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ABSTRACT 

 

Recruitment failure of oak (Quercus) during the past century has raised concerns 

about ongoing changes in temperate forests of the eastern United States. Although the 

causes of oak decline and the associated forest changes are widely debated, most 

arguments have focused on the effects of fire suppression or moisture availability. 

Paleoecological records have provided long-term perspectives on oak forest dynamics, 

but these pollen and charcoal data are often limited by poor spatial, temporal, or 

taxonomic resolution. In this study I utilized pollen, charcoal, and plant macrofossils 

preserved in Turtlehead Rock Bog, a small floating peatland occupying a unique 

depositional basin in an oak-black birch (Betula lenta) forest in southwestern 

Pennsylvania to 1) reconstruct the depositional and wetland history of this unusual 

system, 2) compare the timing of wetland and upland changes with fire history and 

regional paleoclimate records, 3) develop a high-resolution record of fire and oak forest 

dynamics, and use these data to discuss oak decline and current management strategies. 

Results indicate contemporaneous shifts in the arboreal pollen and wetland 

macrofossil records, along with changes in sediment accumulation rate, soil bulk 

density, organic matter content, and overall macrofossil preservation, suggesting a 

climate or disturbance driver for most vegetation changes. From 9000 to 2000 cal yr 

BP, sandy, charcoal-rich sediment accumulated slowly and preserved evidence of a 

changing upland forest and fern-dominated wetland. Then a >1000 year depositional 

hiatus occurred, likely caused by regional aridity. At 800 cal yr BP a sedge marsh 
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occupied the basin, followed by the establishment of a diverse sedge peat mat around 

550 cal yr BP, associated with an increase in black birch and likely wetter conditions. 

Oak (likely Q. prinus and Q. rubra), American chestnut (Castanea dentata), and black 

birch have dominated the surrounding forest for the past 900 years, while fire 

occurrence and oak abundance both gradually declined. Comparisons of charcoal 

accumulation and oak pollen support a historical fire-oak linkage influenced by overall 

forest composition; however, oak has expanded in the past 75 years during a period of 

fire suppression. Recent oak recovery at the site may be attributable to a local fire event 

around 1930 and/or the eradication of American chestnut. Therefore, although 

prescribed burns likely increase oak recruitment in some forest types, human 

modifications to the landscape appear to have altered the historical relationship between 

fire and oak, warranting caution in using prescribed burns to increase oak recruitment 

on the modern landscape. 
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INTRODUCTION 

 

Understanding the primary drivers of temperate forest community change is 

critical to successful ecosystem management and conservation (Dale et al., 2001; 

Salinger, 2005; Chazdon, 2008). Current knowledge of forest dynamics comes largely 

from observational data collected during the past several decades - or centuries if such 

records are available (Willis & Birks, 2006). These short-term data are useful for 

documenting recent and ongoing change (Sagarin & Pauchard, 2010), having identified 

significant shifts in abundance for some tree species and associated changes to forest 

ecosystems (Iverson & Prasad, 2001; Wyckoff & Clark, 2002; Cote et al., 2004; 

Schumacher & Carson, 2013). However, short-term studies provide limited information 

on the range of natural environmental variability experienced over centennial-to-

millennial timescales (Willis & Birks, 2006), as well as ecosystem response to extreme 

climatic and disturbance events (e.g., Clifford & Booth 2015), particularly in regions 

where such events have been relatively rare during the past century (Pederson et al., 

2014). Given current and expected climatic changes (Stocker et al., 2013), long-term 

perspectives are vital to inform conservation efforts and anticipate future ecological 

changes (Willis et al., 2007; Jackson & Hobbs, 2009). By revealing past forest 

responses to changes in climate and disturbance, paleoecological perspectives provide 

insight into the causes of recent and ongoing change and may inform adaptive 

management strategies (Willis & Birks, 2006; Millar et al., 2007; Willis et al., 2007; 

Jackson & Hobbs, 2009). 
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Observational studies have documented a widespread decline in populations of 

oak (Quercus) during the past century in the temperate forests of the eastern United 

States (Clark, 1992; McDonald et al., 2002; Abrams, 2003; DeSantis et al., 2010). At 

some locations declining oak abundance is associated with mortality; however, most 

attribute the changes to recruitment failure (McDonald et al., 2002). White oak 

(Quercus alba) appears to be declining faster than red oak (Quercus rubra) and other 

oak species (Abrams, 2003), and the effects of species-specific differences remain 

unclear. Since the early 1800s, the decline of oak populations and their replacement, 

usually by red maple (Acer rubrum) and sugar maple (Acer saccharum) (McDonald et 

al., 2002; McEwan et al., 2011), has been cited as a topic of concern because oaks have 

long been important to humans as a source of lumber (Clark, 1992) and are an 

irreplaceable food source for mast-dependent wildlife (McShea et al., 2007). The 

resulting ecological and economic consequences will likely grow until a viable 

management solution to oak decline is found, which depends on an accurate 

understanding of the problem (Foster et al., 2002; McShea et al., 2007). This issue has 

generated considerable debate within the scientific and management communities as 

studies from the stand- to regional-scale have suggested multiple interacting drivers 

including pests and pathogens, deer overbrowsing, forest fragmentation and 

parcelization, altered gap dynamics, and most commonly, fire suppression and/or 

increased moisture availability (Lorimer, 1992; Abrams & Seischab, 1997; Clark, 1997; 

Foster et al., 2002; McShea et al., 2007; McEwan et al., 2011). 
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Long-term, multi-decadally-resolved perspectives on the ecological dynamics of 

oak-dominated forests may discern the relative importance and interactions of forest 

composition, fire disturbance, and climate variability (Dale et al., 2001; Millar et al., 

2007; McEwan et al., 2011). Although pollen and charcoal records have been developed 

in oak-dominated regions, these records have largely focused on regional scales and 

most have been poorly resolved temporally and/or taxonomically (Clark & Royall, 

1996; Foster et al., 2002; Jackson & Booth, 2007; Booth et al., 2012; Clifford & Booth, 

