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Abstract

As a result of the significant economic and environmental burdens caused by wear, extensive

research has been conducted to understand, predict, and control wear to achieve desired

performance and lifetimes for tribological systems. Sliding interfaces in many tribologi-

cal systems must also be multifunctional, prompting the need to optimize for a range of

properties and processes. Composites serve as great multifunctional candidates for targeted

properties and performance: including mechanical, thermal, electrical, and chemical. How-

ever, current material selection and design processes for tribological composites are often

trial-and-error, time-consuming and involve significant material and energy waste. This dis-

sertation presents a new design framework that can direct and accelerate the development

of tribological composites for combined wear and thermal performance. The framework

integrates three main components: (i) wear models that can predict the evolution of key

metrics (surface topography, material loss, contact pressure and temperatures) (ii) wear

experiments that are used to evaluate and validate the wear models and (iii) topology opti-

mization tools that control the spatial arrangement of materials in tribological composites

to achieve target multifunctional performance. In particular, existing wear models are im-

proved and enhanced for the design of rotary and linear wear systems. One of the major

contributions is the development of a thermomechanical wear model that includes frictional

1



heat generation and transfer, along with temperature-dependent wear rates. The model

developments are incorporated into several topology optimization protocols, and for the

first time, a framework to design tribological composites for enhanced frictional heat dissi-

pation is presented. The material distribution within bi-material composites is optimized

to minimize temperatures at sliding interfaces while maintaining target wear performance.
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Chapter 1

Introduction

Tribological composites are used in a wide range of industries including energy, transporta-

tion, aerospace, and biological sectors. Current design processes for these composites are

largely empirical and trial-and-error, involving significant material and energy waste. The

overall goal of this dissertation is to establish a systematic framework for the design of

tribological composites undergoing abrasive sliding wear.

1.1 On the importance and impact of tribology

Tribology is the branch of science and engineering concerned with interacting surfaces in

relative motion and includes the study of friction, wear and lubrication [2]. Since the term

Tribology was first coined by Peter H. Jost, a British engineer, in 1964 [3], it has become

an important interdisciplinary area that links mechanics, materials, chemistry, physics,

biology and more. Almost every engineering system has surfaces that move against each

other where tribological interactions occur. Loss of energy due to friction and wear in

3



engineering systems accounts for huge economic losses and environmental burdens. In

2017, Holmberg and Erdemir [4] investigated the global impact of friction and wear on

energy consumption, economic expenditures, and CO2 emissions covering transportation,

manufacturing, power generation, and residential sectors. The study concluded that (i)

approximately 23% of global energy consumption originates from tribological contacts (ii) by

implementing advanced tribological technologies the potential global savings would amount

to 1.4% of the annual GDP and 8.7% of the total energy consumption in 15 years and

(iii) the global CO2 emissions can be reduced by 3,140 MtCO2 resulting in cost savings of

970,000 million Euros over 15 years.

1.2 Wear

This dissertation focuses on the mechanics of wear, more specifically, abrasive sliding wear.

Wear always occurs when surfaces slide against each other. It can be defined as “damage

to a solid surface, generally involving progressive loss of materials, due to relative motion

between that surface and a contacting substance or substances” [5]. Wear can be classified

into different types based on the contact involved (sliding, rolling, impact, fretting, and

slurry), the surface damage mechanism (abrasive, adhesive, fatigue, corrosive), the presence

of a lubricant (dry or unlubricated, wet or lubricated), etc. [5]. In this dissertation, dry

abrasive sliding wear is of interest, where material is removed from a sliding surface by

the hard protuberances on a counter surface without lubrication (as illustrated in Figure

1.1) [2].

In some cases, wear is desirable and can be used constructively. For example, in grinding

and polishing processes, wear is utilized to remove materials and to shape surfaces [6]. How-
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Figure 1.1: Schematic of dry abrasive sliding wear.

ever, most of the time, wear is detrimental and can lead to reduced efficiency of operation

and significant maintenance and replacement costs. Therefore, wear should be considered

early in the design processes of engineering systems that involve moving interfaces such

as gas turbine engines, automotive engines and transmissions, tires and brakes, hard disk

drives for data storage, electromechanical devices, artificial human joints, etc. [5].

Figure 1.2: Schematic representing the multiphysical nature of tribological interactions [7].

Understanding wear mechanisms is the foundation for reducing or controlling its ef-

fects. Wear involves multiple physics at multiple scales. Solid surfaces contain geometrical

features at scales ranging from macroscale profile or waviness, roughness, to atomic fluctua-

tions. Wear is accompanied by various physical phenomena taking place at and near sliding

interfaces, including mechanical, thermal, chemical, electrical, etc. (Figure 1.2) [7, 8]. The

thermomechanical aspect is one of the most critical and strongly coupled multiphysics of

5



wear [7]. Wear is always complicated by friction. During frictional processes, most of the

available mechanical energy will be transformed into heat [9], which causes the temperature

to rise, especially at sliding interfaces. In some cases, frictional heating is favorable. For

example friction welding utilizes frictional heat to join materials. However, most of the

time, temperature rise caused by frictional heating can degrade tribological and mechanical

properties, impacting the operation and lifetime of sliding components. Due to the complex

nature of wear, tremendous effort has been made to investigate wear from experimental,

theoretical, and numerical aspects and across length and time scales (Figure 1.3) [10].

Figure 1.3: Schematic from [11] shows materials tribology spans multiple length scales and
timescales. There are currently areas of strong overlap between experimental capabilities
and both numerical and theoretical modeling of tribological processes.

Experimental investigations of wear have been carried out to examine wear mechanisms,

provide constitutive tribological properties of materials and systems, and simulate practical

applications. Tribometers are the instruments used in most of the experimental studies to

evaluate wear and friction. Tribometers differ considerably in design and must be selected

based on the wear mechanisms of interest, contact configurations, and operating conditions.

6



The recent development of high-resolution instrumentation such as atomic force microscopes

(AFM) has also enabled the fundamental investigation of tribological processes at small

length scales (1nm-1µm) [11].

Typical experiments assess wear based on the amount of material volume loss and the

state of the worn surface [12]. The measurement of volume loss can be made directly by

weighing the mass change and measuring change in dimensions. It can also be inferred based

on the topographical measurement made by optical profilometers such as interferometers

and stylus profilometers. The accurate measurement of macro-, micro- and nano-scale

surface topographies provides information about both surface profile and local damage and

is helpful for identification of wear mechanisms. In addition to these two major metrics,

several other factors can also be monitored during wear experiments, such as coefficient

of friction and contact temperature. Coefficient of friction can be determined based on

the applied normal load and measured friction force obtained from the tribometers. There

have been many techniques developed to measure contact temperature, such as embedded

thermocouples, infrared detectors, in situ thermal micro-tribometer, etc. [13, 14].

A simple but common way to interpret measurements from wear experiments involves

application of Archard’s wear equation. The equation (Equation (1.1)) was initially pro-

posed by Archard and Hirst [15] to measure adhesive wear of metals under unlubricated

conditions but has been extended to more general cases of wear and materials beyond met-

als. As shown in Figure 1.4(a), it states that the volume of material lost, ∆V , from a

surface is proportional to the relative sliding distance, ∆s, the applied normal load, Fn, and

a coefficient, K:

∆V = FnK∆s. (1.1)
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This equation combines all parameters related to materials, operating and contact condi-

tions, environment, and lubricants into one coefficient. This coefficient, K, is the so-called

“wear rate” and has units of mm3/(Nm). It is a system parameter that characterizes the

wear resistance of a material in a particular wear system. As shown in Figure 1.4(b), the

values of wear rates can vary from 10−3 to 10−10 mm3/(Nm) across different materials as

well as within the same material family depending on the particular wear conditions. There

have been studies that determine the value of wear rates based on intrinsic material prop-

erties, active wear mechanisms, and relevant operating conditions [16], however, the most

common approach is to conduct wear experiments.

Figure 1.4: Schematic of Archard’s wear equation and wear rate. (a) Schematic of Archard’s
wear equation. (b) General ranges of wear rates for different materials.

In experiments, it is commonly observed that wear undergoes a transition from an initial

run-in regime to a steady-state regime as sliding proceeds. According to the GOST (former

USSR) Standard, run-in is defined as “the change in the geometry of the sliding surfaces and

in the physicomechanical properties of the surface layers of the material during the initial

sliding period, which generally manifests itself, assuming constant external conditions, in a

decrease in the frictional work, the temperature, and the wear rate” [17].

Figure 1.5(a) shows is a typical wear volume loss evolution where the volume loss in-
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Figure 1.5: Schematic of typical wear regimes: run-in and steady-state. (a) Volume loss
evolution. (b) Wear rate evolution.

creases rapidly during run-in, then reduces in rate upon reaching steady-state. When the

applied normal load on the material is kept constant, the slope of the volume loss curve

reflects the wear rate, which decreases from an initially high value and gradually converges

to a lower value as shown in Figure 1.5(b). This stabilization results from adjustments be-

tween contacting surfaces which may include surface conformity, oxide film formation, ma-

terial transfer, phase transformation, subsurface micro-structural reorientation, etc. [18]. It

should be noted that this dissertation only takes the adjustments of the macro-scale surface

topographies into account while not considering any changes in surface roughness, funda-

mental contact conditions and wear mechanisms. This has been shown elsewhere [10,14,19]

to be an appropriate approximation for many sliding abrasive wear systems ranging from

chemical mechanical polishing (CMP) to dinosaur dentition.

Along with numerous experimental investigations, many numerical tools have been de-

veloped and utilized to model and predict wear. Molecular dynamics (MD) simulations

have been unitized to explain and model atomic-scale tribological phenomena. MD is able

to provide unique fundamental insights into the coupling between the complex atomic-scale

processes and the macroscale tribological behavior of materials [11]. For example, Zhang et

al. [21] investigated the diamond-copper sliding system and revealed distinct deformation

regimes including no-wear, adhering, ploughing and cutting regimes. Jang et al. [22] demon-
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strated that the molecular structural orientation at polytetrafluoroethylene (PTFE) surfaces

strongly influences wear and friction. Cheng et al. [23] identified the thermo-chemical wear

mechanisms for diamond cutting tools in the nanometric cutting of single crystal silicon

through combining MD simulations with AFM experiments. Despite the demonstrated

usefulness of atomistic simulations in understanding fundamental mechanisms of wear, the

widespread application of these tools remains limited by their length and time scales and

computational costs [11].

Wear has also been historically investigated and modeled from a continuum mechanics

perspective [16,20]. Many theoretical studies have been conducted to probe specific mechan-

ical mechanisms of wear [16]. Traditionally, the wear mechanisms for metallic surfaces have

been probed based on the theory of plastic deformation, in particular, plastic ratchetting

of the near-surface layer in repeated sliding contact [24,25]. For ceramics, Wang et al. [26]

investigated the mechanism transition from plastic deformation-controlled to crack/fracture-

controlled wear due to contact stresses exceeding critical micro-crack/fracture stresses.

Numerical tools, such as finite element analysis (FEA), have also been used to simulate

interactions between rough surfaces or asperities (including elastoplasticity and fracture) to

reveal different wear mechanisms and estimate the wear resistance of materials [27–29]. In

addition to these more fundamental investigations, FEA-based wear simulation frameworks

have been developed to estimate the lifetime and geometric change of moving components for

various practical applications, such as conical joint wear [30], oscillatory contacts [31, 32],

fretting wear [33] and hip joint wear [34]. Since wear always involves evolving surface

geometries and contact conditions, these type of simulations usually consist of an iterative

procedure that integrates Archard’s wear equation and contact analysis by FEA as shown
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in Figure 1.6. The continuous wear process is approximated at discrete time increments.

At each increment, the contact pressure distribution is obtained by performing the contact

analysis based on the current geometry and contact conditions. The height loss at all

positions along the sliding interface is evaluated using Archard’s wear equation (Equation

(1.4)). Then the surface geometry is updated according to the calculated height loss and is

used for the contact problem at the next increment. The above steps are executed iteratively

until a stop criterion is met. Typically, stop criteria include maximum sliding distance or

time, convergence to steady-state, and wear-out failure.

Input model

Contact analysis
- Contact pressure

Wear calculation using Archard's wear equation
- Determine height loss

- Determine new surface profile

Update model geometry

Total sliding distance? 
Steady-state?

Worn-out failure?

End

Yes

No

Figure 1.6: Flow chart of a typical wear simulation procedure.

The detailed contact analysis performed by FEA has the advantage of providing accurate

contact information, i.e. stress, strain, and contact pressure. However, it is usually compu-

tationally expensive and time-consuming because the contact problem needs to be solved
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at each time increment along with updates to geometry [35]. To address this, strategies

have been proposed to accelerate the FEA-based simulations. For example, extrapolation

techniques have been used to reduce the total number of FE contact analyses [31].

In engineering applications, simple and reliable wear models are often preferred in mate-

rial selection and design processes for achieving desired performance and lifetime estimates.

However, due to the multiscale and multidisciplinary nature of wear, it is widely accepted

that no simple and universal model is applicable to all wear situations [16, 20]. Instead,

models for wear are usually tailored to specific wear conditions and scales as illustrated in

Figure 1.3 [11]. For example, analytical contact formulations of elastic half-space contacts

derived from the Boussinesq and Cerruti potential functions are applicable for modeling

chemical mechanical polishing (CMP) [19]. Elastic foundation models have also proven

to be promising for efficient wear simulations. The Winkler foundation model is the first

elastic foundation model that was incorporated into wear simulation [35]. In the Winkler

foundation model, the surface is represented by a bed of elastic springs as shown in Figure

1.7(a). Each spring is independent with no lateral interactions. The contact pressure is

calculated locally from deformation of the elastic foundation:

P = ksu, (1.2)

where ks is the stiffness of the springs representing the compliant foundation and u is the

local vertical deflection of the springs.

Sawyer [10] established a numerical scheme based on the Pasternak foundation model

to investigate surface dishing, erosion phenomenon and contact pressure evolution during

chemical mechanical polishing (CMP). This Pasternak-based model was later used to for
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Figure 1.7: Schematic of foundation models. (a) Winkler foundation model. (b) Pasternak
foundation model.

the analysis of wear in grinding dentitions of hadrosaurid dinosaurs, incorporating fossilized

wear properties [36, 37]. In the Pasternak foundation model, the elastic spring elements

representing the compliant counter-body are coupled to a surface layer of beam elements

as shown in Figure 1.7(b). The contact pressure is given by:

P = ksu− kg∇2u, (1.3)

where ks is the stiffness of the springs, kg is the foundation parameter that takes the local

curvature of the beam element layer into account, and ∇2 = ∂2

∂x2 + ∂2

∂y2
is the Laplacian

operator.

The application of the Pasternak foundation model for iterative wear simulations of

multi-material surfaces subject to linear abrasive sliding wear was investigated by Sidebot-

tom et al. [38]. The transition from run-in to steady-state wear regime has been shown

numerically by monitoring the surface profile evolution and material volume loss history.

This work was later mathematically reformulated by Feppon et al. [39] so that a direct

solution of the steady-state wear could be obtained from the governing well-posed partial

differential equation (PDE) system. Feppon’s reformulated wear model was also integrated

into a topology optimization protocol to design periodic composites for minimal run-in vol-

ume loss in linear wear systems [40]. The effectiveness of the identified periodic designs

13



was assessed by several wear experiments [41]. Through this dissertation, the foundation-

based wear models are further modified and extended to address different wear systems for

improved predictive accuracy and functionality.

1.3 Topology optimization: a design approach for composites

Composites are material systems consisting of two or more materials which are designed

for multifunctionality that is superior to any of the material constituents acting alone [43].

Tribological composites have been historically used in automotive clutch facings and brake

linings to provide high friction, low wear and structural rigidity during operation [44].

Composite coatings are usually designed for enhanced tribological, electrical, optical, and

chemical functions to protect components such as bearings, seals, and valves [2]. Polymer-

based tribological composites combine their intrinsic properties (such as being lightweight

and corrosion resistant) with unique properties of their reinforcements. For example, rein-

forcing fibers (carbon, glass, or aramid) can enhance wear resistance and solid lubricants

(PTFE, graphite or MoS2) can reduce friction [45]. Another example is the recent de-

velopment of a novel wear resistant epoxy composite that incorporates diisocyanate-based

self-healing agents that reduce the growth of fatigue cracks during rolling while also improve

fracture toughness [46].

While the conventional empirical and trial-and-error design approaches for tribological

composites have had many successes, they are also time-consuming and can lead to signifi-

cant material and energy waste [47,48]. Outside of tribological fields, the increasing demand

for multifunctional composites has led to the development of new analysis tools and design

methodologies to relate constituent material properties and material distributions to target
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multifunctional performance. Among these new design paradigms, topology optimization

offers a powerful framework to address the design challenges of multifunctional compos-

ites. In this dissertation, topology optimization is leveraged for multifunctional tribological

composites.

Topology optimization is a mathematical approach that finds the optimal lay-out or

material distribution in a design domain for a given objective [49]. Topology optimization

was introduced for structural design problems by Bendsøe and Kikuchi in 1988 [50]. Typ-

ically, structural optimization can be classified into two broad categories as illustrated in

Figure 1.8: sizing and topology optimization. Sizing optimization determines the thickness,

length, or other geometric parameters of members which are predefined in the structure.

However, topology optimization does not require any initial geometric parametrization of

the structure and allows structural connectivity or topology to evolve during the design

process. In this way, it offers more design freedom than sizing optimization and can lead

to more non-intuitive designs with high-performance. With the goal of finding the best

material distribution in a design domain for an objective function, topology optimization

couples physical modeling with optimization algorithms to drive the design decision in a

systematic and mathematics-driven manner. This makes topology optimization a powerful

alternative to the conventional empirical and trial-and-error design approaches for tribolog-

ical composites.

(a)

(b)

Figure 1.8: Categories of structural optimization based on [49]. (a) Sizing optimization.
(b) Topology optimization.
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Since the introduction of the homogenization method [50], many approaches have been

developed to perform topology optimization. The main differences among these approaches

are related to the definition or parameterization of the design domain in terms of how to

present material(s) and void (no material). It should be noted that due to the nonlinear

and non-convex nature of almost all topology optimization problems, regardless of approach,

global optimality cannot be guaranteed [49]. Density-based methods are the most widely

used, where the design domain is discretized into elements and each element is characterized

by one design variable, i.e. element density, ρe. Elements with density ρe = 1 are occupied

by solid material and elements with density ρe = 0 are void or another solid material. The

discrete optimization problem is converted into a continuous one by allowing the density

variables to have values between 0 and 1 or ρmin and 1 (ρmin > 0 is used to prevent

computational difficulties such as singularity in the finite element analysis). As shown in

Figure 1.9(a), black represents a solid material with ρe = 1, white represents void with

ρe = ρmin, and gray has intermediate density. The material properties of each element are

calculated based on the element density using appropriate interpolation schemes. The Solid

Isotropic Material (originally Microstructure) with Penalization (SIMP) method is the most

common scheme. In the SIMP method, material properties, such as the elastic modulus

(Ee) of an element with density ρe is calculated as:

Ee = E0ρ
p
e, (1.4)

where E0 is the elastic modulus of the solid material and p is a penalization parameter.

The design goal is to achieve an optimal discrete distribution of void and solid elements

within the design domain, i.e. 0/1 design. The penalization parameter is chosen to be larger
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than 1 which has been proven to help suppress intermediate densities and encourage 0/1

designs [49]. Figure 1.9 shows the interpolated modulus as a function of element density

with a range of penalization parameters (p). The exact value of the parameter (p) is often

chosen depending on the specific optimization problem but p ≥ 3 is usually required [49].

(a) (b)
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p=1
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 ρe

Design domain

Figure 1.9: Schematic of the density-based method (SIMP). (a) Parameterization of design
domain. (b) SIMP interpolation schemes.

Another well-developed approach for topology optimization is the boundary variation

method, where the material distribution in the design domain is represented by implicit

functions that define boundaries between solid and void or different solids. For example,

in the level-set method, solid/void or material boundaries are found as the zero level-set or

contour of a scalar level-set function. As illustrated in Figure 1.10, the distribution of two

materials (A and B) in a two-dimensional design domain, Ω, is represented by the closed

zero level-sets, ∂Ωa, of the three-dimensional level-set function, ϕ. The evolution of the

boundaries (moving, merging and creating new inclusions) is realized by updating the level-

set function according to the shape and topological derivatives obtained from the physical

problem and optimization conditions [51–53]. One advantage of the level-set method over

density-based methods is the clear boundaries between different materials without elements

that have (often non-physical) intermediate densities. Techniques such as using extended

finite element methods (XFEM) can further improve the smoothness of material boundaries
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Figure 1.10: Schematic of the level-set method. (a) Level-set function and its zero-level set.
(b) Corresponding material distribution in the design domain.

[54]. However, it has been found that the dependency of the optimal solution on initial guess

is significant for the level-set method [55]. In addition, reinitializations to reshape the level-

set function are periodically required which increases the computational complexity [53,56].

Other topology optimization approaches include: discrete methods such as the Evolutionary

Structural Optimization (ESO) and Bi-directional Evolutionary Structural Optimization

(BESO) methods [57], explicit methods such as the Moving Morphable Components (MMC)

method [58,59] and methods utilizing deep learning and neural networks [60,61].

(a) (b)

Figure 1.11: Some recent applications of topology optimization. (a) Heat sink designs for
LED cooling [62]. (b) Optimized bone craniofacial segmental replacements [63].

Topology optimization offers a generalized design framework that may be applied for

a broad range of disciplines, including heat transfer, fluids, acoustics, electromagnetics,

optics, biology, medicine, and more [49, 64, 65]. Lazarov et al. [62] designed heat sinks for

passive cooling in light-emitting-diode (LED) lamps (Figure 1.11(a)). Sutradhar et al. [63]
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designed patient-specific large craniofacial segmental bone replacements (Figure 1.11(b)).

