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Abstract 

 

Since the single-wall carbon nanotubes (SWCNTs) were discovered in 1993, they have 

attracted significant interest with their extraordinary electrical and optical properties in 

addition to their remarkable mechanical strength and thermal conductivity. Single-

stranded DNA conjugated SWCNT have shown outstanding functionality in terms of 

dispersibility and biocompatibility. In addition, some special DNA sequences have 

presented an ability to recognize specific SWCNT species, called recognition sequences. 

Ion-exchange chromatography and aqueous two-phase (ATP) separation technique have 

been widely used for SWCNT separation. However, little is known about the use of ATP as 

an analytical technique. Furthermore, for bio-applications, DNA/SWCNT hybrids have 

attracted significant interest due to their high solvatochromic sensitivity to changes in the 

local environment, which enables their use as sensors. Recognition properties can provide 

good candidates for molecular detection on the assumption that the recognition 

DNA/SWCNT hybrids have structurally well-defined DNA wrappings. Thus, there is a 

growing need for discovery of new recognition sequences. In this thesis, we explore new 

methods to quantify difference in solvation/binding characteristics using ATP, and a new 

approach to predicting recognition sequences using Machine Learning techniques. Finally, 

a new concept for a DNA/SWCNT-based sensing system is demonstrated.  
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Chapter 1 : Introduction 

 

1.1   Single-Walled Carbon Nanotube 

A single-wall carbon nanotube (SWCNT) is a cylindrical nanostructure, that can be 

thought of as made by wrapping a single layer of graphene into a seamless tube. Its 

properties are sensitively determined by the precise way in which the graphene is rolled. 

SWCNT diameters vary from 0.4 to 2 nm, while their length is in the micrometer range.1,2 

Due to this quasi-one-dimensional character, SWCNTs have unique physical, electrical, 

and optical properties.3 Since these nanostructures were discovered by Iijima et al.4 and 

Bethune et al.5, numerous studies have been conducted to understand their remarkable 

properties and to explore possible applications.  

The structure and properties of a given SWCNT are uniquely defined by a chiral 

vector, 𝑪𝒉, connecting two sites on the two-dimensional graphene sheet (Figure 1.1). By 

introducing basis vectors of the hexagonal honeycomb lattice, 𝒂𝟏 and 𝒂𝟐, a chiral vector 

can be expressed by  

𝑪𝒉 = 𝑛𝒂𝟏 + 𝑚𝒂𝟐 

Thus, any SWCNT can be described by the pair of integers (n,m). For example, the chiral 

vector shown in Figure 1.1 describes a (6,2)-SWCNT. 
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Figure 1.1. (a) A molecular representation of a semi-conducting (6,5)-SWCNT. (b) 
SWCNT configurations with the chiral vector 𝑪𝒉  and basis vectors 𝒂𝟏  and 𝒂𝟐 . For 
example, the chiral vector shown by red arrow describes the (6,2)-SWCNT.  

 

 

1.2   Single-Stranded Deoxyribonucleic Acid (DNA) as Aptamer 

Deoxyribonucleic acid (DNA) is a biomolecule composed of nucleotides. Each 

nucleotide is made up of a phosphate group, a sugar group and a nucleobase.6 There are 

four types of nucleobases: adenine (A), thymine (T), guanine (G) and cytosine (C). The 

nucleotides are attached to one another to form a strand by covalent bonding between the 

phosphate group of one nucleotide and the sugar group of the next. In double-stranded 

DNA, the nucleobases on one strand are bound to the nucleobases on another strand, 

following Watson-Crick base-pairing rules6, as presented in Figure 1.2. Double-stranded 

DNA often exists in the celebrated two-strand, double-helix (B-DNA) structure.  Other 

forms, including the A, Z6, and S7 double helices or special structures such the G-quartets 

formed by G-rich sequences8 are, broadly speaking, exceptions. 

(a) (b)

1,0 2,0 4,0 5,0 7,0 8,0

2,1 3,1 4,1 5,1 6,1 7,1 8,1

3,2 4,2 5,2 6,2 7,2

4,3 5,3 6,3 7,3

5,4 6,4

6,5

3,0 6,0

1,1

2,2

3,3

4,4

5,5

a1

a2

armchair

zigzag

Chiral vector, Ch
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Figure 1.2. (a) Schematic representation of single-stranded DNA. (b) A molecular 
representation of a double-stranded DNA. The nucleobases A, C, G, and T are represented 
in cyan, green, yellow, and purple, respectively.  

 

Some DNA or ribonucleic acid (RNA) sequences, called aptamers, can specifically 

recognize a  target molecule.9 Among the biological polymers, single-stranded DNA 

(ssDNA) is of great interest because of its unique and well-defined composition that can 

be chosen from a gigantic library, as well as bio-comparability.10 Furthermore, it is known 

that ssDNA aptamers are capable of selective binding to specific target molecules from 

biological molecules11,12 to single chirality SWCNT, called ‘recognition sequence’.13,14   

 

1.3   Single-Stranded DNA/SWCNT Hybrid 

During past few years hybrids of SWCNT and biomolecules have attracted 

significant interest as bio-sensors for specific molecule detection15–17, targeted drug 

A

C

G

T

(a) (b)
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delivery18, and in-vivo imaging19. However, there are significant barriers to applying 

SWCNT in those applications. First, due to its hydrophobicity, the SWCNT needs to be 

functionalized, to be compatible with aqueous media. In addition, current fabrication 

methods always produce a mixture of different SWCNTs with varying chirality.  

Considerable efforts have been made to disperse individual SWCNTs and to sort them by 

length20,21, diameter22, and chirality using dispersal agents including small molecule 

surfactants and biological polymers23–25.  Among these, DNA/SWCNT hybrids stand out 

for their remarkable colloidal stability.  

It is known that the specificity and high binding affinity of aptamers to target 

molecules can be achieved by DNA secondary structure motifs.26 In ssDNA-SWCNT 

hybrids, ssDNA sequences generally wrap SWCNT helically due to the intrinsic curvature 

of sugar-phosphate backbone as well as p – p stacking between bases and the SWCNT 

surface. Since the backbone is not specific to the sequence, the selective binding 

characteristic of ssDNA/SWCNT are likely due to the differences in the orientation of the 

nucleobases. Several studies on computational molecular modeling of DNA/SWCNT27–31 

have established a number of ordered structural motifs that ssDNA can adopt when 

adsorbed onto an SWCNT (Figure 1.3). This indicates that the structural motifs of ssDNA 

in its adsorbed state are significant in identifying its specific binding characteristics, which 

provide a basis for SWCNT separation and molecule detection.   

There are two separation methods that are primarily used for SWCNT separation: 

ion-exchange chromatography (IEX),13,32 and aqueous two-phase (ATP) separation.14,33 

First, the ion-exchange chromatography method is based on differences in electrostatics 
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and hydrophobic interaction between the DNA/SWCNT hybrid and the positively charged 

column. A notable success has been made by Tu et. al.13; 26 recognition sequences were 

identified from a total of 350 sequences by systematic search of the vast DNA library. Next, 

more recently, the aqueous two-phase separation technique has been used with remarkable 

success for SWCNT separation.14,33 The ATP separation is based on aqueous solutions of 

water-soluble polymers that separate into two phases.34 The DNA/SWCNT hybrid 

partitions into the two phases based on small differences in solvation free energy, and this 

can be modulated by a modulant molecule. Thus, the ATP system potentially can offer a 

way to quantify and rank the solvation properties of the DNA/SWCNT hybrid. Using the 

ATP technique, Ao et. al35 have designed a systematic albeit limited search of the DNA 

library by sequence pattern expansion, and successfully identified recognition sequences 

with a success rate of ~15%.  

In addition to the SWCNT separation, DNA/SWCNT hybrids have attracted 

considerable interest due to their outstanding sensitivity to change in local environment, 

enabling their use as sensors.15–17 It appears that the recognition sequences can form 

structurally well-defined DNA/SWCNT hybrid, which determine the pattern/size of 

exposed SWCNT surface. This can be the basis for molecular detection. Thus, recognition 

sequence discovery is essential in sensing application.  

So far, sequence screening has relied on experimental work, which is costly and 

time-consuming. Moreover, the DNA sequence library is practically infinite in size. It is 

very expensive to explore the library experimentally. Several studies explored the library 

with the restriction of the chosen sequence expansion scheme, but the probability of finding 
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a recognition sequence still remains low (~15%).35 Clearly, a different and more systematic 

approach to sequence prediction is needed. Furthermore, the traditional method36 for 

preparation of DNA/SWCNT dispersion by direct sonication followed by centrifugation 

for removing impurities is highly laborious, expensive, and time-consuming. Recently, a 

new simple and rapid preparation method has been established by using replacement of 

surfactant on SWCNT by DNA aided by methanol.37,38 However, little is known about the 

nature of exchange mechanism.  

Further experimental studies have been conducted to understand the structural basis 

of sequence-specific recognition. Atomic force microscopy (AFM) based single-molecule 

force spectroscopy,39,40 and solution based studies have provided quantitative information 

on binding free energies and activation free energy for displacement of DNA aptamers by 

surfactants.41,42 Fluorescence quenching studies have been used to infer wrapping 

structures of  recognition sequences.43 

 



 8 

 

Figure 1.3.* Example of a DNA β-barrel structure based on non-Watson-Crick base pairing. 
(a) ssDNA strands placed adjacent and antiparallel to each other on a surface form a 
periodic hydrogen-bonded 2D sheet structure. (c) By following roll up vector (white dashed 
line), a β -barrel structure can be created (b, d). (e) ordered β-barrel structure with SWCNT.  
  

 
* This image was taken from the literature: 

Roxbury, D., Manohar, S. & Jagota, A. Molecular simulation of DNA β-sheet and β-barrel 
structures on graphite and carbon nanotubes. J. Phys. Chem. C 114, 13267–13276 (2010). 

b

c d

e
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1.4 Machine Learning in Bioinformatics 

In recent years, Machine Learning has emerged as a powerful general methodology 

with the ability to create well-performing predictive models from data by recognizing 

unknown patterns, without requiring explicit programming instructions. In particular, 

machine learning techniques have become essential in bioinformatics because it is 

impractical to transform manually large amounts of raw sequence data into useful scientific 

knowledge. Many of the important bioinformatics problems are well suited for 

classification algorithms, including gene annotation,44 protein function prediction,45,46 

peptide binding prediction,47,48 and DNA binding prediction.49  

 

1.5 Scope of Thesis 

Although many studies have been conducted to understand DNA sequence-specific 

interaction on SWCNT, there is still considerable room for advancement. In this thesis, 

experimental studies have been performed to investigate the nature of the sequence-specific 

interaction between DNA and SWCNT. Furthermore, we combine the experimental and 

machine learning techniques to not only establish a predictive model for recognition 

sequence, but also to develop a new perception-based sensing system we call the Molecular 

Perceptron. Below is an outline of this study: 

Chapter 2 presents a study of the DNA/SWCNT hybrid partition in the ATP 

system, specifically models for quantitatively analysis of the solvation characteristics of 

various DNA/SWCNT hybrids. Using these models, we extract relative solvation free 

energies and solubility parameters of various DNA/SWCNT hybrids. The two approaches 
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are found to be consistent, providing some confidence in each as a method of quantifying 

differences in solubility of various DNA/SWCNT hybrids. 

Chapter 3 demonstrates the use of Machine Learning (ML) techniques to develop 

a predictive model for recognition DNA sequences. To date, even though numerous studies 

have reported a lot of physical understanding and a reasonable amount of data, our ability 

to predict recognition sequences is still absent. We built models that classify query 

sequences into recognition/non-recognition classes. Predictions were tested experimentally 

using the ATP separation technique. 

Chapter 4 investigates the kinetics of a surfactant-based replacement process aided 

by methanol. We proposed a mechanistic model to analyze the kinetics and quantify 

differences in binding characteristics in terms of activation energy of the replacement 

process. Some recognition sequences showed significant difference in activation energy 

for different species of SWCNT, suggesting that the methanol-aided replacement process 

can be utilized as a promising low-cost and rapid way to identify recognition sequences.  

Chapter 5 demonstrates a new perception-based sensing system for detection of 

the ovarian cancer serum biomarker HE4 in the presence or absence of fetal bovine serum 

(FBS) and bovine serum albumin (BSA) using ML techniques. The trained models 

successfully detect not only the target biomarker (HE4), but also other analytes (BSA and 

FBS). It is strongly suggestive of the idea that the perception mode of sensing can make 

accurate judgements in a noisy sensing environment.  
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Chapter 2 : Quantification of DNA/SWCNT Solvation 

Differences by Aqueous Two Phase Separation* 

 

Single wall carbon nanotubes (SWCNTs) coated with single-stranded DNA can be 

effectively separated into various chiralities using an aqueous two-phase (ATP) system. 

Partitioning is driven by small differences in the dissolution characteristics of the hybrid 

between the two phases. Thus, in addition to being a separation technique, the ATP system 

potentially also offers a way to quantify and rank the dissolution properties of the solute 

(here the DNA/SWCNT hybrids), such as the solvation free energy or solubility. In this 

study, we propose two different approaches to quantitatively analyze the ATP partitioning 

of DNA/SWCNT hybrids. First, we present a model that extracts relative solvation free 

energy of various DNA/SWCNT hybrids by using an expansion relative to a standard state. 

Second, we extract a solubility parameter by analyzing the partitioning of hybrids in the 

ATP system. The two approaches are found to be consistent, providing some confidence in 

each as a method of quantifying differences in solubility of various DNA/SWCNT hybrids. 

  

 
* This chapter has been published in Langmuir: 
 

Yang, Y., Shankar, A., Aryaksama, T., Zheng, M. & Jagota, A. Quantification of 
DNA/SWCNT Solvation Differences by Aqueous Two-Phase Separation. Langmuir 34, 
1834–1843 (2018). 
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2.1. Introduction 

Carbon nanotubes have attracted considerable attention due to their outstanding 

physical, electronic, and optical properties.1,2 Since these properties depend on it, sorting 

single-wall carbon nanotubes (SWCNT) by chirality is of crucial importance.2 

DNA/SWCNT hybrids have been used successfully to address this long-standing problem 

of structure-based separation of complex mixtures of SWCNTs. Recently, it has been 

shown that SWCNTs coated with single-stranded DNA can be effectively separated into 

various chiralities using an aqueous two-phase (ATP) system.3 Partitioning in the ATP 

system is driven by small differences in the dissolution characteristics of the hybrid 

between the two phases.4 In this way, the ATP system is not only a separation technique, 

but potentially also a way to quantify and rank the dissolution properties, such as the 

solvation free energy or solubility. 

Solute distribution in a two-phase system depends on the solute’s relative free 

energy of solvation in the two phases, which in part depends on the exact structure of the 

solute surface exposed to the phases. The single-wall carbon nanotube (SWCNT) – single 

stranded DNA hybrid is essentially an amphiphilic system, with the DNA backbone being 

the hydrophilic area and the DNA bases as well as the SWCNT surface being hydrophobic 

regions.5 Various simulation studies have suggested that the DNA bases adsorb onto the 

SWCNT surface and the backbone is away from the SWCNT surface and solvated by the 

surrounding aqueous phase.6–8 This suggests that the net solvation energy of the hybrid 

surface depends sensitively on the details of the DNA structure on the SWCNT surface. A 

polymer aqueous two-phase (ATP) system consists of two separate but permeable water 
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phases which vary slightly in their physical properties due to the difference in the polymer 

composition and concentration in the two phases.8–10 The ATP system has been widely 

used for separation of biomolecules as the phases do not denature the biomolecules, the 

interfacial stress is much lower than in case of water – organic solvent system, and the 

difference in solvation energy in these systems is small, which is ideal for separating 

solutes with small structural differences.4,11 

Recently, Khripin et al. and Fagan et al. showed that surfactant coated SWCNTs 

could be separated very effectively into various chiralities using a polymer aqueous two-

phase system.12,13 Further work by Ao et al.3 has shown that partitioning of DNA−SWCNT 

hybrids in a given polymer two-phase system is strongly sequence-dependent and can be 

further modulated by salt and polymer additives. SWCNT partitioning in the ATP system 

is determined by the difference in dissolution properties of DNA−SWCNT between the 

two phases. Hence it is proposed that the DNA−SWCNT partitioning in the ATP is because 

of sensitive dependence of the dissolution energy on the spatial distribution the DNA on 

the SWCNT hybrid.  

Here we present two different approaches for analyzing ATP partitioning of 

DNA/SWCNT hybrids quantitatively. In both approaches, the system we consider 

comprises the following elements: (a) the solvent, water, (b) two water-soluble solutes 

(Dextran/DX and Polyethylene Glycol/PEG) that form the basic two-phase system (DX 

and PEG-rich, respectively), (c) a modulant molecule (PVP) that adjusts differences in 

solvation free energy or solubility so as to drive the final component, (d) solute (DNA-

SWCNT) from one phase to the other.  The primary measurement for a given two-phase 
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system (fixed DX/PEG concentration) is the partitioning of the solute between the two 

phases, quantitatively the partition coefficient K, as a function of modulant concentration.   

In the first approach, we propose that the solvation free energy of the solute in a 

particular aqueous phase is related in a certain way to its solvation free energy in pure water. 

We develop a method for quantitative interpretation of the partition coefficient in terms of 

solvation free energy of the solute being studied, and factors that affect how the modulant 

changes it. A discrete Taylor series is then adopted to interpret the developed model.  

In the second approach, we investigate the use of solubility parameters to analyze the 

partitioning of the hybrid in an ATP system. The solubility parameters, introduced by 

Hildebrand14, are defined as the square root of cohesive energy 𝐸HI( divided by the molar 

volume V. 

  𝛿 ≡ KLMNO
P
Q
*/+

         (2.1) 

The basic idea is that solutes will dissolve in solvents with solubility parameters 

not too different from their own, a kind of “like dissolves like”.15 The cohesive energy is 

the energy necessary to separate the atoms or molecules from each other, thus it is the 

energy required to break all interactions during vaporization. Furthermore, it has been 

found that the solubility parameter is strongly related to the surface free energy.16,17 In 

previous research, it has been proposed that the recognition sequence pairs (DNA/SWCNT 

combinations that enable separation) have some special secondary structure that accounts 

for their difference in solvation properties.3 Thus differences among hybrids can likely be 

interpreted as being due to differences in their surfaces, as defined by the arrangement of 

DNA on the SWCNT surface.  
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Formally, the Hildebrand solubility parameter considers only dispersion 

interactions between molecules.14 For many polymer/solvent pairs, the cohesive energy is 

also affected by polar group interactions and hydrogen bonding, which led to the 

development of the Hansen solubility parameters.15 According to Hansen theory, the 

cohesive energy can be considered as a sum of the contributions by dispersion forces 𝐸R, 

polar group effects 𝐸S, and hydrogen bonding 𝐸(: 

  𝐸HI( = 𝐸R + 𝐸S + 𝐸(       (2.2) 

and the corresponding solubility parameters is  

  𝛿+ = 𝛿R+ + 𝛿S+ + 𝛿(+       (2.3) 

To our knowledge, there have been no studies to quantify DNA/CNT hybrid 

solubilities although the solubility parameters for DNA and SWCNT themselves have been 

reported.17–19 Here, we estimate solubility parameters for different species of the hybrids 

by relating the partition coefficient with Hildebrand solubility parameters.   

 

2.2. Methods* 

HiPco SWCNT was obtained from NanoIntegris and single-stranded DNA was 

purchased from Integrated DNA Technologies (IDT). Other chemicals were procured from 

Sigma-Aldrich.  

 
* Some of the experimental work described in this section was performed by Dr. Akshaya Shankar 
of Lehigh University.  



 19 

For dispersion of SWCNTs with a given DNA sequence, a total volume of 1 mL of 

the DNA and SWCNT mixture in phosphate buffer was sonicated in an ice bath for 90 

minutes at a power level of 8 W. The SWCNT/DNA mass ratio was 1:1.5. After 

centrifugation at 16100g for 90 min, the supernatant of the DNA-SWCNT dispersion was 

collected. The dispersion was then passed through an Amicon 100 kDa filter and 

resuspended in DI water three times in order to remove free DNA and the phosphate salts. 

The concentration of the dispersion was adjusted such that at 20 times dilution, the 

absorbance at 990 nm was ~0.5. 

Aqueous two-phase systems consisting of Dextran (70 kDa) and PEG (6 kDa) were 

prepared in DI water with different compositions: 10% (w/w) PEG/10% (w/w) Dextran 

and 14 % (w/w) PEG/14 % (w/w) Dextran. The total volume of the aqueous two-phase 

system including the DNA-SWCNT dispersion and PVP solution was fixed at 500 uL. The 

volume of DNA-SWCNT dispersion added was fixed at 25 uL. Partition of SWCNTs in 

the aqueous two-phase was obtained by vortex mixing of the PEG solution, Dextran 

solution, PVP solution and DNA-SWCNT dispersion in a microcentrifuge tube for 1 min 

followed by centrifugation at 16100g for 2 min.  Figure 2.1 shows qualitatively the use of 

PVP to adjust the phase in which the DNA/SWCNT hybrids reside.  With increasing PVP 

concentration the hybrids move from the bottom to the top phase. 

Absorbance measurements were performed on a Varian Cary 50 spectrophotometer 

over the wavelength range of 200−1100 nm using a 10 mm path length quartz microcuvette 

to determine the concentration of DNA/SWCNT hybrid in each phase. Fractions of the top 

and bottom phases were collected using a pipette and diluted for absorbance measurements. 
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Blank top or bottom phases of ATP systems without SWCNTs were collected and diluted 

in the same way as the corresponding SWCNT fractions for baseline measurements. 

For quantitative analysis we decompose the absorbance spectra using methods 

developed for analysis of surfactant exchange experiments.20 Figure 2.2 shows a typical 

decomposition of the absorbance spectra into contributions from (9,1), (8,3), and (6,5) 

SWCNTs.  By using this decomposition, we can separately track the change in absorbance 

intensity of these three SWCNT chiralities.  We chose to focus on these three SWCNTs 

because of our UV-VIS-NIR instrument limitations and because of previous studies on 

surfactant exchange kinetics on the same three SWCNTs.20 

 

 

 

Figure 2.1. The effect of PVP in aqueous two-phase system of 10% (w/w) PEG/10% (w/w) 
Dextran. With the addition of PVP, the DNA-CNT hybrid moves from being mostly in the 
bottom phase to mostly in the top phase. 
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Figure 2.2. Fitted spectra showing contribution of different SWCNTs to the measured 
spectrum 

 
 

The primary measurement, concentration of the solute in each of the two phases, is 

used to obtain the partition coefficient for the solute, which is defined as the ratio of its 

concentrations in the two phases: 

  𝐾 = UV
UW

.        (2.4) 

We found that an average of about 3% of the DNA/SWCNT hybrids are stuck at the 

interface. To minimize the error due to the interface trapping, we use only concentration in 

the bottom layer “b” and estimate the one in the top layer “t” by mass balance.  

We assume equilibrium, that is, the chemical potential of the solute is the same in the 

two phases (μt = μb):  

  𝜇X = 𝜇XI + 𝑘<𝑇ln𝑎X = 𝜇\ = 𝜇\I + 𝑘<𝑇ln𝑎\    (2.5) 
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where μo is the chemical potential of the standard state; a is the solute activity; the subscript 

t and b refer to top and bottom phases, respectively; kB is Boltzmann’s constant; T is 

temperature. In the infinitely diluted condition the activity coefficient approaches unity, 

and then equation (2.5) can be written as  

 𝜇XI + 𝑘<𝑇ln𝐶X = 𝜇\I + 𝑘<𝑇ln𝐶\     (2.6) 

Combining the equations (2.4) and (2.6), the partition coefficient can be expressed in terms 

of the difference in standard chemical potential of the solute in the bottom and top phases, 

   𝐾 = exp K− aV
NbaWN

cde
Q       (2.7) 

In this two-phase system, absent the modulant (PVP), most of the DNA/SWCNT 

hybrids partition to the bottom phase.  As PVP is added to the system, the DNA/SWCNT 

hybrids gradually transfer to the top phase. Figure 2.3 shows the partition coefficients as a 

function of PVP concentration for various sequences paired with the (6,5) SWCNT. (The 

fit to the data will be described later.)  It can be seen that there is considerable DNA 

sequence-dependent difference in the amount of PVP required to move the DNA/SWCNT 

hybrids from the bottom phase to the top phase. Thus (a) the difference in chemical 

potential is a function of both PVP concentration and the hybrid identity (specified by the 

DNA sequence and SWCNT chirality), and hence (b) the concentration of PVP can be used 

to probe quantitatively this difference.  

The choice of DNA sequences was governed by the following considerations. We 

have previously studied the (TAT) family and have shown in surfactant exchange 

experiments that (TAT)4/(6,5) has properties quite distinct from its compositional cousins 

(TAT)3T and (TAT)3TA.8,20  Similarly (CCA)10 is a recognition partner for (9,1).  The 
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remaining sequences represent a sample of repeat two-mer DNA sequences, all of the same 

length (30-mers).  

 

 

Figure 2.3. (a) Partition coefficient as a function of PVP concentration for a number of 
sequences paired with the (6,5) SWCNT in a 10% DX/10% PEG ATP system. (b) Partition 
coefficient for a reduced set of sequences with the (6,5) SWCNT in a 10% DX/10% PEG 
ATP (solid) and in 14% DX/14% PEG ATP system (open). The data have been fitted using 
a two-parameter function described in the text, equation (2.13). 

 
2.3. Evaluation of Relative Solvation Free Energy of Hybrids 

We first explore the idea that the solvation free energy of a DNA/SWCNT hybrid 

in either of the two ATP phases can be regarded as related to its solvation free energy in 

pure water, modulated both by the water-soluble polymers and by the modulant (PVP in 

this case).  We wish to create a model that allows us to extract quantitative relative values 

of a property of the hybrid itself, absent the polymers and modulant.  The use of such a 

procedure is to produce a property of the hybrid that, we propose, can be interpreted as the 

solvation free energy in pure water. 

