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Abstract

Designing hand-engineered solutions for decision-making in complex environments is a chal-

lenging task. This dissertation investigates the possibility of having autonomous decision-

makers in several real-world problems, e.g., in dynamic matching, marketing, and trans-

portation. Achieving high-quality performance in these systems is strongly tied to the ac-

tions that a controller performs in different situations. This problem is further complicated

by the fact that every single action might have long-term consequences, so ignoring them

might cause unpredicted outcomes. My primary focus is to approach these problems with

long-term objectives in mind, instead of only focusing on myopic ones. By borrowing tech-

niques from optimal control and reinforcement learning, I design modeling infrastructures

for each specific problem. Currently, the mainstream of reinforcement learning research

uses games and robotics simulators for verification of the performance of an algorithm. In

contrast, my main endeavor in this dissertation is to bridge the gap between the developed

methods and their real-world applications, which are studied less often. For instance, for

dynamic matching, I propose a simple matching rule with optimality guarantees; for cus-

tomer journey, I use reinforcement learning to design an online algorithm based on temporal

difference learning; and, for transportation, I showed that it is possible to train a solver

with the capability of solving a wide variety of vehicle routing problems using reinforcement

learning. Finally, I conclude this dissertation by introducing a new paradigm, which I call

“corrective reinforcement learning.” This paradigm addressed one major challenge in apply-

ing policies found by RL, that is, they might significantly differ from real systems. I propose

a mechanism that resolves this issue by finding improved controllers which are close to the

status quo. I believe that the models proposed in this dissertation will contribute to the

1



discovery of methods that can outperform current systems, which are primarily controlled

by humans.
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Chapter 1

Introduction

We begin this dissertation in Chapter 2 with a general dynamic matching problem and

design a simple decision scheme that solves the long-term objective. We consider a match-

ing system with random arrivals of items of different types. The items wait in queues—one

per each item type—until they are “matched.” Each matching requires certain quantities of

items of different types; after a matching is activated, the associated items leave the system.

There exists a finite set of possible matchings, each producing a certain amount of “reward.”

This model has a broad range of important applications, including assemble-to-order sys-

tems, Internet advertising, matching web portals, etc. We propose an optimal matching

scheme in the sense that it asymptotically maximizes the long-term average matching re-

ward, while keeping the queues stable. The scheme makes matching decisions in a specially

constructed virtual system, which in turn control decisions in the physical system. The key

feature of the virtual system is that, unlike the physical one, it allows the queues to become

negative. The matchings in the virtual system are controlled by an extended version of the

greedy primal-dual (GPD) algorithm, which we prove to be asymptotically optimal—this

in turn implies the asymptotic optimality of the entire scheme. The scheme is real-time: at

any time it uses simple rules based on the current state of the virtual and physical queues.

It is very robust in that it does not require any knowledge of the item arrival rates, and

automatically adapts to changing rates. The extended GPD algorithm and its asymptotic

optimality apply to a quite general queueing network framework, not limited to matching

problems, and therefore is of independent interest. This work is now published in Queueing

3



Systems [64].

We may find simple control policies with theoretical guarantees for problems like the

matching problem of Chapter 2, but once the state space or the action space to represent

the problems becomes large, these methodologies become intractable. One approach for

resolving these limitations is to use Reinforcement Learning (RL), which is concerned with

learning policies to maximize the cumulative reward. In the rest of this dissertation, we uti-

lize the recent stream of developments in combining deep learning with RL, which is usually

referred to as Deep Reinforcement Learning (DRL), for designing complicated policies.

Currently, the main research focus areas in AI are in specific test-beds: playing games,

controlling toy robots, text translation, visual recognition, and many others. In contrast, my

main goal is to bridge the gap between the developed methods and real-world applications,

which is studied less often. In the next chapters, we specifically focus on RL and demonstrate

how it can provide modeling infrastructures capable of finding effective policies.

In Chapter 3, we study the applicability of RL to a marketing problem in which a firm

initiates different communications to its customers through marketing channels. Since we

consider long-term interactions with customer, we refer to our specific marketing problem as

customer journey optimization. We formulate the customer journey optimization problem

within an RL framework, in which we try to maximize the lifetime value of customers

instead of only considering myopic objectives. Using RL for the customer journey problem

is still in its early stages, and most of the literature pursues an offline approach that lacks

the adaptability to volatile customer behaviors. A major issue of using offline algorithms

in real-world applications is that it is not possible to propagate interaction trajectories

through time in order to learn a policy. In Chapter 3, we propose Deep Concurrent TD

(DCTD), an extension of Concurrent TD [78] with neural networks, as the online algorithm

that learns to maximize the long-term reward while keeping track of the customer reactions

and adapting to their behavioral alterations. The strength of the DCTD algorithm is that

it learns satisfactory policies only by observing the experiences of other customers, without

knowing the environment dynamics. The basic idea is to learn a policy by exploration

in a subset of the customers and then apply the successful ones to others. We develop a

method from historical data to the online learner algorithm in which, before running a live

4



policy, we train a reasonable one using an offline algorithm, e.g., DQN [61], as a warm-

start policy. Experimentally, we show how DQN’s performance degrades in exposure to

varying customer behaviors; however, DCTD automatically adapts the policy according to

non-stationary behaviors of the customers without knowing any a priori information about

the changes. This framework can be employed in various domains, ranging from business

applications to manufacturing as long as we have access to many concurrent environments.

In Chapter 4, we present an end-to-end framework for solving the Vehicle Routing Prob-

lem (VRP) using reinforcement learning. The VRP is a difficult combinatorial optimization

problem with many exact and heuristic algorithms, but finding satisfactory results is still

a hard task. In the simplest form, a single vehicle is responsible for delivering items to

customers in the shortest set of routes. Motivated by the recent work by Bello et al. [8], we

develop a framework for VRP with the capability of solving a wide variety of combinatorial

optimization problems using RL. In this framework, we consider a parameterized stochastic

policy, and by applying a policy gradient algorithm to optimize its parameters, the trained

model produces the solution as a sequence of consecutive actions in real time, without the

need to re-train for every new problem instance. One can consider the trained policy as a

black-box (or meta-algorithm) heuristic with the capability of generating close-to-optimal

tours in a reasonable amount of time. According to the findings of this chapter, our RL

algorithm is competitive with state-of-the-art VRP heuristics both in solution quality and

runtime, and this is progress toward solving the VRP with RL for real applications. More-

over, we show that our proposed framework can be applied to other variants of the VRP

such as split-delivery VRP and stochastic VRP.

Although reinforcement learning can provide reliable solutions in many settings, prac-

titioners are often wary of the discrepancies between the RL solution and their status quo

procedures. Therefore, they may be reluctant to adapt to the novel way of executing tasks

proposed by RL. On the other hand, many real-world problems require relatively small

adjustments from the status quo policies to achieve improved performance. Therefore,

in Chapter 5, we propose a student-teacher RL mechanism in which the RL (the “stu-

dent”) learns to maximize its reward, subject to a constraint that bounds the difference

between the RL policy and the “teacher” policy. The teacher can be another RL policy

5



(e.g., trained under a slightly different setting), the status quo policy, or any other exoge-

nous policy. We formulate this problem using a stochastic optimization model and solve

it using a primal-dual policy gradient algorithm. We prove that the policy is asymptoti-

cally optimal. However, a naive implementation suffers from high variance and convergence

to a stochastic optimal policy. With a few practical adjustments to address these issues,

our numerical experiments confirm the effectiveness of our proposed method in multiple

GridWorld scenarios.

6



Chapter 2

Reward Maximization in General

Dynamic Matching Systems

2.1 Introduction

We consider a dynamic matching system with random arrivals. Items of different types

arrive in the system according to a stochastic process and wait in their dedicated queues

to be “matched.” Each matching requires certain quantities of items of different types;

after a matching is activated, the associated items leave the system. There exists a finite

number of possible matchings, each producing a certain amount of “reward.” The objective

is to maximize long-term average rewards, subject to the constraint that the queues of

currently unmatched items remain stochastically stable. In this chapter, we propose a

dynamic matching scheme and prove its asymptotic optimality. (In fact, the policy works

for a more general objective, being a concave function of the long-term rates at which

different matchings are used.)

Figure 2.1 shows an example of a matching system with 4 item types. The items arrive

as a random process, as individual items or in batches. The average arrival rate of type i

items is αi. There exist 3 possible matchings; e.g., 〈1, 2〉 is a matching which matches one

item of type 1 with one item of type 2. 〈2, 3, 4〉 is another matching which matches one

item of types 2, 3 and 4. (In general, unlike in this example, a matching may require more

7



than one item of any given type.) A matching can only be applied if all contributing items

are present in the system; and if it is applied, the contributing items instantaneously leave

the system.

Figure 2.1 An example of the matching model.

The analysis of static matching has a large literature (see, e.g., [56]). The dynamic

model, which we focus on, has attracted a lot of attention recently, due to a large vari-

ety of new (or relatively new) important applications. One example is assemble-to-order

systems (see e.g., [71] and references therein), where randomly arriving product orders are

“matched” with sets of parts required for the product assembly. Another application is In-

ternet advertising [59], where the problem is to find appropriate matchings between the ad

slots and the advertisers. Web portals as places for business and personal interactions are

important applications; the problem in these portals (such as dating websites, employment

portals, online games) is to match people with similar interests [13]. Matching problems

also arise in systems with random arrivals of customers and servers; for example, in taxi

allocation, where matched “items” are passengers and taxis [44]. Further applications also

can be found in [14, 17].

Different control objectives may be of interest for matching systems. Gurvich and Ward

[39] study the problem of minimizing finite-horizon cumulative holding costs for a model

very close to ours. Plambeck and Ward [71], in the context of assemble-to-order systems,

consider a model where item arrival rates can be controlled via a pricing mechanism; the

objective includes queueing holding costs in addition to rewards/costs associated with order

fulfillments, parts salvaging and/or expediting. Paper [71], in particular, proposes and

studies a discrete-review policy; it involves solving an optimization problem at each review

8



point.

A special case of the matching system, which received considerable attention, is where

customers and servers randomly arrive to the system and each server can be matched

with one customer from a certain subset. This model, also known as the (stochastic)

bipartite matching system, was initially studied by [17]. The majority of the previous

research for this model was focused on finding the stationary distribution [4, 3] and stability

issues [13, 15, 58]. Bušić et al. [15] established necessary and sufficient conditions for

stabilizability of such systems, and have shown that the well known MaxWeight algorithm

achieves maximum stability region. The problem of minimizing the long-term average

holding cost for the bipartite matching system is studied by [14]. They have shown that

with known arrival rates (and some other conditions on the problem structure), a threshold-

type policy is asymptotically optimal in the (appropriately defined) heavy traffic regime.

In this chapter, we show that the reward-maximizing optimal control of the matching

model can be obtained by putting it into a typical queueing network framework. Our scheme

uses a specially constructed virtual system, whose state, along with the state of the physical

system, determines control decisions via a simple rule. In the virtual system any matching

can be applied at any time and the queues are allowed to be negative. The matchings in the

virtual system are controlled by (an extended version of) the Greedy Primal-Dual (GPD)

algorithm [82], which maximizes a queueing network utility subject to stability of the queues.

Negative queues in the virtual system can be interpreted as shortages of physical items of

the corresponding types. The GPD algorithm in [82] does not allow negative queues, so

it is insufficient for the control of our virtual system. The main theoretical contribution of

this chapter is that we introduce and study an extended version of GPD, labeled EGPD,

which does allow negative queues, and prove its asymptotic optimality under non-restrictive

conditions that we specify. The approach of using a virtual system to control the original

one has been used before, e.g., in [84], but the virtual system employed in this chapter is

substantially different, primarily because it allows negative queues.

Our proposed scheme is very robust in that it does not require a priori knowledge of item

arrival rates, and automatically adjusts if/when the arrival rates change. It also covers a

wide range of applications and control objectives. For example, in the context of assemble-
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to-order systems, the objective can include rewards/costs associated with order fulfillments,

parts salvaging and/or expediting.

Although our scheme is designed (and proved asymptotically optimal) for the reward

maximization objective, which does not include holding costs, we will discuss heuristic

approaches to how the scheme can be used to achieve good performance in terms of a more

general objective (including holding costs).

The chapter is organized as follows. Section 2.2 contains notation used throughout

the chapter. In Section 2.3 we formally introduce the matching model and the reward

maximization problem; here we also formally define the corresponding virtual system and

the overall control scheme, in which the matching algorithm for the virtual system is a key

part. In Section 2.4, we introduce the Extended Greedy Primal-Dual (EGPD) algorithm

for a general network model, with queues that may be negative, and prove asymptotic

optimality of EGPD; here we also show that the virtual system algorithm (in Section 2.3)

is a special case of EGPD and thus is asymptotically optimal. (A reader interested mostly

in applications of our proposed scheme may skip Section 2.4, at least at first reading.)

We evaluate the performance of our scheme via simulations in Section 2.5. Finally, in

Section 2.6, we discuss heuristics in which a more general objective, including holding costs,

can be addressed by tuning EGPD parameters. Some conclusions are given in Section 2.7.

2.2 Basic Notation

We denote by R, R+ and R− the set of real, real non-negative and real non-positive numbers,

respectively. RN , RN+ and RN− are the corresponding N -dimensional vector spaces. A vector

x ∈ RN is often written as x = (xn, n ∈ N ), where N = {1, 2, · · · , N}. For two vectors

x, y ∈ RN , x · y =
∑N

n=1 xnyn is the scalar (dot) product; vector inequality x ≤ y is

understood component-wise. The standard Euclidean norm of x is denoted by ‖x‖ =
√
x · x.

The distance between point x and set V ⊆ RN is denoted by ρ(x, V ) = infy∈V ‖x− y‖.

For a vector function f : R+ → RN and a set V ⊆ RN , the convergence f(t)→ V means

that ρ(f(t), V )→ 0 as t→∞.

For differentiable functions f : R → R and g : RN → R, we use f ′(t) (or (d/dt)f(t)) to
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denote the derivative with respect to t and ∇g(x) = ((∂/∂xn)g(x), n ∈ N ) is the gradient

of g at x ∈ RN .

For a set V and a real-valued function g(v), v ∈ V ,

arg max
v∈V

g(v)

denotes the subset of vectors v ∈ V that maximize g(v).

For ξ, η ∈ R and γ ∈ R+, we denote: ξ ∧ η = min {ξ, η}, ξ ∨ η = max {ξ, η}; ξ+ = ξ ∨ 0,

ξ− = (−ξ) ∨ 0; [ξ]+γ = ξ if γ > 0 and [ξ]+γ = max{ξ, 0} if γ = 0.

Abbreviation a.e. means almost everywhere with respect to Lebesgue measure.

2.3 Optimal Control of the Matching System

The outline of this section is as follows. First, we formally define the physical matching

system in Section 2.3.1 and discuss the flexibility of this model to include a large variety

of practical systems in Section 2.3.2. In Section 2.3.3 we introduce a virtual system, cor-

responding to the physical one. In Section 2.3.4 we define a control scheme, such that a

certain algorithm runs on the virtual system, and control decisions for the physical sys-

tem depend on those in the virtual one. We propose a specific algorithm for the virtual

system in Section 2.3.5; this algorithm is asymptotically optimal in the sense that, under

certain non-restrictive conditions, when the algorithm parameter (β) goes to zero, our entire

physical/virtual control scheme maximizes average matching reward in the physical system.

(The asymptotic optimality will be proved later, in Section 2.4.) We discuss features of the

virtual system algorithm, and the conditions for its asymptotic optimality in Section 2.3.6.

2.3.1 Definition of the Physical Matching System

Consider a matching system with I item types forming set I = {1, · · · , I}. The items

arrive in batches, consisting of items of the same or different types. To simplify exposition,

assume that batches arrive according to a Poisson process, with each batch type chosen

upon arrival, independently, according to some fixed distribution. There is a finite number
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of possible batch types. The average rate at which type i items arrive into the system is

αi > 0.

There is a finite set J = {1, · · · , J} of possible matchings. Let µ(j) = (µi(j), i ∈ I),

where µi(j) ≥ 0 is the required number of type i items to form matching j ∈ J . Without

loss of generality, we can and do assume that the “empty” matching, with all µi = 0, is an

element of J ; the empty matching is denoted 〈∅〉. If a matching requires either zero or one

item of each type, it is denoted by the subset of the required item types; say, 〈1, 2〉 denotes

the matching requiring one item of type 1, one item of type 2, and zero of all other types.

Without loss of generality, we can and do assume that the matching decisions are made

only at the times of batch arrivals into the system. Essentially without loss of generality,

we also assume that at those times at most m ≥ 1 matchings can be done. To simplify

exposition, we further assume that m = 1—it will be clear from our analysis that all results

and (with very minor adjustments) proofs hold for arbitrary fixed m. Therefore, from now

on we consider the system as operating in discrete (slotted) time t = 0, 1, 2, . . ., with i.i.d.

batches arriving at those times, and exactly one (possibly empty) matching activated at

each t.

Further, without loss of generality, we adopt the convention that the items that arrive

at time t are only available for matching at time t + 1. (If items arriving at time t are

immediately available for matching, the convention still holds if we simply pretend that

they arrived at time t− 1, after the matching decision at time t− 1 was made.)

Type i ∈ I items waiting to be matched form a first-come,first-served (FCFS) queue; its

length is denoted Q̂i. At any time t, any one matching j ∈ J can be activated subject to

the constraint that all the required items must be available in the system. With activation

of matching j ∈ J ,

(i) certain (real-valued) reward wj is generated;

(ii) number µi(j) of items is removed from the queues of the corresponding types i.

Let Xj be the long-term average reward generated by matching j, under a given control

policy. We are interested in finding a dynamic matching policy, which maximizes a con-

tinuously differentiable concave utility function G(X1, · · · , XJ) subject to the constraint
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that all queue lengths Q̂i(·) remain stochastically stable. Informally speaking, stochastic

stability means that as time goes to infinity the queues do not “run away” to infinity, i.e.,

remain O(1). Formally, by stochastic stability we will understand positive recurrence of

the underlying Markov process, describing the system evolution. (For example, if the pro-

cess is a countable-state-space irreducible Markov chain, positive recurrence is equivalent

to the existence of unique stationary probability distribution and to ergodicity.) Therefore,

stochastic stability ensures that all arriving items are matched, without the backlogs and

waiting times of unmatched items building up to infinity over time.

Remark 2.3.1. Stability and long-term averages. We will give a specific definition

of long-term average rewards Xj later. When the process is Markov and positive recurrent,

then Xj can be thought of as the steady-state average reward uj due to type j matchings—we

will elaborate on the relation between Xj and uj later.

Remark 2.3.2. More general µi(j). Our model and the results hold—as is—in the case

in which the values of µi(j) can be real numbers of any sign. A negative µi(j) means that

matching j adds |µi(j)| items to Q̂i, and by convention any negative number of items of

any type is always available for matching completion. We assume in this chapter that µi(j)

are non-negative integers to keep the exposition intuitive.

2.3.2 Model Flexibility

The matching model defined in Section 2.3.1 is flexible enough to include a variety of systems

and their features. Let us consider assemble-to-order systems as an example. In such

systems, orders for multiple products arrive as a random process. Each product requires

a certain number of components of each type to be assembled. Components also arrive

into the system as a random process. A product can only be assembled when all necessary

parts are available; in which case it brings a certain reward (profit). This is a matching

system where the components and product-orders of different types are “items”, a completed

product is a matching comprising one corresponding product-order and the required number

of parts. Salvaging and/or disposing of the components is easily accommodated; namely,

salvaging/disposing of one component, labeled as a type i item, can be treated as a matching
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〈i〉, with a reward that might be negative (as well as non-negative). Similarly with orders:

discarding an order for a product, which is labeled as item type `, is a matching 〈`〉 with

the corresponding (most likely, negative) reward. Expediting component delivery can be

included as well. Suppose matching 〈1, 2, 3, 9〉 corresponds to product 9 assembled from

(one unit of) parts 1, 2, 3, with a reward of 20. However, the system has an option of

expediting component 2, and receive it immediately, at a cost of 15. Then, assembling

product 9 from already available components 1 and 3, and expedited component 2, can be

modeled as a matching 〈1, 3, 9〉 with reward 20 − 15 = 5. (Another, more natural, way to

model expediting of item 2 is to treat it as a “matching,” requiring −1 type-2 items, with

a reward of −15. See Remark 2.3.2 above.)

This discussion illustrates the flexibility of our model as long as the objective is to max-

imize average rewards associated with actions, such as matching, salvaging, expediting, etc.

The model does not explicitly include holding costs. In Section 2.6 we propose and discuss

heuristic extensions of our scheme which do implicitly take holding costs into account.

2.3.3 Virtual Matching System

We will propose a matching control scheme in Section 2.3.4, which in parallel to the physical

system “runs” a virtual system, which determines the matching decisions for the physical

one. The virtual matching system is defined as follows.

The virtual system has the same item types, set of matchings and arrival flows as the

physical system. It is only different in that any matching can be activated at any time and

the queues of the virtual system can be negative, as well as positive. The matchings in the

virtual system are activated based on its own state, regardless of the state of physical system.

The activated matchings in the virtual system become actual matchings in the physical

system either immediately, or later in time, depending on the availability of physical items.

The virtual matchings, until they become actual ones, are called incomplete matchings.

Incomplete matchings wait in a queue, which lists the incomplete matchings (their identities

j) in the order of arrival; we denote the length of this queue by Q̂0. An incomplete matching

becomes an actual one and leaves this queue when it is “completed” by all required physical

items. (The queue of incomplete matchings, as we will see shortly, serves as the “interface”

14



between the virtual and physical systems. In our figures and plots it is shown as part of

the physical system.)

2.3.4 Control of the Physical Matching System via the Virtual System

Denote by Q(t) = (Qi(t), i ∈ I) and Q̂(t) = (Qi(t), i ∈ I) the vectors of queue lengths in

the virtual and physical systems, respectively, at time t. In this chapter, we always assume

that the system is initialized in a state such that all physical and virtual queues are zero,

Qi(0) = Q̂i(0) = 0, ∀i ∈ I, and there are no incomplete matchings, Q̂0(0) = 0. This means

that the only feasible system states are those reachable from this “zero-state.”

At time t the following occurs sequentially:

(i) A new matching is chosen in the virtual system based on Q(t). (We will give a specific

rule in Section 2.3.5.) If it is a non-empty matching j, then the virtual queues are

updated as Q := Q − µ(j), and a new type-j incomplete matching is created and

placed at the end of the (incomplete matchings) queue; so that Q̂0 := Q̂0 + 1.

(ii) The incomplete matchings queue is scanned in FCFS order, to find the first incomplete

matching j′, which can be completed, i.e., such that Q̂(t) ≥ µ(j′). If such a matching

j′ is found, it is completed, i.e., it is removed from the incomplete matchings’ queue

(so that Q̂0 := Q̂0 − 1), a physical matching j′ is created, and the corresponding

number of physical items leaves the system, Q̂ := Q̂− µ(j′).

(iii) Both Q and Q̂ are increased as: Q := Q+λ(t), Q̂ := Q̂+λ(t); here λ(t) = (λi(t), i ∈ I)

is the random vector of arrivals of different types at t.

According to steps (i)-(iii) above, if matching j ∈ J is chosen in the virtual system at

time t, the virtual queues change as follows:

Q(t+ 1) = Q(t) + λ(t)− µ(j). (2.1)

The evolution of the physical queues, if matching j′ ∈ J is completed, is:

Q̂(t+ 1) = Q̂(t) + λ(t)− µ(j′)

15



Recall that we only consider feasible states of the queues—those reachable from the

state where all virtual and physical queues are zero. Then we can make the following

observations for the control scheme described above. For illustration, we will use Figure 2.2

showing a physical matching system with two item types and one possible matching and its

corresponding virtual system. The system state shown in Figure 2.2 is such that: (a) in the

physical system there are two type-1 items and no type-2 items; (b) the queue lengths in the

virtual system are Q1(t) = 1, Q2(t) = −1; (c) there is one incomplete matching 〈1, 2〉, which

is incomplete because, while there is a type-1 item in the physical system (to complete it),

there is no available (physical) type-2 item. (Note that at this point we did not specify

yet the matching rule(s) for the virtual system—this will be done in Section 2.3.5. So, the

state in Figure 2.2 only illustrates the relation between virtual and physical systems, not a

specific matching rule.)

Figure 2.2 An example of the physical and virtual matching systems.

In a general system, if Qi(t) < 0, then Q−i (t) = |Qi(t)| is the current shortage of type-

i items for completing all incomplete matchings. (In Figure 2.2, Q2 = −1 indicates the

shortage of one type-2 item for completion of the incomplete matching 〈1, 2〉.) If Qi(t) ≥ 0,

then Q+
i (t) = Qi(t) is the current surplus of type-i items, beyond what is needed for

completing all incomplete matchings. (In Figure 2.2, Q1 = 1 indicates that there is one type-

1 item in addition to one type-1 item which can be used for completion of the incomplete

matching 〈1, 2〉.)

In addition to the notations Q(t) and Q̂(t), let us denote by Q̂0(t) the state (list) of all

incomplete matchings at time t.
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The following simple proposition gives a total queue length bound (2.2) for the physical

system in terms of the virtual one. This bound does not require any additional assumptions.

Statements (ii) and (iii) of the proposition involve the notion of stochastic stability, which

means positive recurrence of a Markov process. To keep the exposition simple, assume that

the process (Q(t), t ≥ 0), describing the evolution of the virtual system, and the process

[(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥ 0)] describing the evolution of the entire system,

are countable-state-space Markov chains. (This is the case, for example, under the virtual

system matching algorithm that we propose below in Section 2.3.5, and under linear utility

function G.)

Proposition 2.3.3. (i) At any t ≥ 0, the following relation between physical and virtual

queues holds:

Q̂0(t) ≤
∑
i

Q−i (t),
∑
i

Q̂i(t) ≤
∑
i

Q+
i (t) + µ∗

∑
i

Q−i (t) ≤ µ∗
∑
i

|Qi(t)|, (2.2)

where µ∗
.
= maxj

∑
i µi(j).

(ii) Stochastic stability of (Q(t), t ≥ 0) implies that of [(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥

0)].

(iii) If (Q(t), t ≥ 0) is stochastically stable, then the steady-state average rates at which

different matchings are activated are the same in the physical and virtual systems.

Proof. (i) Clearly, for all i ∈ I at all times, Qi(t) ≤ Q̂i(t). Note that the total short-

age of items of all types for the completion of all incomplete matchings is
∑

iQ
−
i (t); this

means, in particular, that the total number of incomplete matchings is upper bounded as

Q̂0(t) ≤
∑

iQ
−
i (t). The total number of physical items in the system,

∑
i Q̂i(t), can be par-

titioned into those that are ready to be used for completion of incomplete matchings and

the “surplus” items; the number of the former is upper bounded by µ∗Q̂0(t); the number

of the latter is equal to
∑

iQ
+
i (t). This implies the second part of (2.2).

(ii) Follows from (i).

(iii) Follows from (ii).

Remark 2.3.4. If m ≥ 1 matchings can be done after each arrival, the sequence of steps
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(i)-(iii) above is repeated m times.

2.3.5 Asymptotically Optimal Matching Algorithm for the Virtual Sys-

tem

We now specify the algorithm to be used for the control of the virtual system. This al-

gorithm will be proved to be asymptotically optimal for the virtual system, and then (by

Proposition 2.3.3) for the physical system as well—see Remark 2.3.6 below.

Algorithm 1 Matching Algorithm for the Virtual System.

Let a (small) parameter β > 0 be fixed. At each time t = 1, 2, · · · , activate matching

j(t) ∈ arg max
j∈J

[
(∂G(X(t))/∂Xj) wj +

∑
i∈I

βQi(t) µi(j)

]
, (2.3)

where running average values Xj(t) (of the rewards obtained by activation of different

matchings j) are updated as follows:

Xj(t)(t+ 1) = (1− β)Xj(t)(t) + β wj(t), (2.4)

Xj(t+ 1) = (1− β)Xj(t), j 6= j(t), (2.5)

and Qi(t) is updated according to rule (2.1) for all i ∈ I.

Note that if the function G is linear, say G(X) =
∑

j Xj , then the partial derivatives in

(2.3) are constant, and rule (2.3) becomes simply

j(t) ∈ arg max
j∈J

[
wj +

∑
i∈I

βQi(t) µi(j)

]
. (2.6)

Moreover, in this case the algorithm does not need to keep track of the averages Xj(t). As

a result, both processes (Q(t), t ≥ 0) and [(Q(t), t ≥ 0), (Q̂(t), t ≥ 0), (Q̂0(t), t ≥ 0)] are

countable-state-space Markov chains.

Consider the following assumption on the model structure. It is stated informally—

its precise meaning will be given (in a more general context) later in Assumption 2.4.2

(Section 2.4). Also, in Section 2.3.6 we explain why this assumption is non-restrictive.
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Assumption 2.3.5. For any subset Ī ⊆ I, there exists a matching activation strategy

under which the long-term average drift of queues i ∈ Ī is strictly positive and the long-

term average drift of queues i 6∈ Ī is strictly negative.