(a)

(b)

(c)

(d)

Figure 1.12: Applications of topology optimization for multifunctionality. (a) Transport of
heat and electricity [66]. (b) Stiffness and fluid permeability [67]. (c) Stiffness and thermal
conductivity [68]. (d) Stiffness and electrical conductivity [69].

Topology optimization has also been extensively used to design multifunctional materials

and structures. Torquato et al. [66] presented the first application of topology optimization

to optimize composite microstructures for the simultaneous transport of heat and electricity

(Figure 1.12(a)). Guest et al. [67] optimized the base cell microstructure of a periodic

material for maximized stiffness and fluid permeability (Figure 1.12(b)). In addition, designs

for combinations of stiffness and thermal [68] or electrical conductivity [69] have also been

proposed (Figures 1.12(c) and (d), respectively).

In contrast, topology optimization for tribological applications has only recently been

introduced [41, 70]. In Feppon et al. [70], a level-set based topology optimization frame-

work was proposed that determined optimal periodic composite unit-cell configurations for

minimal volume loss during linear abrasive sliding wear. During this dissertation, the work

by Feppon et al. was collaboratively validated through experiments for periodic composites

(Figure 1.13) [41]. These results illustrate the potential of topology optimization as a means

to design and develop tribological composite systems. However, before this dissertation, no

prior work had focused on designing composites for multifunctional performance at the
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Figure 1.13: Optimized periodic composite unit-cells for minimal run-in volume loss [41,70].

sliding interface.

1.4 Research objective and dissertation outline

To summarize, tribological composites are needed to meet increasing demands for wear

and multifunctional performance in tribological systems across different sectors. While

current design processes rely on intuitive, parametric and/or trial-and-error approaches,

the objective of this dissertation is to develop a systematic framework. Towards this end,

this dissertation integrates efficient and accurate predictive wear models with topology

optimization to design tribological composites for multifunctional applications.

The dissertation is structured as follows. In Chapter 2, a rotary wear model is estab-

lished based on the Archard’s wear equation and the elastic Pasternak foundation model.

This rotary wear model provides both an iterative simulation capacity for the continu-

ous wear process and a direct prediction of steady-state wear performance based on initial

material distribution and loading conditions. Wear experiments are conducted (led by col-
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laborators) to evaluate the accuracy of the numerical prediction tools. It was found that

existing numerical models had difficulty capturing boundary and edge-effects. Chapter 3

addresses this challenge by proposing a generalized wear model that incorporates an im-

plicit treatment of boundary conditions and a new asymmetric foundation model for linear

wear. Based on comparison with experiments, these model developments and extensions

are found to provide more accurate and realistic wear predictions. Additionally, for the

first time, an optimization-based calibration procedure is proposed to obtain foundation

parameters needed for implementing the foundation-based wear models. In Chapter 4, fric-

tional heating associated with wear at sliding interfaces is investigated. A three-dimensional

steady-state heat transfer model with frictional heat flux boundary conditions is established

to obtain thermal fields within sliding components. The heat transfer analysis is integrated

into the linear wear simulation framework established in Chapter 3 to investigate thermo-

mechanical wear by incorporating temperature-dependent wear rates. Chapter 5 explores

the utility of topology optimization in designing multifunctional composites for wear-related

problems. A density-based topology optimization framework is developed to find optimal

bi-material composites that maximize the dissipation of frictional heat at sliding interfaces

with wear performance constraints. Finally, Chapter 6 presents the key conclusions of this

dissertation as well as directions for future work.
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Chapter 2

Wear models

Existing studies that employ foundation-based wear models have so far only explored linear

wear systems where the surfaces in contact undergo relative linear reciprocating or unidi-

rectional sliding. However, rotary wear systems are also common in machinery applications

such as clutches and brakes, where the sliding between surfaces is caused by relative rota-

tion. In this chapter, for the first time, one of the classical foundation-based wear models

is extended to address rotary abrasive sliding wear systems with a thrust washer configu-

ration. The proposed rotary wear model combines Archard’s wear equation (modified for

rotary sliding) and the Pasternak elastic foundation model. Iterative simulation is used for

efficient predictions of the evolution of key wear features: contact pressure, worn surface

profile, and material volume loss. A convergence condition is incorporated to detect the

onset of steady-state wear and a direct solution of steady-state wear performance is derived

from the model formulation based on the material distribution and loading conditions. The

proposed model provides guidance for designing composite surfaces based on desired steady-

state wear performance. Rotary wear experiments are conducted (led by collaborators) to
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validate the new wear prediction tools and evaluate optimized composite designs.

2.1 Rotary wear model

As shown in Figure 2.1, the rotary wear system of interest has a rotary axial thrust washer

geometry. The specimen is rotating against a counter-body causing material removal at the

sliding interface, Ω. As is typical for these models, it is assumed that wear only occurs at

the specimen surface. The sliding interface of the specimen, Ω, has an annular shape, with

an inner radius, r = R1, and an outer radius, r = R2. A polar coordinate system is used

with an origin at the center of Ω.

Figure 2.1: Schematic of rotary wear system.

2.1.1 Archard’s wear equation: modified for rotary wear systems

Wear is considered on a local scale by following particular points at the sliding surface and

determining the wear depth at a particular position according to the local contact conditions.

Here, the Archard’s wear equation is adapted and applied [15, 71]. The incremental wear

depth at a particular position in Ω, ∆z(r, φ), after an incremental angular sliding distance,
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∆s(r), is calculated as

∆z(r, φ) = −P (r, φ)K(r, φ)∆s(r), (2.1)

where P (r, φ) is the local contact pressure and K(r, φ) is the local wear rate. The wear

rate, K(r, φ) of unit (mm3/Nm), characterizes the wear resistance of a material in a specific

wear system. Here, it is assumed that each material has a distinct wear rate which does not

change during wear. The material distribution within the sliding interface Ω determines

the wear rate distribution. When the sliding interface consists of only one material, the

wear rate K(r, φ) is constant within Ω; when the sliding interface consists of more than one

material, the wear rate K(r, φ) can be represented by a piecewise constant function of the

radial distance from the annulus center, r, and the angular position φ, corresponding to the

material distribution.

It is noted that, in contrast to linear sliding wear, rotary wear systems have a radially

dependent sliding velocity field (see Figure 2.1), which results in a non-uniform sliding dis-

tance distribution. The incremental sliding distance at a particular position is the product

of the incremental sliding angle (∆θ) and the local radial distance from the center of the

annular domain (r):

∆s(r) = r∆θ. (2.2)

In Figure 2.1, θ denotes the total rotational sliding angle (∆θ is the incremental rotational

sliding angle) while φ denotes the angular coordinate. Then Equation (2.1) is written as:

∆z(r, φ) = −P (r, φ)K(r, φ)r∆θ. (2.3)

In this way, a rotary wear rate coefficient, KR(r, φ) = rK(r, φ) of units mm3/(N rad),
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can be defined for rotary wear systems. It is dependent on both the local material wear

rate, K(r, φ), and the local position, r. As a result, Archard’s wear equation is modified

for rotary wear systems:

∆z(r, φ) = −P (r, φ)KR(r, φ)∆θ. (2.4)

This equation gives the incremental wear depth at a particular position that is caused by

an incremental rotating angle. The local incremental wear depth is proportional to the

local contact pressure and local rotary wear rate. In differential form, the wear model

corresponding to Equation (2.4) can be written as:

∂z(r, φ)

∂θ
= −P (r, φ)KR(r, φ). (2.5)

2.1.2 Pasternak foundation model

Archard’s wear equation provides an explicit prediction of the surface profile evolution as

long as the pressure distribution between the contacting surfaces is known. In order to pro-

vide the contact pressure relation, the elastic Pasternak foundation model [72,73] that has

been previously used in design and validation studies for linear wear systems [74–77] is used.

The specimen is assumed to be rotating against an abrasive and fully compliant counter-

body. The compliant counter-body is modeled as an elastic foundation which composed of

spring elements coupled with bending beam elements (with corresponding parameters ks

and kg). The units of ks and kg are N/mm3 and N/mm, respectively. These elements are

illustrated in Figure 2.2 where a bi-material composite surface is sliding against a compliant

counter-body.
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Figure 2.2: Schematic of Pasternak foundation model. (a) Specimen with initially surface
and undeformed foundation. (b) Worn specimen surface and deformed elastic foundation.

Initially the composite surface is flat and it is on top of an undeformed elastic foundation

as shown in Figure 2.2(a). A constant normal load is applied, causing the foundation springs

to compress. Together with the relative sliding between the surfaces in contact, the specimen

surface starts to be worn away. Due to the different wear rates of the constituent materials,

the initially flat surface becomes uneven, which causes bending of the beam elements at

the counter-body surface (Figure 2.2(b)). As a result, the local contact pressure can be

represented as a function of the deflection of the spring elements and the local curvature of

the beam elements [73,74]:

P = ks(z − h)− kg∇2z, (2.6)

where h is a reference depth, and (z−h) is the local deflection of the elastic foundation with

respect to this recessing reference depth. Lastly, ∇2z = 1
r

∂
∂r (r

∂z
∂r )+

1
r2

∂2z
∂φ2 is the Laplacian of

z in a polar coordinate system that is related to the curvature of the surface beam element

layer of the counter-body.

The use of the Pasternak foundation model is based on the assumption that the counter-

body is fully compliant so that there is perfect contact between the specimen and the

counter-body. The contact pressure is predicted by the displacement of the counter-body
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surface, rather than the properties of the constituent materials at the specimen surface. This

assumption imposes some restrictions on the applications of the model, such as, sliding

against hard materials. Nevertheless, the model has been shown applicable for a broad

range of engineering systems from wear of dental materials to chemical mechanical polishing

(CMP) [74,75].

During the entire wear process, the specimen is loaded with a constant normal load,

Fn. Thus the average pressure at the sliding surface, < P > (< · > denotes average value

throughout the dissertation), remains constant at P0:

< P > (θ) =
1

|Ω|

∫ 2π

0

∫ R2

R1

P (r, φ)rdrdφ = P0, ∀θ. (2.7)

The reference depth, h, is recessing during the wear process. After a total sliding angle, θ,

h can be determined by taking the average of both sides in Equation (2.7):

h = −P0

ks
+ < z > −kg

ks
< ∇2z >, (2.8)

which leads to the following relationship between the pressure, P , and the local depth of

the surface profile, z:

P (r, φ) = P0 + ks(z− < z >)− kg(∇2z− < ∇2z >). (2.9)

2.1.3 Rotary wear model formulation

Combining modified Archard’s wear equation (Equation (2.5)) and the Pasternak founda-

tion model (Equation (2.9)), the recessing local surface depth, z(θ, r, φ), can be determined
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by solving the following differential equation with appropriate initial and boundary condi-

tions:

1

KR

∂z

∂θ
+ ks(z− < z >)− kg(∇2z− < ∇2z >) = −P0. (2.10)

Here, composite systems with rotationally symmetric material distributions are of inter-

est. This allows for the further simplification of the model from two-dimensional to one-

dimensional, representing a line-scan along the radial direction that is independent of

φ. Then the Laplacian of z(θ, r) in the governing equation (2.10) can be simplified as

∇2z = 1
r

∂
∂r (r

∂z
∂r ).

The surface is considered flat before wear occurs, which gives the initial condition, i.e.

z(0, ·) = 0. In terms of boundary conditions, Neumann boundary conditions with zero slope

are assumed for both the inner and outer annulus boundaries. In summary, the governing

equation to predict the evolution of the design surface profile for rotary wear systems is

written as:



1
KR

∂z
∂θ + ks(z− < z >)− kg(∇2z− < ∇2z >) = −P0, r ∈ (R1, R2),

∂z
∂r = 0, at r = R1 and r = R2,

z = 0, θ = 0.

(2.11)

2.2 Iterative wear simulation

By solving the time-dependent governing equation for the continuous rotary wear process,

Equation (2.11) , the evolution of worn surface profile and material loss can be predicted.

In this section, an iterative simulation procedure is described which allows the numerical

28



prediction of rotary wear evolution.

2.2.1 Simulation algorithm

The iterative simulation is established based on the finite difference method. The continuous

governing equation, Equation (2.11),is replaced with a discrete approximation by applying

finite difference schemes to the derivatives with respect to time and space. The 1D domain

[R1, R2] is discretized into a grid of M elements (with M+1 nodes). The element dimension

is ∆r = (R2 −R1)/M and the spatial location of the ith node is ri = R1 + (i− 1)∆r. The

evolving surface is characterized by the surface height, zni , of the worn profile at the position

ri, and after a rotational sliding angle, n∆θ, with n as an iteration counter (equivalent to

time counter). The wear rate is assigned to each node according to the material distribution,

so that the modified rotary wear rate of the node at the position ri is (KR)i = Kiri.

Given the surface profile at the nth iteration, the surface profile after an incremental

sliding angle, zn+1, can be found by solving the following finite difference scheme based on

the governing equation (2.11):

−P0 =
zn+1
i −zni
(KR)i∆θ + ks(z

n
i − < zn >)

−kg

(
zni+1−2zni +zni−1

∆r2
+ 1

ri

zni+1−zni−1

2∆r − <
zni+1−2zni +zni−1

∆r2
+ 1

ri

zni+1−zni−1

2∆r >
)
, (2.12)

where zn0 = zn2 and znM+1 = znM−1 are assumed according to the Neumann (zero slope)

boundary conditions applied at the two boundary nodes. It is noted that the discretization

scheme, Equation (2.12), is equivalent to the conventional iterative wear simulation proce-

dure as shown in Figure 1.6, where the contact problem and wear calculation are realized
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in two separate steps using (2.9) and (2.5). A discretization of Equation (2.9) allows for

the estimation of contact pressure distribution corresponding to current surface profile, pni :

pni = P0 + ks(z
n
i − < zn >)

−kg

(
zni+1−2zni +zni−1

∆r2
+ 1

ri

zni+1−zni−1

2∆r − <
zni+1−2zni +zni−1

∆r2
+ 1

ri

zni+1−zni−1

2∆r >
)
. (2.13)

Then the profile at the next iteration, zn+1
i , is updated using the discretized version of

Archard’s wear equation (2.5):

zn+1
i = zni − pni (KR)i∆θ. (2.14)

Combining the two calculation steps, Equation (2.13) and Equation (2.14) yields the same

expression as the discretized governing equation (Equation (2.12)).

The cumulative material volume loss and instantaneous composite wear rate can also

be calculated at each iteration during the simulation. The incremental volume loss caused

by the nth iteration is evaluated as:

∆V n = 2π

M∑
i=1

Iiz
n
i ri∆r, (2.15)

where I represents the numerical integral coefficients that have a value of 0.5 at the two

boundary nodes and a value of 1 at all intermediate nodes. Then the total material volume

loss up to the nth iteration is

V n =

n∑
j=1

∆V i. (2.16)

The instantaneous composite wear rate at the nth iteration, KR,comp (mm3/N rad), is
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defined as the incremental volume loss per area per average pressure per rotating angle:

KR,comp =
∆V n

|Ω|P0∆θ
. (2.17)

2.2.2 Numerical results

In this section, a case study is presented to demonstrate the iterative rotary wear simulation.

In this case study, the following parameters are assumed. The annular domain has an inner

radius R1 = 4.24 mm and an outer radius R2 = 12.7 mm. The domain is discretized into

M = 100 elements in the radial direction with ∆r = 0.0846 mm. The constant applied

normal force is set as Fn = 40N resulting in an average pressure of P0 = 0.089 MPa. The

Pasternak foundation parameters are chosen as ks = 0.307 N/mm3 and kg = 2.8 N/mm

according to the values used in [75]. Recall that in the foundation model described in Section

2.1.2, the compliant counter-body is composed of spring elements coupled with bending

beam elements (with corresponding parameters ks and kg). A bi-material composite system,

representative of common annular systems, consists of epoxy (material A) and aluminum

(material B). The epoxy is typical of metallographic mounting epoxies and the aluminum is

a standard 6061 type. The choice of constituent materials is for convenience in comparison

to laboratory studies as well as demonstration of the capability of this model. Based on

experimental measurements (see section 2.4), the wear rates are Ka = 0.266 mm3/Nm

for the less wear-resistant material (epoxy) and Kb = 0.024 mm3/Nm for the more wear-

resistant material (aluminum). The area fractions of material A and B are both 50%. The

in-plane material distribution is shown in Figure 2.3, where material A (epoxy) is depicted

in dark gray and material B (aluminum) is in light gray with corresponding wear rates Ka
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and Kb.

Mat A - Epoxy

Mat B - Aluminum

(a)

r

-1.35

-1.3

-1.25
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(mm)(b)

Worn surface profile 

after 6115 sliding revolutions

Figure 2.3: Schematic of the bi-material composite and worn surface profile. (a) In-plane
material distribution. (b) Worn surface profile after 6115 sliding revolutions.

The simulation starts with initially planar composite surface, i.e. z0i = 0(i = 1, 2, ...,M).

The incremental rotating angle at each iteration is set as ∆θ = 0.05rad to ensure numer-

ical stability and convergence. The evolution of worn surface profile and contact pressure

for the composite surface is shown in Figure 2.4(a) at selected rotating revolutions, i.e.

0,100,500,1000,2000,4000,6000, and 6115 revolutions. Here, the number of computational

iterations is converted to number of revolutions between rotating surfaces where one revo-

lution is 2π.
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Figure 2.4: Evolutions of worn surface profile and contact pressure distribution. (a) Worn
surface profiles at selected sliding revolutions in actually depth. (d) Translated worn surface
profiles. (e) Contact pressure evolution.

Figure 2.4 shows the the worn surface and contact pressure distribution along the radial
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direction. The worn surfaces are plotted at the exact depths in Figure 2.4(a). The worn

surface is recessing and the initially planar surface becomes non-planar as the wear process

proceeds. In order to better visualize and cmopare the evolving worn profiles, the profiles in

Figure 2.4(a) are all translated to zero-level (with average value of zero) as shown in Figure

2.4(b). It is noticed that, from initialization to 1000 revolutions, the surface undergoes

dramatic change in its shape. The worn surface gradually forms a shape that has a low

valley in the center occupied by material A (epoxy) and two peaks along the boundaries

occupied by material B (aluminum). This dramatic change is also observed in the contact

pressure distribution in Figure 2.4(a). At 100 revolutions, high pressure peaks appear near

the material interfaces, which are vanishing as the rotating revolution increases. Both

the worn surface profile and contact pressure distribution gradually stabilize after 4000

revolutions. It is seen that the surface profiles as well as the contact pressure distributions

at 6000 revolutions and 6115 revolutions are almost identical.
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Figure 2.5: History of material volume loss and instantaneous composite wear rate (markers
denote the onset of steady-state). (a) Volume loss vs sliding distance. (b) Instantaneous
composite wear rate vs sliding distance.

The incremental volume loss is calculated at each step using Equation (2.15). The

instantaneous composite wear rate is calculated as the incremental volume loss divided by

the product of applied normal force and the incremental rotating angle as Equation (2.17).

The accumulated total volume loss and the instantaneous composite wear rate are plotted
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against total rotating revolutions in Figure 2.5. Since the normal force and the incremental

rotating angle is kept constant, the value of the instantaneous composite wear rate reflects

the slope of the total volume loss curve. In general, the total volume loss increases as the

rotating revolution increases while the increasing rate is decreasing. The curve gradually

becomes an almost linear line. This trend is also reflected in the instantaneous composite

wear rate curve. The instantaneous composite wear rate experiences a steep decline at the

beginning and converge to a lower constant value.

It is seen that, the evolution of the worn surface profile, contact pressure distribution,

volume loss, and instantaneous composite wear rate follow the common trend: dramatic

changes (in shape and increase/decrease in number) happen during the initial transient

state until a stabilized state is reached. This evolving trend is consistent with the commonly

observed wear processes where two wear regimes can be distinguished: run-in wear and

steady-state wear.

2.3 Prediction of steady-state wear

The case study in Section 2.2 demonstrates the capacity of the iterative wear simulation

algorithm to predict the evolution of key features during the rotary wear process. Transition

from the initial run-in wear stage to the steady-state wear stage has been observed from

the evolution of the worn surface profile, contact pressure distribution, volume loss, and

instantaneous composite wear rate. In this section, a steady-state condition is introduced

to the iterative wear simulation to characterize run-in and steady-state wear stages. In

addition, a direct method to determine the steady-state wear performance is derived from

the PDE system governing the rotary wear process (Equation (2.11)).
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2.3.1 Iterative simulation with steady-state condition

It is observed from the previous case study that, after steady-state is reached, after around

6000 rotating revolutions, the worn surface profile reaches a constant shape corresponding to

a steady contact pressure distribution and the volume loss increases linearly as the rotation

angle increases corresponding to a constant instantaneous composite wear rate. The worn

surface profile reaches a constant shape that keeps recessing at a constant rate as wear

proceeds. Therefore, in the iterative simulation, steady-state is reached when the difference

of the local incremental worn depth at two successive increments are equal at every point

within the sliding interface. The wear depth change at a particular position, ri, between

the nth and (n + 1)th iterations is, ∆zni = zn+1
i − zni . The steady-state condition can be

established as:

max
|∆zn+1

i −∆zni |
|∆zni |

< ϵ, (2.18)

where ϵ is a small constant chosen according to desired level of precision (e.g. 1×10−8). By

incorporating the steady-state condition into the wear simulation algorithm introduced in

Section 2.2, the transition from run-in wear stage to steady-state wear stage can be detected

after the iterative simulation is run for sufficient iterations.

2.3.2 Direct method for steady-state wear prediction

Alternatively, the steady-state profile can also be directly calculated from initial conditions

and material and system properties. As it is often the steady-state performance that is

of interest for optimization purposes, computing intermediate states is inefficient. Here a

direct method is developed to compute the steady-state surface profile directly from the
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initial material distribution.

