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Abstract
Tokamaks are devices whose final purpose is obtaining energy by means of nuclear
fusion reactions. To achieve such purpose, a gas is injected into the tokamak’s
torus-shaped chamber and heated up to extremely high temperatures, giving birth to
a plasma. When the necessary conditions of temperature, density, and confinement
time are achieved, virtually inexhaustible energy can be produced in a tokamak.

The main contribution of this dissertation is the development of integrated con-
trol strategies for tokamak plasmas. The development of integrated control archi-
tectures is necessary for tokamaks to become efficient and commercially competitive
power plants. Because a tokamak plasma is a highly nonlinear, coupled dynamical
system, the great diversity of complex control problems that coexist in a tokamak
are indeed closely interrelated. However, this variety of control problems must
be tackled by means of a limited number of actuators. A functional design for
integrated tokamak-control architectures should employ multi-input multi-output
controllers to simultaneously regulate as many plasma variables as possible with
the available actuators. Supervisory and exception handling systems that monitor
the plasma state arise as a necessity to ensure a safe tokamak-operation. Finally,
actuator sharing and management capabilities should also exist in order to utilize
the available actuators in an optimal way. Various control problems are tackled
in this dissertation, including kinetic, magnetic, and instability control problems.
Control-oriented, physics-based models that characterize some specific aspects of
the plasma dynamics have been employed to develop new control-oriented simula-
tion codes and integrated-control solutions that employ nonlinear, robust control
techniques and optimization-based actuator-management strategies. Some of those
control solutions have been experimentally tested in the DIII-D tokamak.

1



Chapter 1

Introduction to Nuclear Fusion and

Tokamak-Plasma Control

The objective of this Chapter is to briefly introduce the most basic concepts related
to nuclear fusion, tokamaks, and tokamak-plasma control problems, particularly for
those who are not familiar with such topics. The experienced reader is advised to
go directly to Chapter 2 or to the dissertation outline in this Chapter, Section 1.4.

1.1 Nuclear Fusion: Basics

1.1.1 A Brief History of Nuclear Fusion Research

Nuclear fusion was a total mystery until the XX century. In the 1920’s, Sir Arthur
Eddington was the first scientist to correctly suggest that the energy created in the
stars was due to the fusion of hydrogen and helium [1]. Fusion reactions, which
release relatively high amounts of energy from small amounts of mass, are possible
in the stars due to the huge masses and the gravitational forces that these cosmic
giants generate, which produce the necessary conditions for particles to fuse. This
mechanism is known as gravitational confinement. Such a powerful (and, for some,
almost “magical”) source of stellar energy soon aroused interest within the scientific
community. However, for evident reasons, reproducing nuclear fusion on Earth
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1.1. Nuclear Fusion: Basics

by means of gravitational confinement is not feasible, and significant research was
initiated to find new confinement methods and understand the physics involved in
the nuclear fusion processes. Until the 1950’s, most research was classified due to
its link with the development of thermonuclear weapons. Since then, nuclear fusion
research has been characterized by a high degree of international collaboration. Two
alternative confinement methods are the main focus of the ongoing fusion-science
research program: inertial confinement, whose goal is to attain fusion conditions by
compressing a fuel target by means of high-energy lasers, and magnetic confinement,
whose goal is to attain fusion conditions by confining the fuel particles by means
of magnetic fields. The latter is the one that has experienced the biggest progress
throughout the years and, nowadays, is the main focus of the fusion-science research
program, exploring the path towards a clean, safe, and virtually inexhaustible source
of energy that could solve most of the problems associated with the current means
of producing energy.

1.1.2 Nuclear Reaction Physics

A nuclear reaction is the process in which two or more nuclei (and possibly subatomic
particles, such as protons or neutrons) get combined and form at least one different
nuclei (and possibly other subatomic particles as well). A nuclear reaction can be
represented as follows,

r1 + r2 + ...+ ri + ...+ rM → p1 + p2 + ...+ pj + ...+ pN , (1.1)

where ri is the i-th reactant for a total of M reactants, and pj is the j-th product
for a total of N products. When the reactant nuclei are combined to form a heavier
nucleus, the nuclear reaction is said to be a fusion reaction (see Fig. 1.1). The
opposite process, in which reactant nuclei are split into lighter nuclei, is known as a
fission reaction. Both in fusion and fission nuclear reactions, the relativistic energy
of the system, Erel, is conserved. Therefore,

Erel =
i=M∑
i=1

[
m0

(
v2

2
+ c2

)]
ri

=

j=N∑
j=1

[
m0

(
v2

2
+ c2

)]
pj

, (1.2)
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Reactant 1

Reactant 2

Fusion Reaction

Product 1

Product 2

(Ekin)reactant

Region in which the 
nuclear force acts

Electrostatic barrier
U ∝ 1/r

rU

Figure 1.1: Schematic of the D-T fusion reaction (on the left) and the Coulombic elec-
trostatic barrier (on the right).

where m0 is the rest mass, v is the velocity, c is the speed of light, and [(·)]ri ,
[(·)]pj denote that the variable (·) corresponds to the i-th reactant or j-th product,
respectively. Using the definition of kinetic energy, Ekin = 1

2
m0v

2, equation (1.2)
can be rewritten as follows,

∆Ekin =
i=M∑
i=1

[
1

2
m0v

2

]
pj

−
j=N∑
j=1

[
1

2
m0v

2

]
ri

= (

j=N∑
j=1

[m0]ri −
i=M∑
i=1

[m0]pj)c
2, (1.3)

i.e., the variation of kinetic energy in the reaction, ∆Ekin, is proportional to the
sum of the reactant rest masses minus the sum of the product rest masses. If
∆Ekin > 0, the products gain kinetic energy with respect to the reactants, and
such reaction is called exothermic. In an exothermic reaction, the difference in rest
mass between reactants and products is transformed into kinetic energy. On the
contrary, if ∆Ekin < 0, the products have a lower kinetic energy than the reactants,
and such reaction is called endothermic. In an endothermic reaction, there is an
increase in rest mass of the products with respect to that of the reactants. For
energy production purposes, exothermic reactions are much more interesting than
endothermic reactions, as the increase in kinetic energy through the reaction can be
transformed into other types of energy, like for example thermal energy or electrical
energy. The final goal of the current fusion-science research program is to achieve
significant exothermic fusion reactions in order to produce electrical energy.
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Some exothermic fusion reactions of interest, together with their kinetic energy
gains, are given by

D + T → 4He + n, (∆Ekin = 17.6 MeV) (1.4)

D + D → 3He + n, (∆Ekin = 2.46 MeV) (1.5)

D + 3He→ 4He + p+, (∆Ekin = 18.3 MeV) (1.6)

where D is the deuterium nucleus (the hydrogen isotope composed by one proton and
one neutron), sometimes referred to as deuteron, T is the tritium nucleus (hydrogen
isotope composed by one proton and two neutrons), sometimes referred to as triton,
n denotes a neutron, and p+ denotes a proton.

The mechanism of a nuclear fusion reaction cannot be understood without the
two following forces: the Coulombic forces and the strong nuclear forces. On the one
hand, the electrostatic Coulombic forces are repulsive between like-charged particles,
so they make the positively-charged nuclei particles repel each other just like the
positive (or negative) ends of two magnets. On the other hand, the strong nuclear
forces bind the nuclei particles together. The strong nuclear forces are much more
powerful than the Coulombic forces, but are also extremely short-range (only rele-
vant at distances within the order of a nucleus size). For a fusion reaction to happen,
the reactant particles must overcome the repulsive Coulombic forces experienced by
their positively-charged nuclei (the so-called Coulombic barrier, see Fig. 1.1), and
come close enough so that the strong nuclear forces bind them together.

Overcoming the Coulombic barrier requires that the reactants have very high
kinetic energies. For the heavier elements, this may result in an endothermic fusion
reaction. In general, lighter elements are more likely to yield exothermic fusion
reactions. A simple estimate of the kinetic energy required for fusion can be obtained
for single-charged ions using the electrostatic potential, U = q2

e

4πε0rU
, where qe is the

electron charge, ε0 is the vacuum electrical permittivity, and rU is the characteristic
distance at which the strong nuclear force acts. If rU is taken as the radius of the
proton, whose order of magnitude is 10−15 m, then the order of magnitude of U is
100 keV. However, significant fusion reactions can happen at lower temperatures,
within the order of 10 keV. This can be explained by means of quantum mechanics
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and the so-called quantum tunneling phenomenon, which predicts that subatomic
particles can overcome potential barriers that could not be overcome according to
classical mechanics, and is due to the particle-wave duality of subatomic particles.

The likelihood for fusion reactions to happen is quantified in nuclear physics by
means of the so-called reactivity, 〈σv〉, which is a function of the kinetic energy of
the reactants, or their temperature1, T . Approximate 〈σv〉 values for the fusion
reactions in (1.4)-(1.6) are shown in Fig. 1.2, within the range T = [1, 100] keV [3].

10
0

10
1

10
2

10
-20

10
-18

10
-16

10
-14

10
0

10
1

10
2

10
16

10
18

10
20

10
22

10
24

10
26

Figure 1.2: Reactivities 〈σv〉 and T 2/〈σv〉 for D-T, D-D and D-3He fusion reactions.

It can be seen that the D-T reaction (1.4) presents the highest 〈σv〉 at the given
temperature range, so it is the most interesting for energy production purposes. The
fusion power-density produced by D-T reactions, denoted by Qfus, is given by

Qfus = ∆EkinnDnT 〈σv〉, (1.7)

where nD and nT are the D and T densities, respectively, and ∆Ekin = 17.6 MeV
is the energy gain in every D-T reaction, as indicated in (1.4). Approximately 4/5

of Qfus is carried by the neutron, whereas the remaining 1/5 is carried by the α
particle (4He).

1The kinetic-energy requirements for fusion can be expressed in terms of the temperature of
the reactants. The reactivity, 〈σv〉, is the average over a Maxwellian particle-distribution of the
reaction cross-section, σ, multiplied by the velocity of the particles, v. The relationship between
the temperature of the Maxwellian distribution, T , and the average kinetic energy of the particles
in a three-dimensional Maxwellian distribution, Eav, is given by Eav = 3

2KT , where K is the
Boltzmann’s constant. More details can be found in [2].
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1.1.3 Fusion Science and Plasma Physics

As it can be seen in Fig. 1.2, the temperature required to achieve fusion is extremely
high even for the lightest atoms, hydrogen and its isotopes (1 keV corresponds to
approximately 107 K). At such extreme temperatures, the reactants are found in
plasma state, in which ions and electrons are dissociated. Therefore, fusion science
and plasma physics are fields of study that are inherently interconnected.

Such connection makes fusion science an even more challenging field. In addition
to the technological difficulties associated with achieving the required temperatures,
plasmas behave in unexpected ways, specially when compared to non-ionized gases.
Because charged particles move within plasmas, electrical currents can be driven
through them. Moreover, charged particles can interact with magnetic fields. A
plasma within a prescribed magnetic field experiences a Lorentz force that modifies
the momentum of the particles, and therefore the electrical currents within the
plasma. In turn, such currents create magnetic fields that modify the externally
created magnetic field. Even to the untrained eye, it would not be difficult to
hint that such a system might be hard to understand from an intuitive physical
standpoint. As a matter of fact, some of the plasma instabilities observed cannot
be fully explained by the existing physical theories.

1.1.4 Feasibility of a Fusion Power Plant

A schematic of a possible D-T fusion reactor is shown in Fig. 1.3. The reactant
plasma would preferably be a D-T mix, although a D-D reactor would function
in an analogous way. Deuterium can be obtained from sea water and is virtually
inexhaustible, but tritium cannot be found in nature. It can be synthesized from
lithium by neutron bombardment according to the following fission reactions,

n + 6Li→ T +4He, n + 7Li→ n + T +4He. (1.8)

A lithium blanket would be placed around the reacting plasma, so that the high en-
ergetic neutrons released in the fusion reactions collide with the blanket and provide
the reactor with the necessary T for its operation. The heat arising from neutron
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bombardment of the lithium blanket would be employed to generate electrical energy
by means of a turbine, as in any conventional thermal plant. On the other hand, the
α particles (4He) would remain within the plasma providing the necessary heating
to sustain the required fusion temperatures. In addition, auxiliary power sources
would be employed to provide additional heating during the operation phases in
which it may be needed.

Lithium blanket

Plasma

Deuterium 
processing systems

Tritium 
processing systems

Neutron

4He

Deuteron

Triton

Heat for 
electricity production

Auxiliary 
power systems

Turbine

Figure 1.3: Schematic of a D-T fusion reactor with lithium blanket.

A parameter of interest in fusion power plants is the so-called fusion gain, Q ,

Pfus/Paux, i.e., the ratio of fusion power produced, Pfus, to auxiliary power injected,
Paux. Ideally, Paux would be needed only to initiate the fusion reactions or for
thermal control during small periods of time, so that the plasma temperature is
maintained mostly by means of α-heating power. This operating point, in which
Q→∞, is known as ignition by analogy to fossil-fuel power plants. A less exigent
but still relevant operating point would be that in which Q = 1, that is, the power
produced from fusion reactions is the same as the power injected by the auxiliary
sources. The condition Q = 1 is known as breakeven. However, a value of Q = 1

would not be enough to ensure the economical feasibility of a power plant because the
conversion between Pfus and electrical power cannot be done with 100% efficiency.

A. Pajares 8 Lehigh U.



1.1. Nuclear Fusion: Basics

Fusion reactors would be much safer than fission reactors because they have no
risk of meltdown and their radioactive waste is short-lived. They would also have
the typical advantages of other clean sources of energy: they do not produce CO2

and their fuel is almost unlimited2. However, other technological and economical
difficulties, such as the partial lack of physics understanding, the difficulties asso-
ciated with tritium processing and steady-state operation, or the high construction
cost of fusion plants, are drawbacks that need to be overcome for fusion reactors to
become viable power plants.

1.1.5 Lawson’s Criterion

The expression for Pfus in equation (1.7) indicates that, in addition to reaching the
high temperatures required for significant fusion to occur, it is also necessary to
sustain them at high enough density. Moreover, the time during which the parti-
cles remain within the confined plasma must be maximized. Temperature, density,
and confinement time characterize the so-called plasma confinement. In an ignited
plasma (i.e., Q→∞, Paux = 0) under steady-state conditions, the α-heating power
density, Qα, must be equal to the power-density losses, Qloss. For a D-T plasma,
both magnitudes are given by

Qα = ∆Eα
kinnDnT 〈σv〉, (1.9)

Qloss =
3

2

(nD + nT )KTi + neKTe
τE

≈ 3

2

(nD + nT + ne)KT

τE
, (1.10)

where ∆Eα
kin = 3.52MeV is the energy carried by the α particle in the D-T reaction,

and τE is the energy confinement time. It is assumed that the temperature of the
ions, Ti, and electrons, Te, is similar, Ti ≈ Te ≈ T . The quasi-neutrality condition3

for a D-T plasma with small or no α and impurity content is given by nD + nT =

2There is a growing concern that there will be a shortage of lithium due to an increasing
demand from the electronics industry [4], although it is unclear whether this will affect the future
development of nuclear fusion as a feasible way of producing clean energy.

3Plasmas are quasi-neutral : although ions and electrons are dissociated, the overall electrical
charge remains approximately zero.
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ni = ne, where ni and ne are the ion and electron densities, respectively. Using the
quasi-neutrality condition and assuming nD = nT , the condition Qα = Qloss can be
written as4

neTτE =
12T 2

∆Eα
kin〈σv〉

. (1.11)

Equation (1.11) is sometimes referred to as triple product or Lawson’s criterion. It
gives an approximate estimation of the minimum requirements for ignition in terms
of T , ne, and τE. The function T 2/〈σv〉 has a minimum at around T ≈ 15 keV (see
Fig. 1.2), at which T 2/〈σv〉 ≈ 1018 keV2 s/m3, so (1.11) can be rewritten as

neTτE ≥ 3× 1021 keV s/m3. (1.12)

It must be noted that, instead of Q → ∞, high Q (i.e., Pfus >> Paux 6= 0) may
suffice to fulfill the energy-production objectives of a fusion reactor. In the case
with Paux 6= 0, the condition Qα = Qloss is written as Qα + Qaux = Qloss instead,
where Qaux ∝ Paux is the auxiliary power-density. This yields

neTτE =
12T 2

∆Eα
kin〈σv〉

(
1−Qaux

τE
3neT

)
, (1.13)

which represents a less exigent requirement than (1.11). However, thus far, fu-
sion plasmas have demonstrated worse confinement (and therefore, a lower triple
product) than it was initially predicted by scientists in the early stages of nuclear
fusion research [2], and neither (1.11) nor (1.13) have been attained yet. However,
1 << Q < ∞ operation may be attainable and is the focus of the fusion-energy
research programs around the world.

1.2 The Tokamak Concept

Within the aforementioned magnetic-confinement approach to fusion, the tokamak
is one of the most promising devices that has been designed thus far [5]. Invented by
Soviet Union scientists in the 1950’s, the tokamak is a torus-shaped device in which

4To simplify the notation used, T is employed instead of KT for the remaining of this Section.
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a plasma is confined by means of helical magnetic fields, as shown in Fig. 1.4. More-
over, electrical current is inductively driven through the plasma, which acts as the
secondary of a transformer. Because of this transformer-like principle of operation,
the tokamak was originally designed as an inherently pulsed device. However, the
addition of auxiliary current sources into most tokamak designs and the discovery of
the self-generated bootstrap current [5] may make up for the loss of inductively-driven
current, possibly allowing tokamak operation in steady-state regimes.

Figure 1.4: The tokamak: on the left, main types of heating and current drive methods
employed; on the right, the magnetic configuration and coils.

Nowadays, tens of tokamaks operate around the world. Currently, the biggest
tokamak and the only one that operates with D-T plasmas during some periods of its
experimental campaigns is the Joint European Torus (JET), in the United Kingdom,
that achieved the highest Q ever attained (Q ≈ 0.67). However, the triple-product
world record belongs to the JT-60 tokamak, in Japan, that achieved neTτE ≈ 1.5×
1021 keV s/m3. Other medium-size tokamaks are WEST in France, ASDEX-U in
Germany, or DIII-D in the United States of America. A major milestone in the
development of fusion science is ITER, the next-generation tokamak currently under
construction in France. ITER is approximately two times the size of JET, and
its main mission is to demonstrate the feasibility of nuclear fusion as a means of
producing energy, as well as providing a benchmark for future commercial-grade
fusion reactors.
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1.2.1 Basic Description of the Tokamak Operation

A tokamak pulse, also known as plasma discharge, starts with the injection of a gas
(normally D in present devices, but ideally a D-T mix in future devices) into the
tokamak vacuum chamber. In the initial phase, also known as breakdown, the gas is
ionized and becomes a plasma by means of the ohmic coil. The ohmic coil acts as
the primary of a transformer, whereas the plasma behaves as the secondary. During
this initial phase, the plasma is very conductive and its temperature raises due to
ohmic heating. After the breakdown phase, the total plasma current, denoted by Ip,
is normally ramped-up until it reaches a more or less stationary value. The evolution
of Ip is regulated by controlling the current in the ohmic coil. After some time at
an approximately constant Ip, the plasma discharge finishes with an Ip ramp-down.
The stationary value of Ip and the duration of the stationary phase depend on the
particular design of the tokamak in question. Based on the evolution of Ip, a plasma
discharge is normally divided into three phases: ramp-up phase, flat-top phase, and
ramp-down phase.

As the discharge evolves in the ramp-up and flat-top phases, most present-day
tokamaks employ auxiliary sources to supply additional Heating and Current Drive
(H&CD) to the plasma (see Fig. 1.4). This is due to the fact that as the plasma
temperature raises, its conductivity decreases, making the ohmic-heating method
much more inefficient. Auxiliary H&CD methods commonly used are Neutral Beam
Injection (NBI), that employs neutral particles that collide with the plasma particles
and get ionized while transferring their energy, and electromagnetic waves, such as
Electron-Cyclotron (EC), Ion-Cyclotron (IC) or Lower-Hybrid (LH) waves, that
excite the EC, IC or LH plasma frequencies [2]. Also, additional gas is normally
injected into the vacuum chamber to increase the plasma density. As of now, two
fueling methods are used in tokamaks: gas puffing, that injects gas at the plasma
edge by means of a system of valves and conducts open to the tokamak’s first wall,
and pellet injection, that injects high velocity pellets directly into the plasma core.

As introduced above, the plasma particles are confined within a tokamak by
means of magnetic fields. The primary magnetic field in a tokamak is the toroidal
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magnetic field (see Fig. 1.4). The toroidal field coils distributed along the tokamak
are responsible for the creation of the toroidal field. Present medium and large-size
tokamaks operate with toroidal fields within the order of a few teslas. The cur-
rent through the toroidal coils is kept approximately constant, so that the external
toroidal field is also constant. An order of magnitude smaller, but still indispensable
to make the plasma column stable within a tokamak, is the poloidal magnetic field5.
It is mainly generated by Ip, but it is also affected by the poloidal field coils that
are used for plasma shape and position control within the vacuum chamber (see
Fig. 1.4). The combination of the toroidal and poloidal magnetic fields results in
helical magnetic-field lines. Other additional magnetic coils are sometimes available,
depending on the design of the tokamak in question. They receive different denom-
inations depending on their configuration. For example, the coils whose location
is inside the tokamak’s vacuum vessel are sometimes denominated in-vessel coils,
whereas the coils located outside the vacuum vessel denominated ex-vessel coils. In
DIII-D, the in-vessel coils are referred to as I-coils, whereas the ex-vessel coils are
referred to as C-coils. The coils may also be named after their purpose, like for
example in ITER, in which edge-localized mode (ELM) coils, field-correction coils,
and vertical-stability (VS) coils are found6.

The time evolution of some plasma magnitudes (Ip, line-average7 ne, and Paux) in
a plasma discharge for the DIII-D tokamak (shot 147634), is illustrated in Fig. 1.5,
together with the electron temperature and pressure8 profiles, Te and pe, respectively.
At the flat-top phase, the values for Ip, line-average ne, and Paux are approximately
1 MA, 4.5 × 1019 m−3, and 14 MW, respectively, whereas Te and pe are within the
order of a few keV (107 K) and KJ/m3 (10−3 atm), respectively, illustrating the high
temperature and low pressure ranges in which present tokamaks operate.

5For a deeper explanation on why the poloidal magnetic field is necessary, see Section 2.1 or [5].
6See Section 1.3 for a brief introduction on the ELM, field-correction and vertical-stability

control problems in which these coils are employed.
7The line-average density is the average density measured along a line or beam, normally defined

from the diagnostics employed. See Section 1.3.6 and/or [6] for more details.
8The pressure of a particular plasma species is the product of its density and temperature. It

is formally introduced in Section 2.1.5.
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Figure 1.5: Magnitude evolutions during a tokamak H-mode discharge (DIII-D shot
147634): on the left, Ip, Paux, and average ne; on the right, electron temper-
ature and pressure profiles.

1.2.2 Tokamak-Plasma Confinement Modes

From the creation of the tokamak until the 1980’s, it was an experimental fact
that increasing the heating power in a tokamak plasma implied a decrease in τE.
The plasma was turbulent from its core to the edge, and applying a higher Paux
resulted in an increased turbulence and particle transport, worsening the plasma
confinement. However, during some experiments in the ASDEX tokamak [7] in
1982, it was observed that if the heating power was above a certain threshold, then
the plasma transitioned into an improved-confinement mode with higher τE (im-
proved by a factor of about 2). Such improved-confinement mode was denominated
H-mode (“high” confinement mode), whereas the previous confinement mode was
denominated L-mode (“low” confinement mode).

The H-mode is characterized by a reduced turbulence at the plasma edge, which
creates an edge transport barrier and reduces the overall plasma transport. This
effect rises the plasma kinetic variables (such as the temperature or density) at the
core, whereas at the edge transport barrier, the kinetic variables suffer a sudden
drop as depicted in Fig. 1.5. However, a new type of plasma instabilities known
as edge-localized modes (ELMs) were observed in H-mode discharges, possibly due
to the steep pressure gradient at the edge. During an ELM, a sudden current
burst (with the associated energy and particle loss) takes place, spoiling the plasma
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confinement and possibly damaging the tokamak’s first wall. Substantial research
is being carried out to minimize the negative impact of ELMs by mitigating or fully
suppressing them.

In any case, the H-mode is a desirable confinement mode and the basis for most
current tokamak-plasma research due to its improved confinement when compared
to L-mode. Also, a number of H-mode regimes with particular characteristics have
been discovered throughout the years, such as the QH-mode (“quiescent” H-mode,
which does not show ELM activity [8]), or the super H-mode (which has an even
higher confinement than the “conventional” H-mode, and was theoretically predicted
before its experimental demonstration [9]).

1.2.3 Tokamak Operating Scenarios

A tokamak operating scenario is defined as the sequence of events executed during
tokamak operation to prepare and initiate the plasma, raise Ip to its flat-top value,
inject gas, employ H&CD auxiliary sources, and finally terminate the plasma in a
controlled and safe way [10]. Generally speaking, tokamak scenarios are divided into
two broad categories attending to the amount of inductive/non-inductive current
that they operate with:

• Conventional or Inductive Scenarios, characterized by a high fraction of in-
ductive current. These scenarios are in principle easier to explore and operate,
but have an inherently pulsed nature.

• Advanced or Non-Inductive Scenarios, characterized by a high fraction of
non-inductive current, and therefore, of longer duration than inductive scenar-
ios. Ideally, the non-inductive fraction would be equal to 1, and steady-state
operation would be possible. However, these scenarios have been proven to be
more difficult to achieve and operate than conventional scenarios.

Within these two general categories, there are lots of particular tokamak scenarios
that are being studied at the different tokamaks existing in the world [10]. In partic-
ular, for ITER, two main scenarios are envisioned: an inductive scenario (sometimes
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referred to as the ITER baseline scenario) with Pfus = 500 MW and Paux = 50 MW
(i.e., Q = 10), and a long-pulse or steady-state scenario with Q = 5.

1.3 Control Problems in Tokamak Plasmas

Different control problems arise in tokamak plasmas for which a solution is needed.
Fig. 1.6 shows a basic schematic of the different elements present in tokamak control
problems. As in any control problem, the objective is to drive a particular set of
measurable variables (known as the system’s output in the control jargon) towards
a desired trajectory (normally known as the output target, sometimes also as refer-
ence) by regulating a particular set of variables (known as the controllable input).
The plant is the to-be-controlled subject (i.e., the tokamak and/or the plasma), and
the system is the combination of the plant and a controller. Controllers for tokamak
plasmas are implemented in the so-called plasma control systems (PCSs). The min-
imum set of variables that describes the state of the system at any given time is the
so-called system state. Sometimes, it may be desirable to control the system state,
but it may not be measurable and/or controllable. In addition, there are some vari-
ables that affect the system but cannot be controlled (known as the non-controllable
input). Finally, the system dynamics is characterized by a mathematical model that
describes the relationship between the system’s state, input (controllable or not),
and output, and defines the state and output time evolutions once the state initial
condition and the input trajectory are given.

An example of a critical control problem that has been introduced in Section 1.2.1
is controlling Ip by means of the ohmic-coil current. In this example, it can be
considered that the output is Ip, the controllable input is the ohmic-coil current, and
the target is defined by the ramp-up rate and flat-top values of Ip. The controller
employs Ip and the target information to generate the controllable input signal (the
ohmic-coil current) which is sent to the plant (the tokamak). The dynamical model
relates how the ohmic-coil current and other non-controllable inputs affect Ip, i.e., it
models the relationship between inputs, outputs, and state (u, y, and x in Fig. 1.6).
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dx/dt = f(x,u,t)
y = g(x,u,t)

Dynamics

u - Controllable input

y - Output

Plasma Control System

Controller

Target

Non controllable input

Plant

Figure 1.6: Schematic of the elements existing in tokamak control problems.

Tokamak-plasma control problems are normally categorized depending on the
nature of the variables involved. If the to-be-controlled magnitudes are kinetic
variables such as the ion/electron temperature, density, pressure, velocity, and/or
energy, the problem is classified as a kinetic control problem. On the other hand,
when magnetic variables such as the magnetic field, electric field, and/or electrical
current are involved, the problem is classified as amagnetic control problem. A third
category corresponds to instability control problems9, i.e., control problems in which
the final goal is the mitigate or suppress a particular type of plasma instability. It
has to be noted that the distinction between kinetic, magnetic and instability control
problems is somewhat arbitrary because, more often than not, the dynamics of the
kinetic and magnetic variables and plasma instabilities are tightly coupled.

1.3.1 Kinetic Control

Control of the tokamak kinetic variables (velocity, temperature, density, etc.) is
known as kinetic control. Actuators normally employed for kinetic control include
auxiliary power injection (NBI, ECH, ICH, etc.) and fueling by means of gas puffing
or pellet injection. Also, other actuation methods that affect magnetic variables can

9Although instability control is a term normally employed by nuclear-fusion physicists, control
engineers may find it more appropriate to use the term instability suppression.
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be employed for kinetic control in an “indirect” fashion. For instance, it is known that
modifying the plasma shape and/or the plasma current profile has a direct effect on
the plasma confinement, so actuators such as the magnetic coils (which modify the
external magnetic fields, and therefore the plasma shape) or auxiliary current-drive
injection by means of NBI and ECCD (which modify the plasma current profile)
could also be employed for kinetic control.

Some important kinetic-control problems in tokamaks are:

• β control. The parameter β is a metric of the confinement efficiency in a
tokamak10, as it measures how much kinetic pressure, p, can be confined by
means of a given magnetic field, B. Maximizing β for a given tokamak design
is a prime goal in fusion science. Moreover, β is related to certain plasma
instabilities, such as the neoclassical tearing modes (NTMs) [2], which are
treated later during this dissertation.

• Toroidal-rotation control. The toroidal momentum of the ions is a variable of
interest due to its close relationship with plasma performance. For example, it
is observed that a particular type of plasma instabilities called Resistive Wall
Modes (RWMs) are stabilized with increasing rotation. Also, toroidal rota-
tion improves NTM rotation, preventing that these modes lock and terminate
the confined plasma. NBI and some magnetic coils are actuators that can be
employed to vary the torque injected into the plasma, respectively, and regu-
late the toroidal rotation in present-day tokamaks. However, it is unclear to
what extent it will be possible to control the toroidal rotation in future fusion
reactors due to their higher volume and plasma inertia.

• Burn control. The main objective in this control problem is to regulate the
plasma temperature and density around a given target (which defines the
so-called burn condition) to obtain a desired amount of fusion power. Also,
possible thermal instabilities may arise which need suppression by means of

10β is defined as the ratio of kinetic pressure p to “magnetic” pressure B2/(2µ0), where µ0 is the
vacuum magnetic permeability. The definition of β is derived in Chapter 2.
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burn control. Although present tokamaks also require density and temperature
control, these are not high enough to produce relevant fusion power. Therefore,
the burn control problem is only relevant for ITER and future burning-plasma
tokamaks.

Other kinetic control problems are related to the tokamak divertor(s)11 (like
radiation/heat-flux control), electron-density control, fast-particle dynamics, and
Alfven eigenmodes control [11].

1.3.2 Magnetic Control

Control of the tokamak magnetic variables (magnetic field, electric field, currents,
etc.) is known as magnetic control. Actuators normally employed for magnetic con-
trol are auxiliary current-drive injection (NBI, ECCD, ICCD, etc.), ohmic coil-current
modulation, and modulation of other magnetic-coil currents. Also, changes in the
kinetic variables may affect the evolution of certain magnetic variables, and “indi-
rect” magnetic control is possible, for example, by modifying the plasma resistivity
through the electron temperature by using auxiliary heating sources.

Some magnetic control problems in tokamaks are:

• Plasma shape and position control. As introduced above, the poloidal field coils
are employed sometimes in conjunction with some other magnetic coils12 to
achieve and maintain a desired plasma shape and position within the tokamak.
The plasma shape is chosen so that the plasma performance is optimized. For
example, it is known that plasmas with high elongation, κ (a measure of how
“tall” the plasma column is when compared to its width), have an improved
confinement. On the other hand, the positioning of the plasma is important
to avoid plasma contact with the vessel walls. Control of the plasma shape
and position is one of the most mature control problems in tokamaks, and it

11The divertor is a tokamak structural component that serves to “capture” plasma particles that
escape the closed magnetic-field lines. More information can be found in Section 2.1.3 or in [5].

12One of the magnetic coils normally employed for shape and position control is the ohmic-coil,
so the Ip control problem and the shape & position control problems are closely coupled.
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is routinely carried out in present-day tokamaks. For example, in JET, the
plasma shape and position can be controlled with errors within the order of a
few centimeters [12].

• Current profile control. The different auxiliary sources can be employed to
modify the plasma resistivity (indirectly by means of the electron tempera-
ture, Te), the auxiliary-source current driven, and the self-generated bootstrap
current. These different mechanisms would, in principle, allow for controlling
the current profile in tokamak plasmas. Sometimes, instead of the current
profile, the variable of interest is the so-called safety factor, q, which is a
measure of the pitch of the magnetic field lines, and is closely related to the
current profile. For example, control of the q profile is particularly impor-
tant in advanced scenarios because of the following feedback mechanism. The
high bootstrap-current fraction found in advanced scenarios may lead to q

profiles with negative magnetic shear, s, at the center of the plasma core (s
is a measure of the gradient of q, see Fig. 1.7). In plasmas with s < 0 at the
plasma core, an improvement in the plasma confinement is found due to the
formation of an internal transport barrier (ITB). Therefore, at the ITB, the
pressure gradient increases dramatically and so does the bootstrap current,
closing the feedback mechanism. This loop requires active q-profile control
(sometimes in conjunction with β control) to avoid too high pressure values
and the possible triggering of plasma instabilities. Also, q > 1 values avoid
the so-called sawtooth instability, which is highly deleterious for the plasma
confinement [5].

Other magnetic problems of interest can be the vertical stabilization problem, a
well-known instability that happens in highly elongated plasmas and destroys the
plasma confinement, or the error (magnetic) field correction problem, whose final
goal is to eliminate any magnetic field asymmetries. Also, control of the magnetic
configuration in the divertor region is a problem of interest.
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Figure 1.7: Typical q and p profiles: on the left, standard (no reversed shear) q profile
and advanced (reversed shear) q profile; on the right, advanced p profile (no
ITB) and advanced p profile with ITB.

1.3.3 Instability Control

Mitigation and/or suppression of the plasma instabilities is an essential part of the
existing tokamak-plasma control problems. Some instability control problems of
interest are:

• NTM control. NTMs are current and pressure driven MagnetoHydroDynamic
(MHD) instabilities [5] that modify the tokamak-plasma equilibrium, allowing
for particles to escape. Therefore, NTMs spoil the plasma confinement. The
physics behind the development of NTMs is not totally understood thus far,
but active NTM suppression has been achieved by means of ECCD deposition
at the NTM location [13]. Also, it is possible that particular q profiles improve
the plasma resilience against NTMs. In the worst case scenario, NTMs not
only degrade the plasma confinement, but may also lock (causing what is
known as a “locked mode”) and suddenly terminate the plasma. Increased
plasma rotation improves plasma resilience against NTM locking.

• ELM control. Mitigation or total suppression of the ELMs (previously in-
troduced in Section 1.2.2) is a need in tokamaks to avoid the associated de-
terioration of the plasma confinement, and also to prevent damage to the
tokamak’s first wall and divertor due to the heat load arising from the ELM
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current bursts. Actuation methods commonly employed for ELM control are
impurity pellet injection and magnetic coils that produce non-axisymmetric
magnetic-field perturbations [14].

• RWM control. The RWM is a pressure-driven kink MHD stability13 whose
growth rate is slowed down due to the electrical resistance of the tokamak’s
first wall. This instability limits the achievable β and decreases the plasma
performance. It is experimentally observed that increasing toroidal rotation
reduces the RWM strength, making the RWM control problem be closely cou-
pled with the rotation control problem. RWM stabilization is carried out by
means of both passive methods (i.e., machine designs with nearby conducting
walls that slow down the RWM growth rate) and active methods (i.e., feed-
back control). Actuators normally employed for active RWM control are NBI
or non-axisymmetric magnetic coils.

1.3.4 Coupled Dynamics in Tokamak Plasmas

As introduced above, a tokamak plasma is a highly coupled dynamical system in
which the evolution of the magnetic and kinetic variables and plasma instabilities
are interlaced. A diagram illustrating some of the main dynamics coupling between
magnetic and kinetic variables and some MHD instabilities is shown in Fig. 1.8.

Regarding the kinetic variables, it can be seen that the velocity of the particles, v,
is related to their density, n, and temperature, T , by means of the mass, momentum,
and energy balance equations (for example, the general balance equations shown in
Fig. 1.8). Both n and T are related to the pressure, p, by means of a state equation.
In turn, p enters the definition of β. A relationship between kinetic and magnetic
variables is given by the physical fact that if a particle with velocity v has electric
charge, qelec, then there exists a current density, j, which is proportional to qelec, v
and n. Moreover, also j will exist in any media which is subject to an electric field,
E, as long as this has a finite electrical resistivity, η (in a plasma, a simple analysis

13A kink instability is a particular type of MHD instability that causes the plasma column to
deform transversally. More details can be found in [5].
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Figure 1.8: Dynamical coupling in a tokamak plasma. Black arrows represent relation-
ships in terms of physical laws or definitions. Red lines represent triggering
mechanisms, orange lines represent deterioration mechanisms, and green lines
represent suppression mechanisms.

assuming Coulomb collisions are dominant [2], it is found that η is proportional to
T
−3/2
e ). Both j and E are related to the magnetic field B by means of Ampere’s and

Faraday’s laws, respectively. Finally, B also enters the definition of β. Regarding the
instabilities, NTMs deteriorate the plasma confinement by increasing particle and
energy transport, and also modify B, i.e., the magnetic configuration. On the other
hand, NTMs can be suppressed by j deposition. Both ELMs and RWMs deteriorate
the plasma confinement by means of current bursts and transport modification. The
ELM and RWM effects can be minimized by means of B modifications, whereas
RMWs are also diminished by plasma toroidal rotation, ωφ.

The simplified schematic in Fig. 1.8 is only illustrative and does not include all
the coupled effects existing in plasmas (like, for instance, the relationship between
momentum transport and B due to the Lorentz force, the relationship between n
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and E due to the electric density in Gauss’s law of electricity, or the possibility to
mitigate ELMs by pellet injection that modifies n).

1.3.5 The Need for Integrated Control Solutions

There are some general characteristics of the plasma dynamics that determine the
nature of the control problems found in tokamaks. First, complex physics phenom-
ena occur in tokamak plasmas, and as a result, the dynamics of many variables is
nonlinear. Second, the evolutions of many plasma variables are not independent
of each other, i.e., the dynamics of such plasma variables are coupled. Third, in
general, tokamaks are underactuated devices: the number of avxailable controllable
inputs does not suffice to drive the plasma state/output to any arbitrary target. Fi-
nally, as of now, much of the physics that describes the plasma behavior is not well
understood and there is almost always some degree of uncertainty involved in the
modeling of the plasma dynamics. Section 1.3.4 may provide a first impression on
the level of variety, complexity and coupling that exist in tokamak control problems.

As a result of all these characteristics, one may in principle deduce that non-
linear, robust, multi-input multi-output (MIMO) controllers will have an edge over
any other type of controller because they take into account the nonlinearity and
uncertainty of the model, and employ multiple coupled outputs and inputs. How-
ever, sometimes, the complexity of the theoretical plasma models makes it imprac-
tical or even impossible to carry out such nonlinear, robust MIMO control designs.
Data-driven modeling, approximate linearization and/or model reduction are control
techniques customarily employed in the synthesis of tokamak-plasma controllers.

Regardless of the control approach employed, it seems reasonable to assure that
future reactor-grade PCSs will employ a variety of MIMO controllers (if possible,
model-based, nonlinear, and robust controllers) dedicated to specific tasks. It is en-
visioned that these controllers will be embedded in what are normally referred to as
integrated-control architectures, i.e., architectures composed of controllers that work
with a certain degree of communication (integration) amongst themselves, rather
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than isolated from each other. These integrated architectures should have actua-
tor management and sharing capabilities, i.e., the ability to decide and coordinate
which actuators can be used and/or shared for each specific control task. Therefore,
Supervisory and Exception Handling (S&EH) algorithms must be available to per-
form real-time surveillance, actuator sharing and management tasks, and controlled
shutdown when possible damage to the device may occur.

The development of such tokamak-plasma integrated-control strategies is a new
control aspect in the fusion field that needs to be solved for ITER [11, 15] and, thus
far, the necessary degree of integration that will be required is not clear. Regard-
ing actuator management and sharing, two main types have been considered [15]:
simultaneous multiple mission (SMM) sharing and repurposing (RP) sharing. The
first type of actuator sharing consists in using a given actuator by two or more
controllers that have different purposes, whereas the second approach consists in
transferring that actuator (as requested by a S&EH system) from one controller to
another without simultaneous use of it. Both actuator sharing schemes will most
likely be necessary in ITER and future commercial tokamaks. An example of SMM
sharing would be the use of the poloidal-field coils for position and shape control in
conjunction with vertical stabilization, whereas a RP example would be the asyn-
chronous use of EC to control both the q profile and suppress NTMs.

An example in which an integrated control architecture is absolutely necessary
is as follows. Assume a tokamak that operates using a controller for active q-profile
control. If no β, ωφ, or instability control or surveillance are carried out, the q-profile
controller may drive β and/or ωφ towards values that trigger RWMs or NTMs,
deteriorating the plasma confinement and possibly terminating the plasma. Even
if β, ωφ, or instability control is performed, but the q-profile controller is isolated
from the rest of the existing controllers, the efficiency and performance of the q-
profile controller would be reduced. Ideally, an (integrated) PCS would be capable
of regulating more than just the q profile and/or communicating all the existing
controllers, and also have the capability of doing actuator management and sharing,
like for example, RP actuator sharing by using ECCD to suppress NTMs in case
they developed.
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1.3.6 Tokamak Diagnostics for Control

Some of the most relevant tokamak diagnostics employed for control are summa-
rized in this Section. The most basic diagnostics provide an estimation of the local
magnetic field and/or flux based on magnetic probes (see Fig. 1.9). These basically
consist of a small coil in which the voltage between its ends, Vemf , is measured,
allowing for estimating the magnetic flux ΦB through its circular cross section SB
by means of Faraday’s induction law,

∂ ~B

∂t
= −∇× ~E =⇒ ∂

∂t

∫∫
SB

~B · d~SB = −
∫∫

SB

(∇× ~E) · d~SB = −
∫

ΓB

~E · d~l

=⇒ ∂ΦB

∂t
= −NVemf , (1.14)

where Stoke’s integral theorem has been employed, ΦB ,
∫∫

SB
~B · d~SB, Vemf ,∫

ΓB
~E ·d~l, ΓB is the boundary of SB, d~l is a differential element in such boundary, and

N is the number of turns in the coil. Employing the magnetic flux, an estimation
of the magnetic field along the axis of the probe can be obtained as well, B ≈
ΦB/SB. Using the same concept, the so-called flux loops and saddle loops provide
an estimation of the magnetic flux through the surface that they bound (note that
the flux loop surface coincides with the surface S depicted in Fig. 2.3, and therefore
the flux they estimate the important magnitude known as poloidal flux, Ψ, defined
later in Section 2.1.3, “The Tokamak Magnetic Configuration”). However, the bigger
size of the flux and saddle loops does not provide a good estimation of B.

A Rogowski coil provides an estimation of Ip by means of a combination of
B estimations using magnetic probes in a circular closed loop (see Fig. 1.9) and
Ampere’s law,

∇× ~B = µ0
~j =⇒

∫∫
SIp

(∇× ~B) · d~SIp = µ0

∫∫
SIp

~j · d~SIp

=⇒
∫

ΓIp

~B · d~SB = µ0Ip, (1.15)

where Stoke’s integral theorem has been employed, Ip ,
∫∫

SIp
~j · d~SIp , and µ0 is the

vacuum permeability. Magnetic measurements for B, Ip and magnetic fluxes allow
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Figure 1.9: Basic magnetic diagnostics in a tokamak: on the left, a schematic of a mag-
netic probe; on the right, schematics for a flux loop, a saddle loop, and a
Rogowski coil.

for plasma equilibrium reconstruction (see Section 2.1.3), and therefore, they play
a key role in the plasma shape and position control problem and in the q-profile
control problem.

The aforementioned basic magnetic measurements can only be placed outside the
plasma domain due to evident technological constraints. Internal measurements for
B were not possible until more advanced techniques were discovered, like for exam-
ple, Motional Stark Effect (MSE) techniques. MSE techniques employ hydrogen or
deuterium neutrals injected at high velocities (for example, by means of NBI), which
produce a very characteristic line-emission pattern as they penetrate the strong E
that exists in a tokamak. Information about such emissions allows for estimating
the strength and/or direction of B. MSE measurements are commonly added as
constraints in the equilibrium reconstruction problem, substantially increasing the
accuracy of such reconstruction.

Local measurements of temperature and density can be obtained using different
techniques, like for example Thomson scattering techniques. Thomson scattering is
the elastic scattering of a photon by a charged particle, normally an electron. The
spectrum of the scattered photons can be measured using both non-perturbative
or laser-based techniques, and the information it carries allows for determining the
temperature and density of the electrons. For ions, Charge-Exchange Recombination
(CER) techniques are often employed, which infer the temperature and density from
the spectrum of the photons emitted in charge-exchange collision between neutrals

A. Pajares 27 Lehigh U.



1.4. Dissertation Outline

and ions,
A0 +BZ → A+ +BZ−1, (1.16)

where A is the neutral, B is the ion, and Z is the ion atomic number. CER techniques
also allow for estimating the toroidal rotation velocity of the ions. Measurements of
the ion/electron density and temperature are essential in kinetic control problems,
and employed in magnetic or instability control problems as well.

Other methods employed to measure the magnetic field, and ion/electron den-
sity and temperature are interferometry/polarimetry techniques (based on lasers
that are driven through the plasma and whose changes in refractive indexes and
polarization angles allow for inferring magnetic field and density properties), reflec-
tometry techniques (which works as a radar sending electromagnetic waves taking
advantage of the cutoff phenomena found in plasmas [2], to measure, for example,
the line-average ne), or Electron-Cyclotron Emission (ECE) techniques (to measure
the electron temperature, using information from the electron-cyclotron emissions
due to the helical movement of the electrons in a magnetic field, see Section 2.1.1).
Comprehensive information about tokamak-plasma diagnostics can be found in [6].

1.4 Dissertation Outline

The main contribution of this dissertation work is the design and development of
integrated control strategies for tokamak plasmas. The integrated-control solu-
tions tackle many of the control problems introduced in Section 1.3, and mostly
employ model-based nonlinear-robust control techniques. Some of those control
solutions have been experimentally tested in the DIII-D tokamak. In addition,
control-oriented, physics-based models that characterize some specific aspects of
the plasma dynamics have been employed to further develop COTSIM (Control-
Oriented Transport SIMulator), a 1D control-oriented fast code for controller test-
ing and tuning created by the Lehigh University Plasma Control Group. COTSIM
has been employed for validation testing of most of the controllers presented in this
dissertation work.
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This dissertation is organized as follows:

• Chapter 2 describes some concepts of plasma physics required to understand
the basic behavior of a plasma, together with the models employed throughout
this dissertation for both simulation and control synthesis.

• Chapter 3 describes the Control-Oriented Transport SIMulator (COTSIM)
code, which is a key tool employed in the validation of plasma controllers via
simulation.

• Chapter 4 focuses on the burn control problem, for which a nonlinear, robust
controller based on Lyapunov techniques is proposed. Some of the steps in this
controller are integrated using a RP actuator-sharing approach. The controller
is tested in simulations.

• Chapter 5 focuses on the simultaneous q-profile + β control problem, for
which two control solutions are proposed. The first control approach focuses
on central safety factor and β control under zero NBI torque, and is based on
approximate linearization techniques. The controller is tested both in simula-
tions and experimentally on the DIII-D tokamak. The second control approach
focuses on q-profile + β control by using feedback linearization and Lyapunov
redesign techniques. Both approaches use a SMM actuator-sharing approach.
This controller is tested in COTSIM simulations.

• Chapter 6 focuses on the individual-scalars control problem using a SMM
actuator-sharing approach. A nonlinear, robust, integrated-control scheme
with an actuator management algorithm is designed for the regulation of
individual-scalar variables. The control scheme is tested in 0D simulations
using the control-oriented models, and in 1D simulations using COTSIM.

• Chapter 7 focuses on the problem of simultaneously controlling plasma pro-
files/scalars and suppressing NTMs using a RP actuator-sharing approach.
An integrated control approach with actuator management capabilities is em-
ployed. Experimental results are reported for the q-profile + β control problem
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with NTM suppression, whereas 1D simulations using COTSIM are included
for individual-scalars + NTM control.

• Chapter 8 summarizes the contributions of this dissertation and discusses
future work directions.

• Appendices are also included with basic theorems, additional computations,
and demonstrations related to the different modeling and control approaches.

It can be noted that the control problems treated during this dissertation work
(Chapters 4 through 7) can be classified according to the physical (kinetic, magnetic,
instabilities) or mathematical (scalars or profiles) nature of the to-be-controlled
variables, as well as the type of actuator sharing carried out (SMM or RP). A
summary is shown in Fig. 1.10.

Repurposing 
Actuator Sharing

Scalars 
control
Profile 
Control Current + β control

(magnetic profile + 
kinetic scalar)

Individual scalars 
control

(magnetic + kinetic
scalars)

5

6

Kinetic 
control

Simultaneous
Multiple-Mission Sharing

Magnetic
control

Instability
control

Burn control
(kinetic scalars)

Profile + MHD 
instability 

control (profiles
& scalars)

4

7

Figure 1.10: Classification of the control problems treated in this dissertation work.
Scalar control problems are highlighted using bold text, whereas profile
control problems are highlighted using italics. Kinetic problems are marked
with a red bullet, magnetic problems are marked with a green bullet, and
instability problems are marked with an orange bullet. Chapters 5 and 6
belong to SMM sharing problems, whereas 4 and 7 belong to RP sharing
problems.
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Chapter 2

Basic Plasma Physics and Modeling

for Control Applications

The objective of this Chapter is to introduce the plasma-response models utilized
in the control problems treated in this dissertation. First, Section 2.1 introduces
some essential plasma-physics concepts that are necessary for a basic understanding
of the aforementioned plasma-response models. The experienced reader is advised
to go directly to Sections 2.2 and 2.3, where the one-dimensional (1D) and zero-
dimensional (0D) models for control applications are presented.

2.1 Basic Plasma Physics

2.1.1 Particle Trajectories and Drifts

A particle with electrical charge q and mass m subject to a constant, unidirectional
(uniform) magnetic field B describes a gyrating motion as depicted in Fig. 2.1 due to
the Lorentz force that it experiences. The velocity of the particle in the φ direction,
vφ, remains constant because the Lorentz force is always contained within the r-z
(perpendicular) plane. The equations of motion in the r-z plane are given by

r = r0 + rL sin(ωct+ ψ), z = z0 ± rL cos(ωct+ ψ), (2.1)
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Figure 2.1: Particle trajectories in a uniform magnetic field. Ions (plotted in blue) are
more massive than electrons (plotted in orange), so the ion Larmor radius
(rL) is larger than the electron rL, whereas ωc is smaller for ions than for
electrons. Also, because of their different electric charge, ions and electrons
gyrate in opposite directions (see equation (2.1)).

where r and z are the radial and vertical coordinates, respectively, r0 and z0 are
constants that define the so-called guiding center, ωc , |q|B/m is the so-called
cyclotron frequency, rL , v⊥,0/ωc is the so-called Larmor radius, v⊥,0 is the initial
velocity in the r-z plane, and ψ is a constant. The ± sign in the expression for z in
(2.1) is the same as the sign of q.

