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Abstract

Robustness is an important characteristic of feedback controllers. Many systems

with non-linearities and parameter uncertainties usually require sufficient robustness

to stay stable. Robust control education is therefore very important for graduate

students. However, many educational programs in robust control are exclusively the-

oretical. This thesis work aims at designing and developing a user-friendly Graphical

User Interface (GUI) based on MATLAB for robust-control education based on a non-

linear and highly-coupled helicopter system. Although the control design method is

limited to the S/KS mixed-sensitivity method, it offers a convenient and ready-to-use

GUI for robust control design, dynamic response simulation, robust stability/robust

performance assessment, and control implementation. Users can generate the con-

troller by inputting parameters of two weighting functions. Linear and nonlinear sim-

ulations based on a discrete-time model are used to assess performance. Structured

singular values are used to assess robust stability and robust performance conditions

with three typical types of uncertainty. In the end, the designed controller can be

loaded into Simulink to control the actual helicopter device. This robust-control ed-

ucational experiment offers an easy way to test in practice fundamentals of robust

control theory.
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Chapter 1

Introduction

This chapter will present an introduction to robust control theory and the helicopter

control problem. Two aspects will be discussed:

• Development and history of robust control theory.

• Modeling and analysis of the three-degrees-of-freedom helicopter.

1.1 Robust Control Theory

In the early 1980s, as control theory matured, designers found a precise process model

was required when they wanted to design a controller. This requirement is usually too

strict because the mathematical model of a real system inevitably has errors. Such

errors come from the unknown or partially known parameters in the linear model,

the variation of operating conditions, the uncertain disturbance from outside or in-

side, and missing dynamics that usually happens at higher frequencies. Consequently,

when the controller is applied on the real system, the expected performance may not

be reached. Considering these disadvantages of control theory, designers started to

pay attention to control design problems of uncertain systems. The research in this

2



area evolves in two ways. One way is to assume that the process parameters are

unknown and time-variant. Adopting the separation design principle, designers need

to identify the parameters of the process first. Based on this adaptive control theory,

self-tuning control [1] and model reference adaptive control [2] was proposed. The

second way is to assume that the system is uncertain, but the range of uncertainty

is known in advance. The designed controller based on this method can guarantee

the real system is stable and will perform well within the uncertainty range. The

second method is called robust control theory [3–6], which developed from the 1980s

and has been deeply researched. In general, the early 1980s to 1987 was the devel-

opment period of robust control theory [7]. From the beginning of the 1980s, the

robust stable problem of controlled systems attracted research and attention in every

special problem domain. For example, in the adaptive control area, robust adap-

tive control theory was developed [1, 8]. In the optimal control area, robust optimal

control theory was developed. In particular, its important to point out that lots of

robust-control design problems can be converted into minimizing the H∞ norm of a

closed-loop system transfer function matrix [2,10–13]. This is an important result in

robust control theory, which provides a powerful tool for control analysis and design.

Consequently, the concept of robust stability has been broadly studied. It involves

control design problems in the frequency domain, time domain, continuous domain

and discrete domain. Therefore, it is impossible to summarize all research work on

robust control.

Robust control has been established as an important body of control-design theory,

especially for complex systems with model uncertainties and high order dynamics.

Consequently, research and education on robust control is an important component

of any graduate program in controls. This is why the overall goal of this thesis work

is to develop a control-design and simulation platform for implementation of robust

3



control algorithms in a real device (helicopter).

1.2 Definition and Description of the Helicopter

One of the objectives of this thesis is to design a robust controller for an autonomous

helicopter. A helicopter is defined as an aircraft where the body is lifted by rotating

propellers. Autonomous means that the helicopter can fly by itself without guidance

from a human being. The most common helicopters consist of two rotors, a main

rotor and a tail rotor. The main rotor provides the vertical thrust and the tail rotor

provides a horizontal thrust that counters the torque induced by the main rotor [14].

In this thesis, the helicopter that is modeled is a Boeing HC-1B Chinook as shown

in Fig. 1.1. This tandem rotor multi-functional helicopter has two engines and two

propellers and is mainly used for transport. The contra-rotating rotors structure gets

rid of the tail rotor. This structure allows the helicopter to lift vertically. One of the

advantages of the contra-rotating rotors structure is that the tail rotor is unnecessary

for balancing the torques from the main rotor, so that it is more effective than the

helicopters with tail rotor. Meanwhile, the disadvantage of this structure is that

two propellers must rotate synchronously to avoid a crash. The airflow produced

by the superimposed propellers may interrupt each other and lead to power loss.

Consequently, only a few kinds of helicopters adopt this structure.

4



Figure 1.1: Boeing HC-1B Chinook [19]

On the other hand, analyzing three degrees of freedom (DOF) helicopters has

attracted lots of attention from researchers [15]. The three DOFs helicopter control

system is a nonlinear and highly-coupled multiple-input and multiple-output (MIMO)

system with some unknown parameters and unmodeled dynamics. Several electrome-

chanical parameters and physical parameters are not clearly known. Therefore, the

anti-jamming ability and stability of this system are weak, which means that in order

to control such a system a robust controller must be implemented. Several robust

control techniques have been applied to this model, ranging from adaptive control to

state-space predictive control [16,17]. Considering that the H∞ is a popular method-

ology in robust-control design, we adopt the H∞ mixed sensitivity method in this

control-education experiment to design a trajectory tracking controllers.
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1.3 Thesis Proposal

An easy-to-use and time-saving helicopter experiment is presented for robust control

education purposes using a Graphical User Interface (GUI) in Matlab and a helicopter

device. The helicopter device, produced by Quanser, has three degrees of freedom

and is driven by two motors. Matlab/Simulink provides powerful built-in functions

for users to synthesize robust controllers easily and quickly. It is also good at plot-

ting simulation results and communicating with hardware devices. The GUI window

designed as part of this thesis allows users to adjust several parameters of the math-

ematical model, check the simulation results, assess the robust stability, and send

voltage signals from and to the helicopter through a data acquisition device. The

goal of this control-education experiment is to design a robust controller by the H∞

method, which can stabilize this helicopter device in theory based on the model, and

can be implemented on helicopter device to verify the robust stability in practice.

