idealized systems; finally, the system 

reliability indices of N-component systems associated with a representative case are evaluated with 

respect to different correlation cases. In general, it is necessary to investigate the reliability of 

systems with equally reliable components. In this context, generating standard tables of reliability 

index for various types of systems consisting of different numbers of component in different 

correlation cases when all components have the same reliability level will be helpful in facilitating 

the design process.  

2.1 Procedure for Calculating the System Reliability with Equally Reliable Components  

Consider a single component with random resistance R and under a random load P with given 

probability density functions. For the given mean value of load, E(P), and the coefficients of 

variation of resistance and load, denoted as V(R) and V(P), respectively, the mean value of the 

component resistance, denoted as Ec(R), can be determined (e.g., by using Monte Carlo Simulation 

(MCS) in MATLAB) to meet the predefined component reliability index level βc = 3.5. If both R 

and P are normally or lognormally distributed, Ec(R) can also be calculated by solving the 

equations in Figure 2 and Figure 3, respectively.  
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Figure 2. Equation. Component reliability index for normal distribution. 
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Figure 3. Equation. Component reliability index for lognormal distribution. 

 

Figure 4. Graph. Procedure for determining the system reliability index. 

For a system consisting of N equally reliable components whose geometries and material 

properties are the same as the single component just described, it is assumed that the load effect 

For a single component,

given: E(P), V(P), V(R), βc =3.5

By solving equation 

in Figure 2

Obtain the mean resistance 

of the component, Ec(R)

Substitute Ec(R) into the system with N identical 

components having the same E(P), V(P), V(R); 

also given: Distribution type of R and P, ρ(Ri, Rj),

R and P are normally 

distributed

R and P are 

lognormally distributed

By solving equation 

in Figure 3

Obtain the system reliability index βsys
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acting on each component is also P. Therefore, the component reliability in the system βcs will be 

3.5 if the mean resistances of components in the system Ecs(R) are set to be Ec(R). Therefore, all 

the components investigated in this study are equally reliable. Given the distribution type of R and 

P, the values of Ecs(R) = Ec(R), E(P), V(R), V(P), and the correlation coefficient between the 

resistances of components i and j, denoted as ρ(Ri,Rj), the system reliability index βsys can be 

calculated by using MATLAB.(23) The procedure for determining βsys is described in the flowchart 

shown in Figure 4.  

2.2 Example: A Three-Component Structure 

An example is provided in this subsection to illustrate the procedure presented in in Figure 4. 

Assuming a three-component structure, three different systems can be formed: series, parallel, and 

series-parallel systems. The values of E(P), V(R), and V(P) associated with the three components 

are arbitrarily assumed 10, 0.1, and 0.1, respectively. Three correlation cases between the 

resistances are considered: 

(a) ρ(Ri,Rj) = 0, no correlation;  

(b) ρ(Ri,Rj) = 0.5, partial correlation; and 

(c) ρ(Ri,Rj) = 1, perfect correlation.  

The aim of this section is to illustrate the procedure for determining the system reliability index; 

therefore, the assumed parameters are used. However, system reliability will change if different 

parameters are adopted. Two types of distributions are assumed for the resistances and loads of 

the components: normal and lognormal distribution. Based on the equations in Figure 2 and Figure 

3 and the above parameters, the mean values of resistance associated with a single component for 

the normal and lognormal distribution when the component reliability index is 3.5 are found to be 

Ec,N(R) = 16.861  and  Ec,LN(R) = 16.384, respectively.  
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By using the obtained Ec(R) as the mean resistances of components in the system, the system 

reliability index βsys associated with normal and lognormal distribution is calculated based on the 

program RELSYS, (8) as shown in Table 2 and Table 3, respectively. RELSYS (Reliability of 

Systems) is a FORTRAN 77 program which calculates the reliability of any structure that can be 

modeled as a combination of series and parallel systems. The program reduces the entire system 

to an equivalent single component and computes the system reliability. Details about this program 

can be found in Estes (1997) (8).      

It is seen from the tables that in the no correlation and partial correlation cases, when the 

components reliability indices are 3.5: 

(a) βsys in the series and parallel system is less and larger than 3.5, respectively; 

(b) βsys in the series-parallel system is between those in the series and parallel systems; and 

(c) βsys associated with the lognormal distribution case is in general lower than that associated with 

the normal distribution.  

For the perfect correlation case, βsys has the same value as that of the component reliability index 

in all the systems. 

Table 2. System reliability index of three-component systems when R and P follow normal 

distribution. 

Correlation Series system Parallel system SP system 

ρ(Ri,Rj) = 0 3.205 5.478 3.507 

ρ(Ri,Rj) = 0.5 3.222 4.460 3.494 

ρ(Ri,Rj) = 1 3.500 3.500 3.500 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; Ec,N (R) = 16.861 
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Table 3. System reliability index of three-component systems when R and P follow lognormal 

distribution. 

Correlation Series system Parallel system Series-parallel system 

ρ(Ri,Rj) = 0 3.201 4.761 3.491 

ρ(Ri,Rj) = 0.5 3.234 4.187 3.474 

ρ(Ri,Rj) = 1 3.500 3.500 3.500 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; Ec,LN (R) = 16.384 

2.3 Effects of V(R), V(P), E(P), ρ(Ri,Rj) and N on the System Reliability 

Different types of systems consisting of two, three, and four components when the reliability 

indices of all components are 3.5 are investigated to study the effects of V(R), V(P), E(P), ρ(Ri,Rj), 

and N on the system reliability. The distribution type of R and P of the components in these systems 

is assumed to be normal. The system reliability index as function of V(R), V(P), and E(P) for two-

component systems associated with two extreme correlation cases is plotted in Figure 5. It is found 

that:  

(a) as V(R) increases, the system reliability βsys associated with the no correlation case (ρ(Ri,Rj) = 

0) increases significantly in the parallel system while it decreases slightly in the series system;  

(b) as V(P) increases, βsys associated with the no correlation case remains almost the same in the 

series system while it decreases significantly in the parallel system;  

(c) βsys is not affected by change in the mean values of the load in both systems associated with the 

no correlation case;  

(d) in the perfect correlation case, βsys in both systems is equal to 3.5 and is not affected by change 

in V(R), V(P), and E(P).  
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Figure 5. Graph. Effects of (a) V(R); (b) V(P); and (c) E(P) on system reliability for two-component 

systems associated with no correlation and perfect correlation among their resistances. 

Note that the coefficient of variation of component resistance V(R) is usually less than the 

coefficient of variation of load effect V(P); therefore, the selected range of V(R) is smaller than 

V(P). Figure 5 is used to illustrate the effect of V(R), V(P) and E(P) on the system reliability. The 

increase / decrease of the range of these parameters will not affect the conclusions. 

The effects of the considered parameters on βsys in the three-component systems are shown in 

Figure 6. It is noted that:  

(a) as V(R) increases in the no correlation case, βsys shows an increasing and decreasing tendency 

in parallel and series systems, respectively; however, the rate of change in the parallel system 

is more significant than that in the series system;  

(b) βsys associated with the parallel system decreases significantly as V(P) increases; however, βsys 

associated with the series system is almost not affected by V(P);  
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(c) for the series-parallel system, the effects of V(R) and V(P) on βsys can almost be neglected in 

the no correlation case;  

(d) βsys does not change as the mean value of the load E(P) varies in the three systems associated 

with the two correlation cases;  

(e) V(R) and V(P) have no effect on βsys for all systems in the perfect correlation case, as concluded 

from the two-component systems case;  

(f) the effect of V(R) and V(P) on βsys for all the three systems considered is more significant in the 

no correlation case than in the perfect correlation case. 

 

Figure 6. Graph. Effects of (a) V(R); (b) V(P); and (c) E(P) on system reliability for three-

component systems associated with no correlation and perfect correlation among their resistances. 

 

The effects of the aforementioned parameters on βsys are also investigated for the four-

component systems in which four different systems can be composed: series system (Figure 7(a)), 

parallel system (Figure 7(b)), series-parallel system A (Figure 7(c)) and series-parallel system B 
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(Figure 7(d)). An additional correlation case in which the correlation coefficients among the 

components resistances are 0.5 is studied.  

 

 

Figure 7. Graph. Four-component systems: (a) series system; (b) parallel system; (c) series-parallel 

system A; and (d) series-parallel system B. 

 

The results associated with the effects of V(R), V(P), and E(P) are presented in Figure 8, Figure 

9, and Figure 10, respectively. In the no correlation and partial correlation cases, Figure 8 shows 

that:  

(a) βsys associated with both the parallel system and the series-parallel system B shows an 

increasing tendency as V(R) increases; however, the rate of change in the parallel system is 

more significant than that in the series-parallel system B;  

(b) βsys associated with the series system decreases slowly with the increase of V(R);  

(c) the effect of V(R) on βsys in the series-parallel system A can almost be neglected. It is also noted 

that as the correlation among the resistances becomes stronger, the rate of change of βsys due 

to the variation of V(R) become less significant. 
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Figure 8. Graph. Effects of V(R) on system reliability of four-component systems associated with 

the case of (a) no correlation; (b) partial correlation; and (c) perfect correlation among their 

resistances. 
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Figure 9. Graph. Effects of V(P) on system reliability of four-component systems associated with 

the case of (a) no correlation; (b) partial correlation; and (c) perfect correlation among their 

resistances. 
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Figure 10. Graph. Effects of E(P) on system reliability of four-component systems associated with 

the case of (a) no correlation; (b) partial correlation; and (c) perfect correlation among their 

resistances. 

 

In the no correlation and partial correlation cases, it is observed from Figure 9 that: 

(a) increase of V(P) reduces βsys in the parallel system and series-parallel system B; and 

(b) βsys of the series system and series-parallel system A is almost not affected by change in V(P).  

In the perfect correlation case, βsys of all the systems remain 3.5 independent of V(P). The 

conclusion obtained from Figure 10 which shows the effect of E(P) on the system reliability of the 

four-component system for different correlation cases is the same as that drawn from Figure 5 and 

Figure 6. 
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Figure 11. Graph. Effects of number of components on system reliability with the variations of (a) 

V(R); (b) V(P); and (c) E(P) in the  no correlation and perfect correlation cases. 

 

Figure 11 shows the effects of number of components N on βsys in different systems with the 

changes of V(R), V(P), and E(P). As the number of components increases in the no correlation 

case, it is observed that βsys in parallel system increases while its counterpart in series system 

decreases; while in the perfect correlation case, βsys is not affected by N and remains 3.5 for all 

systems. It should be noted that ρ(Ri,Rj) in this report refers to the correlation between the 

resistances of components i and j instead of the correlation between the failure modes of the 

components. Since the external load acting on the structural system is usually distributed to its 

components, the load effects associated with the components are correlated. Therefore, the failure 

modes of the components are usually correlated even in the case when the resistances of 

components are assumed to independent. In the cases in which the failure modes of components 

are perfectly correlated, βsys is not affected by V(R), V(P), or E(P).  
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2.4 Reliability of Systems with Many Equally Reliable Components   

As mentioned previously, the AASHTO LRFD bridge design specifications were calibrated to 

achieve uniform reliability level in the component design. In practical cases, most structures have 

dozens or hundreds of members and it will be computationally expensive to calculate the system 

reliability index during the iterative design process. Therefore, it is necessary to investigate the 

reliability of these systems when their components reliability indices are all 3.5 so that standard 

system reliability tables can be generated to facilitate the design process.  

Idealized systems with up to 100 components (N = 2, 3, 5, 10, 15, 20, 25, 50, 100) are analyzed 

in this subsection. As the number of components increases, the required computational time also 

increases dramatically. Therefore, a representative case in which V(R) and V(P) are assumed as 

commonly used values (V(R) = 0.05 and V(P) = 0.3) is investigated instead of studying various 

combinations of V(R) and V(P) (33,34,35,36).  

Different series-parallel (SP) systems can be formed for an N-component structure, thus the 

following rule is used to denote these SP systems:  

(a) if the subsystem of the series-parallel (SP) system is a parallel system consisting of m 

components and it is repeated n times in the system model, as shown in Figure 12, the series-

parallel system is denoted as mp×ns SP system;  

(b) if the subsystem of the series-parallel system is a series system consisting of m components 

and it is repeated n times in the system model, as shown in Figure 13, the series-parallel system 

is denoted as ms×np SP system. In this report, SP systems in which m equals to 5, 10 and 20 

are investigated.  
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Figure 12. Graph. Schematic figure of a mp × ns series-parallel system (n series of m components in 

parallel). 

 
 

Figure 13. Graph. Schematic figure of a ms × np series-parallel system (n parallel of m components 

in series). 

With all components reliability indices being 3.5, the system reliability indices are calculated 

with respect to the N-component systems (N = 2, 3, 5, 10, 15, 20, 25, 50, 100) associated with: 

(a) different system types modeling (i.e., series, parallel, and series-parallel systems); 

(b) three correlation cases among components resistances (i.e., ρ(Ri,Rj) = 0, 0.5, and 1.0); and 

(c) two distribution cases of resistance and load effects (i.e., normal and lognormal distribution). 

For the representative case in which V(R) = 0.05, V(P) = 0.3, and E(P) = 10, the mean resistance 

of a single component for normal and lognormal distribution when its reliability is 3.5 is found to 

be Ec,N (R) = 21.132 and Ec,LN (R) = 27.194, respectively.  

Based on the given V(R), V(P), E(P), ρ(Ri,Rj), distribution type, and the obtained Ec (R), the 

system reliability can be calculated using the following algorithm:  
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1. Give the mean value of the load effect E(P), coefficients of variation of resistance and load 

effect V(R) and V(P), correlation between the resistances of components ρ(Ri, Rj), distribution 

types of resistance and load, number of components N, number of simulation samples w; set the 

mean value of component resistance Ecs(R) to be equal to Ec(R); 

2. Generate the random samples of resistance Ri and load effect P based on the above parameters; 

the dimensions of the Ri and P vectors are w× 1; 

3. Obtain the performance function for each component gi = Ri - P (i = 1, 2, …, N); the dimensions 

of gi  is also w × 1;  

4. For series system, define an w × 1 zero vector L, and the ratio of the number of 

    0|...|0| 1  NggL  to the total sample size w represents the failure probability of 

series system (“|” is logical OR in MATLAB; it refers to union); for the parallel system, define an 

w × 1 unit vector Q, and the ratio of the number of     0&...&0& 1  NggQ  to w is 

the Pf of parallel system (“&” is logical AND in MATLAB; it refers to intersection); for the mp × 

ns SP system, define an w × 1 zero vector L and an w × 1 unit vector Q, and the ratio of the number 

of           0&...&0&|...|0&...&0&| 1)1(1   nmnmm ggQggQL  to w is the Pf of the SP system; 

for the ms × np SP system, define an w × 1 zero vector L and an w × 1 unit vector Q, and the ratio 

of the number of           0|...|0|&...&0|...|0|& 1)1(1   nmnmm ggLggLQ  to w is the Pf of the 

SP system; it should be noted that in the series-parallel systems, n × m is equal to the number of 

components N. 

5. Repeat steps 1 to 4 for t times (e.g., t = 50) to obtain the average probability of failure of the 

system, then, convert it to the reliability index. 

The results associated with normal and lognormal distribution are shown in Table 4 to Table 7. 

Note that a sufficient number of samples w is employed in order to capture relatively small failure 
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probabilities (e.g., 10-6). Figure 14 shows the effect of the number of components on the system 

reliability in series and parallel systems associated with different correlation and distribution cases. 

It is observed from this figure and Table 4 to Table 7 that:  

(a) in the no correlation and partial correlation cases, the system reliability of the series and mp×ns 

SP systems that have the same number of parallel components (i.e., m is the same in these SP 

systems) shows a decreasing tendency as the number of components increases; however, the 

contrary is observed in the parallel and ms×np SP systems which have the same number of 

series components (i.e., m is the same);  

(b) in the perfect correlation case, the system reliability is equal to 3.5 for different types of systems 

with different number of components; this was expected since for systems whose components 

are identical and their failure modes are perfect correlated, the system can be reduced to a 

single component; therefore, the system reliability in this correlation case does not change as 

the system type and number of components vary;  

(c) for the series and parallel systems, the system reliability associated with the lognormal 

distribution case is larger and less than that associated with the normal distribution case, 

respectively;  

(d) as the correlation among components resistances increases, the system reliability decreases in 

the parallel system while it increases in the series system. 
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Table 4. System reliability index of different systems associated with different correlation cases 

when R and P follow normal distribution; 1 ≤ N ≤ 20.  

System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component system 3.50 3.50 3.50 

2-component system - Series system 3.368 3.393 3.50 

2-component system - Parallel system 3.757 3.687 3.50 

3-component system - Series system 3.293 3.338 3.50 

3-component system - Parallel system 3.883 3.701 3.50 

3-component system - Series-parallel system 3.478 3.466 3.50 

4-component system - Series system 3.245 3.305 3.50 

4-component system - Parallel system 3.968 3.802 3.50 

5-component system - Series system 3.207 3.302 3.50 

5-component system - Parallel system 4.019 3.815 3.50 

6-component system - 2p×3s SP system 3.590 3.532 3.50 

10-component system - Series system 3.097 3.196 3.50 

10-component system - Parallel system 4.156 3.904 3.50 

10-component system - 5p×2s SP system 3.928 3.765 3.50 

10-component system - 5s×2p SP system 3.376 3.385 3.50 

15-component system - Series system 3.036 3.152 3.50 

15-component system - Parallel system 4.248 4.028 3.50 

15-component system - 5p×3s SP system 3.867 3.716 3.50 

15-component system - 5s×3p SP system 3.455 3.432 3.50 

20-component syst - Series system 2.996 3.122 3.50 

20-component syst - Parallel system 4.298 4.043 3.50 

20-component syst - 5p×4s SP system 3.845 3.702 3.50 

20-component syst - 10p×2s SP system 4.100 3.871 3.50 

20-component syst - 5s×4p SP system 3.502 3.463 3.50 

20-component syst - 10s×2p SP system 3.244 3.286 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5 
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Table 5. System reliability index of different systems associated with different correlation cases 

when R and P follow normal distribution; 25 ≤ N ≤ 100.  

System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

25-component system - Series system 2.967 3.102 3.50 

25-component system - Parallel system 4.339 4.050 3.50 

25-component system - 5p×5s SP system 3.811 3.679 3.50 

25-component system - 5s×5p SP system 3.529 3.488 3.50 

50-component system - Series system 2.877 3.035 3.50 

50-component system - Parallel system 4.456 4.121 3.50 

50-component system -5p×10s SP system 3.755 3.632 3.50 

50-component system -10p×5s SP system 3.987 3.809 3.50 

50-component system -5s×10p SP system 3.620 3.549 3.50 

50-component system -10s×5p SP system 3.372 3.375 3.50 

100-component system - Series system 2.793 2.977 3.50 

100-component system - Parallel system 4.553 4.184 3.50 

100-component system -5p×10s SP system 3.691 3.590 3.50 

100-component system -10p×10s SP system 3.933 3.763 3.50 

100-component system -20p×5s SP system 4.143 3.903 3.50 

100-component system -5s×20p SP system 3.689 3.592 3.50 

100-component system -10s×10p SP system 3.448 3.422 3.50 

100-component system -20s×5p SP system 3.239 3.279 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5 
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Table 6. System reliability index of different systems associated with different correlation cases 

when R and P follow lognormal distribution; 1 ≤ N ≤ 20. 

System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component system 3.50 3.50 3.50 

2-component system - Series system 3.419 3.444 3.50 

2-component system - Parallel system 3.607 3.572 3.50 

3-component system - Series system 3.382 3.410 3.50 

3-component system - Parallel system 3.668 3.613 3.50 

3-component system - Series-parallel system 3.494 3.482 3.50 

5-component system - Series system 3.328 3.378 3.50 

5-component system - Parallel system 3.728 3.655 3.50 

10-component system - Series system 3.273 3.331 3.50 

10-component system - Parallel system 3.800 3.696 3.50 

10-component system - 5p×2s SP system 3.673 3.609 3.50 

10-component system - 5s×2p SP system 3.405 3.424 3.50 

15-component system - Series system 3.241 3.312 3.50 

15-component system - Parallel system 3.823 3.729 3.50 

15-component system - 5p×3s SP system 3.643 3.594 3.50 

15-component system - 5s×3p SP system 3.436 3.444 3.50 

20-component system - Series system 3.216 3.295 3.50 

20-component system - Parallel system 3.854 3.739 3.50 

20-component system - 5p×4s SP system 3.627 3.590 3.50 

20-component system - 10p×2s SP system 3.743 3.666 3.50 

20-component system - 5s×4p SP system 3.459 3.464 3.50 

20-component system - 10s×2p SP system 3.335 3.376 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5 
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Table 7. System reliability index of different systems associated with different correlation cases 

when R and P follow lognormal distribution; 25 ≤ N ≤ 100. 

System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

25-component system - Series system 3.204 3.281 3.50 

25-component system - Parallel system 3.871 3.755 3.50 

25-component system - 5p×5s SP system 3.611 3.570 3.50 

25-component system - 5s×5p SP system 3.471 3.469 3.50 

50-component system - Series system 3.158 3.251 3.50 

50-component system - Parallel system 3.927 3.788 3.50 

50-component system - 5p×10s SP system 3.576 3.548 3.50 

50-component system - 10p×5s SP system 3.695 3.624 3.50 

50-component system - 5s×10p SP system 3.513 3.500 3.50 

50-component system - 10s×5p SP system 3.393 3.420 3.50 

100-component system - Series system 3.116 3.219 3.50 

100-component system - Parallel system 3.971 3.819 3.50 

100-component system - 5p×10s SP system 3.547 3.525 3.50 

100-component system - 10p×10s SP system 3.668 3.610 3.50 

100-component system - 20p×5s SP system 3.761 3.676 3.50 

100-component system - 5s×20p SP system 3.553 3.523 3.50 

100-component system - 10s×10p SP system 3.425 3.440 3.50 

100-component system - 20s×5p SP system 3.326 3.369 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5 
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Figure 14. Graph. Effect of number of components on system reliability associated with normal and 

lognormal distributions (Note: “N” denotes normal distribution; “LN” denotes lognormal 

distribution; “0” denotes  ρ(Ri,Rj) = 0; and “0.5” denotes  ρ(Ri,Rj) = 0.5). 
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CHAPTER 3. SYSTEM RELIABILITY-BASED REDUNDANCY FACTOR 

FOR COMPONENT DESIGN 

In this chapter, Section 3.1 introduces the definition of the proposed redundancy factor; Section 

3.2 provides two examples to illustrate this definition; Sections 3.3 and 3.4 investigate the effects 

of several parameters on the redundancy factor using idealized systems; Section 3.5 evaluates the 

redundancy factors of N-component systems associated with a representative case; Section 3.6 

studies the redundancy factors of ductile, brittle, and mixed systems with no more than four 

components and also investigates the effect of post-failure behavior factor on the redundancy 

factor of parallel systems; finally, Section 3.7 provides two types of limit states in which system 

redundancy is taken into account from the load and resistance side, respectively. 

3.1 Definition of the Redundancy Factor 

Consider a single component with resistance R and load P which are random variables. Given the 

mean value of load E(P), the coefficients of variation of resistance and load V(R) and V(P), and 

the predefined component reliability index βc = 3.5, the mean value of the component resistance 

Ec(R) can be determined (e.g., by using Monte Carlo Simulation in MATLAB). For two particular 

cases in which both R and P of the component are normally or lognormally distributed, Ec(R) can 

be directly calculated by solving the equations in Figure 2 and Figure 3, respectively. The Ec(R) 

obtained will be used as the reference value to be compared with the mean value of component 

resistance in a system to yield the redundancy factor.  

For a system consisting of N equally reliable components whose geometries and material 

properties are the same as the single component just described, different types of systems can be 

formed: series, parallel and series-parallel systems.(7,17) Given the distribution type of R and P, the 
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values of E(P), V(R), V(P), ρ(Ri,Rj), and the target system reliability index βsys that is assumed to 

be 3.5, the mean value of component resistance in the system Ecs(R) can be calculated by using 

MATLAB.(23) After obtaining the mean resistance of a component in a system when the system 

reliability index is 3.5, Ecs(R), and the mean resistance of the same component when the component 

reliability is 3.5, Ec(R), the redundancy factor, denoted as ηR, which is defined as the ratio of Ecs(R) 

to Ec(R), can be determined. The procedure for determining ηR is described in the flowchart shown 

in Figure 15.  