In the case of a curved magnetic field ~B in a vacuum, particles experience a drift
due to the centrifugal force Fc (also known as curvature drift) plus a drift due to
the gradient of B (also known as grad-B drift). The total drift, ~vc, is approximately
given by [2]

~vc =
m

q

~r × ~B

rB2

(
v2
φ +

1

2
(v2
r + v2

z)

)
, (2.2)

where vφ, vr, and vz are the velocity components in the coordinates φ-r-z shown in
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Figure 2.2: Schematic of the velocity field components in a curved magnetic field.

Fig. 2.2. The toroidal velocity, vφ, is tangent to the magnetic field lines, whereas
vr is the velocity in the radial direction, r, and vz is the velocity in the vertical
direction, z.

When subject to a uniform ~B plus a uniform electric field, ~E, a particle experi-
ences the so-called ~E × ~B drift, denoted by ~vE, which is given by

~vE =
~E × ~B

B2
. (2.3)

As it will be seen in Section 2.1.3, the existence of the grad-B + curvature drift
(2.2) and the ~E × ~B drift (2.3) defines the magnetic configuration of a tokamak.
For a more complete derivation of the equations presented in this Section, see Ap-
pendix A.1 and/or [2].

2.1.2 The MHD Theory

The description given in Section 2.1.1 approximately represents the situation of the
plasma particles in a tokamak vacuum: the externally created ~B has a main direction
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(the toroidal direction) and is approximately constant. However, the description
presented is substantially oversimplified in the sense that the electric and magnetic
fields are prescribed. This is not the real situation in a tokamak. As the charged
particles move within the plasma, they create electric currents that in turn induce
internally-generated magnetic fields. The motion of the particles is subject to both
the external and “internal” magnetic fields that the particles themselves generate.
Therefore, an accurate model of the particles trajectory cannot assume prescribed
E and B. Instead, a valid description should resolve the problem self-consistently.

A self-consistent theory that explains many of the physics phenomena occurring
in a plasma is the so-called MHD theory (see Appendix A.2). It is composed of a
set of continuity and momentum equations, together with Maxwell’s equations for
electromagnetism, and a generalized Ohm’s law. The MHD continuity equation is
given by

Dn

Dt
= −n∇ · ~v, (2.4)

where ne ≈ ni , n (ne and ni are the electron and ion densities, respectively), and
~v , (mi~vi + me~ve)/(mi + me), where mi and me are the ion and electron masses,
respectively, and ~vi and ~ve are the ion and electron velocities, respectively. The
MHD momentum equation is given by

n(mi +me)
D~v

Dt
= −∇p+~j × ~B, (2.5)

where p = pi+pe is the total pressure field (which is the addition of the ion pressure,
pi, and electron pressure, pe), and ~j = n(qi~vi + qe~ve) is the current density, where
qi and qe are the ion and electron charges, respectively. Maxwell’s equations for a
plasma are given by,

∇ · ~E =
σ

ε0
, ∇× ~E = −∂

~B

∂t
, ∇ · ~B = 0, ∇× ~B = µ0

(
~j + ε0

∂ ~E

∂t

)
, (2.6)

where ε0 is the vacuum electric permittivity, µ0 is the vacuum magnetic permeability,
and σ = qini + qene is the charge density. The so-called generalized Ohm’s law is
given by

~E + ~v × ~B = η~j +
1

nqi
(~j × ~B −∇pe), (2.7)

A. Pajares 34 Lehigh U.



2.1. Basic Plasma Physics

where η is the plasma resistivity, which is given by η = νe,i
me
nq2
e
, where νe,i is the

electron-ion collision frequency.
If the plasma is in equilibrium, (2.5) yields

∇p = ~j × ~B. (2.8)

Equation (2.8) describes the plasma equilibrium under MHD conditions. Two con-
clusions can be drawn from (2.8). First, taking internal product with ~B, it is found
that ∇p · ~B = 0, i.e., the ~B-field lines have constant p. Also, if the internal product
is taken with ~j, then it can be seen that the ~j-field lines also have constant p. These
characteristics of the MHD plasma equilibrium are key to understand the tokamak
magnetic configuration, Section 2.1.3.

2.1.3 The Tokamak Magnetic Configuration

In this Section, the magnetic configuration of a tokamak is introduced and charac-
terized. MHD equilibrium conditions are assumed, as well as axial symmetry in the
φ direction (see Fig. 2.3, in which the r-φ-z frame is defined so that z is aligned with
the vertical direction, r with the radial direction, and φ with the toroidal direction).

As it has been previously introduced in Chapter 1, Section 1.2.1, the tokamak
magnetic field ~B has two components: the toroidal field, ~Bφ, and the poloidal field,
~Bθ, so that ~B = ~Bφ + ~Bθ. The poloidal field ~Bθ is absolutely necessary to guarantee
that the plasma column stays within the tokamak due to the ~E × ~B and grad-B
+ curvature drifts introduced in Section 2.1.1. In a pure toroidal field ~B = ~Bφ,
the grad-B + curvature drift (see equation (2.2)) would make the ions drift in the ~z
direction and the electrons drift in the−~z direction, creating an electric field ~E in the
−~z direction. Such ~E would make both ions and electrons drift in the ~r direction as
well (see equation (2.3)). Therefore, the particles would never stay confined within
the tokamak magnetic field. The addition of the poloidal field ~Bθ to the toroidal
field ~Bφ helps to correct the drifts and improves the plasma confinement, resulting
in helical magnetic field lines. This is known as rotational transform.

In order to characterize the magnetic configuration of a tokamak, the so-called
magnetic-flux surfaces play a key role. A magnetic-flux surface can be defined as
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Figure 2.3: Tokamak magnetic geometry: on the left, definition of S together with mag-
netic field components, ~Bφ and ~Bθ; on the right, definition of Sφ together
with the magnetic-flux contour equation, Γ, and the tokamak major and
minor radiuses, R0 and a.

the set of points P with the same value of poloidal flux, Ψ, defined as

Ψ =

∫∫
S

BθdS, (2.9)

where S is the surface that is perpendicular to the z-axis and whose boundary is
defined by the circumference passing through P (see Fig. 2.3). Alternatively, the
poloidal stream function, ψ = Ψ/(2π), is commonly employed. The contour of
a given magnetic-flux surface is defined by the equation ψ = Γ(r, z), or alterna-
tively, R = γ(θ, ψ) (R and θ are the radial and poloidal angle coordinates shown in
Fig. 2.3). The magnetic-flux surface that collapses to a line is known as magnetic
axis. Its position is characterized by the so-called tokamak major radius, R0, which
is normally very close to the geometric major radius (i.e., the position of the major
axis in Fig. 2.3).

Using the MHD theory, it can be shown that other variables are also constant
within a magnetic-flux surface (see Appendix A.3). Such variables are referred to
as flux functions. Possible flux functions are the plasma pressure, p, the toroidal
magnetic flux, Φ, the effective minor radius, ρ, or the safety factor, q. The toroidal
magnetic flux, Φ, through a toroidal surface Sφ, is defined as

Φ =

∫∫
Sφ

BφdSφ, (2.10)
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where Sφ is the surface enclosed by a magnetic-flux surface and is perpendicular to
the φ-axis, as depicted in Fig. 2.3 and Fig. 2.4. The minor effective radius, ρ, is
defined as

Φ = Bφ,0πρ
2, (2.11)

where Bφ,0 is the reference (normally taken as the vacuum) magnetic field at the
magnetic axis. It is customary to employ the normalized minor effective radius, ρ̂,
which is defined as ρ̂ = ρ/ρb, where ρb is the value of ρ at the last-closed magnetic-
flux surface (see Fig. 2.4). Finally, the safety factor, q, is a measure of the pitch of
the magnetic field lines, and it is defined as

q , −dΦ

dΨ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
. (2.12)

ρb

ρP

r
z

P Sɸ

Magnetic flux surfaces

Magnetic axis

ɸ

Figure 2.4: Tokamak magnetic geometry: magnetic-flux surfaces under ideal MHD con-
ditions, and reduction from 3D to 1D using the flux function ρ.

A particular branch of the MHD theory is the so-called ideal MHD theory, which
assumes that η → 0. According to the ideal MHD theory, the magnetic-flux surfaces
are nested around the magnetic axis (see Fig. 2.4). The last-closed magnetic-flux
surface defines the plasma boundary. In the first tokamak designs, the position of
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the plasma boundary was defined by a first-wall component in contact with the
confined plasma, normally referred to as limiter. The numerous disadvantages of
using limiters (impurity sputtering1, limiter erosion, etc.) led to the development
of diverted configurations, in which the plasma boundary separates2 two regions:
a region of confined plasma in which the magnetic-flux surfaces are closed, and a
region with open magnetic-flux surfaces, also known as the scrape-off layer (SOL).
The latter is the region in contact with the so-called divertor, normally located
on or very close to the tokamak’s first-wall. Diverted configurations avoid direct
contact between the confined plasma and any structural component of the tokamak,
minimizing the chance that impurities get into the confined plasma region, and
solving many of the problems of the limited configurations. Still, maintaining a
given magnetic configuration in diverted configurations is a challenging problem,
and divertors also suffer from erosion due to the high heat loads and particle fluxes
to which they are exposed. Fig. 2.5 shows a schematic of the magnetic-flux surfaces
in both limited and diverted configurations.

Regardless of the particular limited/diverted configuration, the magnetic-flux
surfaces can be indexed by any of the aforementioned flux functions. This fact,
together with the assumption of toroidal symmetry (i.e., in the φ direction), reduces
the three dimensions (3D) in space to 1D (for example, going from r-φ-z coordinates
to ρ coordinates as depicted in Fig. 2.4). This reduction from 3D to 1D greatly
simplifies the analysis of magnetic problems in tokamaks, because any flux function
f can be used to write ∇(·) = ∂(·)

∂f
df , for a particular variable (·). One of the most

illustrative examples is the equation that relates p and ψ under MHD equilibrium
conditions, which can be obtained from (2.8) as

r
∂

∂r

(
1

r

∂ψ

∂r

)
+
∂2ψ

∂z2
= −µ0r

2 dp

dψ
− 1

2

d(rBφ)

dψ
, (2.13)

1Sputtering is the process in which particles leave a solid surface due to bombardment of
energetic particles. In a tokamak, this effect may be important due to the plasma-particles bom-
bardment of the tokamak’s first wall, limiter or divertor.

2The plasma boundary is also known as separatrix in diverted configurations. It has the char-
acteristic that the poloidal magnetic field, Bθ, is zero.
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Figure 2.5: Tokamak magnetic geometry: limited and diverted configurations.

where the chain rule ∇(·) = ∂(·)
∂ψ
dψ has been employed. Equation (2.13) is known as

Grad-Shafranov equation, and is extensively used to reconstruct the plasma MHD
equilibrium in tokamaks from magnetic measurements and either p measurements or
some theoretical estimation of the shape of the p profile. Equilibrium reconstruction
allows for estimating the plasma shape and position within the vacuum chamber,
and plays a key role in magnetic control problems such as shape and position control
or q-profile control.

2.1.4 Particle Transport in Tokamak Plasmas

The MHD continuity equation (2.4) describes the transport of particles within the
plasma domain according to the principles of Continuum Mechanics. It can be seen
that if ~v is known, then (2.4) univocally determines3 the evolution of n. Equation

3With the exception of points in the plasma domain in which there exists an external source of
particles. In such case, an expression for those sources would be necessary to close the model.
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(2.4) can be rewritten as
∂n

∂t
= −∇ · (n~v). (2.14)

The volume-average plasma density, nav, is defined as

nav ,
1

Vp

∫∫∫
Vp

ndVp, (2.15)

where Vp is the plasma volume enclosed within the last-closed magnetic-flux surface
(see Fig. 2.6). Multiplying by dVp, integrating over the whole plasma domain Vp,
and dividing by Vp, (2.14) becomes

1

Vp

∫
Vp

∂n

∂t
dVp = − 1

Vp

∫
Vp

∇ · (n~v)dVp, (2.16)

and utilizing the Reynold’s transport theorem, equation (2.16) becomes

dnav

dt
+
nav

Vp

dVp
dt
− 1

Vp

∫
Sp

n(~vp · ~R)dSp = − 1

Vp

∫
Vp

∇ · (n~v)dVp, (2.17)

where Sp is the area that encloses Vp, ~vp is the velocity of Sp, and ~R is the unit
vector in the R direction, which is normal to Sp (see Fig. 2.6).

z

Sp

Vp

v

z

vR

Rvθ

θ

v

r

ϕ

Figure 2.6: Schematic for the plasma volume, Vp, and plasma surface, Sp, together with
the particle velocities.

Re-arranging terms, using Gauss’s divergence’s theorem, and adding a general
source/sink of particles within the plasma (for example, due to NBI injection,
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gas/impurity puffing and pellet injection, etc.), denoted by Γn, equation (2.17) be-
comes

dnav

dt
= −n

av

Vp

dVp
dt

+
1

Vp

∫
Sp

n(~vp − ~v) · ~RdSp + Γn. (2.18)

In fact, because it is derived from first principles, equation (2.18) may model the
transport of any type of particle within a tokamak. This equation can also be
employed to model the transport of other scalar magnitudes, like energy, as long as
Γn represents a source/sink of power.

Employing the MHD momentum equation and generalized Ohm’s law, equations
(2.5) and (2.7), the velocity in the R-θ plane, ~v⊥ = ~vR + ~vθ (see Fig. 2.6), can be
estimated as [2],

~v⊥ =
~E × ~B

B2
− η⊥
B2
∇p, (2.19)

where η⊥ is the resistivity in the R direction. If ~E only has a radial component along
R, then the first term (which is nothing but the ~E × ~B drift) only has a component
along the θ direction, and transport is determined by the term η⊥∇p

B2 . Such predic-
tion is normally referred to as classical transport, which however has been proven
to estimate a much lower transport in tokamaks than what is experimentally ob-
served. The neoclassical theory provides an explanation for more complex transport
processes due to particle trapping in banana orbits because of the magnetic mir-
ror4 created by the magnetic field decay in the radial direction of a toroidal device
like the tokamak [16]. Although the transport estimate given by the neoclassical
theory is normally higher than the one given by the classical theory, it still un-
derestimates the transport experimentally found in magnetically confined plasmas.
This difference between the classical/neoclassical predictions and the experimen-
tally observed transport is known as anomalous transport. Recent research suggests
that plasma turbulence created by micro-instabilities may be responsible for this
anomalous transport, although no conclusive proof or complete physical theory that
explains such phenomena have been demonstrated thus far.

4The magnetic-mirror effect is the reduction in velocity that a particle experiences as it moves
in decreasing magnetic field (as is the case in the outward radial direction, r, in a tokamak). It is
due to the invariance of the magnetic moment, 1

2
mv2⊥
B . More details can be found in [2]
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2.1.5 Plasma Performance Parameters

The ion and electron temperature fields, denoted by Ti and Te respectively, are
related to pi and pe by means of the state equations

pi = KniTi, pe = KneTe. (2.20)

The ion and electron thermal energies per volume unit, denoted by Ei and Ee, are
given by

Ei =
3

2
KniTi, Ee =

3

2
KneTe, (2.21)

where K is Boltzmann’s constant. The total thermal stored energy, W , is given by

W =

∫∫∫
Vp

(Ei + Ee)dVp, (2.22)

and is a magnitude of importance to assess the plasma performance, as it includes
both density and temperature in its definition (two of the three parameters in Law-
son’s criteria, see Section 1.1.5). The relationship between p and W is given by

W =
3

2

∫∫∫
Vp

p dVp, (2.23)

which can be easily obtained from (2.20), (2.21), and (2.22).
A figure of merit which is thoroughly used in fusion science is the plasma β,

which is given by
β =

p

B2/(2µ0)
. (2.24)

Its definition is derived from the MHD equations in Appendix A.4. It can be seen
that β measures the efficiency of the plasma confinement: it quantifies how much
thermal pressure p is achieved by means of a given “magnetic” pressure B2/(2µ0)

(or magnetic field B). Related to β, the toroidal beta, βt, the poloidal beta, βp, and
normalized beta, βN , are often employed. These are defined as

βt =
p

B2
φ/(2µ0)

, βp =
p

B2
θ/(2µ0)

, βN = β[%]
aB

Ip
, (2.25)
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where a is the minor radius (see Fig. 2.3). The volume-average approximation of β,
denoted by βav, is given by

βav =
1

Vp

∫∫∫
Vp

βdVp ≈
2
3
W/Vp

B2/(2µ0)
[%]. (2.26)

where (2.23) has been employed.

2.2 One-dimensional PlasmaModels for Control Ap-

plications

Once that the basic plasma-physics concepts have been introduced in Section 2.1,
the present Section introduces three 1D models for the dynamics of plasma variables
of interest in control problems: the magnetic diffusion equation, which is employed
to model the dynamics of ψ (and, therefore, of other related variables such as q), the
electron heat-transport equation, which is employed to model the dynamics of Te,
and the toroidal rotation equation, which is employed to model the dynamics of the
ions toroidal angular velocity, ωφ , vφ,i/r, where vφ,i is the toroidal component of
~vi (see Section 2.1.2). The three models are based on partial differential equations
(PDEs) in t and ρ̂. Additional models are also included to characterize the dynamics
of some plasma variables, like for example η, the electron heat-sources or the ion
torque-sources.

2.2.1 The Magnetic Diffusion Equation

The magnetic diffusion equation (MDE) describes the dynamics of ψ. It can be
obtained from Maxwell’s equations as illustrated in [17], and it is given by

∂ψ

∂t
=

η

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη

〈~jni · ~B〉
Bφ,0

, (2.27)

together with the boundary conditions,

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0R0

2πG(ρ̂ = 1)H(ρ̂ = 1)
Ip, (2.28)
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where ~jni is the non-inductive current density (i.e., due to auxiliary sources, such as
NBI, ECH&CD, etc., and the bootstrap current), and F̂ , Ĝ, and Ĥ are geometric
factors that can be calculated for a particular plasma equilibrium, and are given by

F̂ =
R0Bφ,0

rBφ

, Ĝ = 〈R
2
0

r2
|∇ρ|2〉, Ĥ =

F̂

〈R2
0/r

2〉
, (2.29)

where 〈·〉 is the average of a given magnitude (·) on a magnetic-flux surface [16].
Control-level models for η and 〈~jni·

~B〉
Bφ,0

are employed [18]. For η, a Spitzer-like resis-
tivity model is employed in this work,

η =
Zeffk

prof
sp

T
3/2
e

, (2.30)

where Zeff is the effective atomic number of the plasma ions, and kprofsp is a fixed
profile that characterizes the spatial variation of Zeff . For 〈

~jni· ~B〉
Bφ,0

, the contributions
from the auxiliary sources and bootstrap current are modeled separately, so that

〈~jni · ~B〉
Bφ,0

=
Naux∑
i=1

〈~jaux,i · ~B〉
Bφ,0

+
〈~jBS · ~B〉
Bφ,0

, (2.31)

where 〈
~jaux,i· ~B〉
Bφ,0

is the contribution of the i-th auxiliary source for a total of Naux

auxiliary sources, and 〈~jBS ·
~B〉

Bφ,0
is the bootstrap current contribution. The contribution

of the i-th auxiliary source is modeled as

〈~jaux,i · ~B〉
Bφ,0

= jdepaux,i

T
δaux,i
e

ne
Paux,i, (2.32)

where jdepaux,i, δaux,i, and Paux,i are the current-deposition profile, the efficiency con-
stant, and the power of the i-th auxiliary source, respectively. Equation (2.32)
reflects the experimental evidence that the current-drive efficiency increases with
Te, whereas it decreases with ne. The bootstrap current [5] is created by momentum
transfer between the particles trapped in banana orbits and the passing particles,
and is modeled as

〈~jBS · ~B〉
Bφ,0

=
R0

F̂

(
∂ψ

∂ρ̂

)−1 [
2L31Te

∂ne
∂ρ̂

+
(
2L31 + L32 + αL34

)
ne
∂Te
∂ρ̂

]
, (2.33)
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where α, L31, L32, and L34 are profiles corresponding to a particular plasma equi-
librium [19].

The safety factor profile, q, has been defined in equation (2.12). Because Bφ,0

and ρb are machine parameters that can be estimated, it can be seen that the MDE
model determines the dynamics of q.

Table 2.1: Variables in MDE model

Variable Description Scalar/Profile Variable type
ψ Poloidal stream function Profile State
ne, Te Electron density & tem-

perature
Profile Input

F̂ , Ĝ, Ĥ, L31,
L32, L34, α

Profiles from magnetic
equilibrium

Profile Model parameter

Zeff Effective atomic number Scalar Model parameter
kprofsp Resistivity profile Profile Model parameter
δaux,i Current-drive efficiency

constant
Scalar Model parameter

jprofaux,i Current-deposition pro-
files for auxiliary sources

Profile Model parameter

R0 Major radius Scalar Model parameter
ρb ρ at last closed magnetic-

flux surface
Scalar Model parameter

Paux,i Auxiliary source powers Scalar Controllable input
Ip Plasma current Scalar Controllable input

A summary of the variables involved in this model is shown in Table 2.1, together
with a brief description, whether the variable is a scalar or a profile, and whether
it is considered to be a state variable, an input, a controllable input, or a model
parameter. For example, Te is an input to this MDE model that can be prescribed
(for example, from experimental data like Thomson scattering measurements) or
obtained from a separate model (like the electron heat-transport model, see Sec-
tion 2.2.2, or the 0.5D models described next [18]), whereas Paux,i are considered
directly controllable inputs. It must be kept in mind that certain variables which
are considered as model parameters in this work could be considered as inputs in a
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different model. For example, Zeff is considered as a model parameter in this MDE
model, but it could be modified by using impurity injection, and therefore, it may
be an input or even a controllable input in a different model.

Alternatively to the model summarized in Table 2.1, a closed MDE model that
does not need the ne and Te inputs can be obtained if these are modeled as proposed
in [18], i.e.,

ne = nprofe n̄e, Te = T profe IγpP
ε
totn

ζ
e, (2.34)

where nprofe is a fixed spatial profile that characterizes the spatial distribution of ne,
n̄e is the line-average electron density, T profe is a fixed spatial profile that character-
izes the spatial distribution of Te, Ptot is the total power injected into the plasma
(whose model is described below), and γ, ε, and ζ are constants that model how Te

scales with the Ip, Ptot, and ne, respectively. The total power, Ptot, is given by

Ptot = Pα +
i=Naux∑
i=1

Paux,i + POhm − Prad, (2.35)

where Pα is the α-heating power (only different from zero in plasmas that produce
fusion energy, also known as burning plasmas),

∑i=Naux
i=1 Paux,i , Paux is the total

auxiliary power, POhm is the ohmic power and Prad is the radiative power. The
α-heating power, Pα, is given by

Pα =

∫∫∫
Vp

QαdVp = ∆Eα
kin

∫∫∫
Vp

nDnT 〈σv〉dVp, (2.36)

where ∆Eα
kin = 3.52 MeV is the energy carried by the α particles in the D-T reaction.

The ohmic power, POhm, is given by

POhm =

∫∫∫
Vp

ηj2
φdVp, (2.37)

where jφ is the toroidal component of current density, that can be calculated if ψ
and the plasma equilibrium are known (see Appendix A.3, equation (A.30)). The
radiated power, Prad, is assumed to be given mainly by Bremsstrahlung radiation,
and it is taken as

Prad = kbrem

∫∫∫
Vp

Zeffn
2
e

√
TedVp, (2.38)
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where kbrem is the Bremsstrahlung radiation constant.
Table 2.2 summarizes the additional variables employed in the MDE model if

(2.34) are used. The approximate models for ne and Te in (2.34) exploit the fact
the characteristic time in which the kinetic variables change is much smaller than
that of the magnetic variables, so the plasma temperature and density are always
in quasi-equilibrium on the time scale of the ψ (or q) evolution. These models
are referred to as 0.5D models. This approach for the modeling of ne and Te is
an approximation that may be suitable for q-profile control design as long as it is
envisioned that the Te and ne spatial distributions will not change a lot (despite
q-profile control actuation) in a given plasma scenario.

Table 2.2: Additional variables in MDE model if 0.5D models for Te and ne are used

Variable Description Scalar/Profile Variable type
nprofe Density profile Profile Model parameter
T profe Temperature profile Profile Model parameter
γ, ε, ζ Temperature scaling constants Scalar Model parameter
n̄e Line-average electron density Scalar Input
nD, nT D and T densities Profile Input

2.2.2 The Electron Heat-Transport Equation

The electron heat-transport equation (EHTE) describes the dynamics of Ee = 3
2
neTe

(see equation (2.21)). It can be derived by applying the magnetic-flux surface aver-
age, 〈(·)〉, to equation (2.14) using Ee instead of n, and adding sources of electron
heating, denoted by Qe. The version of the EHTE employed in this dissertation and
its boundary conditions are given by

∂
(

3
2
neTe

)
∂t

=
1

ρ2
bĤρ̂

∂

∂ρ̂

(
ĜĤ2

F̂
neχe

∂Te
∂ρ̂

)
+Qe, (2.39)

∂Te
∂ρ̂

∣∣∣∣
ρ̂=0

= 0, Te(ρ̂ = 1)→ 0, (2.40)
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where the boundary condition at ρ̂ = 1 reflects the physical fact that Te is much
lower at the boundary than at the rest of the plasma domain, and χe is the electron
thermal diffusivity, which is given by

χe = χclassicale + χneoclassicale + χanomalouse , (2.41)

where the two first terms, χclassicale and χneoclassicale , are the contributions from clas-
sical and neoclassical transport, respectively, and χanomalouse is the contribution from
anomalous transport. Because χclassicale and χneoclassicale are normally several orders
of magnitude smaller than χanomalouse in present tokamak experiments, the latter is
the main contribution to the total χe. Based on dimensional analysis and along the
lines of some previous work [20–22], the anomalous electron diffusion in tokamaks
χanomalouse is modeled as

χanomalouse = χBohme Fχe

(
ρ∗, q,

a∇pe
pe

, ρ̂, s,
a∇Te
Te

∣∣∣∣
ρ̂=ρ̂TB

)
, (2.42)

where χBohme is the Bohm diffusivity, which is given by

χBohme =
Te(eV )

Bφ,0

, (2.43)

and Fχe is a function of various non-dimensional variables: the normalized gyro-
radius, ρ̂∗ ,

√
miTe/(|qe|aB), the safety factor, q, the normalized electron-pressure

gradient, a∇pe
pe

, the normalized effective minor radius, ρ̂, the magnetic shear, s ,
r
q
dq
dr
, and the normalized electron-temperature gradient, a∇Te

Te
, at the edge transport

barrier position, ρ̂TB (in H-mode scenarios only). It is proposed that Fχe scales with
the different variables as

Fχe = ρ∗
λ0
a∇pe
pe

λ1

qλ2 fq(ρ̂) gs(s)

(
Te

a∇Te

∣∣∣∣
ρ̂=ρ̂TB

)λ3

, (2.44)

where λi are constant parameters that depend on a particular plasma scenario (it
is assumed that λ0 = 0 or 1, i.e., the χe scaling is either purely Bohm-like or gyro-
Bohm-like [20], and λi > 0), the function fq is taken as an ad-hoc term given by

fq(ρ̂) =

(
1− 1

1 + e−C0(ρ̂−ρ̂TB)

)(
C1 + C2ρ̂+ C3ρ̂

2
)
, (2.45)
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where Ci are constant model parameters, and the function fq models the spatial
variation of χe at or near the H-mode edge. The function gs models the confinement
improvement found in reversed-shear scenarios, and is also an ad-hoc term given by

gs(s) =
1

1 + eD0(D1−s)
, (2.46)

where Di are constant model parameters.
Different contributions to the electron heating are considered,

Qe = Qaux +QOhm −Qrad +Qcollisions, (2.47)

where Qaux is the electron-heating produced by auxiliary heating methods (NBI,
ECH, etc.), QOhm is the ohmic heating power, Qrad represents the radiation losses,
and Qcollisions is the energy gain/loss of the electrons due to collisions with ions5.
The auxiliary heating, Qaux, is modeled as

Qaux =
i=Naux∑
i=1

Qprof
aux,iPaux,i, (2.48)

where Qprof
aux,i is the heating-deposition profile corresponding to the i-th auxiliary

source. The ohmic heating, QOhm, is modeled as

QOhm = ηj2
φ, (2.49)

where η is modeled as in (2.30). As in the MDE model, the radiative losses, Qrad,
are considered to be mainly due to Bremsstrahlung losses, which are modeled as

Qrad = kbremZeffn
2
e

√
Te. (2.50)

Finally, the collision-associated heating, Qcollisions, is modeled as

Qcollisions = νe,ine (Ti − Te) , (2.51)

where νe,i is electron-ion collisionality, which is modeled as νe,i = 0.041ne/(T
3/2
e Ai),

where Ai is the effective mass of the plasma ions.
5This implies that either a fully ionized plasma is assumed (so the population of neutrals is

neglected) or that the ion-electron collisions dominate versus the neutral-electron collisions.
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A summary of the variables in this EHTE model is shown in Table 2.3. As in the
MDE model, the different inputs can be either prescribed from experimental data
or estimated using some other model (for example, 0.5D models like (2.34) for Ti
and ne, or the MDE model to estimate the magnetic variables likes q, s, or jφ).

Table 2.3: Variables in EHTE model

Variable Description Scalar/Profile Variable type
Te Electron temperature Profile State
ne, Ti Electron density & ion

temperature
Profile Input

q, s, jφ Safety factor, magnetic
shear & toroidal current

Profile Input

F̂ , Ĝ, Ĥ Profiles from magnetic
equilibrium

Profiles Model parameter

Bφ,0, a Vacuum magnetic field &
minor radius

Scalar Model parameter

Zeff Effective atomic number Scalar Model parameter
kprofsp Resistivity profile Profile Model parameter
λi, Ci, Di Parameters in χe scaling Scalars Model parameter
ρ̂TB Edge transport barrier

position
Scalar Model parameter

Ai Effective mass of the
plasma ions

Scalar Model parameter

ρb ρ at last closed magnetic-
flux surface

Scalar Model parameter

Qprof
aux,i Heating-deposition pro-

files for auxiliary sources
Profiles Model parameter

Paux,i Auxiliary source powers Scalar Controllable input

2.2.3 The Toroidal Rotation Equation

The toroidal rotation equation (TRE) is employed to describe the dynamics of the
toroidal angular velocity of the ions, defined as

ωφ ,
vφ,i
r
. (2.52)
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The TRE can be obtained by applying the magnetic-flux surface average to the
toroidal component of the ion momentum equation multiplied by the radial coordi-
nate r (see, for example, Appendix A.2, equation (A.12), and/or [23]). The TRE
and boundary conditions employed in this dissertation are given by [24]

mi〈r2〉∂(niωφ)

∂t
=

1

ρ̂Ĥ

∂

∂ρ̂

[
ρ̂Ĥnimiχφ〈r2(∇ρ̂)2〉∂ωφ

∂ρ̂

]
+ tω, (2.53)

∂ωφ
∂ρ̂

∣∣∣∣
ρ̂=0

= 0, ωφ(ρ̂ = 1)→ 0, (2.54)

where the boundary condition at ρ̂ = 1 just reflects the physical fact that ωφ is much
lower at the boundary than at the rest of the plasma domain, χφ is the toroidal
momentum diffusivity, and tω is the torque deposition averaged over a flux-surface.

For χφ, the simplification χφ = fφχe is employed, where fφ is a fixed profile that
is determined for the applicable plasma scenario. Three torque contributions are
considered,

tω =

i=NNBI∑
i=1

tNBI,i + tint + tNRMF , (2.55)

where tNBI,i is the torque injected by the i-th NBI and NNBI is the total number of
NBIs, tint is the intrinsic torque source [25], and tNRMF is the torque generated by
actuation of magnetic coils that generate non-axisymmetric magnetic perturbations,
in particular, non-resonant magnetic field (NRMF) perturbations6. Control-level
models are employed for tNBI,i, tint, and tNRMF [24],

tNBI,i = tprofNBI,in
αn,NBI
i T

αT,NBI
i PNBI,i, (2.56)

tint = tprofint

Ei + Ee
Ip

, (2.57)

tNRMF = tprofNRMF (ωφ − ω?φ)n
αn,NRMF

i T
αT,NRMF

i ωαωE I2
NRMF , (2.58)

where tprofNBI,i is the torque-deposition profile for the i-th NBI, αn,NBI and αT,NBI are
constants that model the NBI torque-deposition efficiency as a function of ni and

6In general, non-axisymmetric perturbations can be resonant (with the same helicity, i.e., same
q as the non-perturbed ~B) or non-resonant (different helicity from the non-perturbed ~B.). More
information can be found, for example, in [26].
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Ti, respectively, tprofint is a profile that characterizes the spatial distribution of the
intrinsic torque, tprofNRMF is a profile that characterizes the spatial distribution of the
NRMF torque, αn,NRMF and αT,NRMF are constants that model the NRMF torque-
deposition efficiency as a function of ni and Ti, respectively, ω?φ is an offset rotation
profile for the NRMF torque, ωE is the toroidal component of the ~E × ~B drift, and
INRMF is the current through the coils that generate the NRMF perturbations.

A summary of the variables in this TRE model is shown in Table 2.4, together
with a brief description, if they are a scalar or a profile, and whether the applicable
variable is considered to be the state, an input, or a model parameter. Just as before,
variables like ne, ni, Te, or Ti can be prescribed or estimated by other models.

Table 2.4: Variables in TRE model

Variable Description Scalar/Profile Variable type
ωφ Toroidal angular rotation Profile State
ne, ni, Te, Ti Electron & ion den-

sity/temperature
Profile Input

χe Electron thermal diffu-
sivity

Profile Input

Vp, 〈r2〉, 〈r2(∇ρ̂)2〉 Plasma volume Profile Model parameter
fφ Profile in χφ scaling Profile Model parameter
αn,(·), αT,(·), αω Parameters in NBI &

NRMF torque scalings
Scalar Model parameter

tprofNBI,i, t
prof
int , tprofNRMF Torque-deposition pro-

files for NBI, intrinsic
torque & NRMF

Profile Model parameter

ω?φ Offset rotation profile for
NRMF torque

Profile Model parameter

ωE Toroidal component in
~E × ~B drift

Profile Model parameter

Paux,i Auxiliary source powers Scalar Controllable input
Ip Plasma current Scalar Controllable input
INRMF NRMF coil current Scalar Controllable input
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2.3 Zero-dimensional PlasmaModels for Control Ap-

plications

This Section presents 0D models for some scalar plasma-variables: the stored ther-
mal energy,W , volume-average particle densities, bulk toroidal rotation, Ωφ, central
and edge safety factors, q0 and qedge, and NTM island width, w. The 0D models are
based on the basic plasma-physics concepts presented in previous Sections, although
they are substantially reduced and/or simplified in order to serve their control-design
purpose.

2.3.1 Plasma Energy Balance

A 0D balance for the evolution of the stored thermal energy, W , defined in (2.22),
can be derived from 1D energy balances for ions and electrons. The energy-balance
equations for ions and electrons can be obtained from applying equation (2.14) to
both Ei and Ee, and are given by

∂Ei
∂t

+∇ · (Ei~vi) = Qi, (2.59)

∂Ee
∂t

+∇ · (Ee~ve) = Qe, (2.60)

where Qi and Qe are generic sources/sinks of ion and electron power density, respec-
tively (Qe is the same term that appears in the EHTE, equation (2.39)). Adding
equations (2.59) and (2.60), it is found that

∂(Ei + Ee)

∂t
+∇ · (Ei~vi) +∇ · (Ee~ve) = Qi +Qe. (2.61)

Integrating over the plasma domain Vp, using Gauss’s theorem and Reynold’s trans-
port theorem as in Section 2.1.4, and re-arranging terms, (2.61) becomes

dW

dt
= −W dVp

dt
−
∫∫

Sp

[Ei(~vp − ~vi) + Ee(~vp − ~ve)] · ~RdSp +

∫∫∫
Vp

(Qi +Qe)dVp.

(2.62)
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The first term on the right hand side of (2.62) represents the change in W due
to plasma volume varations. If Vp is constant in time or its change in time is
negligible, this first term vanishes. The last term on the right hand side of (2.62)
is, by definition, the total power injected to the plasma, Ptot. The second term
on the right hand side of (2.62) represents the ion and electron losses through the
plasma boundary Sp, just as introduced in Section 1.1.5, equation (1.10), so it is
approximated as∫∫

Sp

[Ei~vi + Ee~ve] · ~RdSp ≈
1

τE

∫∫∫
Vp

(Ei + Ee)dVp = −W
τE
. (2.63)

Equation (2.62) becomes the 0D power-balance equation thoroughly employed in
fusion science,

dW

dt
= −W

τE
+ Ptot, (2.64)

where Ptot is modeled as in (2.35)-(2.38), and τE is estimated using the IPB98(y,2)
empirical scaling [27],

τE = 0.0562HHI
0.93
p B0.15

φ,0 R
1.97
0 κ0.78ε0.58A0.19

i P−0.69
tot n̄0.41

e,19, (2.65)

where HH is the so-called H-factor or confinement factor, Ip must be given in MA, κ
is the plasma elongation, ε = a/R0 is the inverse aspect ratio, Ai is the effective mass
of the plasma ions in a.m.u., Ptot must be given in MW, and n̄e,19 is the line-average
electron density in 1019 m−3. For convenience, τE is written as

τE = kHHI
0.93
p P−0.69

tot n̄0.41
e,19, (2.66)

where k = 0.0562B0.15
φ,0 R

1.97
0 κ0.78ε0.58A0.19

i . The H-factor, HH , is a scalar that repre-
sents the uncertainty of the IPB98(y,2) scaling under different scenarios and oper-
ating conditions. A value of HH = 1 yields the best fit to experimental data in the
international database. It can also be seen as a measurement of the plasma con-
finement quality which comprises effects not explicitly included in the IPB98(y,2)
scaling. Amongst those effects, perturbations in the axisymmetric magnetic con-
figuration can be considered. In particular, non-axisymmetric magnetic perturba-
tions intentionally created by the aforementioned in-vessel magnetic coils have a
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proven impact on HH in DIII-D plasmas with relatively low νe,i and ne (normalized
νe,i ≈ 0.1, ne ≈ 3.5×1019m−3) [28]. In these experiments, activation of the in-vessel
coils implied a decrease in HH and, consequently, a decrease in τE. Tokamak plas-
mas with higher νe,i and ne, on the contrary, did not show HH variations under
application of non-axisymmetric magnetic fields [14]. Using the experimental data
available for DIII-D plasma with with ITER-like plasma shapes [14, 28], the follow-
ing control-oriented scaling is used to account for the influence of the in-vessel-coil
current, denoted by Icoil, on HH ,

HH = Hnom
H +

(
nave
nave,0

)−λ1,coil
(
νave,i
νave,i0

)−λ2,coil (
C2,coilI

2
coil + C1,coilIcoil

)
, (2.67)

where Hnom
H is a known, nominal value for HH without activation of the in-vessel

coils, nave is the volume-average electron density (although any other scalar, reference
value for ne can be employed), νave,i is the volume-average electron-ion collisionality,
nave,0 and νave,i0 are the volume-average electron density and electron-ion collisionality,
respectively, corresponding to a nominal working point for which experimental data
is available, and δ > 0, λi,coil > 0, and Ci,coil are constants that are determined
from experimental data. Because the in-vessel coils can only reduce HH with the
experimental configurations considered [14, 28], the term

[
C2,coilI

2
coil +C1,coilIcoil

]
≤

0, for any Icoil ≥ 0.
In order to design controllers that are as effective as possible, the dynamic model

includes different types of uncertainties. First, an uncertainty δHH is added to HH

in (2.67) to yield

HH = Hnom
H +

(
nave
nave,0

)−λ1,coil
(
νave,i
νave,i0

)−λ2,coil (
C2,coilI

2
coil + C1,coilIcoil

)
+ δHH . (2.68)

The uncertainty δHH reflects the aforementioned variations in confinement quality
which are often observed in tokamaks. In addition, an uncertain power source is
added on the right hand side of (2.64), denoted by δP , so it becomes

dW

dt
= −W

τE
+ Ptot + δP . (2.69)

The uncertainty δP models unknown variations in Ptot such as, for example, unmod-
eled radiative losses or inefficient auxiliary heating.
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Finally, equation (2.69) can be rewritten as

dW

dt
= − W

τnomE

+ Ptot + δW , (2.70)

where the dependence on t has been dropped in all variables to ease notation, τnomE

is the value of τE when δHH = 0, and δW is an uncertain term that bundles all the
uncertainties in the 0D model for W , and is given by

δW =
W

τnomE

− W

τE
+ δP . (2.71)

A summary of the variables in this 0D model for W is shown in Table 2.5. All
variables considered are scalars. Because Ptot depends on Paux,i (see equation (2.35)),
it is considered that Ptot is a partially controllable input.

Table 2.5: Variables in 0D model for W

Variable Description Variable type
W Stored thermal energy State
Bφ,0, R0, a, κ, Ai Toroidal field, major and minor

radiuses, elongation and effective
mass

Model parameter

Hnom
H Nominal H-factor Model parameter

Ci,coil, nave,0, νe,i0, λi,coil Parameters in HH model Model parameter
n̄e Line-average density Input
νe,i, nave Electron-ion collision frequency &

volume-average electron density
Input

Ptot Total power Input (Partially
controllable)

Ip Plasma current Controllable input
Icoil In-vessel coil current Controllable input
δHH , δP Uncertain terms Uncertainties

2.3.2 Plasma Particles Balance

In this section, 0D models for the evolution of the volume-average densities of the
different types of plasma particles are presented [29]. These models focus on D-T
plasmas, and can be obtained from 1D mass balances for each type of particles by
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following the same approach as in Sections 2.1.4 and 2.3.1. The main purpose of
these models is the design and simulation testing of controllers for burn control (i.e.,
burn controllers) in conjunction with the 0D model forW presented in Section 2.3.1,
as well as providing a simplified model for the evolution of the volume-average
electron density, nave . This modeling work considers a plasma in which deuterium
(D), tritium (T), α particles (α’s) and impurities are present. For each type of
particle, (2.18) is employed, and the transport term across the plasma surface Sp
is expressed in terms of a confinement time in the same way as in (2.63). Unless
explicitly stated, the variables involved in this Section are volume-average variables.

The α-particle balance equation is given by

dnα
dt

= −nα
τα

+ Sα, (2.72)

where nα is the α-particle average density, τα is the α’s confinement time, and Sα
is the source of α’s arising from fusion reactions, which is given by

Sα = nDnT 〈σv〉DT , (2.73)

where nD and nT are the D and T ions densities, respectively, and 〈σv〉DT is the D-T
reactivity. The function 〈σv〉DT depends on the ion temperature, Ti, as introduced
in Section 1.1.2 and shown in Fig. 1.2. In this 0D model, an average temperature
Ti is employed. It is not defined as an integral of Ti over the plasma volume, but
instead it can be obtained from the volume-average version of equation (2.22),

3

2
(niTi + neTe) =

W

Vp
, (2.74)

where ni is the ion density, which is given by

ni = nα + nD + nT + nI , (2.75)

and ne can be obtained from the quasi-neutrality condition,

ne = nD + nT + 2nα + ZInI , (2.76)

where ZI is the atomic number of the impurities.
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The D and T particle balance equations are given by

dnD
dt

= −nD
τD
− Sα + feffS

R
D + SinjD , (2.77)

dnT
dt

= −nT
τT
− Sα + feffS

R
T + SinjT , (2.78)

where τD and τT are the D and T confinement times, respectively, SinjD and SinjT

are the D and T injection rates, respectively, SRD and SRT are the D and T recycling
sources, respectively, and feff is the efficiency with which the incoming recycling
fluxes fuel the plasma core. These recycling sources arise from particles trapped
in the tokamak’s first-wall and SOL that cross the last-closed magnetic-flux surface
and come back into the plasma core. The recycling terms SRD and SRT are modeled
as in [29],

SRD =
fref

nD
τD

+ (1− γPFC)
[

(1−fref (1−feff ))Reff
1−Reff (1−feff )

− fref
] (

nD
τD

+ nT
τT

)
1− fref (1− feff )

, (2.79)

SRT =
fref

nT
τT

+ γPFC

[
(1−fref (1−feff ))Reff

1−Reff (1−feff )
− fref

] (
nD
τD

+ nT
τT

)
1− fref (1− feff )

, (2.80)

where fref , Reff and γPFC are recycling parameters that characterize the recycling
effects. Fig. 2.7 shows a schematic illustrating how the recycling effects work and
the meaning of each of the parameters. More details can be found in [29].

In ITER, the two fueling techniques existing in present-day devices will be con-
sidered: gas puffing and pellet injection. Present-day tokamaks normally use gas
puffing as the primary fueling technique. However, in higher densities and H-mode
regimes with steep edge pressure-gradients, it is predicted that gas puffing will have
a poor fueling efficiency [30]. Pellet injection, on the contrary, has a higher capabil-
ity to penetrate the magnetic fields and deposit particles into the plasma core due to
the high velocity of the particles injected, and is planned to be the primary fueling
technique in ITER. Gas puffing will mainly be used to fuel the plasma edge in order
to enhance impurity transport out of the plasma core and keep optimal divertor
conditions [30]. Two pellet injectors will be available in the initial phase of ITER.
Each of these pellet injectors will be able to produce pellets made of both D and T,
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First wall flux:
T: γPFC SPFC

D: (1-γPFC)SPFC

Lower divertor

Upper divertor

Outward fluxes:   
T: nT/!T + (1 – feff) ST

R

D: nD/!D + (1 – feff ) SD
R

Inward recycling fluxes:
ST

R = fref [nT/!T + (1 – feff) ST
R] + γPFC SPFC

SD
R = fref [nD/!D + (1 – feff)SD

R] + (1-γPFC)SPFC

First wall 
particle 
inventory

feff (SD
R + ST

R) 

Reff = Σ Inward recycling fluxes / Σ Outward fluxes

Figure 2.7: Recycling effects in 0D model for particle transport.

with a concentration of up to 90% T. It is envisioned that one of the pellet injectors
is set up to inject pellets made of D only, and that the other pellet injector injects
pellets with the highest possible concentration of T. In this modeling work, the first
pellet injector is denoted as D pellet injector, whereas the second pellet injector is
denoted as D-T pellet injector. Although the nominal concentrations for these lines
are 100% D and 10%D - 90%T, respectively, the D-T concentration of those pellets
may vary over time. This is mainly due to the fact that T tends to permeate very
easily through the plasma facing components (PFCs), and also through the tritium
exhaust and re-processing system [31]. Most PFCs will be made of Beryllium (like
the vacuum vessel walls), Tungsten (divertor components) or Carbon, whereas the
tritium exhaust and re-processing systems will include materials such as ceramics,
different kinds of steel, and Aluminum alloys. The T permeability and solubility
in all these materials is variable, so part of the T will inevitably diffuse into the
materials which are more susceptible at a rate which will be difficult to estimate
during operation. As a result, keeping a constant D-T concentration in the pellets
may be just impossible. Variations in the D-T pellet concentration, which may be
in turn hard or impossible to measure in real time, can decrease the burning plasma
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performance to unacceptable levels. To deal with this problem in the design of burn
controllers, SinjD and SinjT are modeled as

SinjD = (1− γD−line)SinjD−line + (1− γDT−line)SinjDT−line, (2.81)

SinjT = γD−lineS
inj
D−line + γDT−lineS

inj
DT−line, (2.82)

where SinjD−line and S
inj
DT−line are the injection rates of the D pellet injector and D-T

pellet injector, respectively, and γD−line and γDT−line are uncertain parameters that
characterize the D-T concentration in the pellets of the D pellet injector and D-T
pellet injector, respectively. Although uncertain, the values of the two parameters
γD−line and γDT−line are between 0 and 1, so that 0 represents a 0% concentration
in T and 1 represents a 100% concentration in T. Both γD−line and γDT−line are
expressed in this model as

γD−line = γnomD−line + δD−line, (2.83)

γDT−line = γnomDT−line + δDT−line, (2.84)

where γnomD−line = 0 and γnomDT−line = 0.9 are the known, nominal values corresponding
to a 0% and 90% T concentration in the corresponding pellet injectors, respectively,
and δD−line and δDT−line are uncertain variables.

The impurities balance equation is given by
dnI
dt

= −nI
τI

+ SspI + SinjI , (2.85)

where nI is the impurity-ions average density, τI is the impurity confinement time,
SspI is the source of impurities arising from sputtering, and SinjI is the impurity in-
jection rate, which is considered to be a controllable input in this model. Although
only one type of impurity is considered, this model can be easily extended to in-
clude different kinds of impurities as the ones mentioned above (Carbon, Tungsten,
Beryllium, etc.). The term SspI is modeled as

SspI = f spI

(
ne
τI

+
dne
dt

)
, (2.86)

where ne is the volume-average electron density, and f spI << 1 is a constant param-
eter that characterizes the intensity of the sputtering effects.
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To model the confinement times of the different particles, it is assumed that all
of them scale with τE as

τα = kατE, τD = kDτE, τT = kT τE, τI = kIτE, (2.87)

where kα, kD, kT , and kI are constant parameters.
A summary of the variables in this 0D model for the particle densities is shown

in Table 2.6. All variables considered are scalars.

Table 2.6: Variables in 0D model for nα, nD, nT , and nI

Variable Description Variable type
nα, nD, nT , nI α, D, T, and impurity volume-

average densities
State

W Stored energy Input
τE Energy-confinement time Input
kα, kD, kT , kI Confinement constants Model parameter
feff , fref , Reff , γPFC Constants for recycling effects Model parameter
Vp Plasma volume Model parameter
γnomDT−line, γnomD−line Nominal pellet concentrations Model parameter
f spI Constant for sputtering effects Model parameter
ZI Impurities atomic number Model parameter
SinjDT−line, S

inj
D−line, S

inj
I Injection rates Controllable input

δDT−line, δD−line Uncertain pellet concentrations Uncertainties

2.3.3 Electron Density Balance

To develop a 0D model for the evolution of the volume-average ne, the balance
equations presented in Section 2.3.2 for the different types of particles are employed.
Taking time derivative in (2.76), using the balance equations (2.72), (2.77), (2.78),
and (2.85) together with equations (2.86) and (2.87), and solving for dne/dt, the
following expression is found

dne
dt

= − 1

(1− ZIf spI )τE

(
nD
kD

+
nT
kT

+ 2
nα
kα

+ ZI
nI − f spI ne

kI

)
+

1

1− f spI

(
feff (S

R
D + SRT ) + SinjD + SinjT + ZIS

inj
I

)
. (2.88)
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In order to have a model for the ne evolution that is as simplified as possible to
facilitate control synthesis, a few extra assumptions are made. First, it is assumed
that kD ≈ kT ≈ kDT , i.e., that τD and τT are the same. This implies that both
D and T are assumed to diffuse out of the plasma core at a similar rate. Second,
it is assumed that nI << ne and nα << ne, i.e., the impurities and α’s presence
in the plasma is negligible when compared to the D and T content7. Using these
assumptions and some basic algebra, the first term in (2.88) can be rewritten as

1

(1− ZIf spI )τE

(
nD
kD

+
nT
kT

+ 2
nα
kα

+ ZI
nI − f spI ne

kI

)
=

1

(1− ZIf spI )kDT τE

(
nD + nT + 2nα

kDT
kα

+ ZInI
kDT
kI
− ZI

f spI kDTne
kI

)
=

1

(1− ZIf spI )kDT τE

(
nD + nT + 2nα + ZInI − ZI

f spI kDTne
kI

−2nα
kα − kDT

kα
− ZInI

kI − kDT
kI

)
=

1

(1− f spI )kDT τE

((
1− ZI

f spI kDT
kI

)
ne − 2nα

kα − kDT
kα

− ZInI
kI − kDT

kI

)
≈

≈

(
1− ZIf spI

kDT
kI

)
(1− ZIf spI )kDT τE

ne, (2.89)

so the electron-density balance equation, (2.88), becomes

dne
dt

= −ne
τe

+
1

1− ZIf spI

(
feff (S

R
D + SRT ) + SinjD + SinjT + ZIS

inj
I

)
, (2.90)

where τe is the electron confinement-time, which is given by

τe ,
(1− ZIf spI )kDT τE(

1− ZIf spI
kDT
kI

) . (2.91)

A summary of the variables in this 0D model for the volume-average electron
density is shown in Table 2.7. All variables considered are scalars.