(a) (b)
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For a given DX/PEG system, the experimental data in Figure 2.3 show that the 

chemical potential μo depends on two factors: the concentration of the modulant (PVP) and 

the solute composition (DNA/SWCNT hybrid).  Assume that these effects are independent 

and additive.  Within either one of the two phases (“t” for “top phase”, “b” for “bottom 

phase”), let the chemical potential be given by the following. (We considered several 

different approaches to quantification of the data based on different assumption that capture 

the modulation due to PVP.  We present the one that is most consistent with the 

experimental data.) 

  𝜇X/\I = 𝛼X/\([𝑃𝑉𝑃], 𝜉)𝑙𝜇mI (𝑛,𝑚, 𝑑) + 𝑙𝛽X/\(𝜉, 𝑛	, 𝑚, 𝑑)  (2.8) 

where 𝜇mI (𝑛,𝑚, 𝑑) is the solvation free energy of DNA/SWCNT hybrid in water per unit 

length of the SWCNT, l is SWCNT length, 𝛼X/\ is a parameter through which the solvation 

free energy is modulated, and 𝛽X/\ is a parameter related to adhesion between hybrid and 

solution that depends on the polymer solution and the composition of the ssDNA/SWCNT. 

Note that the chemical potential depends linearly on the length of the DNA/SWCNT.  We 

are assuming that its distribution can be represented by its mean value. (See Appendix for 

a detailed discussion and justification of this assumption). Any given DNA/SWCNT hybrid 

can be identified by the CNT chiral indices (n,m) and the DNA sequence ‘d’. The polymer 

composition is represented by 𝜉.  Substituting equation (2.8) into equation (2.7) we get 

  𝐾 = exp K− ∆noapN q∆ro
cde

Q      (2.9) 

or 

  𝑙𝑛𝐾 = −∆𝛼s𝑙𝜇mI − ∆𝛽′𝑙      (2.10) 



 25 

where Δα’ and Δβ’ are (αb−αt)/kBT and (βb−βt)/kBT, respectively. Suppose that ∆𝛽s = 0, 

and consider the equipartition case for which ln𝐾 = 0. Because the Δα’ is, by assumption, 

independent of hybrid type, equation (2.10) would then predict that regardless of 

DNA/SWCNT composition, all curves on a plot of lnK vs [modulant] would pass through 

the same point when ln𝐾 = 0. That is, as shown in Figure 2.4, Δα’ captures differences in 

slope of the lnK vs [modulant] plot.  Now imagine a fixed modulant concentration [PVP], 

say where Δα’=0.  Then, it is clear that ∆𝛽′ represents a vertical shift factor.  

 

 
Figure 2.4. A schematic plot of lnK vs. PVP concentration: (a) The parameter Δα captures 
changes in slope whereas (b) Δβ represents relative vertical shifts. 

 

For now, consider it as an empirical, minimalist representation of the experimental 

data using three factors, a quantity with units of energy that we provisionally term the 

solvation free energy 𝜇mI , and two dimensionless parameters, ∆𝛼s and Δβ’, that modulate 

the first factor.  Later we return to discuss their physical significance.  Since, by supposition, 

Δβ’ is independent of [PVP], it can be eliminated by taking a derivative of equation (2.10) 

with respect to concentration [PVP]:  
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  tuvw
t[xPx]

= − R∆ny

t[xPx]
𝑙𝜇mI .       (2.11) 

For any given ATP system consisting of the same polymer composition, the term R∆n
y

t[xPx]
 in 

equation (2.11) depends only on [PVP], by supposition. So, it can be eliminated by taking 

the ratio of the LHS of equation (2.11) for two different DNA/SWCNT concentrations at a 

fixed [PVP]. Thus, we can obtain the ratio of the solvation free energy in water for two 

different hybrid compositions A and B in terms of the ratio of derivatives of experimental 

data: 

   ap,z
N

ap,d
N =

{|}~
{[���]�z
{|}~
{[���]�d

od
oz

.       (2.12) 

We assume that different DNA/SWCNT hybrids have the same length distribution so the 

factor lB/lA equals one.  The right-hand side of equation (2.12) can be obtained in a model-

independent way by derivatives calculated from experimental data at the same PVP 

concentration.  Therefore, it offers a method to quantify the ranking of solvation free energy 

of various DNA sequence and SWCNT chirality combinations. It is clear that in this 

formulation the ratio of solvation free energy by itself does not indicate separability, in 

which the factor ∆𝛽′ plays a critical role. Since comparison has to be done at the same 

[PVP], it is important to have a series of experimental plots in which each one overlaps at 

least another one, or all overlap some shared standard.  

Here we use a different method which is simpler and yields results very similar to 

those following the procedure just described.  We find that the experimental data (Figure 

2.3) can be fitted well by: 

  ln𝐾 = 𝐶*[𝑃𝑉𝑃] + 𝐶+       (2.13) 
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where C1 represents the “strength” of the influence of [PVP] on change of partition 

coefficient and C2 is the logarithm of partition coefficient in the absence of PVP.  Using 

eq. (2.13) in (2.12) then gives a single number for the ratio of solvation energy, independent 

of [PVP]: 

  ap,z
N

ap,d
N = U�|z

U�|d

od
oz

.        (2.14) 

Each calculated ratio was then standardized using a single reference, in this case the 

sequence (TAT)3T, as shown in Figure 2.5.  (The choice of reference hybrid is arbitrary – 

we picked the one that required the least amount of PVP for equipartition.) 

 

 

 

Figure 2.5. The relative solvation free energy for different DNA/(6,5)SWCNT hybrids in 
ATP systems with two different polymer compositions. Each free energy is standardized 
to (TAT)3T paired with the (6,5) SWCNT by equation (2.14). Error bars show 90% 
confidence intervals of the ratio of the fit parameter C1 in equation (2.13).   
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To test if the relative solvation free energy so extracted is independent of polymer 

combination (as assumed in equation (2.8)), we repeated the experiment for a different 

polymer composition, 14% DX and 14% PEG (for a reduced set of sequences). Figure 2.3b 

shows the difference in the partition coefficients compared to the ATP system of 10% DX 

and 10% PEG. In the new system, all the partition coefficient curves are shifted to the right; 

more PVP is required to move the hybrids from bottom to top phase. The solvation free 

energy was then obtained and compared to the results of the 10% DX and 10% PEG system, 

presented in Figure 2.5. Evidently, the solvation free energy ratio extracted using equation 

(2.14) is consistent between the two polymer compositions used.  

We return now to extract the remaining two parameters, ∆𝛼s and ∆𝛽′.  For a given 

hybrid, K is measured as a function of [PVP]. So, the data can be stitched into an underlying 

master curve for ∆𝛼s  and jumps in ∆𝛽′ that depend only on the particular hybrid. The 

details of the procedure are presented in the Appendix. ∆𝛼s and ∆𝛽′were estimated for 

different chiralities and are presented in Figure 2.6. As expected, measurements of a 

number of DNA/SWCNT sequences within the same polymer composition ATP system 

can be collapsed into a single ∆𝛼s([𝑃𝑉𝑃])  plot. We also found that the polymer 

composition of ATP system significantly affects ∆𝛼s and ∆𝛽′ unlike the relative solvation 

free energy (Figure 2.5). This suggests that the basic functional form chosen is appropriate.  

The same analysis was implemented to obtain the relative solvation free energy and ∆𝛽′ 

for different DNA sequences paired with the (8,3) and (9,1) SWCNT.  The results are 

consistent with those presented in the main text for the (6,5) SWCNT and can be found in 

the Appendix.  
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Figure 2.6. (a) Master curve for ∆𝛼s for a number of sequences paired with (6,5) (black), 
(8,3) (red) and (9,1) (blue) SWCNT in 10% DX/10% PEG ATP system (¡) and with (6,5) 
SWCNT in 14% DX/14% PEG ATP system (p). The data have been fitted by a linear 
equation (solid line). (b) ∆𝛽′ for a number of sequences paired with the (6,5) (8,3) or (9,1) 
SWCNT in different polymer composition ATP systems. Sequences (TAT)3T, (TAT)4, 
(GT)15, and (GC)15 paired with (6,5) SWCNT were examined in 14% DX/14% PEG ATP 
system. The error bars on ∆𝛽′ show 90% confidence intervals for the parameter ∆𝛽′ in 
equation (2.27). 

 

The basic forms assumed for the difference in chemical potential (eqs. 2.8 & 2.10) 

can be viewed as an expansion relative to solvation free energy in pure water.  The chemical 

potential differences (or the partition coefficients) are continuous functions of [PVP] but 

are also functions of discrete variables: the sequences and chiralities (n,m,d). Thus, we 

propose an interpretation of eqs. 2.8 & 2.10 as a continuous/discrete Taylor series 

expansion: 
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 ∆𝜇([𝑃𝑉𝑃], 𝜉, 𝑛,𝑚, 𝑑) = ∆𝜇I + R∆a([xPx],�,�,�,R)
R[xPx]

[𝑃𝑉𝑃] + 𝜔(𝑛,𝑚, 𝑑) (2.15) 

where ∆𝜇I is the chemical potential difference at the reference state for a chosen particular 

sequence of DNA on SWCNT at [PVP] = 0; 𝜔(𝑛,𝑚, 𝑑) is a parameter describing the 

discrete difference in the chemical potential in terms of the hybrid species. Let 

∆𝜇∗(𝜉, 𝑛,𝑚, 𝑑) be the value of ∆𝜇 at [PVP] = 0. Then, 

 ∆𝜇([𝑃𝑉𝑃], 𝜉, 𝑛,𝑚, 𝑑) = R∆a([xPx],�,�,�,R)
R[xPx]

[𝑃𝑉𝑃] + ∆𝜇∗(𝜉, 𝑛,𝑚, 𝑑)  (2.16) 

According to the experimental observation shown in Figure 2.3 and Figure 2.6a, both ∆𝜇 

and ∆𝛼′  are found to be linear in [PVP]; specifically, let ∆𝛼s = 𝑐* + 𝑐+[𝑃𝑉𝑃]  (see 

Appendix).  Substituting this into equation (2.10) and comparing with equation (2.16) 

establishes the correspondence that 

 R∆a([xPx],�,�,�,R)
R[xPx]

= −𝑐+𝑙𝜇mI 𝑘<𝑇      (2.16a) 

and       

 ∆𝜇∗(𝜉, 𝑛,𝑚, 𝑑) = −(∆𝛽s + 𝑐*𝜇mI )𝑙𝑘<𝑇     (2.16b) 

Thus, the term 𝑐+ is directly related to how the chemical potential difference changes with 

[PVP]. Moreover, because in our system the intercept 𝑐* is small, equation (2.16b) suggests 

a meaning for ∆𝛽′; it essentially corresponds to ∆𝜇∗.  

We see, for example, that (GT)15 and (CCA)10 behave very differently even though 

the lengths are same (30mers). This clearly confirms that the solvation free energy 

difference depends strongly on the DNA sequence. It is interesting to compare the solvation 

free energy with binding affinity of DNA sequences on SWCNT. Our group previously 

reported the activation energy for removal of several DNA sequences from different 
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species of SWCNT by a surfactant molecule. We found that the rate at which a surfactant 

removes (CCA)10 is about ten times slower than removal of (TAT)4 (from (6,5)).20 This 

appears to correlate with the fact that it takes considerably larger amounts of PVP to move 

the (CCA)10/(6,5) hybrid to the top phase. It is also reported that (GT)15/(6,5) is removed 

about 7 times slower than (TAT)4/(6,5).8 However, our results from ATP partitioning show 

that (GT)15/(6,5) differs only slightly from (TAT)4/(6,5). This suggests that the order of 

hydrophilicity may not be directly correlated with the order of binding activation energy. 

For the surfactant exchange experiment, we previously proposed that a defect in the DNA 

coating admits adsorption of the surfactant, which is the activated state, following which 

the surfactant can replace DNA from the entire SWCNT.8 The defects can be created due 

to local disorder in the DNA strand arrangement, or be thermally activated. Thus, defects 

in DNA coverage on SWCNT is a very important factor to determine the activation energy. 

On the other hand, the solvation free energy is related to the hydration interaction which is 

dependent more on the average spatial distribution of hydrophilic groups rather than the 

rare few defects.3  

 

2.4. Evaluation of Solubility Parameters 

We now consider an alternative analysis of the ATP experiment.  Ao et al.3 

suggested that the difference in partitioning arises from its surface functionalities, i.e., the 

surface free energy of the hybrids. It is well known that the surface free energy is directly 

related to the intermolecular forces in liquid, and Hildebrand and Scott21 reported that this 
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force can be measured in terms of the heat of the vaporization, or its square root, the 

solubility parameter d.  

The expression for the partition coefficient in terms of solubility parameters was 

derived by Srebrenik and Cohen22: 

 ln𝐾 = P�
�e
[(𝛿� − 𝛿>)+ − (𝛿\ − 𝛿>)+] + ln

P�
PV

      (2.17)  

where the subscripts a, b and i denote the solvents a, b and solute i, and 𝑉 is the molar 

volume. In this study, a and b are top and bottom phases, respectively, and i is a species of 

hybrid. There are several assumptions involved in the derivation of equation (2.17). The 

solutions are assumed to be regular so that the total volume remaining unchanged. The 

geometric mean approximation is used to estimate the cohesive energy density between 

dissimilar molecules (i.e., a and i or b and i), i.e., it can be given by the geometric mean of 

the homogeneous cohesive energy density of two molecules: 𝛿�>+ = 𝛿��𝛿>> and𝛿\>+ = 𝛿\\𝛿>>. 

This assumption is based on an analogy with the semi-quantitative relation for 

intermolecular forces called the combining relation.23 

In solubility parameter theory, the solubility parameter for mixtures, 𝛿̅, depends directly 

on the relative amount present, and it can thus be related to the volume fraction 𝜙� and 

solubility parameters 𝛿� of the components by the expression 

 𝛿̅ = ∑𝜙�𝛿�         (2.18) 

where the summation extends over all components, i.e., PEG, Dextran, water, and PVP in 

our system.  Although the use of such an expression for mixtures is not always 
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quantitatively accurate,24 it has been widely used successfully. For any given ATP system, 

the amounts of PEG, Dextran and water are constant. Thus, within the same polymer 

composition, the equation (2.18) can be rewritten as a function of PVP concentration: 

 𝛿X̅/\ = 𝐴X/\ + 𝜙xPx𝛿xPx       (2.19) 

where 𝐴X/\ = 𝜙X/\,xL�𝛿xL� + 𝜙X/\,��𝛿�� + 𝜙X/\,m𝛿m  and the subscript t, b for top and 

bottom phase, respectively. Assume that the concentration of PVP is equal in both phases 

so that 𝜙xPx = 𝜙X,xPx = 𝜙\,xPx . Substituting equation (2.19) into (2.17), the partition 

coefficient becomes  

 ln𝐾 = P�
�e
�𝐴X+ − 𝐴\+ + 2(𝐴X − 𝐴\)�𝜙xPx𝛿xPx − 𝛿>([𝑃𝑉𝑃])�� + ln

PW
PV

 (2.20) 

Here, by incorporating the PVP term in equation (2.19), we have assumed that PVP is in 

sufficient excess such that it affects the solubility parameter of the solution.  It can also 

affect the solubility parameter of the hybrid in equation (2.20), say by adsorbing to its 

surface. For small PVP conditions, the PVP term in equation (2.19) can be ignored. Then, 

the partition coefficient can be rewritten as 

 ln𝐾 = P�
�e
[𝐴X+ − 𝐴\+ − 2(𝐴X − 𝐴\)𝛿>([𝑃𝑉𝑃])] + ln

PW
PV

    (2.20a) 

Let us use equation (2.20a) to see, approximately, how the solubility parameter of the 

hybrid compares to that of the two aqueous phases. Neglect the logarithm term ln PW
PV

 since 

𝑉X ≈ 𝑉\. By rearranging the remaining equation for 𝛿>([𝑃𝑉𝑃]), equation (2.20a) becomes 

𝛿>([𝑃𝑉𝑃]) = − �e uvw
P�(�Wb�V)

+ �Wq�V
+

. Here, 𝛿X̅/\ = 𝐴X/\  and the second term is numerically 
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dominant. Thus, approximately, the solubility parameter of hybrid 𝛿> can be estimated to 

be an average value of the solubility parameters of the top and bottom phases: 𝛿>([𝑃𝑉𝑃]) ≈

��Wq��V
+

 , that is, its value lies between those of the two phases.  Because the solubility 

parameters of the top and bottom phases themselves differ only slightly, the ATP system 

is able to discriminate between solutes with small difference in solubility. 

To extract the solubility parameter of the hybrid, 𝛿>, the remaining parameters need 

to be determined. First, the solubility parameter and molar volume for each component 

were obtained from the literature and the values are listed in Table 2.1.25–29 The volume 

fractions of PEG and Dextran are estimated from the phase diagram of PEG and Dextran 

system.30 Next, molar volume of the hybrid is given by  

 𝑉> = 𝜋𝑟( \¡>R+ 𝐿H�X𝑁�¤I       (2.21) 

where the length of SWCNT, 𝐿H�X, is set to be 200 nm,31 𝑁�¤I is Avogadro number, and 

the radius of hybrid, 𝑟( \¡>R, is determined as 𝑟( \¡>R = 𝑟H�X + 𝑑H\; the radius of SWCNT, 

𝑟H�X, is calculated from its (n, m) indices in Å:32  

  𝑟H�X = 0.783©(𝑛 +𝑚)+ − 𝑛𝑚      (2.22) 

and the distance from SWCNT to the backbone, 𝑑H\, is determined to be 0.592 nm.7 We 

recognize that the molar volume could be sequence-dependent even for the same species 

of the SWCNT because DNA structure on its surface may be different, but neglect these 

differences.  
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Finally, the solubility parameters of each hybrid are calculated using equation (2.20) 

and shown in Figure 2.8. It is not surprising that the values of the solubility parameters of 

all hybrids are close to those of water because the hybrid is well dispersed in water. The 

solubility parameter is an intrinsic property; we presume that it changes as a function of 

PVP concentration because PVP absorbs on the hybrid surface. As shown in Figure 2.8, 

the solubility parameter changes linearly with [PVP], which is consistent with 

concentration-dependent adsorption of PVP on the hybrid.   

Fitting the dependence of solubility parameter by a linear function provides two 

quantities: the slope and intercept.  The intercept (Figure 2.7) is significant because by 

excluding the effect of PVP it reflects an intrinsic property of the hybrid.  However, for the 

compositions studied here, we find that the differences between intercept values (Figure 

2.7) are not statistically significant.  As shown in Figure 2.8, the solubility parameters 

decrease slightly as PVP concentration increases, with different slopes characteristic of 

each hybrid. The larger the slope of the solubility parameter variation with respect to [PVP], 

the lower the value of [PVP] required to move that hybrid from bottom to top phase. 

Therefore, the difference in the effectiveness of PVP can be seen by plotting the slopes 

(Figure 2.9). It is not surprising that the slope is smaller at high polymer concentration 

conditions, which can be interpreted in terms of entropy or adsorption theory. It also shows 

that the solubility of (TAT)4/(6,5) is most easily modulated by the PVP concentration. 

Among the sequences of DNA with the same length, (GT)15/(6,5) has significantly smaller 

values than others.  
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Table 2.1. Hildebrand (𝛿) and Hansen (𝛿R, 𝛿S, 𝛿() solubility parameters and molar volume 
(V) of water and polymers used in this study. The solubility parameters of SWCNT are 
presented as reference. Units are MPa0.5 for solubility parameter and m3/mol for molar 
volume. 

 d a dd b dp b dh b V ´ 103 c 

PEG 19.71 17.56 3.22 8.31 4.992 

DX 38.6 24.3 19.9 22.5 43.82 

water 47.8 15.5 16.0 42.3 0.018 

PVP 24.3 18.8 13.4 7.5 8.330 

SWCNT 20.8 18.0 7.8 6.9 52.76 – 56.24 
a Hildebrand solubility parameters were calculated by geometric mean of the corresponding 
Hansen solubility parameters. bHansen solubility parameters were taken from the 
literature.17,25–27 cMolar volumes of polymers and water were calculated from 
corresponding specific volume, which were taken from the literature.28,29 Molar volume of 
SWCNT can be calculated by equation (2.21) using the radius of SWCNT (𝑟H�X), given by 
equation (2.22), instead of that of hybrid (𝑟( \¡>R).    

 

 

Figure 2.7. Hildebrand solubility parameters at [PVP] = 0 for a number of sequences paired 
with the (6,5) SWCNT in the DX/PEG ATP system. Error bars show 90% confidence 
intervals for the intercept given by a two parameter linear fit.  
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Previously in Figure 2.3b, we found that more PVP is required to change the 

partition at higher polymer concentrations. In terms of solubility parameters, hybrids move 

from bottom to top phase as the solubility parameter of hybrid approaches that of top phase 

due to the PVP absorption on the hybrid. Therefore, as shown in Figure 2.10, if the 

solubility parameter of hybrid is independent of the polymer combination, the difference 

in the solubility parameter between the hybrid and the top phase is greater at high polymer 

concentration conditions. As expected, the solubility parameters at both the bottom and top 

phases at high polymer concentration are smaller than at lower polymer concentration, for 

example the values of the solubility parameter in the (AC)15 hybrid system are 𝛿X =

43.95, 𝛿\ = 45.80  in 10% PEG/10% DX system and 𝛿X = 43.90, 𝛿\ = 45.74  in 14% 

PEG/14% DX system, respectively.  

To better understand the solubility parameter of the hybrids, we compared the 

values of the hybrid with those of free DNA and the SWCNT (Table 2.1). To the best of 

our knowledge, no studies have been reported the solubility parameter of the ssDNA, but 

dsDNA is 𝛿 = 29.7 MPa0.5 (𝛿R = 19.0, 𝛿S = 20.0, and 𝛿( = 11.0)15, much less than that 

of the hybrid as we report here. Since dsDNA is stabilized by forming a helical structure 

in which the hydrophobic bases hydrogen-bond and stack with each other, we might expect 

that the solubility characteristics of ssDNA to be very different from that of dsDNA. 

Therefore, we have investigated the solubility parameter of ssDNA using same method 

presented here. Poly(T) of four different length (10, 30 and 60 and 90-mers), poly(A) of 

two different length (30 and 50-mers), and poly(C) (30-mers) in 10% PEG/10% DX ATP 

system were examined, shown in the Appendix. The solubility parameter of ssDNA was 
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determined to be 44.91 MPa0.5 by an average of the intercepts.  It is noteworthy that this 

value is quite close to those of the hybrids. This is consistent with our structural models for 

the hybrid in which the SWCNT is well-covered by ssDNA with its bases and the sugar-

phosphate backbone both exposed to the solvent.  Small differences in (rare) wrapping 

structure defects are captured by the differences in hybrid solubility parameters.  The high 

sensitivity of the ATP technique to these small differences makes it well-suited as a method 

to quantitatively discriminate between different hybrid species, something that it is 

currently not possible to predict. 

Note that we have considered the Hildebrand parameter as a single parameter that 

represents solubility characteristics, not dispersion force parameters. The concept of the 

Hildebrand parameter has been used not only to interpret the partitioning of hybrid in the 

ATP system, but also to successfully extract the solubility parameter as an intrinsic 

property of the hybrid. Multiple-component concepts, such as Hansen solubility parameter, 

can be used to extract partial parameters from different contributions, which can help to 

better understand the intermolecular interactions of hybrids. Further work can be 

implemented by applying Hansen solubility parameter. This requires three solubility 

parameters, so more experimental work is required to calculate them uniquely. We suggest 

this for future work; see Appendix for a discussion of how to extract Hansen solubility 

parameters from ATP experiments.  
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Figure 2.8. Hildebrand solubility parameters as a function of PVP concentration for a 
number of sequences paired with (6,5) SWCNT in 10% DX/10% PEG ATP system. 

 

 

 

Figure 2.9. Slopes of Hildebrand solubility parameters for a number of sequences paired 
with (6,5) SWCNT in DX/PEG ATP system. Error bars show 90% confidence intervals for 
the slope.  
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Figure 2.10. Schematic diagram showing the Hildebrand solubility parameters of a 
DNA/SWCNT hybrid relative to the top and bottom phases for two different compositions.  
The diagram illustrates why it takes a greater amount of PVP to shift hybrids from the 
bottom to the top phase as the concentration of PEG and DX is increased.  
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2.5. Conclusions 

In this study, we have measured the partition coefficient as a function of PVP 

concentration for a number of sequences paired with three different species of SWCNT in 

ATP system. To analyze the partitioning of DNA/SWCNT hybrids, we proposed two 

different approaches which relate the measurements of partition coefficient to the solvation 

free energy or solubility.  

First, based on an expansion of free energy difference from a reference state and 

composition, the relative solvation free energies have been extracted for a number of 

DNA/SWCNT hybrid combinations. The solvation free energies obtained from two 

different solvent compositions shows consistent values. Furthermore, the extracted values 

of ∆𝛼s, representing the effect of modulant, were obtained as master curve from all hybrid 

combination within the same polymer composition, as expected. Thus, we suggest that the 

model can reasonably quantify our experimental observation.  