 

Figure 15. Graph. Flowchart of the procedure for determining the redundancy factor. 

It should be noted that ρ(Ri,Rj) refers to the correlation between the resistances of components 

i and j instead of the correlation between the failure modes of the two components. Since the 

external load acting on the system leads to load effects in all the components, the load effects are 

correlated. Therefore, the failure modes of the components are correlated even when ρ(Ri,Rj) = 0.   
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3.2 Examples 

Two examples are provided in this subsection to illustrate the above concepts. In the first example, 

the number of the investigated equally reliable components is three; two different systems can be 

formed: series and parallel, as shown in Figure 16. Normal distribution is assumed for the 

resistances and loads of the components. The values of E(P), V(R), and V(P) associated with the 

three components are assumed as 10, 0.1, and 0.1, respectively. Three correlation cases among the 

resistances of components are considered: 

(a) ρ(Ri,Rj) = 0, no correlation; 

(b) ρ(Ri,Rj) = 0.5, partial correlation; and  

(c) ρ(Ri,Rj) = 1, perfect correlation. 

Based on the equations in Figure 2 and Figure 3 and the parameters mentioned previously, the 

mean values of resistance associated with a single component for the normal and lognormal 

distribution are found to be Ec,N(R) = 16.861  and  Ec,LN(R) = 16.384, respectively. 

 

Figure 16. Graph. Three-component systems: (a) series system; and (b) parallel system. 

Assuming the target system reliability index βsys = 3.5, the mean values of component resistance 

Ecs(R) corresponding to the two systems associated with the normal distribution case are calculated 

by combining RELSYS(8) with MATLAB(23). The redundancy factors ηRand the corresponding 

components reliability indices βcs are also obtained, as presented in Table 8.  

component 2component 1 component 3

component 1

component 2

component 3(a)

(b)
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Table 8. Ecs(R), ηR and βcs of three-component systems when R and P follow normal distribution. 

Correlation 
Series system Parallel system 

Ecs(R); 
R ;

cs  Ecs(R); 
R ;

cs  

ρ(Ri,Rj) = 0 17.685; 1.049; 3.78 13.684; 0.812; 2.17 

ρ(Ri,Rj) = 0.5 17.651; 1.047; 3.77 14.817; 0.879; 2.69 

ρ(Ri,Rj) = 1 16.861; 1.000; 3.50 16.861; 1.000; 3.50 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; βsys = 3.5; Ec,N (R) = 16.861 

Another type of distribution usually followed by resistance and load effect is lognormal 

distribution. Therefore, an additional case in which the resistance and load effect of components 

have lognormal distributions while E(P), V(R), and V(P) remain 10, 0.1, and 0.1, respectively, is 

studied. By performing the same procedure, the mean values of component resistance Ecs(R), the 

redundancy factors ηR8o, and the components reliability indices βcs associated with the lognormal 

case are shown in Table 9. 

Table 9. Ecs(R), ηR and βcs of three-component systems when R and P follow lognormal distribution. 

Correlation 
Series system Parallel system 

Ecs(R); 
R ; 

cs  Ecs(R); 
R ; 

cs  

ρ(Ri,Rj) = 0 17.045; 1.040; 3.78 14.092; 0.860; 2.43 

ρ(Ri,Rj) = 0.5 16.985; 1.037; 3.76 14.969; 0.914; 2.86 

ρ(Ri,Rj) = 1 16.384; 1.000; 3.50 16.384; 1.000; 3.50 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; βsys = 3.5; Ec,LN (R) = 16.384 

It is noted from Table 8 and Table 9 that in the no correlation and partial correlation cases: 

 (a) the redundancy factors ηR associated with series system are greater than 1.0; this indicates that 

the mean resistance required for each component in a series system is larger than that needed for 

a single component; therefore, the component reliability indices βcs in the two correlation cases are 

larger than 3.5; 
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(b) in the parallel system, the obtained conclusion is contrary to that of the series system.  

By comparing the results in Table 8 and Table 9, it is noticed that in the no correlation and partial 

correlation cases, the difference in ηR between normal and lognormal distributions is less than 6%.  

In the second example, the number of the investigated components is extended to four and three 

different systems are studied: series system, parallel system, series-parallel system, as shown in 

Figure 17. The mean value of the resistance associated with a single component Ec(R) when its 

reliability index is 3.5 is still 16.861 and 16.384 for the normal and lognormal distribution case, 

respectively, as obtained in the previous three-component example. The value of Ec(R) is 

independent of the system type, correlation among the resistances of components, and number of 

components in a system because it is only related to the parameters associated with a single 

component.  

Based on the same assumptions for the values of E(P), V(R) and V(P) used in the previous three-

component example, the mean values of component resistance, the redundancy factors, and the 

component reliability indices of the four-component systems associated with normal and 

lognormal distribution are provided in Table 10 and Table 11. It is observed that the values of ηR  

associated with the partial correlation case are between the redundancy factors associated with the 

two extreme correlation cases.  
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Figure 17. Graph. Four-component systems: (a) series system; (b) parallel system; and (c) series-

parallel system. 

 
Table 10. Ecs(R), ηR and βcs of four-component systems when R and P follow normal distribution. 

Correlation 
Series system Parallel system Series-parallel system 

Ecs(R); 
R ; 

cs  Ecs(R); 
R ;

cs  Ecs(R); 
R ;

cs  

ρ(Ri,Rj) = 0 17.902; 1.062; 3.85 13.239; 0.785; 1.95 14.811; 0.878; 2.69 

ρ(Ri,Rj) = 0.5 17.860; 1.059; 3.84 14.478; 0.859; 2.54 15.732; 0.933; 3.07 

ρ(Ri,Rj) = 1.0 16.861; 1.000; 3.50 16. 861; 1.000; 3.50 16. 861; 1.000; 3.50 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; βsys = 3.5; Ec,N (R) = 16.861 

When comparing the results of Table 8 to Table 11, it is found that as the number of components 

increases from three to four, ηR and the component reliability index βcs  associated with the series 

system increase while their counterparts associated with the parallel system decrease. Details about 

the effects of the number of components and other parameters on the redundancy factors are 

discussed in the next section.  

(a)

(b)
(c)

component 2component 1 component 3 component 4

component 1

component 2

component 3

component 4

component 1

component 2

component 3

component 4
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Table 11. Ecs(R), ηR and βcs of four-component systems when R and P follow lognormal distribution. 

Correlation 
Series system Parallel system Series-parallel system 

Ecs(R); 
R ; 

cs  Ecs(R); 
R ; 

cs  Ecs(R); 
R ; 

cs  

ρ(Ri,Rj) = 0 17.215; 1.051; 3.85 13.688; 0.835; 2.23 15.083; 0.921; 2.91 

ρ(Ri,Rj) = 0.5 17.136; 1.046; 3.82 14.695; 0.897; 2.73 15.694; 0.958; 3.19 

ρ(Ri,Rj) = 1.0 16.384; 1.000; 3.50 16.384; 1.000; 3.50 16.384; 1.000; 3.50 

Note: E(P) = 10; V(P) = 0.1; V (R) = 0.1; βc = 3.5; βsys = 3.5; Ec,LN (R) = 16.384 

3.3 Effects of V(R), V(P), E(P) and N on the Redundancy Factor ηR 

In the two examples presented previously, it was shown that the mean value of the component 

resistance Ecs(R) is affected by the coefficient of variation of resistance V(R), the coefficient of 

variation of load V(P), the mean value of load E(P), and correlation among the resistances of 

components ρ(Ri,Rj). In addition to these parameters, the number of components N in a system has 

an impact on Ecs(R). Therefore, different types of systems consisting of two, three, and four 

components are investigated to study the effects of V(R), V(P), E(P), ρ(Ri,Rj), and N on the 

redundancy factor 
R  of components in these systems. The distribution type of R and P of the 

components in these systems is assumed to be normal, and βc = βsys =3.5.  

The effects of V(R), V(P), and E(P) on the redundancy factor ηR in two-component systems 

associated with two extreme correlation cases are plotted in Figure 18. It is noted from this figure 

that:  

(a) as V(R) increases, ηR  associated with the no correlation case increases in the series system 

while it decreases significantly in the parallel system;  

(b) as V(P) increases, ηR associated with the no correlation increase in both systems but more 

significantly in the parallel system;  



 

44 
 

(c) ηR is not affected by changes in the mean values of the load in both systems associated with the 

no correlation case;  

(d) in the perfect correlation case, ηR  in both systems are equal to 1.0 and it is not affected by 

changes of  V(R), V(P), and/or E(P).  

 

Figure 18. Graph. Effects of (a) V(R); (b) V(P); and (c) E(P) on ηR in two-component systems. 

 

These observations can be explained by the results presented in Figure 19 which shows the 

effects of V(R) and V(P) on the mean resistance of the single component Ec(R) and the mean 

component resistance in the two systems Ecs(R) associated with two correlation cases. It is found 

that:  

(a) as V(R) or V(P) increases, Ec(R) and Ecs(R) in two systems corresponding to both correlation 

cases increase;  
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(b) in the no correlation case, the variation of Ecs(R) in the series system due to the change of V(R) 

or V(P) is more significant than that of Ec(R); therefore, ηR = Ecs(R) / Ec(R) will increase as 

V(R) or V(P) increases;  

(c) however, in the parallel system, the increase of Ecs(R) due to the increase of V(R) in the no 

correlation case is less significant than the increase of Ec(R); therefore, ηR associated with the 

no correlation case in parallel system decreases (see Figure 18(a));  

(d) as V(P) increases in the no correlation case, the distance between the curves associated with 

Ec(R) and Ecs(R) of the parallel system decreases; thus, 
R  increases along with the increase 

of V(P) (see Figure 18(b));  

(e) for the perfect correlation case, Ecs(R) = Ec(R); hence, ηR = 1.0and V(R) and V(P) have no effect 

on the redundancy factor.  
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Figure 19. Graph. Effects of (a) V(R); and (b) V(P) on Ec(R) and Ecs(R) in two-component systems. 

It should be noted that when V(R) increases, both the mean Ec(R) and standard deviation σc(R) 

of the component resistance increase, as shown in Figure 20; the rate of increase of σc(R) is more 

significant than that of Ec(R) so that V(R) = σc(R) / Ec(R) shows an increasing tendency. The 

redundancy factor as function of V(R), V(P), and E(P) in three-component systems is plotted in 

Figure 21. From this figure it is observed that:  

10.0

14.0

18.0

22.0

26.0

30.0

0 0.02 0.04 0.06 0.08 0.1 0.12

M
e
a

n
 r

e
s
is

ta
n
c
e

 o
f 

c
o

m
p

o
n

e
n

t

Coefficient of variation of resistance, V(R) 

Two-component system

E(P)=10; V(P)=0.1;

βc= βsys=3.5

No correlation

Perfect correlation

Series system, Ecs(R)

Parallel system, Ecs(R)

Single component, Ec(R)

(a)

10.0

14.0

18.0

22.0

26.0

30.0

0 0.1 0.2 0.3 0.4

M
e
a

n
 r

e
s
is

ta
n
c
e

 o
f 

c
o

m
p

o
n

e
n

t

Coefficient of variation of load, V(P) 

(b)

Two-component system

E(P)=10; V(R)=0.1;

βc= βsys=3.5

Series system, Ecs(R)

No correlation

Single 

component, 

Ec(R)

Perfect correlation

Parallel system, Ecs(R)



 

47 
 

(a) as V(R) increases in the no correlation case, ηR shows an increasing and decreasing tendency 

in series and parallel systems, respectively; the reason for this has been explained in the case 

of the two-component systems;  

(b) as V(P) increases, ηR in series and parallel system associated with the no correlation case 

increases and the changes are more significant in the parallel system than those in the series 

system;  

(c) E(P) has no effect on ηR of the two systems associated with both correlation cases;  

(d) in the perfect correlation case, ηR of both systems is not affected by the variation of V(R) and 

V(P);  

(e) the effects of V(R) and V(P) on ηR of both systems decrease with increasing correlation among 

resistances.  

The effects of the aforementioned parameters on ηR are also investigated for the four-component 

systems in which three different systems can be considered, as shown in Figure 17. In addition to 

the no correlation and perfect correlation cases, a partial correlation case in which the correlation 

coefficients among the resistances are 0.5 is studied. The results are presented in Figure 22 to 

Figure 24. It is noted from Figure 22 that in the no correlation and partial correlation cases, as V(R) 

increases, ηR associated with the series system increases while ηR associated with both the parallel 

and series-parallel systems show a decreasing tendency. It is also seen that as the correlation among 

the resistances becomes stronger, the sensitivity of ηR to the changes in V(R) decreases. 
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Figure 20. Graph. Effects of V(R) on the mean and standard deviation of component resistance. 

 

Figure 21. Graph. Effects of (a) V(R); (b) V(P); and (c) E(P) on ηR in three-component systems. 
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Figure 22. Graph. Effects of V(R) on ηR in four-component systems associated with the case of (a) 

no correlation; (b) partial correlation; and (c) perfect correlation. 

In the no correlation and partial correlation cases, Figure 23 shows that increasing V(P) leads 

to a larger redundancy factor in series, parallel and series-parallel systems. In the perfect 

correlation case, 
R  of all systems is 1.0 for any value of V(P). The conclusion obtained from 

Figure 24 which shows the effect of E(P) on ηR in four-component systems is the same as that 

drawn from Figure 18 and Figure 21. The effects of number of components N on the redundancy 

factor ηR in different systems with variations of V(R), V(P), and E(P) are plotted in Figure 25. As 

N increases in the no correlation case, it is observed that: 

(a) ηR in series systems increases while its counterpart in parallel systems decreases; and 

(b) the change of ηR due to the variation of V(R) or V(P) is more significant than that due to the 

variation of E(P).  
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Figure 23. Graph. Effects of V(P) on ηR in four-component systems associated with the case of (a) 

no correlation; (b) partial correlation; and (c) perfect correlation. 
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Figure 24. Graph. Effects of E(P) on ηR in four-component systems associated with the case of (a) 

no correlation; (b) partial correlation; and (c) perfect correlation. 
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Figure 25. Graph. Effects of number of components on ηR with the variations of (a) V(R); (b) V(P); 

and (c) E(P) in two extreme correlation cases. 

3.4 Effect of System Modeling on the Redundancy Factor ηR 

Structural systems can be modeled as series, parallel, or series-parallel combination of potential 

failure modes, depending on the definition of system failure. Different models lead to different 

relationships between component and system reliability, and thus the redundancy factor will be 

different. In this section, the effect of system modeling on the redundancy factor is studied using 

steel girder bridges consisting of 4, 6, 8, 10, and 12 girders. The system being investigated within 

this example is the flexural support provided by the steel girders. Bridge girders are thus modeled 

as components. Herein, the effects of bridge deck and girders can be approximately considered by 

the correlation among load effects in girders. If more information regarding the bridge deck and 

secondary members become available, a more complex analysis could be carried out by 

considering these member as separate subsystems. 
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For a steel girder bridge with four girders numbered from 1 to 4 (girders 1 and 4 are exterior 

girders and girders 2 and 3 refers to interior girders), four different system models can be 

considered according to different definitions of the girders system failure: 

(a) series model: the system fails if any girder fails;  

(b) parallel model: the system fails only if all girders fail;  

(c) series-parallel model I: the system fails if either of the exterior girders and either of the interior 

girders fail simultaneously, denoted as 2s×2p series-parallel model; and  

(d) series-parallel model II: the system fails if any two adjacent girders fail simultaneously, 

denoted as 2p×3s series-parallel model, as shown in Figure 26.  

 

Figure 26. Graph. Four-girder bridge systems: (a) series, (b) parallel, (c) 2s×2p series-parallel, and 

(d) 2p×3s series-parallel. 

 

The resistance R and load effect P are assumed to be the same for each girder and to follow 

normal distribution. Three correlation cases among the resistances of girders are considered:  
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Although the girders may fail in different modes, only the flexural failure mode is analyzed. Since 

the mean value of the load effect does not affect the redundancy factor when V(R) and V(P) are 

fixed, the mean value of the bending moment due to vertical loads is assumed to be E(P) = 7500 

kN·m. Two cases associated with the coefficients of variation of R and P are studied:  

(a) Case A: V(R) = 0.05, V(P) = 0.3; and  

(b) Case B: V(R) = 0.1, V(P) = 0.4.  

Based on this information, the required mean resistance of each girder Ec(R) when the 

component reliability index βc is 3.5 is found to be 1.58×104 kN·m for Case A and 2.01×104 kN·m 

for Case B. Next, assuming the system reliability index βsys = 3.5, the mean resistances of each 

girders Ecs(R) in the four systems associated with Cases A and B are calculated using a Monte 

Carlo Simulation-based program (MathWorks 2009). Finally, the associated redundancy factors 

and the associated reliability indices βcs of girders are obtained by the ratio Ecs(R) / Ec(R). Note 

that it is implicitly assumed that the ratio of mean to nominal resistance and the ratio of dead to 

live load is constant for the bridge systems analyzed in this report. The results are presented in 

Table 12 and Table 13 as matrices in function of system modeling and correlation cases. 

Table 12. Redundancy factors and reliability indices of girders in the 4-girder bridge systems 

associated with Case A (V(R) = 0.05, V(P) = 0.3). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.041; 3.76 1.032; 3.70 1.0; 3.50 

Parallel 0.934; 3.08 0.956; 3.22 1.0; 3.50 

2s×2p SP 0.988; 3.42 0.995; 3.48 1.0; 3.50 

2p×3s SP 0.983; 3.40 0.992; 3.45 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

Table 13. Redundancy factors and reliability indices of girders in the 4-girder bridge systems 

associated with Case B (V(R) = 0.1, V(P) = 0.4). 
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Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.076; 3.83 1.066; 3.79 1.0; 3.50 

Parallel 0.842; 2.75 0.892; 3.00 1.0; 3.50 

2s×2p SP 0.946; 3.25 0.975; 3.39 1.0; 3.50 

2p×3s SP 0.938; 3.21 0.968; 3.36 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

It is observed that:  

(a) the redundancy factor and the girder reliability index associated with series system are the 

highest while their counterparts associated with parallel system are the lowest;  

(b) for the two series-parallel systems, 2s×2p SP system (system fails if either of the exterior 

girders and either of the interior girders fail) provides higher redundancy factor and girder 

reliability index than 2p×3s SP system (system fails if any two adjacent girders fail);  

(c) as the correlation among the resistances of girders increases, the redundancy factor and the 

girder reliability index decrease in the series system but increase in the parallel and series-

parallel systems;  

(d) the results of series system in Case B are higher than those in Case A; however, contrary 

findings are observed for the parallel and series-parallel systems;  

(e) in the perfect correlation case, the redundancy factors of all the systems are 1.0 and thus the 

associated reliability indices of girders are 3.5. 

For a 6-girder bridge, three different system models are formed based on different system failure 

definitions:  

(a) series system;  

(b) parallel system; and  

(c) 2p×5s series-parallel system (the system fails if any two adjacent girders fail).  
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Assuming the distribution type of R and P and the associated distribution parameters of the 6-

girder bridge systems are same as those used in the 4-girder systems, the redundancy factors and 

the reliability indices of girders of the 6-girder bridge systems associated with Cases A and B are 

calculated and the results are presented in Table 14 and Table 15, respectively. It is seen that 

compared with Case A, Case B provides lower results for the parallel and series-parallel systems 

but higher results for the series system. 

In the evaluation of the redundancy factors of the 8-, 10-, and 12-girder bridge systems, an 

additional system modeling in which the system fails if any three adjacent girders fail is 

investigated. Therefore, the 8-girder bridge is modeled as a 2p×7s and 3p×6s series-parallel system 

if the failure of the system is defined as the failure of any two and three adjacent girders, 

respectively. Similarly, two different series-parallel systems are also formed for 10- and 12-girder 

bridge, respectively, based on the above failure definitions.  

Table 14. Redundancy factors and reliability indices of girders in the 6-girder bridge systems 

associated with Case A (V(R) = 0.05, V(P) = 0.3). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.052; 3.83 1.040; 3.75 1.0; 3.50 

Parallel 0.922; 3.01 0.946; 3.16 1.0; 3.50 

2p×5s SP 0.994; 3.46 1.000; 3.50 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 
Table 15. Redundancy factors and reliability indices of girders in the 6-girder bridge systems 

associated with Case B (V(R) = 0.1, V(P) = 0.4). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.098; 3.93 1.083; 3.86 1.0; 3.50 

Parallel 0.818; 2.62 0.874; 2.90 1.0; 3.50 

2p×5s SP 0.956; 3.30 0.985; 3.43 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 
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Table 16. Redundancy factors and reliability indices of girders in the 8-girder bridge systems 

associated with Case A (V(R) = 0.05, V(P) = 0.3). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.059; 3.88 1.046; 3.78 1.0; 3.50 

Parallel 0.914; 2.95 0.941; 3.13 1.0; 3.50 

2p×7s SP 1.001; 3.51 1.005; 3.53 1.0; 3.50 

3p×6s SP 0.973; 3.33 0.986; 3.41 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

Table 17. Redundancy factors and reliability indices of girders in the 8-girder bridge systems 

associated with Case B (V(R) = 0.1, V(P) = 0.4). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.113; 4.00 1.096; 3.92 1.0; 3.50 

Parallel 0.803; 2.55 0.860; 2.83 1.0; 3.50 

2p×7s SP 0.969; 3.36 0.995; 3.48 1.0; 3.50 

3p×6s SP 0.911; 3.08 0.951; 3.28 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

With the aforementioned parameters related to the resistances and load effects of girders, the 

redundancy factors and the reliability indices of girders associated with 8-, 10-, and 12-girder 

bridge systems are obtained, as shown in Table 16 to Table 21. It is noticed that: 

(a) the results of the series-parallel systems associated with failure of any two adjacent girders are 

higher than those of the series-parallel systems associated with failure of any three adjacent girders; 

and  

(b) the results of the series-parallel systems in Case B are lower than those in Case A. 
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Table 18. Redundancy factors and reliability indices of girders in the 10-girder bridge systems 

associated with Case A (V(R) = 0.05, V(P) = 0.3). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.064; 3.90 1.050; 3.81 1.0; 3.50 

Parallel 0.908; 2.92 0.937; 3.10 1.0; 3.50 

2p×9s SP 1.006; 3.54 1.009; 3.56 1.0; 3.50 

3p×8s SP 0.978; 3.37 0.990; 3.43 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 
Table 19. Redundancy factors and reliability indices of girders in the 10-girder bridge systems 

associated with Case B (V(R) = 0.1, V(P) = 0.4). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.126; 4.05 1.106; 3.96 1.0; 3.50 

Parallel 0.794; 2.50 0.854; 2.81 1.0; 3.50 

2p×9s SP 0.977; 3.40 1.002; 3.51 1.0; 3.50 

3p×8s SP 0.921; 3.13 0.958; 3.31 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

Table 20. Redundancy factors and reliability indices of girders in the 12-girder bridge systems 

associated with Case A (V(R) = 0.05, V(P) = 0.3). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.070; 3.94 1.053; 3.83 1.0; 3.50 

Parallel 0.904; 2.89 0.934; 3.08 1.0; 3.50 

2p×11s SP 1.010; 3.56 1.012; 3.57 1.0; 3.50 

3p×10s SP 0.982; 3.39 0.992; 3.45 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 
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Table 21. Redundancy factors and reliability indices of girders in the 12-girder bridge systems 

associated with Case B (V(R) = 0.1, V(P) = 0.4). 

Models 
ρ = 0 

ηR; βcs 

ρ = 0.5 

ηR; βcs 

ρ = 1.0 

ηR; βcs 

Series 1.136; 4.09 1.113; 3.99 1.0; 3.50 

Parallel 0.786; 2.46 0.848; 2.78 1.0; 3.50 

2p×11s SP 0.985; 3.43 1.009; 3.54 1.0; 3.50 

3p×10s SP 0.927; 3.16 0.964; 3.34 1.0; 3.50 

Note: ρ denotes ρ(Ri,Rj). 