When parameter β is small, then the running average Xj(t) is (one notion of) a long-

term average rate at which rewards due to matching j are generated. (See Section 2.4.4.) We

will prove in Section 2.4 (as a corollary of Theorem 2.4.4) that, under Assumption 2.3.5, Al-

gorithm 1 is asymptotically optimal in the following sense. (It is described here informally—

the formal result is Theorem 2.4.4, for the more general model in Section 2.4.) Let V be the

set of those long-term rate vectors X that are achievable (by some control strategy) subject

to the stability of the queues, and let V ∗ be its optimal subset, V ∗ = arg maxX∈V G(X).

Then, when β is small, X(t)→ V ∗ as t→∞.

Suppose now that the system process is Markovian under Algorithm 1 (as is the case

when the function G is linear). Then Assumption 2.3.5 ensures process stability (for exam-

ple, by the argument described in Section 4.9 in [82]). In this case the steady-state average

rewards (due to different matchings) u = (u1, . . . , uJ) are well defined. If the process is in

the stationary regime, then obviously EX(t) = u. Furthermore, the asymptotic optimality

of Algorithm 1, in the sense described above, can be used to show that, as β → 0, the vector

u converges to the optimal set V ∗ (see Section 4.9 in [82]).

Remark 2.3.6. If Algorithm 1 is asymptotically optimal for the virtual system, then under

our scheme it is also asymptotically optimal for the physical system. Indeed, the physical

and virtual systems have the same set V of achievable long-term rate vectors X (subject

to the stability of the queues). This is because any X achievable in the virtual system

is achievable in the physical system as well (by our scheme, for which we have Proposi-

tion 2.3.3), and vice versa because obviously any control of the physical system can be

applied to the virtual system. Therefore, under our scheme, if the virtual system produces

(in the asymptotic limit) the optimal long-term rates X ∈ V ∗, the same optimal rates are

produced (by Proposition 2.3.3) in the physical system.
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2.3.6 Discussion of Algorithm 1

Basic intuition

The key feature of the virtual system is that it has an option of creating matchings “in

advance,” before all required physical items have arrived. These “advance” matchings are

the ones we called incomplete. Virtual queues keep track of the items’ availability: recall

that if Qi < 0, |Qi| is the shortage of type i items, and if Qi ≥ 0, it is the surplus of type i

items.

The intuition behind Algorithm 1 is the same as for the GPD algorithm in [82] (and

other related works—see, e.g., [83] and references therein), but our model is more general

in that the queues may have any sign. For simplicity of discussion, suppose the objective

function is linear, G(X) =
∑

j Xj , in which case equation (2.3) in Algorithm 1 reduces to

(2.6). The rule “tries” to choose a matching j which brings large reward wj , but at the

same time it “encourages” the drift of the queues towards 0. Indeed, recall that activation of

any matching can only decrease the virtual queues. This means that the rule “encourages”

the use of matchings that decrease positive Qi’s as much as possible and decrease negative

Qi’s as little as possible; in other words, the rule encourages matchings requiring items of

which there is a large surplus, and discourages matchings requiring items of which there

is already a large shortage—this guarantees stability of the queues. When parameter β

is small, the virtual queues “stabilize around correct levels”—positive or negative—which

allows rule (2.6) to make “correct” decisions maximizing the average rewards.

Assumption 2.3.5 is non-restrictive

We now describe two common cases in which Assumption 2.3.5 holds. These two cases

cover a very large number of applications.

Case 1. Assumption 2.3.5 holds automatically in the special case in which, for each

item type i, there exists at least one matching requiring only type i items (namely, with

µi ≥ 1 and µ` = 0 for ` 6= i). In this case it suffices to pick any parameter m (the number

of matchings per batch arrival) which is greater than µ∗
.
= maxj

∑
i µi(j). This special

case is very common for the following reason, which we illustrate using the simple model
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in Figure 2.2. If matching 〈1, 2〉 is the only one possible (besides the empty matching), the

system is unbalanced when the arrival rates are unequal, α1 6= α2, and cannot be stable. (If

items arrive one-by-one, this particular system obviously cannot be stable even if α1 = α2.

More generally, any system with one-by-one arrivals cannot be stable if its “matching graph”

is bipartite, see [58].) This shows that many practical systems typically need the option of

using “single” matchings 〈i〉 anyway (salvaging or discarding individual items), to ensure

stability, and then Assumption 2.3.5 holds.

Case 2. This case is more subtle. Suppose a system can potentially be made stable

without requiring single-type matchings. For example, consider the system in Figure 2.2

in which the arrivals occur only in pairs (1, 2). Suppose also that up to two matchings

can be done upon each arrival (m = 2). On the face of it, Assumption 2.3.5 does not

hold for this system. Indeed, the linear relation Q1(t) = Q2(t) holds at all times and,

therefore, it is impossible for Q1 and Q2 to have different average drifts, which is required

under Assumption 2.3.5. However, consider the orthogonal change of coordinates, Q̃1 =

Q1 + Q2, Q̃2 = Q1 − Q2, with λ(·) and µ(·) transformed accordingly. Then, Q̃2(t) ≡ 0,

and the system can be considered as having only one queue Q̃1. For the latter system,

Assumption 2.3.5 does hold. Note that the algorithm itself does not need to perform any

change of coordinates—it remains as is. This situation is generic: if there is an inherent

linear dependence between the queues, Assumption 2.3.5 often holds for the system after an

appropriate orthogonal change of coordinates. This is, in fact, the case for many bipartite

matching systems (with items arriving in pairs), including the one we consider later in

Section 2.6.2.

To summarize the discussion in this subsection, Assumption 2.3.5 is essentially the

assumption that the system can be made stable, plus a very common condition that the

queues “can be moved in any direction” within the subspace of feasible queue states.

2.4 A General Network Model and EGPD Algorithm

In this section we introduce the Extended Greedy Primal-Dual (EGPD) algorithm for a

general network model, which includes the matching system as a special case. This algorithm
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is a generalization of the GPD algorithm of [82] in the sense that queues at some network

nodes, we call them free nodes, are allowed to have any sign; as they evolve, these queues

are “free” to change from positive to negative and vice versa. The model in [82] is such

that queues at all nodes are constrained to be non-negative—in our model we call such

nodes constrained. First, we will formally define the model and the underlying optimization

problem in Sections 2.4.1-2.4.3. The optimization problem determines the best possible

(under any control algorithm) long-term drifts of the queues, which maximize the network

“utility” subject to the condition that queue-drifts are zero at free nodes and are non-

positive at constrained nodes; the optimal solutions to this problem give the maximum

possible network utility that can be achieved by any network control strategy subject to

stability of the queues. We define the EGPD algorithm in Section 2.4.4. In Section 2.4.5,

we show that, as the algorithm parameter β goes to 0, the “fluid scaled” version of the

process converges to a random process with sample paths being what we define as EGPD-

trajectories. In Section 2.4.6 we prove asymptotic optimality of the EGPD-algorithm, in the

sense that EGPD-trajectories converge to the optimal set of the underlying optimization

problem while keeping all queues uniformly bounded; in other words, the EGPD-algorithm

maximizes the system utility subject to stability. Finally, in Section 2.4.7 we show that

Algorithm 1 (Section 2.3.5) for the virtual system of Section 2.3.3 is a special case of

EGPD.

2.4.1 The Model

Consider a network consisting of a finite set of nodes N = {1, 2, · · · , N}, N ≥ 1. The nodes

are of two different types: N1 constrained nodes form the set N c = {1, 2, · · · , N1} and

N2 = N −N1 free nodes form N f = {N1 + 1, N1 + 2, · · · , N}. Either N c or N f is allowed

to be an empty set. There is a queue associated with each node, where we denote by Qn(t)

the queue length of node n ∈ N at time t and we will denote Q(t) = (Qn(t), n ∈ N ). The

queue length of node n ∈ N c is always non-negative, but node n ∈ N f can have queue

length of any sign.

The system operates in discrete time t = 1, 2, · · · . (By convention, we identify an integer

time t with unit time interval [t,t+1), which is usually referred to as time slot t.) A finite
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number of controls is available, where we denote by K the set of controls. Upon activation

of control k ∈ K at time t, the following occurs sequentially:

(i) A certain (non-random) real amount (“number”) µn(k) ≥ 0 of items is removed from

queue n and leaves the network. Queues in constrained nodes cannot go below zero;

so if Qn(t) ≤ µn(k), the entire content of queue n is removed.

(ii) A random (bounded) real amount (“number”) λn(k, t) ≥ 0 of items enters each node

n ∈ N , where λ(k, t) = (λn(k, t), n ∈ N ) are i.i.d. in time, with generic random

variable denoted λ(k) = (λn(k), n ∈ N ).

According to steps (i) and (ii), the queue update rules for constrained and free nodes, given

control k is chosen at time t, are as follows:

Qn(t+ 1) = [Qn(t)− µn(k)] ∨ 0 + λn(k, t), n ∈ N c (2.7)

Qn(t+ 1) = Qn(t)− µn(k) + λn(k, t), n ∈ N f . (2.8)

2.4.2 System Rate Region

For each k ∈ K and time t, consider the random vector b(k, t) = (bn(k, t), n ∈ N ) equal in

distribution to λ(k)−µ(k). Clearly, b(k, t) is equal to the random vector of queue increments

Q(t+ 1)−Q(t) provided that control k is chosen at time t and assuming Qn(t) ≥ µn(k) for

all n ∈ N c. We call components of b(k, t) the nominal increments of queues upon control

k at time t. Let k(t) denote the control chosen at time t by a given control policy.

Informally speaking, the finite-dimensional convex compact rate region V ⊂ RN is

defined as the set of all possible long-term average values of b(k(t), t), which can be induced

by different control policies. A formal definition of the rate region is as follows.

For each k ∈ K, denote by b(k) = Eb(k, t) the drift of queue lengths upon control k (at

any time t when control k is activated). For a fixed probability distribution φ = (φk, k ∈ K)

(with φk ≥ 0 and
∑

k∈K φk = 1) consider the vector

v(φ) =
∑
k∈K

φkb(k). (2.9)
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If we interpret φk as the long-term average fraction of time slots when control k is chosen

from the set of controls K, then v(φ) corresponds to the vector of long-term average drifts

of Q(t), assuming that the queues in the constrained nodes never hit zero. Then the system

rate region V is defined as the set of all possible vectors v(φ) corresponding to all possible

φ.

2.4.3 Underlying Optimization Problem

Consider an open convex set Ṽ ⊆ RN such that Ṽ ⊇ V . Consider a concave continuously

differentiable utility function H : Ṽ → R and the following optimization problem:

max
v∈V

H(v) (2.10)

s.t. vn ∈ R−, ∀ n ∈ N c

vn = 0, ∀ n ∈ N f .

Assumption 2.4.1. Optimization problem (2.10) is feasible, i.e.

{v ∈ V : vn ∈ R−, ∀n ∈ N c and vn = 0,∀n ∈ N f} 6= ∅. (2.11)

If Assumption 2.4.1 holds, we denote by V ∗ ⊆ V the set of optimal solutions of (2.10).

The dual to optimization problem (2.10) is

min
(yn∈R+,n∈N c),(yn∈R,n∈N f )

(
max
v∈V

(H(v)− y · v)

)
, (2.12)

and we denote by Q∗ the closed convex set of optimal solutions q∗ ∈ RN1
+ ×RN2 of problem

(2.12). For any v∗ ∈ V ∗ and any q∗ ∈ Q∗, the compementary slackness condition holds:

q∗ · v∗ = 0. (2.13)

In Section 2.4.4, we will introduce an algorithm that is asymptotically optimal under

the following assumption, which is stronger than Assumption 2.4.1.
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Assumption 2.4.2. For any subset N̄ f ⊆ N f , there exists v ∈ V such that vn > 0 for

n ∈ N̄ f and vn < 0 for n 6∈ N̄ f .

Assumption 2.4.2 means that there always exists a control policy which provides, simulta-

neously, a strictly negative average drift to all the constrained node queues and non-zero

average drifts toward zero for all free node queues.

Note that under Assumption 2.4.2, the set Q∗ is compact. Indeed, the optimal value of

problem (2.10) is equal to

H(v∗) = max
v∈V

(H(v)− q∗ · v) (2.14)

for any v∗ ∈ V ∗ and any q∗ ∈ Q∗. The set Q∗ must be bounded, because otherwise, from

Assumption 2.4.2, there would exist v ∈ V such that vn < 0 for all nodes with qn ≥ 0, and

vn > 0 for all nodes with qn < 0. Then we can arbitrarily increase the right hand side of

(2.14) by choosing q∗ ∈ Q∗ with large |q∗n|.

The problem that we are going to address is as follows. Let X denote a long-term

average value of b(k(t), t) under a given dynamic control policy, that is, a policy of choos-

ing k(t) depending on the system state. We are interested in finding a dynamic control

policy such that when optimization problem (2.10) is feasible, and moreover, the stronger

Assumption 2.4.2 holds, the corresponding X is close to V ∗, while the system queues remain

stochastically stable.

2.4.4 Extended Greedy Primal-Dual Algorithm

Consider the control policy in algorithm 2.
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Algorithm 2 EGPD algorithm for the general network model

At time t = 1, 2, · · · , choose a control

k(t) ∈ arg max
k∈K

[∇H(X(t))− βQ(t)] · b(k), (2.15)

where β > 0 is a small parameter. Here X(t) is the running average of b(k(t), t), updated

as follows:

X(t+ 1) = (1− β)X(t) + β b(k(t), t) (2.16)

and Q(t) is updated according to (2.7) and (2.8).

The initial condition is X(0) ∈ Ṽ . Note that this initial condition and update rule (2.16)

imply that X(t) ∈ Ṽ for all t ≥ 0. Hence the system evolution is well-defined for all t ≥ 0,

since the gradient and argmax in (2.15) are well-defined.

Also note that, if 0 < β < 1, then for t ≥ 1

X(t) =
t−1∑
τ=0

β(1− β)t−1−τ b(k(τ), τ) + (1− β)tX(0).

Therefore, when t is large, X(t) is essentially the geometric average of values of b(k(τ), τ)

up to time t− 1. When t is large and β > 0 is small, X(t) is (one notion of) the long-term

average of values of b(k(τ), τ) up to time t− 1.

2.4.5 Asymptotic Regime and Fluid Limit

We define the EGPD-trajectory as a pair of absolutely continuous functions (x, q)= ((x(t), t ≥

0), (q(t), t ≥ 0)), each taking values in RN and satisfying the following conditions:

(i) For all t ≥ 0,

x(t) ∈ Ṽ (2.17)

and for almost all t ≥ 0,

x′(t) = v(t)− x(t), (2.18)
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where

v(t) ∈ arg max
v∈V

[∇H(x(t))− q(t)] · v. (2.19)

(ii) We have

qn(t) ≥ 0, ∀t ≥ 0, n ∈ N c (2.20)

q′n(t) = [vn(t)]+qn(t), a.e. in t ≥ 0, n ∈ N c (2.21)

q′n(t) = vn(t), a.e. in t ≥ 0, n ∈ N f (2.22)

Functions x(t) and q(t) are dynamically changing primal and dual variables, respectively,

for problems (2.10) and (2.12), which arise as asymptotic limits of the fluid scaled version

of the process as described next.

Consider a sequence of processes (Xβ, Qβ), indexed by a parameter β, where β ↓ 0 along

a sequence B = {βj}∞j=1 with βj > 0 for all j. The initial state (Xβ(0), Qβ(0)) ∈ Ṽ is fixed

for each β ∈ B. (The processes and variables associated with a fixed parameter β will be

supplied by superscript β.)

We need to augment the definition of the process. Let us assume Xβ(t) and Qβ(t) are

functions defined on t ∈ R+ and constant within each time slot [l, l + 1), l = 0, 1, 2, · · · .

Thus for each β, consider the (continuous-time) process Zβ = (Xβ, Qβ), where

Xβ = (Xβ(t) = (Xβ
n (t), n ∈ N ), t ≥ 0), (2.23)

Qβ = (Qβ(t) = (Qβn(t), n ∈ N ), t ≥ 0). (2.24)

For each β,

zβ = (xβ, qβ) (2.25)

is the fluid scaled version of process Zβ, obtained by

xβ = Xβ(t/β), qβ = βQβ(t/β). (2.26)

The following theorem is a straightforward modification of Theorem 3 in [82], which we
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present without proof.

Theorem 2.4.3. Consider a sequence of processes {zβ} with β ↓ 0 along set B. Each process

is considered as a random element in the Skorohod space of RCLL (“right continuous with

left limits”) functions. Assume that zβ(0)→ z(0), where z(0) is a fixed vector in R2N such

that X(0) ∈ Ṽ . Then, the sequence {zβ} is relatively compact and any weak limit of this

sequence (i.e a process obtained as the weak limit of a subsequence of {zβ}) is a process with

sample paths z being EGPD-trajectories (with initial state z(0)) with probability 1.

2.4.6 Global Attraction Result

The following theorem is the main result of this section; it shows the convergence of EGPD-

trajectories to the saddle set V ∗ ×Q∗.

Theorem 2.4.4. Under Assumption 2.4.2, the following hold:

(i) For any EGPD-trajectory (x, q), as t→∞,

x(t)→ V ∗, (2.27)

q(t)→ q∗, for some q∗ ∈ Q∗. (2.28)

(ii) Let some compact subsets V � ⊂ Ṽ and Q� ⊂ RN1
+ × RN2 be fixed. Then, the conver-

gence

(x(t), q(t))→ V ∗ ×Q∗, t→∞, (2.29)

is uniform across all EGPD-trajectories with initial states (x(0), q(0)) ∈ V � ×Q�.

The proof of Theorem 2.4.4 is a generalization of that of Theorem 2 in [82]—all steps

of the latter are extended to our more general setting. For this reason we will not give a

complete proof of Theorem 2.4.4 in this chapter. Instead, we demonstrate the key points

involved in the generalization, by proving in this section the convergence (2.27) for the

special case when x(0) ∈ V and H(·) is strictly concave.
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Consider a fixed EGPD-trajectory (x, q). The property

ρ(x(t), V ) ≤ ρ(x(0), V )e−t, t ≥ 0 (2.30)

holds regardless of Assumptions 2.4.1 or 2.4.2 (cf. Lemma 20 in [82]). This shows that

the entire trajectory (x(t), t ≥ 0) is contained within V . Then, this fact implies that

supt≥0 ‖∇H(x(t))‖ <∞.

A time point t ≥ 0 is called “regular” if conditions (2.17)-(2.19) are satisfied and proper

derivatives x′(t), q′(t) and f ′(t) exist. Almost all t are regular.

Let us introduce the following function:

F (v, y) = H(v)− 1

2

∑
n∈N

y2
n, v ∈ Ṽ , yn ∈ R+ for n ∈ N c, yn ∈ R for n ∈ N f .

Lemma 2.4.5. The trajectory (q(t), t ≥ 0) is such that

sup
t≥0
‖q(t)‖ <∞. (2.31)

Proof. Within this proof, we say that a vector function (or scalar function) α(t), t ≥ 0, is

uniformly bounded if supt≥0 ‖α(t)‖ <∞. By Assumption 2.4.2, the following holds for some

fixed number δ > 0. For any t ≥ 0, there exists ξ = (ξn, n ∈ N ) ∈ V such that for any

n, |ξn| ≥ δ, ξn > 0 if qn < 0, and ξn < 0 if qn ≥ 0. Then for any regular t ≥ 0 (and a

corresponding ξ) we have:

d

dt
F (x(t), q(t)) = [∇H(x(t))− q(t)] · v(t)−∇H(x(t)) · x(t)

≥ [∇H(x(t))− q(t)] · ξ −∇H(x(t)) · x(t)

= −
∑
n∈N

ξnqn(t) +∇H(x(t)) · (ξ − x(t))

≥ δ
∑
n∈N
|qn(t)|+∇H(x(t)) · (ξ − x(t)) (2.32)

Since ∇H(x(t)) and x(t) are uniformly bounded, so is the second term in (2.32). When

‖q(t)‖ is large, the first term in (2.32) is large positive. We conclude that (d/dt)F (x(t), q(t)) ≥
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ε1 > 0 as long as ‖q(t)‖ ≥ C1 > 0, for some fixed constants ε1 and C1. Since H(x(t)) is

uniformly bounded, we can pick C2 > 0 sufficiently large so that F (x(t), q(t)) ≤ −C2

implies ‖q(t)‖ ≥ C1 and then (d/dt)F (x(t), q(t)) ≥ ε1 > 0. We then conclude that

lim inft→∞ F (x(t), q(t)) ≥ −C2 and, therefore, inft≥0 F (x(t), q(t)) > −∞. The latter (along

with the uniform boundedness of H(x(t))) implies that q(t) is uniformly bounded.

Lemma 2.4.6. For any EGPD-trajectory, at any regular time t ≥ 0,

d

dt
F (x(t), q(t)) = ∇H(x(t)) · (v(t)− x(t))− q(t) · v(t) (2.33)

and

v(t) ∈ arg max
v∈V

∇H(x(t)) · (v − x(t))− q(t) · v (2.34)

Furthermore, if Assumption 2.4.1 holds,

d

dt
F (x(t), q(t)) ≥ ∇H(x(t)) · (v∗ − x(t)) ≥ H(v∗)−H(x(t)). (2.35)

Proof. Noting q′n(t) = vn(t) and v∗n = 0, for any n ∈ N f , every step of the proof is analogous

to that of Lemma 3 in [82].

Select an arbitrary point q∗ ∈ Q∗ and associate it with the following function

F ∗(v, y) = H∗(v)− 1

2

∑
n∈N

(yn − q∗n)2, v ∈ Ṽ , yn ∈ R+ for n ∈ N c,

yn ∈ R for n ∈ N f ,

where

H∗(v) = H(v)− q∗ · v

is the Lagrangian of problem (2.10) with the dual variable equal to q∗ ∈ Q∗. Having strictly

concave H(·) implies that H∗(·) is also a strictly concave function and

v∗ = arg max
v∈V

H∗(v) (2.36)

is the unique optimal solution. Note that ∇H∗(v) = ∇H(v)− q∗.
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Lemma 2.4.7. Consider F ∗(·, ·) associated with an arbitrary q∗ ∈ Q∗. Then for all (regu-

lar) t ≥ 0,

d

dt
F ∗(x(t), q(t)) ≥ [∇H(x(t))− q∗] · (v(t)− x(t))− (q(t)− q∗) · v(t) (2.37)

and

x(t) ∈ V implies
d

dt
F ∗(x(t), q(t)) ≥ 0. (2.38)

Proof. The proof is analogous to that of Lemma 5 in [82]. The only difference is the existence

of free nodes, where we can easily validate this Lemma by using q′n(t) = vn(t) and v∗n = 0

for any n ∈ N f .

Proof of Theorem 2.4.4. The convergence (2.27) follows from an inequality that we first

derive. For any (regular) t ≥ 0,

d

dt
F ∗(x(t), q(t)) ≥(∇H(x(t))− q∗) · (v(t)− x(t))− (q(t)− q∗) · v(t)

=(∇H(x(t))− q∗) · (v∗ − x(t))− (q(t)− q∗) · v(t)+

(∇H(x(t))− q∗) · (v(t)− v∗)

=∇H∗(x(t)) · (v∗ − x(t))− (q(t)− q∗) · v∗+

(∇H(x(t))− q(t)) · (v(t)− v∗) (2.39)

=B1(t) +B2(t) +B3(t), (2.40)

where Bi(t), i ∈ {1, 2, 3} is the ith term in the right hand side of (2.39). Since x(t) ∈ V

and v∗ maximizes H∗(·) over the compact set V , we have

B1(t) ≥ H∗(v∗)−H∗(x(t)) ≥ 0. (2.41)

Thus, for any ε1 > 0, there exists sufficiently small ε2 > 0 such that

B1(t) ≥ ε2 as long as ‖x(t)− v∗‖ ≥ ε1. (2.42)
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Moreover, using complementary slackness (2.13),

B2(t) = −(q(t)− q∗) · v∗ = −q(t) · v∗ = −
∑
n∈N c

qn(t) v∗n ≥ 0, (2.43)

and

B3(t) = (∇H(x(t))− q(t)) · (v(t)− v∗) ≥ 0, (2.44)

because v(t) maximizes ∇H(x(t))− q(t)) · v over all v ∈ V .

Now, ‖x(t)− v∗‖ must converge to zero (which proves (2.27)). Indeed, suppose not.

Then, there exists ε1 > 0 and a sequence tn, n = 1, 2, . . ., tn ↑ ∞, such that ‖x(tn)− v∗‖ ≥

2ε1. Since x(t) is Lipschitz continuous, this implies that for some δ > 0,

‖x(t)− v∗‖ ≥ ε1, tn ≤ t ≤ tn + δ, ∀n,

and then, by (2.42), for some ε2 > 0,

B1(t) ≥ ε2, tn ≤ t ≤ tn + δ, ∀n.

This means that
∫∞

0 (d/dt)F ∗(x(t), q(t)) =∞ (recall that B2(t) and B3(t) are non-negative),

and therefore F ∗(x(t), q(t)) → ∞. But, this is impossible, because, by the definition of

function F ∗ and Lemma 2.4.5, supt≥0 ‖F ∗(x(t), q(t))‖ < ∞. The contradiction proves

(2.27).

2.4.7 Mapping of the Virtual Matching System of Section 2.3.3 into

EGPD Framework

Now we are in position to show that Algorithm 1 for the control of the virtual system in

the original matching model in Section 2.3 is a special case of the EGPD Algorithm. The

mapping of the virtual system of Section 2.3.3 into the more general model of Section 2.4.1 is

as follows. Consider the following system, which we refer to as a modification of the virtual

system. Suppose the item types I are modelled as free nodes and let the set of matchings

J be the set of controls K. Let us add one constrained node per matching j ∈ J . (These

32



additional nodes are the utility nodes in the terminology of GPD algorithm [82].) From

this point on, for convenience of the notation, we replace the set of indices of item types

I with {J + 1, · · · , J + I} and denote by Ic = {1, · · · , J} the set of all constrained nodes.

For the constrained nodes we adopt the convention that they never receive any inputs,

i.e., λj(t) ≡ 0, j ∈ Ic. We also fix a sufficiently large c > 0, so that wj − c < 0 for all

constrained nodes, and for each constrained node (or, matching) j ∈ Ic we set by convention

µj(j) = c−wj > 0 and µi(j) = c > 0, i ∈ Ic\{j}. These conventions about the constrained

nodes guarantee that under any control strategy, their queues are automatically stable. In

fact, for any i ∈ Ic and any initial value Qi(0), the queue length Qi(t) will decrease until it

hits 0 within a finite time and then it will remain at 0. This allows us to assume, without

loss of generality, that Qi(t) ≡ 0 for all constrained nodes .

For a matching (or, constrained node) j, we have b(j, t) = (λi(t) − µi(j), i ∈ Ic ∪ I)

and b̄(j) = Eb(j, t). Note that, for i ∈ Ic, b̄i(j) = wj − c if i = j and b̄i(j) = −c otherwise.

If j(t) is the matching chosen at t, then the compact rate region V ⊂ RJ+I is the set of

all possible vectors

v = (v1, . . . , vJ , vJ+1, . . . , vJ+I)

being possible long-term average values of b̄(j(t)) under different matching strategies (see

formal definition in Section 2.4.2).

Finally, we define the utility function H(v) as follows:

H(v1, . . . , vJ , vJ+1, . . . , vJ+I) = G(v1 + c, . . . , vJ + c).

Given these conventions, it is easy to see that the problem of maximizing G(X1, . . . , XJ)

(subject to the stability of the queues) in the original matching system is equivalent to the

problem of maximizing H(X1, . . . , XJ , XJ+1, . . . , XJ+I) (subject to the stability of the

queues) in the modified system defined in this subsection. The latter system is a special

case of the general system of Section 2.4.1. If we specialize Algorithm 2 to the modified

system, and then rewrite it in terms of the original virtual system, we obtain Algorithm 1.

Assumption 2.4.2, specialized to the modified system and expressed in terms of the original
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virtual system, gives the formal meaning of Assumption 2.3.5 (which is stated informally).

The mapping described in this section and the asymptotic optimality of the EGPD

algorithm under Assumption 2.4.2 imply the asymptotic optimality of Algorithm 1 under

Assumption 2.3.5.

2.5 Simulations

In this section, we evaluate the performance of the EGPD algorithm via simulations. Con-

sider the system described in Section 2.1. We extend the set of possible matchings by

including “single” matchings (see Section 2.3.6):

{〈∅〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈1, 2〉, 〈2, 3〉, 〈2, 3, 4〉} .

The reward vector is w = (0,−1,−1, 1, 2, 5, 4, 7), where its jth component corresponds

to the jth element of the set of matchings. We consider a linear utility function, namely

the sum of average rewards due to different matchings. The vector of arrival rates is

α = (1.2, 1.5, 2, 0.8) per second.

For our linear utility function, the EGPD algorithm for the virtual system is given by

rule (2.6).