2015). Stand-scale perspectives with high temporal resolution and species-level 

taxonomic precision are necessary for comparison with modern investigations of 

ecological processes such as tree recruitment, growth, and mortality (Woods, 2000; 

Jackson et al., 2014). Forest hollows, which are small (~20 m
2
) depositional basins 

within a forest, yield long-term pollen and charcoal records strongly weighted toward 

representation of local vegetation and fire events (Calcote, 1995; Kearsley & Jackson, 

1997; Davis et al., 1998), and the adjacent and/or overhanging canopy often results in 

an abundance of terrestrial plant macrofossils which commonly allow species-level 

identifications, in contrast to pollen which typically allows only genus or family-level 

identification (Jackson & Booth, 2007). A stand-scale fire history coupled with a 

taxonomically-precise vegetation record may provide a novel perspective on oak-

dominated forest dynamics and their sensitivity to changes in climate and disturbance 

(Booth et al., 2012; Jackson et al., 2014). 

In this study I examined a sediment record of charcoal, pollen, and macrofossils 

from a small basin in an oak-black birch (Betula lenta) forest in southwestern 
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Pennsylvania. The small size of the basin and its overhanging forest vegetation make 

the site comparable to a forest hollow – an ideal environment for terrestrial plant 

macrofossil analyses (Jackson & Booth, 2007) and stand-scale paleoenvironmental 

reconstruction (Calcote, 1995; Davis et al., 1998), therefore Turtlehead Rock Bog is 

uniquely suited to provide a high-resolution long-term perspective on contemporary oak 

decline and associated forest changes. The primary objectives of this study were to 1) 

reconstruct the Holocene depositional and wetland developmental history of this 

unusual system, 2) compare the timing of wetland and upland changes, 3) develop a 

high-resolution record of fire and oak forest dynamics, and use these data to discuss oak 

decline and current management strategies. 

 

STUDY SITE 

 

Characteristics 

Turtlehead Rock Bog is located in an oak-black birch forest in Fayette County, 

Pennsylvania (Figure 1A) in Ohiopyle State Park which has a mean annual temperature 

of 8.2°C and receives 1377 mm of precipitation (United States Climate Data [USCD], 

2015). The wetland is within a small basin (~110 m
2
, Figure 1B) confined by large 

rectangular boulders of Homewood sandstone positioned on the eastern flank of the 

Laurel Hill anticline at an elevation of approximately 840 m. The basin is likely 

artesian-fed by down-dip oriented joint openings that connect it to an aquifer with an 

estimated 15 m of hydrologic head and a 4 ha recharge area, possibly part of a perched 
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aquifer system with an impermeable underclay or shale base associated with the Upper 

Mercer Coal seam.  

The formation of the basin is not completely understood, though it may have 

formed through the fracturing of a resistant ledge of Homewood sandstone (J. Shaulis, 

personal comm.). The up-dip end of a large rectangular section may have loosened and 

rotated downslope about 30 m by solifluction, while the down-dip end remained 

relatively stationary (Figure 2). This rotation left a separation cavity with a narrow 

opening near the main ledge, which when healed, allowed water and sediment to 

accumulate upslope of an overflow spillway on the structurally down-sip side. 

The floating peat mat which occupies the basin today is dominated by three-way 

sedge (Duclichium arundinaceum) along with other sedge species and cinnamon fern 

(Osmunda cinnamomea). Sphagnum moss (Sphagnum sp.) occurs in patches. The basin 

rock walls are covered in great laurel (Rhododendron maximum) and mountain laurel 

(Kalmia latifolia), and these boulders support a tree community of sassafras (Sassafras 

albidum), black birch, red maple, black gum (Nyssa sylvatica), and several oak species 

(e.g. Q. prinus, Q. rubra, Q. macrocarpus).  

 

History 

The first known inhabitants of this region were the Monongahela, who left as 

Europeans first arrived in the Americas, and were replaced by the Shawnee, Lenni 

Lenape, Seneca, and other native peoples during the 18
th

 Century (Department of 

Conservation and Natural Resources [DCNR], 2015). The first European settlement 
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near present-day Fayette County was established in 1752, but few immigrants followed 

until after 1762, when large groups from Virginia and Maryland emigrated in 1765 

(Donaway, 1928). After the National Road was built in 1811, the population of settlers 

increased again, and by the turn of the 20
th

 Century, the area had been logged 

extensively. In 1964 the land was sold to the Commonwealth by the Western 

Pennsylvania Conservancy, and the Ohiopyle State Park opened the following year 

(DCNR, 2015). 

 

METHODS 

 

Field Methods 

In October 2015 a series of sediment cores was collected from Turtlehead Rock 

Bog, and basin depth was measured with flexible probe rods along a transect through 

the site’s long axis and at random grid points perpendicular to the transect (Figure 3). 

Not all areas of the peat mat were buoyant enough to support our weight, particularly 

combined with the weight of the coring equipment, thus cores were collected from two 

locations 7 m apart. At location 1 where the mat was thicker and more stable, we 

collected a 40 cm-long monolith (diameter~15 cm) from the surface mat, one 93 cm-

long core using a modified, wide-diameter (10.5 cm) Livingston piston corer, and three 

50 cm-long drives with a Russian peat corer (diameter=5 cm); these cores were used for 

high-resolution analysis of the recent record. At location 2 where the basin was deepest, 

we collected four 50 cm-long drives with a Russian peat corer, and these drives were 
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used to develop the early portion of the record. All cores were wrapped in plastic wrap 

and aluminum foil, labeled, and stored in PVC tubing for transport to cold storage at 

Lehigh University in Bethlehem, PA. 