7Such assumption is not totally arbitrary. The ideal operation of a burning plasma in tokamaks
envisions low contents of α’s and impurities.
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Table 2.7: Variables in 0D model for ne

Variable Description Variable type
ne Electron volume-average density State
τE Energy-confinement time Input
nD, nT D and T densities Inputs
kDT D-T confinement constant Model parameter
feff , fref , Reff , γPFC Constants for recycling effects Model parameter
γnomDT−line, γnomD−line Nominal pellet concentrations Model parameter
f spI Constant for sputtering effects Model parameter
ZI Impurities atomic number Model parameter
SinjDT−line, S

inj
D−line, S

inj
I Injection rates Controllable input

δDT−line, δD−line Uncertain pellet concentrations Uncertainties

For present-day devices with low impurity content, the ne model can be simplified
even further because most present-day tokamaks do not work with T, so equation
(2.76) becomes ne ≈ nD, and equation (2.90) becomes

dne
dt

= −ne
τe

+
1

1− ZIf spI

(
feffS

R
D + SinjD + ZIS

inj
I

)
, (2.92)

which is still a more sophisticated model than just using a balance equation like
(2.77) with nD = ne and Sα = 0, because equation (2.92) includes the impurity
sputtering effects (which affect the confinement time, τe, and D injection rate, SinjD ),
together with impurity injection.

2.3.4 Central Safety Factor Evolution

The central safety factor, q0, is the value of q at the magnetic axis, i.e., ρ̂ = 0, and
is given by

q0 , −
Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂

∣∣∣∣
ρ̂=0

. (2.93)

Using the definition for the poloidal flux gradient, θ, which is given by

θ ,
∂ψ

∂ρ̂
, (2.94)
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and using L’Hopital’s rule and the boundary condition at ρ̂ = 0, (2.28), equation
(2.93) can be rewritten as

q0 = −Bφ,0ρ
2
b

θ′0
, (2.95)

where θ′0 = ∂θ
∂ρ̂
|ρ̂=0. The derivative θ′0 is approximated as

θ′0 ≈
θ1 − θ0

∆ρ̂
, (2.96)

where θ0 is the value of θ at ρ̂ = 0, θ1 is the value of θ at ρ̂ = ∆ρ̂, and ∆ρ̂ is taken
such that ∆ρ̂ << 1. Using (2.96), and the boundary condition at ρ̂ = 0 (2.28),
equation (2.95) can be rewritten as

q0 = −Bφ,0ρ
2
b∆ρ̂

θ1

, (2.97)

and taking time derivative in (2.97), it is possible to write

dq0

dt
=
Bφ,0ρ

2
b∆ρ̂

θ2
1

dθ1

dt
. (2.98)

The evolution of θ1 can be obtained by taking derivative with respect to ρ̂ in the
MDE (2.27), and particularizing at ρ̂ = ∆ρ̂. The evolution equation for θ1 would
be given by

dθ1

dt
=

∂

∂ρ̂

[
η

µ0ρ2
bF̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤθ

)
+R0Ĥη

〈~jni · ~B〉
Bφ,0

]
ρ̂=∆ρ̂

. (2.99)

To facilitate the control synthesis using this 0D model for q0, it is assumed that the
plasma equilibrium does not change in time, i.e., that no time dependence is found
in ρb, F̂ , Ĝ, Ĥ, or other parameters. This, evidently, is not the real situation found
in a tokamak. Changes in θ will affect ~j (see Appendix A.3, equation (A.30)), and
therefore, the pressure field p will reorganize until a new equilibrium is achieved (so
that (2.8) is fulfilled). Therefore, changes in θ always imply changes in the plasma
shape. However, for q0 control design, it is assumed that the plasma shape and
position controllers will keep an approximately constant plasma shape and position,
and also that the variations in the profiles related to the magnetic configuration can
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be neglected. For η and 〈~jni · ~B〉/Bφ,0, the same models as introduced in Section 2.2.1
are employed, whereas Te and ne are modeled using the 0.5D approximation [18].

The following spatial profiles are defined for convenience and clarity,

fη =
1

µ0ρ2
bF̂

2

kprofsp Zeff(
T profe (nprofe )ζ

)3/2
, fdiff,1 = fη

(
Dψ

ρ̂
+
∂Dψ

∂ρ̂

)
, (2.100)

fdiff,2 = fηDψ, faux,i =
R0Ĥk

prof
sp Zeffj

prof
aux,i

(
T profe (nprofe )ζ

)δNBI(
T profe (nprofe )ζ

)3/2

nprofe

, (2.101)

fBS =
ĤR2

0k
prof
sp Zeff

F̂
(
T profe (nprofe )ζ

)3/2

[
2L31T

prof
e (nprofe )ζ

∂nprofe

∂ρ̂
(2.102)

+ (2L31 + L32 + αL34)
∂(T profe (nprofe )ζ)

∂ρ̂
nprofe

]
, (2.103)

where Dψ , F̂ ĜĤ. Also, the following function of the inputs Ip, Ptot, n̄e and Paux,i
are defined (they will be referred to as “virtual inputs” to the system),

uη = (IγpP
ε
totn̄

ζ
e)
−3/2, (2.104)

uaux,i = (IγpP
ε
totn̄

ζ
e)

(−3/2+δaux,i)n̄−1
e Paux,i, (2.105)

uBS = (IγpP
ε
totn̄

ζ
e)
−1/2n̄e. (2.106)

Introducing the definitions (2.100)-(2.106), (2.99) is rewritten as

dθ1

dt
=

∂

∂ρ̂

[(
fdiff,1θ + fdiff,2

∂θ

∂ρ̂

)
uη +

i=Naux∑
i=1

faux,iuaux,i +
1

θ
fBSuBS

]
ρ̂=∆ρ̂

, (2.107)

and using the chain rule to compute the partial derivative with respect to ρ̂, equation
(2.107) becomes

dθ1

dt
=
{ [
f ′diff,1θ +

(
fdiff,1 + f ′diff,2

)
θ′ + fdiff,2θ

′′]uη+
i=Naux∑
i=1

f ′aux,iuaux,i +

(
1

θ
f ′BS −

θ′

θ2
fBS

)
uBS

}
ρ̂=∆ρ̂

, (2.108)
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where (·)′ , ∂(·)/∂ρ̂. The first and second derivatives of θ at ρ̂ = ∆ρ̂, θ′1 and θ′′1 , are
discretized as θ′1 ≈ (θ2−θ0)/(2∆ρ̂), θ′′1 ≈ (θ2+θ0−2θ1)/∆ρ̂2, where θ2 , θ(ρ̂ = 2∆ρ).
By defining the following constants,

λdiff,1 = f ′diff,1(ρ̂ = ∆ρ̂)− 2
fdiff,2(ρ̂ = ∆ρ̂)

∆ρ̂2
, (2.109)

λdiff,2 =
fdiff,1(ρ̂ = ∆ρ̂) + f ′diff,2(ρ̂ = ∆ρ̂)

2∆ρ̂
+
fdiff,2(ρ̂ = ∆ρ̂)

∆ρ̂2
, (2.110)

it is possible to rewrite (2.108) as

dθ1

dt
= (λdiff,1θ1 + λdiff,2θ2)uη +

i=Naux∑
i=1

f ′aux,i(ρ̂ = ∆ρ̂)uaux,i

+

[
1

θ1

f ′BS(ρ̂ = ∆ρ̂)− θ2

θ2
1

fBS(ρ̂ = ∆ρ̂)

2∆ρ̂

]
uBS. (2.111)

Plugging (2.111) into (2.98), it is found that

dq0

dt
=
Bφ,0ρ

2
b∆ρ̂

θ1

[
λdiff,1 + λdiff,2

θ2

θ1

]
uη +

Bφ,0ρ
2
b∆ρ̂

θ2
1

i=Naux∑
i=1

f ′aux,i(ρ̂ = ∆ρ̂)uaux,i

+
Bφ,0ρ

2
b∆ρ̂

θ3
1

[
f ′BS(ρ̂ = ∆ρ̂)− θ2

θ1

fBS(ρ̂ = ∆ρ̂)

2∆ρ̂

]
uBS, (2.112)

and using the definition (2.97) for q0, then (2.112) can be rewritten as

dq0

dt
= −q0

(
λdiff,1 + λdiff,2

θ2

θ1

)
uη + q2

0

i=Naux∑
i=1

λaux,iuaux,i

− q3
0

(
λBS,1 + λBS,2

θ2

θ1

)
uBS, (2.113)

where λ(·) are given by

λaux,i =
f ′aux,i(ρ̂ = ∆ρ̂)

Bφ,0ρ2
b∆ρ̂

, λBS,1 =
f ′BS(ρ̂ = ∆ρ̂)

(Bφ,0ρ2
b∆ρ̂)2

, λBS,2 = − fBS(ρ̂ = ∆ρ̂)

2(Bφ,0ρ2
b)

2∆ρ̂3
. (2.114)

It is assumed that θ2
θ1

is uncertain and given by

θ2

θ1

=
θ2

θ1

∣∣∣∣
nom

+ δθ, (2.115)
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where θ2
θ1
|nom is a nominal, known value, and δθ is an uncertain term. This assumes

that the influence of the rest of the q-profile on q0 is uncertain. In addition, δθ can
model any other source of unknown dynamics in the q0 subsystem. Equation (2.113)
is rewritten as

dq0

dt
= −q0

(
λdiff,1 + λdiff,2

θ2

θ1

∣∣∣∣
nom

)
uη + q2

0

i=Naux∑
i=1

λaux,iuaux,i

− q3
0

(
λBS,1 + λBS,2

θ2

θ1

∣∣∣∣
nom

)
uBS + δq0 , (2.116)

where δq0 = −(q0λdiff,2uη + q3
0λBS,2uBS)δθ is a term that bundles the uncertainties

in the q0 subsystem.
A summary of the variables in this 0D model for q0 is shown in Table 2.8. All

variables considered are scalars.

Table 2.8: Variables in 0D model for q0

Variable Description Variable type
q0 Central safety factor State
λdiff,i Diffusion constants Model parameter
λaux,i Auxiliary CD constants Model parameter
λBS,i Bootstrap current constants Model parameter
θ2
θ1

∣∣∣
nom

Nominal θ2/θ1 evolution Model parameter
γ, ε, ζ Temperature scaling constants Model parameter
n̄e Line-average density Input
Ptot Total power Controllable input
Ip Plasma current Controllable input
Paux,i Auxiliary source powers Controllable input
δq0 Uncertain q0 dynamics Uncertainty

2.3.5 Edge Safety Factor Evolution

The model for qedge is based on the boundary condition at ρ̂ = 1 for the MDE (2.28),
which can be written in terms of θ at ρ̂ = 1 as,

θ(ρ̂ = 1) = −kIpIp, (2.117)
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where kIp ,
µ0R0

2πG(ρ̂=1)H(ρ̂=1)
. The definition for qedge is given by

qedge = − Bφ,0ρ
2
b

θ(ρ̂ = 1)
. (2.118)

Combining (2.117) and (2.118), and taking time derivative (as in the q0 case, it is
assumed that Bφ,0 and ρb are constant in time), it is found that

dqedge
dt

=
Bφ,0ρ

2
b

(kIpIp)
2

(
dkIp
dt

Ip + kIp
dIp
dt

)
. (2.119)

The variable kIp is a model parameter that depends on the plasma magnetic config-
uration and/or the position of the magnetic axis (it depends on Ĝ, Ĥ, and R0). It
is modeled as

kIp = knomIp + δkIp , (2.120)

where knomIp
is a constant, known value of kIp , and δkIp is an uncertain term, repre-

senting unknown variations in the plasma magnetic configuration and position.
Because of the definition of the separatrix (Bθ = 0) in diverted plasmas, it can

be noted that there is a singularity at the edge that produces qedge →∞. In diverted
configurations, the model presented in this Section must be seen as a model for q at
some point near the edge/separatrix, but not right at it. Alternatively, q95, which
denotes q at the flux surface that encloses 95% of the toroidal flux Φ, is a magnitude
widely used within the fusion community that is often employed instead of qedge.

Table 2.9: Variables in 0D model for qedge

Variable Description Variable type
qedge Edge safety factor State
knomIp

Nominal BC constant Model parameter
Bφ,0 Vacuum toroidal field Model parameter
ρb ρ at last closed magnetic-flux

surface
Model parameter

Ptot Total power Controllable input
Ip Plasma current Controllable input
δkIp Uncertain BC constant Uncertainty

A summary of the variables in this 0D model for qedge is shown in Table 2.9. All
variables considered are scalars.
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2.3.6 Global Toroidal Rotation Balance

The derivation of this model starts with the definition of the bulk toroidal rotation
of the ions, Ωφ. The ion velocity field ~vi can be decomposed as a toroidal velocity
field, ~vφ,i, plus a perpendicular velocity field, ~v⊥,i, such that ~vi = ~vφ,i + ~v⊥,i (see
Fig. 2.8). Whereas ~v⊥,i is contained in the r-z plane and represents the particles
rotation around the φ direction in Fig. 2.8 (i.e., the Larmor gyration), ~vφ,i represents
the particles rotation around the z-axis (toroidal rotation). Then, vφ,i and v⊥,i are
related to the angular velocity vector, ~ω, by

~ω × ~r = ~ω × (~R0 + ~ξ) = ~vφ,i + ~v⊥,i, (2.121)

where ~R0 = R0~r and ~ξ = ξr~r + ξz~z are the vectors that define the position in space
of a particular ion, as depicted in Fig. 2.8.

⍵ɸ (⍴,t)

ɸ

r

vɸ,i(⍴,t)

R0

ξ z
x

y

z

Magnetic Axis

Flux Surfaces

Figure 2.8: Schematic of the linear and an-

gular velocity components.

The three components of the vector
equation (2.121) are given by

ωcξz = ~v⊥,i · ~r , vr,i, (2.122)

ωφ(ξr +R0) = vφ,i, (2.123)

−ωc(ξr +R0) = ~v⊥,i · ~z , vz,i, (2.124)

where ωc is the angular velocity around
the φ axis, and ωφ is the angular veloc-
ity around the z axis, i.e., the toroidal
angular velocity. It can be noted that
no radial angular velocity is considered
in the model (ωr ≡ 0), due to the axisymmetry around the z-axis. Equations (2.122)
and (2.124) describe the Larmor rotation around the magnetic axis direction, φ (thus
the notation employed for its angular velocity, ωc, i.e., the ion-cyclotron frequency),
whereas equation (2.123) describes to the toroidal rotation. Then, from (2.123),

ωφ =
vφ,i

R0 + ξr
. (2.125)
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The bulk toroidal rotation, Ωφ, is defined in this work as the average toroidal
rotation of the ions inside the plasma, and it is given by

Ωφ ,
1

Np

∫∫∫
Vp

n ωφdVp, (2.126)

where Np is the total number of ions within the plasma, which is given by

Np =

∫∫∫
V

ndVp. (2.127)

Using the system’s symmetry around the z-axis and the magnetic axis, and equation
(2.125), it is possible to rewrite (2.126) as

Ωφ = 2πR0

∫ ρ=ρb
ρ=0

[∮
Γ
n vφ,i

dΓ
R0+ξr

]
dρ

Np

, (2.128)

where Γ is the contour equation for a magnetic flux surface (see Fig. 2.3). Mea-
surements of both vφ,i or n are available in some tokamaks, for example from CER
measurements (see Section 1.3.6), allowing for the computation of Ωφ as long as
information about the magnetic geometry (i.e., Γ) is available, for example, from
equilibrium reconstruction codes. An easier, control-oriented approach that allows
for finding an analytic expression for Ωφ without having to reconstruct the plasma
equilibrium can be found in Appendix B.1.

The model proposed in this work to estimate the time evolution of Ωφ is simplified
but based on first principles. In the same way that a particle of mass m and position
vector ~r would have an angular momentum given by ~L = ~r × md~r

dt
, the plasma is

assumed to have an angular momentum Γ in the z-direction given by

Γ = mpR
2
0Ωφ, (2.129)

where mp is the plasma mass contained within the last closed magnetic-flux surface,
which neglecting the electrons contribution is given by

mp =
mD

NAv

Np, (2.130)

where mD is the molar mass of the plasma, and NAv is Avogadro’s number. The
plasma is regarded as a particle with the same mass as the total plasma mass which
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is rotating around the z-axis with angular velocity ~Ωφ = Ωφ~z, and at a distance R0.
The angular momentum varies in time due to the external torque sources as

dΓ

dt
= R2

0

d (mpΩφ)

dt
=

NNBI∑
i=1

TNBI,i + TNRMF + Tint, (2.131)

where TNBI,i is the volume-average torque injected by the i-th NBI, TNRMF is the
volume-average torque created by NRMFs, and Tint is the volume-average intrinsic-
torque source. Expanding the time derivative in (2.131), and rearranging terms,

dΩφ

dt
= −Ωφ

1

mp

dmp

dt
+

NNBI∑
i=1

TNBI,i
mpR2

0

+
TNRMF

mpR2
0

+
Tint
mpR2

0

. (2.132)

The first term, −Ωφ
1
mp

dmp
dt

, represents the diffusion of toroidal rotation. By defining
the global rotation confinement time, τΩφ , as

τΩφ ,
mp

dmp/dt
, (2.133)

the Ωφ dynamics equation (2.132) can be rewritten as

dΩφ

dt
= −Ωφ

τΩφ

+

NNBI∑
i=1

TNBI,i
mpR2

0

+
TNRMF

mpR2
0

+
Tint
mpR2

0

. (2.134)

Control-oriented models for τΩφ , TNBI,i, TNRMF , and Tint are employed. The
confinement time τΩφ is taken as τΩφ = kΩτE, where kΩ > 0 is a dimensionless
parameter. For TNBI,i, the following model is employed,

TNBI,i = kNBI,iPNBI,i, (2.135)

where kNBI,i are constant parameters that depend on the type of NBI. For example,
co-current and counter-current NBIs have kNBI,i with opposite signs. The NRMF
torque, TNRMF , is modeled as

TNRMF = kNRMF

(
Ωφ − Ω?

φ

)
I2
NRMF , (2.136)

where kNRMF is a constant parameter, and Ω?
φ is an offset bulk rotation. Finally,

the intrinsic torque is modeled as

Tint = kint
W

Ip
, (2.137)
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where kint is a constant parameter.
In addition to the uncertainty in τΩ through HH , an unknown source/sink

of torque δT is added on the right hand side of (2.134) to account for uncer-
tain/unmodeled effects such as inefficient torque injection, uncertainty in the model
parameters (kNBI,i, kint, etc.), or inaccurate measurements of the state/inputs.
Equation (2.134) can be rewritten as

dΩφ

dt
= − Ωφ

kΩHnom
H kPtot

−0.69 +

NNBI∑
i=1

TNBI,i
mpR2

0

+
TNRMF

mpR2
0

+
Tint
mpR2

0

+ δΩφ , (2.138)

where δΩφ =
Ωφ

kΩkPtot
−0.69 ( 1

Hnom
H
− 1

HH
) + δT is a term that bundles all the uncertain

terms of the Ωφ-subsystem. The model given by (2.138) describes relevant physical
effects observed in tokamaks. For example, the influence of

∑
i TNBI,i on the Ωφ

dynamics decreases as the machine size is increased (i.e., asmp, R0, and/or Tint ∝ W

increase).
A summary of the variables in this 0D model for Ωφ is shown in Table 2.10. All

variables considered are scalars.

Table 2.10: Variables in 0D model for Ωφ

Variable Description Variable type
Ωφ Bulk toroidal rotation State
τE Energy-confinement time Input
W Stored thermal energy Input
n̄e Line-average density Input
kΩ Confinement constant Model parameter
kNBI,i, kNRMF , kint NBI, NRMF & intrinsic torque

constants
Model parameter

Vp, R0 Plasma volume & major radius Model parameter
Paux,i Auxiliary source powers Controllable input
Ip Plasma current Controllable input
INRMF NRMF coil current Controllable input
δT Uncertain torque Uncertainty
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2.3.7 The Modified Rutherford Equation

In this Section, a 0D model for the evolution of the width of an NTM island is pre-
sented. As introduced in Section 1.3, NTMs modify the magnetic configuration of a
tokamak so that not all the magnetic-flux surfaces are nested around the magnetic
axis as predicted by the ideal MHD theory. Such modification in the magnetic-field
topology gives place to the so-called magnetic islands, regions with their own sepa-
ratrix in which the magnetic-flux surfaces tear and reconnect. Inside the magnetic
island, the plasma resistivity η cannot be neglected, and particle escape producing
a flattening of the pressure profile, p. This implies an undesired decrease in the
overall plasma performance.

Due to the helical magnetic-field configuration in a tokamak, NTMs have a ge-
ometry as depicted in Fig. 2.9. The magnetic islands are found at rational surfaces
with q = m/n, where m and n are integers that are denominated poloidal and
toroidal mode numbers, respectively. The island O-point corresponds to the radial
location, r, corresponding to its maximum width, w, whereas the island X-point is
located at the singularity of its separatrix.

Magnetic flux 
surfaces

Magnetic axis

Magnetic islands

Island O-point

Island separatrix

mϴ - nϕ

r

Island O-point

Island X-point

!

−!
w

Island X-point

Island X-point

Figure 2.9: Diagram of the an NTM magnetic island showing the island width as a
function of the radial coordinate, r, and helical angle, mθ − nφ, together
with the X-point and O-point locations.
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The 0D model employed to estimate the size of an NTM island is based on one
version of the Modified Rutherford Equation (MRE) [5] given by

τR
r

dw

dt
= ∆′r + a2

jBS
jφ

Lq
w

[
1−

w2
marg

3w2
−KEC(∆ρNTM)

jmaxEC

jBS

]
, (2.139)

where w is the magnetic-island radial width, τR is the island’s resistive diffusion
time, ∆′r is the NTM stability parameter, a2 is a geometric factor, jBS is the
local bootstrap current density, jφ is the local toroidal current density, jmaxEC is the
maximum EC current density, Lq , q/(dq/dr) is the local magnetic shear length,
wmarg is the marginal island width (i.e., the island width with the maximum dw/dt),
and KEC(∆ρNTM) is a parameter that characterizes the efficiency of EC to replace
the bootstrap current loss due to local flattening of the pressure profile, and depends
on ∆ρNTM = ρNTM − ρEC , where ρNTM is the position of the rational surface and
ρEC is the position of the EC current peak. It is assumed that ECCD can be steered
toward different locations in the plasma domain, so that ρEC is a controllable input,
together with jmaxEC , which can be modified by varying the EC power injected, PEC .

The island’s resistive diffusion time, τR, is modeled as

τR =
µ0πrw

1.22η
, (2.140)

where η is the local resistivity, i.e., η(ρ̂NTM). The NTM stability parameter is
modeled as

∆′r = ∆′0r + δ∆′r, (2.141)

where ∆′0r is the classical stability index, and δ∆′r is the variation in ∆′r due to
EC. For an NTM located at the q = m/n rational surface, ∆′0r = −m. For δ∆′r,
the following model is employed [32],

δ∆′r = −5π3/2

32
a2

Lq
δwEC

FEC(∆ρNTM)
jmaxEC

jφ
, (2.142)

where δwEC characterizes the width of the EC current deposition, and FEC(∆ρNTM)

is an alignment function. The parameter a2 is modeled as

a2 = −∆′0r
wsat
Lq

jφ
jBS

, (2.143)
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where wsat is the saturated island width, which is the maximum value for w. It is
assumed that an estimation for wsat is available. The marginal island width, wmarg,
is modeled as

wmarg = 2ε1/2ρθ,i, (2.144)

where ε is the inverse aspect ratio, and ρθ,i is the ion banana-orbit width, which is
given by

ρθ,i =

√
2miTi
|qe|B2

θ

. (2.145)

Using (2.140), (2.141), and (2.142), the MRE in (2.139) becomes

µ0πw

1.22η

dw

dt
= ∆′0r + a2

jBS
jφ

Lq
w

[
1−

w2
marg

3w2
−
(
KEC +

5π3/2

32
FEC

w

δEC

)
jmaxEC

jBS

]
, (2.146)

and using (2.143),

µ0πw

1.22η

dw

dt
= ∆′0r

{
1− wsat

w

[
1−

w2
marg

3w2
−
(
KEC +

5π3/2

32
FEC

w

δEC

)
jmaxEC

jBS

]}
. (2.147)

A summary of the variables in this 0D model for w is shown in Table 2.11. All
variables considered are scalars.

Table 2.11: Variables in 0D model for w

Variable Description Variable type
w NTM island width State
η Plasma resistivity Input
jBS Bootstrap current density Input
wmarg Marginal island width Input
ρNTM NTM location Input
∆′0r Classical stability index Model parameter
wsat Saturated island width Model parameter
δwEC ECCD profile width Model parameter
KEC , FEC ECCD efficiency functions for

NTM suppression
Model parameter

ρECCD ECCD deposition location Controllable input
jmaxEC Maximum EC current density Controllable input
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2.4 Conclusions

A brief physical description of plasmas, with special emphasis on tokamak plasmas,
has been presented in this Chapter. In addition, the physics-based models employed
during this dissertation for control-oriented simulation and control design have been
introduced. These models have different levels of complexity and accuracy, ranging
from 1D, first-principles models to 0D, heuristic models. In principle, the 1D models
are more sophisticated than the simplified 0D models, so the former should be able
to describe the real plasma behavior with better accuracy than the latter. However,
it must be kept in mind that modeling with different complexity levels is needed for
control development. Models with a higher degree of mathematical complexity may
be more suitable to reproduce confidently the observed plasma phenomena (and will
have an edge for simulation purposes), but may not allow for a practical design of
plasmas controllers, as the difficulty of the control synthesis substantially increases
with the mathematical complexity of the model.

A key part of the reduced modeling process is the inclusion of uncertainties. In
a field such as nuclear fusion science, where plasmas behave in unexpected ways
almost as if they had life of their own, uncertainty modeling is of major relevance.
A successful control design must take into account the possible inaccuracies or un-
known physics in the model in order to ensure that the system’s performance is
within acceptable limits. In other words, it is important that we know and quantify
“how much we do not know” about our system, and carry out a consequent con-
trol design with which we can still fulfill the control objective. This is the reason
why so many uncertainties have been included in the modeling process detailed in
this Chapter. When bounds and/or other characteristic of the uncertainties can
be estimated, techniques such as robust control can be utilized to guarantee the
appropriate plasma behavior.
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Chapter 3

COTSIM: a Simulation Code for

Control Applications

3.1 Introduction

The synthesis and development of a control algorithm for tokamak plasmas consists
of different steps. The first step is themodeling stage, in which mathematical models
are sought for the dynamics of to-be-controlled plasma variables. In Chapter 2,
Sections 2.2 and 2.3, 1D models for the dynamics of ψ (or, equivalently, q), Te,
and ωφ were presented together with 0D models for the dynamics of W , volume-
average particle densities, kinetic and magnetic individual scalars (Ωφ, q0, qedge),
and NTM magnetic-island width, w. These models are derived from first principles,
and are complemented by control-oriented models for some specific plasma variables,
together with some simplifications. The second step is the controller synthesis, which
is presented in Chapters 4, 5, 6, and 7 for different control problems: burn control,
q-profile control, β and/or W control, individual scalar control (q0, qedge, Ωφ), and
NTM suppression. The third step is the simulation testing of the controller by
means of codes that emulate the plasma behavior. Testing by means of simulation
is necessary in order to ensure the correct implementation of the applicable control
algorithm before its experimental testing, helping to foresee possible software and/or
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numerical problems, as well as to assess the controller’s performance and tune the
necessary design parameters involved. The fourth stage is the experimental testing of
the algorithm, in which the actual capability of the controller to regulate the plasma
variables of interest can be shown during the actual operation of the machine.

A key issue in the third stage introduced above is the choice of the simulation
code. Tokamak-plasma simulation codes can be classified according to the level of
complexity of the plasma-response models that they employ. If the controller is a
model-based controller, the first and lowest level of complexity would correspond to
codes that employ the same models as those utilized for control synthesis. Although
this type of simulation allows, in principle, for a fast check and tuning of the con-
troller, the accuracy of these models, which are normally reduced and/or simplified
to enable the controller synthesis, may not be enough to assess the controller’s ca-
pability to regulate the plasma in real experiments. A second level of complexity
would correspond to control-oriented simulation codes with model implementations
that are more sophisticated than the models employed for control synthesis, but
still allow for fast simulations (within the order of seconds to a few minutes). The
computation time of this type of codes is a critical aspect: they must be computa-
tionally inexpensive so that efficient, quick control tuning can be carried out without
having to wait for hours or days until the simulation finishes. At the same time,
this second-level codes should be flexible enough to allow for easy programming
of the to-be-tested algorithms, and also be highly configurable to create different
simulation conditions. Example of this type of codes are COTSIM, METIS, and
RAPTOR [33]. The third and final level of complexity would correspond to codes
such as TRANSP [34] or ASTRA [35], with model implementations that try to cap-
ture as many relevant aspects of the plasma dynamics as possible, and therefore, in
principle, produce much more extensive and accurate results at the cost of taking
several hours or even days to finish the simulation of a single plasma discharge.

In this Chapter, the Control Oriented Transport SIMulator (COTSIM) is pre-
sented. COTSIM is a simulation code previously developed by the Lehigh University
Plasma-Control Group, and expanded thoroughly during this dissertation work. It
is a control-oriented, computationally inexpensive, 1D (in space) code that evolves
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certain plasma variables such as ψ, Te, and ωφ. In addition, the evolution of some
0D magnitudes is computed as well, like W or the NTM island width, w. With the
models currently available, COTSIM would fall within the second-level category of
simulation codes described above. However, due to its modular and highly config-
urable structure, models with a higher degree of computational complexity could be
implemented. The code is developed in MATLABR© mainly due to the availability
of its graphical programming environment SimulinkR©, which allows for a practical
implementation and testing of models and controllers. Using COTSIM, feedback
simulations can be run within the order of seconds, providing a powerful tool for
fast testing and tuning of tokamak-plasma controllers.

3.2 Control Oriented Transport SIMulator (COT-

SIM)

3.2.1 Dynamics Modeling within COTSIM

The most significative developments in COTSIM carried out during this dissertation
work include the implementation and coupling of 1D kinetic models (for Te and
ωφ) and 0D MHD instability models (for w), as well as their coupling with the
previously implemented 1D magnetic model (MDE). Other important advancements
include the implementation of Ti and ni evolution modules (in which 0.5D models
are currently implemented, that will be substituted by 1D models in the future) and
thermal/momentum diffusivity (χ(·)) modules (in which mixed Bohm/Gyro-Bohm
models are currently implemented, but different transport models can be included).
This version of COTSIM allows predictive simulation of the following 1D variables:

• Magnetics: ψ and/or q profiles, by means of the MDE, equation (2.27), us-
ing a model as the one introduced in Chapter 2, Section 2.2.1, in which the
plasma resistivity, η, is estimated using a Spitzer-like model, whereas the non-
inductive current-density source 〈~jni · ~B〉/Bφ,0 is estimated using physics-based
control-oriented models.
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• Kinetics: the Te profile, by means of the EHTE, equation (2.39), using a
model as the one introduced in Chapter 2, Section 2.2.2, and the ωφ profile,
by means of the TRE, equation (2.53), using a model as the one introduced
in Chapter 2, Section 2.2.3. Mixed Bohm/Gyro-Bohm models are employed
for the thermal and momentum diffusivities, χe and χφ, whereas physics-based
control-oriented models are employed to estimate the heat and torque sources,
Qe and tω.

From table 2.1, it can be seen that Te affects the ψ dynamics. Such coupling is
due to η and 〈~jni · ~B〉/Bφ,0 (as they depend on Te). In turn, from table 2.3, it can be
seen that ψ affects the Te dynamics as well, due to χe and QOhm (which depend on
q, s, and jφ). The controllable inputs Paux,i directly affect both ψ and Te. Therefore,
it can be seen that there is a tight coupling between the MDE and EHTE models
implemented in COTSIM. On the other hand, from table 2.4, it can be seen that
the dynamics of ωφ is affected by ψ and Te through χφ and tω. In this version, ωφ
does not affect the ψ and Te dynamics in COTSIM. To close the simulation model,
0.5D models are employed for ne, ni, and Ti as the ones introduced in (2.34). Also,
if simulating a burning-plasma tokamak discharge, then the nD and nT profiles must
be available as inputs to the simulation in order to compute Pα.

In addition, COTSIM simulates the evolution of the following 0D variables:

• Kinetics: W , using a model as the one introduced in Chapter 2, Section 2.3.1.
It can be appreciated that this model employs the IPB98(y,2) scaling to es-
timate the confinement time τE, whereas simplified models are employed for
the volume-average energy sources.

• MHD instabilities: NTM island width w, by means of the MRE, equation
(2.139), using a model as the one introduced Chapter 2, Section 2.3.7. Because
NTMs do not happen simultaneously at different q = m/n surfaces, only one
type of NTM is simulated within COTSIM for a single discharge.

In this version, the implementation of the 0D kinetic simulation for W is not
coupled with the other simulated variables in COTSIM. On the other hand, from
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table 2.11, it can be seen that the w-dynamics is coupled with the ψ-Te dynamics
through η, jBS, wmarg, ∆ρNTM , and jmaxEC . Also, as it has already been introduced
in Sections 1.3 and 2.3.7, it is a well-known experimental fact that the development
of NTMs (i.e, w) affects transport. In COTSIM, this coupling is made through χe,
so that

χe = fNTM(w)χanomalouse , (3.1)

where χanomalouse is modeled as in (2.42), and fNTM is a function that increases with
w in order to characterize the confinement deterioration as NTMs develop.

3.2.2 The Structure of COTSIM

COTSIM is structured in three main files: the setup file, the configuration file, and
the simulation file. These files interact with a Graphical User Interface (GUI) and
data repositories for inputs, models, controller, outputs, and others. A simplified
schematic is showed in Fig. 3.1.
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Figure 3.1: COTSIM structure.
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The setup file is the only file that can be modified by the user, who can specify
characteristics of the simulation such as the model and/or tokamak employed, the
type of simulation (feedforward, feedforward + feedback), the spatial or time grids,
the feedforward inputs to be employed, the type of feedback controller, the initial
conditions, disturbances/noise, etc. Such information can be specified using the GUI
or directly modifying the setup file. The corresponding data can be either uploaded
from external files located in a repository, or introducing the data directly.

The configuration file employs the information provided in the setup file to im-
port all the necessary data to run the simulation. For example, it imports the
feedforward signals, the model profiles and parameters, and the controller file. It
creates a MATLABR© structure that is used as the input to the simulation file.

The simulation file is the core of COTSIM, as it evolves the plasma dynamics
by using the configuration structure in conjunction with the required functions im-
plemented as part of the source code that simulate the system dynamics (described
above in Section 3.2.1). The simulation-file output is stored in an output repository
from which the GUI reads the applicable data and allows for visualizing the results.

3.3 Validation of the 1D COTSIM Prediction for

DIII-D Shot 147634

In this Section, COTSIM results are presented for a simulation in which the inputs
corresponds to the experimental values from DIII-D shot 147634. Relevant machine
parameters and model constants for this scenario are Bφ,0 = 1.65 T, R0 = 1.69 m,
a = 0.6 m, Zeff = 1.75, δNBI,i = 0.5, and δEC = 1.

COTSIM results for q, Te, and ωφ are compared to the corresponding TRANSP
data for shot 147634 in Fig. 3.2, Fig. 3.3, and Fig. 3.4, respectively. It can be
seen that, although the match is not perfect, the agreement between COTSIM and
TRANSP is reasonable during most of the simulation time, and therefore, good
enough for control synthesis and simulation testing purposes.
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Figure 3.2: COTSIM results for the q profile corresponding to shot 147634, and compared
to TRANSP data, at t = 0.6, 1.5, 2.5, 3.5, 4.5, and 5.5 seconds.
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Figure 3.3: COTSIM results for the Te profile corresponding to shot 147634, and com-
pared to TRANSP data, at t = 0.6, 1.5, 2.5, 3.5, 4.5, and 5.5 seconds.
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Figure 3.4: COTSIM results for the ωφ profile corresponding to shot 147634, and com-
pared to TRANSP data, at t = 0.6, 1.5, 2.5, 3.5, 4.5, and 5.5 seconds.

3.4 Conclusions

COTSIM, a tokamak-plasma simulation code for control applications, has been fur-
ther developed during the course of this dissertation work. It is specially envisioned
to permit fast and easy implementation of tokamak-plasma controllers, as well their
simulation testing and tuning. In this version, COTSIM employs physics-based
control-oriented models derived from first principles. Moreover, the kinetic, mag-
netic, and MHD instability aspects of the plasma dynamics have a high coupling
degree, giving the implemented model a significant increase in complexity when
compared to reduced models that are normally utilized for control synthesis. The
model coupling also makes COTSIM a valuable tool for integrated-control testing.
Finally, COTSIM can simulate a great variety of control conditions, such as noise,
disturbances, or dynamic uncertainties that are unknown to the controllers.

Still, further work is needed within COTSIM to finalize the plasma-models cou-
pling, specially that of the 0D MHD instability model with the 1D kinetics and
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magnetics, and that of the 1D rotation with the rest of the models. In addition,
future developments will consist in the implementation of 1D models for kinetic
variables such as ne, ni, or Ti, as well as the inclusion of different transport models
for χ(·).
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Chapter 4

Integrated Kinetic Control: the Burn

Control Problem

4.1 Introduction and Previous Work

For tokamaks to be commercially competitive, stable operation for long periods of
time with a large fusion gain Q will be necessary. Such performance cannot be
achieved without accurate control of the ion/electron temperatures and densities,
as these variables determine the total amount of fusion power produced, Pfus, which
can be obtained by integrating equation (1.7) over the plasma volume Vp as

Pfus =

∫∫∫
Vp

QfusdVp = ∆Ekin

∫∫∫
Vp

nDnT 〈σv〉(T )dVp. (4.1)

In addition, and although thermally-stable operating points1 will most likely be
found in future burning-plasma tokamaks such as ITER [36], thermal instabilities
may happen that can drive the plasma to a different operating point [37], substan-
tially deteriorating the plasma performance and possibly damaging the tokamak
vacuum vessel. The problem of controlling temperature and density in order to
control Q and/or Pfus while avoiding thermal instabilities is known as burn control.

1In this context, a thermally-stable operating point is such that small deviations in temperature
or energy do not make the system drift away from such operating point.
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The burn control problem can be seen as an integrated kinetic-control problem,
as the control objective is to control several kinetic variables (temperature and
densities of the different plasma species, whose particular values define the so-called
burn condition) by means of a combination of actuators. Previous work on the burn
control area considered different actuators: auxiliary power modulation, fueling rate
modulation, and controlled impurity injection. Each of these actuation methods has
its own advantages and drawbacks, and these must be considered when designing
burn controllers that integrate multiple actuation methods.

Burn controllers that only make use of auxiliary power modulation have been pro-
posed in [38–40]. Such approach is suitable as long as the auxiliary power required
to stabilize the burning-plasma system is not too close to either the minimum aux-
iliary power required for H&CD purposes, Pmin

aux , or the maximum auxiliary power
available, Pmax

aux . In the first situation (Paux → Pmin
aux ), a reduction in Paux would

have a very limited effect on the total power injected, Ptot, and positive excursions
in the plasma energy may be unavoidable if no backup actuators are used to fur-
ther decrease the plasma energy. In the second situation (Paux → Pmax

aux ), it would
not be possible to reject a negative perturbation in the plasma energy, leading to
a complete thermal quench. In such case, it may be necessary to either upgrade
the machine to install more auxiliary power, i.e., to increase Pmax

aux , or to enhance
the tokamak design by modifying the machine parameters (BT , flat-top Ip, R0, a,
κ, and so on) in order to improve the energy-confinement time, τE (see equation
(2.65)). An alternative option when Paux → Pmax

aux would be operating the tokamak
at a different scenario with a lower Paux requirement than the original scenario.

Burn controllers based on fueling rate modulation can be found in [41–45]. While
this approach allows for working at operating points close to Pmin

aux or Pmax
aux , it also

has its own shortcomings. Accurate density control by modulation of the fueling
rates is complicated due to the highly nonlinear dynamics of the particle densities,
in which effects such as particle recycling, sputtering, and other complex phenomena
are present (see Section 2.3.2). By using fueling rate modulation, particles can be
injected into the plasma core, but they leave the plasma in a characteristic time
within the order of the the particles confinement times. Such times may be too
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long or too short for the control requirements of a particular scenario. Another
aspect that must be taken into account is that certain tokamak systems cannot
be employed when the plasma density is too high (like for example, EC H&CD),
limiting the applicability of this control method to either scenarios without EC
H&CD actuation or scenarios with low enough density. In addition, plasma density
limits exist in tokamaks at which plasma instabilities are triggered. For example,
exceeding the Greenwald density limit, nGW , Ip/(πa

2) (Ip has to be given in MA,
and nGW is obtained in 1020 m−3) may terminate the confined plasma [46]. Lastly,
it is difficult to control Pfus just by controlling the plasma density, as the plasma
temperature may increase or decrease, depending on the scenario, in response to the
same variation in the plasma density. Combined modulation of the auxiliary power
and fueling rates could overcome some of these limitations, as shown in [47], where
the fusion power is successfully regulated using a proportional-integral-derivative
(PID) controller in a scenario with high impurity content, whereas a controller that
only employs fueling rate modulation fails.

Another actuation method that has been considered is impurity injection. This
method has normally been suggested as a backup to auxiliary power modulation [48,
49]. Injecting particles with high atomic number, ZI , produces an increase in Zeff ,
and therefore the radiative losses Prad are enhanced (see equation (2.38)), reduc-
ing the total power injected into the plasma. This is translated into an effective
reduction of the plasma energy, allowing for rejecting positive plasma energy per-
turbations. The main drawback of this actuation method is that, for large energy
perturbations, it may be necessary to inject too large amounts of impurities. Due to
their high atomic number, these impurities normally have large confinement times,
and they can remain in the plasma for long periods of time. This would produce
excessive radiative power losses, which must be counteracted by increasing Paux re-
ducing Q. Damage to the divertor and/or the first wall may also occur as a result
of too high Prad values.

An additional actuator that can be considered is coil-current modulation. Recent
experiments in the DIII-D tokamak suggested the possibility of using the in-vessel
coils for burn control purposes [28]. When electric current is driven through the
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in-vessel coils, these generate non-axisymmetric magnetic fields that modify the orig-
inal magnetic configuration of the tokamak. In [28], the capability of the in-vessel
coils to modify τE and control the plasma energy is shown in low collisionality, low
density discharges. Reductions in τE were observed after activation of the in-vessel
coils, together with decreases in the pedestal2 electron density. Changes in the
plasma shape and ELM activity were small after application of non-axisymmetric
magnetic fields. Other previous experiments in DIII-D [14], TEXT [50] and Tore
Supra [51] also showed a degradation in τE and/or electron density reduction af-
ter application of non-axisymmetric magnetic fields. However, in discharges with
higher plasma collisionality and higher density, reductions in the plasma-energy
confinement time or pedestal electron density may not be found [14]. The effects
of non-axisymmetric fields on confinement degradation are still under research as,
in general, these affect the ELM dynamics and the plasma shape. In any case, as
low collisionalities will be expected in ITER [52], it seems reasonable to include
in-vessel coil-current modulation as a potential actuator for burn control. The main
drawback of employing this actuator for burn control is its interference with other
control tasks, such as ELM mitigation/suppression and/or toroidal rotation control.

Due to the advantages and disadvantages of each actuation method, an inte-
grated control scheme with as many actuators as possible seems to be the best
solution for future burning-plasma tokamaks. Previous work in which auxiliary
power modulation, fueling rate modulation, and impurity injection were used to
design model-based linear controllers includes [48, 49, 53–55]. These controllers
are synthesized by applying approximate linearization techniques to the nonlin-
ear burning-plasma dynamics. However, the complex nonlinear physics involved in
the burning-plasma-dynamics modeling, in which some relevant plasma magnitudes
cannot be determined without significant uncertainty, suggests that nonlinear, ro-
bust controllers will have an improved performance when compared to non-robust
controllers obtained by approximate linearization techniques. Other previous work
made use of non-model based control techniques, like neural networks [56, 57]. This

2The pedestal is the region between the edge transport barrier and the last-closed magnetic-flux
surface in H-mode plasmas (see Fig. 1.5).
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work based on neural networks does not use linearization techniques. In [37], a
nonlinear, model-based controller was presented in which modulation of the auxil-
iary power and fueling rates are employed in a combined actuation strategy, using
impurity injection as a backup actuator. The controller is synthesized using Lya-
punov theory. The nonlinear nature of the controller extends its applicability to
reject large perturbations and drive the system between different working points
during operation. Such performance is not expected in linear controllers. In [37], a
zero-dimensional model that assumed an optimal 50:50 D-T mix was used. Other
previous work [29] followed a similar modeling and control design approach to the
one in [37], but with the significant novelties of incorporating a more complex model
with separate evolutions for the deuterium and tritium particle densities [58], as
well as recycling effects from particle inventories existing in the tokamak’s first wall
and scrape-off layer (SOL). Also, fueling rate modulation was used in [29] to con-
trol the mix of deuterium and tritium by using the so-called isotopic fuel tailoring
approach [59], which controls the α-power, Pα, by reducing the tritium fraction,
γ , nT/(nD + nT ).

In this Chapter, the work in [60–62], which converged to the final design described
in [63], is reported in a summarized fashion. A similar modeling approach to the
one in [29] is followed, with separate modeling of the D and T particle evolutions,
and inclusion of recycling effects (see Section 2.3.2 of this dissertation). One of the
main novelties in this work is the inclusion of a control-oriented model to account
for the influence of the in-vessel-coil current on the plasma-energy confinement time
based on DIII-D experimental data [14, 28, 52]. This model has been presented in
Chapter 2, Section 2.3.1, and takes into account the different impact of the in-vessel
coils on τE when the plasma collisionality and density vary. A control law for τE
regulation using the in-vessel coils has been designed [60, 61, 63] based on such
model. Another key novelty is the modeling of D-T concentration uncertainties in
the pellets employed for fueling [62, 63]. As introduced in Chapter 2, Section 2.3.2,
two pellet injectors will be available in the initial phase of ITER. Each of these pellet
injectors will be able to produce pellets made of both deuterium (D) and tritium
(T), with a concentration of up to 90% T. Although the nominal concentrations
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for these lines are 100% D and 10%D - 90%T, respectively, the D-T concentration
of those pellets may vary over time in an uncertain manner. These concentration
variations, which may be in turn hard or impossible to measure in real time, can
decrease the burning plasma performance to unacceptable levels. In order to avoid
such situation, an integrated burn-controller is developed which is robust to D-T
pellet-concentration variations and combines auxiliary power modulation, in-vessel
coil-current modulation, isotopic fueling (controlling γ and ne), D and T density
control, and impurity injection as the actuation methods for burn control.

4.2 Burning Plasma Model

The model employed both for control design and simulation testing is a 0D model in
which all the variables can be considered as volume-average quantities. The model
can be divided in two parts: the plasma energy balance equation, described in
Chapter 2, Section 2.3.1, and the particle balance equations, described in Chapter 2,
Section 2.3.2. Some slight modifications and additional assumptions are introduced
as described next.

First, instead of W , the thermal energy density, E, is employed, E , W/Vp,
where Vp is assumed to be a constant. Also, in (2.64) and (2.68), it is assumed that
δHH = 0 and δP = 0, respectively. Therefore, no uncertainty is assumed within the
energy subsystem. The balance equation (2.64) is rewritten as

dE

dt
= − E

τE
+
Ptot
Vp

. (4.2)

Second, the contributions to the total power density, Ptot/Vp, are modeled is a
slightly different way. Power-density versions of the equations (2.35)-(2.38) are
employed. Dividing (2.35) by Vp, it is found that

Ptot
Vp

=
Pα + Paux + POhm − Prad

Vp
, (4.3)

where Pα/Vp = ∆Eα
kinnDnT 〈σv〉 is the α-heating power density, Paux/Vp is the

auxiliary power density, which is considered as a controllable input, POhm/Vp =
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2.8 × 10−9(ZeffI
2
p )/(a4T 3/2) is the ohmic power density, where Zeff is not consid-

ered a model parameter as in the MDE or EHTE models (see tables 2.1 and 2.3),
but is computed as

Zeff =
4nα + nD + nT + Z2

InI
ne

, (4.4)

and Prad/Vp = (Pbrem + Pline + Prec)/Vp is the radiative power density, that has
three contributions: Pbrem is the Bremsstrahlung term, Pline is the line radiation
term, and Prec is the recombination term. Each term is given by Pbrem/Vp = 4.8×
10−37

(∑
j njZ

2
j

)
ne
√
T , Pline/Vp = 1.8 × 10−38

(∑
j njZ

4
j

)
neT

−1/2, and Prec/Vp =

4.1 × 10−40
(∑

j njZ
6
j

)
neT

−3/2, where the summation in j is done for all types of
ions in the plasma, and T has to be given in keV [64]. For simplicity, all power
densities, P(·)/Vp, will just be denoted as P(·) for the remaining of this Chapter.

Third, it is assumed that the volume-average temperatures for ions and electrons
are the same, Ti = Te = T . Using this assumption and the definition for E, equation
(2.74) becomes

T =
E

3
2
(ne + ni)

. (4.5)

Lastly, it has to be taken into account that Ai, which enters the formula for τE
(2.65), is not considered as a model parameter, but is estimated as Ai = (2nD +

3nT )/(nD + nT ).
The variables employed in this model can be found in Table 4.1.
As a summary, the state-space representation of the burning plasma model is

given by
dx

dt
= f(x, u), (4.6)

where x = [nα, nD, nT , nI , E]T is the state, u = [Paux, Icoil, S
inj
D−line, S

inj
DT−line, S

inj
I ]T

is the input, and f ∈ R5×1 is a nonlinear function whose components are given by
(2.72), (2.77), (2.78), (2.85), and (4.2). However, because isotopic fueling controls
E by regulating γ, and stability limits exist for ne, it may be convenient to control
n , ni + ne and γ instead of nD and nT when using this fueling technique. From
the definitions γ , nT/(nD +nT ) and n , ni+ne, and the balance equations (2.72),
(2.77), (2.78), and (2.85), it is possible to write the balance equations for n and γ,
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Table 4.1: Model variables.

