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Abstract 
Dimensional synthesis of the four-bar mechanism could not be determined 

precisely due to many constraints such as manufacturing tolerance, joint clearance, 

thermal deformation, the deflection and so on. All of these constraints are included in the 

uncertainty of the dimensions of the four-bar mechanism. In this research, this uncertainty will 

be modeled based on the fuzziness one of the precision points of Freudenstein's equation 

that builds intervals of link’s dimensions with membership functions. They represents the 

probability of the dimensions value depending on the uncertainty of the positions of the 

precision point itself rather than uncertainty of the external information about the 

mechanism dimensions. The results of the fuzzy synthesis will be defuzzified using the 

centroid defuzzification method to get the dimensions of the mechanism. Then, the 

resultant function from the fuzzy synthesis is comparing with the crisp one to study the 

range and limits of the fuzziness operation in the generated function. 
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Chapter 1: Introduction 

 Linkage mechanisms have a lot of applications in engineering field such as steering 

system that uses Ackerman steering linkage, robotics that use the actuation mechanisms to 

transform the electric energy to mechanical movement, and hydraulic actuators for heavy 

equipment that use hydraulic power to transform the mechanical movement.  

The synthesis of these types of mechanism is deemed an essential factor for the 

performance efficiency. The links’ lengths of the linkage mechanism that be determined 

precisely at the synthesis stage will be changed by many constraints in manufacturing such as 

joint clearance and manufacturing tolerance. Effects of these manufacturing process on the 

output of the linkage mechanism was investigated by Garrett and Hall in [1]. Joint clearance is a 

gap between parts in the joint to make them move relative to each other while the manufacturing 

tolerance is relating to incapable of making a perfect dimension links by the cutting machines due 

to wearing and temperature variation of internal parts. Other manufacturing errors for the linkage 

mechanisms was illustrated by Sutherland and Roth in [2] , then they studies in [3] the increasing 

of the structural error between desired output and the actual output due to the for a specific type 

of mechanism synthesis known as function generating mechanism due to these errors. In 

addition, the joint clearances and the tolerance of the link lengths were taken into consideration 

by Dhande and Chakraborty in [4] as they introduced a stochastic model for a specific kind of the 

function generating mechanisms called a four-bar mechanism to analyze and allocate the 

mechanical errors and to compare them with structural errors. Since the stochastic modeling may 

not predicted precisely as the input should be random variables, Faik and Erdman in [5] proposed 

the relation to reveal the contributions of every design parameter to the output of the 

mechanism. The relation between the change in the design parameter and the output of the 

mechanism is the sensitivity of the mechanism in which the work of Faik and Erdman introduced 

the global mechanism sensitivity with Nondimensional coefficients. A theory relating the 

tolerance sensitivity and the mechanism performance using a Jacobian matrix as well as 

determining the more sensitive design parameters to the dimensional tolerance were the main 

topics of Ting and Long in [6]. Similarly, the Jacobian matrix was used by Zhu and Ting in [7] to 

show the relationship between the performance of the mechanism and the tolerance of the whole 

mechanism rather than individual links. In addition, they introduced a bounded variation space of 

the performance sensitivity of the mechanism that manifests in an ellipsoid by a set of eigenvalues 
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and eigenvectors of the Jacobian matrix. Because of that manifestation, the sensitivity of the 

design parameters are estimated by the comparing of the geometric characteristic of the 

performance space with the tolerance bounded space.  

Three main methods are being used to model the uncertainty of dimensions of the links: 

a probabilistic method, an interval method and a fuzzy method. The interval method starts the 

dimensions of links within a range between two numbers, however, the membership function for 

the range of the numbers are the main feature of the fuzzy method. On the other hand, the mean 

value of the range and its standard deviation are the tools in the probabilistic method.   In [1] and 

[4] mentioned in the second paragraph,  interval and probabilistic methods were used to model 

the manufacturing tolerance and joints clearance: furthermore, the interval method was used to 

investigate their effects on the positions and orientations by Weidong and Rao in [8]. They also 

employed the fuzzy method to analyze the error of the four bar mechanism as they modeled its 

mechanical tolerance and joints clearance in [9]. In the same way, Diab and Smaili in [10] also 

used the interval number to model the same subject but they employed the fuzzy membership 

function to display the results before and after an optimization process. This optimization was 

concerned with minimization of the sensitivity of the design parameters to the mechanical 

tolerance and joints clearance. 

Besides the manufacturing tolerance and the joints clearance, there are many constraints 

on the dimensions the mechanism’s links such as thermal deformation and deflection. All of these 

constraints involve in the concept of uncertainty that affects the output of the mechanism. This 

concept adds different sources to the constraints on the dimensions without determine the 

probability contributions for everyone. Rao and Berke in [11] analyze the uncertainty of the 

engineering system using the interval method as they considered the given input parameters as 

interval numbers. For the same objective, Dua, Venigellaa, and Liu used both interval and 

probabilistic methods to assess the impact of uncertainty on the mechanism performance. 

In this thesis, the uncertainty of the dimensional synthesis of the four bar mechanism will 

be modeled based on the uncertain precision point using the fuzzy method. This work is different 

from past papers, as the fuzzy input for the dimensional synthesis process will produce fuzzy 

lengths of the mechanism’s links instead of fuzzifying the results. Then, the resultant lengths are 

estimated form the centroid diffuzification process and compared with the results from the 

traditional synthesis. The second difference is the case of the synthesis that be used in past works 
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which is the path generation. In contract, the function generation synthesis with Freudenstein’s 

equation that has three precision points will be fuzzified at one point to get the fuzzy 

linear system of equations, which they are solved by the interval analysis at different 𝛼-

cut levels. The fuzziness of the Freudenstein’s equation will be at middle point while the 

starting and ending points will not fuzzified; however, the resultant matrix from this 

process will be a fuzzy square matrix that be divided into several interval matrices using 

𝛼-cut method. In the first chapter, brief statements about the four bar mechanism and 

the fuzzy logic followed by the mathematical model in the second chapter. Several 

examples are given in the third chapter and the forth one is the closure of the thesis. 
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1.1 Four bar Mechanism 

The four-bar linkage is one of the most important mechanism that be used in many 

applications around the world. This linkage is used to transform the motion from one 

position to another. One of the most famous applications of that mechanism is the engine 

mechanism of a car which it has a four-bar linkage to transform the reciprocating 

movement of the piston to a rotating movement of the crank-shaft. Another application 

that has been popular recent years is the robot for achieving translational and rotational 

motions. They can be designed using different mechanisms, one of them can be a four 

bar linkage. 

 

Figure 1-1. Four-Bar Linkage                                           

Transformer mechanisms consist of rigid bars that from open or closed loop, and 

the four bar linkage is one of the simplest close loop mechanism that has three moving 

links and a fixed one with four pin joints. Determining of the lengths of the links required 

to achieve the task as well as a starting point of the mechanism is called a dimensional 

synthesis [12]. Norton [12] who divided the synthesis into two types: qualitative synthesis 

which means finding the solutions without depending on an algorithm to estimate these 

solutions. Dimensional synthesis is often one form of such a types [12]. The second type 

is called quantitative synthesis necessitate the generation of many solutions with an 

algorithm and using an optimization process to obtain the best solution from among them 

[12]. According to Wandling [13], dimensional synthesis is the second step of the synthesis 
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process after determining the type of mechanism including how many links the 

mechanism is consisted of.  

There are different methods to make dimensional synthesis: graphical method 

that could be considered the easiest one with limited design positions. According to 

Norton, three positions are the most number that works with this type of synthesis [12]. 

When more than three is needed, the design is much more involved with the graphical 

method. It is because of such complexity that a different approach to dimensional 

synthesis is called for. Analytical synthesis uses algebraic procedures to facilitate the 

design of the mechanism with more design positions. The kinematic synthesis that deals 

with velocity, acceleration and positions of the links can also be introduced by 

differentiating of the equation of motion rather than design positions. Norton states that 

finding the velocity and acceleration of the element of the mechanism using graphical 

method needed to require a lot of independent graphical solutions for every design 

position such that every one of them is completely different from the other. However, 

the analytical method readily incorporates them for all these positions [12]. 

There are three different forms of dimensional synthesis. First case is called 

motion generation that tracks of guides through different positions and orientations of 

an object. The maximum number of positions that could work for motion generation 

synthesis are 5 positions [14].  
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Figure 1-2. Two-position of the motion generation synthesis for Four-bar Linkage [1]. 