 

Laboratory Methods 

Each sediment core was sectioned into 1cm intervals, and the slices were 

divided into subsamples: 1 cm
3
 for bulk density and loss-on-ignition analyses, 1 cm

3
 for 

pollen analyses, and the remainder for macrofossil analyses (for the large monolith 

slices about 10 cm
3
 were used for macrofossil analyses). Standard loss-on-ignition 

techniques were used to determine soil bulk density and organic matter content for each 

centimeter: drying at 90°C for 24 hr, heating at 550°C for 5 hr, and recording the 

sample weight before/after each step (Dean, 1974). 

Pollen analyses generally followed standard procedures (Faegri & Iversen, 

1989), although a sieving technique successfully used in previous studies to isolate both 

testate amoebae and pollen from peat was utilized for pollen preparations (Booth et al., 

2010; Booth et al., 2012; Clifford & Booth 2015). Lycopodium tablets of known 

concentration (20848 spores/tab) were added to pollen subsamples to allow 

concentration calculations, and 200 arboreal grains were tallied in samples every other 

centimeter from 0-220 cm and every ten centimeters from 220-340 cm. Pollen 

percentages for arboreal pollen taxa were calculated as percentages using a total 

arboreal pollen sum, while percentages of wetland and non-arboreal upland pollen and 

spores were calculated using a total pollen sum. Charcoal fragments were tallied with 
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pollen 0-220 cm (diameter=15-300 μm, hereafter referred to as “microscopic 

charcoal”), and charcoal concentrations were calculated based on the known 

concentration of the introduced Lycopodium spores. Influx (n/cm
2
/yr) was calculated for 

microscopic charcoal fragments and dominant arboreal pollen using the age-depth 

model inferred deposition time of the sample and the concentration. 

Each subsample for macrofossil analysis was measured by volumetric 

displacement in a graduated cylinder, and then sieved using a 150 μm mesh. All 

distinguishable macrofossils and charcoal fragments greater than this size were 

identified and tallied for each centimeter, and concentrations of charcoal (diameter>150 

μm, hereafter referred to as “macroscopic charcoal”) and plant macrofossils were 

expressed per average sample volume (13 ml). Macroscopic charcoal influx was 

calculated using the age-depth model inferred deposition time of the sample and the 

concentration. Plant macrofossils or charcoal were collected from 16 depths and sent to 

the Woods Hole Oceanographic Institution NOSAMS facility and the University of 

Georgia Center for Applied Isotope Studies for radiocarbon dating (Table 1). All ages in 

this paper are expressed as calibrated years before present (cal yr BP), where the present 

is defined as 1950 AD. 

 

Data Analysis 

An age-depth model for the site was developed using a Bayesian approach and 

the software package BACON (Blaauw & Christen, 2011). In addition to the 16 

radiocarbon-dated depths, dates were assigned for the top of the core (-65.8 cal yr BP), 
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and for the pathogen-caused functional extinction of American chestnut in the 1920s 

(27.5±2.5 yr BP) observed in both the pollen and macrofossil records at 40 cm. This 

estimation was based on the Final Report of the Pennsylvania Chestnut Tree Blight 

Commission (1914), which noted that 11 infected chestnut trees were found and 

removed from Fayette County between 1912 and 1913, as well as J. E. Aughanbaugh’s 

detailed report (1935), which indicated a nine-year infection timeline from blight 

introduction to chestnut eradication for Mont Alto State Forest in south-central 

Pennsylvania, and numerous map figures available online which placed the event 

between 1915 and 1930. 

The software package CharAnalysis was used to identify likely local fire events 

in the macroscopic charcoal record from 0-220 cm (Higuera et al., 2009), as this portion 

of the record was analyzed contiguously (i.e., every cm). Background charcoal 

accumulation rate was estimated using a 100 year Lowess smoothing window, and 

peaks were isolated from residual data using locally-defined thresholds determined by a 

Gaussian mixture model and minimum count screen (Higuera et al., 2009; Higuera et 

al., 2010; Kelly et al., 2011). Influx of microscopic and macroscopic charcoal was 

compared to the vegetation history, and the potential ecological effects of the local fire 

events defined by CharAnalysis were also examined. 

Stratigraphically-constrained cluster analysis (Tilia-CONISS) was used to 

objectively delineate major transitions in the arboreal pollen and wetland macrofossil 

records (Grimm, 1987). The pollen and macrofossil data were input as percentages and 

counts, respectively, and were square root transformed prior to utilizing Edwards and 
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Cavalli-Sforza’s chord distance as a dissimilarity index for the clustering (Grimm, 

1987). The total sum of squares dendrograms were used to assist in the identification of 

upland and wetland vegetation zones and to facilitate discussion of the records by 

providing context for comparing vegetation and fire history. 

 

RESULTS 

 

Age-Depth Model and Depositional History 

The age-depth model and physical sediment properties revealed several 

substantial changes since 9000 cal yr BP when deposition began (Figure 4). Sand and 

charcoal-rich sediments accumulated slowly (0.17 mm/yr) from 9000 cal yr BP until 

about 2000 cal yr BP (~219 cm). During these first 7000 years bulk density was high 

(1.03 g/cm
3
), organic matter content was low (11%), and minimal macrofossil 

preservation occurred. 

Sediment stratigraphy, soil bulk density, organic matter content, and total 

macrofossil concentration exhibited large shifts at about 219 cm in core drives from 

both coring locations, and radiocarbon dates above (216.5 cm) and below (225.5 cm) 

this horizon indicate a dramatic change in age between these depths (Figure 4). Based 

on the abrupt changes in bulk density, the sudden preservation of macrofossils as well 

as pollen changes (discussed later), a low in organic matter content, and the large 

amount of time represented between the dated horizons (~1200 years), it is very likely 

that there was a depositional hiatus in the sediment sequence at approximately 219 cm. 
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The hiatus in sediment accumulation lasted over 1000 years, until about 800 cal 

yr BP, at which point the basin began rapidly accumulating more organic-rich 

sediments, although sand from the adjacent sandstone boulders remained an important 

inorganic component. The mean sediment accumulation rate for about the first 150 

years after the hiatus was about an order of magnitude greater (1.6 mm/yr) than the 

mean of the previous period, bulk density decreased by more than half (0.37 g/cm
3
), and 

organic matter content nearly doubled (20%). The most apparent change observed 

during analysis of the transition was the surge of organic debris and macrofossils, 

quantified by the mean total plant macrofossil concentration which increased from 2 to 

86 identifiable specimens per sample. 