Symbol Description Type of variable
nα, nD, nT , nI Particle densities State
E Plasma energy density State
γ Tritium fraction Intermediate variable
ne, ni, n Electron, ion, and total density Intermediate variable
Zeff Effective atomic number Intermediate variable
M Plasma effective mass Intermediate variable
T Plasma temperature Intermediate variable
βt, βN Toroidal and normalized beta Intermediate variable
Sα Source of α particles from fusion Intermediate variable
〈σv〉 Reactivity Intermediate variable
SRD, S

R
T Recycling D and T sources Intermediate variable

SinjD , SinjT Injected D and T sources Intermediate variable
SspI Sputtering source Intermediate variable
Pα, POhm, Prad α, Ohmic, and radiative powers Intermediate variable
τE , τα, τD, τT , τI Confinement times Intermediate variable
SinjD−line, S

inj
DT−line D and DT pellet injection rates Controllable input

SinjI Impurity injection rate Controllable input
Icoil In-vessel coil current Controllable input
Paux Auxiliary heating Controllable input
Ip, R, a, BT , κ95, V , νe Machine parameters Machine parameter
ai, r Reactivity constants Model parameter
ZI Impurity atomic number Model parameter
kα, kD, kT , kI Confinement time constants Model parameter
feff , Reff , fref , γPFC , f

sp
I Recycling & sputtering constants Model parameter

HH,0, Ci, λ, δ, ne,0, νe,0 In-vessel coil-model constants Model parameter
γnomD−line, γ

nom
DT−line Nominal pellet concentrations Model parameter

δD−line, δDT−line Uncertain pellet concentrations Uncertain variables

which are given by

dn

dt
= 3

(
−nα
τα

+ Sα

)
+ [3nα + (1 + ZI)nI − n]

(
1− γ
τD

+
γ

τT

)
+ 2feff

(
SRD + SRT

)
− 4Sα + 2(SinjD−line + SinjDT−line) + (1 + ZI)

(
−nI
τI

+ SinjI + SspI

)
, (4.7)

dγ

dt
= γ(1− γ)

(
1

τD
− 1

τT

)
+

2

n− 3nα − (1 + ZI)nI

[
feffS

R
T − Sα + γD−lineS

inj
D−line

+γDT−lineS
inj
DT−line − γ

(
feff

(
SRD + SRT

)
− 2Sα + SinjD−line + SinjDT−line

)]
. (4.8)

Therefore, if the state is chosen as x = [nα, n, γ, nI , E]T , then the components of f
are (2.72), (4.7), (4.8), (2.85), and (4.2).
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4.3 Plasma Operating Points and Control Objective

When the state is chosen as x = [nα, nD, nT , nI , E]T , the equilibrium of the balance
equations (2.72), (2.77), (2.78), (2.85), and (4.2) define the operating points of the
burning-plasma tokamak. Such equilibrium is given by the solution of

0 = − n̄α
τ̄α

+ S̄α, (4.9)

0 = − n̄D
τ̄D

+feff S̄
R
D−S̄α+(1−γnomD−line)S̄

inj
D−line+(1−γnomDT−line)S̄

inj
DT−line, (4.10)

0 = − n̄T
τ̄T

+feff S̄
R
T −S̄α +γnomD−lineS̄

inj
D−line + γnomDT−lineS̄

inj
DT−line, (4.11)

0 = − Ē
τ̄E

+ P̄α + P̄Ohm − P̄rad + P̄aux, (4.12)

0 = − n̄I
τ̄I

+ S̄spI , (4.13)

where the bar in all variables indicates equilibrium values. As no controlled impurity
injection is desired at equilibrium, S̄injI ≡ 0 is set. In addition, at any operating
point, it is desirable that τ̄E is as large as possible, thus Īcoil ≡ 0 is imposed. Then,
system (4.9)-(4.13) is composed by 5 equations with 8 unknowns (5 state variables
+ 3 inputs), so 3 variables must be specified in order to find a unique solution. If the
state is chosen as x = [nα, n, γ, nI , E]T , a similar analysis could be done, obtaining
the same conclusion: 3 variables must be specified to define an operating point.

The variables fixed in this dissertation to solve for the equilibrium are T = T̄ ,
γ = γ̄, and βN = β̄N , where βN is obtained from (2.25) and (2.26) as

βN =
4
3
µ0Ea

BIp
[%] ≈

4
3
µ0Ea

Bφ,0Ip
[%], (4.14)

where the approximation B ≈ Bφ,0 has been taken.
By defining the equilibrium state and input trajectories, x̄ , [n̄α, n̄D, n̄T , n̄I , Ē]T

and ū , [P̄aux, 0, S̄
inj
D−line, S̄

inj
DT−line, 0]T , respectively, which fulfill f(x̄, ū) = 0, (4.6)

can be rewritten in terms of the state error, x̃ , x− x̄, as

dx̃

dt
= f(x̄+ x̃, ū+ ũ)− f(x̄, ū) = f(x̄+ x̃, ū+ ũ), (4.15)
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so that the error-dynamic equations are given by

dñα
dt

=− n̄α
τα
− ñα
τα

+ Sα, (4.16)

dñD
dt

=− n̄D
τD
− ñD
τD

+ feffS
R
D−Sα + (1− γD−line)SinjD−line+(1− γDT−line)SinjDT−line, (4.17)

dñT
dt

=− n̄T
τT
− ñT
τT

+ feffS
R
T −Sα+γD−lineS

inj
D−line+γDT−lineS

inj
DT−line, (4.18)

dñI
dt

= − n̄I
τI
− ñI
τI

+ SinjI + SspI , (4.19)

dẼ

dt
= − Ē

τE
− Ẽ

τE
+ Pα + POhm − Prad + Paux, (4.20)

if x̃ = [ñα, ñD, ñT , ñI , Ẽ]T . If x̃ = [ñα, ñ, γ̃, ñI , Ẽ]T , then (4.17) and (4.18) are
substituted by

dñ

dt
= 3

(
− ñα
τα
− n̄α
τα

+ Sα

)
+ 2feff

(
SRD + SRT

)
− 4Sα

+ [3 (n̄α+ñα)+(1+ZI)(n̄I+ñI)−(n̄+ñ)]

(
1−(γ̄+γ̃)

τD
+

(γ̄+γ̃)

τT

)
+ 2(SinjD−line + SinjDT−line) + (1 + ZI)

(
− n̄I
τI
− ñI
τI

+ SinjI + SspI

)
, (4.21)

dγ̃

dt
= (γ̄ + γ̃)(1− (γ̄ + γ̃))

(
1

τD
− 1

τT

)
+

2

n̄+ ñ− 3(n̄α + ñα)− (1 + ZI) (n̄I + ñI)

{
feffS

R
T − Sα

+ γD−lineS
inj
D−line + γDT−lineS

inj
DT−line

− (γ̄ + γ̃)
[
feff

(
SRD + SRT

)
− 2Sα + SinjD−line + SinjDT−line

]}
. (4.22)

The control objective is to drive the state error x̃ to zero, i.e., to drive the state
x to its equilibrium value x̄. It is assumed that the state is available for feedback
control (either measured by plasma diagnostics or estimated by a state observer).
A diagram of the model and its connection with the controller is show in Fig. 4.1.
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Step 1: Auxiliary power modulation

Step 2: In-vessel coil-current modulation

Steps 3 & 4: Fueling rate modulation

Step 5: Impurity injection

Machine & Model Parameters

Figure 4.1: Diagram for the burning-plasma plant and its connection with the controller.

4.4 Integrated Burn-Controller Design

4.4.1 Nominal Control Law (δD−line = 0, δDT−line = 0)

A controller for the nominal system (δD−line = 0, δDT−line = 0) is designed in this
Section by using Lyapunov techniques (see Appendix C.1.1 and/or [65]). Each
actuation method is employed in accordance with the flowchart shown in Fig. 4.2.
First, the nominal controller attempts to regulate Ẽ by using auxiliary power mod-
ulation. If Paux saturates, then in-vessel coil-current modulation is used. If in-vessel
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coil-current modulation saturates as well, then fueling rate modulation is used to at-
tempt to control Ẽ and ñ by isotopic fueling. On the other hand, if auxiliary power
modulation and/or in-vessel coil-current modulation suffice to regulate Ẽ without
saturation, then fueling rate modulation is used to control ñD and ñT , except if too
high values of n are found. In order to prevent n from reaching excessively high
values that may trigger instabilities, isotopic fueling is used when the Greenwald
density limit, denoted as nGW , is close to be reached. Finally, in case isotopic fuel-
ing is used but Ẽ and ñ regulation cannot be ensured, impurity injection is employed
to regulate Ẽ. Stability proofs are provided to show that if Ẽ, ñD, and ñT (or, al-
ternatively, Ẽ, γ, and ñ when isotopic fueling is used) are successfully regulated,
then ñα and ñI converge to zero as well.

Energy control Density control

In-vessel Coils
Saturated?

Step 1

Step 2

Auxiliary Power
Saturated?

Isotopic Fueling
Saturated?Step 4

Impurity InjectionStep 5

Isotopic fuelingStep 4

nD-nT RegulationStep 3

NO

NO
YES

YES

YES & n ≤ 2 fGW nGW

n > 2 fGW nGW

Figure 4.2: Utilization of the different actuation methods within the burn controller.
Each actuation method is associated with a particular step of the algorithm.

Step 1: Auxiliary Power Modulation. If Paux is set to

P unsat
aux =

Ē

τE
− Pα − POhm + Prad −KP Ẽ, (4.23)

where KP > 0 is a design parameter, then (4.20) is reduced to dẼ/dt =

− (1/τE +KP ) Ẽ, and using a Lyapunov function VẼ = 1
2
Ẽ2 > 0, yields V̇Ẽ =
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− (1/τE +KP ) Ẽ2 < 0. This ensures global asymptotical stability for Ẽ (i.e.,
Ẽ → 0). Equation (4.23) represents the control law for Paux. When Paux =

P unsat
aux , neither in-vessel coil-current modulation (Step 2) nor impurity injection

(Step 5) are used, i.e., Icoil ≡ 0 and SinjI ≡ 0. Moreover, ñD and ñT are
controlled by fueling rate modulation (Step 3) as long as n ≤ 2fGWnGW ,
where nGW = Ip

πa2 1020m−3 is the Greenwald density limit (Ip in MA), and
0 < fGW ≤ 1 is a design parameter. Otherwise, ñD and ñT are controlled by
isotopic fueling (Step 4). However, it may not be possible to set Paux = P unsat

aux

as requested by (4.23) because there exist saturation limits, Pmax
aux and Pmin

aux .
If P unsat

aux > Pmax
aux , the control algorithm keeps Paux = Pmax

aux , but it cannot be
ensured that Ẽ → 0. The only possible ways to cope with this limitation are
either increasing Pmax

aux or improving the machine parameters (Ip, BT , R, a, κ,
etc.) to enhance confinement. On the other hand, if P unsat

aux < Pmin
aux , the control

algorithm keeps Paux = Pmin
aux , but it cannot be ensured that Ẽ → 0. In that

case, the controller is designed to use in-vessel coil-current modulation (Step
2), isotopic fueling (Step 4), and/or impurity injection (Step 5) to regulate Ẽ,
in this order.

Step 2: In-vessel Coil-current Modulation. If τE is set to

τunsatE =
Ē

Pmin +KτE Ẽ
, (4.24)

where Pmin = Pα + POhm − Prad + Pmin
aux , and KτE > 0 is a design parameter,

then (4.20) is reduced to dẼ/dt = − (1/τE +KτE) Ẽ. Using VẼ = 1
2
Ẽ2 > 0,

then V̇Ẽ = −
(
1/τE +KτE

)
Ẽ2 < 0, which ensures global asymptotical stability

for Ẽ (i.e., Ẽ → 0). The required value Iunsatcoil to set τE as in (4.24) is obtained
from (2.65), (2.68), and (4.24) by solving the following nonlinear equation,

C2,coil(I
unsat
coil )2+C1,coilI

unsat
coil =

(
τunsatE

KIPB98(y,2)

−Hnom
H

)(
ne
ne,0

)−λ1,coil
(
νe,i
νe,i0

)−λ2,coil

,

(4.25)
where KIPB98(y,2) = 0.0562I0.93

p B0.15
φ,0 R

1.97
0 κ0.78ε0.58A0.19

i (Pmin)−0.69V −0.69n0.41
e,19.

As in Step 1, the right hand side of (4.25) can be computed, providing the
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control law for Icoil. When Icoil = Iunsatcoil , ñD and ñT are controlled by fueling
rate modulation (Step 3), except if n > 2fGWnGW , when again isotopic fueling
(Step 4) is activated. However, it may not be possible to set Icoil = Iunsatcoil

because there exist saturation limits, i.e., 0 ≤ Icoil ≤ Imaxcoil . Iunsatcoil ≤ 0 is an
indication that indeed there is no need to decrease τE. In this case, in-vessel
coil-current modulation is not necessary and the controller makes Icoil ≡ 0.
On the other hand, if Iunsatcoil > Imaxcoil , the controller sets Icoil = Imaxcoil and uses
isotopic fueling (Step 4) and impurity injection (Step 5) to further regulate Ẽ.

Step 3: Fueling Rate Modulation (ñD and ñT control). Setting SinjD , SinjT as

Sinj,unsatD = −feffSRD + Sα +
n̄D
τD
−KDñD, (4.26)

Sinj,unsatT = −feffSRT + Sα +
n̄T
τT
−KT ñT , (4.27)

where KD > 0 and KT > 0 are design parameters, then (4.17) and (4.18)
are reduced to dñD/dt = − (1/τD+KD) ñD and dñT/dt = − (1/τT +KT ) ñT ,
respectively. Using VñD = 1

2
ñ2
D and VñT = 1

2
ñ2
T , it is found that V̇ñD =

− (1/τD+KD) ñ2
D and V̇ñT = − (1/τT +KT ) ñ2

T < 0, thus both ñD and ñT

evolutions are globally asymptotically stable (i.e., ñD → 0 and ñT → 0). The
stabilizing values for SinjD−line and S

inj
DT−line are obtained by solving (2.81)-(2.84)

together with (4.26), (4.27), and are given by

Sinj,unsatD−line
1

γnomDT−line − γnomD−line

(
γnomDT−line(−feffSRD+Sα+

n̄D
τD
−KDñD)

− γnomD−line(−feffSRT + Sα +
n̄T
τT
−KT ñT )

)
, (4.28)

Sinj,unsatDT−line =
1

γnomDT−line−γnomD−line

(
γnomDT−line(−feffSRD+Sα+

n̄D
τD
−KDñD)

− γnomD−line(−feffSRT + Sα +
n̄T
τT
−KT ñT ) + feff (S

R
D − SRT )

+
n̄T
τT
− n̄D
τD

+KDñD −KT ñT

)
. (4.29)

Equations (4.28) and (4.29) are the nominal control laws for SinjDT−line and
SinjD−line, respectively, when Step 3 is activated. Nonetheless, as before, it
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may not be possible to set SinjD−line = Sinj,unsatD−line and/or SinjDT−line = Sinj,unsatDT−line

because there exist physical saturation limits, that are denoted by Sinj,maxD−line ,
Sinj,minD−line , S

inj,max
DT−line, and S

inj,min
DT−line. If SinjD−line/S

inj
DT−line is larger or smaller than

its applicable saturation limits, the controller keeps SinjD−line/S
inj
DT−line at the

saturation limit that has been violated, and no further steps in the control
algorithm are activated. The asymptotic stability of ñD and/or ñT cannot be
ensured unless the controller recovers from the saturation limits. This is not
an inherent problem of the control algorithm but just a physical limitation in
the actuation capability of the tokamak.

Finally, it can be shown that, if Ẽ, ñD, and ñT are driven to zero, i.e. if
E = Ē, nD = n̄D, and nT = n̄T , then ñα and ñI are also driven to zero as
t → ∞ provided that SinjI ≡ 0. First, by defining n̂I , nI − f spI n, (2.85) can
be rewritten as

dn̂I
dt

+ f spI
dn

dt
= − n̂I + f spI n

τI
+ SspI , (4.30)

and using (2.86), it is found that

dn̂I
dt

= − n̂I
τI
. (4.31)

Thus, n̂I goes to zero as t→∞ because τI > 0, which implies that

lim
t→∞

nI = f spI lim
t→∞

n, (4.32)

regardless of any condition other than SinjI ≡ 0. It can be noted from (4.12),
i.e. 0 = − n̄I

τ̄I
+ S̄spI , and (2.86), i.e. S̄spI =

fspI n̄

τ̄I
, that n̄I = f spI n̄, which is

consistent with (4.32). Using the definition of n and (4.32), it is found that

lim
t→∞

n =
3 limt→∞ nα + 2n̄D + 2n̄T

1− f spI (1 + ZI)
. (4.33)

So, if limt→∞ nα = n̄α, n tends to its equilibrium value as well, and so does
nI . Then, it is necessary to inspect the terms on the right-hand side of (4.16).
The first term, −(n̄α + ñα)/τα = −nα/τα, decreases with an increase in nα,
and vice versa, it increases with a decrease in nα. The second term, Sα, can
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be written as Sα = n̄Dn̄T 〈σv〉DT . To see the dependence of Sα with nα, it is
necessary to analyze 〈σv〉DT , which is a positive, increasing function of T for
the range of temperatures in which tokamaks operate ([3], see Fig. 1.2). Using
(4.5), it is found that

T =
E
3
2
n

=
Ē

3
2
(3nα + 2n̄D + 2n̄T )

(
1− f spI (1 + ZI)

)
, (4.34)

where the definition of n has been employed, and E = Ē, nD = n̄D, nT = n̄T ,
and nI = f spI n due to SinjI ≡ 0. Therefore, increases in nα imply decreases in
T , which imply decreases in 〈σv〉DT and in Sα. On the other hand, decreases in
nα imply increases in T , which imply increases in 〈σv〉DT and in Sα. Thus, due
to the particular dependence of the right-hand-side terms of equation (4.16)
with nα, it is possible to write that

dñα
dt
∝ −ñα, (4.35)

and it can be concluded that the ñα → 0 as t→∞. Then, nα tends to n̄α, n
tends to n̄, and nI tends to n̄I , and the control objective is fully achieved.

Step 4: Fueling Rate Modulation (γ̂ and ñ Control). By using isotopic fuel-
ing, the controller attempts to drive γ → γ∗ to make Ẽ asymptotically stable
by exploiting the dependence of Sα on γ, which can be obtained from (2.73)
and the definition of γ as Sα = γ(1 − γ)(nD + nT )2〈σv〉DT . The γ∗ value is
obtained by solving the nonlinear equation

γ∗(1− γ∗) =
Ē
τE
− POhm − Paux + Prad −Kγ,1Ẽ

Qα(nD + nT )2〈σv〉DT
, (4.36)

where Kγ,1 > 0 is a design parameter. In this case, (4.20) reduces to dẼ/dt =

− (1/τE +Kγ,1) Ẽ, and using the same Lyapunov function VẼ = 1
2
Ẽ2 > 0 as

before, global asymptotical stability of Ẽ is ensured because

V̇Ẽ = − (1/τE +Kγ,1) Ẽ2 < 0. (4.37)
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For stability analysis, it is convenient to define γ̂ , γ−γ∗ since making γ̂ → 0

is equivalent to making γ → γ∗. Taking SinjT as

Sinj,unsatT =
γ[feff (S

R
D + SRT )− 2Sα + Sinj,unsatD ] + Sα − feffSRT + v

1− γ
, (4.38)

and using the definition for γ̂ and (4.8), it is possible to write

dγ̂

dt
= γ(1− γ)

(
1

τD
− 1

τT

)
+

v

nD + nT
+
dγ∗

dt
. (4.39)

By taking

v = −(nD + nT )

[
γ(1− γ)

1

τD
+
γ2 − γ∗

τT
+Kγ,2γ̂ +

dγ∗

dt

]
, (4.40)

where Kγ,2 > 0 is a design parameter, it is found that

dγ̂

dt
= − (1/τT +Kγ,2) γ̂. (4.41)

Then, using Vγ̂ = 1
2
γ̂2, it is found that V̇γ̂ = − (1/τT +Kγ,2) γ̂2 < 0. Thus,

global asymptotical stability of γ̂ is ensured. Taking SinjD as

Sinj,unsatD =
nD
τD

+
nT
τT
− feff (SRD + SRT ) + 2Sα − Sinj,unsatT + w, (4.42)

and using (4.7), it is possible to write

dñ

dt
= 3

(
−nα
τα

+ Sα

)
+ (1 + ZI)

(
−nI
τI

+ SinjI + SspI

)
+ 2w, (4.43)

where ñ , n− n̄. By taking

w = −1

2

[
3

(
−nα
τα

+Sα

)
+(1 + ZI)

(
−nI
τI

+ SinjI + SspI

)
+Knñ

]
, (4.44)

where Kn > 0 is a design parameter, it is found that dñ/dt = −Knñ. Using
Vñ = 1

2
ñ2 ensures global asymptotical stability of ñ because V̇ñ = −Knñ

2 < 0.
Solving (4.38) and (4.42) for Sinj,unsatD and Sinj,unsatT yields

Sinj,unsatD = (1− γ)

(
nD
τD

+
nT
τT

+ w

)
+ Sα − feffSRD − v, (4.45)
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Sinj,unsatT = γ

(
nD
τD

+
nT
τT

+ w

)
+ Sα − feffSRT + v. (4.46)

The stabilizing values for SinjD−line and SinjDT−line are obtained from solving
(2.81)-(2.84) together with (4.45)-(4.46), and are given by

Sinj,unsatD−line =
1

γnomDT−line − γnomD−line

[
γnomDT−line(1− γ)

(
nD
τD

+
nT
τT

+ w

)
− γnomD−lineγ

(
nD
τD

+
nT
τT

+w

)
+(γnomDT−line−γnomD−line)

(
Sα−feff (SRD+SRT )

)
− v(γnomDT−line + γnomD−line)

]
, (4.47)

Sinj,unsatDT−line =
1

γnomDT−line−γnomD−line

[
(γnomDT−line − 1)(1− γ)

(
nD
τD

+
nT
τT

+ w

)
+ (γnomDT−line − 1)(Sα − feffSRD − v) + (1− γnomD−line)γ

(
nD
τD

+
nT
τT

+ w

)
+ (1− γnomD−line)(Sα − feffSRT + v)

]
. (4.48)

Equations (4.47) and (4.48) are the nominal control laws for SinjDT−line and
SinjD−line, respectively, when Step 4 is activated. If the saturation limits Sinj,maxD−line ,
Sinj,minD−line , S

inj,max
DT−line, and S

inj,min
DT−line are reached, then the controller keeps SinjD−line

/ SinjDT−line at the saturation limit that has been violated (i.e., same procedure
as in Step 3). The stability of the Ẽ, ñ, and/or γ̂ cannot be ensured in this
case until the controller recovers from the saturation limits. Again, this is not
a problem of the control algorithm but just a natural limitation imposed by
the available actuation capability. However, in this case, impurity injection
is activated for Ẽ regulation (Step 5), as long as n ≤ 2fGWnGW . If n >

2fGWnGW , impurity injection is never used, as it always increases n.

Finally, by following arguments similar to those used for Step 3, it can be
shown that, if Ẽ, ñ, and γ̃ are driven to zero, i.e. if E = Ē, n = n̄, and γ = γ̄,
then ñα and ñI are also driven to zero as t→∞ provided that SinjI ≡ 0, and
the control objective is fully achieved.
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Step 5: Impurity Injection. By using impurity injection, the controller attempts
to drive nI → n∗I such that the Ẽ evolution is asymptotically stable by ex-
ploiting the dependence of Prad on nI . This n∗I value is obtained by solving
the nonlinear equation

Prad(n
∗
I) = − Ē

τminE

+ Pmin
α + POhm + Pmin

aux +KnI Ẽ, (4.49)

where KnI > 0 is a design parameter, and Pmin
α is the α heating achieved

by isotopic fueling. Note that Paux = Pmin
aux , τE = τminE , and Pα = Pmin

α ,
which means that impurity injection is used only when the combination of
auxiliary power modulation (Step 1), in-vessel coil-current modulation (Step
2) and isotopic fueling (Step 3) is not enough to asymptotically stabilize Ẽ.
In this case, (4.20) reduces to dẼ/dt = − (1/τminE +KnI ) Ẽ. By using VẼ =
1
2
Ẽ2 > 0 as before, global asymptotical stability of Ẽ is ensured because
V̇Ẽ = − (1/τminE +KnI ) Ẽ

2 < 0. It is convenient to define n̂I , nI − n∗I for
stability analysis since making n̂I → 0 is equivalent to making nI → n∗I . By
using both this definition and (2.85), and by taking SinjI equal to

Sinj,unsatI =
n∗I
τI
− SspI −KI n̂I +

dn∗I
dt

, (4.50)

where KI > 0 is a design parameter, it is possible to write

dn̂I
dt

= − (1/τI +KI) n̂I . (4.51)

Taking Vn̂I = 1
2
n̂2
I , it is found that V̇n̂I = −(1/τI + KI)n̂

2
I < 0, which implies

n̂I → 0. Therefore, it can be ensured that nI → n∗I and Ẽ → 0. Equation
(4.50) is the control law for SinjI . Because of the upper saturation limit that
exists for SinjI , denoted as Sinj,maxI (note that Sinj,minI ≡ 0), Ẽ → 0 cannot be
guaranteed until after the controller recovers from saturation.
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4.4.2 Robust Control Law (δD−line 6= 0, δDT−line 6= 0)

The control laws obtained for the nominal system are robustified in this Section
for the uncertain system (δD−line 6= 0, δDT−line 6= 0) by following a Lyapunov re-
design approach (see Appendix C.2.1 and/or [65]). The robust controller uses the
same order and logic followed by the nominal controller for the activation of the
actuators. Because the uncertainties are only found in the nD-nT balance equa-
tions, or alternatively, in the n-γ balance equations, the control laws for auxiliary
power modulation, in-vessel coil-current modulation, and controlled impurity injec-
tion do not need to be modified. On the other hand, the control laws for SinjD−line

and SinjDT−line, either controlling ñD and ñT (4.28)-(4.29), or controlling Ẽ (through
γ̂) and ñ (4.47)-(4.48), need to be modified to make them robust against the model
uncertainties. Then, only Steps 3 and 4 need to be considered for redesign.

Step 3: Robust Fueling Rate Modulation (ñD and ñT Control). Equations
(4.17) and (4.18) can be written in matrix form as[

˙̃nD
˙̃nT

]
= f +G

[
u+ δ

]
, (4.52)

where

f =

[
− n̄D

τD
− ñD

τD
+ SRD − Sα

− n̄D
τT
− ñT

τT
+ SRT − Sα

]
, (4.53)

G =

[
1− γnomDT−line 1− γnomD−line

γnomDT−line γnomD−line

]
, (4.54)

u =

[
SinjDT−line

SinjD−line

]
, (4.55)

δ = G−1

[
−(δDT−lineS

inj
DT−line + δD−lineS

inj
D−line)

δDT−lineS
inj
DT−line + δD−lineS

inj
D−line

]
. (4.56)

The nominal control law for ñD-ñT , (4.28)-(4.29), is denoted by ψn. For the
nominal ñD-ñT subsystem, given by (4.52) with δ = 0, it has been shown
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that u = ψn is a stabilizing control law, i.e. the Lyapunov function VñDT =

VñD + VñT = 1
2
ñ2
D + 1

2
ñ2
T yields V̇ñDT = −

(
1
τD

+KD

)
ñ2
D −

(
1
τT

+KT

)
ñ2
T , which

is strictly negative for all ñD, ñT 6= 0. A control law

u = ψn + vrob (4.57)

is now sought for the uncertain ñD-ñT subsystem, given by (4.52) with δ 6= 0,
where vrob is the part to be designed for robustness. Using a Lyapunov-redesign
approach, vrob is taken as

vrob =


−κ0‖ψn‖2

1−κ0

wrob
‖wrob‖2

if κ0 ‖ψn‖2 ‖wrob‖2 ≥ ε,

−
(
κ0‖ψn‖2

1−κ0

)2
wrob
ε

if κ0 ‖ψn‖2 ‖wrob‖2 < ε,

(4.58)

where ε is a small positive design parameter that is needed to prevent a poten-
tial singularity of the control law at ñD = ñT ≡ 0, and wrob is given by wTrob =

[
∂VñDT
∂ñD

,
∂VñDT
∂ñT

]G, where κ0 =
√

2(δmaxDT−line)
2 + (δmaxD−line)

2/|γnomDT−line − γnomD−line|
is a positive constant that is obtained by finding a bound to δ of the form
‖δ(ψn + vrob)‖2 ≤ κ0(‖ψn‖2 + ‖vrob‖2). This bound can be relatively easily
obtained by using the triangular and the Cauchy-Schwarz inequalities (see
Appendix D.1). The modified control laws (4.57)-(4.58) do not assure that
ñD → 0 and ñT → 0 in time, but they guarantee that |ñD| and |ñT | are
bounded by class K functions3 of ε. Therefore, it is critical to carefully choose
ε so that it is small enough. Finally, using similar arguments to those used for
the nominal system, it can be shown that if Ẽ is driven to zero, |ñα| and |ñI |
are also bounded by class K functions of ε provided that SinjI ≡ 0. The proof
is included in Appendix D.2.

Step 4: Robust Fueling Rate Modulation (γ̂ and ñ Control). Equations (4.21)
and (4.22) can be written in matrix form as[

˙̃n

˙̂γ

]
= f ? +G?

[
u+ δ?

]
, (4.59)

3A continuous function f(x) is said to be a class K function if: (1) it is a strictly increasing
function of x, and (2) f(0) = 0.
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where

f ? =

[
f ?1

f ?2

]
, (4.60)

f ?1 = 3

[
−nα
τα

+ Sα

]
+
(
3nα + (1 + ZI)nI − n

)(1− γ
τD

+
γ

τT

)
+2feff

(
SRD + SRT

)
− 4Sα + (1 + ZI)

[
−nI
τI

+ SspI

]
, (4.61)

f ?2 = γ(1− γ)

(
1

τD
− 1

τT

)
+

2

n− 3nα − (1 + ZI)nI

{
feffS

R
T − Sα

−γ
[
feff

(
SRD + SRT

)
− 2Sα

]}
, (4.62)

G? =

[
2 2

2
γnomDT−line−γ

n−3nα−(1+ZI)nI
2

γnomD−line−γ
n−3nα−(1+ZI)nI

]
, (4.63)

δ? = (G?)−1

 0

2
δDT−lineS

inj
DT−line

n−3nα−(1+ZI)nI
+ 2

δD−lineS
inj
D−line

n−3nα−(1+ZI)nI

 . (4.64)

The nominal control law for γ̂-ñ (isotopic fueling), (4.47)-(4.48), is denoted by
ψ?n. For the nominal ñD-γ̂ subsystem, given by (4.59) with δ = 0, it has been
shown that u = ψ?n is a stabilizing control law, i.e. the Lyapunov function
Vñ,γ̂ = Vñ + Vγ̂ = 1

2
ñ2 + 1

2
γ̂2 yields V̇ñ,γ̂ = −Knñ

2
D −

(
1
τT

+ Kγ,2

)
γ̂2, which is

strictly negative for all ñD, γ̂ 6= 0. A control law

u = ψ?n + v?rob, (4.65)

is now sought for the uncertain ñD-γ̂ subsystem, given by (4.59) with δ 6= 0,
where v?rob is the part to be designed for robustness. Using a Lyapunov-redesign
approach, v?rob is taken as

v?rob =


−κ?0‖ψ?n‖2

1−κ?0
w?rob

‖w?rob‖2

if κ?0 ‖ψ?n‖2 ‖w?rob‖2 ≥ ε?,

−
(
κ?0‖ψ?n‖2

1−κ?0

)2
w?rob
ε?

if κ?0 ‖ψ?n‖2 ‖w?rob‖2 < ε?,

(4.66)

where ε? is a small positive design parameter that is needed to prevent a
potential singularity of the control law at ñ = γ̂ ≡ 0, and w?rob is given by
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(w?rob)
T = [

∂Vñ,γ̂
∂ñ

,
∂Vñ,γ̂
∂γ̂

]G?, where κ?0 = κ0 is a constant that is obtained by
finding a bound to δ? of the form ‖δ?(ψ?n + v?rob)‖2 ≤ κ?0(‖ψ?n‖2 + ‖v?rob‖2). As
in the case for Step 3, this bound can be relatively easily obtained by using
the triangular and the Cauchy-Schwarz inequalities (see Appendix D.1). The
modified control laws (4.65)-(4.66) do not assure that ñ → 0 and γ̂ → 0 in
time, but they guarantee that |ñ| and |γ̂| are bounded by class K functions
of ε?. As before, ε∗ must be chosen small enough. Finally, following similar
arguments as in Appendix D.2, it can be shown that |ñα| and |ñI | are also
bounded by class K functions of ε? if Ẽ is driven to zero as long as SinjI ≡ 0.

A summary of the variables employed in this Section is shown in Table 4.2.

Table 4.2: Controller variables.

Symbol Description Type of variable
(̄·) Equilibrium variable Reference
(̃·) Deviation variable Error

P unsataux Unsaturated auxiliary power Control law variable
Iunsatcoil Unsaturated in-vessel coil current Control law variable

Sinj,unsatD/DT−line, S
inj,unsat
D/DT−line Unsaturated D, DT pellet injection Control law variable

Sinj,unsatI Unsaturated impurity injection rate Control law variable
Pmaxaux , Pminaux , Imaxcoil Max/min Paux and Icoil Saturation level

Sinj,maxD/DT−line, S
inj,min
D/DT−line Max/min D and DT injection rates Saturation level

Sinj,maxI Max impurity injection rate Saturation level
KP , KτE , KD, KT Nominal controller gains Design parameter

Kγ,1, Kγ,2, Kn, KnI , KI Nominal controller gains Design parameter
fGW Greenwald density proximity constant Design parameter
nGW Greenwald density Intermediate variable
Pmin P with minimum Paux Intermediate variable
τminE τE with minimum Icoil Intermediate variable
n̂I nI deviation w.r.t. steady-state value Intermediate variable
γ∗, γ̂ γ and error for isotopic fueling Intermediate variable
n∗I , n̂I nI and error for impurity injection Intermediate variable

f , G, u, δ Matrices for nD-nT uncertain model Intermediate variable
f?, G?, u, δ? Matrices for n-γ uncertain model Intermediate variable
ψn, ψ?n, v, w Functions for nominal fueling control Intermediate variable

vrob, v?rob, wrob, w
?
rob Functions for robust fueling control Intermediate variable

κ0, κ?0 Constants from bounds to δ and δ? Model parameter
ε, ε? Constants for robust fueling control Design parameter
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4.5 Simulation Study

The performance of the proposed burn controller is tested in this Section for two
different scenarios. In the first scenario, a first operating point with high density
is used to test the controller performance when isotopic fueling (i.e. ñ-γ̂ control) is
employed to regulate the plasma density n, while a second operating point with lower
density is used to test the controller performance when switching between isotopic
fueling and ñD-ñT control. No recycling and a relatively small amount of impurities
are considered in this first simulation case. In the second scenario, operating points
with lower density are chosen so that ñD-ñT control is used during most of the
simulation, only using isotopic fueling as a backup to decrease the plasma energy
when needed. Also, recycling effects are included and a higher amount of impurities
is introduced in this second simulation case in order to test the controller in a more
demanding situation. In both scenarios, perturbations in the D-T concentrations
of the fueling lines are emulated to test the robustness of the controller under the
presence of the uncertainties δDT−line and δD−line. It is very important to emphasize
that such perturbations in the D-T concentrations with respect to the nominal case
are totally unknown to the controller during the simulations studies. The saturation
limits imposed are shown in Table 4.3. Also, the following parameters are used: kα
= 5, kD = 2.5, kT = 2.5, and kI = 8.

Table 4.3: Actuator limits

Symbol Description Value
Pmax
aux Maximum power 73 MW
Pmin
aux Minimum power 35 MW
SmaxD Maximum D fueling rate 3× 1019 m−3s−1

ṠmaxD Maximum D fueling ramp rate 3× 1019 m−3s−2

SmaxT Maximum T fueling rate 3× 1019 m−3s−1

ṠmaxT Maximum T fueling ramp rate 3× 1019 m−3s−2

Imaxcoil Maximum in-vessel coil current 4 kA
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4.5.1 Scenario 1: Combined isotopic and D-T fueling, no re-

cycling, low impurity

In this first scenario, recycling effects are neglected (feff = 0), and it is considered
that the content of impurities in the plasma is relatively low (f spI = 0.005). Also, only
Beryllium impurities are considered (ZI = 4), and the H-factor without activation of
the in-vessel coils is taken as Hnom

H = 1.1. Regarding the uncertainties (see equations
(2.83)-(2.84)), a constant negative 30 % drop in the T concentration of the D-T pellet
injector is emulated during the whole simulation, i.e. δDT−line = −0.3, whereas no T
is assumed in the D pellet injector (as in the nominal case), i.e. δD−line = 0. Firstly,
the controller attempts to regulate the system around a first operating point defined
by T̄ = 10 keV, β̄N = 2, and γ̄ = 0.5, from t = 0 s till t = 50 s. The simulation
study starts from a perturbed initial condition with respect to this first equilibrium
point (+20% in nα, +30% in nD, −10% in nT , and +20% in E (no perturbation
is introduced in nI)). Secondly, at t = 50 s, the controller attempts to drive the
system to a different operating point defined by T̄ = 12 keV, β̄N = 1.75, and γ̄ =
0.45. Finally, from t = 100 s until t = 150 s, the controller tries to drive the system
back to the first operating point. Because the first operating point is characterized
by a value of n which is close to the Greenwald density limit, fGW = 0.8 is taken
so that n is regulated by isotopic fueling around such operating point in order to
prevent instabilities related with too high density values.
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Figure 4.3: Time evolutions for βN , n, γ, T , nD, and nT in Scenario 1 under robust
feedback control law (solid blue), nominal feedback control law (magenta
dashed-dotted), and feedforward control law (black dotted), together with
the reference signals (red dashed).

Simulation results for the evolutions of βN , n, γ, T , nD and nT together with their
corresponding targets are shown in Fig. 4.3 for three different cases: i- open loop
(no control), ii- closed loop under the nominal control law, iii- closed loop under the
robust control law. The inputs SinjD , SinjT , SinjD−line, S

inj
DT−line, Icoil and Paux are shown

in Fig. 4.4. In the case of nominal D-T fuel concentration, the reference actuator
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Figure 4.4: Time evolutions for SinjD , SinjT , SinjD−line, S
inj
DT−line, Icoil, and Paux in Scenario

1 under robust (solid blue) and nominal (magenta dashed-dotted) control
laws, together with the actuator reference (red dashed).

signals (red dashed) shown in Fig. 4.4 are designed to achieve in open loop the
desired reference states (red dashed) shown in Fig. 4.3. However, in presence of the
emulated bias in the T concentration of the D-T pellet injector, the variables evolve
in open loop (black dotted) to values that are different from the desired references
(red dashed) as shown in Fig. 4.3. Under the nominal control law, βN is driven to
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the desired operating points during the whole simulation (see Fig. 4.3(a)), whereas
n and T can only be driven to the first operating point; at t = 50 s, the nominal
control law is unable to accurately drive n and T to the second operating point, and
it is also unable to drive n and T back to the first operating point at t = 100 s (see
Fig. 4.3(b) and Fig. 4.3(d)). Because n > 2fGWnGW between t = 0 s and t ≈ 50 s,
and later between t ≈ 100 s and t ≈ 150 s, isotopic fueling is employed during those
time intervals (Fig. 4.3(b)), while ñD-ñT control is used between t ≈ 50 s and t ≈ 100
s. In open loop, n goes beyond the Greenwald stability limit, while the nominal and
robust control laws avoid violating such limit. Still, the nominal control law cannot
drive γ, nD and nT to the desired operating points during the entire simulation (see
Fig. 4.3(c), Fig. 4.3(e) and Fig. 4.3(f)). On the other hand, the robust control law
is able to successfully drive all the variables βN , n, γ, T , nD and nT to the different
operating points. Fig. 4.4 shows that the robust control law can correct the drifts in
the DT concentration of the pellet injectors even though they are unknown to the
controller, and drives Paux, SinjD and SinjT to their equilibrium values (see Fig. 4.4(a),
Fig. 4.4(b), and Fig. 4.4(f)). It must be emphasized that SinjD−line and S

inj
DT−line are

not expected to converge to their reference values due to the emulated bias. The
in-vessel coils are utilized by both the nominal and robust control laws during the
short periods of time in which Paux is saturated to its minimum value, around t =
0 s and t = 50 s (see Fig. 4.4(e) and Fig. 4.4(f)). Impurity injection is not used at
all by the controller due to the fact that, while isotopic fueling is employed, density
limits are closed to be violated (i.e., n > 2fGWnGW ).

4.5.2 Scenario 2: D-T fueling under recycling effects and high

impurity content

In this second scenario, intense recycling effects (feff = 0.3, fref = 0.65, Reff =

0.85, γPFC = 0.5) and a relatively high content of impurities in the plasma (f spI =

0.05) are considered. Also, impurities with higher atomic number are considered
(Carbon, ZI = 6), and the H-factor without activation of the in-vessel coils is
taken as Hnom

H = 1.2. For a more demanding test of the controller, the uncertain
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terms γD−line and γDT−line (see equations (2.83)-(2.84)) vary in time as shown in
Fig. 4.6(h). Firstly, the controller attempts to regulate the system around a first
operating point defined by T̄ = 10 keV, β̄N = 1.5, and γ̄ = 0.5, from t = 0 s till t
= 50 s. The simulation study starts from a perturbed initial condition with respect
to the equilibrium (+20% in nα, −10% in nD, +15% in nT , and +20% in E (again,
no perturbation is introduced in nI)). Secondly, at t = 50 s, the controller attempts
to drive the system to a different operating point defined by T̄ = 11 keV, β̄N = 1.4,
and γ̄ = 0.45. Finally, from t = 100 s until t = 150 s, the controller attempts to
drive the system to a third operating point defined by T̄ = 10.5 keV, β̄N = 1.6, and
γ̄ = 0.5. Because the density values that characterize these three operating points
are substantially lower than in the first simulation scenario, regulation of n due to
closeness to the Greenwald density limit is not considered as a priority in this case.
A value of fGW = 1 is taken.

Simulation results for the evolutions of βN , n, γ, T , nD and nT together with
their corresponding targets are shown in Fig. 4.5 for three different cases: i- open
loop (no control), ii- closed loop under the nominal control law, iii- closed loop
under the robust control law. The inputs SinjD , SinjT , SinjD−line, S

inj
DT−line, Icoil and

Paux are shown in Fig. 4.6 together with γD−line and γDT−line. As in the previous
simulation case, the reference actuator signals (red dashed) shown in Fig. 4.6 are
designed to achieve in open loop the desired reference states (red dashed) shown in
Fig. 4.5 for the case of nominal D-T fuel concentration. However, in presence of the
emulated drifts in the T concentrations of both the D pellet injector and the D-T
pellet injector, the variables evolve in open loop (black dotted) to values that are
different from the desired references (red dashed) as shown in Fig. 4.5. Under the
nominal control law, βN is driven to the desired operating points during the whole
simulation, and nD is also successfully regulated, although with small constant drifts
with respect to the desired targets (see Fig. 4.5(a) and Fig. 4.5(e)). However, the
nominal control law cannot drive n, γ, T , and nT to the desired operating points
(see Fig. 4.5(b), Fig. 4.5(c), Fig. 4.5(d) and Fig. 4.5(f)). On the contrary, the robust
control law is able to successfully drive all the variables βN , n, γ, T , nD and nT

to the different operating points. It is interesting to note that the high content of
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Figure 4.5: Time evolutions for βN , n, γ, T , nD, and nT in Scenario 2 under robust
feedback control law (solid blue), nominal feedback control law (magenta
dashed-dotted), and feedforward control law (black dotted), together with
the reference signals (red dashed).

impurities and the recycling effects slow down the n and T evolutions when compared
to those in Scenario 1, even though the robust controller still regulates both n and
T successfully. Fig. 4.6 shows how Paux, SinjD and SinjT evolve to their equilibrium
values both under the nominal and robust control laws (see Fig. 4.6(a), Fig. 4.6(b),
and Fig. 4.6(f)). However, the SinjD and SinjT evolutions are slightly different, which
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has an important impact on the state evolution due to the highly nonlinear nature of
the system. The in-vessel coils are utilized by both the nominal and robust control
laws during the short periods of time in which Paux is saturated to its minimum
value, around t = 0 s and t = 50 s (see Fig. 4.6(e) and Fig. 4.6(f)). Impurity
injection is used only at the beginning of the simulation during a few seconds, in
order to reject the initial perturbation in E.

4.6 Conclusions

In this Section, a nonlinear, robust burn controller has been presented which is
capable of regulating the burning plasma around a desired equilibrium under the
presence of large initial perturbations and uncertainties in the D-T concentration of
the pellet injectors. The controller can be used to drive the burning plasma between
different operating points, since the control-design process avoids model lineariza-
tion around a particular equilibrium. Moreover, the algorithm combines all feasible
actuators available in tokamaks for burn control (auxiliary power, in-vessel coil cur-
rent, fueling rates, and impurity injection) in a comprehensive, integrated control
strategy, which allows for a higher flexibility when choosing the most appropriate
actuation methods in different scenarios. The integrated strategy follows a repurpos-
ing (RP) actuator-sharing approach, for example, using isotopic fueling in positive
energy excursions (i.e., repurposing the fueling actuation for energy control). Also,
the controller chooses isotopic fueling in scenarios in which disruptive density limits
may be reached, whereas it chooses a more accurate D and T density control ap-
proach around operating points that are relatively far from disruptive density limits.
It also employs the in-vessel coils as a backup actuator to decrease the plasma energy
when positive thermal excursions cannot be avoided by means of auxiliary power.
The inclusion of this actuator is an important novelty in this work with respect to
previous work. The in-vessel coils may allow for fast, exception-handling actuation
in situations in which other actuators may not suffice to regulate the plasma burn
condition.
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It is important to note that the nonlinear control laws for the different actuators
are given as analytical functions of the measured or estimated states, which makes
this control approach much less computationally demanding than any possible real-
time nonlinear optimization approach and also much more robust since it is immune
to feasibility and convergence issues. The controller performance has been studied
in simulations for two different scenarios. The simulation study suggests both that
the D-T pellet-concentration variations play a crucial role in the burning plasma
dynamics and that robust burn controllers are necessary to effectively overcome
their negative impact in ITER.

A simplified zero-dimensional, nonlinear model is used in this work for control
synthesis and simulation. Even though these models are approximate, they capture
the primary dynamics of the burning plasma that is needed for the synthesis of
a robust controller whose control objective is defined in terms of zero-dimensional
quantities such as the overall fusion power. However, as one-dimensional fueling
actuation models become more mature, steps towards control simulations based on
one-dimensional models are necessary because while the control objective is zero-
dimensional, the to-be-controlled system is indeed one-dimensional. Future work
also requires the incorporation of the actuator and sensor dynamics in the control-
design process. It is anticipated that the proposed burn-control algorithm will need
to be augmented to handle lags and delays associated with the actuators and sensors
possibly by the use of backstepping and prediction techniques.
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Chapter 5

Integrated Kinetic and Magnetic

Control: Beta and Current Profile

Control

5.1 Introduction and Previous Work

Regulation of β and/or the current profile1 in tokamak plasmas is a control problem
of significant interest in nuclear fusion research. As it has been previously intro-
duced, β is a measurement of the plasma-confinement efficiency that characterizes
the kinetic pressure p that can be attained my means of a particular magnetic field
B. Higher β requires a lower B to maintain a given p, therefore reducing the cost of
construction of a fusion power plant (which increases with B). On the other hand,
if B is fixed, higher β yields higher p, hence a higher triple product can be achieved
for the same τE (see equations (1.11) and (2.20)). Nonetheless, particular β values
or evolutions may trigger MHD instabilities that normally decrease the plasma per-
formance and may damage the vacuum vessel. High β values and efficient control
can provide a cheaper fusion power plant with higher performance.

1The current profile is normally characterized in tokamaks by means of ~j, ψ, q, or any other
related magnitude. More details can be found in Chapter 2, Section 2.2.1.
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The current profile plays a key role in the plasma equilibrium and performance
(see the MHD equilibrium equation (2.8) or the Grad-Shafranov equation (2.13)).
For example, advanced scenarios with high bootstrap current fractions may develop
low or reversed magnetic-shear profiles (s→ 0 or s < 0, respectively) with ITBs that
may drive β towards too high values (see Section 1.3). In such scenarios, q-profile
regulation will most likely be needed.

As one may hint just from analyzing the Spitzer resistivity model (2.30), and
the MDE and EHTE models presented in Sections 2.2.1 and 2.2.2 of Chapter 2, the
q-profile and β dynamics are not independent. The electron temperature, Te, enters
the definition of β through pe, but it also determines η, and therefore, affects the
evolution of ψ and q. In turn, it is an experimental fact that q and s may affect
the plasma transport (see, for example, the χe model proposed in (2.42), which is
based on [20]), and therefore, also influence Te and β. Another coupling effect that
has not been considered in the models presented in this dissertation is the variation
of the plasma equilibrium associated with changes in ~j, ψ and/or q (see equations
(2.8) and (2.13)), which in turn affects the plasma confinement, and Te and/or β.
The close coupling between the β and q-profile evolutions is the reason why their
regulation is often treated as a single control problem.

The approach generally utilized in present-day devices to achieve some particular
β and q evolutions is as follows. Auxiliary sources are customarily employed to
achieve a particular β target by means of auxiliary power modulation, Paux. The
β target has an associated Te evolution, and therefore, determines η as well. As a
result, regulating both β and q independently by means of diffusivity control (i.e., by
controlling η) is normally not possible, and the alternative is to modify the current
driven through the plasma. This can be done by means of Ip or 〈~jni · ~B〉/Bφ,0. In
the control jargon, control by means of Ip is known as boundary control, whereas
control by means of 〈~jni · ~B〉/Bφ,0 is known as interior control. During the flat-top
phase, it is normally desired to have a particular, approximately constant Ip value
in order to achieve a particular qedge evolution (or q95 in diverted plasmas), reducing
the applicability of the boundary-control approach to the q-profile feedback-control
problem. Moreover, high Te values are normally found in high β scenarios because
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of the large Paux injected, and η is very small during the flat-top phase. The low η

reduces the q-profile controllability by means of interior control during the flat-top
phase (∂ψ/∂t ∝ η〈~jni · ~B〉/Bφ,0), so the q profile can be regulated more efficiently
during the ramp-up phase, when higher η values are found.

Significant effort has been carried out within the fusion community to find and
test control algorithms for the regulation of the q profile [66–77]. Substantial work
has also been done on simultaneous q-profile + β control [78–84]. Much of this
work is non-model based (e.g., [66, 68]) or uses system-identification techniques
(e.g., [78, 79, 82]). A common approach to model-based q-profile + β control in
previous work is using an approximately linearized version of the system dynamics
and/or applying linear control techniques at some point during the control design.
For example, in previous work carried out by the Lehigh University Plasma-Control
Group [80, 81], robust, linear controllers for the q-profile and W (in [80]) or Te
(in [81]) were designed based on linearized versions of the system dynamics. In [83,
84], a Model Predictive Control (MPC) scheme was proposed for the regulation of
the q profile in conjunction with a PID control law for W . A linearized version of
the q-profile dynamics is added as a constraint within the MPC scheme.

