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FLEXURAL AND LONG-TERM BEHAVIOR OF CFRP-STRENGTHENED 

REINFORCED CONCRETE BEAMS 
 

Mohamed Salem 

Abstract 

The repair and strengthening or retrofitting of existing concrete structures to resist 

higher design loads (wind loads, earthquake loads, and bridges loads), has traditionally been 

accomplished   using   conventional   materials and construction techniques. Externally 

bonded steel plates, steel or concrete jackets and external post tensioning are just some of the 

many traditional techniques available. In the context of the strengthening of the reinforced 

concrete structures, advanced composite materials have the potential for leading to innovative 

solutions.  

The main objective of this study is to evaluate the flexural and creep behavior of the 

CFRP-strengthened reinforced concrete beams under normal conditions. To achieve this 

objective; an experimental and numerical investigation were conducted. The experimental 

specimens were tested in the laboratory of the Institute for Building Physics in the Leibniz of 

Hannover, Faculty of Civil Engineering and Geodesy. The tested specimens were twelve 

simply supported reinforced concrete beams; six of the RC beams were strengthened with 

external bonded CFRP to the tension side of the reinforced concrete beams. 

The tested specimens were divided into two parts; the first part consists of six beams; 

three un-strengthened reinforced concrete beams (control beams); and three FRP-strengthened 

reinforced concrete beams. The flexural behavior of the CFRP-strengthened reinforced 

concrete beams was investigated experimentally and numerically using Abaqus finite element 

program. Furthermore, a parametric study using the calibrated finite element model was also 

evaluated. The experimental and FE model showed that using CFRP for strengthened 

reinforced concrete beams improve the stiffness of the reinforced concrete beam, increase the 

ultimate capacity, and also decreased the cracks in the tension side of the reinforced concrete 

beam. Also the properties of epoxy adhesive had no significant effect in the ultimate capacity 

of the strengthened system.  

The second part were three un-strengthened reinforced concrete beams (control 

beams); and three CFRP-strengthened reinforced concrete beams. The creep behavior of the 

CFRP-strengthened reinforced concrete beams under constant applied load and normal 
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weathering condition was investigated experimentally and numerically. In addition parametric 

study using the calibrated finite element model was also evaluated. The parameter used in the 

parametric study was the effect of different material properties of epoxy adhesive. The 

experimental and FE investigation showed that using CFRP for strengthened reinforced 

concrete beams decreases the creep deflection of the CFRP-strengthened reinforced concrete 

beam with value depends on the ratio of the CFRP plate length/breadth to beam span/breadth. 

Furthermore, using CFRP decreased the initial deflection and decreased the cracks in the 

tension side of the strengthened beam. Also it can be observed from the parametric study that; 

the length of CFRP plate should be extended to the supports and the CFRP plate breadth 

should be not less than the half of the beam breadth to get the full effect of the CFRP plate on 

the ultimate capacity and also to decrease the creep deflection of the CFRP-strengthened RC 

beams.  It is also suggested to use epoxy adhesive with combined high modulus of elasticity 

and high glass transition temperature to resist the change in the interface behavior due to the 

creep of the strengthened system. Furthermore, it has been proven that the creep coefficient of 

concrete which estimated using code equation can be used to evaluate the creep deflection of 

CFRP-strengthened reinforced concrete beams.  

 

Keywords: 

RC beam, CFRP, Flexural strengthened, deflection, long-term deflection, applied load 
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DAS BIEGE- UND LANGZEITVERHALTEN VON CFK-VERSTÄRKTEN 

STAHLBETONBALKEN 
 

Mohamed Salem 

 
Kurzzusammenfassung  

 
Die Instandsetzung und Verstärkung oder die Ertüchtigung bestehender Betonbauten 

zur Kompensierung höheren Lastannahmen (Windlasten, Erdbebenlasten und Brückenlasten) 

wurden in der Vergangenheit durch die traditionelle Verwendung von herkömmlichen 

Materialien und Bautechniken ausgeführt. Extern geklebte Stahlplatten, Stahl- oder 

Betonumantelung und extern vorgespannter Beton sind einige der vielen verfügbaren, 

traditionellen Techniken. Im Zusammenhang mit der Verstärkung der 

Stahlbetonkonstruktionen, haben fortschrittliche Verbundmaterialien das Potenzial für 

innovativen Lösungen. 

Das Hauptziel dieser Abreit ist die Bewertung des Biege- und Kriechverhaltens von 

CFK-verstärkten Stahlbetonbalken unter normalen Bedingungen. Um dieses Ziel zu erreichen, 

wurden eine experimentelle und numerische Untersuchung durchgeführt. Die experimentellen 

Stahlbetonbalken wurden im Labor des Instituts für Bauphysik getestet. Die getesteten Proben 

waren zwölf einfach gelagerte Stahlbetonbalken; sechs von ihnen wurden mit externen CFK-

gebundenen auf der Zugseite der Stahlbetonbalken verstärkt. 

Die geprüften Balken wurden in zwei Gruppen geteilt. Der erste Teil besteht aus sechs 

Balken; drei Stahlbetonbalken (als Kontrollbalken) und drei CFK- verstärkte 

Stahlbetonbalken. Das Biegeverhalten der CFK-verstärkten Stahlbetonbalken wurde 

experimentell und numerisch mittels des Finite-Elemente-Programms "Abaqus" untersucht. 

Dazu wurde eine Parameterstudie unter Verwendung der Finite-Elemente-Modell 

durchgeführt.  

Das experimentelle Programm und das FE-Modell zeigen, dass die Verwendung von 

CFK-verstärkten Stahlbetonbalken eine Verbesserung der Steifigkeit der Stahlbeton-Balken 

bewirkt, die Tragfähigkeit erhöht und die Rissbreite auf der Zugseite des Stahlbetonbalkens 

verkleinert wird. Es wird auch festgestellt, dass die Klebereigenschaften (Epoxy-Kleber) 

kaum Einfluss auf die Tragfähigkeit des verstärkten Systems hat. 
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Der zweite Teil besteht aus sechs Balken; drei Stahlbetonbalken (als Kontroll-Balken) 

und drei CFK-verstärkten Stahlbetonbalken. Das Kriechverhalten der CFK- verstärkten 

Stahlbetonbalken unter konstanten angelegten Lasten und normalen Witterungsbedingungen 

wurde experimentell und numerisch untersucht. Eine  Parameterstudie unter Verwendung der 

Finite-Elemente-Modell wurde ebenfalls durchgeführt und ausgewertet.  

 Die experimentellen Untersuchungen und das FE-Modell zeigen, dass bei der 

Verwendung von CFK zur verstärktung von Stahlbetonbalken das Kriechen des CFK-

verstärkten Stahlbetons, in Abhängigkeit von dem Verhältnis der CFK-Platte Länge / Breite 

zu Stahlbetonbalken Länge / Breite, abnimmt.  Die Verwendung von CFK reduziert die 

anfängliche Verformung und minimiert die Rissbreite in der Zugseite der verstärkten 

Stahlbetonbalken. Auch kann mit der parametrischen Studie beobachtet werden, dass die 

Länge der CFK-Platte an der Auflager angeschlossen werden sollte (d.h. CFK mit einer Länge 

gleich der Stahlbetonspannweite) um die Tragfähigkeit der verstärkten Systeme zu 

verbessern. Auch die Breite des CFK sollte nicht weniger als die Hälfte der Stahlbalkenbreite 

betragen. Es wird auch empfohlen, Epoxy-Klebstoff mit einem hohem Elastizitätsmodul und 

hoher Glasübergangstemperatur zu verwenden, um der Veränderung des Verhaltens durch das 

Kriechen des gestärkten Systems zu widerstehen. Weiterhin kann die Kriechzahl aus Beton, 

die mit Code Gleichung abgeschätzt werden, verwendet werd, um das Kriechen der CFK-

verstärkten Stahlbetonbalken auszuwerten. 

 

Schlüsselwörter: 

 Stahlbetonbalken, CFK, Biegesteifigkeit verstärkt, Durchbiegung, langfristige 

Ablenkung, Auflast 
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Chapter 1      Introduction 

1.1 General 

The repair and strengthening or retrofitting of existing concrete structures to resist 
higher design loads (increasing in the affecting loads such as wind loads, earthquake loads, 
and bridges loads as a result of the continued updates of the Egyptian and international 
loading codes), correct deterioration-related damage, or increased ductility has traditionally 
been accomplished   using   conventional   materials and construction techniques. Externally 
bonded steel plates, steel or concrete jackets and external post tensioning are just some of the 
many traditional techniques available. In the context of the strengthening of the reinforced 
concrete structures, advanced composite materials have the potential for leading to innovative 
solutions.  

These advanced composites used in structures rehabilitation are being developed from 
fibers, polymers, metals and composites of these materials. While the concept of composites 
have been used in building, bridges, and  several structures, the application of fiber reinforced 
polymer (FRP) for rehabilitation and strengthening of reinforced concrete structures is widely 
used. The FRP composites combine the strength of the fibers with the stability of the polymer 
resins. They are  defined  as polymer  matrix,  that  are  reinforced  with  fibers  or  other 
reinforcing  material with a  sufficient  aspect  ratio (length  to  thickness) to provide a 
desirable reinforcing function in one or more directions. The fiber reinforced polymer 
composite materials are different from traditional construction materials such as steel, 
aluminum and concrete because their properties depending on the direction of the fibers. 

Fiber reinforced polymer  systems  with  their  high  versatility (excellent strength-to-
weight and stiffness-to weight ratios, high durability, corrosion resistance) can be used to 
rehabilitate  a deteriorated  structural  member,  strengthen  a  functionally  obsolete structural 
member to resist increased loads due to changes in use of the structure, or address design or 
construction errors. To assess suitability of a fiber reinforced polymer system for a particular 
application, the condition assessment of the existing structure should be performed and the 
best treatment option should be then determined based on the assessment (ACI Committee 
440, 2002). 

Several researches had been carried out to investigate the flexural behavior of the 
strengthened reinforced concrete structures externally bonded with FRP. Failure capacity, 
deflection, durability, and creep are some of the important criteria in the design of CFRP 
strengthened reinforced concrete structures and must be kept within allowable limits, several 
control measures, such as appropriate design and construction procedures and the use of 
appropriate materials to provide higher beam stiffness, have been recommended by the 
American Concrete Institute (ACI Committee 435R , 1995). Fibre-reinforced polymer 
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systems that have a high resistance to creep deformation should also offer improved 
deflection characteristics of beams under service load, (Phillips L.N. , 1989). 

Long-term performance is a much-recognized but less-addressed issue in the field of 
reinforced concrete (RC) structures strengthened with externally bonded carbon fibre 
reinforced polymer (CFRP) system. This type of structure may show increased deflections 
and crack widths over time and may also fall short of the safety margin against the ultimate 
collapse state when subjected to weathering effects in addition to sustained loading. Although 
concrete is proven to be well-resistant against both of them, concerns prevail as regards to the 
degradation in performance of externally bonded CFRP laminates over long period of 
exposure to weathering. The creep effect on CFRP laminates due to sustained loading would 
be another concern as this may accelerate the degradation due to weathering effects, (Saha & 
Tan, 2005). 

Also the possibility to determine the creep deflection of the strengthening system using 
the international code equations for the concrete needs more studies.    

1.2 Objective and Scope 

Evaluation of flexural short- and long-term behavior of the CFRP-strengthened RC 
beams, especially the effect of the creep phenomenon on the behavior of the strengthened 
beams during the life time of the structure was set as the aim of this thesis, the following will 
be studied: 

• The creep coefficient which can be used to estimate the deflection due to creep 
of the strengthening system. 

• Effect of CFRP, epoxy and different load level on the creep deflection. 

• Effect of temperature on the creep behavior of epoxy interface. 

• Ability of using the code equation for estimating the creep coefficient of the 
concrete to estimate the creep deflection of CFRP-strengthened RC beams. 

To achieve this objective the following can be summarized:  

 Review for previous research about studying the flexural and long-term behavior of 
CFRP strengthened reinforced concrete structures. 

 Estimating the possible influence of CFRP- strengthened material on flexural and creep 
response of the strengthened concrete structures.  

 Conducting short-term experiments on the CFRP-strengthened RC beams under 
different loading conditions to attain some mechanical properties of the tested 
specimens that could help understand and justify their long-term performance.  

 Developing finite element models simulating the performance of the studied CFRP-
strengthened RC beams using some different material properties of the concrete, epoxy 
and CFRP attained through short-term experiments. 
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 Validating the finite element models by comparing its results with the experimental 
ones. 

 Using the calibrated finite element model for parametric study to estimate the effect of 
applied load level, CFRP plate length and breadth ratio and epoxy interface type on the 
creep deflection of the CFRP-strengthened RC beams 

 Using the calibrated finite element model for parametric study to evaluate the effect of 
temperature level on the creep strain of the epoxy interface. 

 Evaluating the applicability of the FEM model and traditional equations available in 
international codes for calculating the creep response of CFRP- strengthened RC beams. 

 Addresses recommendation and conclusions that must be taken into account when using 
the CFRP for strengthening RC beams for the designers. 

1.3 Limitation 

This study was conducted under laboratory weather condition; and the age of concrete 
at loading was about 9 months. It should be taken into consideration the glass transition 
temperature for the epoxy adhesive (it must be not less than 50 oC), also the effect of the fire 
not included in this study, but it must be using fire protection method if using FRP-
strengthened RC beams inside buildings may be exposed to fire. 

1.4 Outline of Thesis 

The thesis contains six chapters covering the listed objective. 

Chapter One:  includes an introduction and plan of the research work, the objectives and the 
scope, and the content of the present study are also included. 

Chapter Two: deals with the literature review of durability behavior of reinforced concrete 
beam strengthened by FRP composite. 

Chapter Three:  introduces the experimental work of this study; including the details and 
fabrication of the tested specimens, test setup and instrumentations, and materials used in the 
specimens.  

Chapter Four: describes the experimental test results, exploiting the experimental results, 
and discussion of the results. 

Chapter Five: discusses the finite element model used to simulate the experimental 
specimens, exploiting and validate the FE model results compared with experimental results 

 Chapter Six discus the numerical results and using the FE model to study some parametric 
study by using different material properties. 

Chapter Seven: summarizes conclusions and recommendations for the future studies. 
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Chapter 2 					Literature Review 

2.1 General 

The strengthening of reinforced concrete structures using concrete/steel jackets, and/or 
external bonded steel plates techniques were widely in some countries. These techniques are 
very easy to carry out, but the most difficult with these techniques is the increase of section 
dimensions and the heavy weight of the materials used in strengthening. In the recent years, 
externally bonded fibre reinforced polymers (FRP) has becomes a popular technique for 
repairing, retrofitting and strengthening of existing  concrete structures all over the world 
because of the special mechanical and physical properties of these composites (excellent 
strength-to-weight and stiffness-to weight ratios, high durability, and corrosion resistance). In 
fact, there may be several reasons for the need of strengthening and upgrading concrete 
structures, such as expired design life, changes in functionality; damage caused by mechanical 
actions and environmental effects, more stringent design requirements, original design and 
construction errors. However, the long-term performance of FRP-bonded beams under service 
loads is still a concern. 

In many fibre-reinforced polymer (FRP) composite structures, both the short-term and 
long-term durability of the material is of importance. While the structure may not fail when 
subjected to stresses over a short period of time, it may be prone to failure or increased strain 
when subjected to stresses over an extended period of time. Even if failure does not occur, the 
slow deformation of the composite material may cause the structure to become less and less 
effective. The characterization of the long-term performance of FRP composites is especially 
important because of the viscoelastic behavior of the polymer matrix. FRP matrices exhibit a 
glass transition, Tg, a temperature above which the properties of the composite degrade 
significantly. Typically, it is necessary that the application temperature for the composite 
structure is below the glass transition in order to assure that the mechanical stiffness and creep 
resistance of the material is satisfactory. However, the glass transition relaxation occurs over a 
range of temperatures, so creep testing and predictions of long-term creep behavior at 
particular application temperatures are important so that the material’s long-term mechanical 
performance can be evaluated. 

2.2 Flexural strengthening reinforced concrete structures with FRP 

Since 1982, externally bonded FRP sheets/strips have been successfully applied to 
reinforced concrete beams. Meier, et al., (1995) suggested that CFRP laminates could replace 
steel plates with overall cost savings emanating from the simplicity of the strengthening 
method because:  

 FRPs do not corrode; 

 FRPs are easy to handle in the construction site and can be bonded to structure without 
expensive scaffolding; and 
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 FRPs are available in long lengths, therefore no joints are necessary. 

These FRP materials can be externally bonded to the tension face of concrete structures 
with any desirable shape via a thin layer of epoxy adhesive and thus enhance stiffness and 
strength of the structures to be strengthened.  

Advanced composite materials offer advantages such as low weight, excellent, a range 
of elastic moduli, high resistance to corrosion, high strength, availability in long lengths thus 
avoiding the need for lapping, and good fatigue and creep characteristics. Recent studies have 
shown that advanced composite materials can strengthen structural elements such as columns 
and beams, leading to great economic benefit in repairing damaged structures (An W., et al., 
1991), and (Meier & Kaiser, 1991). However, the choice of the composite and the 
manufacturing and application procedures must be well defined to assure that the retrofitted 
structural elements will consistently have the required performance. 

There are a number of applications of FRP composites as the strengthening material of 
reinforced concrete elements. FRP composite strips can be bonded to the external tension 
zones of beams and slabs thus increasing the flexural strength of the element (Figure  2-1). 

 

Figure  2-1: Reinforced concrete beams and slabs strengthened with FRPs ( (Amélie Grésille, 
2009) 

Dat Duthinh & Monica Starnes, (2001) studied the Strengthening of Reinforced 
Concrete Beams with Carbon FRP experimentally; seven concrete beams reinforced internally 
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with steel and externally with CFRP laminate applied after the concrete had cracked were 
tested under four-point bending. Results show that FRP is very effective for flexural 
strengthening. As the amount of steel increased, the additional strength provided by the 
carbon decreases. Compared to a beam reinforced heavily with steel only, the beams 
reinforced with both steel and carbon have adequate deformation capacity, in spite of their 
brittle mode of failure. Clamping or wrapping of the ends of the FRP laminate combined with 
adhesive bonding is effective in anchoring the laminate. 