A. Average reward maximization. We use parameter β = 0.01. Figure 2.3 shows

the queue trajectories of the virtual and physical systems under the EGPD algorithm. All

queues are initially empty. We observe that all queues are quickly “converging”. Nearly all

type-2 and type-4 items are matched right after they enter the system, while there exists a

queue of around 100 items of types 1 and 3.

The rates at which matchings are activated under the EGPD algorithm are provided in

Table 2.1, which shows that these rates are close to the optimal ones, obtained by solving

the underlying optimization problem (which is a linear program in this case). Therefore,

as expected, the algorithm yields near-optimal performance for small β. Note that solving

the optimization problem requires the knowledge of arrival rates (as well as other system

parameters), while our algorithm need not know arrival rates.
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Figure 2.3 Queue trajectories of the virtual and physical systems under EGPD algorithm.

Table 2.1 Matching rates: Optimal vs. EGPD. (Runtime=30000 seconds)

Method
Matchings

〈1〉 〈2〉 〈3〉 〈4〉 〈1, 2〉 〈2, 3〉 〈2, 3, 4〉

EGPD 0 0 1.69345 0.4829 1.1924 0 0.31075
Optimal 0 0 1.70005 0.49995 1.2001 0 0.29975

Figure 2.4 demonstrates the average matching reward per unit time. We have calculated

the optimal average reward (by solving the linear program) which is equal to 10.8, and

plotted it on the figure. As is clear from the graph, the running average reward under the

EGPD algorithm is getting very close to optimal objective value, and this convergence is

sufficiently fast.

B. Effect of parameter β. In order for βQ in the virtual system to “stay close” to

some q∗ ∈ Q∗, the parameter β should be small. Therefore, as long as the parameter β is

sufficiently small, the algorithm is nearly optimal and the virtual queue lengths are roughly

of the order 1/β. As β is increasing, the accuracy of the algorithm in terms of average

reward maximization decreases, while the queues become smaller.
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Figure 2.4 Average matching reward under the EGPD algorithm.
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The dependence of the average reward on β for the considered scenario is shown in

Figure 2.5. First, we note that the average reward remains nearly optimal for values of

β almost as large as 1 (i.e., not even very small in absolute terms). Then, as β changes

from 1 to about 10, the average reward decreases and reaches the lower “plateau,” and

then remains constant for β ≥ 10. Thus, as expected, the algorithm is effective in terms

of reward maximization when β is sufficiently small (less than 1 in our scenario); when β

is sufficiently large (greater than 10 in our scenario), the average reward is also roughly

independent of β, but is at a lower, suboptimal level.
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Figure 2.5 Average matching reward for different values of β.

We note that larger values of β have the benefit of reducing the queues and, as a result,

reducing (as we will see next) the algorithm response (or, adaptation) time to changes of

the items’ arrival rates. (Shorter queues also mean lower holding costs, if such are a part

of the model. This will be discussed in Section 2.6.) Therefore, the value of parameter β

should be chosen, very informally speaking, “as large as possible, but not larger.”

C. Automatic adaptation to changes in arrival process. An important robustness

issue is how quickly the EGPD algorithm responds to changes in the arrival process. In

the following experiment, the arrival rates are changed to α = (1.8, 0.8, 1.4, 1) at time 2000.

This change leads to different optimal matching rates and thus different optimal values.

If quick response to arrival rate changes is important, a larger β is preferable. Here we

use β = 0.1. Figure 2.6 shows the queue trajectories of the virtual and physical systems.

We observe that EGPD automatically adapts to the new arrival rates and reaches the new

“right” queue lengths, without using any a priori information on this change.
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Figure 2.6 Adaptation to the changes in arrival rates.

2.6 Heuristics for the Objective Including both Matching

Rewards and Holding Costs

2.6.1 General Discussion

The scheme we proposed in Section 2.3.4 for the matching model is asymptotically optimal

for the reward maximization problem. (We will refer to this entire scheme as EGPD,

because EGPD is its key part, applied to the virtual system and determining matching

choices.) In practical systems, the objective may be more general, namely maximizing the

average “profit” defined as average reward minus average queue holding cost. We now

informally discuss how EGPD can be used to achieve better profit in the system (even

though it is not specifically designed for that).

For the purposes of the discussion below, we assume linear holding costs with rate vector

c = (ci, i ∈ I); that is the average holding cost over interval [0, T ] is

1

T

∫ T

0
c · Q̂(t)dt. (2.45)

Suppose the arrival rates are scaled up by a factor r > 0. This simply speeds up the

process r times, so that the average reward increases r times, while the holding cost remains

same. Thus for systems with “high” arrival rates, the rewards dominate the profit objective

and we expect the average profit obtained by the EGPD algorithm to be “close” to the

optimal one. In other cases, holding costs may dominate, for example when the system

is in (appropriately defined) heavy traffic (see [39, 14])—this makes the queues necessarily
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large. When the optimal average rewards and optimal holding cost are on the same scale, the

EGPD parameter settings can be used to control the tradeoff between these two performance

measures, thus potentially improving the average profit. We now briefly discuss different

heuristic approaches for profit improvement within the framework of our scheme.

Choice of parameter β. As discussed in Section 2.5, as long as the parameter β is

sufficiently small, the virtual queue lengths under EGPD are large, roughly of the order

1/β. To see how this affects the holding cost, consider two cases:

(i) If Qi(t) ≥ 0, then Q̂i(t) will also be large (of the order of at least 1/β) since the

inequality Q̂i(t) ≥ Qi(t) holds for all i ∈ I at all t.

(ii) If Qi(t) < 0, this has an indirect impact on the holding cost. In particular, large |Qi(t)|

in this case would imply more incomplete matchings. This subsequently results in a

higher holding cost.

Therefore, parameter β should be chosen as large as possible, but not to exceed the level

beyond which the average rewards start to be significantly (negatively) affected.

Additional queue scaling. Consider arbitrary positive weights γi, i ∈ I. All the

results for the EGPD algorithm hold if we use the more general rule

j(t) ∈ arg max
j∈J

[
(∂G(X(t))/∂Xj)wj +

∑
i∈I

β γiQi(t)µi(j)

]
. (2.46)

instead of (2.3). In this case, it is the weighted vector (γiβQi(t), i ∈ I) (not βQ(t)) that will

be close to an optimal dual solution q∗. This property may be used to reduce the holding

cost by giving higher weights to more “expensive” queues (with large ci), thus making them

relatively smaller.

Matching completion order. There is a flexibility in choosing which incomplete

matching to complete first. For the average matching reward maximization this does not

matter (so, earlier we specified the FCFS rule for concreteness). However, if the holding

costs are a consideration, one may pick incomplete matchings with higher associated holding

cost to be completed first.
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2.6.2 Simulation: Average Profit in a Bipartite Matching System

Consider a bipartite matching system, where items arrive in pairs, and the matchings are

pairs as well, as is depicted in Figure 2.7. There are 8 item types {1, 2, 3, 4, 1′, 2′, 3′, 4′}. The

arrival graph is on the left, where each edge shows a possible arrival pair, and the plot in

the right hand side is the matching graph with edges representing the possible matchings.

Up to two matchings can be done per arrival (m = 2).

Figure 2.7 Illustration of the matching system.

We consider the process in discrete time t = 1, 2, · · · . The arrival process is i.i.d. across

time. Specifically, at each time t, a pair of items enters the system. The probabilities (rates)

of different arrival pairs are specified in Table 2.2.

Table 2.2 Probabilities (rates) of different arrival pairs.

Arrival pairs (1,1′) (1,2′) (2,1′) (2,2′) (3,4′) (4,3′) (4,4′)

Probability 0.166 0.083 0.087 0.083 0.2324 0.2656 0.083

It is easy to check that this system satisfies the necessary and sufficient conditions [15]

for bipartite matching systems to be stabilizable. The condition, called NCond in [15], is as

follows. Suppose the matching graph is connected. Consider a subset T of items from the

top part of the bipartite graph, and denote by αT the total arrival rate of all items in T .

Denote by B(T ) the subset of items from the bottom part of the graph that can be matched

with at least one item in T , and by αB(T ) the total arrival rate of all items in B(T ). Then,

the system is stabilizable if and only if αT < αB(T ) holds for any strict subset T of “top”

items.

Now, let us see if Assumption 2.3.5 holds. Since this is a bipartite matching system,

with items arriving and departing in pairs, virtual queues satisfy the following linear relation
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Q1(t) + Q2(t) + Q3(t) + Q4(t) − (Q1′(t) + Q2′(t) + Q3′(t) + Q4′(t)) ≡ 0. However, given

that the NCond condition holds, it is easy to see that Assumption 2.3.5 (formally given

by Assumption 2.4.2) holds for this system in the sense described in Section 2.3.6, namely

after an orthogonal change of coordinates. (We emphasize again that the algorithm itself

remains as is; it does not need to do any change of coordinates.) Therefore, the EGPD

algorithm is asymptotically optimal for this system for the average reward maximization

objective.

Assume linear holding costs, c · Q̂(t), with the cost rate vector c =(0.1, 0.2, 0.3, 0.4, 0.4,

0.3, 0.2, 0.1). The matching rewards for different matchings are given in Table 2.3.

Table 2.3 Matching rewards.

Matchings 〈1, 3′〉 〈1, 4′〉 〈2, 3′〉 〈2, 4′〉 〈3, 1′〉 〈3, 2′〉 〈3, 3′〉 〈4, 1′〉 〈4, 2′〉

Reward 5 50 5 50 5 50 5 50 5

We simulated this system under EGDP scheme. Figure 2.8 shows the dependence of

EGPD average performance metrics on the parameter β. The range of β is shown within

which the average reward declines from its optimal (largest) value to the “plateau” it reaches

when β is large. Parts (a), (b) and (c) show average holding cost, reward and profit,

respectively; the average profit is the average reward minus the average holding cost.

We see that the average profit is maximized within a certain range of values of β, where,

roughly speaking, the average reward is “still” close to optimal and the average holding

cost is “already” close to the best achievable by EGPD. We conjecture that the average

profit with such a choice of β is reasonably close to the optimal profit under any control

algorithm. Verifying and quantifying this informal conjecture is an interesting subject for

future research.

2.7 Conclusions

In this chapter, we have proposed an approach for optimal dynamic control of general

matching systems. The central idea is using a virtual matching system allowing negative

(as well as positive) queues, as part of the overall control scheme. The virtual system fits
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Figure 2.8 EGPD algorithm performance.

into a queueing network framework, except the queues may be negative, and it is controlled

by an extended version of the GPD algorithm, called EGPD. We prove the asymptotic

optimality of EGPD. The approach is very generic, not restricted to special cases, such as

bipartite matching. The proposed scheme is also very robust in the sense that it does not

require the knowledge of input rates, and automatically adapts to changing input rates.

Simulations demonstrate good performance of the algorithm.

Although the scheme that we develop has average reward maximization as its objective,
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the parameter setting can be used to achieve good performance in terms of the more general

objective, which includes holding costs. Addressing this and other more general objectives

within a dynamic control framework, not requiring a priori knowledge of the item arrival

rates, is an important future subject.
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Chapter 3

Online Reinforcement Learning:

Applications in Customer Journey

Optimization

3.1 Introduction

Finding an efficient online control policy is a fundamental problem for many real-world

applications [77]. In this work, we propose a framework, that handles this by employing

a reinforcement learning (RL) approach and deep neural networks (DNN). The specific

type of problem that we target in this chapter is a single-learner agent who concurrently

interacts with many instances of an environment with the objective of maximizing the

average long-term reward. Having many instances is the key characteristic of this problem

that enables us to design an online learning algorithm. The basic idea is simple: learn a

good policy by exploration in a subset of the environment instances and then apply the

successful experiences to the others.

As depicted in Figure 3.1, we specify a general scheme of the problems which might be

handled with the framework proposed in this chapter. A single learner agent is responsible

for decision-making. It observes different states of the environment instances in parallel,

as well as the rewards obtained in each of them; then, it takes corresponding actions in
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response to those observations. This problem setting has different applications such as

customer journey optimization and predictive maintenance.

Learner
Agent

Env.
1

Env.
2

Env.
n

Observation

Action

Figure 3.1 Communication of the learner agent with different instances of the environ-
ment. These communications might happen in a completely asynchronous manner. The
agent learns a policy based on the observations gathered from different environments and
is responsible for making decisions in each of them.

Many machine learning algorithms are designed to be trained in a supervised fashion,

where a mapping from training inputs to outputs is learned, but supervised learning is

not applicable to problems such as customer journey optimization since one does not have

information about the “true long-term rewards” as the training labels. One typical choice

to achieve this goal is to use reinforcement learning.

Reinforcement learning has gained popularity recently due to the many successful achieve-

ments in playing games [43, 61, 79]. It helps the agents to perform tasks in environments

that are too complex for humans to determine the correct actions using hand-designed so-

lutions. Most of the recent works have been focused on offline reinforcement learning. The

majority of algorithms of this class require having a model that simulates the environment

dynamics. For example, in Atari games, an emulator is responsible for refreshing the frames

according to the rules of the game and in response to different actions, which yields the

next frame and some possible reward. Typically, having an emulator enables the learner

agent to play the games many times and learn from various experiences encountered during

the training episodes.

However, a major issue of using these class of algorithms in real-world applications is

that time progresses sequentially, so this means the agent is dealing with real interactions

and it is not possible to propagate a single interaction trajectory through time in order to

learn a policy. Unlike games, the model of the environment that the agent interacts with

is not known a priori. Although one might think of using an approximate model of the
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environment to predict the future dynamics, it would still have differences with the real

ones. Moreover, most of these models are limited in the sense that they are not able to

capture the variability of the environment dynamics. One simple remedy is to periodically

update the environment model and re-train the policy with respect to the updated model;

however, this method is still problematic since it is unclear how often this process should

be triggered and how perfectly the model can reflect the non-stationary elements of the

environment.

Another alternative is using model-based RL algorithms [86], which update the model

and policy in a unified way. Again, these methods are not convenient in many systems

since they usually require a lot of time to first adjust the model based on the dynamics of

the new environment and then update the policy. We require an abrupt adaptation to the

changes in environment . For example, in online advertisements, some of our displays may

not be as well received as we thought, or there can be some material there that could be

offensive to some population. We need to learn this information as quickly as we can and

update the policy; we should not wait until the customers’ attrition to learn. We need to

learn within a few interactions without waiting until the end of the time horizon to update

the decisions. For this reason, model-free algorithms are the preferred choices for online

control since they are learning directly from the environment signals.

Batch-RL algorithms have been common choices for many real-world problems which

directly utilize the data to learn a policy, without having the complications related to the

design of models; however, one shortcoming of the batch-RL approach is that it does not

explore to find new policies. Therefore, the performance of the trained policy is determined

by the quality of the data.

An ideal learning agent in the live system should have the capability of learning on-

the-fly from various experiences, without requiring any redesign for each new situation it

encounters. In fact, it is undesirable to consider the system in which the agent follows a

fixed policy over time. For handling these requirements, we introduce the Deep Concurrent

Temporal Difference algorithm (DCTD), an extension of Concurrent TD [78] with deep

neural networks as our online algorithm. DCTD algorithm remembers the successful control

decisions with some instances of the environment so that they can be applied to other ones.
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A challenge of deploying an online algorithm is its performance in the initial learning steps,

since it needs quite large amount of exploration until identifying a reasonable policy. This

shortcoming leaves out the possibility of directly deploying RL algorithms in live systems.

To overcome this issue, we add an offline training stage. The goal of this offline stage is to

learn a policy so that we can wart start the online RL agent. In this stage, after training

an approximate model of the environment, we use an algorithm such as the well-known

DQN to train a “reasonable” policy. It is worthwhile to mention that other sophisticated

off-policy methods can also be used in the offline stage to find more competitive results,

but it is not the focus of this chapter because we only require a policy which does not take

irrational decisions.

Figure 3.2 summarizes our proposed implementation framework. This framework sug-

gests a deployment path for our online algorithm that only uses historical data. Unlike many

reinforcement learning algorithms that use a model of the task dynamics, DCTD learns on-

line, without a model, and backs up whatever states the agent has encountered during

interactions. This direct use of information enables a fast reaction to dynamic changes in

the environment and it happens automatically. Lastly, implementing the DCTD algorithm

is easy; it does not need any intricate model to predict the result of an action.

In this work, we focus on customer journey optimization as our testbed. We compare

the DCTD algorithm with the DQN algorithm. Experimentally, we show a dramatic decline

in DQN’s performance in exposure to varying environment instances. We observed that the

DCTD is robust to these changes, and it automatically adapts without knowing any a priori

information about the changes.

Data
Model of

Environment

Offline
Training

Online
Training

Deploy

Figure 3.2 The implementation framework: We train a model of the environment using
the historical data, which predicts the reward and next state of the environment from a
given state and action. The model is employed in an offline algorithm to train a warm-start
policy for the deployment. After deployment, the online algorithms will directly interact
with the environment instances and uses their real feedback in the training loop.
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3.2 Background

In this section, we present the fundamental background that will be extensively used in the

rest of this chapter and dissertation.

3.2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a framework for describing sequential decision-making.

In the simplest setting, consider an agent that interacts with an environment E. Assuming

that the next state of the environment only depends on the current state and action (ob-

viously, independent of the rest of the history), such an interaction can be formalized by a

MDP, which can be completely described by a tuple (S,A,P,R). Here,

• S is the state space of the environment,

• A is the action space which the agent chooses an action from at every decision point,

• P is the state transition probability distribution, and

• R is the reward function which might be either deterministic or stochastic.

Given the current state st ∈ S at time t, the agent takes an action at from the set of

available actions A with respect to its policy π, which is defined as a mapping from S to

A. In response, the agent receives some reward rt ∼ R(st, at) and observes the next state

st+1 with probability P(st+1|st, at). This cycle continues until achieving a goal of episodic

problems or it will run forever in continuous cases. The objective is choosing a sequence of

actions that maximizes the cumulative reward.

3.2.2 Reinforcement Learning

For solving MDP problems, one can use any classic dynamic programming method, but

these methods are usually costly and only applicable to problems with known transition

functions. Issues such as the curse of dimensionality limit the use of dynamic programming

methods to very small-scale problems. However, MDP provides a theoretical framework

upon which reinforcement learning (RL) algorithms are founded. RL is the subfield of

47



machine learning that enables solving these problems. In simple words, they are sample-

based algorithms for solving control problems that learn by trial and errors [86]. The agent

learns what to do under different conditions based on the previous similar experiences. It

learns about good decisions from the signals in the form of a reward that the agent receives

from an environment at each decision point.

Let us denote by Rt =
∑∞

j=t γ
j−trj the accumulated discounted reward after time t

with discount factor γ. The objective is to find an optimal policy π∗, which maximizes the

expected long-term discounted value Q(s, a) = E(Rt|s, a) from any state s and following

policy π∗ afterwards. We may consider the policy π as a stochastic policy, which is a

conditional distribution π(a|s); or it might be considered as a deterministic policy a = π(s),

which at any given state chooses the decision with probability 1. Our focus in this chapter

is only on the deterministic case, but in later chapters we will revisit stochastic policies.

Next, we present an overview of two important RL algorithms on which the offline and

online algorithms of this chapter are grounded.

SARSA

SARSA is an on-policy RL algorithm for temporal difference (TD) learning, which iteratively

improves the policy being followed by the agent. It uses the update rule (3.1), derived from

the Bellman equation:

Q(st, at)← Q(st, at) + α (rt + γQ(st+1, at+1)−Q(st, at)) , (3.1)

where α is the learning rate. In words, SARSA updates the policy in the direction of

reducing the TD-error, which is the last term inside the parentheses in the right hand side

of (3.1).
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Q-learning

Q-learning [99] is a RL algorithm for learning the Q-values for every state-action pair. It

iteratively updates the Q-values according to rule (3.2),

Q(st, at)← (1− α)Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)

)
. (3.2)

It improves the policy toward the actions with the best performance while the actual ac-

tions selected by the policy could be different. These types of algorithms are called off-policy

algorithms, i.e., they learn the optimal policy while the agent follows another exploratory

policy. One main advantage of this type of update is that the random exploratory actions do

not replace the already learned policy, so their learning procedure is usually faster compared

to the on-policy ones.

3.2.3 Deep Reinforcement Learning

When the state space is large, it is unavoidable to use function approximators instead of

directly calculating Q(s, a) for every state-action pair. In many classical reinforcement

learning algorithms, the convergence is achieved when each state-action pair is observed

infinitely many times, restricting the applicability of algorithms to only small problems. An

alternative is to use a function approximator, which generalizes between similar state-action

pairs, so Q(s, a) can be approximately computed for an unseen state s and action a. One can

use a function approximator of choice to model the Q-values as Q(s, a; θ) ≈ Q(s, a), where θ

is the parameter vector associated with the approximator. Because of their high capability

in approximating complex nonlinear functions, deep neural networks have recently become

been a common choice of a function approximator. In the case of deep neural networks,

θ corresponds to a vector of the weights and biases. Once we know the optimal Q∗, the

corresponding optimal policy can be extracted simply by

π∗(s) = arg max
a

Q∗(s, a; θ). (3.3)
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Updates to the network weights θ can be obtained by various reinforcement learning algo-

rithms such as a variant of Q-learning (e.g., the DQN algorithm for Atari games in [61]).

DQN utilizes the least knowledge about the environment and learns only by using the sen-

sory information of the environment from the pixel frames and receiving reward signals. In

our framework, we have used the same algorithm in the offline pre-deployment stage. In

Section 3.4.2, we discuss the details of this algorithm.

3.2.4 Related Works

A framework close to our online algorithm is provided in [62], which uses asynchronous

gradient descent to train RL. They consider a central network and multiple agents in which

each has its own set of local network parameters. Each of the agents interacts with their

own copy of the environment at the same time as the other agents are interacting with

theirs. The goal of each agent is to gather independent experiences from the other agents.

Combining the agent experiences in the central network leads to a more diverse experience

and better learning.

The online algorithm proposed in this chapter is inspired by concurrent reinforcement

learning [78]. It is concurrent because it interacts and learns from multiple instances of

an environment, and it is online because the policy learning updates occur from an online

stream of data. The agent’s objective is to learn efficient policies from partial interactions

with the environments in flight, trying to maximize the cumulative long-term reward.

3.3 Problem Statement

Consider an agent interacting with a set of environments E = {Ei, i = 1, · · · , n}. We

assume that the state space S and action space A are equal between all environments, so

the dynamics of each environment i can be described by (S,A,P it ,Rit). Notice that we allow

the transition probabilities and reward function to change over time. We also assume that

for every Ei and Ej at time t, the transition probabilities P it and Pjt are independent and

equal in distribution, and similarly Rit and Rjt are. The independence assumption indicates

that the observations (or interactions) in one environment do not affect the behavior of the

50



others.

Typically, it is the case that at every time-step t, the agent is required to take an action

only for a subset of environments Eat ⊂ E , and for the rest of the environments the agent

chooses to take no action. For example, in a mailing campaign, the agent might send the

offers to the customers located in a certain region; in website visits, the ads can only be

presented to the online customers who are currently viewing the web-page; or in predictive

maintenance the agent might act only when the attention is on the alerting machines.

Similarly, at every time t, the agent updates its policy based on a subset of environments

Eut ⊂ E . Usually, Eut includes the environments for which a reward signal has been observed

at time t.

Notice that the set of environments might vary over time, i.e., new environments might

be added or removed from E at different times. To simplify the exposition, here we assume

E is fixed. Notice that considering a variable set E is a straightforward generalization, and

the same framework with minor adjustments applies to this general case.

We denote by τt, t = 0, 1, · · · , the sequence of time points when either the agent needs

to take an action for an environment or update the policy, i.e., τt is the time point where

Eat ∪ Eut 6= ∅. From now on, we consider the system as running on discrete time-steps

t = 0, 1, · · · . At every time-step t, the agent observes the state of each environment Ei ∈ Eat ,

denoted by sit, and chooses an action ait from the set of available actions A.

Let us denote by ui the last time-step before t when an action is chosen for environment

Ei. If some reward rit ∼ Rit(st, at) is observed for Ei at time t, by convention, we will

assume that it is associated with action aui . This assumption is realistic in many real-world

applications and it will give all credit of the reward rit to latest action in Ei.

Informally speaking, the objective is to maximize the agent’s average long-term reward.

This general objective may include various objectives of interest. For example, in customer

journey optimization, it can represent various objectives such as a monetary value obtained

from the customer, lifetime satisfaction of the customer, or increased frequent visits to the

site as long as we can define a sensible reward measure. Customer satisfaction also can be

measured through customer reviews and from the number of visits in a specific time window

that measures the frequency of visits. In predictive maintenance, the objective can be the
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maximum availability of the machines or the quality of the products.

3.4 Proposed Framework

Next, we will describe the details of the proposed framework (Recall Figure 3.2 for an

abstract representation of the framework). This deployment path might seem trivial for

employing an online RL algorithm, but we are unaware of any previous work using the

same approach. One reason might be that there is not too much work done in online RL

controls and they are at early stages of development.

3.4.1 Model of Environment

Many off-policy RL algorithms require a model of the environment, which simulates the

environment dynamics. In this section, we specifically introduce a model which uses neural

networks for predicting the reward value. Notice that the RL algorithm might or might not

directly use the model in the training process. For example model-free algorithms such as

SARSA or Q-learning for Atari gamrs only use the visual game screens without knowing

how the frames evolve by the internals of the game emulator. But, even in a model-free

algorithm, a model is required to be the running engine for producing different experience

trajectories.

Figure 3.3 illustrates two neural networks: one classifier and one regressor network. The

classifier network specifies whether we predict a positive reward in a certain state. On the

other hand, the regressor network helps predicting the reward value for the states with a

positive predicted reward. By coupling these two networks, the reward can be predicted

for any specific state of the environment. The main advantage of using this structure,

instead of having one regressor network, is that it captures the mass probability point at

zero (e.g., with a non-zero probability the reward is exactly equal to zero; otherwise its

value follows a continuous probability distribution). A similar approach can be utilized for

predict the next state st+1 from any given st and at, but constructing such a prediction

model is usually a challenging task, especially for problems with high-dimensional state

spaces. An easier practice in many applications such as customer journey optimization is
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Figure 3.3 Classifier network (3.3a) specifies whether a reward has occurred or not. In case
of any reward, a regressor network (3.3b) determines the value of the reward. By combining
the output of these two networks, one may predict the reward that will be obtained in a
specific state of the system.
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possible; for example, once we have the prediction of the reward rt, the next state can be

uniquely identified, i.e., st+1 = f(st, at, rt); we take advantage of this simplification in our

experiments.

3.4.2 Offline Algorithm

As discussed before, there is no restriction on type of the algorithms that may be used in

this step. Throughout the experiments of this chapter, we have employed a deep Q-network

(DQN) algorithm [61] in the offline stage. Next, we will briefly describe the details of this

algorithm.

Using an extension of Q-learning with neural network function approximators for the

Q function, the DQN algorithm in [61] is shown to achieve super-human performance on

learning complex policies for Atari games. It iteratively tries to minimize a loss function

Li(θi) = E
[
r + max

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

]2

, (3.4)

where s′ is the next state after observing state s.

It was long believed that neural networks make RL algorithms unstable, but DQN

used two techniques to ensure the stability of the learning process. First, they store a lot of

experience (st, at, rt, st+1) in a buffer called replay memory. During training, the experiences

are drawn from this memory uniformly at random and used for updating the Q-values. This

selection procedure decorrelates the current state of the agent from the experiences used

for updating Q-values. This way, the learning environment is almost stationary, which is

a necessary condition for convergence of Q-leaning. The second modification uses a target

network for producing the target values in addition to the main policy network. The target

network has the same structure as the main network; the only difference is that the target

network is updated with a lower frequency (e.g., every K training iteration, the weights of

the target network are synchronized with those of the main network).
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3.4.3 Online Algorithm

Our online algorithm is an extension of the concurrent TD algorithm by [78]. Their pa-

per presents the basic ideas and has left plenty of possible extensions untouched, some

of which we address here. First, they explore every single environment one by one and

learn from them individually. This approach might be very noisy when the environments

have skewed reward distributions or mass points with outlier rewards. For example, the

network update by the gradient of one outlier observation may degrade a favorable policy,

which was performing well in the majority of environments. This update method can also

be computationally expensive for a highly concurrent environment with large Eut , since it

requires a separate training pass for each environment. The computational efficiency will

become even worse by employing more sophisticated function approximators for estimating

the Q-values. Lastly, they used linear approximators, which do not have enough capacity

to represent complex policies.

We address these issues in our algorithm. At each time t, we take multiple batches with

replacement from Eut for updating the policy. This batching method causes some of the

environments to appear in multiple batches. Instead, one might think of choosing a disjoint

batch of environments at every time, i.e., every environment can be selected in only one

Bjt at every t. We adopted the first approach since it would be more data efficient. Our

experiments show that with replacements, we gained almost the same amount of information

with less exploration which yielded a higher reward. If an environment is chosen in multiple

batches, we will only apply the last suggested action at time t, since it comes from the most

recently updated policy.

The agent uses ε-greedy rule to pick the actions, meaning that the actions are chosen

from a random policy with probability ε and otherwise according to the agent’s policy.