The outline of this thesis is stated below. Chapter 2 describes components of

the close-loop system, including mechanical components and hardware. Chapter 3

describes the mathematical model of the helicopter device and derives state-space

model. Chapter 4 describes the control-design method. Chapter 5 illustrates the

software program structure and the functions on the graphical user interface. Chap-

ter 6 presents experimental demonstrations using this GUI and Chapter 7 concludes

the thesis.

6



Chapter 2

Schematic of the System

This chapter will introduce the hardware devices of the robust control education

system. This robust control education system is composed of a helicopter device

from Quanser, a data acquisition (DAQ) card to communicate between a computer

and the helicopter, a joystick from Logitech and a Graphical User Interface (GUI)

designed in MATLAB for students to operate. The connection of hardwares is shown

in Fig. 2.1.

Figure 2.1: Connection Diagram of this Control-education Experiment
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2.1 The Helicopter Device

The helicopter device shown in Fig. 2.2, which simulates the Boeing HC-1B Chinook,

basically consists of a level, a counterweight and two direct-current motors. The

counterweight and the helicopter body, which is a small arm with one rotor at each

end, are installed on each end of the level. Two motors can lift the beam to rotate

around a pivot. The pose of this system can be described by three angles which are

named elevation, pitch and travel. These angles are measured by two incremental

encoders and a slip ring. Although this system cannot move in three directions freely,

it can rotate about three axes freely.

Figure 2.2: Helicopter Device [19]

The weight of the counterweight block is 1.87 kilograms. The distance between the

center of counterweight and the pivot of the level can be adjusted by dismantling the

screw on the counterweight and installing it in other positions. However, dismounting

and mounting the counterweight consumes significant time and effort. In order to

save time, students are not suggested to move the position of the counterweight. In

8



this control-education experiment, the parameters of the mathematical model can

be adjusted according to the actual configuration ( this topic will be discussed in

Chapter 5). In addition, the distance between the body of helicopter and the pivot

of the level can be adjusted as well.

The direct-current motor is a Pittman 9234S004-R1 servo motor. This is a brush

commutated motor and the nominal voltage of this motor is 12 volts. It drives a pro-

peller that has three blades. In our control-education experiment, it is assumed that

the force-thrust constant of the propeller is 0.1188 Newton per Volt. This constant

value is found experimentally. The real force-thrust value may vary with the oper-

ating condition especially at high frequencies. In this control-education experiment,

the first uncertainty is introduced by using this approximate value in our simplified

system model.

The incremental encoder is a two-channel optimal incremental encoder module.

The HEDS-9000 series are high performance, low cost, optical incremental encoder

modules. When used with a code-wheel, these modules can detect rotary position.

These modules consist of a lensed source and an ion chromatography detector en-

closed in a small C-shaped plastic package. Due to a highly-collimated light source

and unique photo-detector array, these modules are extremely tolerant to mounting

misalignment. The slip ring is for measuring the value of the travel angle. It has

the same function as the incremental encoder. The resolution of the pitch and the

elevation encoder is 2 × π/(4 × 1024) rad per count and the resolution of the travel

encoder is 2× π/(8× 1024) rad per count.
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2.2 Data Acquisition Device

To communicate between the computer and the helicopter, a data acquisition (DAQ)

card, a terminal board and a universal power module are installed, which are utilized

to transfer voltage signals to the motors and receive pulsing signals from the encoders

as well. The DAQ hardware acts as an interface between the computer and signals

from outside. It primarily functions as a device that digitizes incoming analog signals

so that a computer can interpret them. The three key components of a DAQ device

used for measuring a signal are the signal conditioning circuitry, analog-to-digital

converter (ADC), and computer bus. Many DAQ devices include other functions

for automating measurement systems and processes. For example, digital-to-analog

converters (DACs) output analog signals, digital I/O lines input and output digital

signals, and counter/timers count and generate digital pulses.

Figure 2.3: Data Acquisition Device [20]

The DAQ card we used in this robust control education system is a PCIe-6321

board produced by National Instrument as shown in Fig. 2.3, and it has two analog

output ports for the rotors. The maximum value of the analog output port is 10v.

However, the voltage signals from the DAQ will be amplified by two universal power

10



modules in order to meet the requirements of the motors and the gain is 5. Therefore

the output signals to the motors are restricted to under 2.4V. The DAQ card also has

three 32-bit counters/timers for the encoders, which are fast enough to generate 1 to

10 microsecond sampling time for real-time control purposes.

Figure 2.4: Terminal Board

The terminal board shown in Fig. 2.4is a connector which allows more than one

circuit to connect to another circuit. Our terminal board has a 68 pin male interface

to connect to the DAQ, three 5-pin interfaces for the encoders and two analog output

interfaces for the universal power modules. The universal power modules are shown

in Fig. 2.5
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Figure 2.5: Universal Power Module

2.3 Joystick

A joystick is an input device consisting of a stick that pivots on a base and reports its

angle or direction to the device it is controlling. A joystick, also known as the control

column, is the principal control device in the cockpit of many civilian and military

aircrafts, either as a center stick or a side-stick. It often has supplementary switches

to control various aspects of the aircraft’s flight.

The joystick we used in this robust control education system is a Attack 3 from

Logitech as shown in Fig. 2.6. The pose of the helicopter device can be set by three

angles or it can be controlled by the joystick. Although there are lots of buttons on

the joystick, only the stick to control the position of the helicopter is used in this

12



experiment. Pushing the stick forward decreases the elevation angle and pulling the

stick increases the elevation angle. In addition, pushing the stick to left side increases

the travel angle and pushing to right side decreases the travel angle.

Figure 2.6: Joystick [21]
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Chapter 3

Mathematical Model

This helicopter system has three degrees of freedom around the elevation-axis, pitch-

axis and travel-axis. The helicopter system architecture is shown in Fig. 3.1.