Accumulation and physical properties of the sediment experienced another 

important transition around 550 cal yr BP. Sediment accumulation rate increased (2.6 

mm/yr), bulk density dropped to half its previous mean (0.15 g/cm
3
), organic matter 

content tripled (60%), and mean total plant macrofossil concentration also increased 

(120 specimens per sample). About 250 cal yr BP bulk density was halved again (0.08 

g/cm
3
), organic matter content increased (88%), and these values plateaued around 25 

cal yr BP (0.07 g/cm
3 

and 96%, respectively) when sediment accumulation rate 

increased (4.4 mm/yr), mean total plant macrofossil concentration dropped to 66 

specimen per sample. 
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Upland Vegetation and Fire History 

Stratigraphically constrained cluster analysis of arboreal pollen data was used to 

guide the identification of five pollen zones to help summarize the upland vegetation of 

the site (Figures 5, 6). See Table 2 for information on the plant organs represented by 

the macrofossil analyses. 

 

Zone P1 (9000-2000 cal yr BP) 

Although Zone P1contains minimal plant macrofossils and is coarsely resolved with 

analyzed pollen samples separated by about 600 years, it represents a long period of 

time (~7000 years) with dramatic vegetation changes and forest compositions 

substantially different from today. When deposition began 9000 years ago, the area was 

dominated by eastern hemlock (Tsuga canadensis) and black birch, with oak increasing 

after 8000 cal yr BP (Figure 5). From 7500 to 5000 cal yr BP black gum, American 

beech (Fagus grandifolia), and American chestnut became more common alongside 

oak, and laurel (Ericaceae) increased in the subcanopy (Figure 6). Hickory (Carya) 

increased, and oak replaced chestnut, reaching its peak abundance in the record just 

prior to the hiatus, while chestnut dropped to its lowest pre-European levels. Zone P1 

was characterized by very high macroscopic charcoal concentrations, and although the 

sediment accumulation rate was very low, charcoal influx rates are still relatively high 

(Figure 6). 
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Zone P2 (800-550 cal yr BP) 

Given the depositional hiatus, the site history between 2000 and 800 cal yr BP is 

unknown; however, when the high-resolution record began about 900 years ago, the 

upland forest community was dominated by oak. The macrofossil record revealed that 

both white and red oak groups (Quercus subgenera Eurythrobalanus and subgenera 

Leucobalanus), likely corresponding to chestnut oak and red oak as these species are 

abundant today, were present along with American chestnut, black birch, sugar maple, 

black gum, and American holly (Ilex opaca) (Figure 5). The surrounding boulders and 

upland subcanopy were occupied by various shrubs, including winterberry (Gaultheria 

procumbens), great laurel, and mountain laurel, and charcoal influx values were high 

relative to the following zones (Figure 6). 

 

Zone P3 (550-60 cal yr BP) 

Zone P3 was characterized by increasing black birch macrofossils and birch pollen, 

decreasing oak pollen, and the consistent presence of red maple and other less 

prominent canopy taxa (Figure 5). Other than these changes, forest composition was 

similar to that of Zone P2. Charcoal influx decreased overall, but increased sharply in 

the mid-1800s (Figure 6). 

 

Zone P4 (60-10 cal yr BP, 1890-1940 AD) 

Widespread logging in the late 1800s and early 1900s was reflected by dynamic 

changes in pollen and macrofossil abundances during Zone P4 (Figure 5). Oak pollen 
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fell dramatically, but briefly, around 50 cal yr BP with a concomitant increase in birch 

pollen and black birch macrofossils. American chestnut pollen declined, and both pollen 

and macrofossils disappeared at the time of its pathogen-caused functional extinction. 

Black birch macrofossils remained high during and shortly after the demise of 

American chestnut. Charcoal influx decreased again, as macroscopic charcoal was rare 

in this zone and microscopic charcoal showed continued decline (Figure 6). 

 

Zone P5 (the last ~75 years) 

During the time that the area has been under the management of Ohiopyle State Park, 

the forest has continued to change, likely because of post-logging and post-chestnut 

blight succession. Zone P5 was characterized by a unique forest community compared 

to the forest that existed prior to logging and human disturbance (Figure 5). A 

precipitous drop in birch pollen and black birch macrofossils characterized the start of 

the zone, and this shift was followed by increasing oak, black gum, and red maple. 

Many of the less prominent canopy taxa peaked during this period, including sugar 

maple, white and black ash (Fraxinus americana, F. nigra), walnut (Juglans), 

hophornbeam (Ostrya virginiana), cherry (Prunus), and elm (Ulmus). Ericaceae pollen 

and macrofossils of great laurel and mountain laurel decreased (Figure 6), although 

these shrubs currently dominate the basin boulders. Today the surrounding forest is 

dominated by chestnut oak, red oak, and black birch, and these species form a canopy 

over the basin along with sassafras, burr oak, red maple, and black gum. No 
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macroscopic charcoal occurred during this interval, but microscopic charcoal influx 

declined (Figure 6). 

 

Wetland Vegetation History 

 Like the upland vegetation community, plant macrofossils indicate that the local 

wetland vegetation community underwent several major shifts during the last 9000 

years (Figure 7). These changes were summarized by defining five wetland zones 

through stratigraphically-constrained cluster analyses performed using the wetland 

macrofossil data. 

 

Zone W1 (9000-2000 cal yr BP) 

Zone W1 was characterized by abundant ferns, including Osmunda and Polypodium, 

and some sedges, like woolgrass (Scirpus cyperinus) (Figure 7). Overall, poor 

macrofossil preservation during this interval prevents a more detailed reconstruction. 