The derivation of the direct method is based on the characteristic that at steady-state,

the surface profile converges to a constant shape that continues to recess without further

changes in shape. Moreover, it keeps its shape while recessing at a constant rate. Assuming

that the steady-state profile is u(r) and that it recesses at the rate of α, the steady-state

profile, z̃, can be expressed as:

z̃(θ, r) = −P0αθ + u(r). (2.19)

It should be noted that z̃ satisfies the governing equation (2.11) only after the system

reaches steady-state, when z(θ, r) = z̃(θ, r) is true. In contrast, during the transient run-in

process, the surface profile is continuously changing and cannot be described by z̃. The rest

of this section is focused on steady-state performance. Substituting Equation (2.19) into

the governing wear equation (2.11) gives:

− P0
α

KR
+ ks(u− < u >)− kg∇2u = −P0. (2.20)

By taking the average of each side of Equation (2.20), one can analytically determine the

constant rate that the steady-state surface profile is recessing at:

α =< K−1
R >−1 . (2.21)

This constant rate can be interpreted as a height loss per average pressure per rotating angle

at steady-state, which is the same as the steady-state composite wear rate, α = Kss
R,comp.

36



Thus, the steady-state profile, u, is found from:

ks(u− < u >)− kg∇2u = −P0 + P0
< K−1

R >−1

KR
, (2.22)

by letting u0 = u− < u > and applying the boundary conditions. In this way, the steady-

state surface profile of a given rotary wear system can be directly predicted by solving the

following system of equations for u0:


ksu0 − kg∇2u0 = −P0 + P0

<K−1
R >−1

KR
, r ∈ (R1, R2),

∂u0
∂r = 0, at r = R1 and r = R2.

(2.23)

It is noted that the right-hand-side of the above equation is only dependent on the piece-

wise distribution of the function, KR, and the ratio between the wear rates of the two

constituent materials, Ka/Kb. As a result, for composite systems consisting of different

pairs of materials with the same wear rate ratio and the same in-plane distribution, under

the same wear conditions (counter-body and applied load), the steady-state profiles of these

composite systems will be the same.

This ordinary differential equation (ODE) system (2.23) can be solved using a finite

difference method. The discretization of the 1D domain is the same as for the iterative

method (section 2.2.1). Then the finite difference scheme of the above governing equation

for the steady-state surface profile, u0, at the interior nodes, is:

ksu0,i − kg

(
u0,i+1 − 2u0,i + u0,i−1

∆r2
+

1

ri

u0,i+1 − u0,i−1

2∆r

)
= −P0 + P0

< K−1
R >−1

(KR)i
. (2.24)

Considering Neumann (zero slope) boundary conditions, we have the following equalities
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for the two fictitious boundary nodes: u0,0 = u0,2 and u0,M+1 = u0,M−1. The steady-state

profile, u0, is then found by directly solving this linear equation system.

2.3.3 Numerical results

In this section, numerical results of three bi-material composites subject to rotary wear are

presented. As shown in Figure 2.6, the three bi-material composites have the same material

volume fractions but different in-plane distributions. In Case 1, the more wear-resistant

material, aluminum (material B), is distributed at the outer edges and the less wear-resistant

material, epoxy (material A), is concentrated inside. Case 3 has the opposite distribution,

compared to Case 1. Case 2 has epoxy, the less wear-resistant material, distributed between

two layers of aluminum, the more wear-resistant material.

Figure 2.6(a) plots the resultant volume loss as a function of total sliding revolutions.

Figure 2.6(b) shows the evolution of composite wear rate with increasing sliding revolutions.

Note that in Figure 2.6(a) and Figure 2.6(b), the data point denoted by a star for Cases

1-3, represents the value at convergence when the steady-state condition, ϵ = 10−8, has

been met. Thus it is seen that Case 1 converges before Case 2 or 3. Figure 2.6(c) gives

the contact pressure distributions at steady-state. In Figure 2.6(d), the surface profiles of

Cases 1-3 after 6115 revolutions, when all three cases have reached steady-state are shown.

The steady-state surface profiles calculated using the direct method are also plotted

in Figure 2.6(d). Since the direct method only determines the shape of the steady-state

surface profile, these steady-state profiles are translated the same average depth level as the

actually worn surface profiles for all three case. It is seen that, for each case, the directly

calculated shape of the steady-state surface profile coincides with the worn surface profile
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Direct method

Case 1

Case 2

Case 3

Figure 2.6: Comparison of three material distributions with the same area fraction (|Ωa| =
|Ωb| = 0.5|Ω|). (a) Volume loss versus total sliding revolutions. (b) Instantaneous composite
wear rate versus total sliding revolutions. (c) Steady-state contact pressure distributions.
(d) Worn surface profiles after 6115 revolutions. Note that in Figure 2.6a and Figure 2.6b,
the data point denoted by a star for Cases 1-3, represents the value at convergence when
the steady-state condition, ϵ = 10−8, has been met.

from the iterative simulation after steady-state is reached. Table 2.1 displays the steady-

state composite wear rate values obtained from direct calculation using Equation (2.21)

and from the converged iterative simulation after 6115 revolutions. Both methods give

the same steady-state composite wear rate values for all three cases. The good agreement

demonstrate the equivalence of the iterative simulation with steady-state condition and the

direct method in predicting the steady-state wear performance, i.e. worn surface profile and

composite wear rate.
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Steady-state composite wear rate [mm3/(Nrad)]

Case 1 Case 2 Case 3

Iterative method 0.47e-3 0.37e-3 0.31e-3

Direct method 0.47e-3 0.37e-3 0.31e-3

Table 2.1: Comparison of steady-state composite wear rates, Kss
R,comp [mm3/(Nrad)].

2.3.4 Calculation of steady-state composite wear rate

It may seem intuitive that in order to minimize material loss, the more wear-resistant

material (which has a smaller value of wear rate) should be distributed at the outer edges of

the specimen to accommodate the longer sliding distances. However, numerical results from

the previous section show the opposite trend. It is seen in Figure 2.6(b) that the steady-

state composite wear rate of Case 1 (which has the intuitive design) is the largest among the

three cases considered. The steady-state composite wear rate for Case 3 is the smallest and

Case 2 has an intermediate steady-state composite wear rate. The implication is that Case

1 (which might be thought optimal by intuition) will eventually lose more material than

Case 2 and Case 3 because of its larger steady-state composite wear rate. It can be seen

from Figure 2.6(d) that the surface of Case 1 is at the lowest level and the surface of Case 3

is at the highest level, which implies that after a long sliding process, Case 1 loses the most

material while Case 3 loses the least material among the three cases considered. Thus, it is

found that for given volume fractions of materials with different wear rates, distributing the

less wear-resistant material at the outer annular edges and the more wear-resistant material

at inner annular locations leads to the minimal value of steady-state composite wear rate.

In this section, an analytical proof of this counter-intuitive finding is presented based on

the direct steady-state solution given in Section 2.3.2.
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The analytical steady-state composite wear rate determined for a given material distri-

bution derived in Equation (2.21) can be calculated as:

Kss
R,comp =< K−1

R >−1=

(∫ 2π
0

∫ R2

R1
(K(r)r)−1rdrdθ∫ 2π

0

∫ R2

R1
rdrdθ

)−1

=
R2

2 −R2
1

2

(∫ R2

R1

K−1(r)dr

)−1

.

(2.25)

Minimizing the steady-state composite wear rate, Kss
R,comp, is equivalent to maximizing the

integral
∫ R2

R1
K−1(r)dr. As the wear rate, K(r), is a piecewise constant function dependent

on the radial position when the material distribution is rotationally symmetric, the integral

can be re-written as: ∫ R2

R1

K−1(r)dr = K−1
a La +K−1

b Lb, (2.26)

where La and Lb represent the total radial “thickness” of the domains occupied by material

A and material B, respectively:

La =

∫ R2

R1

δ(r)dr, and Lb =

∫ R2

R1

1− δ(r)dr, (2.27)

where δ(r) is also a piecewise constant function satisfying:

δ(r) =


1, if K(r) = Ka,

0, if K(r) = Kb.

(2.28)

A geometric representation of this radial “thickness” is shown in Figure 2.7. In Figure

2.7a, two annular domains with the same area (|Ω1| = |Ω2|) and made of the same single

material are shown. The radial thickness for the annulus on the left is smaller than that

on the right, L1 < L2. In Figure 2.7b, the same Cases 2-3 from Figure 2.6 are reproduced
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in order to demonstrate the corresponding radial thickness for material B. In Case 2, there

are two layers of material B with radial “thicknesses”, LCase2
b1 and LCase2

b2 , and one layer of

material A with radial “thickness”, LCase2
a . The total radial ”thickness” of material B for

Case 2 is LCase2
b = LCase2

b1 +LCase2
b2 . The whole annular domain is occupied by materials A

and B, so La and Lb must satisfy:

La + Lb = R2 −R1. (2.29)

Then Equation (2.26) can be expressed as a function of Lb:

∫ R2

R1

K−1(r)dr = K−1
a (R2 −R1) + (K−1

b −K−1
a )Lb. (2.30)

Case 2 Case 3

Figure 2.7: Explanation of “radial thickness”. (a) Comparison of radial thicknesses of two
annuluses with the same area. (b) Comparison of total radial thicknesses of material B for
Case 2 and Case 3 from Figure 2.6.

Recall that to minimize the steady-state composite wear rate,Kss
R,comp (Equation (2.25)),

the integral
∫ R2

R1
K−1(r)dr must be maximized. For systems where material A is less wear-

42



resistant than material B, Ka > Kb then (K−1
b − K−1

a ) > 0, and the above integral is

monotonically increasing with Lb. Thus the maximum value of Lb will result in the minimum

value of the steady-state overall wear rate Kss
R,comp, for given volume fractions of material

A and B. As shown in Figure 2.7a, for annuli Ω1 and Ω2, with the same area, the radial

“thickness”, L2, is larger than the radial “thickness”, L1, because of the smaller inner radius

of the annulus. Thus, as shown in Figure 2.7b, for a given amount of the more wear-resistant

material (material B), the optimal placement of material B is the placement that allows

for the maximum Lb (i.e. the more wear-resistant material should be distributed at the

inner annulus edge, see Case 3). Then, in general, based on the proposed wear model with

Neumann boundary conditions: for fixed area fractions of bi-material systems with different

wear rates, all of the more wear-resistant material should be concentrated at the annulus

center in order to minimize the steady-state composite wear rate.

2.4 Experimental evaluation

In the previous section, numerical predictions of composites subject to rotary wear are pre-

sented which demonstrate the utility of the established rotary wear model and simulation

procedure. Optimal design to minimize the steady-state composite wear rate of systems

with fixed material volume fractions are also identified. The optimal design is not intuitive

in that, the more wear-resistant material should be concentrated near the inner edges with

the less wear-resistant material placed outside. In order to demonstrate and support the

numerical results, a series of preliminary experiments have been conducted to evaluate the

established wear modeling and simulation framework. These wear experiments were con-

ducted by Mr. Tomas Grejtak from the Tribology Laboratory at Lehigh University; I helped

43



to direct the experimental setup, decide relevant parameters, and interpret experimental

data.

2.4.1 Experimental setup and methods

In the absence of relevant wear testing standards for the systems of interest, wear tests were

conducted on a purpose-built rotary reciprocating. Wear systems with the thrust washer

geometry shown in Figure 2.1 are investigated. Specimens composed of epoxy (metallo-

graphic mounting epoxy) and aluminum (6061) were used to experimentally obtain wear

rates, volume losses, and worn surface profiles. The surface consisted of 50% aluminum

and 50% epoxy with material distributions for Cases 1, 2 and 3 as described in Figure 2.6.

The aluminum base was machined with a CNC mill and lathe corresponding to the Cases

1, 2 and 3. The void spaces were filled with epoxy resin and cured. The specimens were

then machined to ensure flat initial surfaces. A counter-body system comprised of a poly-

dimethylsiloxane (PDMS) pad (6mm thick) and an abrasive paper was used as an abrasive

counter specimen. The PDMS pad, Sylgard® 184, was made with a 10:1 ratio of elastomer

to cross-linker. The elastic modulus of this pad is 1.8 MPa and the corresponding calcu-

lated foundation parameters ks and kg are 0.307 N/mm3 and 2.8 N/mm respectively [75].

Silicone carbide abrasive paper grit 400 (Norton Black Ice T214) was placed on the surface

of the PDMS pad and clamped to the load cell of a tribometer (see Figure 2.8).

A purpose-built rotary reciprocating thrust-washer tribometer was used to perform the

wear tests. The specimens were mounted to a collet chuck which was connected to a motor

that provided rotary reciprocation (Figure 2.8). A compliant system of abrasive paper and

PDMS pad was mounted on the load cell and loaded against a specimen. A constant load of
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abrasive paper

load cell

colet chuck

specimen
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Figure 2.8: Schematic of rotary tribometer used for experiments. (a) Assembly view of the
instrument. (b) Schematic of interface between multi-material composite specimen and the
PDMS-backed abrasive paper counterspecimen.

40 N and an angular velocity of 0.6366 rev/s was applied throughout all measurements. One

cycle was assumed to be a 360° clockwise (CW) and then 360° counter-clockwise (CCW)

motion, resulting in 2 revolutions per cycle. Compressed air was used to blow off debris

from the surface of the worn specimen before the abrasive paper was changed (after every

20 revolutions (10 cycles)). The abrasive paper was changed due to the accumulated wear

debris between the specimen and the abrasive paper. The composite specimen was weighed

after every 100 revolutions to determine the mass.

The worn surface profile was measured with a Bruker® Contour GT SWLI machine

(using scanning white light interferometry). The profile evolution was measured for the

originally flat unworn surface and after 200, 600, 1000, 2000 and 4000 revolutions. A surface

profile was created by stitching together multiple scans across the surface of the specimen

in one direction resulting in a surface height map. Additional details related to surface

microstructure are not reported here as they are beyond the scope of this work where models

are presented and evaluated at the macro or continuum scale. The experimental procedure

used here is similar to other linear wear tests that have been previously reported [78, 79]
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where the dominant wear mechanism is unlubricated abrasive sliding wear. These have

included studies focused on the detailed surface chemistry and evolving microstructure of

composites.

The wear rates of aluminum and epoxy were measured on a linear reciprocating tri-

bometer using the same compliant counter specimen, loading, and sliding conditions as the

conditions used for testing the composite specimen described above. A square shaped sur-

face with dimensions of 20×20 mm was loaded against a compliant counter specimen also

composed of PDMS and an abrasive paper to a normal load of 40 N. The sliding velocity

and sliding stroke were set to 50.8 mm/s and 25.4 mm, respectively. Again, after every 10

cycles the abrasive paper was changed and after every 100 cycles the specimen was weighed

to find the mass. This process was repeated for 1000 cycles. From the obtained mass loss,

mloss (mg), and the density of the material, ρ (mg/mm3), the volume loss, Vloss (mm3) was

calculated as:

Vloss =
mloss

ρ
. (2.31)

This volume loss, the constant force, Fn (N), and sliding distance, s (m), were then used to

calculate the wear rate, K (mm3/Nm):

K =
Vloss

Fns
. (2.32)

Determination of the wear rate and volume loss of a composite material can be quite

challenging. Volume measurements are generally made in one of two ways: indirectly by

mass loss or directly with a volume measurement (e.g. profilometer or other dimensional

measurement). Both methods are challenging in the case of a multi-material thrust-washer.
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Non-uniform height loss and density precludes mass-based wear measurement. Due to the

lack of a true reference height, because the entire surface is wearing, profilometry is also

difficult. Here, the two methods are combined. A profilometer is used to measure the surface

profile (zprofile). The absolute height of the specimen cannot be measured with appropriate

fidelity; thus, it is determined using mass measurements. By knowing the outer surface

profile and density distribution of the specimen, the volume can be specified. The initial

surface height is defined as zprofile,0 = 0; the worn surface profile, zprofile(r), is defined

as the scan profile, zscan (with max value set to 0) plus a reference offset height (zref ) to

account for the global wear of the surface. Volume (V ) can be calculated as the integral of

the worn surface profile (zprofile(r)):

Vloss =

∫ 2π

0

∫ R2

R1

zprofilerdrdφ =

∫ 2π

0

∫ R2

R1

(zscan + zref )rdrdφ. (2.33)

The unknown reference, zref , can be solved for using mass loss measurements. Mass is the

integration of the worn height times the piecewise constant density, ρ(r), over the whole

material domain:

mloss = 2π

∫ R2

R1

(zscan + zref )ρ(r)rdr. (2.34)

Using Equation (2.34), zref was numerically determined and used to calculate the worn

volume with Equation (2.33). From the worn volume, the rotary wear rate, KR, is calculated

as:

KR =
Vloss

Fnθ
, (2.35)

where θ is the total rotating angle.
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2.4.2 Comparison of experimental results and numerical predictions

In Figure 2.9, experimentally measured surface profiles, mass loss and volume loss are com-

pared to the numerical predictions for three bi-material rotary systems. The repeatability

of the results was ensured using multiple specimens under the procedures described above.

Each rotary system has a different in-plane material distribution, but the same volume

fraction (|Ωa| = |Ωb| = 0.5|Ω|, 50% Aluminum area fraction for all three cases). Case 1

has epoxy placed at the inner edges and aluminum at the outer edges (Figure 2.9(a)). The

material distribution in Case 3 (Figure 2.9(c)) is the opposite to the one in Case 1. In

Case 2, epoxy is placed in between two layers of aluminum that are distributed along the

inner and outer edges (Figure 2.9(b)). The experimental results support the counterintu-

itive numerical results (Section 2.3.4), where the optimal design has the more wear-resistant

material placed near the inner edges and the less wear-resistant material placed outside (as

Case 3).

In Figure 2.9 (d-f), the experimentally worn surface profiles are compared to the numer-

ically predicted surface profiles for Cases 1-3, respectively. The numerical model produces

worn surface profiles with comparable features to the experimentally measured worn sur-

face profiles. However, there are differences, most notably at the inner and outer radial

boundaries; this points to the importance of boundary conditions in the numerical model.

Figure 2.9(g) shows that the numerically and experimentally measured incremental mass

loss per (N rad) is the largest in Case 1, smallest in Case 3, and intermediate in Case 2.

Beyond 3000 revolutions, as the wear approaches steady-state, the experimentally measured

incremental mass loss converges with the numerical predictions. In Figure 2.9h and Figure

2.9(i), the numerically predicted volume loss and composite wear rates from Section 2.3.3
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Figure 2.9: Results from rotary wear experiments. (a-c): Design Cases 1-3. On the left,
an optical photo of one-half of the top surface of the fabricated real test specimens. On
the right, the corresponding schematic material distributions in the numerical model. (d-f):
Worn profiles approaching steady-state (4000 revolutions) as a function of radial distance
(all profiles are translated to the same depth level for comparison). (g) Incremental mass
loss, (h) accumulated volume loss and (i) composite rotary wear rate throughout the sliding
process. Both numerical and experimental results are compared in (d-i).

are compared to the experimentally calculated volume loss and composite wear rates as

described above. Figure 2.9(h) shows that the volume loss history has the same trend in

the experimental and numerical results. After reaching steady-state, Case 1 has the high-

est volume loss but Case 3 has the lowest and Case 2 has the intermediate volume loss.

Consequently, the composite wear rate, shown in Figure 2.9(i), is the highest in Case 1, the

lowest in Case 3 and intermediate in Case 2.

Similar trends of wear development for all three cases have been observed in the nu-

merical predictions and experimental measurements. There are still differences between the

experimentally measured and numerically predicted results. It is most noticeable in Figure
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2.9(g) and 2.9(i), where the experimentally measured mass loss and composite wear rates are

higher than numerical predictions at the early and intermediate sliding revolutions (∼200

to 1000). This difference is also reflected in the larger total volume loss from experimental

measurements. One primary cause for these differences is the simplification of boundary

conditions in the analytical model. Neumann boundary conditions (zero slope) were applied

at the inner and outer edges of the composite surface in the model. One consequence is

that the contact pressure depends only on local and nearest neighbor topography within

the contact area (annulus domain). However, in the experimental setup, the fully compliant

counter-body, a PDMS pad with an abrasive paper on top of it, is much larger than the

specimen. The specimen is punched into the counter-body, which causes the deformation

of the whole counter-body not only the area in contact. So the contact pressure calculation

should be related to the surface deflection of the whole counter-body, especially the area

near the boundaries of the contact area. This is why there is a rise and a drop at the

boundaries of the surface profiles in Figure 2.9 (d-f), especially noticeable for the specimens

that have aluminum at the boundaries (Figure 2.9(e-f)). These non-monotonic shapes are

actually expected as they correspond to the high pressure peaks near edges in flat-ended

punch problems [80] (Figure 2.4(c)). Modeling improvement could be made by exploring

the effects of boundary conditions. The parts of the counter-body that are not in contact

with the specimen may also be considered explicitly in the contact pressure calculation.

2.5 On achieving target surface profiles

With the rotary wear models and prediction methods described in Section 2.2 and Section

2.3 and experimental support in Section 2.4, several opportunities for optimization and the
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identification of design rules are present. Objectives of interest may include minimizing

material loss during the wear process for economic and energy-saving reasons, or achieving

target worn surface or pressure profiles for specific uses. It has been shown elsewhere that

sliding interfaces with appropriate texture and dimensions can reduce friction and improve

sealing efficiency and load capacity [81, 82]. In the following, a range of target surface

profiles is explored.

Recall the governing equation (2.23) for the steady-state surface profile that evolves from

a known initial material distribution (wear rate distribution). Looking at the right-hand-

side of Equation (2.23), the term,
<K−1

R >−1

KR
represents the ratio between the steady-state

composite wear rate and the local rotary wear rate and it is only dependent on the ratio

between the wear rates of the two constituent materials, Ka/Kb. The consequence is that,

for wear systems consisting of two materials with the same wear rate ratio, the steady-state

profiles of these systems will be the same. Moreover, the material distribution (wear rate

distribution) that would correspond to the prescribed target steady-state profile, u0, can

be found directly from Equation (2.23). It is important to note that the solution will give

the relative wear rate distribution in the design domain. If the wear rate is distributed in

a piecewise constant function, the solution corresponds to a discrete material distribution,

with a known wear rate ratio between the constituent materials. If the wear rate distribution

has continuous changes in the design domain, the corresponding material distribution is

graded with a variation in composition or structure, and a known ratio between the wear

rate at any location in the domain and the minimum wear rate value.