In this Chapter, two q + β control approaches are proposed. In both control
designs, the models employed are the MDE model (Chapter 2, Section 2.2.1), to-
gether with 0.5D models for Te and ne, equations (2.34), and a 0D model for W
(Chapter 2, Section 2.3.1). The first approach corresponds to the author’s work
presented in [85, 86], which employs approximate linearization techniques to design
a controller for the central safety factor, q0, and normalized beta, βN . In [85], a
control-oriented model of the q0 dynamics is derived, and a PID controller is de-
signed using approximate linearization techniques to regulate q0 by means of Paux.
A key element in this control design is the addition of constraints to ensure that
zero NBI torque is delivered. The work in [85] was extended to include simultaneous
q0 + βN regulation with zero NBI torque, also by means of Paux. The controller
was tested in DIII-D experiments [86] with the final goal of facilitating access to
QH-mode [8]. The second approach corresponds to the author’s work presented
in [87, 88]. This work eventually converged to the design proposed in [89], in which
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a nonlinear, robust controller is synthesized for simultaneous q-profile + β control by
means of feedback linearization and Lyapunov redesign techniques [65], that allows
for synthesizing a nonlinear controller for q-profile regulation without recurring to
approximate linearization techniques. This removes the natural limitations imposed
by approximate linearization and/or linear techniques. The proposed controller em-
ploys Ip, NBI and EC power as the available actuators for control. First, control
laws are designed for Ip and Paux to control qedge and βN , respectively. These nonlin-
ear, robust control laws for Ip and Ptot are based on Lyapunov redesign techniques,
and can be easily embedded in the feedback-linearization scheme designed for q
profile control. Second, a study is carried out to analyze under what conditions
the q-profile subsystem is feedback linearizable, and if so, how many nodes of the q
profile are controllable in conjunction with βN by means of feedback linearization.
It will be shown that the nominal system is in fact feedback linearizable as long as
the auxiliary sources have different enough current-deposition profiles. Such anal-
ysis allows for a very intuitive assessment of the q-profile + βN control capability
within a tokamak. Third, a feedback-linearization nominal control law is synthe-
sized to control the q profile at the interior nodes by means of the NBI and EC
powers, assuming no uncertainty in the model employed for control design. Finally,
the feedback-linearization nominal control law is robustified by means of Lyapunov
redesign techniques, so that the controller is robust against unknown variations in
Te and ne, which make η and 〈~jni · ~B〉/Bφ,0 also uncertain.
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5.2 q0 + βN Control via Approximate Linearization

Techniques under Zero NBI Torque

5.2.1 Modeling of the q0 + βN Dynamics

The central safety factor, q0, is defined in equation (2.93). The q0 model employed
for simulation and control design in this q0 + βN control problem2 is obtained by
employing the MDE model described in Chapter 2, Section 2.2.1, together with the
0.5D models for Te and ne given by (2.34). The MDE (2.27) can be rewritten as

∂ψ

∂t
= hdiff (ρ̂, t)

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+

Naux∑
i=1

haux,i(ρ̂, t)Paux,i(t) + hBS(ρ̂, t)

(
∂ψ

∂ρ̂

)−1

, (5.1)

where Dψ , F̂ ĜĤ, and

hdiff =
ηprof

µ0ρ2
bF̂ ρ̂

kdiff , η
prof =

kprofsp Zeff(
T profe

)3/2(
nprofe

)3ζ/2
, kdiff = I

− 3
2
γ

p P
− 3

2
ε

tot n̄
− 3

2
ζ

e , (5.2)

haux,i = R0η
profĤjprofaux,i

(
T profe

)δaux,i
nprofe

kaux,i, (5.3)

kaux,i = I
γ(δaux,i− 3

2
)

p P
ε(δaux,i− 3

2
)

tot n̄
ζ(δaux,i− 3

2
)−1

e , (5.4)

hBS =
ηprofR2

0Ĥ

F̂

[
2L31T

prof
e

∂nprofe

∂ρ̂
+
(
2L31+L32+αL34

)
nprofe

∂T profe

∂ρ̂

]
kBS, (5.5)

kBS = I
− 1

2
γ

p P
− 1

2
ε

tot n̄
− 1

2
ζ+1

e , (5.6)

where the auxiliary-source contributions are due to NBI and EC, so the second term
on the right-hand side of (5.1) can be rewritten as

Naux∑
i=1

haux,i(ρ̂, t)Paux,i(t) =

NNBI∑
i=1

hNBI,i(ρ̂, t)PNBI,i(t) + hEC(ρ̂, t)PEC(t), (5.7)

where hNBI,i and hEC are analogous to the term given by (5.3), but particularized
for jdepaux,i = jdepNBI,i and j

dep
aux,i = jdepEC , respectively, and δaux,i = δNBI,i and δaux,i = δEC ,

respectively.
2The model for q0 described in Section 2.3.4 had not been developed by the time this q0 + βN

control design was carried out, hence a q0 model was derived as reported in this Section.

A. Pajares 123 Lehigh U.



5.2. q0 + βN Control via Approximate Linearization Techniques under
Zero NBI Torque

The normalized plasma beta, βN , can be obtained from (2.25) and (2.26), and
its definition is given in (4.14). It can be rewritten in terms of W as

βN =
4
3
µ0Wa

Bφ,0IpVp
[%], (5.8)

where Vp is assumed to be constant. The dynamics of W is estimated using the
model presented in Chapter 2, Section 2.3.1. The additional assumption Ptot ≈ Paux

is employed, i.e., the α, ohmic, and radiative power contributions to Ptot can be
neglected (see equation (2.35)). Also, it is assumed that there is no uncertainty in
the W subsystem, i.e, δHH = 0 and δP = 0.

In this model, ψ and W are utilized as states, whereas PNBI,i and PEC are the
controllable inputs. As a summary, the state-space representation of the nonlinear
q0 + βN dynamics is given by

d

dt

[
ψ

W

]
= f(ψ,W, u, t),

[
q0

βN

]
= g(ψ,W, t), (5.9)

where u = [PNBI,1, ..., PNBI,NNBI , PEC ]T is the vector of controllable inputs, f is the
nonlinear state function whose first and second components are given by (5.1) and
(2.64), respectively (where δP = 0 and δHH = 0 are assumed), and g is the nonlinear
output function whose first and second components are given by (2.93) and (5.8),
respectively. The time dependence in f and g is due to Ip and n̄e, which are assumed
to be non-controllable inputs in this q0 + βN control problem.

5.2.2 Model Validation for a Reverse Ip DIII-D Scenario

The model given by (5.9) is tuned and validated for an H-mode, reverse plasma-current
(Ip < 0) scenario in DIII-D. The control-oriented model is tailored to DIII-D shots
163518 through 163525, which all present similar conditions. Relevant machine pa-
rameters and model constants for this scenario are Bφ,0 = 1.93 T, R0 = 1.77 m,
Zeff = 3.5, Hnom

H = 1.1, δNBI,i = 0.5, δEC = 1, γ = 1, ε = 0.5 and ζ = 0. It can be
appreciated that the q0 + βN model in (5.9) corresponds to the 1D model for ψ and
0D model for W implemented in COTSIM (see Chapter 3). Therefore, a COTSIM
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simulation with the aforementioned models is run in open loop in order to carry out
the validation of (5.9).
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Figure 5.1: Validation of the q0 + βN model: comparison between COTSIM and
TRANSP data for shot 163521.

Fig. 5.1 shows the time evolution of the outputs q0 and βN together with the
state ψ and W , when using the experimental inputs from shot 163521. The sim-
ulation is only run until t = 3 s because TRANSP data is only available within
such time span. It can be seen that, although a perfect match between COTSIM
and TRANSP results is not achieved, the same qualitative behavior is observed.
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The most significant difference is found at the end of the ramp-up phase (around
1.25 s) with lower W , βN , and ψ values predicted by the COTSIM simulation. This
indicates that the models implemented in COTSIM may not be able to capture as
many features of the plasma dynamics as TRANSP, which is expected from the
different levels of complexity that these two codes employ. However, later in the
simulation, it can be seen that all the variables follow trends that are very similar
to those predicted by TRANSP.

5.2.3 Reduced, Linearized Model of the q0 + βN Dynamics

To enable control design, the ψ-subsystem in (5.9) (i.e., the partial differential equa-
tion (5.1) and the definition (2.93)) is discretized in the ρ̂-domain using finite differ-
ences to obtain a set of ordinary differential equations. A discretization grid with
N + 1 nodes in the interval ρ̂ = [0, 1] is used. The value of ψ at each of the inner
nodes is denoted by ψi, for i = 1, ..., N − 1, and ψ̂ = [ψ1, ..., ψN−1]T is a vector
with all ψi. After spatially discretizing (5.1) and (2.93), together with the MDE
boundary conditions (2.28), the q0 + βN dynamics can be rewritten as

ẋ = fx
(
x, t, u

)
, y = gx(x), (5.10)

where x = [ψ̂,W ] ∈ RN×1 is the state vector and y = [q0, βN ]T is the output vector.
Linearizing with respect to a nominal trajectory of the system described by a state
vector x̄ = [ψ̄, W̄ ]T , input vector ū, and output vector ȳ = [q̄0, β̄N ]T , it is possible
to write (5.10) as a MIMO linear time-varying (LTV) system given by

˙̃x = A(t)x̃+

i=NNBI∑
i=1

B1,i(t)P̃NBI,i(t) +B2(t)P̃EC(t), (5.11)

ỹ = Cx̃, (5.12)

where x̃ = x− x̄, ũ = u− ū = [P̃NBI,1, ..., P̃NBI,NNBI , P̃EC ]T , ỹ = y − ȳ = [q̃0, β̃N ]T ,
A(t) ∈ RN×N is the time-varying state matrix, B1,i(t) ∈ RN×1 is the time-varying
input matrix associated to the i-th NBI, B2(t) ∈ RN×1 is the time-varying input
matrix associated to the EC source, and C(t) ∈ R2×N is the time-varying output
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matrix. These matrices are computed as A(t) = ∂fx
(
x̄ + x̃, ū + ũ, t

)
/∂x̃, B1,i(t) =

∂f
(
x̄+ x̃, ū+ ũ, t

)
/∂P̃NBI,i, B2(t) = ∂f

(
x̄+ x̃, ū+ ũ, t

)
/∂P̃EC and C(t) = ∂gx(x̄+

x̃)/∂x̃, all of them evaluated at x̄(t), ū(t).

5.2.4 NBI Configuration and Zero NBI-Torque in DIII-D

In the DIII-D tokamak, a total of 8 NBI’s are available. These NBI’s are denoted
by 30L, 30R, 150L, 150R, 210L, 210R, 330L and 330R, and they are placed in the
DIII-D tokamak as depicted in Fig. 5.2. Because a reverse Ip scenario is considered,
it is found that 6 out of the 8 NBI’s can drive current in the counter-current direction
(30L, 30R, 150L, 150R, 330L and 330R, depicted in blue), whereas 2 NBI’s can drive
current in the co-current direction (210L and 210R, depicted in red).
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330L

330R

210R
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Figure 5.2: Geometry and balanced configuration of the NBIs in the DIII-D tokamak.

The torque injected by each of these NBI’s is denoted in this Section as T(·),
where (·) is the designation of each NBI, i.e., (·) = 30L, (·) = 30R, etc. The total
torque injected by the co-current NBI’s is denoted by TNBI,co, and it is given by

TNBI,co = T210L + T210R. (5.13)

The total torque injected by the counter-current NBI’s is denoted by TNBI,counter,
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and it is given by

TNBI,counter=T30L +T30R +T150L +T150R +T330L +T330R. (5.14)

In order to produce a zero input-torque, the torque injected by the co-current NBI’s
must be equal to the torque injected by counter-current NBI’s, i.e.,

TNBI,co = TNBI,counter. (5.15)

Condition (5.15) is achieved by using the NBI’s in balanced groups (see Fig. 5.2).
A balanced group is composed by three co-current NBI and one counter-current
NBI that inject the same torque. For any group of balanced NBI’s with a similar
physical dimension and same ion source, the input-torque is close to zero if the power
delivered to them is similar. In the DIII-D tokamak, the 150 beamline is physically
smaller than the rest (its design facilitates the off-axis injection of particles), and
also the ion source is different. For the 150 beamline to deliver the same input-
torque as the other beamlines by means of the same power, its voltage would need
to be adjusted. Although it is more convenient to pair the NBI’s of the other
three beamlines (30, 210, and 330) to produce zero input-torque because no voltage
adjustment is required, the 150 beamline may also be employed, and is kept as a
backup in case any of the other beamlines cannot be employed. Thus, two groups
of balanced NBI’s are considered: a first group composed by 30L, 150L, 330L and
210R, and a second group composed by 30R, 150R, 330R and 210L. In terms of the
power injected, the zero input-torque condition is written as

P30L + P150L + P330L = P210R, P30R + P150R + P330R = P210L, (5.16)

where P(·) is the power injected by the (·) NBI.
By using the zero input-torque configuration, the model substantially changes

because the current driven by the co-current and counter-current NBIs mostly can-
cels out. Then, there is no net current-density driven by the NBI’s, i.e., the second
term on the right hand side of (5.1) is zero,

∑NNBI
i=1 hNBI,i(ρ̂, t)PNBI,i(t) = 0. The

term PNBI,i only enters in (5.1) by affecting Ptot(t) through the functions hdiff , hEC
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and hBS, given by (5.2)-(5.6). Therefore, the relevant magnitude for q0 control is the
total NBI power, denoted by PNBI ,

∑
i PNBI,i, instead of the individual powers

of each NBI, PNBI,i. Moreover, the same situation is found for the W dynamics,
equation (2.64): PNBI is the only relevant magnitude. With the previous arguments,
equation (5.11) adopts a different shape given by

˙̃x = A(t)x̃+B1(t)P̃NBI(t)+B2(t)P̃EC(t) = A(t)x̃+[B1(t) B2(t)]

[
P̃NBI(t)

P̃EC(t)

]
, (5.17)

where B1(t) ∈ RN×1 is the time-varying input matrix associated to P̃NBI . Then,
the linearized system is still a MIMO LTV system, but with 2 controllable inputs
instead of the NNBI + 1 that were considered before taking into account the zero
input-torque condition.

5.2.5 q0 Control Law Design

In [85], only control of q0 was considered. The control objective is to drive q0 to
its nominal trajectory q̄0, or equivalently, q̃0 , q0 − q̄0 to zero. Even though the
q0 subsystem in (5.17)-(5.12) is a time-varying system, the system matrices A, B1,
B2, and C are particularized at a reference time tref for control design. The ψ + q0

subsystem in (5.17)-(5.12) is given by

˙̃ψ = Aψψ̃ +Bψ

[
P̃NBI(t)

P̃EC(t)

]
, q̃0 = Cψψ̃, (5.18)

where ψ̃ , ψ̂ − ψ̄, Aψ ∈ R(N−1)×(N−1) is the subpart of A(tref ) given by its first
N − 1 rows and columns, Bψ ∈ R(N−1)×2 is the subpart of [B1(tref ) B2(tref )] given
its first N − 1 rows, and Cψ ∈ R1×(N−1) is the subpart of C(tref ) given by its first
row. The control law for P̃NBI and P̃EC is given by[

P̃NBI

P̃EC

]
=

[
Kp1

Kp2

]
q̃0 +

[
1/Ti1

1/Ti2

]∫ t

t0

q̃0dt+

[
Td1

Td2

]
dq̃0

dt
, (5.19)
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where Kp1 , Ti1 , Td1 , Kp2 , Ti2 and Td2 are design parameters which are adopted to
obtain a desired response of the closed-loop ψ + q0 subsystem, which is given by

˙̃ψ = [Aψ +BψKpCψ] ψ̃ +BψKiCψ

∫ t

t0

ψ̃dt+BψKdCψ
dψ̃

dt
, (5.20)

where Kp = [Kp1 Kp2 ]T , Ki = [1/Ti1 1/Ti2 ]T , Kd = [Td1 Td2 ]T , and t0 is the
initial time in which the integral of the error starts to be computed. Once that
PNBI = P̄NBI + P̃NBI is computed, PNBI,i are computed using the zero input-torque
condition given by (5.16). However, in general there are 8 NBI’s available, but
the control law (5.19) and the zero-torque condition only impose three constraints,
so five additional conditions/constraints must be specified in order to univocally
determine PNBI,i (i = 1, ..., 8) from PNBI . These additional conditions are based on
the requirements of each particular scenario. An example of the type of conditions
imposed is shown in the simulation studies and experiments reported in [85, 86],
and described in Sections 5.2.6, 5.2.8, and 5.2.9.

5.2.6 Simulation Testing of the q0 Control Law

The simulation study for q0-only control is carried out for a zero input-torque, H-
mode, reverse plasma-current (Ip < 0) scenario in DIII-D (the same as in Sec-
tion 5.2.2). Although the controller is ultimately synthesized from the linear model
(5.18), it is tested based on the nonlinear model (5.9) by means of a COTSIM sim-
ulation which employs the q0 model validated in Section 5.2.2. It can be noted that
there are two controllable inputs (PNBI and PEC) to control only one output (q0).
Also, as the total available energy in the EC launchers (also known as gyrotrons)
during a shot is limited, it may be convenient to use EC only in the most demanding
situations. For such reasons, EC is only used as a backup actuator in this simulation
study, so if PNBI is not saturated, then P̃EC = 0. Therefore, the control law used
in simulation is slightly different from (5.19), as it includes some logic to detect
saturation of PNBI = 0 and set P̃EC = 0.

It is necessary to specify the additional conditions for the zero-input torque
configuration. First, the 150 beamline is only used as a backup line due to its
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aforementioned special characteristics. Then, the controller sets P150L = P150R = 0

unless any of the other NBI fails, and extra power is needed to produce zero NBI
input-torque. Second, in order to obtain real-time q-profile reconstruction in DIII-D
by means of MSE, it is necessary to keep P30L ≥ 1 MW. Then, it is chosen that
the controller keeps P30L = 1 MW. Third, the 30R NBI is not used (P30R = 0) to
reproduce the conditions of shot 163520. Equations (5.16) become

1 MW + P330R = P210L, (5.21)

P330L = P210R. (5.22)

Finally, it is imposed that each group of balanced NBI’s injects the same amount
of power, except if P̃NBI as computed by the control law (5.19) is not high enough
to ensure P30L = 1 MW. In such case, all the power is injected by the first group of
balanced beams (where 30L belongs to) in order to ensure q-profile reconstruction.
All the introduced conditions allow for univocally determining P̃NBI,i(t) (i = 1, ...,
8) once that P̃NBI(t) has been determined from the control law (5.19).

First, an open-loop, feedforward-only simulation is executed with the experimen-
tal inputs PNBI and PEC corresponding to the shot 163520, and the q0 evolution
obtained is denoted by qexp0 . Based on qexp0 , a target q̄0 is computed. The target
q̄0 is taken as +15% of the qexp0 evolution, i.e., q̄0 = 1.15qexp0 . Such choice is based
upon the requirement q0 ≥ 1, necessary to avoid sawtooth instabilities. Second,
a closed-loop simulation with disturbances is executed in which the controller at-
tempts to regulate q0 around q̄0. To make the simulation testing more challenging
for the controller, a fictitious −20% decrease in jBS is introduced during all the
shot, representing some source of unknown variation in the bootstrap current den-
sity. Moreover, a constant −15% disturbance in q0 is introduced between 4 s and 6 s,
emulating some unexpected MHD activity. Finally, an open-loop, feedforward-only
simulation using the previously described disturbances and experimental inputs is
executed to explore the system’s evolution with disturbances but without control.

Fig. 5.3(a) shows the q0 evolution in open loop with disturbances (magenta
dashed-dotted), in open loop without disturbances, qexp0 (black dashed-dotted),
and in closed loop with disturbances (blue solid), together with the target q̄0 (red
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Figure 5.3: Simulation study for q0 control: (a) q0, (b) PNBI and PEC , (c) NBI powers in
closed loop, 1st balanced group: P30L, P330L and P210R, and (d) NBI powers
in closed loop, 2nd balanced group: P330R and P210L.

dashed). Fig. 5.3(b) shows the evolution of PNBI and PEC during the open-loop
and closed-loop simulations (note that PEC is zero in open loop). Fig. 5.3(c) shows
NBI powers in closed loop corresponding to the first balanced group, and Fig. 5.3(d)
shows NBI powers in closed loop corresponding to the second balanced group. As
it can be seen in Fig. 5.3(a), from the initial time till 4 s, the open-loop simulation
with disturbances shows that q0 is smaller than without disturbances, qexp0 . Also,
the controller successfully drives q0 to q̄0 in closed loop till 4 s, when a sudden drop
is suffered because of the constant q0 disturbance introduced at that moment. After
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4 s, the open-loop simulation with disturbances shows a constant drop in q0, while
the closed-loop simulation shows that the controller drives q0 back to its reference
value and is capable of keeping q0 ≥ 1, as desired. As it can be seen in Fig. 5.3(b),
while PNBI is modulated by the controller during the whole shot, PEC is only used
as a backup actuator when PNBI is saturated between the beginning of the shot and
≈ 1.3 s (in order to achieve reference tracking), and between 4 s and ≈ 5.25 s (to
recover from the sudden q0 drop introduced as a disturbance).

5.2.7 q0 + βN Control Design

As reported in [86], a controller for q0 + βN was designed for experimental testing
in DIII-D. The control objective is to drive x = [q0, βN ]T to its nominal trajectory
x̄ = [q̄0, β̄N ]T , or equivalently, x̃ , x − x̄ to zero. Similarly to the q0-only control
case, the control laws for P̃NBI and P̃EC are given by[

P̃NBI

P̃EC

]
= K∗p

[
q̃0

β̃N

]
+K∗i

[ ∫ t
t0
q̃0dt∫ t

t0
β̃Ndt

]
, (5.23)

where K∗p and K∗i are 2 × 2 matrices designed to obtain a desired response of the
closed-loop system, which is given by

˙̃x =
[
A(tref ) +B(tref )K∗pC(tref )

]
x̃+B(tref )K∗i C(tref )

∫ t

t0

x̃dt. (5.24)

The constant matrices K∗p and K∗i ease the implementation of the controller in
the DIII-D PCS. As before, once that PNBI = P̄NBI + P̃NBI is computed, PNBI,i
are computed using the zero input-torque condition given by (5.16) and additional
conditions/constraints.

5.2.8 Simulation Testing of the q0 + βN Control Law

In order to test the q0 + βN controller in simulations before its experimental test-
ing in DIII-D, a simulation study is carried out for the same scenario and using
the same COTSIM models as in Section 5.2.2. In this case, the zero input-torque
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conditions (5.21)-(5.22) are also employed, but PEC is employed without logic to
detect PNBI saturation. First, an open loop simulation is run using essentially3 the
same experimental inputs as in Section 5.2.6 (without disturbances). A reference
is then computed as q̄0 = 1.15qexp0 and β̄N = 1.2βexpN , where βexpN is the open loop
evolution for βN obtained with the experimental inputs from shot 163520. Second,
a closed-loop simulation is executed in which the controller attempts to regulate q0

+ βN around q̄0 and β̄N , respectively.
Fig. 5.4(a) shows the q0 evolution in open loop, qexp0 (magenta dashed-dotted),

and closed loop (blue solid), together with the target q̄0 (red dashed). Fig. 5.4(b)
shows the same signals for βN . Fig. 5.4(c) shows NBI powers corresponding to
the first balanced group, Fig. 5.4(d) shows the NBI powers corresponding to the
second balanced group, and Fig. 5.4(e) shows PNBI and PEC , all in open loop and
closed loop. Note that PEC is zero in open loop, and almost zero for the entire
simulation in closed loop. Good regulation of both q0 and βN can be appreciated,
while maintaining the balanced NBI configuration.

5.2.9 Experimental Testing of the q0 + βN Control Law

The algorithm derived in Section 5.2.7 was experimentally tested in the DIII-D
tokamak in April, 2017. A shot that illustrates the controller’s performance is
170685. Just like the scenario used for model validation and controller simulation
testing, the experimental test was carried out in a reverse-Ip, H-mode scenario. The
NBIs were configured in two groups: 30L and 330L balanced by 210R, and 150R
(330R was not available during the experiment) balanced by 210L. The voltage of
the 150R NBI was adjusted so that P150R = P210L ensured zero input-torque. Also,
in a similar fashion as in the simulation tests, P30L = 1.2 MW and P30R = 0 were
imposed for MSE measurements and q-profile reconstruction.

Fig. 5.5 shows the q0 and βN evolutions with their respective targets during shot
170685, together with the ion toroidal velocity, vφ,i, energy confinement time and

3For numerical reasons, a slightly different initial condition for the experimental inputs (see
Fig. 5.3(b) and Fig. 5.4(e)) is employed to avoid the initial bumps in the q0 evolution in Fig. 5.3(a).
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Figure 5.4: Simulation study for q0 + βN control: (a) q0, (b) βN , (c) NBI powers in
closed loop, 1st balanced group: P30L, P330L and P210R, (d) NBI powers in
closed loop, 2nd balanced group: P330R and P210L, and (e) PNBI and PEC .
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H-factor, τE and HH , NBI torque, TNBI , and total EC and NBI powers, PNBI and
PEC . As shown in Fig. 5.5(a) and Fig. 5.5(b), the controller is capable of regulating
both q0 and βN around their targets during the initial stage of the shot. However, an
NTM develops and possibly locks, see Fig. 5.6. Although the MHD activity starts at
around 1.5 s (see the MHD n = 2 and n = 3 amplitudes in Fig. 5.6(a)), it seems that
the NTM with the highest strength is the one with MHD n = 1 amplitude (most
likely a m/n = 2/1 NTM), which develops at around 1.75 s. The development of
the NTM affects βN , which is decreased (see also the reduction in τE and HH in
Fig. 5.5(d)), but does not seem to have a strong impact on q0, which can still be
kept very close to its target. However, slightly after 2 s, the external saddle loop
differenced (ESLD) signals indicate possible locking of the NTM (as appreciated
by the sudden change in such signals, see Fig. 5.6(b), Fig. 5.6(c) and Fig. 5.6(d)),
and q0 drops and cannot recover despite employing the maximum available PEC , see
Fig. 5.5(f). From Fig. 5.5(c) and Fig. 5.5(e), it can also be seen that when TNBI

is driven to zero, vφ,i substantially decreases (and possibly makes the NTM lock).
Finally, Fig. 5.6(e) and Fig. 5.6(f) show how the controller keeps the balanced NBI
configuration by imposing the conditions P30L + P330L = P210L and P150R = P210L.

5.2.10 Conclusions

A controller for simultaneous regulation of q0 + βN has been designed during this
dissertation work by using approximate linearization techniques. The controller
is specially envisioned for zero NBI torque scenarios. It has been tested both in
simulations using COTSIM and in experiments in the DIII-D tokamak. Although
the controller’s performance seems to be acceptable while MHD instabilities are not
triggered, the experimental results obtained are not totally conclusive due to the
small time window in which the plasma was free of NTMs. As a matter of fact,
the q0 + βN experimental test demonstrates that integrated control strategies will
be required in future tokamaks, as they provide a much better performance than
isolated controllers. In this case, the q0 + βN controller could have been equipped
with an NTM suppression algorithm to allow for better regulation of q0 and βN .
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Figure 5.5: Experimental results for shot 170685: (a) q0, (b) βN , (c) ion toroidal rotation
vφ,i from CER measurements, (d) τE and HH , (e) NBI torque, TNBI , and
(f) PNBI and PEC .
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Figure 5.6: Experimental results for shot 170685: (a) MHD amplitudes, (b), (c) and (d)
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5.3 q-profile + βN Control via Feedback Lineariza-

tion and Lyapunov Redesign Techniques

5.3.1 Modeling of the q + βN Dynamics

The model employed in this Section is basically the one introduced in Chapter 2,
Section 2.2.1 (for q) and Section 2.3.1 (for βN). In order to model uncertainties in
Te and ne, the models given by (2.34) are modified as

Te(ρ̂, t) = T profe (ρ̂)Ip(t)
γPtot(t)

εn̄e(t)
ζ + δTe(ρ̂, t), (5.25)

ne(ρ̂, t) = nprofe (ρ̂)n̄e(t) + δne(ρ̂, t), (5.26)

where δTe and δne are uncertain terms to which a bound can be estimated based on
experimental and physical constraints. Because η and 〈~jni · ~B〉/Bφ,0 are functions of
Te and ne, they can be written as

η(ρ̂, t) = ηnom(ρ̂, t) + δη(ρ̂, t), 〈~jni · ~B〉/Bφ,0(ρ̂, t) = 〈~jni · ~B〉/Bnom
φ,0 (ρ̂, t) + δjni(ρ̂, t),

(5.27)
where ηnom and 〈~jni· ~B〉/Bnom

φ,0 are given by (2.30)-(2.31), and δη and δjni are uncertain
terms to which a bound can be estimated because they are directly related to the
uncertainties in (5.25)-(5.26). The MDE (2.27) can be rewritten as

∂ψ

∂t
=

ηnom

µ0ρ2
bF̂

2ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+ ηnomR0Ĥj

nom
ni + δψ, (5.28)

where δψ is an uncertain term given by

δψ(ρ̂, t) =
δη(ρ̂, t)

µ0ρ2
bF̂ (ρ̂)2ρ̂

∂

∂ρ̂

(
ρ̂Dψ(ρ̂)

∂ψ(ρ̂, t)

∂ρ̂

)
+

R0Ĥ(ρ̂) (ηnom(ρ̂, t)δjni(ρ̂, t) + jnomni (ρ̂, t)δη(ρ̂, t) + δη(ρ̂, t)δjni(ρ̂, t)) . (5.29)

Finally, the 0D balance for W given in equation (2.70) is employed. It can be
noted that uncertainties are found in both the ψ and W subsystems.

A. Pajares 139 Lehigh U.



5.3. q-profile + βN Control via Feedback Linearization and Lyapunov
Redesign Techniques

5.3.2 Model Validation for DIII-D Shot 147634

The nominal model (without uncertainties) given by (5.28)-(2.70) was tailored and
validated for an H-mode, advanced DIII-D scenario (shot 147634) in previous work [18,
90]. This scenario is also employed in this work for control design and simulation
testing, as it represents a feasible scenario in which q-profile + βN may be needed.
Therefore, the model tailoring and validation carried out in [18, 90] is utilized for
this dissertation work.

5.3.3 Reduced Model of the q-profile + βN Dynamics

By employing the definition of the poloidal flux gradient (2.94), taking derivative
with respect to ρ̂ in (5.28), and using the finite differences method over N + 1

nodes (in a similar fashion as in Section 5.2.3, but using θ instead of ψ), the model
composed by (5.28) and (2.70) can be rewritten as,

d

dt

[
W

θ̂

]
=

[
F (W, Ip, PNBI,i, PEC)

G(θ̂, Ip)u(Ip, PNBI,i, PEC)

]
+

[
δW

δ̂θ

]
, (5.30)

where θ̂ = [θ1, ..., θm, ..., θN−1]T is the vector of θ values at the interior discretization
nodes, θm (m = 1, ..., N − 1), δ̂θ = [δθ,1, ..., δθ,N−1]T is the vector of δθ values at
the interior discretization nodes, δθ,m, where δθ = ∂δψ/∂ρ̂, F , −W/τnomE + Ptot,
and u = [uη, uNBI,1, ..., uNBI,NNBI , uEC , uBS]T is the virtual input vector, which is a
function of the physical inputs to the system Ip, PNBI,i (i = 1, ...NNBI), PEC , and
n̄e,

uη = I−3γ/2
p P

−3ε/2
tot n̄−3ζ/2

e , (5.31)

uNBI,i = I
γ(λNB− 3

2
)

p P
ε(λNBI,i− 3

2
)

tot n̄
ζ(λNB− 3

2
)−1

e PNBI,i, (5.32)

uEC = I
γ(λEC− 3

2
)

p P
ε(λEC− 3

2
)

tot n̄
ζ(λEC− 3

2
)−1

e PEC , (5.33)

uBS = I−γ/2p P
−ε/2
tot n̄1−ζ/2

e . (5.34)

The matrix G ∈ R(N−1)×(NNBI+3) was introduced in [87, 88], and is described next.
For convenience, G can be divided into three subparts,

G(θ̂, Ip) = [Gη(θ̂, Ip), Gaux, GBS(θ̂, Ip)]. (5.35)
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The first subpart, Gη ∈ R(N−1)×1, is associated with uη, and is given by

Gη(θ̂, Ip) =



γ1θ1 + β1θ2

α2θ1 + γ2θ2 + β2θ3

...
αN−2θN−3 + γN−2θN−2 + βN−2θN−1

αN−1θN−2 + γN−1θN−1 − βN−1kIpIp


, (5.36)

where γ(·), β(·) and α(·) are constants that depend on the model parameters and
profiles. The second subpart, Gaux ∈ R(N−1)×Naux , is constant in time because it
does not depend on θ. It is associated with uNBI,i and uEC , and is given by

Gaux =



h1
NBI,1 ... h1

NBI,NNBI
h1
EC

h2
NBI,1 ... h2

NBI,NNBI
h2
EC

... . . . ...
...

hN−2
NBI,1 ... hN−2

NBI,NNBI
hN−2
EC

hN−1
NBI,1 ... hN−1

NBI,NNBI
hN−1
EC


, (5.37)

where h(·)
NBI,i and h

(·)
EC are constant parameters that depend on the deposition profiles

associated with the Naux , NNBI + 1 auxiliary sources. The third subpart, GBS ∈
R(N−1)×1, is associated with uBS, and is given by

GBS(θ̂, Ip) =



h1
BS,1

θ1
− h1

BS,2

θ2
1

θ2
2∆ρ̂

h2
BS,1

θ2
− h2

BS,2

θ2
2

θ3−θ1
2∆ρ̂

...
hN−2
BS,1

θN−2
− hN−2

BS,2

θ2
N−2

θN−1−θN−3

2∆ρ̂

hN−1
BS,1

θN−1
− hN−1

BS,2

θ2
N−1

−kIpIp−θN−2

2∆ρ̂


, (5.38)

where hBS,(·) are constants that depend on the model profiles and parameters related
to the bootstrap current term. The relationship between the α(·), β(·), γ(·), and h(·)

functions and the MDEmodel profiles and parameters can be found in Appendix E.1.
Although θ and W compose the system’s state vector, the outputs of interest

are q and βN . The relationship between q and θ can be easily obtained from their
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definitions, equations (2.12) and (2.94), as

q = −Bφ,0ρ
2
b ρ̂

θ
, (5.39)

whereas the relationship between W and βN is given by (5.8). Hence, the system’s
output equation can be written as[

βN

q̂

]
=

[
h1(W, Ip)

h2(θ̂)

]
, (5.40)

where h1 =
4
3
µ0Wa

Bφ,0IpVp
, h2 is defined by (5.39), and q̂ is the vector of q values at the in-

terior discretization nodes. As introduced above, the controllable inputs considered
in this Section are Ip, PNBI,i (i = 1, ...NNBI), and PEC , whereas n̄e is considered as
a non-controllable input to the system.

Finally, the MDE boundary condition at ρ̂ = 1, (2.28), determines the evolution
of the edge safety factor, qedge. The boundary condition (2.28) and the relationship
between θ(ρ̂ = 1) , θN and qedge, equation (2.118), can be rewritten as

θN = −kIpIp, qedge = −Bφ,0ρ
2
b

θN
. (5.41)

5.3.4 Boundary Control (qedge Control) by Means of Ip Mod-

ulation

The first step in the control design is to synthesize a control law for Ip in order to
regulate qedge around a desired target value, q̄edge, or equivalently, to regulate θN
around a desired value θ̄N = −Bφ,0ρ

2
b/q̄edge. From (5.41), it can be seen that if Ip is

taken as
Ip = − θ̄N

kIp
=

Bφ,0ρ
2
b

kIp q̄edge
, (5.42)

then qedge = q̄edge, fulfilling the desired control objective. As long as q̄edge is known
a priori, the control law (5.42) can actually be seen as a feedforward control law.
This is due to the fact that qedge has no dynamics in this model, as it can be seen
from (5.41).

A. Pajares 142 Lehigh U.



5.3. q-profile + βN Control via Feedback Linearization and Lyapunov
Redesign Techniques

5.3.5 Energy Control (W Control) by Means of Ptot Modula-

tion

The second step in the control design is to synthesize a control law for Ptot in order to
regulateW around a desired target value, denoted by W̄ , or equivalently, to regulate
βN around a desired target value given by β̄N ,

4
3
µ0W̄a

Bφ,0IpVp
. From this definition for β̄N ,

it is straightforward to see that q̄edge and β̄N are not independent because Ip is given
by (5.42). Thus, W is employed instead of βN for control design, because qedge does
not enter its definition. Lyapunov theory and redesign techniques are employed for
the nominal and robust control laws, respectively (see Appendices C.1.2 and C.2.2,
and/or [65]).

The derivation of the nominal control law for W follows the same ideas as the
derivation of the E controller in Section 4.4.1. First, the nominal W -subsystem
(δW = 0) is considered,

dW

dt
= − W

τnomE

+ Ptot , uP , (5.43)

where uP , − W
τnomE

+Ptot is a virtual input defined just for the purpose of the control
law derivation. If the right hand side of (5.43) is set as

unomP = − W

τnomE

+ Ptot = −KEW̃ +
dW̄

dt
, (5.44)

where KE is a design parameter and W̃ , W − W̄ , then (5.43) is reduced to
dW̃/dt = −KEW̃ , which ensures exponential stability of the nominalW -subsystem.
The nominal energy confinement time, τnomE , is a function only of the input Ptot
(it has to be kept in mind that the control law (5.42) determines Ip, and that
the machine parameters in (2.65) are assumed to be constant), thus the nonlinear
equation (5.44) allows for computing the value of Ptot that stabilizes the nominal
W -subsystem. Such value is denoted as P nom

tot .
In the presence of the uncertainty δW , an extra term urobP is added to unomP , so

that uP = unomP + urobP makes the W -subsystem robustly stable. The extra term
urobP is designed using Lyapunov redesign techniques. The W -subsystem dynamics
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in (5.30) can be rewritten as

dW̃

dt
= −dW̄

dt
− W

τnomE

+ Ptot + δW , −dW̄
dt

+ uP + δW , (5.45)

where the definition of W̃ and uP have been employed. Using the Lyapunov function
VE = 1

2
W̃ 2, it is found that

V̇E = W̃

(
−dW̄
dt

+ unomP

)
+ W̃

(
urobP + δW

)
= −KEW̃

2 + W̃
(
urobP + δW

)
, (5.46)

where (5.44) has been employed. Taking urobP = −ηW W̃ , the second term on the
right hand side of (5.46) becomes

W̃
(
urobP + δW

)
= −W̃ 2ηW + W̃ δW ≤ −W̃ 2ηW + |W̃ ||δW |, (5.47)

which is ≤ 0 as long as ηW ≥ |δW |/|W̃ |. If that is the case, the W -subsystem
dynamics remains exponentially stable in the presence of δW . If an upper bound to
δW is known, denoted by δmaxW , then the control law

urobP = −δmaxW

W̃

|W̃ |
(5.48)

ensures the global exponential stability of the W subsystem. The robust control
law (5.48) needs to be modified to avoid division by zero when |W | → 0. It can be
shown that the control law

urobP = −δmaxW

W̃

|W̃ |
, if δmaxW |W | ≥ ε, (5.49)

urobP = −(δmaxW )2 W̃

ε
, if δmaxW |W | < ε, (5.50)

where ε→ 0 is a design parameter, ensures |W̃ | ≤ f(ε), where f is a class K function
of ε.

Finally, Ptot can be obtained from (5.44) and (5.49)-(5.50) as

− W

τnomE

+ Ptot = −KEW̃ +
dW̄

dt
− δmaxW

W̃

|W̃ |
, if δmaxW |W̃ | ≥ ε (5.51)

− W

τnomE

+ Ptot = −KEW̃ +
dW̄

dt
− (δmaxW )2 W̃

ε
, if δmaxW |W̃ | < ε. (5.52)
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5.3.6 Analysis of the Nominal q-subsystem for Feedback Lin-

earization

In this Section, the nominal θ̂-subsystem in (5.30) (δ̂θ = 0) is studied in order to
determine if a feedback-linearization control law for the interior nodes of the q profile
can be found together with the Ip control law (5.42) for qedge control and the Ptot
control law (5.51)-(5.52) for W (or βN) control. Through feedback linearization,
a change of variables z = T (θ̂) and/or a control law u = r(θ̂, v), where v is an
auxiliary input-variable, are sought so that the θ̂ dynamics can be rewritten as a
linear system [65],

dz

dt
= Az +Bv. (5.53)

First, the θ̂-subsystem in (5.30) is rewritten as explained next. Because Ip is deter-
mined by (5.42), Ptot is determined by (5.51)-(5.52), and n̄e is non-controllable, it is
found that uη and uBS in (5.31) and (5.34) are totally determined at each time step.
Therefore, the only virtual inputs left for interior q-profile control are uNBI,i and
uEC , although they are not independent due to the constraint imposed by the Ptot
control law, (5.51)-(5.52). Thus, it is convenient to rewrite the nominal θ̂-dynamics
(5.30)-(5.38) as

Gaux[uNBI,1, ..., uNBI,NNBI , uEC ]T =
dθ̂

dt
− [Gηuη +GBSuBS]. (5.54)

Next, Gaux is analyzed. If an inverse G−1
aux exists, then the nominal feedback lin-

earization problem could be solved with z = θ̃ , θ̂ − θ̄ (where θ̄ is the target θ
profile, related to the target q profile, q̄, by θ̄ = −ρ2

bBφ,0ρ̂/q̄) just by setting

[uNBI,1, ..., uNBI,NNBI , uEC ]T =G−1
aux

[
−(Gηuη +GBSuBS)+ Aθ̃+Bv+

dθ̄

dt

]
. (5.55)

However, an issue arises if a control law like (5.55) is employed. It must be noted
that Gaux may not be square, so its inverse would not exist. One may be tempted
to easily solve this inconvenience by doing the finite-differences discretization over
N − 1 = Naux interior nodes. However, it has to be taken into account that only
Naux−1 virtual inputs are independent due to the Ptot control law, which acts as an
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extra constraint. This implies that (5.55) is in fact an over-constrained problem, so
feedback linearization would only be achieved in an approximate fashion (as in [87]).
The over-constrained nature of the problem just confirms that qedge, W (or βN), and
q at Naux interior nodes cannot all be controlled simultaneously with the available
actuators4. To solve this issue, (5.55) is modified by embedding the Ptot control law
within the feedback linearization scheme as

[
G∗aux

1...1

]
PNBI,1

...
PNBI,NNBI

PEC

 =

[
−(Gηuη +GBSuBS) + Aθ̃ +Bv + dθ̄

dt

Ptot

]
, (5.56)

where G∗aux[PNBI,1, ..., PNBI,NNBI , PEC ]T = Gaux[uNBI,1, ..., uNBI,NNBI , uEC ]T , with
Gaux ∈ R(Naux−1)×(Naux−1) (i.e., discretizing over N − 1 = Naux − 1 nodes instead
of Naux nodes), and Ptot is the value obtained from (5.51)-(5.52). This results in a
square system with Naux unknowns and equations from which values of PNBI,i and
PEC can be determined for simultaneous βN + q-profile control over Naux−1 nodes.
Therefore, (5.56) defines the feedback-linearization control law once A, B, and the
auxiliary input-variable v are specified (see Sections 5.3.7 and 5.3.8).

Still, for the control law (5.56) to make sense, the matrix

G∗ =

[
G∗aux

1...1

]
, (5.57)

must be full rank, i.e., the model deposition profiles associated with each NBI and
EC, jdepaux,i (see equation (2.32)), must produce a full rank G∗ matrix. During the
control design, it is necessary to make sure that the considered NBI and EC sources
have different enough deposition profiles that produce linearly independent columns
in G∗ (this idea was first considered for DIII-D in [88], but using the original matrix
G). If that is not the case, then the NBI and EC sources must be “grouped” so that
their deposition profiles compose a linearly independent set of vectors and G∗ is full

4This conclusion could have also been hinted by inspecting the number of controllable inputs
available for inner q-profile control (Naux − 1) vs the to-be-controlled variables (Naux).
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rank. In the case in which all the auxiliary sources have the same deposition profile,
then at least one group must exist. Such case would correspond to having just one
controllable input (the total power, Ptot), thus it would not be possible to combine
interior q-profile control with boundary (qedge) and diffusivity (βN) control. This
would not be an issue of the control algorithm itself, but just a lack of actuation
capability for q-profile control within a given tokamak or scenario.
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Figure 5.7: Deposition profiles for the auxiliary sources in DIII-D tailored to shot 147634.

An example of deposition profiles for NBI and EC is shown in Fig. 5.7 for DIII-D
shot 147634. It can be seen that co-current on-axis NBI, co-current off-axis NBI,
and EC have linearly independent deposition profiles. However, the counter-current
NBIs have the same deposition profile as the co-current on-axis NBIs. Therefore,
the counter-current NBIs and co-current on-axis NBIs are grouped together, and
NNBI = 2 (Naux = 3) in this scenario.

5.3.7 Nominal q-profile Control by Means of Feedback Lin-

earization

Assuming a careful control design with a full rank G∗ matrix, the control law (5.56)
reduces the nominal θ-subsystem (δ̂θ = 0) to equation (5.53) with z = θ̃. A simple
state-feedback control law,

v = −Kθ̃, (5.58)
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where K ∈ R1×(Naux−1) is a design matrix, reduces (5.53) to

˙̃θ = (A−BK)θ̃. (5.59)

Without loss of generality, it is possible to set A = 0 and B = I (0 and I are the
zero and identity matrices, respectively, with the correct dimensions). The matrix
K can be designed by means of any pole-placement technique to stabilize the θ̃
evolution (note that this is a linear system, so it would be exponentially stable as
well, see Appendices C.1.1 and C.1.2, and/or [65]). It must be taken into account
that, although (5.56) always has a solution for PNBI,i (i = 1 ,..., NNBI) and PEC , it
may not be within the feasible set due to physical actuation limits. A careful control
design of the matrix K together with a reasonable choice of θ̄ must be carried out
to avoid actuator saturation for too long periods of time, and the poor performance
that it may imply.

As a summary, the solution of the system (5.56) with v given by (5.58) defines
the nominal feedback-linearization control law.

5.3.8 Robust q-profile Control by Means of Lyapunov Re-

design

In this section, the uncertainty in the θ-subsystem is not zero (δ̂θ 6= 0). The control
law is modified by means of Lyapunov redesign techniques (see Appendices C.2.1
and C.2.2, and/or [65]) so that the θ-subsystem is stabilized even in the presence
of this uncertainty. Using (5.56), equation (5.53) with z = θ̃ and δ̂θ 6= 0 becomes

˙̃θ = Aθ̃ +Bv + δ̂θ, (5.60)

and taking A = 0, B = I as for the nominal control law, it is found that

˙̃θ = v + δ̂θ. (5.61)

If v is taken as

v = −

(
δ̂maxθ

‖θ̃‖2

+K

)
θ̃, (5.62)
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where δ̂maxθ > 0 is the maximum 2-norm attainable for δ̂θ, then using Vθ = 1
2
‖θ̃‖2

2

yields

V̇θ = θ̃(v + δ̂θ) = −K‖θ̃‖2
2 − δ̂maxθ

‖θ̃‖2
2

‖θ̃‖2

+ δ̂θθ̃ ≤ −K‖θ̃‖2
2, (5.63)

thus the system remains exponentially stable despite δ̂θ 6= 0. The robust control
law is slightly modified when ‖θ̃‖2 → 0 to avoid division by zero. Following similar
arguments as in Appendix C.2.2 or [65], it can be shown that the control law

v = −
(
δmaxθ

‖θ̃‖2

+K

)
θ̃, if δmaxθ ‖θ̃‖2 ≥ ε∗, (5.64)

v = −

(
(δmaxθ )2

ε∗
+K

)
θ̃, if δmaxθ ‖θ̃‖2 < ε∗, (5.65)

where ε∗ → 0 is a design parameter, ensures ‖θ̃‖2 < f ∗(ε∗), where f ∗ is a class K
function of ε∗.

The solution of the system (5.56) with v given by (5.64)-(5.65) defines the robust
feedback-linearization control law.

5.3.9 One-Dimensional Simulation Study

In this section, a simulation study is presented in which the controller is tested in
COTSIM using full 1D simulations for both the MDE, Section 2.2.1, and EHTE,
Section 2.2.2. The electron density ne is estimated using a 0.5D model as shown
in equation (2.34). The simulation scenario corresponds to DIII-D shot 147634.
Three groups of auxiliary sources are considered, i.e., Naux = 3. Those groups
are on-axis NBI’s (whose power is denoted by PNBI,ON = P30L/R + P330L/R, as
it comprises the 30L, 30R, 330L and 330R NBI’s), off-axis NBI’s (whose power
is denoted by PNBI,OFF = P150L/R, as it comprises the 150L and 150R NBI’s),
and EC. The counter-current NBIs available in DIII-D (210L and 210R) are not
used. This choice for the NBI groups ensures that G∗ is always full rank, and
that the feedback-linearization control law (5.56) is always defined, as described in
Section 5.3.6. Thus, 2 interior nodes of the q profile are controllable. The controller
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is configured to control q at the nodes ρ̂ = 0.1 and ρ̂ = 0.4, although any other two
nodes could have been chosen instead.

For this simulation study, first an open-loop, feedforward-only (FF) simulation
is run using the experimental inputs from shot 147634. The feedforward evolutions
for q and βN are denoted by qFF and βFFN , respectively. Second, based on that
feedforward simulation, targets for q and βN are created (i.e., q̄ and β̄N). Such
targets are given by

q̄ = (1.09− 0.03ρ̂)qFF , β̄N = 1.06βFFN , (5.66)

i.e., it is desired that βN has an increase of +6% when compared to shot 147634
while increasing q and modifying its shape. The q profile is increased by +9% at
the center and +6% at the edge, and its shape is modified linearly in ρ̂. Finally, a
feedforward + feedback (FF + FB) simulation is run in which the controller tries
to drive q and βN to the desired targets.

Fig. 5.8 shows the q-profile evolution at fixed points in space, whereas Fig. 5.9
shows the q profile at given instants in time. Both the FF-only and FF+FB evolu-
tions are shown together with the target q̄. Fig. 5.10 shows the qedge and Ip evolu-
tions in FF-only and FF+FB, together with the target q̄edge. Fig. 5.11 shows the βN
and Ptot evolutions in FF-only and FF+FB, together with the target β̄N , whereas.
Fig. 5.12 shows the NBI power (P30L/R , P30L +P30R, P330L/R , P330L +P330R, and
P150L/R , P150L + P150R) and PEC evolutions in FF-only and FF+FB simulations.

Fig. 5.8 and Fig. 5.9 demonstrate the capability of the controller to modify the
q-profile shape. As it can be seen in Fig. 5.12, PNBI,ON = P30L/R+P330L/R is initially
decreased by the controller in the FF + FB case with respect to the FF-only case
until around t = 1 s, while PNBI,OFF = P150L/R and PEC are increased, in order to
increase q in the central region (ρ̂ / 0.5, see also Fig. 5.8 at t = 0.6 s). At the same
time, Ip is reduced to increase qedge, as shown in Fig. 5.10. This increase in qedge

raises q in the region ρ̂ ' 0.75, so the region ρ̂ = (0.5, 0.75) is not initially driven
to the target in FF + FB as fast as the other regions because of a lack of actuation
capability (interior actuation focuses on ρ̂ = 0.1 and ρ̂ = 0.4 and boundary actuation
focuses on ρ̂ = 1). As the discharge evolves in FF + FB, the change in qedge caused
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Figure 5.8: Time evolution for q at ρ̂ = (0.10, 0.25, 0.40, 0.70) in FF-only (dashed-dotted
magenta) and FF + FB (solid blue), together with the target q̄ (dashed red).

by boundary control (see Fig. 5.10) diffuses further into the plasma core, raising the
q-profile in ρ̂ ∈ (0.5, 0.75) as well.

Fig. 5.11 shows that, initially, βN is increased in the FF + FB case with respect
to the FF-only case with a lower Ptot, mainly due to the Ip decrease, and also possibly
because of a decrease in χe in the region ρ̂ / 0.4 due to the increase in dq/dρ̂ (see
Fig. 5.13 and Fig. 5.14). However, after t = 1 s, χe increases again due to the higher
q and higher pe (see Fig. 5.15), and Ptot must be increased in order to track βN . From
there and until the end of the shot, PNBI,(·), PEC , and Ip are regulated to achieve
simultaneous βN + q-profile tracking. The input PEC is saturated from t = 2.4 s
until the end of the shot, as in the FF-only shot. The input P330L/R is saturated
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Figure 5.9: Comparison of q profiles at t = (0.6, 1.5, 2.5, 4.5) s in FF-only (dashed-dotted
magenta) and FF + FB (solid blue), together with the target q̄ (dashed red).
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Figure 5.10: Time evolution for qedge and Ip in FF-only (dashed-dotted magenta) and
FF + FB (solid blue), together with q̄edge (dashed red).
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Figure 5.11: Time evolution for βN and Ptot in FF-only (dashed-dotted magenta) and
FF + FB (solid blue), together with the target β̄N (dashed red).
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Figure 5.12: Time evolution for PEC and PNBI,(·) in FF-only (dashed-dotted magenta)
and FF + FB (solid blue).
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Figure 5.13: Comparison of χe profiles at t = (0.7, 1.3, 2.5, 4.5) s in FF-only (dashed-
dotted magenta) and FF + FB (solid blue).

too for a short period of time around t ≈ 3 s. The other inputs do not saturate
during the simulation. In any case, higher PNBI,(·) and PEC (and therefore, higher
Ptot) are required to track β̄N and q̄. A decrease in dq/dρ̂ is achieved, as shown
in Fig. 5.14, demonstrating again the controller’s capability to change the q-profile
shape. This should also enhance the plasma confinement by means of χe. However,
the improvement caused by dq/dρ̂ does not seem to be enough to compensate for
the decrease in χe caused by the higher q and pe. Despite this, the control objective
is fulfilled and good performance is achieved.
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Figure 5.14: Comparison of dq/dρ̂ at t = (0.7, 1.3, 2.5, 4.5) s in FF-only (dashed-dotted
magenta) and FF + FB (solid blue) for ρ̂ ≤ 0.4.