Unlike the offline RL algorithms, ε is fixed over time. Our suggestion is to choose ε not too

big to avoid a lot of random actions and not too small to limit the exploratory behavior of

the algorithm.

We used neural networks as a nonlinear function approximator of Q(s, a). Similar to

the DQN algorithm [61], the combination of vanilla concurrent TD algorithm [78] with deep
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neural networks is fundamentally unstable. We resolve this problem by employing a non-

trainable target network with weights θ− whose weights are synchronized with the original

network every K training steps.

DCTD uses multi-step discounted propagation of the rewards between successive time-

steps when an environment is chosen for updating the policy. At every time t and using

batch But , it updates the policy weights in the direction of reducing the TD error, i.e.,

∆θ =
α

|But |
∑

{i:Ei∈But }

[
Riui:t + γτt−τuiQ(sit, a

i
t; θ
−)

−Q(siui , a
i
ui ; θ)

]
∇θQ(siui , a

i
ui ; θ), (3.5)

where Ri
ui:t

=
∑t

k=ui γ
τk−τui rik.

Algorithm 3 DCTD Algorithm

1: initialize a network Q with random weights θ.
2: initialize a target network Q with weights θ− ← θ
3: Ri ← 0, ui ← 0 for every Ei ∈ E
4: for every time-step t do
5: ait ← ∅ for every Ei ∈ E
6: for training steps j = 1, · · · , bt do
7: take batch of environments Bjt ⊂ Eut
8: if environment Ei ∈ Bjt ∩ Eat then
9: choose action ait ← ε-greedy(Q)

10: end if
11: for environment Ei ∈ Bjt do

12: set yi = Ri + γt−u
i
Q(sit, a

i
t; θ
−)

13: end for
14: perform a gradient descent step on(

yi −Q(si
ui
, ai
ui

; θ)
)2

with respect to θ
15: end for

16: ait ←greedy(Q) for every Ei ∈ Eat \
bt⋃
j=1
Bjt

17: Execute actions ait, get reward rit and observe sit+1 for all i
18: for every Ei ∈ E with rit > 0 do
19: Ri ← Ri + γτt−τui rit,
20: end for
21: Ri ← 0, ui ← t for every Ei ∈ Eut
22: Every K training step, θ− ← θ.
23: end for

Comparison to Mnih et al. [62]: Our algorithm is closely related to the approach used

56



in [62], but in a different paradigm. We show that by taking advantage of having a large

number of environments in parallel, we can train a policy online. Provided with enough

information coming through a large number of diverse environments, we can have multiple

training steps at every time-step, allowing an online reaction to the recent environment

dynamics.

3.5 Experiment: Customer Journey Optimization

In this section, we show how our proposed framework can be utilized in a real-world ap-

plication. Specifically, we focus on an “outbound” customer journey optimization in our

case study, where a firm initiates different communications to its customers through mar-

keting channels. An example of this case is a firm that reaches out to its customers by

sending them advertisements via different portals such as emails, mails, or phone calls. A

fundamental challenge of the firm is that it not only wants customers to buy the products,

but also it wants to develop a healthy relationship with the customer base. To achieve this

goal, the firm requires a strong and efficient policy in maintaining and creating relation-

ships with customers. This problem becomes even more complicated with diverse customer

bases, which might have very different reactions to the different communications, so the firm

should be very careful at each interaction point. By following a wise marketing strategy, the

firm has the opportunity to influence the customers’ future preferences, effectively change

their reactions in the next interaction points, motivate them to campaign, and keep buying

more products and services.

To meet these requirements, we formulate the customer journey optimization with an

RL approach which tries to maximize the lifetime value of customers, instead of only consid-

ering myopic immediate rewards. The proposed framework provides an interactive dynamic

learning algorithm while keeping track of the customer reactions and adapting accordingly

to their behavioral changes.

Using Reinforcement Learning for the customer journey problem is still in its early

stages. Most of the previous literature has been pursuing an off-policy RL approach [1,

70, 89, 90, 92]. The first attempt is by [70] in which the authors used a batch Q-learning
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algorithm for solving a mailing campaign problem. Tkachenko [92] applies an algorithm

similar to DQN for approaching a good policy. Silver et al. [78] argue that learning offline

from the complete customers trajectories is not efficient. They introduced the concurrent

TD algorithm which learns a good policy from customers’ partial interactions. One of the

challenges in the customer journey optimization problem is the partial observability of the

customers since the agent only has access to noisy and incomplete information about the

state. In order to address this problem, [53] proposed a hybrid approach which models the

environment by using recurrent neural networks and LSTM in a supervised learning manner.

They couple this network with another neural network that learns the optimal policy by

applying a DQN algorithm. Even though using recurrent neural networks captures more

historical information about the customers, their approach is not a straightforward end-to-

end training. Capturing long-term dependencies is not the focus of this work, but rather

we will keep track of the customers’ history simply through using multi-period inputs.

The mapping of the customer journey optimization framework to the proposed model

is straightforward. The agent is the firm that concurrently deals with multiple customers,

where each customer is a separate instance of the environment. Next, we specifically describe

the experiment details.

3.5.1 Experiment Setup

In this experiment, we use a real marketing dataset, KDD1998, which is a common sample

in the marketing literature [69]. This specific data is for an outbound mailing campaign in

a non-profit organization. The data includes the interaction history of the organization for

twenty-three periods. The action set includes 11 mailing types and 1 action that represents

doing nothing. The reward is defined as the donations that the organization receives.

Each customer record has variables that describe the interaction history. The state of

the customers can be identified by two sets of variables. The variables of the first cat-

egory, which we call “dynamic variables,” change according to the organization’s actions

and the customer reactions as they progress through time. Specifically, we consider the

following well-known variables in the literature [93]: recency, frequency, average monetary

value, interaction recency, and interaction frequency. The second category includes “static
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variables” such as demographic information, which captures different segments of the cus-

tomer base. We use age, zip region, gender, and income group as the static variables. In

addition, we use the previous actions and previous rewards in defining the internal state of

the learning algorithm.

Using this data, we train a model similar to [93]. In a given state of the customer,

this model simulates the customer’s behavior in response to an action. The customer’s

model is trained in a supervised fashion before starting the reinforcement learning training.

During RL training the model is simply scored, and it is not trainable. We use one deep

neural network for predicting the donation amount in a given state of the customer and

another one for classifying the occurrence of a donation, as illustrated in Section 3.4.1. By

combining the output of these two networks using the method described in [93], the reward

amount rt will be identified. To find the next state st+1, we only update the dynamic

variables according to rt and st. Since we don’t have detailed customer information such

as date of birth, we let the static variables be fixed over time. We encourage interested

readers to check the details of model construction and state transition formulas in [93].

Since we trained the model directly from data, it generates a reasonable approximation for

the real-life interaction dynamics.

The offline stage helps us learn a policy that takes into account the entire customer

journey. In this stage, we take advantage of the model and interact with each one of the

customers until the end of the marketing campaign (i.e., 23 periods) before moving on to

the next customer. This way, by using the DQN algorithm, we learn from the customer’s

entire trajectory. It is worthwhile to mention that we have also employed techniques such

as using an experience replay and target network that DQN uses to ensure the stability of

the learning process.

Once we train a reasonable policy, we use it as a starting policy of the online algorithm.

We want to point out that the model might not represent the “real” customers’ behaviors,

and as a result, the policy trained using the model might differ from the optimal one;

however, we neglect these inaccuracies in the hope that the online algorithm would capture

them. Therefore, we initialize the DCTD’s network with the trained DQN network and

train it in the online setting, too.
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Even though it is not possible to deploy the case study in the real world, we evaluate the

effectiveness of DCTD in live systems by designing a few tests. Specifically, we simulate the

“live” system by using a modified model of the customers, where the donation probability

of some of the actions was increased, so the live system would return more donation amount

to those actions on average. Hereinafter, we will refer to the percentage of the increase in

donation probabilities by noise. The DCTD algorithm should be able to learn these noises

and exploit them to maximize the lifetime value of the customers.

In order to see the value of initializing the DCTDs network with the trained DQN

network, we also provide the results of the DCTD algorithm with the randomly initialized

weights. This comparison provides insights about the role of the pre-trained DQN network.

3.5.2 Results

This section presents the experimental results. Our DNN network in both the DQN and

DCTD algorithms is a fully connected network with four hidden layers and ReLU activa-

tions. In order to capture the interaction history, we use the state of the customer, the

previous actions, and the previously observed rewards of the last three periods as the input

for our DNN. The output is the Q-value for each of the 12 possible actions. The DQN

network is trained with 100,000 customers, each of them propagated for 23 periods. The

DCTD algorithm was also concurrently trained with 153,000 customers. We also use a

mini-batch of 256 customers at every time-step of the DCTD algorithm, and bt = 600. In

DCTD, we also set γ = 0.99 and ε = 0.1.

In order to see the effectiveness of our algorithms, we compare our results with that

of three other benchmark policies: (i) the original policy, which uses the actions stored in

the original dataset, (ii) a random policy, in which the action for each customer in each

period is picked randomly; and (iii) a myopic policy that chooses actions with the maximum

immediate reward. In order to call the myopic policy, we use the model of the environment

to evaluate all actions and choose the one with the highest reward. Note that this policy

does not take long-term rewards into account.

Results of DQN : As illustrated in Figure 3.4, the policy learned by the DQN algorithm

obtains a higher long-term reward compared to the other policies. It outperforms the
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random, original actions, and myopic policies by 65%, 69%, and 20%, respectively. A

comparison of DQN with the myopic policy reflects the performance boost that we can gain

by using an RL approach over using supervised learning, which only considers the immediate

reward. This fact implies that the myopic approach is not the best formulation for customer

journey optimization. We also observed that the cumulative donation of the original actions

was not too different from (or, even worse than) the ones obtained by using the random

policy. This observation raises a suspicion about the existence of any non-random policy in

the organization’s original marketing.

Figure 3.4 Comparison of the donation obtained from DQN algorithm with the myopic,
random, and original action policies.

Results of DCTD : For simulating the live system in our experiments, as discussed before,

we use a modified model where the donation probabilities of actions 2, 4, and 6 have been

increased by 20%. These actions were chosen randomly from the set of actions. We ran

the live system for another marketing campaign consisting of 22 periods. In the following

experiments, the live system was incorporated right from time 0.

Figure 3.5 shows the results of different algorithms running in the live system. We

observe that DCTD with the DQN policy initialization follows the DQN path at the begin-

ning, but it quickly detects live system dynamics. By adapting its policy, DCTD is able to

provide far better cumulative rewards compared to the other offline algorithms, i.e., greedy,

random policy and DQN. Since we do not update the DQN policy in the live system, this

comparison also shows how well the DCTD learns the customer behaviors that were not
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captured by the model. Another interesting observation in this figure is the performance of

DQN, which is worse than the myopic policy. This observation follows from the fact that

the noisy actions were less likely to be selected by DQN and provides evidence that a policy

trained with an offline RL algorithm might fail in live systems.

Figure 3.5 A comparison of different algorithms in the simulated live environment, which
was constructed by adding 20% to the donation probabilities of action 2, 4, and 6 in the
model.

In order to see the impact of different noise levels, we test live environments with

{5, 10, . . . , 95} percent noises. Figure 3.6 presents the corresponding results, in which, in

addition to the previous algorithms, the results of the DCTD algorithm with random initial-

ization is also added, with label DCTD. Also, the result of the DCTD algorithm initialized

with the DQN’s policy is provided, with label DCTD-DQN.

Figure 3.6a shows the result with noisy actions {2, 4, 6}, and Figure 3.6b presents the

result for noisy actions {3, 5, 10}. As seen in both, DCTD and DCTD-DQN can capture

even a small noise level of 5%, which is usually a hard task. With this increase in the noise

level, we observe that the cumulative reward values get larger, until they become almost

fixed after a threshold around 50%. This behavior is due to the method by which the

model combines the donation probability with its corresponding donation value. When the

donation probability is larger than, say, 50%, the role of the classifier network is negligible.

As Figure 3.6a shows, DCTD-DQN provides slightly better results than DCTD for small

noises, but for large ones, they had almost the same performance. This gap is larger in
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Figure 3.6b and DCTD-DQN obtains around 10% more reward compared to DCTD, which

testifies to the strength and importance of pre-training. In addition, it is worth mentioning

that without the pre-training phase, one does not have any idea about the structure of the

neural network, and it needs some parameter tuning too, which is not possible in the live

system.

Finally, Figure 3.7 presents the total number of times when one of the noisy actions 2, 4,

or 6 is selected by the DCTD and DQN algorithms over time. As we see, the DCTD learns

the noise after few iterations and exploits this knowledge up to the end of the campaign.

However, since the DQN policy is fixed in the live system, it was unaware of those desirable

actions and chose a number of them.

3.6 Other Applications: Predictive Maintenance

Motivated by recent advances in the Internet of Things, we will discuss on how the proposed

framework can be applied to optimize automated maintenance decisions in a network with

connected devices. Consider a system that is composed of many similar devices that are

connected to a central unit through a network. The devices can operate in different physical

locations or in close proximity. Each device can talk to a central unit and share information

back and forth. The central unit concurrently gathers the sensors’ data from each device

and is the main location where a maintenance plan can be updated and/or designed. The

central unit tries to choose maintenance actions in order to optimize the goal of the system

(e.g., minimizing the long-term maintenance cost or maximizing the network uptime).

A common practice to obtain a maintenance plan of such a network is following periodic

inspections and emergency maintenance. These approaches can be very expensive, especially

when the functionality of each device is crucial in a way that its failure might cause a whole

network to shut down. With the emergence of big data, the corresponding analytical tools,

and computational power attracted more focus on predictive and proactive maintenance,

which uses the sensory information of devices to design wise maintenance plans. Arguably,

our proposed framework can be applied to this problem as well. This policy is deployed

online in the central unit, and each connected device contributes its own share of data to
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(a) different noise on actions 2, 4, and 6

(b) different noise on actions 3, 5, and 10

Figure 3.6 Reaction of the online algorithm to different levels of the noise in donation
probability. We observed that DCTD reacted for even very small noise at 5%, which is
hard to capture.
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Figure 3.7 How the DCTD action selection procedure adapts to the live system over time.
Each bar represents the cumulative number of times when these noisy actions are selected
by a different algorithm. It takes approximately 4 time-steps for the DCTD algorithm to
fully explore the new policy.

the central decision-making unit so that new updates can be made to the policy to reflect

real-life operating conditions. By learning from the failures of different devices, the central

unit chooses predictive maintenance actions to prevent high-risk situations. This way, the

online policy learns concurrently from different devices working in presumably different

operating conditions and decisions are made automatically.

3.7 Discussion and Conclusion

In this work, we addressed some of the issues that hinder the use of RL in practical deploy-

ments for real-world problems where accuracy and adaptiveness are essential. We focused

on a set of problems in which an agent interacts, in parallel, with many instances of an

environment and presented a framework to deploy an online learner agent. We introduced

an extension of concurrent TD, namely DCTD, which learns online from partial interactions

with the environment instances. The strength of the DCTD algorithm is that it learns good

policies, in realtime, without knowing the environment dynamics, and only by observing

the experiences of different environments.

Our case study considers an outbound marketing campaign, but as we stated before,

this approach is not confined to this specific problem. The same framework and algorithms
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may be applied, with minor adjustments, to other applications of interest, such as inbound

marketing (i.e., the customers are the initiators of the communication) or predictive main-

tenance.
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Chapter 4

Reinforcement Learning for Solving

the Vehicle Routing Problem

4.1 Introduction

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem that has

been studied in operations research and computer science for decades. VRP is known to be

a computationally difficult problems for which many exact and heuristic algorithms have

been proposed, but providing fast and reliable solutions is still a challenging task. In the

simplest form of the VRP, a single capacitated vehicle is responsible for delivering items to

multiple customer nodes; the vehicle must return to the depot to pick up additional items

when it runs out. The objective is to optimize a set of routes, all beginning and ending

at a given node, called the depot, in order to attain the maximum possible reward, which

is often the negative of the total vehicle distance or average service time. This problem

is computationally difficult to solve to optimality, even with only a few hundred customer

nodes [29], and is classified as an NP-hard problem [52]. For an overview of the VRP, see,

for example, [35, 49, 50, 94].

The prospect of new algorithm discovery, without any hand-engineered reasoning, makes

neural networks and reinforcement learning a compelling choice that has the potential to

be an important milestone on the path toward solving these problems. In this chapter, we
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develop a framework with the capability of solving a wide variety of combinatorial optimiza-

tion problems using Reinforcement Learning (RL) and show how it can be applied to solve

the VRP. For this purpose, we consider the Markov Decision Process (MDP) formulation

of the problem, in which the optimal solution can be viewed as a sequence of decisions.

This allows us to use RL to produce near-optimal solutions by increasing the probability of

decoding “desirable” sequences.

A naive approach would be to train an instance-specific policy by considering every

instance separately. In this approach, an RL algorithm needs to take many samples, maybe

millions of them, from the underlying MDP of the problem to be able to produce a good-

quality solution. Obviously, this approach is not practical since the RL method should be

comparable to existing algorithms not only in terms of solution quality but also in terms

of runtime. For example, for all of the problems studied in this chapter, we wish to have a

method that can produce near-optimal solutions in less than a second. Moreover, the policy

learned by this naive approach would not apply to instances other than the one that was

used in the training; after a small perturbation of the problem setting, e.g., changing the

location or demand of a customer, we would need to rebuild the policy from scratch.

Therefore, rather than focusing on training a separate policy for every problem instance,

we propose a structure that performs well on any problem sampled from a given distribution.

This means that if we generate a new VRP instance with the same number of nodes and

vehicle capacity, and the same location and demand distributions as the ones that we used

during training, then the trained policy will work well, and we can solve the problem right

away, without retraining for every new instance. As long as we approximate the generating

distribution of the problem, the framework can be applied. One can view the trained policy

as a black-box heuristic (or a meta-algorithm) which generates a high-quality solution in a

reasonable amount of time.

This study is motivated by the recent work by Bello et al. [8]. We have generalized

their framework to include a wider range of combinatorial optimization problems such as

the VRP. Bello et al. [8] propose the use of a Pointer Network [96] to decode the solution.

One major issue that complicates the direct use of their approach for the VRP is that it

assumes the system is static over time. In contrast, in the VRP, the demands change over

68



time in the sense that once a node has been visited its demand becomes, effectively, zero.

To overcome this, we propose an alternate approach—which is simpler than the Pointer

Network approach—that can efficiently handle both the static and dynamic elements of the

system. Our policy model consists of a recurrent neural network (RNN) decoder coupled

with an attention mechanism. At each time step, the embeddings of the static elements

are the input to the RNN decoder, and the output of the RNN and the dynamic element

embeddings are fed into an attention mechanism, which forms a distribution over the feasible

destinations that can be chosen at the next decision point.

The proposed framework is appealing to practitioners since we utilize a self-driven learn-

ing procedure that only requires the reward calculation based on the generated outputs; as

long as we can observe the reward and verify the feasibility of a generated sequence, we can

learn the desired meta-algorithm. For instance, if one does not know how to solve the VRP

but can compute the cost of a given solution, then one can provide the signal required for

solving the problem using our method. Unlike most classical heuristic methods, it is robust

to problem changes, e.g., when a customer changes its demand value or relocates to a dif-

ferent position, it can automatically adapt the solution. Using classical heuristics for VRP,

the entire distance matrix must be recalculated and the system must be re-optimized from

scratch, which is often impractical, especially if the problem size is large. In contrast, our

proposed framework does not require an explicit distance matrix, and only one feed-forward

pass of the network will update the routes based on the new data.

Our numerical experiments indicate that our framework performs significantly better

than well-known classical heuristics designed for the VRP, and that it is robust in the sense

that its worst results are still relatively close to optimal. Comparing our method with the

OR-Tools VRP engine [36], which is one of the best open-source VRP solvers, we observe a

noticeable improvement; in VRP instances with 50 and 100 customers, our method provides

shorter solutions in roughly 61% of the instances. Another interesting observation that we

make in this study is that by allowing multiple vehicles to supply the demand of a single

node, our RL-based framework finds policies that outperform solutions that require single

deliveries. We obtain this appealing property, known as split delivery, without any hand

engineering and at no extra computational cost. We show that with minor changes to
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the structure, a similar framework can applied to solve more complicated stochastic VRP

(SVRP) problems.

4.2 Background

Before presenting the problem formalization, we briefly review the required notation and

relation to existing work.

Sequence-to-Sequence Models Sequence-to-Sequence models [57, 85, 96] are useful in

tasks for which a mapping from one sequence to another is required. They have been

extensively studied in the field of neural machine translation over the past several years,

and there are numerous variants of these models. The general architecture, which is shared

by many of these models, consists of two RNN networks called the encoder and decoder.

An encoder network reads through the input sequence and stores the knowledge in a fixed-

size vector representation (or a sequence of vectors); then, a decoder converts the encoded

information back to an output sequence.

In the vanilla Sequence-to-Sequence architecture [85], the source sequence appears only

once in the encoder and the entire output sequence is generated based on one vector (i.e.,

the last hidden state of the encoder RNN). Other extensions, for example Bahdanau et al.

[7], illustrate that the source information can be used more explicitly to increase the amount

of information during the decoding steps. In addition to the encoder and decoder networks,

they employ another neural network, namely an attention mechanism that attends to the

entire encoder RNN states. This mechanism allows the decoder to focus on the important

locations of the source sequence and use the relevant information during decoding steps

for producing “better” output sequences. Recently, the concept of attention has been a

popular research idea due to its capability to align different objects, e.g., in computer

vision [18, 40, 102, 103] and neural machine translation [7, 42, 57]. In this study, we also

employ a special attention structure for the policy parameterization. See Section 4.3.3 for

a detailed discussion of the attention mechanism.
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Neural Combinatorial Optimization Over the last several years, multiple methods

have been developed to tackle combinatorial optimization problems by using recent ad-

vances in artificial intelligence. The first attempt was proposed by Vinyals et al. [96], who

introduce the concept of a Pointer Network, a model originally inspired by sequence-to-

sequence models. Because it is invariant to the length of the encoder sequence, the Pointer

Network enables the model to apply to combinatorial optimization problems, where the

output sequence length is determined by the source sequence. They use the Pointer Net-

work architecture in a supervised fashion to find near-optimal Traveling Salesman Problem

(TSP) tours from ground truth optimal (or heuristic) solutions. This dependence on super-

vision prohibits the Pointer Network from finding better solutions than the ones provided

during the training.

Closest to our approach, Bello et al. [8] address this issue by developing a neural com-

binatorial optimization framework that uses RL to optimize a policy modeled by a Pointer

Network. Using several classical combinatorial optimization problems such as TSP and the

knapsack problem, they show the effectiveness and generality of their architecture.

On a related topic, Dai et al. [27] solve optimization problems over graphs using a graph

embedding structure [26] and a deep Q-learning (DQN) algorithm [61]. Even though VRP

can be represented by a graph with weighted nodes and edges, their proposed approach

does not directly apply since in VRP, a particular node (e.g., the depot) might be visited

multiple times.

Next, we introduce our model, which is a simplified version of the Pointer Network.

4.3 The Model

In this section, we formally define the problem and our proposed framework for a generic

combinatorial optimization problem with a given set of inputs X
.
= {xi, i = 1, · · · ,M}. We

allow some of the elements of each input to change between the decoding steps, which is,

in fact, the case in many problems such as the VRP. The dynamic elements might be an

artifact of the decoding procedure itself, or they can be imposed by the environment. For

example, in the VRP, the remaining customer demands change over time as the vehicle
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visits the customer nodes; or we might consider a variant in which new customers arrive or

adjust their demand values over time, independent of the vehicle decisions. Formally, we

represent each input xi by a sequence of tuples {xit
.
= (si, dit), t = 0, 1, · · · }, where si and

dit are the static and dynamic elements of the input, respectively, and can themselves be

tuples. One can view xit as a vector of features that describes the state of input i at time

t. For instance, in the VRP, xit gives a snapshot of the customer i, where si corresponds to

the 2-dimensional coordinate of customer i’s location and dit is its demand at time t. We

will denote the set of all input states at a fixed time t with Xt.

We start from an arbitrary input in X0, where we use the pointer y0 to refer to that

input. At every decoding time t (t = 0, 1, · · · ), yt+1 points to one of the available inputs

Xt, which determines the input of the next decoder step; this process continues until a

termination condition is satisfied. The termination condition is problem-specific, showing

that the generated sequence satisfies the feasibility constraints. For instance, in the VRP

that we consider in this work, the terminating condition is that there is no more demand to

satisfy. This process will generate a sequence of length T +1, Y = {yt, t = 0, ..., T}, possibly

with a different sequence length compared to the input length M . This is due to the fact

that, for example, the vehicle may have to go back to the depot several times to refill. We

also use the notation Yt to denote the decoded sequence up to time t, i.e., Yt = {y0, · · · , yt}.

We are interested in finding a stochastic policy π which generates the sequence Y in a way

that minimizes a loss objective while satisfying the problem constraints. The optimal policy

π∗ will generate the optimal solution with probability 1. Our goal is to make π as close to π∗

as possible. Similar to Sutskever et al. [85], we use the probability chain rule to decompose

the probability of generating sequence Y , i.e., P (Y |X0), as follows:

P (Y |X0) =
T∏
t=0

π(yt+1|Yt, Xt), (4.1)

and

Xt+1 = f(yt+1, Xt) (4.2)

72



is a recursive update of the problem representation with the state transition function f .

Each component in the right-hand side of (4.1) is computed by the attention mechanism,

i.e.,

π(·|Yt, Xt) = softmax(g(ht, Xt)), (4.3)

where g is an affine function that outputs an input-sized vector, and ht is the state of the

RNN decoder that summarizes the information of previously decoded steps y0, · · · , yt. We

will describe the details of our proposed attention mechanism in Section 4.3.3.

Remark 1: This structure can handle combinatorial optimization problems in both a

more classical static setting as well as in dynamically changing ones. In static combinato-

rial optimization, X0 fully defines the problem that we are trying to solve. For example,

in the VRP, X0 includes all customer locations as well as their demands, and the depot

location; then, the remaining demands are updated with respect to the vehicle destination

and its load. With this consideration, often there exists a well-defined Markovian transition

function f , as defined in (4.2), which is sufficient to update the dynamics between decision

points. However, our framework can also be applied to problems in which the state tran-

sition function is unknown and/or is subject to external noise, since the training does not

explicitly make use of the transition function. However, knowing this transition function

helps in simulating the environment that the training algorithm interacts with. See Section

4.4.7 for an example of how to handle a stochastic version of the VRP in which random

customers with random demands appear over time.

4.3.1 Limitations of Pointer Networks

Although the framework proposed by Bello et al. [8] works well on problems such as the

knapsack problem and TSP, it is not efficient for more complicated combinatorial optimiza-

tion problems in which the system representation varies over time, such as VRP. Bello et al.

[8] feed a random sequence of inputs to the RNN encoder. Figure 4.1 illustrates with an

example why using the RNN in the encoder is restrictive. Suppose that at the first decision

step, the policy sends the vehicle to customer 1, and as a result, its demand is satisfied,
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i.e., d1
0 6= d1

1. Then in the second decision step, we need to re-calculate the whole network

with the new d1
1 information in order to choose the next customer. The dynamic elements

complicate the forward pass of the network since there should be encoder/decoder updates

when an input changes. The situation is even worse during back-propagation to accumulate

the gradients since we need to remember when the dynamic elements changed. In order to

resolve this complication, we require the policy model to be invariant to the input sequence

so that changing the order of any two inputs does not affect the network. In Section 4.3.2,

we present a simple network that satisfies this property.

s1

d1
1

s2

d2
1

s3

d3
1

s4

d4
1

s5

d5
1

⇒ s1

d1
0

1

Figure 4.1 Limitation of the Pointer Network. After a change in dynamic elements (d1
1 in

this example), the whole Pointer Network must be updated to compute the probabilities in
the next decision point.

4.3.2 The Proposed Neural Network Model

We argue that the RNN encoder adds extra complication to the encoder but is actually

not necessary, and the approach can be made much more general by omitting it. RNNs

are necessary only when the inputs convey sequential information; e.g., in text translation

the combination of words and their relative position must be captured in order for the

translation to be accurate. But the question here is, why do we need to have them in

the encoder for combinatorial optimization problems when there is no meaningful order in

the input set? As an example, in the VRP, the inputs are the set of unordered customer

locations with their respective demands, and their order is not meaningful; any random

permutation contains the same information as the original inputs. Therefore, in our model,

we simply leave out the encoder RNN and directly use the embedded inputs instead of

the RNN hidden states. By this modification, many of the computational complications

disappear, without decreasing the effectiveness. In Section 4.4.1, we provide experiments

to verify this claim.
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Figure 4.2 Our proposed model. The embedding layer maps the inputs to a high-
dimensional vector space. On the right, an RNN decoder stores the information of the
decoded sequence. Then, the RNN hidden state and embedded input produce a probability
distribution over the next input using the attention mechanism.

As illustrated in Figure 4.2, our model is composed of two main components. The

first is a set of graph embeddings [74] that can be used to encode structured data inputs.