The second form is the path generation, which requires the coupler link “link 3” to 

pass through several precision points in space. According to Sandor & Erdman [14], the 

maximum number of positions for qualitative path generation synthesis is five precision 

points. However, more than five precision points can be achieved using a quantitative 

approach.  

 

Figure 1-3. Path generation synthesis for Four-bar Linkage [15]. 
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The last form is the function generation. The maximum number of precision points 

is seven. The form of the equations of motion will be a function between the input link 

“link 2” and the output link “link 4” such that the function will pass through the precision 

points [12]. However, if precision points are more than seven, the quantitative solutions 

will be the good choice to form the function between the input and the output links.   

 

Figure 1-4. Funtion generation synthesis for Four-bar Linkage [16]. 

 

Hundreds of years ago, people use the graphical method to synthesize all types of 

mechanisms, especially four-bar mechanisms, and [17] was one of the last references in 

this method that published in the mid twentieth century which the same time when the 

analytical method was introduced. The first analytical method from all three cases was 

the case of function generation and it came on the mid-fifties when Freudenstein 

published his Phd thesis [18]. According to Ghosal, Freudenstein in [18] proposed an 

algebraic relation between the input angle and the output angle to the link lengths [16]. 

After that, the analytical method have developed by Freudenstein’s student: Sandor, then 

Sandor’s student: Eridman, Kaufman, and Loerch et al [12]. Sandor started presented the 

formulation for motion generation synthesis by solving the loop equations of the linkage 

mechanism using complex numbers[19]. His student Eridman used Sandor’s results to 

synthesize the mechanism for the same case with three and four precision points [20]. 
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While Loerch et al was interested in synthesizing the fixed pivot for the four-bar 

mechanism [21]and total design of the mechanism using a computer was the contribution 

by Kaufman [22]. For path generation, Freudenstein and Sandor applied the complex 

numbers with loop equations to the four bar mechanism for the generating a path passed 

five precision points with prescribed the input-link rotation [23]. Then, Blechschmidt and 

Uicker introduced a new way for the path generation that changed the approach to 

mechanism synthesis from the loop equation and complex number to the coupler curve. 

This technique increased the precision points to ten without prescribed the input link 

rotation and it was applied by Ananthasuresh and Kota to synthesis the four bar 

mechanism [24], [25]. 

The precision points have the same meaning in all three forms of kinematic 

synthesis. In motion generation, the concept of precision points consisted of the positions 

and orientations of the right-side dyad and the left-side dyad as shown in Figure 1-2. For 

the path generation, the precision points are on the path of the coupler curve as shown 

in Figure 1-3. On the subject of the function generation, the precision points made the 

function between the input link and the output link as shown in Figure 1-4 and the 

difference between the function the mechanism made and the desired function called a 

structural error [13]. To reduce the structural error, Wanldling proposed an analytical 

method to determine the spacing between the precision points in a way to minimize the 

structural error and it is called Chebyshev spacing [13].  
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1.2 Fuzzy Logic 

 A paradigm is a pattern of thinking that makes guidelines to approach an 

understanding of and to solve problems. That concept will be extended to many field such 

as scientific field and mathematical field. Kuhn defined the scientific one by “a universally 

recognized scientific achievements that for a time provide model problems and solutions 

to a community of practitioners” [26]. Changing a paradigm is called a paradigm shift 

which leads to a revolution in the field and that usually happens as a response to some 

challenges faced in the field due to growing of the given information in that field. The 

paradigm works through evolution while paradigm shift, such as in the case of genetic 

mutation, can change the structure of the gens to alter the product and the function of 

the gens. There are a lot of examples for the paradigm shifts in the scientific field such as 

the special relativity theory which was developed by Albert Einstein and in response to 

challenges posed by the limitation of Newtonian mechanics [26]. 

 Regarding the mathematical paradigms, the most popular one is the classical logic 

or what is called Aerostatic logic that be formalizing by Aristotle thousands of years ago 

to assess the truth of the propositions or statements as true or false without consider the 

degrees of truth between the two extremes. This paradigm was dominant in many 

branches of knowledge such as philosophy, mathematics and science. The paradigm was 

challenged by schools that believe that knowledge must come from experience. A 

physician Sextus Empiricus who was a philosopher in the second century AD, and a 

supporter for this school, had a considerable criticism for this paradigm [27]. He explained 

that a syllogism (a logical argument consisted of major premise, minor premise and the 

conclusion), is valid if the two premises that form the sentences are also valid. Otherwise 

the validity will be uncertain [27]. Another significant criticism came from the legal Islamic 

scholar Ibn Taymiyya in the fourteenth century who explained that uncertainty in 

syllogism comes from incomplete induction using the method of analogy although 

Aristotelians deemed it uncertain evidence [27]. Sowa and Majumdar [27] have stated 

that “Ibn Taymiyya admitted that logical deduction is certain when it is applied to mental 
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constructs in mathematics. However, reasoning about the real world can only be derived 

by induction guided by analogy which also leads to uncertain conclusions”. 

 The uncertainty in the scientific fields as it was explained above lead to paradigm 

shift for the classical logic and the probability theory was one of the alternative concept 

to build a new paradigm for the scientific fields [28]. A Paper was written by Bishop of 

Wells in 1685 that discussed the truth of statements given by independent sources whose 

reliability could invlove probabilities x and y, respectively [28], [29]. The theory of 

probability got noticeable progress during the eighteen century. A subjective probability 

theory proposes that the probability should acquired from an individual’s judgment about 

the chance of something happening and his judgment should be guided by past 

experience without any data or mathematical calculation. This theory studies the range 

of uncertainty in the human beliefs and how it changes with personal experience and bias. 

In the beginning of the twentieth century, other alternatives to classical logic and 

probability theory were developed to deal with uncertainty, such as multivalued and 

discrete logic by Jan Lukasiewicz in 1930, theory of evidence by Arthur Dempster in 1960, 

and a continues-value logic or what is called fuzzy logic by Lotfi Zadeh in 1965 [28]. 

 From epistemological perspective, information could be understood as an 

opposite meaning of uncertainty. There is a variety of forms revealing the uncertainty in 

the engineering or scientific applications such as vagueness, fuzziness and 

imprecision[28]. Zadeh in forward of [30] defined the vagueness as shapeless, formless, 

or not specific information, as in “I will be back soon,” . However, he said that fuzziness 

associates with sharpness boundaries as in “I will be back in a few minutes”. Furthermore, 

the statement as “I will be back in a 5 minutes of 8 p.m.” is an example of the imprecision 

that could treated by the probability theory [28]. 
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Chapter 2: Mathematical Model 
 

2.1 Freudenstein's Equation 

Based on the complex number theory, the loop equation of the four bar mechanism, 

showing in Figure 2-1, is given by 

Z1 𝑒
𝑖𝜃1 − Z2 𝑒

𝑖𝜃2 − Z3 𝑒
𝑖𝜃3 + Z4 𝑒

𝑖𝜃4 = 0                (1) 

 

 

 

 

 

 

Using Euler’s formula, the loop equation spilt up into two equations as following: 

Z1 cos(𝜃1) − Z2 cos(𝜃2) − Z3 cos (𝜃3) + Z4 cos (𝜃4) = 0         (2) 

Z1 sin(𝜃1) − Z2 sin(𝜃2) − Z3 sin (𝜃3) + Z4 sin (𝜃4) = 0         (3) 

 

As the ground link Z1 has fixed position (Figure 2-1) and its angle 𝜃1 = 0, thus 

cos(𝜃1) = 1 , and sin(𝜃1) = 0. Substitutions yields (2) and (3) as: 

 Z1 − Z2 cos(𝜃2) − Z3 cos (𝜃3) + Z4 cos (𝜃4) = 0                         (4) 

−Z2 sin(𝜃2) − Z3 sin (𝜃3) + Z4 sin (𝜃4) = 0              (5) 

 

Figure 2-1. Coordinate system for function generation using Freudenstein's Equation 
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Since the function generation variables are associated with the input link “link 2” and the 

output link “link 4”, the coupler link “link 3” should be defined by them as following: 

Z1 − Z2 cos(𝜃2) + Z4 cos(𝜃4) = Z3 cos (𝜃3)                                             (6) 

−Z2 sin(𝜃2) + Z4 sin(𝜃4) = Z3 sin (𝜃3)                                               (7) 