 

It is observed from Table 12 through Table 21 that:  

(a) series and parallel systems provide the highest and lowest redundancy factors, respectively; 

(b) the results of the series-parallel systems associated with any two adjacent girders failure (2p×ns) 

are higher than those associated with any three adjacent girders failure (3p×ns); the maximum 

difference is approximately 0.058 in the no correlation case in Table 21, and the minimum 

difference is 0.003 in the partial correlation case in Table 12;  

(c) compared with Case A, Case B provides lower results for the parallel and series-parallel 

systems but higher results for the series system;  

(d) as the number of girders increases, the redundancy factor of the series and series-parallel 

systems associated with failure of any m (m = 2, 3) adjacent girders increases; however, 

contrary findings are associated with the parallel systems.  

Therefore, the difference in the redundancy factors between the series and parallel systems 

reaches the maximum in the 12-girder systems associated with Case B (see Table 21). The 

corresponding mean resistances of girders Ecs(R) in the 12-girder series and parallel systems 

associated with Case B are 2.28×104 kN·m and 1.58×104 kN·m, respectively. It is seen that the 

designed mean resistances of girders in the series system are about 50% larger than those in the 

parallel system.   
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3.5 Redundancy Factors of Systems with Many Components 

In the previous section, 
R  is evaluated with respect to the systems consisting of no more than 12 

components. However, in most practical cases, a structure usually consists of dozens or hundreds 

of members; therefore, it is necessary to investigate the redundancy factors of systems with many 

components. In this section, a self-developed program based on Monte Carlo Simulation (MCS) 

is used to determine these redundancy factors. The algorithm of this program using MATLAB(23) 

is described as follows: 

1. Given the mean value of the load effect E(P), coefficients of variation of resistance and load 

effect V(R) and V(P), correlation between the resistances of components ρ(Ri, Rj), distribution 

types of resistance and load, number of components N, number of simulation samples w, and the 

initial guess for the mean value of component resistance Ecs(R); 

2. Generate the random samples of resistance Ri and load effect P based on the above parameters, 

and the dimensions of the Ri and P vectors are w × 1; 

3. Obtain the performance function for each component gi = Ri - P (i = 1, 2, …, N); the dimensions 

of gi is also w × 1;  

4. For series system, define an w × 1 zero vector L, and the ratio of the number of 

    0|...|0| 1  NggL  to the total sample size w represents the failure probability of series 

system (“|” is logical OR in MATLAB; it refers to union); for the parallel system, define an w × 1 

unit vector Q, and the ratio of the number of     0&...&0& 1  NggQ  to w is the Pf of 

parallel system (“&” is logical AND in MATLAB; it refers to intersection); for the mp × ns SP 

system, define an w × 1 zero vector L and an w × 1 unit vector Q, and the ratio of the number of 

          0&...&0&|...|0&...&0&| 1)1(1   nmnmm ggQggQL  to w is the Pf of the SP system; for the 

ms × np SP system, define an w × 1 zero vector L and an w × 1 unit vector Q, and the ratio of the 
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number of           0|...|0|&...&0|...|0|& 1)1(1   nmnmm ggLggLQ  to w is the Pf of the SP system; 

it should be noted that in the series-parallel systems, n × m is equal to the number of components 

N. 

5. Repeat steps 1 to 4 for t times (e.g., t = 50) to obtain the average probability of failure of the 

system; then, convert it to the reliability index. 

These programs are run on a computational server located in the Computational Laboratory for 

Life-cycle Structural Engineering, in the ATLSS Engineering Research Center at Lehigh 

University.  

When using the MCS-based program for finding the reliability index of systems, it is found that 

as N increases, the computational time required increases dramatically. Therefore, the 

aforementioned search algorithm that requires a group of initial values is not efficient when 

combined with the MCS-based program. In order to reduce the computing time, a simple algorithm 

based on the effects of number of the components on the redundancy factor is used in combination 

with the MCS-based program to find Ecs(R) and ηR. The procedure of this algorithm consists of the 

following steps: 

1. Determine an initial guess value of Ecs(R) based on the effects of number of components N on 

the redundancy factors in different systems. For example, it was found previously that Ecs(R) 

associated with series (or series-parallel) system increases as N increases; however, this increase 

is less significant as N becomes larger. Therefore, the initial guess of Ecs(R) for the 100-component 

series system can be obtained by increasing the Ecs(R) of 50-component series system by ∆ percent 

(0.5 ≤ ∆ ≤ 1). On the contrary, increasing N leads to lower Ecs(R) in parallel systems. Hence, the 

initial guess of Ecs(R) for the 100-component parallel system can be determined by reducing the 

Ecs(R) of 50-component parallel system by ∆ percent (0.5 ≤ ∆ ≤ 1).  
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2. Substitute the initial value from step 1 to the MCS-based algorithm described previously to 

obtain the system reliability index βsys. 

3. Checkpoint: if |βsys - 3.5| ≤ Tol (Tol refers to tolerance and it is set to be 10-4 in this study), then 

return this initial value; otherwise go to the next step. 

4. Checkpoint: if the βsys < 3.5, increase the initial value by δ percent (0.1 ≤ δ ≤ 0.3); if βsys > 3.5, 

reduce the initial value by δ percent (0.1 ≤ δ ≤ 0.3); 

5. Repeat steps 2-4 until Ecs(R) is found. 

Ecs(R) can usually be found within four loops. A flowchart for this algorithm combined with 

the MCS-based program is presented in Figure 27. Three correlation cases (ρ(Ri,Rj) = 0; 0.5; and 

1.0) among the resistances of components and two distribution types (normal and lognormal) of 

the loads and resistances are investigated. The coefficients of variation of resistance and load are 

0.05 and 0.3, respectively, as stated previously. The mean value of load acting on each component 

E(P) is also assumed to be 10. Based on the equations in Figure 2 and Figure 3 and the given 

parameters, the mean values of resistance associated with a single component for the normal and 

lognormal distribution are found to be Ec(R) = 21.132 and Ec(R) = 27.194, respectively. By 

combining the MCS-based program with the simple algorithm, the redundancy factors of different 

types of N-component systems (N = 2, 3, 5, 10, 15, 20, 25, 50, 100) are evaluated. The mean 

resistances of components and redundancy factors associated with the normal distribution case are 

presented in Table 22 to Table 27, and the results associated with the lognormal distribution case 

listed in Table 28 to Table 33. 



 

63 
 

 

Figure 27. Graph. Flowchart for the algorithm combined with MCS-based method. 
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Table 22. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0 using the MCS-

based method when R and P follow normal distribution; 1 ≤ N ≤ 20. 

System Ecs(R) R  

1-component system 21.132 1.000 

2-component system - Series system 21.582 1.021 

2-component system - Parallel system 20.310 0.961 

3-component system - Series system 21.835 1.033 

3-component system - Parallel system 19.960 0.945 

4-component system - Series system 21.998 1.041 

4-component system - Parallel system 19.737 0.934 

5-component system - Series system 22.123 1.047 

5-component system - Parallel system 19.591 0.927 

6-component system - Series system 22.231 1.052 

6-component system - Parallel system 19.477 0.922 

6-component system - 2p×3s SP system 20.850 0.987 

10-component system - Series system 22.495 1.064 

10-component system - Parallel system 19.196 0.908 

10-component system - 5p×2s SP system 19.870 0.940 

10-component system - 5s×2p SP system 21.530 1.019 

15-component system - Series system 22.730 1.076 

15-component system - Parallel system 18.994 0.899 

15-component system - 5p×3s SP system 20.015 0.947 

15-component system - 5s×3p SP system 21.300 1.008 

20-component system - Series system 22.855 1.082 

20-component system - Parallel system 18.867 0.893 

20-component system - 5p×4s SP system 20.108 0.952 

20-component system - 10p×2s SP system 19.425 0.919 

20-component system - 5s×4p SP system 21.130 1.000 

20-component system - 10s×2p SP system 21.955 1.039 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 23. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0 using the MCS-

based method when R and P follow normal distribution; 25 ≤ N ≤ 100. 

System Ecs(R) R  

25-component system - Series system 22.987 1.088 

25-component system - Parallel system 18.773 0.888 

25-component system - 5p×5s SP system 20.193 0.955 

25-component system - 5s×5p SP system 21.030 0.995 

50-component system - Series system 23.321 1.104 

50-component system - Parallel system 18.510 0.876 

50-component system - 5p×10s SP system 20.370 0.964 

50-component system - 10p×5s SP system 19.682 0.931 

50-component system - 5s×10p SP system 20.770 0.983 

50-component system - 10s×5p SP system 21.540 1.019 

100-component system - Series system 23.631 1.118 

100-component system - Parallel system 18.306 0.866 

100-component system - 5p×10s SP system 20.551 0.972 

100-component system - 10p×10s SP system 19.846 0.939 

100-component system - 20p×5s SP system 19.293 0.913 

100-component system - 5s×20p SP system 20.550 0.972 

100-component system - 10s×10p SP system 21.300 1.008 

100-component system - 20s×5p SP system 21.980 1.040 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 24. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0.5 using the MCS-

based method when R and P follow normal distribution; 1 ≤ N ≤ 20. 

System Ecs(R) R  

1-component system 21.132 1.000 

2-component system - Series system 21.480 1.016 

2-component system - Parallel system 20.590 0.974 

3-component system - Series system 21.680 1.026 

3-component system - Parallel system 20.355 0.963 

4-component system - Series system 21.808 1.032 

4-component system - Parallel system 20.202 0.956 

5-component system - Series system 21.910 1.037 

5-component system - Parallel system 20.080 0.950 

6-component system - Series system 21.981 1.040 

6-component system - Parallel system 20.000 0.946 

6-component system - 2p×3s SP system 21.025 0.995 

10-component system - Series system 22.190 1.050 

10-component system - Parallel system 19.795 0.937 

10-component system - 5p×2s SP system 20.309 0.961 

10-component system - 5s×2p SP system 21.512 1.018 

15-component system - Series system 22.360 1.058 

15-component system - Parallel system 19.654 0.930 

15-component system - 5p×3s SP system 20.425 0.967 

15-component system - 5s×3p SP system 21.350 1.010 

20-component system - Series system 22.453 1.063 

20-component system - Parallel system 19.549 0.925 

20-component system - 5p×4s SP system 20.490 0.970 

20-component system - 10p×2s SP system 19.990 0.946 

20-component system - 5s×4p SP system 21.245 1.005 

20-component system - 10s×2p SP system 21.835 1.033 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 25. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0.5 using the MCS-

based method when R and P follow normal distribution; 25 ≤ N ≤ 100. 

System Ecs(R) R  

25-component system - Series system 22.530 1.066 

25-component system - Parallel system 19.481 0.922 

25-component system - 5p×5s SP system 20.540 0.972 

25-component system - 5s×5p SP system 21.175 1.002 

50-component system - Series system 22.768 1.077 

50-component system - Parallel system 19.277 0.912 

50-component system - 5p×10s SP system 20.703 0.980 

50-component system - 10p×5s SP system 20.190 0.955 

50-component system - 5s×10p SP system 20.980 0.993 

50-component system - 10s×5p SP system 21.545 1.020 

100-component system - Series system 23.005 1.089 

100-component system - Parallel system 19.124 0.905 

100-component system - 5p×10s SP system 20.840 0.986 

100-component system - 10p×10s SP system 20.305 0.961 

100-component system - 20p×5s SP system 19.890 0.941 

100-component system - 5s×20p SP system 20.840 0.986 

100-component system - 10s×10p SP system 21.385 1.012 

100-component system - 20s×5p SP system 21.880 1.035 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 26. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 1.0 using the MCS-

based method when R and P follow normal distribution; 1 ≤ N ≤ 20. 

System Ecs(R) R  

1-component system 21.132 1.000 

2-component system - Series system 21.125 1.000 

2-component system - Parallel system 21.124 1.000 

3-component system - Series system 21.124 1.000 

3-component system - Parallel system 21.124 1.000 

4-component system - Series system 21.124 1.000 

4-component system - Parallel system 21.124 1.000 

5-component system - Series system 21.124 1.000 

5-component system - Parallel system 21.124 1.000 

6-component system - Series system 21.127 1.000 

6-component system - Parallel system 21.127 1.000 

6-component system - 2p×3s SP system 21.127 1.000 

10-component system - Series system 21.131 1.000 

10-component system - Parallel system 21.130 1.000 

10-component system - 5p×2s SP system 21.130 1.000 

10-component system - 5s×2p SP system 21.130 1.000 

15-component system - Series system 21.131 1.000 

15-component system - Parallel system 21.131 1.000 

15-component system - 5p×3s SP system 21.131 1.000 

15-component system - 5s×3p SP system 21.131 1.000 

20-component system - Series system 21.132 1.000 

20-component system - Parallel system 21.132 1.000 

20-component system - 5p×4s SP system 21.132 1.000 

20-component system - 10p×2s SP system 21.132 1.000 

20-component system - 5s×4p SP system 21.132 1.000 

20-component system - 10s×2p SP system 21.132 1.000 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 27. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 1.0 using the MCS-

based method when R and P follow normal distribution; 25 ≤ N ≤ 100. 

System Ecs(R) R  

25-component system - Series system 21.132 1.000 

25-component system - Parallel system 21.132 1.000 

25-component system - 5p×5s SP system 21.132 1.000 

25-component system - 5s×5p SP system 21.132 1.000 

50-component system - Series system 21.132 1.000 

50-component system - Parallel system 21.132 1.000 

50-component system - 5p×10s SP system 21.132 1.000 

50-component system - 10p×5s SP system 21.132 1.000 

50-component system - 5s×10p SP system 21.132 1.000 

50-component system - 10s×5p SP system 21.132 1.000 

100-component system - Series system 21.133 1.000 

100-component system - Parallel system 21.133 1.000 

100-component system - 5p×10s SP system 21.133 1.000 

100-component system - 10p×10s SP system 21.133 1.000 

100-component system - 20p×5s SP system 21.133 1.000 

100-component system - 5s×20p SP system 21.133 1.000 

100-component system - 10s×10p SP system 21.133 1.000 

100-component system - 20s×5p SP system 21.133 1.000 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 28. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0 using the MCS-

based method when R and P follow lognormal distribution; 1 ≤ N ≤ 25.  

System Ecs(R) R  

1-component system 27.194 1.000 

2-component system - Series system 27.839 1.024 

2-component system - Parallel system 26.292 0.967 

3-component system - Series system 28.209 1.037 

3-component system - Parallel system 25.874 0.951 

5-component system - Series system 28.596 1.051 

5-component system - Parallel system 25.441 0.935 

10-component system - Series system 29.115 1.070 

10-component system - Parallel system 24.922 0.916 

10-component system - 5p×2s SP system 25.864 0.951 

10-component system - 5s×2p SP system 27.960 1.028 

15-component system - Series system 29.349 1.079 

15-component system - Parallel system 24.674 0.907 

15-component system - 5p×3s SP system 26.082 0.959 

15-component system - 5s×3p SP system 27.710 1.019 

20-component system - Series system 29.561 1.087 

20-component system - Parallel system 24.501 0.901 

20-component system - 5p×4s SP system 26.208 0.964 

20-component system - 10p×2s SP system 25.286 0.930 

20-component system - 5s×4p SP system 27.550 1.013 

20-component system - 10s×2p SP system 28.600 1.052 

25-component system - Series system 29.650 1.090 

25-component system - Parallel system 24.368 0.896 

25-component system - 5p×5s SP system 26.328 0.968 

25-component system - 5s×5p SP system 27.390 1.007 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table 29. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0 using the MCS-

based method when R and P follow lognormal distribution; 50 ≤ N ≤ 100. 

System Ecs(R) R  

50-component system - Series system 30.098 1.107 

50-component system - Parallel system 24.014 0.883 

50-component system - 5p×10s SP system 26.569 0.977 

50-component system - 10p×5s SP system 25.668 0.944 

50-component system - 5s×10p SP system 27.100 0.997 

50-component system - 10s×5p SP system 28.040 1.031 

100-component system - Series system 30.470 1.120 

100-component system - Parallel system 23.695 0.871 

100-component system - 5p×10s SP system 26.831 0.986 

100-component system - 10p×10s SP system 25.874 0.951 

100-component system - 20p×5s SP system 25.147 0.925 

100-component system - 5s×20p SP system 26.825 0.986 

100-component system - 10s×10p SP system 27.790 1.022 

100-component system - 20s×5p SP system 28.643 1.053 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table 30. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0.5 using the MCS-

based method when R and P follow lognormal distribution; 1 ≤ N ≤ 25. 

System Ecs(R) R  

1-component system 27.194 1.000 

2-component system - Series system 27.678 1.018 

2-component system - Parallel system 26.596 0.978 

3-component system - Series system 27.931 1.027 

3-component system - Parallel system 26.292 0.967 

5-component system - Series system 28.198 1.037 

5-component system - Parallel system 26.009 0.956 

10-component system - Series system 28.610 1.052 

10-component system - Parallel system 25.637 0.943 

10-component system - 5p×2s SP system 26.318 0.968 

10-component system - 5s×2p SP system 27.806 1.023 

15-component system - Series system 28.768 1.058 

15-component system - Parallel system 25.451 0.936 

15-component system - 5p×3s SP system 26.463 0.973 

15-component system - 5s×3p SP system 27.625 1.016 

20-component system - Series system 28.889 1.062 

20-component system - Parallel system 25.311 0.931 

20-component system - 5p×4s SP system 26.556 0.976 

20-component system - 10p×2s SP system 25.890 0.952 

20-component system - 5s×4p SP system 27.500 1.011 

20-component system - 10s×2p SP system 28.300 1.041 

25-component system - Series system 28.975 1.065 

25-component system - Parallel system 25.235 0.928 

25-component system - 5p×5s SP system 26.649 0.980 

25-component system - 5s×5p SP system 27.429 1.009 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table 31. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 0.5 using the MCS-

based method when R and P follow lognormal distribution; 50 ≤ N ≤ 100. 

System Ecs(R) R  

50-component system - Series system 29.290 1.077 

50-component system - Parallel system 24.969 0.918 

50-component system - 5p×10s SP system 26.796 0.985 

50-component system - 10p×5s SP system 26.187 0.963 

50-component system - 5s×10p SP system 27.190 1.000 

50-component system - 10s×5p SP system 27.865 1.025 

100-component system - Series system 29.537 1.086 

100-component system - Parallel system 24.748 0.910 

100-component system - 5p×10s SP system 27.038 0.994 

100-component system - 10p×10s SP system 26.344 0.969 

100-component system - 20p×5s SP system 25.784 0.948 

100-component system - 5s×20p SP system 27.000 0.993 

100-component system - 10s×10p SP system 27.690 1.018 

100-component system - 20s×5p SP system 28.247 1.039 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table 32. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 1.0 using the MCS-

based method when R and P follow lognormal distribution; 1 ≤ N ≤ 25. 

System Ecs(R) R  

1-component system 27.194 1.000 

2-component system - Series system 27.190 1.000 

2-component system - Parallel system 27.190 1.000 

3-component system - Series system 27.190 1.000 

3-component system - Parallel system 27.190 1.000 

5-component system - Series system 27.190 1.000 

5-component system - Parallel system 27.190 1.000 

10-component system - Series system 27.198 1.000 

10-component system - Parallel system 27.198 1.000 

10-component system - 5p×2s SP system 27.198 1.000 

10-component system - 5s×2p SP system 27.198 1.000 

15-component system - Series system 27.198 1.000 

15-component system - Parallel system 27.198 1.000 

15-component system - 5p×3s SP system 27.198 1.000 

15-component system - 5s×3p SP system 27.198 1.000 

20-component system - Series system 27.198 1.000 

20-component system - Parallel system 27.198 1.000 

20-component system - 5p×4s SP system 27.198 1.000 

20-component system - 10p×2s SP system 27.198 1.000 

20-component system - 5s×4p SP system 27.198 1.000 

20-component system - 10s×2p SP system 27.198 1.000 

25-component system - Series system 27.201 1.000 

25-component system - Parallel system 27.201 1.000 

25-component system - 5p×5s SP system 27.201 1.000 

25-component system - 5s×5p SP system 27.201 1.000 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table 33. Ecs(R) and ηR of different systems associated with the case of ρ(Ri,Rj) = 1.0 using the MCS-

based method when R and P follow lognormal distribution; 50 ≤ N ≤ 100. 

System Ecs(R) R  

50-component system - Series system 27.201 1.000 

50-component system - Parallel system 27.201 1.000 

50-component system - 5p×10s SP system 27.201 1.000 

50-component system - 10p×5s SP system 27.201 1.000 

50-component system - 5s×10p SP system 27.201 1.000 

50-component system - 10s×5p SP system 27.201 1.000 

100-component system - Series system 27.203 1.000 

100-component system - Parallel system 27.203 1.000 

100-component system - 5p×10s SP system 27.203 1.000 

100-component system - 10p×10s SP system 27.203 1.000 

100-component system - 20p×5s SP system 27.203 1.000 

100-component system - 5s×20p SP system 27.203 1.000 

100-component system - 10s×10p SP system 27.203 1.000 

100-component system -20s×5p SP system 27.203 1.000 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 

 

It is observed from these tables that in the no correlation and partial correlation cases: 

(a) 
R of the series and mp×ns SP systems that have the same number of parallel components (i.e., 

m is the same in these SP systems) become larger as the number of components increases; however, 

the contrary is observed in the parallel and ms×np SP systems which have the same number of 

series components (i.e., m is the same); and  

(b) the redundancy factors associated with normal and lognormal distributions are close; this 

indicates that the effect of distribution type on the redundancy factor is not significant. In the 

perfect correlation case (ρ(Ri,Rj) = 1.0), the redundancy factors are always equal to 1.0 regardless 

of system type, number of components in the system, and distribution type.  
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For the investigated systems associated with different correlation cases, the component 

reliability indices βcs can be found after the Ecs(R) is obtained. Table 34 and Table 35 present the 

component reliability indices βcs of series and parallel systems consisting of N components (N = 1, 

2, 3, 5, 10, 15, 20, 25, 50, 100) associated with three correlation cases when R and P follow normal 

and lognormal distribution, respectively. 

Figure 28 shows the variations of the component reliability and redundancy factor in series and 

parallel systems due to the increase in the number of components. It is noticed that:  

(a) as the number of components increases, the component reliability index increases in series 

systems, while it decreases in parallel systems;  

(b) for series systems, the component reliability indices associated with the normal distribution are 

higher than those associated with the lognormal distribution in the no correlation and partial 

correlation cases; however, for parallel systems, contrary conclusions are found;  

(c) the effect of the distribution type of R and P on the redundancy factor is not significant, 

especially in the series systems;  

(d) in the perfect correlation case, the component reliability index is equal to 3.5 and the 

redundancy factor equals 1.0, which indicates that they are not affected by any of the 

aforementioned parameters. 
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Table 34. Component reliability index of different systems associated with different correlation 

cases when R and P follow normal distribution; 1 ≤ N ≤ 100. 

Component / System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component 3.50 3.50 3.50 

2-component system - Series system 3.63 3.60 3.50 

2-component system - Parallel system 3.26 3.34 3.50 

3-component system - Series system 3.71 3.66 3.50 

3-component system - Parallel system 3.15 3.27 3.50 

5-component system - Series system 3.79 3.73 3.50 

5-component system - Parallel system 3.04 3.19 3.50 

10-component system - Series system 3.90 3.81 3.50 

10-component system - Parallel system 2.92 3.10 3.50 

15-component system - Series system 3.97 3.86 3.50 

15-component system - Parallel system 2.86 3.06 3.50 

20-component system - Series system 4.00 3.89 3.50 

20-component system - Parallel system 2.82 3.03 3.50 

25-component system - Series system 4.04 3.91 3.50 

25-component system - Parallel system 2.79 3.01 3.50 

50-component system - Series system 4.14 3.98 3.50 

50-component system - Parallel system 2.71 2.94 3.50 

100-component system - Series system 4.23 4.05 3.50 

100-component system - Parallel system 2.65 2.90 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table 35. Component reliability index of different systems associated with different correlation 

cases when R and P follow lognormal distribution; 1 ≤ N ≤ 100. 