Figure 3.1: Helicopter Architecture Showing the Three Degrees of Freedom of the

System [19]

The pitch of the helicopter is the rotation around an axis parallel to the level.
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The elevation axis is defined as an axis parallel to the helicopter body, at the base

coordinate frame. The travel axis is defined as a vertical line at the base coordinate

frame perpendicular to the elevation axis.

• The helicopter is horizontal when the elevation angle equals ε = 0.

• The travel angle increases positively, λ(t) > 0, when the body rotates in the

counter-clockwise (CCW) direction.

• The pitch angle is positive, ρ(t) > 0, when the front motor is higher than the

back motor.

3.1 The Euler-Lagrange Method

The Euler-Lagrange equation, or Lagrange’s equation, is a fundamental equation in

multi-body dynamics. It was developed by Swiss mathematician Leonhard Euler and

Italian-French mathematician Joseph-Louis Lagrange in the 1750s. When compared

with the classical mechanics, the Euler-Lagrange equation is equal to Newton’s law

of motion, but it has an advantage in that it takes the same form in any system of

generalized coordinates.

The Euler-Lagrange equation in mechanics is given by

d

dt
(
∂ T

∂ q̇j
)− ∂ T

∂ qj
= Qj (j = 1, 2, · · · , k), (3.1)

where T is the kinetic energy with respect to the generalized coordinate qj and the

generalized velocity q̇j, and where Qj are the generalized forces with respect to qj.

15



3.2 Nonlinear Model

By using the Euler-Lagrange method, the nonlinear equations of motion of the 3 DOF

helicopter system can be derived. The angular acceleration components are



ε̈ =
LaKf

2mf (L2
a + L2

h sin(ρ)2) +mwL2
w

(u1 + u2) cos(ρ)

ρ̈ =
Kf

2mfLh
(u1 − u2)

λ̈ =
(2Lamf − Lwmw)g

2mf (L2
a cos(ε)2 + L2

h sin(ρ)2 sin(ε)2 + L2
h cos(ρ)2) +mwL2

w cos(ε)2
tan(ρ)

(3.2)

and the symbols used in Eqs. (3.2) are described in Table 3.1.

Symbol Unit Description

u1 Volt Voltage applied to the front motor

u2 Volt Voltage applied to the back motor

mf kg Mass of front propeller assembly = motor + shield + propeller + body

mw kg Mass of the front section of the helicopter

La m The distance from the pivot point to the helicopter body

Lw m The distance from the pivot point to the counterweight

Lh m The distance from the pitch axis to either motor

Kf N/V Propeller force-thrust constant found experimentally

Table 3.1: Physical Parameters of the 3 DOF Helicopter Device

3.3 Linearized State-Space Model

Since the H∞ robust-control method requires a linear model to represent the system,

the nonlinear mathematical model must be linearized around an equilibrium point.

Here we assume that the equilibrium point occurs at the horizontal position, which

16



means that the elevation angle ε and the pitch angle ρ are both approximately zero.

Thus, sin(ρ) ≈ 0, cos(ρ) ≈ 1, sin(ε) ≈ 0, cos(ε) ≈ 1, and tan(ρ) ≈ ρ. The linear

state-space model

ẋ = Ax+Bu

y = Cx+Du
(3.3)

is obtained by linearizing the nonlinear dynamics around the ε = ρ = 0.

The state vector for the 3 DOF is defined as the Eq. (3.4):

xT = [ε, ρ, λ,
d

dt
ε,
d

dt
ρ,
d

dt
λ]. (3.4)

The output vector is

yT = [ε, ρ, λ],

and the input vector is

uT = [Vf , Vb],

where Vf is the voltage signal to the front rotor and Vb is the voltage signal to the

back rotor.

The corresponding helicopter state-space matrices are

Ā =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 − (Lwmw−2Lamf )g

mwLw
2
+2mfL

2
h+2mfLa

2 0 0 0 0
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B̄ =



0 0

0 0

0 0

LaKf

2mfLa
2
+mwLw

2

LaKf

2mfLa
2
+mwLw

2

Kf

2mfLh
− Kf

2mfLh

0 0



C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 , and

D =


0 0

0 0

0 0

 , (3.5)

where La, Lw and mw are the nominal values of the corresponding parameters.

3.4 Modeling of the Parametric Uncertainty

As mentioned in section 2.1, a model modification window is designed for users to

adjust some parameters in the mathematical model in order to represent paramet-

ric uncertainty. If the parameters of the mathematical model are changed, these

parameters on the actual system become the ‘error’ one.

La = La(1 + PLaδ) Lw = Lw(1 + PLwδ) mw = mw(1 + Pmwδ)

where PLa, PLw, Pmw are the maximum relative uncertainty in each of these physical

parameters and δ is any real scalar satifying |δ| ≤ 1. For example, the nominal value

18



of the distance from the elevation pivot to the helicopter body (La) is 26 ft. If this

value in the mathematical model is changed from the nominal value to another value,

i.e. 22 ft, the PLa = Lamax−La

La
= 26−22

22
≈ 0.18.

The state-space for the plant with uncertainty is

A′ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 − (Lwmw(1+Pmwδ)(1+PLwδ)−2La(1+PLaδ)mf )g

mwLw
2
(1+PLwδ)2(1+Pmwδ)+2mfL

2
h+2mfLa

2
(1+PLaδ)2

0 0 0 0


and

B′ =



0 0

0 0

0 0

LaKf (1+PLaδ)

2mfLa
2
(1+PLaδ)2+mwLw

2
(1+PLwδ)2(1+Pmwδ)

LaKf (1+PLaδ)

2mfLa
2
(1+PLaδ)2+mwLw

2
(1+PLwδ)2(1+Pmwδ)

Kf

2mfLh
− Kf

2mfLh

0 0


.

(3.6)

Matrices C and D are the same as those in the nominal model.
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Rewrite matrices Ā and B̄ in Eqs. (3.5) as

Ā =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 −ᾱ 0 0 0 0


and

B̄ =



0 0

0 0

0 0

β̄1 β̄1

β2 β2

0 0


where ᾱ =

(Lwmw−2Lamf )g

mwLw
2
+2mfL

2
h+2mfLa

2 , β̄1 =
LaKf

2mfLa
2
+mwLw

2 and β2 =
Kf

2mfLh
.