5.3.10 Conclusions

Regarding the feedback-linearization analysis, a few interesting conclusions can be
drawn. The first, most evident conclusion is that the number of controllable nodes
for q-profile control + βN control is not only limited by the number of available
auxiliary sources whose power can be controlled individually, but also by the shape
of the deposition profiles of such sources. If W + qedge are controlled by Ip and
Ptot but the auxiliary sources do not have different deposition profiles, then it is
not possible to directly control the q profile at any inner node. This happens be-
cause, according to the model employed for control design, both Ip and Ptot would
univocally determine the current diffusion rate by means of the plasma resistivity
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Figure 5.15: Comparison of pe profiles at t = (0.7, 1.3, 2.5, 4.5) s in FF-only (dashed-
dotted magenta) and FF + FB (solid blue).

η, as well as the non-inductive current contribution, jni, and therefore βN + qedge

control and interior q-profile control could not be carried out independently. Even
if qedge is not directly controlled and Ip is used for interior q-profile control instead,
the effect of Ip on the interior q profile would be limited by diffusion. As introduced
before, Ip modulation may be limited by technological constraints (such as the cur-
rent through the poloidal coils) and physical constraints (MHD instabilities), so it
is normally desired that Ip is approximately constant during the flat-top phase, and
it may not be the best way to control the q profile at the plasma core.

A second conclusion is that G∗ is a tensor relating the P(·) subspace ((·) =
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NBI, i or (·) = EC) and the ˙̂
θ subspace. This is an interesting interpretation, as

studying G∗ in terms of its singular values indicates the input directions in which
q-profile control can be carried out most efficiently, the output directions in which
the q profile is more easily controllable, and the maximum (or minimum) achievable
time-derivative for θ̂. Also, the image of the linear transformation G∗ : P(·) →

˙̂
θ

subject to physical actuator constraints determines the reachable set of θ profiles
(and therefore, q profiles) for given qedge and βN values. Such tool may be of great
interest for tokamak-scenario planning and development.
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Chapter 6

Integrated Magnetic and Kinetic

Control: Individual Scalars Control

6.1 Introduction and Previous Work

As introduced earlier during this dissertation, some plasma profiles that are of in-
terest in nuclear fusion research are the ion and electron thermal energy-density
profiles, denoted by Ei and Ee respectively (see equations (2.21)), the ion toroidal
angular-velocity profile, ωφ (see equation (2.52)), and the safety factor profile, q (see
equation (2.12)). Because Ei and Ee are directly proportional to niTi and neTe, re-
spectively, it is desired that Ei and Ee are as high as possible for long periods of time
so that the triple product of density, temperature and τE is within the necessary re-
quired values to allow for fusion conditions (see Lawson’s criteria, equation (1.11)).
Moreover, both the ωφ and q profiles have a close relationship with the confinement
characteristics, MHD stability, and steady-state operation of tokamak plasmas. For
example, it has already been introduced that some particular q-profile shapes (with
low or negative spatial gradient, which is characterized by the magnetic shear, s) and
ωφ profiles are associated with the development of ITBs in some scenarios, which
improve the plasma confinement. However, the physical mechanisms behind the
ITB formation and their relationship with s and ωφ are not completely understood
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so far. In addition, the most common MHD instabilities found in tokamaks are also
related to Ei, Ee, ωφ and q (see Fig. 1.8), such as NTMs, RWMs, and ELMs.

As a result, active control of the Ei, Ee, ωφ and/or q profiles are problems of
significant interest in nuclear fusion research. Nonetheless, simultaneous control
of these profiles is a big challenge due to the limited actuation capability existing
in a tokamak. Instead, regulating a particular set of scalar magnitudes (such as
global magnitudes related to the aforementioned profiles, or values of those profiles
at particular spatial points) may be a more attainable control problem. In this
Section, such individual-scalar control problem is tackled. The individual scalars
considered are the stored thermal energy, W (related to Ei and Ee, see equation
(2.22)), the central and edge safety factors, q0 and qedge (i.e., the value of q at the
magnetic axis and plasma edge, respectively, see equations (2.93) and (2.118)), and
the average ion toroidal-rotation frequency, Ωφ (related to ωφ, see equation (2.126)).

To the author’s knowledge, there is no previous work on integrated control of
individual scalars related to all energy, rotation, and safety factor simultaneously.
Previous work on simultaneous rotation (either ωφ or Ωφ) and W control can be
found in [91–93], whereas work on simultaneous control of some scalar or profile
related to the plasma energy (either W , βN , or Te) and the q profile can be found
in [81, 83, 84, 94].

In this Chapter, the work in [95–97] is reported. The 0D nonlinear, coupled mod-
els of the q0, qedge, W and Ωφ dynamics (see Chapter 2, Section 2.3) are employed
to synthesize controllers for the regulation of the individual scalars. A nonlinear,
robust design that makes use of Lyapunov redesign techniques is employed to handle
the model uncertainties. The actuators considered in the individual-scalars control
problem are NBI, EC, and Ip. As it has already been introduced thoroughly during
this dissertation, the coupled nature of the plasma dynamics brings up the issue
of the integration of controllers that are initially designed for different and specific
control objectives. It is proposed that the controllers are integrated by means of an
actuator manager that takes the form of an optimization problem. Such actuator
manager allows for a great flexibility to include additional constraints in the opti-
mization problem, and permits the realization of the two actuator sharing strategies
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envisioned for ITER: simultaneous multiple mission (SMM) sharing and repurposing
(RP) sharing (see Section 1.3.5).

This Chapter mainly focuses on testing the SMM sharing capabilities of the
actuator manager proposed, whereas Chapter 7 focuses on testing its RP sharing
performance for simultaneous profile control (alternatively, individual-scalar control)
and NTM suppression.

6.2 Modeling of the Individual Scalars Dynamics

The model employed is introduced in Chapter 2, Sections 2.3.1 (for W ), 2.3.4 (for
q0), 2.3.5 (for qedge), and 2.3.6 (for Ωφ). The controllable inputs considered are
PNBI,i, PEC , and Ip, i.e., the in-vessel and/or NRMF coils are not employed, and
Icoil = 0 and INRMF = 0 is set always.

The state-space model for the system is given by

ẋ =


fq0(x, u, t, δ)

fqedge(x, u, δ)

fW (x, u, t, δ)

fΩφ(x, u, t, δ)

 , (6.1)

where x = [q0, qedge,W,Ωφ]T is the state vector, u = [Ip, PNBI,1, ..., PNBI,NNBI , PEC ]T ∈
R(NNBI+2)×1 is the controllable-input vector, δ = [δq0 , δkIp , δW , δΩφ ]T is the uncer-
tainty vector, and fq0 , fqedge , fW , and fΩφ are given by (2.116), (2.119), (2.70), and
(2.138), respectively. The explicit dependence with t is due to n̄e, which is assumed
to be a non-controllable input in this individual-scalar control problem.

6.2.1 0D Models Validation for DIII-D Shot 147634

The prediction of the 0D models for individual scalars is compared to TRANSP
data for the DIII-D H-mode discharge 147634. The parameters employed for the 0D
models are R0 = 1.80 m, Bφ,0 = 1.65 T, Hnom

H = 1.4, Vp = 18 m3, kΩ = 1, kint = 3,
and kNBI,i = 2 (kN·m)/MW for on-axis co-current NBI’s (30 and 330 beamlines
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in DIII-D), kNBI,i = 1.4 (kN·m)/MW for off-axis co-current NBI’s (150 beamline
in DIII-D), and kNBI,i = −2 (kN·m)/MW for on-axis counter-current NBI’s (210
beamline in DIII-D). The inputs u and n̄e, and the parameter θ(2∆ρ̂)/θ(∆ρ̂)|nom
correspond to the experimental values from shot 147634. It can be noted that
the value taken for R0 (see Fig. 6.1) is slightly different from the one employed in
previous modeling work (R0 = 1.69 m, see [18, 90]), despite using the same shot
147634. The reason is that such value, which corresponds to the geometric major
radius in DIII-D, is not close to the actual major radius from TRANSP data. Hence,
the 0D models would not produce the best fit to TRANSP data if this value was
used, particularly for the qedge model.
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Figure 6.1: Evolution for R0 from TRANSP corresponding to shot 147634.

Fig. 6.2 shows the time evolution for q0, qedge, W , and Ωφ obtained from the
0D models, compared to TRANSP data. It can be noted that the 0D control-
oriented models approximately replicates the TRANSP data. The main differences
are found in the ramp-up phase for W , q0, and Ωφ, although the qualitative evo-
lution obtained from the 0D models is in agreement with TRANSP. In any case,
the ultimate objective of these control-oriented models is not to reproduce very ac-
curately the experimental data or the prediction of more sophisticated codes, but
to capture the main plasma dynamics in response to different actuators in order to
serve as a tool for control synthesis.
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Figure 6.2: Model validation for q0, qedge, W , and Ωφ dynamics: comparison between
the 0D models and TRANSP evolutions for shot 147634.

6.3 Control Design via Lyapunov Redesign Tech-

niques

In this Section, the control laws for the individual scalars are derived. Lyapunov
redesign techniques are employed for the design of the nominal and robust con-
trol laws, respectively, for each individual scalar (see Appendices C.1.2 and C.2.2,
and/or [65]). Specific actuators are chosen to control each individual scalar, attend-
ing to physical and practical reasons, as follows:

• qedge =⇒ controlled by means of Ip. From equation (2.119), it can be
seen that other potential actuators for qedge control are the vacuum toroidal
magnetic field, Bφ,0, the plasma position (by means of R0, which enters the
definition of kIp , see Section 2.3.5), and the magnetic configuration (by means
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of Ĝ and/or Ĥ, which enter the definition of kIp , or by means of ρb). However,
employing these actuators to regulate qedge may not be the most convenient
approach. First of all, it may be desired that Bφ,0, R0, and the magnetic
configuration are kept as constant as possible during operation, as all these
characteristics are closely related among themselves and normally specified
for a given plasma scenario in order to achieve a desired plasma performance.
Second, there is a limited capability to vary to current driven through the
toroidal coils during a shot, and therefore, there are significant limitations to
modify Bφ,0 as well. Also, it may not possible to modify R0 and/or the mag-
netic configuration in a practical way, or even at all, as the shape and position
controllers existing in current tokamaks are normally designed to maintain a
specific position and shape defined by plasma-performance requirements and
vertical instability avoidance1. Therefore, in this control design, Ip is chosen
as the actuator for qedge control.

• W =⇒ controlled by means of Ptot. From equation (2.70), it can be
seen that Ip, Bφ,0, the plasma shape and position (R0, ε, κ, etc.) and/or n̄e
also affect W and could be used as actuators. However, Ip has been chosen
as the actuator for qedge control, and for the same reasons as in the previous
paragraph, Bφ,0 and the plasma shape/position parameters are not consid-
ered as practical actuators to regulate W . Although n̄e could be considered
as an actuator for W control, it has already been mentioned that accurate
density control is a challenge due to the highly nonlinear dynamics of such
a problem, together with the lack of physical understanding of the particle
transport. Therefore, for the purpose of the individual-scalar control design,
n̄e is considered as a non-controllable input (although it might be separately
controlled, for example, by using a burn controller as the one introduced in
Section 4 for burning plasmas, or simply a density controller for non-burning
plasmas). The total power Ptot is chosen as the actuator for W control.

1In fact, the design of the ITER plasma shape and position control system is not well defined
yet, and its capability to change R0 and/or the magnetic configuration is unclear as of now.
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• Ωφ =⇒ controlled by means of TNBI . From equation (2.138), it can be
seen that variables such as Ip, TNRMF , Tint, mp (related to n̄e by means of
(2.130)) and/or the parameters involved in the τE scaling (Ptot, Bφ,0, R0, ε, κ,
etc.) could be considered as actuators for Ωφ control. As Ip is taken for qedge
control, Ptot is taken forW control, and the reasons previously given to discard
the τE-scaling parameters and n̄e, three actuators are left: TNBI , TNRMF , and
Tint. First, because the NRMFs may be required for other control purposes,
such as ELM suppression, they are not chosen as the primary actuator for Ωφ

control in this control design. Second, it has to be taken into account that
Tint depends on Ip (used for qedge) and W (controlled separately by means of
Ptot), so Ωφ control by means of Tint could only be carried out by driving qedge
and W towards particular target values. In order to avoid such coupling in
the control objectives, Tint is not considered as an actuator for Ωφ control, and
TNBI is chosen instead.

• q0 =⇒ controlled by means of PNBI,i and PEC . From equation (2.116),
it can be seen that three mechanisms can employed to regulate q0: diffusion
(i.e., λdiff,(·) terms), auxiliary-driven current (i.e., λaux,i terms), and bootstrap
current (i.e., λBS,(·) terms). The 0D model employed for q0 indicates that the
inputs to both the diffusion and bootstrap current contributions are Ip, Ptot,
and n̄e (see uη and uBS definitions in (2.104) and (2.106)). As Ip and Ptot

are employed for qedge and W control, respectively, and n̄e is not considered
due to the aforementioned reasons, the diffusion and bootstrap mechanisms
are not considered for q0 control in this Section. Instead, both the diffusion
and bootstrap contributions are considered as given for a particular scenario
with a required Ip (or qedge) and Ptot (or W ) evolutions. The auxiliary-driven
current contribution is a function of PNBI,i and PEC , and it is chosen as the
actuator employed for q0 control.

It must be noted that controlling qedge andW is equivalent to controlling βN (see
equations (2.25) and (2.26)), so the individual-scalar controllers allow for controlling
βN as well.

A. Pajares 164 Lehigh U.



6.3. Control Design via Lyapunov Redesign Techniques

6.3.1 qedge Control by means of Ip

A controller for qedge is designed by employing Ip as the controllable input. The
control objective is to drive qedge to a reference value q̄edge, or alternatively, the error
variable q̃edge , qedge − q̄edge to zero. Instead of qedge, it is convenient to employ θ
at the edge, θN = −Bφ,0ρ

2
b/qedge, for control design (because its dependence with Ip

and kIp is linear, see the first equation in (5.41)). Also, because dIp/dt is present
in (2.119), the discretization dIp/dt ≈ (Ip(t) − I0

p )/∆t is employed in the synthesis
of the controller, where I0

p = Ip(t−∆t) is the value of Ip in the previous controller
sampling-time, and ∆t is the controller sampling-time.

First, the nominal system (δkIp = 0) is considered. A control law Ip = Inomp is
sought. As knomIp

is a constant, (2.119) can be rewritten in terms of θ̃N , θN − θ̄N
with δkIp = 0 as

dθ̃N
dt

= −dθ̄N
dt
− knomIp

Inomp (t)− I0
p

∆t
, fθN (Inomp ), (6.2)

where θ̄N is the reference for θN , which is related to q̄edge as θ̄N = −Bφ,0ρ
2
b/q̄edge. By

setting (6.2) as

fθN (Inomp ) = −KP,θN θ̃N −KI,θN

∫ t

t0

θ̃Ndt, (6.3)

where KP,θN > 0, KI,θN > 0 are design parameters, the θN -dynamics in (6.2) be-
comes

dθ̃N
dt

= −
(
KP,θN θ̃N +KI,θN

∫ t

t0

θ̃Ndt

)
, (6.4)

which is a globally exponentially-stable system (see Appendix C.1.2). The global
exponential stability of the system is in fact true for any valuesKP,θN > 0,KI,θN > 0,
as it is demonstrated in Appendix F.1 by using a Lyapunov function given by

VθN =
1

2
θ̃2
N +

1

2

(
KI,θN +

K2
P,θN

1 +KI,θN

)(∫ t

t0

θ̃Ndt

)2

+
KP,θN

1 +KI,θN

θ̃N

∫ t

t0

θ̃Ndt, (6.5)

which yields

V̇θN = −KP,θNKI,θN

1 +KI,θN

(
θ̃2
N +

(∫ t

t0

θ̃Ndt

)2
)
. (6.6)

A. Pajares 165 Lehigh U.



6.3. Control Design via Lyapunov Redesign Techniques

Thus, the nominal θN -subsystem is reduced to (6.4) as long as Ip = Inomp is set as
defined by (6.2)-(6.3). It is possible to solve for Inomp in (6.2)-(6.3) to obtain the
nominal control law for Ip,

Inomp = I0
p +

∆t

knomIp

(
KP,θN θ̃N +KI,θN

∫ t

t0

θ̃Ndt−
dθ̄N
dt

)
. (6.7)

Second, a robust control law for the uncertain system (δkIp 6= 0) is sought.
Equation (6.2) can be rewritten in the uncertain case as

dθ̃N
dt

= −dθ̄N
dt

+
knomIp

∆t
I0
p −

knomIp

∆t
(Ip + δθN ), (6.8)

where
δθN = (Ip − I0

p )
δkIp
knomIp

+
dδkIp
dt

Ip∆t

knomIp

(6.9)

is a term that bundles all the uncertain terms of the θN -subsystem. To ensure
robustness under δθN 6= 0, a term Irobp is added to Inomp , so that the final control law
is Ip = Inomp + Irobp . Using VθN and (6.8), it is possible to write

V̇θN = −KP,θNKI,θN

1 +KI,θN

(
θ̃2
N +

(∫ t

t0

θ̃Ndt

)2
)
− θ̃N

knomIp

∆t
(Irobp + δθN ). (6.10)

Taking Irobp = ηθN θ̃N , for some positive function ηθN > 0, the second term on the
right hand side of (6.10) can be bounded from below as

θ̃N
knomIp

∆t
(Irobp + δθN ) ≥

knomIp

∆t

(
ηθN θ̃

2
N − |δθN ||θ̃N |

)
, (6.11)

and taking ηθN ≥ |δθN |/|θ̃N |,

knomIp

∆t

(
ηθN θ̃

2
N − |δθN ||θ̃N |

)
≥
knomIp

∆t
(|δθN | − |δθN |) |θ̃N | = 0. (6.12)

Therefore, (6.10) becomes

V̇θN ≤ −
KP,θNKI,θN

1 +KI,θN

(
θ̃2
N +

(∫ t

t0

θ̃Ndt

)2
)
, (6.13)
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showing that (6.8) remains globally exponentially stable if Irobp ≥ |δθN |
θ̃N
|θ̃N |

(see
Appendix C.2.2). If an upper bound to δθN is known, denoted by δmaxθN

, then the
control law

Irobp = δmaxθN

θ̃N

|θ̃N |
(6.14)

ensures the global exponential stability of the uncertain system (6.8). However, the
control law (6.14) is discontinuous at θ̃N = 0. In order to make it continuous, it is
modified as

Irobp = δmaxθN

θ̃N

|θ̃N |
, if δmaxθN

|θ̃N | ≥ εθN , (6.15)

Irobp =
(
δmaxθN

)2 θ̃N
εθN

, if δmaxθN
|θ̃N | < εθN , (6.16)

where εθN → 0 is a design parameter. The control law (6.15)-(6.16) does not ensure
global exponential stability, but it does ensure that θ̃N is bounded by a class K
function of εθN . More details can be found in Appendix C.2.2.

6.3.2 W Control by means of Ptot

A controller forW is designed by using Ptot as the controllable input. For the purpose
of this control law, it is assumed that Ip is fixed2. The control objective is to drive
W to a reference value W̄ , or alternatively, the error variable W̃ , W − W̄ to zero.
The control design in this Section is essentially the same one as in Section 5.3.5, but
adding an integral term in the nominal control law to improve its performance.

First, the nominal system (δW = 0) is considered. A control law Ptot = P nom
tot is

sought. Equation (2.70) can be rewritten in terms of W̃ as

dW̃

dt
= −dW̄

dt
− W̄ + W̃

Hnom
H kI0.93

p P nom
tot

−0.69 + P nom
tot = fW (x, unom, t, 0). (6.17)

2The reason for using this assumption at this point can be hinted from the actuator choice
explained at the beginning of in Section 6.3. However, this assumption can be relaxed, as explained
in Section 6.3.5.
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By setting (6.17) as

fW (x, unom, t, 0) = −KP,W W̃ −KI,W

∫ t

t0

W̃dt, (6.18)

where KP,W > 0, KI,W > 0 are design parameters, the W -dynamics in (6.17)
becomes

dW̃

dt
= −

(
KP,W W̃ +KI,W

∫ t

t0

W̃dt

)
, (6.19)

which is a globally exponentially-stable system (see Appendix C.1.2). The global
exponential stability of the system is in fact true for any values KP,W > 0, KI,W > 0,
as it is demonstrated in Appendix F.1 by using a Lyapunov function given by

VW =
1

2
W̃ 2 +

1

2

(
KI,W +

K2
P,W

1 +KI,W

)(∫ t

t0

W̃dt

)2

+
KP,W

1 +KI,W

W̃

∫ t

t0

W̃dt, (6.20)

which yields

V̇W = −KP,WKI,W

1 +KI,W

(
W̃ 2 +

(∫ t

t0

W̃dt

)2
)
. (6.21)

Thus, the nominal W -subsystem is reduced to (6.19) as long as Ptot = P nom
tot is set

as defined by (6.17)-(6.18). It is not possible to solve explicitly for P nom
tot in (6.17)-

(6.18) due to the nonlinear dependence found, so its value has to be found using
nonlinear solving methods.

Second, a robust control law for the uncertain system (δW 6= 0) is sought. Equa-
tion (6.17) can be rewritten in the uncertain case as

dW̃

dt
= −dW̄

dt
+ (uP + δW ), (6.22)

where

uP , Ptot −
W̄ + W̃

Hnom
H kI0.93

p Ptot
−0.69 (6.23)

is a virtual input defined just for the purpose of this robust law derivation. For the
nominal case, it is found that

uP = unomP = P nom
tot −

W̄ + W̃

Hnom
H kI0.93

p P nom
tot

−0.69 . (6.24)
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To ensure robustness under δW 6= 0, a term urobP is added to unomP , so that uP =

unomP + urobP . Using VW and (6.22), it is possible to write

V̇W = −KP,WKI,W

1 +KI,W

(
W̃ 2 +

(∫ t

t0

W̃dt

)2
)

+ W̃ (urobP + δW ). (6.25)

Taking urobP = −ηW W̃ , for some positive function ηW > 0, the second term on the
right hand side of (6.25) can be bounded from above as

W̃ (urobP + δW ) ≤ −ηW W̃ 2 + |δW ||W̃ |, (6.26)

and taking ηW ≥ |δW |/|W̃ |, then

− ηW W̃ 2 + |δW ||W̃ | ≤ |W̃ |(|δW | − |δW |) = 0. (6.27)

Therefore, (6.25) becomes

V̇W ≤ −
KP,WKI,W

1 +KI,W

(
W̃ 2 +

(∫ t

t0

W̃dt

)2
)
, (6.28)

showing that (6.22) remains globally exponentially stable (see Appendix C.2.2). If
an upper bound to δW is known, denoted by δmaxW , then the control law

urobP = −δmaxW

W̃

|W̃ |
(6.29)

ensures the global exponential stability of (6.22). However, the control law (6.29) is
discontinuous at W̃ = 0. In order to make it continuous, it is modified as

urobP = −δmaxW

W̃

|W̃ |
, if δmaxW |W̃ | ≥ εW , (6.30)

urobP = − (δmaxW )2 W̃

εW
, if δmaxW |W̃ | < εW , (6.31)

where εW → 0 is a design parameter. The control law (6.30)-(6.31) does not ensure
global exponential stability, but it does ensure that W̃ is bounded by a class K
function of εW . More details can be found in Appendix C.2.2.
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Finally, P rob
tot can be obtained from (6.24) and (6.30)-(6.31) as

P rob
tot −

W̄ + W̃

Hnom
H kI0.93

p (P nom
tot + P rob

tot )
−0.69 = − W̄ + W̃

Hnom
H kI0.93

p P nom
tot

−0.69 − δ
max
W

W̃

|W̃ |
, (6.32)

if δmaxW |W̃ | ≥ εW , and

P rob
tot −

W̄ + W̃

Hnom
H kI0.93

p (P nom
tot + P rob

tot )
−0.69 = − W̄ + W̃

Hnom
H kI0.93

p P nom
tot

−0.69−(δmaxW )2 W̃

εW
, (6.33)

if δmaxW |W̃ | < εW .

6.3.3 Ωφ Control by means of
∑

i TNBI,i

The average ion toroidal-rotation frequency, Ωφ, is controlled by means of
∑

i TNBI,i ,

TNBI . For the purpose of this control law, it is assumed that Ip and Ptot are fixed3.
The control objective is to drive Ωφ to a reference value Ω̄φ, or alternatively, the
error variable Ω̃φ , Ωφ − Ω̄φ to zero.

First, the nominal system (δΩφ = 0) is considered. A control law TNBI = T nomNBI

is sought. Equation (2.138) can be rewritten in terms of Ω̃φ as

dΩ̃φ

dt
= −dΩ̄φ

dt
− Ω̄φ + Ω̃φ

kΩHnom
H kP−0.69

tot

+
T nomNBI

mpR2
0

+ kint
W̄ + W̃

IpmpR2
0

= fΩ(x, unom, t, 0). (6.34)

By setting (6.34) as

fΩ(x, unom, t, 0) = −KP,ΩΩ̃φ −KI,Ω

∫ t

t0

Ω̃φdt, (6.35)

whereKP,Ω > 0, KI,Ω > 0 are design parameters, the Ωφ-dynamics in (6.34) becomes

dΩ̃φ

dt
= −

(
KP,ΩΩ̃φ +KI,Ω

∫ t

t0

Ω̃φdt

)
, (6.36)

3As in the W case, the reason for using this assumption at this point can be hinted from the
actuator choice explained at the beginning of Section 6.3. However, this assumption can be relaxed,
as explained in Section 6.3.5.
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which is a globally exponentially-stable system (see Appendix C.1.2). The global
exponential stability of the system is in fact true for any values KP,Ω > 0, KI,Ω > 0,
as it is demonstrated in Appendix F.1 by using the following Lyapunov function,

VΩφ =
1

2
Ω̃2
φ +

1

2

(
KI,Ω +

K2
P,Ω

1 +KI,Ω

)(∫ t

t0

Ω̃φdt

)2

+
KP,Ω

1 +KI,Ω

Ω̃φ

∫ t

t0

Ω̃φdt, (6.37)

which yields

V̇Ωφ = −KP,ΩKI,Ω

1 +KI,Ω

(
Ω̃2
φ +

(∫ t

t0

Ω̃φdt

)2
)
. (6.38)

Thus, the nominal Ωφ-subsystem is reduced to (6.36) as long as TNBI = T nomNBI is set
as defined by (6.34)-(6.35). It is possible to solve for T nomNBI in (6.34)-(6.35) to obtain
the nominal control law for TNBI ,

T nomNBI = mpR
2
0

(
Ω̄φ + Ω̃φ

kΩHnom
H kP−0.69

tot

−KP,ΩΩ̃φ −KI,Ω

∫ t

t0

Ω̃φdt+
dΩ̄φ

dt

)
− kint

W̄ + W̃

Ip
.

(6.39)
Second, a robust control law for the uncertain system (δΩφ 6= 0) is sought. Equa-

tion (6.34) can be rewritten in the uncertain case as

dΩ̃φ

dt
= −dΩ̄φ

dt
− Ω̄φ + Ω̃φ

kΩHnom
H kP−0.69

tot

+
1

mpR2
0

Tint +
1

mpR2
0

(TNBI + δΩφ). (6.40)

To ensure robustness under δΩφ 6= 0, a term T robNBI is added to T nomNBI , so that TNBI =

T nomNBI + T robNBI . Using VΩφ and (6.40), it is possible to write

V̇Ωφ = −KP,ΩKI,Ω

1 +KI,Ω

(
Ω̃2
φ +

(∫ t

t0

Ω̃φdt

)2
)

+ Ω̃φ
1

mpR2
0

(T robNBI + δΩφ). (6.41)

Taking T robNBI = −ηΩΩ̃φ, for some positive function ηΩ > 0, the second term on the
right hand side of (6.41) can be bounded from above as

1

mpR2
0

Ω̃φ(T robNBI + δΩφ) ≤ 1

mpR2
0

(
−ηΩΩ̃2

φ + |δΩ||Ω̃φ|
)
, (6.42)

and taking ηΩ ≥ |δΩφ |/|Ω̃φ|, then

− ηΩΩ̃2
φ + |δΩφ||Ω̃φ| ≤ |Ω̃φ|(|δΩφ | − |δΩφ|) = 0. (6.43)
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Therefore, (6.41) becomes

V̇Ωφ ≤ −
KP,ΩKI,Ω

1 +KI,Ω

(
Ω̃2
φ +

(∫ t

t0

Ω̃φdt

)2
)
, (6.44)

showing that (6.40) remains globally exponentially stable (see Appendix C.2.2). If
an upper bound to δΩφ is known, denoted by δmaxΩφ

, then the control law

T robNBI = −δmaxΩφ

Ω̃φ

|Ω̃φ|
(6.45)

ensures the global exponential stability of the uncertain system (6.40). However,
the control law (6.45) is discontinuous at Ω̃φ = 0. In order to make it continuous, it
is modified as

T robNBI = −δmaxΩφ

Ω̃φ

|Ω̃φ|
, if δmaxΩφ

|Ω̃φ| ≥ εΩφ , (6.46)

T robNBI = −
(
δmaxΩφ

)2 Ω̃φ

εΩφ
, if δmaxΩ |Ω̃φ| < εΩφ , (6.47)

where εΩφ → 0 is a design parameter. The control law (6.46)-(6.47) does not ensure
global exponential stability, but it does ensure that Ω̃φ is bounded by a class K
function of εΩφ . More details can be found in Appendix C.2.2.

6.3.4 q0 Control by means of PNBI,i and PEC

The central safety factor, q0, is controlled by means of PNBI,i and PEC , which
determine the auxiliary current-drive term in the q0 model. For the purpose of this
control law, and just like for the design of the Ωφ controller in Section 6.3.3, it is
assumed that Ip and Ptot are fixed4. The control objective is to drive q0 to a reference
value q̄0, or alternatively, the error variable q̃0 , q0 − q̄0 to zero.

First, the nominal system (δq0 = 0) is considered. Equation (2.116) can be
rewritten in terms of q̃0 as

4As before, the reason for using this assumption at this point can be hinted from the actuator
choice explained at the beginning of Section 6.3. However, this assumption can be relaxed, as
explained in Section 6.3.5.
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dq̃0

dt
= −dq̄0

dt
− q0

(
λdiff,1 + λdiff,2

θ2

θ1

∣∣∣∣
nom

)
uη + q2

0FP

− q3
0

(
λBS,1 + λBS,2

θ2

θ1

∣∣∣∣
nom

)
uBS = fq0(x, unom, t, 0). (6.48)

where P = [PNBI,1, ..., PNBI,NNBI , PEC ]T is a vector with the NBI and EC powers
that is defined for the purpose of this control law derivation, and F ∈ R1×NNBI+1 is
a vector whose i-th component, Fi, is given by

Fi , FNBI,i = λNBI,i(I
γ
pP

ε
totn̄

ζ
e)

(−3/2+δNBI)n̄−1
e , i = 1, ..., NNBI , (6.49)

except for the last one, which is given by

FNNBI+1 , FEC = λEC(IγpP
ε
totn̄

ζ
e)

(−3/2+δEC)n̄−1
e . (6.50)

In order to have a single-input single-output (SISO) system for q0 control design,
the scalar magnitude P ∗ , FP is employed as the controllable input instead of the
vector P . A nominal control law P ∗ = P ∗,nom is sought. By setting (6.48) as

fq0(x, unom, t, 0) = −KP,q0 q̃0 −KI,q0

∫ t

t0

q̃0dt, (6.51)

whereKP,q0 > 0, KI,q0 > 0 are design parameters, the q0-dynamics in (6.48) becomes

dq̃0

dt
= −

(
KP,q0 q̃0 +KI,q0

∫ t

t0

q̃0dt

)
, (6.52)

which is a globally exponentially-stable system (see Appendix C.1.2). The global
exponential stability of the system is in fact true for any values KP,q0 > 0, KI,q0 > 0,
as it is demonstrated in Appendix F.1 by using a Lyapunov function given by

Vq0 =
1

2
q̃2

0 +
1

2

(
KI,q0 +

K2
P,q0

1 +KI,q0

)(∫ t

t0

q̃0dt

)2

+
KP,q0

1 +KI,q0

q̃0

∫ t

t0

q̃0dt, (6.53)

which yields

V̇q0 = −KP,q0KI,q0

1 +KI,q0

(
q̃2

0 +

(∫ t

t0

q̃0dt

)2
)
. (6.54)
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Thus, the nominal q0-subsystem is reduced to (6.52) as long as P ∗ = P ∗,nom is
set as defined by (6.48) and (6.51). The nominal control law for P ∗ is obtained from
(6.48) and (6.51) as

P ∗,nom =
1

q2
0

[
−KP,q0 q̃0 −KI,q0

∫ t

t0

q̃0dt+
dq̄0

dt
+ q0

(
λdiff,1 + λdiff,2

θ2

θ1

∣∣∣∣
nom

)
uη

+q3
0

(
λBS,1 + λBS,2

θ2

θ1

∣∣∣∣
nom

)
uBS

]
. (6.55)

Second, a robust control law for the uncertain system (δq0 6= 0) is sought. Equa-
tion (6.48) can be rewritten for the uncertain case as

dq̃0

dt
= −dq̄0

dt
− q0

(
λdiff,1 + λdiff,2

θ2

θ1

∣∣∣∣
nom

)
uη

− q3
0

(
λBS,1 + λBS,2

θ2

θ1

∣∣∣∣
nom

)
uBS + q2

0(P ∗ + δ∗q0), (6.56)

where the δ∗q0 , δq0/q
2
0 is a “virtual” uncertainty vector defined for the purpose of

this control-law derivation. To ensure robustness under δ∗q0 6= 0, a term P ∗,rob is
added to P ∗,nom, so that P ∗ = P ∗,nom + P ∗,rob. Using Vq0 and (6.56), it is possible
to write

V̇q0 = −KP,q0KI,q0

1 +KI,q0

(
q̃2

0 +

(∫ t

t0

q̃0dt

)2
)

+ q2
0 q̃0(P ∗,rob + δ∗q0). (6.57)

Taking P ∗,rob = −ηq0 q̃0, for some positive function ηq0 > 0, the second term on the
right hand side of (6.57) can be bounded from above as

q2
0 q̃0(P ∗,rob + δ∗q0) ≤ q2

0

(
−ηq0 q̃2

0 + ‖δ∗q0‖|q̃0|
)
, (6.58)

and taking ηq0 ≥ ‖δ∗q0‖/|q̃0|, it is found that

− ηq0 q̃2
0 + ‖δ∗q0‖|q̃0| ≤ |q̃0|(‖δ∗q0‖ − ‖δ

∗
q0
‖) = 0. (6.59)

Therefore, (6.57) becomes

V̇q0 ≤ −
KP,q0KI,q0

1 +KI,q0

(
q̃2

0 +

(∫ t

t0

q̃0dt

)2
)
, (6.60)
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showing that the uncertain system (6.56) remains globally exponentially stable (see
Appendix C.2.2). If an upper bound to ‖δ∗q0‖ is known, denoted by δmaxq0

, then the
control law

P ∗,rob = −δmaxq0

q̃0

|q̃0|
(6.61)

ensures the global exponential stability of (6.56). However, the control law (6.61) is
discontinuous at q̃0 = 0. In order to make it continuous, it is modified as

P ∗,rob = −δmaxq0

q̃0

|q̃0|
, if δmaxq0

|q̃0| ≥ εq0 , (6.62)

P ∗,rob = −
(
δmaxq0

)2 q̃0

εq0
, if δmaxq0

|q̃0| < εq0 , (6.63)

where εq0 → 0 is a design parameter. The control law (6.62)-(6.63) does not ensure
global exponential stability, but it does ensure that q̃0 is bounded by a class K
function of εq0 . More details can be found in Appendix C.2.2.

6.3.5 Integration of the Individual-scalar Control Laws

The individual controllers designed in Sections 6.3.1 through 6.3.4 are in principle
decoupled from each other in the sense that, when one controller is carrying out its
own computation, it does not need information about the computation carried out
by the others. However, it can be seen that the controllers in Sections 6.3.2, 6.3.3,
and 6.3.4 employ the same actuators, PNBI,i and PEC , and need a value of Ip to have
a fully defined control law. In addition, Ptot is assumed to be fixed in Sections 6.3.3
and 6.3.4, but those control laws do not ensure that their control requests (T nomNBI +

T robNBI and P ∗,nom + P ∗,rob, respectively) actually fulfill
∑

i PNBI,i + PEC = Ptot.
Therefore, there is in fact a high degree of actuator sharing between these control
laws. In order to employ more than one controller at the same time while ensuring
coherence between the control requests produced by each controller, an integrated
scheme must be designed.

It is proposed that the individual-scalar controllers are interconnected as de-
picted in Fig. 6.3. Each controller can have three statuses: deactivated, activated in
feedforward-only, or activated in feedforward+feedback. The control request that
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qedge
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Figure 6.3: Integration of the individual-scalars controllers.

each controller creates changes according to such status. First, if the qedge controller
is activated in feedforward + feedback, it produces a signal for Ip which is deter-
mined from the control laws (6.7) and (6.15)-(6.16), and a constraint is generated so
that Ip = Inomp + Irobp . If the qedge controller is activated in feedforward-only, then a
constraint is generated so that Ip = IFFp , where IFFp is a feedforward value for Ip. If
the qedge controller is deactivated, then Ip is set as its value at the previous controller
sampling time. The applicable Ip value is then sent to the W controller. If the W
controller is activated in feedforward + feedback, it produces a Ptot signal from the
control laws (6.17)-(6.18) and (6.30)-(6.31), and a constraint is generated so that∑

i PNBI,i + PEC = Ptot. If the W controller is activated in feedforward-only, a con-
straint is generated so that Ptot = P FF

tot , where P FF
tot is a feedforward value for Ptot. If

theW controller is deactivated, then Ptot is set as its value at the previous controller
sampling time, just like for the qedge controller. Both the Ip and Ptot commands are
sent to the Ωφ and q0 controllers. If the Ωφ controller is activated in feedforward +
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feedback, a constraint is generated from the control laws (6.39) and (6.46)-(6.47),
whereas a constraint TNBI = T FFNBI is set if it is activated in feedforward-only. If
it is deactivated, no constraint is generated. For the q0 controller, a constraint is
generated from the control laws (6.55) and (6.62)-(6.63) if the controller is activated
in feedforward + feedback. If activated in feedforward-only, P ∗,nom +P ∗,rob = P ∗,FF

(or its equivalent, FP nom + FP rob = FP FF ) is used as a constraint, whereas no
constraint is generated if deactivated.

Therefore, the integrated scheme with the four individual-scalar controllers shown
in Fig. 6.3 can control any combination of the four individual scalars by generating
a maximum of 4 constraints (3 constraints for PNBI,i/PEC together with 1 con-
straint for Ip). The shape and number of these constraints depends on the activa-
tion/deactivation statuses of the individual-scalar controllers. For example, when
all the controllers are activated in feedforward + feedback, the control algorithm
can be summarized as

Ip = Inomp + Irobp , (6.64)
NNBI∑
i=1

PNBI,i + PEC = P nom
tot + P rob

tot , (6.65)

NNBI∑
i=1

kNBI,iPNBI,i = T nomNBI + T robNBI , (6.66)

NNBI∑
i=1

FNBI,iPNBI,i + FECPEC = F (P nom + P rob), (6.67)

where Inomp , Irobp , P nom
tot , P rob

tot , T nomNBI , T robNBI , P nom and P rob are determined from (6.7),
(6.15)-(6.16), (6.17)-(6.18), (6.30)-(6.31), (6.39), (6.46)-(6.47), (6.55) and (6.62)-
(6.63), respectively. If any controller is activated in feedforward-only instead, the
applicable constraint is substituted by its equivalent feedforward constraint, whereas
if any controller is deactivated, then the applicable constraint is removed.

It can be seen that, by employing fixed values for Ip and Ptot within the con-
straints generated by the Ωφ and q0 controllers (see Sections 6.3.3 and 6.3.4), the
problem becomes linear with respect to PNBI,i and PEC . This reduces the theoret-
ical and computational complexity associated with nonlinear problems. In general,
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the assumption of fixing Ip or Ptot could be relaxed, making (6.64)-(6.67) a nonlinear
system. However, such case is not considered in this work, and for the remaining of
this dissertation, it is assumed that (6.64)-(6.67) is a linear system.

The system (6.64)-(6.67) has 4 equations with n , NNBI + 2 unknowns. The
unknowns are PNBI,i for i = 1, ..., NNBI , PEC , and Ip, i.e., the components of the
controllable input u. The system (6.64)-(6.67) is rewritten in matrix notation as

Au = b, (6.68)

where u is defined in Section 6.2, and A ∈ R4×(NNBI+2) and b ∈ R4×1 are given by

A =


1 0 0 ... 0 0

0 1 1 ... 1 1

0 kNBI,1 kNBI,2 ... kNBI,NNBI 0

0 FNBI,1 FNBI,2 ... FNBI,NNBI FEC

 , b =


Inomp + Irobp

P nom
tot + P rob

tot

T nomNBI + T robNBI

F (P nom + P rob)

 . (6.69)

The solution of (6.68) defines u in the case when all controllers are activated in
feedforward + feedback. A similar system would be obtained if feedforward-only
control laws were employed, as the number of equations and unknowns remains
the same. If any controller is deactivated, then the number of equations decreases.
The number of deactivated controllers is denoted by Ndeac, and the total number of
equations becomes m , 4−Ndeac. In order to generalize (6.68) for the case in which
some controllers may be deactivated, the following notation is employed,

A?u = b?, (6.70)

where A? ∈ R(4−Ndeac)×(NNBI+2) and b? ∈ R(4−Ndeac)×1 are composed of the rows of A
and b in (6.69) which correspond to the activated controllers.

The existence/unicity of the solution of (6.70) depends, as in any other linear
system, on three properties: the rank of A?, the number of unknowns, and the
number of equations. First, the rank of A? is analyzed. By simple inspection of
the rows of A in (6.69), it can be noticed that rank(A?) = m if Ndeac ≥ 2, making
A∗ a full rank matrix. This would correspond to the case in which only 1 or 2
individual scalars are regulated. However, if more scalars are regulated (Ndeac < 2),
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only rank(A?) ≥ 2 is guaranteed and, in general, it cannot be assured that A∗

is full rank. It is desired that A∗ is full rank in order to prevent of the theoreti-
cal and numerical inconveniences associated with solving ill-conditioned problems.
Following similar ideas as in the feedback linearization problem (Section 5.3), the
auxiliary sources of the model can grouped so that they add rank in A, ensuring
rank(A∗) = m. As for the feedback linearization case, there is a physical meaning
for this requirement: auxiliary sources that produce torque or current in a similar or
identical way should not be considered as separate actuators in the control problem.
If the auxiliary sources are grouped so that m > n = NNBI + 2, the system becomes
overconstrained. This indicates that there is not enough controllability within the
tokamak to simultaneously regulate all the requested individual scalars.

The second parameter that defines the existence/unicity of the solution of (6.70)
is the number of unknowns, specified in this case by the number of available actuators
(NNBI + 2 at the most). If Ip is assumed to be available, a maximum to such
parameter is determined by the total number of available auxiliary sources, NNBI+1,
that can be controlled independently within a given tokamak. In addition, NNBI +1

is defined by the requirements introduced to ensure that A is full rank, i.e., the
available auxiliary sources must be grouped according to the torque and current
deposition that they produce. For example, in the DIII-D tokamak, 8 NBIs can be
controlled independently (see Section 5.2.4) in conjunction with EC. All the NBIs
and EC have the same effect on W , but they have different effects on q0 and Ωφ.
The 4 co-current on-axis NBIs have a very similar effect on both q0 and Ωφ, thus
they must be grouped together. The 2 co-current off-axis NBIs form a different
group because their effect on q0 is totally different from the co-current on-axis NBIs
(generally speaking, off-axis injection raises q0 whereas on-axis injection decreases
it), whereas their influence on Ωφ is smaller (off-axis injection produces less torque
than on-axis injection). The 2 counter-current NBIs form another different group
because they produce torque in the opposite direction that the co-current NBIs.
Finally, EC does not affect Ωφ. Therefore, NNBI = 3 in this case, making a total of
4 auxiliary sources, and a total of 5 unknowns if Ip is added.

The third parameter that defines the existence/unicity of the solution of (6.70) is
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the number of equations, defined by Ndeac. Assuming that A∗ is a full rank matrix,
the following cases are found:

• If 2+NNBI > 4−Ndeac (m < n), then (6.68) is an underconstrained system, and
additional constraints must be added to univocally determine u. This indicates
that there are more controllable inputs than to-be-regulated individual scalars.

• If 2+NNBI = 4−Ndeac (m = n), then there are the same number of equations
as unknowns. As the system (6.68) is linear, in principle one could use any
method for linear systems to obtain a unique solution for u.

• If 2 + NNBI < 4 − Ndeac (m > n), the system (6.68) is overconstrained and,
in general, there is no solution. This indicates that there are not enough
controllable inputs to regulate the individual scalars.

6.4 Actuator Management via Optimization

A possible way to solve (6.70) when underconstrained (i.e., 2 + NNBI > 4−Ndeac)
is to rewrite it as an optimization problem. At every controller sampling time, a
cost function of the inputs, J , is minimized while satisfying the activated time-
varying constraints (6.64)-(6.67) imposed by the individual-scalar controllers. Ad-
ditional constraints, such as physical saturation limits and/or control laws for other
scalars/profiles, can be added to the scheme. The optimization problem is modi-
fied in every time step due to the activation/deactivation of the control laws. It is
assumed that this modification is carried out as required by a supervisory system,
which may override and/or remove some of the control laws and/or add additional
constraints. Because of the possibility of modifying the constraints within the opti-
mization problem, this actuator management scheme is very flexible in terms of its
configuration and allows for performing both SMM and RP actuator sharing (see
Chapter 1, Section 1.3.5). However, modifying the constraints has an evident im-
pact on the feasibility of the optimization problem and, therefore, on the actuator
manager performance. The constraints addition/removal must be made in a suitable
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and organized manner that ensures the computational integrity of the scheme while
fulfilling the required control objectives.

Mathematically, the optimization problem is written as,

min
u
J (6.71)

Ip = Inomp + Irobp , (if the qedge controller is activated) (6.72)∑
i

PNBI,i + PEC = P nom
tot + P rob

tot , (if the W controller is activated) (6.73)∑
i

kNBI,iPNBI,i = T nomNBI + T robNBI , (if the Ωφ controller is activated) (6.74)

F


PNBI,1

...
PNBI,NNBI

PEC

 = F (P nom + P rob), (if the q0 controller is activated) (6.75)

u ∈ U + Additional constraints from supervisory system (6.76)

where U is the set of feasible inputs.
An example of possible additional constraints and problem modification is as

follows. Assume that the supervisory system detects a plasma state where NTMs
are close to be triggered, and it is determined that the total power

∑
i PNBI,i +PEC

must be reduced to decrease β (which is directly proportional to W ) and avoid the
onset of the mode. Then, the supervisory system must override the W controller
request by setting a different value of P nom

tot + P rob
tot , for example,∑

i

PNBI,i + PEC =
(
P nom
tot + P rob

tot

)NTM
, (6.77)

where
(
P nom
tot + P rob

tot

)NTM is the value required to decrease β below acceptable limits.
If the NTM actually develops, the available PEC for W control must be modified to
allocate some PEC for mode suppression, for example,

PEC = PNTM
EC + PW

EC , (6.78)

where PNTM
EC is the minimum value required to suppress NTMs, and PW

EC is the
available power forW control. Other options, probably much less practical, would be
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decreasing Inomp + Irobp in (6.72) to increase the whole q profile, or setting PNBI,i ≡ 0

for the i-th NBI to reduce the total available power.

6.4.1 Types of Optimization Problems: Linear and Quadratic

Programming

The nature of the optimization problem is determined by the function J and the
constraints imposed. As introduce above, all the controller constraints (6.72)-(6.75)
are linear with respect to the controllable inputs. If the additional constraints
from the supervisory system (6.76) are linear in Ip, PNBI,i, and PEC (as found, for
instance, in the examples given above, (6.77) and (6.78)), and the cost function J is
chosen linear or quadratic, then (6.71)-(6.76) becomes a linear or quadratic program,
respectively. The theoretical and computational complexity of linear and quadratic
programs is significantly lower than if nonlinear constraints or higher order cost
functions were included, although feasibility is not ensured when arbitrary control
requests and/or additional constraints are imposed.

Nowadays, tokamak experiments often require that the inputs are varied as little
as possible with respect to those employed in a so-called reference shot5. Therefore,
it is chosen that, if a linear cost function is employed, it is taken as

J = cT‖ũ‖1 = c0|Ĩp|+ c1|P̃NBI,1|+ ...+ cNNBI |P̃NBI,NNBI |+ cNNBI+1|P̃EC |, (6.79)

where cT = [c0, c1, ..., cNNBI+1] is a design vector, Ĩp , Ip − Irefp , for a reference
Ip trajectory, P̃NBI,i , PNBI,i − P ref

NBI,i, for some reference trajectories of the NBI
powers, P ref

NBI,i, P̃EC , PEC − P ref
EC , for a reference EC power trajectory P ref

EC , and
ũT , [Ĩp, P̃NBI,1, P̃NBI,2, ..., P̃NBI,NNBI , P̃EC ]. If the cost function is chosen quadratic,
it is taken as

J = ũTQũ, (6.80)
5Some experiments are carried out in a sort of trial-and-error fashion until a desired plasma

evolution is obtained. Once the “trophy” shot is achieved, subsequent shots require that the inputs
are varied as little as possible, in order to facilitate the interpretation of the experimental results.
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where Q ∈ R(NNBI+2)×(NNBI+1) is a design matrix. Thus, if either (6.79) or (6.80)
are employed, and Irefp and P ref

NBI,i/EC are taken as the inputs corresponding to a
reference shot, then the actuator management fulfills the mission of reproducing the
reference shot as closely as possible while keeping active feedback control.

6.4.2 Example: Actuator Management for qedge + W Control

In order to illustrate the characteristics of the actuator management scheme pro-
posed, the problem of simultaneously controlling qedge +W by means of Ip, the total
NBI power, PNBI ,

∑
i PNBI , and total EC power, PEC , is considered. In this case,

NNBI = 1 (all NBIs are considered as a single group) and Ndeac = 2 (the equations
for the Ωφ and q0 controllers are removed), so 2+NNBI > 4−Ndeac is fulfilled. A low
number of variables and constraints is employed for the sake of easing the geometri-
cal interpretation of the optimization problem, but the conclusions obtained can be
directly extended to the case of a higher number of variables and constraints. Also,
no additional constraints from supervisory systems are imposed, but the conclusions
presented here can be easily extended to the case with such additional constraints.