Figure 2.10 presents some target surface profiles that are used to demonstrate the po-

tential and range of the approach: (a) an arbitrary profile, (b) a flat surface, and (c) a cosine
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Figure 2.10: Material distributions for target surface profiles showing relative wear rate
distribution.

function shape. These examples demonstrate a broad range of potential profiles of interest

for tribological applications. For Figure 2.10 (a-c), the plots on the left show the three

different target steady-state surface profiles. The plots in the middle column show the wear

rate distributions along the radial direction to achieve these target profiles. The vertical

axis of these plots represents the relative wear rate; it is normalized by the minimum value,

K/Kmin. The corresponding 2D wear rate distributions are shown in the annular domains

on the right. As shown in Figure 2.10(a), the arbitrary target profile can be achieved by

distributing two materials in the shown configuration with a specific and discrete wear rate

ratio. In the previous sections, only composite systems consisting of two materials with

distinct wear rates are considered, resulting in a wear rate distribution that is piecewise

constant. It should also be noted that not all steady-state surface profiles of interest have

corresponding discrete wear rate distributions. In Figure 2.10(b), the target steady-state

profile is flat. The corresponding relative wear rate distribution is proportional to 1/r with
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the lowest value normalized to 1. This result is expected because the rotary wear rate KR

is then constant over the domain, which is equivalent to a uniform material distribution.

And surfaces with uniform material distributions will be worn to a flat surface if Neumann

(zero slope) boundary conditions are assumed. With traditional manufacturing processes,

this kind of graded material distribution is difficult to produce. However with newly devel-

oped additive manufacturing techniques, the possibilities to manufacture graded material

distributions that meet the design specifications continue to emerge [83–87]. Another ex-

ample of an optimal graded material distribution is shown in Figure 2.10(c), with a target

steady-state profile of a cosine function shape. It should be noted here that these graded

material distributions are still relevant for traditional manufacturing processes. By applying

appropriate filtering techniques for post-processing, the graded distributions can be forced

towards discrete bi-/multi-material distributions.

2.6 Summary

A rotary wear model that couples Archard’s wear equation and the Pasternak foundation

model has been developed for the rotary abrasive sliding wear of composites. The wear

evolution predicted by the iterative simulation exhibits realistic transition from run-in to

steady-state wear regimes. A direct method for steady-state wear performance is used

to identify counter-intuitive bi-material designs that minimize their steady-state composite

wear rates. This method is also used to provide proof-of-concept for the design of composites

with target steady-state surface profiles. It is shown that the rotary steady-state composite

wear rate depends on both the area fraction of constituent material and the in-plane material

distribution. For rotationally symmetric bi-material composites with fixed material area
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fractions, it is surprising that steady-state composite wear rates always reach minimum

values when placing the more wear-resistant material (having the smaller wear rate of the

two constituents) towards the inner radius and the less wear-resistant material at the outer

annulus edges. This counterintuitive optimal design solution has been generally validated

by experiments. Nevertheless, some discrepancies between predicted and experimentally

measured worn surface profiles are noticeable especially near the inner and outer edges

which is due to the assumption of Neumann boundary conditions on the surface profile.

This will be further investigated and improved in the next chapter.
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Chapter 3

Wear model improvements

This chapter focuses on improving the predictive accuracy and physical relevancy of the

foundation-based wear models. Often mathematically convenient periodic or explicit bound-

ary conditions are chosen, while produce discrepancies with experimental measurements. In

this chapter, a generalized wear model and simulation framework is developed for both ro-

tary and linear wear systems. An implicit treatment of boundary conditions is proposed

by taking both the contact and non-contact regions on the counter-body into account. In

addition, an asymmetric elastic foundation model is proposed to better capture experimen-

tally observed non-symmetric worn surface profiles that develop during linear reciprocating

or unidirectional wear. Instead of the typical guesses or adoption of legacy foundation pa-

rameters (impossible/difficult to directly measure), an optimization routine is developed to

calibrate the underlying foundation parameters using experimentally measured steady-state

worn surface profiles. Comparison between model predictions and experimental measure-

ments is made to validate the improved wear model.
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3.1 Improved wear model and simulation procedure

In this section, the wear model is formulated within a generalized framework that can be

applied for single or multi-material composites in both rotary and linear wear systems. In

the case of linear reciprocating or unidirectional sliding, the model includes the possibility

for asymmetry with respect to sliding direction.

3.1.1 Generalized wear model formulation

The generalized wear model is built based on Archard’s wear equation (Equation (1.1)) and

the elastic foundation model. Archard’s equation is applied on a local scale as:

∆z = −PKv∆t, (3.1)

where P is the local contact pressure, v is the local sliding velocity, and z represents the

height of the worn surface. The incremental wear depth, ∆z, is proportional to the local

material wear rate, local contact pressure, and local sliding velocity after a time increment

∆t.

The use of Archard’s wear equation to predict wear requires a known contact pressure

distribution between the interacting bodies. For this purpose, the elastic Pasternak foun-

dation model is adopted (shown in Figure 3.1(a)). The contact pressure at any point on

the foundation surface relates not only to the displacement of the spring element at that

point, but also to the shear interaction between adjacent elements. The contact pressure-

displacement relation is:

P = ksu− kg∇2u, (3.2)
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where u denotes the displacement of the spring elements as well as the deflection of the foun-

dation surface, which is measured from the initial undeformed surface (Figure 3.1(b)); ks

and kg are the two foundation parameters, and ∇2 is the second order differential operator,

the Laplacian. The surface profile of the specimen, z, is measured from the initial unworn

surface (Figure 3.1(b)). Prior to the onset of wear, it is assumed that the specimen and the

counter-body are pristine and perfectly flat, i.e., z = 0 and u = 0. As the specimen surface

keeps lowering due to wear, z is becoming more negative. Thus, the distance between the

worn surface and the initial flat surface is (−z). Assuming contact between the specimen

and counter-body is perfect, the deflection of the foundation, u, and the surface profile of

the specimen, z, can be related by a reference depth, h, in the contact region D (on the

specimen) and Ωc (on the counter-body) (Figure 3.1(b)). As illustrated in Figure 3.1(c), h

is the sum of u and (−z):

h = u+ (−z). (3.3)

Most of the currently available sliding abrasive wear models [38, 39, 70] including the

rotary wear model presented in Chapter 2 require the explicit assumption of relevant bound-

ary conditions at the contact region, D and Ωc. This ignores the influence of the rest of the

counter-body that is not in contact with the specimen, Ωnc, and can cause profile discrep-

ancies (Figure 3.1(b)). For example, in Chapter 2, the assumptions of Neumann boundary

conditions are unable to fully capture boundary effects as shown in Figure 2.9. Depend-

ing on the relative size of the specimen and counter-body, these boundary effects may be

significant.

Here, an implicit treatment of the boundaries is proposed by (i) replacing pre-assumed

boundary conditions with continuity conditions for the vertical deflection at the boundaries
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(a)

(b)

initial surface

D
-z(x,y)

u(x,y)

Ωc

Ωnc Ωnc

(c)

-z

u

h=u-z

Figure 3.1: Schematics of Pasternak foundation model. (a) Indentation of worn specimen
into counter-body (elastic foundation). (b) Separate views of deformed counter-body and
worn specimen showing the contact region (Ωc), the non-contact region (Ωnc) on the de-
formed counter-body surface, and the worn specimen surface region (D). (c) Graphical
illustration of counter-body deformation (u), specimen worn surface profile (z), and refer-
ence height (h).

between the contact and non-contact regions and (ii) prescribing, for numerical treatment,

that the size of the foundation is much larger than the specimen. Thus the contact problem

is considered on the whole foundation surface, Ω = Ωc
∪

Ωnc. The contact pressure is

non-zero in Ωc and zero in Ωnc. A constant normal load, Fn, is applied on the specimen

throughout the whole wear process, which is equal to the integral of the contact pressure

over the entire region, Ω:

∫
Ω
PdS =

∫
Ω
(ksu− kg∇2u)dS = Fn. (3.4)

This constraint will later be used as the consistency condition for solving the evolving

reference depth, h. It should be noted that only the applied normal force on the specimen
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is constant, this means that the local contact pressure distribution will change during wear.

Since the size of the counter-body is assumed to be much larger than the size of the specimen,

the deflection of the foundation surface at the outer boundaries can be assumed to be zero:

u = 0, on ∂Ω. (3.5)

The model outlined above is now further developed for two common wear systems: rotary

and linear abrasive sliding wear systems.

3.1.1.1 Rotary wear systems

One of the wear systems of interest here is the rotary wear system with a rotary axial

thrust washer configuration shown in Figure 3.2(a-b). The sliding velocity is distributed

non-uniformly along the sliding interface; the velocity is the product of the rotating angular

velocity, ω, and the local radial distance from the center of the annular domain, r. Archard’s

wear equation, Equation (3.1), for a rotary wear system is modified as:

∆z = −PKrω∆t, (3.6)

which gives the wear depth at a particular location that is caused after a time increment

∆t. For a single material or composite configuration that is rotationally symmetric, the

wear rate, K, is only a function of the radial distance to the center, K(r), which reduces

the computational domain to be one-dimensional. The Pasternak foundation equation,
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Equation (3.2), that is rotationally symmetric in a polar coordinate system is simplified as:

P = ksu− kg(
∂2u

∂r2
+

1

r

∂u

∂r
). (3.7)

Besides the boundary condition imposed on the outer boundary by Equation (3.5), another

boundary condition is imposed at the center of the foundation due to symmetry:

∂u

∂r
= 0, at the center (r = 0). (3.8)

FN(d)

s

x

y(c)

r

θ

(a) FN(b)

Figure 3.2: Illustration of rotary and linear wear systems. Rotary wear system: (a) top
view; (b) side view. Linear wear system: (c) top view; (d) side view.

The model presented above could be easily adapted for non-rotationally symmetric

composite configurations. This is achieved by defining a two-dimensional wear rate matrix

in polar coordinates. Similarly, the Laplacian term in the Pasternak foundation equation,

Equation (3.2), would include two-dimensional dependencies. Non-rotationally symmetric

composite systems may be of interest for designing thrust washers that can accommodate

heavy loads and are less sensitive to misalignment and oscillating movements [88,89].
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3.1.1.2 Linear wear systems

Another common system is the linear wear system (see Figure 3.2(c-d)), where the specimen

is sliding against an abrasive counter-body along one direction in a reciprocating fashion.

In this case, sliding velocity is uniformly distributed along the sliding interface; thus v is a

constant in Archard’s wear equation, Equation (3.1).

(a) (b)

sliding direction

(i)

(ii)

(iii)

sliding direction

Figure 3.3: (a) Steady-state surface profile of a bi-material composite system from [75]
subject to linear abrasive sliding wear. (a-i) Numerical surface profile prediction from a
symmetric Pasternak foundation-based linear wear model. (a-ii) Experimentally measured
surface profile. (a-iii) Epoxy (dark color) and PEEK (light color) composite configuration.
(b) Smoothed experimental surface profile from (a-ii) [75] shown in 3D [90]. Note the
asymmetry in surface profile with respect to sliding and counter-sliding directions.

In previous experimental studies of composites subject to linear sliding wear [75,90], the

square composite specimen had 9 circular epoxy inclusions evenly distributed in the PEEK

matrix (Figure 3.3(a-iii)). The specimen was sliding in a reciprocating fashion along one

direction (denoted by the dashed arrows in Figure 3.3). As shown in Figure 3.3(a-ii) and

Figure 3.3(b), the worn surface developed a steady-state profile which was not symmetric

with respect to the sliding and counter-sliding directions. The surface profile is more uneven

in the line-scans along the counter-sliding direction than in the sliding direction. However,

this asymmetric profile evolution cannot be predicted by existing Pasternak foundation-

based wear models because of their symmetric nature. Thus, here for the first time an
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asymmetric foundation model is proposed to better simulate linear sliding wear:

P = ksu− (kg,x
∂2u

∂x2
+ kg,y

∂2u

∂y2
). (3.9)

The proposed foundation model accounts for asymmetric effects during unidirectional

sliding by treating the second order derivative terms separately in the Laplacian through

alternative foundation parameters, kg,x and kg,y. These account for the shear interactions

in the x− and y−directions (i.e. sliding and counter-sliding directions), respectively. When

the foundation parameters are equal, kg,x = kg,y, the proposed foundation model recovers

the original symmetric form, Equation (3.2).

3.1.2 Iterative simulation procedure

The wear process is modeled as an initial value boundary problem, which can be solved

numerically in an iterative procedure. The computational domain includes the whole foun-

dation surface, Ω, and the specimen surface, D, which corresponds to the contact region

on the foundation surface, Ωc, as shown in Figure 3.1(c). The computational domain is

discretized into grids with uniform dimensions. The grids on the specimen surface, D,

coincide with the grids at the contact region, Ωc. Subscript i denotes spatial ordinates

and the superscript, n, is a time iteration counter. Here, wear rate, K, is treated as a

distinct system parameter specific to the operating conditions, which can be determined

experimentally from preliminary wear tests as described in Section 2.4.1. For either a single

material or multi-material composite configuration which are both deterministic, wear rates

are assigned to each grid in D, denoted by Ki.
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At nth iterations, the specimen surface profile is zn. The remaining problem is to

calculate the contact pressure distribution corresponding to the updated specimen surface

profile. The discrete form of the foundation model for the rotary system can be written as:

Pn
i = ksu

n
i − kg(∇2u)ni , (3.10)

where the discrete Laplacian, (∇2u)ni , is approximated using the finite difference scheme

corresponding to the spatial discretization. For the linear system, the asymmetric three-

parameter foundation model can be discretized as:

Pn
i = ksu

n
i − kg,x(

∂2u

∂x2
)ni − kg,y(

∂2u

∂y2
)ni , (3.11)

where the second-order derivatives are approximated by finite-difference schemes as well.

Thus, in general, the relation between un and Pn can be represented by a coupled linear

system:

Pn = Cun, in Ω, (3.12)

where un and Pn are vectors composed of all grids in Ω and C is a matrix composed of

the coefficients from Equation (3.10) and Equation (3.11). Both un and Pn are partially

known. The deflection of the foundation surface, un, is related to the known specimen

surface profile, zn, by the unknown reference depth parameter, hn:

un = zn + hne, in Ωc, (3.13)

where zn is the vector form of the specimen surface profile and e is an identity vector

composed of values of unity. By definition, the specimen surface profile, zn, has physical
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meaning only in D, which coincides with the contact region, Ωc. Now, the definition of zn

is extended to the whole domain, Ω, which satisfies the relation with un everywhere:

un = zn + hne, in Ω. (3.14)

Substituting un in the pressure-displacement relation, Equation (3.12), gives:

Czn + hnCe = Pn, in Ω, (3.15)

which relates contact pressure to the specimen surface profile and reference depth though a

linear system. The consistency condition from the constant normal load constraint, Equa-

tion (3.4), can be written as

∫
Ω
[ks(z

n + hn)− kg(∇2z)n]dS =

∫
Ω
[ksz

n − kg(∇2z)n]dS + ks|Ω|hn = Fn. (3.16)

The integral can then be evaluated numerically and is represented by:

Szn + ks|Ω|hn = Fn, (3.17)

where S is a row vector of the numerical integration coefficients. Combining Equation (3.15)

and Equation (3.17), a linear system results:

C
∑
i
C

S ks|Ω|


zn
hn

 =

Pn

Fn

 , (3.18)

where
∑
i
C is a vector with values of the summation of each row of the coefficient matrix C.
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All grids in Ω can be divided into two groups: in and outside of the contact area, Ωc and

Ωnc. Using c and nc as subscripts to denote the grids in Ωc and Ωnc, respectively, Equation

(3.18) is partitioned as


Cc,c Cc,nc

∑
ic

Cc,·

Cnc,c Cnc,nc
∑
inc

Cnc,·

Sc Snc ks|Ω|




zn+1
c

zn+1
nc

hn+1

 =


Pn+1

c

Pn+1
nc

Fn

 , (3.19)

where the specimen surface profile, znc , is known from the previous calculation and the

contact pressure outside the contact area, Pn
nc, is zero. Thus the remaining unknowns, zn+1

nc

and hn can be solved from:

Cnc,nc
∑
inc

Cnc,·

Snc ks|Ω|


znnc
hn

 =

Pn
nc

Fn

−

Cc,c

Cnc,c

 znc . (3.20)

As a result, Pn
c can be calculated from

Pn
c =

[
Cc,c Cc,nc

∑
ic

Cc,·

]

znc

znnc

hn

 . (3.21)

At this point, the contact pressure distribution, Pn
c is known. After a time increment,

∆t, the incremental wear depth relative to the current surface profile and contact conditions

at a particular location is:

∆zni = −Pn
i Kivi∆t. (3.22)
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Then the new surface depth is updated according to:

zn+1
i = zni +∆zni = zni − Pn

i Kivi∆t. (3.23)

The stop criterion can be set as maximum number of iterations or use the steady-state

condition as introduced in Section 2.3.1, which is determined by the incremental depth

change in Ωc between two successive increments as:

max
|∆zni −∆zn−1

i |
|∆zn−1

i |
< ϵ, (3.24)

where ϵ is a very small constant (e.g. 1 × 10−8). This simulation procedure is shown in

Algorithm 1.

Input: system parameters: ks, kg, Fn, Ω = Ωc
∪
Ωnc, D, C, and S

Current state: zn

while max
|∆zni −∆zn−1

i |
|∆zn−1

i | < ϵ or n < nmax do

solve znnc and hn from Equation (3.22);

solve Pn
c from Equation (3.21);

∆zni = −Pn
i Kivi∆t; zn+1

i = zni +∆zni , for i ∈ Ωc;

end

Algorithm 1: Algorithm for wear simulation.
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3.1.3 Solving for steady-state wear

As discussed in Section 2.3, wear process usually exhibits transitions from run-in stage to

steady-state stage. Steady-state wear is characterized by two features: (i) the volume loss of

the system increases linearly with increasing sliding time, which means that the wear rate of

the system converges to a constant value; and (ii) the surface profile of the specimen surface

reaches a shape that stays the same while recessing in depth as wear proceeds. Using the

second characteristic of steady-state wear, the steady-state contact pressure distribution can

be directly calculated from the wear rate distribution in the specimen (corresponding to the

composite configuration). Thus the steady-state surface profile can also be directly solved

for. At steady-state, the incremental height loss after a time increment at any position in

the specimen surface should be the same.

In a rotary wear system, Archard’s wear equation, Equation (3.6), gives:

PssKr = constant, (3.25)

where pss denotes the steady-state contact pressure distribution in the contact region. Using

the condition of constant applied normal load, Equation (3.4), it is found that the steady-

state contact pressure distribution is:

Pss = Fn
(
∫
D(Kr)−1dS)−1

Kr
. (3.26)

The resulting steady-state composite wear rate for the rotary wear system, calculated as

incremental volume loss divided by the product of normal load and the incremental rotating
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angle, is:

Kss
R,comp =

|D|∫
D(Kr)−1dS

=< (Kr)−1 >−1, (3.27)

where < · > denotes the average value over the domain D. This expression is consistent

with Equation 2.21 derived in Section 2.3.2, which is determined by the wear rate of each

material as well as the material distribution within the sliding interface.

In a linear wear system, the steady-state contact pressure distribution satisfies:

PssK = constant, (3.28)

which leads to a steady-state contact pressure distribution:

Pss = Fn
(
∫
D(K)−1dS)−1

K
. (3.29)

The resulting steady-state composite wear rate for the linear wear system, calculated as

incremental volume loss divided by the product of normal load and the incremental sliding

distance:

Kss
comp =

|D|∫
D(K)−1dS

=< K−1 >−1 . (3.30)

It is seen that the calculation of Kss
comp follows the inverse rule of mixtures, which is deter-

mined by the wear rate and the area fraction of each material while does not depend on the

material distribution within the sliding interface.

Having the steady-state contact pressure information, the steady-state deflection of the

foundation surface, uss, can be directly determined from Equation (3.7) and Equation (3.9)

for both rotary and linear wear systems, respectively. The shape of the specimen surface
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profile when steady-state is reached, zss, is then also determined as it shares the same shape

as uss in the contact region, Ωc.

3.2 Method for experimental validation

In order to validate the proposed wear models and simulation, wear experiments for both

rotary and linear wear systems have been performed. These wear experiments were con-

ducted by Mr. Tomas Grejtak from the Tribology Laboratory at Lehigh University; I helped

to direct the experimental setup, decide relevant parameters, and interpret experimental

data.

The tests have been conducted on purpose-built rotary and linear reciprocating tri-

bometers (Figure 3.4). In the rotary tests, the counter-body is a 6mm thick PDMS pad

with a silicone carbide abrasive paper cover (grit 400, Norton Black Ice T214). The PDMS

pad, Dow Corning Sylgard® 184, is made with a 10:1 ratio of elastomer to cross-linker and

has an elastic modulus of 1.8 MPa. The applied normal load is 40N. The specimens were

mounted to a collet chuck which is connected to a rotary reciprocating motor. One cycle

is set to be 360◦ clockwise and 360◦ counter-clockwise with an angular velocity 0.64 rev/s,

similar to a linear sliding velocity of 25 mm/s . The abrasive paper is changed after every 10

cycles to eliminate the influence of wear debris. More details for rotary tests can be found

in Section 2.4.1. In the linear tests, the specimen is loaded against the counter-body at a

load of 50N and sliding at a speed 50 mm/s in a reciprocating fashion. The counter-body

consists of a 6mm thick PDMS pad with an elastic modulus of 2.3MPa and a silicon carbide

abrasive paper cover (grit 1000, MagicW). One reciprocal cycle is set to be one stoke for-

ward and one stroke backwards with a stroke length of 50mm. In the linear sliding test, the
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abrasive paper is changed after every 5 cycles. More details for similar linear tests can be

foundation in reference [75]. In addition, upon each paper removed, the specimen surface

is also blown off with compressed air.

abrasive
paper

F
N

PDMS

�
sample

(a)

sample abrasive
paper

v

PDMS

F
N

(b)

Figure 3.4: Schematic of tribometers used for wear tests. (a) Rotary tribometer. (b) Linear
reciprocating tribometer.