Philip A. Ritchie, et al., (1991) studied the effectiveness of external strengthening using 
fiber reinforced plastic (FRP) plates. A series of 16 under-reinforced beams was tested. Plates 
of glass, carbon, and aramid fibers were bonded to the tension side of the beams using a two-
part epoxy. FRP is attractive for this application due to its good tensile strength, low weight, 
and resistance to corrosion. An iterative analytical method was developed to predict the 
stiffness and maximum strength in bending of the plated beam. Increases in stiffness (over the 
working load range) from 17 to 99 percent and increases in strength (ultimate) from 40 to 97 
percent were achieved for the beams with FRP plates. Predicted and actual load-deflection 
curves showed fairly good agreement, although generally the theoretical curves were stiffer. 
Experimental failure did not occur in the maximum moment region on many of the beams, 
despite attempts at end anchorage to postpone the local shear failure. The ultimate loads of the 
beams that did fail in the maximum region were within about 5 percent of predicted values. 

M.R. Esfahani, et al., (2006) investigated the flexural behaviour of reinforced concrete 
beams strengthened using Carbon Fibre Reinforced Polymers (CFRP) sheets. The effect of 
reinforcing bar ratio ρ on the flexural strength of the strengthened beams is examined. Twelve 
concrete beam specimens with dimensions of 150 mm width, 200 mm height, and 2000 mm 
length were manufactured and tested. Beam sections with three different reinforcing ratios, ρ, 
were used as longitudinal tensile reinforcement in specimens. Nine specimens were 
strengthened in flexure by CFRP sheets. The other three specimens were considered as 
control specimens. The width, length and number of layers of CFRP sheets varied in different 
specimens. The flexural strength and stiffness of the strengthened beams increased compared 
to the control specimens. From the results of this study, it is concluded that the design 
guidelines of ACI Committee 440, (2002) and ISIS Canada, (2001) overestimate the effect of 
CFRP sheets in increasing the flexural strength of beams with small ρ values compared to the 
maximum value, ρmax, specified in these two guidelines. With the increase in the ρ value in 
beams, the ratios of test load to the load calculated using ACI 440 and ISIS Canada increased. 
Therefore, the equations proposed by the two design guidelines are more appropriate for 
beams with large ρ values. In the strengthened specimens with the large reinforcing bar ratio, 
close to the maximum code value of ρmax, failure occurred with adequate ductility. 

Several studies have been conducted on the use of Glass or Carbon FRP as flexural 
strengthening reinforcement of concrete beams ( (Toutanji, et al., 2006), and (Kachlakev D & 
McCurry DD., 2000)). The researchers showed the behavior in terms of load-deflection, load-
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strain, failure patterns and structural ductility. All beams showed a considerable increase in 
ultimate load capacity by (40% to 200%) compared to control beams.  

2.2.1 FRP types used for structures strengthening 

FRP composites are formed by embedding continuous fibres in a resin matrix which 
binds the fibres together. Common fibres include carbon, glass, and aramid fibres while 
common resins are epoxy, polyester, and vinyl ester resins. The most widely used FRP 
composites are glass-fibre-reinforced polymer (GFRP) composites, carbon-fibre-reinforced 
polymer (CFRP) composites, and aramid-fibre-reinforced polymer (AFRP) composites. The 
mechanical properties for GFRP, CFRP, and AFRP were summarized in Table  2-1.  

Table  2-1: Typical mechanical properties for GFRP, CFRP and AFRP composites 
 (J. G. Teng, et al., 2003) 

Unidirectional advanced 
composite materials 

Fibre content 
% by weight 

 

Density 
kg/m3 

 

Longitudinal 
tensile modulus 

GPa 

Tensile strength 
MPa 

 
Glass fibre/polyester 

GFRP laminate 
50-80 1600-2000 20-55 400-1800 

Carbon/epoxy CFRP 
laminate 

65-75 1600-1900 120-250 1200-2250 

Aramid/epoxy AFRP 
laminate 

60-70 1050-1250 40-125 1000-1800 

In terms of structural use of FRP composites, one very important property common to 
all three types of FRPs is that their stress–strain behavior is linearly elastic until rupture 
(Figure  2-2). This has two major structural consequences. First, these materials do not possess 
the ductility that steels have, and their brittleness may limit the ductile behavior of RC 
members strengthened with FRP composites. For example, an RC beam bonded with an FRP 
soffit plate may fail by either FRP rupture or crushing of concrete, both of which are brittle 
failure modes. In such beams, failure by concrete crushing is permissible, as the FRP rupture 
mode is also brittle. This contrasts with normal RC beam design where steel yielding should 
be ensured to precede concrete crushing. Nevertheless when used to provide confinement for 
concrete, these materials can greatly enhance the strength and ductility of columns. The 
second implication of the brittle behavior of FRPs is that stress redistribution is limited. 
Consequently, the design of FRP strengthening measures for RC structures should not be 
based on existing methods for RC structures without due justification, (J. G. Teng, et al., 
2003). 

 



Chapter 2   Literature Review 

 

8 
 

 

Figure  2-2: Comparison of stress-strain behavior of steel and FRPs (ACI Committee 440, 
2002) 

2.2.2 Failure mode of FRP strengthened RC beams  

Most of the failure modes observed in the beam tests carried out by Meier, et al., 
(1995),  Ritchie PA, et al., (1991), and Smith ST & Teng JG., (2002) are illustrated in 
Figure  2-3. 

a) FRP rapture e) Concrete cover separation 

b) Crushing of compressive concrete d) Interfacial debonding at plate end 

c) Shear failure f) Intermediate flexural/shear cracks  induced 
interfacial debonding   

Figure  2-3: Failure modes in reinforced concrete beams strengthened with FRPs 
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Possible failure modes of FRP strengthened beams are classified into two types. The 
first type of failure includes the common failure modes such as concrete crushing and FRP 
rupture based on complete composite action.  

The second type of failure is a premature failure without reaching full composite action 
at failure. This type of failure includes: end cover separation, end interfacial delamination, 
flexural crack induced debonding and shear crack induced debonding. Different failure 
mechanisms in experimental tests were reported by (Aram MR, et al., 2008), (Pham H & Al-
Mahaidi R , 2004) and (Teng GJ, et al., 2003). Premature failures can significantly limit the 
enhancement property and the ultimate flexural capacity of the retrofitted beams. Several 
studies were conducted to identify methods of preventing premature failure with the aim of 
improving the load capacity and ductility of RC beams. Researchers studied the use of end 
anchorage techniques, such as U-straps, L-shape jackets, and steel clamps for preventing 
premature failure of RC beams strengthened with CFRP ( (Ceroni F , 2010); and (Jumaat MZ 
& Alam MA , 2010)). In particular, their practical implementations for flexural strengthening 
are numerous ( (Costa IG & Barros JAO, 2010); (Tan KH, et al., 2009); and (Wang YC & 
Hsu K , n.d.)). It is seen that most of the conducted experiments to validate the design 
methodology for FRP flexural strengthening, consisted of rectangular or T-beams on which 
the strengthening was applied to the positive moment region of the member.  

2.2.3 Ultimate flexural capacity  

The American Concrete Institute, (ACI Committee 440, 2002), proclaims that flexural 
behavior of strengthened systems can be analysed using the following assumptions: 

 FRPs have a linear elastic stress-strain relationship up to failure; 

 Strain compatibility and equilibrium; 

 Maximum concrete strain of 0.003; and 

 Tensile strength of concrete could be ignored. 

The stress in each material is calculated based on strain compatibility, force equilibrium, 
and the governing failure mode. The strain in the FRP has been shown to exhibit three distinct 
stages of beam behavior corresponding to: uncracked section of the beam, cracked section 
with elastic steel, and finally the section with plastic steel ending with rupture of the FRP 
(Meier & Kaiser, 1991). Consequently, flexural failures are highly governed by the amount of 
FRP relative to the amount of the existing steel and beam dimensions 

ACI Committee 440F  (ACI Committee 440, 2002); used a rectangular stress block 
similar to that used in normal reinforced concrete beams as shown in Figure  2-4. In order to 
prevent debonding of the FRP laminate, a limitation should be placed on the strain level 
developed in the laminate.  
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Figure  2-4: Internal strain and stress distribution for a rectangular section under 
flexure at ultimate stage. 

ACI Committee 440F applies limit values for the ultimate strain of FRP given by the 
following equations: 

௙௨ߝ  ൌ ாܥ ∙ ௙௥௣ ( 2-1)ߝ

 

 ε௙௘ ൑ k௠ ∙ ε௙௨ ( 2-2)
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 ( 2-3)

Wher; 

CE : the environment-reduction factor for various FRP materials (CE = 0.5-0.95) 

 ௙௨ : FRP ultimate strainߝ

Efrp: FRP modulus of elasticity  

tfrp: FRP thickness 

 ௙௘ : FRP Effective strainߝ
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nfrp: number of layers of FRP 

The nominal bending moment at failure is given by: 

 

௡ܯ ൌ ௦݂ܣ௦ ൬݀	 െ
ݔߚ
2
൰ ൅ ߰௙௥௣ܣ௙௥௣ܧ௙௥௣ߝ௙௘ ൬݀௙௥௣ െ

ݔߚ
2
൰

൅	ܣ௦ᇱ ௦݂
ᇱ ൬
ݔߚ
2
െ ݀ᇱ൰ 

( 2-4)

Where; ߰௙௥௣ is a reduction factor for FRP (the recommended value of the factor ߰௙௥௣ = 

0.85 ), and  factor depend on the strength of the concrete ( = 0.65 – 0.85 the most used 

value = 0.8) . The ultimate bending moment is calculated by the following equation:  

௨ܯ  ൌ ௡ ( 2-5)ܯ߮

Based on ACI440, to provide appropriate ductility, the design bending moment is 
calculated provided that the tension steel strain be greater than 0.005. Therefore, a strength 

reduction factor given by Equation ( 2-6) should be used, where s is the strain in the steel at 

the ultimate limit state. 

 ߮ ൌ ൞

0.9, ௦ߝ ൒ 0.005

0.7 ൅
଴.ଶሺఌೞିఌ೤ሻ

଴.଴଴ହିఌ೤
, ௬ߝ ൏ ௦ߝ ൏ 0.005

0.7, ௦ߝ ൑ ௬ߝ

	         ( 2-6)

This equation sets the reduction factor at 0.90 for ductile sections and 0.70 for brittle 
sections where the steel does not yield, and provides a linear transition for the reduction factor 
between these two extremes. 

In general for the RC beam, the ultimate moment of resistance of doubly reinforced 
concrete beam is calculated by the following equation: 

௡ܯ  ൌ ௬݂ሺܣ௦ െ ௦ᇱܣ ሻ ቈ ݀௦ െ
௬݂ሺܣ௦ െ ௦ᇱܣ ሻ

2ሺ0.85 ௖݂
ᇱܾሻ

቉ ൅ ௬݂ܣ௦ᇱ ሺ݀௦ െ ݀ᇱሻ ( 2-7)

For FRP strengthened reinforced concrete beam; the minimum cross-sectional area of 
FRP to avoid FRP rupture failure is 

 

ݔ  ൌ ݀௙
௖௨ߝ

௖௨ߝ ൅ ௙௨ߝ
 ( 2-8)
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௙,௠௜௡ܣ  ൌ
0.75ሺ0.85 ௖݂

ᇱ ܾ ߚ ሻݔ ൅ ௦݂
ᇱܣ௦ᇱ െ ௬݂ ௦ܣ

௙݂௨
 ( 2-9)

The maximum cross-sectional area of FRP to preclude concrete crushing failure is 

ݔ  ൌ ݀௦
௖௨ߝ

௖௨ߝ ൅ ௬ߝ
 ( 2-10)

 
 

௙,௠௔௫ܣ  ൌ
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ᇱ ܾ ߚ ሻݔ ൅ ௦݂
ᇱܣ௦ᇱ െ ௬݂ ௦ܣ

௙݂௨
 ( 2-11)

At ultimate state, the tension failure will be the yielding of the steel in tension followed 
by concrete crushing (Figure  2-4). The ultimate moment of resistance after strengthening is 

௡ܯ  ൌ 0.85 ௖݂
ᇱݔߚ	ܾ ൬݀௙ െ

ݔߚ
2
൰ ൅ ௦ᇱߝ௦ܧ ௦ᇱܣ ሺ݀௙ െ ݀ᇱሻ ൅ ௬݂ܣ௦ሺ݀௙ െ ݀௦ሻ ( 2-12)

x can solved by the following equation 

 
ݔ ൌ

െܤଵ ൅ ටܤଵ
ଶ െ ଵܿଵܣ4

ଵܣ2
 ( 2-13)

Where A1 =	0.85݂ܿ
′   ,ܾ	ߚ

B1= ൫ܣ௦ᇱ ௦ܧ ൅ ௖௨ߝ௙௥௣൯ܧ௙௥௣ܣ െ ௦ܣ ௬݂ 

c1=  െሺܣ௦ᇱ ௦݀ᇱܧ ൅  ௖௨ߝ௙௥௣݀௙௥௣ሻܧ௙௥௣ܣ

2.2.4 Bond between FRP and concrete 

The bonding of fiber reinforced plastics (FRP) plates/sheets to the tension side of a 
concrete beam was found to be an effective technique for flexural FRP-strengthening 
structures. This bond property can be represented by the bond stress-slip relationship, the 
experimental and theoretical studies investigated interfacial shear bond behaviors commonly 
based on direct shear tests (single and double fig), various bond stress-slip relationships have 
been proposed (Dai el al. 2005, Nakaba et al. 2001). 
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The evaluated interface characteristic parameters include average shear bond strength, 
effective bond length, maximum shear bond stress, interfacial fracture energy, as well as the 
local bond stress-slip relationship 

  

a) double shear test b) single shear test 

Figure  2-5: interface shear test 

Debonding is often observed at discontinuities such as laminate ends and existing crack 
mouths within the retrofit span (Meier U, 1992) where high concentration of shear and peel 
stresses can be found. 

For the strengthened member, failure often occurs by debonding of FRP from the 
concrete substrate, which can initiate from the end of the FRP plate or the mouth of a flexural 
or flexural/shear crack (Figure  2-3; (d), (e), and (f)). Failure initiated from the plate end is 
often attributed to the presence of high shear and normal stress concentrations. 

The elastic stress distributions around the plate end have been derived in various studies 
(El-Mihilmy MT & Tedesco JW, 2001). Knowing the elastic stresses, the applied load at the 
occurrence of plate end debonding can be obtained with the use of concrete failure criterion 
under multi-axial stress (El-Mihilmy MT & Tedesco JW, 2001) and (Saadatmanesh H, & 
Malek AM., 1998). 

Another possible location for interfacial crack to occur is the mouth of a major 
flexural/shear crack in the beam. Loading of a FRP strengthened RC beam will lead to the 
formation of flexural/shear cracks along the span. When loading is increased, the crack will 
tend to propagate upwards but crack opening at the bottom is resisted by the FRP plate. 
Elastic analysis performed by Leung (Leung C. K. Y, 2001) shows that very high interfacial 
shear stresses are induced at the vicinity of the crack, leading to debonding of the FRP plate 
(Figure  2-3(f)). From experimental observations, the debonded plate always carries with it a 
thin layer (a few mm; about 5 mm) of concrete, implying that the debonding is occurring at a 
distance from the concrete/adhesive interface. This observation can be explained as follow. 
Firstly, penetration of adhesive into the concrete may increase the strength of a thin layer of 
material right next to the interface. Secondly, high shear stresses acting along the 
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concrete/adhesive interface will produce micro-cracks that tend to propagate away from the 
interface at a certain angle (along the principal compression direction). The interaction and 
coalescence of these inclined cracks will produce the final debonding surface inside the 
concrete, (Jinlong Pan & Christopher K.Y. Leung, 2007). 

Debonding can also initiate at the bottom of cracks in the concrete member, and 
propagate towards the end of the FRP plate. This mode of failure has been experimentally 
observed by Wu Z., et al., (1997), and Teng J. G., et al., (2000). Crack-induced debonding at 
the FRP/concrete interface is not a linear process. In tests on pre-cracked beams conducted by 
Hearing B. & Buyukozturk O., (2000), strain gages were put along the FRP plate right below 
the crack and also at its vicinity. Initially, the gage right under the crack showed a much 
higher strain value than the neighboring gages. As loading was increased, the strain difference 
between the gages became smaller and smaller. This can be explained in terms of damage 
along the interface, which reduces the shear transfer capability between the concrete and the 
FRP. With a lower shear stress along the interface, there is a smaller change in FRP strain 
from one point to another. This experimental observation indicates that interfacial debonding 
is a progressive process involving material softening along the interface, which should be 
taken into account in the modeling of crack-induced debonding.  

Cover delamination or FRP debonding can occur if the force in the FRP cannot be 
sustained by the substrate. In order to prevent debonding of the FRP laminate, a limitation 
should be placed on the strain level developed in the laminate. Equation ( 2-3) gives an 
expression for a bond-dependent coefficient km (ACI Committee 440, 2002). 

2.2.4.1 Bond-slip model 

Modeling of debonding in structural members strengthened with externally bonded 
reinforcements with finite element model was studied due to its critical importance of 
debonding failures in bonded joints. The bond stress versus slip (τ~s) relationship is the very 
important law to describe the interface performance of FRP-strengthened RC structures. 

Based on such finite element bond-slip curves and some calibration with a large test database, 
three bond-slip models were developed (Lu, et al., 2005) 

 Precise model: 

The first of the three bond-slip models is referred to as the precise model as it takes 
explicit account of the effect of the adhesive layer, which is important when the adhesive is 
much softer than those currently in common use. It has been reported that very soft adhesive 
layers can increase the interfacial fracture energy (Dai J G & Ueda T, 2003). The bond stress 
versus slip (τ~s) for precise model developed by Lu, et al.,(2005) shown in Figure  2-6  
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Figure  2-6: Bond-slip curve, precise model by (Lu, et al., 2005) 

 

The precise model describes the ascending and descending branches separately using 
the following equations: 

 ߬ ൌ ߬௠௔௫ ቌඨ
ݏ

ଶܣ௢ݏ
൅ ଶܤ െ ቍܤ for ݏ ൑ ௢ ( 2-14)ݏ
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 , the elastic component of ݏ௢ 
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ଵ
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ା
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 ; The initial stiffness of the bond-slip model Figure  2-6 

ta is the interface thickness  in mm 

tc : is the effective thickness of concrete whose deformation forms part of the interfacial 
slip and may be taken as 5mm unless this thickness is specifically measured during the test. 
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Ga, Gc : are the shear modulus for interface and concrete respectively in GPa. 