Among the available techniques, we tried a one-layer Graph Convolutional Network [46]

embedding, but it did not show any improvement on the results, so we kept the embedding

in this chapter simple by utilizing the local information at each node, e.g., its coordinates

and demand values, without incorporating adjacency information. In fact, this embedding

maps each customer’s information into a D-dimensional vector space encoding. We might

have multiple embeddings corresponding to different elements of the input, but they are

shared among the inputs. The second component is a decoder that points to an input at

every decoding step. As is common in the literature [7, 20, 85], we use RNN to model

the decoder network. Notice that we feed the static elements as the inputs to the decoder

network. The dynamic elements can also be an input to the decoder, but our experiments

on the VRP do not suggest any improvement by doing so. For this reason, the dynamic

elements are used only in the attention layer, described next.

4.3.3 Attention Mechanism

An attention mechanism is a differentiable structure for addressing different parts of the

input. Figure 4.2 illustrates the attention mechanism employed in our method. At decoder

step i, we utilize a context-based attention mechanism with glimpse, similar to Vinyals
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et al. [97], which extracts the relevant information from the inputs using a variable-length

alignment vector at. In other words, at specifies how much every input data point might

be relevant in the next decoding step t.

Let x̄it = (s̄i, d̄it) be the embedded input i, and ht ∈ RD be the memory state of the

RNN cell at decoding step t. The alignment vector at is then computed as

at = at(x̄t, ht) = softmax (ut) , (4.4)

where

uit = vTa tanh
(
Wa[x̄

i
t;ht]

)
. (4.5)

Here “;” means the concatenation of two vectors. We compute the conditional probabilities

by combining the context vector ct, computed as

ct =

M∑
i=1

aitx̄
i
t, (4.6)

with the embedded inputs, and then normalizing the values with the softmax function, as

follows:

π(·|Yt, Xt) = softmax(ũt), . (4.7)

where

π(·|Yt, Xt) = ũit = vTc tanh
(
Wc[x̄

i
t; ct]

)
. (4.8)

In (4.4)–(4.8), va, vc, Wa and Wc are trainable variables.

Remark 2: Model Symmetry : Vinyals et al. [97] discuss an extension of sequence-to-

sequence models where they empirically demonstrate that in tasks with no obvious input

sequence, such as sorting, the order in which the inputs are fed into the network mat-

ters. A similar concern arises when using Pointer Networks for combinatorial optimization

problems. However, the policy model proposed in this chapter does not suffer from such a

complication since the embeddings and the attention mechanism are invariant to the input
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order.

4.3.4 Training Methods

To train the network, we use well-known policy gradient approaches. To use these methods,

we parameterize the stochastic policy π with parameters θ, where θ is vector of all train-

able variables used in the embedding, decoder, and attention mechanism. Policy gradient

methods use an estimate of the gradient of the expected return with respect to the policy

parameters to iteratively improve the policy. In principle, the policy gradient algorithm

contains two networks: (i) an actor network that predicts a probability distribution over

the next action at any given decision step, and (ii) a critic network that estimates the

reward for any problem instance from a given state.

Let us consider a family of problems, denoted byM, and a probability distribution over

them, denoted by ΦM. During the training, the problem instances are generated according

to distribution ΦM. We also use the same distribution in the inference to produce test

examples.

We utilize the REINFORCE method, similar to Bello et al. [8] for solving the TSP and

VRP, and A3C [62] for the SVRP. Next, we explain the details of the algorithms.

REINFORCE Algorithm for VRP Algorithm 4 summarizes the REINFORCE algo-

rithm. We have two neural networks with weight vectors θ and φ associated with the actor

and critic, respectively. We draw N sample problems from M and use Monte Carlo sim-

ulation to produce feasible sequences with respect to the current policy πθ. We adopt the

superscript n to refer to the variables of the nth instance. After termination of the decoding

in all N problems, we compute the corresponding rewards as well as the policy gradient in

step 14 to update the actor network. In this step, V (Xn
0 ;φ) is the the reward approximation

for instance problem n that will be calculated from the critic network. We also update the

critic network in step 15 in the direction of reducing the difference between the expected

rewards with the observed ones during Monte Carlo roll-outs.

77



Algorithm 4 REINFORCE Algorithm

1: initialize the actor network with random weights θ and critic network with random
weights φ

2: for iteration = 1, 2, · · · do
3: reset gradients: dθ ← 0, dφ← 0
4: sample N instances according to ΦM
5: for n = 1, · · · , N do
6: initialize step counter t← 0
7: repeat
8: choose ynt+1 according to the distribution π(·|Y n

t , X
n
t ; θ)

9: observe new state Xn
t+1

10: t← t+ 1
11: until termination condition is satisfied
12: compute reward Rn = R(Y n, Xn

0 )
13: end for
14: dθ ← 1

N

∑N
n=1 (Rn − V (Xn

0 ;φ))∇θ logP (Y n|Xn
0 ; θ)

15: dφ← 1
N

∑N
n=1∇φ (Rn − V (Xn

0 ;φ))2

16: update θ using dθ and φ using dφ.
17: end for

Asynchronous Advantage Actor-Critic for SVRP The Asynchronous Advantage

Actor-Critic (A3C) method proposed in [62] is a policy gradient approach that has been

shown to achieve super-human performance playing Atari games. In this chapter, we utilize

this algorithm for training the policy in the SVRP. In this architecture, we have a central

network with weights θ0, φ0 associated with the actor and critic, respectively. In addition, P

agents are running in parallel threads, each having their own set of local network parameters;

we denote by θp, φp the actor and critic weights of thread p. (We will use superscript p to

denote the operations running on thread p.) Each agent interacts with its own copy of the

VRP at the same time as the other agents are interacting with theirs; at each time-step,

the vehicle chooses the next point to visit and receives some reward (or cost) and then goes

to the next time-step. In the SVRP that we consider in this chapter, Rt is the number of

demands satisfied at time t. We note that the system is basically a continuous-time MDP,

but in this algorithm, we consider it as a discrete-time MDP running on the times of system

state changes {τt : t = 0, · · · }; for this reason, we normalize the reward Rt with the duration

from the previous time step, e.g., the reward is Rt/(τt − τt−1). The goal of each agent is

to gather independent experiences from the other agents and send the gradient updates to

the central network located in the main thread. In this approach, we periodically update
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Algorithm 5 Asynchronous Advantage Actor-Critic (A3C)

1: initialize the actor network with random weights θ0 and critic network with random
weights φ0 in the master thread

2: initialize P thread-specific actor and critic networks with weights θp and φp associated
with thread p

3: repeat
4: for each thread p do
5: sample a instance problem from ΦM with initial state Xp

0

6: initialize step counter tp ← 0
7: while episode not finished do
8: choose ypt+1 according to π(·|Y p

t , X
p
t ; θp)

9: observe new state Xp
t+1

10: observe one-step reward Rpt = R(Y p
t , X

p
t )

11: let Apt =
(
Rpt + V (Xp

t+1;φp)− V (Xp
t ;φp)

)
12: dθ0 ← dθ0 +Apt∇θ log π(ypt+1|Y

p
t , X

p
t ; θp)

13: dφ0 ← dφ0 +∇φ (Apt )
2

14: tp ← tp + 1
15: end while
16: end for
17: periodically update θ0 using dθ0 and φ0 using dφ0

18: θp ← θ0, φp ← φ0

19: reset gradients: dθ0 ← 0, dφ0 ← 0
20: until training is finished

the central network weights by accumulated gradients and send the updated weight to all

threads. This asynchronous update procedure leads to a smooth training since the gradients

are calculated from independent VRP instances.

Both actor and critic networks in this experiment are exactly the same as the ones that

we employed for the classical VRP. For training the central network, we use RMSProp

optimizer with learning rate 10−5.

4.4 Computational Experiments

In the first experiment of this section, we use the Traveling Salesman Problem (TSP) (a

special case of the VRP in which there is only a single route to optimize) as the test-bed to

validate the performance of the proposed method. In the next experiments, we illustrate the

effectiveness of the proposed method in multiple VRP settings. Many variants of the VRP

have been extensively studied in the operations research literature. See, for example, the
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reviews by Laporte [49] or Laporte et al. [50] or the book by Toth and Vigo [94], for different

variants of the problem. In this chapter, we study three different VRPs: i) Capacitated

VRP, ii) Capacitated VRP with split delivery, and iii) stochastic VRP.

4.4.1 Our Policy Model versus Pointer Network for TSP

We compare the route lengths of the TSP solutions obtained by our framework with those

given by the model of Bello et al. [8] for random instances with 20, 50, and 100 nodes. In

the training phase, we generate 106 TSP instances for each problem size, and use them in

training for 20 epochs. We choose 106 because we want to have a diverse set of problem

configurations; it can be larger or smaller, or we can generate the instances on-the-fly as

long as we make sure that the instances are drawn from the same probability distribution

with the same random seed. The city locations are chosen uniformly from the unit square

[0, 1]× [0, 1]. We use the same data distribution to produce instances for the testing phase.

The decoding process starts from a random TSP node and the termination criterion is that

all cities are visited. We also use a masking scheme to prohibit visiting nodes more than

once.

Table 4.1 summarizes the results for different TSP sizes using the greedy decoder in which

at every decoding step, the city with the highest probability is chosen as the destination. The

results are averaged over 1000 instances. The first column is the average TSP tour length

using our proposed architecture, the second column is the result of our implementation of

Bello et al. [8] with greedy decoder, and the optimal tour lengths are reported in the last

column. To obtain the optimal values, we solved the TSP using the Concorde optimization

software [5]. A comparison of the first two columns suggests that there is almost no difference

between the performance of our framework and Pointer-RL. In fact, the RNN encoder of

the Pointer Network learns to convey no information to the next steps, i.e., ht = f(xt). On

the other hand, our approach is around 60% faster in both training and inference, since it

has two fewer RNNs—one in the encoder of the actor network and another in the encoder

of the critic network. Table 4.1 also summarizes the training times for one epoch of the

training and the time-savings that we gain by eliminating the encoder RNNs.

Based on the discussion in Section 4.3.1, the main problem with applying Pointer Net-
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Table 4.1 Average tour length for TSP and training time for one epoch (in minutes).

Average tour length Training time

Task
Our Frame-
work
(Greedy)

Pointer-RL
(Greedy)

Optimal
Our Frame-
work
(Greedy)

Pointer-RL
(Greedy)

% Time Saving

TSP20 3.97 3.96 3.84 22.18 50.33 55.9%
TSP50 6.08 6.05 5.70 54.10 147.25 63.3%
TSP100 8.44 8.45 7.77 122.10 300.73 59.4%

works is mainly computational, and in the next experiment of this section, we compare the

learning process of our model with that of Pointer Networks. We implemented a Pointer

Network for VRP10, and as is illustrated in Figure 4.3, its performance is much worse, and

each training epoch takes around 2.5 times longer to train.
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Figure 4.3 Comparison with Pointer Network for VRP.

4.4.2 Capacitated VRP

In this section, we consider a specific capacitated version of the problem in which one vehicle

with a limited capacity is responsible for delivering items to many geographically distributed

customers with finite demands. When the vehicle’s load runs out, it returns to the depot

to refill. We will denote the vehicle’s remaining load at time t as lt. The objective is to

minimize the total route length while satisfying all of the customer demands. This problem

is often called the capacitated VRP (CVRP) to distinguish it from other variants, but we

will refer to it simply as the VRP.

We assume that the node locations and demands are randomly generated from a fixed

distribution. Specifically, the customers and depot locations are randomly generated in the
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unit square [0, 1]× [0, 1]. For simplicity of exposition, we assume that the demand of each

node is a discrete number in {1, .., 9}, chosen uniformly at random. We note, however, that

the demand values can be generated from any distribution, including continuous ones.

We assume that the vehicle is located at the depot at time 0, so the first input to the

decoder is an embedding of the depot location. At each decoding step, the vehicle chooses

from among the customer nodes or the depot to visit in the next step. After visiting

customer node i, the demands and vehicle load are updated as follows:

dit+1 = max(0, dit − lt), dkt+1 = dkt for k 6= i, and lt+1 = max(0, lt − dit) (4.9)

which is an explicit definition of the state transition function (4.2) for the VRP. Once a

sequence of the nodes to be visited is sampled, we compute the total vehicle distance and

use its negative value as the reward signal.

In this experiment, we have employed two different decoders: (i) greedy, in which at

every decoding step, the node (either customer or depot) with the highest probability is

selected as the next destination, and (ii) beam search (BS), which keeps track of the most

probable paths and then chooses the one with the minimum tour length [66]. Our results

indicate that by applying the beam search algorithm, the quality of the solutions can be

improved with only a slight increase in computation time.

For faster training and generating feasible solutions, we have used a masking scheme

which sets the log-probabilities of infeasible solutions to −∞ or forces a solution if a partic-

ular condition is satisfied. In the VRP, we use the following masking procedures: (i) nodes

with zero demand are not allowed to be visited; (ii) all customer nodes will be masked

if the vehicle’s remaining load is exactly 0; and (iii) the customers whose demands are

greater than the current vehicle load are masked. Notice that under this masking scheme,

the vehicle must satisfy all of a customer’s demands when visiting it. We note, however,

that if the situation being modeled does allow split deliveries, one can relax (iii). Indeed,

the relaxed masking allows split deliveries, so the solution can allocate the demands of a

given customer into multiple routes. This property is, in fact, an appealing behavior that is

present in many real-world applications, but is often neglected in classical VRP algorithms.
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In all the experiments of this section, we do not allow split demands. Further investigation

and illustrations of this property are included in Sections 4.4.3 and 4.4.5.

Implementation Details For the embedding, we use 1-dimensional convolution layers

for the embedding, in which the in-width is the input length, the number of filters is D, and

the number of in-channels is the number of elements of x. We find that training without

an embedding layer always yields an inferior solution. One possible explanation is that the

policy is able to extract useful features from the high-dimensional input representations

much more efficiently. Recall that our embedding is an affine transformation, so it does not

necessarily keep the embedded input distances proportional to the original 2-dimensional

Euclidean distances.

We use one layer of LSTM RNN in the decoder with a state size of 128. Each customer

location is also embedded into a vector of size 128, shared among the inputs. We employ

similar embeddings for the dynamic elements; the demand dit and the remaining vehicle

load after visiting node i, lt− dit, are mapped to a vector in a 128-dimensional vector space

and used in the attention layer. In the critic network, first, we use the output probabilities

of the actor network to compute a weighted sum of the embedded inputs, and then, it has

two hidden layers: one dense layer with ReLU activation and another linear one with a

single output. The variables in both actor and critic network are initialized with Xavier

initialization [33]. For training both networks, we use the REINFORCE Algorithm and

Adam optimizer [45] with learning rate 10−4. The batch size N is 128, and we clip the

gradients when their norm is greater than 2. We use dropout with probability 0.1 in the

decoder LSTM. Moreover, we tried the entropy regularizer [62, 100], which has been shown

to be useful in preventing the algorithm from getting stuck in local optima, but it does

not show any improvement in our experiments; therefore, we do not use it in the results

reported in this chapter.

On a single GPU K80, every 100 training steps of the VRP with 20 customer nodes

takes approximately 35 seconds. Training for 20 epochs requires about 13.5 hours. The

TensorFlow implementation of our code is available at https://github.com/OptMLGroup/

VRP-RL.
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Results for Capacitated VRP We compare the solutions found using our framework

with those obtained from the Clarke-Wright savings heuristic (CW), the Sweep heuristic

(SW), and Google’s optimization tools (OR-Tools). We run our tests on problems with 10,

20, 50 and 100 customer nodes and corresponding vehicle capacity of 20, 30, 40 and 50;

for example, VRP10 consists of 10 customers and the default vehicle capacity is 20 unless

otherwise specified. The results are based on 1000 instances, sampled for each problem size.
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(b) Comparison for VRP20

RL-Greedy 12.2 7.2 99.4 97.2 96.3 97.9 97.9 97.9 41.5

RL-BS(5) 85.8 12.5 99.7 99.0 98.7 99.1 99.1 99.1 54.6

RL-BS(10) 91.9 57.7 99.8 99.4 99.2 99.3 99.3 99.3 60.2

CW-Greedy 0.6 0.3 0.2 0.0 0.0 68.9 68.9 68.9 1.0

CW-Rnd(5,5) 2.8 1.0 0.6 92.2 30.4 84.5 84.5 84.5 3.5

CW-Rnd(10,10) 3.7 1.3 0.8 97.5 68.0 86.8 86.8 86.8 4.7

SW-Basic 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(5) 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(10) 2.1 0.9 0.7 31.1 15.5 13.2 0.0 0.0 1.4

OR-Tools 58.5 45.4 39.8 99.0 96.5 95.3 98.6 98.6 98.6
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(c) Comparison for VRP50

RL-Greedy 25.4 20.8 99.9 99.8 99.7 99.5 99.5 99.5 44.4

RL-BS(5) 74.4 35.3 100.0 100.0 99.9 100.0 100.0 100.0 56.6

RL-BS(10) 79.2 61.6 100.0 100.0 100.0 99.8 99.8 99.8 62.2

CW-Greedy 0.1 0.0 0.0 0.0 0.0 65.2 65.2 65.2 0.0

CW-Rnd(5,5) 0.2 0.0 0.0 92.6 32.7 82.0 82.0 82.0 0.7

CW-Rnd(10,10) 0.3 0.1 0.0 97.2 65.8 85.4 85.4 85.4 0.8

SW-Basic 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(5) 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(10) 0.5 0.0 0.2 34.8 18.0 14.6 0.0 0.0 0.0

OR-Tools 55.6 43.4 37.8 100.0 99.3 99.2 100.0 100.0 100.0
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(d) Comparison for VRP100

Figure 4.4 Parts 4.4a and 4.4b show the optimality gap (in percent) using different al-
gorithms/solvers for VRP10 and VRP20. Parts 4.4c and 4.4d give the proportion of the
samples for which the algorithms in the rows outperform those in the columns; for example,
RL-BS(5) is superior to RL-greedy in 85.8% of the VRP50 instances.

Figure 4.4 shows the distribution of total solution lengths generated by our method,

using greedy and BS decoders, with the number inside the parentheses indicating the

beam-width parameter. In the experiments, we label our method with the “RL” prefix.

In addition, we also implemented a randomized version of both heuristic algorithms to im-

prove the solution quality; for Clarke-Wright, the numbers inside the parentheses are the
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randomization depth and randomization iterations parameters; and for Sweep, it is the

number of random initial angles for grouping the nodes. Finally, we use Google’s OR-Tools

[36], which is a more competitive baseline. See Appendix 4.A for a detailed discussion of

the baselines.

For small problems of VRP10 and VRP20, it is possible to find the optimal solution,

which we do by solving a mixed integer formulation of the VRP [94]. Figures 4.4a and

4.4b measure how far the solutions are far from optimality. The optimality gap is defined

as the distance from the objective value of a given solution to the optimal objective value,

normalized by the latter. We observe that using a beam width of 10 is the best-performing

method; roughly 95% of the instances are at most 10% away from optimality for VRP10

and 13% for VRP20. Even the outliers are within 20–25% of optimality, suggesting that

our RL-BS methods are robust in comparison to the other baseline approaches.

Since obtaining the optimal objective values for VRP50 and VRP100 is not computa-

tionally affordable, in Figures 4.4d and 4.4d, we compare the algorithms in terms of their

winning rate. Each table gives the percentage of the instances in which the algorithms

in the rows outperform those in the columns. In other words, the cell corresponding to

(A,B) shows the percentage of the samples in which algorithm A provides shorter solutions

than B. We observe that the classical heuristics are outperformed by the other approaches

in almost 100% of the samples. Moreover, RL-greedy is comparable with OR-Tools, but

incorporating beam search into our framework increases the winning rate of our approach

to above 60%.

Figure 4.5 shows the solution times normalized by the number of customer nodes. We

observe that this ratio stays almost the same for RL with different decoders. In contrast,

the run time for the Clarke-Wright and Sweep heuristics increases faster than linearly with

the number of nodes. This observation is one motivation for applying our framework to

more general combinatorial problems, since it suggests that our method scales well. Even

though the greedy Clark-Wright and basic Sweep heuristics are fast for small instances,

they do not provide competitive solutions. Moreover, for larger problems, our framework

is faster than the randomized heuristics. We also include the solution times for OR-Tools

in the graph, but we should note that OR-Tools is implemented in C++, which makes
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exact time comparisons impossible since the other baselines are implemented in Python.

It is worthwhile to mention that the runtimes reported for the RL methods are for the

case when we decode a single problem at a time. It is also possible to decode all 1000

test problems in a batch, which will result in approximately 50× speed up. For example,

one-by-one decoding of VRP10 for 1000 instances takes around 50 seconds, but by passing

all 1000 instances to the decoder at once, the total decoding time decreases to around 1

second on a K80 GPU.

Active search is another method used by [8] to assist with the RL training on a specific

problem instance in order to iteratively search for a better solution. We do not believe

that active search is a practical tool for our problem. One reason is that it is very time-

consuming. A second is that we intend to provide a solver that produces solutions by just

scoring a trained policy, while active search requires a separate training phase for every

instance. To test our conjecture that active search will not be effective for our problem, we

implemented active search for VRP10 with samples of size 640 and 1280, and the average

solution length was 4.78 and 4.77 with 15s and 31s solution times per instance, which are

far worse than BS decoders. Note that BS(5) and BS(10) give 4.72 and 4.68, in less than

0.1s. For this reason, we exclude active search from our comparisons.

VRP10 VRP20 VRP50 VRP100
VRP Size
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CW-Greedy
CW-Rnd(5,5)

CW-Rnd(10,10)
SW-Basic
SW-Rnd(5)
SW-Rnd(10)
OR-Tools

Figure 4.5 Ratio of solution time to the number of customer nodes using different algo-
rithms.

One desired property of the method is that it should be able to handle variable problem
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Figure 4.6 Trained for VRP100 and tested for VRP90-VRP110.

sizes. To test this property, we designed two experiments. In the first experiment, we used

the trained policy for VRP100 and evaluated its performance on VRP90-VRP110. As can

be seen in Figure 4.6, our method with BS(10) outperforms OR-Tools on all problem sizes.

In the second experiment, we test the generalization when the problems are very different.

More specifically, we use the models trained for VRP50-Cap40 and VRP50-Cap50 in order

to generate a solution for VRP100-Cap50. Using BS(10), the average tour length is 18.00

and 17.80, which is still better than the classical heuristics, but worse than OR-Tools.

Overall, these two experiments suggest that when the problems are close in terms of the

number of customer and vehicle capacity, it is reasonable to expect a high-quality solution,

but we will see a degradation when the testing problems are very different from the training

ones.s

4.4.3 Flexibility to VRPs with Split Deliveries

In the classical VRP that we studied in Section 4.4.2, each customer is required to be visited

exactly once. In contrast to what is usually assumed in the classical VRP, one can relax this

constraint to obtain savings by allowing split deliveries [6]. In this section, we show that

this relaxation is straightforward by slightly modifying the masking scheme. Basically, we

omit condition (iii) from the masking introduced in Section 4.4.2, and use the new masking

with the exact same model; we want to emphasize that we do not re-train the policy model

and use the variables trained previously, so this property is achieved at no extra cost.
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Figure 4.7 shows the improvement by relaxing these constraints, where we label our

relaxed method with “RL-SD”. Other heuristics does not have such an option and they are

reported for the original (not relaxed) problem. In parts 4.7a and 4.7b we illustrate the

“optimality” gap for VRP10 and VRP20, respectively. What we refer to as optimality in this

section (and other places in this chapter) is the optimal objective value of the non-relaxed

problem. Of course, the relaxed problem may have a lower optimal objective value. That is

why RL-SD obtains negative values in these plots. We see that RL-SD can effectively use

split delivery to obtain solutions that are around 5%-10% shorter than the “optimal” tours.

Similar to Figure 4.4, Figures 4.7c and 4.7d show the winning percentage of the algorithms

in rows in comparison to the ones in columns. We observe that the winning percentage

of RL-SD methods significantly improves after allowing split demands. For example, in

VRP50 and VRP100, RL-SD-Greedy provides competitive results with OR-Tools, or RL-

SD-BS(10) outperforms OR-Tools in roughly 67% of the instances, while this number was

around 61% before relaxation.

4.4.4 Summary of Comparison with Baselines

Table 4.2 provides the average and the standard deviation of solution lengths for different

VRPs. We also test the RL approach using the split delivery option where the customer

demands can be satisfied using more than one tour (labeled with “RL-SD”, at the end of

the table). We observe that the average total length of the solutions found by our method

using various decoders outperforms the heuristic algorithms and OR-Tools. We also see that

using the beam search decoder significantly improves the solution while only adding a small

computational cost in run-time. Also, allowing split delivery enables our RL-based methods

to improve the total tour length by a factor of around 0.6% on average. We also present

the solution time comparisons in this table, where all the times are reported on a single

core Intel 2.6 GHz CPU. It is worth mentioning that, unlike other RL areas, our findings

are not affected by the training seed. This is because during the training, we generate 106

problem instances, which is quite adequate to cover various realizations of the problem, and

changing the random seed does not significantly change the training and testing instances.
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(a) Comparison for VRP10
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(b) Comparison for VRP20

RL-SD-Greedy 15.8 8.7 99.7 98.0 96.9 98.8 98.8 98.8 46.8

RL-SD-BS(5) 82.1 15.4 99.7 99.4 99.3 99.4 99.4 99.4 60.5

RL-SD-BS(10) 90.4 59.2 99.9 99.5 99.6 99.6 99.6 99.6 66.0

CW-Greedy 0.3 0.3 0.1 0.0 0.0 68.9 68.9 68.9 1.0

CW-Rnd(5,5) 2.0 0.6 0.5 92.2 30.4 84.5 84.5 84.5 3.5

CW-Rnd(10,10) 3.1 0.7 0.4 97.5 68.0 86.8 86.8 86.8 4.7

SW-Basic 1.2 0.6 0.4 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(5) 1.2 0.6 0.4 31.1 15.5 13.2 0.0 0.0 1.4

SW-Rnd(10) 1.2 0.6 0.4 31.1 15.5 13.2 0.0 0.0 1.4

OR-Tools 53.2 39.5 34.0 99.0 96.5 95.3 98.6 98.6 98.6
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(c) Comparison for VRP50

RL-SD-Greedy 27.5 20.3 100.0 100.0 100.0 99.9 99.9 99.9 50.9

RL-SD-BS(5) 72.3 36.4 100.0 100.0 100.0 99.9 99.9 99.9 63.5

RL-SD-BS(10) 79.7 61.7 100.0 100.0 100.0 100.0 100.0 100.0 68.6

CW-Greedy 0.0 0.0 0.0 0.0 0.0 65.2 65.2 65.2 0.0

CW-Rnd(5,5) 0.0 0.0 0.0 92.6 32.7 82.0 82.0 82.0 0.7

CW-Rnd(10,10) 0.0 0.0 0.0 97.2 65.8 85.4 85.4 85.4 0.8

SW-Basic 0.1 0.1 0.0 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(5) 0.1 0.1 0.0 34.8 18.0 14.6 0.0 0.0 0.0

SW-Rnd(10) 0.1 0.1 0.0 34.8 18.0 14.6 0.0 0.0 0.0

OR-Tools 49.1 36.5 31.4 100.0 99.3 99.2 100.0 100.0 100.0
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(d) Comparison for VRP100

Figure 4.7 Parts 4.4a and 4.4b show the “optimality” gap (in percent) using different
algorithms/solvers for VRP10 and VRP20. Parts 4.4c and 4.4d give the proportion of the
samples (in percent) for which the algorithms in the rows outperform those in the columns;
for example, RL-BS(5) is provides shorter tours compared to RL-greedy in 82.1% of the
VRP50 instances.

4.4.5 Sample VRP Solutions

Figure 4.8 illustrates sample VRP20 and VRP50 instances decoded by the trained model.

The greedy and beam-search decoders were used to produce the figures in the top and

bottom rows, respectively. It is evident that these solutions are not optimal. For example,

in part (a), one of the routes crosses itself, which is never optimal in Euclidean VRP

instances. Another similar suboptimality is evident in part (c) to make the total distance

shorter. However, the figures illustrate how well the policy model has understood the

problem structure. It tries to satisfy demands at nearby customer nodes until the vehicle

load is small. Then, it automatically comprehends that visiting further nodes is not the

best decision, so it returns to the depot and starts a new tour. One interesting behavior
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Table 4.2 Average tour length, standard deviations of the tours and the average solution
time (in seconds) using different baselines over a test set of size 1000.