Next, a method has been proposed for estimating the Hildebrand solubility 

parameters of the hybrids.  The value of solubility parameter at [PVP] = 0, which could be 

interpreted as an in intrinsic property of each hybrid, do not exhibit statistically significant 

differences. The solubility parameter decreases with increasing [PVP], presumably 

because of its adsorption on the DNA/SWCNT. This shows that PVP can modulate the 

solubility of the hybrid by modifying its surface. The sensitivity to [PVP], characterized 

by the rate of reduction of the Hildebrand parameter with [PVP], varies with hybrid 

composition, indicating that the interaction between PVP and the hybrids is sequence-

dependent. To compare this difference in the interaction, we compare the slope of solubility 
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parameter.  This comparison clearly shows that the sequence (TAT)4, known as the 

recognition sequence for (6,5) SWCNT, and (GT)15, known for its strong affinity to 

SWCNT, have stronger sensitivity to [PVP] than other hybrids. These results suggest that 

the measurement of the slope and intercept of the solubility parameter for various hybrid 

combination can provide quantitative insight into aspects of DNA structure on the nanotube 

underlying the sequence-specific interaction. Note that the particular ATP system we have 

studied here (DX/PEG) is not ideal for successful separation of SWCNT species.  

Generally, the partition coefficient can be determined accurately only when it is on the 

order of 1; otherwise, experimental errors become large. Ideally, the partition coefficient 

should be approximately unity at [PVP] ~ 0; this would allow more accurate extraction of 

the intrinsic solubility parameter (absent the modulant) as the intercept of the [PVP] vs. 𝛿> 

plot. Although our system (DX/PEG) is not ideal from this point of view, it serves well the 

purpose of extracting and comparing quantitatively the solubility characteristics of 

DNA/SWCNT hybrids.  

To compare the two approaches offered in this work, the values of the relative 

solvation free energies and the slope of the solubility parameters has been transformed to 

compare them in the same manner. The slope of the solubility parameter (Figure 2.9) is 

normalized to (TAT)4/(6,5) SWCNT by 𝑠°̄ = ±�b±(²z)�³
±(´z´)µb±(²z)�³

. Here, the sequences of (TAT)4 

and (CA)15 were chosen because they have minimum and maximum values in range of all 

the sequences paired with the (6,5) SWCNT as shown in Figure 2.9. Then the values of 𝑠°̄ 

were compared with the relative solvation free energy which, here, is standardized to 

(TAT)4 paired with the (6,5) SWCNT instead of (TAT)3T. The results are presented in 
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Figure 2.11. It is interesting that the transformed values from two different approaches are 

in good agreement with each other. 

Both approaches developed in this study have some limitations. While both provide 

quantitative data, neither contains direct information about underlying structural 

differences. Also, the solvation free energy method only provides values relative to a 

reference hybrid. (To the best of our knowledge, no study has yet reported absolute values 

of the solvation free energy of DNA/SWCNT hybrids.) For the solubility parameter 

approach, the (DX/PEG) system turned out to have some limitations because of small 

measured difference in the values of lnK (or the corresponding di) when [PVP] = 0. This 

limitation can likely be alleviated by choosing other ATP systems. We leave this as future 

work. 

In summary, the ATP system can be used for not only separation technique but also 

a method by which to quantify and rank the dissolution properties such as the solvation 

free energy or the solubility. We expect that such quantification can provide a basis for 

data-analytic searches for new sequences. 
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Figure 2.11. Comparison between the normalized solvation free energy and the slope of 
the solubility parameters. Error bars on 𝑠°̄  show 90% confidence intervals for the 
normalized slope given by a two parameters linear function. Error bars on 
𝜇mI (𝑠𝑒𝑞. )/𝜇mI (𝑇𝐴𝑇 ) show 90% confidence intervals for the ratio of the fit parameter C1 
in equation (2.13).    
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2.8. Appendix 

2.8.1. Additional data analysis for (8,3) and (9,1) chirality of SWCNT 

The relative solvation free energy for different DNA sequences paired with (8,3) and 

(9,1) SWCNT hybrids were obtained in the same way as in the main text. The results are 

consistent with those presented in the main text for the (6,5) SWCNT. 

 

 

 

 

Figure 2.12. The solvation free energy for ATP systems with two different polymer 
compositions. Each free energy is standardized to (TAT)3T paired with the (8,3) SWCNT 
by equation (2.14). Error bars show 90% confidence intervals of the ratio of the fit 
parameter C1 in equation (2.13).   
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Figure 2.13. The solvation free energy for ATP systems with two different polymer 
compositions. Each free energy is standardized to (TAT)3T paired with the (9,1) SWCNT 
by equation (2.14). Error bars show 90% confidence intervals of the ratio of the fit 
parameter C1 in equation (2.13).  

 

 

2.8.2. Determination of Da’ and Db’ 

First, the relative solvation free energy can be estimated using equation (2.14).  

Using eq. (2.10) Da’ can be written as 

  ∆𝛼s = −Ko�wq∆r
y

oapN
Q       (2.23) 

Since both Da’ and Db’ are relative properties, they can be set to zero at an arbitrarily 

chosen point. We assumed that Db’ is zero for a sequence A of hybrid so the equation (2.23) 

for the sequence A becomes  

  ∆𝛼s|� = − o�w
oapN
�
�

        (2.24a) 
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Then Da’ for other sequences of DNA hybrid can be described as 

 ∆𝛼s|< = −¹o�w
oapN
�
<
+

∆ryºd/z
oapN |d

»      (2.24b) 

Here, the subscript B/A means that ∆𝛽s|</� is relative to ∆𝛽s|� which is set to be zero. 

Because the experimental data shows that ln K is linear in [PVP], we assume that ∆𝛼s also 

is linear to [PVP]:  

 ∆𝛼s = 𝑐* + 𝑐+[𝑃𝑉𝑃]       (2.25) 

where 𝑐* and 𝑐+ are unknown parameters. Let 𝑦 = o�w
oapN

 , which can be obtained from the 

experimental data. Here, l is set to be 200 nm.31 As defined, ∆𝛼s has a master curve for 

various hybrid combinations, so 𝑐*  and 𝑐+  are constant for the entire data set. Then, 

equations (2.24a) and (2.24b) can be rewritten in terms of y, 𝑐* and 𝑐+: 

  𝑦|� = 𝑐* + 𝑐+[𝑃𝑉𝑃]        (2.26a) 

and 

 𝑦|< = 𝑐* + 𝑐+[𝑃𝑉𝑃] +
∆ryºd/z
oapN |d

     (2.26b) 

Suppose that we have experimental data at n different concentration for m hybrid 

combinations. Then we have n x m equations of type (2.23) which can be expressed in the 

similar form in (2.26b). Then 𝑐* , 𝑐+ and ∆𝛽s|±½¾./�  can be estimated by solving the 

following system of equation (in a least-squares sense). 
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  (2.27) 

This procedure was repeated for different chiralities and the obtained results for ∆𝛽s are 

shown in Figure 2.6b. 

 

2.8.3. The effect of the hybrid length distribution  

In the main text, we assumed that the SWCNT length distribution in each phase is 

narrow enough to be represented by its mean value, and that this mean value is the same in 

the two phases so that their ratio is unity.  Here we explore further the conditions under 

which the assumption of replacing length by its mean value is an acceptable approximation. 

To do so, we compute the expected value of partition coefficient when the solute 

(DNA/SWCNT hybrid) has a distribution of lengths. 

First, we start with the probability of a nanotube of certain length l placed in bottom 

phase, pb, and top phase, pt: 

  𝑝X/\ =
ÍÎÏ�basW/Vo/cde�

Ð
      (2.28) 

where 𝑍 ≡ exp K− asVo
cde

Q + exp K− asWo
cde

Q  and 𝜇′X/\  is the solvation free energy of top or 

bottom phase per unit length. 
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For a given SWCNT, its optical absorption is proportional to the total length of that 

SWCNT in the sample.* That is, the partition coefficient K can be written as the ratio of 

the total length of that SWCNT in each phase. The total length of nanotubes in the bottom 

or top phase can be obtained in terms of the product of the probability of finding it in either 

phase and the number probability of finding SWCNT of a certain length: 

  𝐿X/\ = 𝑁 ∫ 𝑙𝑝(𝑙)𝑝X/\𝑑𝑙
Ó
Ô       (2.29) 

where N is the total number of the nanotubes and p(l) is the number probability of finding 

SWCNT of certain length l. The corresponding partition coefficient is  

  𝐾 = ËV
ËW
= ∫ oS(o)SVRo

Õ
Ö
∫ oS(o)SWRo
Õ
Ö

       (2.30) 

Here, 𝑙𝑝(𝑙)  gives the length distribution 𝑝o(𝑙) . Let us set 𝑝o(𝑙) ≡ 𝑙𝑝(𝑙)/𝑙 ̅  where 𝑙 ̅ =

∫ 𝑙𝑝(𝑙)𝑑𝑙Ó
Ô  and assume for the sake of concreteness that the probability has Gaussian 

distribution 

  𝑝o(𝑙) =
*

√+ØÙÚ
exp K− (obo)̅Ú

+ÙÚ
Q      (2.31) 

Finally, the partition coefficient can be reduced to 

  𝐾 =
∫

ÛÜ(Ü)
�ÝÞßà	(∆áyÜ/âd´)

RoÕ
Ö

∫
ÛÜ(Ü)

�ÝÞßà	(ã∆áyÜ/âd´)
RoÕ

Ö

      (2.32) 

where ∆𝜇′ ≡ 𝜇′\ − 𝜇′X. 

 
* Fagan, J. A.; et al. Length-Dependent Optical Effects in Single-Wall Carbon Nanotubes. 

J. Am. Chem. Soc. 2007, 129, 10607−10612. 
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First, we note that in the case of very narrow distribution when 𝑝o(𝑙) approaches 

the delta function 𝛿(𝑙)̅, K takes the form given by equation (2.7), as expected.  Also, if 

∆𝜇 = 0, then K=1 identically, regardless of the length distribution.   

In most experiments, the CNTs have a reasonably broad distribution but 

measurements are necessarily made for relatively small ∆𝜇, because otherwise K would 

either be immeasurably small or large.  We wish to establish whether equation (2.7) is still 

accurate under such conditions. When ∆𝜇  is small enough, the equation (2.32) can be 

simplified by series expansion to  

  𝐾 = ∫ SÜ(o)(*b∆aso/+cde)Ro
Õ
Ö
∫ SÜ(o)(*q∆aso/+cde)Ro
Õ
Ö

      (2.33) 

For the special case where 𝑝o(𝑙) is given by the Normal distribution as defined above, these 

integrals can be evaluated if the distribution is narrow enough that we can ignore 

contributions from fictitious negative lengths.  The partition coefficient then becomes  

  𝐾 = *b∆aso/̅+cde
*q∆aso/̅+cde

≈ K1 − ∆aso̅

+cde
Q
+
≈ 1 − ∆aso ̅

cde
    (2.34) 

This is identical to the form given by equation (7) in the appropriate limit of ∆𝜇 → 0: 

  𝐾 = exp K− ∆aso
cde

Q ≈ 1 − ∆aso
cde

      (2.35) 

This indicates that for the interpretation of partition coefficient, for small departures from 

the equipartition state, i.e., when ∆𝜇′ is small, the length distribution can be regarded as 

narrow-enough to be represented simply by its mean value.  

Further to demonstrate that the assumption of narrow length distribution or small 

∆𝜇′ is valid for our experimental results, equation (2.32) was numerically solved as a 

function of ∆𝜇′ when pl(l) has Normal distribution with given value of 𝑙 ̅and 𝜎.  The mean 
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length 𝑙 ̅was roughly estimated as 200 nm* and the standard deviation 𝜎 was varied in the 

range from 20 to 200 nm.  

Our experimental data have shown ln K to be a linear function of [PVP]. Since ∆𝜇′ is linear 

in ln K by the definition of the partition coefficient, ∆𝜇′ also can be presented as a linear 

function of [PVP] in our experimental range. That is, it is known by experiment that ln K 

is linear in ∆𝜇′. Based on the results represented in Figure 2.14, ln K is linear to ∆𝜇′ only 

if either ∆𝜇′ or 𝜎  is small enough. Because our experimental results show linear behavior, 

they are likely to be in such range. Thus, the comparison justifies that the length distribution 

can be represented by its mean value.  

 

Figure 2.14. ln K as a function of ∆𝜇′ with 𝑙 ̅ = 200	𝑛𝑚 for various 𝜎, which is evaluated 
by solving equation (2.32) numerically. 

 
* Hearst, J. E. The specific volume of various cationic forms of deoxyribonucleic acid. J. 

Mol. Biol. 1962, 4, 415−7. 
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2.8.4. Estimating the solubility parameter of single-stranded DNA* 

We conducted ATP experiments using poly(T) ssDNA of four different lengths (T10, 

T30, T60, and T90), poly(A) ssDNA of two different lengths (A30, A50), and poly(C) ssDNA 

(C30). The absorbance was monitored from 200 to 400 nm using a UV/vis/NIR 

spectrophotometer. A prominent peak was observed at 266 nm for the ssDNA. The 

partition coefficients were then obtained using equation (2.4), shown in Figure 2.15a. The 

solubility parameters of each ssDNA type were calculated using equation (2.20) in the 

same way as in the main text.  The molar volumes for each type of ssDNA were calculated 

as the product of the specific volume (0.55 ml/g 2) and their molecular weights (3059, 

9075.8, 18204.5, 26714.3, 9329.3, 15574.3, and 8611.0 Da for T10, T30, T60, T90, A30, A50, 

and C30, respectively).  

 

Figure 2.15. (a) Partition coefficients and (b) Hildebrand solubility parameters as a function 
of PVP concentration for poly(T) of four different lengths (T10, T30, T60, and T90), poly(A) 
ssDNA of two different lengths (A30, A50), and poly(C) ssDNA (C30) in 10% DX/10% PEG 
ATP system. The solid lines are fits using a two-parameter linear function.  

 
* The experimental work in this section has been performed by Thibault Aryaksama (ESPCI, Paris, 
France) at Lehigh University. 

(a) (b)
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2.8.5. Hansen Solubility Parameter 

From the equation (2.3), the expression of the partition coefficient shown in equation (2.20) 

can be replaced by the following  

 ln𝐾 = P�
�e
∑ å�𝛿c,X − 𝛿c,>�

+ − �𝛿c,\ − 𝛿c,>�
+æ + ln PW

PV
    (2.36)  

where the summation extends over all the partial contribution terms (k = d, p, h) and d, p, 

h denotes dispersion, polar, and hydrogen bonding contribution, respectively. The 

solubility parameters for top and bottom phase 𝛿c,(X/\)  are then replaced by their 

approximate expression in terms of the volume fraction of each component: 

 𝛿c̅,(X/\) = 𝐵c,(X/\) + 𝜙xPx𝛿c,xPx      (2.37) 

Here, 𝐵c,(X/\) = 𝜙c,(X \⁄ ),xL�𝛿(X \⁄ ),xL� + 𝜙c,(X \⁄ ),��𝛿(X \⁄ ),�� + 𝜙c,(X \⁄ ),m𝛿(X \⁄ ),m  and is 

constant for a given polymer composition. Substituting equation (2.37) to (2.36), the 

partition coefficient is then  

ln𝐾 = P�
�e
�∑�𝐵c,X+ − 𝐵c,\+� + 2∑�𝐵c,X − 𝐵c,\��𝜙xPx𝛿c,xPx − 𝛿c,>�� + ln

PW
PV

  (2.38) 

To calculate a set of solubility parameters for a given hybrid, 𝛿c,>, at least three different 

sets of experimental data sets are required. We recognized that the change of 𝐵c,(X/\) by 

PVP concentration is too small to make valid sets to solve equation (2.38). Thus, we 

recommend the use of experimental data set from different polymer composition. 
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2.8.6. Link to Public Repository: 

The following link is to a public repository where we provide a collection of scripts for 

spectra decomposition and solvation free energy and solubility parameter analysis.  

https://bitbucket.org/jagotagrouplehigh/dna_swcnt_atp/ 
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Chapter 3 : Learning to Predict Single-Wall Carbon Nanotube-

Recognition DNA Sequences* 

 

DNA/SWCNT hybrids have enabled many applications because of their special ability to 

disperse and sort SWCNTs by their chirality and handedness. Much work has been done 

to discover recognition sequences which recognize specific chiralities of SWCNT, and 

significant progress has been made in understanding the underlying structure and 

thermodynamics of these hybrids.  Nevertheless, de novo prediction of recognition 

sequences remains essentially impossible and the success rate for their discovery by search 

of the vast ssDNA library is very low.  Here, we report an effective way of predicting 

recognition sequences based on machine learning analysis of existing experimental 

sequence data sets. Multiple input feature construction methods (position-specific, term-

frequency, combined or segmented term frequency vector, and motif-based feature) were 

used and compared. The transformed features were used to train several classifier 

algorithms (logistic regression, support vector machine and artificial neural network). 

Trained models were used to predict new sets of recognition sequences, and consensus 

among a number of models was used successfully to counteract the limited size of the data 

set.  Predictions were tested using aqueous two-phase separation.  New data thus acquired 

 
* This chapter has been published in npj Computational Materials: 
 

Y Yang, M. Zheng, A. Jagota. “Learning to predict single-wall carbon nanotube-
recognition DNA sequences” npj Computational Materials. 2019, 5:3; 
https://doi.org/10.1038/s41524-018-0142-3 
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was used to retrain the models by adding an experimentally tested new set of predicted 

sequences to the original set.  The frequency of finding correct recognition sequences by 

the trained model increased to >50% from the ~10% success rate in the original training 

data set. 
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3.1.   Introduction 

In recent years, machine learning has emerged as a powerful general methodology 

with the ability to create well-performing predictive models from data. In particular, these 

techniques have become essential in bioinformatics because it is impractical to transform 

manually large amounts of raw sequence data into useful scientific knowledge, without 

requiring explicit programming instruction. Many of the important bioinformatics 

problems are well suited for classification algorithms, including gene annotation,1 protein 

function prediction,2,3 peptide binding prediction,4,5 and DNA binding prediction.6  

Single-wall carbon nanotubes (SWCNTs) comprise a family of nanomaterials with 

remarkable electronic, optical, and mechanical properties.7  The structure of SWCNTs can 

be viewed as a cylinder obtained by rolling a hexagonal graphene sheet.  The properties of 

SWCNTs are highly dependent on exactly how the graphene sheet is rolled, which is 

identifiable by chiral indices (n,m); all synthetic methods result in mixtures of different 

chiralities.  Especially for electronic and optical applications, chirality control of the 

SWCNTs is of critical importance.8,9 A number of strategies for SWCNT separation by 

their chirality have been developed,10–12 and notable success has been achieved using 

special short DNA sequences called recognition sequences.13,14 These recognize specific 

corresponding partner SWCNTs by forming special hybrids with sufficiently different 

physical and chemical properties to enable their separation from mixtures.15 Furthermore, 

there is evidence that special recognition DNA/SWCNT hybrids are also effective as 

biosensors for specific molecular detection.16–18  
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Several studies have contributed to our understanding of the structural basis for 

sequence-specific recognition.  Computational molecular modeling19–23 has established a 

number of ordered structural motifs that single-stranded DNA (ssDNA) can adopt when 

adsorbed onto an SWCNT.  Single-molecule force spectroscopy,24,25 and solution based 

studies have provided quantitative information on strength of association between ssDNA 

and SWCNTs.26,27 Aqueous two-phase (ATP) separations have been analyzed to quantify 

solubility of DNA-SWCNTs,13,28,29 and fluorescence quenching studies have been used to 

infer wrapping structures of  recognition sequences.30  

Despite all this knowledge and understanding, we have essentially no ability to 

predict ssDNA sequences that will form recognition pairs with SWCNTs.  Discovery of 

new recognition sequences has relied upon systematic searches through the vast sequence 

space of ssDNA. For example, Tu et. al.31 designed a systematic search of the DNA library 

by sequence pattern expansion, and achieved a success rate of ~7%.  In another recent 

study28 some sequence patterns were found in a directed and limited search of a reduced 

(12-mer, T/C bases only) DNA library, achieving somewhat better performance (success 

rate of ~10%).  We may surmise that the probability of finding a recognition sequence, 

conditioned upon this sequence expansion scheme, is no better than about 10%.  Thus, 

although we have a lot of physical understanding and a reasonable amount of data, our 

ability to predict recognition sequences is still absent, and the search process remains time-

consuming and inefficient – the number of distinct sequences in the sequence space is 

enormous. (For the typical sequence lengths l in the range 10 – 30, there are 106 – 1018 
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distinct sequences.)  Clearly, a different and more systematic approach to sequence 

prediction is needed.  

Here, we investigate a new approach to prediction of recognition sequences using 

machine learning techniques. The aim is to create models to classify query sequences as 

either recognition or non-recognition. Multiple input feature construction methods 

including n-gram position-specific vector (psv), n-gram term-frequency vector (tfv), 

combined or segmented tfv, and motif-based features6,32 were used. The models were built 

using a machine learning tool (WEKA).33 As an initial study for the work presented in this 

manuscript, we manually tried all the algorithms that the WEKA package provides for 

binary classification using unigram and trigram position specific vector (psv) features.  This 

preliminary study showed that ANN and random-forest methods worked best.  However, 

both are of similar complexity.  We decided to try three different algorithms, each 

algorithm representing a different level of complexity. Specifically, we used three different 

algorithms: logistic regression (LR, simplest),34 support vector machine (SVM, moderately 

complex),35 and artificial neural network (ANN, most complex)35.   

After training and validation using labeled data, they were used to predict new recognition 

sequences.  The relatively small data-set size, a common issue in applying machine 

learning techniques to problems in materials science,36 was mitigated by choosing 

consensus sequences from a number of models, i.e., we combined multiple models by 

cross-validation and selected the sequences only from the intersection of each set of 

classifier results.  Predictions were tested experimentally using the ATP separation 

technique.37 We retrained the model using the updated data set. This cycle of prediction, 
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testing, and retraining was repeated twice. Models were built on DNA sequence 

information only.  To interpret the results in the context of previous computational19–23 and 

experimental work,13,24–29 we examined discovered motif using saliency measures within 

the ANN models.  This study is the first attempt to predict recognition sequences for 

SWCNTs by adopting machine learning techniques. 

 

3.2.  Materials and Methods 

3.2.1. Data Collection* 

The available data on ssDNA sequences that form recognition pairs with specific 

SWCNTs has been obtained under varying conditions (e.g., solution conditions), sequence 

lengths (~8-30), and classification methods (ion-exchange chromatography, ATP, etc.).  

Here, we chose a recently reported set of sequences28 that were all handled under identical 

conditions.  To reduce complexity, in this set the DNA base type was restricted to the 2-

letter (Thymine;T/Cytosine;C) alphabet and DNA length was fixed to be 12 bases. This set 

initially contained 9 recognition sequences (labeled as ‘Y’) and 73 non-recognition 

sequences (labeled as ‘N’).  

To test our predicted sequences experimentally, we utilized the ATP separation 

technique. Preparation of DNA/SWCNT hybrids and ATP separation followed the 

protocols described in ref 37. Briefly, CoMoCAT SWCNTs (1 mg, SG65i grade and 

EG150X grade; Southwest Nanotechnologies) were suspended in 1 mL of deionized water 

 
* The experimental part was performed at National Institute of Standards and Technology (NIST) 
in Gaithersburg, MD, in direct collaboration with Dr. Ming Zheng of NIST. 
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with 0.1 M NaCl (Sigma-Aldrich) and 2 mg ssDNA (Integrated DNA Technologies). The 

DNA/SWCNT mixture was dispersed using tip sonication with a power output of 8 W for 

1.5 h in an ice bath. The dispersion was then centrifuged at 16,000 g for 1.5 h and the 

supernatant was collected. Typically, an ATP system comprising 7.76% PEG (MW 6 kDa, 

Alfa Aesar) and 15% polyacrylamide (PAM, 10 kDa, Sigma-Aldrich), denoted as 

PEG/PAM, was used for SWCNT separation, but 16 % poly(vinylpyrrolidone) (PVP, MW 

10 kDa, Sigma-Aldrich) and 11 % Dextran 70 (DX, MW ∼70 kDa, TCI) ATP system, 

denoted as PVP/DX, was used for some of the DNA/SWCNT hybrids. Both DX and PVP 

were used as DNA−SWCNT partition modulators. UV−vis−NIR absorbance 

measurements were performed on a Varian Cary 5000 spectrophotometer over the 

wavelength range of 200−1400 nm. 

 

3.2.2. Feature Construction 

We wish to build models that predict the class to which a sequence belongs (i.e., 

recognition or non-recognition).  Choice of sequence representation by features is 

important for classifier algorithms to function well.  We investigated several input feature 

construction (or sequence encoding) methods: position-specific vector (psv), term 

frequency vector (tfv), combined tfv, segmented tfv, and motif-based feature vector (mfv), 

described schematically in Figure 3.1. 

A common input feature construction technique in bioinformatics is fixed-length 

overlapping n-gram analysis, which breaks sequences into subsequences using various 

types of vocabulary, in the case of DNA the nucleotides or the codon types.38 Using the 
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method, sequences can be represented by overlapping n-gram patterns.  

The Position-Specific Vector encoding method uses an indicator vector to represent 

each n-gram word at each position. Thus, a given sequence S can be represented by 

𝑝𝑠𝑣(𝑆) = {𝑤>*, 𝑤>+, … , 𝑤>o}, where 𝑤>� ∈ n-gram vocabulary; l is the number of positions 

that is given by (𝐿 − 𝑛 + 1); L is sequence length. For example, for the sequence A = 

TTCTCC, with n = 2, 𝑤>� ∈ {𝑇𝑇, 𝑇𝐶, 𝐶𝑇, 𝐶𝐶} and 𝑝𝑠𝑣(𝐴) = {𝑇𝑇, 𝑇𝐶, 𝐶𝑇, 𝑇𝐶, 𝐶𝐶}.  To 

enter into the ML models, the psv is converted into binary features using the one-attribute-

per-value approach (i.e., {TT, TC, CT, CC} ~ {(1,0,0,0), (0,1,0,0), ..., (0,0,0,1)}) by a built-

in function in WEKA.33 The psv represents the entire base position information but is not 

suitable for long sequences as the size of the feature vector becomes large. In addition, 

sequences with different lengths cannot be compared easily, because they result in feature 

vectors of different sizes. 