Matrices A′ and B′ can also be rewritten as

A′ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 −α′ 0 0 0 0


and
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B′ =



0 0

0 0

0 0

β′1 β′1

β2 β2

0 0


where α′ and β′1 are the parameters with uncertainty. Therefore the transfer function

is

G′m = C(sI − A′)−1B′

= C



s 0 0 −1 0 0

0 s 0 0 −1 0

0 0 s 0 0 −1

0 0 0 s 0 0

0 0 0 0 s 0

0 α′ 0 0 0 s



−1

B′

= C



1
s

0 0 − 1
s2

0 0

0 1
s

0 0 − 1
s2

0

0 α′

s3
1
s

0 −α′

s4
− 1
s2

0 0 0 1
s

0 0

0 0 0 0 1
s

0

0 −α′

s2
0 0 α′

s3
1
s


B′

=


−β′

1

s2
−β′

1

s2

−β2
s2

β2
s2

−β2α′

s4
β2α′

s4

 .
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The nominal state-space can be written as

Gm =


− β̄1
s2
− β̄1
s2

−β2
s2

β2
s2

−β2ᾱ
s4

β2ᾱ
s4

 .

The relationship between G′m and Gm is

G′m = (I + ∆(s))Gm (3.7)

where and ∆(s) is a description of the uncertainty. Assuming

∆(s) =


a b c

l m n

r p q

 ,

the Eq. (3.6) can be rewritten as


−β′

1

s2
−β′

1

s2

−β2
s2

β2
s2

−β2α′

s4
β2α′

s4

 =


a b c

l m n

r p q



− β̄1
s2
− β̄1
s2

−β2
s2

β2
s2

−β2ᾱ
s4

β2ᾱ
s4

 .

There are 9 unknowns and 6 equations, thus there are 3 free variables in the

solution of ∆(s). The solution is

∆(s) =


β′
1

β̄1
− 1 − cᾱ

s2
c

0 −nᾱ
s2

n

0 α′−qᾱ
s2

q − 1

 ,
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where c, n and q are free variables.

3.5 Modeling of the Unstructured Uncertainty

In this control-education experiment, users can choose different types of unstructured

uncertainty from three typical types. Additive uncertainty, multiplicative input un-

certainty, and multiplicative output uncertainty are alternative options. Their models

are shown in Fig. 3.2-Fig. 3.4.

Figure 3.2: Additive Uncertainty Model [22]

Figure 3.3: Multiplicative Input Uncertainty Model [22]
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Figure 3.4: Multiplicative Output Uncertainty Model [22]

In many cases, various sources of unstructured uncertainty can be lumped into

one form and the equations that represent these forms are:

Additive uncertainty Gp(s) = G(s) + wA(s)∆a(s) ‖∆a‖∞ ≤ 1

Multiplicative input uncertainty Gp(s) = G(s)(I + wI(s)∆I(s)) ‖∆I‖∞ ≤ 1

Multiplicative output uncertainty Gp(s) = (I + wO(s)∆O(s))G(s) ‖∆O‖∞ ≤ 1

where ∆A, ∆I or ∆O are any stable transfer functions that have a magnitude less

than or equal to 1 for all frequencies. wA(s), wI(s), or wO(s) are the weighting

functions.
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Chapter 4

Control Design

This chapter illustrates the general model and the mixed-sensitivity H∞ method used

for control design.

4.1 General Model

The method used to synthesize the controller is the S/KS mixed-sensitivity H∞

method. The standard form of the S/KS mixed-sensitivity optimization is shown

in Fig. 4.1, where w is the reference or set-point, z is the error signals, v is the error

between reference and output, and u is the voltage signal to helicopter. z1 = W1(r−y),

z2 = W2u, and y is the output. K represents the designed controller, G represents

the helicopter device, and W1, W2 are weighting functions.
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Figure 4.1: S/KS Mixed-sensitivity Minimization in Standard Form [23]

The objective is to find a stabilizing controller that minimizes Eq. (4.1). K rep-

resents the controller in the equation S = (G+K)−1, and G is the helicopter transfer

function. S is the transfer function of the closed-loop matrix from the reference w to

the tracking error v, and KS is the transfer function between the reference w to the

control signals u. ∣∣∣∣∣
∣∣∣∣∣
 W1S

W2KS

 ∣∣∣∣∣
∣∣∣∣∣
∞

(4.1)

In this control-education experiment our system is a MIMO system, therefore the

weighting functions W1 and W2 are matrices. In addition, the weighting functions

are defined as diagonal matrices. Every diagonal element weights the respective error

from the reference set-point of the transfer function. The close-loop system is a

3 input, 3 output system, and the controller is a 3 input, 2 output system. The
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weighting functions W1 and W2 can be written as in Eqs. (4.2).

W1 =


W11 0 0

0 W12 0

0 0 W13

 W2 =

W21 0

0 W22

 (4.2)

In general, the W1i and W2i are written as first-order transfer functions because

it is simple and effective. The standard form for the elements in the W1 and W2 can

be written as s/M+ωB

s+ωBA
. In this control-education experiment we also select first-order

transfer functions as weighting functions. We rewrite it as ai
s+bi
s+ci

because this form

is simple. bi and ci represent zeros and poles in the weighting functions. The gain at

higher frequencies and lower frequencies can be easily observed in this form.

The program to synthesize the controller is ‘hinfsyn’ in MATLAB, which gener-

ates the H∞ optimal controller for the linear time-invariant (LTI) plant. First, the

weighting functions are combined with the model of the helicopter, and the general

control configuration is shown in Fig. 4.2.

Figure 4.2: General Control Configuration [23]
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It is not difficult to show that the generalized plant P is

P11 =

W1

0


P21 = I

P12 =

−W1G

−W2


P22 = −G

, (4.3)

where the partitioning is such that:


z1

z2

v

 =

P11 P12

P21 P22


w
u

 .