The tested composite specimens are all composed of aluminum (6061) and epoxy (met-

allographic mounting epoxy, Dace Technologies) with different shapes and configurations.

The aluminum base is machined with a CNC where vacant space is filled with epoxy resin.

The specimen surface is machined flat before wear testing. The worn surface profile of the

composite specimen is measured with a Bruker® Contour GT SWLI optical profilometer

(scanning white light interferometry). A reference shoulder of the specimen is used to en-

sure that the specimen is aligned with the optical profilometer during scanning. The wear

rate of each constituent material of the composite specimen is determined by wear testing

of the single material specimen under the same testing conditions.

3.3 Calibration procedure for foundation model parameters

In order to implement the proposed model and method to simulate wear, the foundation pa-

rameters (which describe the reaction of the compliant counter-body) must be determined.

Typically, these parameters are based on empirical formulas relating the foundation Young’s
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modulus and thickness [91]. In contrast, the proposed model and solution procedure out-

lined in Section 3.1 allows one to use the experimentally measured steady-state response of

the wear system itself to calibrate these foundation parameters. This has never previously

been done for foundation-based wear models.

Initialization

System parameters
Experimental data

Initial guess:Êks,kg (kg,x,kg,y)

Steady-state solution

Calculate steady-state surface
profile, znum, using current

parameters:Êks,kg (kg,x,kg,y)

Update parameters

ÊCompare currentÊ
znum with experimental data,Êzexp, and updateÊ

ks,kg (kg,x,kg,y) using Levenberg-Marquardt

algorithm

Converge?

Output

Optimal parameters:Ê
ks,kg (kg,x,kg,y) 

No

Yes

Figure 3.5: Calibration procedure for foundation parameters using the Levenberg-
Marquardt algorithm [92].

The calibration is performed in an optimization sequence, where the experimental

steady-state surface profile, zss,exp, is used as input profile and the numerical prediction,

zss,num, is fitted to the input profile by finding the optimal parameters to minimize the

error between the experimental and numerical profiles. The calibration is only based on

the shape of the profiles not the actually depth of the worn surface. Thus, both the ex-

perimental input profile and the numerically predicted profiles are translated to the same

depth level with average of zero, i.e.

z̃ss,exp = zss,exp− < zss,exp >, (3.31)

z̃ss,num = zss,num− < zss,num >, (3.32)

where z̃ss,· denotes the translated profile and < · > represents the average value.
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The flow chart in Figure 3.5 shows the iterative calibration procedure. The experimental

profile zss,exp, related material and system parameters, and initial guesses for the foundation

parameters are the input needed for the calibration. Based on the current parameters, the

steady-state surface profile zss,num is solved according to the method described in Section

3.1.3 and then translated to z̃ss,num. Then the current numerical profile z̃ss,num is compared

with the experimental profile z̃ss,exp and the error between the two profiles drives the op-

timization algorithm to update the foundation parameters. Here, a Levenberg-Marquardt

algorithm is utilized, which uses the reduced chi-squared error, χ2, between the experimental

and numerical profiles as the objective [92]. The optimization algorithm iteratively reduces

the error through a sequence of updates to parameter values until the optimal foundation

parameters are found.

3.4 Results and discussion

In this section, numerical results for wear prediction using the proposed models and simula-

tion procedure from Section 3.1 for both rotary and linear wear systems are presented. The

foundation parameters for rotary and linear wear systems are calibrated using experimental

data following the calibration procedure in Section 3.3. In particular, we focus on exper-

imentally validating worn surface profile evolutions, mass and volume loss for bi-material

composite systems, but the models presented above are more general.
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3.4.1 Demonstration for rotary wear systems

Three composite specimens are tested on the rotary tribometer following the test procedure

described in Section 3.2. The specimens, Cases 1, 2, and 3, shown in Figure 3.6(a), all

consist of 50% aluminum and 50% epoxy, with different in-plane configurations. These

annular specimens have an inner radius R1 = 4.24mm and an outer radius R2 = 12.7mm.

The wear rates of aluminum and epoxy are determined by wear tests under the same

operating conditions as for the composite specimen; these are 2.4 × 10−2mm3/Nm and

2.66×10−1mm3/Nm, respectively. The solid curves in Figure 3.6(b-c) show the experimental

steady-state surface profiles of these specimens, which are represented by line-scans along

the radial direction of the worn surface. The use of this experimental data for the proposed

model calibration and validation is explained in Section 3.3 and in the following.

3.4.1.1 Experimental calibration of foundation parameters

In particular, to demonstrate the efficacy of the calibration procedure in Section 3.3, the

steady-state surface profile of the composite system, Case 1, shown in Figure 3.6(a) is used

to calibrate the foundation parameters of the counter-body used in the wear tests described

in Section 3.2 (consisting of a 6mm PDMS pad with an elastic modulus of 1.8MPa and

an abrasive paper with grit 400). The foundation parameters, ks and kg, are optimized

following the calibration procedure in Figure 3.5. The calibration starts with an initial

guess for ks = 0.3N/mm3 and kg = 2.8N/mm, which is based on the empirical formulas

typically used [91]. The whole circular foundation domain, Ω, is assumed to be concentric

with the sliding region, D, with a radius of R = 5(R2 − R1) = 42.3mm. The calculated

steady-state surface profile is shown in Figure 3.6(b), and compared with the corresponding

73



experimental results.
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Figure 3.6: Calibration of foundation parameters using experimental data and validation
of numerical simulations. (a) Three composite specimens (Cases 1-3); the left image is
half of the experimental specimen and the right image is half of the numerical simulation
domain. (b) Calibration of foundation parameters using Case 1. (c) Validation of calibrated
foundation parameters using Case 2 and 3. Note that experimental data are shown with
solid lines and numerical results with dashed lines.

To quantify the quality of the match between the numerical and experimental profiles,

the mean percentage error is calculated as:

ϵprofile =
mean(|z̃ss,exp − z̃ss,num|)
max(z̃ss,exp)−min(z̃ss,exp)

× 100%. (3.33)

The mean percentage error between the initial guess and experimental profile is 16%.

The calibration procedure converges at the optimal values of ks = 0.52N/mm3 and kg =

0.76N/mm, which represents both 73% differences compared to the empirical formulas. It is

observed that the steady-state surface profile predicted by the optimal foundation parame-

ters fits well with the experimental profile as shown in Figure 3.6(b). The mean percentage
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error of Case 1, using the calibrated parameters, reduces to 3%.

Next, the foundation parameters that were calibrated based on Case 1 results are then

fixed and used to simulate Cases 2 and 3. In particular, the steady-state surface profiles

of Cases 2 and 3 are calculated. The comparisons with experimental results are shown

in Figure 3.6(c). Good agreement between the experimental and numerical results for

both cases can be observed. The mean percentage errors are calculated as 8% and 6% for

Cases 2 and 3, respectively. These results demonstrate that the calibration procedure could

be performed once for a given counter-body and operating conditions and then be used to

predict the wear of general composite specimens. In particular, it could be used with arbitrary

material layouts (as long as the specimen materials can be approximated as isotropic and

as being rigid compared to the counter-body; similarly, the compliant counter-body must be

isotropic and remain elastic).

3.4.1.2 Prediction of material removal

In addition to surface profile, other key features of wear, such as mass and volume loss, can

be numerically predicted by the proposed wear model and simulation procedure. Numeri-

cally, mass and volume loss are calculated at every time step based on the full-field height

loss of the specimen surface and known material densities. The numerical predictions are

shown with solid lines in Figure 3.7(a-b). For comparison, the experimental results are

shown as open circles for the 3 Cases. The experimentally measured material removal dur-

ing the wear process is presented by the total mass loss measured directly after a certain

number of rotating cycles. The corresponding experimental volume loss is calculated at

selected cycles based on the mass loss and surface profiles. The numerical results predict
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the same trends as the experimental results. That is, after the initial run-in stage, Case

1 loses the most mass and volume while Case 3 loses the least. Good agreement is found

especially for Case 3. Percentage errors are calculated for both mass and volume loss at

4000 cycles in Figure 3.7(c), which are all below 15%.
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Figure 3.7: Material removal histories of Case 1-3. (a) Mass loss. (b) Volume loss. (c)
Errors of numerical predictions comparing experimental data.

3.4.1.3 Comparison of models based on surface profile evolution predictions

In order to demonstrate the improved prediction capability of the proposed calibrated model

compared to previous model described in Chapter 2, a comparative study is presented in

this section. Here, the composite configuration, Case 2 from Figure 3.3 is studied. The

following parameters are assumed. The annular specimen has an inner radius R1 = 4.24mm

and an outer radius R2 = 12.7mm. The wear rates of epoxy and aluminum are set as

Ka = 0.266mm3/Nm and Kb = 0.024mm3/Nm, respectively. The foundation parameters

(based on the calibration presented above in Section 3.4.1) are ks = 0.52N/mm3 and kg =
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0.76N/mm. For comparison, the same values for geometry, wear rates, and foundation

parameters are used in the model previously presented in Chapter 2.
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Figure 3.8: Case study: specimen surface profile evolutions at selected cycles using the
experimentally calibrated proposed and the previously established (Chapter 2) simulation
procedures.

Figure 3.8 shows the evolutions of worn surface profiles from both the proposed model

and simulation procedure (solid curves) and the model from Chapter 2 (dashed curves) at

selected rotating cycles. In both cases, the surface evolves from an initially flat to an uneven

profile and eventually reaches steady-state with the shape of the surface profile unchanged.

However, due to the assumption of zero-slope Neumann boundary conditions in Chapter

2, the profiles satisfy the boundary condition during the whole simulation process. As a

result, there are significant edge differences compare to the experimental observations as

seen in Figure 3.6(b). The proposed simulation procedure does not impose the zero-slope

Neumann boundary conditions thus the surface profile is evolving with changing slopes at

the boundaries, which better reflects the response of the whole foundation system (Figure

3.6).
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3.4.2 Demonstration for linear wear systems with asymmetry

This section presents two examples which demonstrate the effectiveness of the parameter

calibration and wear simulation procedures for linear wear systems. In the first example, a

bi-material composite with a relative simple in-plane material distribution is presented. The

second example presents an application of the linear wear simulation in predicting the wear

evolution of three topology optimized bi-material composites for minimal run-in material

volume loss.

3.4.2.1 Example: bi-material composite with simple configuration

The experimental results for a bi-material composite specimen subject to linear wear is

shown in Figure 3.9. A square specimen consisting of aluminum and epoxy has been tested

by sliding along a horizontal direction against an abrasive counter-body. Due to the dif-

ferent counter-body properties, the wear rate of aluminum and epoxy have slightly higher

values than in the rotary wear tests above (2.9 × 10−2mm3/Nm and 3.0 × 10−1mm3/Nm,

respectively).

Figure 3.9(a) shows the in-plane configuration and denotes the sliding direction. The

steady-state in-plane height distribution of the specimen surface is shown in Figure 3.9(b).

Line scans are made along the two directions through the center (Figure 3.9(d)). Both

profiles share the same general shape that contains two peaks in the aluminum region and

a valley in the epoxy region. The profile along the sliding direction is flatter than that of

the counter-sliding direction. It is seen that the composite configuration is symmetric with

respect to the sliding and counter-sliding directions, while the steady-state surface profile
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is not.
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Figure 3.9: Case study for a linear wear system. (a) Composite specimen under linear
wear; the left image is half of the experimental specimen and the right image is half of the
numerical simulation domain. (b) Experimental steady-state surface profile. (c) Numerical
steady-state surface profile. (d) Comparison of line-scans of experimental (solid lines )
and numerical (dashed lines) steady-state surface profiles. Results for both sliding and
counter-sliding directions are shown.

The foundation parameter calibration procedure from Section 3.3 is applied to calibrate

the proposed three-parameter asymmetric foundation model. In this case, the experimen-

tal data for the steady-state surface profile shown in Figure 3.9(b) is taken as the target.

The values of the three foundation parameters, (ks, kg,x, and kg,y) in Equation (3.9), are

updated according to the optimization algorithm (Figure 3.5) until convergence is reached.

The initial guess for the foundation parameters is chosen based on the empirical formulas

typically used [91] as ks = 0.38N/mm3 and kg,x = kg,y = 3.42N/mm. Calibrated foundation

parameters are ks = 0.23N/mm3, kg,x = 25.06N/mm, and kg,y = 1.64N/mm, representing

40%, 633%, and 52% differences compared to the empirical formulas, respectively. Note

also that the difference between the calibrated kg,x and kg,y is large, which is assumed to

relate to the sliding conditions, e.g. sliding velocity. That is, it is presumed that a higher

sliding velocity would exacerbate differences in the calibrated kg,x and kg,y, whereas a lower
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sliding velocity would reduce this difference. Future work is needed to investigate this

relationship between the asymmetry of the foundation model and the sliding conditions.

Figure 3.9(c) shows the predicted steady-state in-plane height distribution using the exper-

imentally calibrated values of the foundation parameters and Figure 3.9(d) compares the

line-scans of sliding and counter-sliding directions. Good agreement between the numerical

prediction and experimental data is found, which gives a mean percentage error calculated

using Equation (3.33) of 4%.

3.4.2.2 Example: optimized composites for minimizing run-in volume loss

In this section, the foundation parameter calibration and wear simulation procedures are

demonstrated for three bi-material composites. Figure 1.13 displays the in-plane material

distributions of the unit-cells for three periodic composites. These designs were produced by

a level-set based topology optimization routine that minimized material volume loss during

run-in wear. The optimizations were performed with a very basic and indirect consideration

of manufacturability (where geometric complexity was influenced by a perimeter penaliza-

tion parameter, τ) [41,70]. The optimization routine was developed based on the symmetric

Pasternak foundation model with empirical foundation parameters and the assumption of

periodic boundary conditions. As a result the optimal unit cell designs identified have sym-

metric material distributions (Figure 3.10). The composite configurations can be seen as

periodic arrays by repeating the unit cells.

These optimized composites have been fabricated and tested to validate the optimization

routine. However, due to limitations in fabrication and wear testing processes, each of the

composite specimens consisted of only 9 unit-cells (3 × 3) as shown in Figure 3.10. The
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Figure 3.10: Optimized periodic composites (shown in unit-cell and 3×3 layout) for minimal
run-in volume loss with different feature complexity increasing as τ decreases [41].

dimensions of the fabricated specimens are 48mm×48mm and the applied normal load

is 350N ( 0.152MPa average contact pressure). Figure 3.11(a) shows the experimental

measured surface profiles of the whole composite surfaces. It is seen that the worn surfaces

all develop asymmetric worn profiles with respect to sliding direction and rounded features

near the edges. Figure 3.11(b) shows the surface profiles of the central unit-cell, which is the

only cell of interest for purposes of experimental assessment of the topology optimization

routine. Note that the assumed periodic boundary conditions are not fully satisfied for the

central unit-cell. Asymmetry of the worn surface profiles caused by unidirectional sliding is

apparent.

The calibration procedure is performed using the experimentally measured steady-state

surface profiles. The profiles of the central unit-cells of the three cases are taken as input

for the calibration procedure so that the foundation parameters are optimized for all three

cases at the same time. This is done because the complex features of the composites and

the resulting worn surface profiles can increase the chance of converging to local optima in

the optimization-based calibration procedure. Taking three experimental profiles as inputs

for the calibration can increase the probability of approaching a global optimum.
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Figure 3.12: Surface profile evolution of the unit-cell at selected sliding cycles. (a) Line-scan
along the sliding direction. (b) Line-scan along the counter-sliding direction.

The calibrated foundation parameters are ks = 0.48N/mm3, kg,x = 26.10N/mm, and

kg,y = 1.34N/mm. The predicted surface profiles using calibrated foundation parameters are

shown in Figure 3.11 comparing to the experimental profiles. The iterative wear simulations
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of the three cases are performed using calibrated parameters which can provide the evolution

of the worn surface profiles in shape and depth. In Figure 3.12(b-c), the experimental and

numerical profiles are plotted along two line-scans (sliding and counter-sliding directions)

and at selected sliding cycles (numerical iterations). Good agreement is seen between the

experimental and numerical results. Not only the shape of the numerical profiles matches

well with the experimental profiles, but also the depth of the worn profiles can be predicted

accurately by the numerical simulation during the whole wear process including run-in and

steady-state stages.

3.5 Summary

A generalized foundation-based wear model and simulation framework has been proposed for

both rotary and linear wear systems that allows for more accurate and realistic predictions

of wear evolution. Improvements have been made through incorporating implicit boundary

conditions for the contact analysis, proposing an asymmetric elastic foundation model for

linear wear, and formulating an optimization-based calibration procedure for the elastic

foundation models. The capability of the proposed framework has been demonstrated for

both rotary and linear wear systems. It is shown that the foundation parameters can be

effectively calibrated based on experimentally measured steady-state surface profiles. The

wear simulation is able to capture the evolution of worn surface profile and material loss

with improved accuracy. It is found that, by incorporating the asymmetric foundation

model and calibrating the foundation parameters, the wear simulation is able to predict the

evolution of worn surface profile and material loss during run-in and steady-state regimes

with improved accuracy.
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Chapter 4

Frictional heating and

thermomechanical wear model

So far, abrasive sliding wear has only been considered and simulated from a mechanical per-

spective. However, wear is always complicated by multiphysical phenomena occurring at

sliding interfaces. This chapter focuses on one of the most critical of these: frictional heat-

ing. The thermal analysis for frictional heating is formulated based on a three-dimensional

steady-state heat transfer model with frictional heat flux boundary conditions. The finite

volume method is used to solve for the elevated thermal field within the sliding body and ver-

ified by finite element analysis performed in the commercial software Abaqus. The frictional

heating analysis is then integrated into the wear models established in Chapter 3 to model

thermomechanical wear by incorporating temperature-dependent wear rates. An iterative

procedure consisting of sequential contact and frictional heat analyses and wear calculations

is established for thermomechanical wear simulation. An example of a bi-material compos-

ite subject to linear wear is presented and a comparative study is conducted to address the
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differences between thermomechanical and mechanical-only wear simulations.

4.1 Model for frictional heating

Depending on the temperature-sensitivity of materials, frictional heating can significantly

impact tribological performance and reduce component lifetimes. Therefore, to accurately

predict wear, especially in systems with high sliding velocities, large applied loads, and fric-

tion, it is necessary to take the thermal effects into consideration. There have been extensive

analytical studies of frictional heating problems based on the pioneering work of Blok [94]

and Jaeger [95], where heat source methods were used to determine the flash temperature

component of contact temperatures. Flash temperature refers to the short-duration temper-

ature rise at asperities within the contact region. These analytical solutions obtained using

heat source methods are based on the assumption that the sliding body is a homogeneous,

semi-infinite half-space. However, in reality, sliding bodies are not infinitely large and they

often are made of more than one material. In addition, the available analytic solutions are

only for uniform, parabolic and semi-ellipsoidal heat flux distributions with simple contact

shapes (bands and circles). Numerical methods such as finite element analysis (FEA) have

also been utilized to solve frictional heating problems. Some of the advantages of using

FEA include being able to model sliding bodies with finite dimensions and irregular ge-

ometries, thus broadening the range of practical applicability [96]. A large amount of FEA

work has focused on the disc brake system [97–99] and total hip implants [100, 101] where

frictional heating can play a key role in the performance. For example, frictional heating at

the head-cup interface in the implants causes temperature rise in the bearing components

and surrounding tissues, which increases the risk of damage to surrounding tissues and can
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lead to long-term aseptic loosening failure.

In this section, a simplified model for frictional heating at sliding interfaces is developed

that incorporates aspects from both analytical and FEA based approaches. This model

offers convenience for integration into the previously established mechanical wear models

(Chapter 2 and Chapter 3). A balance in computational costs and model accuracy and

flexibility is needed for the purpose of efficient thermomechanical wear simulation in an

optimization framework.

4.1.1 Frictional heating calculations

Frictional heating is related to the contact pressure, coefficient of friction, and relative

velocity between sliding bodies. As shown in Figure 4.1, frictional heating is considered

at the sliding interface of a two-body linear sliding system. Body 1 is sliding against a

motionless counter-body (Body 2) with a constant velocity, v. The frictional heat flux

generated at a specific position within the sliding interface, q̇0(x, y), can be computed by:

q̇0(x, y) = vµ(x, y)P (x, y), (4.1)

where v is the relative sliding velocity, µ(x, y) is the local coefficient of friction, and P (x, y)

is the local contact pressure. The total frictional heat generation is partitioned between

the two sliding bodies. A heat partitioning factor, α, is used to represent the portion of

frictional heat that goes into Body 1, q̇(x, y):

q̇(x, y) = α(x, y)q̇0(x, y) = α(x, y)vµ(x, y)P (x, y). (4.2)
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The heat partition between contacting bodies is a relatively complicated process which

depends on the relative sliding and contact conditions, as well as the material properties of

the sliding bodies [102]. Here, in order to simplify the problem, it is conservatively assumed

that the counter-body (Body 2) is non-conductive so that heat flux can only enter the sliding

Body 1, which corresponds to the case of α = 1.
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Figure 4.1: Schematic of frictional heating in a two-body sliding system.

Similar to the wear calculation using Archard’s wear equation, the local frictional heat

flux depends on the local contact pressure as well as the local tribological properties. Thus,

when surface profiles and contact pressure distributions evolve simultaneously during wear

processes, frictional heating flux distributions at the sliding interface will also change.