Component / System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component 3.50 3.50 3.50 

2-component system - Series system 3.57 3.55 3.50 

2-component system - Parallel system 3.38 3.42 3.50 

3-component system - Series system 3.62 3.59 3.50 

3-component system - Parallel system 3.33 3.38 3.50 

5-component system - Series system 3.66 3.62 3.50 

5-component system - Parallel system 3.27 3.35 3.50 

10-component system - Series system 3.72 3.67 3.50 

10-component system - Parallel system 3.20 3.30 3.50 

15-component system - Series system 3.75 3.68 3.50 

15-component system - Parallel system 3.17 3.27 3.50 

20-component system - Series system 3.78 3.70 3.50 

20-component system - Parallel system 3.15 3.25 3.50 

25-component system - Series system 3.79 3.71 3.50 

25-component system - Parallel system 3.13 3.24 3.50 

50-component system - Series system 3.84 3.74 3.50 

50-component system - Parallel system 3.08 3.21 3.50 

100-component system - Series system 3.88 3.77 3.50 

100-component system - Parallel system 3.03 3.18 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Figure 28. Graph. The effects of number of components on (a) component reliability index βcs; and 

(b) redundancy factor ηR (Note: “N” denotes normal distribution; “LN” denotes lognormal 

distribution; “0” denotes ρ(Ri,Rj) = 0; “0.5” denotes ρ(Ri,Rj) = 0.5; V(R)=0.05; V(P)=0.3; E(P)=10; 

and βc =3.5). 
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3.6 Redundancy Factors of Ductile and Brittle Systems 

This section firstly investigates the redundancy factors of ductile and brittle systems with up to 

four components. Then, the redundancy factor of systems consisting of both ductile and brittle 

components (denoted as “mixed system”) is evaluated. Finally, the effects of post-failure material 

behavior factor on the redundancy factor are studied. Ductile system in this study refers to the 

system whose components are all ductile, that is, the components resistances are not reduced after 

failure. If a component resistance is decreased to zero after failure, it is called brittle component 

and the system consisting of brittle component is named brittle system.  

3.6.1 Redundancy Factor of Ductile Systems  

For a single ductile component whose R and P are treated as normally distributed random variables 

with V(R), V(P), and E(P) equal to 0.05, 0.3, and 10, respectively, the mean resistance of 

component Ec(R) is found to be 21.132 to make the component reliability index equal to 3.5. Then, 

consider a system consisting of two ductile components which are identical with the single 

component just mentioned. Two systems can be formed: series and parallel. Since failure of any 

component in the series system leads to system failure, the reliability index of the series system is 

not affected by the material behavior of the components. Consequently, the redundancy factor of 

series system is also independent of the components material behavior. Therefore, the evaluation 

of redundancy factor in Section 3.6 is mainly focused on the parallel and series-parallel systems.  

For the two-component ductile parallel system, the resistances of the two components are 

denoted as R1 and R2, respectively. The load acting on the system is 2P so that the load effect 

distributed to each component is P. The ductile behavior in this report refers to elastic-perfectly-

plastic. For a ductile component, the loads it takes before and after its failure are the same, which 

is equal to its resistance. Therefore, the applied load will not redistribute inside the system if either 
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component fails. The statistical parameters associated with R and P in this system are the same as 

those associated with the single component mentioned previously. Since the failure modes of 

ductile systems are independent of the failure sequence of components, the limit state equation of 

the parallel system is  

0221  PRRg  

Figure 29. Equation. Limit state equation associated with failure of a two-component ductile 

parallel system. 

Three correlation cases among the resistances of components are considered:  

(a) ρ(R1,R2) = 0, no correlation;  

(b) ρ(R1,R2) = 0.5, partial correlation; and  

(c) ρ(R1,R2) = 1.0, perfect correlation. 

Based on the statistical parameters and limit state equation, the mean resistances of components in 

the two-component ductile parallel system associated with the three correlation cases (ρ(R1,R2) = 

0, 0.5, 1.0) when the system reliability is 3.5 are calculated using the MCS-based method 

mentioned in Section 3.5. The results are found to be Ecs(R) = 20.810, 20.950, and 21.132, 

respectively. Dividing Ecs(R) by Ec(R) yields the redundancy factors: 0.985 if ρ(R1,R2) = 0, 0.991 

if ρ(R1,R2) = 0.5, and 1.0 if ρ(R1,R2) = 1.0. The associated reliability indices of components are 

3.40, 3.45, and 3.50, respectively. 

In the following example, the number of components in the parallel system is extended from 

two to three and four, and two types of probability distribution for both resistances and loads (i.e., 

normal and lognormal) are considered. For the lognormal distribution case, the mean resistance 

associated with a single component when its V(R), V(P), and E(P) are 0.05, 0.3, and 10, 

respectively, is Ec(R) = 27.194. Assuming the load acting on the three- and four-component system 
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is 3P and 4P, respectively, the limit state equations associated with the three- and four-component 

parallel system are 

03321  PRRRg  

Figure 30. Equation. Limit state equation associated with failure of a three-component ductile 

parallel system. 

044321  PRRRRg  

Figure 31. Equation. Limit state equation associated with failure of a four-component ductile 

parallel system. 

where Ri (i = 1,2,3,4) is the resistance of the ith component. By performing the same procedure, 

the mean resistances, redundancy factors, and component reliability indices associated with normal 

and lognormal distributions are presented in Table 36. It is noticed that: 

(a) increasing the correlation among the resistances of components leads to a higher redundancy 

factor and component reliability in both distribution cases; and  

(b) the redundancy factor and component reliability index associated with lognormal distribution 

are slightly higher than those associated with normal distribution.  

Table 36. Redundancy factor of three-component ductile parallel system associated with normal 

and lognormal distribution. 

Correlation 

Normal 

distribution: 

Mean 

resistance 

Normal 

distribution: 

Redundancy 

factor 

Normal 

distribution: 

Component 

reliability 

Lognormal 

distribution: 

Mean 

resistance 

Lognormal 

distribution: 

Redundancy 

factor 

Lognormal 

distribution: 

Component 

reliability 

ρ(Ri,Rj) = 0 20.699 0.980 3.37 26.925 0.990 3.46 

ρ(Ri,Rj) = 

0.5 
20.910 0.989 3.44 27.065 0.995 3.49 

ρ(Ri,Rj) = 1 21.132 1.000 3.50 27.194 1.000 3.50 

 Note: V(R) = 0.05; V (P) = 0.3; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132; Ec,LN (R) = 27.194 
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In addition to the four-component ductile parallel system whose limit state equation is presented 

in Figure 31, a four-component 2p×2s ductile series-parallel system shown in Figure 17(c) is 

studied. There are two failure modes associated with its system failure and the corresponding limit 

state equations are listed in Figure 32. By using the MCS-based method, the mean resistance, 

redundancy factor, and component reliability index of the four-component ductile parallel and 

series-parallel systems associated with the normal distribution case are presented in Table 37. It is 

found that in the no correlation and partial correlation cases, the redundancy factor and component 

reliability associated with the series-parallel system are higher than those associated with the 

parallel system.  

02211  PRRg  

02432  PRRg  

Figure 32. Equation. Limit state equations associated with failure of the four-component ductile 

series-parallel system. 

 

Table 37. Redundancy factor of four-component ductile systems. 

Correlation 
Parallel 

system/Mea

n resistance 

Parallel 

system/Red

undancy 

factor 

Parallel 

system/Com

ponent 

reliability 

Series-

parallel 

system/Mea

n resistance 

Series-

parallel 

system/Red

undancy 

factor 

Series-

parallel 

system/Com

ponent 

reliability 

ρ(Ri,Rj) = 0 20.660 0.978 3.36 21.160 1.001 3.51 

ρ(Ri,Rj) = 

0.5 
20.893 0.989 3.43 21.231 1.005 3.53 

ρ(Ri,Rj) = 1 21.132 1.000 3.50 21.132 1.000 3.50 

 Note: V(R) = 0.05; V (P) = 0.3; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 

3.6.2 Redundancy Factor of Brittle Systems  
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Since a brittle component will not take any load after its fracture failure, the applied load will 

distribute to other remaining components in brittle systems. Therefore, for a brittle system, 

different failure sequences lead to different load distributions and thus different failure modes. In 

order to illustrate the procedure for calculating the redundancy factor of brittle systems, the 

following two-, three-, and four-component systems are analyzed with respect to the three 

correlation cases mentioned previously.  

Consider the two-component parallel system described in the previous section. Assuming both 

components are brittle, two different failure modes are anticipated: 

(a) mode I caused by failure of component 1 followed by component 2; and 

(b) mode II caused by failure of component 2 followed by component 1. 

Therefore, the system failure can be evaluated by using the series-parallel system model shown in 

Figure 33. Based on the assumption that the load applied on the two-component parallel system is 

2P, the limit state equations associated with the two failure modes are given in Figure 34. In Mode 

I, the load component 1 takes before its failure is R1; therefore, its limit state equation is g1 in 

Figure 34. Since a brittle component loses its capacity after failure, the applied load 2P is taken 

only by component 2 by component 1 fails. Therefore, the limit state equation of component 2 

given the failure of component 1 is g3 in Figure 34. Assuming the resistances and load of 

components follow normal distribution with the coefficients of variation being 0.05 and 0.3, 

respectively, the mean resistance that makes the reliability index of each component be 3.5 is 

21.132, as presented previously. With the limit state equations and other statistical parameters 

associated with the components (e.g., V(R) = 0.05, V (P) = 0.3, E (P) = 10), the mean resistance of 

components associated with three correlation cases when both R and P follow normal distribution 

are found to be: 21.585 if ρ(Ri,Rj) = 0, 21.481 if ρ(Ri,Rj) = 0.5, and 21.132 if ρ(Ri,Rj) = 1.0. Dividing 
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these resistances by Ec(R) = 21.132 yields the redundancy factors: 1.021 if ρ(Ri,Rj) = 0, 1.017 if 

ρ(Ri,Rj) = 0.5, and 1.0 if ρ(Ri,Rj) = 1.0. The associated reliability indices of components are: 3.63 

if ρ(Ri,Rj) = 0, 3.60 if ρ(Ri,Rj) = 0.5, and 3.50 if ρ(Ri,Rj) = 1.0. It is noticed that the redundancy 

factor of the brittle parallel system decreases as the correlation among the resistances of 

components becomes stronger.  

 

Figure 33. Graph. Failure modes of two-component brittle parallel system. 

                                            011  PRg                 022  PRg  

                                            0223  PRg              0214  PRg  

Figure 34. Equations. Limit state equations associated with failure of the two-component brittle 

parallel system. 

As the number of brittle components in the parallel system increases to three, the possible 

failure modes increase to six, as shown in Figure 35. Assuming the load acting on the three-

component system is 3P, the limit state equations associated with all the failure modes are listed 

in Figure 36. Assuming the same statistical parameters of components as those used in the two-

component system (e.g., V(R) = 0.05, V (P) = 0.3, E (P) = 10), the mean resistances, redundancy 

factors, and the associated reliability indices of components considering three correlation cases are 

obtained, as presented in Table 38. It is observed that: 

(a) the redundancy factor associated with lognormal distribution is slightly higher than that 

associated with normal distribution;  

(b) the redundancy factors and reliability indices of components associated with both distributions 

decrease as the correlation among resistances of components increases; and  

comp 1: g1

comp 2|1: g3

comp 2: g2

comp 1|2: g4
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(c) the components reliability related to normal distribution is higher than that related to lognormal 

distribution. 

 

Figure 35. Graph. Failure modes of three-component brittle parallel system. 

                              011  PRg                  022  PRg               033  PRg  

                            05.124  PRg             05.135  PRg           05.116  PRg  

                            05.137  PRg             05.118  PRg           05.129  PRg  

                            03310  PRg               03211  PRg             03112  PRg    

Figure 36. Equations. Limit state equations associated with failure of the three-component brittle 

parallel system. 

 

Table 38. Redundancy factor of three-component brittle parallel system associated with normal and 

lognormal distribution. 

Correlation 

Normal 

distribution

: Mean 

resistance 

Normal 

distribution: 

Redundancy 

factor 

Normal 

distribution: 

Component 

reliability 

Lognormal 

distribution

: Mean 

resistance 

Lognormal 

distribution:

Redundancy 

factor 

Lognormal 

distribution: 

Component 

reliability 

ρ(Ri,Rj) = 0 21.827 1.033 3.71 28.190 1.037 3.62 

ρ(Ri,Rj) = 0.5 21.672 1.026 3.66 27.940 1.027 3.59 

comp 1: g1

comp 2|1: g4

comp 3|1,2: g10

comp 1: g1

comp 3|1: g5

comp 2|1,3: g11

comp 2: g2

comp 1|2: g6

comp 3|1,2: g10

comp 2: g2

comp 3|2: g7

comp 1|2,3: g12

comp 3: g3

comp 1|3: g8

comp 2|1,3: g11

comp 3: g3

comp 2|3: g9

comp 1|2,3: g12
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ρ(Ri,Rj) = 1 21.132 1.000 3.50 27.194 1.000 3.50 

 Note: V(R) = 0.05; V (P) = 0.3; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132; Ec,LN (R) = 27.194 

For the four-component brittle parallel system, the number of possible failure modes is 24 (i.e., 

4!). The system can be modeled as the 4p × 24s series-parallel system shown in Figure 37 and the 

failure sequence for each failure mode is presented in the sub-parallel systems. The associated 

limit state equations are listed in Figure 38. A four-component brittle system can also be formed 

as a 2p×2s series-parallel system (Figure 17(c)) other than the parallel system just analyzed. The 

load acting on this series-parallel system is 2P. The failure modes of each sub-parallel system are 

similar to those of the two-component brittle system shown in Figure 33. Therefore, the system 

has totally four failure modes, as presented in Figure 39, and the associated limit state equations 

are given in Figure 40.  

With the limit state equations and the statistical parameters of the resistances and load (i.e., V(R) 

= 0.05, V(P) = 0.3), the mean resistances, redundancy factors, and  reliability indices of 

components associated with the four-component brittle parallel and 2p×2s series-parallel systems 

when R and P are normally distributed are calculated. The results are displayed in Table 39. It is 

noted that the redundancy factors and components reliability indices associated with both systems 

are almost the same and they decrease as the correlation among the resistances of components 

increases.       
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Figure 37. Graph. Failure modes of four-component brittle parallel system. 

 

comp 1: g1

comp 2|1: g5

comp 3|1,2: g17

comp 4|1,2,3: g29
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     011  PRg              022  PRg              033  PRg               044  PRg  

     033.125  PRg       033.136  PRg        033.147  PRg         033.118  PRg  

     033.139  PRg      033.1410  PRg       033.1111  PRg       033.1212  PRg  

     033.1413  PRg     033.1114  PRg        033.1215  PRg       033.1316  PRg  

     02317  PRg          02418  PRg           02219  PRg           02420  PRg  

     02221  PRg          02322  PRg           02123  PRg           02424  PRg  

     02125  PRg          02326  PRg           02127  PRg           02228  PRg  

     04429  PRg          04330  PRg           04231  PRg           04132  PRg  

Figure 38. Equations. Limit state equations associated with failure of the four-component brittle 

parallel system. 

 

 

Figure 39. Graph. Failure modes of four-component brittle series-parallel system. 

 

         011  PRg             022  PRg             033  PRg               044  PRg  
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Figure 40. Equations. Limit state equations associated with failure of the four-component brittle 

series-parallel system. 

 

comp 1: g1

comp 2|1: g5

comp 2: g2

comp 1|2: g6

comp 3: g3

comp 4|3: g7

comp 4: g4

comp 3|4: g8
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Table 39. Redundancy factor of four-component brittle systems. 

Correlation 

Parallel 

system - 

Mean 

resistance 

Parallel 

system - 

Redundancy 

factor 

Parallel 

system - 

Component 

reliability 

2p×2s 

Series-

parallel 

system - 

Mean 

resistance 

2p×2s 

Series-

parallel 

system - 

Redundancy 

factor 

2p×2s 

Series-

parallel 

system - 

Component 

reliability 

ρ(Ri,Rj) = 0 21.999 1.041 3.75 22.009 1.042 3.76 

ρ(Ri,Rj) = 

0.5 
21.805 1.032 3.70 21.805 1.032 3.70 

ρ(Ri,Rj) = 1 21.132 1.000 3.50 21.132 1.000 3.50 

 Note: V(R) = 0.05; V (P) = 0.3; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 

By comparing the results associated with the ductile and brittle systems consisting of up to four 

components (Table 36 to Table 39), the following conclusions are drawn: 

1. In both ductile and brittle parallel systems, the redundancy factor associated with lognormal 

distribution is slightly higher than that associated with normal distribution.  

2. The redundancy factor of ductile parallel system is at most 1.0 while its counterpart of brittle 

parallel systems is at least 1.0. Increasing the correlation among the resistances of components 

leads to a higher and lower redundancy factor in ductile and brittle system, respectively. In the 

ductile case, the redundancy factor associated with the 2p×2s series-parallel system is higher 

than that associated with the four-component parallel system; while in the brittle case, the 

redundancy factors associated with both systems are almost the same.  

3.6.3 Redundancy Factor of Ductile-Brittle Systems  

In the above two subsections, the redundancy factor of systems consisting of only ductile or brittle 

components is investigated. However, there might be some cases where both types of material 

behaviors are involved in the system. Therefore, it is necessary to study the redundancy factor of 
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systems having both ductile and brittle components (called “mixed systems”). In order to be 

consistent with the previous sections, the systems consisting of two, three, and four components 

are studied in this subsection.  

For the two-component parallel system, there is only one combination for the mixed system: 

one component is ductile and the other one is brittle (denoted as “1 ductile & 1 brittle”). However, 

as the number of components increases, the number of combinations for mixed systems also 

increases. For three-component parallel system, two mixed systems are considered: 1 ductile & 2 

brittle, and 2 ductile & 1 brittle. Similarly, three mixed systems can be formed for four-component 

parallel system: 1 ductile & 3 brittle, 2 ductile & 2 brittle, and 3 ductile & 1 brittle. For the four-

component 2p×2s series-parallel system, there are two combinations associated with the 2 ductile 

& 2 brittle case:  

(a) 2 ductile & 2 brittle Case A, where 2 ductile components are located in the same sub-parallel 

system; and  

(b) 2 ductile & 2 brittle Case B, where 2 ductile components are located in two sub-parallel systems, 

as shown in Figure 41.  

Therefore, four mixed systems are investigated with respect to the 2p×2s series-parallel system.  

 

Figure 41. Graph. Four-component mixed series-parallel systems: (a) 2 ductile & 2 brittle Case A; 

and (b) 2 ductile & 2 brittle Case B. 

Since a mixed system has brittle component(s), the failure mode of the system is determined by 

the failure sequence of components. Therefore, all the possible failure modes and the associated 

Ductile

Ductile

Brittle

Brittle

Ductile

Brittle

Ductile

Brittle

(a) (b)
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limit state equations need to be identified as those presented in the brittle case. Consider the two-

component mixed parallel system as an example: its failure modes are the same as those in the 

brittle case, as shown in Figure 33; however, the associated limit state equations are different from 

those in the brittle case due to the existence of a ductile component in this mixed system. Assuming 

component 1 is ductile, component 2 is brittle, and the applied load is 2P, the limit state equations 

are: 

011  PRg                            022  PRg  

02213  PRRg                   0214  PRg  

Figure 42. Equations. Limit state equations associated with failure of the two-component mixed 

parallel system. 

g1 and g3 are associated with the failure mode I where component 2 fails after component 1. 

Since component 1 is ductile, the load it takes after failure is still R1; therefore, the applied load is 

taken by both components 1 and 2 in the limit state equation g3. However, for the other failure 

mode where the brittle component (component 2) fails first, the load acting on the survived 

component (component 1) is 2P because the brittle component cannot take any load once it fails. 

The limit state equations associated with this failure mode are g2 and g4.      

Similarly, the limit state equations associated with three- and four-component mixed systems 

can be identified based on the failure modes shown in Figure 35, Figure 37, and Figure 39. 

Assuming R and P are normally distributed with V(R) = 0.05 and V (R) = 0.3, the mean resistance, 

redundancy factors, and reliability indices of components of the mixed systems considering three 

correlation cases are presented in Table 40, Table 41, and Table 42. 

It is observed that: 

(a) the redundancy factors of the investigated mixed parallel systems are all at least 1.0 due to the 

existence of brittle component(s) in the systems;  
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(b) compared with the redundancy factors in the ductile (Table 36 and Table 37) and brittle (Table 

38 and Table 39) cases, the results associated with the mixed systems are in between;  

(c) for the 2p×2s series-parallel system, the redundancy factors associated with 2 ductile & 2 brittle 

cases A and B are the same; and  

(d) the redundancy factor in mixed system decreases as the correlation among the resistances of 

components increases; this is similar to the finding in brittle system. 

Table 40. Redundancy factor of mixed systems associated with the case ρ(Ri,Rj) = 0 when R and P 

follow normal distribution. 

System Ecs (R) R  βcs 

2-component parallel system - 1 ductile & 1 brittle 21.280 1.007 3.55 

3-component parallel system - 1 ductile & 2 brittle 21.630 1.024 3.65 

3-component parallel system - 2 ductile & 1 brittle 21.300 1.008 3.55 

4-component parallel system - 1 ductile & 3 brittle 21.850 1.034 3.71 

4-component parallel system - 2 ductile & 2 brittle 21.640 1.024 3.65 

4-component parallel system - 3 ductile & 1 brittle 21.319 1.009 3.56 

4-component series-parallel system (2×2 SP system) 

1 ductile & 3 brittle 
21.850 1.034 3.71 

4-component series-parallel system (2×2 SP system) 

2 ductile & 2 brittle Case A  
21.680 1.026 3.66 

4-component series-parallel system (2×2 SP system) 

2 ductile & 2 brittle Case B 
21.680 1.026 3.66 

4-component series-parallel system (2×2 SP system) 

3 ductile & 1 brittle 
21.440 1.015 3.59 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec (R) = 21.132  

 

Figure 43 shows the effects of the number of brittle components in the mixed parallel system 

on the redundancy factor. It is seen that:  

(a) in the no correlation and partial correlation cases, the redundancy factor in mixed parallel 

system becomes larger as the number of brittle components increases; and  

(b) increasing the correlation among the resistances of components leads to a higher redundancy 

factor in ductile system while a lower redundancy factor in mixed and brittle system. 



 

94 
 

Table 41. Redundancy factor of mixed systems associated with the case ρ(Ri,Rj) = 0.5 when R and P 

follow normal distribution. 

System Ecs (R) R  βcs 

2-component parallel system - 1 ductile & 1 brittle 21.260 1.006 3.53 

3-component parallel system - 1 ductile & 2 brittle 21.530 1.019 3.62 

3-component parallel system - 2 ductile & 1 brittle 21.290 1.007 3.55 

4-component parallel system - 1 ductile & 3 brittle 21.700 1.027 3.67 

4-component parallel system - 2 ductile & 2 brittle 21.550 1.020 3.62 

4-component parallel system - 3 ductile & 1 brittle 21.318 1.009 3.55 

4-component series-parallel system (2×2 SP system) 

1 ductile & 3 brittle 
21.700 1.027 3.67 

4-component series-parallel system (2×2 SP system) 

2 ductile & 2 brittle Case A  
21.585 1.021 3.63 

4-component series-parallel system (2×2 SP system) 

2 ductile & 2 brittle Case B 
21.585 1.021 3.63 

4-component series-parallel system (2×2 SP system) 

3 ductile & 1 brittle 
21.420 1.014 3.59 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec(R) = 21.132  

 

Table 42. Redundancy factor of mixed systems associated with the case ρ(Ri,Rj) = 1.0 when R and P 

follow normal distribution. 