Second, apply the ‘hinfsyn’ function to the generalized plant P. It determines

a (sub)optimal H∞ control law based on the prescribed open-loop interconnection.

The default method is a standard 2-Riccati method [24]. The controller is returned in

state-space form, therefore the simulation based on the discrete-time finite difference

method can be calculated.

4.2 Selecting Weighting Functions

Selecting weighting functions is very important in the H∞ control design process

because it directly influences the results. Although there are some simple rules for

the selection of the weighting functions during the control design, the process is quite

subjective.

As mentioned before, S(s) = (I+GK)−1 is the transfer function of the closed-loop

matrix from the reference w to the tracking error v. For good tracking accuracy in

each of the integral outputs the sensitivity function is required to be small. In tuning

W1 it is found that a finite attenuation at high frequencies is useful in reducing
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overshoot. Therefore, the gain of the weighting function W1 should be larger at lower

frequencies. KS is the transfer function between the reference w to the control signals

u. By limiting the input magnitudes at high-frequencies, the closed-loop bandwidth

can be limited. The low-frequency gain of W2 should be small to ensure that the

cost function Eq. (4.1) is dominated by W1 at low frequencies. The high-frequency

gain of W2 can be increased to limit fast actuator movement. In other words, W1 are

high-gain low-pass filters and W2 are high-pass filters.
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Chapter 5

Software Structure

In general, there are five steps in control design:

1. Analysis of the problem

2. Modeling of the plant and determination of parameters

3. Design of controller

4. Simulation testing and performance assessment

5. Experimental testing

In this control-education experiment, we can refine these steps and illustrate them in

Fig. 5.1.
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Figure 5.1: Flowchart of the Control-design Process in this GUI

Before designing a controller for a system, it is necessary to have a valid math-

ematical model of the plant. Since this helicopter system is a highly-coupled and

31



nonlinear system, it may be difficult for users to model this plant rapidly and prop-

erly. In this control-education experiment the mathematical model of the helicopter

device is already provided. The approximate values of the physical model parame-

ters are provided too. The main objective for users is to design a robust controller

rather than to model the plant. Consequently, the first and the second steps in the

robust-control design have been carried out in advance.

For user-friendliness, we designed a GUI using the related functions in Matlab.

The GUI module in Matlab provides point-and-click control of software applications,

eliminating the need to learn a language or type commands in order to run the

application. By utilizing the GUI module, students can save time in programming.

Matlab provides widgets such as Button, Edit Text, Static Text, and Axes. In this

thesis work, the GUI screen is composed by the following windows:

1. Initial Condition and Set-point Window

2. Weighting Functions Window

3. Model Adjustment Window

4. Assumptions Check Window

5. Simulation Window

6. Experimental Results Window

7. Robust Stability and Performance Window

The GUI screen also has several buttons for users to operate as shown in Fig. 5.2.

In the GUI screen, the controller can be synthesized based on the inputs from users.

The set points or references can also be specified. The real-time pose is measured

by encoders and loaded into the GUI by the DAQ. The error between the set points
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and the real-time pose are inputted into the controller. Then, the controller sends

voltage signals to the mathematical model in the GUI or the DAQ in order to analyze

closed-loop performance either in simulations or in experimental tests as shown in Fig.

5.3.

Figure 5.2: Appearance of the GUI

Figure 5.3: Structure of Software
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5.1 Initial Condition and Set-point Window

In the initial condition and set-point window, as shown in Fig. 5.4, users can adjust

the initial condition of the elevation, pitch and travel angles in simulation. Con-

sidering the real helicopter device is placed on a table, the initial elevation angle is

approximately -27.5 degrees. Therefore, the default initial condition of the elevation

angle is -27.5 degrees.

Users can also adjust the set-point angle of elevation and travel in this window

for simulation. The pitch angle is controlled to zero at all times. The set-point of the

elevation and travel angles can be set as a square wave with three options: frequency,

mean value, and amplitude. The maximum value of a wave signal is equal to the

mean value plus the amplitude. Since this system is highly-coupled and nonlinear,

we assume that the equilibrium point is zero when linearizing the system dynamics.

The maximum value or the mean value of the elevation angle is suggested to be zero.

The set-point of the travel angle should not be set as zero in the simulation. The

real helicopter device cannot maintain travel angle at zero at the beginning because

of uncertainty and disturbance. During the experiment, we recommend users to raise

the set-point of the travel angle from thirty to fifty.

Figure 5.4: Appearance of the Initial Condition and Set-point Window
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5.2 Weighting Functions Window

In the weighting functions window, users can adjust the parameters of weighting

functions. As explained in section 4.1, Zi represent zeros for each i = 1, ..., 5 and Pi

represent poles for each i = 1, ..., 5. The parameters a, b, c, d, and e are the gains

at high-frequencies. For example, a ∗ (s + Z1)/(s + P1) is W11 in Eqs. (4.2). The

appearance of the weighting function window is shown in Fig. 5.5

Figure 5.5: Appearance of the Weighting Functions Window

5.3 Model Adjustment Window

Although the actual helicopter device and the mathematical model provided by

Quanser definitely have differences, those differences are subtle. On the other hand,

the helicopter device is hard to change. Dismounting and assembling the helicopter

in order to change the parameters is time-consuming. Since our goal is to design a

device for educational purposes, this apparatus should be convenient to use. Students

should not consume significant time on assembly and disassembly. Therefore, we de-

signed a model adjustment window as shown in Fig. 5.6, which allows students to

change some parameters of the mathematical model with the purpose of magnifying

the differences between the model and the actual system. Among all the parameters

in state space equations, some parameters cannot be adjusted, such as the propeller
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force-thrust constant and motor current-torque constant. Some parameters’ adjust-

ments are not obvious, such as the distance between the pitch pivot and each motor.

Therefore, in this control-education experiment, we selected three parameters which

users can adjust: the mass of counter-weight (mw), the distance between elevation

pivot to helicopter body (La) and the distance between elevation pivot to counter-

weight (Lw). Users can adjust these parameters at the same time or individually in

order to represent the parametric uncertainty. In this GUI, Matlab can synthesize a

robust controller with the ‘hinfsyn’ function based on the length or weight parameters

entered by users, and then plot the close-loop dynamic response of three angles in two

ways: the first one is based on the model, which is modified by users, and the second

one is based on the precise model provided by Quanser. The first one is represented

by green line and the second one is represented by red line in the simulation result.