4.1.2 Heat transfer analysis

4.1.2.1 Heat transfer model

Figure 4.1 shows the two-body linear sliding system where Body 1 is of interest to inves-

tigate wear and frictional heating. The heat transfer problem is formulated to obtain the

temperature field within Body 1 caused by frictional heating at the sliding interface. The

bottom face of Body 1 is the sliding interface where wear occurs and frictional heat is gen-

erated. It is assumed that the contact between the two sliding bodies is perfect with no
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separation.

The heat transfer within Body 1 is modeled by a three-dimensional steady-state heat

transfer equation with or without an internal volumetric heat source. The governing equa-

tion in the cubic domain, Ω, as shown in Figure 4.1, is

∇ · (k∇T ) = qvol in Ω, (4.3)

where k is the thermal conductivity, T is the temperature field, and qvol is the internal

volumetric heat source. Different boundary conditions can be imposed according to the

actual environmental and operating conditions of the tribological system. The boundary

conditions of interest in this dissertation include prescribed temperature, surface heat flux,

as well as boundary convection and insulation conditions, which can be mathematically

formulated as:

• Prescribed temperature boundary condition is applied to surface in contact with a

heat sink with fixed temperature T0:

T = T0 on Γsink; (4.4)

• Surface heat flux boundary condition is applied to surface with heat input (e.g. fric-

tional heat flux):

− k∇T · n = q̇surf on Γflux; (4.5)

• Convective boundary condition is applied to surface undergoing convective exchange
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with the surrounding media at Tref with a heat transfer coefficient h:

− k∇T · n = h(T − Tref) on Γconv; (4.6)

• Insulated boundary condition is applied to adiabatic surfaces or surfaces with thermal

symmetry:

− k∇T · n = 0 on Γins. (4.7)

4.1.2.2 Finite volume method

The finite volume method (FVM) [103] is applied to solve the above governing equation

(Equation (4.3)) with appropriate boundary conditions to obtain the thermal field within Ω.

The cubic domain Ω is discretized uniformly into cubic control volumes and each of them

has a uniform thermal conductivity (material A or B) which is determined by the node

located at the center. Each control volume with dimensions is identified by its central node

with spatial locations in x, y, and z−directions. The governing equation for each control

volume is derived based on a balance of heat flux. Figure 4.2 shows an interior volume,

represented by its central node C and its six neighbors, denoted as N, S, W, E, T, and B at

the directions of ’north’, ’south’, west’, ’east’, ’top’, and ’bottom’, respectively. The FVM

form of the heat transfer equation based on a heat balance for node C is

qncdxdz + qscdxdz + qwcdydz + qecdydz + qtcdxdy + qbcdxdy = 0. (4.8)
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The heat flux qnc between node C and its northern neighbor N is calculated as

qnc = (Tn − Tc)/Rnc, (4.9)

where Rnc is the thermal resistance between nodes N and C (Figure 4.2), determined by

Rnc =
dy/2

kndxdz
+

dy/2

kcdxdz
. (4.10)

Similarly, the heat flux between node C and its other neighbors can be calculated by the

thermal conductivity and temperature of each node and relative geometric dimensions.

Boundary nodes are handled separately based on the prescribed boundary conditions using

finite difference approximations.
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Figure 4.2: Schematics of a representative volume cell for the FVM.

Finally, the established nodal governing equations can be assembled into a linear equa-

tion system, represented in matrix form as:

AT = b, (4.11)

where matrix A contains the parameters of conductivity, convection, and geometry and
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vector b contains boundary condition information including frictional heat fluxes. The

temperature field can be obtained from Equation (4.11) using appropriate solvers.

4.1.2.3 Numerical verification

In this section, a test case is presented in order to verify the established heat transfer model

and finite volume method. The numerical solutions are compared with those obtained from

the commercial finite element software, Abaqus 6.14-1, (SIMULIA, Providence, RI).
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qa
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Figure 4.3: Schematic of the test case model.

Figure 4.3 shows the bi-material composite domain and boundary conditions for the

test case. The cubic domain has dimensions L = W = 0.18m and H = 0.09m and consists

of material A and B with thermal conductivities of ka = 100W/(mK) and kb = 1W/(mK).

The material distribution is as shown in Figure 4.3, where the matrix (material B) has a

cuboidal inclusion of material A. There is no volumetric heat generation within the do-

main. Boundary conditions include fixed temperature at the top face, convective boundary

conditions at all side faces, and surface heat flux at the bottom face. The surface heat

flux has a piecewise constant distribution, which has the value of q̇a = 2000 W/m2 in the

area occupied by material A and has the value of q̇b = 4000W/m2 in the area occupied

by material B. Utilizing the symmetry of the geometry and boundary conditions, only a

quarter of the domain is needed for computations. The quarter domain is discretized into
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30× 30× 30 elements in the x-, y-, and z-directions.
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Figure 4.4: Numerical verification of the FVM. Temperature distribution at the bottom
face obtained using the (a) FVM and (b) FEM (Abaqus). (c-d) Temperature distribution
along line-scans at the bottom face (plotted only in the quarter domain).

Figure 4.4(a) and (b) display temperature distributions at the bottom face (shown in

the full domain) obtained from the in-house finite volume code (FVM) and Abaqus (FEM),

respectively. Figure 4.4(c) and (d) plots the temperatures along several line-scans across the

bottom face from both methods. Good agreement between the FVM and Abaqus results is

observed which verifies the effectiveness and accuracy of the established heat transfer model

and the finite volume code.

4.2 Thermomechanical wear simulation

In the wear models presented in Chapter 2 and Chapter 3, it is assumed that each material

has a distinct wear rate which remains constant during the simulation process. However,

the wear rate associated with a material is in reality not typically a constant; it is a system
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parameter that depends on temperature, pressure, environment and many other factors.

This simplifying assumption could be relaxed to address modeling needs for more com-

plex scenarios, such as the influence of multiphysics at sliding interfaces on wear. The

proposed heat transfer model for frictional heating in Section 4.1 enables the incorpora-

tion of temperature-dependent wear rates into the established wear simulation framework.

This is a first step towards thermomechanical wear investigations, so for now, the effects

of thermal stress on contact pressure and surface profile changes due to thermal expansion

are neglected. In addition, all other thermal and tribological parameters are treated as

temperature-independent.

To formulate the simulation conditions, one additional assumption made here is that

the sliding process can be treated as a quasi-steady process where the heat transfer within

the sliding body can reach steady-state at each time increment when the relative sliding

velocity is slow. However, this assumption might not be suitable for high-speed sliding or

rotating cases. Regarding the computational domain, Ω, although wear leads to uneven

worn surface, it is assumed that the surface height losses and profile changes are relatively

small compared to the overall dimensions of the sliding body and thus Ω remains the same

throughout the entire wear simulation.

The iterative thermomechanical simulation procedure consists of sequential contact

analysis, frictional heating analysis, and wear calculation. The contact pressure distri-

bution is computed using the elastic foundation model as a function of worn surface profile.

At each increment, contact temperatures can be obtained by performing steady-state heat

transfer analysis with frictional heat generation at the sliding interface that is proportional

to the local contact pressure, coefficient of friction and relative sliding velocity. The local
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wear rate is then updated according to the predefined wear rate-temperature relation using

the local contact temperature information.

Input model

Contact analysis
- Contact pressure

Wear calculation using Archard's wear equation
- Determine height loss

- Determine new surface profile

Update model geometry

Total sliding distance? 
Steady-state?

Worn-out failure?

End

Yes

No

Frictional heating analysis
- Contact temperature

- Update wear rate

Figure 4.5: Flow chart of thermomechanical wear simulation.

The local incremental wear depth caused by an incremental sliding distance is calculated

using the Archard’s wear equation. In linear wear systems, the incremental wear depth at

a particular position at the nth iteration is

∆zni = −Pn
i K

n
i (T

n
i )v∆t, (4.12)

where the local wear rate, Kn
i (T

n
i ), is determined by the local material and temperature.

The temperature dependence of wear rates associated with materials is an input required for
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the proposed wear model and this must be experimentally determined. The contact pres-

sure distribution, Pn
c , follows the same method described in Section 3.1.2 for mechanical

wear, based on an asymmetric elastic foundation model with large foundation assumption.

The contact temperatures are obtained from the steady-state heat transfer analysis with

appropriate boundary conditions including frictional heat flux. Then the wear rate distri-

bution within the sliding interface can be updated according to the material distribution

and current contact temperature distribution. The above steps are conducted in an iter-

ative procedure until a stop criterion is met. Similar to the mechanical wear simulation,

a steady-state condition parameter, ϵ (Equation (3.24)), which quantifies surface shape

changes between two successive iterations, is used to detect whether steady-state wear is

reached or not. The iterative procedure is depicted in the flow chart of Figure 4.5.

4.3 Case study for thermomechanical wear simulation

This section presents a case study for a bi-material composite subject to linear wear using the

established thermomechanical wear simulation routine. The evolution of key wear features

(volume loss and worn surface profile) are monitored during the wear process. In addition,

the evolution of contact temperature and the resulting evolving wear rate distribution at

the sliding interface are investigated. Comparisons are made between the thermomechanical

wear case and two mechanical wear cases.
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4.3.1 Problem setup

The bi-material composite of interest in the case study is shown in Figure 4.6(a); it consists

of two materials with different thermal and tribological properties. It is meant to be gen-

erally representative of a typical polymer (Material A) and metal (Material B) composite.

The material distribution throughout the volume of the composite is an extrusion from the

sliding interface (Figure 4.6(b)) such that the x-y planar distribution remains the same

along the z-direction. The thermal conductivity and coefficient of friction for each material

are assumed to be temperature-independent and the values are given in Table 4.1. The

temperature-dependency of the wear rate associated with each material is set only accord-

ing to reported trends in the literature. The relation specifying temperature-dependence of

wear rates is discussed further in the next section.
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Figure 4.6: Schematic of a bi-material composite subject to thermomechanical wear. (a)
Setup of the linear wear system. (b) Material distribution at the sliding interface.

The dimensions of the composite domain are L = W = 0.2m and H = 0.02m. The

constant normal load applied on the composite is Fn = 200N resulting in a constant average

pressure within the sliding interface of P0 = 0.005MPa. The constant relative sliding

velocity is v = 2m/s. The bottom face is the sliding interface where wear occurs and

frictional heat is generated. The top and side faces are subject to convective conditions

with the ambient environment. The ambient temperature is kept at Tref = 293K and the

heat transfer coefficient is h = 10W/(m2K). The initial temperature of the composite is
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T0 = 293K and the sliding interface is initially flat. The foundation parameters of the

elastic foundation model are set as ks = 0.3N/mm3, kg,x = 10N/mm, and kg,y = 3N/mm,

which allows for asymmetric effects in linear wear systems. The domain is discretized into

a uniform mesh with 60, 60, and 6 elements in the x-, y-, and z-directions, respectively.

By symmetry, only a quarter of the whole domain is needed for computations. The time

increment is set as ∆t = 0.05s, corresponding to an incremental sliding distance of ∆s =

v∆t = 0.1m.

Property Polymer (Material A) Metal (Material B)

Thermal conductivity, k [W/(mK)] 1 100

Coefficient of friction, µ 0.1 0.4

Table 4.1: Representative thermal conductivities and coefficients of friction for polymer
(Material A) and metal (Material B).

4.3.2 Temperature-dependent wear rates

Thermal effects on wear are considered by incorporating temperature-dependent wear rates.

Figure 4.7(a) plots the wear rates of unfilled PEEK and its carbon fiber reinforced compos-

ites as a function of contact temperature [104]. It is seen that slight changes in wear rate

are detected for the unfilled PEEK while the wear rate of the PEEK composites with differ-

ent fiber volume fractions increase with increasing temperature, in particular, by about 1.5

orders of magnitude within the range 20-220°C. The wear rates of the Al-Si alloy and Al-

Si/graphite composite decreased with increasing temperature as shown in Figure 4.7; this is

due to the rapid formation of oxide film on sliding components at higher temperatures [105].

Based on these reported trends of wear rate-temperature relations [104, 105], it is as-
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(a) (b)

Figure 4.7: Wear rate as a function of temperature for: (a) PEEK composites with different
volume fractions of short carbon fibers [104] and (b) Al-Si alloy and its composite [105].

sumed here that the wear rate of polymer (Material A) increases linearly with increasing

temperature while the wear rate of metal (Material B) decreases linearly with increasing

temperature. Figure 4.8 shows the wear rate of the generalized materials as a function of

temperature. The room-temperature (T0 = 293K) wear rates of polymer (Material A) and

metal (Material B) are Ka0 = 0.3mm3/Nm and Kb0 = 0.029mm3/Nm, respectively.
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Figure 4.8: Wear rate-temperature relations for polymer (Material A) and metal (Material
B).

4.3.3 Numeral results for thermomechanical wear evolution

Figure 4.9 plots the total volume loss and instantaneous composite wear rate against the

total sliding distance. The instantaneous composite wear rate measures the overall wear
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rate of the composite surface. It is found by taking the total incremental volume loss di-

vided by the product of the applied normal load and incremental sliding distance, which

reflects the slope of the total volume loss vs sliding distance curve. The total volume loss

increases rapidly in the beginning and the volume loss curve becomes linear. Correspond-

ingly, the composite wear rate is initially high and gradually decreases to a constant lower

value. The evolution of the total volume loss and composite wear rate exhibit the typical

experimentally-based observation of a transition from run-in to steady-state wear. After

6306 iterations, equivalent to a sliding distance of 630.6m, the steady-state condition of

ϵ = 1× 10−6 is met; this is denoted by ’star’ markers in the two plots of Figure 4.9.
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Figure 4.9: Total volume loss and instantaneous composite wear rate vs sliding distance.

Figure 4.10 shows the evolution of the worn surface profile, contact pressure, temper-

ature and wear rate distribution at the sliding interface for select iterations. As wear

proceeds, the composite surface develops a non-planar shape. The central part of the slid-

ing interface occupied by the less wear-resistant polymer (Material A) generally wears more

than the outer area occupied by the more wear-resistant metal (Material B). The surface

height different between the two material area increases until the surface reaches a constant

shape at steady-state. The contact pressure and frictional heat flux distributions evolve

with changing surface profile profile; as a result the thermal field within the sliding body

also changes. It is seen that, in contrast to the piecewise constant steady-state contact

pressure distribution obtained from the mechanical wear simulation, the contact pressure
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distribution in each material domain is non-uniform (Figure 4.10(b)). The temperature

distribution at the sliding interface is shown in Figure 4.10(c). At the onset of run-in wear,

the temperature in polymer (Material A) is higher than it is in metal (Material B). How-

ever, the distribution reverses quickly and eventually converges to a steady-state where the

temperature decreases from the boundaries to the center of the sliding interface and metal

(Material B) has higher temperatures than polymer (Material A). The average steady-state

temperature in polymer (Material A) and metal (Material B) are < Ta,ss >= 361K and

< Tb,ss >= 369K, respectively. This corresponds to a 23% increase in temperature for the

polymer (Material A) compared to the initial T0 = 293K and a 26% decrease in temperature

for the metal (Material B).
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Figure 4.10: Thermomechanical wear evolution at selected iterations. (a) Worn surface
profile. (b) Contact pressure distribution. (c) Contact temperature distribution. (d) Wear
rate distribution.

Similar to the temperature distribution, the distribution of wear rates within the sliding

interface undergoes a major transition as the wear process evolves from run-in to steady-

state regimes (Figure 4.10(d)). Comparing the steady-state wear rate distribution with
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the initial distribution at room temperature (Figure 4.6), it is expected that the steady-

state wear rate values are all higher than the initial values because of the rise in contact

temperature that is experienced. At steady-state, the wear rate distribution converges to

a non-piecewise constant distribution, where the wear rate distribution in each material is

non-uniform due to the non-uniform temperature distribution (Figure 4.10(d)). The average

steady-state wear rates in Material A and Material B are < Ka,ss >= 0.92mm3/Nm and

< Kb,ss >= 0.021mm3/Nm, respectively. This corresponds to a 207% increase in wear rate

for the polymer (Material A) compared to the initialKa,0 = 0.3mm3/Nm and a 27% decrease

for the metal (Material B) compared to the initial Kb0 = 0.029mm3/Nm. In this way, in the

thermomechanical wear simulation, wear affects contact pressure and temperature, which

in turn determine wear rate and wear.

4.3.4 Comparison of thermomechanical and mechanical wear

In this section, a comparative study is conducted to evaluate the significance of thermal

effects on wear. Two additional cases are examined using the mechanical wear simulation

routine from Chapter 3 without incorporating the temperature-dependent wear rates. In

Mechanical Case 1, the wear rate of each material is constant and remains at it room

temperature value, i.e. the initial wear rate used in the thermomechanical wear simulation,

Ka0 = 0.30.3mm3/Nm and Kb0 = 0.029mm3/Nm (Figure 4.11(a)). In Mechanical Case

2, the wear rate distribution within the sliding interface is also temperature-independent

with the same distribution as the final steady-state non-uniform wear rate distribution

obtained from the iterative simulation of the Thermomechanical Case at iteration 6500

(Figure 4.11(b)). The rest of the simulation set-up and parameters are kept the same as
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the thermomechanical wear case as described in Section 4.3.1.
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Figure 4.11: Wear rate distribution of Mechanical Case 1 and 2.

Figure 4.12 compares the total volume loss and instantaneous composite wear rate

evolution of the three cases. The same steady-state condition, ϵ = 1 × 10−6, is utilized

for all simulations and the ’star’ markers are again used to denote the first iteration where

the condition is met (steady-state is achieved). It is seen that all three cases exhibit the

typical transition from run-in to steady-state. Steady-state is first reached in the Mechanical

Case 1 after 4943 iterations (494.3m). The Thermomechanical Case and Mechanical Case 2

reach steady-state around the same time, after 6306 iterations (630.6m) and 6303 iterations

(630.3m), respectively.
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Figure 4.12: Total volume loss and instantaneous composite wear rate as a function of
sliding distance.

By comparing the Thermomechanical Case and Mechanical Case 1, it is seen that the

former experiences more severe wear at the very beginning of the run-in wear regime. This

is manifested by the much higher composite wear rate and steeper total volume loss curve
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for the Thermomechanical Case. The underlying cause is the significant increase in tem-

perature at the sliding interface, especially in polymer (Material A, for which the wear rate

increases with temperature). However, the composite wear rate of the Thermomechani-

cal Case decreases rapidly and eventually converges to a lower steady-state value than the

Mechanical Case 1, although the average wear rate increase in Material A (207%) is more

significant than the average wear rate decrease in Material B (27%) and the area fraction

ratio of the two materials is around 1:1. It is clear that the ”Thermomechanical Case and

Mechanical Case 2 converge to the same steady-state composite wear rate (Figure 4.12).

Note also that the run-in evolution of these two cases is almost the same despite a slightly

higher composite wear rate for the Thermomechanical Case at the onset of sliding.

The trend in the steady-state composite wear rate of these three cases is further con-

firmed by the direct calculation using Equation (3.30) derived in Section 3.1.3, which is

equivalent to the inverse rule of mixtures. Table 4.2 displays the steady-state compos-

ite wear rate values of each case obtained from both the iterative simulation (“Iterative

method”) and the direct calculation using Equation (3.30) (“Direct method”). For the

Thermomechanical Case, the steady-state composite wear rate is calculated based on the

non-uniform steady-state wear rate distribution (Figure 4.10(d)). The same wear rate dis-

tribution is used to calculate the steady-state composite rate for the Mechanical Case 2.

For the Mechanical Case 1, the steady-state composite wear rate is calculated based on

the piecewise constant wear rate distribution which is the same as the initial wear rate

distribution of the Thermomechanical Case (Figure 4.6(b)).

Figure 4.13(a) shows the in-plane steady-state worn surface profiles for the Thermo-

mechanical Case/Mechanical Case 2 and the Mechanical Case 1 and Figure 4.13(b) plots
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Steady-state composite wear rate [mm3/(Nm)]

Thermomechanical Mechanical Case 1 Mechanical Case 2

Iterative method 0.0397 0.0511 0.0397

Direct method 0.0397 0.0511 0.0397

Table 4.2: Comparison of steady-state composite wear rates.

profiles along two perpendicular line-scans across the center of the sliding interface for these

cases. These profiles are translated to the same level with an average surface height of zero

to compare the shapes. The steady-state worn surfaces of the Thermomechanical Case and

the Mechanical Case 2 have the same shape because of the same steady-state wear rate

distributions. Due to the asymmetric elastic foundation model utilized for simulations, the

surfaces develop asymmetric shapes with respect to the sliding direction for both cases.

The height difference between the two material domains is higher in the Thermomechan-

ical Case/Mechanical Case 2; this is due to the increased difference in wear rates of the

constituent materials.
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Figure 4.13: Comparison of steady-state surface profile between Thermomechanical
Case/Mechanical Case 2 and Mechanical Case 1. (a) In-plane steady-state surface pro-
files. (b) Surface profiles along line-scans.

The thermomechanical wear simulation (incorporating temperature-dependent wear

rates) gives vastly different predictions of wear evolution (volume loss, composite wear

rate, and worn surface profile) from the mechanical wear simulation that employs static
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room-temperature wear rates (independent of temperature). This indicates that ignoring

the temperature-dependence of wear rates could lead to over-or-under estimates of these

important wear features. However, a detailed set of thermomechanical wear experiments is

required to further investigate this.

The Mechanical Case 2 (mechanical wear simulation performed using a temperature-

independent wear rate distribution that is identical to the steady-state wear rate distribution

developed in the Thermomechanical Case) results in an almost identical prediction of both

run-in and steady-state compared to the Thermomechanical Case. Thus, if the steady-

state contact pressure, temperature, and wear rate distribution of a thermomechanical

wear process could be explicitly determined from the materials and operating conditions of

a particular wear system, performing the mechanical wear simulation using these steady-

state parameters could give a good and efficient estimate of the thermomechanical wear

evolution of material volume loss and worn surface profile. The thermomechanical model

also provides opportunity to explore the effects of thermal expansion and thermal stresses

on wear performance.