Then, both (6) and (7) are squaring and adding to each other as following: 

(Z1 − Z2 cos(𝜃2) + Z4 cos(𝜃4))
2 + (−Z2 sin(𝜃2) + Z4 sin(𝜃4))

2            (8) 

= Z3
2(cos(𝜃3) + sin(𝜃3))

2      

   

Z1
2 + (Z2 cos(𝜃2))

2 + (Z4 cos(𝜃4))
2 + 2 Z1Z4 cos(𝜃4) −                          (9) 

2 Z1Z2 cos(𝜃2) + 2 Z2 Z4 cos(𝜃2) cos(𝜃4) + (Z2 sin(𝜃2))
2  

−2 Z2 sin(𝜃2) Z4 sin(𝜃4)  + (Z4 sin(𝜃4))
2 = Z3

2(cos(𝜃3) + sin(𝜃3))
2        

 

Z1
2 + Z2

2 (cos(𝜃2)
2 + sin(𝜃2)

2) + Z4
2(cos(𝜃4)

2 + sin(𝜃4)
2)        (10) 

+2 Z1Z4 cos(𝜃4) − 2 Z1Z2 cos(𝜃2) 

+2 Z2 Z4 (cos(𝜃2) cos(𝜃4) − sin(𝜃2) sin(𝜃4)) = Z3
2 (cos(𝜃3)

2 + sin(𝜃3)
2)         

      

Since  cos(𝜃)2 + sin(𝜃)2 = 1, thus (9) should be written as: 

Z1
2 + Z2

2 + Z4
2 + 2 Z1Z4 cos(𝜃4) − 2 Z1Z2 cos(𝜃2)       (11) 

+2 Z2 Z4(cos(𝜃2) cos(𝜃4) − sin(𝜃2) sin(𝜃4)) = Z3
2           

      

Since  [cos(𝜃2) cos(𝜃4) − sin(𝜃2) sin(𝜃4)] = cos(𝜃2 − 𝜃4), (11) will be as:   

Z1
2 + Z2

2 + Z4
2 + 2 Z1Z4 cos(𝜃4) − 2 Z1Z2 cos(𝜃2)                                                       (12) 

+2 Z2 Z4  cos(𝜃2 − 𝜃4) = Z3
2                 
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Then, (11) could be arranged as: 

 Z1
 Z4

cos(𝜃2) −
 Z1
Z2 

cos(𝜃4) +
Z1
2 + Z2

2 + Z4
2 − Z3

2

2 Z2 Z4
= −cos(𝜃2 − 𝜃4)                        (13) 

In a compact form, the final form of Freudenstein's Equation will be written as: 

𝐾1 cos(𝜃2) + 𝐾2 cos(𝜃4) + 𝐾3 = −cos(𝜃2 − 𝜃4)                                                           (14) 

𝐾1 cos(𝜃2) + 𝐾3 + cos(𝜃4) (cos(𝜃2) + 𝐾2) + sin( 𝜃2) sin(𝜃4) = 0 

𝑎 + cos(𝜃4) 𝑏 + c sin(𝜃4) = 0 

 

Where 

𝐾1 =
 Z1
 Z4

 

𝐾2 = −
 Z1
Z2 
                                                               (15)     

𝐾3 =
Z1
2 + Z2

2 + Z4
2 − Z3

2

2 Z2 Z4
 

In case of three prescribed positions with Freudenstein's Equation, as well as ∅ and 𝜓 

represent input and output angles, respectively, (14) expands to three equation that be 

written as: 

𝐾1 cos(∅1) + 𝐾2 cos(𝜓1) + 𝐾3 = −cos(∅1 − 𝜓1)                         

𝐾1 cos(∅2) + 𝐾2 cos(𝜓2) + 𝐾3 = −cos(∅2 − 𝜓2)                                                            (16) 

𝐾1 cos(∅3) + 𝐾2 cos(𝜓3) + 𝐾3 = −cos(∅3 − 𝜓3)                         

Where the link lengths be expressed in terms of K’s and the given the length of the ground 

link “link 1” as following: 

Z4 =
 Z1
𝐾1 
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Z2 = −
 Z1
 𝐾2

                                                               (17) 

Z3 = √Z1
2 + Z2

2 + Z4
2 + 𝐾32 Z2 Z4 

By fuzzifying the second position from these prescribed positions, the Chebyshev 

spacing will not be used to determine the best location of the second point to reduce the 

structural error, and the second equation in (17) will be a fuzzy equation whose input and 

output angles are fuzzified. From the range of input and output angles beside the fuzzy 

region, a fuzzy linear system of equation will be formed. That system is solved in this 

project by decomposing the matrix into two matrices: the first part involves matrices of 

interval numbers at every level of 𝛼 −cut method, and the second one is the crisp matrix 

at 𝛼 = 1. The solution will be acquired by the fuzzy mathematical operations to calculate 

the fuzzy constants K’s. They are used to obtain the fuzzy lengths of the links for the four 

bar mechanism as defined in (17). These lengths will have been defuzzified by one of the 

defuzzification methods to get approximating lengths of the links for the mechanism. All 

of these steps and operation will explained in details at the next sections in this chapter. 
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2.2 Fuzzy Mathematical Operations 
 

2.2.1 Fuzzy Number 

In the fuzzy logic, a fuzzy number is used to represent the uncertainty with a 

membership function such as a triangular membership function, a trapezoidal 

membership function, Gaussian membership function, and generalized bell membership 

function is used. 

  

 

The fuzzy number is a convex, single point normal fuzzy set [28]. According to [28], 

“the convexity of the fuzzy set means that its membership values are strictly 

monotonically increasing, then they strictly monotonically decreasing with increasing 

values for elements in the universe, and the single point fuzzy set is the one whose 

membership function has an element belong to the set whose membership value is 

unity”. 

Figure 2-2. Examples of four classes of membership function: 

(a) Triangle (x; 20, 60, 80); (b) Trapezoid (x; 10, 20, 60, 95); 

(c) Gaussian (x; 50, 20); (d) generalized bell (x; 20, 4, 50) [42]. 
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The fuzzy number whose membership function is triangular will be the selected to 

represent the uncertainty in the input angle and the output angle for the function 

generation synthesis. 

Definition 2-1 [31]. A triangular fuzzy number ũ  =  (a, b, c) and its membership   function 

is defined by:  

𝜇ũ(𝑥)  =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
           a ≤ x ≤  b ,

𝑥 − 𝑐

𝑏 − 𝑐
           b ≤ x ≤  c ,

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Definition 2-2 [31]. A triangular fuzzy number ũ  =  (a, b, c) is non-negative if a ≥ 0 

Definition 2-3 [31]. Let ũ  =  (a, b, c) and ṽ  =  (d, f, g) be two triangular fuzzy numbers, 

then: 

1. ũ =  ṽ   𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 =  𝑎 , 𝑏 = 𝑓 , 𝑎𝑛𝑑 𝑐 = 𝑔 

2. ũ + ṽ = (a + d, b + f, c + g) 

3. ũ − ṽ = (a − g, b − f, c − d) 

Figure 2-2. (a) Convex, single point normal fuzzy set.  (b) Nonconvex, not 
single point normal fuzzy set [16]. 
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Definition 2-4 [31]. Let ũ be any triangular fuzzy number and ṽ be a non-negative one, 

then the multiplication is defined by: 

1. ũ ∗ ṽ = {

(ag , bf, cg)                          a ≥ 0 ,
(ag , bf, cg)               a < 0 , c ≥ 0,

   (ag , bf, ce)               a < 0 , c < 0,

  

Representing the membership function of the triangular fuzzy number could be infinite 

crisp sets that be identified by a variable 𝛼.  

Definition 2-5 [32]. Let ũ be any triangular fuzzy number, so that, its membership function 

is a function that satisfies the following conditions: 

1. ũ𝛼 = [ũ𝛼
𝐿  , ũ𝛼

𝑅] 

2. ũ𝛼
𝐿   𝑖𝑠 𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 function ∀ 𝛼 ∈ [0;  1] 

3. ũ𝛼
𝑅   𝑖𝑠 𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 function ∀ 𝛼 ∈ [0;  1]      

4. ũ1
𝐿 = ũ1

𝑅 

2.2.2 Fuzzy 𝛼 −cut method 

An 𝛼 −Cut set 𝑢𝛼 is a crisp set derived from a fuzzy set ũ that be defined by   

𝑢𝛼 = {𝑥 | 𝜇ũ(𝑥) ≥ 𝛼} , 𝛼 ∈  [0,1]                                         (18) 

There are infinite number of 𝛼 −cut sets derived from a fuzzy set which every element 

belong to 𝑢𝛼 have to belong to ũ with a level of membership greater of equal the value 

of  𝛼 [28]. The arithmetic operations that be applied to 𝛼 −cut set came from arithmetic 

interval operations such as addition, multiplication, subtraction, and division. These basic 

arithmetic interval operations are applied on the interval number determined by 𝛼 −cut 

method.  