The appearance of the model adjustment window is shown in Fig. 5.6 and the values

in this figure are the nominal values.

Figure 5.6: Appearance of the Model Adjustment Window
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5.4 Assumptions Check Window

Recalling that the generalized plant P in Eqs. (4.3). The state-space matrices of P

can be obtained by converting the transfer functions Eqs. (4.3) to the state-space

form in MATLAB. The state-space of P is

P =

A B

C D

 , (5.1)

where A is a 11× 11 matrix and D is a 8× 5 matrix. Rewrite Eq. 5.1 as

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 ,

where inputs to B2 are the control inputs, and outputs of C2 are the output measure-

ments provided to the controller. Therefore, B2 is a 11× 2 matrix and C2 is a 3× 11

matrix.

In the H∞ problem, some assumptions are typically made in order to solve such

problem. Among all assumptions, two assumptions are the most important. The first

one is that (A,B2, C2) is stabilizable and detectable and the second one is thatD12 and

D21 have full rank. The first assumption is required for the existence of a stabilizing

controller K, and the second assumption is sufficient to ensure the controllers are

proper and hence realizable. Because of this, we designed a window in the GUI

for users to check these two assumptions before they start synthesizing a controller.

The method is to calculate the eigenvalues of matrix A first and then to apply the

Popov-Belevitch-Hautus test to every eigenvalue. The next step is to check whether

all unobservable or uncontrollable modes are stable. If so, that means the matrix
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(A,B2, C2) is stabilizable and detectable. It is much easier to test whether D12 and

D21 have full rank or not. The appearance of the assumptions check window is shown

in Fig. 5.7.

Figure 5.7: Appearance of the Assumptions Check Window

5.5 Simulation Window

After clicking on the “Simulation” button, the user’s input is loaded, and the linear

or nonlinear simulation results for these three angles are returned. There are two

buttons to determine which one is plotted. The appearance of the simulation window

is shown in Fig. 5.8.

Figure 5.8: Appearance of the Simulation Window
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The simulation results are calculated by the finite difference method. Since the

state-space models of the controller and the helicopter are known, we can calculate

the outputs of these two blocks based on the inputs and the state-space matrices.

The discrete equations for the controllers are shown in Eqs. 5.2.


xi+1 − xi

∆t
= AK ∗ xi+1 +BK ∗ (ri − yi)

ui+1 = CK ∗ xi+1

. (5.2)

This is the implicit expression, and it can be rewritten as:


xi+1 = (I −∆t ∗ AK)−1 ∗ (xi + ∆t ∗BK ∗ (ri − yi))

ui+1 = CK ∗ xi+1

,

where ri is the reference or set point, yi is the output of the helicopter, and ∆t is the

time step. (AK , BK , CK) are the matrices of controller’s state-space model, and ui is

the voltage signal from controller to the rotors. The max value of the voltage signal

is limited to 12V because the nominal voltage of the motor we use is 12V. These

variables are defined in Eqs. 5.3. ε is the elevation angle, ρ is the pitch angle, and λ

is the travel angle. Vf is the voltage signal to the front rotor, and Vb is the voltage

signal to the back rotor.

ri =


εi

ρi

λi


d

yi =


εi

ρi

λi

 Vi =

Vf
Vb


i

(5.3)

For the linear simulation, the discrete-time equations for the helicopter model are
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shown in Eqs. 5.4. 
xi+1 − xi

∆t
= AG ∗ xi+1 +BG ∗ ui

yi+1 = CG ∗ xi+1 +DG ∗ ui
(5.4)

This is an implicit expression as well and can be rewritten as


xi+1 = (I −∆t ∗ AG)−1 ∗ (xi + ∆t ∗BG ∗ ui)

yi+1 = CG ∗ xi+1 +DG ∗ ui
,

where (AG, BG, CG, DG) are the matrices of the helicopter’s mathematical models in

state-space form . They represent Eqs. (3.5) or Eqs. (3.6).

For the nonlinear simulation, the relationship between the input voltages and the

position cannot be written as a state-space. Therefore, the relationship between the

input voltages and the position can be written as the nonlinear model Eqs. (3.2)

in section 3.2. The discrete-time acceleration can then be calculated. The angular

velocity and the angle can be derived as well.


ε̇

ρ̇

λ̇


i

=


ε̇

ρ̇

λ̇


i−1

+


ε̈

ρ̈

λ̈


i

∆t


ε

ρ

λ


i

=


ε

ρ

λ


i−1

+


ε̇

ρ̇

λ̇


i

∆t

In this control-education experiment, the time step is 0.01 seconds, and the num-

ber of steps is six thousand. Since we use the implicit method, it returns meaningful

results.
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5.6 Experimental Results Window

When users confirm that the system is stable under these weighting functions, they

can utilize the “Start” button, as shown in Fig. 5.2, to load the controller into the

workspace, implement the controller, activate the Simulink model, and control the

actual helicopter device. When actual helicopter device is stopped by users, all the

pose information recorded by the encoders is saved in the workspace of MATLAB.

Users can plot the control results in this window by clicking the “Real” button. The

appearance of it is shown in Fig. 5.9.