System Ecs (R) R  βcs 

2-component parallel system - 1 ductile & 1 brittle 21.132 1.000 3.50 

3-component parallel system - 1 ductile & 2 brittle 21.132 1.000 3.50 

3-component parallel system - 2 ductile & 1 brittle 21.132 1.000 3.50 

4-component parallel system - 1 ductile & 3 brittle 21.132 1.000 3.50 

4-component parallel system - 2 ductile & 2 brittle 21.132 1.000 3.50 

4-component parallel system - 3 ductile & 1 brittle 21.132 1.000 3.50 

4-component series-parallel system- (2×2 SP system)  

1 ductile & 3 brittle 
21.132 1.000 3.50 

4-component series-parallel system (2×2 SP system)  

2 ductile & 2 brittle Case A 
21.132 1.000 3.50 

4-component series-parallel system (2×2 SP system)  

2 ductile & 2 brittle Case B 
21.132 1.000 3.50 

4-component series-parallel system (2×2 SP system)  

3 ductile & 1 brittle 
21.132 1.000 3.50 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec(R) = 21.132  
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Figure 43. Graph. Effects of the number of brittle components on the redundancy factor in the 

parallel systems consisting of (a) two components; (b) three components; and (c) four components. 

 

3.6.4 Effects of Post-failure Material Behavior Factor on Redundancy Factor  

The post-failure behavior factor (denoted as “δ”) represents the percentage of strength remaining 
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failure modes of these systems are similar to those of brittle systems. The only difference is that 

the remaining capacity of component i after its failure is δ⋅Ri instead of zero.  

Assuming the post-failure behavior factors of all the components are the same and the resistances 

and load of components follow normal distribution with the aforementioned parameters (e.g., V(R) 

= 0.05, V(P) = 0.3), the effects of the post-failure behavior factor on the redundancy factor in two-, 

three-, and four-component parallel systems associated with three correlation cases are shown in 

Figure 44 and Figure 45.  

 

Figure 44. Graph. Effects of post-failure behavior factor δ on the redundancy factor ηR in the 

parallel systems consisting of (a) two components; (b) three components; and (c) four components. 
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(b) the values of δ corresponding to the turning points of the curves are greater than 0.5 in all 

systems; this indicates that for most intermediate post-failure behavior cases, the redundancy 

factors are almost the same as those in the brittle behavior case;  

(c) in the no correlation and partial correlation cases, the region of δ in which the redundancy 

factor remains the same increases as the correlation among the resistances of components 

becomes stronger, while in the perfect correlation case, the redundancy factor is not affected 

by δ;  

(d) as δ increases from 0 to 1, the sequence of the redundancy factors associated with the three 

correlations becomes reverse in all systems (e.g., the redundancy factor associated with the 

ρ(Ri,Rj) = 0 case is the highest in the brittle case but the lowest in the ductile case);  

(e) the differences in the redundancy factors associated with the three parallel systems becomes 

less significant along with the increase of δ; when δ = 1 (i.e., ductile), the redundancy factors 

associated with the three parallel systems are almost the same. 
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Figure 45. Graph. Effects of post-failure behavior factor δ on redundancy factor ηR in the (a) no 

correlation case; and (b) partial correlation case. 
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the brittle components and the components are designed more conservatively (βcs > 3.5); while in 

the ductile case, smaller redundancy factor (ηR < 1.0) can be used to achieve a more economical 

component design (βcs < 3.5).  

 

Figure 46. Graph. Effects of post-failure behavior factor δ on component reliability index in the 

parallel systems consisting of (a) two components; (b) three components; and (c) four components. 

3.30

3.40

3.50

3.60

3.70

3.80

0 0.2 0.4 0.6 0.8 1

C
o
m

p
o
n
e
n
t 

re
lia

b
ili

ty
 i
n
d
e
x
, 
β

c
s

Post-failure behavior factor, δ

ρ(Ri,Rj)=0

ρ(Ri,Rj)=0.5

ρ(Ri,Rj)=1

Parallel system (N=2)

V(R)=0.05, V(P)=0.3

(a)

3.30

3.40

3.50

3.60

3.70

3.80

0 0.2 0.4 0.6 0.8 1

C
o
m

p
o
n
e
n
t 

re
lia

b
ili

ty
 i
n
d
e
x
, 
β

c
s

Post-failure behavior factor, δ

ρ(Ri,Rj)=0

ρ(Ri,Rj)=0.5

ρ(Ri,Rj)=1
Parallel system (N=3)

V(R)=0.05, V(P)=0.3

(b)

3.30

3.40

3.50

3.60

3.70

3.80

0 0.2 0.4 0.6 0.8 1

C
o
m

p
o
n
e
n
t 

re
lia

b
ili

ty
 i
n
d
e
x
, 
β

c
s

Post-failure behavior factor, δ

ρ(Ri,Rj)=0 ρ(Ri,Rj)=0.5

ρ(Ri,Rj)=1Parallel system (N=4)

V(R)=0.05, V(P)=0.3

(c)

System reliability System reliability

System reliability



 

100 
 

 

Figure 47. Graph. Effects of post-failure behavior factor δ on component reliability index in the (a) 

no correlation case; and (b) partial correlation case. 
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3.7 Limit States for Component Design   

In the current AASHTO LRFD bridge design specifications,(1) each component and connection 

shall satisfy the following equation for each limit state during the design: 

i i i n rQ R R    

Figure 48. Equation. Strength limit state in AASHTO specification. 

in which, γi is a load factor; Qi is force effect; ϕ is a resistance factor; Rn is nominal resistance; Rr 

is factored resistance; and ηi is a load modifier relating to ductility, redundancy, and operational 

classification, given as 

i D R l     

Figure 49. Equation. Load modifier. 

where ηD is a factor relating to ductility; ηR is a factor relating to redundancy; and ηl is a factor 

relating to operational classification. Therefore, the equation in Figure 48 can be rewritten as 

follows 

D R l i i n rQ R R       

Figure 50. Equation. Strength limit state in AASHTO specification. 

It is noticed that, as stated previously, ηR is considered on the load effect side in the above limit 

state equation and its value is determined based on a very general classification of redundancy 

levels: 

(a) ηR ≥ 1.05 for nonredundant members;  

(b) ηR = 1.00 for conventional level of redundancy; and  

(c) ηR ≥ 0.95 for exceptional levels of redundancy.1  
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However, in this report, the proposed redundancy factor, which is also denoted as ηR, is more 

specifically investigated for different system arrangements, different correlation cases among the 

resistances of components, and different number of components in the system. This factor takes 

into account the system redundancy from the resistance side.  

The procedure for applying this redundancy factor in structural design consists of two steps: (a) 

calculating the resistance R’r 

' '

n r D l i iR R Q      

Figure 51. Equation. Resistance without including redundancy factor. 

Equation in Figure 51 does not consider the factor relating to redundancy on the load effect side; 

therefore, the effect of redundancy is not reflected in the resistance R’r;  

(b) applying the redundancy factor ηR to the resistance R’r to obtain the final factored resistance 

Rr, as: 

'

r R rR R  

Figure 52. Equation. Factored resistance. 

By substituting the equation in Figure 52 into equation in Figure 51, the equation in Figure 51 

can be rewritten as follows:  

' ' r
D l i i n r

R

R
Q R R   


    

Figure 53. Equation. Strength limit state. 

Multiplying both sides of the equation in Figure 53 by ηR yields 

' '

D R l i i R n R r rQ R R R         

Figure 54. Equation. Strength limit state. 
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where 
'

R n nR R  , and 
'

R r rR R  . It is seen that the equation in Figure 54 is actually the same as that 

in Figure 50 which is the limit state equation used in the current AASHTO specifications. The only 

difference is that the value of ηR in the equation in Figure 54 is based on a more detailed 

classification (i.e., considering the effects of system type, correlation among components 

resistances, and number of components, among others) than that used in the equation in Figure 50. 

Therefore, if the redundancy factor ηR is considered from the load side, equation in Figure 54 is 

used as the limit state equation for component design; however, if the redundancy factor ηR is taken 

into account from the resistance side, the limit state equation becomes 

D l i i R n R rQ R R       

Figure 55. Equation. Strength limit state. 

where ϕR is the redundancy modifier, given by 

1
R

R




  

Figure 56. Equation. Redundancy modifier.  
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CHAPTER 4. CONCLUSIONS 

This report firstly investigates in Chapter 2 the reliability of systems with equally reliable 

components. In particular, the case with codified reliability index components (i.e., βc = 3.5) used 

for the calibration of the AASHTO LRFD bridge design specifications is studied. By using 

idealized systems consisting of components having the same reliability, the effects of system 

arrangement, correlations among the resistances of components, number of components in a 

system, coefficients of variation of load and resistances, and the mean value of the load on the 

system reliability index are studied. For the representative case in which the coefficient of variation 

of resistance V(R) = 0.05 and the coefficient of load V(P) = 0.3, the reliability indices of N-

component systems (N ≤ 100) associated with three correlation cases, two distribution types, and 

different system arrangements are evaluated using the MCS method.  

The obtained results show that the design based on equally reliable components leads to low 

reliability in series systems but high reliability in parallel systems in the no correlation and partial 

correlation cases. Therefore, in order to improve the reliability of series systems to avoid under 

capacity design and to reduce the reliability of parallel systems to avoid over capacity design, 

modifier factors that relate to redundancy by taking into account the effects of system arrangement 

and correlations among components on the system reliability should be considered during the 

component design. 

To achieve this objective, the second part of this report (i.e., Chapter 3) proposes a redundancy 

factor to provide a rational system reliability-based design of structural members. This factor is 

defined as the ratio of the mean resistance of a component in a system when the system reliability 

index is prescribed (e.g., βsys = 3.5) to the mean resistance of the same component when its 
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reliability index is the same as that of the system (e.g., βc = 3.5). By using idealized systems 

described in Chapter 2, the effects of the system arrangement, correlations among the resistances 

of components, number of components in a system, coefficients of variation of load and resistances, 

and mean value of the load on the redundancy factor are investigated. For the representative case 

mentioned previously, the redundancy factors of N-component systems associated with different 

correlation cases and system models are evaluated using the MCS-based program (N ≤ 100). Since 

the structural components in practical cases have their own material behavior (e.g., ductile, brittle), 

redundancy factors of ductile, brittle, and mixed systems with no more than four components are 

studied and the effect of post-failure behavior factor on the redundancy factor of parallel systems 

is investigated. Finally, two types of limit states in which system redundancy is taken into account 

from the load and resistance side, respectively, are provided. 

The results show the effects of the aforementioned parameters on the system reliability and 

redundancy factor and the convenience of using the standard tables in estimating the system 

reliability and designing components with redundancy factor. Specifically, the following 

conclusions are drawn: 

1. For the no correlation and partial correlation cases, the increase of the coefficient of 

variation of resistance leads to: 

(a) increase of system reliability in parallel systems and  

(b) decrease of system reliability in series systems.  

Contrary to this effect, as the coefficient of variation of load increases, the reliability of the 

parallel system decreases .  

2. In the no correlation and partial correlation cases, the system reliability of the series and 

mp×ns SP systems that have the same number of parallel components (i.e., m is the same 
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in these SP systems) shows a decreasing tendency as the number of components increases; 

however, the contrary is observed in the parallel and ms×np SP systems which have the 

same number of series components (i.e., m is the same). 

3. As the correlation among resistances of components increases, the effects of V(R), V(P), N, 

and distribution type on the system reliability are less significant. In the case of perfect 

correlation, these parameters have no effect on the system reliability and the system 

reliability index is always equal to its components reliability index. 

4. If the target system reliability index is 3.5, the design based on components with the same 

reliability index of 3.5 is safe for all the systems in the perfect correlation case and also for 

the parallel system in the no correlation case. However, for the series and some series-

parallel systems in the no correlation case, the system reliability will be less than the 

predefined threshold. Therefore, system modifier factors are needed to be applied to some 

critical components so that the system reliability can be improved to meet the threshold. 

On the contrary, for the parallel and some series-parallel systems whose reliability are 

higher than the threshold, system factor modifiers are necessary to be applied to the 

components in order to avoid this over-conservatism. 

5. The redundancy factor 
R  proposed in this report and the factor relating to redundancy in 

the AASHTO LRFD bridge design specifications are of the same nature. The major 

difference is that the factor relating to redundancy in the AASHTO LRFD specifications is 

determined based on a general classification of redundancy levels while the proposed 

redundancy factor 
R  in this report is much more rational since it is based on a 

comprehensive system reliability-based approach considering several parameters including 
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the system type, correlation among the resistances of components, and number of 

components in the system. 

6. During the design process, the system redundancy can be considered from the load side by 

using the equation in Figure 54 or from the resistance side by applying the equation in 

Figure 55.  

In the no correlation and partial correlation cases: 

(a) increasing the coefficient of variation of resistance leads to higher redundancy factor in 

series system but lower redundancy factor in parallel system; and  

(b) as the coefficient of variation of load increases, the redundancy factors associated with 

both series and parallel systems increase.  

7. For the mp×ns SP systems having the same number of parallel components (i.e., m is same 

in these systems), the effect of the number of components on the redundancy factors is 

similar to that in the series system; whereas, for the ms×np SP systems that have the same 

number of series components (i.e., m is same), the variation of the redundancy factor as 

function of the number of components is similar to that in the parallel system. 

8. The redundancy of parallel system is significantly affected by the material behavior of 

components: the redundancy factors of the components of these systems associated with 

ductile and brittle case are less and greater than 1.0, respectively.  

9. Based on the results associated with the mixed parallel systems, the redundancy factors of 

their components are at least 1.0 due to the existence of brittle components. Increasing the 

correlation among the resistances of components leads to lower redundancy factor in the 

mixed parallel systems. 
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10. Future work is needed to identify the system failure modes for other limit states and 

different bridge types as well as ad hoc system arrangements for tailored client needs and 

risk attitudes. In addition, components with different reliability levels should be considered 

under the premise that LRFD is calibrated for all structural members including girders, 

columns, piers, pile shafts, among others. 
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GLOSSARY OF NOTATIONS 

E =  mean value 

( )cE R  =  mean resistance of a single component 

( )csE R  =  mean resistance of a component in a system 

g =  performance function 

w =  number of simulation samples 

N =  number of components in a system 

P =  load 

Pf =  probability of failure 

Q =  force effect 

R =  resistance of a component 

V =  coefficient of variation of a random variable 

c  =  reliability index of a single component 

cs  =  reliability index of a component in a system 

sys  =  reliability index of a system 

  =  resistance factor 

D  =  a factor relating to ductility 

l  =  a factor relating to operational classification 

R  =  redundancy factor 

ρ =  correlation coefficient 

δ =  post-failure behavior factor 
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APPENDIX:  NOTATIONS, RELEVANT TERMS, DEFINITIONS, ADDITIONAL 

TABLES, AND EXAMPLES 
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Notations 

CDF = cumulative distribution function 

E(X) = mean value of the random variable X 

Ec (R) = mean resistance of a single component 

Ecs (R) = mean resistance of a component in a system 

Fj = failure of component j 

g = performance function 

M = safety margin 

P = load 

PDF = probability density function 

Pf  = probability of failure 

Ps  = probability of survival 

Q = load effect 

R = resistance of a component 

V(X) = coefficient of variation of the random variable X 

X = random variable 

βc = reliability index of a single component 

βcs = reliability index of a component in a system 

βsys = reliability index of a system 
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δ = post-failure behavior factor 

ηR = component redundancy factor 

μM = mean of the safety margin 

μQ = mean of the load effect 

μR = mean of the component resistance 

ρ(X1, X2) = correlation coefficient between random variables X1 and X2 

σM = standard deviation of the safety margin 

σQ = standard deviation of the load effect 

σR = standard deviation of the component resistance 

-1(·) = inverse of the standard normal cumulative distribution 

∩ = union of events 

⋃ = intersection of events 
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Relevant terms 

Bridge component 

Bridge component reliability  

Bridge component redundancy 

Bridge failure modes 

Bridge modeling 

Bridge sub-system 

Bridge sub-system redundancy 

Bridge sub-system reliability 

Bridge system 

Bridge system reliability 

Bridge system redundancy 

Brittle component 

Correlation among bridge component resistances 

Correlation among bridge failure modes 

Correlation among bridge loads 

Correlation between two random variables 

Ductile component 

Post-failure behavior 

Semi-brittle component  
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Definitions 

Bridge component 

According to AASHTO, a bridge component may be regarded as a physical piece of 

material that comprises a bridge. For example, structural bridge components include girders, 

decks, and piers. In this report, the word component is encountered when analyzing system 

reliability block diagrams; the components are arranged in specific configurations within the 

system reliability block diagram. A girder can fail in many ways (e.g., bending, shear) and in 

various locations. A component in the reliability model used in this study is a place where a limit 

state could occur. Therefore, the component failure refers to the event that the limit state 

represented by the component is reached or violated. For example, a bridge girder can fail due to 

bending moment and shear force, each of these failure events can be represented by a component 

failure. 

Component j, representing a specific bridge part (e.g., girder) is idealized in Figure A-1. 

 

Figure A-1. Graph. Component j. 

Bridge system 

The bridge system is the combination of all the components comprising the bridge 

structure. An example of an eight-component bridge system is shown in Figure A-2.  

component j
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Figure A-2. Graph. Eight-component bridge system. 

 

Bridge sub-system 

A bridge sub-system is considered a group of components within the bridge system. As 

an example, three sub-systems (i.e., A, B, and C) of the bridge system in Figure A-2 are 

highlighted in Figure A-3. If Fj represents the failure of component j, the failure of sub-system A 

requires the failure of component 1 or component 2, or both, expressed mathematically as the 

event F1 ⋃ F2. Similarly, sub-system B fails when both component 3 and 4 fail (i.e., F3 ∩ F4). 

The failure of sub-system C occurs when component 5 fails or components 6, 7, and 8 fail 

simultaneously (i.e., F5 ⋃ (F6 ∩ F7 ∩ F8)). 

 

Figure A-3. Graph. Sub-systems of a bridge system. 
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Bridge failure modes 

A failure occurs when a component or system stops performing its required function. A 

failure mode is defined as the mechanism that is responsible for the non-operation of a 

component, sub-system, or system. For structural components within bridge systems, failure 

modes investigated include shear, bending, fatigue, yielding, rupture, and cracking, among 

others. 

Bridge modeling 

Bridge modeling refers to the configuration of the system reliability block diagram, 

including series, parallel, and series-parallel. An example of each type of these systems is shown 

in Figure A-4. Systems A, B, C, D, and E contain the same four components arranged in 

different configurations. Series, parallel, and series-parallel systems are depicted in Figure A-4a, 

Figure A-4b, and Figure A-4c-e, respectively. 
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Figure A-4. Graph. Five configurations of a four-component system. 

 

In order to provide guidance for the discretization of superstructure continuums, the 

process of system modeling associated with different types of bridges is discussed herein. For a 

box girder bridge, it can be assumed that the critical sections are arranged in either series, 

parallel, or a series-parallel. Additionally, for a bridge that consists of steel girders that support a 

reinforced concrete deck, the girders’ and deck’s failure modes may be arranged in a series-

parallel configuration; this type of bridge is modeled in Figure A-15. 
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Bridge component redundancy 

Component redundancy is a measure of how much its failure contributes the failure of the 

bridge system. AASHTO defines component redundancy as “the quality of a bridge component 

that enables it to perform its design function in a damaged state.” As an example, rupture or 

yielding of an individual component may not cause collapse or failure of the whole bridge 

system (AASHTO 2010). 

Bridge system redundancy 

If a system is redundant, there exists more than one way of fulfilling the requirements of 

system operation (i.e., non-failure). Similarly, bridge redundancy is defined as “the capability of 

a bridge structural system to carry loads after damage or the failure of one or more of its 

members” in The Manual for Bridge Evaluation (AASHTO 2008). 

Bridge sub-system redundancy 

Similar to the definition of bridge system redundancy, if a sub-system is redundant, there 

exists more than one way of fulfilling the requirements of sub-system operation (i.e., non-

failure).  

Bridge component reliability 

In general, bridge component reliability can be defined as the probability that this 

component will adequately perform its purpose for a period of time under specified 

environmental conditions. The reliability assessment of bridge components can be expressed as a 

problem of supply and demand, which is modeled by means of random variables. For instance, if 

R and Q are the resistance and the load effect corresponding to a specific bridge component 
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respectively, the probability that Q will not exceed R represents the reliability of the structural 

component investigated. The resistance of a bridge component greatly depends upon the material 

it is composed of, the environmental conditions, in addition to its dimensions. In contrast, the 

load effect depends upon hazards that the bridge component is subject to and also on the bridge 

characteristics. 

The probability of failure of a component is defined as the probability of violating any of 

the limit state functions that define its failure modes. Limit states associated with bridge 

components are expressed with equations relating the resistance of the structural component to 

the load effects acting on this component. The safety margin is expressed as follows: 

 

Figure A-5. Equation. Safety margin. 

 

where M is the safety margin, R represents the resistance, and Q denotes the load effect. Another 

way of expressing the safety margin is called the performance function g. For example, the 

structural behavior of a bridge component may be described by the following performance 

function: 

 

Figure A-6. Equation. Performance function. 

 

The safety margin M is a random variable with probability density function (PDF) fM (m). 

As shown in Figure A-8, the area under the PDF upper bounded by m = 0 represents the 

probability of failure. The reliability index of a component is defined as (see Figure A-8): 

 
Figure A-7. Equation. Reliability index of a component. 
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where M and M are the mean and standard deviation of the safety margin, respectively.  

 

Figure A-8. Graph. PDF of the safety margin fM (m). 

If R and Q are independent, the reliability index of a component becomes 

 
Figure A-9. Equation. Reliability index. 

 

where R, Q and R, Q are the means and standard deviations, respectively. Furthermore, on 

the assumption that the safety margin M is normally distributed, the reliability index can be 

expressed as: 

 
Figure A-10. Equation. Relation between probability of failure, probability of survival, and 

reliability index. 

 

where -1(·) is the inverse of the standard normal cumulative distribution function (CDF), Pf is 

the probability of failure, and Ps = 1 - Pf is the probability of safety. 
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Bridge system reliability 

Bridge system reliability is calculated considering the system reliability model (also 

called the system reliability block diagram). Bridge systems that are composed of multiple 

components can be classified as series, parallel, or combined series-parallel. In general, the 

failure events comprising the system reliability model may be represented as events in series 

(defined as union, ⋃) or in parallel (denoted as intersection, ∩).  

Systems whose components are connected in series are such that the failure of any of 

these components constitutes the failure of system. These types of systems (i.e., series systems) 

have no redundancy and are also known as “weakest link” systems; the reliability of this type of 

system requires that none of the components fail. An idealized series system is shown in Figure 

A-14a. For series systems, the domain Ω, representing system failure, is expressed in terms of 

component failure events as: 

 

Figure A-11. Equation. Failure domain for series systems. 

 

Conversely, if system failure requires the failure of all its components, then the system 

may be idealized as a parallel system. If any of the components survive in a parallel system, the 

system will not fail. For instance, a bridge system may constitute a parallel system if there is 

adequate ductility and sufficient reserve capacity in all components. Clearly, a parallel system is 

a redundant system and may be represented as shown in Figure A-14b. For parallel systems, the 

system failure domain Ω is expressed as: 

 

Figure A-12. Equation. Failure domain for parallel systems. 
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Figure A-14c depicts an idealized series-parallel system with n sub-systems of 4 parallel 

components in series. In general, the failure domain of a series-parallel system may be expressed 

in terms of component failure events as 

 

 Figure A-13. Equation. Failure domain for series-parallel systems.  

 

where cn is the number of components in the nth cut set. 

 

Figure A-14. Graph. Idealized series, parallel, and series-parallel systems. 

An example of a system reliability model for a bridge with a reinforced concrete deck 

and steel girders is shown in Figure A-15. Figure A-15a presents the transverse cross section of 

the investigated bridge superstructure while Figure A-15b shows the idealized system reliability 

model. In this system reliability model, it is assumed that failure of the entire bridge 
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superstructure (i.e., the system) is modeled as a series-parallel system consisting of a failure of 

the deck or the failure of any two adjacent girders.  

 

Figure A-15. Graph. (a) Transverse cross-section and (b) system reliability model of the 

superstructure of a bridge. 

  

Considering that Fj represents the failure of component j, the event set describing the failure of 

the entire bridge system is: 

 

Figure A-16. Equation. System failure event. 