Definition 2-6 [33]. An interval number is the bounded, closed subset of real number 

defined by 

𝑢𝛼 = [𝑢𝛼 , 𝑢𝛼]         𝑤ℎ𝑒𝑟𝑒 𝑢𝛼 ≥ 𝑢𝛼     

Where 𝑢𝛼  the lower limit of the interval number and 𝑢𝛼   is the upper limit of the interval 

number. 
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Definition 2-7 [28], [33]. Let 𝑢𝛼   and 𝑣𝛼 be two interval numbers, then: 

1. 𝑢𝛼 + 𝑢𝛼 = [𝑢𝛼 + 𝑣𝛼 , 𝑢𝛼 + 𝑣𝛼] 

2. 𝑢𝛼 − 𝑣𝛼 = [𝑢𝛼 + 𝑣𝛼 , 𝑢𝛼 + 𝑣𝛼] 

3. 𝑢𝛼 ∗ 𝑣𝛼 = [min(𝑢𝛼 ∗ 𝑣𝛼 , 𝑢𝛼 ∗ 𝑣𝛼 , 𝑢𝛼 ∗ 𝑣𝛼  , 𝑢𝛼 ∗ 𝑣𝛼) , max(𝑢𝛼 ∗ 𝑣𝛼  , 𝑢𝛼 ∗

𝑣𝛼 , 𝑢𝛼 ∗ 𝑣𝛼  , 𝑢𝛼 ∗ 𝑣𝛼)] 

4. 
𝑢𝛼

𝑣𝛼
= 𝑢𝛼 ∗ (

1

𝑣𝛼
) = 𝑢𝛼 ∗ [

1

𝑣𝛼
 ,
1

𝑣𝛼
 ]   𝑤ℎ𝑒𝑟𝑒 0 ∉ 𝑣𝛼   

5. 𝑘 ∗ 𝑢𝛼 = 𝑘 ∗ [𝑢𝛼 , 𝑢𝛼] = {
[𝑘 ∗ 𝑢𝛼 , 𝑘 ∗ 𝑢𝛼],     𝑘 > 0

[𝑘 ∗ 𝑢𝛼  , 𝑘 ∗ 𝑢𝛼]     𝑘 < 0
 

Note that subtraction and division operations of the interval number are not inverses of 

addition and multiplication operation. So that, the authors in[33] present two extra 

interval operations that are defined as inverse of interval numbers for addition and 

multiplication. These operations are denoted by ⊝ for the inverse of addition operation 

and ⊘ for the inverse of multiplication operation. 

Definition 2-8. Let 𝑢𝛼 = [𝑢𝛼  , 𝑢𝛼] and 𝑣𝛼 = [𝑣𝛼  , 𝑣𝛼]  be two interval numbers, then: 

1. 𝑢𝛼⊝𝑣𝛼 == [𝑢𝛼 − 𝑣𝛼  , 𝑢𝛼 − 𝑣𝛼] 
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2. 𝑢𝛼⊘𝑣𝛼 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
[−∞ ,∞]                                                     𝑢𝛼 = 𝑢𝛼 = 0,     𝑣𝛼 = 𝑣𝛼 = 0

[0 , 0]                                              𝑢𝛼 = 𝑢𝛼 = 0,      (𝑣𝛼 ≠ 0 𝑜𝑟  𝑣𝛼 ≠ 0)

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                          (∃𝑥 ≠ 0, 𝑥 ∈ 𝑢𝛼),      𝑣𝛼 = 𝑣𝛼 = 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                                                                         0 ∉  𝑢𝛼  ,    0 ∈  𝑣𝛼

[
𝑢𝛼 

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
 ]                                                                                   𝑢𝛼 ≥ 0,    𝑣𝛼 ≥ 0

[0 ,
𝑢𝛼

𝑣𝛼
 ]                                                                                  𝑢𝛼 = 0,     𝑣𝛼 = 0

[
𝑢𝛼

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
 ]                                                                  𝑢𝛼 ≤ 0 ≤ 𝑢𝛼 ,      𝑣𝛼 ≥ 0

[
𝑢𝛼

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
 ]                                                                               𝑢𝛼 ≤ 0,    𝑣𝛼 ≥ 0

[
𝑢𝛼

𝑣𝛼
 , 0 ]                                                                               𝑢𝛼 = 0,       𝑣𝛼 = 0

𝑢𝛼⊘ (−𝑣𝛼)                                                                                             𝑣𝛼 ≤ 0

[max (
𝑢𝛼

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
) ,min (

𝑢𝛼

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
) ]               𝑢𝛼 ≤ 0 ≤ 𝑢𝛼      , 𝑣𝛼 < 0 <  𝑣𝛼

[
𝑢𝛼

𝑣𝛼
 ,
𝑢𝛼

𝑣𝛼
]                                                                  0 ≥  𝑢𝛼     , 𝑣𝛼 < 0 <  𝑣𝛼

 

Proofs for these new arithmetic interval operations as inverse of addition and 

multiplication are explained in detail in [33]. 

2.2.3 Fuzzy Function 

There several types of fuzzy function with respect to which parts of function is 

fuzzy. A function has three parts: the domain, the range, and the relation between them 

that transforms to a function as every element in the domain has a unique image in the 

range. The fuzziness of first two parts gives the first type of the fuzzy function called a 

crisp function with fuzzy constraints, which the domain and the range are fuzzy [34]. 

Definition 2-9 [34]. Suppose X and Y are crisp sets which a fuzzy set Ã ∈ X and a fuzzy set 

B̃ ∈ Y. Let f is a crisp function, then f will be a crisp function with fuzzy constraints on 

fuzzy domain A and fuzzy range B  𝑓: 𝑋 → 𝑌  if it satisfies the condition: 

𝜇Ã(𝑥) ≤ 𝜇B̃(𝑓(𝑥)) 

The second type of the fuzzy function is the crisp function that transforms the 

fuzziness of the independent variable to the dependent variable and it is called fuzzy 
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extension function. This type of the fuzzy function is applying in this project to solve the 

cosine of the fuzzy input angles in the function generation synthesis to produce a 

fuzziness in the output angles. 

Definition 2-10 [34]. Suppose X and Y are crisp sets which a fuzzy set Ã ∈ X. Let f is a crisp 

function 𝑓: 𝑋 → 𝑌  and f will be a fuzzy extension function that define the image f(Ã) on 

Y set. The extension principle is the base of the fuzzy extension function that satisfy the 

conditions: 

𝜇f(x̃)(𝑦) {
max

𝑥 ∈ 𝑓−1(𝑦)
(𝜇�̃�(𝑓(𝑥))) , 𝑖𝑓  𝑓−1(𝑦) ≠ ∅

0 ,                                   𝑖𝑓  𝑓−1(𝑦) = ∅
 

Where   𝑓−1(𝑦) is the inverse image for 𝑦 

 Third type of fuzzy function is the fuzziness of the function itself while the domain 

is crisp set which the fuzzy function produce fuzzy image of that domain. 

Definition 2-11 [34]. Suppose X a crisp sets. Let f is a fuzzy function that mapping of 𝑋 in 

fuzzy set �̃�(𝑌): 

𝑓: 𝑋 → �̃�(𝑌)   

Where  

𝜇f̃(x)(𝑦) = 𝜇𝑅(𝑥, 𝑦) , ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌         

2.3 Fuzzy and Interval Linear System of Equations 

Consider an 𝑛 × 𝑛 fully fuzzy linear system “FFLS”: 

𝑎11 𝑥1 + 𝑎12 𝑥2 +⋯+ 𝑎1𝑛 𝑥𝑛 = 𝑏1 

𝑎21 𝑥1 + 𝑎22 𝑥2 +⋯+ 𝑎2𝑛 𝑥𝑛 = 𝑏2                                                                 (19)        

                             ⋮ 

𝑎𝑛1 𝑥1 + 𝑎𝑛2 𝑥2 +⋯+ 𝑎𝑛𝑛 𝑥𝑛 = 𝑏𝑛  

That could be written as: 

�̂� �̂� = �̂�                                                                           (20) 



22 
 

Which 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is a triangular fuzzy number that represents a coefficient matrix, 

however, 𝑥 = (𝑥𝑖)𝑛×1 and 𝑏 = (𝑏𝑖)𝑛×1 are column vectors of triangular fuzzy numbers. 