The local bond strength τmax and the corresponding slip so are given by: 

 ߬௠௔௫ ൌ 1.5 ௪ߚ ௧݂ ( 2-16)

 

௢ݏ  ൌ 0.0195 ௪ߚ ௧݂ ൅ ௘ ( 2-17)ݏ

FRP-to-concrete width ratio βw can be expressed as 

௪ߚ  ൌ ඪ
2.25 െ ௙ܾ

ܾ௖

1.25 ൅ ௙ܾ
ܾ௖

 ( 2-18)

bc and bf  are the widths of the concrete and the FRP plate respectively. 

The parameter α controls the shape of the descending branch and is given by: 

 ∝ൌ ߬௠௔௫
௢ݏ

ிܩ െ ிܩ
௔ ሺ 2‐19ሻ

Where the total interfacial fracture energy can be expressed as: 

ிܩ  ൌ ௪ଶඥߚ0.308 ௧݂ ݂ሺܭ௔ሻ ሺ 2‐20ሻ

The fracture energy of the ascending branch ܩி
௔ can be calculated as: 
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Where f(Ka) is a function of the stiffness of the adhesive layer. Based on finite element 
results, for normal adhesives with Ka ≥ 2.5GPa/mm, the effect of adhesive layer stiffness on 
GF is very small, so it is proposed that f(Ka)=1 for normal adhesives.  

 Simplified model: 

The precise model is accurate but complicated. For normal adhesives, a simplified 
model (Figure  2-7) without a significant loss of accuracy can be easily obtained. This is 
because the initial stiffness of the bond-slip curve is much larger than the secant stiffness at 
the peak point when a normal adhesive of a reasonable thickness is used. Therefore, the initial 
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stiffness can be approximated as infinity. Furthermore, the interfacial fracture energy GF has 
little relationship with the stiffness of the adhesive layer. Based on these two simplifications, 
the following simplified bond-slip model can be obtained: 

 

Figure  2-7: Bond-slip curve, simplified model by (Lu, et al., 2005) 
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Where: 

௢ݏ  ൌ 0.0195 ௪ߚ ௧݂ ሺ 2‐23ሻ

 

ிܩ  ൌ ௪ଶඥߚ0.308 ௧݂ ሺ 2‐24ሻ
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Where τmax and βw can be evaluated using Equation ( 2-16)and Equation ( 2-18) 
respectively. 
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  Bilinear model: 

Further simplification was made to the simplified model, leading to a simple bilinear 
model (Figure  2-8) which can be used to derive an explicit design equation for the ultimate 
load. This bilinear model has the same local bond strength and total fracture energy, so the 
ultimate load remains unchanged if the bond length is longer than the effective bond length. 
This bilinear model is described by the following equations: 

 

Figure  2-8: Bond-slip curve, bilinear model by (Lu, et al., 2005) 

 

 ߬ ൌ ൞
ݔܽ݉߬

ݏ
௢ݏ
, ݏ ൑ ௢ݏ

ݔܽ݉߬
௙ݏ െ ݏ
௙ݏ െ ௢ݏ

, ௢ݏ ൏ ݏ ൑ ௙ݏ
 ሺ 2‐26ሻ

Where  
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τmax , so, and βw can be evaluated using Equation ( 2-16), Equation ( 2-17), and Equation 
( 2-18) respectively. 
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2.2.4.2 Anchorage effect on FRP end 

The effects of various anchor systems were investigated by Hollaway L. C. & Mays G. 
C., (1999) as shown in Figure  2-9. According to their research, the beams with end anchors 
showed greater moment capacity and deformability than un-anchored beams by delaying 
premature debonding failure. 

  

a) Bolt anchor 
b) Mechanical clamping system 

 

c) U-wrap anchor with GFRP 

Figure  2-9: Plate end anchorage systems, (Hollaway L. C. & Mays G. C., 1999) 

2.3 Durability  

Durability of FRP systems is the subject of considerable ongoing research (Steckel, et 
al., 1999a). The engineer should select an FRP system that has undergone durability testing 
consistent with the application environment. Durability testing may include hot-wet cycling, 
alkaline immersion, freeze-thaw cycling, and ultraviolet exposure. Any FRP system that 
completely encases or covers a concrete section should be investigated for the effects of a 
variety of environmental conditions including those of freeze/thaw, steel corrosion, alkali and 
silica aggregate reactions, water entrapment, vapor pressures, and moisture vapor 
transmission ( (Soudki & Green, 1997); (Christensen, et al., 1996); and (Toutanji, 1999))  

Studies in the early 1990’s revealed serious durability problems for glass FRP bars in 
alkaline environments such as in concrete. Sen, et al., (1993) placed 8 pre-tensioned beams 
with steel and glass FRP strands in saltwater with 15% concentration, and subjected them to 
wet/dry cycles simulating tidal effects in coastal areas. Half of the beams were pre-cracked at 
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mid-span. The beams were tested to capacity at periodic intervals and compared against 
unexposed control specimens. 

A complete loss in the effectiveness of glass FRP strands was noticed after only 6 
months in the pre-cracked beams and after 15 months in the un-cracked beams. There was no 
comparable loss of capacity in the specimens with steel strands. Saadatmanesh & Tannous , 
(1998) evaluated durability of eight types of glass FRP bars, and two types of carbon and one 
type of aramid FRP tendons by simulating accelerated exposure to seven different field 
conditions. Test results indicated long-term durability problems for glass bars, whereas 
carbon and aramid tendons performed well in harsh environments. Tannous & Saadatmanesh, 
(1999) also carried out a durability study on FRP bars made from alkali resistant glass. Test 
variables included temperature, matrix material (polyester and vinylester), chemical solution, 
and ultraviolet radiation. They also tested FRP-RC beams in flexure to examine the effect of 
exposure to deicing salts. Test results showed that alkali resistant glass did not improve the 
behavior of bars in the aggressive field conditions. While most research on strength and 
stiffness of FRP-RC beams has focused on their short-term behavior, there are few and 
limited studies on their long-term response. Hundley & Dolan, (1996) tested glass, aramid and 
carbon FRP tendons for their short-term characteristic creep-rupture times, i.e., the time a 
material will sustain the load before ultimate fracture. Tests were conducted at stress levels of 
90% and 100% of the respective static strength of the tendons. Wang, et al., (1999) carried out 
tests on the bond creep of eight types of FRP bars. The average creep slip of FRP bars was 
only slightly larger than that of steel bars. Pullout tests, however, showed that bond strength 
of aramid bars decreased by about 15% as a result of sustained loads. Fuhr, et al., (1993) and 
Huston, et al., (1992) have successfully measured strains in concrete structures using fiber 
optic sensors. Initially, there were concerns regarding the alkali reaction with silicon in the 
glass fibers. However, jacketing the fibers with plastic buffers made of Kevlar has resolved 
the problem. Avoiding deterioration pinching and micro bending of sensors during concrete 
placement and compaction is still a difficult task. Maaskant, et al., (1997) installed fiber optic 
instrumentation in a prestressed concrete bridge in Canada.Amore promising approach is to 
embed the sensors in FRP bars and tendons during pultrusion. Kalamkarov, et al., (2000) 
subjected such tendons to sinusoidal and trapezoidal loads of 11 kN (2.5 kip) magnitude 
inside a temperature chamber. They showed that performance of the sensors was not affected 
by either the load or the ambient temperatures within the range of –40° and +60°C. 

Amir, (2002) studied the Creep and Durability of Environmentally Conditioned FRP-
RC Beams Using Fiber Optic Sensors, and he found that the accelerated environmental 
conditioning increases creep rate of FRP bars and results in 2%–3% moisture absorption. 
Presence of salt in the solution does not affect creep rate of FRP-RC beams or moisture 
absorption of FRP bars. Effect on strength and stiffness of FRP is about3%for saline solutions 
and none for moisture. Environmental conditioning lowers post-cracking stiffness of the 
beams due to stiffness degradation of FRP and loss of bond between FRP and concrete. Fiber 
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optic sensors are less sensitive than foil gages to temperature effects, but must be handled 
properly during construction and secured carefully against harsh environments. 

Chajes M. J., et al., (1994) and Ross C. A., et al., (1999) found an increase in the 
flexural strength and stiffness of the beams with FRP composite laminates. However, no 
studies have been reported on the long-term deflections of FRP-bonded RC beams. 

Tan T.H. & Saha M.K., (2006) studied the long-term deflection characteristics of 
externally FRP-bonded beams under sustained loads. Nine  reinforced concrete beams 9 
(100x125 mm in cross section and 2000 mm in total length), six of which were externally 
bonded with glass FRP composite laminates, were subjected to sustained loads for 2 years. 
The test parameters were the FRP ratio and sustained load level. The long-term deflections of 
the beams were reduced 23 and 33% with a FRP ratio of 0.64 and 1.92%, respectively. The 
total beam deflections were accurately predicted by the adjusted effective modulus method, 
and overestimated by about 20% by the effective modulus method. 

Michael J. Chajes, et al., (1995) studied the Durability of concrete beams externally 
reinforced with composite fabrics. The study represented the second half of a research project 
at the University of Delaware concerning the flexural strengthening of concrete beams using 
externally applied composite fabrics. Initial results showed that significant increases in 
flexural capacity can be achieved by epoxy-bonding composite fabrics to the tension face of 
reinforced concrete beams. The study deals with the environmental durability of the concrete-
epoxy fabric system. The three types of fabric studied are made of aramid, E-glass and 
graphite fibres. To determine the durability of this type of strengthening procedure under 
aggressive environments, 48 small-scale reinforced-concrete beams were exposed to 
freeze/thaw or wet/dry cycling in a calcium chloride solution, and an additional 12 beams 
were left in a control environment. Of the 60 beams, 45 were reinforced with aramid, E-glass, 
and graphite composite fabrics (15 with each type), and 15 had no external reinforcement 
(unwrapped). By varying the time of exposure to the different conditions and loading the 
beams to failure following the environmental testing, the durability of the externally 
reinforced beams was assessed. The tests indicated that chloride exposure in both wet/dry and 
freeze/thaw environments causes degradation to the beams' strength, with the wet/dry 
condition being slightly more severe. Both conditions led to some deterioration of the bond 
between the composite fabric and the concrete. Of the three types investigated, the graphite-
reinforced beams proved to be the most durable, losing less than 15% of their 140% strength 
increase over the unwrapped beams after 100 cycles of exposure. 

Separate studies have been reported on FRP-bonded RC beams subjected to weathering 
( (Almusallam T. H., et al., 2001); (Leung H. Y. , et al., 2001); (Liew Y. S. & and Tan K. H. , 
2003)) or sustained loading (Saha M. K. & Tan K. H., 2004). A study by (Almusallam T. H., 
et al., 2001) revealed that under an exposure period of twelve months, neither did the solar 
radiation nor the wet-dry condition cause any significant influence on the flexural strength or 
rigidity of the beams (150 mm x 150 mm x 1200 mm) bonded with glass FRP laminates. A 



Chapter 2   Literature Review 

 

22 
 

study by Leung, Balendran, and Lim (2001) on carbon FRP-bonded concrete beams (of 
dimensions 75 mm x 75 mm x 300 mm, without any internal reinforcement) showed 
improvement in the loading response when the beams were exposed to elevated temperature 
(during heating/cooling cycles) while water immersion for a long time (tested up to six 
months) gave rise to reduction in flexural capacity. 

Liew Y. S. & and Tan K. H. , (2003) studied the accelerated weathering effects of 
tropical climate on RC beams (100 mm x 100 mm x 700 mm) bonded with glass FRP 
laminates. They concluded that the glass FRP-strengthened beams showed the same failure 
mode when protected from weathering effects while short-term (less than one month) outdoor 
weathering enhances the flexural behavior. They also concluded that periods of six to nine 
months exposure resulted in the change in failure mode with a marginal drop of 2% in 
flexural capacity whereas weathering for more than six years reduced the flexural strength by 
15% due to deterioration of bond between FRP and concrete. 

Saha & Tan, (2005) carried out a study on glass FRP-bonded RC beams subjected to 
sustained loading under tropical weathering is reported. Beams were observed for long-term 
deflections and cracking due to sustained loading over different periods of time, after which 
they were unloaded and subsequently tested to failure. Beams subjected to outdoor tropical 
weathering for six months showed 8% larger deflections and 15% larger crack widths 
compared to those kept under ambient laboratory condition. Under accelerated weathering in 
a chamber, similar increase in deflections and crack widths were observed. Also, after six 
months of accelerated weathering, the ultimate flexural strength was about 17% and 12% less 
for beams bonded with uni- and bi-directional glass FRP laminates, respectively, compared to 
the un-weathered reference beams. The failure mode changed from concrete crushing to FRP 
rupture with weathering period, indicating the deterioration of FRP laminates. The effect of 
weathering was more detrimental in the presence of sustained loads. 

Based on experimental evaluations of externally strengthened RC beams, David E. & 
Neuner J. D, (2001) and Karbhari V. M. & Engineer M., (1996) concluded that long-term 
exposure to humidity may cause a significant decrease in their load-carrying capacity. The 
study of Karbhari V. M. & Engineer M., (1996) also revealed that, depending on the 
compatibility of the fibers and the resin, even short-term exposure of CFRP to humidity may 
significantly degrade the beam strengthening system. Similarly, Juska T., et al., (2000) 
analyzed data related to thermal exposure and freezing and thawing and concluded that 
elevated temperature and freezing-and-thawing cycles have significant detrimental effects on 
FRP composite systems. Benmokrane B., et al., (2000) studied the effects of an alkaline 
solution on FRP composites and confirmed that an alkaline environment may cause 
degradation of both the stiffness and strength of various FRP composites. 

Nabil F. Grace, (2004) concluded that The load-carrying capacity of beams 
strengthened with CFRP plates or fabrics is reduced after long-term exposure to 100% 
humidity, dry heat, freezing and thawing, and thermal expansion environmental conditions. 
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The most significant reduction (33%) in the ultimate load of strengthened beams is due to 
long-term exposure to 100% humidity. The onset of delamination was the primary mode of 
failure of strengthened beams with and without exposure to environmental conditions and 
repeated loads. (Evaluating the durability of externally bonded carbon fiber-reinforced 
polymer plates and fabric exposed to the environment) 

The decision maker requires information on lifecycle performance of the structure and 
durability as well as underpinning social and economic factors to make an informed decision. 

Liew, (2003) studied the accelerated weathering effect of tropical climate on RC beams 
strengthened with GFRP laminates, and concluded that a weathering period of 6–9 months 
resulted in the change in failure mode with a marginal drop of 2% in flexural capacity 
whereas weathering for more than 6 years reduced the flexural strength by 15% due to 
deterioration of bond between FRP laminate and concrete. 

2.4 Creep 

Creep may be defined as an increase of the strain with time (time-dependent 
deformation), when constant stress is applied to this material. It occurs as a result of long term 
exposure to high levels of stress that are below the yield strength of the material. Creep is 
more severe in materials that are subjected to heat for long periods, and near melting point. 
Creep always increases with temperature. The rate of this deformation is a function of the 
material properties, exposure time, exposure temperature and the applied structural load.  

Relaxation is the time-dependent decrease of stress under the condition of constant 
deformation and temperature. For many structural materials, both the creep and the relaxation 
can be observed above a certain critical temperature. 

In general when a specimen form plastic material is subjected to constant load and 
temperature, it deforms continuously (as shown in Figure  2-11). The initial strain is roughly 
predicted by its stress-strain modulus. Three stages can be considered in a typical creep curve: 
the first stage (primary or reduced creep), the second stage (secondary or stationary creep) and 
the third stage (tertiary or accelerated creep). During the primary creep stage the creep rate 
decreases to a certain value (minimum creep rate). The secondary stage is characterized by the 
approximately constant creep rate. During the tertiary stage the strain rate increases. At the 
end of the tertiary stage creep rupture of the specimen occurs, (Naumenko & Altenbach, 
2007). 
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Figure  2-10: Strain vs. time curve under constant load F and temperature T. I - 
primary creep, II - secondary creep, III - tertiary creep (Naumenko and Altenbach 

2007). 

The shape of the creep curve and the duration of the creep stages depend strongly on the 
stress and temperature values, Figure  2-11. The dependencies on stress and temperature are of 
primary interest to an engineer designing some structure or machine. 

 

Figure  2-11: Influence of stress and temperature on the creep behavior. a. Stress dependence, 

 b. temperature dependence (Naumenko and Altenbach 2007) 

2.4.1 Creep	Model	Equations	

The creep deformation under constant load depends on three parameters: stress , time 

t, and temperature T, therefore the  most general creep equation is  
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௖௥ߝ  ൌ ݂ሺߪ, ,ݐ ܶሻ ( 2-28)

This equation can be written as follow: 

௖௥ߝ  ൌ ଵ݂ሺߪሻ ଶ݂ሺݐሻ ଷ݂ሺܶሻ ( 2-29)

The response of the specimen loaded by σ଴ at time t = 0 can be divided into an elastic 

and a plastic part as 

଴ߝ  ൌ
ఙబ
ாሺ்ሻ

൅ ଴,T) ( 2-30)ߪ௣ሺߝ

Where E(T) is the modulus of Elasticity at temperature T. The creep strain in 
Figure  2-10 can then be expressed according to 

௖௥ߝ  ൌ ሻݐሺߝ െ ௞ ( 2-31)ݐଵߙ଴ߝ

Where: 

 .ଵ depends on the plastic strain, stress and temperatureߙ

κ < 1 in the primary, κ	= 1 in the secondary, and κ	> 1 in the tertiary creep stage. These 
terms correspond to a decreasing, constant, and increasing strain rate, respectively, and were 
introduced by Andrade, (1910). These three creep stages are often called transient creep, 
steady creep, and accelerating creep; respectively. 

A wide range of creep model equations are in use today to represent the time-dependent 
deformation behavior of engineering materials. Many of these comprise components 
originating from a small number of classical representations of primary, secondary, and/or 
tertiary creep deformation. The multi-cast creep data assessment inter-comparisons involved 
the application of 10 models by 10 different analysts.  

The creep strain ( 2-31) can be described by the simple formula 

௖௥ߝ  ൌ ௠ ( 2-32)ݐ௡ߪܣ

Where the parameters A,	n,	and	m depend on the temperature. They can be determined 
in a uniaxial creep test. 

If the stress σ in (4.3) is assumed to be constant the creep rate d ≈ ߝ௖௥ሶ  is given by 

௖௥ߝ  ൌ ௠ିଵ ( 2-33)ݐ௡ߪ݉ܣ

The strain rate equation ሺ 2‐33ሻ contains stress and time as variables and is therefore 
called the time-hardening-law. 
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2.4.2 Creep	of	concrete	

Creep may be defined as an increase in strain with time due to sustained loading. 
Shrinkage, on the other hand, is load-independent and occurs as the concrete reduces in 
volume with time. In plain concrete, there would be a uniform reduction in concrete volume. 
But in the case of reinforced concrete, the reinforcement bars will inhibit the shrinkage in 
concrete volume and therefore cause curvature to occur (Fling 1974; Salmon et al. 1974). 
Major factors affecting the rate and ultimate values of creep and shrinkage of concrete include 
compressive strength, stress level at which the concrete is subjected to, environmental 
conditions during curing and during the life of the structure, age at loading, and mix 
proportions (Paulson et al. 1989). 