Baseline
VRP10, Cap20 VRP20, Cap30 VRP50, Cap40 VRP100, Cap50

mean std time mean std time mean std time mean std time

RL-Greedy 4.84 0.85 0.049 6.59 0.89 0.105 11.39 1.31 0.156 17.23 1.97 0.321
RL-BS(5) 4.72 0.83 0.061 6.45 0.87 0.135 11.22 1.29 0.208 17.04 1.93 0.390
RL-BS(10) 4.68 0.82 0.072 6.40 0.86 0.162 11.15 1.28 0.232 16.96 1.92 0.445

CW-Greedy 5.06 0.85 0.002 7.22 0.90 0.011 12.85 1.33 0.052 19.72 1.92 0.186
CW-Rnd(5,5) 4.86 0.82 0.016 6.89 0.84 0.053 12.35 1.27 0.217 19.09 1.85 0.735
CW-Rnd(10,10) 4.80 0.82 0.079 6.81 0.82 0.256 12.25 1.25 0.903 18.96 1.85 3.171

SW-Basic 5.42 0.95 0.001 7.59 0.93 0.006 13.61 1.23 0.096 21.01 1.51 1.341
SW-Rnd(5) 5.07 0.87 0.004 7.17 0.85 0.029 13.09 1.12 0.472 20.47 1.41 6.32
SW-Rnd(10) 5.00 0.87 0.008 7.08 0.84 0.062 12.96 1.12 0.988 20.33 1.39 12.443

OR-Tools 4.67 0.81 0.004 6.43 0.86 0.010 11.31 1.29 0.053 17.16 1.88 0.231

Optimal 4.55 0.78 0.029 6.10 0.79 102.8 — —

RL-SD-Greedy 4.80 0.83 0.059 6.51 0.84 0.107 11.32 1.27 0.176 17.12 1.90 0.310
RL-SD-BS(5) 4.69 0.80 0.063 6.40 0.85 0.145 11.14 1.25 0.226 16.94 1.88 0.401
RL-SD-BS(10) 4.65 0.79 0.074 6.34 0.80 0.155 11.08 1.24 0.250 16.86 1.87 0.477

that the algorithm has learned can be seen in part (c), in which the solution reduces the

cost by making a partial delivery; in this example, we observe that the red and blue tours

share a customer node with demand 8, each satisfying a portion of its demand; in this way,

we are able to meet all demands without needing to initiate a new tour. We also observe

how using the beam-search decoder produces further improvements; for example, as seen in

parts (b)–(c), it reduces the number of times a tour crosses itself; or it reduces the number

of tours required to satisfy all demands as is illustrated in (b).

Tables 4.3 and 4.4 present the RL solutions using the greedy and beam search decoders

for two sample VRP10 instances with a vehicle capacity of 20. We have 10 customers

indexed 0, · · · , 9 and the location with the index 10 corresponds to the depot. The first

line specifies the customer locations as well as their demands and the depot location. The

solution in the second line is the tour found by the greedy decoder. In the third and fourth

line, we observe how increasing the beam width helps in improving the solution quality.

Finally, we present the optimal solution in the last row. In Table 4.4, we illustrate an

example where our method has discovered a solution by splitting the demands which is,

in fact, considerably shorter than the optimal solution found by solving the mixed integer

programming model.
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(a) Example 1: VRP20;
capacity 30
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(b) Example 2: VRP20;
capacity 30
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(c) Example 3: VRP50;
capacity 40

Figure 4.8 Illustration of sample decoded solutions for VRP20 and VRP50 using greedy
(in top row) and beam-search (bottom row) decoder. The numbers inside the nodes are the
demand values.
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Table 4.3 Solutions found for a sample VRP10 instance. We use different decoders for
producing these solutions; the optimal solution is also presented in the last row.

Sample instance for VRP10:
Customer locations: [[0.411, 0.559], [0.874, 0.302], [0.029, 0.127], [0.188, 0.979], [0.812,
0.330], [0.999, 0.505], [0.926, 0.705], [0.508, 0.739], [0.424, 0.201], [0.314, 0.140]]
Customer demands: [2, 4, 5, 9, 5, 3, 8, 2, 3, 2]
Depot location: [0.890, 0.252]

Greedy decoder:
Tour Length: 5.305
Tour: 10 → 5 → 6 → 4 → 1 → 10 → 7 → 3 → 0 → 8 → 9 → 10 → 2 → 10

BS decoder with width 5:
Beam tour lengths: [5.305, 5.379, 4.807, 5.018, 4.880]
Best beam: 2, Best tour length: 4.807
Best tour: 10 → 5 → 6→ 4 → 1→ 10 → 7 → 3 → 0→ 10 → 8 → 2 → 9 → 10

BS decoder with width 10:
Beam tour lengths: [5.305, 5.379, 4.807, 5.0184, 4.880, 4.800, 5.091, 4.757, 4.8034, 4.764]
Best beam: 7, Best tour length: 4.757
Best tours: 10 → 5 → 6 → 1 → 10 → 7 → 3 → 0 → 4 → 10 → 8 → 2 → 9 → 10

Optimal:
Optimal tour length: 4.546
Optimal tour: 10 → 1 → 10 → 2 → 3 → 8 → 9 → 10 → 0 → 4 → 5 → 6 → 7 → 10

4.4.6 Attention Mechanism Visualization

In order to illustrate how the attention mechanism is working, we relocated customer node

0 to different locations and observed how it affects the selected action. Figure 4.9 illus-

trates the attention in the initial decoding step for a VRP10 instance drawn in part (a).

Specifically, in this experiment, we let the coordinates of node 0 equal {0.1× (i, j), ∀ i, j ∈

{1, · · · , 9}}. In parts (b)-(d), the small bottom left square corresponds to the case where

node 0 is located at (0.1,0.1) and the others have a similar interpretation. Each small

square is associated with a color ranging from black to white, representing the probability

of selecting the corresponding node at the initial decoding step. In part (b), we observe

that if we relocate node 0 to the bottom-left of the plane, there is a positive probability of

directly going to this node; otherwise, as seen in parts (c) and (d), either node 2 or 9 will

be chosen with high probability. We do not display the probabilities of the other points

since there is a near-0 probability of choosing them, irrespective of the location of node 0.

A video demonstration of the decoding process and attention mechanism is available online

at https://youtu.be/qGKt0bB01p0.
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Table 4.4 Solutions found for a sample VRP10 instance where by splitting the demands,
our method significantly improves upon the “optimal” (in which no split delivery is allowed).

Sample instance for VRP10:
Customer locations: [[0.253, 0.720], [0.289, 0.725], [0.132, 0.131], [0.050, 0.609], [0.780,
0.549], [0.014, 0.920], [0.624, 0.655], [0.707, 0.311], [0.396, 0.749], [0.468, 0.579]]
Customer demands: [5, 6, 3, 1, 9, 8, 9, 8, 7, 7]
Depot location: [0.204, 0.091]

Greedy decoder:
Tour Length: 5.420
Tour: 10 → 7 → 4 → 9 → 10 → 6 → 9 → 8 → 10 → 1 → 0 → 5 → 3 → 10 → 2 → 10

BS decoder with width 5:
Beam tour lengths: [5.697, 5.731, 5.420, 5.386, 5.582]
Best beam: 3, Best tour length: 5.386
Best tour: 10 → 7 → 4 → 6 → 10 → 6 → 8 → 9 → 10 → 1 → 0 → 5 → 3 → 10 → 2 →
10

BS decoder with width 10:
Beam tour lengths: [5.697, 5.731, 5.420, 5.386, 5.362, 5.694, 5.582, 5.444, 5.333, 5.650 ]
Best beam: 8 , Best tour length: 5.333
Best tours: 10 → 7 → 4 → 9 → 10 → 9 → 6 → 8 → 10 → 1 → 0 → 5 → 3 → 10 → 2 →
10

Optimal:
Optimal tour length: 6.037
Optimal tour: 10 → 5 → 7 → 10 → 9 → 10 → 2 → 10 → 8 → 10 → 1 → 3 → 4 → 6 →
10
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(a) VRP10 instance.
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(c) Point 2.
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(d) Point 9.

Figure 4.9 Illustration of attention mechanism at decoding step 0. The problem instance
is illustrated in part (a) where the nodes are labeled with a sequential number; labels 0-9
are the customer nodes and 10 is the depot. We place node 0 at different locations and
observe how it affects the probability distribution of choosing the first action, as illustrated
in parts (b)–(d).
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4.4.7 Extension to Other VRPs

The proposed framework can be extended easily to problems with multiple depots; one

only needs to construct the corresponding state transition function and masking procedure.

It is also possible to include various side constraints: soft constraints can be applied by

penalizing the rewards, or hard constraints such as time windows can be enforced through

a masking scheme. However, designing such a scheme might be a challenging task, possibly

harder than solving the optimization problem itself. Another interesting extension is for

VRPs with multiple vehicles. In the simplest case in which the vehicles travel independently,

one must only design a shared masking scheme to avoid the vehicles pointing to the same

customer nodes. Incorporating competition or collaboration among the vehicles is also an

interesting line of research that relates to multi-agent RL (MARL) [16].

This framework can also be applied to real-time services including on-demand deliv-

eries and taxis. Next, we design a simulated experiment to illustrate the performance of

the framework on the stochastic VRP (SVRP), where both customer locations and their

demands are subject to change. Our results indicate superior performance compared to the

baselines.

Experiment on Stochastic VRP A major difficulty of planning in these systems is

that the schedules are not defined beforehand, and one needs to deal with various cus-

tomer/demand realizations on the fly. Unlike the majority of the previous literature, which

only considers one stochastic element (e.g., customer locations are fixed, but the demands

can change), we allow the customers and their demands to be stochastic, which makes the

problem intractable for many classical algorithms. (See the review of SVRP by Ritzinger

et al. [72].) We consider an instance of the SVRP in which customers with random demands

arrive at the system according to a Poisson process; without loss of generality we assume

the process has rate 1. Similar to previous experiments, we choose each new customer’s

location uniformly on the unit square and its demand to a discrete number in {1, · · · , 9}.

We fix the depot position to (0.5, 0.5). A vehicle is required to satisfy as much demand

as possible in a time horizon with length 100 time units. To make the system stable, we

assume that each customer cancels its demand after having gone unanswered for 5 time
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units. The vehicle moves with speed 0.1 per time unit. Obviously, this is a continuous-time

system, but we view it as a discrete-time MDP where the vehicle can make decisions at

either the times of customer arrivals or after the time when the vehicle reaches a node.

The network and its hyper-parameters in this experiment are the same as in the previous

experiments. One major difference is the RL training method, where we use asynchronous

advantage actor-critic (A3C) [62] with one-step reward accumulation. The main reason for

choosing this training method is that REINFORCE is not an efficient algorithm in dealing

with the long trajectories. The details of the training method are described in Section

4.3.4. The other difference is that instead of using masking, at every time step, the input

to the network is a set of available locations which consists of the customers with positive

demand, the depot, and the vehicle’s current location; the latter decision allows the vehicle

to stop at its current position, if necessary. We also add the time-in-system of customers as

a dynamic element to the attention mechanism; it will allow the training process to learn

customer abandonment behavior.

We compare our results with three other strategies: (i) Random, in which the next

destination is randomly selected from the available nodes and is meant to provide a “lower

bound” on the performance; (ii) Largest-Demand, in which the customer with maximum

demand will be chosen as the next destination; and (iii) Max-Reachable, in which the vehicle

chooses the node with the highest demand while making sure that the demand will remain

valid until the vehicle reaches the node. In all strategies, we force the vehicle to return to

the depot and refill when its load is zero. Even though simple, these baselines are common

in many applications. Implementing and comparing the results with more intricate SVRP

baselines is an important future direction.

Table 4.5 summarizes the average demand satisfied, and the percentage of the total

demand that this represents, under the various strategies, averaged over 100 test instances.

We observe that A3C outperforms the other strategies. Even though A3C does not know

any information about the problem structure, it is able to perform better than the Max-

Reachable strategy, which uses customer abandonment information.

95



Table 4.5 Satisfied demand under different strategies.

Method Random
Largest-
Demand

Max-
Reachable

A3C

Avg. Dem. 24.83 75.11 88.60 112.21
% satisfied 5.4% 16.6% 19.6% 28.8%

4.5 Discussion and Conclusion

According to the findings of this chapter, our RL algorithm is competitive with state-of-

the-art VRP heuristics, and this represents progress toward solving the VRP with RL for

real applications. The fact that we can solve similar-sized instances without retraining for

every new instance makes it easy to deploy our method in practice. For example, a vehicle

equipped with a processor can use the trained model and solve its own VRP, only by doing

a sequence of pre-defined arithmetic operations. Moreover, unlike many classical heuris-

tics, our proposed method scales well as the problem size increases, and it has superior

performance with competitive solution-time. It does not require a distance matrix calcu-

lation, which might be computationally cumbersome, especially in dynamically changing

VRPs. One important discrepancy which is usually neglected by classical heuristics is that

one or more of the elements of the VRP are stochastic in the real world. In this chapter,

we also illustrate that the proposed RL-based method can be applied to a more compli-

cated stochastic version of the VRP. In summary, we expect that the proposed architecture

has significant potential to be used in real-world problems with further improvements and

extensions that incorporate other realistic constraints.

Noting that the proposed algorithm is not limited to VRP, it will be an important

topic of future research to apply it to other combinatorial optimization problems such as

bin-packing and job-shop or flow-shop scheduling. This method is quite appealing since

the only requirement is a verifier to find feasible solutions and also a reward signal to

demonstrate how well the policy is working. Once the trained policy is available, it can be

used many times, without needing to re-train for new problems as long as they are generated

from the training distribution.
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Appendix

4.A Capacitated VRP Baselines

In this Appendix, we briefly describe the algorithms and solvers that we used as benchmarks.

More details and examples of these algorithms can be found in Snyder and Shen [81]. The

first two baseline approaches are well-known heuristics designed for VRP. Our third baseline

is Google’s optimization tools, which includes one of the best open-source VRP solvers.

Finally, we compute the optimal solutions for small VRP instances, so we can measure how

far the solutions are from optimality.

4.A.1 Clarke-Wright Savings Heuristic

The Clarke-Wright savings heuristic [24] is one of the best-known heuristics for the VRP.

Let N .
= {1, · · · , N} be the set of customer nodes, and 0 be the depot. The distance

between nodes i and j is denoted by cij , and c0i is the distance of customer i from the

depot. Algorithm 6 describes a randomized version of the heuristic. The basic idea behind

this algorithm is that it initially considers a separate route for each customer node i, and

then reduces the total cost by iteratively merging the routes. Merging two routes by adding

the edge (i, j) reduces the total distance by sij = ci0 + c0j − cij , so the algorithm prefers

mergers with the highest savings sij .

We introduce two hyper-parameters, R and M , which we refer to as the randomiza-

tion depth and randomization iteration, respectively. When M = R = 1, this algorithm is

equivalent to the original Clarke-Wright savings heuristic, in which case, the feasible merger

with the highest savings will be selected. By allowing M,R > 1, we introduce randomiza-
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tion, which can improve the performance of the algorithm further. In particular, Algorithm

6 chooses randomly from the r ∈ {1, · · · , R} best feasible mergers. Then, for each r, it

solves the problem m ∈ {1, · · · ,M} times, and returns the solution with the shortest total

distance.

Algorithm 6 Randomized Clarke-Wright Savings Heuristic

1: compute savings sij , where

sij = ci0 + c0j − cij i, j ∈ N , i 6= j

sii = 0 i ∈ N
2: for r = 1, · · · , R do
3: for m = 1, · · · ,M do
4: place each i ∈ N in its own route
5: repeat
6: find k feasible mergers (i, j) with the highest sij > 0, satisfying the following

conditions:
i) i and j are in different routes
ii) both i and j are adjacent to the depot
iii) combined demand of routes containing i and j is ≤ vehicle capacity

7: choose a random (i, j) from the feasible mergers, and combine the associated
routes by replacing (i, 0) and (0, j) with (i, j)

8: until no feasible merger is left
9: end for

10: end for
11: Return: route with the shortest length

4.A.2 Sweep Heuristic

The sweep heuristic [101] solves the VRP by breaking it into multiple TSPs. By rotating

an arc emanating from the depot, it groups the nodes into several clusters, while ensuring

that the total demand of each cluster does not violate the vehicle capacity. Each cluster

corresponds to a TSP that can be solved by using an exact or approximate algorithm. In

our experiments, we use dynamic programming to find the optimal TSP tour. After solving

TSPs, the VRP solution can be obtained by combining the TSP tours. Algorithm 7 shows

the pseudo-code of this algorithm.
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Algorithm 7 Randomized Sweep Algorithm

1: for each i ∈ N , compute angle αi, respective to depot location
2: l← vehicle capacity
3: for r = 1, · · · , R do
4: select a random angle α
5: k ← 0; initialize cluster Sk ← ∅
6: repeat
7: increase α until it equal to some αi
8: if demand di > l then
9: k ← k + 1

10: Sk ← ∅
11: l← vehicle capacity
12: end if
13: Sk ← Sk ∪ {i}
14: l← l − di
15: until no unclustered node is left
16: solve a TSP for each Sk
17: merge TSP tours to produce a VRP route
18: end for
19: Return: route with the shortest length

4.A.3 Google’s OR-Tools

Google Optimization Tools (OR-Tools) [36] is an open-source solver for combinatorial op-

timization problems. OR-Tools contains one of the best available VRP solvers, which has

implemented many heuristics (e.g., Clarke-Wright savings heuristic [24], Sweep heuristic

[101], Christofides’ heuristic [23] and a few others) for finding an initial solution and meta-

heuristics (e.g. Guided Local Search [98], Tabu Search [34] and Simulated Annealing [47])

for escaping from local minima in the search for the best solution. The default version of

the OR-Tools VRP solver does not exactly match the VRP studied in this chapter, but

with a few adjustments, we can use it as our baseline. The first limitation is that OR-Tools

only accepts integer locations for the customers and depot while our problem is defined on

the unit square. To handle this issue, we scale up the problem by multiplying all locations

by 104 (meaning that we will have 4 decimal digits of precision), so the redefined problem is

now in [0, 104]× [0, 104]. After solving the problem, we scale down the solutions and tours

to get the results for the original problem. The second difference is that OR-Tools is defined

for a VRP with multiple vehicles, each of which can have at most one tour. One can verify

that by setting a large number of vehicles (10 in our experiments), it is mathematically
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equivalent to our version of the VRP.

4.A.4 Optimal Solution

We use a mixed integer formulation for the VRP [94] and the Gurobi optimization solver

[38] to obtain the optimal VRP tours. VRP has an exponential number of constraints, and

of course, it requires careful tricks for even small problems. In our implementation, we start

off with a relaxation of the capacity constraints and solve the resulting problem to obtain

a lower bound on the optimal objective value. Then we check the generated tours and add

the capacity constraint as lazy-constraints if a specific subtour’s demand has violated the

vehicle capacity, or the subtour does not include the depot. With this approach, we were

able to find the optimal solutions for VRP10 and VRP20, but this method is intractable for

larger VRPs; for example, on a single instance of VRP50, the solution has 6.7% optimality

gap after 10000 seconds.

100



Chapter 5

Don’t Forget Your Teacher: A

Corrective Reinforcement Learning

Framework

5.1 Introduction

We encourage using a new paradigm called corrective RL, in which a reinforcement learning

(RL) agent is trained to maximize its reward while not straying “too far” from a previously

defined policy. The motivation is twofold: (1) to provide a gentler transition for a decision-

maker who is accustomed to using a certain policy but now considers implementing RL,

and (2) to develop a framework for gently transitioning from one RL solution to another

when the underlying environment has changed.

RL has recently achieved considerable success in artificially created environments, such

as Atari games [60, 62] or robotic simulators [54]. Exploiting the power of neural networks

in RL algorithms has been shown to exhibit super-human performance by enabling auto-

matic feature extraction and policy representations, but real-world applications are still

very limited, conceivably due to lack of representativity of the optimized policies. Over

the past few years, a major portion of the RL literature has been developed for RL agents

with no prior information about how to do a task. Typically, these algorithms start with
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random actions and learn while interacting with the environment through trial and error.

However, in many practical settings, prior information about good solutions is available,

whether from a previous RL algorithm or a human decision-maker’s prior experience. Our

approach trains the RL agent to make use of this prior information when optimizing, in

order to avoid deviating too far from a target policy.

Although toy environments and Atari games are prevalent in the RL literature due to

their simplicity, RL has recently been trying to find its path to real-world applications such

as recommender systems [19], transportation [65], Internet of Things [28], supply chain

[31, 67] and various control tasks in robotics [37]. In all of these applications, there is a

crucial risk that the new policy might not operate logically or safely, as one was expecting

it to do. A policy that attains a large reward but deviates too much from a known policy—

which follows logical steps and processes—is not desirable for these tasks. For example,

users of a system who were accustomed to the old way of doing things would likely find it

hard to switch to a newly discovered policy, especially if the benefit of the new policy is

not obvious or immediately forthcoming. Indeed, we argue that many real-world tasks only

need a small corrective fix to the currently running policies to achieve their desired goals,

instead of designing everything from scratch. Throughout this paper, we adhere to this

paradigm—we call it “corrective RL”—which utilizes an acceptable policy as a gauge when

designing novel policies. We consider two agents, namely a teacher and a student. Our main

question is how the student can improve upon the teacher’s policy while not deviating too

far from it. More formally, we would like to train a student in such a way that it maximizes

a long-term RL objective while keeping its own policy close to that of the teacher.

For example, consider an airplane that is controlled by an autopilot that follows the

shortest haversine path policy towards the destination. Then, some turbulence occurs, and

we want to modify the current path to avoid the turbulence. A “pure” RL algorithm would

re-optimize the trajectory from scratch, potentially deviating too far from the optimal path

in order to avoid the turbulence. Corrective RL would ensure that the adjustments to

the current policy are small, so that the flight follows a similar path and has a similar

estimated time of arrival, while ensuring that the passengers experience a more comfortable

(less turbulent) flight. Another example is in predictive maintenance, where devices are
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periodically inspected for possible failures. Inspection schedules are usually prescribed by

the device designers, but many environmental conditions affect failure rates, hence there is

no guarantee that factory schedules are perfect. If the objective is to reduce downtime with

only slight adjustments to the current schedules, conventional RL algorithms would have a

hard time finding such policies.

Similar concerns arise in other business and engineering domains as well, including sup-

ply chain management, queuing systems, finance, and robotics. For example, an enormous

number of exact and inexact methods have been proposed for classical inventory man-

agement problems under some assumptions on the demand, e.g., that it follows a normal

distribution [81]. Once we add more stochasticity to the demand distribution or consider

more complicated cost functions, these problems often become intractable using classical

methods. Of course, vanilla RL can provide a mechanism for solving more complex inventory

optimization problems, but practitioners may prefer policies that are simple to implement

and intuitive to understand. Corrective RL can help steer the policy toward the preferred

ones, while still maintaining near-optimal performance. Given these examples, one can in-

terpret our approach as an improvement on black-box heuristics, which uses a data-driven

approach to improve the performance of these algorithms without dramatic reformulations.

The contributions of this work are as follows: i) we introduce a new paradigm for

RL tasks, convenient for many real-world tasks, that improves upon the currently running

system’s policy with a small perturbation of the policy; ii) we formulate this problem using a

stochastic optimization problem and propose a primal–dual policy gradient algorithm which

we prove to be asymptotically optimal, and iii) using practical adjustments, we illustrate

how an RL framework can act as an improvement heuristic. We show the effectiveness and

properties of the algorithm in multiple GridWorld motion planning experiments.

5.2 Problem Definition

We consider the standard definition of a Markov decision process (MDP) using a tuple

(X ,A, C, P, P0). In our notation, X := X ′∪{xterm} = {1, 2, . . . , n, xterm} is the state space,

where X ′ is the set of transient states and xterm is the terminal state; A is the set of actions;
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C : X × A → [0, Cmax] is the cost function; P is the transition probability distribution;

and P0 is the distribution of the initial state x0. At each time step t = 0, 1, . . ., the agent

observes xt ∈ X , selects at ∈ A, and incurs a cost ct = C(xt, at). Selecting the action at at

state xt transitions the agent to the next state xt+1 ∼ P (·|xt, at).

Consider two agents, a teacher and a student. The teacher has prior knowledge about

the task and prescribes an action for any state that the student encounters, and the student

has the authority to follow the teacher’s action or act independently based on its own learned

policy. Let πS denote the policy of the student and πT be the policy of the teacher, where

both πS and πT are stationary stochastic policies defined as a mapping from a state–action

pair to a probability distribution, i.e., πi : X ×A → [0, 1], i ∈ {S, T}. For example, πS(a|x)

denotes the probability of choosing action a in state x by the student. In policy gradient

methods, the policies are represented with a function approximator, usually modeled by a

neural network, where we denote by θ ∈ RN and φ ∈ RN the corresponding policy weights

of the student and teacher, respectively; the teacher and student parameterized policies

are denoted by πT (·|·;φ) and πS(·|·; θ). In what follows, we adapt this parameterization

structure into the notation and interchangeably refer to πS and πT with their associated

weights, θ and φ.

We consider the simulation optimization setting, where we can sample from the un-

derlying MDP and observe the costs. Consider a possible state–action–cost trajectory τ

defined as {x0, a0, c0, x1, a1, c1, · · · , xH−1, aH−1, cH−1, xH} and let T := {τ} to be the set

of all possible trajectories under all admissible policies. For simplicity of exposition, we as-

sume that the first hitting time H of a terminal state xterm from any given x and following

a stationary policy is bounded almost surely with an upper bound Hmax, i.e., H ≤ Hmax

almost surely. Since the sample trajectories in many RL tasks terminate in finite time, this

assumption is not restrictive. For example, the game fails after reaching a certain state or

a time-out signal may terminate the trajectory. Along a trajectory τ , the system incurs a

discounted cost Jθ(τ) =
∑H−1

t=0 γtct, with discount factor γ ∈ (0, 1], and the probability of
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sampling such a trajectory is

Pθ(τ) = P0(x0)
H−1∏
t=0

πS(at|xt; θ)P (xt+1|xt, at). (5.1)

We denote the expected cost from state x onward until hitting the terminal state xterm

by Vθ(x), i.e.,

Vθ(x) = Eθ

[
H−1∑
t=0

γtC(xt, at)|x0 = x

]
. (5.2)

5.2.1 Distance Measure

An important question that arises is how to quantify the distance between the policies of

the teacher and the student. There are several distance measures studied in the literature

for computing the closeness of two probability measures. Among those, the Kullback-Leibler

(KL) divergence [63] is a widely used metric. In this work, we consider both reverse (KL-R)

and forward (KL-F) KL-divergence, defined as

DKL(θ ‖ φ) := DKL(Pθ(τ) ‖ Pφ(τ)) =
∑
τ∈T

Pθ(τ) log
Pθ(τ)

Pφ(τ)
, (KL-R)

DKL(φ ‖ θ) := DKL(Pφ(τ) ‖ Pθ(τ)) =
∑
τ∈T

Pφ(τ) log
Pφ(τ)

Pθ(τ)
. (KL-F)

KL-divergence is known to be an asymmetric distance measure, meaning that changing

the order of the student and teacher distributions will cause different learning behaviors.

We will use the reverse KL-divergence in the theoretical analysis since it provides more

compact notation. However, in all of the experiments, we will consider the forward setting,

i.e., DKL(φ‖θ), unless otherwise specified. Informally speaking, this form of KL-divergence,

which is also known as the mean-seeking KL, allows the student to perform actions that are

not included in the teacher’s behavior. This is because i) when the teacher can perform an

action at in a given state st, the student should also have πS(at|st) > 0 to keep the distance

finite, and ii) the student can have πS(at|st) > 0 irrespective of whether the teacher is

doing that action or not. The reverse direction, DKL(θ‖φ), known as the mode-seeking

KL, can be useful as well. For example, let’s assume that the teacher policy is a mixture
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of several Gaussian sub-policies. Using the reverse order will allow the student to assign

only one sub-policy as its decision making policy. Hence, the choice of reverse KL would be

preferred if the student wants to find a policy which is close to a teacher’s sub-policy with

the highest return. The justification of this behavior is also visible from the definition: when

πS(at|st) > 0 for a given state and action, then the teacher also should have πT (at|st) > 0.

Also, πT (at|st) = 0 would not allow πS(at|st) > 0. For more detailed discussion and

examples, we refer the interested reader to Appendix 5.B.1 and Section 10.1.2 of [63].

5.2.2 Optimization Problems

The student’s optimization problems that we would like to solve for reverse KL-divergence

(OPT-R) and the forward KL-divergence (OPT-F) are defined as

min
θ∈Θ

Vθ(x0)

s.t. DKL(θ ‖ φ) ≤ δ
(OPT-R)

min
θ∈Θ

Vθ(x0)

s.t. DKL(φ ‖ θ) ≤ δ,
(OPT-F)

where δ is an upper bound on the KL-divergence and Θ is a convex compact set of possible

policy parameters. Most of the theoretical analysis of the two optimization problems is

quite similar, so we will use (OPT-R) as our main formulation. In Appendix 5.A.4, we

investigate the equivalence of both problems and state their minor differences.

The widely adopted problem studied for MDPs only contains the objective function;

however, we impose an additional constraint to restrict the student’s policy. By fixing an

appropriate value for δ, one can enforce a constraint on the maximum allowed deviation

of the student policy from that of the teacher. The objective is to find a set of optimal

points θ∗ that minimizes the discounted expected cost while not violating the KL constraint.

Notice that πS = πT is a trivial feasible solution. In addition, we need to have the following

assumption to ensure that (OPT-R) is well-defined:

Assumption 5.2.1. (Well-defined (OPT-R)) For any state–action pair (x, a) ∈ X ×A

with πT (x, a) = 0, we have πS(x, a) = 0.