The term frequency vector (tfv) defines the feature vector using the frequency of 

the n-gram in the sequence.  For sequence A, 𝑡𝑓𝑣(𝐴) = ð1 5ñ , 2 5ñ , 1 5ñ , 1 5ñ ò. The tfv 

method loses global positional sequence information – several different sequences 

correspond to the same tfv – unless the word length approaches that of the sequence itself. 

The psv method, on the other hand, contains the complete sequence information in that 

there is a 1-1 mapping between psv and the original sequence, but by treating each base as 

a feature it does not capture more complex features very efficiently. The tfv method is 

computational inexpensive, and can accommodate different sequence lengths.39 However, 

it has a limitation that many sequences give the same tfv, e.g, 𝑡𝑓𝑣(𝑇*+) = 𝑡𝑓𝑣(𝑇*ó) =

{1,0}, especially for small n. 
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Previous work28 suggests that both frequency and position information could be 

important for sequence prediction, and so we considered a new encoding scheme that 

combines features of psv and tfv. The basic idea of the method is to divide a sequence into 

m (m∈[1,L]) smaller segments of roughly equal length ls (ls = L/m). We construct a tfv for 

each segment, and then tfv for the entire sequence S in the following way to include position 

information of each segment: 𝑡𝑓𝑣�,�(𝑆) = {𝑡𝑓𝑣�(𝑠𝑒𝑔*), 𝑡𝑓𝑣�(𝑠𝑒𝑔+), … , 𝑡𝑓𝑣�(𝑠𝑒𝑔�)} . 

Contribution to the tfv from terms that straddle segment boundaries are made according to 

a weighted average of their occupancy in either segment.  For example, for sequence A, 

where m = 2 and n = 2, segment 1 = TTC, segment 2 = TCC, and overlapped segment = 

CT, so 𝑡𝑓𝑣+,+(𝐴) = åð1 2.5ñ , 1 2.5ñ , 0.5 2.5ñ , 0ò, ð0, 1 2.5ñ , 0.5 2.5ñ , 1 2.5ñ òæ.  

With a similar purpose in mind, but in a simpler way, a combined tfv method was also 

investigated. Using n-grams with different n, different properties can be captured. For 

example, unigram is based only on the base frequency, while trigram captures some of the 

location information as well as their frequency. Thus, by combining different n-gram 

features, one can capture more information. The combined tfv can be formed as following: 

𝑡𝑓𝑣*b+b⋯bc(𝑆) = {𝑡𝑓𝑣*(𝑆), 𝑡𝑓𝑣+(𝑆), … , 𝑡𝑓𝑣c(𝑆)}.  

We next considered features based on motifs. The basic hypothesis of this method 

is that there are recurring patterns or motifs in the DNA sequence which recognize a special 

type of SWCNT. We employed a motif-discovery tool called MERCI32 to search for motif 

patterns. In order to systematically select discriminative motif features, we ranked the 

motifs based on their conditional probabilities that a sequence is labeled ‘Y’, given motif: 

𝑃(𝑌|𝑚𝑜𝑡𝑖𝑓).  The top ten recognition and non-recognition motifs were chosen for use as 
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features. Maximum motif lengths were limited to 5 - 7 bases for recognition motifs and 5 

bases for non-recognition motifs. The extracted motifs were coded as a 20-dimensional 

binary feature vector, mfv.  Entry m is set to ‘1’ if motif m occurs in a given sequence and 

‘0’ otherwise.  

Note that the range of all feature vectors were rescaled to the range in [−1, 1] to weigh all 

features equally. 

 

 

Figure 3.1. Overview of input feature construction methods explored. Feature types can be 
broadly categorized into two types: n-gram-based and pattern-based. The n-gram feature 
vectors represent DNA sequences as a collection of n-gram entities in a position-specific 
manner (psv), in terms appearance frequency (term frequency vector, tfv), or some 
combination of these two. In the pattern-based feature vector, following discovery of 
motifs in the training set, the DNA sequences are represented by the occurrence or absence 
of a given motif in that sequence. 
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3.2.3. Learning, Validation, and Evaluation 

We began by evaluating a number of common learning algorithms for binary 

classification: logistic regression (LR) with ridge estimator,40 support vector machine 

(SVM) using sequential minimal optimization (SMO),41 and feedforward artificial neural 

network (ANN). To build and validate the classification models, we employed the open-

source machine learning tool WEKA33.  

To optimize the artificial neural network models, we trained them with different numbers 

of hidden layers (Nl) and hidden nodes (Nh). Additionally, we optimized the cost factor g, 

the ratio of false positive to false negative “cost” to vary from ‘1’. By maximizing g, we 

reduce the chance of failure in follow-up experiments. 

We also tried automated ML packages to explore all models and adjust the 

hyperparameters automatically using the Auto-WEKA42 and “h2o”43 AutoML packages. 

Both packages return choices for algorithms and hyperparameters – examples are provided 

in SI.  However, because of lack of transparency, we decided to focus on the three chosen 

algorithms along with “manual” optimization of hyperparameters. 

The performance of each the classifier was evaluated using a standard 10-forld 

cross-validation.  Because the sample set is relatively small, and examples with the ‘Y’ 

label smaller still, we chose not to use strategies that include training, test, and validation 

subsets.  Instead of so splitting the training set, we tested our models by using them to 

predict new sets of sequences that were tested experimentally. Evaluation results can be 

examined by the confusion matrix, which reports the number of true positive (TP), false 

positive (FP), false negative (FN), and true negative (TN) predictions. To measure 
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prediction quality, we computed the conventional evaluation parameters such as precision 

(𝑃𝑟𝑐 = ex
exqöx

), recall (𝑅 = ex
exqöø

), or F1–score (𝐹* = +x¡H∙�½H�oo
x¡Hq�½H�oo

). 

In addition, the performance was evaluated using the area under the receiver operating 

characteristic (ROC) curve, known as AUC.   

To validate the models with newly identified sequences, normalized prediction error E is 

calculated by  

𝐸 = ∑|𝑡	 − 𝑡H	| /2𝑛        (3.1) 

Here, 𝑡H	is the prediction probability for each instance calculated by the classifier and t is 

the experimentally determined truth value, ‘1’ for recognition sequences, ‘–1’ for non-

recognition sequences, and ‘0’ for marginal sequences, and n is the number of instances. 

 

3.3. Results and Discussion 

3.3.1.  Initial models – Training, validation, prediction, and evaluation 

The overall scheme of our approach is shown in  

Figure 3.2. During the first round of learning, the models were trained by using 

three types of algorithms (LR, SVM, and ANN) with n-gram psv and tfv (n = 1–3) using 

the data set described in data collection section (listed in Table 3.1). The final models that 

gave the highest precision were chosen. This is because precision is directly related to the 

ability to find new recognition sequence (TP) correctly in the experiment, which is the most 

labor-intensive and time-consuming part of the entire process. The performance of models 

is shown in Table 3.2. Once a model was built, we generated a query sequence set, 

including all possible sequences (~212).  These were then classified as recognition or non-
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recognition sequence using each of our previously trained models.  Each model typically 

predicted hundreds of recognition sequences, still far too many to test. Furthermore, 

because our training set is small relative to the size of the query sequence set (i.e. 82 vs. 

4014), one needs to be wary of overfitting. To resolve these issues, we combined multiple 

models by cross validation; sequences for experimental testing were selected only from the 

intersection of each set of classifier results.  

We experimentally tested the 10 most frequently occurring sequences among the sequences 

predicted to be recognition by our classifiers (Table 3.3). We identified 5 sequences 

(labelled ‘Y’) that lead to partitioning of only one particular (n,m) SWCNT species with 

high yield. Figure 3.3 shows the absorbance spectra of the purified SWCNT species by the 

five sequences and the starting material. In each spectrum of the purified species, the 

observed sharp peaks correspond to the characteristic optical transitions of a particular (n,m) 

species. Considering the prediction efficiency, this is a remarkable result, with prediction 

efficiency of 50%, a significant improvement over the ~10% frequency of recognition 

sequences in the training set.28 We also found two marginal sequences that could not safely 

be classified as recognition sequence because they had insufficient yield or selectivity 

although they did show enrichment of a particular (n,m) SWCNT species in a given phase. 

These sequences were labeled as non-recognition sequence in order to maximize stringency 

of ‘Y’ labels in the training set.  

The previously trained models were then evaluated based on their prediction errors 

on the newly tested sequences using eq. (3.1) (depicted as a heat map in Figure 3.4a). The 

total prediction errors among the models using psv are not significantly different from each 
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other, while the models using tfv showed considerable difference. Compared within the 

same input feature construction method, the trigram ANNs are better on both, showing the 

normalized prediction error of 0.38 and 0.423 for psv and tfv, respectively.  
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Figure 3.2. Overall scheme to develop a model to predict and test DNA recognition 
sequences. First, the training data set is collected using the ATP technique.  If the 
DNA/CNT hybrid can allow partitioning one type of SWCNT in either the top or the 
bottom phase, that sequence is labeled as a recognition sequence (‘Y’). This is done via the 
NIR absorbance spectra of sorted fractions.  Once the data are collected, the DNA 
sequences and their labels are encoded to a numeric vector, which is called input feature 
construction. Then, the models with three different types of classification algorithms are 
trained using the training set feature vectors. A generated query sequence set including all 
possible sequences (~212) in the 12 mer C/T library are then classified using the trained 
models.  Limitations due to small data set size are mitigated by choosing the consensus of 
a number of models.  The predicted recognition sequences are tested using the ATP 
technique again.  The new data are added to the existing labeled sequence data and the 
models are retrained.  This procedure was repeated twice.   
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Table 3.1. Training data set of DNA sequences and partner SWCNT species with their 
corresponding labels, used to develop the predictive models in the first round of learning. 
The data set was identified by Ao et al. (2014)13 using the ATP technique. If the DNA/CNT 
hybrid can allow partitioning one type of SWCNT in either the top or the bottom phase, 
that sequence is labeled as a recognition sequence (‘Y’). To reduce complexity, the DNA 
base type was restricted to the 2-letter (T/C) alphabet and DNA length was fixed to be 12 
bases.  

# Sequence CNT species Class  # Sequence CNT species Class 

1 TTTCTCCTCTCT  N  26 TTTCCCCCCTTT (8,5), (9,6), (9,9) Y 
2 TCTTTCCTCTCT  N  27 TTCTTTTTTCTT  N 
3 TCTCTTCTCTCT  N  28 TTCTTCCTTCTT  N 

4 TCTCTCTTCTCT  N  29 TTCTCTTCTCTT  N 
5 TCTCTCCTTTCT  N  30 TTCTCCCCTCTT  N 
6 TCTCTCCTCTTT  N  31 TTCCTTTTCCTT  N 
7 CCTCTCCTCTCT  N  32 TTCCTCCTCCTT  N 
8 TCCCTCCTCTCT  N  33 TTCCCTTCCCTT  N 
9 TCTCCCCTCTCT  N  34 TTCCCCCCCCTT  N 
10 TCTCTCCCCTCT  N  35 TCTTTTTTTTCT  N 
11 TCTCTCCTCCCT (10,2) Y  36 TCTTTCCTTTCT  N 
12 TCTCTCCTCTCC  N  37 TCTTCTTCTTCT  N 
13 TCCCCCCCCCCC  N  38 TCTTCCCCTTCT  N 
14 CCCCTCCCCCCC  N  39 TCTCTTTTCTCT  N 
15 CCCCCTCCCCCC (10,3) Y  40 TCTCTCCTCTCT (7,3) Y 

16 CCCCCCTCCCCC  N  41 TCTCCTTCCTCT  N 
17 CCCCCCCTCCCC  N  42 TCTCCCCCCTCT  N 
18 CCCCCCCCCTCC  N  43 TCCTTTTTTCCT  N 
19 TTTTTTTTTTTT  N  44 TCCTTCCTTCCT  N 
20 TTTTTCCTTTTT  N  45 TCCTCTTCTCCT  N 
21 TTTTCTTCTTTT  N  46 TCCTCCCCTCCT  N 
22 TTTTCCCCTTTT (11,1) Y  47 TCCCTTTTCCCT  N 
23 TTTCTTTTCTTT  N  48 TCCCTCCTCCCT  N 
24 TTTCTCCTCTTT  N  49 TCCCCTTCCCCT  N 
25 TTTCCTTCCTTT  N  50 TCCCCCCCCCCT (8,5) Y 
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# Sequence CNT species Class  # Sequence CNT species Class 

51 CTTTTTTTTTTC  N  67 CCTTTTTTTTCC  N 
52 CTTTTCCTTTTC  N  68 CCTTTCCTTTCC  N 
53 CTTTCTTCTTTC  N  69 CCTTCTTCTTCC  N 
54 CTTTCCCCTTTC  N  70 CCTTCCCCTTCC  N 
55 CTTCTTTTCTTC  N  71 CCTCTTTTCTCC  N 

56 CTTCTCCTCTTC  N  72 CCTCTCCTCTCC  N 
57 CTTCCTTCCTTC  N  73 CCTCCTTCCTCC  N 
58 CTTCCCCCCTTC (11,2) Y  74 CCTCCCCCCTCC  N 
59 CTCTTTTTTCTC  N  75 CCCTTTTTTCCC  N 
60 CTCTTCCTTCTC  N  76 CCCTTCCTTCCC  N 
61 CTCTCTTCTCTC  N  77 CCCTCTTCTCCC  N 
62 CTCTCCCCTCTC  N  78 CCCTCCCCTCCC  N 
63 CTCCTTTTCCTC  N  79 CCCCTTTTCCCC  N 
64 CTCCTCCTCCTC  N  80 CCCCTCCTCCCC  N 
65 CTCCCTTCCCTC  N  81 CCCCCTTCCCCC (8,8), (9,7) Y 
66 CTCCCCCCCCTC  N  82 CCCCCCCCCCCC (11,0) Y 
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Table 3.2. Validation results of the initial models using n-gram position-specific vector 
(psv) and term frequency vector (tfv). Note that an empty cell indicates there were no true 
positives. The evaluation factors were obtained by 10-fold cross-validation in the training 
set. In general, SVM showed poor performance (especially with tfv). Notice that none of 
models with unigram (n = 1) tfv can classify any recognition sequences in the training set 
correctly. The best performances in terms of F1-score or S’ are highlighted.  
 

 psv (n = 1) psv (n = 2) psv (n = 3) 

 LR ANN SVM LR ANN SVM LR ANN SVM 

Optimization g = 25   g = 2 

g = 5 

N
l
=1, 

N
h
=30 

 g = 2 
g = 1 

N
l
=1, N

h
=38 

g = 1 

Precision 0.286   0.357 0.222  0.278 0.200 0.143 

Recall 0.222   0.556 0.222  0.556 0.222 0.111 

F1-score 0.250   0.435 0.222  0.370 0.211 0.125 

S’ 0.577   0.717 0.564  0.690 0.557 0.515 

 

 tfv (n = 1) tfv (n = 2) tfv (n = 3) 

 LR ANN SVM LR ANN SVM LR ANN SVM 

Optimization    g = 1   g = 1.5 
g = 1 

N
l
=2, N

h
=4 

 

Precision    0.200   0.500 0.500  

Recall    0.111   0.111 0.333  

F1-score    0.143   0.182 0.400  

S’    0.529   0.549 0.646  
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Table 3.3. DNA sequences predicted by our classifiers and tested using ATP separation. 
‘Y’ denotes recognition sequence and ‘N’ denotes non-recognition sequence. The 
superscript ‘*’ denotes marginal sequence due to its low yield or selectivity. 

Initial models 1st retrained models 

Name Sequence CNT 
species 

Clas
s Name Sequence CNT 

species 
Clas
s 

S01 CTT CCC CCC CCT (7,3) Y S11 TTT TCC CCC CTC  N 
S02 CTT CCC CCC CCC  N S12 TTT CCC CCC CTC (7,5) N* 
S03 TTT CCC CCC CCC (6,4) Y S13 TTT TTC CCC CCT (9,6) N* 
S04 TTT CCC CCC CCT  N S14 TTT TTT CCC CCT (10,2) Y 

S05 TTT TCC CCC CCT (10,4) Y S15 CCC CCC CCC 
CTC (8,5) N* 

S06 TTT TCC CCC CCC (8,5) Y S16 TTT CTC CCC CCT (7,6), (6,5) Y 

S07 CTC CCT CCC CCT (7,6) N* S17 CCC CCC CCC 
CCT (8,5) N* 

S08 CCT TTC CCC CCT  N S18 CCC CCC CCC TTC (11,0) Y 
S09 CCT TCC CCC CCT (9,7) N* S19 TTT TTC CCC CCC (8,5) Y 
S10 CCC CCT CCC CCT (7,5) Y S20 TTC TCC CCC CCT (8,5) Y 
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Figure 3.3. Absorbance spectra of SWCNT species purified by ATP using new sequences 
and the starting CoMoCAT (EG150X) mixture. The SWCNT species have been identified 
by their E11 and E22 peak positions (M11 for metallic species).  Each spectrum is normalized 
at the E11 peak position (M11 for metallic species) and the baseline level of each spectrum 
was manually offset for visual clarity. 
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Figure 3.4. Absolute prediction error heat map of (a) initial models and (b) 1st retrained 
models vs. experimentally identified sequences. Total prediction errors were calculated 
using eq (3.1) then normalized by twice the number of instances (= 2 ×10): For the initial 
models with psv, values are 0.4, 0.4, 0.395, 0.4, 0.38, and 0.4 for unigram LR, bigram LR 
and ANN, trigram LR, ANN, and SVM, respectively. For the initial models with tfv, values 
are 0.479, 0.564, and 0.423 for bigram LR, trigram LR and ANN, respectively. For the 1st 
retrained models with psv, values are 0.638, 0.605, 0.763, 0.394, 0.8, 0.42, 0.405, and 0.6 
for unigram LR and ANN, bigram LR, ANN, and SVM, trigram LR, ANN, and SVM, 
respectively. For the 1st retrained models with tfv, values are 0.6, 0.434, 0.317, and 0.324 
for bigram LR and ANN and trigram LR and ANN, respectively. Overall, ANN for both 
trigram psv and tfv of initial models and LR and ANN with trigram tfv of 1st retrained 
models showed the best performance (highlighted with blue box). 
 

 

3.3.2. Retrained models – Training, validation, and prediction 

In the second round of learning, the training set was updated by including newly 

determined sequences by ATP separation, and the models were retrained. Ten new 

recognition sequences (S11–S20) were predicted and tested experimentally.  

Although most retrained models showed improved validation performance (Table 3.4), the 

actual prediction performance of 50% remained the same as that of the initial models (Table 

3.3, Figure 3.3). Note that only one sequence was determined as non-recognition sequence 
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and the remaining 4 were deemed marginal (Table 3.3). This indicates that the retrained 

models performed somewhat better than initial models but not well enough to drastically 

increase the prediction efficiency. Four of ten predicted sequences interestingly have an 

ability to purify (8,5) species. Evidently, our retrained models are likely to predict 

recognition sequences for (8,5) species.   

 

Table 3.4. Validation results of 1st retrained models using n-gram position-specific vector 
(psv) and term frequency vector (tfv) 

 psv (n = 1) psv (n = 2) psv (n = 3) 

 LR ANN SVM LR ANN SVM LR ANN SVM 

Optimization g = 1.1 
g = 1 

N
l
=2, N

h
=6 

 g = 3 

g =1.7 

N
l
=3, 

N
h
=23 

g = 1 g = 7 
g = 2.2 

N
l
=3, N

h
=43 

g = 2 

Precision 0.200 0.304  0.308 0.467 0.462 0.300 0.400 0.364 

Recall 0.143 0.500  0.286 0.500 0.429 0.429 0.429 0.286 

F1-score 0.167 0.378  0.296 0.483 0.444 0.353 0.414 0.320 

S’ 0.520 0.647  0.585 0.699 0.669 0.625 0.657 0.598 
 

  

 tfv (n = 1) tfv (n = 2) tfv (n = 3) 

 LR ANN SVM LR ANN SVM LR ANN SVM 

Optimization    g = 1.5 
g = 1 

N
l
=1, N

h
=6 

 g = 1 
g = 1 

N
l
=1, N

h
=6 

 

Precision    0.500 0.500  0.714 0.400  

Recall    0.071 0.214  0.357 0.286  

F1-score    0.125 0.300  0.476 0.333  

S’    0.529 0.588  0.666 0.604  
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3.3.3. Design of improved models 

In the first round, to find optimal models, we used cross-validation.  Although 

cross-validation is designed to minimize overfitting, there is still some concern because the 

validation set is not independent of the training set. In the second phase, we estimate the 

model performance based on the prediction errors calculated using a newly tested sequence 

set that is independent of training sets.  

 

Figure 3.4b shows the prediction errors of the retrained models. In general, the models with 

tfv gave smaller error than models with psv. For the models with psv, bigram ANN and 

trigram ANN and LR perform much better (with the error of 0.394, 0.405, and 0.42, 

respectively) than others. Among the models with tfv, trigram LR and ANN showed smaller 

error of 0.317 and 0.324.  

Although the prior models already showed very good performance, we explored 

improved training methods to further enhance the prediction accuracy in next round of 

experiments. First, we selected and focused on tfv, for its ability to handle sequences of 

different lengths.  Next, we dropped the use of SVM since validation results revealed that 

SVM models are generally poor (Table 3.2 & Table 3.4 and Figure 3.4). We also found 

that the models with small n-gram of psv and tfv showed poor performance (Table 3.2 & 

Table 3.4), so higher n-gram (n = 3-5) tfv were examined in 2nd retrained models.    For 

ANN models, in most cases we found best performance with a single layer. Additionally, 

given the size of our training set, we restricted Nl to be single and Nh to be no larger than 

twice the size of the feature vector to avoid overfitting.  
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The overall optimization was previously performed on the precision because it is 

more important to classify actual non-recognition sequence incorrectly (i.e., low FP) than 

to classify actual recognition sequence incorrectly (i.e., high FN) when we test the 

predicted sequences in the lab. However, a better indicator of model quality should account 

for both FP and FN, so F1 and S scores were subsequently used for optimization. 

Furthermore, additional feature construction methods were examined as described in the 

section 3.2.2.  

The motif were searched by the motif-mining tool, MERCI,32 with the minimal 

occurrence frequency for positive sequences fP and the maximal occurrence frequency for 

negative sequences fN. It is worth noting that the motifs identified when fN is set to zero 

(motifs are absent from the negative set) contained at least 8 bases (Table 3.5). This may 

indicate that the minimum length of the recognition sequence pattern is 8 bases, which is 

consistent with the fact that most recognition sequences found so far contain 8 bases or 

more. Furthermore, earlier computation studies have shown that the ssDNA/SWCNT free 

energy can be minimized by maximizing base/SWCNT stacking and inter-base hydrogen 

bonding, which requires ssDNA of sufficient length that can wrap a nanotube at least one 

round.21 The motif discovery results would suggest that at least 8 bases are required to wrap 

around SWCNT tightly. Longer motifs may play a stronger role in distinguishing 

recognition sequences, but considering that our DNA length is 12 bases, the motif should 

not be too long. Using 8 bases motifs allows only four degrees of freedom which can result 

in too limited a search. Thus, we set the maximum motif lengths to be 5 to 7 for recognition 

motifs. For non-recognition motifs, there are more short motifs. When the maximum motif 
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length is 6 or more, the number of motifs with 𝑃(𝑁|𝑚𝑜𝑡𝑖𝑓) = 1 is larger than 10, and the 

top 10 motifs cannot be selected. Thus, the maximum motif lengths were limited to 5 bases 

for non-recognition motif. The motifs were ranked based on their conditional probabilities 

of a recognition or non-recognition sequence given motif, 𝑃(𝑌	𝑜𝑟	𝑁|𝑚𝑜𝑡𝑖𝑓), shown in 

Figure 3.5. Top 10 motifs for both recognition and non-recognition motifs were chosen for 

use as features, listed in Table 3.5. 

 
 
 
 
Table 3.5. Base motifs used for recognition and non-recognition classes. 

Recognition motifs Non-recognition 
motifs 

Lrec ≤ 5 Lrec ≤ 6 Lrec ≤ 7 Lnon-rec ≤ 5 

CCCCC TCCCCC CCCCCTT CTCTT 
TTCCC CCCCC TCCCCCT CTTCT 
CCCC CCCCTT TTCCCCC TCCTT 
TCCCC TTTCCC CCCCTTC TCTT 
C_CCC TTCCCC CCCCTTT TCTTC 
CCC CCCCCT CCTCCCT TCTTT 
CCCTT CCCCCC TTCTCCC TTCCT 
CCCCT TT_CCC TTTCCCC C_TCT 
TCCC TTCCC TTTTCCC CCTCT 
T_CCC CCCC TCCCCC CTTTT 
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Figure 3.5. Top ranking base motifs with varying maximum length of motifs from 5 to 7 
for recognition sets and maximum length of 5 for non-recognition set. 
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Finally, we retrained the models using LR and ANN with simple tfv, combined or 

segmented tfv, and motif-based features using the updated training set (Table 3.6 and 

Figure 3.6). 