Bridge sub-system reliability 

Similar to the definition of bridge system reliability, bridge sub-system reliability is 

calculated considering the sub-system’s reliability block diagram. The sub-system’s reliability 

model is representative of a sub-system’s reliability in an event diagram format. As an example, 

the reliability associated with sub-systems A, B, and C within Figure A-3 are calculated 

considering the event sets F1  ⋃ F2, F3  ∩ F4, and F5  ⋃ (F6 ∩ F7 ∩ F8), respectively.  
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Post-failure behavior 

The structural response of bridge components beyond the elastic limit can be 

characterized by brittle, ductile, or mixed (ductile-brittle) behavior. The parameter utilized to 

express the post-failure behavior is δ, with δ = 1 and δ = 0 representing a ductile and brittle 

component, respectively. δ is called the post-failure behavior factor. Hardening and softening 

behavior of components also affect the system reliability. For hardening behavior, perfect plastic 

post-failure can provide a conservative estimation of the system reliability and redundancy. 

Similar, the softening behavior after initial failure can be approximated by brittle failure. To 

accurately consider hardening and softening behavior requires the knowledge of the rate of 

capacity increase/decrease after initial failure. This rate is usually material- and/or structure-

specific, which indicates that it cannot be generalized. 

For component j, the representative force-deformation relationships, considering the post-

failure behavior of the component, is shown in Figure A-17. 

 

Figure A-17. Graph. Force-deformation relationship considering the effect of the post-failure 

behavior δ. 
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Ductile component  

As defined by AASHTO, ductility refers to a “property of a component or connection 

that allows inelastic response.” Additionally, if, by means of confinement or other measures, a 

bridge component or connection can sustain inelastic deformations without significant loss of 

load-carrying capacity, this component can be considered ductile (AASHTO 2010). 

Brittle component 

Brittle behavior, or “the sudden loss of load-carrying capacity immediately when the 

elastic limit is exceeded,” refers to the post-failure behavior of a bridge component. According to 

AASHTO, “brittle behavior is undesirable because it implies the sudden loss of load-carrying 

capacity immediately when the elastic limit is exceeded” (AASHTO 2010). 

Semi-brittle component 

A component which exhibits post-failure behavior in between the brittle and ductile 

response extremes. A semi-brittle component is represented by 0 < δ < 1. 

Correlation between two random variables 

Correlation indicates the amount of relative dependency among random variables. The 

most common measure of dependence between two quantities is the Pearson's correlation 

coefficient, commonly called "the correlation coefficient." It is obtained by dividing the 

covariance of the two investigated variables by the product of their standard deviations. The 

correlation coefficient ρ(X 1, X 2) between two random variables X1 and X2 with expected values 

μX1 and μX2 and standard deviations σX1 and σX2 is defined as: 
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Figure A-18. Equation. Correlation coefficient between two random variables. 

 

Statistical independence between the two random variables X1 and X2 implies ρ(X1, X 2) = 0 (i.e, 

no correlation). In contrast, perfect correlation between the two random variables X1 and X2 

implies ρ(X 1, X 2) = 1. Figure A-19 depicts different correlations between two random variables 

X1 and X 2. 

 

Figure A-19. Graph. Correlation coefficient ρ(X1, X 2) between two random variables X1 and X2. 
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bearing on the occurrence of the other load. As an example, the dead load and live load on a 

bridge are independent; in other words, these two loads have no correlation.  

Since statistical independence between two random variables X1 and X2 

(i.e., ρ(X1, X2) = 0) implies that the two variables are not related, the value of one variable has no 

influence on the value of the other variable. An example of statistically independent variables 

with application to bridges is the loading applied to the structure. For example, traffic loading 

and dead loads are independent and traffic loads and seismic loads are also independent; the 

amount of traffic has no bearing on the occurrence and magnitude of dead or seismic loads.  

Correlation among bridge component resistances 

Correlation among bridge resistances occurs when the structural resistances associated 

with multiple components (e.g., R1, R2, …, RN) are related. In practice, the resistances of bridge 

components could be correlated, like in the case of multiple interior bridge girders. However, the 

resistances of an interior girder and the deck of a bridge (see Figure A-15a for an example) are 

typically not correlated (e.g., independent).  

Correlation among bridge failure modes 

Correlation among bridge failure modes occurs when some or all of the components of 

limit state functions of the two failure modes are related (e.g., same load present in the two 

failure modes, same resistances present in the two failure modes). Typically, only the correlation 

among the random variables involved in the reliability assessment are known and/or quantified. 

However, the correlation among different performance functions (e.g., g1, g2, …, gN) may also be 

calculated considering the relationships among all the investigated random variables. 
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Since perfect correlation between two random variables (i.e., ρ = 1) implies that the two 

variables are fully interrelated, the value of one variable has complete influence on the value of 

the other variable. An example with application to bridges is found when analyzing the bending 

and shear failure of a simply supported span of a two lane bridge with two independent truck 

loads (e.g., two trucks following each other in the same lane). The simply supported span with 

the two applied truck loads P1 and P2 is shown in Figure A-20. The free body diagram of the 

span is also shown in Figure A-20 where vertical reaction forces at the left and right support are 

denoted as Y1 and Y2, respectively. Because the expressions for the vertical reactions at the 

supports of the span are functions of similar terms (i.e., P1 and P2), there exists some inherent 

correlation between the reaction forces (i.e., ρ(Y1, Y2) > 0)  . For this particular span, the two 

modes of failure considered are bending and shear.  

 

Figure A-20. Graph. Correlation coefficient ρ(X1, X 2) between two random variables X1 and X2. 

The bending moment at point A is denoted as MA and is a function of both truck loads P1 

and P2. Similarly, the shear force at point C, VC is also a function of both truck loads P1 and P2. 

In general, the expressions for moment and shear in the span contain terms representing the 

magnitude of the two applied loads. Because both equations used to calculate MA and VC contain 

P1 and P2, the bending moment at point A and shear force at point C are correlated. In this case, 
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the magnitude of the applied loads are independent (i.e., no correlation) but their load effects are 

correlated. The bending moment at points A and B, MA and MB, respectively, will be correlated, 

as well. 

Furthermore, the failure modes associated with bending and shear of the bridge may be 

analyzed. The performance function associated with bending is  

 

Figure A-21. Equation. Performance function associated with bending failure. 

where RM is the bending resistance and QM  is the bending load effect. Similarly, the performance 

function corresponding to shear failure is expressed as: 

 

Figure A-22. Equation. Performance function associated with shear failure. 

 

where RV is the shear resistance and QV  is the shear load effect. Since the two load effects QM  

and QV  are correlated, it is evident that the performance functions (i.e., failure modes) presented 

in Figure A-21 and Figure A-22 are also correlated. Therefore, even if the resistances in bending 

and shear are independent, their respective failure modes will always be correlated.  
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Additional tables with reliability and redundancy factors for systems up to 500 components 

In the main report, the system reliability index is investigated with respect to the ductile 

and brittle systems having a small number of components and it is found that the system 

reliability index is affected by the number of components in the system. However, most real 

structures are composed of dozens or hundreds of components. Therefore, it is necessary to 

evaluate the system reliability index of ductile and brittle systems that consist of many iso-

reliability components so that standard tables of system reliability index can be generated to 

facilitate the component design process.  

For a structure consisting of N ductile components, different types of systems can be 

formed: series, parallel, and series-parallel. The reliability analysis of a series system is 

independent of the material behavior of its components. Therefore, only parallel and series-

parallel systems are analyzed. The series-parallel systems where the number of the series or 

parallel components in the sub-series or sub-parallel systems equal to 5, 10 and 20 are 

investigated.  

The system reliability index is not affected by the mean value of the load acting on the 

system when all the components in the system are identical and have the same component 

reliability. Therefore, the following assumption is made for the loads applied to the parallel and 

series-parallel systems: (a) for an N-component parallel system, the load it is subject to is N·P, 

where P is the load acting on a single component which is used to calculate Ec(R); (b) for a 

mp×ns series-parallel system which has m components in each sub-parallel system, the load 

acting on system is m·P; and (c) for a ms×np series-parallel system which has n sub-series 

systems, the load acting on system is n·P. In this manner, the load effect of each component in 

the intact parallel and series-parallel systems are also P.  
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Since the failure modes of ductile systems are independent of the failure sequence, the 

limit state equation of an N-component parallel system is 

 
Figure A-23. Equation. Limit state equation associated with failure of the N-component parallel 

system in the ductile case. 

  

For a mp×ns series-parallel system which has n possible failure modes, the limit state equation 

associated with one of the failure modes is 

 
Figure A-24. Equation. Limit state equation associated with failure of the mp×ns series-parallel 

system in the ductile case. 

 

where m( k-1)+1 and m·k denote the first and last component in the kth sub-parallel system, 

respectively. For a ms×np series-parallel system, the number of its possible failure modes is mn. 

The limit state equation associated with one of the failure modes can be written as 

 
Figure A-25. Equation. Limit state equation associated with failure of the ms×np series-parallel 

system in ductile case. 

 

where components k, k+1,…, k+n-1 are located in different sub-series systems.  

After identifying the limit state equations of the N-component (N ≤ 500) parallel and 

series-parallel systems and assuming that the coefficients of variation of resistance and load to be 

0.05 and 0.3, respectively, the system reliability indices associated with two distribution types 

(normal and lognormal) and two correlation cases (ρ(Ri,Rj) = 0 and 0.5) when the reliability 

indices of all components are 3.5 are calculated. Table A-1 and Table A-2 present the obtained 
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results along with the system reliability indices of series systems. Figure A-26 shows the effects 

of the number of components on the system reliability index in the series and parallel systems.  

It is observed from the figure and tables that (a) the effect of N on the system reliability 

index in the parallel system depends on the value of N: when N is small, increasing N leads to 

higher system reliability index in the parallel system, and the change is less significant as the 

correlation among the resistances of component becomes stronger; however, as N continues 

increasing, the its effect on the system reliability index becomes insignificant; (b) for the mp×ns 

series-parallel systems that have the same number of parallel components (i.e., m is the same in 

these systems), the system reliability index decreases along with the increase of N; this is similar 

to the finding observed in the series systems; (c) as the correlation among the resistances of 

components increases, the system reliability index exhibits a decreasing trend in the series 

system while an increasing tendency in the parallel system; and (d) in the series system, the 

system reliability index associated with normal distribution is lower than that associated with the 

lognormal distribution; while in the parallel system, contrary conclusion is observed.  
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Table A-1. System reliability index of ductile systems associated with different correlation cases 

when R and P follow normal distribution; 100 ≤ N ≤ 500.  

Component / System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

100-component system - Series system 2.793 2.977 3.50 

100-component system - Parallel system 3.709 3.604 3.50 

100-component system - 5p×20s SP system 3.409 3.390 3.50 

100-component system - 10p×10s SP system 3.531 3.478 3.50 

100-component system - 20p×5s SP system 3.615 3.532 3.50 

200-component system - Series system 2.716 2.923 3.50 

200-component system - Parallel system 3.710 3.605 3.50 

200-component system - 5p×40s SP system 3.359 3.363 3.50 

200-component system - 10p×20s SP system 3.501 3.457 3.50 

200-component system - 20p×10s SP system 3.588 3.517 3.50 

300-component system - Series system 2.669 2.892 3.50 

300-component system - Parallel system 3.711 3.607 3.50 

300-component system - 5p×60s SP system 3.339 3.344 3.50 

300-component system - 10p×30s SP system 3.475 3.439 3.50 

300-component system - 20p×15s SP system 3.571 3.510 3.50 

400-component system - Series system 2.640 2.871 3.50 

400-component system - Parallel system 3.711 3.608 3.50 

400-component system - 5p×80s SP system 3.325 3.338 3.50 

400-component system - 10p×40s SP system 3.465 3.432 3.50 

400-component system - 20p×20s SP system 3.558 3.498 3.50 

500-component system - Series system 2.617 2.855 3.50 

500-component system - Parallel system 3.712 3.610 3.50 

500-component system - 5p×100s SP system 3.306 3.328 3.50 

500-component system - 10p×50s SP system 3.456 3.426 3.50 

500-component system - 20p×25s SP system 3.550 3.494 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βcs = 3.5 
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Table A-2. System reliability index of ductile systems associated with different correlation cases 

when R and P follow lognormal distribution; 100 ≤ N ≤ 500. 

Component / System ρ(Ri,Rj) = 0 
ρ(Ri,Rj) = 

0.5 
ρ(Ri,Rj) = 1.0 

100-component system - Series system 3.116 3.219 3.50 

100-component system - Parallel system 3.556 3.526 3.50 

100-component system - 5p×20s SP system 3.409 3.426 3.50 

100-component system - 10p×10s SP system 3.469 3.469 3.50 

100-component system - 20p×5s SP system 3.509 3.500 3.50 

200-component system - Series system 3.074 3.194 3.50 

200-component system - Parallel system 3.556 3.527 3.50 

200-component system - 5p×40s SP system 3.386 3.413 3.50 

200-component system - 10p×20s SP system 3.452 3.456 3.50 

200-component system - 20p×10s SP system 3.495 3.486 3.50 

300-component system - Series system 3.055 3.180 3.50 

300-component system - Parallel system 3.557 3.527 3.50 

300-component system - 5p×60s SP system 3.375 3.401 3.50 

300-component system - 10p×30s SP system 3.439 3.451 3.50 

300-component system - 20p×15s SP system 3.490 3.476 3.50 

400-component system - Series system 3.037 3.165 3.50 

400-component system - Parallel system 3.557 3.528 3.50 

400-component system - 5p×80s SP system 3.368 3.397 3.50 

400-component system - 10p×40s SP system 3.436 3.445 3.50 

400-component system - 20p×20s SP system 3.484 3.479 3.50 

500-component system - Series system 3.026 3.159 3.50 

500-component system - Parallel system 3.558 3.529 3.50 

500-component system - 5p×100s SP system 3.361 3.392 3.50 

500-component system - 10p×50s SP system 3.432 3.442 3.50 

500-component system - 20p×25s SP system 3.481 3.474 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βcs = 3.5 
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Figure A-26. Graph. Effects of the number of components on the reliability index of ductile systems 

(Note: “N” denotes normal distribution; “LN” denotes lognormal distribution; “0” denotes ρ(Ri,Rj) 

= 0; and “0.5” denotes ρ(Ri,Rj) = 0.5). 

 

Assuming the coefficients of variation of resistance and load to be 0.05 and 0.3, 

respectively, the redundancy factors associated with two probability distributions (normal and 

lognormal) and two correlation cases (ρ(Ri,Rj) = 0 and 0.5) when the system reliability is 3.5 are 

obtained using the MCS-based method, as listed in Table A-3 to Table A-6. These results are 

also plotted in Figure A-27 which shows the effects of the number of components on the 

redundancy factor of series and parallel systems.  

It is observed that (a) the redundancy factors of the ductile series systems are the same as 

those of the regular series systems (without considering the material behavior) presented in the 

main portion of this report; this is due to the fact that the failure modes of the series system are 

independent of the material behavior of components; (b) the effect of N on the redundancy factor 

in the parallel system also depends on the value of N: when N is small, the redundancy factor 

decreases as N increases and the change is less significant as the correlation among the 
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resistances of component becomes stronger; however, as N continues increasing, its effect on the 

redundancy factor becomes insignificant; (c) for the mp×ns series-parallel systems that have the 

same number of components in the sub-parallel system (i.e., m is the same in these systems), the 

redundancy factor becomes larger as N increases; this is similar to the finding observed in the 

series systems; (d) as the correlation among the resistances of components becomes stronger, the 

redundancy factor increases in the series system but decreases in the parallel system; and (e) in 

the series system, the redundancy factors associated with both distributions (i.e., normal and 

lognormal) are very close; however, in the parallel system, the differences in the redundancy 

factors associated with the two distributions are more significant. 
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Table A-3. Redundancy factor of ductile systems associated with the case ρ(Ri,Rj) = 0 when R and P 

follow normal distribution; 100 ≤ N ≤ 500. 

System Ecs(R)  

100-component system - Series system 23.626 1.118 

100-component system - Parallel system 20.519 0.971 

100-component system - 5p×20s SP system 21.428 1.014 

100-component system - 10p×10s SP system 21.026 0.995 

100-component system - 20p×5s SP system 20.794 0.984 

200-component system - Series system 23.921 1.132 

200-component system - Parallel system 20.519 0.971 

200-component system - 5p×40s SP system 21.576 1.021 

200-component system - 10p×20s SP system 21.132 1.000 

200-component system - 20p×10s SP system 20.878 0.988 

300-component system - Series system 24.112 1.141 

300-component system - Parallel system 20.498 0.970 

300-component system - 5p×60s SP system 21.639 1.024 

300-component system - 10p×30s SP system 21.195 1.003 

300-component system - 20p×15s SP system 20.921 0.990 

400-component system - Series system 24.217 1.146 

400-component system - Parallel system 20.498 0.970 

400-component system - 5p×80s SP system 21.703 1.027 

400-component system - 10p×40s SP system 21.238 1.005 

400-component system - 20p×20s SP system 20.942 0.991 

500-component system - Series system 24.323 1.151 

500-component system - Parallel system 20.498 0.970 

500-component system - 5p×100s SP system 21.745 1.029 

500-component system - 10p×50s SP system 21.280 1.007 

500-component system - 20p×25s SP system 20.963 0.992 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table A-4. Redundancy factor of ductile systems associated with the case ρ(Ri,Rj) = 0.5 when R and 

P follow normal distribution; 100 ≤ N ≤ 500. 

System Ecs(R)  

100-component system - Series system 23.013 1.089 

100-component system - Parallel system 20.815 0.985 

100-component system - 5p×20s SP system 21.449 1.015 

100-component system - 10p×10s SP system 21.195 1.003 

100-component system - 20p×5s SP system 21.026 0.995 

200-component system - Series system 23.203 1.098 

200-component system - Parallel system 20.815 0.985 

200-component system - 5p×40s SP system 21.555 1.020 

200-component system - 10p×20s SP system 21.259 1.006 

200-component system - 20p×10s SP system 21.090 0.998 

300-component system - Series system 23.309 1.103 

300-component system - Parallel system 20.815 0.985 

300-component system - 5p×60s SP system 21.660 1.025 

300-component system - 10p×30s SP system 21.322 1.009 

300-component system - 20p×15s SP system 21.132 1.000 

400-component system - Series system 23.414 1.108 

400-component system - Parallel system 20.815 0.985 

400-component system - 5p×80s SP system 21.703 1.027 

400-component system - 10p×40s SP system 21.343 1.010 

400-component system - 20p×20s SP system 21.132 1.000 

500-component system - Series system 23.457 1.110 

500-component system - Parallel system 20.815 0.985 

500-component system - 5p×100s SP system 21.703 1.027 

500-component system - 10p×50s SP system 21.364 1.011 

500-component system - 20p×25s SP system 21.132 1.000 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132 
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Table A-5. Redundancy factor of ductile systems associated with the case ρ(Ri,Rj) = 0 when R and P 

follow lognormal distribution; 100 ≤ N ≤ 500. 

System Ecs(R)  

100-component system - Series system 30.457 1.120 

100-component system - Parallel system 26.759 0.984 

100-component system - 5p×20s SP system 27.928 1.027 

100-component system - 10p×10s SP system 27.439 1.009 

100-component system - 20p×5s SP system 27.085 0.996 

200-component system - Series system 30.784 1.132 

200-component system - Parallel system 26.759 0.984 

200-component system - 5p×40s SP system 28.119 1.034 

200-component system - 10p×20s SP system 27.575 1.014 

200-component system - 20p×10s SP system 27.248 1.002 

300-component system - Series system 31.028 1.141 

300-component system - Parallel system 26.759 0.984 

300-component system - 5p×60s SP system 28.227 1.038 

300-component system - 10p×30s SP system 27.656 1.017 

300-component system - 20p×15s SP system 27.303 1.004 

400-component system - Series system 31.137 1.145 

400-component system - Parallel system 26.759 0.984 

400-component system - 5p×80s SP system 28.255 1.039 

400-component system - 10p×40s SP system 27.711 1.019 

400-component system - 20p×20s SP system 27.303 1.004 

500-component system - Series system 31.246 1.149 

500-component system - Parallel system 26.759 0.984 

500-component system - 5p×100s SP system 28.309 1.041 

500-component system - 10p×50s SP system 27.738 1.020 

500-component system - 20p×25s SP system 27.357 1.006 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Table A-6. Redundancy factor of ductile systems associated with the case ρ(Ri,Rj) = 0.5 when R and 

P follow lognormal distribution; 100 ≤ N ≤ 500. 

System Ecs(R)  

100-component system - Series system 29.533 1.086 

100-component system - Parallel system 26.976 0.992 

100-component system - 5p×20s SP system 27.847 1.024 

100-component system - 10p×10s SP system 27.439 1.009 

100-component system - 20p×5s SP system 27.221 1.001 

200-component system - Series system 29.777 1.095 

200-component system - Parallel system 26.976 0.992 

200-component system - 5p×40s SP system 27.928 1.027 

200-component system - 10p×20s SP system 27.575 1.014 

200-component system - 20p×10s SP system 27.248 1.002 

300-component system - Series system 29.913 1.100 

300-component system - Parallel system 26.949 0.991 

300-component system - 5p×60s SP system 28.010 1.030 

300-component system - 10p×30s SP system 27.602 1.015 

300-component system - 20p×15s SP system 27.330 1.005 

400-component system - Series system 29.995 1.103 

400-component system - Parallel system 26.949 0.991 

400-component system - 5p×80s SP system 28.037 1.031 

400-component system - 10p×40s SP system 27.629 1.016 

400-component system - 20p×20s SP system 27.357 1.006 

500-component system - Series system 30.077 1.106 

500-component system - Parallel system 26.949 0.991 

500-component system - 5p×100s SP system 28.064 1.032 

500-component system - 10p×50s SP system 27.656 1.017 

500-component system - 20p×25s SP system 27.357 1.006 

Note: V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194 
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Figure A-27. Graph. Effects of the number of components on the redundancy factor in ductile 

systems (Note: “N” denotes normal distribution; “LN” denotes lognormal distribution; “0” denotes 

ρ(Ri,Rj) = 0; and “0.5” denotes ρ(Ri,Rj) = 0.5). 

 

The associated component reliability indices of the N-component systems are presented 

in Table A-7 and Table A-8. The results are also plotted in Figure A-28. It is noted that (a) the 

effects of N and ρ(Ri,Rj) on the reliability index of components are similar to those on the 

redundancy factor; (b) in the series system, the component reliability index associated with 

normal distribution is higher than that associated with lognormal distribution; however, contrary 

finding is observed in the parallel system; and (c) the differences in the component reliability 

index due to different distributions and different correlation cases associated with the ductile 

parallel systems are less significant than those associated with the regular parallel systems 

(presented in main portion of this report); this indicates that including the ductile behavior 

impairs the effects of distribution type and correlation on the reliability index of components.  
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Table A-7. Component reliability index of different systems associated with different correlation 

cases when R and P follow normal distribution; 1 ≤ N ≤ 500. 

Component / System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component 3.50 3.50 3.50 

2-component system - Series system 3.63 3.60 3.50 

2-component system - Parallel system 3.40 3.45 3.50 

3-component system - Series system 3.71 3.66 3.50 

3-component system - Parallel system 3.37 3.44 3.50 

5-component system - Series system 3.79 3.73 3.50 

5-component system - Parallel system 3.35 3.43 3.50 

10-component system - Series system 3.90 3.81 3.50 

10-component system - Parallel system 3.33 3.41 3.50 

15-component system - Series system 3.97 3.86 3.50 

15-component system - Parallel system 3.33 3.41 3.50 

20-component system - Series system 4.00 3.89 3.50 

20-component system - Parallel system 3.33 3.40 3.50 

25-component system - Series system 4.04 3.91 3.50 

25-component system - Parallel system 3.33 3.40 3.50 

50-component system - Series system 4.14 3.98 3.50 

50-component system - Parallel system 3.32 3.40 3.50 

100-component system - Series system 4.23 4.05 3.50 

100-component system - Parallel system 3.32 3.40 3.50 

200-component system - Series system 4.31 4.10 3.50 

200-component system - Parallel system 3.32 3.40 3.50 

300-component system - Series system 4.36 4.14 3.50 

300-component system - Parallel system 3.31 3.40 3.50 

400-component system - Series system 4.40 4.16 3.50 

400-component system - Parallel system 3.31 3.40 3.50 

500-component system - Series system 4.42 4.18 3.50 

500-component system - Parallel system 3.31 3.40 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,N (R) = 21.132  
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Table A-8. Component reliability index of different systems associated with different correlation 

cases when R and P follow lognormal distribution; 1 ≤ N ≤ 500. 