Intuitively, Assumption 5.2.1 specifies that when the teacher does not take a specific

action in a given state, the student also cannot choose that action. Even though this
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assumption might seem restrictive, it is valid in situations in which the student is indeed

limited to the positive-probability action space of the teacher. Alternatively, we can certify

this assumption by adding a small noise term to the outcome of the teacher’s policy at the

expense of some information loss.

5.2.3 Lagrangian Relaxation of (OPT-R)

The standard method for solving (OPT-R) is by applying Lagrangian relaxation [9]. We

define the Lagrangian function

L(θ, λ) := Vθ(x0) + λ (DKL(θ ‖ φ)− δ) , (5.3)

where λ is the Lagrange multiplier. Then the optimization problem (OPT-R) can be con-

verted into the following problem:

max
λ≥0

min
θ∈Θ

L(θ, λ). (5.4)

The intuition beyond (5.4) is that we now allow the student to deviate arbitrarily much

from the teacher’s policy in order to decrease the cumulative cost, but we penalize any such

deviation.

Next, we define a dynamical system which, as we will prove in Appendix 5.A.2, solves

problem (OPT-R) under several common assumptions for stochastic approximation meth-

ods. Once we know the optimal Lagrange multiplier λ∗, then the student’s optimal policy

is

θ∗ ∈ arg minθVθ(x0) + λ∗ (DKL(θ ‖ φ)− δ) . (5.5)

A point (θ∗, λ∗) is a saddle point of L(θ, λ) if for some r > 0, we have

L(θ∗, λ) ≤ L(θ∗, λ∗) ≤ L(θ, λ∗) (5.6)

for all θ ∈ Θ ∩ Br(θ∗) and λ ≥ 0, where Br(θ∗) represents a ball around θ∗ with radius r.

Then, the saddle point theorem [9] immediately implies that θ∗ is the local optimal solution
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of (OPT-R).

5.3 Primal–Dual Policy Gradient Algorithm

We propose a primal–dual policy gradient (PDPG) algorithm for solving (OPT-R).

5.3.1 PDPG Algorithm

Having derived the gradients of the Lagrangian (in Appendix 5.A.1), we have all the neces-

sary information for proposing our primal–dual policy gradient (PDPG) algorithm, which

is described in Algorithm 8.

Algorithm 8 Primal-Dual Policy Gradient (PDPG) Algorithm for (OPT-R)

1: input: teacher’s policy with weights φ
2: initialize: student’s policy with θ0, possibly equal to φ; initialize step size schedules
α1(·) and α2(·)

3: while TRUE do
4: for k = 0, 1, . . . do
5: following policy θk, generate a set of N trajectories T k = {τkj , j = 1, 2, . . . , N},

each starting from an initial state x0 ∼ P0(·)
6: (θ-update) update θk according to

θk+1 = ΓΘ

[
θk − α1(k)

( 1

N

N∑
j=1

∇θ logPθ(τkj )
∣∣
θ=θk

(
J(τkj ) + λk log

Pθ(τkj )

Pφ(τkj )
+ λk

))]
(5.7)

7: (λ-update) update λk according to

λk+1 = ΓΛ

[
λk + α2(k)

( 1

N

N∑
j=1

log
Pθ(τkj )

Pφ(τkj )
− δ
)]

(5.8)

8: end for
9: if λk converges to λmax then

10: λmax ← 2λmax
11: else
12: return θ and λ; break
13: end if
14: end while

After initializing the student, possibly with that of the teacher, we take a mini-batch of

sample trajectories under the student’s policy θk at each iteration k. In step 6, we use the

sampled trajectories to compute an approximate gradient of the Lagrangian function with

108



respect to θ and update the policy parameters in the negative direction of the approximate

gradient with step size α1(k). In addition to policy parameter updates, the dual variables

are learned concurrently using the recursive formula

λk+1 = λk + α2(k)
[
D̂KL(θ ‖ φ)− δ

]
, (5.9)

where α2(k) represents the associated step-size rule. Finally, using an optimization algo-

rithm, we update θ and λ according to the approximated gradients.

In this algorithm, we need to use two projection operators to ensure the convergence

of the algorithm. Specifically, ΓΘ is an operator that projects θ to the closest point in Θ,

i.e., ΓΘ(θ) = arg minθ̂∈Θ ‖θ − θ̂‖
2. Similarly, ΓΛ is an operator that maps λ to the interval

Λ := [0, λmax]. Finally, in steps 9–13, we check whether λ has converged to some point

on the boundary. Such a convergence means that the projection space for the Lagrange

multipliers is small, so we increment the upper bound and repeat searching for a better

policy.

In order to prove our main convergence result, we need some technical assumptions on

the student’s policy and step sizes.

Assumption 5.3.1. (Smooth policy) For any (x, a) ∈ X×A, πS(a|x; θ) is a continuously

differentiable function in θ and its gradient is L -Lipschitz continuous, i.e., for any θ1 and

θ2,

∥∥∇θπS(a|x; θ)
∣∣
θ=θ1 −∇θπS(a|x; θ)

∣∣
θ=θ2

∥∥ ≤ L ‖θ1 − θ2‖. (5.10)

Assumption 5.3.2. (Step-size rules) The step-sizes α1(k) and α2(k) in update rules

(5.7) and (5.8) satisfy the following relations:

(i)
∑

k α1(k) =∞;
∑

k α
2
1(k) <∞,

(ii)
∑

k α2(k) =∞;
∑

k α
2
2(k) <∞,

(iii) α2(k) = o(α1(k)).

Relations (i) and (ii) in Assumption 5.3.2 are common in stochastic approximation

algorithms, and (iii) indicates that the Lagrange multiplier update is in a slower time-scale
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compared to the policy updates. The latter condition simplifies the convergence proof by

allowing us to study the PDPG as a two-time-scale stochastic approximation algorithm.

The following theorem states the main theoretical result of this paper.

Theorem 5.3.3. Under Assumptions 5.2.1, 5.3.1, and 5.3.2, the sequence of policy updates

(starting from θ0 sufficiently close to a local optimum point θ∗) and Lagrange multipliers

converges almost surely to a saddle point of the Lagrangian, i.e., (θ(k), λ(k))
a.s.−→ (θ∗, λ∗).

Moreover, θ∗ is a local optimal solution of (OPT-R).

Proof. (sketch) The proof is similar to those found in [21, 87]. It is based on representing

θ and λ update rules with a two-time-scale stochastic approximation algorithm. For each

timescale, the algorithm can be shown to converge to the stationary points of the corre-

sponding continuous-time system. Finally, it can be shown that the fixed point is, in fact,

a locally optimal point. In Appendix 5.A.2, we provide a formal proof of this theorem.

Corollary 5.3.4. Under Assumptions 5.2.1, 5.3.1, and 5.3.2, the sequence of policy updates

and Lagrange multipliers converges globally to a stationary point of the Lagrangian almost

surely. Moreover, if θ∗ is in the interior of Θ, then θ∗ is a feasible first order stationary

point of (OPT-R), i.e., ∇θVθ(x0)|θ=θ∗ = 0 and DKL(θ∗ ‖ φ) ≤ δ.

Theorem 5.3.3 and Corollary 5.3.4 are also valid for the forward KL constraint case, as

we discuss in Appendix 5.A.4.

5.4 Practical PDPG Algorithm

Although the algorithm presented in the previous section is proved to converge to a first-

order stationary point, it cannot directly serve as a practical learner algorithm. The main

reason is that it produces a high-variance approximation of the gradients, which would lead

to unstable learning. In this section, we propose several approximations to the theoretically-

justified PDPG in order to develop a more practical algorithm. For this algorithm, we will

consider the forward definition of KL-divergence due to the mean-covering property.

One source of variance is the reward bias, which can be handled by adding a critic, similar

to [48]. Our next adjustment is to use an approximation of the step-wise KL-divergence,
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defined as

D̂step
KL (φ ‖ θ) =

1

N

N∑
j=1

H∑
t=0

Dstep
KL

(
πT (·|xt;φ) ‖ πS(·|xt; θ)

)
, (5.11)

where

Dstep
KL

(
πT (·|xt;φ) ‖ πS(·|xt; θ)

)
=
∑
a∈A

πT (a|xt;φ) log
πT (a|xt;φ)

πS(a|xt; θ)
.

As we discuss in Appendix 5.B.1, using (5.11) results in a much smaller variance, while

still ensuring the convergence results. Intuitively, this equation suggests that instead of

computing the trajectory probabilities and then computing the KL-divergence, as in (KL-R),

one can compute the KL in every visited state along a trajectory and sum them up. In

addition to this change, we will further normalize each Dstep
KL by its trajectory length H to

remove the effect of the variable horizon length. The latter modification will lead to more

sensible KL values and will make the choice of δ easier.

A second difficulty with the algorithm in Section 5.3 is that, unlike conventional policy

gradient algorithms, there is no guarantee that the student’s optimal policy is a deterministic

one. In fact, in most of our experiments, it happens that the optimal policy is stochastic,

especially when the teacher’s policy itself is stochastic. To illustrate this, consider two

scenarios: i) The student refuses to do the suggested action of a deterministic teacher. In

this case, she would incur an infinite cost as a result of her disobedience, so the problem will

be infeasible. ii) The teacher is less informative and has no clue about most of the state

space, so often takes random actions. Trying to emulate this teacher would cause degraded

performance for the student as well, so the student would also take many less informed

actions.

A stochastic optimal policy is usually not desirable since it poses major safety and

reliability challenges, so our next adjustments are an attempt to address this issue. One

possible mitigation for the first scenario might be using a bounded distance measure such

as Hellinger [25] instead of KL-divergence, but our numerical experiments did not confirm

that this is effective. We observe that by using the Hellinger constraint, the total entropy of

the student’s policy stays high, without any improvement in the student’s policy. Instead,
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we propose using percentile KL-clipping, which we define as

clipρ

(
Dstep
KL

)
= max{ρ% percentile of all Dstep

KL s at time t,Dstep
KL } (5.12)

In fact, the clip function enables the student to totally disagree with the teacher in ρ%

of the visited states, without receiving an extremely large penalty. Selecting the value for ρ

depends on our perception about how perfect the teacher is. Setting ρ close to 100 means

that we believe in the teacher’s suggestions. As we decrease ρ, we rely less on the teacher

and can disobey more freely.

The last major modification is to control the expected entropy at a certain small level

δent > 0, i.e.,

ent(θ) := −Ex

[
1

H

H∑
t=0

∑
a∈A

πS(a|x; θ) log πS(a|x; θ)

]
= δent. (5.13)

The justification for adding (5.13) is that we would like the optimal policy to be close to a

deterministic one as much as possible. By setting a small value for δent, we can enforce this

property. Also, this constraint tries to avoid having a deterministic policy in intermediate

training steps, in order to allow more exploration. To add this constraint, we use the same

Lagrangian technique, adding an extra term to the Lagrangian function:

L(θ, λ, ζ) := Vθ(x0) + λ (DKL(φ ‖ θ)− δ) + ζ
(
ent(θ)− δent

)
. (5.14)

All of these modifications, along with a few others, are summarized in Algorithm 9 of

Appendix 5.B.2.

5.5 Experiments

We illustrate the efficiency of the proposed methods with multiple GridWorld experiments.

In the first set of experiments, the teacher tries to teach the student to perform an oscillating

maneuver around the walls. In the second set, we study how the student can comprehend

changes in the environment and utilize them to increase its rewards.
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5.5.1 Square-Wave Teacher

In this experiment, we consider a teacher who gives a suggestion in every state of a Grid-

World. We study two variants of the teacher, one who is very determined about all of his

suggestions and the other who is less confident. Figure 5.1 illustrates the environment and

both teachers’ suggestions. A student wants to find a path from the blue state to the green

target. Each step has a reward −1 and reaching the target brings +100 reward. If the

student wants to act independently, the optimal path is a trivial horizontal line. However,

our objective is to force the student to “listen” to her teacher up to some level.

(a) “Determined” teacher with the corresponding
suggested actions for every state. The red line
shows the teacher’s suggested path to target.

(b) “Less confident” teacher with deterministic
actions in a subset of states and uniformly random
actions in the rest.

(c) Optimal Path (in green) versus a sample path
found by PDPG (in purple) with δ = 0.2 and ρ =
8.

Figure 5.1 Two different teachers with suggested actions and optimal path.

Determined Teacher : In this part, a teacher has a preferred action in every state with a

probability of around 98%. As we observe in Figure 5.1a, these suggestions might help the

student in reaching the target, but they are inefficient. For instance, if the student follows

a square-wave sequence of actions as illustrated by the red line, she will be able to reach

the target while following all of the teacher’s suggestions exactly. Our objective is to allow
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the student to deviate from the teacher for a few steps, to find shorter routes.

By using PDPG, the student is able to find policies that are a mixture of the horizontal

path and the square-wave route. For example, in Figure 5.1c, we have illustrated an instance

of the student’s optimized path with δ = 0.2 . The extent to which either policy is followed

depends on values of δ and the KL-clipping parameter ρ. Figure 5.2a illustrates the student’s

total reward for different δ quantities without KL-clipping. We observe that as we increase

δ, we allow the student to act more freely, hence she gets a higher reward. However, after

5000 training iterations, the reward remains at the same level with too much oscillation.

Recalling the discussions of Section 5.4, this behavior indicates convergence to a stochastic

policy.

To reduce the oscillating behavior, we proposed adding an entropy constraint and KL-

clipping. Figure 5.2b shows how adding the entropy constraint results in a more deter-

ministic (i.e., lower entropy) policy. Also, in Figure 5.2c, we have added KL-clipping. As

we decrease ρ, the student can totally disagree with the teacher in a larger proportion of

the visited states, so she can find better policies with higher rewards. For different values

of ρ, we see that the policy can converge to either a stochastic or deterministic one. For

ρ = 70, 75, it converges to a deterministic horizontal line policy. With ρ = 80, 85, it learns to

deterministically follow one t-shaped path followed by a horizontal route, and for ρ = 95, it

follows a tut-shaped path with a horizontal line at the end. Notice that even with ρ = 100,

which means no clipping, the student is not exactly following the teacher. We also observe

that for ρ = 90, it fails to converge to a deterministic policy. One justification for such a

failure is that the student’s policy is far better than the less-rewarding deterministic one,

but not good enough to get to the next level of performance. Finally, Figure 5.2d shows

how the λ and ζ values converge to their optimal values.

Less Confident Teacher : This experiment is designed to illustrate how a less confident

teacher can still teach the student to follow some of his suggestions, but it will yield a

lower level of confidence of the student. Figure 5.1b shows the suggested actions of the

teacher; he is deterministic only in a subset of the states. For the rest, he does not have any

information, so he suggests actions uniformly at random. The less confident teacher still has

the square wave as the general idea (which is bad, just like the determined teacher), but also
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has extra randomness that points the student in even worse directions. In other words, the

less confident teacher has a worse policy overall than the determined one. Recommending

random actions causes the student to have more volatile behavior. We can observe this

fact by comparing Figure 5.3a with 5.2a, where the student’s converged policy produces a

wider range of rewards for the less-confident teacher’s case. Also, the average reward for

this case is slightly lower, which can be explained by the inadequate information that the

less-confident teacher provides for solving the task.

Figure 5.3b shows that adding KL-clipping helps in reducing the volatility, but one needs

to choose a much smaller value for ρ (compare it with Figure 5.2c). Yet, even a small ρ

does not necessarily result in a deterministic policy; for ρ as small as 0.4, the student has

converged to a stochastic one.
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(b) The effect of entropy constraint;
δ = 0.2.
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Figure 5.2 Performance of a student learning from the deterministic teacher.
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(b) Total reward for different ρ and
δ = 0.2

Figure 5.3 Performance of a student learning from the less confident teacher.

Effect of δ on Lagrange Multipliers In this part, we illustrate the convergence of both

Lagrange multipliers λ and ζ to some steady values. From duality theory, we know that the

converged values are a function of δ, and in Figure 5.4, we delineate these quantities for four

different δ. In Figure 5.4a, we observe that as we increase λ (i.e., relax the constraint), we

will converge to a smaller λ∗. A similar monotonic relation is observed in Figure 5.4b. The

latter observation hypothesizes that in the square-wave experiment, larger δ values would

bring more stochasticity to the optimal policy.
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Figure 5.4 The effect of δ on Lagrange multipliers.

Effect of Using Reverse KL-divergence Note that throughout the experiments up to

this point, we have used the forward KL-divergence. In this experiment, we intend to use
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the reverse KL constraint instead of the forward one to see how it affects learning. As we

observe in Figure 5.5a, the student always converges to the teacher, no matter what the

value of δ is. This is consistent with our theory that the student will converge to a sub-

policy of the teacher. In fact, since the square-wave path is the only way that the teacher

can reach the target, it will also be the optimal path for the student as well. Figure 5.5b

shows that adding KL-clipping leads to different performance levels.

In Figure 5.6, we study the effect of using the reverse KL-constraint in learning from

the less confident teacher. As we observe from Figure 5.6a, the student has converged to a

policy similar to the square-wave policy, but with a few random actions. As we increase δ,

we allow the student to disagree with the teacher more in the less confident states, so her

policy becomes closer to the square-wave path (with reward 60). Also, Figure 5.6b shows a

similar result as before on how KL-clipping may increase the reward.
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(a) The effect of δ on reward; no KL-clipping
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(b) Total reward for different ρ and δ = 0.2

Figure 5.5 Performance of a student learning from the determined teacher using the reverse
KL constraint.

Hellinger Constraint As we discussed in Section 5.4, one way to reduce the stochasticity

of the converged policy might be using a finite distance measure such as the Hellinger metric

in our constraints. Figure 5.7a shows the reward attained for the cases with and without

the entropy constraint. As we see, the student has converged to a policy with reward

85, which corresponds to the horizontal path. Hence, she was not successful in learning

from the teacher. We tried different configurations as well, but all exhibit similar behavior.

Figure 5.7b shows that without using the entropy constraint, the student has relatively high
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Figure 5.6 Performance of a student learning from the less confident teacher using the
reverse KL constraint.

entropy, but she is still unable to follow the teacher.
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(a) Reward gained with Hellinger constraint for
δ = 0.2.
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Figure 5.7 Performance of a student learning from determined teacher using the Hellinger
constraint.

5.5.2 Wall Leaping

The purpose of this experiment is to show that PDPG can act as an improvement method

when the student encounters a slightly modified environment. The teacher’s reward struc-

ture is similar to the structure in the previous experiment, i.e., −1 for every step and +100

for reaching the target. However, the student comprehends that she can leap over some

of the walls with a reward of −2. We use a vanilla policy gradient algorithm to train

the teacher, which provides paths like the one illustrated in Figure 5.8a. If we allow the

student to learn without any constraint, it will find the green path in Figure 5.8 with a
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KL-divergence of ≈ 0.89. However, this is not what we are looking for since it is extremely

different from the teacher. Instead, we use the PDPG algorithm to constrain the policy

deviation with δ = 0.3. Using this parameter, the student learns to follow the purple path,

with a KL-divergence of ≈ 0.23.

(a) Teacher’s environment. The
optimal path found by the RL is
demonstrated

(b) Student’s environment. She can
leap the red walls at a penalty. The
paths found by RL (in green) and
by PDPG (in purple) are illustrated

Figure 5.8 Wall-leaping teacher and student environments as well as their policies.

5.6 Related Work

Learning from a teacher is a well-studied problem in the literature on supervised learning

[32] and imitation learning [75, 91]. However, we are not aware of any work using a teacher to

control specific behaviors of a student. The typical use case of a student–teacher framework

in RL is in “policy compression,” where the objective is to train a student from a collection

of well-trained RL policies. Policy distillation [73] and actor–mimic [68] are two methods

that distill the trained RL agents, in a supervised learning fashion, into a unified policy

of the student. In contrast, we follow a completely distinct objective, where a student

is continually interacting with an environment and it only uses the teacher’s signals as a

guideline for shaping her policy.

Closest to ours, Schmitt et al. [76] propose “kickstarting RL,” a method that uses

the teacher’s information for better training. Incorporating the idea of population-based

training, they design a hand-crafted decreasing schedule of Lagrange multipliers, {λk} → 0.
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Nevertheless, the justification for such a schedule is not clearly visible. However, noticing

that their problem is a special case of ours with δ =∞, our findings confirm the credibility

of their approach, i.e., our findings indicate that λ∗ = limk→∞ λ
k
min = 0 according to strong

duality. This observation also conforms with the experimental findings of [76], and our

theoretical results indicate that when there is no obligation on being similar to the teacher,

the student is better off eventually operating independently. Similarly, their method only

uses the teacher for faster learning.

Imposing certain constraints on the behavior of a policy is also a common problem in

the context of “safe RL” [2, 22, 51]. Typically, these problems look for policies that avoid

hazardous states either during training or execution. Our problem is different in that we

follow another type of constraint, yet similar methods might be applied. Using a domain-

specific programming language instead of neural networks can be an alternative method

to add interpretability [95], but it lacks the numerous advantages inherent in end-to-end

and differentiable learning. In an alternative direction, it is also possible to manipulate the

policy shape by introducing auxiliary tasks or reward shaping [41]. Despite the simplicity of

the latter approach, it has a very limited capability. For example, it is unclear how reward

shaping can suggest directions similar to our square-wave teacher. In summary, we believe

that our end-to-end method, by implicitly adding interpretable components, can partially

alleviate the concerns related to the RL policies.

5.7 Concluding Remarks

In this paper, we introduce a new paradigm called corrective RL, which allows a “student”

agent to learn to optimize its own policy while also staying sufficiently close to the policy of

a “teacher.” Our approach is motivated by the fact that practitioners may be reluctant to

adopt the policies proposed by RL algorithms if they differ too much from the status quo.

Even if the RL policy produces an impressive expected return, this may not be satisfactory

evidence to switch the operation of a billion-dollar company to a policy found by an RL.

We believe that corrective RL provides a straightforward remedy by constraining how far

the new policy can deviate from the old one or another desired, target policy. Doing so will
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help reduce the stresses of adopting a novel policy.

We believe that, with further extensions, corrective RL has the potential to address

some of RL’s interpretability challenges. Using more advanced optimization algorithms,

studying different distance measures, considering continuous-action problems, and having

multiple teachers represent fruitful avenues for future research.
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Appendix

5.A Convergence of PDPG Algorithm

In this Appendix, we first derive the gradients necessary for the PDPG algorithm. Subse-

quently, we provide convergence proofs for PDPG Algorithm.

5.A.1 Computing the Gradients

The Lagrangian function in the optimization problem (5.4) can be re-written as

L(θ, λ) =
∑
τ∈T

Pθ(τ)J(τ) + λ
∑
τ∈T

Pθ(τ) log
Pθ(τ)

Pφ(τ)
− λδ

=
∑
τ∈T

Pθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)

)
− λδ. (5.15)

Recall that T is the set of all trajectories under all admissible policies. By taking the

gradient of L(θ, λ) with respect to θ, we have:

∇θL(θ, λ) =
∑
τ∈T
∇θPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)

)
+ Pθ(τ) (λ∇θ logPθ(τ))

=
∑
τ∈T

Pθ(τ)∇θ logPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)
+ λ

)
= ET

[
∇θ logPθ(τ)

(
J(τ) + λ log

Pθ(τ)

Pφ(τ)
+ λ

)]
, (5.16)
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and the term ∇θ logPθ(τ) can be simplified as

∇θ logPθ(τ) = ∇θ

(
logP0(x0) +

H−1∑
t=0

logP (xt+1|xt, at) +
H−1∑
t=0

log πS(at|xt; θ)

)

=
H−1∑
t=0

∇θ log πS(at|xt; θ)

=

H−1∑
t=0

∇θπS(at|xt; θ)
πS(at|xt; θ)

. (5.17)

The gradient of L(θ, λ) with respect to λ is

∇λL(θ, λ) =
∑
τ∈T

Pθ(τ) log
Pθ(τ)

Pφ(τ)
− δ = DKL(Pθ(τ) ‖ Pφ(τ))− δ. (5.18)

By using a set of sample trajectories {τj , j = 1, . . . , N} generated under the student

policy, one can approximate the gradients (5.16) and (5.18) as

∇θL(θ, λ) ≈ 1

N

N∑
j=1

[
∇θ logPθ(τj)

(
J(τj) + λ log

Pθ(τj)
Pφ(τj)

+ λ

)]
,

∇λL(θ, λ) ≈ D̂KL(θ ‖ φ)− δ =
1

N

N∑
j=1

log
Pθ(τ)

Pφ(τ)
− δ,

which are the update rules that will be used later on, in (5.7) and (5.8).

5.A.2 Convergence Analysis of PDPG for (OPT-R)

Before starting the proof of Theorem 5.3.3, noting the definition of∇θL(θ, λ) and∇λL(θ, λ),

one can make the following observations:

Lemma 5.A.1. Under Assumption 5.3.1, the following holds:

i) ∇θ logPθ(τ) is Lipschitz continuous in θ, which further implies that

‖∇θ logPθ(τ)‖2 ≤ κ1(τ)
(
1 + ‖θ‖2

)
(5.19)

for some κ1(τ) <∞.
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ii) ∇θL(θ, λ) is Lipschitz continuous in θ, which further implies that

‖∇θL(θ, λ)‖2 ≤ κ2

(
1 + ‖θ‖2

)
(5.20)

for some constant κ2 <∞.

iii) ∇λL(θ, λ) is Lipschitz continuous in λ.

Proof. Recall from (5.17) that ∇θ logPθ(τ) =
∑H−1

t=0 ∇θπS(at|xt; θ)/πS(at|xt; θ) whenever

we have

πS(at|xt; θ) > ψ for all t and for some ψ > 0. Assumption 5.3.1 indicates that ∇θπS(at|xt; θ)

is L -Lispchitz continuous in θ. Then using the fact the sum of the product of (bounded) Lip-

schitz functions is Lipschitz itself, one can conclude the Lipschitz continuity of ∇θ logPθ(τ),

and we denote by L1 its finite Lipschitz constant. Also, noting that H < ∞ w.p. 1, then

∇θ logPθ(τ) <∞ w.p. 1. The Lipschitz continuity implies that for any fixed θ0 ∈ Θ,

‖∇θ logPθ(τ)‖ ≤ ‖∇θ logPθ(τ)|θ=θ0‖+ L1‖θ − θ0‖ ≤ K1(τ)(1 + ‖θ‖). (5.21)

The first inequality follows from the linear growth condition of Lipschitz functions and the

last one holds for a suitable value of K1(τ) := max{L1, ‖∇θ logPθ(τ)|θ=θ0‖+L1‖θ0‖} <∞.

Taking the square of both sides of (5.21) yields (5.19) with κ1(τ) := 2(K1(τ))2 <∞.

Since Pθ(τ) and logPθ(τ) are continuously differentiable in θ whenever Pθ(τ) > 0, the

Lipschitz continuity of ∇θL(θ, λ) can be investigated, from its definition (5.16), as the sums

of products of (bounded) Lipschitz functions. From the definition (5.16), and recalling

Assumption 5.2.1 and the compactness of Θ, one can verify the validity of (5.20) with

κ2 = Eτ
[
κ1(τ)

(
Cmax
1− γ

+ λmax max
θ∈Θ

log
Pθ(τ)

Pφ(τ)

)]
<∞. (5.22)

Finally, iii) immediately follows from the fact that ∇λL(θ, λ) is a constant function of λ.

We use the standard procedure for proving the convergence of the PDPG algorithm.

The proof steps are common for stochastic approximation methods and we refer the reader

to [11, 21] and references therein for more details. We summarize the scheme of the proof
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in the following steps:

1. Tracking o.d.e.: Under Assumption 5.3.2, one can view the PDPG as a two-time-

scale stochastic approximation method. Then, using the results of Section 6 of [12],

we show that the sequence of (θk, λk) converges almost surely to a stationary point

(θ∗, λ∗) of the corresponding continuous-time dynamical system.

2. Lyapunov Stability: By using Lyapunov analysis, we show that the continuous-time

system is locally asymptotically stable at a first-order stationary point.

3. Saddle Point Analysis: Since we have used the Lagrangian as the Lyapunov func-

tion, it implies the system is stable in the stationary point of the Lagrangian, which is,

in fact, a local saddle point. Finally, we show that with an appropriate initial policy,

the policy converges to a local optimal solution θ∗ for the OPT-R.

First, let us denote by ΨΞ [f(ξ)] the right directional derivative of ΓΞ(ξ) in the direction

of f(ξ), defined as

ΨΞ [f(ξ)] := lim
α↓0

ΓΞ [ξ + αf(ξ)]− ΓΞ [ξ]

α

for any compact set Ξ and ξ ∈ Ξ.