Figure 5.9: Appearance of the Experimental Results Window

5.7 Robust Stability and Performance Window

In the robust stability and performance window, users can assess the robust stability

and performance condition by structured singular values. In this control-education

experiment, we assume the types of unstructured uncertainty only belong to three

different types, multiplicative input uncertainty, multiplicative output uncertainty,

and additive uncertainty, because these three types are typical uncertainties that exist

in almost every system. For example, the multiplicative input uncertainty can reflect

the noise in voltage signals, the errors from amplifying modules, and the disturbance

from outside of our devices. Users can select which type of uncertainty they want in

Fig. 5.12.
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Figure 5.10: M∆-Structure for Robust Stability Analysis

Once we assume the type of unstructured uncertainty, the general control config-

uration can be calculated easily. Then the M∆-structure, as shown in Fig. 5.10, can

be obtained as well. We use the small-gain theorem

RS ←→ µ(M) < 1 ∀ω,

where µ(M) is the structured singular value of M . The calculation of µ makes use of

the fact that ∆ has a given block-diagonal structure, where certain blocks may also

be real. We defined robust performance (RP) as ‖Fu(N,∆)‖∞ < 1 for all allowed ∆’s,

where N is shown in Fig. 5.11. Since we used the H∞ norm in both the representation

of uncertainty and the definition of performance, we found that RP could be viewed

as a special case of RS, and we derived

RP ←→ µ(N) < 1 ∀ω,

where µ is computed with respect to the block-diagonal structure diag{∆, ∆p}. Here

∆ represents the uncertainty, and ∆p is a fictitious full uncertainty block representing

the H∞ performance bound.
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Figure 5.11: N∆-Structure for Robust Performance Analysis

In the robust stability and performance window, the Wi represents the weighting

function of unstructured uncertainty, such as wA, wI and wO in Fig. 3.2-Fig. 3.4. The

default value of Wi in our experiment is 0.5∗s+0.05
s+1

. This implies a relative uncertainty

of up to 5% in the low-frequency range, which increases at high-frequency range,

reaching a value of 50%. The increase in frequency compensates for various neglected

dynamics associated with the actuator. The Wi showed in the robust stability and

robust performance window is a scalar, but it represents the uncertainty matrix.

Depending on the type of uncertainty users choose, this matrix can be written as a 2

× 2, 3 × 3 or 3 × 2 matrix as follows:

Wi ∗

1 0

0 1

 or Wi ∗


1 0 0

0 1 0

0 0 1

 or Wi ∗


1 0

0 1

0 0


Wp are the weighting functions of performance, which is defined as the pose of the

helicopter. The default value of Wp is s/0.5+0.05
s+1

. Consequently, the weighting function

Wp is a 3 × 3 diagonal matrix. The three weighting functions in the diagonal are the

corresponding angles. Although the weighting functions of corresponding angles can
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be different, it can be simplified by assuming the weighting functions of three angles

are the same. Thus, similar to the weighting functions of uncertainty, Wp is defined

as in Eq. 5.5 for three different types of uncertainty.

Wp ∗


1 0 0

0 1 0

0 0 1

 (5.5)

Users can also adjust the parameters of Wi and Wp in order to understand the

meaning of weighting functions of uncertainty. When users click on the check button,

the curves, which represent robust stability and robust performance, will be plotted.

The appearance of the robust stability and performance window in shown in Fig. 5.12.

Figure 5.12: Apperance of the Robust Stability and Performance Window
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Chapter 6

Experimental Demonstrations

In order to demonstrate this robust control education system, we tested several con-

trollers synthesized on our GUI. Some pre-lab work should be done before using the

GUI, such as getting the mathematical model of the helicopter and analyzing the posi-

tion of poles and zeros. Since the weighting functions may forge the close-loop system

as the user’s requirements, we always require the system to have good-tracking and

disturbance rejection. Selecting weighting functions should follow the rules mentioned

in section 4.2.

6.1 Stabilizing the Nominal Plant

First, we select two weighting functions as shown in the first group below:

First group: W1 =


5 ∗ s+7

s+0.5
0 0

0 5.5 ∗ s+7
s+0.5

0

0 0 5 ∗ s+7
s+0.5

 and
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W2 =

0.5 ∗ s+1
s+10

0

0 0.5 ∗ s+1
s+10

 .
In the assumption check window, after clicking on the “Check” button, the GUI

shows that “(A, B2, C2) is stabilizable and detectable” and “D12 and D21 have full

rank” as in Fig. 6.1, which means this generalized plant satisfies the assumptions.

Figure 6.1: Demo of the Assumptions Check Window

The initial conditions and set-points are configured as in Fig. 6.2. The reasons

were explained in section 5.1.

Figure 6.2: Demo of the Initial Conditions and the Set-points
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The simulated dynamic response of the control system is plotted on the monitor

automatically when users click on the “Simulation” button. The linear and nonlinear

simulation results are shown in Fig. 6.3 and Fig. 6.4.

Figure 6.3: Linear Dynamic Response Simulation of the First Group

Figure 6.4: Nonlinear Dynamic Response Simulation of the First Group

Apparently, this close-loop system is unstable, because the gain for W1 and W2

at lower frequencies is too small. When adjustments are made, the second group

weighting functions are:

Second group: W1 =


10 ∗ s+100

s+0.01
0 0

0 30 ∗ s+100
s+0.01

0

0 0 0.1 ∗ s+100
s+0.01

 and
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W2 =

200 ∗ s+0.001
s+10

0

0 200 ∗ s+0.001
s+10

 .
W1 is a low-pass filter and W2 is a high-pass filter, which satisfies the requirement

in section 4.2. In this example, the poles and zeros are the same in each matrix

entry. It is not necessary in this form, but it is already sufficient to produce proper

controllers. The parameters of the weighting functions can be changed easily in the

weighting functions window. The linear and nonlinear simulations are shown in Fig.

6.5 and Fig. 6.6. From the graphs, users can confirm stability.

Figure 6.5: Linear Dynamic Response Simulation of the Second Group

Figure 6.6: Nonlinear Dynamic Response Simulation of the Second Group
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6.2 Adjusting Mathematical Model

In the model modification window, users can adjust three parameters of this system.

These represent the parametric uncertainty. Although the uncertainty should be a

range, the difference between the precise parameters and the modified parameters can

be considered as the worst case.

Taking the distance between elevation pivot to helicopter body (La) as an example,

we adjust La from 26 ft to 25 ft and use the second controller designed in the last

section for stabilizing the nominal plant. The linear and nonlinear simulation results

are shown in Fig. 6.7-6.8.