To solve this type of matrix, the authors in [33] suggest a practical method using the 

interval number which divided the matrix to two matrices: one is an interval matrix 

𝐴0𝑥0 = 𝑏0                                                               (21) 

The other is a crisp matrix 

 𝐴1𝑥1 = 𝑏1                                                              (22) 

Where the interval matrix involves the lower and upper number of fuzzy numbers at level 

zero of 𝛼 −cut method. This interval matrix according to LU decomposition method [35] 

represented by the following formula: 

�̂� = �̂� × �̂�                                                              (23) 

While the other matrix is a crisp matrix at level of 𝛼 = 1 and its solution consists of crisp 

numbers.  

This selection of this method was depending on two factors: the singularity of the 

coefficient matrix �̂� and the efficiency of the method. Determining the singularity of the 

coefficient matrix or getting closer to the singularity gives rise to the flouting points in the 

results. They show themselves clearly in the membership functions of the constants K’s, 

in which the resultant fuzzy set has not been a fuzzy number as it mentioned above in the 

definition 2-5. The third example in the chapter 3 will demonstrate this situation clearly. 

Avoiding the flouting points comes from the sign of the determinant of the coefficient 

matrix �̂� which the determinant must not contain zero. The advantage of the LU 

decomposition is the calculating of the determinant could simply done by multiplications 

of the diagonal elements in the �̂� matrix while the determinant of the �̂� matrix always be 

one because of the unity diagonal [36]. The second feature of the LU decomposition is 

the efficiency of the calculation which means the steps to get the solution are less than 

other methods as well as getting narrower solution comparing to the output of others 

[37]. The LU decomposition is classified as indirect method versus the direct methods that 
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produce the exact results such as Gaussian elimination. Since the solutions have much 

difficulty with direct methods for multi-dimensional matrices, the indirect methods such 

as Krawczyk Method, Gauss–Seidel method and LU decomposition method was proposing 

to solve the interval system of equations with approximate solutions that converge to the 

exact one [38]. According to [36], [37], LU decomposition deem to be one of the most 

efficient method comparing to others especially in the computational time. 

 Generalized interval numbers are mentioned in[37], in which it is defined as the 

intervals whose limits are not conditioned by the ascending order and they have divided 

into three kinds: 

1- Proper interval set that identifies as the classical interval definition as the 

following: 

𝑢𝛼 = [𝑢𝛼 , 𝑢𝛼  ]        𝑤ℎ𝑒𝑟𝑒 𝑢𝛼 ≤ 𝑢𝛼                                                             

2- Improper interval set that defined as following: 

𝑢𝛼 = [𝑢𝛼, 𝑢𝛼]        𝑤ℎ𝑒𝑟𝑒 𝑢𝛼 ≥ 𝑢𝛼                                                   (24) 

3- Degenerated interval number that identified as  

𝑢𝛼 = [𝑢𝛼 , 𝑢𝛼]        𝑤ℎ𝑒𝑟𝑒 𝑢𝛼 = 𝑢𝛼                                                           

Which it is identical with the crisp number. 

Since the proper interval matrices have gotten from the fuzzy 𝛼-cut method agree with 

the proper interval matrices or the classical interval matrices, the proper solution set 

called a united solution set is defined in [39] as the following: 

�̂�  ⊆  ∑(�̂�, �̂�)  ,        ∑(�̂�, �̂�) = {𝑥 ∈ 𝑅𝑛| ∃ 𝐴 ∈ �̂�,∃ 𝑏 ∈ �̂� , 𝐴𝑥 = 𝑏}          (25) 

The authors in [33] have proposed procedures for LU decomposition method as 

the following: 

�̂� = �̂� × �̂�  ⟹ �̂� × �̂� = �̂�  ⟹ �̂� × �̂� = �̂�                              (26) 

Where �̂� is the lower triangular interval matrix and �̂� is the upper triangular interval 

matrix. To get these matrices according to [33], [37], firstly the diagonal elements of �̂� are 
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deemed to be unity , then the rest of elements of �̂� and �̂� could be computed by these 

interval equations that derived from the Gaussian elimination direct method : 

𝐹𝑜𝑟 𝑖 ≤ 𝑗 

�̂�𝑖𝑗 =∑(𝑙𝑖𝑘 × �̂�𝑘𝑗) + �̂�𝑖𝑗

𝑖−1

𝑘=1

    ⇒     �̂�𝑖𝑗 = �̂�𝑖𝑗⊝∑(�̂�𝑖𝑘 × �̂�𝑘𝑗)

𝑖−1

𝑘=1

              (27) 

 

 

𝐹𝑜𝑟 𝑖 > 𝑗 

�̂�𝑖𝑗 =∑(𝑙𝑖𝑘 × �̂�𝑘𝑗) + 𝑙𝑖𝑗 × �̂�𝑗𝑗

𝑗−1

𝑘=1

   ⇒    𝑙𝑖𝑗 =
(�̂�𝑖𝑗⊝∑ (�̂�𝑖𝑘 × �̂�𝑘𝑗)

𝑗−1
𝑘=1 )

�̂�𝑗𝑗
           (28) 

Where �̂� ∈ �̂�  &  𝑙 ∈ �̂� and �̂�𝑗𝑗 ∈ 𝑅
+ or �̂�𝑗𝑗 ∈ 𝑅

−.  

Note that �̂�𝑗𝑗  must not contain zero as interval number as it mention above in Definition 

2-6. This condition make a limitation on fuzziness of the input angle as the examples show 

in the next chapter. The Algorithms had been proved in details at both references 

mentioned above. 

2.4 Defuzzification 
 

2.4.1 Defuzzification Method 

The fuzzy input always produce a fuzzy output, however there are many applications 

that need to get a crisp output instead of fuzzy output. These applications lead to a 

concept called a defuzzification that transforms the fuzzy output membership function to 

get a number that represents a crisp output as an opposite of the fuzzification process. 

Ross in [28] presents six methods to defuzzify the fuzzy output membership function as 

following: 



25 
 

1- Maximum membership principle: The method that determines the output crisp 

number that has a highest grade of membership function. The algebraic expression 

of the method as following: 

𝜇𝑢(𝑧
∗) ≥ 𝜇𝑢(𝑧)   ∀ 𝑧 ∈ 𝑍                                               (29) 

       Where 𝑧∗ is the output crisp value. 

 

 

 

 

 

 

 

 

2- Centroid method: It gives the output crisp value has a grade of membership function 

from the center area of this function. It has an algebraic expression as following: 

𝑧∗ =
∫𝜇𝑢(𝑧) ∙ 𝑧 𝑑𝑧

∫ 𝜇𝑢(𝑧) 𝑑𝑧
                                                           (30) 

 

 

 

 

 

 

3- Weighted average method: Author in [28] describes it as the most appearing in the 

fuzzy applications, and it is conditional for the symmetric membership function. It 

has the algebraic expression as following:  

𝑧∗ =
∑𝜇𝑢(𝑧̅) ∙ 𝑧̅

∑ 𝜇𝑢(𝑧̅)
                                                         (31) 

        Where 𝑧̅ is the centroid of the symmetric membership function. 

Figure 2-3: Max membership method 

Figure 2-4: Centroid method 
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4- Mean maximum membership: It is the mostly like the first method except the 

location of the maximum grade of the membership, in which the location be given 

by the algebraic expression as following: 

𝑧∗ =
𝑎 + 𝑏

2
                                                          (32) 

       Where locations of a and b are shown in Figure 2-6 

 

 

  

 

  

 

Figure 2-5: Weighted average method 

Figure 2-6: Mean maximum method 
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5- Center of sums: It does not conditional for the 

symmetric membership function; however, it 

requires the location of centroid for every 

membership function. The disadvantage of 

this method is duplication the intersecting 

area. Its algebraic expression is given as 

following: 

 

 

𝑧∗ =
∑ 𝜇𝑢(𝑧) ∙ ∫ 𝑧̅ 𝑑𝑧
𝑛
𝑘=1

∑ 𝜇𝑢(𝑧)
𝑛
𝑘=1 ∫𝑑𝑧

                                                      (33) 

        Where 𝑧̅ is the distance from 𝑧∗ to the centroid of every membership function. 