4.4 Summary

In this chapter, a first analysis of frictional heating associated with wear has been presented

by incorporating temperature-dependent wear rates in a thermomechanical wear model. An

iterative procedure consisting of sequential contact and frictional heating analysis and wear

calculations is established. An example of a bi-material composite subject to linear wear has

been presented as a proof-of-concept for the thermomechanical wear simulation tool. Using

this thermomechanical wear model, the expected transitions from run-in to steady-state
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wear regimes are still predicted, despite the complex coupling of contact pressure, frictional

heat generation, temperature and wear rate at the sliding interface. Upon reaching steady-

state, the contact pressure, temperature and wear rate all develop steady distributions, the

worn surface profile converges to a constant shape, and the composite wear rate stabilizes at

a constant value. Dramatic differences in the predictions of material volume loss (especially

during run-in) and worn surface profile have been observed between the thermomechanical

and mechanical-only wear simulation cases, indicating the importance of including thermal

effects. The proposed sequential thermomechanical wear simulation routine lays the foun-

dation for including thermal expansion, thermal stresses, and temperature-dependence for

more than just the wear rates.
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Chapter 5

Topology optimization for

frictional heat dissipation with

wear constraints

Contact temperature is one of the most critical factors that affect the performance and lifes-

pan of tribological systems. As such, the management of frictional heat generated at sliding

interfaces should be considered in the design process. Current practices often use material

selection or cooling strategies as a means of addressing concerns about thermal management.

This chapter presents the first application of topology optimization to design composites for

efficient frictional heat dissipation during wear. Three-dimensional bi-material composites

are optimized to minimize the average steady-state contact temperature. The optimization

problem is formulated based on the steady-state heat transfer model with frictional heat

flux boundary conditions presented in Chapter 4. Wear constraints are incorporated in
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the optimization problem by prescribing fixed material area fractions or distributions at the

sliding interface. The material thermal conductivity and frictional heat flux are interpolated

using the Solid Isotropic Material with Penalization optimization method. The optimiza-

tion problem is solved using a gradient-based optimizer, the Method of Moving Asymptotes,

and sensitivities obtained by the adjoint method. Two case studies are presented to demon-

strate the utility of the established optimization framework. The influence of several factors

on the optimized designs are investigated, including: design-dependent frictional heating

boundary conditions, material volume fraction constraints, as well as material tribological

and thermal properties.

5.1 Topology optimization for thermal management

In many engineering systems such as electronic devices, heating appliances, combustion

engines, and braking systems, thermal management is a critical design consideration along

with other design requirements such as weight, stiffness and strength. During the past two

decades, TO has been extensively applied for problems involving heat transfer, multiphysics,

and manufacturing processes [106]. Many studies have focused more fundamentally on

the development of appropriate optimization methods that involve both two- and three-

dimension conduction, convection, and design-dependent and independent thermal loads

and boundary conditions [106]. Yoon et al. [107] optimized a heat dissipating structure

within a coupled thermo-hydraulic system under forced convection. Alexandersen et al. [108]

designed passive cooling heat sinks for light-emitting diode (LED) lamps. Pizzolato et al.

[109] unitlized topology optimization to design conductive fins for heat transfer enhancement

in latent heat thermal energy storage systems. Related to additive manufacturing (AM)
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processes, Zhou et al. [110] presented the design of support structures with efficient heat

conduction capabilities for powder-bed-based laser AM. Allaire et al. [111] addressed the

undesired thermal deformation and residual stresses caused by high temperatures during

metallic AM in the topology optimization formulation.

However, to date, no previous work has exploited topology optimization in designing

materials and structures for the dissipation of frictional heat generated at sliding interfaces.

To address this opportunity, in this section, a topology optimization formulation, using

the density-based SIMP approach, is presented. While the fundamental methods and al-

gorithms of density-based topology optimization for general heat dissipation problems are

well established, this dissertation presents a new application to both topology optimization

and tribology communities.

5.1.1 Heat transfer model

The physical model that governs the frictional heating problem is the steady-state heat

transfer model with appropriate boundary conditions. For convenience, the same heat trans-

fer model, assumptions, and boundary conditions described in Section 4.1.2.1 are adopted:

∇ · (k∇T ) = qvol in Ω, (5.1)

T = T0 on Γsink; (5.2)

− k∇T · n = q̇surf on Γflux; (5.3)

− k∇T · n = h(T − Tref) on Γconv; (5.4)
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− k∇T · n = 0 on Γins, (5.5)

where k is the thermal conductivity, T is the temperature field, qvol is the internal volu-

metric heat source, and q̇surf is the surface heat flux. By adopting the same finite volume

method described in Section 4.1.2.2, the above governing equation can be represented in

matrix form as:

AT = b, (5.6)

where A is the global coefficient matrix depending on the conductivity distribution within

the design domain and b is the thermal load vector containing both volumetric heat source

and surface heat flux terms.

5.1.2 Frictional heat flux during steady-state wear

While in Section 4.2, sequential coupling of thermomechanical wear was investigated through

temperature-dependent wear rates, here the wear rates are independent of temperature.

Additionally, bi-material composite designs (materials A and B) are only optimized for

steady-state wear conditions. For the bi-material composite systems of interest, It is as-

sumed that each material has its own distinct wear rate, Ka and Kb. Then the wear rate

distribution function, K, is piecewise constant and defined according to the material distri-

bution at the sliding interface. Recall the discussion of steady-state in linear wear systems

in Section 3.1.3: the contact pressure at the sliding interface reaches a steady distribution

without further change, which can be directly calculated

Pss = Fn

(
∫
Γsl

(K)−1dS)−1

K
, (5.7)
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where Γsl denotes the sliding interface. The resulting contact pressure distribution within

the sliding interface is also piecewise constant with values of Pa in material A and Pb in

material B (Figure 5.1(b))

Pa =
FnKb

KaSb +KbSa
and Pb =

FnKa

KaSb +KbSa
, (5.8)

where Sa and Sb are, respectively, the surface area occupied by material A and B at the slid-

ing interface. The resulting steady-state composite wear rate is calculated using Equation

3.30

Kss
comp =

KaKb

KaSb +KbSa
. (5.9)
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Figure 5.1: Schematic of linear sliding wear system. (a) Bi-material composite and oper-
ating conditions. (b) Cross-section view showing contact pressure and frictional heat flux
distributions at the steady-state wear regime.

The frictional heat flux generated in each material domain can be calculated as the

product of relative sliding velocity, coefficient of friction, and contact pressure. Upon reach-

ing steady-state wear, the frictional heat generation rate in each material can be directly

determined from the contact pressure distribution (Equation 5.8):

q̇a = vµaPa(Ka, Sa) and q̇b = vµbPb(Kb, Sb), (5.10)
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where v is the relative sliding velocity, and µa and µb are the coefficient of friction between

each material and the counter surface. The same conservative assumption for the heat par-

titioning explained in Chapter 4 is made here: the counter-body (Body 2) is non-conductive

so that the frictional heat flux can only enter the sliding body (Body 1). Thus, the total

frictional heat entering the sliding body is

qtotal = q̇aSa + q̇bSb. (5.11)

From the above calculation of frictional heat flux generated at the sliding interface, it is

seen that (at steady-state and similar to contact pressure distributions) the frictional heat

flux has a piecewise constant distribution corresponding to the material distribution within

the sliding interface. In addition, the magnitude of the frictional heat flux in each material

is determined by relative velocity between the sliding bodies, the tribological properties

(coefficient of friction and wear rate) of the each material, and the area fraction of each

material at the sliding interface. Thus, for a given material pair, the frictional heat flux

distribution at the sliding interface depends on the material distribution. In Figure 5.1(b),

the steady-state contact pressure (right) and frictional heat flux (left) at the sliding interface

are plotted schematically illustrating the piecewise constant distributions.

5.1.3 Density-based topology optimization formulation

The topology optimization framework is formulated using the density-based method, Solid

Isotropic Material with Penalization (SIMP; see Section 1.3) [112]. The design domain is

discretized and each element is represented by a density variable, ρe, which corresponds to
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its material composition. For an element occupied by material A, its density value is ρe = 1;

for an element occupied by material B, its density value is ρe = ρmin. Element density can

take any value between ρmin and 1. Here, ρmin = 10−3 is chosen to avoid computational

difficulties such as singularity in the finite volume method [49].

The thermal conductivity of each element is interpolated by its density following the

SIMP representation:

ke = kaρ
p
e + kb(1− ρpe), (5.12)

where p is the penalization parameter that suppresses the formation of intermediate densities

[112].

From the calculation in Section 5.1.2, it is known that, when the area fraction of each

material is prescribed at the sliding interface, the magnitude of the frictional heat flux in

each material is also prescribed (Equation (5.10)). Then the steady-state frictional heat flux

distribution is piecewise constant corresponding to the material distribution at the sliding

interface. Then, the same interpolation scheme used for thermal conductivity is also applied

to the frictional heat flux at the sliding interface:

q̇e = q̇aρ
p
e + q̇b(1− ρpe), (5.13)

where q̇a and q̇b are the frictional heat flux generated at each material at steady-state

from Equation (5.10). Thus, the heat flux boundary condition (Equation (4.5)) is design-

dependent (if the material distribution at the sliding interface is not prescribed).

As the sliding interface will usually be most critical in terms of absolute temperatures,
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the objective function of interest is minimizing the average temperature at the sliding in-

terface, Γsl. The objective function is formulated as:

f =
1

|Γsl|

∫
Γsl

TdS = cTT. (5.14)

This is chosen as a first objective to address because it it straightforward, tractable, and

physically relevant to the thermal performance. In addition, it has been noted in previous

studies that using the average temperature as the objective function is also effective for

reducing the maximum temperature [113, 114]. Maximum temperature is often of concern

and should remain below transition or critical temperatures specific to particular materials.

While not used explicitly in the objective function here, later in the analysis the maximum

temperature in each material at the sliding interface will also be monitored to evaluate

thermal performance of the optimized composites.

Besides the box constraint on the element density (ρmin ≤ ρe ≤ 1), another constraint

considered is the volume occupied by material A in the design domain:

g1(ρ) =

∫
Ω
ρdV − Va = 0. (5.15)

This constraint represents a typical material resource constraint that could be related to

considerations of cost, environment, recyclability, etc. In addition, the material area fraction

of material A at the sliding interface can also be constrained to maintain target wear

performance:

g2(ρ) =

∫
Γsl

ρdS − Sa = 0. (5.16)

Recall that for the assumptions and conditions outlined in Section 5.1.2, prescribing ma-
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terial area fractions at the sliding interface effectively determines the steady-state wear

performance for the composite (Equation (5.9)) and the total heat generated at the sliding

interface (Equation (5.11)). Lastly, a total heat generation constraint at the sliding interface

is enforced :

g3(ρ) =

∫
Γsl

q̇dS − qtotal = 0. (5.17)

This constraint is equivalent to the material area fraction constraint (Equation (5.16))

and is needed to suppress formation of intermediate (non-physical) densities at the sliding

interface.

Therefore, the topology optimization problem can be written as:

min
ρ

f(T) = cTT,

s.t. AT = b,

g(ρ) = 0, ρmin ≤ ρe ≤ 1, e = 1, 2, ..., Ne,

(5.18)

where g(ρ) is the vector containing all of the equality constraints applied.

5.1.4 Implementation

In this section, the detailed implementation of the topology optimization formulation es-

tablished in the previous section is described, including the adjoint sensitivity analysis,

sensitivity filter, and optimization algorithm. The topology optimization procedure is im-

plemented in MATLAB 2017a (The MathWorks, Inc., Natick, MA).
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5.1.4.1 Sensitivity analysis

To implement a gradient-based optimization algorithm to solve Equation (5.18), sensitivity

analysis is performed using the adjoint method. The sensitivity of the objective function

f(T) = cTT with respect to the design variable ρe can be written as:

∂f

∂ρe
=

∂cT

∂ρe
T+ cT

∂T

∂ρe
. (5.19)

In this expression, the direct evaluation of ∂T
∂ρe

is cumbersome because T depends on ∂ρe

implicitly. The temperature vector, T, is solved from the linear equation system, AT = b

governing the heat transfer problem (Equation 5.1), where both the matrix A and the vec-

tor b are dependent on ρe.

An adjoint state, λ, is introduced. The objective function f(T) is rewritten by adding

an zero function as:

f(T) = cTT− λT(AT− b), (5.20)

where λT can be any arbitrary vector since (AT− b) always gives zero vectors. Differenti-

ating Equation (5.20) gives

∂f

∂ρe
=

∂cT

∂ρe
T+ cT

∂T

∂ρe
+ λT(

∂A

∂ρe
T+A

∂T

∂ρe
− ∂b

∂ρe
). (5.21)

The above equation can be rearranged into

∂f

∂ρe
=

∂cT

∂ρe
T+ λT(

∂A

∂ρe
T− ∂b

∂ρe
) + (cT + λTA)

∂T

∂ρe
. (5.22)
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Since λ is arbitrary, it can be chosen to be the solution of ATλ = −c, which gives cT +

λTA = 0. Here, λ is the adjoint state. Sensitivities of the objective function with respect

to design variables can be calculated as:

∂f

∂ρe
=

∂cT

∂ρe
T+ λT(

∂A

∂ρe
T− ∂b

∂ρe
). (5.23)

The objective function to minimize is the average temperature at the sliding interface (Equa-

tion (5.14)), where the definition of the coefficient vector cT is constant resulting in

∂cT

∂ρe
= 0. (5.24)

The dependence of A on ρe is determined through through the interpolation of thermal

conductivity:

∂A

∂ρe
=

∂A

∂ke

∂ke
∂ρe

, (5.25)

where ∂ke
∂ρe

= p(ka − kb)ρ
p−1
e is found according to the interpolation scheme in Equation

(5.12). When the frictional heat flux is the only heat input and its distribution is not pre-

scribed but dependent on the material distribution at the sliding interface, the dependence

of the thermal load vector b on ρe is found through the interpolation of frictional heat flux:

∂b

∂ρe
=

∂b

∂q̇e

∂q̇e
∂ρe

, (5.26)

where ∂q̇e
∂ρe

= p(q̇a − q̇b)ρ
p−1
e is found according to the interpolation scheme in Equation

(5.13).
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5.1.4.2 Sensitivity filter

In order to eliminate mesh dependency and encourage discrete designs, a filter technique is

used on the obtained sensitivities of the objective function and constraints [112, 115]. The

sensitivity filter utilized here is the one originally proposed by Sigmund [116].

rmin

ρe

Figure 5.2: Schematic of sensitivity filter neighborhood defined by filter radius rmin.

The sensitivities are modified as weighted averages of the sensitivities within a fixed

neighborhood. As illustrated in Figure 5.2, the neighborhood of an element, e, named Ne,

includes the elements that are within a given filter radius rmin of the element e, i.e.

Ne = {i | ||xi − xe|| ≤ rmin}, (5.27)

where xi denotes the spatial location of the element, i. Then the sensitivity of the design

variable, ρe, is modified as

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)ρi
∂f
∂ρi

ρe
∑
i∈Ne

w(xi)
, (5.28)

where the weighting function w(xi) is defined as a linearly decaying function

w(xi) = rmin − ||xi − xe||. (5.29)
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5.1.4.3 Optimization algorithm

With the derived and filtered sensitivities, the optimization problem for the given objective

function and constraints can be iteratively solved by an optimizer until a stop criterion is

reached. Topology optimization problems are usually nonlinear optimization problems with

a large number of design variables. Various optimization methods have been developed and

applied to solve these problems, including the Optimality Criteria (OC) method [49], Se-

quential Quadratic Programming (SQR) [117], the primal-dual interior point method [118],

etc. In this dissertation, the standard Method of Moving Asymptotes (MMA) is applied.

MMA was initially developed to solve nonlinear structural optimization problems by Svan-

berg [119]. It has been widely utilized in density-based topology optimization problems and

has been demonstrated as a robust and versatile method for large scale problems [49].

5.1.4.4 Topology optimization procedure

The topology optimization procedure is shown in the flow chart of Figure 5.3. Provided with

all the necessary input parameters and boundary conditions, the algorithm is initialized by

an initial guess for the design variables. Based on the initialization, the numerical analysis

yields the initial temperature field within the sliding body. Then the objective function

and constraints are evaluated. Using the adjoint method, the sensitivities of the objec-

tive function and prescribed constraints are computed and subsequently filtered. Based on

the calculation of the objective function, the design variables, and sensitivities, the design

variables can be updated using the optimization solver. These steps are repeated until

the convergence criterion is met or a maximum number of optimization steps is reached.

Although in applying the SIMP method, it is possible to discourage the formation of inter-
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Figure 5.3: Flow chart of the topology optimization procedure.

mediate densities, it is not guaranteed that the final design is free of intermediate densities.

Thus, post-processing is typically needed in order to obtain a discrete black/white final

design with no intermediate densities. Here, a thresholding method with a threshold of 0.5

is applied. The final density of an element, ρ̃e, is determined by

ρ̃e =


0, if ρe < 0.5,

1, if ρe ≥ 0.5.

(5.30)
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5.1.5 Initial check: heat conduction with volumetric heat source

A test case is presented in this section to proof the established topology optimization routine.

The problem of interest is a classical heat conduction optimization problem, where the

distribution of conductive material in a design domain with internal heat generation is

optimized for cooling purpose.

T = 293K

Design domain

Volumetric 

heat generation

Insulated

Figure 5.4: Design domain and boundary conditions of the test case.

In this test case, a fixed cubic design domain is used (as shown in Figure 5.4) with

dimensions of 0.1m × 0.1m × 0.1m and it is discretized into 20 × 20 × 20 elements. All

boundaries of the design domain are insulated except for a square region located at the

center of the bottom face. This square region has a constant uniformly distributed temper-

ature of T0 = 297K. A volumetric heat source is uniformly distribution within the domain,

q = 0.005W/m3. The design domain consists of two materials: Material A with thermal

conductivity ka = 100W/(mK) and Material B with thermal conductivity kb = 0.1W/(mK).

The volume fraction constraint on the high-conductivity Material A is set as 20%. The ob-

jective is to find the optimal material distribution that minimizes the steady-state average

temperature within the whole design domain.

Figure 5.5 shows the optimized composite structure, separately highlighting Material A

in blue and Material B in yellow. It is seen that the high-conductivity Material A forms
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a tree-like structure with branches extending into the design domain. The origin of the

structure is located at the square region with fixed temperature. This type of design is

expected because the square heat sink is the only region where heat can escape from the

domain and the high-conductivity branches form conduction paths towards the heat sink.

(a) Material A (b) Material B (c) Bottom face

Figure 5.5: Optimization results of heat conduction teat case. (a) Material distribution of
material A. (b) Material distribution of material B. (c) Material distribution at the bottom
face.

In addition, the optimized design is symmetric with respect to the orthogonally oriented

planes, which is consistent with the symmetric nature of the heat conduction problem. This

symmetry is leveraged to reduce computational costs in later optimization cases where only

a quarter of the whole design domain is need for computation (Figure 5.7).

(a) (b)

Figure 5.6: Results for optimal heat conduction problems. (a) Two-dimensional example
from [106]. (b) Three-dimensional example from [120].

The tree-like structure observed in Figure 5.5 is a common feature in optimal heat

conduction problems solved via topology optimization [49, 106, 120, 121]. Figure 5.6 shows

two selected optimization results for two-dimensional [106] and three-dimensional [120] heat

122



conduction problems from the literature. This test case is used for initial trouble-shooting

of the optimization framework in MATLAB. That similar results to cases published in the

literature are achieved, suggests that the framework is ready for use in the following sections.

The components of the optimization have already been independently verified or validated

in previous sections.

5.2 Case studies for frictional heat dissipation

In this section, two case studies are presented to demonstrate the utility of the proposed

topology optimization framework. The design domain and thermal boundary conditions are

illustrated in Figure 5.7. Dimensions of the full design domain in Figure 5.7(a) are L = W =

0.2m and H = 0.1m. Only a quarter of the domain is optimized due to symmetry (Figure

5.7(b)), with dimensions of LQ = WQ = H = 0.1m; the quarter domain is discretized into

30× 30× 30 elements. The normal load applied on the whole sliding body is Fn = 25000N

resulting in an average contact pressure of P0 = 0.625MPa. The relative sliding velocity is

v = 0.2m/s and the heat partitioning factor is set as α = 1. The heat sink temperature

is T0 = 293K and ambient temperature is Tref = 293K. For the case with convective

boundary conditions, the heat transfer coefficient is set as h = 50W/(m2K) representing

typical convective heat transfer with air. These geometric, loading, and sliding parameters

are chosen so that realistic heat flux for the material pairs will be achieved.

The optimization will be performed for two different material pairs: a metal/polymer

and a metal/ceramic, which represent two common composite systems in tribological appli-

cations [122]. The material properties are displayed in Table 5.1 using representative values

so the analysis remains general. In both pairs, the representative metal (Material A) is the

123



H

L
W

Symmetric planes(a)

z

x
y

Ω

Fixed temperature T = T0

Side faces:

convective

insulated

Frictional heat flux q

Hd

Hw

Wear layer

(b)

WQ

LQ

Sliding 

interface

Figure 5.7: Schematic of the design domain for topology optimization. (a) Full design
domain. (b) Quarter computational domain with boundary conditions.

Property
Pair 1 Pair 2

Metal (A) Polymer (B) Metal (A) Ceramic (B)

Thermal conductivity, k [W/(mK)] 250 0.5 250 2.5

Wear rate, K [mm3/(Nm)] 1e-5 1e-4 1e-5 1e-6

Coefficient of friction, µ 0.4 0.1 0.4 0.8

Table 5.1: Material properties for Pair 1 and Pair 2.

more thermally conductive material. In Pair 1, the metal has a lower wear rate (more wear

resistant) and a higher coefficient of friction than the polymer (material B). In Pair 2, the

ceramic (material B) is more wear resistant and has a higher coefficient of friction than

metal.