 

Zone W2 (800-550 cal yr BP) 

After the depositional hiatus, wetland macrofossil preservation increased significantly 

and revealed that a diverse group of sedges and rushes occupied the basin (Figure 7). 

Osmunda, the most abundant fern prior to the hiatus, was less abundant in Zone W2, 

although leaf fragments revealed that it was represented here by cinnamon fern. This 

zone was characterized by macrofossils of green bulrush (Scirpus atrovirens), river 

bulrush (Bolboschoenus fluviatilis), woolgrass, and common rush (Juncus effusus). 
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Although standing water was indicated in this period by the presence of Daphnia and 

obligate wetland plants, the abundance fungal sclerotia indicated at least seasonally 

aerobic conditions likely due to drying. 

 

Zone W3 (550-150 cal yr BP) 

Zone W3 was characterized by the establishment of a floating peat mat similar to what 

occupies the site today (Figure 7). Wetland macrofossils showed abruptly increasing 

amounts of three-way sedge and white beaksedge (Rhynchospora alba), rising amounts 

of fringed sedge (Carex crinita), and the appearance of hardstem bulrush 

(Schoenoplectus acutus) and star sedge (C. echinata). White beaksedge, and three-way 

sedge to a lesser extent, are commonly found on floating peat mats where the hydrology 

is relatively stable. Scirpus species decreased as three-way sedge expanded, Sphagnum 

moss macrofossils were first observed in this zone, and fungal sclerotia decreased 

consistent with less seasonal drying. 

 

Zone W4 (150-10 cal yr BP, 1700-1940 AD) 

Coincident with the timing of the ragweed (Ambrosia) pollen rise (Figure 6), likely 

associated with European settlement, three-way sedge increased and reached its peak, 

but all other previously-mentioned mat sedges decreased or disappeared from the record 

at the onset of this zone except star sedge which remained stable (Figure 7). 

Macrofossils of knotweed (Polygonum), devil’s beggartick (Bidens frondosa), and 

Hypnum moss are common in this zone. 
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Zone W5 (the last ~75 years)  

Sedges have continued to dominate the peat mat, although only macrofossils of three-

way sedge, dominant on the mat surface today, occurred in this zone (Figure 7). 

Although knotweed pollen increased in this zone, macrofossils were also much rarer 

than in Zone W4. 

 

Identification of Local Fire Events 

CharAnalysis results from the macroscopic charcoal record of the last 900 years 

showed an overall decrease in the background charcoal accumulation rate, and 

identified nine peaks likely corresponding to local fire events adjacent to Turtlehead 

Rock Bog (Figure 8, See Methods, Data Analysis for details). The first five peaks were 

concentrated in the early portion of the record when the background rate was more 

variable, with the fifth peak (~550 cal yr BP), followed by a relatively steady decline in 

background charcoal. The background rate decreased quickly between the sixth (~270 

cal yr BP) and seventh peaks (~140 cal yr BP), and the eight peak (~60 cal yr BP) was 

associated with the highest macroscopic charcoal concentrations and background 

accumulation rates since European settlement. The final peak (~30 cal yr BP) occurred 

during fire suppression when few macroscopic charcoal fragments were observed in the 

record, and the resultant background rate was virtually negligible. The global signal-to-

noise ratio for these data was slightly lower than the preferred threshold determined by 

Kelly and others (2011), but this was likely caused by the presence of local fires of 

intermediate intensity throughout much of the last 900 years. 
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DISCUSSION AND CONCLUSIONS 

 

A Unique Paleoecological Record: Source Area, Preservation, and Taxonomic 

Precision 

Although the origin of this depositional environment is not entirely clear, 

Turtlehead Rock Bog is uniquely suited to record local forest conditions given its small 

size, saturated floating peat mat, and the surrounding vegetated boulders. The system is 

similar to a forest hollow, and these small basins have a rich history in paleoecology 

because of their ability to provide stand-scale reconstructions of vegetation and fire 

history (Calcote, 1995; Kearsley & Jackson, 1997; Davis et al., 1998) and to serve as a 

potential means of bridging the gap between the spatial scales of short-term 

observational ecological studies and long-term paleoecological investigations. 

Furthermore, the floating peat mat with seasonal standing water preserved a richly 

detailed plant macrofossil record of the past 900 years, including some taxa and/or 

specific plant organs that have seldom or never been recovered as macrofossils from 

Holocene sediment records (e.g., many American chestnut seed burs, a sassafras seed, 

several acorns, etc.). 

The Turtlehead Rock Bog basin (~110 m
2
) is slightly larger than a typical forest 

hollow (~20m
2
) (Calcote, 1995); therefore, it likely has a relevant pollen source 

distance around 100-150 m (Sugita, 1994), but this distance may be limited by the ~10 

m-tall boulders around the basin. These rock walls likely decrease the source area of 

terrestrial plant macrofossils which is usually much smaller than that of pollen (10-100 
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m) (Jackson et al., 2014). However, a comparison of pollen and macrofossil data for 

arboreal taxa with well-dispersed and easily quantified macrofossils (e.g. birch pollen 

and black birch macrofossils, American chestnut pollen and macrofossils) indicates 

very similar patterns (Figure 5), suggesting overlapping source areas for terrestrial plant 

macrofossils and pollen at Turtlehead Rock Bog. 

Analyzing plant macrofossils and pollen in the same core also increases overall 

taxonomic precision and aids in the interpretation of pollen percentage data. 

Macrofossils preserved in Turtlehead Rock Bog over the last 900 revealed that birch 

pollen changes were largely attributable to black birch, oak pollen reflected red and 

white oak subgenera, Ericaceae pollen was contributed by three unique species, and 

Cyperaceae pollen trends resulted from at least eight unique species. Macrofossils also 

indicated the presence of taxa that were underrepresented (e.g. maple) or not observed 

in the pollen record (e.g. Liriodendron tulipifera, sassafras). Furthermore, fluctuations 

in pollen taxa reflected by similar fluctuations in macrofossil concentrations (e.g., birch 

pollen and black birch macrofossils) demonstrate that such shifts reflect real changes in 

population abundance rather than artifacts of proportional shifts potentially associated 

with pollen percentages. 