Many theoretical models which aim to predict the time-dependent behaviour of concrete 
are available ( (Bazant Z.P., 1988); (Gilbert R.I., 1988); and (Kak Tien Chong, et al., 2008)). 
The creep strain in the normal direction (tension or compression) can be calculated based on 
the recommendations of ( (CEB-FIP Model Code, 1990), (ACI Committee-209R-92, 1997), 
and (ACI Committee 318, 1999)) which have been widely investigated  

2.4.2.1 CEB-FIP Model Code, 1990 

The creep strain can be predicted by the following equation: 

,ݐ௖௥ሺߝ  ௢ሻݐ ൌ
௖ߪ
௖ܧ
∙ ߮ሺݐ, ௢ሻ ( 2-34)ݐ

Where;  

εୡ୰ሺt, t୭ሻ : is the creep strain at time t 

σୡ : is the applied stress 

φ(t,t0) : is the creep coefficient 

Eୡ : is the concrete modulus of elasticity at 28 days. 

The creep coefficient, φ(t,t0), is usually used to describe the magnitude of the creep 
deformations. It is defined as the total deformation (including creep) divided by the 
instantaneous deformation 

The creep coefficient φ(t,t0) can be calculated from the following expression:  

 ߮ሺݐ, ௢ሻݐ ൌ ߮௢ߚ௖ሺݐ, ௢ሻ ( 2-35)ݐ

Where 

߮௢  : is the notional creep coefficient  

,ݐ௖ሺߚ 	௢ሻݐ :	 is	 a	 coefficient	 that	 describes	 the	 progress	 of	 creep	 with	 time	 after	
loading.	
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The notational creep coefficient can be estimated as follows: 

 ߮௢ ൌ ߮ோு ∙ ሺߚ ௖݂௠ሻ ∙ ௢ሻ ( 2-36)ݐሺߚ

Where 

߮ோு  : is a factor that takes the relative humidity into account, 

ሺߚ ௖݂௠ሻ: is a factor for the effect of concrete strength, and 

 .௢ሻ : is a factor for the effect of concrete age at loading, t0ݐሺߚ

The factor ߮ோு  is calculated with the following equation: 

 ߮ோு ൌ 1 ൅
1 െ 100/ܪܴ

0.46ሺ ݄
100ሻ

ଵ/ଷ
 ( 2-37)

where  

RH : is the relative humidity for the surrounding, expressed in percentage and 

h : is the notional size of the concrete member in mm, calculated as: 

 ݄ ൌ
௖ܣ2
ݑ

 ( 2-38)

Where  

Aୡ: Cross-sectional area (in mm2) 

u : Perimeter of the member in contact with the atmosphere (in mm) 

The factor ߚሺ ௖݂௠ሻ is calculated with the following expression: 

ሺߚ  ௖݂௠ሻ ൌ
5.3

ඥ ௖݂௠/10
 ( 2-39)

Where 

௖݂௠ : is the mean compressive strength of concrete, in MPa at the age of 28 days 

The factor ߚሺݐ௢ሻ is calculated from the following equation: 

௢ሻݐሺߚ  ൌ
1

0.1 ൅ ௢଴.ଶݐ
 ( 2-40)

The coefficient ߚ௖ሺݐ,  :௢ሻ can be calculated using the following expressionݐ

,ݐ௖ሺߚ  ௢ሻݐ ൌ ൤
ሺݐ െ ଵݐ/௢ሻݐ

ுߚ ൅ ሺݐ െ ଵݐ/௢ሻݐ
൨
଴.ଷ

 ( 2-41)
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ுߚ  ൌ 	150 ቈ1 ൅ ൬1.2
ܪܴ
100

൰
ଵ଼

቉ ∙
݄
100

൅ 250 ൑ 1500 ( 2-42)

Where 

 t:  is the age of concrete in days at the moment considered, 

t0 : is the age of concrete in days when loaded  

t1 = 1 day 

 ு: is a coefficient depending on the relative humidity and the notional size of theߚ

concrete member 

2.4.2.2 ACI 209R-92 

The creep coefficient is estimated as follows: 

 ߮ሺݐ, ௢ሻݐ ൌ ߮ஶሺݐ௢ሻ ∙
ሺݐ െ ௢ሻ଴.଺ݐ

10 ൅ ሺݐ െ ௢ሻ଴.଺ݐ
 ( 2-43)

Where 

φሺt, t୭ሻ : Creep coefficient at time t 

φஶሺt୭ሻ	: Ultimate creep coefficient 

to   : Time of loading 

The ultimate creep coefficient can be expressed as: 

 ߮ஶሺݐ௢ሻ ൌ ௖ߛ ∙ ߮ஶ ( 2-44)

The constant φஶ = 2.35 is recommended. The correction factors γୡ consist of the 
following terms: 

௖ߛ  ൌ ௟௔ߛ ∙ ோுߛ ∙ ௔௧ߛ ∙ ௦ߛ ∙ ఘߛ ∙ ௔ ( 2-45)ߛ

Where 

γ୪ୟ : Correction factor for loading age. For loading ages later than 7 days and moist 

cured concrete, γ୪ୟ ൌ 1.25 x to-0.118, for loading ages later than 1-3 days and γ୪ୟ ൌ 1.13 x to-
0.094 

 ோு : Correction factor ambient relative humidity. For ambient relative humidity greaterߛ

than 40%, γୖୌ  = 1.27 − 0.0067 RH; (RH is the ambient relative humidity in %) 
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γୟ୲	:	Correction factor for thickness of member. When the average thickness or volume 
to surface ratio of a structural member differs from 150 mm or 38 mm, respectively, two 

methods are offered for estimating the factor of member size γୟ୲: 

 

 

 average-thickness method 

For an average thickness of a member smaller than 150 mm, the factors are given by 
ACI-209 Report. For an average thickness of a member larger than 150 mm and up to about 
300 to 380 mm, the correction factor for thickness is given as: 

γୟ୲ = 1.14 − 0.00092 ha      during the first year after loading 

γୟ୲ = 1.10 − 0.00067 ha    for ultimate values 

Where 

ha = Average thickness of a member in mm. 

 volume-surface ratio method 

γୟ୲ ൌ 	
ଶ

ଷ
∙ 	 ቂ1 ൅ 1.13eି଴.଴ଶଵଷሺ

౒
౩
ሻቃ  

Where 

୚

ୱ
 : Volume to surface ratio in mm 

γୱ : Correction factor for slump of fresh concrete; 

 γୱ = 0.82 + 0.00264 S1  

S1 : is the slump in mm. 

γ஡ : Correction factor for fine to total aggregate ratio. 

 γ஡= 0.88 + 0.0024 ρa  

ρa : is fine to total aggregate ratio 

γୟ : Correction factor for air content. γୟ = 0.46 + 0.09aa 

aa is air content. 

2.4.3 Creep	of	epoxy	

Epoxy-based structural adhesives have emerged as a critical component for assembling 
structural parts due to their high strength-to-weight ratio, excellent adhesion properties, and 
superior thermal stability (Kinloch , 1987). A structural adhesive can be defined as a load-
bearing material with high modulus and strength that can transmit stress without loss of 
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structural integrity. Compared with other joining methods, such as welding or bolting, epoxy-
based structural adhesives provide exceptional advantages, including distributing stresses 
equally over a large area while minimizing stress concentrations, joining dissimilar materials, 
and reducing the overall weight and manufacturing costs. However, epoxy resins, being 
viscoelastic in nature, exhibit unique time-dependent behavior. This leads to a great concern 
in assessing their long-term load-bearing performance, mainly because of a lack in 
fundamental knowledge of the viscoelastic behavior of epoxy-based structural adhesives. 
There is also a general concern regarding the lack of a long-term performance database for 
epoxy structural adhesives and the lack of a theory/ model that can reliably predict the creep 
behavior of epoxy adhesives. Significant work is still required to develop accurate models for 
the prediction of the long-term behavior of epoxy adhesives, especially under different testing 
conditions. 

Maksimov R.D. & Plume R., (2001) investigated the long-term creep of EDT-10 epoxy 
resin specimens under tension for 5.7 years. The experimental results showed that the EDT-10 
epoxy resin exhibits considerable creep—the total strains, after the action of constant stresses 
over 5.7 years, exceed the instantaneous ones by 4.3 to 4.7 times (fig). In this case, in the 
stress and time intervals examined, the creep of resin is of a damping character, i.e., the 
deformation rate decreases in time. 

 

Figure  2-12: Creep curves (t ) (a) and (log t ) (b) for an EDT-10 epoxy resin at different 
stress levels: 6.8 (1), 13.6 (2), and 20.4 MPa (3). Dots are experimental data and lines are 

approximations; used by (Maksimov R.D. & Plume R., 2001) 

Miguel Miravalles & IIP Dharmawan, (2007) studied the experimental and numerical 
creep behavior of adhesive for epoxy specimens (dogbone shape, they were 225 mm long and 
had a thickness of 2 mm; Figure  2-13 ) under tension. The results showed that at high stress 
values (approx 80% of σult) under constant loads, the behaviour of structural adhesives 
changes significantly and failure is reached very quickly; and the FE model with abaqus 
presented good agreement with the experimental test, as shown in Figure  2-14.  
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a) specimens b) test setup 

Figure  2-13: adhesive creep test used by (Miguel Miravalles & IIP Dharmawan, 2007) 

 

 

a) Epoxy A b) Epoxy B 

Figure  2-14: Comparison of the experimental results and the FE Model by (Miguel Miravalles 
& IIP Dharmawan, 2007) 

C. Mazzotti & M. Savoia, (2005) investigated the long-term behavior of bond between 
concrete and FRP plates. Three different bonded lengths (from 100 mm to 400 mm) have 
been adopted. Seven to eleven strain gauges (depending on bonded lengths) along FRP plates 
have been used to measure longitudinal strains. A mechanical system able to apply a traction 
force constant in time to the extremity of plates has been designed. In order to eliminate strain 
thermal drift, long-term tests have been carried out in climatic room with standard ambient 
conditions; fig . Strains have been measured during time by using an automatic control 
system. Strain profile evolutions with time along the bonded length have been recorded. At 
the moment, time duration of tests is about 6 months.  

It is shown that a significant redistribution of shear stresses along the anchorage occurs 
due to creep deformations at the interface level. A set of short-term delamination tests on 
identical specimens has also been performed and considered as reference tests. At the end of 
tests (loading time about 1 year), specimens subject to long – term loading will be loaded up 
to failure in identical conditions as reference specimens, in order to estimate if a long – term 
loading reduces bond strength of FRP anchorage. 
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Figure  2-15: Geometry of specimens and experimental setup for long – term tests used by (C. 
Mazzotti & M. Savoia, 2005) 

Pania Meshgin, et al., (2009) investigated the experimental and analytical long-term 
behavior of epoxy at the interface between the concrete and the fiber-reinforced-polymer 
(FRP). Double shear experiments under sustained service load were performed on nine 
specimens composed of two concrete blocks connected by FRP sheets bonded to concrete 
using epoxy. The primary investigation parameters included the ratio of shear stress to 
ultimate shear strength, the epoxy thickness and the epoxy time-before-loading. Loading was 
sustained for periods up to nine months. 

It showed that the magnitude of shear stress to ultimate shear strength and the epoxy 
time before loading could be the most critical parameters affecting creep of epoxy at the 
concrete–FRP interfaces. It was also found that the creep of epoxy can result in failure at the 
interfaces due to the combined effect of relatively high shear stress to ultimate shear strength 
and thick epoxy adhesive. This can have an adverse effect on the designed performance of 
reinforced concrete (RC) structures strengthened with FRP. Based on the experimental 
observations, rheological models were developed to simulate the long-term behavior of epoxy 
at the concrete–FRP interfaces. It is shown that the long-term behavior of epoxy at the 
interfaces can be properly modelled by analytically for both loading and unloading stages 

E. Ferrier , et al., (2011)  studied the creep behavior of the concrete-composite interface 
using the double-lap shear test (Figure  2-16).  Four types of epoxy (Table  2-2) with glass 
transition temperatures ranging from 45 to 80 oC were used for the FRP/concrete interface; 
the bonded joints were subjected to thermo-stimulated experiments to assess their creep 
behavior as a function of time and temperature under shear loading 40% of the ultimate bond 
strength.  
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Figure  2-16: Double-lap shear test principle used by (E. Ferrier , et al., 2011) 

 

Table  2-2: material characteristics for epoxy interface used by (E. Ferrier , 
et al., 2011) 

Material 
Epoxy 

A 
Epoxy 

B 
Epoxy 

C 
Epoxy 

D 
Young modulus (GPa) 3200 3200 3200 12000 

Glass transition temperature T (oC) 46 55 80 55 

The results showed that the shear modulus decreased with 20% for high modulus epoxy 
and 70% for low modulus epoxy due to creep dependence; and the creep strain increased due 
to temperature for the epoxy with low glass transition temperature less than 50 oC ; this 
increase was three times the epoxy with glass transition temperature more than 50 oC . 

A rheological model based on Kelvin–Voight elements connected in series for 
simulated the creep epoxy polymer used by E. Ferrier , et al., (2011); as shown in Figure  2-17, 
the adhesive shear strain (γ) could be determined as a function of time (t) temperature T, 

average shear stress (0) and rheological function D(t) from equation ( 2-46) : 

 

ሻݐሺߛ ൌ 	 ߬௢ ∙ ሻݐሺܦ
ൌ ߬௢

∙ ቈ
2
௢ܩ

൅
௢ܩ െ ஶܩ
௢ܩ ∙ ஶܩ

∙ ݁
ି௧൫ீ೚∙ሺீಮିீ೚ሻ൯

ఎభ∙ீಮ ൅
௢ܩ െ ஶܩ
௢ܩ ∙ ஶܩ

∙ ݁
ି௧൫ீ೚∙ሺீಮିீ೚ሻ൯

ఎమ∙ீಮ 	቉ 

( 2-46)

Where; 1, 2 were considered equal for each temperature, based on the fitting of 

experimental results. 
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Go, and G , are the shear modulus parameters can be calculated from the curve fitting 

shown in Figure  2-18.   

Go= ai+bi T , G = ad+bd T, Parameters ai, bi, ad, bd are constants which are fitted with 

the variations of the rheological model parameters. 

 

Figure  2-17: Rheological model by (E. Ferrier , et al., 2011) 

  

 

Figure  2-18: Evolution of the rheological parameters with the test temperature by (E. Ferrier , 
et al., 2011) 

2.4.4 Creep	of	FRP	

Many of the fibres (Glass, and Carbon) used for civil engineering applications are linear 
elastic, but the overall behavior of the laminate may exhibit some level of viscoelasticity due 
to the matrix. While, Aramid fibres exhibit significant creep which together with the creep of 
the matrix and the adhesive, may radically affect the efficiency of the strengthening system 
over time. Fibres are also characterized by a phenomenon called creep or stress rupture, for 
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which the strength of the material significantly decreases over time, especially for Glass and 
Aramid fibres. For this, the existing codes and design guidelines for structural strengthening 
introduce limits on the stress and strain of the FRP in the serviceability limit state (ACI 
Committee 440, 2002). In this study the creep rupture effects are out of the scope, and the 
behavior of the FRP is assumed linear viscoelastic, a perfect bonding is assumed between the 
fibres and the matrix, and the stresses arising from the differences in Poisson’s ratios are 
assumed to be negligible (Maksimov R.D. & Plume R., 2001). For simplicity it is assumed 
that the mechanical properties of each constituent do not change, (Lee S.M, 1989) 

Findley W. N. , (1960) suggested a simple power law relationship based on a linear 
viscoelastic approach that simulates creep of FRP laminates under sustained loads as 

ߝ  ൌ ௢ᇱߝ ൅ ௡ ( 2-47)ݐ௧ᇱߝ

Where; 

  : total elastic plus time-dependent strain;  

௢ᇱߝ  : stress-dependent and time-independent elastic strain; 

 stress-dependent and time-dependent coefficient		:	௧ᇱߝ

n: dimensionless material constant, which is independent of stress magnitude 

t : time after loading in hours. 

In the other hand, the creep effects of FRP composite laminates can be considered using 
an effective modulus of elasticity for FRP similar to that of concrete using ACI approach 
(ACI Committee-209R-92, 1997); as follow: 

ሻݐ௙௥௣ሺܧ  ൌ
௙௥௣ܧ

1 ൅ ߮௙௥௣ሺݐሻ
 ( 2-48)

The creep coefficient for FRP composite laminate, ߮௙௥௣ሺݐሻ, is defined as the increment 

in FRP strain with time divided by the instantaneous strain, that is 

 ߮௙௥௣ሺݐሻ ൌ
ሻݐ௙௥௣ሺߝ െ ௢ሻݐ௙௥௣ሺߝ

௢ሻݐ௙௥௣ሺߝ
 ( 2-49)

The increment in FRP strain is most obvious in the bidirectional form of reinforcement, 

whereas it is the least in case of unidirectional FRP. However, the value of ߮௙௥௣ሺݐሻ can be 

derived from the following relationship for a given stress level (Holmes M. & Just D. J, 
1983).  

ሻݐ௙௥௣ሺߝ  ൌ ௢ሻݐ௙௥௣ሺߝ ൬
ݐ
଴ݐ
൰
௠

 ( 2-50)
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Where 

t:time in hours after application of loading; 

 to=1 hour;  

m: slope of the best-fit line relating log ߝ௙௥௣ሺݐሻ and  log(
௧

௧బ
ሻ.  

The value of ߮௙௥௣ሺݐሻ can be expressed as the following equation: 

 ߮௙௥௣ሺݐሻ ൌ ൬
ݐ
଴ݐ
൰
௠

െ 1 ( 2-51)

In many fiber-reinforced polymer (FRP) composite structures, both the short-term and 
long-term durability of the material is of importance. While the structure may not fail when 
subjected to stresses over a short period of time, it may be prone to failure or increased strain 
when subjected to stresses over an extended period of time. Even if failure does not occur, the 
slow deformation of the composite material may cause the structure to become less and less 
effective. The characterization of the long-term performance of FRP composites is especially 
important because of the viscoelastic behavior of the polymer matrix. FRP matrices exhibit a 
glass transition, Tg, a temperature above which the properties of the composite degrade 
significantly. Typically, it is necessary that the application temperature for the composite 
structure is below the glass transition in order to assure that the mechanical stiffness and creep 
resistance of the material is satisfactory. However, the glass transition relaxation occurs over a 
range of temperatures, so creep testing and predictions of long-term creep behavior at 
particular application temperatures are important so that the material’s long-term mechanical 
performance can be evaluated. 