The set of feasible inputs, U , is defined by Ip ∈ [Iminp , Imaxp ], PNBI ∈ [Pmin
NBI , P

max
NBI ],

and PEC ∈ [Pmin
EC , Pmax

EC ], where (·)min and (·)max are the minimum and maximum
saturation values, respectively, for the corresponding input (·). The set U can be
represented in the three-dimensional Ip-PNBI-PEC space as shown in Fig. 6.4. On
the other hand, the constraints arising from the qedge and W controller would be
given by equations (6.72) and (6.73). In this case, the matrix A∗ and vector b∗ in
(6.70) would be composed of only two rows, corresponding to the first two rows
shown in (6.69). Clearly, A∗ is a full rank matrix, and therefore, the solution of
(6.70) is an R3 subset of dimension equal to 2+NNBI−4+Ndeac = 1, i.e., a straight
line (see Fig. 6.4).

Two characteristics of the optimization problem can be inferred. The first one
is that, if the problem has an optimal solution, it must be bounded because the
feasible set (if it exists) must be a bounded set. This is a natural result of imposing
the physical saturation bounds. The second conclusion is that the problem may in
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Ip

PEC

PNBI

PNBI
max

PNBI
min

PEC
min PEC

max

Ipmax

Ipmin

U

Ipnom+Iprob

PNBI + PEC = Ptot
nom + Ptot

rob

Controller constraint

Figure 6.4: Geometrical interpretation of the actuator management problem for qedge +
W control. The problem is always bounded, and it is feasible if the controller
constraint (brown, straight line) intersects the set of physically feasible in-
puts, U (blue prism). The projection of the controller constraint onto the
Ip axis is the controller request, Inomp + Irobp , whereas its projection onto the
PNBI -PEC is also a straight line (plotted in red).

fact be infeasible if the set defined by the controller constraints does not intersect
the set defined by the physical saturation limits. Such infeasibility would be a result
of the controller requesting values of u that exceed the achievable physical limits.
This situation may correspond either to a case in which the controller has too high
gains (i.e., the control design demands too aggressive control actions), or to a case
in which the target is too far from the plasma state (i.e., the control objective
is unrealistic for the existing actuation capability). Whereas the first case clearly
requires a redesign of the applicable controllers, the second case is not a problem of
the control scheme itself, but is just due to a lack of actuation capability to achieve
a given target.

Assuming that a proper control design is carried out, the second case previously
explained still poses the issue of having an actuator manager that does not provide
an optimal solution due to the problem infeasibility. In order to ensure that the
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Ip

Ipmax

Ipmin

Ipnom + Iprob

(feasible)

Ipnom + Iprob

(infeasible)

Ipnom + Iprob

(infeasible)

εIp

εIp

PEC

PNBI

infeasiblefeasible

εPtotPNBI + PEC = Ptot
nom + Ptot

rob + εPtot

PNBI + PEC = Ptot
nom + Ptot

rob

Figure 6.5: Geometrical interpretation of the addition of εIp and εPtot to the optimization
problem, which makes it always feasible.

optimization algorithm always produces an optimal solution, the following method is
proposed. The feasibility within the Ip-subspace can be studied separately from the
feasibility within the PNBI-PEC subspace (the qedge controller only uses Ip, whereas
the W controller only uses PNBI and PEC). If Iminp ≤ Inomp + Irobp ≤ Imaxp , then the
problem is feasible in Ip. However, if Inomp +Irobp violates any of the saturation limits,
the problem becomes infeasible (see Fig. 6.5). It can be seen that “the best” that can
be possibly done is to request Ip = Imaxp if Inomp +Irobp ≥ Imaxp , or request Ip = Iminp if
Inomp + Irobp ≤ Iminp . Thus, by rewriting the constraint for Ip as Ip = Inomp + Irobp + εIp ,
where εIp is a variable whose modulus has to be minimized, the problem is always
feasible in Ip. Regarding the PNBI-PEC subspace, a similar situation is found. If
the straight line PNBI + PEC = P nom

tot + P rob
tot intersects the rectangle limited by

PNBI ∈ [Pmin
NBI , P

max
NBI ], and PEC ∈ [Pmin

EC , Pmax
EC ] (see Fig. 6.5), then the problem

is feasible in PNBI-PEC . However, it may happen that these two subsets do not
intersect at any point, indicating that it is impossible to satisfy both the controller
request and the physical saturation limits. If the controller request is relaxed by
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adding a fictitious variable εPtot ,

PNBI + PEC = P nom
tot + P rob

tot + εPtot , (6.81)

where εPtot has to be minimized (just like εIp in the Ip case), then the optimization
problem is always feasible.

Assuming that the problem always has at least one optimal solution, the two
cases introduced above are considered: a linear programming case (i.e., linear cost
function) and a quadratic programming case (i.e., quadratic cost function). For
Ip, because the qedge controller requests a particular value to track q̄edge, the cost
function choice does not affect its optimal solution, which is either Inomp + Irobp , or
one of its saturation limits, Iminp or Imaxp . Thus, the optimization problem can be
reduced to the PNBI-PEC plane. The linear and quadratic cost functions are given
by

J = c1|P̃NBI |+ c2|P̃EC |, J = Q11P̃
2
NBI +Q22P̃

2
EC +Q12P̃NBIP̃EC , (6.82)

respectively, where Qij are the components of Q.
Fig. 6.6 shows an approximate schematic of the possible different solutions for

the linear J case when C , P nom
tot + P rob

tot − P
ref
tot > 0, where P ref

tot = P ref
NBI + P ref

EC ,
and P ref

NBI and P ref
EC are reference values in the optimization problem for PNBI and

PEC , respectively. If C ≤ 0, the reasoning would be analogous. The diagram
is represented in the P̃NBI-P̃EC plane. The blue box represents the set of feasible
deviations, (̃·), with respect to P ref

NBI and P
ref
EC . The controller constraint is rewritten

as P̃NBI+P̃EC = P nom
tot +P rob

tot −P
ref
tot , C. The linear cost function J can be rewritten

as
J = c1|P̃NBI |+ c2(C − |P̃NBI |) = c1(C − |P̃EC |) + c2|P̃EC |, (6.83)

or equivalently
J = (c1 − c2)|P̃NBI | = (c2 − c1)|P̃EC |. (6.84)

It is well-known from the linear programming theory that (at least one of) the
optimal solution always has to lie on one the vertices of the feasible set. It can
be appreciated that, if c1 > c2, the optimal solution is |P̃NBI | = 0. On the other
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J = PEC  +2PNBI

J =
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J =

J =

~~
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Figure 6.6: Geometrical interpretation of the linear J on the feasible set and optimal
solution.

hand, if c2 > c1, the optimal solution is |P̃EC | = 0. It can be noted that the feasible
set is effectively reduced to the first quadrant when c1 6= c2. This is due to the
existence of the absolute values in J . If no absolute values were present in J , the
optimal solutions would be found at the vertices of the feasible set. The last option
is c1 = c2, in which all feasible solutions are optimal. This is a situation that should
be avoided in the design of the actuator manager, as the control actions may “move”
along the feasible set in a random way at every computation step. As a summary,
it can be seen that by choosing ci in a particular manner, the actuator manager can
prioritize or penalize particular control actions, and therefore, allows for configuring
the way in which the actuator manager uses the available actuators.

For the quadratic case, Fig. 6.7 shows an approximate schematic of the possible
different solutions. For simplicity in the graphical representation, Q12 = 0 is as-
sumed. For each particular value of the quadratic cost function J = J∗, an ellipse
is defined whose shape is determined by the coefficients Qij. As J∗ increases, the
axes of the ellipses increase their length as well. The optimal solution is defined
by the ellipse with the smallest J∗ which is tangent to the controller constraint,
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PNBI
~

PEC
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PNBI + PEC = Ptot
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rob - Ptot
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PEC

ref , PNBI
ref

Optimal solution if Q11 > Q22

Optimal solution if Q22 > Q11

Optimal solution if Q11 = Q22

Figure 6.7: Geometrical interpretation of a quadratic J on the feasible set and optimal
solution.

P̃NBI + P̃EC = P nom
tot + P rob

tot − P
ref
tot . If Q11 > Q22, then the optimal solution will

be closer to P̃NBI = 0, whereas if Q22 > Q11, the optimal solution will be closer to
P̃EC = 0. If Q11 = Q22, the solution will actually be P̃NBI = P̃EC . As for the linear
case, choosing Qij allows for configuring the way in which the actuator manager
treats the different actuators.

6.5 Simulation Testing: W + Ωφ Control

In this Section, the problem of simultaneously controlling W and Ωφ is studied.
In order to make the control problem as challenging as possible, NBI is considered
as the only actuator available for control (it can be noted that Ip is employed to
regulate qedge, and that PEC only affects W ). The control algorithm is tested both
in 0D simulations (using the same model as the one employed for control design)
and 1D simulations (using COTSIM with the models described in Sections 2.2.1,
2.2.2 and 2.2.3). First, 0D simulations are carried out to test the performance of
the controllers and the actuator manager in a simpler model, and also to be able
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to compare the performance of the nominal and robust control laws under different
conditions, like for example, the existence of uncertainties. Then, 1D simulations
are executed to test the capability of the 0D controller in a code which reproduces
the more complex 1D plasma behavior with higher accuracy.

The simulation scenario is the one employed for both the 0D model validation
(see Section 6.2.1) and 1D validation (see Chapter 3), i.e., DIII-D shot 147634. The
8 NBIs available in DIII-D are grouped in the aforementioned 3 sets (NNBI = 3) as

• Group 1: consists of 4 Co-current on-axis NBIs. This group’s total power,
PNBI,1, is denoted by PCO−ON .

• Group 2: consists of 2 Co-current off-axis NBIs. This group’s total power,
PNBI,2, is denoted by PCO−OFF .

• Group 3: consists of 2 Counter-current NBIs. This group’s total power, PNBI,3,
is denoted by PCOUNTER.

The optimization problem employed in this Section is slightly different from that
in (6.71)-(6.76) because it only includes the W and Ωφ control laws with the corre-
sponding “extra” variables that ensure feasibility. Also, P̃EC is not a free variable
and is set to zero.

The optimization problem is given by

min
PNBI,i,ε(·)

J = [P̃NBI,1, ..., P̃NBI,NNBI , εPtot , εTNBI ]Q[P̃NBI,1, ..., P̃NBI,NNBI , εPtot , εTNBI ]
T

(6.85)

s.t.∑
i

PNBI,i + PEC = P nom
tot + P rob

tot + εPtot , (6.86)∑
i

kNBI,iPNBI,i = T nomNBI + T robNBI + εTNBI , (6.87)

PNBI,i ∈ U (6.88)

where P̃NBI,i , PNBI,i − P ref
NBI,i, P

ref
NBI,i is the reference trajectory of the i-th NBI

power (corresponding to experimental values), Q is a positive definite matrix, εPtot
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and εTNBI are the variables introduced to make the optimization problem always
feasible, U denotes the set of feasible NBI powers, and P nom

tot , P rob
tot , T nomNBI , and T robNBI

are computed from the nominal and robust control laws (6.17)-(6.18), (6.30)-(6.31),
(6.39), and (6.46)-(6.47), respectively. Therefore, the objective of the optimization
problem (6.85)-(6.88) is to minimize the deviations of the inputs PNBI,i with respect
to P ref

NBI,i. The saturation limits are PNBI,i ∈ [0, 2.5] MW.

6.5.1 0D Simulation: Nominal Control without Uncertainties

In this first part of the W + Ω control simulation study, only the nominal controller
is tested using the 0D model. First, an open loop, feedforward-only 0D simulation
is run with the experimental inputs corresponding to shot 147634. The individual-
scalars evolution obtained in this open loop simulation are denoted byW exp and Ωexp

φ

(it can be noted that they are the same as the evolutions shown in Fig. 6.2). Second,
it is desired that, by means of feedback control, the individual-scalar evolutions are
driven to given targets, (̄·), which are different from the experimental values, (·)exp.
The desired targets are chosen as

W̄ = W exp + 0.08 MJ, (6.89)

Ω̄φ = Ωexp
φ − 5 krad/s. (6.90)

Finally, a closed loop (feedforward + feedback) simulation is run to test the perfor-
mance of the nominal controller.

Fig. 6.8 shows the state evolution in closed loop (solid blue) and open loop (dash-
dotted magenta, corresponding to W exp and Ωexp

φ ), together with the targets (i.e.,
W̄ and Ω̄φ, dashed red). Fig. 6.9 shows the time evolution of PCO−ON , PCO−OFF ,
and PCOUNTER, both in open loop (i.e., P ref

CO−ON , P
ref
CO−OFF , and P ref

COUNTER) and
in closed loop. Fig. 6.10 shows the constraint gaps for the optimization problem,
ε(·), together with the quadratic cost function J . It can be seen that the controller
successfully drives the system state to the target. In every step, a solution to the
optimization problem is found, so PCO−ON , PCO−OFF , and PCOUNTER are optimally
determined to minimize the deviation with respect to the experimental inputs from
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Figure 6.8: State evolution in 0D simulations for W + Ωφ control: open loop (dashed-
dotted magenta), closed loop under the nominal law (solid blue), and target
(dashed red).

shot 147634. All these powers are increased in order to regulate W and Ωφ. It
can also be appreciated that the variables εPtot and εTNBI are very small, so the
controller’s constraints are satisfied within an order of magnitude of 10−15 for the
Ptot constraint and 10−16 for the TNBI constraint. This indicates that, as long as
the tolerance of the algorithm for solving the optimization problem is higher than
εPtot , the problem is in fact feasible even if εPtot and εTNBI were not introduced in the
formulation of the optimization problem. Finally, it can be seen that J increases
substantially during the flat-top phase of the shot, indicating that a higher control
effort is required to maintain the targets during that phase.
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Figure 6.9: Controllable inputs evolution in 0D simulations for W + Ωφ control: open
loop (dashed-dotted magenta) and closed loop under the nominal law (solid
blue).
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Figure 6.10: Optimization problem parameters in 0D simulations for W + Ωφ nominal
control.

6.5.2 0D Simulation: Nominal Control with Uncertainties

In this second part of the W + Ω control simulation study, the nominal controller is
tested again using the 0D model, but this time an uncertainty δHH = −0.05 is intro-
duced. The control objective is the same as before, i.e., driving the individual-scalar
evolutions to the targets defined in (6.89)-(6.90). First, an open loop, feedforward-
only 0D simulation is run with the experimental inputs corresponding to shot 147634
and with δHH = −0.05. The individual-scalars evolution obtained in this open loop
simulation are not the same as the evolutions shown in Fig. 6.2 as a result of intro-
ducing δHH 6= 0. Second, a closed loop (feedforward + feedback) simulation is run
to test the performance of the nominal controller when δHH = −0.05.
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Figure 6.11: State evolution in 0D simulations with uncertainties (δHH = −0.05) for W
+ Ωφ control: open loop (dashed-dotted magenta), closed loop under the
nominal law (solid blue), and target (dashed red).
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Figure 6.12: Controllable inputs evolution in 0D simulations with uncertainties for W +
Ωφ control: open loop (dashed-dotted magenta) and closed loop under the
nominal law (solid blue).
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Figure 6.13: Optimization problem parameters in 0D simulations with uncertainties for
W + Ωφ nominal control.

Fig. 6.11 shows the state evolution in closed loop (solid blue) and open loop
(dash-dotted magenta), together with the targets (dashed red). Fig. 6.12 shows the
time evolution of PCO−ON , PCO−OFF , and PCOUNTER, both in open loop and closed
loop. Fig. 6.13 shows the constraint gaps for the optimization problem and the
cost function value. It can be seen that the nominal controller is unable to drive
the system state to the target. Instead, the value of W achieved remains below
the target for the whole discharge. Regarding Ωφ, it seems like the controller is
capable of driving it close to Ω̄φ initially, but it is unable to track it. The values of
PCO−ON , PCO−OFF , and PCOUNTER are very similar to those obtained in the previous
simulation case with δHH = 0 (see Fig. 6.9), indicating that the nominal controller’s
requests do not compensate for the effects of the uncertainty δHH = −0.05. As
before, the values of εPtot and εTNBI suggest that it is indeed not necessary to add
them into the optimization scheme because feasible solutions could always be found.
Also, as before, J is increased by the controller during the flat-top, despite not being
able to achieve the targets.
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6.5.3 0D Simulation: Robust Control with Uncertainties

In this third part of the W + Ω control simulation study, the robust controller is
tested using the 0D model and δHH = −0.05. The control objective is the same as
before, i.e., driving the individual-scalar evolutions to the targets defined in (6.89)-
(6.90). A closed loop (feedforward + feedback) simulation is run to test the perfor-
mance of the robust controller when δHH = −0.05.

Fig. 6.14 shows the state evolution in closed loop (solid blue) and open loop
(dash-dotted magenta), together with the targets (dashed red). Fig. 6.15 shows
the time evolution of PCO−ON , PCO−OFF , and PCOUNTER, both in open loop and
closed loop. Fig. 6.16 shows the constraint gaps for the optimization problem and
the cost function value. It can be seen that, unlike the nominal controller, the
robust controller is in fact able to drive the system state substantially close to the
target. The values of PCO−ON , PCO−OFF , and PCOUNTER are much higher than
in the previous simulation cases (see Fig. 6.9 and Fig. 6.12), indicating that the
robust controller needs to be more aggressive in order to neutralize the effect of the
uncertainty δHH = −0.05. However, it can be noted that PCO−ON and PCO−OFF are
almost saturated during the flat-top phase, suggesting that this is possibly the reason
why W and Ωφ do not totally converge to their targets despite being significantly
close. This would not be a problem of the control algorithm itself, but just an issue
related with having too high W̄ and Ω̄φ. Another reason why W and Ωφ do not
totally converge to their targets is also be the fact that the robust controller does
not ensure exponential stability, but only boundedness by a function that can be
made small (but not zero). As before, the values of εPtot and εTNBI suggest that it is
indeed not necessary to add them into the optimization scheme. Also, as before, J
is substantially higher than in previous simulations with the nominal controller (see
Fig. 6.10 and Fig. 6.13), corroborating the fact that the robust controller is more
aggressive.
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Figure 6.14: State evolution in 0D simulations with uncertainties (δHH = −0.05) for W
+ Ωφ control: open loop (dashed-dotted magenta), closed loop under the
robust law (solid blue), and target (dashed red).
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Figure 6.15: Controllable inputs evolution in 0D simulations with uncertainties for W +
Ωφ control: open loop (dashed-dotted magenta) and closed loop under the
robust law (solid blue).
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Figure 6.16: Optimization problem parameters in 0D simulations with uncertainties for
W + Ωφ robust control.

6.5.4 1D Simulation

In this last part of the W + Ω control simulation study, both the nominal and the
robust controllers are tested in 1D simulations using COTSIM. First, an open loop,
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feedforward-only 1D simulation is run with the experimental inputs corresponding
to shot 147634. The 0D variables in COTSIM are denoted by W exp,1D and Ωexp,1D

φ ,
and are computed from the corresponding 1D variables (ne, ni, Te, and Ti for W ,
and ne and ωφ for Ωφ). The formulas employed for the computation of W and Ωφ

are (2.21)-(2.22) and (2.126), respectively. Then, targets are created based on the
1D open-loop evolution in the same way as for the 0D simulations, (6.89)-(6.90), so
that W̄ = W exp,1D + 0.08 MJ and Ω̄φ = Ωexp,1D

φ − 5 krad/s. Finally, closed loop
(feedforward + feedback) simulations are run to test the performance of the nominal
and robust controllers when trying to achieve the targets W̄ and Ω̄φ.

0 1 2 3 4 5 6

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

W
 (

M
J
)

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

0 1 2 3 4 5 6

Time (s)

30

35

40

45

50

55

60

65

 (
k
ra

d
/s

)

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

Figure 6.17: State evolution in 1D simulations for W + Ωφ control: open loop (dashed-
dotted magenta), closed loop under the nominal law (dotted black), closed
loop under the robust law (solid blue), and target (dashed red).
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Figure 6.18: Controllable inputs evolution in 1D simulations for W + Ωφ control: open
loop (dashed-dotted magenta), closed loop under the nominal law (dotted
black), and closed loop under the robust law (solid blue).
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Fig. 6.17 shows the state evolution in open loop (i.e., W exp,1D and Ωexp,1D
φ ) and

closed loop under the nominal and robust control laws, together with the targets.
Fig. 6.18 shows the time evolution of PCO−ON , PCO−OFF , and PCOUNTER. Fig. 6.19
shows the constraint gaps for the optimization problem and the cost function value
when using the robust controller (the same qualitative evolutions are found for these
variables when using the nominal controller). From Fig. 6.17, it can be seen that
the nominal law drives W and Ωφ closer to W̄ and Ω̄φ, respectively, when compared
to the open-loop evolution, but x does not converge to the target x̄ within the
simulation time. It can be seen that the robust controller drives x much closer to
the target x̄ than the nominal controller (with a small error associated with the
parameters ε(·) in the control laws (6.17)-(6.18), (6.30)-(6.31), (6.39), and (6.46)-
(6.47)). Fig. 6.18 shows how all the powers are increased by both the nominal and
robust controllers to achieve the target W̄ > W exp,1D. The robust controller requests
a higher Ptot than the nominal controller (about 5 MW more), which seems to be the
reason for its better performance. Also, as Ω̄φ < Ωexp, the NBI torque is decreased
by both control laws (see that PCOUNTER increases more than the sum of PCO−ON
and PCO−OFF ). As before, the robust controller is more aggressive and requests a
lower NBI torque than the nominal controller. Fig. 6.18 shows that, when using the
robust law, all PNBI,i are very close to saturation, and PCO−OFF even saturates for
a small period of time. This happens as a result of very demanding targets (W̄ , Ω̄φ),
as it had already been hinted in the previous simulation. The comparison between
the nominal and robust controllers suggests that the latter will have an improved
performance in simulations using more complex codes than COTSIM, as well as in
experiments. Finally, it can be appreciated from Fig. 6.19 that the optimization
problem is always feasible, and that the cost function J is much higher than in any
other simulation, specially during the flat-top phase. This increase in J is mostly
due to the high PCOUNTER employed.
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Figure 6.19: Optimization problem parameters in 1D simulations for W + Ωφ robust
control.

6.6 Simulation Testing: q0 + qedge +W + Ωφ Control

The problem of simultaneously controlling all the individual scalars previously intro-
duced (q0, qedge, W and Ωφ) is studied in this Section. The actuators considered are
Ip, NBI, and EC. The control algorithm is tested both in 0D and 1D simulations. The
simulation scenario is the same as before, DIII-D shot 147634, and the NBIs are also
grouped in the same 3 sets (co-current on-axis NBIs, PNBI,1 = PCO−ON , co-current
off-axis NBIs, PNBI,2 = PCO−OFF , and counter-current NBIs, PNBI,3 = PCOUNTER).

The optimization problem employed in this Section is the one given by (6.71)-
(6.76) but modified with the auxiliary variables that characterize the gap in each
controller constraint: εPtot for (6.73), εTNBI for (6.74), and εjaux for (6.75). As in the
previous Section, the cost function is chosen to be quadratic, as given by equation
(6.80). Additional constraints are added to (6.71)-(6.76) in Section 6.6.3. The
saturation limits are Ip ∈ [0, 2] MA, PNBI,i ∈ [0, 2.5] MW, and PEC ∈ [0, 3.5] MW.

6.6.1 0D Simulation: Nominal Control

In this first part of the q0 + qedge + W + Ωφ simulation study, the control algorithm
and the actuator manager are tested in a 0D simulation using the same model
as the one employed for control design. First, an open-loop, feedforward-only 0D
simulation is run with the experimental inputs from shot 147634. The individual-
scalar evolutions obtained in this 0D open-loop simulation are denoted by qexp0 , qexpedge,
W exp, and Ωexp

φ (it can be noted that they are the same as the evolutions shown in
Fig. 6.2). It is desired that, by means of the nominal controller, the individual-scalar
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evolutions are driven to given targets, (̄·), which are different from the experimental
values, (·)exp. The robust controller is not tested in this 0D simulation because
no uncertainties are included, so the nominal controller must suffice to satisfy the
control objective.

The targets are chosen to optimize the reference shot according to the following
criteria. First, it is desired to increase the plasma resilience against MHD instabil-
ities by increasing q (and therefore, increasing q0 and qedge). However, increasing q
may have a negative impact in confinement (Ip decreases). Instead, it is desired that
W is slightly increased with respect to the reference shot. Finally, it is also desired
that Ωφ is increased to improve the resilience against RWMs and locked modes,
and increase the plasma performance in general. Thus, the targets are chosen as
q̄0 = qexp0 +0.1, q̄edge = qexpedge+0.2, W̄ = W exp+0.03 MJ, and Ω̄φ = Ωexp

φ +1.5 krad/s.
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Figure 6.20: State evolution in 0D simulations for q0 + qedge + W + Ωφ control: open
loop (dashed-dotted magenta), closed loop under the nominal law (solid
blue), and target (dashed red).
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Figure 6.21: Controllable inputs evolution in 0D simulations for q0 + qedge + W + Ωφ

control: open loop (dashed-dotted magenta) and closed loop under the nom-
inal law (solid blue).

Fig. 6.20 shows the state evolution in closed loop (solid blue) and open loop
(dash-dotted magenta), together with the targets (dashed red). Fig. 6.21 shows the
Ip, PCO−ON , PCO−OFF , PCOUNTER and PEC evolutions. Fig. 6.22 shows ε(·) and J
for the optimization problem. In every step, a solution to the optimization problem
is found, so Ip, PNBI,i and PEC are optimally determined to minimize the deviation
with respect to the feedforward inputs from shot 147634 while driving the plasma to
the desired state. The plasma current, Ip, is reduced with the goal of increasing qedge
to its target. It can be appreciated that the main variation in NBI power is found in
the co-current on-axis power, PCO−ON , which increases bothW and Ωφ, although its
current drive should in principle reduce q0. The reduction in q0 is attenuated in part
because of the higher W evolution found, which reduces η and, therefore, reduces
the on-axis current (and increases q0). The lower Ip value possibly contributes to the
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Figure 6.22: Optimization problem parameters in 0D simulations for q0 + qedge + W +
Ωφ control.

increase of q0 as well. Both PCO−OFF and PCOUNTER are also increased with respect
to the references shot values, but proportionally less than PCO−ON . This makes the
co-current NBI torque increase more than the counter-current NBI torque, which
in turn raises Ωφ. The constraints are satisfied within an order of magnitude of
10−9 for the Ptot constraint, and 10−15 for the TNBI constraint, and 10−16 for the q0

constraint, indicating the feasibility of the optimization problem during the whole
simulation.

6.6.2 1D Simulation: Nominal and Robust Control

In this part of the q0 + qedge + W + Ωφ simulation study, the controller is tested in
1D simulations using COTSIM. Like in the previous Section, the objective of this
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simulation case is to show the controller’s performance when driving the individual
scalars towards targets that are different from the evolution during shot 147634.
First, a 1D open-loop, feedforward-only simulation is executed with the experimental
inputs corresponding to shot 147634. The individual scalar evolutions are obtained
just like in previous Sections, and are denoted by qexp,1D0 , qexp,1Dedge , W exp,1D, and
Ωexp,1D
φ , whereas the targets are also taken like in the previous Section. Then, two

closed-loop simulations are carried out to compare the performance of the nominal
and robust feedback controllers when trying to drive the state to the target.

0 1 2 3 4 5 6

Time (s)

1

1.5

2

2.5

3

3.5

q
0

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

0 1 2 3 4 5 6

Time (s)

6

7

8

9

10

11

12

q
e
d
g
e

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

0 1 2 3 4 5 6

Time (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

W
 (

M
J
)

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

0 1 2 3 4 5 6

Time (s)

35

40

45

50

55

60

65

 (
k
ra

d
/s

)

Open loop

Closed loop (Nominal)

Closed loop (Robust)

Target

Figure 6.23: State evolution in 1D simulations for q0 + qedge + W + Ωφ control: open
loop (dashed-dotted magenta), closed loop under the nominal law (solid
blue), and target (dashed red).

Fig. 6.23 shows the time evolution of the different scalars in open loop (i.e.,
qexp,1D0 , qexp,1Dedge , W exp,1D, and Ωexp,1D

φ ) and closed loop under the nominal and robust
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Figure 6.24: Controllable inputs evolution in 1D simulations for q0 + qedge + W + Ωφ

control: open loop (dashed-dotted magenta), closed loop under the nominal
law (dotted black), and closed loop under the robust law (solid blue).

control laws. Fig. 6.24 shows the time evolution of the different controllable powers
(Ip is not included because it is the same as in Fig. 6.21). Fig. 6.25 shows the time
evolution of ε(·) and J when using the robust controller. It can be seen that qedge
is driven to the target under both the nominal and robust control laws. Regarding
q0, the performance of the robust controller is better than the nominal controller,
but the latter has an acceptable performance as well. The main differences in
performance between control laws are found in the W and Ωφ evolutions. It can
be seen that the robust controller drives both W and Ωφ significantly close to the
target, whereas the nominal controller is unable to do so. For W , the nominal
controller actually achieves values below the open-loop evolution, possibly due to
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Figure 6.25: Optimization problem parameters in 1D simulations for q0 + qedge + W +
Ωφ robust control.

the aforementioned increase in q. As in the 0D simulation, PCO−ON is the power
that is increased the most with respect to the reference shot by the robust controller,
whereas the nominal controller employs PCO−ON values very close to the reference
shot. This is possibly the main reason for the difference in theW evolutions attained.
Also, a higher PCOUNTER is employed by the robust controller, whereas the nominal
controller does not employ PCOUNTER. Finally, the values of εPtot , εTNBI and εjaux

demonstrate the convergence of the actuator manager. The cost function J is smaller
in the 1D simulation than in the 0D simulation, showing that the 1D model requires
a higher control effort when compared to the 0D model in order to achieve the same
control objectives.

A. Pajares 204 Lehigh U.



6.6. Simulation Testing: q0 + qedge + W + Ωφ Control

6.6.3 1D Simulation: Nominal and Robust Control with Ad-

ditional Constraints

This part of the q0 + qedge + W + Ωφ simulation study aims to demonstrate the
actuator manager’s capability to perform actuator management. The targets for
q0, W , and Ωφ correspond to the experimental values from shot 147634, (·)exp,1D,
whereas the target for qedge is taken as q̄edge = qexp,1Dedge −0.2. In addition, the following
constraints are imposed: the 2nd NBI is constrained for MSE measurements during
the whole shot (PNBI,30R = 1 MW), the 4th NBI is turned off (PNBI,150R = 0)
between t = 1 s and t = 2 s, and a gyrotron is assumed lost (i.e., Pmax

EC = 2.5 MW)
after t = 5 s. Only the robust controller is tested in this Section, as it normally has
a better performance in 1D simulations.
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Figure 6.26: State evolution in 1D simulations for q0 + qedge +W + Ωφ control with ad-
ditional constraints: open loop (dashed-dotted magenta), closed loop under
the nominal law (solid blue), and target (dashed red).

A. Pajares 205 Lehigh U.



6.6. Simulation Testing: q0 + qedge + W + Ωφ Control

1 2 3 4 5 6

Time (s)

0

2

4

6

8

10
P

C
O

-O
N

 (
M

W
)

Open loop

Closed loop

1 2 3 4 5 6

Time (s)

0

1

2

3

4

5

P
C

O
-O

F
F
 (

M
W

)

Open loop

Closed loop

1 2 3 4 5 6

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
C

O
U

N
T

E
R
 (

M
W

)

Open loop

Closed loop

1 2 3 4 5 6

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

P
E

C
 (

M
W

)

Open loop

Closed loop

Figure 6.27: Controllable inputs evolution in 1D simulations for q0 + qedge + W + Ωφ

control with additional constraints: open loop (dashed-dotted magenta) and
closed loop under the nominal law (solid blue).

Fig. 6.26 shows the time evolution of the individual scalars, and Fig. 6.27 shows
the controllable inputs evolution. The evolutions presented correspond to the open
loop simulation (i.e., without feedback control and using the experimental inputs
from shot 147634 constrained as explained in the previous paragraph) and closed
loop simulation (i.e., feedback control activated), together with the targets. Fig. 6.28
shows the parameters of the optimization problem (ε(·) and J). It can be seen that,
in open loop, the system evolves to values that are substantially different from
the target, as expected from using the constrained inputs. In closed loop, the
individual scalars are driven to their targets despite the aforementioned constraints.
The controller increases PEC between t = 1 s and t = 2 s (in order to compensate
for PNBI,150R = 0), and also increases all PCO−ON , PCO−OFF and PCOUNTER after
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Figure 6.28: Optimization problem parameters in 1D simulations for q0 + qedge + W +
Ωφ control with additional constraints.

t = 5 s (in order to compensate for PEC = 0). Just like in the rest of the simulations
presented in this Chapter, the values of the constraint gaps (εPtot , εTNBI and εjaux)
demonstrate the convergence of the actuator manager. The cost function J is never
zero because there is always some controllable input that needs to be modified (due
to the constraint P30R = 0). It is also interesting to note how J is a figure of merit
for the control effort, as it increases substantially when t ∈ [1, 2] s and t ∈ [5, 6] s,
i.e., when there is some actuator failure taking place.
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6.7 Conclusions

Individual controllers for the regulation of the central safety factor, edge safety
factor, stored energy and bulk toroidal rotation in tokamaks have been designed in
this Chapter. These are model-based controllers synthesized from 0D, nonlinear,
control-oriented models of the dynamics of the individual scalars. Each controller is
composed of a nominal control law and a robust control law designed using Lyapunov
stability and redesign techniques, respectively.

The individual-scalar controllers are integrated by means of an actuator manager
that is designed based on an optimization approach. This actuator manager is
highly configurable, as it allows for a really easy integration of additional control
commands either from other controllers or from supervisory systems, and is robust,
as the optimization problem can always be converted into a feasible problem at the
expense of relaxing the controllers’ requests. When there is a suitable number of
available actuators, the actuator manager always finds an optimal solution that lies
within the set of feasible control commands while satisfying the constraints derived
from the control laws.

This integrated control scheme has the capability of tracking targets and/or
reproducing the experimental evolution of the individual scalars while handling input
constraints in both 0D and 1D simulations. When the robust control laws are
activated, the control scheme shows a better performance when compared to the
nominal control laws working on their own. Moreover, the control scheme shows
promising results in 1D simulations using the COTSIM code, although it has to be
kept in mind that the controller design procedure is independent of the tokamak
and/or scenario in question. This control tool can be implemented in integrated
PCS designs like the one envisioned for ITER, and may be of interest in present and
future tokamak-scenario planning and development. Future work may also include
the implementation and experimental testing of the control algorithm in DIII-D,
as well as the development of alternative optimization schemes with different cost
functions and models that vary in real time according to the control needs.

A. Pajares 208 Lehigh U.



Chapter 7

Integrated Kinetic, Magnetic and

Instability Control: Profile and

Scalars Control with NTM

Suppression

7.1 Introduction and Previous Work

The neoclassical tearing modes (NTMs) are one of the MHD instabilities most com-
monly found in tokamak plasmas. NTMs are the resistive version of the kink sta-
bility [5]. At low β (i.e., low pressure), they are driven by the radial gradient of the
toroidal current, whereas at high β, the pressure gradient also drives their triggering.
As a result, NTMs are both current and pressure-driven instabilities. In tokamak
plasmas, NTMs take the form of magnetic islands, isolated regions with their own
separatrix that break the nesting of magnetic-flux surfaces around the magnetic axis
predicted by the ideal MHD theory (see Fig. 2.9).

As a result, two regions are normally considered when studying NTMs:

• A thin resistive layer (i.e., the magnetic island) located at a given rational
surface m/n of the mode (where m and n are the poloidal and toroidal mode
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numbers, respectively). Inside the magnetic island, the plasma resistivity, η,
cannot be neglected because it plays a significant role in the NTM island
physics. Within a magnetic island, a local flattening of the temperature and
pressure profiles is observed due to an increase in the particle and heat trans-
port. It can be shown [5] that the contribution of ~v × ~B is very small in the
MHD Ohm’s law, (2.7), and η~j is necessarily different from zero in order to
compensate for ~E. Also, the local flattening of the pressure profile comes with
an associated decrease in the bootstrap current (see equation (2.33)) within
the magnetic island. This lack of bootstrap current drives the island growth.

• The rest of the plasma domain, which is assumed to be in ideal MHD equilib-
rium (equation (2.8)) due to the slow NTM growth-rate normally found.

For an NTM to grow, a minimum island width is required, also known as seed island
size. These seed islands are sometimes created by sawtooth instabilities or ELMs.
Once the island starts to grow, it reaches a maximum island width, also known as
saturated island width. A model for the dynamics of the NTM-island width that
includes most of these effects has been introduced in Chapter 2, Section 2.3.7.

When an NTM develops, an overall decrease in the plasma performance is ob-
served, limiting the achievable β (or p, therefore limiting the attainable triple prod-
uct, see equation (1.12)). Due to this, NTMs are highly undesirable during a toka-
mak discharge, and their suppression is a topic of substantial interest within the
fusion community (see Section 1.3). Significant work has been carried out to un-
derstand the NTM triggering mechanisms and develop control algorithms for their
suppression. Successful NTM suppression has been achieved in experiments in differ-
ent tokamaks [13, 32, 98–100]. The basic physical mechanism for NTM suppression
that has been considered is “replacing” the loss of bootstrap current by means of
auxiliary current deposition, mostly by means of radiofrequency (RF) waves (ECCD,
ICCD, LHCD, etc). Work on modeling of RF effects on the NTM-island dynamics
can be found in [101–104]. It is an experimental fact that current driven on or close
to the O-point shrinks the magnetic island, whereas current driven near the X-point
normally makes the island grow (see Chapter 2, Section 2.3.7). Other methods to
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suppress NTMs have been considered, such as the application of nonresonant mag-
netic fields [13], although CD by means of RF will most likely be the main NTM
suppression method in ITER.

The possible NTM impact on ITER has been a concerning issue for years [105–
109], although these studies show that NTM suppression will most likely be suc-
cessfully carried out in ITER. In this Chapter, repurposing (RP) actuator-sharing
techniques are presented for simultaneous NTM suppression with q-profile control
and/or scalar variables. This Chapter is divided in two main Sections. Section 7.2
reports experimental results on NTM suppression with q-profile + βN control ob-
tained in the DIII-D tokamak [110]. The control algorithms employed had already
been developed and tested separately prior to this experimental demonstration for
combined control (see [13] for NTM suppression, and [24, 83] for q-profile + βN

control via MPC). Section 7.3 reports 1D simulation results using COTSIM for si-
multaneous NTM suppression and individual-scalars control [111], using an adapted
version of the actuator management scheme proposed in Chapter 6.

7.2 NTM Suppression and q-profile + βN Control

7.2.1 The DIII-D Plasma Control System

The DIII-D PCS provides an excellent benchmark for testing and development of
integrated-control strategies due to its parallel architecture [15]. It is composed
of different categories which allocate algorithms with a specific purpose, such as
Profile control, NBI control, Gyrotron control, etc. (see Fig. 7.1). Each category
can work using multiple sequences (primary, secondary, and so on). These sequences
are different pre-programmed configurations of that category which can be executed
asynchronously within the same shot. Category-configuration changes that comprise
each sequence may include, for example, the use of different control algorithms,
saturation levels, control gains, and other control parameters. The active sequence of
a particular category at a given instant is the sequence that is being utilized by such
category. This PCS category-sequence structure allows for a flexible programming
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environment, which is very useful for integrated control development.

DIII-D PCS

SEQ 1.1

Category 1

SEQ 1.1

SEQ 1.3

SEQ 2.1

Category 2

SEQ 2.2

SEQ 2.3

ONFR

Active Sequences

DIII-D PCS

Gyrotron 
Category

Profile Control 
Category

ONFR

Active Gyrotron Cat
Sequence

SEQ 1
q-prof+βN 

Controller

Ip
PNBI

PEC

ɸEC

q profile
βN

NTM size
No NTM

Yes NTM

SEQ 1
Pass PC

Commands

SEQ 2

NTM
Suppression

Figure 7.1: Schematics of the DIII-D PCS: on the left, general connection between ONFR
and different categories and sequences; on the right, connection created for
simultaneous NTM suppression and profile control.

In addition, the Off-Normal Fault-Response (ONFR) system [112], an algorithm
based on finite-state logic that can work as a Supervisory and Exception Handling
(S&EH) system, has been implemented and successfully tested in the DIII-D PCS.
The ONFR system monitors the occurrence of some phenomena (such as NTMs,
locked modes, and others) by means of relevant plasma-state data. With such
information, ONFR can determine the active sequence for the different categories
(see Fig. 7.1) according to the control requirements dictated by the plasma state.

7.2.2 Control Algorithms for NTM Suppression and q-profile

+ βN Control

In this work, two DIII-D PCS categories are employed: the Profile Control category
and the Gyrotron category (see Fig. 7.1). The Profile Control category works only
with a single sequence that allocates a Model Predictive Controller [83] for q-profile
control, in which a PID control law for βN or energy regulation is embedded as
a constraint. This MPC algorithm computes the required control signals for the
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individual NBI powers, PNBI,i (i = 1,...,8, for the 8 NBIs present in DIII-D), total
EC H&CD power, PEC , EC poloidal mirror angles1, φi (i = 1,...,6, for the 6 gyrotrons
present in DIII-D), and Ip.

On the other hand, the Gyrotron category works with two sequences (primary
and secondary). If in the primary sequence, the Gyrotron category just uses the
PEC and φ(·) requests computed by the Profile Control category. If in the secondary
sequence, the Gyrotron category computes PEC and φi as required for NTM suppres-
sion. In previous NTM suppression experiments [13, 114], it has been customary to
employ the maximum available EC H&CD power, Pmax

EC , and to aim the gyrotrons
at the rational (m/n) surface that requires NTM suppression, either by modifying
the plasma position or by modifying φi.

7.2.3 Integration of the NTM Suppression and q-profile + βN

Control Algorithms

The integrated-control architecture is summarized in Fig. 7.1, and described with
more detail in Fig. 7.2. As a supervisor to the Profile Control and Gyrotron cat-
egories, the ONFR system monitors the plasma state for NTM occurrence, and
computes a signal that indicates the need for NTM suppression. This signal is sent
to both the Profile Control category and the Gyrotron category, and it is an integer
that determines the active sequence of the Gyrotron category (1 for the primary
sequence, and 2 for the secondary sequence).

If the ONFR system determines that there is no need for NTM suppression, the
active sequence of the Gyrotron category is the primary sequence, and the Profile
Control category is assigned control over EC H&CD. Although they are not modified,
the PEC and φi control requests computed by the Profile Control category must still
pass through the Gyrotron category because the latter is the category allowed to
send gyrotron-related commands in the current design of the DIII-D PCS.

1The gyrotron poloidal mirrors are in charge of the gyrotron steering towards different parts of
the plasma domain, allowing for modifying the current-deposition location. More details can be
found, for example, in [113].
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Figure 7.2: Integrated-control architecture developed for q-profile + βN control and NTM
suppression within the DIII-D PCS.

If the ONFR system determines that there is an NTM that needs suppression,
then the secondary sequence is the active sequence of the Gyrotron category. In this
case, the Gyrotron category takes control over EC H&CD as assigned by the ONFR
system. The EC H&CD related control-requests, PEC and φi, are fed-back into the
Profile Control category, so that the MPC algorithm always has information about
the PEC and φi requests regardless of the active sequence of the Gyrotron category.

7.2.4 Experimental Results on Combined NTM Suppression

and q-profile + βN Control in DIII-D

In order to experimentally test the integrated-control scheme introduced, a hybrid
scenario was chosen. In addition to being an H-mode scenario that may be of high
interest for the development of ITER steady-state scenarios [10], such choice is also
motivated by the fact that 3/2 NTMs normally arise, producing flux pumping, which
in turn yields a high q profile that avoids 2/1 NTMs or sawtooth instabilities [114].
It has been experimentally demonstrated that 3/2 NTMs can be suppressed using
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EC H&CD aimed at the q = 3/2 surface [114]. Although modeling of the q profile
evolution in hybrid plasmas is still under research, this scenario seems suitable for
a first preliminary test on combined q-profile + βN control with NTM suppression.

The main purpose of the experiment is to assess the EC H&CD authority transfer
between the Gyrotron category and the Profile Control category as requested by
ONFR in the presence of a 3/2 NTM. In order to do so, a reference DIII-D shot,
162893, is reproduced with the goal of triggering a 3/2 NTM at the beginning of the
flat-top phase. The βN and q-profile evolutions from shot 162893 are used as targets
for the MPC controller allocated in the Profile Control category. The reference
plasma corresponds to a double-null shape in which the machine parameters are
BT = 1.8 T (normal direction in 162893, but reversed in this experiment), R0 = 1.78

m, a = 0.6 m, Ip = 1.2 MA, and βN = 2.6.
The configuration of the DIII-D PCS subsystems for the experiment is as fol-

lows. The ONFR system is set up to detect2 3/2 NTMs with an MHD amplitude
similar to the one in the reference shot [114]. The NTM suppression algorithm is
set up so that Pmax

EC is employed when an NTM needs suppression. The EC toroidal
mirror angles are fixed and set up so that the gyrotrons drive current in the same
direction as Ip (i.e., co-ECCD is employed). Also, φi are regulated by the NTM
suppression algorithm in order to track the q = 3/2 surface, whose location is es-
timated by means of the equilibrium reconstruction code rtEFIT constrained with
MSE measurements [115]. Finally, the Profile Control category is configured to per-
form βN + q-profile control in a feedforward + feedback scheme, so that it works
in feedforward-only until 4.25 s, and in feedforward + feedback after 4.25 s. When
working in feedback, rtEFIT is also needed to have an estimation of the q profile.
The DIII-D PCS is configured to allow for a maximum of 4 s of φi control under
the Profile Control category, so it is chosen that the time span during which φi are
controlled by the Profile Control category is t ∈ [1, 5] s. Also, for q-profile control,
ECCD is aimed so that its peak is found at around ρ̂ = 0.5, or φi ≈ 105 degrees.

The experiment was carried out in March, 2018. Experimental results from shot
2The ONFR system computes the strength of an NTM based on its MHD n amplitude, and

allows for setting a trip level above which a particular type of NTM is detected.
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Figure 7.3: Time evolution for βN , q0, q95, PNBI , PEC , and Ip for the reference shot
(target) and shot 176102. The blue/(orange) shaded area indicates authority
of the Profile Control Category/(NTM Control Category) over EC H&CD.

176102 are reported. Fig. 7.3 shows the time evolution for βN , q0, and q95, together
with PNBI =

∑
i PNBI,i, PEC , and Ip. It can be seen that βN in shot 176102 is

not as constant in the flat-top phase as in the reference shot, despite using a very
similar PNBI : it is smaller in the early flat-top phase, higher later in the flat-top,
and it is only similar to the reference shot when feedback is turned on at 4.25 s.
Also, a lower q0 is achieved in the ramp-up and early flat-top when compared to
the reference shot, despite using EC H&CD earlier in the shot, which should in
principle raise q0 as it drives off-axis current. On the other hand, q95 evolves in a
very similar way both in shot 176102 and the reference shot, as expected because
Ip is also very similar. The only exception is at around 4.25 s, when Ip is increased
by the feedback controller to track the βN target at the expense of having a small
deviation in q95. The overall lower values of βN and q0 during the ramp-up and
flat-top phases suggest a deteriorated confinement or a less optimal early-formation
phase during shot 176102 when compared to the reference shot. The different BT

direction could also result in differences in the plasma behavior.
Fig. 7.4 shows the time evolution for Prad, n̄e, the MHD n = 2 amplitude, the

confinement H-factor, H98(y,2) = HH , Ptot, and the ONFR-related signals (which are
the “NTM Strength” and its corresponding “NTM Trip Level”) together with PEC

A. Pajares 216 Lehigh U.



7.2. NTM Suppression and q-profile + βN Control

Figure 7.4: Time evolution for Prad, n̄e, MHD n = 2 amplitude, H98(y,2), Ptot, and ONFR
signals for the reference shot (target) and shot 176102. The blue/(orange)
shaded area indicates authority of the Profile Controller/(NTM Controller)
over EC H&CD.

Figure 7.5: Time evolution for φ240R and φ255L for shot 176102.

from 0.5 to 3 s. The n̄e, Prad, and HH98(y,2) evolutions confirm a lower confinement
during the ramp-up and early flat-top than desired. Also, it can be noted that the
MHD activity starts sooner in shot 176102, as reflected by the MHD n = 2 ampli-
tude. Thus, EC H&CD is employed about a second earlier than in the reference
shot, substantially increasing Ptot at approximately 1.4 s, when the NTM strength
exceeds its trip level. This is when the EC H&CD authority is transferred from
the Profile Control category to the Gyrotron category. In hybrid plasmas, q0 may
decrease when co-ECCD is employed to suppress 3/2 NTMs [116], as opposed to the
intuition from previous q-profile control experiments [83]. These facts (poorer con-
finement, different early-formation phase, co-ECCD injection in a hybrid scenario)
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may be the reason why βN and q0 are lower. After NTM suppression, both βN and q0

recover and get closer to their targets. Also, n̄e and Prad remain approximately flat
until the end of the shot, whereas H98(y,2) increases. The MHD amplitude decreases
due to the NTM suppression. The EC H&CD authority could have gone back to
the Profile Control category once the NTM strength had become lower than its trip
level (at t ≈ 2.1 s), but the ONFR system was not configured to allow such transfer.

Finally, Fig. 7.5 shows the time evolution of φ(·) for two gyrotrons (the other φ(·)

evolutions for the available gyrotrons are very similar). At t = 1 s, when the Profile
Control category starts controlling φi, they are driven from their initial condition
towards 105 deg for q-profile control. When EC H&CD is transferred to the Gyrotron
category at 1.4 s, they are steered towards the q = 3/2 surface (whose position varies
in time and is tracked until the end of the shot) for NTM suppression.

7.2.5 Conclusions

An integrated-control architecture for simultaneous q-profile + βN control and NTM
suppression has been developed in the DIII-D PCS. It integrates the Gyrotron and
Profile Control Categories, while employing ONFR as a supervisor to perform RP
actuator sharing of the gyrotrons between both Categories.

The control scheme has been experimentally tested for a hybrid-plasma scenario
in DIII-D, with partially satisfactory results. Although 3/2 NTMs were suppressed
while regulating q-profile + βN , and the EC authority is transferred between Cate-
gories as requested by ONFR, further tuning of the parameters of the ONFR system
and q-profile + βN controller may improve this RP actuator sharing and overall per-
formance. Future work will include experimental testing in different plasma scenar-
ios and a refined ONFR set-up to allow for a second authority transfer (gyrotrons
will return to Profile Control category after NTM stabilization). In addition, a
refined and updated version of the MPC algorithm may be developed with a cost
function that varies in real time (depending on the profile control and NTM sup-
pression needs) and real-time-varying models that take into account the changes in
the ECCD deposition location.
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7.3 NTM Suppression + Individual-scalar Control

7.3.1 Actuator Management for Individual-Scalar Control and

NTM Suppression

In this Section, the actuator management scheme proposed in Section 6.4 is modified
to perform the RP actuator sharing required for simultaneous NTM suppression and
individual-scalars control. The NTM suppression algorithm employed in this Section
follows the same principles followed in previous experiments [13, 110]. When there
is need for NTM suppression (as required by an external supervisory system), PEC is
not considered as a free variable in the optimization problem. Instead, it is fixed as
PEC = Pmax

EC . When gyrotron-mirror steering is performed for NTM suppression, the
term in FEC , which is related to PEC , varies due to the current-drive modification at
the magnetic axis (see (6.50) and the constraint (6.75)), affecting the q0 controller.
However, in this work, it is assumed that the mirror steering effect on the current
driven at the magnetic axis is negligible, and F is kept constant.