5.2.1 Case Study 1: heat dissipation optimization with constrained steady-

state wear performance

As discussed in Section 5.1.2, the steady-state wear performance of composite surfaces

(measured by Kss
comp, Equation (5.9)) and the magnitude of frictional heat flux generated

within each material domain at the sliding interface (Equation (5.10)) can be calculated

from the area fraction and properties of each constituent material at the sliding interface.

However, how the materials are distributed at the sliding interface determines the piecewise
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distribution of the frictional heat flux, which directly relates to the thermal field within

the composite body. In this case study, the role of the material distribution at the sliding

interface on the heat dissipation optimization is investigated by incorporating the design-

dependent frictional heating boundary conditions as discussed in Section 5.1.3.

5.2.1.1 Case Study 1: problem setup

The design domain is shown in Figure 5.7, where the side faces are convective with the ambi-

ent environment. Composite structures using both material pairs (Table 5.1) are optimized

with a total volume fraction constraint on the amount of metal (Material A) available. The

area fraction of each material at the sliding interface is fixed to be 50%, which results in

maintaining a target steady-state composite wear rate of the composite surface (Equation

(5.9)) and also the frictional heat flux within each material (Equation (5.10)). However,

there is no pre-assumption of the material arrangement or distribution at the sliding in-

terface, only the surface area fraction is fixed. The design domain including the sliding

interface is subject to change during the optimization. However, in order to guarantee an

acceptable target wear performance of the final composite, a wear layer with a thickness

of Hw = 10%H is created in the design domain, Ω, as shown in Figure 5.7(b). The mate-

rial distribution within the wear layer is always a vertical extrusion of the current design

at the sliding interface during the optimization. This is realized by proposing additional

constraints on the design variables within the wear layer. The optimization process starts

with an initial structure made up entirely of material A (metal), i.e. all densities are equal

to 1 in the first iteration. Following standard practices [112], the penalization parameter, p,

increases linearly from 1 to 3 during the first 50 iterations and then is kept at 3 afterwards.
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For Pair 1 (metal/polymer), the frictional heat flux in each material is calculated by

Equation (5.8) as q̇a = 4.55 × 104W/m2 and q̇b = 1.14 × 103W/m2, and the total heat

generation rate is qtotal = 932.8W. Two examples are optimized with a metal volume

fraction in the whole design domain set as 30% and 50%. For both of these examples, since

metal occupies 50% in the wear layer with a thickness of Hw = 10%H (which is equivalent

to 5% of the total volume), the metal above the wear layer is effectively constrained to

be 25% and 45%, respectively. The same two examples are performed for Pair 2 (metal

(A) and ceramic (B)), where the metal volume fraction in the whole design domain set as

30% and 50% while the area fraction of each material at the sliding interface is fixed to

be 50%. The frictional heat flux for each material is found as q̇a = 4.55 × 103W/m2 and

q̇b = 9.09 × 104W/m2, and the total heat generation rate is qtotal = 1909W. Here, the

ceramic generates more frictional heat but is less conductive.

5.2.1.2 Case Study 1: results and discussion

Convergence curves of the objective function and constraint on the total heat generation are

shown in Figure 5.8. For both cases, the objective function increases initially and decreases

after the total heat generation constraint is satisfied. All of the equality constraints are

active and satisfied when convergence is reached after 200 optimization iterations. The

final optimized composite structures are presented in Figure 5.9. Both the quarter design

domain and the full structure are shown; the constituents are shown separately - metal (blue)

and polymer (gray). The material and temperature distributions at the sliding interface

are also shown.

Similar optimized structures are obtained for both prescribed total volume fractions
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Figure 5.8: Convergence curves showing the objective function and the total frictional heat
generation rate constraints for Pair 1 (metal/polymer) with total metal volume fractions of
30% and 50%.

(30% and 50% metal). From the results one can see that, at the sliding interface, metal

is distributed near the boundaries and polymer is concentrated in the center with slight

differences in the shape. This is expected as convection improves the dissipation of the high

frictional heat generated in the metal (compared to the polymer). Above the wear layer,

the metal forms a conductive path to the heat sink at the top surface. Four metal columns

are formed with branches spreading out over the central polymer domain in the wear layer.

The effectiveness of the design can be observed from the temperature distribution shown

in Figure 5.9(c) and (f). The temperature in the polymer is generally higher than in the

metal while in the area connected with the metal columns, the temperature is reduced. The

average temperature at the sliding interface and the maximum interface temperature in each

material for both optimized structures are displayed in Table 5.2. The results are as expected

in that for the optimized structures, increasing the metal volume fraction would enhance

the heat dissipation capacity of the composites resulting in a lower average temperature

at the sliding interface. In addition, the maximum temperature in each material drops

with increased metal volume fraction, which shows that choosing average temperature as

an objective function is also effective for decreasing the maximum temperature in both
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materials.

For comparison, a reference composite structure with a metal volume fraction of 50%

as shown in Figure 5.10(a) is also analyzed. The material distribution of the reference

structure is a direct extrusion from the sliding interface with 50% metal distributed outside

and 50% polymer concentrated inside. The optimized structure with 50% metal achieves

lower average temperature than the reference structure and the optimized structure with

30% metal achieves comparable average temperature to the reference structure. Despite the

maximum temperatures in the metal being higher in the two optimized structures than the

reference structure, both optimized structures provide significant reduction in the maximum

temperatures in the polymer compared to the reference structure.
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Figure 5.9: Optimization results for Case Study 1 of Pair 1 (metal/polymer) with metal
total volume fractions of 30% (a,b,c) and 50% (d,e,f). The composite structure is shown
in the quarter (left) and full (right) domains, highlighting separately the metal (a,d) and
polymer (b,e) constituents. (c,f) Temperature distribution at the sliding interface of the
optimized structures.
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Figure 5.10: Reference composite structures with a metal total volume fraction of 50% for
both material pairs. (a) Pair 1: metal/polymer. (b) Pair 2: metal/ceramic.
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The optimized composite structures for Pair 2 are shown in Figure 5.11 with the metal

volume fractions again set as 30% and 50% in the whole design domain. At the sliding

interface, metal is mainly placed at the center surrounded by ceramic. This is consistent

with the previous results in that the material generating more heat (this time being the

ceramic) is placed along the convective boundaries. At the sliding interface, there are also

small metal inclusions distributed in the ceramic, which end up forming connected root-like

conduction paths through the height of the structure at the four corners. These interfacial

inclusions also increase the contact area between the two materials which enhances heat

conduction from the ceramic to the metal. The temperature at the sliding interface is

much higher in the ceramic than the metal while lower temperature values are observed

near material interfaces. The temperature results in Table 5.2 show the same trends as for

material Pair 1 (metal/polymer), i.e. average and maximum temperatures at the sliding

interface decrease as the metal volume fraction increases.
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Figure 5.11: Optimization results for Case Study 1 of Pair 2 (metal/ceramic) with metal
total volume fractions of 30% (a,b,c) and 50% (d,e,f). The composite structure is shown
in the quarter (left) and full (right) domains, highlighting separately the metal (a,d) and
ceramic (b,e) constituents. (c,f) Temperature distribution at the sliding interface of the
optimized structures.

A reference structure with 50% metal as shown in Figure 5.10(b) is analyzed for com-
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parison, where metal is concentrated inside surrounded by ceramic. Significant reductions

of average temperature and maximum temperature in the ceramic are obtained in the two

optimized structures compared with the reference structure. In particular, there is a 22%

reduction of the average temperature and a 37% reduction of the maximum temperature

in the ceramic domain of the optimized structure with a total metal volume fraction of

30% compared to the reference structure. For the optimized structure with a total metal

volume fraction of 50%, 29% and 45% reductions in the average temperature and maximum

temperature in the ceramic domain are achieved.

Materials
Volume fraction Average T [K] Maximum T [K]

metal (sliding interface) metal polymer/ceramic

Pair 1
(metal/polymer)

30% 339 334 352

50% 323 314 338

50% (Ref) 338 311 399

Pair 2
(metal/ceramic)

30% 485 383 779

50% 441 347 681

50% (Ref) 623 325 1228

Table 5.2: Summary of temperature values monitored in the optimized structures for Case
Study 1.

Comparing the optimization results (Table 5.2) for the two material pairs, it is noted

that the optimized composite structure for frictional heat dissipation depends strongly on

the prescribed total material volume fractions, as well as on the relative thermal and tribo-

logical properties of the constituents. When the materials are allowed to distribute freely at

the sliding interface with constrained area fractions (i.e. constrained steady-state wear per-

formance) and frictional heat dissipation is the only design consideration, vastly different

composite configurations are obtained at the sliding interface depending on the particu-

lar material pair and material volume fraction constraints. This is an indication of the
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strong correlation between the design-dependent frictional heating boundary condition and

the optimized composite design for heat dissipation performance. In this case study, the

steady-state wear performance of the sliding interface is constrained by the fixed area frac-

tions of the constituents; however, it is known that the run-in performance (run-in volume

loss) for linear abrasive wear is also dependent on the material distribution (with fixed area

fractions) [76, 77, 93]. The optimized structures with different material distributions at the

sliding interface may lead to different run-in wear performance. Thus for future studies, it

is necessary to couple both wear (including run-in) and frictional heat dissipation in the

design process to achieve optimal multifunctionality of the composites. A first attempt at

doing this in a sequentially coupled fashion is presented next.

5.2.2 Case Study 2: sequentially coupled wear and heat dissipation opti-

mization

This section presents a case study of a sequentially coupled wear and heat dissipation opti-

mization. First, a wear-optimal material distribution is determined at the sliding interface

and within the wear layer. Based on this, prescribed distribution, the remainder of the

design domain is optimized for heat dissipation. A unit-cell of a periodic 3D composite

structure consisting of metal and ceramic (Material Pair 2) is optimized for frictional heat

dissipation.

5.2.2.1 Case Study 2: problem setup

It has been noted previously in Section 5.1.2 that for linear abrasive composite wear systems,

the steady-state wear performance only depends on the material area fractions and not on

131



the material distribution, while the run-in performance changes with material distribution

[76, 77, 93]. Figure 5.12(a) illustrates schematically the typical volume loss versus sliding

distance curves for two composite surfaces with the same material area fractions but different

configurations (representing the surfaces of initial guess and iteration 100 shown in Figure

5.12(a), respectively). Both curves converge to lines with the same slope (i.e. same steady-

state wear rate) at steady-state wear conditions. The run-in volume loss is shown as the

y-intercept of the steady-state volume loss lines, which, however, differ for the different

composite configurations; the run-in volume loss is also an important criteria for evaluating

the wear performance of composites. A topology optimization framework based on the level-

set method was previously proposed for optimizing periodic bi-material composite surfaces

to minimize the run-in volume loss [40]. This tool has also been validate by extensive wear

tests [123]. From Gretjak et al. [123], an optimization sequence (showing select iterations)

of the unit-cell design of a periodic bi-material composite surface is shown in Figure 5.12(b).

The objective was to minimize run-in volume loss subject to material resource constraints

(50% metal and 50% ceramic) and a basic manufacturing complexity constraint [123].

Initial guess Iteration 10

Iteration 50 Iteration 100

Metal (Material A)

Ceramic (Material B)

steady-state

Sliding distance 

run-in

V
o

lu
m

e
 l
o

s
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run-in volume

Iteration 100

Initial guess

Figure 5.12: (a) Typical wear volume loss versus sliding distance curves showing run-in and
steady-state regimes. (b) Optimization sequence (showing select iterations) of a bi-material
composite surface for minimal run-in volume loss [123].

The design domain is shown in Figure 5.7. Periodic boundary conditions are applied

to all side faces. These side faces can be treated as insulated boundaries because the
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optimized material distributions are always symmetric within the unit-cell and thus also

result in thermal symmetry. The previously obtained 2D composite configuration in Figure

5.12(b) [123] is taken as the pre-defined material distribution at the sliding interface and

extruded through the wear layer with a thickness of Hw = 10%H: this time the prescribed

interface and the entire wear layer are not subject to change during the optimization while

the remainder of the design domain is optimized for heat dissipation. The frictional heat

flux generated in each material is calculated using Equation (5.10): for the metal q̇a =

4.55 × 103W/m2 and for the ceramic q̇b = 9.09 × 104W/m2, and the total heat generation

rate is qtotal = 1909W.

5.2.2.2 Case Study 2: results and discussion

The optimized unit-cell composite structure as well as a 2-by-2 layout of the metal portion

of the unit-cell is shown in Figure 5.13(a-c) where a total metal volume fraction constraint

of 30% was applied. It is seen that, in general, the distribution of metal and ceramic flips

immediately above the wear layer (see cross-sectional material distributions at two selected

positions shown in Figure 5.13(d) both within and directly above the wear layer). Metal

forms root-like structures which connect with the ceramic in the wear layer to conduct the

heat out through the top face (the sides are no longer available for heat dissipation as they

are insulated).

The optimization procedure for this case study was repeated under different total volume

fraction constraints on the metal ranging from 20% to 80%. For comparison, a reference

case with a metal volume fraction of 50% is also analyzed, where the material distribution

is a direct extrusion from the original optimized sliding interface, as shown in Figure 5.14.
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(c) Metal - 2x2 layout

(a) Metal - 30% (b) Ceramic - 70%

(d) Cross-sectional material distribution

Within wear layer Directly above wear layer

Figure 5.13: Optimization results for Case Study 2 with a metal total volume fraction of
30%. (a,b) Unit-cell composite structure is shown in the quarter (left) and full (right) do-
mains, highlighting separately the metal (a) and ceramic (b) constituents. (c) 2-by-2 layout
of optimized unit-cell, showing only the metal. (d) Cross-sectional material distribution at
two selected positions: within the wear layer (left) and directly above the wear layer (right).
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Figure 5.14: Objective function results for Case Study 2 with metal total volume fraction
ranging from 20% to 80%. A reference case is included for comparison.

Figure 5.14 also plots the objective function versus the total volume fraction of metal

and displays several of the corresponding optimized composite structures (highlighting the

constituents separately: metal in blue and ceramic in yellow). The maximum temperatures

in both the metal and ceramic at the sliding interface are plotted against the metal volume

fraction in Figure 5.15. Generally, the optimized material distributions follow a common
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Figure 5.15: Maximum temperature in each material for Case Study 2 with a metal total
volume fraction ranging from 20% to 80% and reference case.

trend: above the wear layer, metal tends to be distributed on top of the ceramic and forms

connected conduction paths to the top face (heat sink).

Significant improvement in heat dissipation is observed by comparing the temperature

values of the optimized structures and also taking the reference case into consideration.

The average temperature at the sliding interface (Figure 5.14) of the reference case with

50% metal (542K) is higher than the multifunctional optimized structure with only 25%

metal (525K) as well as higher than the multifunctional optimized structure with 50% metal

(467K). The maximum temperature in the ceramic at the sliding interface (Figure 5.15) is

significantly reduced by the heat dissipation optimization compared to the wear-optimal

reference structure. In particular, the optimized structure with only 20% metal obtains

a maximum temperature of 850K, which is a 25% reduction compared to the reference

case with 50% metal (1132K). For the optimized structure with 50% metal (694K), there

is a 39% reduction of the maximum temperature compared to the reference case with the

same amount of metal. In addition, the average and maximum temperatures at the sliding

interface all decrease as the metal volume fraction is increased, but at a decreasing rate

with diminishing returns. After the metal volume fraction reaches up to 50%, adding more

135



metal in the domain only results in a small decrease in the temperatures, 467K (50%) -

451K (80%), which offers limited improvement in terms of heat dissipation capability. The

observation of the diminishing returns in heat dissipation improvement provides impor-

tant information for the design of tribological composites especially when cost or material

resources are critical factors.

5.3 Summary

A density-based topology optimization framework has been presented to design three-

dimensional bi-material composites for frictional heat dissipation associated with wear at

sliding interfaces. The first case study investigates the influence of design-dependent fric-

tional heat flux boundary conditions on the optimized designs for both metal/polymer and

metal/ceramic composites. It is found that the optimized composite designs highly de-

pend on the relative tribological and thermal properties as well as volume fractions of the

constituent materials. The results highlight the coupling between materials, the sliding

interface configuration (determines wear performance and frictional heat generation), and

the heat dissipation efficiency of the overall composite. This indicates the necessity to take

all related factors into design consideration for simultaneously addressing wear and thermal

design requirements. The second case study presents a sequentially coupled optimization

procedure where the sliding interface is prescribed and fixed based on a prior mechanical

wear-only optimization for minimal run-in volume loss. Metal/ceramic composites have

been optimized for the dissipation of design-independent frictional heat under different ma-

terial volume fraction constraints. It is observed that the improvements offered by increasing

the volume fraction of the high-conductivity material are subject to diminishing returns. In
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both case studies, significant reductions in both the average and maximum temperatures

can be achieved at sliding interfaces. This framework can provide guidance for the design

of tribological composites in order to more efficiently and effectively use available materials.
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Chapter 6

Conclusions and future work

Conclusions

This dissertation presents a systematic design framework for tribological composites. The

framework integrates efficient and accurate predictive wear models with topology optimiza-

tion to design composites that will meet ever more demanding multifunctional performance

requirements.

A promising foundation-based wear model has been extended to simulate wear of com-

posites in rotary sliding systems. The rotary wear model combines Archard’s wear equation

(with modifications for rotary sliding) with the Pasternak foundation model. The evolution

of key wear features including material volume loss, composite wear rate, and worn surface

profile predicted by the iterative simulation exhibit the experimentally observed transitions

from run-in to steady-state wear regimes. A direct solution method for steady-state rotary

wear performance has been developed and used to identify counterintuitive bi-material com-
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posite designs for minimal steady-state composite wear rates. This direct solution was used

to provide demonstrations of designing composite surfaces for target steady-state surface

profiles.

For composites subject to rotary wear, it is shown that the steady-state composite wear

rate depends both on the area fraction of each constituent and the in-plane material distribu-

tion. For rotationally symmetric bi-material composites with fixed material area fractions,

it is surprising that steady-state composite wear rates always reach minimum values when

placing the more wear-resistant material (having the lower wear rate of the two constituents)

towards the inner radius and the less wear-resistant material at the outer annulus edges.

This counterintuitive optimal design solution has been validated by experiments.

The foundation-based wear model has also been formulated into a generalized wear

simulation framework with improved accuracy and physical relevancy for both rotary and

linear wear systems. Improvements have been made through incorporating implicit bound-

ary conditions for the contact analysis, proposing an asymmetric elastic foundation model

for linear wear, and formulating an optimization-based calibration procedure for the elastic

foundation parameters (that are difficult to directly determine via experiment). The effec-

tiveness of the proposed framework has been demonstrated by examples on both rotary and

linear wear systems.

Analysis for the frictional heating associated with wear has been presented and in-

tegrated into a thermomechanical wear model through the incorporation of temperature-

dependent wear rates. An iterative simulation procedure, consisting of sequential contact

and frictional heat transfer analysis and wear calculations, has been established for thermo-

mechanical wear. It is seen that the composite surfaces predicted by this thermomechanical
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model undergo the typical transition from run-in to steady-state wear regimes despite the

complex coupling of contact, thermal, and wear processes.

A density-based topology optimization framework has been presented, for the first time,

to design three-dimensional bi-material composites for efficient dissipation of frictional heat-

ing with constraints on wear performance at sliding interfaces. Significant reductions in both

the average and maximum contact temperatures are achieved by the optimized composite

design. It is found that the optimal solutions are highly dependent on the relative tribolog-

ical and thermal properties as well as on the volume fractions of the constituent materials.

The results highlight the coupling between materials, the sliding interface configuration

(which determines wear performance and frictional heat generation), and the heat dissipa-

tion efficiency of the overall composite. In addition, a sequentially coupled optimization for

wear and frictional heat dissipation has been performed on metal/ceramic composites where

the material layout at the sliding interface is fixed based on a solution from a mechanical-

only wear optimization for minimal run-in volume loss. It is observed that the improvements

offered by increasing the volume fraction of the high-conductivity material are subject to

diminishing returns. This framework is used to guide the design of tribological composites

in order to more efficiently and effectively use available materials.

Future work

Future work should focus on tailoring and improving the modeling and design framework

for specific real-world applications. That is, the suitability of the models and assumptions

presented in Section 2.1 and Section 3.1 (for applications beyond chemical mechanical pol-

ishing [10] and dinosaur dentition [36,37]) must be considered on a case-by-case basis. For
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example, the elastic foundation models assume perfect and conformal contact between a

rigid wearing body and a fully compliant elastic abrasive counter-body. Alternative contact

models (such as viscoelastic foundation models) that are suitable for particular applications

could be introduced into the wear simulation framework presented in this dissertation.

Instead of assuming quasi-steady heat transfer, transient heat transfer analysis could be

performed to obtain the evolving thermal field within the sliding body, especially for high-

speed sliding systems. Additionally, the evolving geometry caused by material loss during

wear should be taken into account in the heat transfer analysis. Wear experiments with

specialized thermal measurements are needed to assess the established frictional heat trans-

fer analysis and obtain temperature-dependent wear rates of materials. Other thermally-

induced phenomena, such as thermal expansion and thermal stresses, could also be studied

based on the modeling framework established in this dissertation.

For the topology optimization component, alternative objective functions, such as the

maximum temperature at the sliding interface or in a particular material domain, could be

of interest. Multiobjective topology optimizations that simultaneously address wear and

frictional heat dissipation performance could be established. This would require a fully

coupled thermomechanical wear model. It is also of interest to consider the optimization

of frictional heating dissipation during the transient run-in wear regime which involves

dramatic changes in contact pressure and surface profile. Manufacturing constraints such

as minimum or maximum feature sizes and uncertainties could also be incorporated into

the optimization procedure for practical applications. Finally, the presented optimized

multifunctional composite designs could be fabricated and experimentally tested to validate

the topology optimization protocol for heat dissipation with wear constraints.
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