W.K. Goertzen & M.R. Kessler, (2006) investigated the creep behavior of a carbon 
fiber/epoxy matrix composite was studied through tensile and flexural creep testing. No creep 
rupture failures were observed in short-term (less than 1600 h) room temperature tensile creep 
tests at loads up to 77% ultimate tensile strength (UTS). For elevated temperature flexural 

creep compliance data taken at isotherms between 30 and 75 ◦C, the principle of time–

temperature superposition held. Master curves were generated by shifting the data by hand 
and also using the constant activation energy of the glass transition relaxation to estimate the 
shift factors. It was shown that the constant activation energy assumption worked fairly well, 
but only for temperatures below the onset Tg of the material. Predictions were made 
concerning the creep levels at the end of a proposed 50-year design life. 
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2.5 Fire protection 

In the last decade, a few fire tests have been conducted on FRP-strengthened RC 
beams to generate fire endurance ratings.  

Most of these tests were under standard fire exposure aimed at obtaining fire resistance 
ratings, rather than studying the response of FRP-strengthened members under fire conditions. 
Thus, there is a lack of understanding of the response of FRP-strengthened RC beams under 
realistic fire, loading, and failure limit states. This lack of fire test data and fire design 
methods is posing a major obstacle for wider use of FRP in buildings and parking structures 
(ACI Committee 440, 2002).  

In the event of fire, the properties of FRP deteriorate quickly, resulting in rapid loss of 
strength and stiffness above glass transition temperature (Tg), (H. Blontrock , et al., 1999) .  
Typically, the glass transition temperatures for commonly used polymers vary between 60 to 
82oC (ACI Committee 440, 2002). Therefore, FRP sheets used without fire protection will 
lose their strength and stiffness at early stages of fire exposure (Brea Williams, et al., 2006). 

 When used in buildings, structural members are to satisfy fire resistance ratings 
prescribed in building codes. Fire resistance is the duration during which a structural member 
exhibits resistance with respect to strength, integrity and stability and depends on many 
factors including structural geometry, material used in construction and characteristics of fire. 
A fire resistance rating is the fire resistance of a member rounded off to nearest hour or half-
hour. Concrete due to its low thermal conductivity, high thermal capacity and slower loss of 
strength and stiffness properties performs reasonably well under fire. Therefore, concrete 
structures are often used without any fire protection. However, when strengthened with 
external FRP system, concerns like loss of strength, stiffness and bond, flame spread, smoke 
generation and toxicity associated with fire are to be addressed (L.A. Bisby, 2003). Guidelines 
on design and application of FRP at ambient temperature are available in different codes of 
practice (ACI Committee 440, 2002). However, the codes do not specify any fire guidelines 
and assume that the FRP is lost in the event of fire. (ACI Committee 440, 2002) recommends 
that FRP-strengthened members must meet all building and fire code guidelines spelled out 
for RC structures. Further, it requires that the prestrengthened RC structure must be capable 
of withstanding the service loads (1.2 times the dead load and 0.85 times the live load) in 
order to prevent collapse that might arise from failure of FRP under fire exposure.  

Brea Williams, et al., (2006) investigated experimentally and numerically the 
performance in fire of insulated FRP-strengthened concrete slabs. Four different supplemental 
fire insulation systems are examined (Figure  2-19) through standard fire tests, and a numerical 
model to predict member behavior in fire is presented. Model predictions are shown to 
satisfactorily agree with test data. The results of this study indicate that appropriately 
designed and insulated FRP-strengthened concrete slabs are capable of achieving satisfactory 
fire endurances.  
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Figure  2-19: Through-thickness details of the four insulated FRP-strengthened reinforced 
concrete slab specimens tested, (Brea Williams, et al., 2006) 

According to (ASTM. E119, 2002) fire endurance criteria, a 4-h fire endurance rating 
(based on thermal criteria only) can be achieved with 38 mm of any of the four insulation 
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schemes examined herein. A smaller thickness of Insulation System 1 (19 mm) provided 
approximately 2 h of fire protection for a 150 mm thick reinforced concrete slab, (Brea 
Williams, et al., 2006). 

Aqeel Ahmed & Venkatesh Kodur, (2011) studied the experimental behavior of FRP-
strengthened RC beams subjected to design fire exposure. The results from fire resistance 
experiments on five rectangular reinforced concrete (RC) beams are presented (Figure  2-20); 
four of these RC beams were tested after being strengthened with carbon fiber reinforced 
polymer (CFRP), while the remaining one was tested as a control RC beam specimen. The 
beams were tested by exposing them to fire and service load, computed based on the nominal 
capacity of an unstrengthened/strengthened beam in accordance with ( (ACI Committee 318, 
1999), and (ACI Committee 440, 2002)) provisions. The test variables included type of fire 
exposure, anchorage zone, insulation type, and restraint conditions. The data from the fire 
tests is used to evaluate the thermal and structural response, as well as failure patterns in FRP-
strengthened RC beams. The test results indicate that the anchorage configuration plays a 
critical role in limiting the deflections of the strengthened beam after debonding of the FRP 
occurs at Tg  ±10 °C, where Tg is the glass transition temperature. Also, FRP-strengthened 
RC beams supplemented with 25 mm thick spray-applied insulation can survive failure under 
(ASTM. E119, 2002)standard fire or a design fire. Further, the fire-induced axial restraint 
force significantly increases the fire resistance of FRP-strengthened/unstrengthened RC 
beams, provided that the location of restraining force is below the geometric centroid of the 
beam and that the beam’s deflection is sufficiently small along the entire span.  

 

Figure  2-20: Elevation and cross-sectional details of tested FRP-strengthened RC beam, 
together with fire scenarios, (Aqeel Ahmed & Venkatesh Kodur, 2011) 
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2.6 Long-term behavior of FRP strengthened RC structures  

The short-term response of concrete beams strengthened with FRP has been widely 
studied and reported. One of the main characteristics of strengthened beams is the debonding 
failure mechanism of the FRP at the edges and near cracks, which results from relatively high 
shear and vertical normal stress at the adhesive interfaces. Under sustained loads, these 
stresses become dependent upon the creep characteristics of the concrete, as well as those of 
the adhesive and the FRP. Since composite and polymer materials exhibit different creep 
characteristics to concrete, the creep behavior of the strengthened member may lead to stress 
redistributions. This may eventually lead to debonding failures over time, although the 
structure may be subjected to sustained loads that are less than its short-term failure loads. In 
order to shed light on this effect, as well as, on the stresses redistribution at cracked sections 
and on the creep behaviour of strengthened members in general, an understanding of the 
effect of creep on the deformations, internal forces and stresses is required, bearing in mind 
the dependence of the creep strains on the variable stress level and their interaction with 
environmental effects (temperature, humidity, etc.), which make predicting the behaviour of 
strengthened members a challenging and difficult task.  

The numerous studies that have been carried out to date on FRP-strengthened concrete 
elements have mainly focussed on the static and short-term responses; very little work has 
been done regarding the long-term performance. Several researchers have investigated the 
long-term deflections for concrete beams. (Washa G.W. & Fluck P.G. , 1952) investigated the 
effect of the compression steel and found that the compression reinforcement in simply 
supported reinforced concrete beams is very effective in reducing the deflections. The results 
of Washa and Fluck were later confirmed by ( Paulson K.A., et al., 1991), who noted that 
compression reinforcement has a significant effect in reducing the long-term deflections. The 
efficiency of this reinforcement is more pronounced in normal strength concrete beams than 
high strength concrete beams. 

Analytical methods ( (Ghali A. & Favre R., 1986); (Tan K. H., et al., 1994); and 
(Gilbert R. I., 1999), along with ACI approach (ACI Committee 318, 1999), are available for 
the determination of time-dependent deflections of RC beams. The time dependent deflections 
can be predicted by using either the effective modulus method (EMM) or the adjusted EMM 
(AEMM), by incorporating appropriate creep and shrinkage models, such as those 
recommended by ACI (ACI Committee-209R-92, 1997). 

Nikolaos Plevris & Thanasis C. Triantafillou, (1994) investigated the time-dependent 
behavior of RC members strengthened with FRP laminates analytically; and concluded that 
CFRP, and GFRP appears to be the best composite materials for the external strengthened of 
concrete structures. 
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Al Chami, et al., (2009) investigated the creep behavior of experiments on the time-
dependent behavior of carbon FRP-strengthened concrete beams. Twenty-six reinforced 
concrete beams with dimensions 100 x 150 x 1800 mm, with and without bonded CFRP 
laminates, Different reinforcement ratios were used to evaluate the contribution of the 
external reinforcement on the creep resistance of the beams. High levels of sustained load 
were used in order to determine the maximum sustained load that can be applied without any 
risk of creep failure. The applied sustained loads varied from 59% to 78% of the ultimate 
static capacities of the un-strengthened beams. For most of the long-term tests, the applied 
sustained loads were higher than the service loads. This was done to account for the fact that 
strengthening is typically required when a structure is expected to carry increased service 
loads. The results confirm that FRP strengthening is effective for increasing the ultimate 
capacities of the beams; however, there is virtually no improvement in performance with 
regard to the long-term deflections. 

Tan T.H. & Saha M.K., (2006) studied the long-term deflection characteristics of 
externally FRP-bonded beams under sustained loads. Nine  reinforced concrete beams 9 
(100x125 mm in cross section and 2000 mm in total length), six of which were externally 
bonded with glass FRP composite laminates, were subjected to sustained loads for 2 years. 
The test parameters were the FRP ratio and sustained load level. The long-term deflections of 
the beams were reduced 23 and 33% with a FRP ratio of 0.64 and 1.92%, respectively. The 
total beam deflections were accurately predicted by the adjusted effective modulus method, 
and overestimated by about 20% by the effective modulus method. 

Yousef A. Al-Salloum & Tarek H. Almusallam, (2007) studied the effect of different 
environmental conditions on the creep behavior of concrete beams reinforced with glass fiber 
reinforced polymer (GFRP) bars under sustained loads is investigated. This is achieved 
through testing concrete beams reinforced with GFRP bars and subjected to a stress level of 
about 20–25% of the ultimate stress of the GFRP bars. Reference beams were loaded in the 

temperature controlled laboratory (24 ± 3 oC). Other test beams were either completely or 

partially immersed in different environments (tap-water and sea-water) at elevated 

temperature (40 ± 2 oC) to accelerate the reaction. During the exposure period, which lasted 

for ten months, strains in concrete and GFRP bars as well as the mid-span deflections were 
recorded for all considered environmental conditions. The results show that the creep effect 
due to sustained loads was significant for all environments considered in the study and the 

highest effect was on beams subjected to wet/dry cycles of sea-water at 40 ± 2 oC. 

Stierwalt D.D. & Hamilton III H.R. , (2005) examined the creep behavior of masonry 
walls strengthened with FRP composites compared to that of conventional reinforcement. 
Eight full-scale (40 in wide by 96 in tall [1.02 m x 2.44 m]) unreinforced concrete masonry 
walls were constructed for testing long-term deflections out-of-plane. The walls were 
strengthened with externally bonded CFRP or GFRP composites. Two additional walls were 
constructed with mild steel reinforcement grouted in the centre cell of the specimens. Long-
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term deflections due to creep in FRP reinforced walls were shown to be about 22–56% higher 
than those of steel reinforced walls. 

S. Benyoucef , et al., (2007) investigated the time-dependent behavior of RC beams 
bonded with thin composite plate theoretically by including the effect of the adherend shear 
deformations. The time effects considered here are those that arise from shrinkage and creep 
deformations of the concrete. The influence of creep and shrinkage effect relative to the time 
of the casting and the time of the loading of the beams is taken into account. Numerical 
results from the present analysis are presented to illustrate the significance of time-dependent 
of adhesive stresses. The study showed that the interfacial stresses take a peak value during 
the first months and begin to decrease until they become almost constant after a very long 
time. In addition, the interfacial shear stress is affected considerably by the relative humidity, 
contrary to the interfacial normal stress which is affected slightly. 
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Chapter 3      Experimental Program 

3.1 General 

This chapter presents the details of the experimental program undertaken in this study. 
The main goal of the experimental program is highlighted. The fabrication process, specimen 
configurations, test setup, instrumentation, and testing procedures for Phases I and II of the 
experimental program are provided. Finally, material characteristics are identified. 

The main objective of the experimental program conducted within the scope of this 
thesis is to investigate the failure (ultimate) behavior and long-term and creep behavior of 
reinforced concrete beams strengthened with CFRP laminates in flexure and to use the 
experimental results for validating the finite element model which will be used on additional 
parametric study. To achieve this aim, an experimental program consisted of two parts is 
tested. 

Part  consisted of two groups were tested up to failure to investigate the flexural 

behavior of reinforced concrete beam strengthened with CFRP laminates and comparing the 
results with the un-strengthened beams. 

The Part  consisted of two groups and tested under constant load in the lab condition 

to investigate the time dependent behavior (creep) of reinforced concrete beams strengthened 
with externally bonded Carbon fiber reinforced polymer (CFRP) laminates and comparing 
results with un-strengthened beams.  Detailed information about the experimental program 
and tested specimens is provided in Figure  3-1. 

Expermintal 
Program

Part I

Specimens 
Ultimate flexural  

behavior

RC beams

B1, B2, & B3

FRP 
strengthened RC 

beams

SB1, SB2, &
SB3

Part II 
Specimens 
Long-term 
behavior

RC beams

BL1, BL2, & 
BL3

FRP strengthing 
RC Beams

BSL1, BSL2, & 
BSL3
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Figure  3-1: detailed of experimental program and tested specimens 

3.2 Part I specimens (short-term specimens) 

3.2.1 Details of Part I 

This section describes the first Part of the experimental program undertaken to evaluate 
the flexural behavior of concrete members retrofitted with CFRP strengthening techniques. 
The fabrication process, instrumentation, and testing of the specimens are also discussed. 

Six simply supported reinforced concrete beams with a span of 2900 mm and depth of 
300 mm, while the breadth is 120 mm were prepared and constructed. Shear reinforcement 
consisted of ф8 mm steel stirrups, uniformly spaced at 100 mm. The top reinforcement 
consisted of two ф10 mm steel bars running along the full length of the beam. The bottom 
reinforcement consisted of two ф16 mm steel bars running along the full length of the beam, 
as shown in Figure  3-2.  The longitudinal and transverse reinforcement for the tested beams 
were determined according to the Euro code and Egyptian Code of practice requirement for 
the maximum reinforcement in the section.  

           

Figure  3-2: Reinforcement details of Part I specimens 

This Part divided into two groups; the first group is the controlled reinforced concrete 
beams and consisted of three specimens B1, B2, and B3, while the other three specimens 
SB1, SB2, and SB3 were strengthened with externally bonded CFRP laminates used for the 
second group. With the maximum moment occurring at the mid-span section of the beam, 
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failure could be due to either debonding of the CFRP. The specimens were adequately 
designed to avoid concrete crushing and premature failure due to shear. Detailed information 
about the tested specimens is provided in Table  3-1. 

Table  3-1: details of tested specimens Part  

Beam 
No. 

Series Description of specimen Epoxy 
CFRP
layer 

B1 
Control beams 

1st group 

 

--- --- B2 

B3 

SB1 
Strengthened 

beams 
2nd group 

 

Sikadur 
30 

1x1.2 
mm-
layer 

SB2 

SB3 

3.2.2 Fabrication of the Part I Specimens 

Six wood frameworks with the same shape and size of specimens were prepared and 
constructed in the Pferdestall laboratory of the Institute of building Physics, in Hannover, 
Germany. Casting of the Part I specimens is illustrated in Figure  3-3. After 24 hours from 
casting concrete the forms were removed and the specimens were cured with water for 28 
days in the laboratory environment.  
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Figure  3-3: Casting of the Part I specimens 

3.2.3 CFRP-Strengthening reinforced concrete beams procedure 

The tension surface of three specimens was prepared by grinding and sand-blasting and 
the dust particles were removed by airbrush. Then an 80 mm wide, 2800 mm length, and 1.2 
mm thick CFRP laminate was bonded with SikaDur 30 epoxy resin. At the cut-off points of 
the CFRP composite laminate near the end of the beam, steel plates attached transversely to 
prevent premature plate-end debonding of the CFRP composite laminate. The nominal 
thickness of CFRP system (epoxy and composite) for one layer was 2 mm. The details of 
strengthening concrete beams with CFRP are shown in Figure  3-4. 

   

Figure  3-4: Strengthening concrete beams with CFRP 

3.2.4 Instrumentation of Part I 

Strains: The concrete strain in the compression and tension zone of the beam was measured 
using two demc points and LVDTs between the two points in the both sides. The strain in the 
CFRP was monitored using three electrical strain gauges. While the strain in the top and 
bottom steel reinforcement was measured using electrical strain gauges embedded in concrete.  

Slip monitoring: The slip at the free ends of the CFRP reinforcement was measured using 
LVDTs. 

Deflections: The deflection at mid-span and under the load was monitored on both sides of 
the beam using two LVDTs. 

The instrumentation used to monitor the behavior of the bond specimens during testing is 
shown in Figure  3-5. 
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Figure  3-5: Instrumentation used for Part I specimens 

3.2.5 Testing Setup of Part I 

The beams were tested under a concentrated load applied at two points. 160KN testing 
machine was used to apply the load. The rate of loading was 3.0 mm/min up to failure. 
Figure  3-6 shows the test set-up in the lab. 
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Figure  3-6: Test set-up for Part I specimens 
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3.3 Part II specimens (long-term specimens) 

3.3.1 Details of Part II 

This section describes the first Part of the experimental program undertaken to evaluate 
the long-term behavior of concrete members retrofitted with CFRP strengthening techniques. 
The fabrication process, instrumentation, and testing of the specimens are also discussed. 

Six simply supported reinforced concrete beams with a span of 2900 mm and depth of 
300 mm, while the breadth is 120 mm were prepared and constructed. Shear reinforcement 
consisted of ф8 mm steel stirrups, uniformly spaced at 100 mm. The top reinforcement 
consisted of two ф10 mm steel bars running along the full length of the beam. The bottom 
reinforcement consisted of two ф16 mm steel bars running along the full length of the beam, 
as shown in Figure  3-7.  The longitudinal and transverse reinforcement for the tested beams 
were determined according to the Euro code and Egyptian Code of practice requirement for 
the maximum reinforcement in the section.  