Top five models that gave the highest F1–scores are listed in Table 3.7. In general, ANN 

showed better performance than LR, and trigram tfv and motif-based features showed high 

performance.  ANN with simple trigram tfv (tfv3) shows the best performance, while the 

combined bigram & trigram tfv (tfv2-3) and bi-segmented trigram tfv (tfv2,3) show third best 

performances. It is interesting that combined or segmented trigram tfv do not perform better 

than simple tfv, even though they already contain simple tfv inside. This implies that 

irrelevant features can cause poor performance, which leads to the need for a saliency 

analysis.  
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Table 3.6. Validation results of the 2nd retrained models with different input feature 
construction methods. Top two models with each input feature construction methods were 
listed. The evaluation factors were obtained by 10-fold cross-validation in the training set. 
Algorithms Feature Optimization Precision Recall F1-score S’ 

LR 
tfv4 g = 1.3 0.474 0.474 0.474 0.677 
tfv5 g = 1 0.385 0.526 0.444 0.667 

ANN 
tfv3 Nh = 11, g = 1 0.600 0.632 0.615 0.768 
tfv4 Nh = 6 0.444 0.421 0.432 0.650 

LR 
combined tfv1-2-3  0.533 0.421 0.471 0.668 
combined tfv2-3  0.533 0.421 0.471 0.668 

ANN 
combined tfv2-3 Nh = 4 0.556 0.526 0.541 0.710 
combined tfv1-2-3 Nh = 9 0.529 0.474 0.500 0.689 

LR 
segmented tfv2,3  0.471 0.421 0.444 0.646 
segmented tfv2,4  0.385 0.526 0.444 0.704 

ANN 
segmented tfv2,3 Nh = 9 0.556 0.526 0.541 0.710 
segmented tfv2,2 Nh = 2 0.450 0.474 0.462 0.676 

LR 
motif (Lrec ≤ 6)  0.480 0.632 0.545 0.770 
motif (Lrec ≤ 5)  0.429 0.474 0.450 0.675 

ANN 
motif (Lrec ≤ 7) Nh = 4 0.529 0.474 0.500 0.678 
motif (Lrec ≤ 6) Nh = 3 0.500 0.421 0.457 0.647 

 
 

 
Table 3.7. Top five 2nd retrained models showing best performance  

Algorithms Feature Optimization Precision Recall F1–score 

ANN tfv3 Nh = 11, g = 1 0.600 0.632 0.615 
LR motif (Lrec ≤ 6)  0.480 0.632 0.545 
ANN combined tfv2-3 Nh = 4 0.556 0.526 0.541 
ANN segmented tfv2,3 Nh = 9 0.556 0.526 0.541 
ANN combined tfv1-2-3 Nh = 9 0.529 0.474 0.500 
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Figure 3.6. ROC curve performances of top two (a) LR models and (b) ANN models with 
each input feature construction methods. In general, ANN models show higher AUC than 
LR models.  
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3.3.4. Saliency analysis and overall observations 

The saliency measures can be used to identify important input features.44 Figure 3.7 

shows that the saliency of segmented tfv4,3 ANN models is high in the features of the first 

and last segment (i.e., at the ends of the sequences).  Previous studies on the displacement 

of ssDNA by surfactants26,27 suggest that the difference between recognition and non-

recognition sequences is due to structural differences at sequence ends. Saliency results 

support that experimental finding.  

Saliency also can be used to study model performance by examining the number of 

irrelevant features, defined by when the standard deviation is larger than the mean value.  

We rank models by the ratio of the irrelevant to total features. The top 4 models with lowest 

irrelevant feature ratio are tfv3, motif-based feature with Lrec = 7, the combined tfv2-3, and 

tfv1-2-3. These four are also the top 4 ANN models based on the validation results.  

Figure 3.8 shows the n-gram frequency of the final training set.  Recognition 

sequences evidently contain higher frequency of ‘CCC’, especially in the newly discovered 

sequences (red box). This is consistent with a previous experimental finding.28 
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Figure 3.7. Average of normalized saliency of the feedforward ANN models with 
segmented tfv2,2 (top left), tfv2,3 (top right), and tfv4,3 (bottom) calculated by eq. (3.5b) in 
Appendix. Error bar represents standard deviation.   
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Figure 3.8. Heatmap analysis of relative enrichment of trigram terms in recognition 
sequences. The horizontal axis represents each of the eight 3-gram words.  The vertical 
axis represents individual experimentally tested sequences.  Those inside the red rectangle 
are new sequences discovered in this work.  Grey in the rightmost column represents a 
label of ‘Y’, i.e., that of a recognition sequence. The heatmap itself displays the frequency 
of occurrence of that word in that particular sequence.  
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3.4.     Conclusions 

The DNA/SWCNT hybrid system comprises a vast set of sequence/(n,m) 

combinations. A small fraction of these form recognition pairs that allow separation of 

individual (n,m) SWCNT from a mixture.  Our considerable knowledge about their 

structure and thermodynamics has not previously translated into an ability to predict 

recognition sequences.  Here, we systematically applied machine learning techniques to 

predict recognition sequences. For simplicity and illustrative purposes, we restricted 

ourselves to a 12-mer sequences with a 2-letter alphabet (C & T).  ML models were trained 

on available data, and re-trained twice based on new experimental data.  We showed a 

remarkable increase in the frequency of recognition sequences from 10% in the original 

training set to >50% in the model-predicted sequence sets.   

To design an improved model, detailed analyses were carried out. Performance was 

measured in terms of evaluation parameters (F1–score) by cross-validation and prediction 

errors on the newly tested sets. Often model performance depends strongly on choice of 

sequence representation by input features.  We chose a number of feature representation 

methods including tfv, psv, and mixed models.  These methods have competing advantages 

when it comes to capturing information embedded in a set of sequences.  When predicting 

new sequences to be tested experimentally, we chose on the basis of consensus of a number 

of methods, on the notion that the intersection of predictions made by different models 

would mitigate the limitations of our data set size and feature encoding schemes.   

Among individual models, prediction performance of the tfv models was generally 

better than psv; trigram tfv models showed smaller prediction error. Based on these 
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analyses, we directed attention to ANN and LR using tfv. We also explored new input 

feature construction methods such as combined or segmented tfv, and motif-based features. 

We obtained highly encouraging models that showed an improved F1–score of ~ 27% when 

compared to the best previous model.  In general, the ANN algorithm in combination with 

trigram tfv showed the best performance.  

As aids to model interpretation, we investigated the discovered motif and feature 

saliency. We found that the top ranked motifs found with no motif-length limitation 

contained at least 8 bases. This result may suggest that at least 8 bases are needed to tightly 

wrap around SWCNT to exhibit a specific binding characteristic. According to the saliency 

analysis, the sequence at the ends contributes more to the classification, consistent with 

experiment.26,27  

One may question the representation of recognition DNA sequence prediction as a 

binary classification problem, since each pairs with a different SWCNT.  Success despite 

this assumption, indicates that recognition sequences may share common features although 

individual recognition sequences recognize a particular (n,m) species.  Although our model 

is promising, we believe that there is considerable room for improvement. For example, 

recognition sequences differ in terms of selectivity, represented by purification yield.  

Some special sequences are known to be capable of separating enantiomers28.  Yet, in the 

current model, these are all assigned the same label/score.   

These considerations suggest future research in two major directions: one is to 

develop resolution-based multi-level classification.  For example, multi-level classification 

would allow us to capture improvement in the model between the first and second rounds 
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of experiment by allowing cases labeled as N* to be accounted for as their own level of 

classification.  The other is the study of methods for the interpretability of ML models such 

as saliency analysis.  More broadly, bio/nano hybrid materials made of inorganic 

nanostructures and sequence-defined polymers such as DNA and peptides represent an 

emerging class of materials that have many promising applications. Design of this new 

class of material inevitably has to solve the challenging problem of efficient exploration of 

a vast sequence space.  The learnings we obtained in this work should provide some insight 

to the more general sequence selection problem.  
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3.7. Appendix 

3.7.1. Scoring Factor, S 

We have introduced a new scoring factor, S: 

𝑆 = exböø
S

+ eøböx
*bS

        (3.2) 

where p is the frequency (estimate of probability) of the positive instances (i.e., recognition 

sequence) in the original data set. This is based on the consideration that TP and FN are 

drawn from positive instances with probability p, and TN and FP from negative instances 

with probability 1–p, and a correct (incorrect) classification should gain ±1 point, 

respectively. The scaling by probability is important, because it gives more credit 

(punishment) to the correct (incorrect) prediction of less frequent and more interesting 

events. Here, the probability p is approximated by exqöø
ø´

 where 𝑁e is the number of total 

instances (𝑁e = 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁).  Then, eq (3.2) can be rewritten in terms of recall 

and false positive rate (𝐹𝑃𝑅 = öx
öxqeø

) as 𝑆 = 2𝑁e(𝑅 − 𝐹𝑃𝑅). Finally, the factor S is 

normalized as eq (S2), so that it can be compared directly with the F1 score.  

𝑆s = û/+ø´q*
+

= �böx�q*
+

       (3.3) 
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3.7.2. Saliency Analysis 

It is well known that saliency measures in feedforward ANN can be used to assess a 

feature’s relative importance.*†‡ The higher a saliency value, the stronger the relationship 

between input feature and output.  

Derivative-based saliency measures were developed by Ruck et. al.* in which the 

sensitivity of the network output to its input feature can be expressed by the derivative of 

an output with respect to a given input. When the sigmoid function is used for a 

feedforward single hidden layer ANN, the derivative is 

üý�
üþâ

= 𝑧>(1 − 𝑧>)∑ 𝑤�>+ 𝑥�* (1 − 𝑥�* )
øO
�"* 𝑤c�*     (3.4) 

where 𝑧> is the output node i in the output layer, 𝑥c is the input feature k, 𝑥�*  is the output 

of node m in hidden layer, 𝑤c�*  is the weight connecting node k in the input layer to node 

m in the hidden layer, 𝑤�>+  is the weight connecting node m in the hidden layer to node i in 

the output layer, and 𝑁( is the number of nodes in the hidden layer.     

The integrated saliency is defined by 

𝛬c = ∑ ∑ ∑ üý�
üþâ

(𝐱,𝐰)þâ∈�â>𝐱∈𝐒       (3.5a) 

where 𝐱 is the n-dimensional input features, 𝐒 is the set of p training vectors, 𝐰 is the 

weights in the network, and 𝐷c is a set of R points for input 𝑥c which will be sampled.* 

 
* W. Ruck, D., Rogers, S. & Kabrisky, M. Feature Selection Using a Multilayer Perceptron. 
Journal of Neural Network Computing 2, (1993). 
†  Belue, L. M. & Bauer, K. W. Determining input features for multilayer perceptrons. 
Neurocomputing 7, 111–121 (1995). 
‡ Steppe, J. M. & Bauer, K. W. Feature saliency measures. Comput. Math. with Appl. 33, 109–126 
(1997). 
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Here, üý�
üþâ

(𝐱,𝐰) can be obtained by eq (3.4). To compare the errors in different models, eq 

(3.5a) is normalized by the total number of the derivatives,  

𝛬c(((( =
)â
�S�

         (3.5b) 

The feedforward single layer ANN was trained at least 101 times with randomly initialized 

weights, from which the average of normalized saliency 𝛬*c was obtained.  

The averaged saliency of top two ANN models for each feature are shown in Figure 3.7, 

3.9, and 3.11.  (Positive saliency indicates that the input feature is related to the recognition 

class; negative saliency indicates it is related to the non-recognition class.)  

Figure 3.11 shows the normalized saliency of ANN with motif-based features models. 

Generally, saliencies of the recognition/non-recognition motifs are positive/negative. Also, 

longer motifs tend to show higher absolute values of saliency, suggesting that the longer 

motifs have more significant information. In general, the non-recognition motifs show low 

saliency values compared to the recognition motifs even though the conditional 

probabilities of non-recognition motifs are much higher during motif selection (Figure 3.5). 

We suggest that there are more of the non-recognition motifs than the recognition motifs 

in entire motif space; or, the recognition motifs are highly relevant in determining the 

recognition sequences as compared to non-recognition motifs. This can explain why few 

recognition sequences are found in random searches of DNA library.  
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Figure 3.9. Average of normalized saliency of the feedforward ANN models with trigram 
tfv (top) and 4-gram tfv (bottom) calculated by eq. (3.5b). Error bar represents standard 
deviation.   
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Figure 3.10. Average of normalized saliency of the feedforward ANN models with 
combined tfv2-3 (top) and tfv1-2-3 (bottom) calculated by eq. (3.5b). Error bar represents 
standard deviation.   
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Figure 3.11. Average of normalized saliency of the feedforward ANN models with motif-
based feature (Lrec < 6) (top) and (Lrec < 7) (bottom) calculated by eq. (3.5b). Error bar 
represents standard deviation.  The first ten sequences are recognition motifs while the 
second ten are non-recognition motifs.  

 

 

3.7.3. Probability of Finding Recognition Sequences 

Based on our initial training set, the population of recognition sequence is ~ 0.1  

(9 recognition sequences and 73 non-recognition sequences). Suppose that the population 

is a normal distribution with standard deviation, 𝜎 : 𝑁(𝜇, 𝜎)  where 𝜇  is 0.1 and 𝜎  is 

assumed to be 0.1 (black dotted line in Figure 3.12). Note that the standard deviation might 

be much smaller than 0.1 because we set a high standard when defining the recognition 
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sequence, however, to show the extreme case, we set the standard deviation to a relatively 

large value (0.1). Similarly, the population of the recognition sequence in the predicted set 

is 0.5 (5 recognition sequences and 5 non-recognition sequence for each set predicted by 

initial and 1st retrained model), and the population can be presented as 𝑁(0.5, 0.1), shown 

as red solid line in Figure 3.12.  

Suppose we randomly sample 10 test sequences in the entire sequence space for 12 mer 

C/T library (212). According to the central limit theorem, the mean is the same and the 

standard deviation of the sampling distribution is the value obtained by dividing the 

standard deviation of the population, 𝜎, by the sample size, n, so the sampling distribution 

is K𝜇, Ù
√�
Q	(blue dashed line in Figure 3.12). As shown in Figure 3.12, the random sampling 

distribution is much narrower than that of the training set and is far from the population in 

the predicted set by our models. This demonstrates that it is very unlikely that 50% success 

rate could be achieved by random sampling.  
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Figure 3.12. Probability density of the recognition sequence population in training set 
(black dotted line) and when ten sequences are randomly drawn from the population of 
training set (blue dashed line), and the population in predicted set (red solid line) 
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3.7.4. MERCI* Command Example 

perl MERCI.pl -p TC12_pos.txt  

-n TC12_neg.txt  

-g 1  

-gl 12  

–k ALL  

-o TC12_rec_motif_l7  

-fp 1  

-fn 83  

-l 7  

 

Here, ‘-p filename’ and ‘-n filename’ set the file with the positive (recognition) and 

negative (non-recognition) sequences. The file should be in Fasta format. ‘-k value’ sets 

the number of motifs requested. ‘ALL’ means all the possible motifs requested. ‘-g value’ 

and ‘-gl value’ set the maximal number of gaps and maximal gap length. ‘-o file’ set the 

output file where motifs will be saved. ‘-fp value’ and ‘-fn value’ set the minimal frequency 

for the positive sequences fP and the maximal frequency for the negative sequences fN, 

respectively. The frequency should be an absolute number between 0 and the total number 

of positive (negative) sequences. We set fP = 1 and fN = 83 (the number of non-recognition 

sequences in the training set) when we discover recognition motifs, so that all the possible 

recognition motif can be searched. When we discover non-recognition motifs, we use fP = 

10 and fN = 10. This is because it is seen that we have more non-recognition motifs based 

on the portion on non-recognition sequences in the training set, so limited fP and fN could 

 
* Vens, C., Rosso, M.-N. & Danchin, E. G. J. Identifying discriminative classification-based motifs 
in biological sequences. Bioinformatics 27, 1231–1238 (2011). 
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provide more robust motifs. ‘-l’ sets the maximal length of motif. In this study, we vary 

the maximal length of motif, l, from 5 to 7 for recognition sequences and set to 6 for non-

recognition sequences. 

 

3.7.5. WEKA* Command Example - Artificial Neural Network 

java weka.classifiers.functions.MultilayerPerceptron  

-L 0.3  

-M 0.2  

-N 500  

-E 20  

-H 11  

-S 0  

-t ./trainingSet/TC_tfv_3gram.arff  

-threshold-file ./WEKAresults/roc/tfv3/TC_tfv_3gram_seed0.arff 

> ./WEKAresults/tfv3/ TC_tfv_3gram_seed0 

 
First, specify the learning algorithm (‘weka.classifiers.functions.MultilayerPerceptron’ for 

ANN / ‘weka.classifiers.functions.Logistic’ for LR / ’weka.classifiers.functions.SMO’ for 

SVM). ‘-L value’, ‘-M value’, ‘-N value’, ‘-E value’ set the learning rate, momentum, the 

number of epochs, and the number of consecutive increases of error allowed for validation 

testing, respectively. ‘-H value’ sets the number of hidden nodes in a single hidden layer 

that was optimized manually. ‘-S value’ sets the value used to seed the random number 

 
* Witten, I. H., Frank, E. & Hall, M. a. Data Mining: Practical Machine Learning Tools and 
Techniques. Annals of Physics 54, (2011) 
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generator which was varied to get randomly initialized models required for saliency 

analysis. ‘-t filename’ sets the training file. ‘-threshold-file filename’ set the file to save the 

threshold data required to obtain ROC curve. ‘> filename’ in the last sentence saves the 

model parameters and cross-validation results as the filename. 

The models using LR and SVM can be implemented in a similar way.  

 

3.7.6. Automated machine learning packages (Auto-WEKA *  and h2o † 

AutoML) 

Even though we presented results based on our choice of three algorithms and manual 

optimization of hyperparameters in the main manuscript, we also tried automated ML 

packages to explore all models and adjust the hyperparameters. To be consistent with the 

models used throughout this work, we used the Auto-WEKA package. In addition, to 

compare with the WEKA package, we used the “h2o” AutoML package. Both packages 

return choices for algorithms and hyperparameters. We tested both packages with the 

trigram tfv of the training set that was used for the 2nd retrained model. 

First, the Auto-WEKA searched more than 3,000 different models through the joint space 

of WEKA’s learning algorithms and their hyperparameters to maximize F1-score. Each 

model was evaluated by 10-fold cross-validation. The results show that the locally 

weighted learning (LWL) model using repeated incremental pruning to produce error 

 
* Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F. & Leyton-Brown, K. Auto-WEKA 2.0: Automatic 
model selection and hyperparameter optimization in WEKA. Journal of Machine Learning Research 17, 
(2016). 
† Aiello, S., Eckstrand, E., Fu, A., Landry, M., and Aboyoun, P. Machine Learning with R and H2O. 
(http://h2o.ai/resources/, 2018). 
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reduction (RIPPER) with reduced feature set by feature selection showed the best 

performance (F1-score = 0.649). This value is comparable to the best values we obtained 

using manually optimized ANN models.  This provides some extra assurance that our 

manual search has resulted in a near-optimal choice of model and hyperparameters.  

However, Auto-WEKA results could not be reproduced on multiple executions, nor even 

by using the optimized hyperparameter setting for the chosen “best” model.  Given this 

finding and the lack of transparency, we much prefer to present results based on our choice 

of three algorithms and “manual” optimization. 

Next, the h2o AutoML package was used to compare with the Auto-WEKA results. The 

10-fold cross-validation results shows that the best model is ANN (F1-score = 0.688). 

However, the ANN model has too many hidden nodes (200), which strongly implies it is 

overfitting, given the limited size of our dataset. (The default value of the number of hidden 

nodes is 200 and there is no option to set the hyperparameter range in the h2o AutoML 

package.)  

Overall, we believe that our model in the main manuscript is well-optimized and more 

reliable than the models produced by the automated ML packages.  

 

3.7.7. Link to Public Repository: 

The following link is to a public repository where we provide a collection of scripts for 

translation from sequence data to features.  We have also included details and typical 

example scripts for WEKA, MERCI, and code for saliency analysis. 

https://bitbucket.org/jagotagrouplehigh/dna_swcnt_ml/ 
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Chapter 4 : DNA-Wrapped Carbon Nanotubes via Methanol-

Aided Replacement of Surfactants* 

 

DNA/SWCNT hybrids have attracted recent interest due to their ability for SWCNT 

separation and their use as promising agents in biosensing and bioimaging applications. 

In order to perform such SWCNT separation and application development, special DNA 

sequences are needed that have an ability to recognize specific chiral SWCNT, called 

recognition sequences. So far, sequence screening has relied on various sorting methods 

which are costly and time-consuming. Recently, a new simple, rapid way to produce 

DNA/SWCNT hybrids was reported using replacement of strong surfactant on SWCNT by 

DNA, aided by methanol. However, little is known about the nature of the exchange 

mechanism. Here, we investigated the kinetics of the replacement process aided by 

methanol. A mechanistic model was proposed to analyze and extract the activation energy 

of the exchange process. We found that some recognition sequences have significantly 

different activation energy for different species of SWCNT, while some sequences do not. 

The results suggest that the replacement process does not always produce the same 

structure of DNA/SWCNT that was produced by traditional direct sonication. In addition, 

for some sequences, it takes too long to reach the equilibrium wrapping configuration, 

suggesting that the replacement method might not be suitable to make DNA/SWCNT 

 
* This work has been performed in collaboration with Dr. Arjun Sharma of Lehigh University, 
Guillaume Noetinger of ESPCI (Paris, France), and Dr. Ming Zheng of National Institute of 
Standards and Technology.  
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hybrids for these sequences. Nevertheless, our results suggest that the methanol-aided 

replacement process not only can reduce preparation time for DNA/SWCNT dispersion, 

but also could be useful as a promising low-cost, rapid way to identify recognition 

sequences.   
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4.1  Introduction 

Single-wall carbon nanotubes (SWCNTs) are tubular nanostructures obtained 

conceptually by rolling a two-dimensional graphene sheet.1 The structure of a given 

SWCNT is uniquely defined by a chiral vector that specifies how the graphene sheet is 

rolled into a tube. The chiral vector is typically expressed by chiral indices (n,m), 

representing the number of steps taken along each of two unit cell vectors.1 Since the 

electrical and optical properties of SWCNTs are highly dependent on their chirality, its 

control is significant in many applications.2,3 Previous studies have reported that certain 

special short single-stranded DNA (ssDNA) sequences have recognition ability toward 

partner  SWCNT species.4,5 Furthermore, ssDNA-wrapped SWCNT (DNA/SWCNT) have 

attracted considerable interest not only for their ability to be dispersed and sorted in 

aqueous solution, but also for the sensitivity of their optical properties to molecular 

analytes, which enables their use as promising agents in biosensing and bioimaging 

applications.6–9  

In order to utilize DNA/SWCNT in applications, it is necessary to build a well-

identified DNA/SWCNT library. Since the DNA sequence library is practically infinite in 

size, a search strategy is required. Significant effort has been expended to discover 

recognition sequences – SWCNT pairs, and significant progress has been made in 

understanding the underlying structure and thermodynamics of these hybrids.10–17 

Furthermore, a recent study has reported remarkable improvement in success rate of 

finding recognition sequences with a new approach using machine learning techniques.18 

Nevertheless, the pace of the process is still severely limited by experimental generation of 
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DNA/SWCNT samples. In particular, preparation of DNA/SWCNT via direct sonication 

of DNA and SWCNT mixtures19 followed by a centrifugation for removing impurities is 

highly laborious and time-consuming. Recent studies have established a new technique for 

preparing DNA/SWCNTs by replacing surfactants in methanol/water solution (Figure 

4.1).20,21 It sped up the preparation with high SWCNT recovery by carrying out the 

sonication and centrifugation once with a surfactant followed by the replacement of the 

surfactant by any chosen DNA sequence. However, the nature of exchange mechanism is 

not fully understood at this time. For example, the DNA/SWCNT hybrids prepared via 

direct sonication are likely to form equilibrium structures unless the constituents are 

damaged. However, it is not clear whether the methanol aided surfactant replacement 

produces equilibrium structures immediately or over a period of time. Furthermore, the 

final structure of DNA/SWCNT can be dependent on the reaction conditions such as the 

concentration of methanol or DNA and temperature, which is directly related to the 

reaction rate.  

In this study, we investigated the kinetics of the replacement process of several 

DNA sequences and SWCNTs. We used a surfactant molecule, sodium deoxycholate 

(SDC), for initial nanotube dispersion, then replaced it by DNA, aided by the addition of 

MeOH. By monitoring the kinetics using optical spectroscopy, our aim was to determine 

the relative binding characteristics for ssDNA on SWCNTs. A mechanistic model was 

developed for desorption of SDC and adsorption of DNA on the nanotube surface. The 

activation energy for the replacement process was extracted to quantitatively compare the 

binding characteristics for each DNA on SWCNT. We found that the replacement process 
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is highly sequence- and chirality-dependent. This finding shows that DNA/SWCNT 

preparation aided by MeOH could be a low-cost and rapid way to identify 

recognition/resolving sequences for sorting and sensing applications.   

 

 

Figure 4.1. Schematic illustration for the methanol-aided exchange process of surfactant 
on the surface of SWCNTs by DNA  
 

4.2 Materials and Methods 

4.2.1  Materials  

Cobalt−molybdenum catalyst (CoMoCAT, SG65i grade) SWCNT was purchased from 

Southwest Nanotechnologies. Single-stranded DNA (ssDNA) was obtained from 

Integrated DNA Technologies (IDT). Sodium deoxycholate (SDC) (BioXtra, >98%), and 

methanol (MeOH) were acquired from Sigma-Aldrich and used without modification. The 

DNA sequences were chosen were among those reported as recognition sequences. 

Specifically, (TAT)4, (TTA)4TT, and (CCA)10 are recognition sequences for (6,5), (8,3), 
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and (9,1), respectively; they have also been studied in the exchange reaction of 

DNA/SWCNT by sodium dodecylbenzenesulfonate (SDBS). Other sequences, 

(TTA)2(ATT)2 and (TG)2T4(GT)2, were chosen as the 12mer recognition sequences for (8,3) 

and (9,1), respectively. (CCA)4 and (TAT)10 were additionally examined to investigate the 

effect of sequence length.  