Component / System ρ(Ri,Rj) = 0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

1-component 3.50 3.50 3.50 

2-component system - Series system 3.57 3.55 3.50 

2-componentsystem - Parallel system 3.47 3.49 3.50 

3-component Series system 3.62 3.59 3.50 

3-component Parallel system 3.46 3.49 3.50 

5-component Series system 3.66 3.62 3.50 

5-component Parallel system 3.46 3.48 3.50 

10-component Series system 3.72 3.67 3.50 

10-component Parallel system 3.45 3.48 3.50 

15-component Series system 3.75 3.68 3.50 

15-component Parallel system 3.45 3.48 3.50 

20-component Series system 3.78 3.70 3.50 

20-component Parallel system 3.45 3.48 3.50 

25-component Series system 3.79 3.71 3.50 

25-component Parallel system 3.45 3.48 3.50 

50-component Series system 3.84 3.74 3.50 

50-component Parallel system 3.44 3.48 3.50 

100-component Series system 3.88 3.77 3.50 

100-component Parallel system 3.44 3.48 3.50 

200-component Series system 3.91 3.80 3.50 

200-component Parallel system 3.44 3.48 3.50 

300-component Series system 3.94 3.81 3.50 

300-component Parallel system 3.44 3.47 3.50 

400-component Series system 3.95 3.82 3.50 

400-component Parallel system 3.44 3.47 3.50 

500-component Series system 3.96 3.83 3.50 

500-component Parallel system 3.44 3.47 3.50 

Note: E(P) = 10; V(P) = 0.3; V (R) = 0.05; βc = 3.5; βsys = 3.5; Ec,LN (R) = 27.194  
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Figure A-28. Graph. Effects of the number of components on the reliability index of components in 

ductile systems (Note: “N” denotes normal distribution; “LN” denotes lognormal distribution; “0” 

denotes ρ(Ri,Rj) = 0; and “0.5” denotes ρ(Ri,Rj) = 0.5). 
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Example 1 

A steel girder bridge with 4 girders is investigated within this illustrative example. In 

order to describe different series-parallel systems, the following rule is used:  if the sub-system 

of a series-parallel (SP) system consists of m parallel components and it is repeated n times in the 

system model, as shown in Figure A-29, this series-parallel system is denoted as a mp×ns SP 

system. 

 

Figure A-29. Graph. Schematic figure of the mp×ns series-parallel system. 

 

For a steel girder bridge with four girders numbered from 1 to 4 (girders 1 and 4 are 

exterior girders and girders 2 and 3 refer to interior girders), four different system models can be 

considered according to different definitions of system failure: (a) series model: the system fails 

if any girder fails; (b) parallel model: the system fails only if all girders fail; (c) series-parallel 

model I: the system fails if either of the exterior girders and either of the interior girders fail, 

denoted as 2s×2p series-parallel model; and (d) series-parallel model II: the system fails if any 

two adjacent girders fail, denoted as 2p×3s series-parallel model, as shown in Figure A-30. 
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Figure A-30. Graph. Four-girder bridge systems:  (a) series, (b) parallel, (c) 2p×2s series-parallel, 

and (d) 2p×3s series-parallel. 

 

For each girder, the resistance R and load effect Q are assumed to follow normal 

distributions. The mean values and standard deviations of R are the same for all girders; so are 

the mean values and standard deviations of Q. Three correlation cases among the resistances of 

girders are considered herein: (a) ρ(Ri,Rj) = 0, no correlation; (b) ρ(Ri,Rj) = 0.5, partial 

correlation; and (c) ρ(Ri,Rj) = 1.0, perfect correlation. 

Although the girders may fail in different modes, only the flexural failure mode is 

analyzed. The mean value of the load effect, which is vertical bending moment, is assumed to be 

E(Q) = 7500 kN·m. Two cases associated with the coefficients of variation of R and Q are 

studied:  (a) Case A: V(R) = 0.05, V(Q) = 0.3; and (b) Case B: V(R) = 0.1, V(Q) = 0.4. Based on 

this information, the required mean resistance of each girder Ec(R) when the component 

reliability index βc is 3.5 is found to be 1.58 × 104 kN·m for Case A and 2.01 × 104 kN·m for 

Case B. Next, assuming the system reliability index βsys = 3.5, the mean resistances of each 

girders Ecs(R) in the four systems associated with Cases A and B can be calculated. Finally, the 

redundancy factors ηR and reliability indices βcs associated with the girders are obtained using the 

ratio Ecs(R) / Ec(R). The results are presented in Table A-9 and Table A-10 as matrices in 
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function of system modeling and correlation cases for the four girder bridge system. Note that 

the redundancy factors within Table A-9 and Table A-10 can also be found in the following 

standardized tables provided in the main report: Table 12, Table 13, Table 22, Table 24, and 

Table 26. 

Table A-9. Redundancy factors and reliability indices of girders in the 4-girder bridge systems 

associated with Case A (V(R) = 0.05, V(Q) = 0.3). 

Models 
ρ = 0.0 

ηR 

ρ = 0.0 

βcs 

ρ = 0.5 

ηR 

ρ = 0.5 

βcs 

ρ = 1.0 

ηR 

ρ = 1.0 

βcs 

Series 1.041 3.76 1.032 3.70 1.0 3.50 

Parallel 0.934 3.08 0.956 3.22 1.0 3.50 

2p×2s SP 0.988 3.42 0.995 3.48 1.0 3.50 

2p×3s SP 0.983 3.40 0.992 3.45 1.0 3.50 

Note: ρ denotes ρ(Ri, Rj). 
 

Table A-10. Redundancy factors and reliability indices of girders in the 4-girder bridge systems 

associated with Case B (V(R) = 0.1, V(Q) = 0.4). 

Models 
ρ = 0.0 

ηR 

ρ = 0.0 

βcs 

ρ = 0.5 

ηR 

ρ = 0.5 

βcs 

ρ = 1.0 

ηR 

ρ = 1.0 

βcs 

Series 1.076 3.83 1.066 3.79 1.0 3.50 

Parallel 0.842 2.75 0.892 3.00 1.0 3.50 

2p×2s SP 0.946 3.25 0.975 3.39 1.0 3.50 

2p×3s SP 0.938 3.21 0.968 3.36 1.0 3.50 

Note: ρ denotes ρ(Ri, Rj). 
 

It is observed that:  (a) the redundancy factor and the girder reliability index associated 

with series system are the highest while their counterparts associated with parallel system are the 

lowest; (b) for the two series-parallel systems, 2s×2p SP system (system fails if either of the 

exterior girders and either of the interior girders fail) provides higher redundancy factor and 
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girder reliability index than 2p×3s SP system (system fails if any two adjacent girders fail); (c) as 

the correlation among the resistances of girders increases, the redundancy factor and the girder 

reliability index decrease in the series system but increase in the parallel and series-parallel 

systems; (d) the results of series system in Case B are higher than those in Case A; however, 

contrary findings are observed for the parallel and series-parallel systems; and (e) in the perfect 

correlation case, the redundancy factors of all the systems are 1.0 and thus the associated 

reliability indices of girders are 3.5. Additionally, note that the redundancy factors derived are 

often outside of the bounds of 0.95 to 1.05 as defined in AASHTO LRFD. This means that some 

designs may contain unnecessary conservatism (i.e., ηR < 1) and some are not conservative 

enough (i.e., ηR > 1).  
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Example 2 

A highway bridge example is presented herein to demonstrate the application of the 

proposed redundancy factor. The span length of the simply supported bridge is 20 m. The deck 

consists of 18 cm of reinforced concrete and 8 cm surface layer of asphalt. The roadway width is 

8.2 m with 0.2 m wide railing on each side. The space between two adjacent railing columns is 

3 m; therefore, there are 7 railing columns on each side of the bridge. The slab is supported by 

four I-beam steel girders as shown Figure A-31. Assuming the same dimensions of the steel 

girders, the goal of the design is to determine the bending resistance of the girders using the 

proposed redundancy factors.  

 

Figure A-31. Graph. The cross-section of the bridge (dimensions are in cm). 

 

The total bending moment acting on each girder consists of the moments due to both 

dead and live loads. The maximum bending moment occurs at the mid-span cross-section of the 

girder. Therefore, the moment capacity at mid-span cross-section governs during the design and 

the limit state equation for flexure failure of the girder i at the mid-span cross-section is: 

 

Figure A-32. Equation. Performance function associated with bending failure. 

iLiUi MMg ,, 
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where MU,i and ML,i are the ultimate moment capacity and bending moments acting on girder i, 

respectively. The next step is to estimate the load effects on each girder due to dead and live 

loads. 

According to AASHTO (2010), vehicular live loading on the roadways of bridges, 

designated HL-93, shall consist of the design truck or design tandem and the design lane load. In 

this example, a combination of the design truck and lane load is used. Based on the influence line 

for the bending moment at the mid-span cross-section, the most unfavorable longitudinal loading 

position associated with the design truck was determined. In addition, the bridge is subject to the 

lane load of 9.34 kN/m that is uniformly distributed along the bridge. The maximum bending 

moment at the mid-span cross-section when both lanes are loaded is M’LL = 3379 kN  m. 

Since only one lane is loaded for exterior girders, the multiple presence factor m is 1.2 

and, thus, the associated lateral load distribution factors are found to be mext = 0.81. However, for 

interior girders, the multiple presence factor m is 1.0 because both lanes are loaded; therefore, the 

lateral load distribution factor is mint = 0.81. With the maximum bending moment at mid-span 

cross-section and the lateral load distribution factors of each girder, the maximum bending 

moments due to live load acting on exterior and interior girders are: 

MLL,ext   = MLL,int  = 2736 kN  m. Since the lateral load distribution factors of exterior and interior 

girders are identical, the obtained maximum live load bending moments of exterior and interior 

girders are the same. 

The dead load herein refers to the self-weight of the superstructure. For exterior girders, 

the dead load consists of the weights of the slab, asphalt pavement, railings, and steel girder; 

however, for interior girders, the self-weight of the railings is not included since it is generally 

taken by the exterior girders. Therefore, only the weights of the slab, asphalt pavement, and steel 
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girders are considered. Assuming the weights of the slab and asphalt pavement between the 

exterior and interior girders are uniformly distributed, the weights of slab and asphalt pavement 

distributed on exterior and interior girder are ws,ext = 7.99 kN/m (slab, exterior girder), ws,int = 9.5 

kN/m (slab, interior girder), wa,ext = 3.0 kN/m (asphalt pavement, exterior girder), and wa,int = 4.0 

kN/m (asphalt pavement, interior girder), respectively. The uniform railing weight on the 

exterior girder is wr,ext = 0.44 kN/m. The self-weight of each girder is assumed to be wg,i = 1.96 

kN/m. With all the uniform loads obtained previously, the total distributed dead loads for the 

exterior and interior girder are wext = 13.41 kN/m and wint = 15.46 kN/m, respectively. Therefore, 

the dead load bending moments acting on the exterior and interior girders at the mid-span cross-

section are: MDL,ext = 671 kN·m and MDL,int = 773 kN· m. 

Based on the live load and dead load bending moments obtained previously, the total 

bending moment is found to be ML,ext = 3407kN·m (for exterior girder) and ML,int = 3509kN·m 

(for interior girder). Assuming that the resistance and load effect in Figure A-32 are normally-

distributed random variables, the total bending moments associated with exterior and interior 

girders just mentioned are used herein as the mean value of the load effects acting on girders. 

The coefficients of variation of girder resistance and load effect are assumed to be 0.05 and 0.3, 

respectively. Therefore, the mean resistances for exterior and interior girders when the reliability 

index of each girder is 3.5 are found to be Ec(MU,ext) = 7200kN·m (for exterior girder) and 

Ec(MU,int) = 7415kN·m (for interior girder), respectively. 

For the analyzed bridge, three types of systems are studied herein based on three different 

definitions of system failure: (a) the system fails if any girder fails (series system); (b) the system 

fails only if all girders fail (parallel system); and (c) the system fails if any two adjacent girders 

fail (series-parallel system), as shown in Figure A-33. In addition, three correlation cases among 
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the resistances of girders are investigated herein: (a) ρ(Ri,Rj) = 0; (b) ρ(Ri,Rj) = 0.5; and (c) 

ρ(Ri,Rj) = 1.0. 

 

Figure A-33. Graph. Three system models of the analyzed bridge: (a) series system; (b) parallel 

system; and (c) series-parallel system. 

 

By considering the idealized systems consisting of equally reliable components, the 

redundancy factors of the three systems associated with the three correlation cases are found in 

Table 22, Table 24, and Table 26 of the main report and are succinctly tabulated in Table A-11. 

Multiplying the mean resistances of girders obtained previously by the redundancy factors yields 

the designed mean resistances of girders in series, parallel, and series-parallel systems, as listed 

in Table A-12. Since the dimensions of the girders are assumed to be the same, as previously 

mentioned, the larger bending moment between the exterior and interior girders is selected as the 

final mean resistance of girder Ecs(MU), as shown in the last column of Table A-12. It is seen that 

the final design resistance of girder is the same as that of the interior girder; this is because the 

total load effect acting on interior girder is larger than that on exterior girder. 
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Table A-11. The redundancy factors of the three systems. 

Correlation case Series system Parallel system Series-parallel system 

ρ(Ri,Rj) = 0 1.041 0.934 0.987 

ρ(Ri,Rj) = 0.5 1.032 0.956 0.995 

ρ(Ri,Rj) = 1.0 1.000 1.000 1.000 

Note: V(R) = 0.05; V(P) = 0.3 

 

Table A-12. The designed mean resistance of exterior Ecs(MU,ext) and interior girders Ecs(MU,int) in 

the four-component systems. 

System type Correlation case 
Ecs(MU,ext) 

(kN·m) 

Ecs(MU,int) 

(kN·m) 

Ecs(MU) 

(kN·m) 

Series system ρ(Ri,Rj) = 0 7495 7719 7719 

Series system ρ(Ri,Rj) = 0.5 7430 7652 7652 

Series system ρ(Ri,Rj) = 1.0 7200 7415 7415 

Parallel system ρ(Ri,Rj) = 0 6725 6926 6926 

Parallel system ρ(Ri,Rj) = 0.5 6883 7089 7089 

Parallel system ρ(Ri,Rj) = 1.0 7200 7415 7415 

Series-parallel system ρ(Ri,Rj) = 0 7106 7319 7319 

Series-parallel system ρ(Ri,Rj) = 0.5 7164 7378 7378 

Series-parallel system ρ(Ri,Rj) = 1.0 7200 7415 7415 

Note: E(ML,ext) = 3407 kN · m; E(ML,int) = 3509 kN · m; V(R) = 0.05; V(P) = 0.3;  

Ec,N(MU,ext) =7200 kN · m; Ec,N(MU,int) =7415 kN ·m 

 

The corresponding component reliability indices of exterior (βext) and interior (βint) 

girders and the associated system reliability indices (βsys) of the three systems are presented in 

Table A-13. It is seen that the system reliability indices in all correlation cases are no less than 

3.5. Therefore, they satisfy the predefined reliability level βtarget = 3.5. For the no correlation and 

partial correlation cases, the component reliability indices (βext and βint) associated with series 

system are much higher than those associated with other systems while their counterparts 
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associated with parallel system are much lower. This reflects the effect of system modeling on 

the design of structural components. 

When computing the redundancy factors presented in Table A-11 associated with series-

parallel system, different correlations among the resistances of six components are considered: 

ρ(Ri,Rj) = 0, 0.5, and 1.0 (i, j = 1, 2, 3, . . ., 6). However, it should be noted that in Figure A-

33(c), components 2 and 3 refer to the same girder (Girder 2) and Girder 3 also represents both 

components 4 and 5, which indicates that components 2, 3 and components 4, 5 are perfectly 

correlated. Hence, the series-parallel system actually consists of four components instead of six 

components. In order to distinguish these two cases, the system considering the perfect 

correlation between components 2, 3 and components 4, 5 is named “4-component series-parallel 

system’’ while the system that doesn’t take perfect correlation into account is called “6-

component series-parallel system’’. Therefore, for the no correlation and partial correlation 

cases, the redundancy factors in Table A-11 associated with the 6-component series-parallel 

system are slightly higher than the redundancy factors associated with the 4-component series-

parallel system.  

Table A-13. The reliability indices of exterior and interior girders and the system reliability index. 

System type Correlation case βext βint βsys 

Series system ρ(Ri,Rj) = 0 3.95 3.75 3.58 

Series system ρ(Ri,Rj) = 0.5 3.89 3.70 3.60 

Series system ρ(Ri,Rj) = 1.0 3.69 3.50 3.50 

Parallel system ρ(Ri,Rj) = 0 3.26 3.08 3.61 

Parallel system ρ(Ri,Rj) = 0.5 3.40 3.22 3.63 

Parallel system ρ(Ri,Rj) = 1.0 3.69 3.50 3.69 

Series-parallel system ρ(Ri,Rj) = 0 3.60 3.42 3.62 
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Series-parallel system ρ(Ri,Rj) = 0.5 3.65 3.47 3.61 

Series-parallel system ρ(Ri,Rj) = 1.0 3.69 3.50 3.50 

Note: E(ML,ext) = 3407 kN · m; E(ML,int) = 3509 kN · m; V(R) = 0.05; V(P) = 0.3;  

Ec,N(MU,ext) =7200 kN · m; Ec,N(MU,int) =7415 kN ·m 

 

By taking the perfect correlation between components 2, 3 and components 4, 5 into 

account, the redundancy factors associated with the 4-component series-parallel system are 

found to be 0.983 (no correlation case) and 0.991 (partial correlation case), and 1.0 (perfect 

correlation case). The designed mean resistances of girders and the associated reliability indices 

of girders and system based on these redundancy factors are listed in Table A-14 and Table A-

15, respectively. It is observed that the final mean resistance Ecs(MU) and the system reliability 

index βsys without considering perfect correlation (Table A-12 and Table A-13) is slightly higher 

than those considering perfect correlation (Table A-14 and Table A-15); this indicates that the 

design based on the 6-component series-parallel system is safer than that based on the 4-

component series-parallel system. Therefore, the redundancy factors from the regular idealized 

system that doesn’t consider the perfect correlation among some components can be used as a 

good approximation of the true redundancy factors associated with the series-parallel system to 

determine the designed mean resistance of girders. This finding shows the necessity of 

generating standard tables using the regular idealized systems for different number of 

components, different system models, and different correlations. After these standard tables are 

generated, the redundancy factor corresponding to a specific system can be found from these 

tables and then directly used in the design. 

Table A-14. The designed mean resistance associated with the 4-component series-parallel system. 

System type Correlation case 
Ecs(MU,ext) 

(kN·m) 

Ecs(MU,int) 

(kN·m) 

Ecs(MU) 

(kN·m) 
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Series-parallel system ρ(Ri,Rj) = 0 7078 7289 7289 

Series-parallel system ρ(Ri,Rj) = 0.5 7139 7348 7348 

Series-parallel system ρ(Ri,Rj) = 1.0 7200 7415 7415 

Note: E(ML,ext) = 3407 kN · m; E(ML,int) = 3509 kN · m; V(R) = 0.05; V(P) = 0.3;  

Ec,N(MU,ext) =7200 kN · m; Ec,N(MU,int) =7415 kN ·m 

 

Table A-15. The reliability indices of exterior and interior girders and the system reliability index 

associated with the 4-component series-parallel system. 

System type Correlation case βext βint βsys 

Series-parallel system ρ(Ri,Rj) = 0 3.58 3.39 3.59 

Series-parallel system ρ(Ri,Rj) = 0.5 3.63 3.44 3.58 

Series-parallel system ρ(Ri,Rj) = 1.0 3.69 3.50 3.50 

Note: E(ML,ext) = 3407 kN · m; E(ML,int) = 3509 kN · m; V(R) = 0.05; V(P) = 0.3;  

Ec,N(MU,ext) =7200 kN · m; Ec,N(MU,int) =7415 kN ·m 
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BRIDGES AND EXAMPLES OF SYSTEM RELIABILITY MODELING OF EXISTING 

BRIDGES 
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Generalized procedure for applying redundancy factors in bridge design 

This commentary summarizes methodologies for the practical application of the proposed 

redundancy factors. More specifically, the approach to determine the redundancy factor ηR 

contained in the strength limit state outlined in the AASHTO LRFD bridge design specifications 

(please refer to Figure 50 within the main report) is discussed in detail. One key part of the 

adopted methodology is the bridge system reliability modeling. In particular, when building a 

system reliability model, several fundamental engineering principles are integrated into the 

approach, including identification of relevant failure modes, uncertainty quantification, and 

probabilistic considerations. Overall, this section of the commentary describes the general 

procedure for determining the bridge redundancy factors.  

 

Bridge modeling, system reliability, and redundancy evaluation framework  

The generalized framework for determining the bridge redundancy factors is listed in 

Figure C-1. The procedure begins with identifying relevant failure modes, then developing a 

system reliability model considering different combinations (e.g., series, parallel, series-parallel) 

of individual failure modes, finding the redundancy factors based on the provided tables, and 

finally applying these redundancy factors to the strength limit state outlined in the AASHTO 

LRFD bridge design specifications. 
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Figure C-1. Graph. Flowchart describing bridge modeling, system reliability, and redundancy 

evaluation. 

 

The first step of the framework involves identifying the relevant failure modes of the 

analyzed bridge system. For instance, Example 2 in the appendix of the main report considers 

flexural failure of a bridge superstructure system consisting of a reinforced concrete deck 

supported by four I-beam steel girders. After calculating the total bending moments acting on the 

exterior and interior girders at the mid-span cross-section, in addition to the mean resistances 

corresponding to exterior and interior girder when the reliability index of each girder is 3.5, the 

system reliability model corresponding to bridge system is established. 

For the system analyzed in Example 2, three types of system models, based on three 

different definitions of system failure are developed, as shown in Figure A-33 of the appendix in 
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main report. The first model defines system failure as the failure of any girder (series system) 

and the second model dictates that the system fails only if all girders fail (parallel system). The 

third reliability model denotes that the system fails if any two adjacent girders fail (series-parallel 

system). Next, considering these reliability models and the correlation among resistance of 

girders, the redundancy factors of the three systems are found in Table 22, Table 24, and Table 

26 of the report. Finally, the redundancy factors found in this example can be directly used 

within the strength limit state equation within AASHTO LRFD bridge design specifications.  
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System reliability modeling 

This section outlines the methodology for developing system reliability models 

corresponding to bridge systems. First, fundamental nomenclature and definitions are clarified. 

Additionally, several examples of modeling simple structures (e.g., beams and trusses) and 

bridges, in general, are presented. 

 

Definitions 

Element 

 For the purposes of this report, an element is defined as any physical piece of material 

that comprises a bridge system. Examples of bridge elements include structural members such as 

girders, decks, and piers. Each element has particular material, geometrical, and physical 

properties that contribute to its overall internal capacity. Hazards and loading events may affect 

elements in various ways (e.g., uniformly, selectively), depending upon the location and intensity 

of loadings. 

 

Component 

A component is defined as a “place” where a limit state could occur. The reliability of 

each element of a bridge may be evaluated with respect to various limit states and at different 

locations. For instance, a bridge girder can fail in many ways (e.g., bending, shear) and in 

various locations (e.g., mid-span for bending, at the support for shear). Components 

characterizing the main failure modes of a system are arranged in specific configurations (i.e., 

series, parallel, series-parallel) to form an idealized representation of the reliability performance 

of the system denoted as the system reliability model. 
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Applications 

This section of the commentary presents a collection of examples of system reliability 

modeling regarding various applications including beams, trusses, and simple bridges. 