Figure 6.7: Linear Dynamic Response Simulation of the Second Group with La = 25

Figure 6.8: Nonlinear Dynamic Response Simulation of the Second Group with La =

25

In these figures, the red line represents the simulation results based on the precise
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model and the green line represents the simulation results based on the modified

model. From these figures, we can identify that the dynamic response of the green

line is better than that of the red line, and both of them are stable, which means that

the controller based on the modified parameters can control both the modified model

and the precise model.

If we keep enlarging the range of uncertainty by decreasing the La from 25 ft to

23 ft and generate the simulation results as well, we can get the results as shown in

Fig. 6.9 and Fig. 6.10.

Figure 6.9: Linear Dynamic Response Simulation of the Second Group with La = 23

Figure 6.10: Nonlinear Dynamic Response Simulation of the Second Group with

La = 23

These results indicate that the controller design based on the modified parameter

can control the modified model with difficulties, and the linear simulation of the
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system with ‘uncertainty’ is not good.

In order to control both these systems, we need to select new weighting functions.

The third group of weighting functions are shown below.

Third group: W1 =


10 ∗ s+100

s+0.01
0 0

0 30 ∗ s+100
s+0.01

0

0 0 0.1 ∗ s+100
s+0.01

 and

W2 =

250 ∗ s+0.001
s+20

0

0 250 ∗ s+0.001
s+20

 .
We also generated controllers based on these weighting functions and got the simula-

tion results, as shown in Fig. 6.11 and Fig. 6.12.

Figure 6.11: Linear Dynamic Response Simulation of the Third Group with La = 23
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Figure 6.12: Nonlinear Dynamic Response Simulation of the Third group with La =

23

This result indicates that the controller, based on La = 23 ft, can control both

the modified model and the real system with ‘uncertainty’. It also means that this

controller can tolerate approximately 9% uncertainty for La.

Users can handle the other two parameters (mw and Lw) in this way as well. Users

can also change more than one parameter simultaneously.

6.3 Assessing Robust Stability and Performance

In this section, the objective is to design a controller that can satisfy robust stabil-

ity and robust performance. In order to simplify this process, we assume that the

parametric uncertainty is negligible and focus on the unstructured uncertainty.

First, we assume that the weighting function of uncertainty is default (Wi =

0.5∗s+0.05
s+1

,Wp = s/0.5+0.05
s+1

) and select the fourth group weighting functions shown be-

low:

fourth group: W1 =


200 ∗ s+100

s+0.01
0 0

0 200 ∗ s+100
s+0.01

0

0 0 10 ∗ s+100
s+0.01

 and
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W2 =

500 ∗ s+0.1
s+10

0

0 500 ∗ s+0.1
s+10

 .
The simulation results are shown in Fig. 6.13 and Fig. 6.14.

Figure 6.13: Linear Dynamic Response Simulation of the Fourth Group

Figure 6.14: Nonlinear Dynamic Response Simulation of the Fourth Group

The multiplicative input uncertainty type is selected. After clicking on the “Check”

button in the RS and RP window, the results of µ analysis are shown in Fig. 6.15.
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Figure 6.15: µ-analysis Results of the Fourth Group

The maximum value of µ in the bode plot is greater than zero, which means the

µ(M) > 1 and the closed-loop system does not satisfy robust stability. Therefore, we

must design new weighting functions, as the fifth group shows below:

Fifth group: W1 =


20 ∗ s+100

s+0.01
0 0

0 60 ∗ s+100
s+0.01

0

0 0 0.1 ∗ s+100
s+0.01

 and

W2 =

200 ∗ s+0.1
s+10

0

0 200 ∗ s+0.1
s+10

 .
The simulation results and the results of µ analysis are shown in Fig. 6.16-Fig.

6.18.
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Figure 6.16: Linear Dynamic Response Simulation of the Fifth Group

Figure 6.17: Nonlinear Dynamic Response Simulation of the Fifth Group

Figure 6.18: µ-analysis Results of the Fifth Group(a)

The maximum value of µ(M) is smaller than 1, so the robust stability is satisfied
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for all frequencies. Meanwhile, under this condition, the RP is higher than 1 for all

frequencies, which means that the robust performance is not satisfied for all frequen-

cies. If users adjust the parameters of Wp to s/20+0.05
s+1

, which means 5% uncertainty

at low frequency and 5% uncertainty at high frequency, and then generate the bode

plot again, all values are smaller than zero, which means the RS and RP are satisfied

for all frequencies. The bode plot is shown in Fig 6.19.

Figure 6.19: µ-analysis Results of the Fifth Group(b)

Users can design a controller to satisfy robust stability and robust performance for

specified weighting functions (Wi and Wp) and uncertainty type such as multiplicative

output uncertainty and additive uncertainty.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This contribution presents a user-friendly Graphical Users Interface for students to

focus on studying robust-control design rather then debugging the system itself. The

system to be controlled is a three degrees of freedom helicopter model, which is anal-

ogous to a tandem rotor helicopter, such as the Boeing HC-1B Chinook, commonly

used by engineers. This education system minimizes the effort required to program

in MATLAB and Simulink for control design, simulation, and analysis. The math-

ematical model of the helicopter and the uncertainty is briefly described for users

to comprehend the control design process. The Graphical User Interface also al-

lows students to change some parameters in the mathematical model and to assess

the influence of variant parametric uncertainty easily and quickly without adjust-

ing the real device. The H∞ mixed-sensitivity method is implemented to synthesize

the controller. Unstructured singular values are computed to assess robust stability

and robust performance. The unstructured uncertainty is modeled in the frequency

domain by assuming weighting functions. Users can also modify the weighting func-
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tions of uncertainty and performance to simulate different environments and different

requirements for performance.

7.2 Future Work

The method to synthesize controllers and the types of uncertainty are limited. So far,

users can only use the S/KS mixed-sensitivity method to synthesize the controller.

The available types of uncertainty are limited to three types, and the weighting func-

tions of uncertainty and performance are equal to a scalar times an identity matrix.

For future work, other methods to generate controllers should be included. Users

could then select the method on their own. The types of uncertainty can be extended

to six different types, and the weighting functions of uncertainty and performance

can be made more complex.
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