 

4.2.2  Sample Preparation*  

The CoMoCAT SWCNTs suspended in a 10 g/L of SDC solution were sonicated 

using tip sonicator for 1 h at a power of 1 W/mL. The dispersion was then centrifuged for 

1 h at 1885 rad/s (Beckman J-2 centrifuge, JA-20 rotor) to remove SWCNT aggregates and 

residual impurities, and the supernatant was recovered.21 

 

4.2.3  Exchange Procedure  

SDC/SWCNT dispersion was diluted such that the final concentration of SWCNT 

was 5 mg/L. DNA was then added into the SDC/SWCNT dispersion in a 40:1 weight ratio 

of DNA to SWCNT. The DNA and SDC/SWCNT mixture was placed in a water bath at a 

chosen temperature. The volume of methanol was chosen to end up with various 

concentration (20 to 50 v/v %). The desired amount of methanol was held in a quartz 

cuvette at the same temperature. Once the temperature of the two solutions stabilized, the 

DNA and SDC/SWCNT mixture was added to the cuvette and mixed gently using a pipette.  

 
* The sample of SDC dispersed SWCNT was prepared by Dr. Ming Zheng at National Institutes of 
Standards and Technology in Gaithersburg, MD. 
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4.2.4  Spectroscopy Measurements*  

It has been reported that peak position in absorbance and intensity in fluorescence are very 

sensitive to change in local environment of SWCNT. This allows SWCNT to sense changes 

in the material wrapping it.22 In this manner, the peak shift in absorbance and intensity 

changes in fluorescence can be used as a measure of DNA or SDC coverage, which is 

directly correlated to the progress of the replacement reaction.  

The absorbance spectrum of the sample was monitored immediately after the addition of 

the mixture of DNA, MeOH, and SDC/SWCNT dispersion and then at 2 min intervals in 

the range from 200 to 1100 nm using a UV/vis/NIP spectrophotometer (Varian Cary 50) at 

various temperatures, 15°–35 °C. A prominent peak was observed at 983 nm and 990 nm 

for the (6,5)-SWCNT covered by SDC and ssDNA, respectively, indicative of the E11 

bandgap transition. The absorbance spectra of the SDC/SWCNT dispersion in the presence 

of DNA and MeOH were measured at 5 °C and after overnight incubation at 40 °C as 

controls. In addition, the SDC/SWCNT dispersion with DNA in absence of MeOH was 

measured as another control.  

Fluorescence spectra were recorded on a Fluorolog-3 fluorometer (HORIBA Jobin 

Yvon) in conjunction with a near-NIR sensitive PMT. The excitation source was a 450-W 

Xenon lamp. Emission wavelengths from 900-1200 nm with increments of 1 nm and slit 

widths of 8 nm were used. The excitation were performed at 569 nm and 572 nm for 

SDC/(6,5)-SWCNT and DNA/(6,5)-SWCNT hybrids, 668 nm and 672 nm for SDC/(8,3)-

 
* The fluorescence spectroscopic measurements were performed by Dr. Arjun Sharma of Lehigh 
University. 
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SWCNT and DNA/(8,3)-SWCNT, and 695 nm and 698 nm for SDC/(9,1)-SWCNT and 

DNA/(9,1)-SWCNT, respectively. Additionally, dark count correction factors were applied 

with integration time of 1 s. For controls without methanol and with or without free DNA, 

excitations were done at 569 nm. Note that the SWCNT mixture is rich in (6,5)-SWCNT, 

therefore, we measured (6,5)-SWCNT peak intensity in most cases, but (8,3) and (9,1)-

SWCNT were also measured for their recognition sequences. 

 

4.2.5  Spectra decomposition  

The absorbance spectra were decomposed into individual Voigt profiles, 

convolution of Gaussian and Lorentzian profiles (see Supporting Information for details). 

Figure 4.2 shows a typical decomposition of the absorbance spectra into contributions from 

species in the mixture. We assume that the peak location can be used as a linear measure 

of how far the reaction has proceeded based on the fact that the peak shift is caused by the 

replacement of wrapping molecules22.  (See also Supporting Information for a discussion 

of the correlation between peak shift and the reaction progress.) In fluorescence spectra, 

the intensity change is dominant as the replacement proceeds, so the intensity change of 

each SWCNT species was used as a measure of reaction progress.  
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Figure 4.2. Decomposition of measured absorbance of SDC-coated SWCNTs and (TAT)4-
coated SWCNTs into contributions from four CNT species. 

 

 

4.3  Results and discussions 

We investigated the kinetics of SDC replacement by DNA on SWCNT facilitated 

by methanol in aqueous solution using optical peak shift and intensity changes. To find the 

optimal conditions that allow kinetic observations in a reasonable time (2 h) at mild 

temperatures, preliminary experiments were carried out by monitoring the kinetics of 

absorbance while varying the concentrations of MeOH and DNA. It was found that the 

overall reaction is very sensitive to changes of the MeOH concentration. For example, the 

reaction was completed quickly at room temperature (25 °C) at high concentrations of 

methanol (60%) while replacement hardly progressed at low concentration of methanol 

(20%) (Figure 4.3a). To examine the effect of the DNA concentration, we compared the 

absorbance spectra of the SDC/SWCNT with different concentration of (TAT)4 incubated 

at room temperature for 30 min with the control sample which was incubated overnight at 

40 °C. We assumed that the control sample was entirely converted to DNA-covered 
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SWCNT. Figure 4.4a shows that 30x mass excess of DNA to SWCNT is sufficient to reach 

the reaction completion. Based on these results, we chose for our study the experimental 

conditions of 40 v/v% MeOH concentration with 40x mass excess of DNA to SWCNT. 

 

 

 

 

 

 

Figure 4.3. MeOH concentration-dependent kinetics measured, (a) by absorbance, and (b) 
by fluorescence. (a) The absorbance was measured by the peak shift for the (TAT)4/(6,5)-
SWCNT. The peak locations of (6,5)-SWCNT were obtained by decomposing the spectra 
(b) the fluorescence was measured by decay of the peak for (6,5)-SWCNT with the 
excitation wavelength of 569 nm. Note that the SDC/SWCNT sample with 40% MeOH 
sample immediately aggregates in absence of DNA. 
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Figure 4.4. (a) SDC/SWCNT replaced by (TAT)4 under incubation for 30 min at 40 °C 
with different DNA concentration (5:1 to 40:1 mass excess of DNA to SWCNT) and the 
control sample which we assume to be entirely DNA-covered SWCNT (i.e., incubated 
overnight at 40 °C). Note that all samples were prepared with 40 v/v% MeOH 
concentration. The 30x excess or higher concentration of DNA results in a complete peak 
shift. (b) Time evolution of absorbance and fluorescence spectra for SDC/SWCNT 
replaced by (TAT)4, showing an instantaneous peak shift in absorbance and intensity 
changes in fluorescence, followed by slow changes. (c) Absorbance spectra for 
(TAT)4/SWCNT species show peak shift as SDC is replaced by DNA on SWCNT. The 
spectra of the sample without DNA (black) and the immediate scan after DNA addition at 
5 °C (blue) are seen to be identical. The spectrum of the immediate scan after DNA addition 
at 20 °C (cyan) shows a slight redshift. (d) Temperature-dependent kinetics in the 
absorbance measured by the peak shift for the (6,5)-SWCNT. The peak location of each 
species of SWCNT was obtained by decomposing the spectra. Data show an instantaneous 
initial increase (indicated by arrows along y-axis), followed by a further gradual increase.  
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Figure 4.5. (a) The effect of MeOH concentration, DNA sequence, and the temperature on 
the initial fluorescence intensity drop for (6,5)-SWCNT. The results show that the initial 
intensity drop does not change with DNA sequence or temperature at fixed MeOH 
concentration, but depends linearly on the MeOH concentration. Note that all data were 
measured at room temperature except for the sample with temperature notation (+); all data 
were measure in a 40:1 weight ratio of DNA to SWCNT except for the sample with notation 
(o in blue). (b) The effect of the temperature on the initial peak shift in the absorbance. 
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time-evolution of absorbance and fluorescence spectra of SDC/SWCNT for the (6,5)-
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instantaneous peak shift in absorbance and change in fluorescence intensity.  We also found 

subsequent time-dependent slow changes in absorbance peak location. Note that the 

fluorescence showed no major changes over time after the initial drop occurred.  

 Next, we measured the kinetics of SDC/(6,5)-SWCNT with varying MeOH 

concentration in the absence of DNA. As shown in Figure 4.3b, the fluorescence peak 

intensity values for (6,5)-SWCNT show an instantaneous drop that increases as methanol 

concentration increases. Interestingly, addition of methanol to a 40% total sample volume 

immediately aggregates SWCNTs in absence of DNA. It is worth noting that SDC/SWCNT 

in presence of DNA at even higher MeOH concentrations (60%) is stable.21 This suggests 

the hypothesis that the initial drop is observed due to the (likely partial) desorption of SDC 

by MeOH. Figure 4.5a presents the initial drop as a function of the concentration of MeOH. 

Note that the initial drop was obtained by subtracting the intensity of a given sample at t = 

0 from the intensity of the sample without MeOH. The data suggest that the initial intensity 

drop does not change with DNA sequence or temperature, but it depends linearly on the 

MeOH concentration, which is only associated with SDC, not DNA. Figure 4.6 also shows 

that the absorbance spectra of DNA/SWCNT does not change in the presence or absence 

of MeOH. Therefore, we suggest that the interaction between DNA and MeOH is 

negligible, and we propose that the initial drop can be used as a measure of SDC desorption. 
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Figure 4.6. Absorbance spectra of TTA(TAT)2ATT/(6,5)-SWCNT in various 
concentration of MeOH.  
 

 

4.3.1 SDC replacement process by DNA  

The SDC exchange process by different DNA sequences was monitored using the 

absorbance and fluorescence spectra for the (6,5) and (8,3)–SWCNT. Figure 4.4c depicts 

the absorbance spectra of the pure SDC-covered SWCNT, the initial mixture measured 

immediately at 5 °C and 20 °C, and the final mixture obtained after incubation overnight 

at 40 °C. The spectra of pure SDC-covered SWCNT and the initial mixture at 5 °C are seen 

to be identical while a slight difference is observed in the initial mixture at 20 °C. This 

indicates that the replacement reaction has not started at 5 °C; it starts at higher temperature. 

On the contrary, the uniform instantaneous intensity drop in fluorescence is observed 

regardless of the temperature (Figure 4.5a). Especially at high MeOH concentration 

(>40%), most SDCs are destabilized as soon as MeOH is added. This is supported by the 

previous experiments in which, in the absence of DNA, 40% MeOH shows instantaneous 

SWCNT aggregation. We interpret this difference to mean that the effect of MeOH on 
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partially destabilizing SDC adsorption is nearly instantaneous. The temperature-dependent 

kinetics were then measured by the peak shift of each chirality (Figure 4.4d for 

(TAT)4/(6,5)-SWCNT, other sequences are shown in Appendix). We observed a rapid 

initial peak shift followed by a gradual increase over longer periods of time. We interpret 

the initial increase as a nearly instantaneous, partial and disordered, adsorption of DNA 

bases on regions of SWCNT exposed by desorption of SDC.  We then interpret the gradual 

increase over the next two hours as conformational changes of DNA/SWCNT structures as 

they approach equilibrium.   

Based on these experimental findings, we therefore propose a three-step model for 

the interaction of DNA with the SDC/SWCNT hybrid, sketched in Figure 4.7. The initial 

state consists of an aqueous solution containing SDC/SWCNT and dissolved excess DNA.  

Prior to addition of MeOH, this state is indefinitely stable.  Upon addition of MeOH, the 

steps are as follows: (1) instantaneous partial SDC desorption by MeOH (desorption 

increases with MeOH concentration); (2) rapid partial adsorption of DNA to SWCNT 

surface exposed by SDC desorption; (3) time-dependent DNA rearrangement (and 

adsorption) which we will model as a simple pseudo-first-order reaction. 

 

 

Figure 4.7. Schematic illustration of the mechanistic model for the exchange process of 
SDC on the surface of SWCNTs by DNA.  



 122 

The first SDC desorption step is too fast for to see its temperature dependence, as 

depicted in Figure 4.5a. At the second step, we suggest that the rapid initial peak shift can 

be interpreted by a competitive adsorption isotherm. The initial peak shift (∆𝑝> ) is 

calculated by the difference between the peak location at 5 °C and the peak location 

intermediately measured at a given temperature. Figure 4.5b reveals the linear dependence 

of ln	(∆𝑝�̄)  on 1/T where ∆𝑝�̄  was scaled to be in range of [0,1]. Furthermore, we 

investigated the sequence-dependence of the exchange process. We found a significant 

difference in initial DNA adsorption rate between T/A or T/G rich sequences versus C/A 

rich sequences. The C/A rich sequences, (CCA)4 and (CCA)10, are initially replaced faster 

than other T/A or T/G rich sequences, as presented in Figure 4.5b.  

We hypothesize that most SDCs are desorbed and DNAs are partially adsorbed 

rapidly in stages 1 and 2.  This is supported by the prior experimental data that the 

instantaneous SWCNT aggregation occurred in 40% MeOH in absence of DNA. The rate 

of stage 3, we propose, is limited not by DNA adsorption but by DNA rearrangement on 

SWCNTs. 

 

4.3.2 Kinetics of DNA Rearrangement 

The kinetics of the gradual rearrangement of DNA is analyzed as an activated process to 

extract the activation energy. The DNA rearrangement can be modeled as a simple first-

order reaction where a disordered DNA on SWCNT (A) forms an ordered structure (B) as 

shown below:  

𝐴
c
→ 𝐵        (4.1) 
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Then, the rate of production of B, DNA rearrangement on the SWCNT surface, can be 

expressed by  

R[<]
RX

= 𝑘[𝐴]        (4.2) 

By assuming the transition state theory and quasi-equilibrium states, the concentration of 

DNA on the SWCNT in ordered structure can be found: 

[𝐵] = [𝐵]Ô + [𝐴]Ô{1 − exp	(−𝑘𝑡)}     (4.3) 

where [𝐴]Ô  and [𝐵]Ô  are initial concentration of disordered and ordered structure of 

DNA/SWCNT. Note that the initial quick DNA adsorption (step 2) was observed, thus we 

cannot apply the initial condition such that [𝐵]Ô = 0 at t = 0.  

We previously assumed that the absorbance peak location (p) is linearly dependent on how 

far the reaction has proceeded which is directly related to the concentration of each 

SWCNT so that following the peak location is the same as following the reaction. 

Therefore, eq (4.3) can be represented as a function of peak shifts: 

∆𝑝 = ∆𝑝> − 𝐶exp	(−𝑘𝑡)      (4.4) 

Here, ∆𝑝 is calculated by subtracting the peak location of initial mixture at 5 °C from the 

peak location at a given temperature and time, ∆𝑝> is the initial peak shift, and 𝐶 is constant 

related to [𝐴]Ô. 

Based on Eyring reaction rate theory, the overall reaction constant k is 

𝑘 = 𝑘+ exp K−
∆+‡

cde
+ ∆û‡

cd
Q     (4.5a) 

ln(𝑘) = ln(𝑘+) −
∆+‡

cde
+ ∆û‡

cd
     (4.5b) 
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Therefore, the activation enthalpy can be obtained from the slope of ln(k) versus 1/T in the 

Eyring plot. Details are described in the Appendix.   

Figure 4.8 shows the Eyring plot for various DNA on (6,5)- and (8,3)-SWCNT and 

the slope for each DNA/SWCNT hybrid that represents the relative enthalpy (∆𝐻‡/𝑘<). 

Previously, our group investigated the activation energies for the removal of DNA from a 

given SWCNT species by a surfactant molecule, SDBS, and reported that DNA sequence 

has noticeably higher activation energy on its recognition-partner species of SWCNT than 

on non-partner species15. Interestingly, it has been found that the activation energy of the 

reverse reaction in the presence of MeOH is chirality dependent for some DNA sequences. 

For example, (TAT)4 and (TTA)2(ATT)2 have lower activation energy on their partner 

species of SWCNT (i.e., (TAT)4/(6,5)–SWCNT and (TTA)2(ATT)2/(8,3)–SWCNT). Note 

that (TG)2T4(GT)2, known as the (9,1) recognition sequence,16 also showed considerable 

difference in the activation energy between (6,5) and (8,3)-SWCNT. Although other 

sequences such as (CCA)10 and (TTA)4TT have shown the ability to sort SWCNT species,4 

they showed no differentiation between (6,5) and (8,3)-SWCNT. This suggests that, in the 

surfactant replacement route, not all DNA sequences are forming the same structure of 

DNA/SWCNT as those prepared via direct sonication.   

In general, T/A rich sequences are seen to have lower activation enthalpy than T/G 

rich sequences. In addition, we found that (CCA)10 shows similar activation energy to that 

of T/A rich ~12-mer sequences even though (CCA)10 is much longer. 
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Figure 4.8. Eyring plots for the exchange process of SDC on (6,5) or (8,3)-SWCNT by 
different DNA sequences and the relative activation enthalpy (∆𝐻‡/𝑘<) estimated from the 
slope of Eyring plot.  
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Although (CCA)10 is a considerably longer sequence than other sequences we tested, 

no significant difference in activation enthalpy was observed. Since the kinetics are seen 

to be sequence dependent, it could not be appropriate to examine the length effect by 

comparing different lengths in different sequence combinations. Thus, we additionally 

tested 12-mer C/A rich sequence, (CCA)4, and 30-mer T/A rich sequence, (TAT)10. It is 

interesting to note that (CCA)4 shows a significantly faster reaction than T/A or T/G rich 

sequences of the same length (Figure 4.8). It is worth noting that C/A rich sequences, 

including (CCA)10, exhibited abnormal behavior in aqueous two-phase solution that 

required more PVP to move the SWCNT into the top phase, indicating higher 

hydrophilicity of the hybrid surface compared to others.23  

Furthermore, (TAT)10 showed an extremely slow reaction. For example, the peak 

location did not reach its final value (i.e., the peak location of DNA-covered SWCNT) even 

after 20 h at 50 °C, suggesting that the reaction was not completed (Figure 4.10). A similar 

instantaneous drop in fluorescence was still observed (Figure 4.5a) and no aggregation was 

detected. This experimental finding indicates that although some DNA covered the free 

sites on SWCNT as SDC was desorbed (i.e., the first and second stage in Figure 4.7), it 

still takes a long time to complete the rearrangement of DNA required to completely cover 

the SWCNT with DNA. 
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4.4 Conclusions 

We have investigated the kinetics of the SDC exchange process by DNA, aided by 

the addition of MeOH. Observations suggest a three-stage process in which partial SDC is 

immediately desorbed by the addition of MeOH, DNA then (also rapidly) adsorbs to 

SWCNT surface exposed by SDC desorption, followed by a slower process interpreted as 

DNA rearrangement on the SWCNT surface as the system moves towards its equilibrium 

state. The activation energies for each DNA sequence on (6,5) and (8,3)-SWCNT were 

extracted to quantitatively compare their binding characteristics. We found two classes of 

behavior in Figure 4.8. Class 1 shows significant different activation energies between (6,5) 

and (8,3)-SWCNT. This class includes some recognition sequences, e.g., (TAT)4, 

(TTA)2(ATT)2, and (TG)2T4(GT)2. In contrast, Class 2 presents no chirality-dependence 

on the activation energy. The Class 2 includes the non-recognition sequence, (CCA)4, also 

some recognition sequences, e.g., (TTA)4TT and (CCA)10. This suggests that the newly 

developed MeOH aided replacement process does not always produce the same structure 

of DNA/SWCNT as does direct sonication.  For example, the Class 1 sequences 

presumably have same structure as that prepared by direct sonication, so they exhibit 

chirality-dependence. However, the Class 2 sequences are formed in slightly different 

DNA/SWCNT structure, so their recognition ability to its partner species of SWCNT is 

lost. This finding strongly suggest that the recognition ability is based on the secondary 

structure of DNA on SWCNT. To demonstrate this interpretation, further experiments are 

required.  
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4.7 Appendix 

4.7.1 Spectral Decomposition based on Voigt Profile 

An individual spectrum of pure SWCNT species is well-approximated by a Voigt 

profile which is the convolution of a Gaussian, 𝐺(𝑥s;𝜎), and a Lorentzian, 𝐿(𝑥 − 𝑥s; 𝛾).  

𝑉(𝑥;𝜎, 𝛾) ≡ ∫ 𝐺(𝑥s;𝜎)𝐿(𝑥 − 𝑥s; 𝛾)𝑑𝑥′Ó
bÓ      (4.7) 

where 𝐺(𝑥;𝜎) = *
Ù√+Ø

exp K− þÚ

+ÙÚ
Q    and 𝐿(𝑥; 𝛾) = /

Ø(þÚq/Ú)
. 

Here, 𝜎  is the standard deviation of the Gaussian profile, 𝛾  is the half-width at half-

maximum (HWHM) of the Lorentzian profile, and 𝑥 is the shift from the line center. The 

Voigt profile can be evaluated using the real part of the Faddeeva function 𝑤(𝑧): 

𝑉(𝑥;𝜎, 𝛾) = �½[m(ý)]
Ù√+Ø

        (4.8) 

where 𝑧 = þq>/
Ù√+

 and 𝑤(𝑧) = ebýÚerfc(−i𝑧). 

The spectra of a mixture of SWCNT is considered as a sum of the spectra of pure species. 

Thus, fit the spectra of the mixture of SWCNT as a sum of contributions from each of the 

purified species by adjusting the fitting coefficients: peak position, peak height, 𝜎, and 𝛾. 

Figure 4.2 shows a typical decomposition of the absorbance spectra into contributions from 

species in the mixture. 
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4.7.2 Correlation between Peak Shift and Reaction Progress  

Let us consider a dominant peak like (6,5) that is not really influenced by its 

neighbors (although it strongly affects them).  For this peak (let’s assume it is Gaussian), 

let  

𝑓±(𝜆) = 𝑎± exp K−
(5b56)Ú

+Ù6Ú
Q       (4.9a) 

𝑓�(𝜆) = 𝑎� exp K−
(5b57)Ú

+Ù7
Ú Q       (4.9b)  

Suppose that the spectra sum as , where  indicates the extent to 

which the reaction has proceeded with value of ‘1’ denoting fully surfactant coated and ‘0’ 

representing fully DNA coated SWCNTs. So, 

 (4.10) 

The peak location, , is given by the solution of  

 ü8
ü5
= 0 ⇒ 

𝛼𝑎±
(5∗b56)
Ù6Ú

exp å− (5∗b56)Ú

+Ù6Ú
æ + (1 − 𝛼)𝑎�

(5∗b57)
Ù7
Ú exp :− (5∗b57)Ú

+Ù7
Ú ; = 0 (4.11) 

It is not obvious that the solution of this equation goes from one limit to the other according 

to .  Let’s look at some special cases.  Firstly, we know that  

(5∗b56)Ú

+Ù6Ú
≪ 1         (4.12a) 

(5∗b57)Ú

+Ù7
Ú ≪ 1         (4.12b) 

 

( )1S Df f fa a= + - a

( ) ( ) ( )2 2 2 2exp ( ) / 2 1 exp ( ) / 2s s s D D Df a aa l l s a l l sé ù é ù= - - + - - -ë û ë û

*l

a
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This is because our shifts (~ 5 nm) are small compared to the peak width (~20 nm).  So, 

we approximate the exponentials in the previous equation by ‘1’ and our equation becomes:  

     (4.13) 

This can be solved for , 

      (4.14) 

Suppose that the two peaks are such that .  This could be because they have 

the same standard deviation and amplitude, for example.  In that case,  

        (4.15) 

That is, under the assumption that the peak shift is small compared to standard deviation 

and that the amplitude and standard deviation of the DNA-coated and surfactant-coated 

cases are very similar, then one can say that just following the peak location is the same as 

following the reaction.  

Creating counter examples where following the peak position is not a good idea is 

not so difficult.  For example, take the case, as occurs in fluorescence spectroscopy where, 

say, .  Then it is clear from looking at the solution for the peak position  that 

for most of the reaction the peak position will not change from ; it would be much better 

to follow the peak amplitude to follow the reaction. 

  

( )
* *

2 2

( ) ( )1 0s D
s D

s D

a al l l la a
s s
- -

+ - =

*l

( )
( )

2 2
*

2 2

1
1

s D s D s D

s D D s

a a
a a

a s l a s l
l

a s a s
+ -

=
+ -

2 2
s D D sa as s=

( )* 1s Dl al a l= + -

S Da a>> *l

Sl



 134 

4.7.3 Effect of Oxidant on SDC/SWCNT and DNA/SWCNT* 

To demonstrate the stability of SDC surface adsorption on SWCNT in solution we 

treated SDC/SWCNT to a one electron oxidant reagent, K2Ir(Cl)6 (Potassium 

Hexachloroiridate). Fluorescence emission peak intensity measurements show that 

SDC/SWNCT are resistant to quenching even at increasing concentrations (1 µM - 10 µM) 

of K2Ir(Cl)6 (Figure 4.9a). On the other hand, DNA/SWCNT at the same K2Ir(Cl)6 

concentration range show an increased fluorescence quenching  (Figure 4.9b). It is well 

known that surfactants like SDC tightly pack around SWCNT, thereby limiting solvent 

access to the SWCNT surface. Based on our prior work24 DNA oligomers form secondary 

structures on SWCNT that are specific to nucleotide sequence and SWCNT chirality. It is 

hypothesized that only some DNA oligomers form highly ordered conformations on 

specific SWCNTs, also known as recognition sequences. Hence DNA/SWCNT are 

generally very much susceptible to changes in solvent dielectric environment which 

manifests as large changes in fluorescence emission intensity.  