 

6- Center of largest area: It works when we have two convex subregions, in which the 

defuzzified value is calculated by the centroid method of the convex fuzzy subregion 

with the largest area. This method is appropriate, as the completely fuzzy 

membership function is non-convex. Its algebraic expression is given as following: 

𝑧∗ =
∫𝜇𝑢𝑚(𝑧) ∙ 𝑧 𝑑𝑧

∫ 𝜇𝑢𝑚(𝑧) 𝑑𝑧
                                                   (34) 

Where 𝜇𝑢𝑚 has the largest area form all convex subregions. 

 

Figure 2-6: Center of sums method 
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2.4.2 Centroid Defuzzificatio of Non-Linear membership function   

The nonlinear membership function has a challenge to defuzzify directly because 

it is hard to get the explicit function that represent this function. Consequently, this type 

of function needs to be defuzzified approximately using the piecewise functions at 𝛼-cuts 

sets as they are defined in (18) and definition 2-6 as well as demonstrated clearly by Wang 

in [40] as the following: 

Definition 2-12: Let ũ is a fuzzy number, then the 𝛼-cuts sets are defined as 

𝑢𝛼 = {𝑥 | 𝜇ũ(𝑥) ≥ 𝛼} = [𝑚𝑖𝑛{𝑥 | 𝜇ũ(𝑥) ≥ 𝛼} ,max{𝑥 | 𝜇ũ(𝑥) ≥ 𝛼} ,   

= [𝑢𝛼 , 𝑢𝛼],         𝛼 ∈  [0,1] 

These linear piecewise functions are assumed as linear functions and they are be 

displayed as 

Figure 2-7: Center of largest area method 
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Figure 2-8: Linear piecewise function with the limits of integration at every 𝛼-cut set  

 

The centroid defuzzification of the linear piecewise functions as demonstrated in (30) will 

be the summation of the limited integration of every linear piecewise function at 

numerator and denominator as are shown in Fig. 2-8 

 

 

 

 

 

Linear 

piecewise 

function 

Limit of Integration 
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Chapter 3: Examples 
 

3.1 Example 

The example of the four-bar synthesis using Freudenstein's equation In [14] that 

mechaniclly generats the function of 𝑦 = sin(𝑥) , 0° ≤ 𝑥 ≤ 90° and the range of the 

function is 0 ≤ 𝑦 ≤ 1. The selected range of the input and output angles are 120° and 

60° degrees, respectively, and the calculated chebyshef precesion points accourding to 

[14] will be:  

𝑥1 = 3.75 

𝑥2 = 42.75 

𝑥3 = 81.75 

Then, the initial input angle ∅𝑖 = 100 and the initial output angle 𝜓𝑖 =60. Using the linear 

mapping to get ∅′𝑠 and  𝜓′𝑠 from the function 𝑦 = f(𝑥) by scaling parameters 𝑎, 𝑏, 𝑐 and 

𝑑 that be calculated from the relation in [41] as 

∅ = 𝑎 𝑥 + ∅𝑖 → ∅𝑓 − ∅𝑖 = 𝑎 𝑥𝑓 → 𝑎 =
120

90
= 1.3333 , 𝑏 = ∅𝑖 = 100  

𝜓 = 𝑐 𝑦 + 𝜓𝑖 → 𝜓𝑓 − 𝜓𝑖 = 𝑎 𝑦𝑓 → 𝑐 =
60

1
= 60 , 𝑑 = 𝜓𝑖 = 100  

From these parameters, precision points of the input and output angles are calculted by 

the scaling parameters as 

∅ = [105 157 209] 

𝜓 = [66.27 102.42 119.68] 

Then, the middle angle will be fuzzified at different degrees: 12, 6 and 4 degrees to see 

the differences between the centroid diffuzzified synthsis and the traditional crisp 

synthesis. The fuzzifying process of the middle angles will be the same at every case, so 

the steps will be demonstrated at the first case with the results; however, only results will 

be shown for other cases.  
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Regarding the first case with 12 degrees of fuzziness, the fuzzy membership functions of 

the middle input and output angles are shown in the following figures: 

 

           Figure 3-1. Fuzzification the second input angle  ∅2 

 

Figure 3-2.  Fuzzification the second output angle  𝜓2 
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Then, the resultant membership functions of crisp cosine functions of the fuzzy input ∅2 

and the fuzzy output 𝜓2 as they were defined in Definition 3-3 are shown as 

 

Figure 3-3. Crisp Cos function of fuzzy ∅2 

 

 

      Figure 3-4. Crisp cos function of fuzzy 𝜓2 
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The resultant fuzzy number can be expressed as an interval numbers with lower and 

upper limits using the 𝛼 -cut mehtod.  

cos (∅̃2) = [ 0.0358 𝛼 −  0.9563  , −0.0459 α − 0.8746 ]  

cos (�̃�2) = [0.1009 𝛼 − 0.3160  , −0.1033 α − 0.1118 ] 

In addition, the right hand side in (13) that involves the cosine of the difference between 

the fuzzy input and the fuzzy output angles can be expressed by the 𝛼-cut mehtod as 

cos (∅̃2 − �̃�2)  = [0.1821  𝛼 + 0.3975  ,0.7363 −  0.1568 α ] 

Then, the fully fuzzy linear system of equation will be as 

�̃�

= [
−0.2588 0.4024 1

[0.0358𝛼 −  0.9563  , −0.0459 α − 0.8746] [0.1009 𝛼 − 0.3160  , −0.1033 α − 0.1118] 1
 −0.8746   −0.4952 1

] 

b̃  = [
−0.7801

 0.1821  𝛼 + 0.3975  ,0.7363 −  0.1568 α
 −0.0119

] ,     �̃� = [
�̃�1
�̃�2
�̃�3

] 
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The fuzzy linear system of equation will be solved at every level of 𝛼-cut sets as they 

defined in (18). There are 10 interval matrices besides a crisp matrix at 𝛼 = 1 that be 

solved to get fuzzy constants K’s as they defined in (14) and (15). The solutions were 

defined in (25), (27) and (28) that lead to the resultant fuzzy numbers K’s as shown in the 

following figures: 

 

   Figure 3-5. The fuzzy number K1 of the first case 
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  Figure 3-6. The fuzzy number K2 of the first case 

 

 

    Figure 3-7. The fuzzy number K3 of the first case 
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Then, we get the fuzzy lengths of links as the defined in the definition 2-7 and (17) and 

they are as shown in the following figures: 

 

Figure 3-8. The fuzzy length of the input link “link 2” of the first case 

 

 

Figure 3-9. The fuzzy length of the coupler link “link 3” of the first case 
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Figure 3-10. The fuzzy length of the output link “link 4” of the first case 

 

Note that triangular membership functions of the fuzzy lengths are not  linear the 

same as figure 2-2, in which the blue line represents the nonlinear results from the fuzzy 

inputs as they were defined in the definition 2-7 and the definition 2-8, while the red line 

represents the assumed linear result from these operations.  

The resultant defuzzified 

lengths from the centroid 

defuzzification process will be 

used to simulate the four bar 

linkage by ADAMS View as it 

shown in Figure 3-11.  