 

Beams 

Consider a simply supported beam structure, as shown in Figure C-2. The beam is 

subjected to a distributed load w and two points of interest are established: one at midspan where 

the bending moment is largest, point A, and one near the left support where the shear force is 

maximum, point B. It is assumed that the resistance in shear is weaker near the left support than 

that near the right support. 

 

Figure C-2. Graph. Simply supported beam with uniform load. 

 

The bending moment at point A is denoted as MA and the shear force at point B as SB. The 

performance function associated with bending at point A is  

 

Figure C-3. Equation. Performance function associated with bending at point A.  

where RM is the bending resistance and QM  is the bending load effect. Similarly, the performance 

function corresponding to shear failure at point B is expressed as 

 

Figure C-4. Equation. Performance function corresponding to shear failure at point B. 

w
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where RS is the shear resistance and QS  is the shear load effect. The load effects QM  and QS  are 

correlated because they both are dependent on the same uniform load w; thus, the performance 

functions (i.e., failure modes) presented in Figure C-3 and Figure C-4 are also correlated. 

Considering shear and bending failure modes, the beam system in Figure C-2 may be idealized 

as two components arranged in series, as shown in the reliability model in Figure C-5. 

 

Figure C-5. Graph. System reliability model of the beam in Figure C-2 considering bending and 

shear failure. 

The event set describing the failure of the beam system is 

 

Figure C-6. Equation .Event set describing the failure of the beam. 

where the union ∪ represents the occurrence of event gM < 0, event gS < 0, or both events. 

 

Trusses 

Consider the ten-bar symmetric truss system shown in Figure C-7. The truss is subjected 

to two concentrated loads W.  

 

Figure C-7. Graph. 10 bar symmetric truss (adopted from Frangopol and Curley 1987) 

 

gM gS

   00  SMbeam ggF
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In order to determine a system reliability model, several collapse mechanisms are considered. If 

bar 1 or bar 9 fails, then the entire truss fails. Additionally, if failure of two members, including 

only failure of member 3 or member 4 or member 5 is considered, failure of both bars 3 and 1, or 

3 and 4, or 3 and 5, or 3 and 6, or 3 and 8, or 3 and 9, or 4 and 1, or 4 and 5, or 4 and 6, or 4  and 

8, or 4 and 9, or 5 and 1, or 5 and 6, or 5 and 8, or 5 and 9, will cause  the truss system to 

collapse. This system failure model considering failure of one member, or failure of two 

members including members 3 or 4 or 5, is depicted in the system reliability model shown in 

Figure C-8. 

 

Figure C-8. Graph. System reliability model for the 10 bar truss in Figure C-7, considering failure 

of one member and failure of two members including failure of members 3, 4, or 5. 
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Considering that Fj represents the failure of bar j, the event set describing the failure of the entire 

truss structure under the assumption that one member fails or two member fail, including 

members 3, 4 or 5, is 

 

Figure C-9. Equation. Event set describing the failure of the truss structure. 

where the intersection ∩ represents the simultaneous occurrence of all events investigated. 

 

Bridge modeling – general 

Bridges are designed/constructed using a wide array of methods/materials and, at the 

same time, subjected to a variety loads. These factors affect the resistance and load effects 

parameters which are embedded in component performance functions. This section contains an 

example that illustrates the process of developing a system reliability model considering a 

variety of different limit states, such as strength (e.g., bending, shear), serviceability (e.g., 

maximum deflection), and fatigue-and-fracture (e.g., fatigue cracking). 

In general, three components, or performance functions may be considered to form a 

system reliability model of this bridge. Figure C-10 depicts, at the most basic level, the system 

reliability model of the bridge; three basic failure modes are defined for this bridge: (1) strength 

gst, (2) serviceability gser, and (3) fatigue gf. 

 

Figure C-10. Graph. System reliability model for investigated steel bridge.  
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This reliability model may be further refined when more information about each of the 

failure mode is included; for example, the single reliability block representing strength limit 

states in Figure C-10 may be considered a sub-system consisting of three components, shear gs, 

bending gb, and torsion gt failure modes arranged in series. Additionally, multiple serviceability 

limit states may be included within the model by breaking down the component related to 

serviceability within Figure C-10 into two components representing deflection gδ and vibration 

comfort gv. Similarly, the component corresponding to fatigue limit states in Figure C-10 may be 

further broken down into a series sub-system composed of multiple fatigue critical details (e.g., 

bolted gbc and welded gwc connections). The refined system reliability model for the investigated 

bridge is shown in Figure C-11. 

 

Figure C-11. Graph. Refined system reliability model for the investigated bridge. 

 

A similar approach is applied by Estes and Frangopol (2001), where a hypothetical series 

system for a girder consisting of components relating to failure by shear, moment, and excessive 

deflection is developed (see Figure C-12). 

 

Figure C-12. Graph. Hypothetical Series System model of typical Girder (Estes and Frangopol 

2001). 

 

Using the general approach outlined herein, one can idealize any type of bridge systems 

including girder, cable-stayed, and suspension bridges. 
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Examples of system modeling 

This section of the commentary presents several examples of modeling bridge systems, as 

found in recently published literature. More specifically, the system reliability modeling of girder 

and suspension bridges are discussed herein. Additional examples of system reliability modeling 

of existing bridges can be found for several types of bridges including prestressed girder (Akgül 

and Frangopol 2004b) and riveted railway (Imam et al. 2012) bridges. 

 

Example 1:  Girder bridge (Colorado Bridge E-17-AH) 

Bridge description 

Component and system reliability of the Colorado Bridge E-17-AH are analyzed in this 

example with respect to several limit states (Estes and Frangopol 1999). Colorado Bridge E-17-

AH is made up of three equal length (13.3 m) simple spans, as shown in Figure C-13. The deck 

consists of 22.9 cm of reinforced concrete and a 7.6-cm surface layer of asphalt. There are two 

lanes of traffic in each direction with an average daily traffic of 8,500 vehicles. The roadway 

width is 12.18 m with 1.51 m of pedestrian sidewalks and hand railings on each side. The bridge 

provides 6.8 m of clearance for the railroad spur that runs underneath and there is no skew or 

curvature. The slab is supported by nine standard-rolled, compact, non-composite steel girders as 

shown in Figure C-13(b). End and intermediate diaphragms at the third points are used to stiffen 

the girders. Each girder is supported at one end by a fixed bearing and an expansion bearing at 

the other end. 
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Figure C-13. Graph. Colorado State Highway Bridge E-17-AH: (a) elevation and (b) cross section 

views (Estes and Frangopol 1999). 

 

Component reliability 

Sixteen different failure modes, as listed in Table C-1, are analyzed with respect to the   

E-17-AH Bridge. Each failure mode i is characterized by a limit state g(i) = 0, such that g(i) ≤ 0 

and g(i) > 0 define the failure and safe states, respectively. The failure modes analyzed include 

moment failure of the slab, moment and shear failure of the girders, and multiple failure modes 

of the pier cap, columns, and footings. The girders are classified as exterior (i.e., girders 1 and 9 

in Figure C-13(b)) that carry emergency vehicle and pedestrian traffic, interior-exterior (i.e., 

girders 2 and 8 in Figure C-13(b)) that act as exterior girders for normal traffic, and interior (i.e., 

girders 3 to 7 in Figure C-13(b)). Limit state equations were developed separately for each type 

of girder. 
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Table C-1. Limit state equation, failure mode, and reliability index (adopted from Estes and 

Frangopol 1999). 

Limit state 

equation 
Failure mode 

Reliability 

index β 

g(1) = 0 Concrete deck, flexure 5.51 

g(2) = 0 Interior girder, shear 6.22 

g(3) = 0 Interior girder, flexure 2.44 

g(4) = 0 Exterior girder, flexure 4.02 

g(5) = 0 Exterior girder, shear 7.13 

g(6) = 0 Interior-exterior girder, flexure 2.79 

g(7) = 0 Interior-exterior girder, shear 6.43 

g(8) = 0 Pier cap, shear 3.83 

g(9) = 0 Pier cap, positive moment 8.82 

g(10) = 0 Pier cap, negative moment 8.75 

g(11) = 0 Top column, crushing 5.80 

g(12) = 0 Bottom column, crushing 5.72 

g(13) = 0 Footing, one-way shear 7.69 

g(14) = 0 Footing, two-way shear 5.28 

g(15) = 0 Footing, flexure 2.60 

g(16) = 0 Expansion bearing, crushing 7.84 

 

Prior to considering any deterioration, 24 random variables were identified that included 

material strength, model uncertainty, girder distribution factors, and material dimensions that 

could not be directly measured. The parameters that define these random variables were adopted 

from existing literature. The notations used to define these random variables and their mean 

values and standard deviations are shown in Table C-2. Limit-state equations that are defined by 

capacity minus demand for each of the sixteen failure modes in Table C-1 were developed in 

terms of the twenty-four random variables in Table C-2 (Estes and Frangopol 1999). 
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Table C-2. Random variables used in the reliability analysis of the E-17-AH Bridge (adopted from 

Estes and Frangopol 1999). 

Random variables Units Notation 
Mean  

value 

Standard 

deviation 

Uncertainty factor: reinforcing steel area in concrete --* λrebar 1.0 0.015 

Yield stress of steel reinforcing in deck MPa fy 386.1 42.5 

Uncertainty factor: effective depth of rebar in concrete -- λdeff 1.0 0.02 

Model uncertainty: flexure in concrete -- γmfc 1.02 0.061 

Uncertainty factor: weight of truck on bridge -- γtrk 1.38 0.1656 

Uncertainty factor: live load shear on interior girders -- Vtrk - i 1.38 0.1656 

Yield strength of steel in girders MPa Fy 252.5 29.0 

Uncertainty in live load girder distribution: interior girders -- DFi 1.309 0.163 

Uncertainty in live load girder distribution: interior-exterior girders -- DFi - e 1.14 0.142 

Uncertainty in live load girder distribution: exterior girders -- DFe 0.982 0.122 

Uncertainty factor: impact on girders -- Ibeam 1.14 0.114 

Live load moment on interior girders (kNm) -- Mtrk - i 579.4 69.6 

28-day compressive strength of concrete MPa f 'c 19.0 3.42 

Uncertainty factor: weight of asphalt -- λasph 1.0 0.25 

Uncertainty factor: weight of concrete -- λconc 1.05 0.105 

Uncertainty factor: weight of steel -- λsteel 1.03 0.082 

Model uncertainty: shear in steel -- γmsg 1.14 0.137 

Model uncertainty: flexure in steel -- γmfg 1.11 0.128 

Uncertainty factor: live load shear on exterior girders -- Vtrk - e 1.13 0.1356 

Live load moment on exterior girders kNm Mtrk - e 474.1 56.9 

Model uncertainty: shear in concrete -- γmsc 1.075 0.108 

Area of shear reinforcement/bar spacing mm Aυ /s 4.52 0.18 

Model uncertainty: eccentricity in short columns -- γmcc 0.85 0.085 

Modulus of elasticity: steel GPa Es 199.9 12.0 

*Random variables without units listed are dimensionless. 
 

  

System reliability 

Considering all possible failure modes, a series-parallel model for Colorado Bridge E-17-

AH is developed and shown in Figure C-14. In this figure, the performance functions g(i) 

associated with the individual failure modes correspond to the limit-state equations g(i) = 0, 

indicated in Table C-1. For example, g(1) refers to failure of the concrete bridge deck that is 

shown in series in Figure C-14. Because of the large end and center diaphragms in the 

superstructure, which will transfer load, it is assumed that the failure of any three adjacent 
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girders is required for the superstructure to fail and that the concrete deck is identical throughout 

an individual span. Assuming no deterioration of the structure over time, and considering no 

correlation between the resistances of the girders, the system reliability for the bridge is 

βsys = 2.51. 

 
Figure C-14. Graph. Series-Parallel Model for Bridge E-17-AH: Deck, Superstructure, and 

Substructure (Estes and Frangopol 1999). 
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Although the model provided in Figure C-14 is thorough and complete, it is possible to 

simplify it further by making some reasonable assumptions. The failure modes associated with 

very high reliabilities (e.g., βi > 6), which contribute little to the reliability of the system, are 

eliminated. Further, if the spans are assumed to be perfectly correlated, and the symmetry within 

a span is considered, the system model can be reduced to the model depicted in Figure C-15(a), 

where any three adjacent girders must still fail for the system to fail. The girders are numbered 

1–5 as shown in Figure C-13(b). Using the simplified model in Figure C-15(a) without 

deterioration, the system reliability is equal to βsys = 2.54, which is very close to the reliability 

index βsys = 2.51, which is associated with the more complex model shown in Figure C-14. 

 

 

 

Figure C-15. Graph. Simplified series-parallel model for the E-17-AH Bridge considering that 

failure of any (a) three adjacent girders, (b) two adjacent girders, (c) girder is required for system 

failure (Estes and Frangopol 1999). 

 

The system model and correlation between random variables affects the overall bridge 

reliability. In the previous computation where βsys = 2.54, it was assumed that the girder 

resistances were uncorrelated, (i.e., ρ(Ri,Rj) = 0.0, where ρ(Ri,Rj) is the correlation coefficient 

between the resistance of girders i and j). Using the model shown in Figure C-15(a), the system 
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reliability is computed βsys = 2.49 when ρ(Ri,Rj) = 0.5 and βsys  = 2.31 when ρ(Ri,Rj) = 1.0. The 

system failure event is altered as shown in Figure C-15(b), where only any two adjacent girders 

need to fail for the system to fail, and in Figure C-15(c), where only one girder must fail. The 

system reliability results for all three models shown in Figure C-15 are indicated in Table C-3. 

Table C-3. Bridge system reliability results using different system failure models (please refer to 

Figure C-15) and different correlation between girder resistances (Estes and Frangopol 1999). 

System failure event 
Correlation between girder resistances 

ρ(Ri,Rj) = 0.0 ρ(Ri,Rj) = 0.5 ρ(Ri,Rj) = 1.0 

Failure of any girder 1.97 2.06 2.23 

Failure of any two adjacent girders 2.50 2.41 2.26 

Failure of any three adjacent girders 2.54 2.49 2.31 

 

For the model in Figure C-15(c), which is entirely a series system, the increased 

correlation between the resistances improves the system reliability. For the series-parallel system 

models in Figure C-15(a) and (b), the increased correlation between the resistances decreases the 

system reliability. When there is perfect correlation between the resistances, the three models 

produce very close results. The effects of correlation between other random variables on bridge 

system reliability could also be investigated along with other variations in the system model. 

Such analyses emphasize the importance of accurate input data for reliability computations. The 

results obtained are only as good as the parameters of the random variables, the correlation 

structure among variables, and the system model that produces them.  
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Example 2:  Girder bridge (Colorado Bridge E-17-LE) 

Using a similar methodology as the one outlined in the previous example, the system 

reliability model for Colorado Bridge E-17-LE is presented in Akgül and Frangopol (2004a). For 

steel I-beam and plate girder bridges, Akgül and Frangopol (2003) derived limit state equations 

for the ultimate capacity of steel girders with respect to flexure, shear, and serviceability with 

respect to permanent deformation under overload. Once the values of random variables, 

deterministic parameters, and constant coefficients, for Colorado Bridge E-17-LE, are obtained, 

component reliability indices for the slab and the girders are calculated for each bridge based on 

the computer program RELSYS (Estes and Frangopol 1999). The cross section of the 

superstructure and the system failure model are shown in Figure C-16. 

 
Figure C-16. Graph. (a) Cross section and (b) system reliability model associated with Colorado 

Bridge E-17-LE (adopted from Akgül and Frangopol 2004a) 

  

The system reliability index, as shown in Table C-4, is calculated based on the system 

failure model shown in Figure C-16(b). System failure is defined as failure of a series-parallel 

system: failure of slab in flexure, or failure of any two adjacent girders (i.e., flexural failure of 

girder at maximum moment location, or shear failure of girder at maximum shear location, or 

both), or both.  

(a)

(b)
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Table C-4. Reliability indices for Colorado Bridge E-17-LE 

Limit state function 
Reliability 

index 

Slab, flexure 3.89 

Steel girder, flexure 4.13 

Steel girder, shear 5.80 

Steel girder, serviceability 5.00 

Series-parallel subsystem .4.28 

System with slab 3.82 

System without slab 4.10 

  

Colorado Bridge E-17-LE consists of eleven girders, reflected by the large system failure 

model shown in Figure C-16(b). Calculated component and system reliability indices for the 

bridge E-17-LE are listed in Table C-4. Component reliability indices are calculated for flexure 

of the slab, flexure of the steel girder at the critical moment section, shear of the steel girder, and 

serviceability of steel girder at the critical moment section for permanent deformation under 

overload. Three system reliability indices are listed in Table C-4; reliability indices for a series-

parallel subsystem based on failure of any two adjacent girders in flexure or shear mode, an 

overall system reliability index including slab in the failure model, and an overall system 

reliability index based on girder failures only. 
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Example 3:  Suspension bridge (Innoshima Bridge) 

Bridge description 

The Innoshima bridge is analyzed in detail by Imai and Frangopol (2001, 2002) in terms 

of structural analysis, reliability analysis, and quantification of uncertainty in loading and 

geometric properties. This suspension bridge links the islands of Honshu and Shikoku in the 

Hiroshima prefecture of Japan. The center span measures 770 m with two side spans of 250 m. 

The roadway is 20 m from safety fence to safety fence and accommodates four lanes of traffic. 

The suspended structure consists of two stiffening trusses spaced 26 m apart. Lateral trusses, 

spaced 10 m apart, connect the two stiffening trusses. The lateral trusses are braced by upper and 

lower diagonal members. Plate girders are supported on the upper chords of the lateral trusses. A 

pedestrian way is also supported on the lower chords of the lateral trusses. The height of towers 

is 135.85 m and each tower consists of two shafts connected by two horizontal struts and cross 

bracing. Bridge schematics are shown in Figure C-17. Imai and Frangopol (2001) presented 

reliability-based design assumptions used for probabilistic assessment of this bridge. Both two- 

and three-dimensional models were used for system reliability computations. 
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Figure C-17. Graph. General view of the Innoshima Bridge, dimensions are in m (Imai and 

Frangopol 2002). 

 

Component reliability 

The design of the Innoshima Bridge considers dead load D, live load L, wind load W, 

temperature T, and support displacement SD. This study considers the dead, live, and wind loads 

as random and temperature and support displacements as deterministic (Imai and Frangopol 

2001). For complete details regarding the structural models used in this reliability evaluation, 
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please refer to Imai and Frangopol (2002). Considering a two-dimensional model, limit state 

functions may be established for main bridge components. The limit state corresponding to the 

main cable is 

  

Figure C-18. Equation. Limit state corresponding to the main cable. 

where Ac=cross-section area of the main cable, σc = rupture strength of main cable, and Tc = 

tension in the main cable. The design of the hanger rope considers the second-order effect due to 

bending in the main cable, BM, and errors associated with manufacturing, EM, and erection, EE, 

processes. The limit state function for a hanger rope is 

 

Figure C-19. Equation. Limit state equation for a hanger rope. 

where Rh = rupture strength of one hanger rope and Th = tension in the hanger rope. The 

stiffening girders (upper chord) possess the following limit state 

 
Figure C-20. Equation. Limit-state equation for stiffening girders (upper chord). 

where AG = cross-section area of the upper chord, σG = yield stress of the upper chord, 

Mz(D, L,  T,  SD) = bending moment in the vertical direction, and h = height of the stiffening 

truss. 

Three cases of live load conditions are considered as indicated in Figure C-21. In the first 

case, it is considered that the live loads exist on the whole bridge (Case 1), which is the critical 

case for the main cables. In the second case, it is considered that the live loads are on the central 

span (Case 2), and the third case assumes that live loads exist on the side span only (Case 3) 
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which is the critical case for the stiffening girders. The component reliability indices are 

computed for every cross section. They are plotted in Figure C-22 and Figure C-23 for live loads 

Case 1 and Case 3, respectively. 

 

Figure C-21. Graph. Uniform live load cases (Imai and Frangopol 2002). 
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Figure C-22. Graph. Reliability indices of main cable, hanger rope, and stiffening girder: load Case 

1 (D,  L, T, SD), live load over all three spans (Imai and Frangopol 2001) 

 

 

Figure C-23. Graph. Reliability indices of main cable, hanger rope, and stiffening girder: load Case 

3 (D, L, T, SD), live load over side span (Imai and Frangopol 2001). 
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From Figure C-22 and C-23 it can be noted that the reliability indices of stiffening girder 

are smaller than those of the hanger ropes and main cables. The reliability indices of the 

stiffening girder associated with Case 3 are smaller than those associated with Case 1. Since the 

girder element 12 (G-12) has the smallest reliability index under live load on the side span (Case 

3) it is assumed that this element will fail first. The reliability indices of cables, hanger ropes, 

and girders after failure of girder element 12 are shown in Figure C-24. 

 
Figure C-24. Graph. Reliability indices of main cable, hanger rope, and stiffening girder after the 

failure of girder element 12; load combination: D (pre- and post-dead loads), L (line and uniform; 

case 3 in Figure C-21), T and SD (Imai and Frangopol 2002). 
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System reliability 

As evidenced by Figure C-24, the reliability indices of the stiffening girder elements are 

the smallest and those of the cable elements are the largest; overall, the reliabilities of cables, 

hanger ropes, and girders are very different. By comparing the results in Figure C-24 with those 

associated with the intact state, it can be concluded that due to load redistribution occurring after 

failure of girder element 12, the reliability indices of girder and hanger rope elements adjacent to 

the failed girder element are substantially affected. However, the reliabilities of main cable 

elements are not affected. Based on these findings, the bridge is modeled as a series of parallel 

subsystems within the girder and hanger rope elements in the side span. Each parallel subsystem 

consists of two failure modes including failure of two girder elements, or failures of one girder 

and one hanger rope element within the side span 1A-2P. It is assumed that the stiffening girder 

element fails first in each parallel subsystem. Based on these assumptions, the series of parallel 

subsystems is shown in Figure C-25.  
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Figure C-25. Graph. Series of parallel subsystems of the Innoshima Bridge (Imai and Frangopol 

2002). 

 

The reliability indices of parallel subsystems and component reliabilities are depicted in 

Figure C-26 to C-30 following the failure of girder elements 1, 3, 12, and 21, respectively. The 

reliability index of the series of parallel subsystems in Figure C-25, calculated using RELSYS-
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FEAP (Imai and Frangopol 2001), is bounded by 4.609 and 4.625 as lower and upper bounds, 

respectively. 

 
Figure C-26. Graph. Components and parallel subsystems after the failure of girder element 1; load 

combination: D (pre- and post-dead loads), L (line and uniform; case 3 in Figure C-21), T and SD 

(Imai and Frangopol 2002). 

 

 

Figure C-27. Graph. Components and parallel subsystems after the failure of girder element 3; load 

combination: D (pre- and post-dead loads), L (line and uniform; case 3 in Figure C-21), T and SD 

(Imai and Frangopol 2002). 
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Figure C-28. Graph. Components and parallel subsystems after the failure of girder element 12; 

load combination: D (pre- and post-dead loads), L (line and uniform; case 3 in Figure C-21), T and 

SD (Imai and Frangopol 2002). 

 

 
Figure C-29. Graph. Components and parallel subsystems after the failure of girder element 21; 

load combination: D (pre- and post-dead loads), L (line and uniform; case 3 in Figure C-21), T and 

SD (Imai and Frangopol 2002). 
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A general approach to evaluate the reliability of structures exhibiting geometrically 

nonlinear elastic behavior was proposed in Imai and Frangopol (2002). Based on the results of 

robust reliability calculations of an existing suspension bridge, several conclusions are made. For 

both live and wind loads, the reliability indices of main cables, hanger ropes, and stiffening 

girders are very different. The reliability indices of stiffening girders are the smallest, and those 

of main cable are the largest. This difference in reliability indices is partially due to the different 

safety factors of main cables, hanger ropes, and stiffening girders. This is also explained by the 

fact that the main cables and hanger ropes have a brittle behavior and the stiffening girders are 

made of ductile steel.  
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