  

 
* This work has been performed by Dr. Arjun Sharma of Lehigh University. 
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(a)       (b) 

 

Figure 4.9. Comparison of fluorescence emission spectra of (a) SDC/SWCNT and (b) 
TTA(TAT)2ATT/(6,5)-SWCNT in presence of K2Ir(Cl)6, a strong oxidizing reagent in 
solution (1 µM – 10 µM) . The fluorescence intensity values of SDC/SWCNT barely 
change while the emission peak of TTA(TAT)2ATT/(6,5)-SWCNT shows substantial 
fluorescence quenching with increasing concentrations of K2Ir(Cl)6. The controls include 
SDC/SWCNT (solid black dashed line) and TTA(TAT)2ATT/(6,5)-SWCNT (solid yellow 
dashed line) in absence of K2Ir(Cl)6. 
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4.7.4 DNA Rearrangement Kinetics and Transition State Theory 

Consider a reaction of DNA rearrangement on SWCNT where disordered structure 

of DNA on SWCNT (A) forms an ordered structure DNA/SWCNT (B). The rate of 

production of B is then expressed by eq (4.2) in the main text of this chapter. Similarly, the 

rate of consumption of A can be found 

R[�]
RX

= −𝑘[𝐴]         (4.16) 

Integrating [𝐴] with respect to t, we can obtain 

[𝐴] = [𝐴]Ô exp(−𝑘𝑡)        (4.17) 

Plugging the expression into eq (4.2),  

R[<]
RX

= 𝑘[𝐴] = 𝑘[𝐴]Ô exp(−𝑘𝑡)      (4.18) 

Transition state theory assumes that there is an intermediate step in which a transition 

complex, 𝐵‡, is formed.  

𝐴
c�⇔ 𝐵‡

cÚ→ 𝐵         (4.19) 

The rate of change in the concentration of intermediate complex (𝐵‡) can be found: 

R[<‡]
RX

= 𝑘*[𝐴] − 𝑘b*[𝐵‡] − 𝑘+[𝐵‡]      (4.20) 

It is assumed that the reactants and the transition state are in a quasi-equilibrium: 

𝑘*[𝐴] = 𝑘b*[𝐵‡]        (4.21) 

Therefore, the rate equation (4.20) can be simplified to 

R[<‡]
RX

= −𝑘+[𝐵‡] = − c�
cã�

𝑘+[𝐴] = −R[<]
RX

     (4.22) 

where k is overall reaction rate constant K𝑘 = 𝐾‡𝑘+, 𝐾‡ = c�
cã�
Q.  
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Then, integrating the right-hand side of equation (4.22) with respect to t and applying an 

initial condition, 

[𝐴] = [𝐴]Ô	𝑎𝑛𝑑	[𝐵] = [𝐵]Ô	𝑎𝑡	𝑡 = 0 

Finally, the concentration of ordered structure of DNA on the SWCNT [𝐵] can be found 

by eq (4.3) in the main text. 

Using thermodynamic relationships, activation enthalpy, entropy, and free energies can be 

found: 

∆𝐺‡ = −𝑘<𝑇 ln𝐾‡ = ∆𝐻‡ − 𝑇∆𝑆‡      (4.23) 

Thus, 

ln𝐾‡ = − ∆+‡

cde
+ ∆û‡

cd
        (4.24) 

Then, the overall reaction constant k is 

𝑘 = 𝑘+ exp K−
∆+‡

cde
+ ∆û‡

cd
Q       (4.25a) 

ln(𝑘) = ln(𝑘+) −
∆+‡

cde
+ ∆û‡

cd
       (4.25b) 

Therefore, the activation enthalpy can be obtained from the slope of ln(k) versus 1/T in the 

Eyring plot. 
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4.7.5 Raw Data of Temperature-dependent Kinetics in Absorbance for 

Various DNA on (6,5)-SWCNT 

 
Figure 4.10. Temperature-dependent kinetics measured by the peak shift in the absorbance 
spectrum for the (6,5)-SWCNT. The peak location of each species of SWCNT was 
obtained by decomposing the spectra. Note that all the kinetic experiments shown here 
were performed at 40 v/v% MeOH concentration. Note that for some sequences, e.g., 
(TAT)10, it takes too long to reach equilibrium wrapping configuration, and the exchange 
method might not be a good way to make DNA-CNTs for these sequences. 
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4.7.6 Link to Public Repository: 

The following link is to a public repository where we provide a collection of scripts for 

spectral decomposition based on Voigt profile and kinetic analysis.  

https://bitbucket.org/jagotagrouplehigh/dna_swcnt_SDCexchange/ 
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Chapter 5 : Molecular Perceptron: A New Perception-based 

Sensor to Detect Ovarian Cancer Biomarker using Machine 

Learning* 

 

Ovarian cancer is the fifth-leading cause of cancer-related deaths among females in the 

United States. Early and accurate detection of cancer can significantly improve the five-

year survival rate. One of two FDA-approved serum biomarkers for ovarian cancer, 

Human epididymis protein 4 (HE4), provides noticeable sensitivity and specificity for 

ovarian cancer diagnosis. Current research on sensing applications has largely been 

based on one-to-one recognition. However, this is an inefficient way to detect various 

molecules since it requires the same number of receptors as the number of molecules one 

wishes to detect. To detect a combination of various analytes simultaneously, an effective 

and automatic data processing system is essential. In this study, we propose a new 

perception-based sensing system using weakly-specific sensor arrays that can be analyzed 

by an artificial perception model, we call the Molecular Perceptron. We demonstrate that 

the Molecular Perceptron can detect HE4 in the presence or absence of other analytes. 

The Molecular Perceptron is based on the DNA/SWCNT system, which has attracted 

considerable interest due to its unique optical properties and their strong sensitivity to 

 
*  Portions of this work have been submitted as grant proposal to Designing Materials to 
Revolutionize and Engineer our Future program of National Science Foundation. This work has 
been performed in direct collaboration with Dr. Ming Zheng at National Institute of Standards and 
Technology (Gaithersburg, MD) and Dr. Daniel Heller, Dr. Zvi Yaari, and Alex Settle at Memorial 
Sloan Kettering Cancer Center (New York, NY). 
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changes in the local environment. DNA/SWCNT hybrids were utilized to optically detect 

the analytes by observing changes in the fluorescence spectra of each SWCNT. Using the 

experimental data, machine learning models were trained using three different algorithms: 

Support Vector Machine, Random Forest, and Artificial Neural Network. Overall, the 

machine learning models achieved remarkable trainability giving F1-scores of ~0.95. It is 

strongly suggestive of the idea that the perception mode of sensing can make accurate 

judgements in a noisy sensing environment.  
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5.1  Introduction 

Cancer patient prognosis and quality of life are significantly affected by the failure 

to accurately diagnose disease at an early stage. One such example is ovarian cancer, the 

fifth-leading cause of cancer-related deaths among females in the United States and first 

among gynecologic malignancies,1 resulting in 22,000 new cases and 14,000 deaths per 

year.1 There is currently no method to achieve early, accurate diagnosis, nor are there 

strategies to rapidly determine patient response to treatment in order to inform the choice 

of therapy. The five-year relative survival rate for all patients diagnosed with ovarian 

cancer is 44%.2 If detected at stage one, five-year survival rates are approximately 91%.3 

Conventionally, serum CA-125 measurements and ultrasonography have been used 

to detect ovarian carcinoma but these methods do not result in early stage detection and 

convey little survival benefit.4,5 Human epididymis protein 4 (HE4) is one of two FDA-

approved serum biomarkers for ovarian cancer, along with CA-125, and plays a factor in 

ovarian tumorigenesis.6 This protein is overexpressed by malignant epithelial cells7 and 

found in increased levels in patient serum,8,9 ascites,10 and uterine fluid.11 Serum-based 

HE4 provides similar sensitivity and specificity for ovarian cancer diagnosis as CA-125, 

although it may be more useful in differentiating benign from malignant disease.8 

The DNA/SWCNT system has been widely used in biosensing applications due to 

its strong optical absorption in the near-infrared (NIR) region and high sensitivity to the 

local environment.12–16 Current research on sensing applications is primarily based on 

specific one-to-one recognition-based sensing. This is conceptually simple and easier to 

design and interpret. However, it imposes strong requirements on needing to find one-to-
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one recognition pairs since it requires the same number of receptors as the number of 

molecules to detect. Thus, it is an inefficient way by which to detect various molecules. 

For example, in a real system, biofluids contain a plethora of molecules that together can 

accurately define the physiological state of a person. A grand challenge is to sense this 

entirety by a single device. We believe that rather than attempting to accomplish this on a 

one-to-one recognition basis, it is far more effective to grasp it by perception. This leads 

us the need of a perception-based system with multiple receptors; each one captures certain 

features of the target molecule and the overall ensemble response is then analyzed by an 

artificial model resulting in perception. In past, Staii et. al.17 have shown the feasibility of 

perception-based sensing utilizing an Electronic Nose-based system18 by a DNA-decorated 

field-effect transistor, but exhibited limited success.  

Here, we propose a new perception-based system using DNA/SWCNT hybrids 

along with a machine learning (ML) framework to construct an artificial perception system 

that we call a Molecular Perceptron.  We demonstrate a Molecular Perceptron for 

detection of the ovarian cancer serum biomarker HE4 in the presence or absence of fetal 

bovine serum (FBS) and bovine serum albumin (BSA) using machine learning techniques. 

Optical responses induced by analytes, represented by both fluorescence peak position and 

intensity changes, were obtained. We then built an artificial perception model using 

machine learning methods. To find the best model, three different algorithms (support 

vector machine (SVM), random forest (RF), and artificial neural network (ANN)) were 

examined, with multiple input feature vector representations including different missing 

value/outlier treatments, DNA sequence encoding method, and creating feature vectors by 
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Principal Components Analysis (PCA). In addition to varying input feature vectors, we 

examined three different ways to define target variables (bi-class, multi-class, and multi-

label classification). The classification algorithms, performance validation, and 

optimization were implemented using the Scikit-learn machine learning library.19 The 

models successfully detect not only the target biomarker (HE4), but also other analytes 

(BSA and FBS). Furthermore, the feature importance within the RF models and saliency 

within the ANN models were analyzed to extract physical meaning, as well as to help in 

the feature selection.  

 

5.2 Materials and Methods 

5.2.1 Data Collection*  

To develop training sets for the machine learning models, we began with a small 

set of previously identified recognition sequences,14,20 showing the ability to recognize 

specific molecules such as certain SWCNT species, protein, or their relatives, as listed in 

Table 5.1.  Each sequence was used to disperse a synthetic mixture of SWCNTs containing 

~ 10 semiconducting chiral species (e.g. SG65i from Sigma Aldrich). The analyte, a 

specific cancer biomarker HE4, was introduced to the DNA-SWCNTs in presence or 

absence of bovine serum albumin (BSA) or fetal bovine serum (FBS). Near-infrared 

photoluminescence spectra were acquired on these samples. The spectroscopy was 

conducted using a custom-built high-throughput setup that allows for measurements 

 
* This work has been performed by Dr. Daniel A Heller, Dr. Zvi Yaari, and Alex Settle at the 
Memorial Sloan Kettering Cancer Center, New York, NY. 
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directly within 96 or 384 well plates, with each well containing the SWCNT synthetic 

mixture dispersed by one type of sequence, followed by the addition of different analytes. 

The instrumentation consists of an epifluorescence microscope with automated translation 

stage programmed for high-throughput data collection. The samples were excited at 660 

nm and 730 nm using a supercontinuum light source. Spectra was acquired using a 

Princeton Instruments IsoPlane spectrometer coupled to a NIRvana 640x512 InGaAs array 

detector.  

 

 

Table 5.1. Initial DNA sequence set. The sequences were chosen from previously identified 
recognition sequences or their relatives. 

DNA sequence Specialty 

(GT)12 Relative of (GT)20 (8,4), (7,4), and (5,5)-recognition20 

(ATT)5 Relative of (ATT)4 (7,5)-recognition20 

(AT)11 Protein-recognition14 

(AT)15 Protein-recognition14 

(AT)20 Protein-recognition14 

(AC)15 Non-recognition, but shows special characteristic in ATP system21 

(TCT)5 (6,5) and (6,6)-recognition 

T3C3T3C3T3 (6,5)-recognition 

C3T9C3 (8,3)-recognition 

C3T3C9 (6,4), (9,1), (7,3), and (9,2)-recognition 
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5.2.2 Data Preprocessing 

The dataset comprises the photoluminescence spectra of each combination of 

DNA-SWCNT hybrid exposed to different combinations of a small number of analytes 

(HE4, BSA, FBS). That is, we have total N·M·L combinations where N is the number of 

DNA sequences, M is the number of SWCNT chiralites, and L is the number of analyte 

combinations. The spectra are analyzed to yield two parameters for each SWCNT type: the 

relative peak position and intensity:  

𝑑𝑤𝑙> = 𝑤𝑙> − 𝑤𝑙Ô       (5.1a) 

or 

𝑑𝑖𝑛𝑡> =
>�X�
>�XÖ

        (5.1b) 

where 𝑤𝑙Ô and 𝑖𝑛𝑡Ô are the wavelength and intensity of a control sample (DNA/SWCNT 

without analyte); 𝑤𝑙>  and 𝑖𝑛𝑡>  are the wavelength and intensity of DNA/SWCNT with 

analyte combination, i. We have considered five different analyte combinations for each 

DNA/CNT pair (i.e., L = 5): HE4, BSA, BSA+HE4, FBS, and FBS+HE4. In this way, each 

DNA/SWCNT/analyte combination has two relative spectroscopic measurement values 

(𝑑𝑤𝑙>, 𝑑𝑖𝑛𝑡>).  

Next, we identify input and output (target) variables for the machine learning 

algorithm. The input variables include DNA sequence, SWCNT chirality, DNA 

modification, and the two spectroscopically measured parameters (𝑑𝑤𝑙> , 𝑑𝑖𝑛𝑡> ). The 

output variable could be analyte type or concentration of each analyte. The learning 

problem is defined by the target variable. If it is continuous (e.g., concentration) the 

problem would be considered as regression, and if it is a discrete number of values, the 
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problem would be considered as classification. In a classification problem, if there are only 

two classes (e.g., yes/no or 1/0), it is a binary classification problem. If there are three or 

more classes and each example is assigned to only one class, this is called ‘multi-class’ 

classification; if each example can be assigned multiple classes, this is called ‘multi-label’ 

classification. Our problem is originally of multi-label classification, but we can consider 

the output class as the presence or absence of HE4 (bi-class) or consider the output class 

as every analyte combination present in training set (multi-class). 

For learning models, categorical data (such as SWCNT chirality and analyte type) 

must be transformed to numeric values, for which we use the common one-hot encoding 

technique.22 We encode the DNA sequence by taking two or three bases as a term, then 

encoding each sequence as its term-frequency vector.23 We have considered several ways 

to construct feature vectors and present the experimental results for the best-performing 

ones. Figure 5.1 depicts the overall scheme for the input feature construction.  

There are several ways to construct feature vectors by defining examples and 

features differently. We aim to form a proper feature space to enhance machine learning 

model performance. When considering each DNA/SWCNT/analyte hybrid as a single 

example (fvtype1 in Table 5.2), the number of examples can be maximized. However, from 

a practical point of view, single DNA/SWCNT hybrid seems to lack sufficient information 

to predict the presence of the analyte.  It is also diametrically opposed to the main idea of 

the Molecular Perceptron. Another extreme case (fvtype4 in Table 5.2) considers each 

DNA/SWCNT/analyte combination as a single example and each set of measurements 

(𝑑𝑤𝑙>, 𝑑𝑖𝑛𝑡>) with different DNA sequence and SWCNT chirality as features. A single 
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example of this feature vector contains much more information, but the number of 

examples is equal to the number of combinations of analytes (five in our dataset). Both 

fvtype2 and fvtype3 have plenty of information in a single example. Considering feature 

vector expandability for new data, DNA library is much larger than SWCNT library, so it 

is more likely to add new DNA sequences rather than introduce new species of SWCNT. 

Since fvtype3 can be easily expandable with more DNA sequence data, we decided to 

construct feature vector using fvtype3. 

The feature vector involves some missing values that occur due to unobserved data 

or outliers that are abnormally large. In the case of unobserved data, we eliminate an 

example (complete-example set) or feature (complete-feature set) that includes missing 

values. For outliers, we eliminate an example if 𝑑𝑤𝑙> > 20	𝑛𝑚. 

Note that the range of all feature vectors were rescaled to the range in [0, 1] to weigh all 

features equally. 

 

5.2.3 Feature Space Reduction using Principal Component Analysis (PCA) 

Feature selection is also very important to achieve better model performance. It is 

particularly a concern if the feature space is large, because there is otherwise greater chance 

of overfitting. In order to reduce the feature space, we used principal component analysis 

(PCA) to find the directions of greatest variation in the dataset. This allows us to define 

fewer but more relevant features of which we used the first five principal components. 

The preprocessing including PCA was implemented in R. 
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Figure 5.1. Overall scheme for input feature construction. First, DNA sequence is encoded 
to numeric vector using term-frequency method.23 All the categorical data such as SWCNT 
chirality and DNA modification are also transformed to numeric vectors using one-hot 
encoding technique. The numeric vectors can be then combined in various ways as shown 
in Table 5.2. This figure presents an example of a feature vector for a single example 
obtained by the fvtype1 method.  

  

DNA 
sequences
(GT)12

(ATT)5
(AT)11
...

Sequence encoding
e.g., term frequency

vector (tfv)

Example: 
unigram tfv

A    T    G   C
{0,   12, 12, 0}
{5,   10,   0, 0}
{11, 11,   0, 0}
...

One-hot encoding

Categorical data
SWCNT chirality
(6,5)
(8,3)
...
DNA modification
5’-amine
3’-amine
...

SWCNT chirality
{1, 0, 0, ..., 0}
{0, 1, 0, ..., 0}
...
DNA modification
{1, 0, 0, ..., 0}
{0, 1, 0, ..., 0}
...

Measurement data

!"#$ and !%&'$

Feature vector 
construction

e.g., fvtype1 – 4

[{0,   12, 12, 0}, {1, 0, 0, ..., 0}, ...
{1, 0, 0, ..., 0}, {!"#$ and !%&'$}]

Example: 
(GT)12/(6,5)-SWCNT/HE4 using fvtype1
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Table 5.2. Feature vector construction types: D
N

A
 sequence, D

N
A

 m
odification, SW

CN
T chirality, and the analyte com

bination 
can be transform

ed to a num
eric vector, as show

n in Figure 5.1. The num
eric vectors representing different classes (D

N
A

 
sequence, SW

CN
T chirality, etc.) can be com

bined in various w
ays as presented in this table.  

N
am

e 
Feature vector 

Single exam
ple 

representation 
# of  
exam

ple 
# of  
features 

fvtype1 [{D
N

A
 sequence}, {M

odification type}, {C
hirality}, {M

easurem
ents set}] 

 e.g., [{0,	12,	12,	0 },		 {0,0,0,0,1 },		 {1,0,0,…
,0 },  {𝑑𝑤

𝑙,𝑑𝐼𝑛𝑡 }] 

D
N

A
/m

odification/ 
SW

CN
T/analyte 

 e.g., (G
T)12 /none/ 

(6,5)-SW
C

N
T/H

E4 

N
∙M

∙L 
4

k+M
+P+S 

fvtype2  [{C
hirality}, {M

easurem
ents set for each D

N
A

 sequence}] 
 e.g., � {1,0,0,…

,0 },  @𝑑𝑤
𝑙±½¾* ,𝑑𝑤

𝑙±½¾+ ,…
,𝑑𝑤

𝑙±½¾ø ,𝑑𝐼𝑛𝑡±½¾* ,𝑑𝐼𝑛𝑡±½¾+ ,…
,𝑑𝐼𝑛𝑡±½¾ø A� 

 

SW
CN

T/analyte 
 e.g., (6,5)-SW

C
N

T/H
E4 M

∙L 
M

+S∙Q
 

fvtype3  [{D
N

A
 sequence}, {M

odification type}, {M
easurem

ents set for each chirality}] 
 e.g., � {0,	12,	12,	0 },	 {0,0,0,0,1 }, @𝑑𝑤

𝑙(B,C) ,…
,𝑑𝑤

𝑙(D,E) ,𝑑𝐼𝑛𝑡(B,C) ,…
,𝑑𝐼𝑛𝑡(D,E) A � 

D
N

A
/analyte 

 e.g., (G
T)12 /none/H

E4 
Q

∙L 
4

k+P+S∙M
 

fvtype4 {M
easurem

ents set for each chirality w
ith different D

N
A

 sequence} 
 e.g., F

𝑑𝑤
𝑙±½¾*, (B,C ) ,…

,𝑑𝑤
𝑙±½¾*, (D,E ) ,…

,𝑑𝑤
𝑙±½¾ø

, (B,C ) ,…
,𝑑𝑤

𝑙±½¾ø
, (D,E ) ,

𝑑𝐼𝑛𝑡±½¾*, (B,C ) ,…
,𝑑𝐼𝑛𝑡±½¾*, (D,E ) ,…

,𝑑𝐼𝑛𝑡±½¾ø
, (B,C ) ,…

,𝑑𝐼𝑛𝑡±½¾ø
, (D,E ) G 

A
nalyte 

 e.g., H
E4 

L 
S∙Q

∙M
 

N
ote that N is the num

ber of sequences in training set; M
 is the num

ber of chirality in training set; L is the num
ber of analyte 

com
bination; P is the num

ber of m
odification type; Q

 is num
ber of D

N
A

/m
odification com

bination (Q
 < N

+P); k is size of n-
gram

 in term
 frequency vector; S is the num

ber or m
easurem

ent type.  
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5.2.4 Learning, Validation, and Evaluation 

In order to find the best ML model, we examined three different algorithms (support 

vector machine, SVM, random forest, RF, and artificial neural network, ANN), each with 

multiple input feature vectors including bi/trigram term-frequency vector for DNA 

sequence encoding, different missing value treatment (elimination of example or feature), 

DNA sequence feature existence, and feature vectors by PCA. In addition, we examined 

bi-class, multi-class, and multi-label classification algorithms. Each model was evaluated 

by 10-fold cross-validation. Classification algorithms and cross-validation approaches 

were implemented using the Scikit-learn machine learning library.19 Since 

hyperparameters, such as learning rate and activation function, have a significant impact 

on model performance, we used Bayesian hyperparameter optimization to find optimal 

hyperparameters to maximize F1-score, implemented in HyperOpt.  

 

5.3  Results and Discussion 

5.3.1  Spectroscopic Data Analysis* 

First, we demonstrated that the response of DNA/SWCNT intensity to HE4 can 

vary according to DNA sequences. Figure 5.2a clearly shows the sequence dependence of 

the spectroscopic characteristic on HE4. In particular, the peak shift (𝑑𝑤𝑙>) not only shows 

strong dependence on DNA sequence, but also can be either positive or negative. (In 

general, the intensity decreases as HE4 is added.) It is interesting to note that the peak shift 

 
* The experimental work was carried out by Alex Settle, Dr. Zvi Yaari, and Dr. Danial Heller at 
Memorial Sloan Kettering Cancer Center, New York, NY. 
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and intensity changes appear not to be correlated with each other. This indicates that there 

is not simple rule such as the peak is blue/red shifted as a response to HE4 for single species 

of SWCNT. Also, the sequence dependence can be evidence that each DNA/SWCNT 

structure is sequence-dependent, which affects the binding ability of HE4 on 

DNA/SWCNT.  

In addition to the sequence dependence, we examined the response of 

DNA/SWCNT to HE4 in the presence or absence of other interferents (e.g., BSA and FBS). 

We found that some sequences show significant difference in peak shift and intensity 

changes. Note that most sequences generally showed the differences in the intensity in 

presence of HE4 (see Figure 5.6 in Appendix). Figure 5.2b depicts the special sequence, 

(ATT)5, which shows significant difference in both peak shift and intensity changes, on 

(7,5)-SWCNT in different analyte conditions. Both peak shift and intensity is significantly 

decreased in presence of HE4 regardless of the presence of BSA and FBS.  

We also found that most DNA sequences showed specific response to HE4. This 

was expected by the fact that the initial sequences set was derived from structurally well-

defined DNA/SWCNTs that have previously enabled separation20 or molecular sensing14 

(Table 5.1). 
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Figure 5.2. (a) DNA sequence dependence of (7,5)-SWCNT response to HE4; (b) Response 
of the (ATT)5-(7,5) SWCNT to HE4 vs. interferents. Note that (ATT)5-(7,5) SWCNT is 
depicted by the red bar in panel (a).  
 
 
 
5.3.2  Machine Learning Model Development 

The overall scheme of our approach is presented in Figure 5.3. Each model was 

optimized, and the model performance was estimated by the F1–score using 10-fold cross-

validation. Note that the target label from the lower right model in Figure 5.3 was labeled 

as the target label in the multi-label classification, but in practice, all three classification 

types were used. 

The best models that gave the highest F1–scores are listed in Table 5.3. In general, 

RF showed better performance than ANN and SVM. In particular, SVM showed poor 

performance in multi-class/multi-label classification. The performance of bi-class 

classifiers is slightly better than multi-class and multi-label classifiers. In terms of the 

missing value treatment, complete-example set showed better performance than complete-

feature set. For multi-class/multi-label classification, it is seen that DNA sequence 
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information rarely has an impact on the model performance.  However, this is unlikely to 

be correct, as will be discussed later.  Overall, the validation results are highly encouraging 

given that the F1–scores achieved approach the maximum value of 1.0.   