 

Depositional and Paleoecological History: Climate, Wetland Development, and the 

Forest Community 

 The record from Turtlehead Rock Bog is characterized by two fundamentally 

different depositional environments separated by a >1000 year depositional hiatus. 
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Sandy, charcoal-rich sediment accumulated slowly from 9000 to 2000 cal yr BP and 

preserved evidence of a dynamic upland and fern-dominated wetland. Then mixed 

sandy and organic sediment, likely deposited while the site was occupied by a sedge-

dominated marsh, accumulated rapidly around 800 cal yr BP under conditions favorable 

to the spectacular preservation of plant macrofossils. A sedge-dominated peat mat 

established about 550 cal yr BP, and rapid accumulation continued as the sediments 

became more organic rich, and an ecosystem similar to what occupies the site today was 

established. 

The depositional hiatus that lasted from 2000 to 800 cal yr BP was likely caused 

by periods of extended drought. Oak and hickory pollen reached their highest values in 

the entire record just prior to the hiatus (Figure 5) when organic matter drops to near its 

lowest levels (~5%) (Figure 4). Other regional records provide tentative support for 

drought episodes during this interval, including Sr:Ca ratios measured from 

speleothems in West Virginia about 95 km southwest of Turtlehead Rock Bog. These 

records suggest two multi-centennial arid periods beginning at 2000 and 1200 cal yr BP, 

and the magnitude of change in Sr:Ca ratios at 2000 cal yr BP was one of largest 

departures in the 7000 year-long record (Springer et al., 2008). At Cranesville Bog (~30 

km south) a peatland established about 1200 cal yr BP as the forest community shifted 

abruptly from beech- to oak and pine-dominated, consistent with drought conditions 

(Booth et al. 2016), and drought conditions around 1300 and 1400 cal yr BP have been 

inferred from low lake levels based on paleomagnetic records from White Lake in 

northern New Jersey (Li et al., 2007) and from peatland succession and lithology 
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changes at Tannersville Bog in eastern Pennsylvania (Cai & Yu, 2011), respectively. 

Furthermore, bog water-table depth records inferred from testate amoebae in eastern 

lower Michigan revealed large multi-decadal-scale drought events at two major 

intervals in the late Holocene: from 1900 to 1600 cal yr BP and again between 1000 and 

700 cal yr BP (Booth et al., 2006; Booth et al., 2012). The later episode of drought and 

high moisture variability is well-documented at sites spanning from the western United 

States to portions of the east (e.g. Hubeny et al., 2011). Although there is considerable 

uncertainty when comparing 
14

C-dated chronologies across multiple sites and regions, it 

appears likely that drought, or multiple episodes of drought, caused the depositional 

hiatus at Turtlehead Rock Bog by facilitating aerobic conditions not conducive to 

organic matter preservation. 

The Turtlehead Rock Bog record of the last 900 years shows several analogous 

changes in upland and wetland vegetation, suggesting a climatic and/or disturbance 

driver (Figure 9). For example, Pollen Zone P2, characterized by high oak abundance 

(Figure 9A) and regionally widespread fires (Figure 9B), corresponds with when the 

basin was occupied by a sedge-dominated marsh from about 800 until 550 cal yr BP 

(Figure 9C). The establishment of a floating peat mat at 550 yr BP is associated with a 

local fire event, but with fewer regional fires, and increasing amounts of birch pollen 

and black birch macrofossils occur immediately after, suggesting a shift toward wetter 

conditions. Large short-term fluctuations in soil bulk density and organic matter content 

at this time, and the local fire event indicate that a transient drought may have occurred 

immediately before the increase in moisture, and the aforementioned West Virginia 
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speleothem record suggests a drought beginning at about 600 (Springer et al., 2008). 

Although wetter conditions must have prevailed to allow the persistence of a floating 

peat mat, enhanced hydroclimatic variability has been linked to floating mat initiation 

and episodic expansion in other depressional ecosystems (Ireland et al., 2012; Ireland et 

al., 2013; Ireland & Booth 2011; Booth et al., 2016). Interestingly, bog records from 

Maine indicate widespread fire and drought at 550 cal yr BP – the only time in the past 

2000 years that all studied southern Maine bog sites record both drought and fire 

(Clifford & Booth 2013; Clifford & Booth 2015). 

 

Lasting Effects of Local Human Disturbance 

Humans have radically altered forest community dynamics around Turtlehead 

Rock Bog through clear-cutting, pathogen introduction, and changes to the fire regime. 

The earliest evidence of human disturbance around Turtlehead Rock Bog is the increase 

of ragweed pollen in the late 18
th

 Century when the area was settled by immigrants from 

surrounding states (Figure 9A), but human influence on the record was generally subtle 

at this time. During the 19
th

 Century, however, several forb taxa (e.g., devil’s 

beggartick, knotweed) were introduced or expanded within the wetland, and extensive 

logging fundamentally changed the upland community. Birch and oak pollen reached 

their extreme high and low values, respectively, around 1900 when regional fire 

suppression efforts began (Stout et al., 2000). Within a few decades the local population 

of American chestnut was eradicated by the blight, and the resulting canopy gaps were 

likely temporarily filled by black birch, a known gap-colonizing species (Matlack, 
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1992). After a nearby forest fire, and in the absence of American chestnut, oak 

recovered to pre-settlement pollen levels, and red maple and black gum expanded into 

the oak-black birch canopy around the site (Figure 5). State-wide post-blight surveys 

conducted by Aughanbaugh (1935) indicated that American chestnuts in southwestern 

Pennsylvania (five counties including Fayette) were replaced by advanced regeneration 

and new growth of red oak, red maple, chestnut oak, sassafras, black cherry, and black 

gum, and that chestnut oak was the primary replacement in the entire state. 