 

  

Figure 3-11. ADAMS model for the Four bar Mechanism 
within diffuzzified lengths using centroid method 
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All of steps mentioned above are repeated at every case, so the only resultant 

results of the simulation will be shown for other cases. These results are manifested at 

the relations between the crisp linkage approximation and the fuzzy linkage 

approximation passing through the selected points of ∅′𝑠 and 𝜓′𝑠 as well as the structural 

error over the exact function for both them.  The results of the first case where the 

fuzziness area is 144 𝑐𝑚2 is shown in the following Figures: 

 

Figure 3-12. The actual crisp and fuzzy linkage function of the first case 

 

Where the area surrounded by black lines are the fuzziness area resulting from the 

fuzzification process at x and y axises. This area is the base of rectangular pyramid 

representing the membership function of the continuous fuzzy function of the two 

variables, in which the fuzzy linkage approximation must pass through it to without 

determining the exact location as the crisp linkage approximation do. 
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                Figure 3-13. The exact function and actual linkage approximations of the of the 
first case 

 

 

Figure 3-14. Structural Error of the 12 degrees fuzziness of the first case 
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Table 3-1. Results of the first case 

The link R1 R2 R3 R4 

Crisp length 1.0 0.5551894 1.4414696 0.7257699 

Fuzzified length 1.0 0.5769539 1.4249247 
 

0.8872722 
 

Structural Error of crisp approximating 7.378 

Structural Error of Fuzzy approximating 27.035 

  

The same case with exachnging the first row of the fuzzy matrix with the last one by 

changing the order of the input and output angles as 

∅ = [209 157 105], 𝜓 = [119.68 102.42 66.27] 

The purpose is to invistegate the effect of the changing the order of the fuzzy linear 

system since the definition of the solution set �̂� as mentioned in (25) deemed as subset 

of the united soution set ∑(�̂�, �̂�). The results of the modified first case will be as 

 

Figure 3-15. The fuzzy number K1 of of the modified first case  
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Figure 3-16. The fuzzy number K2 the modified first case 

 

 

 

Figure 3-17. The fuzzy number K3 the modified first case 
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Figure 3-18. The fuzzy length of the input link “link 2” the modified first case 

 

 

Figure 3-19. The fuzzy length of the coupler link “link 3” the modified first case 
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Figure 3-20. The fuzzy length of the output link “link 4” the modified first case 

 

 

   Figure 3-21. The actual crisp and fuzzy linkage function of the modified first case 
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     Figure 3-22. The exact function and actual linkage approximations of the of the 

modified first case 

 

 

Figure 3-23. Structural Error of the of the modified first case 
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Table 3-2. Results of the modified first case 

The link R1 R2 R3 R4 

Crisp length 1.0 0.5551894 1.4414696 0.7257699 

Fuzzified length 1.0 0.5725990 1.4572117 0.8599609 

Structural Error of the crisp approximating 7.3780 

Structural Error of the fuzzy approximating 9.437 

 

It is obvious that exchanging of rows’ order minimizes the degree of nonlinearity for 

the fuzzy K’s constants comparing to the first case, which leads to better behavior for the 

membership functions of the fuzzy lengths of the links. In addition, it is clear that 

membership function of K2 and the input link in Fig. 3-16 and Fig. 3-18, respectively, have 

appeared as multivalued functions and the crisp function have not intersect with the 

exact sin function for both situations of the first case although the structure error of the 

crisp function less than the fuzzy one. 
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The fuzziness of second case will be 6 degrees of the middle angles. The input and 

output angles will keep the descending order of the modified first case and the results 

will be in the following figures. 

 

Figure 3-24. The fuzzy number K1 of the second case 

 

 

Figure 3-25. The fuzzy number K2 of the second case 
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Figure 3-26. The fuzzy number K3 of the second case 

 

 

 

Figure 3-27. The fuzzy length of the input link “link 2” of the second case 
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Figure 3-28. The fuzzy length of the coupler link “link 3” of the second case 

 

 

Figure 3-29. The fuzzy length of the output link “link 4” of the second case 
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   Figure 3-30. The actual crisp and fuzzy linkage function of the second case 

 

 

     Figure 3-31. The exact function and actual linkage approximations of the of the 

second case 
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Figure 3-32. Structural Error of the of the second case 

 

Table 3-3. Results of the second case 

The link R1 R2 R3 R4 

Crisp length 1.0 0.5551894 1.4414696 0.7257699 

Fuzzified length 1.0 0.5600600 1.4319182 0.7590060 

Structural Error of the crisp approximating 7.3780 

Structural Error of the fuzzy approximating 6.329 

 

It is clear that fuzzy approximating has less amount of structural error comparing to the 

crisp approximating as well as intersecting with the exact function at two points, the first 

point at ∅ = 61.79° and the second one at ∅ = 84.28° which is close to the precision 

point 𝑥3 .  
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 In order to change the crisp approximating to get more accurate crisp 

approximating, the new chebyshef precesion points will be recalculated accouring to the 

formula  

𝑥𝑘 =
𝑥𝑓 − 𝑥𝑖

2
−
𝑥𝑓 − 𝑥𝑖

2
∗ cos(30 ∗ (2 ∗ 𝑘 − 1)) ,        𝑘 = 1,2,3                      (35) 

The new chebyshef precesion points are as 

𝑥1 = 6.028 ,           𝑥2 = 45 ,         𝑥3 = 83.971                                    (36)  

So that, the new precision points of the input and output angles keeping the descending 

order are as 

∅ = [211.962 160 108.038] 
𝜓 = [119.668 102.426 66.302] 

 

The results for the first case with 12 degrees fuzziness for the new precision points will be 

as 

 

Figure 3-33. The fuzzy number K1 of the first case for the new precision points 
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Figure 3-34. The fuzzy number K2 of the first case for the new precision points 

 

 

Figure 3-35. The fuzzy number K2 of the first case for the new precision points 
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Figure 3-36. The fuzzy length of the input link “link 2” of the first case for the new 
precision points 

 

 

Figure 3-37. The fuzzy length of the coupler link “link 3” of the first case for the new 
precision points 
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Figure 3-38. The fuzzy length of the output link “link 4” of the first case for the new 
precision points 

 

 

Figure 3-39. The actual crisp and fuzzy linkage function of the first case for the new 
precision points 



55 
 

 

Figure 3-40. The exact function and actual linkage approximations of the of the first case 
for the new precision points 

 

 

Figure 3-41. Structural Error of the of the first case for the new precision points 
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Table 3-4. Results of the first case for the new precision points 

The link R1 R2 R3 R4 

Crisp length 1.0 0.6085875 1.5098086 0.7836283 

Fuzzified length 1.0 0.6258844 1.5309920 0.9689904 

Structural Error of the crisp approximating 1.875 

Structural Error of the fuzzy approximating 5.553 

 

It is obvious that amount of structural error of the crisp approximating is decreasing from 

the previous precision points with 7.378 by 5.503 to get 1.873 and intersecting with the 

sin function at all new precision points. Consequently, the fuzzy approximating that is got 

by the centroid defuzzification process has less amount of the structural error with 5.553 

comparing to 9.437 for the first case with old precision points. In addition, the fuzzy 

approximating intersecting with the sin function at two points: the first one is at ∅ =

7.378° and the second one is at third precision point 𝑥3 = 83.971° . additionally, the 

multivalued membership function in Fig 3-16 and Fig 3-18 have disappeared in the 

fuzziness of the first case for the new precision points which a positive indication to get 

more accurate centroid defuzzified length of the input link. 
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The results of the second case with 6 degrees fuzziness for the new precision points 

keeping the descending order will be as 

 

Figure 3-42. The fuzzy number K1 of the second case for the new precision points 

 

 

Figure 3-43. The fuzzy number K2 of the first case for the new precision points 
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Figure 3-44. The fuzzy number K3 of the second case for the new precision points 

 

 

Figure 3-45. The fuzzy length of the input link “link 2” of the second case for the 

new precision points 
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Figure 3-46. The fuzzy length of the coupler link “link 3” of the second case for 

the new precision points 

 

 

Figure 3-47. The fuzzy length of the output link “link 4” of the second case for the 

new precision points 
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Figure 3-48. The actual crisp and fuzzy linkage function of the second case for the new 

precision points 

 

 

Figure 3-49. The exact function and actual linkage approximations of the of the 

second case for the new precision points 
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Figure 3-50. Structural Error of the of the second case for the new precision 

points 

Table 3-5. Results of the second case for the new precision points 

The link R1 R2 R3 R4 

Crisp length 1.0 0.6085875 1.5098086 0.7836283 

Fuzzified length 1.0 0.6133654 1.4976248 0.8273258 

Structural Error of the crisp approximating 1.875 

Structural Error of the fuzzy approximating 3.318 

 

The fuzziness of the second case for the new precision points has less amount of structural 

error by 2.2 points comparing to the same fuzziness in the second case for the old 

precision points and 2.4 points comparing to the decreasing with 6 degrees in the 

fuzziness from the first case for the new precision points. The precision point will be five 

to both crisp and fuzzy approximating for the first time. The fuzzy precision points will be 

coincided with the crisp precision points at the first point; however, the others are 30.17° 

and 89.27° versus 45° and  83.971° for the crisp approximating, respectively. 
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Lastly, the results of the third case with 4 degrees fuzziness for the new precision 

points keeping the descending order will be as 

 

Figure 3-51. The fuzzy number K1 of the third case for the new precision points 

 