 

 

 
 
Figure 5.3. Overall scheme to develop a Molecular Perceptron to detect HE4. First, to 
collect data for the training set, near-IR photoluminescence spectra were measured for 
various DNA/SWCNT/analyte combinations. The picture presents high-throughput near-
IR fluorescence spectroscopy. Each well contains a single DNA sequence and the entire 
complement of SWCNTs in presence or absence of analytes.* The corresponding target 
label depends on a classification type. For example, if a bi-class classification is 
considered, the target labels would be the presence or absence of HE4. For multi-class 
classification, the target labels will be different analyte combinations. For multi-label 
classification, the target labels will be each analyte type. Note that the target label from the 
ML classifier, depicted in lower right, is presented as the target label in multi-label 
classification, but in practice, all three classification types were used. Data preprocessing 
step involves translation of all categorical values to a numeric vector, missing values and 
outlier treatment, feature vector construction, and feature space reduction. Once the feature 
vector is created, the models with three different types of classification algorithms and 
feature extraction method are trained using the training set feature vectors.  
  

 
* The picture and spectra on the left in Figure 5.3 were created by Dr. Daniel Heller at Memorial 
Sloan Kettering Cancer Center, New York, NY. 
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Table 5.3. Top five bi-class and multi-class/multi-label algorithms (ALG) showing 
excellent trainability 

Bi-class classifier  Multi-class/multi-label classifier 

Feature vector ALG F1-score  Output type Feature vector ALG F1-score 

PCA 
Bigram 

complete-example 
RF 0.947 

 
Multi-class Bigram 

complete-example RF 0.930 

Bigram 
complete-feature RF 0.942 

 
Multi-class noDNA 

complete-example RF 0.930 

Trigram 
complete-feature RF 0.942 

 
Multi-label noDNA 

complete-example RF 0.930 

Bigram 
complete-example SVM 0.927 

 
Multi-label noDNA 

complete-example ANN 0.927 

Trigram 
complete-example ANN 0.927 

 
Multi-class Trigram 

complete-example RF 0.923 

 
 

5.3.3 Feature Importance and Saliency Analysis 

Although PCA can combine correlated features and reduce the dimensionality of 

feature space, it is difficult to understand what exactly the principal components mean, 

because they are combinations of the original features. Furthermore, it is important to note 

that the criteria for PCA are completely unsupervised. For example, PC1 can be correlated 

with other factors such as DNA length and PC2 can be correlated with an analyte 

concentration. While, the feature importance and saliency analysis depend on the output 

class, so the analysis selects dimensions which lead to an improved classifier performance. 

In addition, the analysis can provide a physical meaning, for example, which SWCNT 

chirality is more sensitive to detect an analyte or which nucleobase is more important. This 

analysis may reduce future experimental work.  

Figure 5.4 shows the feature importance of top two bi-class and multi-class models. 

The results show that DNA sequence feature has negligible importance for determining the 
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output class. However, this is unlikely to be correct based on the prior knowledge that DNA 

sequences do show selective recognition on SWCNT with different electrostatic, solvation, 

and energetic characteristics20,21,24,25. In addition, the DNA sequence-dependence on the 

SWCNT emission response to HE4 has been observed, as depicted in Figure 5.2a and 

Figure 5.6. This implies that the current choice of feature vector likely does not capture 

salient information from the DNA sequences, which might be caused by the feature vector 

type. For example, the feature vector type we used (fvtype3) combines the chirality and 

spectroscopic measurement values (𝑑𝑤𝑙>, 𝑑𝑖𝑛𝑡>). Since the measurement values have more 

direct information on the HE4 detection, it can be considered overwhelming compared to 

other features such as DNA sequences. On the other hands, the fvtype2 combines the DNA 

sequence and spectroscopic measurement values. It is likely that the trained model by 

fvtype2 feature vector will help to reveal sequence dependence in HE4 detection. As the 

previous model by the input feature vector of fvtype3 showed, it is likely that the model 

trained by the input feature vector of fvtype2 helps to demonstrate the sequence-

dependence in HE4 detection. This leads to further model development and feature 

importance analysis with the feature vector type, fvtype2, to see the sequence dependence.  
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Figure 5.4. Feature importance of top two bi-class and multi-class models. (a) 
PCA/Bigram/complete-example feature vector using bi-class RF; (b) Trigram/complete-
feature feature vector using bi-class RF; (c) Bigram/complete-example feature vector using 
multi-class RF; (d) noDNA/complete-example feature vector using multi-class RF.  
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5.4 Conclusions 

We demonstrated a new perception-based sensing system using machine learning 

techniques to detect the ovarian cancer biomarker HE4 in the presence or absence of other 

analytes (BSA and FBS). The DNA/SWCNT hybrids were utilized to optically detect the 

analytes by observing changes in the peak intensity and peak location of each SWCNT. 

Using the experimental data, the machine learning models were trained. Overall, the 

models achieved remarkable trainability giving F1-scores of ~0.95. This is strongly 

suggestive of the idea that the perception mode of sensing can make accurate predictions.  

The feature importance and saliency analysis of the trained models imply that the 

current feature vector may not capture relevant information in DNA sequences. This may 

be because the feature vector type fvtype3 emphasizes the effect of SWCNT chirality by 

combining chirality and measurement values. Further work is required to resolve the 

problem of insufficient DNA information in current feature vectors; we suggest the use of 

the feature vector constructed by fvtype2 that combines DNA sequence and measurement 

values. We expect that the feature importance results of two different feature construction 

type (fvtype2 and fvtype3) can complement each other, which can improve model 

performance by feature selection based on the results.  

Furthermore, we found that most DNA sequences in the initial set showed specific 

response to HE4. Note that our initial sequence set was derived from previously identified 

recognition sequences. By the fact that recognition sequences can form structurally well-

defined DNA/SWCNTs,26,27 it can be interpreted that there is more chance of finding a 

special sequence for analytes detection in a set of pre-identified recognition sequences. We 
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can connect this study to our previous work on the recognition sequences predictive model 

using ML technique. The predictive model can provide good candidates for the Molecular 

Perceptron. 

So far, we have considered the sensing model as the classification problem. 

However, from an early detection perspective, it is advisable to monitor the analyte 

concentration, even if the concentrations of target analytes are not in the range to determine 

the class. This can be resolved by utilizing a multi-target regression model that takes the 

output as the analyte concentration. To build the regression model, additional experimental 

in difference concentration of analytes is required.  

Finally, we would like to note that the methods developed herein to detect a given 

analyte using molecular perceptron can be expanded to detect any number of important 

bioanalytes, and allow multiplexed detection via the use of multiple SWCNT chiralities 

and/or separately-addressable sensors. Eventually, these ideas both have the potential to 

change clinical practice to screen and detect disease at early stages. 
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5.7 Appendix 

5.7.1 Dimensionality Reduction by Principal Component Analysis (PCA) 

In order to reduce the feature space, we used principal component analysis (PCA) 

to find the directions of most variation in the dataset. As shown in Figure 5.5a, there is an 

overlap between the examples for the complete-feature set that is labelled as analytes. On 

the other hands, the examples of the complete-example set are well spread along the first 

and second principal component axes (Figure 5.5b). To train ML model, we used five of 

the most contributed principal components. 

It is worth noting that the direction of the eigenvector of features of DNA sequence is seen 

to be orthogonal to the direction in which the output data (i.e., HE4 presence) are the most 

spread out. Based on the observation, we created the feature vector without DNA sequence 

features.   
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Figure 5.5. Principal component analysis (PCA) of (a) complete-feature and (b) complete-
example set. In complete-feature set, the analyte-labelled examples are overlapped, 
however, in complete-example set, the labelled examples are well spread out. Vectors (blue 
arrow) represent eigenvectors and are scaled to the square root of their eigenvalue. 
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5.7.2 Raw data of peak shift (𝒅𝒘𝒍𝒊) and peak intensity change (𝒅𝒊𝒏𝒕𝒊)  

In general, most sequences showed differences in the intensity in presence of HE4 

regardless of the presence of BSA and FBS. 

 

 
Figure 5.6. Heatmap analysis of peak shift (𝑑𝑤𝑙> ) and intensity changes (𝑑𝑖𝑛𝑡> ) in 
presence/absence of the analyte. The horizontal axis represents the peak shift (left) and 
intensity changes (right) for each analyte combination (HE4, BSA, BSA+HE4, FBS, and 
FBS+HE4). The vertical axis represents each DNA/SWCNT combination. A total of 11  
chiral SWCNTs with each DNA sequences were measured except for the modified DNA 
sequences; (6,5), (8,4), (8,3), (7,5), (7,6), (10,3), (9,5), (9,4), (8,6), (10,2), and (8,7)-
SWCNT are shown in each row. Four of chiral SWCNT were measured for the modified 
sequences; (10,2), (9,4), (8,6), and (8,7)-SWCNT are shown in each row for modified 
sequences. The colorbar represents the peak shift and intensity change values. Different 
range was for 𝑑𝑤𝑙> and 𝑑𝑖𝑛𝑡>. 
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5.7.3 Link to Public Repository:  

The following link is to a public repository where we provide a collection of scripts for 

translation from DNA sequence and optical spectra data to features and machine learning 

models.  

https://bitbucket.org/jagotagrouplehigh/dna_swcnt_mp/ 
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Chapter 6 : Conclusion 

 

6.1 Experimental Characterization of DNA/SWCNT Hybrid 

It is well-known that some special DNA/SWCNT hybrids have different ordered 

structures enabling their use for separation of SWCNT species. Aqueous two-phase (ATP) 

systems have been used to separate SWCNTs using the difference in partitioning of 

DNA/SWCNT hybrid in the ATP. The partitioning is determined by the difference in 

solvation properties which can result from the secondary structure of DNA on SWCNT. In 

chapter 2, we proposed two ways to extract the solvation properties of DNA/SWCNT using 

the ATP system: relative solvation free energy in water, 𝜇m,�I /𝜇m,<I , and the Hildebrand 

solubility parameter, 𝛿> . The results from two different approaches are found to be 

consistent with each other, providing some confidence in each as a method of quantifying 

differences in solubility of various DNA/SWCNT hybrids. In chapter 4, we measure the 

binding characteristics of DNA on SWCNT by observing the kinetics of the SDC exchange 

process by DNA, aided by the addition of methanol. The activation energies for the DNA 

rearrangement process were estimated using Eyring kinetics. We found that the activation 

energies of some recognition sequences present significant difference between (6,5) and 

(8,3)-SWCNT, while the non-recognition sequence presents no chirality-dependence on 

the activation energy. We expect that such quantification can provide a basis for data-

analytic searches for new sequences. 
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6.2 SWCNT-Recognition DNA Sequence Prediction 

For many years, much effort has been expended on finding SWCNT-recognition 

sequences. However, this has not lead to the ability to predict recognition sequences. 

Recently, machine learning applications in bioinformatics have attracted considerable 

interest because of their ability to transform large amounts of raw sequence data into useful 

scientific knowledge, without requiring explicit programming instructions. As such, we 

utilized machine learning techniques to discover new recognition sequences in the vast 

ssDNA library. In chapter 3, we built machine learning models based on the DNA sequence 

information. We found a remarkable increase in the frequency of recognition sequences 

from 10% in the original training set to >50% in the model-predicted sequence sets.   

 

6.3 New Perception-based Sensing System using Machine Learning  

Current research on sensing applications has been mostly based on one-to-one recognition. 

However, it is impossible and inefficient to find receptors for each of the molecule in a 

complex sample. To detect various molecules simultaneously, an effective and automatic 

data processing system is essential. In chapter 5, a new perception-based sensing system 

named Molecular Perceptron is proposed. We demonstrated the perception-based sensing 

system using machine learning techniques to detect the ovarian cancer biomarker HE4 in 

the presence or absence of other analytes (BSA and FBS). The DNA/SWCNT hybrids were 

utilized to optically detect the analytes. Encouragingly, the models achieved remarkable 

trainability with the F1-score of ~0.95.  

 



 169 

6.4 Future work 

In chapter 2, we introduced a way to estimate the Hildebrand solubility parameters 

for DNA/SWCNT hybrid. The Hildebrand solubility parameter considers only dispersion 

interactions between molecules.1  For many polymer/solvent pairs, the cohesive energy is 

also affected by polar group interactions and hydrogen bonding, thus multiple-component 

concepts, such as Hansen solubility parameters,2 can be used to extract partial parameters 

from different contributions, which can help to better understand the intermolecular 

interactions of hybrids. In order to extract Hansen solubility parameters from ATP system, 

three solubility parameters are required, so more experimental work is needed to calculate 

them uniquely.  

In chapter 3, we considered the recognition DNA sequence prediction as a binary 

classification problem despite each pair with a different SWCNT. In addition, it is known 

that some special sequences have the separability of enantiomers,3 which means that the 

recognition sequences can be differed in terms of  selectivity/yield. In this respect, the 

predictive model can be expanded to a resolution-based multi-level classification. More 

broadly, our approach will provide some insight to the sequence selection problem for 

bio/nano hybrid materials made of inorganic nanostructures and sequence-defined 

polymers such as DNA and peptides.  

In chapter 4, the preliminary findings suggest that the structure of DNA on SWCNT 

prepared by the exchange process can be different compared to that prepared by direct 

sonication, which is related to the recognition ability. The ATP separation technique can 

be utilized to test the recognition ability of the DNA/SWCNT hybrid. Furthermore, 
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additional treatment after the exchange process such as mild sonication or incubation at 

high temperature can be studied systematically to obtain the same structure as that prepared 

by direct sonication. 

In chapter 5, the sensing model was considered as a classification problem. 

However, from a diagnostic perspective, it is advisable to monitor the concentration of 

analytes. A multi-target regression model can be considered to predict the analyte 

concentration. Additional experimental in difference concentration of analytes is required 

to build the regression model.  

Overall, all studies presented in this dissertation can be connected (Figure 6.1). The 

properties of DNA/SWCNT obtained by experiments in Chapter 2 and 4 could be utilized 

to build a model to predict new recognition sequences. The predictive model can provide 

good candidates for the Molecular Perceptron system by its high probability of having 

well-defined secondary structure.  
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Figure 6.1. Schematic pipeline for future work. It mainly comprises two systems: (top) 
Recognition sequence prediction and (bottom) Molecular Perceptron. The sequence 
predictive model can generate well-chosen sequence candidates for Molecular Perceptron.  
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• Develop a physical model for the energetics behind DNA based separation using Monte 

Carlo simulation coupled with Bayesian optimization.  
 
Case Western Reserve University, Cleveland, Ohio                        June 2018 – Aug. 2018 
Visiting research assistant (Advisor: Prof. Roger French) 
• Developed data analysis framework for spectra decomposition using principal 

component analysis (PCA) and partial least square regression (PLSR) on time resolved 
optical spectra showing displacement by surfactant of DNA on different SWCNT species. 

• Developed an automated technique to analyze micro indentation load-displacement curve. 
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National Institute of Standards and Technology, Gaithersburg, Maryland  
Visiting research assistant (Advisor: Dr. Ming Zheng)  Sep. 2017 – Nov. 2017 
• Conducted single chirality SWCNT separation by an aqueous two-phase (ATP) system. 
 
Korea Institute of Science and Technology (KIST) – Republic of Korea     
Research assistant – (Supervisor: Dr. Myung-Suk Chun)            Aug. 2013 – June 2014 
• Developed model to predict solute sorption behavior in polymer gel. 
• Investigated size-dependent cell separation based on hydrodynamic filtration utilizing 

microfluidic chip. 
 
Hongik University – Republic of Korea    Sep. 2011 – July 2013 
Graduate research assistant – (Advisor: Prof. Won Sun Ryoo) 
• Studied salinity gradient energy for electric power generation utilizing Reverse Electro-

Dialysis (RED) and Pressure Retarded Osmosis (PRO). 
• Developed inorganic ion exchange membrane by modifying surface of porous alumina 

membranes. 
• Conducted numerical simulation on ion transport characteristics in nano-channel with 

surface charge.  
• Developed an effective method for bitumen production using CO2. 
 
Hongik University – Republic of Korea              Mar. 2010 – Aug. 2011 
Undergraduate research assistant – (Advisor: Prof. Won Sun Ryoo) 
• Synthesized and characterized self-doped conducting polymers for resistive random-

access memory (RRAM) application. 
 
Hongik University – Republic of Korea    June 2009 – May 2010 
Undergraduate research assistant – (Advisor: Prof. Young Sik Kim) 
• Simulated and synthesized novel iridium(Ⅲ) complexes for organic light emitting 

devices (OLEDs). 
 

Publications  (*: corresponding author)           

1. N. Senanayake, Y. Yang, R. H. French, A. Jagota, J. L.W. Carter, An Automated 
Technique to Analyze Micro Indentation Load - Displacement Curve, Society of 
Experimental Mechanics. (submitted)  

2. Y. Yang, M. Zheng, and A. Jagota*, Learning to Predict Single-Wall Carbon Nanotube-
Recognition DNA Sequences, npj Computational Materials. 5 (3), 2019.  

3. Y. Yang, A. Shankar, T. Aryaksama, M. Zheng, and A. Jagota*, Quantification of 
DNA/SWCNT Solvation Differences by Aqueous Two-Phase Separation, Langmuir, 
34 (5), 1834-1843, 2018. 

4. Y. Yang and M.-S. Chun*, The effect of chain stiffness on moisture diffusion in 
polymer hydrogel by applying obstruction-scaling model, Korea-Australia Rheology 
Journal, 25 (4), 267-271, 2013. 

5. H. W. Ham, Y. A. Yang, and Y. S. Kim*, Blue Phosphorescent Mono-cyclometalated 
Iridium(III) Complexes, Journal of Korean Physical Society, 57 (6), 1695-1698, 2010. 
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Patent                

1. M.-S. Chun, Y. Yang, and D. H. Woo, Method and apparatus for sensing the flow 
properties of solution in microfluidic channel having multiple branches, Korea Patent, 
May 14, 2015 (registered #10-1521879). 

2. G.Y. Chung, W. Ryoo, and Y. Yang, Power Generating System from Salinity Gradient 
Energy Utilizing Automatic Self-Reciprocating Pressure Exchange, , Korea Patent, 
April 24, 2014 (registered #10-1388694) 

3. G.Y. Chung, S.O. Lee, W. Ryoo, T. Lee, and Y. Yang, Power-Generating System using 
Salinity Difference Energy Between Salty Water and Fresh Water, Capable of 
Recovering Pressure using a Pressure Exchange Device which Includes Two 
Interlocked Pistons, Korea Patent, February 26, 2013 (registered #10-1239440). 

 

Awards                

1. Best Student Poster Award, "Quantitative Analysis of Aqueous Two Phase Separation 
of DNA-SWCNT Hybrids", 231st ECS meeting, Nanocarbon (NANO) Division of the 
Electrochemical Society, June 2017. 

2. Best Poster Presentation Award, “Development of Eco-friendly Bitumen Production 
using CO2: Swelling Factors and Diffusion Coefficients of CO2 in Bitumen”, KSCT 
Fall Conference 2012, The Korean Society of Clean Technology (KSCT), November 
2012. 

3. Best Poster Presentation Award, “Numerical analysis of ion transport in stacked cells 
of reverse electro-dialysis for generating electricity”, KIChE Fall Meeting 2011, The 
Korean Institute of Chemical Engineers (KIChE), October 2011. 

 

Selected Conference Presentations (*: corresponding author)        

1. Y. Yang*, M. Zheng and A. Jagota, Learning How to Predict SWCNT-Recognition 
DNA Sequences, 2018 AIChE Annual Meeting, Pittsburgh, PA, October 2018. 

2. Y. Yang*, A. Cruz, D. Gordon, R. French, M. Zheng, and A. Jagota, Applying Machine 
Learning Techniques to Prediction and Data Analysis of DNA/SWCNT Sequence-
dependent Interaction, CWRU/Kyocera Materials Data Science Symposium 2018, 
Cleveland, OH, August 2018. 

3. Y. Yang*, M. Zheng and A. Jagota, Learning DNA/SWCNT Recognition Sequences, 
233rd ECS Meeting, Seattle, WA, May 2018 

4. Y. Yang, A. Shankar, T. Aryaksama, M. Zheng, and A. Jagota*, Quantitative Analysis 
of Aqueous Two Phase Separation of DNA-SWCNT, 231st ECS Meeting, New Orleans, 
LA, May 2017 

5. M.-S. Chun*, Y. Yang, Unsteady electrokinetic microfluidics with hydrodynamic 
slippage effect, March Meeting of The American Physical Society, Denver, CO, March 
2014. 

6. Y. Yang, D. Y. Lee, and M.-S. Chun*, Chain Properties and Hindered Moisture 
Diffusion in Polymer Hydrogel Based on Obstruction-Scaling Model, The 9th 
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International Workshop for East Asian Young Rheologists, Seoul, Republic of Korea, 
February 2014. 

7. K. Yoon, Y. Yang, M.-S. Chun*, and H. W. Jung*, Electrolytic non-Newtonian Fluids 
in a Curved Microchannel with Charged Wall, The 9th International Workshop for East 
Asian Young Rheologists, Seoul, Republic of Korea, February 2014. 

8. I. Yim, Y. Yang, and W. Ryoo*, Performance Analysis of Reverse Electrodialysis 
(RED) Cell Stacks Utilizing Equivalent Circuit Model (ECM), KIChE Fall Meeting 
2013, Daegu, Korea, October 2013. 

9. Y. Yang and W. Ryoo*, Numerical analysis of selective ion transport in nano-channels 
with charged surfaces, 87th ACS Colloid & Surface Science Symposium, Riverside, 
USA, June 2013. 

10. Y. Yang, S. Oh, W. Bae, and W. Ryoo*, Development of Eco-friendly Bitumen 
Production using CO2: Swelling Factors and Diffusion Coefficients of CO2 in Bitumen, 
KSCT Fall Conference 2012, Daegu, Korea, November 2012. 

11. Y. Kim, Y. Yang, and W. Ryoo*, Lumped parameter analysis of Reverse Electro-
Dialysis (RED) cell performance based on equivalent circuit model, KSCT Fall 
Conference 2012, Daegu, Korea, November 2012. 

12. Y. Yang, G. Y. Chung, M.-S. Chun, and W. Ryoo*, Preparation and characterization 
of functionalized alumina membranes for ion exchange applications, 12th International 
Conference on Inorganic Membranes, Enschede, Netherlands, July 2012. 

13. Y. Yang, B. Oh, G.Y. Chung, and W. Ryoo*, Mechanical Power generation utilizing 
Pressure Retarded Osmosis (PRO), KIChE Fall Meeting 2011, Incheon, Korea, 
October 2011. 

14. Y. Yang, S. Kim, S.O. Lee, G.Y. Chung, and W. Ryoo*, Numerical Simulation of Ion 
Transport in Reverse Electrodialysis (RED) Cell for Electrical Power Generation, Tech 
Connect World Conference & Expo 2011, Boston, USA, June 2011. 

15. Y. Yang and W. Ryoo*, Synthesis and Characterization of Self-doped Conductive 
Polymers, KIChE Spring Meeting 2011, Changwon, Korea, April 2011. 

16. Y. Yang, S. Kim, S.O. Lee, G.Y. Chung, and W. Ryoo*, Numerical Analysis of Ion 
Transport in Stacked Cells of Reverse Electro-dialysis for Generating Electricity, 
KIChE Spring Meeting 2011, Changwon, Korea, April 2011. 

 
 
Research Technique Proficiency            

Experimental Skills 
• Spectroscopic analysis: UV-vis-NIR spectroscopy, Photoluminescence (PL) 

spectroscopy, Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared (FT-
IR) spectroscopy, and Nuclear magnetic resonance (NMR) spectroscopy 

• Electrical/Electrochemical characterization: Cyclic voltammetry (Potentiostat), 
Electrochemical Impedance Spectroscopy (EIS), pH/Conductivity meter, Multimeter, 
Power Supply, and Electric Load 

• Microscopy: Scanning Electron Microscopy (SEM) and Atomic Force Microscopy 
(AFM) 
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• Sorting single species of SWCNT using aqueous two-phase (ATP) separation  
• Design and Fabrication of microfluidic chip by using photolithography process 
• Synthesis (Suzuki-Miyaura reaction) and surface functionalization (silanization and 

plasma treatment) of polymer, membrane, or glass 
• Fabrication and electrical characterization of lab-scale Random Access Memory (RAM) 

and Field Effect Transistor (FET) 
• Deposition of metal using magnetron sputter and thermal evaporator 
• Chemical analysis using Gas Chromatography (GC) 
• Interfacial energy analysis using Contact Angle Meter 

 
Computational Skills 
• Experience with machine learning/bioinformatics techniques (SciPy, keras, and 

variable libraries in R) and big data technology (Hadoop)  
• Molecular simulation: Molecular modeling by calculating with Density Functional 

Theory (DFT) utilizing Gaussian 98; molecular dynamics modeling using Gromacs; 
coarse-grained model using Monte Carlo simulation coupled with Bayesian 
optimization 

• Numerical analysis: Finite-difference Method (FDM) and Finite-element Method 
(FEM) utilizing Matlab and COMSOL Multiphysics 

• Programming languages: R, Python, and Matlab 
• Other software applications: Git, Microsoft Office (including Visio and Front Page), 

Chembio Office, LabVIEW, Origin, SigmaPlot, AutoCAD, Adobe Photoshop, and 
Adobe Illustrator 

 

Teaching Experience              

• Teaching assistant for [ChE 415] Transport processes for PhD students, Lehigh 
University, Spring 2019 

• Teaching assistant for [BioE 210] Introduction to Engineering Physiology (including 
laboratory work) for undergraduate students, Lehigh University, Spring 2017 

• Teaching assistant for [ChE 400] Chemical Engineering Thermodynamics for PhD 
students, Lehigh University, Fall 2016 

• Teaching assistant for [BioE 110] Elements of Bioengineering for undergraduate students, 
Lehigh University, Fall 2015 

• Teaching assistant for [ChE 201] Methods of Analysis in Chemical Engineering for 
undergraduate students, Lehigh University, Fall 2014 

• Teaching assistant for Chemical Engineering Laboratory. II for undergraduate students, 
Hongik University, Spring 2012 

• Teaching assistant for Chemical Engineering Laboratory. I for undergraduate students, 
Hongik University, Fall 2011 
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