           

Figure  3-7: Reinforcement details of Part II specimens 

This Part divided into two groups; the first group is the controlled reinforced concrete 
beams and consisted of three specimens B1, B2, and B3, while the other three specimens 
SB1, SB2, and SB3 were strengthened with externally bonded CFRP laminates used for the 
second group. With the maximum moment occurring at the mid-span section of the beam, 
failure could be due to either debonding of the CFRP. The specimens were adequately 
designed to avoid concrete crushing and premature failure due to shear. Detailed information 
about the tested specimens is provided in Table  3-2. 
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Table  3-2: details of tested specimens Part II 

Beam 
No. 

Series Description of specimen Epoxy 
CFRP
layer 

BL1 
Control beams 

1st group 

 

--- --- BL2 

BL3 

BSL1 
Strengthened 

beams 
2nd group 

 

Sikadur 
30 

1x1.2 
mm-
layer 

BSL2 

BSL3 

3.3.2 Fabrication of the Part II Specimens 

Six wood frameworks with the same shape and size of specimens were prepared and 
constructed in the Marienwerder laboratory of the Institute of building Physics, in Hannover, 
Germany. Casting of the Part II specimens is illustrated in Figure  3-8.  After 24 hours from 
casting concrete the forms were removed and the specimens were cured with water for 28 
days in the laboratory environment.  

 

Figure  3-8: Casting of the Part II specimens 
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3.3.3 CFRP- Strengthening reinforced concrete beams procedure 

The tension surface of three specimens was prepared by grinding and sand-blasting and 
the dust particles were removed by airbrush. Then an 80 mm wide, 2800 mm length, and 1.2 
mm thick CFRP laminate was bonded with SikaDur 30 epoxy resin (Sika Detuschland, n.d.). 
At the cut-off points of the FRP composite laminate near the end of the beam, steel plates 
attached transversely to prevent premature plate-end debonding of the CFRP composite 
laminate. The nominal thickness of CFRP system (epoxy and composite) for one layer was 2 
mm. The details of strengthening concrete beams with CFRP are shown in Figure  3-9. 

  

Figure  3-9: Strengthening concrete beams with CFRP 

3.3.4 Instrumentation of Part II 

Strains: The concrete strain in the compression and tension zone of the beam was measured 
using two demc points and Watches between the two points in the both sides. The strain in the 
CFRP was monitored using three electrical strain gauges. While the strain in the top and 
bottom steel reinforcement was measured using electrical strain gauges embedded in concrete.  

Slip monitoring: The slip at the free ends of the CFRP reinforcement was measured using 
watches. 

Deflections: The deflection at mid-span and under the load was monitored on both sides of 
the beam using two watches. 

The instrumentation used to monitor the behavior of the bond specimens during testing 
is shown in Figure  3-10.  
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Figure  3-10: Instrumentation used for Part II specimens 

3.3.5 Testing Setup of Part II 

The beams were tested under a concentrated load applied at two points. Concrete blocks 
were casting in the lab and used for loading.  the design service load used for creep test was 
50% - 60% from the prediction of the ultimate load, but due to unexpected change in the 
compressive strength of the concrete from the concrete supplier, (compressive strength was 
increased from 25MPa to 44 MPa)  , the ultimate load was higher than the calculated, and the 
service load used for creep test was changed to be  34% from the ultimate load. Figure  3-11 
shows the test set-up in the lab. 
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Figure  3-11: Test set-up for Part II specimens 
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3.4 Materials 

3.4.1 Concrete 

A precast concrete C20/25 X0 F3 0-16 with 16 mm maximum size of aggregate was 
used for constructing all specimens. Cubes with dimensions 150 x 150 x 150 mm and 
cylinders with 150 mm diameter and 300 mm length were (shown in Figure  3-12) casted and 
tested after 28 days, and during the test. The average compressive strength of the concrete was 
44 MPa, while the average modulus of elasticity was 23941 MPa, and the tensile strength was 
2.6 MPa. The properties of concrete summarized in Table  3-3. 

  

 Cubes and cylinders  

Compressive strength test 
Young’s modulus 

test 
Tensile strength test 

Figure  3-12: Concrete cubes and cylinders tests 

 

Table  3-3: mechanical properties of concrete 

Compressive strength,  fc  (MPa) 44 
Modulus of elasticity, Ec (MPa)  23941 

Tensile strength,  fct  (MPa) 2.6 
Poisson’s ratio,   0.2 
Angle of dilatancy 38 
Ultimate strain (%) 0.0035 

Fracture energy GF (N/mm) 0.079 
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3.4.2 Reinforcement Steel bars 

Deformed reinforcement bars (S500) of 8, 10, and 16 mm diameter have been used for 
stirrups, top and bottom reinforcement respectively. The yield stress of the steel was 490 
MPa, and the modulus of elasticity was 200 GPa. The properties of the reinforcing steel were 
determined according to Euro code and Egyptian Standard Specifications, Ess. 262/1989. 
Table  3-4 shows the mechanical properties of reinforcement steel bars. 

Table  3-4: mechanical properties of Steel 

Yield stress,  fsy (MPa) 490 

Modulus of elasticity, Es (GPa)  200 
Poisson’s ratio,   0.30 

3.4.3  FRP plate 

The carbon fiber reinforced polymer (CFRP) composite employed in this study was 
manufactured by Sika Corporation (Sika Detuschland, n.d.) (Sika Carbodur S812/120). This 
fabric, with a width of 80 mm and a thickness of 1.2 mm, is a high strength, unidirectional 
carbon fiber. Typical Minimum Requirement Chart- Spec Writer to customize per product for 
Sika CarboDur Strip shown in Table  3-5. 

Table  3-5: Typical Minimum Requirement Chart- Spec Writer to customize per product for 
Sika CarboDur Strip 

Property Requirement ASTM Test Method 

Laminate Tensile Strength, 
In primary fiber direction  

2,800 MPa  D3039  

Laminate Tensile Modulus, 
In primary fiber direction  

165,000 MPa  D3039  

Laminate Elongation at 
break  

1.70 % D3039  

Laminate Thickness  1.2mm   

Fiber Volume, minimum  68%  D2563  

 

3.4.4 Epoxy Resin 

SikaDur 30 epoxy was used to bond the carbon fiber reinforced polymer (CFRP) system 
to concrete face. 

Commercially available epoxy adhesive (Sikadur 30– Sika EU Inc.) was used for 

bonding the CFRP plates and bars to the concrete. The maximum tensile strength of the 
Sikadur 30 adhesive is 25MPa, Modulus of elasticity is 4.5GPa, and compressive strength 
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59.3MPa at 7days at 23°C based on the data provided by manufacturer. The mechanical 
properties of the epoxy interface shown in Table 3- 3-6 

Table 3- 3-6: mechanical properties of Epoxy 

Modulus of elasticity, Ec (GPa)  12 
Shear Modulus, Ga (GPa) 4.5 

Tensile strength,  fct  (MPa) 25 
Poisson’s ratio,   (assumed) 0.38 

Ultimate strain (%) 1 
Fracture energy (N/m) 0.41 
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Chapter 4      Analysis and discussion of experimental results 

4.1 Introduction  

This chapter presents the analysis and discussion of the data produced by testing. In 
each test measurements are taken for, applied loads, deflection of mid-span, deflection under 
applied load, concrete strain, strains of steel, and strains of CFRP. The discussion of test 
results will be in view of mode of failure, the load – deflection behavior, and the load – 
flexural strains of these beams. 

4.2 Experimental Results of Part I 

This part consisted of two groups were tested up to failure to investigate the flexural 
behavior of reinforced concrete beam strengthened with CFRP laminates and comparing the 
results with the unstrengthened beams. 

The first group (control beams; B1, B2, and B3) consisted of three simply supported 
reinforced concrete beams with dimensions 2900x120x300 mm. The beams were tested in lab 
conditions up to failure  

The second group (FRP-strengthened reinforced concrete beams; SB1, SB2, and SB3) 
consisted of three simply supported reinforced concrete beams with dimensions 
2900x120x300 mm strengthened with CFRP laminates bonded to the tension face of these 
beams. The beams were tested in lab conditions up to failure.  

The beams were tested in four point bending. This load case was chosen because it 
gives constant maximum moment and zero shear in the section between the loads, and 
constant maximum shear force between support and load. The moment was linearly varying 
between supports and load. 

4.2.1 Mode of failure and crack patterns 

From the test results of the first group beams (control beams) B1, B2, and B3, it can be 
noticed that: 

The first crack for B1, B2, and B3 beams  was observed at the under-load in the tension 
side and later at mid-span at average load P = 8.83 KN. As the load increased, flexural cracks 
propagated approximately vertical upgrade until yielding of steel bars at P = 45 KN with 

widening of cracks. The average ultimate load recorded was P  49.75 kN with flexure mode 

of failure at mid span due to the yielding of reinforcement in the tension zone. It was observed 
that the reinforced concrete beams (control beams) were failed in a ductile manner and gives 
large deflection before the final failure as expected. The results of load and deflection shown 
in Table  4-1, while the cracks pattern was shown in Figure  4-1. 
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Table  4-1: Cracking, Loads, mode of failure and deflection of the tested control beams 

Specimen 
First Crack load 

Pcr (kN) 

Ultimate load  

Pu (kN) 

Deflection 

u (mm) 
Mode of failure 

B1 8.5 49.72 18.94 flexural, mid-span 

B2 9.0 49.37 18.72 flexural, mid-span 

B3 9.0 50.17 19.04 flexural, mid-span 

Average 8.83 49.75 18.9 flexural, mid-span 

 

 
a) Beam B1 

 
b)  Beam B2 

c) Beam B3

Figure  4-1: cracks pattern of RC control beams. 

In the other hand; from the test results of the first group beams SB1, SB2, and SB3, 
(FRP-strengthened RC beams) it can be noticed that: 
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The first crack for SB1, SB2, and SB3 beams  was observed at the under-load in the 
tension side and later at mid-span at load P = 10 KN. As the load increased, flexural cracks 
propagated approximately vertical upgrade until yielding of steel bars at P = 64 kN with 
widening of cracks. The ultimate load recorded was P = 78.347 KN with failure along the 
epoxy interface layer which is the weak part between CFRP and concrete; the summary of the 
test results shown in Table  4-2, while the cracks pattern was shown in Figure  4-2. 

Table  4-2: Cracking, Loads, mode of failure and deflection of the tested FRP-
strengthened RC beams 

Specimen 
First Crack load 

Pcr (kN) 

Ultimate load  

Pu (kN) 

Deflection 

u (mm) 
Mode of failure 

SB1 10 78.61 30.91 CFRP-debonding
SB2 10 76.84 29.66 CFRP-debonding
SB3 10 79.59 32.42 CFRP-debonding

Average 10 78.347 30.997 CFRP-debonding

  

 
a) Beam SB1 

 
b)  Beam SB2 

 
c) Beam SB3 

Figure  4-2: cracks pattern of FRP-strengthened RC beams. 
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4.2.2 Load versus deflection relationship 

The load versus mid-span deflection curves for the control beams are shown in 
Figure  4-3. It is clear that the beam failed in a ductile manner and gives large deflection 
before the final failure as expected. The effect of the own weight of the tested beams was not 
included in the calculation of the test loads as it was neglected. The difference between the 
three specimens is small, and the average value of the load-deflection relationship which 
plotted in the figure will be used as a reference for reinforced concrete controls beams in this 
study.  

 

Figure  4-3: Load Mid-span Deflection of Part I controls beam. 

The curve includes a linear response up to the load 8.5 kN. The appearance of a crack 
was first noted at load 8.5 kN. The mid-span deflection curve illustrates the nonlinearities at 
cracking of the concrete. After 45 kN load flexural cracks formed and widened as loading 
increased. The maximum load was 49.75 kN as shown in the figure. After maximum load, the 
cracks did not grow in length but the flexural cracks width increased in the constant moment 
region.  

For the FRP-strengthened reinforced concrete beams; the load-deflection diagram 
shown in Figure  4-4  indicate that the behavior of the strengthened beams is nearly the same 
to RC beams up to cracking and at small load, while the using of CFRP increasing the 
stiffness of the strengthened beams As the load increased, flexural cracks propagated 
approximately vertical upgrade until yielding of steel bars at P = 64 kN with widening of 
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cracks. The debonding initiates at a region near to under load and propagate at the end of the 
CFRP plate because the shear stress was concentrated at this region. The failure load of the 
FRP-strengthened RC beams was 78.347 kN and after this load the load suddenly dropped 
down due to the deponding of the CFRP plate and interface failure.  

 

Figure  4-4: Load-Mid-span Deflection of FRP-strengthened RC beams. 

4.2.1 Ultimate load and deflection at ultimate load comparison 

The increasing in ultimate load of strengthened beams P was compared to the 

controlled beam ultimate load Pu,rc to evaluate the percentage of ultimate load increasing (Pu 

/Puo) due to using CFRP in strengthened reinforced concrete beam, the data was shown in 
Table  4-3; it can be observed that the  CFRP increased the ultimate load by about 57.48 % 
comparing to the control beams. While the increasing percentage in deflection δu was 64%, 
the main load versus deflection for control beams and FRP-strengthened RC beams shown in 
Figure  4-5. 

Table  4-3:  ultimate load and deflection comparison. 

Specimen 
Pu 

(kN) 

δu 

(mm) 

Pu = (Pu,frp - Pu,rc) /Pu,rc 

% 

δu=(δu,frp-δu,rc)/ δu,rc 

% 
Control beam 49.75 18.9 

57.48 64            CFRP-
strengthened RC 

beam 
78.347 30.997
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Figure  4-5: average Load-Mid-span Deflection of FRP-strengthened RC beams and control 
beams. 

The load-deflection diagram shown in Figure  4-5 indicate that the behavior of the 
strengthened beams is nearly the same to RC beams up to cracking and at small load; while 
the using of CFRP increasing the stiffness of the strengthened beams (expressed by the slope 
of the load-deflection curves), also increased the yielding load of reinforcement bar, and the 
ultimate load compared to control beam. 

4.2.2 Strain in reinforcement bars 

The load-strain in steel reinforcement relationship shown in Figure  4-6; from the figure 
it can be observed that due to the strengthened with CFRP the yield load for the reinforcement 
steel bar in tension side is higher than in control beam by 37 %; and the strain at yield load 
was 2800x10-6 and 3200x10-6 for control beam and FRP-strengthened RC beam respectively.  

While in compression reinforcement the slope of the covers was typically up to beam 
failed in each specimen. The experimental results for tested specimens were summarized in 
Table  4-4. 
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Figure  4-6: Load-steel reinforcement strain of FRP-strengthened RC beams and control 
beams. 

 

Table  4-4:  average strian in reinforcement steel bars at differnet applied load. 

Specimen 

Applied load 
   

P 
(kN) 

Tension  
reinforcement strain 

st 

x 10-6 

Compression  
reinforcement strain 

sc 

x 10-6 

Control beam 

10 675.29 -201.82 

45 3044.84 -965.847 

49.75 20305.96 -1059.07 

FRP-strengthened 
RC beam 

10 511.7128 -169.02 

45 2298.374 -881.265 

50 2638.586 -988.18 

65 3534.705 -1366.08 

78.347 Strain gage defect -1740.27 

 

4.2.3 Strain variation along CFRP 

The strain variation of CFRP with the applied load shown in Figure  4-7; the strain was 
increased on the CFRP plate for the strain gage at the mid-span and decreased at CFRP plate 
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end strain gage. This is due to the full bond between CFRP and concrete and the proportion 
between CFRP-strain and the moment along the beam span. The rate of increasing in CFRP 
strain was high after the yield of steel reinforcement, and the slope of the curve changed as 
shown in Figure  4-7. The experimental CFRP-strain results for tested specimens were 
summarized in Table  4-5. 

 

Figure  4-7: Load-CFRP strain for FRP-strengthened RC beam. 

 

Table  4-5:  average strian in CFRP plate at differnet applied load. 

Specimen 

Applied load  
 

P 
(kN) 

CFRP-strain at center 
of CFRP plate 

ிோ௉
x 10-6 

CFRP-strain at 
CFRP plate end 

ிோ௉	
x 10-6 

FRP-strengthened 
RC beam 

10 380.80 14.21 

65 3608.64 1243.74 

78.347 6375.38 1539.53 

 

4.2.4 Slip of CFRP plate 

To evaluate the slip of CFRP plate; two LVDT’s were used one at each side at the end 
of CFRP plate to measure the slip between CFRP and concrete at the CFRP plate end. 
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It was observed that the debonding of CFRP plate occurred suddenly at the failure load 
and the LVDT record only the slip at failure load and failed with debonding of CFRP plate.     

4.2.5 Strain variation over the beam depth 

In the control specimens, the variation of strain over the beam depth was linear, as 
shown in Figure  4-8. In the FRP-strengthened RC beam, the measured strain was linear only 
for small loads. As the load increased up to the beam ultimate capacity, the measured strain 
variation over the beam depth became nonlinear as shown in Figure  4-8(b). This can be due to 
the fact that the sliding of the CFRP plate reduced its measured strain. For the ultimate load of 
FRP-strengthened RC beam the reinforcement strain gage was broken; the diagram did not 
include the variation of strain along the depth of FRP-strengthened RC beams at ultimate 
load. The experimental results of strain at mid-span for tested specimens were summarized in 
Table  4-6. 
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b) FRP-strengthened RC beam 

Figure  4-8: strain variation along beam depth at mid-span. 

 

Table  4-6:  average strian along beam depth at differnet applied load. 

Specimen 

Applied load 
   
 

P 
(kN) 

Concrete 
strain 

reinforcement strain 
CFRP 
strain 

 
cc 

 

Compression 
sc 

x 10-6 

Tension 
st 

x 10-6 

 
ிோ௉
x 10-6 

Control beam 

10 -0.000275 -201.82 675.29 

---- 45 -0.00129 -965.85 3044.84 

49.75 -0.0022 -1059.07 20305.96 

FRP-
strengthened 

RC beam 

10 -0.00024 -169.02 511.71 380.80 

45 -0.00114 -881.27 2298.37 2409.31

65 -0.00164 -1366.08 3534.71 3608.64

78.347 -0.0024 -1740.27 Strain gage 
defect 

6375.38
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4.3 Experimental Results of Part II  (Creep test results) 

The Part  consisted of two groups were tested under constant load (34% of the 

ultimate load) in the lab condition to investigate the time dependent behavior (creep) of 
reinforced concrete beams strengthened with externally bonded carbon fiber reinforced 
polymer (CFRP) laminates and comparing results with unstrengthened beams.   