 

Figure 3-52. The fuzzy number K2 of the third case for the new precision points 
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Figure 3-53. The fuzzy number K3 of the third case for the new precision points 

 

 

Figure 3-54. The fuzzy length of the input link “link 2” of the third case for the 

new precision points 
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Figure 3-55. The fuzzy length of the coupler link “link 3” of the third case for the 

new precision points 

 

 

Figure 3-56. The fuzzy length of the output link “link 4” of the third case for the 

new precision points 
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Figure 3-57. The actual crisp and fuzzy linkage function of the third case for the new 

precision points 

 

 

Figure 3-58. The exact function and actual linkage approximations of the of the 

third case for the new precision points 
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Figure 3-59. Structural Error of the of the third case for the new precision points 

 

Table 3-6. Results of the third case for the new precision points 

The link R1 R2 R3 R4 

Crisp length 1.0 0.6085875 1.5098086 0.7836283 

Fuzzified length 1.0 0.6133654 1.4976248 0.8273258 

Structural Error of the crisp approximating 1.875 

Structural Error of the fuzzy approximating 2.111 

 

Form the results of the third case with 4 degrees fuzziness, the precision points of the 

fuzzy approximating with the sin function will be coincided with the crisp approximating 

in the third precision point 𝑥3 = 89.971 ;however, the other two points will precede the 

crisp approximating by 2 degrees approximately to get 3.43° for the first precision point 

and 42.9° for the last one. In addition, the structural error is reduced by 2.2 points 

comparing to the decreasing in the fuzziness with 2 degrees from the second case. 
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3.2 Example 

In the second exampe, the input and output angles are given without using Chebyshev 

spacing as the follwing: 

∅ = [80 50 30] 

𝜓 = [60 30 0] 

This example should clearify the limitation of the fuzziness that be determined by the free 

zero interval for the constants K’s as mintioned in definition 2-6 and (28). So that, the 

fuzziness of the second point in this case will be 0.2 degree which is very small comparing 

to the cases of the previous example. The steps of the solutions should be the same as 

the previous example and their figures are as the following: 

 

 

Figure 3-60. Fuzzification the second input angle  ∅2 
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Figure 3-61. Fuzzification the second output angle  𝜓2 

 

Then, the constants K’s have the following membership functions. 

 

Figure 3-62. The fuzzy number K1 
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Figure 3-63. The fuzzy number K2 

 

 

Figure 3-64. The fuzzy number K3 
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It is clear that the approximating triangular fuzzy number for constant K1 has contained a 

zero. That leads to make the resultants fuzzy lengths of the links not a fuzzy number, in 

which this constraint restricts the fuzziness operation. The link that will not be affected is 

the fuzzy lengths of the input link due to the free zero interval of the fuzzy constant K2 as 

shown in the following figure. 

 

Figure 3-65. The fuzzy length of the input link “link 2” 

 

 

Figure 3-66. The fuzzy length of the coupler link “link 3” 
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Figure 3-67. The fuzzy length of the output link “link 4” 

 

It can be seen from Figure 3-29 and 3-30 that fuzzy lengths of the coupler and output links 

are not fuzzy number as were defined in the Definition 2-5. That shape will be excluded 

from the diffuzzification process due to no convexity for the membership function for the 

resultant fuzzy set. Consequently, a simple change is made on the selected input angles 

to go far away from the zero interval, in which the input angles will be away from 90° and 

270° because the cosine function at these values equal zero. As the output angles stay 

the same, the new input angles will be:  

∅ = [75 50 30] 
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The resultant lengths of the links after the modification are shown in the following figures: 

 

Figure 3-68. The fuzzy length of the input link “link 2” 

 

 

Figure 3-69. The fuzzy length of the coupler link “link 3” 



73 
 

 

Figure 3-70. The fuzzy length of the output link “link 4” 

 

It is clear from Figure 3-59, 3-60 and 3-61 above that linearity of the membership 

functions for the fuzzy lengths is achieved by changing the input angles away from 90°. 
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Chapter 4: Conclusion and Future Work 
 

4.1 Conclusion 

It is clear from all cases that have been investigated in the first example that fuzziness 

of Freudenstein’s equation of synthesis of four-bar mechanism allows to the mechanism 

to work by the function passing through a region rather than an exact point. Although the 

fuzziness was only for the middle point, the other precision points at the resultant 

generated function have been fuzzified with different proportions as the lengths of the 

links were fuzzified. The estimated functions from the centroid defuzzification method 

have differential amount of structural error depending on the fuzziness area in the middle 

of the crisp function and the type of rows order of the fuzzy matrix as shown in the first 

example especially in Figure 3.14, Figure 3-23, Figure 3-32, Table 3-1, Table 3-2 and Table 

3-3. Changing the type of rows order of the fuzzy matrix is affected the results because of 

the subset relation relating the solution of the interval linear system as shown in (25) 

rather than the equality relation of the solution in the crisp linear system. 

In addition, the fuzzy approximating using the centroid defuzzification method has 

less amount of structural error comparing to the crisp approximating as shown in Figure 

3-32 and Table 3-3. The reason behind is that fuzzification includes the new precision 

point as the fuzzy input was between 154° and 160°; however, the crisp approximating 

with the old precision points has stuck to the wrong choice of these points as the 

reference did.  

From the two situations mentioned in the first example, it is clear that fuzziness of the 

precision points to model the uncertainty of the links’ lengths has an advantage of the 

interval solutions. In the fuzzy solutions, the membership function keeps the Chebyshev 

crisp approximating at specific level of 𝛼-cuts such as 𝛼 = 1 at the second situation and 

𝛼 = 0.5, 0 at the first situation. Consequently, all three methods that be used to model 

the uncertainty of the link’s lengths are considered in the results of the fuzzy 

approximating as the crisp approximating has preserved in the fuzzy lengths. In other 
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words, the probabilistic method is included in the fuzzy synthesis as the membership 

functions of the fuzzy lengths have been estimated from the fuzzy precision points instead 

of the information that describe the uncertain variables. Besides the probabilistic method, 

the interval method are included as the results of the fuzzy synthesis produce the interval 

lengths at 𝛼 = 0 .  

On the subject the selecting of the input and output angles, the selecting in the fuzzy 

synthesis do not depend on the Chebyshev spacing because the middle point converts to 

a region with larger area for the function. That area should give a designer the flexibility 

to determine the input and output angles with guarantee of a limited extent of increasing 

for the structural error. The crisp approximating for three precision position for the 

function generation relies on the Chebyshev spacing theory to minimizing the structural 

error. On the other hand, the fuzzy approximating in this project excludes the Chebyshev 

spacing to looking for different factors with the flexibility has been gained such as the 

taking the input angles from one side of the cosine circle and the output angles from the 

other as shown in the Figure 4-1. 

 

 

Figure 4-1. The sign cirlce for the cosine function 
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This factor gives the linearity of the membership for the fuzzy lengths that leads to a wide 

range of fuzziness as demonstrated by the second situation in the first example, in which 

the fuzziness that was taken around 12 degrees had been increased the structural error 

about 3.7 points. This amount of structural error is deemed a small structural error 

comparing to the fuzziness area. Another factor related to the linearity of the 

membership function for the fuzzy lengths is the avoid the zero values for the cosine 

function or near it as demonstrated in the second example that viewed the five degrees 

away from the 90° made the linear membership function for the fuzzy lengths. 

Generally, the modeling of the uncertainty of the dimensional synthesis of the four-

bar mechanism by fuzziness one of the precision point builds intervals of link’s dimensions 

with membership functions that represent the probability of the dimensions value 

depending on the uncertainty of the positions of the precision point itself rather than 

uncertainty of the external information about the links’ dimensions.  

4.2 Future Work 

It can be seen that project concerned with the four-bar mechanism; however, other 

types of mechanism such as Six-bar mechanism with three or more precision points that 

could be synthesized with the same fuzzy mathematical model with different loop 

equations to improve the synthesis operations as we did for the four-bar mechanism.  

Another aspect that could be spotlighted is the effect of changing the type of fuzzy 

number from a triangular to a trapezoidal on the fuzziness area and the related structural 

error. That changing should convert the way to from the interval matrices because there 

are many at level 𝛼 = 1 and the crisp matrix that be defined at this level should be an 

interval matrix by which the solution has a subset relation �̂�  ⊆  ∑(�̂�, �̂�) instead of 

equality relation in the crisp one. 
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