Mathematically, the optimization problem is written as

min
u,ε(·)

J (7.1)

Ip = Inomp + Irobp , (if the qedge controller is activated) (7.2)∑
i

PNBI,i + PEC = P nom
tot + P rob

tot + εPtot , (if the W controller is activated) (7.3)∑
i

kNBI,iPNBI,i = T nomNBI + T robNBI + εTNBI , (if the Ωφ controller is activated) (7.4)

F


PNBI,1

...
PNBI,NNBI

PEC

 = F (P nom + P rob) + εjaux , (if the q0 controller is activated) (7.5)

PEC = Pmax
EC , (if NTM suppression is activated) (7.6)

u ∈ U . (7.7)
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7.3.2 1D Simulation for Individual-Scalar Control and NTM

Suppression

A simulation using COTSIM is carried out in this Section to test the capability of
the actuator management scheme proposed in Section 7.3.1. The scenario employed
corresponds to DIII-D shot 147634. The simulation is set up so that a m/n = 2/1

NTM develops as soon as the q = m/n = 2 magnetic-flux surface forms. This type
of NTM is not found during shot 147634, but it is introduced in the simulation just
for the purpose of this control test.

As stated in Chapter 3, the model described in Section 2.3.7 is employed in
COTSIM to estimate the evolution of the island width. An initial NTM size of
w(0) = 1.1 cm is taken (large enough to make the island grow), and a saturated
island size wsat = 4 cm is utilized. Although the values of the NTM parameters
employed for this simulation are within the order of magnitude found in other DIII-D
scenarios, such particular values are only chosen for the purpose of this control
demonstration, rather than representing measured or real values that could be found
in a plasma scenario corresponding to shot 147634.

First, an open-loop, feedforward-only simulation is run with the experimental
inputs from shot 147634, adding the development of the 2/1 NTM introduced above.
Second, a closed-loop simulation is run with NTM suppression only (i.e., PEC =

Pmax
EC with mirror steering, whereas the rest of the inputs are the same as in the

open loop case). Third, a closed-loop simulation is run with NTM suppression +
individual-scalar control. The NTM starts developing slightly after t = 2 s, but
the NTM suppression algorithm is not activated until t ≥ 2.5 s in both closed-
loop simulations. By doing this, the simulation testing is more challenging, as the
NTM is allowed to develop and spoil the plasma confinement before the controller
is activated to try to recover the plasma state. Also, in each simulation, all the
gyrotron poloidal-mirror angles are assumed to have the same value, and therefore,
ρECCD is the only variable needed to characterize the spatial ECCD deposition.

Fig. 7.6 shows the time evolution of the individual scalars together with the
corresponding targets, whereas Fig. 7.7 shows the controllable inputs, in open loop,
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Figure 7.6: State evolution in 1D simulations for q0 + qedge + W + Ωφ control with
NTM suppression: open loop (dashed-dotted magenta), closed loop under
NTM suppression only (black dotted), closed loop under individual-scalar
control and NTM suppression (solid blue), and target (dashed red).

closed loop with NTM suppression only, and closed loop with individual-scalar con-
trol and NTM suppression. Fig. 7.8 shows the w evolution in the same open-loop
and closed-loop cases as before, together with the 2/1 NTM and ECCD deposition
locations during the two closed-loop simulations. Fig. 7.9 shows the parameters
of the optimization problem in closed loop with individual-scalar control and NTM
suppression. It can be seen that the open-loop evolution drifts away from the target,
specially W , which is substantially reduced. This is due to the development of the
2/1 NTM (see the w evolution in Fig. 7.8), which spoils the plasma confinement ac-
cording to equation (3.1). In closed loop with NTM suppression only, it can be seen
that w is decreased once the NTM suppression algorithm is activated at t = 2.5 s to
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Figure 7.9: Optimization problem parameters in 1D simulations for q0 + qedge + W +
Ωφ control with NTM suppression.

make the gyrotrons track the 2/1 surface (see how ρECCD tracks ρNTM in Fig. 7.8).
The stored energyW recovers in approximately 0.5 s, i.e., the time needed for NTM
suppression. Whereas qedge is well controlled in this case, and Ωφ also converges to
its target after the NTM is suppressed, the q0 evolution is much slower to reach its
target, which is only achieved by the end of the simulation without any convergence
guarantee. In closed loop with NTM suppression and individual-scalar control, it
can be seen that w is also decreased when the NTM suppression algorithm is ac-
tivated. In fact, the NTM suppression is carried out in a slightly smaller amount
of time when the individual-scalar controllers are activated. This is due to the fact
that their activation modifies the q profile, making the 2/1 surface (whose location
is characterized by ρNTM) be closer to the gyrotron deposition location (ρECCD). As
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a result, and also possibly because of employing the W controller, the evolution of
W shows higher values while the NTM is being suppressed than in the case of NTM
suppression only. The other individual scalars are also driven to their targets in a
more efficient way than in the case of NTM suppression only. From Fig. 7.7, it can
be appreciated that the controller increases Ptot by increasing PCO−OFF , PEC and
PCOUNTER while slightly reducing PCO−ON , with the objective of regulating W , Ωφ,
and q0 around their targets. Finally, the values of the constraint gaps (εPtot , εTNBI
and εjaux) demonstrate the convergence of the actuator manager during the whole
simulation. Also, a higher control effort is required during the part of the shot in
which NTM suppression is needed, as it can be inferred from the higher J values
found when t ≈ [2.5, 3] s.

7.3.3 Conclusions

The actuator manager based on optimization has been modified to integrate individual-
scalars control and NTM suppression. Its performance has been tested in 1D simu-
lations using COTSIM, showing its capability to perform RP actuator sharing. The
performance of the integrated scheme to suppress NTM and control the individual
scalars is improved when compared to the use of NTM suppression only. This sug-
gests, as it was introduced before, that integrated schemes will have an edge over
isolated controllers working separately. Future work in DIII-D may include further
NTM + q-profile control experiments, and/or NTM + individual-scalar control ex-
periments. In addition, further development is required in COTSIM to reproduce
more accurately the effect that NTMs have on the plasma confinement through
χe (i.e., the function fNTM(w) in equation (3.1)), as it has also been indicated in
Chapter 3, Section 3.4.
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Chapter 8

Conclusions and Future Work

The work presented in this dissertation focused on the development of integrated-
control solutions for tokamak plasmas by exploiting nonlinear-robust control tech-
niques and real-time optimization. These solutions can be employed in present
physics studies, as well as in future reactor-grade tokamaks, in which integrated
control strategies will be necessary. In this Chapter, a summary of contributions is
presented, together with some key ideas concerning future work along the lines of
this dissertation.

8.1 Contributions

1. Dynamical models have been developed for individual-scalar magnitudes (q0,
qedge,W , Ωφ, n̄e) of interest in tokamak plasma-control research. These models
are nonlinear and zero-dimensional, and derived from first principles by using
the MDE and its boundary conditions, and energy, momentum and particle
transport equations. At some point during their derivation, some simplifying
assumptions are employed in order to reduce their mathematical complexity.
The main purpose of this modeling effort is to represent the main plasma
dynamics by means of simple enough mathematical models that can be utilized
for control synthesis.
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2. The Control-Oriented Transport SIMulator (COTSIM) code has been further
developed to evolve profiles related to magnetic, kinetic, and MHD instability
control problems. The first version of COTSIM, developed before this disser-
tation work, included the 1D MDE equation to estimate the dynamics of ψ
(from which q is computed) and a 0D energy-balance equation to evolve W .
During this dissertation work, COTSIM was extended to include the 1D EHTE
and TRE models for the dynamics of Te and ωφ, together with the 0D MRE
model for the dynamics of the NTM magnetic-island width, w. The control-
oriented models implemented for the diffusive and source terms (χe, χφ, Qe, tω,
etc.) also required some significant development before their implementation
in COTSIM. In addition, the structure of COTSIM was revised and developed
to couple all the aforementioned dynamical models, as well as to allow for the
implementation of new models (like 0D, 0.5D, and 1D equations for ne, Ti, and
ni). In summary, COTSIM has been evolved to make it a more sophisticated,
comprehensive code that can serve as a testbed for integrated control-oriented
testing by using coupled models of the plasma kinetics, magnetics, and MHD
instabilities.

3. Several integrated-control schemes have been designed for kinetic, magnetic,
and/or MHD instability control problems: an integrated burn-controller based
on Lyapunov theory and Lyapunov redesign techniques, a q0 + βN controller
for zero NBI torque scenarios based on linear techniques, a q-profile + βN

controller based on feedback linearization, and controllers for individual-scalar
variables based on Lyapunov theory and Lyapunov redesign techniques. Most
of these controllers were synthesized by means of nonlinear and robust control
techniques in order to handle the complex and uncertain plasma dynamics.
The main purpose of these controllers is to serve as tools for the development
of plasma experiments and scenarios, with the final goal of facilitating access
to the conditions required for fusion.

4. An actuator manager based on optimization has been developed with the
capability of integrating control laws, physical saturation limits, and other
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externally-imposed constraints (for example, by a S&EH system). The first
version of this actuator management algorithm integrates the control laws
for individual scalars and NTM suppression together with physical saturation
limits. The main purpose of this control tool is to enable the implementation
of the two actuator management schemes foreseen for ITER: simultaneous
multiple mission (SMM) and repurposing (RP) sharing.

8.2 Future Work

An important general feature of the models used in this dissertation work is their
control-oriented nature, in which an intentional, moderate degree of simplification
exists, together with a partial lack of physics understanding1. Although uncer-
tainties have been included in the modeling process to deal with neglected and/or
unknown dynamics, it is difficult to gauge if they will suffice to ensure a success-
ful robust-control design for experiments. Although the control tools developed in
this dissertation have been partially validated (using previous experimental data,
simulation tests, and a few experimental tests), their full validation requires that
more experiments are carried out. Experimental testing normally yields substantial
insights into the suitability of the control approaches employed, and show the path
towards how to improve the current control implementations.

Directions for future work within each topic of this dissertation have been intro-
duced in each of the corresponding Chapters. Future work on COTSIM may include
the implementation of different (possibly more accurate and/or sophisticated) mod-
els for particle and energy transport, including models based on neural networks, as
well as further effort on coupling the kinetic, magnetic, and MHD instability dynam-
ics. Regarding the design of model-based controllers for simultaneous regulation of
a mix of plasma profiles and scalars, future work may include alternative approaches
with higher level of actuation integration and more extensive 1D-simulation testing

1For example, it is known that the electron temperature does not follow a totally diffusive
evolution, and that convective heat-transfer and other phenomena are present. Variables such as
HH or χe may significantly vary between shots in unexpected manners.
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using COTSIM, as well as experimental testing in DIII-D. These experimental tests
may use q-profile control to investigate the influence that the q-profile shape has
on the plasma resilience against NTMs. Moreover, the real-time optimization algo-
rithm for q-profile + βN control with simultaneous NTM suppression (implemented
in the DIII-D PCS) may be further developed to include real-time changes in the
cost function and response model as determined by the control needs. Updates to
the model in real time may also be included to characterize the current-deposition
variations associated with ECCD mirror steering. Finally, regarding the integration
of model-based controllers with actuator-management strategies, both alternative
optimization schemes (possibly with different cost functions) and non-optimization
schemes may be further considered.
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Appendix A

Basic Plasma Physics

A.1 Particle trajectories and drifts

The equation of motion of a charged particle subject to electric and magnetic field
forces is given by

m
d~v

dt
= q( ~E + ~v × ~B), (A.1)

where m is the particle mass, ~v is the particle velocity, q is the particle electric
charge, ~E and ~B are the electric and magnetic fields, respectively, and t is the time.
When ~B = 0, the electric field ~E accelerates the particle due to the electrical force,
q ~E. To see the effect of a unidirectional ~B on the particle motion, a coordinate
frame x-y-z is chosen so that ~B is aligned with the φ axis, ~B = B~φ (see Fig. 2.1).
When ~E = 0, the three components of equation (A.1) are given by

m
dvr
dt

= qvzB, m
dvz
dt

= −qvrB, m
dvφ
dt

= 0, (A.2)

where vr, vz, and vφ are the r, z, and φ components of ~v, respectively. From the last
equation in (A.2), it can be seen that vφ is a constant. Taking time derivative in
the r and z components of (A.2), and eliminating dvz/dt and dvr/dt, respectively,
it is found that

d2vr
dt2

= −
( q
m

)2

vrB
2,

d2vz
dt2

= −
( q
m

)2

vzB
2. (A.3)
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where it has been assumed that B is constant or varies very slowly when compared
to ~v. The solution of (A.3) is given by vr = v⊥,0 cos(ωct+ψ), vz = ∓v⊥,0 sin(ωct+ψ),
where ωc , |q|B/m is the so-called cyclotron frequency, v⊥,0 and ψ are constants
obtained from integrating (A.3) and applying the initial conditions, and the ∓ sign
in vz depends on the sign of q (− if q > 0, and + if q < 0). It can be inferred that v⊥,0
is in fact the initial velocity of the particle in the r-z plane (which remains constant
because the Lorentz force q~v × ~B is always perpendicular to ~v and therefore does
not exert any work). Further integration of vr and vz with respect to time yields
the equations of motion,

r = r0 +
v⊥,0
ωc

sin(ωct+ ψ), z = z0 ±
v⊥,0
ωc

cos(ωct+ ψ), (A.4)

where r0 and z0 are integration constants as well. The particles gyrate around the
so-called guiding center, defined by (r0, z0), describing a circular motion of frequency
ωc and radius rL , v⊥,0/ωc, also known as Larmor radius.

It is of interest to analyze the particle motion when subject to a uniform ~B plus
a uniform ~E. It is straightforward to see that, along the φ direction, ~B does not vary
the trajectory of the particle, whereas ~E produces a constant acceleration equal to
qEφ/m. Defining the velocity in the r-z plane, ~v⊥ , vr~r + vz~z, and taking cross
product with ~B in (A.1), it is found that

m
d(~v × ~B)

dt
= q

(
~E × ~B +

(
~v × ~B

)
× ~B

)
= q

(
~E × ~B + ~B

(
~v · ~B

)
− ~vB2

)
, (A.5)

which can be rewritten as

m
d(~v⊥ × ~B)

dt
= q

(
~E × ~B + ~B

(
~vφ · ~B

)
− ~vB2

)
, (A.6)

and taking into account that ~v⊥ and ~B are perpendicular to each other, (A.6) can
be rewritten as

m
d(~v⊥ × ~B)

dt
= q

(
~E × ~B − ~v⊥B2

)
. (A.7)

The time-dependent solution of (A.7) is the Larmor gyration previously described,
whereas the constant, particular solution of (A.7) is the so-called ~E× ~B drift, which
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is given by

~vE =
~E × ~B

B2
. (A.8)

It is also of interest to analyze the particle motion in a vacuum, curved magnetic
field, as it is the situation found in tokamaks. A magnetic field ~B in a vacuum
must fulfill Gauss’ law of magnetism, ∇ · ~B = 0, and therefore the strength of the
magnetic field must decrease in the radial direction. In addition to such ∇B, any
particle with a gyrating motion experiences a centrifugal force, Fc =

mv2
φ

r
~r. Taking

these two effects into account, the equation of motion (A.1) can be written as

m
d~v

dt
= q~v ×

(
~B +∇B · d~r

)
+ Fc. (A.9)

The effect of Fc on the particle’s motion is the same as the effect of the electrical
force q ~E, i.e., a drift of magnitude ~Fc × ~B/(qB2). On the other hand, the effect
of ∇ ~B is known as grad-B drift. Both drifts modify the Larmor gyration of the
particles by adding a velocity component, ~vc, that is approximately given by [2]

~vc =
m

q

~r × ~B

rB2

(
v2
φ +

1

2
(v2
r + v2

z)

)
, (A.10)

where vφ, vr, and vz are the φ-r-z velocity components.

A.2 Derivation of the MHD equations

The derivation of the MHD equations starts by describing the plasma as a fluid whose
particles experience electrical and Lorentz forces, in addition to thermal, viscous and
collision forces. This description follows the same principles of ContinuumMechanics
employed to derive the ordinary fluid-mechanics equations.

The continuity equations for the plasma ions and electrons are given by

Dni
Dt

= −ni∇ · ~vi,
Dne
Dt

= −ne∇ · ~ve, (A.11)

where D/Dt , ∂/∂t+ v · ∇ is the convective derivative, ni is the ion density, ne is
the electron density, ~vi is the ion velocity, and ~ve is the electron velocity.
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The momentum equations for ions and electrons are given by

mini
D~vi
Dt

= −∇ · Pi + niqi( ~E + ~vi × ~B) +mini~g +mini(~vi − ~ve)νi,e, (A.12)

mene
D~ve
Dt

= −∇ · Pe + neqe( ~E + ~ve × ~B) +mene~g +mene(~ve − ~vi)νe,i, (A.13)

where mi and me are the ion and electron masses, respectively, qi and qe are the
ion and electron electrical charges, respectively, Pi and Pe are general anisotropic
pressure tensors for the ions and electrons, respectively, ~g is the gravity acceleration,
and νi,e and νe,i are the collision frequencies between ions and electrons, which fulfill
miniνi,e = −meneνe,i.

Also, the MHD theory states that Maxwell’s equations for electromagnetism hold
within the plasma domain,

∇ · ~E =
σ

ε0
, ∇× ~E = −∂

~B

∂t
, (A.14)

∇ · ~B = 0, ∇× ~B = µ0

(
~j + ε0

∂ ~E

∂t

)
, (A.15)

where ε0 is the vacuum electric permittivity, µ0 is the vacuum magnetic permeability,
σ = qini + qene is the charge density, and ~j = qini~vi + qene~ve is the current density.

In addition, the following assumptions are used:

• Quasi-neutral plasma with single-charged ions, i.e., ni ≈ ne , n and qi = −qe.

• Negligible viscous forces and isotropic pressure fields, so that ∇ · Pi = ∇pi
and ∇ · Pe = ∇pe, for isotropic ion and electron pressure fields, pi and pe,
respectively.

• Negligible displacement current, ε0 ∂
~E
∂t
≈ 01.

The MHD continuity equation is obtained by multiplying, in equation (A.11),
the ion continuity equation by mi and the electron continuity equation in by me,

1It can be demonstrated that if the characteristic plasma length, L, and the characteristic
plasma time, T , fulfill L/T << c (as is the case in tokamak plasmas), then µ0ε0∂ ~E/∂t << 1.
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and adding both of them,

(mi +me)
Dn

Dt
= −n∇ · (mi~vi +me~ve), (A.16)

which, defining “center of mass velocity”, ~v , (mi~vi +me~ve)/(mi +me), becomes

Dn

Dt
= −n∇ · ~v. (A.17)

Adding (A.12) and (A.13), the momentum equation is written as

n(mi +me)
D~v

Dt
= −∇p+~j × ~B, (A.18)

where p = pe + pi. Multiplying (A.13) by mi, (A.12) by me, and subtracting (A.12)
from (A.13), the so-called generalized Ohm’s law can be derived [2],

~E + ~v × ~B = η~j +
1

nqi
(~j × ~B −∇pe), (A.19)

where me << mi and small cyclotron frequency effects have been assumed, and η is
the so-called plasma resistivity, which is given by

η = νe,i
me

nq2
e

. (A.20)

Finally, equation (A.18) can be particularized at equilibrium, which yields

∇p = ~j × ~B. (A.21)

A.3 Flux functions

First, it is convenient to define a potential vector ~A such that ~B = ∇ × ~A. The
magnetic field ~B can be expressed as

~B = ∇× ~A =


�
�
���

0
1

r

∂Az
∂φ
− ∂Aφ

∂z

~r +Bφ
~φ+

1

r

∂(rAφ)

∂r
−
�
�
��7

0
∂Ar
∂φ

 ~z, (A.22)
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where ~A = Ar~r + Aφ~φ + Az~z, and ~r, ~φ and ~z are the unit vectors in the r, φ and
z directions, respectively. Defining the poloidal-flux stream function, ψ , rAφ,
equation (A.22) can be rewritten as

~B = −1

r

∂ψ

∂z
~r +Bφ

~φ+
1

r

∂ψ

∂r
~z. (A.23)

It can be noted that ~B as given by (A.23) in fact fulfills Gauss’ law for magnetism
(first equation in (A.15)),

∇ · ~B =
1

r

∂(rBr)

∂r
+
�
�
���

0
1

r

∂Bφ

∂φ
+
∂Bz

∂z
= −1

r

∂2ψ

∂r∂z
+

1

r

∂2ψ

∂r∂z
= 0. (A.24)

The poloidal magnetic flux, Ψ, at a point P , is defined as

Ψ =

∫∫
S

BθdS, (A.25)

where S is the surface that is perpendicular to the z-axis and whose boundary is
defined by the ring passing through P (see Fig. 2.3). The relationship between Ψ

and ψ is obtained from (A.25) and (A.23), and it is given by

Ψ =

∫ 2π

0

[∫ r

0

1

r̄

∂ψ(r̄, z, t)

∂r̄
r̄dr̄

]
dφ = 2π (ψ(r, z, t)− ψ(0, z, t)) , (A.26)

where r̄ is an auxiliary integration variable. If ψ(0, z, t) = 0 is taken, then Ψ = 2πψ.
It can be shown that other variables are also constant as long as Ψ is constant.

Such variables are referred to as flux functions. A possible flux function is the
plasma pressure, p. From the MHD equilibrium equation (A.21), it can be seen that
~B · ∇p = 0, which can be rewritten by using ∂/∂φ = 0 as

0 = ( ~Bφ + ~Bθ) ·
(
∂p

∂r
~r +

∂p

∂z
~z

)
, (A.27)

and using (A.23), it is found that

0 =
1

r

(
−∂ψ
∂z

∂p

∂r
+
∂ψ

∂r

∂p

∂z

)
= (∇ψ ×∇p) · ~φ, (A.28)

thus ∇ψ is parallel to ∇p, which means that points with constant ψ also have
constant p.
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Another flux function considered is the toroidal magnetic flux, Φ, which is defined
as

Φ =

∫∫
Sφ

BφdSφ, (A.29)

where Sφ is the surface enclosed by enclosed by a magnetic-flux surface, and is
perpendicular to the φ-axis as depicted in Fig. 2.3. In order to demonstrate that Φ

is in fact a flux function, Ampere’s law (second equation in (A.15)) is rewritten in
terms of the components of ~B and ψ as

µ0
~j =

1

r

(
∂(rBφ)

∂r
~z − ∂(rBφ)

∂z
~r

)
+

(
∂Br

∂z
− 1

r

∂(rBz)

∂r

)
~φ =

=
1

r
∇(rBφ)× ~φ− 1

r

(
∂2ψ

∂r2
+
∂2ψ

∂z2

)
~φ. (A.30)

Multiplying (A.30) by ∇p, and taking into account that ∇p · ~φ = 0, it is found that

0 =
1

r

(
∇(rBφ)× ~φ

)
· ∇p, (A.31)

which implies∇(rBφ) and∇p are parallel as well, i.e., rBφ = F (ψ) is also a constant
in a magnetic-flux surface and therefore a flux function. By means of the change
of variables R =

√
(r −R0)2 + z2, θ = arctan z

r−R0
(see Fig. 2.4), it is found that

dSφ = RdRdθ, and therefore (A.29) can be written as

Φ =

∫
Sφ

F (ψ)

r
drdz =

∫ 2π

0

[∫ γ(θ,ψ)

0

F (ψ)

R0 +R cos θ
dRR

]
dθ = Φ(ψ), (A.32)

so it can be concluded that Φ is also constant in a magnetic-flux surface.
A very commonly used flux function is the minor effective radius, ρ, which is

defined from Φ as
Φ = Bφ,0πρ

2, (A.33)

where Bφ,0 is a reference magnetic field (normally taken as the vacuum magnetic
field at the magnetic axis). Therefore, ρ is a constant in the magnetic-flux surfaces
by definition. It represents the radius of a circumference which is crossed by the
same toroidal flux as the magnetic surface, Φ, but with a toroidal magnetic field
equal to Bφ,0 (see Fig. 2.4).
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Finally, the safety factor, q, is a measure of the pitch of the magnetic field lines,
and it is defined as

q , −dΦ

dΨ
. (A.34)

It can be seen that, by definition, q is also a flux function.

A.4 Physical meaning of β

If the MHD equilibrium equation, (A.21), is combined with Ampere’s law (second
equation in (A.15), using ε0 ∂

~E
∂t
≈ 0), then it is possible to write

∇p =
∇× ~B

µ0

× ~B =
1

µ0

(
( ~B · ∇) ~B − 1

2
∇B2

)
, (A.35)

and re-arranging terms,

∇
(
p+

B2

2µ0

)
=

1

µ0

( ~B · ∇) ~B. (A.36)

In some geometries and/or ~B, it is found that ( ~B · ∇) ~B ≈ 0 (for example, in a
straight cylinder). Then, p + B2

2µ0
is a constant in the entire plasma domain. If this

approximation is applied to a tokamak2, then the pressure increase found in the
plasma core implies that the magnetic field decreases there. Such effect is known as
plasma diamagnetism: plasmas tend to reduce the externally created magnetic field
to which they are subject.

The parameter β = p
B2/(2µ0)

naturally arises in (A.36), and measures the relative
importance of the kinetic pressure, p, and the “magnetic pressure”, B2/(2µ0), in the
plasma equilibrium. It can also be employed to characterize the intensity of the
diamagnetic effects: high β implies strong diamagnetic effects.

2This is not a totally arbitrary assumption for a tokamak, as ~Bθ is an order of magnitude
smaller than ~Bφ, so ~B can be seen as “quasi-unidirectional”.
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Appendix B

Control-Oriented Modeling

B.1 Approximate computation of the bulk toroidal

rotation

The magnetic-flux surfaces are approximated by circumferences with the same toroidal
magnetic-flux as in the vacuum, whose radius is ρ by definition1. Under this as-
sumption, ξr ≈ ρ cos θ, ξz ≈ ρ sin θ, where θ ∈ [0, 2π]. Also, dΓ ≈ ρdθ. Then, using
(2.125) and employing average flux-surface values for vφ,i and n, the integral (2.128)
can be rewritten as

Ωφ = 2πR0

∫ ρ=ρb
ρ=0

ρ〈vφ,i〉〈n〉
[∫ θ=2π

θ=0
dθ

R0+ρ cos θ

]
dρ

Vp
. (B.1)

Integration with respect to θ can be done using the change of variables z = eiθ and
Cauchy’s Residue Theorem,∫ θ=2π

θ=0

dθ

R0 + ρ cos θ
=

∮
|z|=1

dz

iz
(
R0 + ρ

2

(
z + 1

z

)) = 2πRes

(
1

z
(
R0 + ρ

2

(
z + 1

z

)) , z∗) ,
(B.2)

1It is evident that is approach would not work very well for plasma shapes with very high κ,
intense diamagnetic effects (high β), or high aspect ratio tokamaks (where Bφ varies substantially
across the cross-section).
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where z∗ are the poles inside |z| = 1. Thus, to compute the residue, it is necessary
to first find the poles of the following complex function

1

z
(
R0 + ρ

2

(
z + 1

z

)) =
1

ρz2/2 +R0z + ρ/2
, (B.3)

which are given by z1 = (R0 +
√
R2

0 − ρ2)/ρ and z2 = (R0 −
√
R2

0 − ρ2)/ρ, i.e., two
poles on the real axis (because R0 > ρ). Whereas z1 is not inside the circle |z| = 1

(again, because R0 > ρ), z2 is always inside, for any value ρ ∈ [0, ρb]. This can be
shown by noting that, for ρ = 0,

lim
ρ→0

z2 = lim
ρ→0

R0 −
√
R2

0 − ρ2

ρ
= lim

ρ→0

2ρ

2
√
R2

0 − ρ2
= 0, (B.4)

where L’Hopital’s rule has been applied, whereas when ρ→ R0

lim
ρ→R0

z2 = 1, (B.5)

thus all the other intermediate values, ρ ∈ (0, R0), yield z2 ∈ (0, 1). Therefore,
z∗ = z2. The residue is found to be

Res

(
1

z
(
R0 + ρ

2

(
z + 1

z

)) , z2

)
=

2

ρ(z2 − z1)
=

1√
R2

0 − ρ2
, (B.6)

and then, ∫ θ=2π

θ=0

dθ

R0 + ρ cos θ
=

2π√
R2

0 − ρ2
. (B.7)

Finally, taking into account that 2πR02πρ = ∂V/∂ρ (where V is the volume enclosed
by the approximate, circular magnetic-flux surfaces) and using ρ = ρbρ̂, equation
(B.1) can be rewritten as

Ωφ =

∫ ρ̂=1

ρ̂=0
〈vφ,i〉〈n〉∂V (ρ̂)

∂ρ̂
1√

R2
0−ρ2

b ρ̂

Np

. (B.8)

If ρ2
b << R2

0 is fulfilled, which is true for very low aspect ratio tokamaks because
O(ρr/R0) = O(a/R0) << 1, and a reasonable simplification for low aspect ratio
tokamaks, then

√
R2

0 − ρ2
b ρ̂ ≈ R0, and (B.8) becomes

Ωφ =

∫ ρ̂=1

ρ̂=0
∂V (ρ̂)
∂ρ̂

Vφ(ρ̂,t)

R0
dρ̂

Vp
. (B.9)
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Note that the previous expression (B.9) for Ωφ is also obtained if ρb + R0 ≈ R0,
which implies ξr +R0 ≈ R0. Equation (2.123) becomes

ωz(ρ̂, t) =
Vφ(ρ̂, t)

R0

, (B.10)

and then, substituting (B.10) into (2.126), yields the same expression (B.9). How-
ever, ρ2

b << R2
0 is a less restrictive condition than R0 + ξr << R0. In any case, both

(B.8) and (B.9) give the same result for the relationship between ~Vφ and ~Ω: for two
magnetic-flux surfaces with the same ~Vφ, the outer magnetic-flux surface contributes
more to the total plasma rotation ~Ω than the inner magnetic-flux surface. Such re-
sult has an interesting physical meaning, as it suggests that accelerating the edge of
the plasma could result in substantial improvements in the global plasma rotation.
However, it is much more difficult to inject torque at or close to the plasma edge,
mainly due to the low plasma density of that region. The main external torque
sources (such as NBI and non-resonant magnetic fields) normally produce a much
higher torque in the plasma core, where the plasma density is higher, hence resulting
in a higher ~Vφ velocity. Thus, in present-day tokamaks, the global plasma rotation
dynamics is still dominated by the effects happening in the plasma core.
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Appendix C

Lyapunov Theory Basics

C.1 Stability of Nonlinear Systems

C.1.1 Autonomous Systems

Consider a nonlinear, autonomous system

ẋ = g(x, u), (C.1)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, and g : Rn ×Rp → Rn

is a nonlinear function. It is assumed that a control law u = ψn(x) is known and
set such that g(x, ψn(x)) , f̄(x), and also that the resulting function f̄ : Rn → Rn

is locally Lipschitz in Rn. It is said that x = x̄ is an equilibrium of the system if

f̄(x̄) = 0. (C.2)

Without loss of generality, it is possible to use the change of variables x̃ = x− x̄ so
that (C.1) can be rewritten as

˙̃x = ẋ− ˙̄x = f̄(x̄+ x̃)− f̄(x̄) = f̄(x̄+ x̃) , f(x̃), (C.3)

which is a system with an equilibrium at the origin (x̃ = 0).
Next, stability, asymptotical stability, and global asymptotical stability of an

equilibrium are defined. The equilibrium x̃ = 0 of the system (C.3) is stable if, for
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each ε > 0, there exists δ = δ(ε) > 0 such that

‖x̃(0)‖ < δ ⇒ ‖x̃(t)‖ < ε,∀t ≥ 0. (C.4)

Such equilibrium is asymptotically stable if it is stable and δ can be found such that

‖x̃(0)‖ < δ ⇒ lim
t→∞

x̃(t) = 0, (C.5)

and it is globally asymptotically stable if ‖x̃(0)‖ can be taken arbitrarily large. If a
continuous function V : Rn → Rn can be found for the system (C.3) such that

V (0) = 0, (C.6)

V (x̃) > 0, ∀x̃ 6= 0, (C.7)

V̇ (x̃) ≤ 0,∀x 6= 0, (C.8)

then the equilibrium x̃ = 0 is stable. If (C.6) and (C.7) are fulfilled, and condition
(C.8) is strictly fulfilled, i.e., V̇ (x) < 0, ∀x 6= 0, then the equilibrium x̃ = 0 is
asymptotically stable. Finally, if the following condition holds

‖x̃‖ → ∞⇒ V (x̃)→∞, (C.9)

in conjunction with (C.6), (C.7), and the strict version of (C.8), then x̃ = 0 is a
globally asymptotically stable equilibrium.

In general, finding the function V , known as Lyapunov function, is a complicated
problem. Typical candidates for Lyapunov functions are quadratic functions, V =

x̃TPx̃ (P > 0), such that V̇ = −x̃TQx̃ with Q > 0. A more detailed introduction
to Lyapunov stability theory for autonomous systems can be found in [65].

C.1.2 Non-Autonomous Systems

Consider a nonlinear, non-autonomous system

ẋ = g(x, u, t), (C.10)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, and g : Rn × Rp ×
[0,∞) → Rn is a nonlinear function. It is assumed that a control law u = ψn(x, t)
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is known and set such that g(x, ψn(x), t) , f̄(x, t), and also that the resulting
function f̄ : Rn × [0,∞) → Rn is piecewise continuous in t and locally Lipschitz in
x on Rn × [0,∞). A solution of the system, denoted by x̄(t), fulfills

˙̄x(t) = f̄(x̄(t), t). (C.11)

Without loss of generality, it is possible to use the change of variables x̃ = x− x̄ so
that (C.10) can be rewritten as

˙̃x = ẋ− ˙̄x(t) = f̄(x̄(t) + x̃, t)− f̄(x̄(t), t) , f(x̃, t), (C.12)

which is a system with an equilibrium at the origin (x̃ = 0).
The equilibrium x̃ = 0 of the system (C.12) is exponentially stable if there exist

positive c, k and λ such that

‖x̃‖ ≤ k ‖x(t0)‖ e−λ(t−t0), ∀ ‖x(t0)‖ ≤ c. (C.13)

If this condition holds for any x(t0), then the system is globally exponentially stable.
If a continuous function V : Rn × [0,∞) → Rn can be found for the system

(C.10) such that

k1‖x̃‖a ≤ V (x̃, t) ≤ k2‖x̃‖a, (C.14)

V̇ (x̃, t) ≤ −k3‖x̃‖a, (C.15)

then the equilibrium x̃ = 0 is exponentially stable.
As for the autonomous systems case, finding V can be a quite complicated prob-

lem. A more detailed introduction to Lyapunov stability theory for non-autonomous
systems can be found in [65].

C.2 Lyapunov Redesign Basics

C.2.1 Autonomous Systems

Lyapunov redesign is the technique employed in this work to design a robust, non-
linear controller. Consider a nonlinear, autonomous, uncertain system with the
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following shape
ẋ = f(x) +G(x)[u+ δ(x, u)], (C.16)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, δ ∈ Rp is the uncertainty
vector, and f : D → Rn, G : D → Rn×p and δ : D×Rp → Rp are locally Lipschitz in
x and u. It is assumed that a control law u = ψn(x) and a Lyapunov function V (x)

have been found such that the origin of (C.16) is a globally asymptotically stable
equilibrium in closed loop for the nominal system (δ = 0). A control law u = ψn + v

is sought such that (C.16) is asymptotically stable when δ 6= 0. The time derivative
of V is given by

V̇ =
∂V

∂x
(f +Gψn) +

∂V

∂x
G

(
v + δ

)
, (C.17)

where the dependence on x and u has been dropped to simplify notation. The term
∂V
∂x

(f+Gψn) corresponds to the time derivative of V when the control law u = ψn(x)

is employed for the nominal system (δ ≡ 0), which is negative by design. Therefore
∂V
∂x

(f +Gψn) < −αc(‖x‖), where αc is a class K function1. Then, it is found that

V̇ < −αc(‖x‖) +
∂V

∂x
G

(
v + δ

)
. (C.18)

The term v must be designed such that V̇ < 0, regardless of the value of δ. Using
the Cauchy-Schwarz inequality, (C.18) can be rewritten as

V̇ < −αc(‖x‖) +
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

‖δ‖2 . (C.19)

If there exists a bound with the shape

‖δ(x, ψn(x) + v)‖2 ≤ κ0(‖ρc(x)‖2 + ‖v‖2), (C.20)

where κ0 < 1 and ρc : D → Rp is non-negative, then

V̇ < −αc(‖x‖) +
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

κ0(‖ρc‖2 + ‖v‖2), (C.21)

and if v is taken as

v = −κ0 ‖ρc‖2

1− κ0

(
∂V
∂x
G
)T∥∥∂V

∂x
G
∥∥

2

, (C.22)

1A function f(x) belongs to class K iff (1) it is strictly increasing with x, and (2) f(0) = 0.
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then
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

κ0(‖ρc‖2 + ‖v‖2) = 0, (C.23)

and
V̇ < −αc(‖x‖). (C.24)

Therefore, the origin of (C.16) is globally asymptotically stable under the control
law u = ψn + v, with v given by (C.22), as long as a bound (C.20) can be found.
However, a control law using (C.22) is undetermined at ∂V

∂x
G = 0. In order to avoid

such problem, (C.22) is modified as

v = −
(
κ0 ‖ρc‖2

1− κ0

)2
(
∂V
∂x
G
)T

ε
, (C.25)

whenever κ0 ‖ρc‖2

∥∥∂V
∂x
G
∥∥

2
< ε, for some design parameter ε. The control law (C.22)-

(C.25) does not ensure global asymptotical stability, but it does ensures that x is
bounded by a class K function2 [65] of ε. Therefore, ε must be small in order to
make the bound on x as small as possible, ensuring that x remains close to 0.

C.2.2 Non-Autonomous Systems

Consider a nonlinear, non-autonomous, uncertain system with the following shape

ẋ = f(x, t) +G(x, t)[u+ δ(x, u, t)], (C.26)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, δ ∈ Rp is the uncertainty
vector, and f : Rn × [0,∞) → R → Rn, G : Rn × [0,∞) → R → Rn×p and
δ : Rn×Rp× [0,∞)→ ×Rp → Rp are piecewise continuous in t and locally Lipschitz
in x and u. It is assumed that a control law u = ψn(x, t) and a Lyapunov function
V (x, t) have been found such that the origin of (C.26) is a globally exponentially
stable equilibrium in closed loop for the nominal system (δ = 0). A control law
u = ψn + v is sought such that (C.26) is asymptotically stable when δ 6= 0. The
time derivative of V is given by

V̇ =
∂V

∂t
+
∂V

∂x
(f +Gψn) +

∂V

∂x
G

(
v + δ

)
, (C.27)

2A function f(x) belongs to class K iff (1) it is strictly increasing with x, and (2) f(0) = 0.
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where the dependence on x and u has been dropped to simplify notation. The term
∂V
∂t

+ ∂V
∂x

(f + Gψn) corresponds to the time derivative of V when the control law
u = ψn(x, t) is employed for the nominal system (δ ≡ 0). Therefore ∂V

∂t
+ ∂V

∂x
(f +

Gψn) ≤ −k3 ‖x‖a, where a and k3 are positive constants. Then, it is found that

V̇ ≤ −k3 ‖x‖a +
∂V

∂x
G

(
v + δ

)
. (C.28)

The term v must be designed such that V̇ < 0, regardless of the value of δ. Using
the Cauchy-Schwarz inequality, (C.28) can be rewritten as

V̇ ≤ −k3 ‖x‖a +
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

‖δ‖2 . (C.29)

If there exists a bound with the shape

‖δ(x, ψn(x) + v, t)‖2 ≤ ‖ρc(x, t)‖2 , (C.30)

where ρc : Rn × [0,∞)→ Rp is non-negative, then

V̇ ≤ −k3 ‖x‖a +
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

‖ρc‖2 , (C.31)

and if v is taken as

v = −‖ρc‖2

(
∂V
∂x
G
)T∥∥∂V

∂x
G
∥∥

2

, (C.32)

then
∂V

∂x
Gv +

∥∥∥∥∂V∂x G
∥∥∥∥

2

‖ρc‖2 = 0, (C.33)

and
V̇ ≤ −αc(‖x‖). (C.34)

Therefore, the origin of (C.26) is globally exponentially stable under the control
law u = ψn + v, with v given by (C.32), as long as a bound (C.30) can be found.
However, a control law using (C.32) is undetermined at ∂V

∂x
G = 0. In order to avoid

such problem, (C.32) is modified as

v = −‖ρc‖2

(
∂V
∂x
G
)T

ε
, (C.35)
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whenever ‖ρc‖2

∥∥∂V
∂x
G
∥∥

2
< ε, for some design parameter ε. The control law (C.32)-

(C.35) does not ensure global exponential stability, but it does ensures that x is
bounded by a class K function3 of ε. Therefore, ε must be small in order to make
the bound on x as small as possible, ensuring that x remains close to 0.

3A function f(x) belongs to class K iff (1) it is strictly increasing with x, and (2) f(0) = 0.
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Burn Control

D.1 Computation of κ0

Using (4.54), (4.55), and (4.56), it is possible to write

||δ(ψn + v)||2 =
√

2
||[δDT−line, δD−line]ψn+[δDT−line, δD−line]v||2

|γnomDT−line − γnomD−line|
, (D.1)

which, by using the triangular inequality, can be rewritten as

||δ(ψn + v)||2 ≤
√

2
||[δDT−line, δD−line]ψn||2+||[δDT−line, δD−line]v||2

|γnomDT−line − γnomD−line|
, (D.2)

and using the Cauchy-Schwarz inequality and the 2-norm properties, it is found that

||δ(ψn + v)||2 ≤
√

2(δDT−line)2 + (δD−line)2
||ψn||2+||v||2

|γnomDT−line − γnomD−line|
. (D.3)

Finally, taking into account that |δDT−line| ≤ δmaxDT−line and |δD−line| ≤ δmaxD−line, the
following bound is found,

||δ(ψn + v)||2 ≤
√

2(δmaxDT−line)
2 + (δmaxD−line)

2
||ψn||2+||v||2

|γnomDT−line − γnomD−line|
, (D.4)

and therefore,

κ0 =

√
2(δmaxDT−line)

2 + (δmaxD−line)
2

|γnomDT−line − γnomD−line|
. (D.5)

A. Pajares 247 Lehigh U.



D.2. Stability proof for Robust Control Law

D.2 Stability proof for Robust Control Law

The control law (4.57)-(4.58) assures that |ñD| and |ñT | are bounded by class K
functions1 of ε. It can be shown that, provided that Ẽ is driven to zero, |ñα| and
|ñI | are also bounded by class K functions of ε. The definition of n , ni + ne,
together with equations (2.75), (2.76), and (4.32) yield

lim
t→∞

n =
3(n̄α + ñα) + 2(n̄D + ñD) + 2(n̄T + ñT )

1− f spI (1 + ZI)
. (D.6)

It is known that |ñD| < c(ε) and |ñT | < d(ε), for some class K functions c(ε) and
d(ε). This proof starts by assuming that initially, |ñα| > 2

3
(c(ε) + d(ε)) (it can be

seen below that this assumption does not imply a loss of generality in the proof).
Then, an increase in ñα implies an increase in n, because the bound imposed through
c(ε) implies that ñD and ñT can never compensate the variations in n produced by
ñα. This happens regardless of the dependence in ñD and ñT with ñα. By the
same token as in the proof for the nominal control law, an increase in n produces a
decrease in T , and therefore a decrease in 〈σv〉DT , and vice versa, a decrease in n
produces an increase in 〈σv〉DT . For Sα,

Sα = (n̄Dn̄T + ñDn̄T + n̄DñT + ñDñT )〈σv〉DT ≤

(n̄Dn̄T + |ñD|n̄T + n̄D|ñT |+ |ñDñT |)〈σv〉DT = (n̄Dn̄T + b(ε))〈σv〉DT , (D.7)

where b(ε) = n̄Dd(ε) + n̄T c(ε) + c(ε)d(ε) > 0 is a class K function of ε because
c(ε) and d(ε) are class K functions, and n̄D > 0, n̄T > 0. The first term in (4.16)
behaves with nα in the same way as in the nominal control law proofs. By defining
−b′(ε)ñα = b(ε)〈σv〉DT > 0, it is possible to write

dñα
dt
≤ −

(
fα + b′(ε)

)
ñα. (D.8)

It can be noted that −b′(ε)ñα is a class K function, as b(ε) is a class K function
and 〈σv〉DT > 0. Thus, it can be concluded that ñα tends to zero when |ñα| >
2
3
(c(ε)+d(ε)), or what is the same, |ñα| decreases when |ñα| > 2

3
(c(ε)+d(ε)). At some

1A function f(x) belongs to class K iff (1) it is strictly increasing with x, and (2) f(0) = 0.
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point, |ñα| = 2
3
(c(ε) + d(ε)), and it cannot be assured that |ñα| decreases anymore.

It may happen that |ñα| keeps on decreasing, that |ñα| stays at 2
3
(c(ε) + d(ε)), or

that |ñα| grows above 2
3
(c(ε)+d(ε)) again. For any of those possibilities, it is always

possible to find a class K function h(ε) such that h(ε) > 2
3
(c(ε) + d(ε)), therefore

bounding |ñα|. From (D.6),

lim
t→∞

n = n̄+
3ñα + 2ñD + 2ñT
1− f spI (1 + ZI)

≤ n̄+
3h(ε) + 2c(ε) + 2d(ε)

1− f spI (1 + ZI)
, (D.9)

and finally,

lim
t→∞

nI = f spI n ≤ f spI

(
n̄+

3ñα + 2ñD + 2ñT
1− f spI (1 + ZI)

)

= n̄I + f spI

(
3h(ε) + 2c(ε) + 2d(ε)

1− f spI (1 + ZI)

)
, (D.10)

so ñI is also bounded by a class K function of ε.
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Appendix E

Feedback Linearization Control

E.1 Terms in MDE reduced model

The feedback-linearization model is obtained by discretizing the MDE over m =

1, 2, ..., N − 1 nodes, where ∆ρ̂ = 1/N is the discretization step.
For the Gη subpart of G, equation (5.36), the terms αm, βm, and γm can be

expressed as

αm = hmdiff,3 −
2hmdiff,1

∆ρ̂2
, βm =

hmdiff,1
∆ρ̂2

+
hmdiff,2
2∆ρ̂

, γm =
hmdiff,1
∆ρ̂2

−
hmdiff,2
2∆ρ̂

, (E.1)

where hdiff,i (i = 1, ..., 3) are functions that are defined next, and hmdiff,i denotes the
value of hdiff,i at the m-th node. The h(·) functions in (E.1), together with those
in the Gaux (see equation (5.37)) and GBS (see equation (5.38)) subparts of G are
given by

hdiff,1 = fηDψ, hdiff,2 = fη

(
Dψ

ρ̂
+ 2

∂Dψ

∂ρ̂

)
+
∂fη
∂ρ̂

Dψ, (E.2)

hdiff,3 = fη

(
∂2Dψ

∂ρ̂2
+
ρ̂
∂Dψ
∂ρ̂
−Dψ

ρ̂2

)
+
∂fη
∂ρ̂

(
Dψ

ρ̂
+D′ψ

)
, (E.3)

haux,i =
∂faux,i
∂ρ̂

, hBS,1 =
∂f ′BS
∂ρ̂

, hBS,2 = fBS, (E.4)
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E.1. Terms in MDE reduced model

where Dψ , F̂ ĜĤ, and

fη =
Zeffk

prof
sp

µ0ρ2
bF̂

2
(
T profe

)3/2 (
nprofe

)3/2ζ
, (E.5)

faux,i = R0ĤZeffk
prof
sp jdepaux,i

(
T profe

)δaux,i−3/2 (
nprofe

)(δaux,i−3/2)ζ+1
, (E.6)

fBS =
R2

0ĤZeffk
prof
sp

F̂
(
T profe

)3/2 (
nprofe

)3/2ζ

(
2L31T

prof
e (nprofe )ζ

∂nprofe

∂ρ̂
+

(2L31 + L32 + αL34)nprofe

∂
(
T profe (nprofe )ζ

)
∂ρ̂

)
. (E.7)
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Appendix F

Individual Scalars Control

F.1 Asymptotical and Exponential Stability Proof

The stability properties of the first order system

dx̃

dt
= −KP x̃−KI

∫ t

t0

x̃dt, (F.1)

are analyzed in this Section by using Lyapunov theory. It is assumed that KP > 0

and KI > 0. First, it is convenient to rewrite (F.1) as

dx̃1

dt
= −KP x̃1 −KI x̃2, (F.2)

dx̃2

dt
= x̃1, (F.3)

where x̃1 = x̃ and x̃2 =
∫ t
t0
x̃dt.

It can be noted that the dynamical system (F.1) (or alternatively, (F.2)-(F.3))
corresponds to a simple mass-spring-damper model. If the energy of the system, E,
given by

E =
1

2
x̃2

1 +
1

2
KI x̃

2
2, (F.4)

is employed as a Lyapunov function, V = E, then it is found that

V̇ = −KP x̃
2
1 ≤ 0, (F.5)
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F.1. Asymptotical and Exponential Stability Proof

for all x̃1 6= 0, x̃2 6= 0. Equation (F.5) demonstrates the stability of the system
(F.2)-(F.3) (see also Appendix C.1.1, conditions (C.6)-(C.8)).

It can be appreciated that, in fact, V̇ < 0 for all x̃1, x̃2 6= 0 with the only
exception of the subset S such that x̃1 = 0. It can also be seen that no solution to
(F.2)-(F.3) can stay in S except for the trivial solution. This can be demonstrated
by employing (F.2) with x̃1 ≡ 0,

�
�
��7

0
dx̃1

dt
= −����:0

KP x̃1 −KI x̃2 =⇒ x̃2 ≡ 0. (F.6)

Therefore, using La Salle’s invariance theorem, it can be concluded that (F.1) is in
fact globally asymptotically stable.

With the goal of analyzing the global exponential stability of (F.2)-(F.3), V is
modified as

V =
1

2
x̃2

1 +
1

2
(KI + a)x̃2

2 + bx̃1x̃2, (F.7)

for some constants a and b that need to be determined. Computing the time deriva-
tive of V yields

V̇ = (b−KP )x̃2
1 + (a− bKP )x̃1x̃2 −KIbx̃

2
2, (F.8)

and by choosing
a− bKP = 0, b−KP = −KIb, (F.9)

then V̇ = (b−KP ) (x̃2
1 + x̃2

2). Solving for a and b in (F.9) yields

a =
K2
P

1 +KI

, b =
KP

1 +KI

, (F.10)

and therefore, (F.8) becomes

V̇ = −KPKI

1 +KI

(
x̃2

1 + x̃2
2

)
. (F.11)

It can be seen that
V̇ ≤ −K

(
x̃2

1 + x̃2
2

)
, (F.12)

for any constant K such that KPKI/(1 + KI) ≥ K > 0. In order to ensure V > 0

for all x̃1, x̃2 6= 0, the following two conditions must be fulfilled

b < KP , (F.13)
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F.1. Asymptotical and Exponential Stability Proof

KI + a− b2 > 0. (F.14)

Employing (F.10), inequality (F.13) becomes

KP >
KP

1 +KI

, (F.15)

which is fulfilled for any values KP > 0 and KI > 0. Inequality (F.14) can also be
written, using (F.10), as

KI
K2
P + (1 +KI)

2

(1 +KI)2
> 0, (F.16)

which is fulfilled for KI > 0. Finally, it is convenient to rewrite V as

V =
1

2

[
x̃1, x̃2

]
A

[
x̃1

x̃2

]
, (F.17)

where

A =

[
1 KP

1+KI
KP

1+KI
KI +

K2
P

1+KI

]
. (F.18)

Because V > 0, then all the eigenvalues of A, denoted by λi, are also > 0, and

λmin‖[x̃1, x̃2]‖2
2 ≤ V ≤ λmax‖[x̃1, x̃2]‖2

2. (F.19)

Therefore, the system (F.2)-(F.3) fulfills all the conditions in (C.14)-(C.15) with a
Lyapunov function V as given by (F.17), and its global exponential stability can be
concluded.
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