The first group (control beams; BL1, BL2, and BL3) consisted of three simply 
supported reinforced concrete beams with dimensions 2900x120x300 mm. The beams were 
tested in lab conditions under constant load to predict creep behavior of RC beam. 

The second group (FRP-strengthened reinforced concrete beams; SBL1, SBL2, and 
SBL3) consisted of three simply supported reinforced concrete beams with dimensions 
2900x120x300 mm strengthened with CFRP laminates bonded to the tension face of these 
beams. The beams were tested in lab conditions under constant load to investigate the CFRP 
effect in the creep behavior of strengthened RC beams.  

The beams were tested on four point bending. This load case was chosen because it 
gives constant maximum moment and zero shear in the section between the loads, and 
constant maximum shear force between support and load. The moment was linearly varying 
between supports and load. 

4.3.1 Long-term deflection 

4.3.1.1 Long-term deflection for control beams 

The total deflection and creep deflection at mid-span of the control beams under 
constant load (34% of ultimate load) in the room condition shown in Figure  4-9 and 
Figure  4-10, respectively. It can be observed that the three specimens nearly had the same 
long-term deflection. The average value of them for the creep strain was considered in this 
study. It can be observed that the increase rate of mid-span deflection in the first 90 days was 

high, and the rate was decreased with the time. The instantaneous deflection o was 5.23 mm 

and after 90 days the total deflection was, 6.88 mm while after 515 days was 7.80 mm; this 

means about 64% cr, from the 515 days creep strain occurred in the first 3 months. Where 

total,t = o + cr,t. The experimental result of long-term deflection and creep deflection for 

control beams during the test was summarized in Table  4-7 and Table  4-8. 
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Figure  4-9: long-term total mid-span deflection. 

 

 

 

Figure  4-10: long-term creep deflection at mid-span. 
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Table  4-7:  long-term total deflection of RC control beams. 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

BL1 5.16 6.26 6.67 6.88 7.29 7.46 7.67 

BL2 5.23 6.4 6.77 6.85 7.38 7.58 7.83 

BL3 5.29 6.49 6.76 6.92 7.48 7.63 7.9 

Average 5.23 6.38 6.73 6.88 7.38 7.58 7.80 

 

Table  4-8:  long-term creep deflection of RC control beams. 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

BL1 0 1.1 1.51 1.72 2.13 2.3 2.51 

BL2 0 1.17 1.54 1.62 2.15 2.35 2.6 

BL3 0 1.2 1.47 1.63 2.19 2.34 2.61 

Average 0 1.15 1.5 1.65 2.15 2.35 2.57 

 

4.3.1.2 Long-term deflection for CFRP-strengthened RC beams 

The total deflection and creep deflection at mid-span of the FRP-strengthened RC 
beams under constant load (34% of ultimate load, 53% of control beam ultimate load) in the 
room condition shown in Figure  4-11 and Figure  4-12, respectively. It can be observed that 
the three specimens nearly had the same long-term deflection. The average value of them for 
the creep strain was considered in this study. It can be observed that the increase rate of mid-
span deflection in the first 90 days was high, and the rate was decreased with the time. The 

instantaneous deflection o was 6.38 mm and after 90 days the total deflection was, 8.52 mm 

while after 515 days was 9.635 mm; this means about 66% cr, from the 515 days creep strain 

occurred in the first 3 months. Where total,t = o + cr,t. The experimental result of long-term 

deflection and creep deflection for control beams during the test was summarized in Table  4-9 
and Table  4-10. 
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Figure  4-11: long-term total mid-span deflection. 

 

 

Figure  4-12: long-term creep deflection at mid-span. 
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Table  4-9:  long-term total deflection of FRP-strengthened RC beams. 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

BSL1 6.5 7.94 8.32 9.25 9.21 9.73 10.1 

BSL2 6.485 8.06 8.46 9.19 9.07 9.75 10.175 

BSL3 6.36 7.77 8.2 9.05 9.12 9.65 9.98 

Average 6.45 7.92 8.33 9.16 9.13 9.71 10.09 

 

Table  4-10:  long-term creep deflection of CFRP-strengthened RC beams. 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

BSL1 0 1.44 1.82 2.75 2.71 3.23 3.6 

BSL2 0 1.575 1.975 2.705 2.585 3.265 3.69 

BSL3 0 1.41 1.84 2.69 2.76 3.29 3.62 

Average 0 1.48 1.88 2.72 2.69 3.26 3.64 

 

4.3.1.3 Creep deflection comparison 

The Figure  4-13 and Figure  4-14 shows the creep deflection at mid-span for average 
control and CFRP-strengthened RC beams; it can observed that the applied load for FRP-
strengthened RC beam was more than that for control beam with 53% while the increase in 
creep deflection was 23%; and the increase in total deflection with the same value 23% while 
the increase in initial deflection 22%; this mean that the rate of creep deflection proportional 
to the initial deflection and increase with the same rate. In the other hand for the same applied 
load to control beam or CFRP-strengthened RC beams; from the experimental test result for 
Part I the initial deflection for the CFRP-strengthened RC beams was smaller than that for 
control beam this will decrease the creep deflection of the CFRP-strengthened RC beams due 
to the effect of using CFRP plate for strengthening the RC beam.  

And for increasing the control beam applied load up to 53% from ultimate load the 
initial deflection will increase and the creep deflection will increase to be more than that for 
CFRP-strengthened RC beam. 
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Figure  4-13: long-term total mid-span deflection. 

 

Figure  4-14: long-term creep deflection at mid-span. 
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4.3.2 Long-term CFRP-strain at mid-span 

The initial strain at the mid-span of the CFRP plate for the average of the three tested 
specimen was 1449.49x10-6 mm/mm after applying the load; while after 90 days it was 
1621x10-6 mm/mm, and after 515 days from loading it was 1717.43x10-6 mm/mm. The total 
long-term CFRP-strain at the mid-span of the CFRP plate increased due to creep by about 
18.5% in 515 days. It can be observed that 65 % from the creep strain at 515 days occurred in 
the first 90 days.  The CFRP creep strain versus time relationship shown in Figure  4-15 and 
the experimental test results for the average of the three specimens were summarized in 
Table  4-11.    

Figure  4-15: long-term CFRP creep strain at mid-span. 

 

Table  4-11:  long-term total CFRP-strain at mid-span of FRP-strengthened RC beams  

(frp x10-6). 
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4.3.3 Long-term reinforcement steel bars strain at mid-span 

The long-term strain at mid-span of the reinforcement steel bars in tension and 
compression of the test specimens shown in Figure  4-16; it can be observed that the difference 
in the creep strain of the reinforcement in the tension side is very small while the applied load 
of the FRP-strengthened RC beams is higher that of the control beams with 53% because of 
the CFRP plate in the tension increase the stiffness of the beams and the CFRP carried the 
additional tension stress. While in the compression side the creep strain in the FRP-
strengthened RC beams was higher than that of the control beams as expected.  

Figure  4-16: long-term reinforcement steel bars strain at mid-span in tension and 
compression. 

The experimental test results for the average of the three controls and FRP-strengthened 
RC beams specimens summarized in Table  4-12 and Table  4-13.  
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Table  4-12:  long-term tension reinforcement steel bars-strain at mid-span of tested beams (s 
x10-6). 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

Control RC beam 1280.57 1333.87 1343.23 1359.15 1401.43 1432.73 1475.40

Average CFRP-
strengthened RC 

beam 
1343.29 1407.56 1425.59 1444.79 1470.39 1508.30 1503.87

 

Table  4-13:  long-term compression reinforcement steel bars-strain at mid-span of tested 
beams (s x10-6). 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

Control RC beam 265.95 392.59 426.72 443.34 457.01 458.90 469.71 

Average CFRP-
strengthened RC 

beam 
570.80 749.75 807.19 852.83 887.36 937.02 973.42 

 

4.3.4 Long-term CFRP slip 

To evaluate the slip of CFRP plate; two watch-gages were used one at each side at the 
end of CFRP plate to measure the slip between CFRP and concrete at the CFRP plate end. 

During the test duration there is no change was observed.  

4.3.5 Long-term concrete strain 

The creep strain in concrete in compression and tension were evaluated using two 
watch-gages; one in tension and one in compression side, it was observed a thin cracks in the 
tension side of every specimen. The crack width in the tension side can be evaluated using the 
watch-gage and the number of cracks between the distance of the two points of the gage. It 
was observed that one thin crack was produced between the measuring two points and the 
initial crack width was about 0.185 mm for control beams and 0.165 mm for FRP-
strengthened RC beams.  
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The creep concrete strain for control beams is little higher than that of CFRP-
strengthened RC beam as shown in Figure  4-17. 

 

Figure  4-17: long-term concrete strain at mid-span in tension and compression. 

 

4.4 Summary of experimental analysis 

In this chapter, an experimental program consists of twelve full dimensioned specimens 
(six reinforced concrete beams, and six CFRP-strengthened reinforced concrete beams) was 
constructed and tested to investigate the flexural and long-term behavior of CFRP-
strengthened RC beams . These specimens were divided into two parts; Part I was tested to 
investigate the flexural behavior of the CFRP-strengthened RC beams, while Part II was 
tested to investigate the long-term behavior of CFRP-strengthened RC beams. The results 
obtained from the tested specimens were plotted and analyzed and the following can be 
drawn: 

 The ultimate flexural capacity and the total ultimate deflection of the CFRP-
strengthened RC beams were increased by about 50% and 64% respectively 
compared to unstrengthening beams due to increasing in the stiffness of the 
strengthening system, while the cracks width in the tension face of the RC beam 
was limited due to strengthening with externally bonded CFRP plate. The 
increasing in ultimate capacity depends on the CFRP length and breadth.  
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 Most of the creep occurs in the first 90 days from applying load. The total 
deflection after one year was increased by about 55 % from the immediately 
deflection due to the effect of the creep of the system.  

 The increasing in creep deflection was proportional to the load level and with 
nearly the same increasing value of the applied load level which means there was 
no significant effect of the Strengthened RC beams externally by CFRP on the 
creep deflection because the creep of CFRP and epoxy was very small and can be 
neglected compared to the creep of the concrete.   

 There is no slip observed between CFRP and concrete, and the cracks width is 
limited in the tension side of the strengthened RC beam due to the effect of 
externally bonded CFRP in increasing the stiffness of the beams. 

The effect of CFRP length/breadth, the epoxy type, compressive strength, reinforcement ratio, 
and CFRP ratio on the behavior of the strengthening system is some of the parameters used to 
investigate the flexural behavior of the strengthening beams in the next chapter using the 
Abaqus finite element modeling program. While the effect of CFRP, epoxy type, and 
temperature of different types of epoxy interface are used to investigate the long-term 
behavior of the strengthening system using the calibrated model. 
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Chapter 5      Finite Element Modeling of long-term behavior 

5.1 Introduction 

This chapter presents the finite element model built to simulate flexural and creep 
behavior of CFRP-strengthened reinforced concrete beams tested experimentally in chapter 3, 
the detail of the CFRP-strengthened RC beam and the controlled RC beam are shown in 
Figure  5-1. The FE model is used to perform the parametric study to predict the flexural and 
creep of the CFRP-strengthened reinforced concrete beams. 

In this approach, the finite element (FE) computer program (Abaqus , 2010), was used 
to perform a failure analysis and suppositions of the power law creep model of rectangular 
reinforced concrete beams strengthened by externally bonded CFRP plate under flexural; and  
to verify the integrity of the numerical results by comparing them with those obtained 
experimentally. According to the symmetry of the beam; a quarter of three-dimensional finite 
element model was developed to reduce the computational time required for the analysis of 
the long-term behavior of the CFRP-strengthened RC beams under flexural load. 

(a)  FRP strengthened RC beam used for FEM 
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(b)  control RC beam used for FEM 

Figure  5-1: details of specimens used in FE model. 

To study the long-term behavior of CFRP-strengthened reinforced concrete beams, 
numerical model includes the nonlinear behavior of the constitutive materials; reinforcement 
bars, concrete, epoxy adhesive and CFRP, separately was developed to investigate the 
ultimate capacity of the CFRP-strengthened RC beams and validate the model by comparing 
the results obtained from the finite element model with the results obtained from the 
experimental program. The calibrated model will be used to predict the long-term behavior of 
the CFRP-strengthened RC beams under service load. 

Numerical analysis of reinforced concrete structures is customarily performed by static 
implicit FE solvers where the integration scheme is for example full Newton–Raphson. The 
solution is obtained from equilibrium iterations minimizing the error of the solution. The 
outcome is a reliable and stable solution.  

5.2 Creep Modeling by Abaqus 

(Abaqus , 2010) FE program was used to model the creep behavior of CFRP 
strengthened reinforced concrete beam using the power law. There were two types of creep 
model with power low; first one is the time hardening form of power law creep model 
(Equation ( 5-1)) which is used when the stress state remains essentially constant during 
analysis; and the second type is strain hardening equation of power law creep model 
(Equation ( 5-2)) which is used when the stress state varies during analysis, (Abaqus online 
documentation v 6.10.1). 

ሶ௖௥̅ߝ  ൌ ௠ ( 5-1)ݐ෤௡ߪܣ

 

ሶ௖௥̅ߝ  ൌ ሺߪܣ෤௡ሾሺ݉ ൅ 1ሻߝ௖̅௥ሿ௠ሻ
ଵ

௠ାଵ ( 5-2)
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Where, ̅ߝሶ௖௥ is the uniaxial equivalent creep strain rate;  is the uniaxial equivalent 

deviatoric stress, ߝ௖̅௥ is the equivalent creep strain, and A, n, m are user defined parameters; 
these constants are defined according to experimental data. 

The time hardening form was used in this study, it is available in Abaqus FE program. 
To model the creep behavior of CFRP-strengthened reinforced concrete beams the parameters 
A, n, and m are required for every materials used in finite element model. 

 In order to obtain the values of A, n, and m; the equation ( 5-1) was integrated with 
respect to time and the creep strain can be expressed as the following equation:  

௖௥ߝ  ൌ ௡ߪܣ
௠ାଵݐ

݉ ൅ 1
 ( 5-3)

 In a simplified way the equation ( 5-3) can be written as following: 

௖௥ߝ  ൌ ௠ଵݐ௢ܯ  ( 5-4)

Where ܯ௢ ൌ 	
஺ఙ೙

௠ାଵ
  , and m1=m+1 

Therefore the Mo parameter can be written as:  

௢ܯ  ൌ ௡ ( 5-5)ߪଵܯ

And ܯଵ ൌ 	
஺

௠ାଵ
   

To obtain the parameters in equation ( 5-5) M1 and n, the Logarithmic function (LN-
function) is used and the equation ( 5-6) can be written as follow: 

 lnሺܯ௢ሻ ൌ lnሺܯଵሻ ൅ ݊ lnሺ(5-6 ) (ߪ

By using the curve fitting option in excel; the relationship between LN(Mo) and LN() 

was drawn and the equation of the fitting curve was used to get A and n.   

This expression was used to obtain the constants for reinforced concrete, epoxy, and 
CFRP using results from creep test and using the curve fit tool to obtain these parameters. 
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5.3 Material properties and constitutive models 

The materials used in the analysis are the concrete, steel reinforcing bars, epoxy 
adhesive, and CFRP. Abaqus material library included most of reliable constitutive models 
applicable for these materials. Therefore, the input material properties and associated 
constitutive models are only discussed.  

The material properties was divided into two parts; first part was used for estimate the 
flexural behavior of the CFRP-strengthened RC beams up to failure to insure that the model 
will match the experimental results for the ultimate capacity and can be used for predicting 
the long-term behavior of the CFRP-strengthened RC beams. Furthermore, the second part 
was used to estimate the creep parameters for those materials to use these parameters in the 
input file of the calibrated model to predict the long-term behavior of the CFRP-strengthened 
RC beams under service flexural load.  

5.3.1 Reinforced Concrete Model 

To model the creep of the reinforced concrete material; first it should be understood the 
behavior of concrete and reinforced steel bars until failure and after that the creep parameters 
of the reinforced concrete material will be estimated using the Abaqus creep modeling 
approach.  

5.3.1.1 Concrete Model 

A concrete damage plasticity model is used in this study to present the inelastic 
behavior of concrete. The model is based on the scalar plastic damage models proposed by 
Lubliner J, et al., (1989) and by Lee J & Fenves LG., (1998). It assumes that the two main 
failure mechanisms of the concrete are tensile cracking and compressive crushing of the 
concrete material. Both of these phenomena are the result of micro-cracking. The evolution of 

the yield (or failure) surface is determined by two hardening variables, ε෤୲
୮୪	and	ε෤େ

୮୪, each of 

them linked to degradation mechanisms under tensile or compressive stress conditions, as 
shown in Figure  5-2. If Eo is the initial elastic stiffness of the material, the stress-strain 
relations under uniaxial tension and compression loading are as follow, respectively:   

 ௧݂ ൌ ሺ1 െ ݀௧ሻܧ଴൫ߝ௧ െ ௧̃ߝ
௣௟൯ ( 5-7)

 

 ௖݂ ൌ ሺ1 െ ݀௖ሻܧ଴൫ߝ௖ െ ௖̃ߝ
௣௟൯ ( 5-8)

Where the subscripts t and c refer to tension and compression, respectively; ε෤୲
୮୪	and	ε෤େ

୮୪, 

are the equivalent plastic strains. The degradation of the elastic stiffness is characterized by 
two damage variables, dt and dc, which are assumed to be functions of the plastic strains, 
temperature, and field variables. 
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f΄c 

fco 

Particular details of the mathematical implementation of these ideas are given by 
Lubliner J, et al., (1989), and modified by Lee J & Fenves LG., (1998). The basic parameters 
required by this formulation are as follows: 

 
 
 
 

 
 
 
 
 

௧݂ ൌ ௧݂൫ߝ௧̃
௣௟, ሶ௧̃ߝ

௣௟ , ,ߠ ݂ఈ൯ 
݀௧ ൌ ݀௧൫ߝ௧̃

௣௟, ,ߠ ݂ఈ൯;         0 ൑ ݀௧ ൑ 1 
݂௧̅ ൌ ௧݂/ሺ1 െ ݀௧ሻ 

௖݂ ൌ ௖݂൫ߝ௖̃
௣௟, ሶ௖̃ߝ

௣௟ , ,ߠ ݂ఈ൯ 
݀௖ ൌ ݀௖൫ߝ௖̃

௣௟, ,ߠ ݂ఈ൯;         0 ൑ ݀௖ ൑ 1 
݂௖̅ ൌ ௖݂/ሺ1 െ ݀௖ሻ 

a) tension b) compression 

Figure  5-2: Concrete behavior under uniaxial loading in a) tension b) compression, 
(ABAQUS 6.10-1, 2010) 

5.3.1.1.1 The stress–strain curve of concrete under uniaxial compression 

The stress-strain relationship for the concrete under uniaxial compression, (Eurocode 2, 
1992), (CEB-FIP Model Code, 1990) recommendations, and (Saenz, 1964) shown in 
Figure  5-3. For this model, a uniaxial nonlinear stress-strain relationship proposed by (Saenz, 
1964) was used as a basic stress-strain curve, and linear behavior was assumed up to fco =0.4 
f’c  (fco is the critical stress; fco = 0.4 f’c ; (Eurocode 2, 1992)); which may be associated with 

the stress at which the volumetric strain reaches its maximum (Lubliner J, et al., 1989);  fc is 

the compressive strength , and  Ec is the modulus of elasticity. 