Since θ converges on a faster time-scale than λ by Assumption 5.3.2, one can write the

θ-update rule (5.7) with a relation that is invariant to λ:

θk+1 = ΓΘ

θk − α1(k)

 1

N

N∑
j=1

∇θ logPθ(τkj )

∣∣∣∣∣∣
θ=θk

(
J(τkj ) + λ log

Pθ(τkj )

Pφ(τkj )
+ λ

) .
Consider the continuous-time dynamics of θ ∈ Θ defined as

θ̇ = ΨΘ [−∇θL(θ, λ)] , (5.23)

where by using the right directional derivative ΨΘ [−∇θL(θ, λ)] in the gradient descent

algorithm for θ, the gradient will point in the descent direction of L(θ, λ) along the boundary

of Θ (denoted by ∂Θ) whenever the θ-update hits the boundary. We refer the interested
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reader to Section 5.4 of [12] for discussions about the existence of the limit in (5.23).

Since λ converges in the slowest time-scale, the λ-update rule (5.8) can be re-written

for a converged value θ∗(λ) as

λk+1 = ΓΛ

λk + α2(k)

 1

N

N∑
j=1

log
Pθ∗(λ)(τ

k
j )

Pφ(τkj )
− δ

 .
Consider the continuous-time dynamics corresponding to λ, i.e.

λ̇ = ΨΛ [∇λL(θ, λ)] , (5.24)

where by using ΨΛ [∇λL(θ, λ)] in the gradient ascent algorithm, the gradient will point in

the ascent direction along the boundary of Λ (denoted by ∂Λ) whenever the λ-update hits

the boundary.

We prove Theorem 5.3.3 next.

Proof. Convergence of the θ-update: First, we need to show that the assumptions of

Lemma 1 in Chapter 6 of [12] hold for the θ-update and an arbitrary value of λ. Let us

justify these assumptions: (i) the Lipschitz continuity follows from Lemma 5.A.1, and (ii)

the step-size rules follow from Assumption 5.3.2. (iii) For an arbitrary value λ, one can

write the θ-update as a stochastic approximation, i.e.,

θk+1 = ΓΘ

[
θk + α1(k)

(
−∇θL(θ, λ)|θ=θk +Mθk+1

)]
, (5.25)

where

Mθk+1 = ∇θL(θ, λ)|θ=θk −
1

N

N∑
j=1

∇θ logPθ(τkj )
∣∣∣
θ=θk

(
J(τkj ) + λk log

Pθ(τkj )

Pφ(τkj )
+ λk

)
.

(5.26)

For Mθk+1 to be a Martingale difference error term, we need to show that its expectation

with respect to the filtration Fkθ = σ(θm,Mθm ,m ≤ k) is zero and that it is square integrable

with E
[
‖Mθk+1‖2|Fkθ

]
≤ κk(1 +‖θk‖2) for some κk. Since the trajectories T k are generated
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from the probability mass function Pθk(·), it immediately follows that E
[
Mθk+1 |Fkθ

]
= 0.

Also, we have:

‖Mθk+1‖2

≤ 2‖∇θL(θ, λ)|θ=θk‖2 +
2

N2

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2
∥∥∥∥∥∥
N∑
j=1

∇θ logPθ(τkj )
∣∣
θ=θk

∥∥∥∥∥∥
2

≤ 2κk2

(
1 + ‖θk‖2

)
+

2N

N2

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2
 N∑
j=1

κk1(τkj )
(

1 + ‖θk‖2
)

≤ κk
(

1 + ‖θk‖2
)
,

where

Dk
max = max

1≤j≤N
log

Pθ(τkj )

Pφ(τkj )
, and

κk = 2κk2 +
2N

N
max

1≤j≤N
κk1(τkj )

(
Cmax
1− γ

+ λmax

(
Dk
max + 1

))2

<∞.

The first and second inequality uses the relation ‖
∑N

i=1 ai‖2 ≤ 2N−1(
∑N

i=1 ‖a‖2). Also, the

second one uses the results of Lemma 5.A.1. Finally, the boundedness of κk follows from

Assumption 5.2.1 and having κk1 < ∞, κk2(τkj ) < ∞ w.p. 1. Finally, (iv) supk ‖θk‖ < ∞

almost surely, because all θk are within the compact set Θ. Hence, by Theorem 2 of Chapter

2 in [12], the sequence {θk} converges almost surely to a (possibly sample path dependent)

internally chain transitive invariant set of o.d.e. (5.23).

For a given λ, define the Lyapunov function

Lλ(θ) = L(θ, λ)− L(θ∗, λ), (5.27)

where θ∗ ∈ Θ is a local minimum point. For the sake of simplifying the proof, let us consider

that θ∗ is an isolated local minimum point, i.e., there exists r such that for all θ ∈ Br(θ∗),

Lλ(θ) > Lλ(θ∗). This means that the Lyapunov function Lλ(θ) is locally positive definite,

i.e., Lλ(θ∗) = 0 and Lλ(θ) > 0 for Br \ {θ∗}.

If we establish the negative semi-definiteness of dLλ(θ)/dt ≤ 0, then we can use the
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Lyapunov stability theorems to show the convergence of the dynamical system. Consider

the time derivative of the corresponding continuous-time system for θ, i.e.,

dLλ(θ)

dt
=
dL(θ, λ)

dt
= (∇θL(θ, λ))TΨΘ(−∇θL(θ, λ)). (5.28)

Consider two cases:

i) For a fixed θ0 ∈ Θ, there exists α0 > 0 such that the update θ0−α∇θL(θ, λ)|θ=θ0 ∈ Θ

for all α ∈ (0, α0]. In this case, ΨΘ(−∇θL(θ, λ)) = −∇θL(θ, λ), which further implies

that

dL(θ0, λ)

dt
= −‖∇θL(θ, λ)|θ=θ0‖2 ≤ 0,

and this quantity is non-zero as long as ‖ΨΘ(−∇θL(θ, λ))‖ 6= 0.

ii) For fixed θ0 ∈ Θ and any α0 > 0, there exists α ∈ (0, α0] such that θα := θ0 −

α∇θL(θ, λ)|θ=θ0 6∈ Θ. The projection ΓΘ(θα) = arg minθ∈Θ
1
2‖θ − θα‖

2 maps θα to a

point in ∂Θ. This projection is single-valued because of the compactness and convexity

of Θ, and we denote the projected point by θ̄α ∈ Θ. Consider α ↓ 0, then

(∇θL(θ, λ))TΨΘ(−∇θL(θ, λ)) = lim
α↓0

(θ − θα)T (θ̄α − θ)
η

= lim
α↓0

−‖θ̄α − θ|2

η2
+

(θ̄α − θα)T (θ̄α − θ)
η2

≤ 0,

where the last inequality follows from the Projection Theorem (see Proposition 1.1.9

of [10]). Again, one can verify that the time-derivative quantity is non-zero as long as

‖ΨΘ(−∇θL(θ, λ))‖ 6= 0.

In summary, dLλ(θ)/dt ≤ 0 and this quantity is nonzero as long as ‖ΨΘ(−∇θL(θ, λ))‖ 6=

0. Then by LaSalle’s Local Invariant Set Theorem (see, e.g., Theorem 3.4 of [80]), we

conclude that the dynamical system tends to the largest positive invariant set within Mθ :=

{θ : ‖ΨΘ(−∇θL(θ, λ))‖ = 0}. Notice that θ∗ ∈Mθ. Let l > 0 be equal to

min{Lλ(θ) : ‖ΨΘ(−∇θL(θ, λ))‖ = 0, θ ∈ Br(θ∗) \ θ∗}.
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Then every trajectory starting from the attraction region {θ ∈ Br(θ∗)|Lλ(θ) < l} will tend

to the local minimum θ∗. Since we chose θ∗ to be arbitrary, this holds for all local minima.

Hence, using Corollary 4 of Chapter 2 in [12], we conclude that if the initial policy θ0 is

within the attraction region of a local minimum point θ∗, then it will converge to it almost

surely.

Remark 5.A.2. The case in which θ∗ is not isolated can be handled similarly, with the

minor difference that the convergence happens to a set of optimal points instead of to a

single point.

Convergence of the λ-update: We need to show that the assumptions of Theorem

2 in Chapter 6 of [12] hold for the two-time-scale stochastic approximation theory. Let us

verify the validity of these assumptions: (i) ∇λL(θ, λ) is a Lipschitz function in λ from

Lemma 5.A.1, and (ii) step-size rules follow from Assumption 5.3.2. (iii) Since λ converges

in a slower time-scale, we have ‖θk,i−θ∗(λk)‖ → 0 almost surely as i→∞, which, according

to the Lipschitz continuity of ∇λL(θ, λ), implies that

‖∇λL(θ, λ)|θ=θk,i,λ=λk −∇λL(θ, λ)|θ=θ∗(λk),λ=λk‖ → 0 as i→∞. (5.29)

Hence the λ-update can be written as

λk+1 = ΓΛ

[
λk + α2(k)

(
∇λL(θ, λ)|θ=θ∗(λk),λ=λk +Mλk+1

)]
,

where

Mλk+1 = −∇λL(θ, λ)|θ=θ∗(λk),λ=λk +
( 1

N

N∑
j=1

log
Pθ∗(λk)(τ

k
j )

Pφ(τkj )
− δ
)
. (5.30)

From (5.30), we can verify that E
[
Mλk+1 |Fkλ

]
= 0, where Fkλ = σ(λm,Mλm ,m ≤ k) is a

filtration of λ generated by different independent trajectories. Also, we have:

‖Mλk+1‖2 ≤ 2‖∇λL(θ, λ)|λ=λk‖2 +
2N

N

(
max

1≤j≤N

∣∣∣∣∣log
Pθ∗(λk)(τ

k
j )

Pθ(τkj )
− δ

∣∣∣∣∣
)2

<∞.
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Hence, Mλk+1 is a Martingale difference error. Also, (v) sup{λk} < ∞. Recall that from

the convergence analysis of the θ-update for a λk, we know that θ∗(λk) is an asymptotically

stable point. Then by Theorem 2 of Chapter 6 in [12], we can conclude that (θk, λk)

converges almost surely to (θ∗(λ∗), λ∗), where λ∗ belongs to an internally chain transitive

invariant set of (5.24).

Define the Lyapunov function:

L(λ) = −L(θ∗(λ), λ) + L(θ∗(λ∗), λ∗),

where λ∗ is a local maximum point, i.e., there exists r such that for any λ ∈ Br(λ∗),

the Lyapunov function L(λ) is positive definite. We can follow similar lines of arguments

as we did for the θ-update to show that dL(λ)
dt ≤ 0 and this quantity is non-zero as long

as ΨΛ(−∇λL(θ∗(λ), λ)) 6= 0. Then by using the results of LaSalle’s Local Invariant Set

Theorem, we can establish the convergence of the dynamical system to the largest invariant

set within

Mλ := {λ : ΨΛ(−∇λL(θ∗(λ), λ)) = 0}.

This means that λ∗ ∈Mλ is a stationary point. Let

l = min{L(λ) : ΨΛ(−∇λL(θ∗(λ), λ)) = 0, λ ∈ Br(λ∗) \ λ∗}.

Then, every trajectory starting with λ0 in {λ ∈ Br(λ∗) : L(λ) < l} will tend to λ∗ w.p. 1.

Saddle Point Analysis: By denoting θ∗ = θ∗(λ∗), we want to show that (θ∗, λ∗) is, in

fact, a saddle point of the Lagrangian L(θ, λ). Recall that, as we proved in the convergence

the of θ-update, θ∗ is a local minimum of L(θ, λ) within a sufficiently small ball around

itself, i.e., there exists r > 0 such that

L(θ∗, λ∗) ≤ L(θ, λ∗), ∀θ ∈ Θ ∩ Br(θ∗). (5.31)
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It is easy to verify that θ∗ is a feasible solution of (OPT-R) whenever λ∗ ∈ [0, λmax), i.e.

DKL(θ∗ ‖ φ) ≤ δ. (5.32)

To show this, assume for a contradiction that DKL(θ∗ ‖ φ)− δ > 0. Then,

ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗ ] = lim
α↓0

ΓΛ [λ∗ + α∇λL(θ, λ)|θ=θ∗,λ=λ∗ ]− ΓΛ [λ∗]

α

= lim
α↓0

ΓΛ [λ∗ + α (DKL(θ∗ ‖ φ)− δ)]− ΓΛ [λ∗]

α

= DKL(θ∗ ‖ φ)− δ > 0,

which contradicts the fact that ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗ ] = 0. Notice that the feasibility

cannot be verified when λ∗ = λmax, because ΨΛ

[
∇λL(θ, λ)|θ=θ∗(λmax),λ=λmax

]
= 0 when

DKL(θ∗ ‖ φ) > δ. In this case, we increase λmax (e.g., we set λmax ← 2λmax in our

algorithm) if such a behavior happens until it converges to an interior point of [0, λmax].

In addition, the complementary slackness condition

λ∗(DKL(θ∗ ‖ φ)− δ) = 0 (5.33)

holds. To show this, we only need to verify that DKL(θ∗ ‖ φ) < δ yields λ∗ = 0. For a

contradiction, suppose that λ∗ ∈ (0, λmax). Then, we have

ΨΛ

[
∇λL(θ, λ)|θ=θ∗(λ∗),λ=λ∗

]
= DKL(θ∗ ‖ φ)− δ < 0,

which contradicts the fact that ΨΛ [∇λL(θ, λ)|θ=θ∗,λ=λ∗ ] = 0, meaning that λ∗ = 0 in this

case. Hence, we have:

L(θ∗, λ∗) = Vθ∗(x0) + λ∗ (DKL(θ∗ ‖ φ)− δ)

= Vθ∗(x0)

≥ Vθ∗(x0) + λ (DKL(θ∗ ‖ φ)− δ) = L(θ∗, λ). (5.34)

From (5.31) and (5.34), we observe that (θ∗, λ∗) is a saddle point of L(θ, λ), so according
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to the saddle point theorem, θ∗ is a local minimum of (OPT-R). Recall that the result of

Theorem 5.3.3 depends on the initial values for θ0 and λ0, so the convergence to a local

minimum is sample path depenedant.

5.A.3 Proof of Corollary 5.3.4

Proof. From the convergence analysis of the θ-update, we know that {θk} converges almost

surely to the largest invariant set within Mθ, and similarly, {λk} converges almost surely

to the largest invariant set within Mλ. We also know from (5.32) that θ∗ is a feasible point

of (OPT-R). When λ∗ = 0, then L(θ∗, λ∗) = Vθ∗(x0). Also, for λ∗ > 0, the complementary

slackness condition (5.33) implies DKL(θ∗ ‖ φ) = δ. Hence ∇θDKL(θ ‖ φ)|θ=θ∗ = 0, which

in turn, means that

∇θL(θ, λ∗)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ + λ∗∇θDKL(θ ‖ φ)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ . (5.35)

Hence, for a θ∗ located in the interior of Θ, we have ∇θL(θ, λ∗)|θ=θ∗ = ∇θVθ(x0)|θ=θ∗ = 0,

so it is a first-order stationary point of (OPT-R). However, if θ∗ ∈ ∂Θ, it is possible to

have ‖∇θL(θ, λ∗)|θ=θ∗‖ 6= 0.

Remark 5.A.3. In practice, we choose the projection set Θ large enough so that the latter

case (convergence to boundary) will not happen. For example, assuring that the weights

of a neural network do not diverge is a sufficient criterion to use instead of the projection

operator ΓΘ.

5.A.4 Equivalent Results for (OPT-F)

A similar PDPG algorithm to the one proposed in Algorithm 8 can solve (OPT-F), only

requiring a slight modification of rules (5.7) and (5.8) as

θk+1 = ΓΘ

[
θk − α1(k)

( 1

N

N∑
j=1

∇θ logPθ(τkj )
∣∣
θ=θk

(
J(τkj ) + λk IS(τkj ) log

Pφ(τkj )

Pθ(τkj )
− λk

))]

λk+1 = ΓΛ

[
λk + α2(k)

( 1

N

N∑
j=1

IS(τkj ) log
Pφ(τkj )

Pθ(τkj )
− δ
)]
,
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where IS(τkj ) = Pφ(τkj )/Pθ(τkj ) is the importance sampling weight added to account for the

bias introduced by sampling under the student’s policy. To ensure a well-defined (OPT-F),

we need the following assumption:

Assumption 5.A.4. Well-defined (OPT-F): for any state–action pair (x, a) ∈ X × A

with πS(x, a) = 0, we have πT (x, a) = 0.

This assumption ensures a similar criterion to that of Assumption 5.2.1, but notice that

in this case, the student might take any action, regardless of the teacher’s policy. Exactly

the same steps can be taken, virtually verbatim, to prove the following convergence property

of the PDPG algorithm for (OPT-F).

Theorem 5.A.5. Under Assumptions 5.3.1, 5.3.2, and 5.A.4, the sequence of policy up-

dates (starting from θ0 sufficiently close to a local optimum point θ∗) and Lagrange mul-

tipliers converges almost surely to a saddle point of the Lagrangian, i.e., (θ(k), λ(k))
a.s.−→

(θ∗, λ∗). Then, θ∗ is the local optimal solution of (OPT-F).

5.B Practical PDPG Algorithm

A naive implementation of Algorithm 8 would result in a high-variance training procedure.

In this section, we discuss several techniques for variance reduction, resulting in a more

stable algorithm compared to the one proposed in Algorithm 8.

5.B.1 Step-wise KL-divergence Measure

In the policy distillation literature, some studies use a trajectory-wise KL-divergence (KL-F)

as the distance metric [88], but the step-wise KL-divergence between the distribution is also

common [30], which is defined as:

Dstep
KL (φ ‖ θ) = Ex∼dπT

[
DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)]
, (5.36)
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where

DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)
=
∑
a∈A

πT (a|x;φ) log
πT (a|x;φ)

πS(a|x; θ)
. (5.37)

In the next proposition, we explore the relations between these two methods.

Proposition 5.B.1. The following relation holds between the trajectory-wise and step-wise

KL-divergence metrics:

DKL(φ ‖ θ) ≤ E[H] Dstep
KL (φ ‖ θ) (5.38)

Proof. According to the definition of trajectory-wise KL-divergence, we have:

DKL(Pφ(τ)||Pθ(τ)) =
∑
τ

Pφ(τ) log
Pφ(τ)

Pθ(τ)

=
∑
τ

Pφ(τ) log
µ(x0)

∏H−1
t=0 πT (at|xt;φ)P (xt+1|xt, at)

µ(x0)
∏H−1
t=0 πS(at|xt; θ)P (xt+1|xt, at)

=
∑
τ

Pφ(τ)
H−1∑
t=0

log
πT (at|xt;φ)

πS(at|xt; θ)

=
∑

x∈X ,a∈A

∑
τ

Pφ(τ)
H−1∑
t=0

It(τ ;x, a) log
πT (a|x;φ)

πS(a|x; θ)

≤
∑

x∈X ,a∈A
E[H]dπT (x)πT (a|x;φ) log

πT (a|x;φ)

πS(a|x; θ)

= E[H]
∑
x∈X

dπT (x)
∑
a∈A

πT (a|x;φ) log
πT (a|x;φ)

πS(a|x; θ)

= E[H] Ex∼dπT
[
DKL(πT (·|x;φ)||πS(·|x; θ))

]
Here, It(τ ;x, a) is the indicator of whether (xt = x, at = a) occurs along trajectory τ . Also,

dπT (x) is the distribution of being in state x under policy πT , defined as

dπT (x) =

Hmax∑
t=0

dt,πT (x)/Hmax,

and dt,πT (x) is the probability of being in x at time t under policy πT .
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According to this proposition, the step-wise KL distances can be used to provide an

upper bound on the trajectory-wise one. In other words, if the step-wise KL multiplied by

the expected horizon length is less than δ, then it is also correct for the trajectory-wise one.

The only remaining issue is that computing the expectation in (5.36) is not straightfor-

ward, since we only have access to the sample trajectories of the student during training.

Using student samples to approximate the KL-divergence introduces some bias. One can

alleviate this bias by incorporating importance sampling (IS) weights as

Dstep
KL (φ ‖ θ) = Ex∼dπS

[
dπT (x)

dπS (x)
DKL

(
πT (·|x;φ) ‖ πS(·|x; θ)

)]
; (5.39)

however, computing the stationary distributions is still a challenging task, even in simple

MDPs with finite state space. One can follow the instructions of [55] for computing the

correction values, but they add extra complications and are not the focus of this work.

Even though we can more easily compute an (unbiased) estimate of reverse KL-divergence,

we will utilize a biased estimation of the forward KL-divergence in most of our numerical

analysis because of its “mean-seeking” property. Defining this biased forward KL-divergence

is common in the literature, e.g., in [76].

Next, we illustrate with an example the low variance of the step-wise approximators

compared to the trajectory-wise one.

Example: KL Approximation Accuracy using Full Information We design a

simple 2 × 2 GridWorld example, as illustrated in Figure 5.B.1, to visualize the effect of

approximating KL-divergence using Monte Carlo sampling. There is one agent in the top-

left corner of the grid and it should reach the goal state located in the bottom-left one. We

kept the problem as simple as possible since we wanted to generate all possible trajectories

for computing the exact KL-divergence. The length of the horizon for this game is 4, so

the total number of possible trajectories is 44 = 256. One may notice that some of these

trajectories might fully overlap, but that is fine for the purpose of this experiment. In this

experiment, we have used a linear function approximator (i.e., a neural network with no

hidden layer) and a medium-sized neural network.

We train a teacher that produces the actions right, left, up, and down with probabilities
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Figure 5.B.1 Illustration of the 2 × 2 GridWorld used for evaluating the effectiveness of
KL approximations.

0.7, 0.0, 0.1, and 0.2, respectively. Once the trained network is available, we initialize the

student’s policy variables with those of the teacher plus a random number. Figure 5.B.2

shows the convergence behavior of the KL approximations to the exact value as we increase

the Monte Carlo samples. The horizontal axis shows the number of sampled trajectories.

As we observe, step-wise KL can provide a very good approximation of KL, even with a

single trajectory sample, but the trajectory-wise approximation exhibits unstable behavior

which is due to the intrinsic high variance of the estimator.
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Figure 5.B.2 Comparison of step-wise and trajectory-wise KL approximations, and their
convergence to the exact KLs for two different policy approximators.

5.B.2 Practical PDPG Algorithm

According to the discussion of Section 5.4, we present the details of the practical PDPG

algorithm in this section. We consider a setting in which the pre-trained teacher is readily

available. The teacher articulates the status quo of solving the task. It can be a pre-trained

RL agent itself, manually designed procedures, or a model of the teacher that has been

trained using supervised learning from historical experiences. For example, the square-
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wave experiment uses handcrafted tabular policies, while in the wall leaping experiment,

the teacher’s policy—modeled with a neural network—is the outcome of an actor–critic

algorithm. As long as we have cheap access to the teacher throughout the algorithm for

numerous queries and get the corresponding probabilities for any given state and action

pair, it is sufficient for our purposes.

Our approach is described in Algorithm 9. In every training iteration, we sample mul-

tiple trajectories under the student’s policy, denoted by T k, which will be further utilized

in approximating the policy gradient, KL approximations, and entropy. For more sample

efficiency of the algorithm, we extract multiple sub-trajectories from each τkj , and consider

each sub-trajectory as an independent Monte Carlo sample. This is a common modification

in policy gradient algorithms and can provide a satisfactory approximation from a single

trajectory experience. Then the teacher provides an approximate probability for all actions

at all visited states xkj,t. Once we know the probability of both student and teacher, we can

compute the approximate step-wise KL-divergence from steps 8 and 9. Step 10 computes

the entropy of student’s current policy at each iteration.

Now, we have all approximations for computing update directions. In step 11, we use all

previously computed sub-trajectory log-probabilities and their cumulative sampled reward

along with the KL and entropy approximation to compute the loss. In this step, we also

use a critic to provide a value of being at the initial point of each sub-trajectory V (xkj,t),

which will provide a baseline for variance reduction. Note that we didn’t include the critic

steps in our main algorithm since it follows a standard actor–critic design. Step 12 updates

the policy parameters using the approximate gradient of loss with respect to θ at point θk.

To be precise, the approximate gradient is employed in a first-order optimizer, e.g., ADAM

[45], to update the θ values in the descent direction of the loss. Finally, the Lagrange

multipliers λ and ζ are updated based on the amount of constraint violation at steps 13

and 14. We also periodically check to see whether λk has converged to λmax, in which case

we increase its quantity similar to Algorithm 8. Notice that since we have considered an

equality constraint for entropy, its Lagrange multipliers can be positive or negative. To this

end, we consider ζ ∈ [ζmin, ζmax] and if it converges to the boundary, we will increase the

interval length.
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Algorithm 9 Practical Primal-Dual Policy Gradient (PDPG) Algorithm for (OPT-F)

1: input: teacher’s policy with weights φ
2: initialize: student’s policy with θ0, possibly equal φ; initialize step size schedules α1(·), α2(·) and α3(·)
3: while TRUE do
4: for k = 0, 1, · · · do
5: following policy θk, generate a set of N trajectories T k = {τkj , j = 1, 2, · · · , N}, each starting from

an initial state x0 ∼ P0(·)
6: extract all trajectories τkj,t, which is a sub-trajectory of τkj from xkj,t onwards; also com-

pute their corresponding accumulated reward J(τkj,t) and log-probability log P̃θ(τkj,t) :=∑Hk
j −1

t=0 log πS(akj,t|xkj,t, θ). Let T̄ k be the set of all sub-trajectories for all visited states xkj,t
7: query the teacher and compute πT (·|xkj,t, θk)
8: compute KL-divergence for all visited states xkj,t, i.e.,

Dstep
KL

(
πT (·|xkj,t;φ) ‖ πS(·|xkj,t; θk)

)
=
∑
a∈A

πT (a|xkj,t;φ) log
πT (a|xkj,t;φ)

πS(a|xkj,t; θk)
, ∀j, t (5.40)

9: (KL approximation) compute the approximate KL-divergence as

D̂step
KL (φ ‖ θk) =

1

N

N∑
j=1

1

Hk
j − 1

Hk
j −1∑
t=0

clipρ
(
Dstep
KL

(
πT (·|xkj,t;φ) ‖ πS(·|xkj,t; θk)

))
(5.41)

10: (entropy approximation) compute the approximate entropy

en̂t(θk) = − 1

N

N∑
j=1

1

Hk
j − 1

Hk
j −1∑
t=0

∑
a∈A

πS(a|xkj,t; θk) log πS(a|xkj,t; θk) (5.42)

11: (compute loss) compute the loss according to

Loss(θk, λk, ζk) =
1

|T̄ k|
∑

τkj,t∈T̄
k

log P̃(τkj,t)(J(τkj,t)− V (xkj,t))+

λk(D̂step
KL (φ ‖ θk)− δ) + ζk(en̂t(θk)− δent) (5.43)

12: (θ-update) update θk according to

θk+1 = ΓΘ

[
θk − α1(k)

( 1

N

N∑
j=1

∇θLoss(θ, λk, ζk)
∣∣
θ=θk

)]
(5.44)

13: (λ-update) update λk according to

λk+1 = ΓΛ

[
λk + α2(k)

(
D̂step
KL (φ ‖ θk)− δ

)]
(5.45)

14: (ζ-update) update ζk with rule

λk+1 = ΓZ
[
λk + α3(k)

(
en̂t(θk)− δent

)]
(5.46)

15: end for
16: update λmax similar to Algorithm 8
17: if ζk converges to ζmax then
18: ζmax ← ζmax + constant
19: else if ζk converges to ζmin then
20: ζmin ← ζmin − constant
21: else
22: return θ, λ and ζ; break
23: end if
24: end while
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5.C Experiments Setup

In all of our experiments, the first step was to identify the teacher. In the square-wave

experiment, we manually designed all teacher probabilities at every state. We also modeled

situations in which the teacher is less “determined” and follows a more complicated decision-

making scheme, such as in our wall leaping experiment, in which the teacher is the policy

of an agent trained using the actor–critic algorithm.

Although we could have initialized the student’s policy randomly, we chose to initialize

it with a pre-trained neural network. In all experiments, we train the neural network for

the unconstrained problem and using the actor–critic algorithm. Similarly, the student’s

critic is initialized from the previously trained critic. Notice that the student’s initial policy

does not need to be the same as the teacher’s policy. For example, the initial student policy

in the square-wave experiment always takes the horizontal path, which is totally different

from that of the teacher. Nevertheless, starting from a policy close to the teacher would

expedite the learning process since there is a high probability of finding an improved policy

in the proximity of the teacher.

However, starting from a previously trained network can bring some difficulties. For

example, having a deterministic initial policy would lead to a limited amount of exploration.

To mitigate this issue, we use a temperature hyper-parameter when sampling from our

softmax, similar to [8]. In this method, we normalize the output of the neural network—

called logits—with temperature and then compute the sampling probabilities as π(·|s; θ) =

softmax(logits / temperature). Using a temperature greater than 1 smoothes out the

sampling probability distribution, so there will be a higher chance of visiting less-explored

states.

In all of our experiments, we used a neural network with two hidden layers, each with

64 neurons. We used the ADAM optimizer [45] with step size 1e−3 to update the student’s

policy and critic. The temperature is 5; λ and ζ start from 1. The learning rate for λ and

ζ starts from 1e−3 and decays to 1e−3 during training. The right hand sides of all entropy

constraints are set to 0.02. We also have a plan to open-source our PyTorch code soon.
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