 

Stand-Scale Oak and Fire Dynamics: Implications for Understanding Contemporary 

Oak Decline 

 Analyses of the pre-land-clearance relationships between charcoal accumulation 

rate, local fire events, and oak pollen support a historical linkage between oak 

dominance and fire, but the recent recovery of oak under minimal charcoal 

accumulation rates suggests that anthropogenic-induced disturbances have influenced 

this linkage. To further assess fire-oak dynamics, oak pollen percentages were compared 

to microscopic and macroscopic charcoal accumulation data within each upland 

vegetation zone, and similar patterns emerged (Figure 10). This similarity reflects the 

overlap in size of microscopic and macroscopic charcoal fragments, and suggests an 

overlap in source area, like that of pollen and plant macrofossils. For example, Pollen 

Zone P2 (800-550 cal yr BP) was characterized by consistently high oak abundance 

across high, but variable accumulation rates for both microscopic (Figure 10A) and 

macroscopic charcoal (Figure 10B), suggesting that local-to-regional fires may help 



26 
 

sustain oak dominance but not continually increase oak abundance. In Zone P3 (550-60 

cal yr BP) when the forest contained more substantial components of black birch and 

other species, charcoal accumulation (particularly macroscopic) showed a positive 

correlation with oak. Within Zones P4 (60-10 cal yr BP) and P5 (10 cal yr BP-present), 

which reflect the time periods of extensive logging and post-logging succession during 

fire suppression, oak reached high levels while microscopic and macroscopic charcoal 

accumulation rates were at their lowest in these two zones. Therefore, oak increased in 

the absence of local-to-regional scale fire. 

 At the stand scale, do local fires facilitate oak recruitment and lead to increasing 

amounts of oak on the landscape in subsequent decades (Elliott et al., 1999; Brose et al., 

2013)? The high-resolution charcoal and pollen data allow an assessment of this 

question by examining the response of oak pollen to individual, local fire events. Nine 

such fire events were identified by CharAnalysis, and the trajectory of oak pollen 

percentages for 30 years after each event demonstrates that in most cases oak increased 

and in no cases did it decrease (Figure 10C). Six of the peaks were followed by a net 

increase in oak pollen percentage (three significant, three insignificant), and three 

showed no substantial change. Interestingly, these three events were all in Zone P2, 

when oak was dominant and showed no increase in response to higher charcoal 

accumulations in the previous analysis (Figure 10A, 10B). The most recent fire event 

which was followed by a large overall increase in oak, coincided with the functional 

extinction of American chestnut; therefore, oak faced minimal competition for canopy 

dominance. The highest concentrations of white oak group macrofossils were recorded 
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after this event – higher than red oak group macrofossils – suggesting that it led to the 

expansion of chestnut oak which is common in forest around Turtlehead Bog today. 

 

Oak Forest Management Implications 

Prescribed burns have been used to facilitate oak regeneration in temperate 

mixed-oak stands where oak has declined (Elliott et al., 1999; Brose et al., 2013), yet 

there is much debate about this practice. For example, some have argued that the 

simplistic interpretation of fire as the solution to oak decline may threaten an already-

damaged and currently-changing ecosystem (Arthur et al., 2012; Vose & Elliot, 2016). 

These forests have been severely impacted by humans (clear-cutting, overbroswing, fire 

regime change, pest and pathogen introduction, fragmentation, climate change, etc.), 

and some tree-ring records suggest that the climate of the past century has been 

unusually wet (Pederson et al., 2013). My study demonstrates that oak populations in 

southwestern Pennsylvania were supported in-part by local-to-regional fires prior to 

clear-cutting in the late 19
th

 Century (Figure 10), and therefore supports a historical 

linkage between fire and oak, albeit one that is dependent of the overall forest 

composition. Over the last century, however, human impacts appear to have 

substantially altered historical fire and oak dynamics, as oak has expanded around 

Turtlehead Rock Bog in the absence of regional fire (Figure10). Whether this expansion 

was due to a local fire event in the 1930s, the loss of American chestnut, or other factors 

is not entirely clear, but enough uncertainty exists to suggest caution in using prescribed 

burns to increase oak recruitment on the modern landscape, particularly given climatic 
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trends. Ultimately, management strategies must be informed not only by historical 

ecological relationships, but also by our continually evolving understanding of today’s 

temperate forests which are constantly adapting to a rapidly-changing climate. 
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TABLES 

 

Table 1: Radiocarbon-Dated Depths and Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

weighted mean 

OS-127435  46.5 B. lenta  macrofossils 145+15 51 25 96

OS-127438  75.5 B. lenta  macrofossils 125+15 161 85 256

OS-127439  127.5 B. lenta  macrofossils 265+15 369 297 442

UG-26760 127.5 D. arundinaceum  macrofossils 350+20 369 297 442

OS-127440  131.5 B. lenta  & D. arundinaceum  macrofossils 670+15 384 318 456

UG-26761 166.5 D. arundinaceum  macrofossils 460+20 515 484 545

OS-127441  184.5 B. lenta  & D. arundinaceum  macrofossils 575+15 606 552 642

OS-127443  185.5 D. arundinaceum  macrofossils 625+20 612 556 646

UG-26762 212.5 B. lenta  macrofossils 850+25 781 723 894

OS-127444  214.5 B. lenta  macrofossils 1000+15 794 738 906

OS-127442  216.5 B. lenta  macrofossils 985+20 807 750 925

UG-27725 225.5 charcoal 2410+25 2284 2023 2574

UG-26763 257.5 charcoal 4000+25 4295 4107 4433

UG-26764 277.5 charcoal 4630+25 5276 5127 5416

UG-26765 293.5 charcoal 5720+25 6284 6096 6454

OS-127445  335.5 charcoal 8180+40 8947 8659 9200

laboratory 

code

depth 

(cm)
dated material

14
C date 

(cal yr BP)

calibrated age (cal yr BP)

2σ range
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Table 2: Turtlehead Rock Bog Complete List of Taxa (continued on next page) 

 

 
 

 

 

 

 

 

group scientific name common name form fossil type(s)

arboreal Acer rubrum red maple tree pollen, leaf, seed

arboreal Acer saccharum sugar maple tree pollen, leaf, seed

arboreal Acer undiff. maple tree twig

arboreal Alnus alder tree pollen

arboreal Betula birch tree pollen

arboreal Betula lenta black birch tree flower, bract, seed, leaf, twig

arboreal Carya hickory tree pollen

arboreal Castanea dentata American chestnut tree pollen, seed burr, seed

arboreal Fagus grandifolia American beech tree pollen, seed

arboreal Fraxinus americana white ash tree pollen

arboreal Fraxinus nigra black ash tree pollen

arboreal Ilex holly tree pollen

arboreal Ilex opaca American holly tree seed

arboreal Juglans walnut tree pollen

arboreal Liriodendron tulipifera tulip poplar tree seed

arboreal Nyssa sylvatica black gum tree pollen, leaf, seed 

arboreal Ostrya virginiana hophornbeam tree pollen, seed pod

arboreal Picea spruce tree pollen

arboreal Pinus subg. Pinus pine subg. tree pollen

arboreal Pinus subg. Strobus white pine subg. tree pollen

arboreal Pinus undiff. pine tree pollen

arboreal Prunus cherry tree pollen

arboreal Prunus serotina black cherry tree seed

arboreal Quercus oak tree pollen

arboreal Quercus subg. Eurythrobalanus red oak subg. tree leaf

arboreal Quercus subg. Leucobalanus white oak subg. tree leaf

arboreal Quercus undiff. oak tree leaf, seed, twig

arboreal Salix willow tree pollen

arboreal Sassafras albidum sassafras tree seed

arboreal Tilia linden tree pollen

arboreal Tsuga canadensis eastern hemlock tree pollen

arboreal Ulmus elm tree pollen
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upland Ambrosia ragweed forb/herb pollen

upland Asteraceae aster forb/herb pollen

upland Phytolacca americana American pokeweed forb/herb seed

upland Poaceae grass forb/herb pollen

upland Pteridium aquilinum western brackenfern forb/herb spore

upland Solidago goldenrod forb/herb seed

upland Viola violet forb/herb seed

upland Ericaceae heather shrub pollen

upland Gaultheria procumbens wintergreen shrub seed

upland Kalmia latifolia mountain laurel shrub leaf, seed, seed pod, twig

upland Rhododendron maximum great laurel shrub bract, seed, seed pod, twig

upland Rubus occidentalis black raspberry shrub seed

upland Sambucus elderberry shrub pollen

upland Sambucus nigra black elderberry shrub seed

upland Vitis grapevine vine pollen

wetland Bidens frondosa devil's beggartick forb/herb seed

wetland Huperzia lucidula shining clubmoss forb/herb spore

wetland Monolete spores fern forb/herb spore

wetland Osmunda osmunda forb/herb spore

wetland Osmunda cinnemomea cinnamon fern forb/herb spore

wetland Polygonum knotweed forb/herb seed

wetland Polygonum knotweed forb/herb pollen

wetland Polypodium polypody forb/herb spore

wetland Bolboschoenus fluviatilis river bulrush graminoid seed

wetland Carex crinita fringed sedge graminoid seed

wetland Carex echinata star sedge graminoid seed

wetland Cyperaceae sedge graminoid pollen

wetland Dulichium arundinaceum three-way sedge graminoid seed

wetland Juncus effusus common rush graminoid seed, seed pod

wetland Rhynchospora alba white beaksedge graminoid seed

wetland Schoenoplectus acutus hardstem bulrush graminoid seed

wetland Scirpus atrovirens green bulrush graminoid seed

wetland Scirpus cyperinus woolgrass graminoid seed

wetland Hypnum imponens hypnum moss moss leaf

wetland Leucobryum glaucum leucobryum moss moss leaf

wetland Plagiomnium plagiomnium moss moss leaf

wetland Polytrichum polytrichum moss moss leaf

wetland Sphagnum sphagnum moss moss spore, leaf

other Daphnia waterflea other ephippia

other Fungi Fungi other sclerotia

other Polystepha pilulae oak gall other gall
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FIGURES 

 

 
 

 
 

Figure 1: Turtlehead Rock Bog Site Map 

A 1 m shaded contour map constructed in ArcGIS using LiDAR elevation data with 

inset county map of Pennsylvania indicating Fayette County (dot) (1 A); photo of 

vegetated basin indicating transect (A-A’) and coring locations (1 B) 

 

 

1 A 

1 B 
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Figure 2: Diagram of Hypothesized Basin Formation 

Cartoon depicting the proposed break-up of Homewood sandstone boulders to form the 

present-day Turtlehead Rock Bog basin 
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Figure 3: A 0.5 m shaded contour map constructed in ArcGIS using LiDAR elevation 

data and field probe-depth measurements along a transect (A-A’) and random 

perpendicular grid points (3 A); basin transect depth profile based on ArcGIS depths, 

showing core drives and radiocarbon-dated depths (3 B). 
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Figure 4: Age-Depth Model and Depositional History 

BACON age-depth model (solid line with markers, based on 16 radiocarbon dates and 

two assigned dates), sediment accumulation rate (dashed line), soil bulk density (solid 

line), organic matter content (dotted line), and overall macrofossil concentration (area) 
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Figure 8: Identification of Local Fire Events 

CharAnalysis-calculated macroscopic charcoal accumulation rate (area), background 

rate (solid line), peak threshold (dashed line), unscreened peaks (circle), and screened 

peaks (plus) interpreted as local fire events; signal-to-noise index; see methods for 

details 
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Figure 9: Upland, Wetland, Fire Synthesis 

Synthesis of select upland vegetation (A), microscopic and macroscopic charcoal 

records (B), and wetland characteristics (C) to show contemporaneous shifts 
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