 

Uniaxial tension 

ft	

௧̃ߝ
௣௟     ߝ௧

௘௟                                              t   

Eo  

(1-dt)Eo  

fct  

Uniaxial compression 

fc

fco

௖̃ߝ
௣௟      ߝ௖௘௟                                                    c   

Eo 

(1-dc)Eo 

fc 
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(a) Eurocode 2, 1992/CEB-FIP Model Code, 
1990 

(b) Saenz, 1964 

 

(c) concrete stress-strain curve used in this study 

Figure  5-3: Stress-strain behavior of concrete under uniaxial compression 

The Poisson’s ratio (c = 0.20 is recommended in this study) controls the volume 

changes of concrete for stresses below the critical stress level, fco (in the elastic region). The 
value of this parameter assumed to be 0.2 in this study. After the critical stress level is 
reached, the concrete exhibits an increase in plastic volume under pressure (Chen W-F., 

1982). The angle of dilatancy ( = 38 is recommended in this study) is the parameter used to 

model this behavior (in the inelastic region). 

For non-linear analysis, the stress-strain (fc-c) relation for concrete in compression from 

Figure  5-3(b) is recommended by (Saenz, 1964). The model is defined by the following form: 
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 ௖݂ ൌ
௖ߝ௖ܧ

1 ൅ ሺܴ ൅ ܴா െ 2ሻ ቀ
௖ߝ
௢ߝ
ቁ െ ሺ2ܴ െ 1ሻ ቀ

௖ߝ
௢ߝ
ቁ
ଶ
൅ ܴ ቀ

௖ߝ
௢ߝ
ቁ
ଷ 

( 5-9)

Where,	 ௖݂ᇱ is the compressive strength, and Ec is the elastic modulus of concrete which 

is calculated according to (ACI Committee 318, 1999) Equation ሺ 5‐10ሻ : 

௖ܧ  ൌ 4700ඥ ௖݂
ᇱ ( 5-10)

 And o was calculated according to Equation ሺ 5‐11ሻ by (MacGregor, 1997) 

௢ߝ  ൌ 1.71
௖ܧ
௖݂
ᇱ  ( 5-11)

Where, 

௢ܧ  ൌ
௖݂
ᇱ

௢ߝ
 ( 5-12)

and 

 ܴா ൌ
௖ܧ
௢ܧ

 ( 5-13)

And R was calculated according to Equation ሺ 5‐14ሻ: 

 ܴ ൌ
ܴாሺܴఙ െ 1ሻ
ሺܴா െ 1ሻଶ

െ
1
ܴா

 ( 5-14)

Where RE=R =4 were used as reported by (Hu & Schnobrich, 1989)  

5.3.1.1.2 The softening curve of concrete under uniaxial tension 

For the concrete in tension, tensile strength, fct, can be obtained from the splitting test 
results [12], and the fracture energy, GF, can be calculated from the load deflection behavior 
of notched concrete beams; once the parameters (fct,, GF) is available, then the softening curve 
for concrete can be determined. Otherwise, it is important to estimate these parameters. 

  Hillerborg, et al., (1976) suggested a linear softening curve for concrete tension 
behavior, as shown in Figure  5-4(a), and proposed a crack opening width, ѡc, of 0.01~0.02 
mm based on experiments. The (CEB-FIP Model Code, 1990) and (Hillerborg, 1985) 
proposed a bilinear curve, as shown in Figure  5-4(b) & (c). FE analyses were performed in the 
current study using these three types of tension stiffening model, but there was almost no 
difference in term of overall load-deflection behavior between different tension stiffening 
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models. Therefore, the bi-linear tension stiffening model proposed by Hillerborg, (1985) was 
adopted in the further simulation. 

         

     
           

 
 

 
                          

 
        
                               

 

     
           

 
 
         

 
                   

                     
                                       

(a) Hilleborg model (1976) (b) CEB-FIP model (1990) 

                                                         

                                                      

 
 
                                      

                                             
                                                             

 
                                         

(c) Hilleborg model (1985) 

Figure  5-4: Concrete tension stiffening models 

fct (MPa) is the tensile strength of the concrete which can be estimated from equation 

ሺ 5‐15ሻ, (ACI Committee 318, 1999) 

 ௖݂௧ ൌ 0.35ඥ ௖݂
ᇱ ( 5-15)

And the parameter associated with the softening part of the curve is fracture energy, GF 

(N/m). The fracture energy for mode I, GF (N/m), is the area under the softening curve and is 
according to (CEB-FIP Model Code, 1990), (Bazant ZP & Becq-Giraudon E, 2002)   
estimated as equation ( 5-16) 

ிܩ  ൌ ி଴ܩ ቆ
௖݂
ᇱ

௖݂௢
ቇ
଴.଻

 ( 5-16)
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fsy = 490 MPa 

Es=	200	GPa

y 																																 					 																			s

Where, ௖݂
ᇱ (MPa) is the concrete compressive strength, ௖݂௢ =10 MPa, and ܩி଴ (N/mm) is base 

value of fracture energy which depends on maximum aggregate size ݀௠௔௫(mm), ܩி଴ = 0.025, 
0.030, 0.038 for ݀௠௔௫(mm) = 8, 16, and 32 respectively. 

Once these parameters (fct,GF) have been determined, different analytical expressions 
can be used to approximate the softening curve.  

The mechanical properties of concrete used in this study shown in Table  5-1. 

Table  5-1: mechanical properties of concrete 

Compressive strength,  fc  (MPa) 44 
Modulus of elasticity, Ec (MPa)  23941 

Tensile strength,  fct  (MPa) 2.6 
Poisson’s ratio,   0.2 
Angle of dilatancy 38 
Ultimate strain (%) 0.0035 

Fracture energy GF (N/mm) 0.079 

5.3.1.2 Steel reinforcing bar Model 

The constitutive behavior of steel is predicted using an elastic perfectly plastic model, as 
described in (Abaqus , 2010). In this approach, the steel behavior is elastic up to when the 
yield stress is reached. At this point, the material yields under constant load (Figure  5-5). The 
parameters required by this formulation are the modulus of elasticity (Es = 200 GPa), 

Poisson’s ratio (=0.3) and yield stress (fsy = 490 MPa). 

A two-node truss element was used for modeling the steel reinforcement (main 
reinforcement, compressive reinforcement, and stirrups) as shown in Figure  5-6. This element 
was embedded to the concrete assuming that there is a perfect bond between the concrete and 
steel reinforcement. 

 

                                 

             
 
               
                                                  
 
 

         

Figure  5-5: Stress-strain relationship for steel 
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Figure  5-6: Modeling the steel reinforcement embedded in the concrete beam 

 

The embedded element technique is used to specify that an element or group of 
elements is embedded in “host” elements. The embedded element technique can be used to 
model rebar reinforcement. Abaqus searches for the geometric relationships between nodes of 
the embedded elements and the host elements. If a node of an embedded element lies within a 
host element, the translational degrees of freedom at the node are eliminated and the node 
becomes an “embedded node.” The translational degrees of freedom of the embedded node  
are constrained to the interpolated values of the corresponding degrees of freedom of the host 
element. Embedded elements are allowed to have rotational degrees of freedom, but these 
rotations are not constrained by the embedding. Multiple embedded element definitions are 
allowed. 

The mechanical properties of the reinforced steel bars used in this study shown in Table  5-2  

Table  5-2: mechanical properties of Steel 

Yield stress,  fsy (MPa) 490 

Modulus of elasticity, Es (GPa)  200 
Poisson’s ratio,   0.30 

 

Top reinforcement

Main reinforcement 

Stirrups 
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5.3.1.3 Creep Parameters of reinforced Concrete 

The creep response of the reinforced concrete beam under flexural loading based on 
experimental results is presented in Figure  5-7. Based on equation ( 5-4), the creep parameters 

for concrete can be determined by fitting the experimental creep deflection (cr) at the mid-

span of the reinforced concrete beam under constant flexural load with time.  

Using the trendline equation in excel, the parameter m1 was obtained (m1 = m+1 =0.25). 
In Abaqus power law form the parameter (m) is needed which can be determined from the 
previous calculated parameter m1 (m = 1-m1 = -0.75).  

To evaluate the parameters A, and n; the relationship between the creep response and 
applied stress was assumed to be linear; therefore, the stress-dependent parameter n in 

Equation ( 5-5) was considered to be 1.0. Using an average value of n and , the power law 

model equation is used to predict creep response of the concrete beam under constant bending 
stress can be written as: 

௖௥ߝ  ൌ ௡ߪܣ 	
௠ାଵݐ

݉ ൅ 1
ൌ 10ି଺ݔ5.3 ߪ

଴.ଶ଼ହݐ

0.285
ൌ ଴.ଶହ ( 5-17)ݐ	ߪ10ିହݔ1.86

 The resulting values for creep parameters determined based on Equation ( 5-4) and 
curve fitting tool was given in Table  5-3.  

Figure  5-7: FE creep of RC beam. 
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Damage initiation 

Damage evaluation GF Ko 

max 

So                                               Sf        Slip S 

Table  5-3: creep parameters for reinforced concrete beam used in FE 
analysis 

Material A n m 
Concrete 5.3E-6 1 -0.75 

These values of A, n, and m give well result for the creep behavior of reinforced 
concrete beam and were used for studying the creep behavior of CFRP-strengthened 
reinforced concrete beam. 

5.3.2 Cohesive zone (epoxy) modeling 

5.3.2.1 Short-term epoxy material modeling 

Cohesive elements implemented in the commercial finite element package ABAQUS can be 
represented as two cohesive surfaces separating from each other under shear or/and normal 
stresses. In this study, the bilinear traction separation law is defined by a linear elastic response, a 
strength criteria and a damage evolution law based on energies. The use of cohesive elements 

together with a traction separation law (Figure  5-8) is briefly described in the following part. 

Detailed descriptions of cohesive elements in (Abaqus , 2010) are available for the reader in 
Abaqus user manual (2010).  

                    
                          
        
          
                              
                                                
                                                    
                             
                                                                

  
 
                                                        

                   

Figure  5-8: Bilinear traction-separation law. 

The behavior of the interface prior to initiation of damage is described as linear-elastic. 

The nominal traction vector consists of three components in three-dimensional 

problems: n,s and t which represent the normal and shear tractions, respectively. 

The stiffness is determined according to Equation ( 5-18) (Guo ZG, et al., 2005). 

௢ܭ  ൌ
1

௔ݐ
௔ܩ

൅
௖ݐ
௖ܩ

 
( 5-18)
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Where ta is the adhesive thickness, tc is the effective thickness of concrete whose 
deformation forms part of the interfacial slip and was taken as 5 mm, and Ga= 4.5 GPa and 
Gc=9.975 GPa are the shear modulus of adhesive and concrete respectively. 

The damage initiation starts when a quadratic stress criterion is fulfilled. The strength of 
the adhesive in the normal and shear directions are used as input data. 

 ൬
௡ߪ
௡௢ߪ
൰
ଶ

൅ ൬
߬௦
߬௦௢
൰
ଶ

൅ ቆ
߬௧
߬௧
௢ቇ

ଶ

ൌ 1 ( 5-19)

Where n,s and t are the cohesive tensile and shear stresses of the interface, and the 

subscript refers to the direction of the stress component. The values used for this study were: 

௡௢ = fct = 2.6 MPa and ߬௦௢ = ߬௧ߪ
௢ = max. An upper limit for the maximum shear stress, 

τmax, is provided by the expression, (Lu, et al., 2005):  

 ߬௠௔௫ ൌ 1.5 ௪ߚ ௖݂௧ ( 5-20)

Where  

௪ߚ  ൌ ඪ
ቀ2.25 െ

ܾிோ௉
ܾ௕௘௔௠

ቁ

ቀ1.25 ൅ ܾிோ௉
ܾ௕௘௔௠

ቁ
 ( 5-21)

Where	ܾிோ௉, ܾ௕௘௔௠, and ௖݂௧, are CFRP width, beam width and concrete tensile strength 
respectively. 

In this study, the energy-based Benzeggagh and Kenane (BK) damage evolution 
criterion shown in Equation 5-15 was used (Benzeggagh M. L. & Kenane M. , 1996) 

௖்ܩ  ൌ ூ௖ܩ ൅ ሺܩII௖ െ ூ௖ሻܩ ൤
௦௛௘௔௥ܩ
்ܩ

൨
ఎ

 ( 5-22)

Where Gshear = GII + GIII and GT = GI + Gshear ,  is the BK material parameter, GIc and GIIc 

are the fracture toughness in mode I and II respectively,  and GII=GIII.  

The fracture energy, GF, can be estimated from Equation 5-16 

ிܩ  ൌ 0.308 ௪ߚ
ଶ ඥ ௖݂௧ ( 5-23)

The values of fracture energy used for this study were GI= 0.08 N/mm, GII=GIII= 0.41 N/mm, and 

=1.48 
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The mechanical properties of Epoxy used in this study obtained from Sika manufactory 
(Sikadur 30) and estimated using traction separation law shown in Table  5-4 

Table  5-4: mechanical properties of Epoxy 

Modulus of elasticity, Ec (GPa)  12 
Shear Modulus, Ga (GPa) 4.5 

Tensile strength,  fat  (MPa) 25 
Poisson’s ratio,   (assumed) 0.38 

Ultimate strain (%) 1 
Fracture energy (N/m) 0.41 

5.3.2.2 Creep Parameters of Epoxy 

The creep parameter for adhesive was estimated based on the shear creep test data 
reported by (E. Ferrier , et al., 2011) for different 4 types of epoxy adhesive at the interface 
between concrete and CFRP.  

The results of the creep shear strain versus time curves of the epoxy adhesive at every 
applied shear stress level are shown in Figure  5-9.  

In order to estimate the parameters Mo, and m1; the trendline function in excel was used 
to get the creep shear stain as a function of time at different applied stress level and 
comparing the fitting function with the equation (5-25).  In this case the parameter m, (m= -
0.8241) is obtained and is used in the finite element input for creep parameters of the epoxy 
interface. On the other hand, to estimate the parameters A, and n; the relationship between the 
creep response and applied stress was assumed to be linear; therefore, the stress-dependent 
parameter n in the Equation (5-26) was considered to be 1.0. 

Figure  5-9: creep shear strain versus time result for the epoxy interface (E. Ferrier , et al., 
2011) . 
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From the LN (Mo)-LN () relationship as shown in Figure  5-10 the parameters n, M1 

can be evaluated and the creep parameters for the epoxy adhesive is estimated. 

  

(a) Constant Mo , M1, and n (b) Constant (m1= m+1) 

Figure  5-10: Constants M0 and M1, n, and m for the epoxy interface tested by (E. Ferrier , 
et al., 2011). 

The parameters A, n, and m used in this study are shown in Table  5-5. 

Table  5-5: creep parameters for epoxy interface used in FE analysis 

Material A n m 
Epoxy 3.16036E-05 0.7573 -0.8241 

5.3.3 CFRP modeling 

5.3.3.1 Short-term  CFRP material modeling   

The CFRP material was considered as linear elastic isotropic until failure as shown in Figure  5-11 
The material properties were obtained from Sika manufacture (S812) as in  

Table  5-6.  
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    ffrpu= 
3400MP

Efrp=  165 GPa 

                 
 
                       
                                                
                                                    
 
                                                         

  
 
          
                                          

Figure  5-11: Stress-strain relationship for CFRP plate 

 

Table  5-6: mechanical properties of CFRP 

Modulus of elasticity, Ec (GPa)  165 
Tensile strength,  fCFRP (MPa) 3400 

Poisson’s ratio,   0.3 
Ultimate strain (%) 1.7 

5.3.3.2 Creep Parameters of CFRP 

In order to evaluate the time-dependent response of CFRP composites based on the test 
data, also the same procedure was used to evaluate the creep parameters based on the test data 
for CFRP creep test by (Fukuta Y., et al., 2008); and based on the previous studies; the 
change in creep strain of CFRP was about 2% to 8%, the curve data fitting tools was used and 
the evaluated creep parameter for CFRP shown in Table  5-7.  

  

Figure  5-12: CFRP creep-strain relationship (Fukuta Y., et al., 2008)  
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Table  5-7: creep parameters for CFRP used in FE analysis 

Material A n m 
CFRP 4E-008 1 -0.9 

5.4 Geometric model 

5.4.1 Short-term Model 

One-quarter of the rectangular reinforced concrete beam was modeled due to two plans 
of symmetry as shown in Figure  5-13. An eight-node brick element was used to model the 
concrete and the CFRP plate. A two-node truss element was used for modeling the steel 
reinforcement, which was embedded in the concrete beam, assuming that there is a perfect 
bond between the concrete and steel reinforcement. (8-Node 3-D cohesive elements were used 
to model the interface layer. The cohesive interface elements are composed of two surfaces 
separated by a thickness. The relative motion of the bottom and top parts of the cohesive 
element measured along the thickness direction represents opening or closing of the interface. 
The relative motion of these parts represents the transverse shear behavior of the cohesive 
element. The element types used in the modeling are summarized in Table  5-8. 

Abaqus/standard (Abaqus , 2010) was used for these simulations. The total deflection 
applied was divided into a series of deflection increments. Newton method iterations provide 
convergence, within tolerance limits, at the end of each deflection increment. In addition 
automatic stabilization and small time increments were used to avoid a diverged solution. 
Since the geometry of the beams, loading and boundary conditions were symmetrical, only 
one quarter of a beam was modeled with boundary conditions shown in Figure  5-14 and 
typical finite element mesh as shown in Figure  5-15.  

Table  5-8: Element types used in FE analysis 

Material Description Code Additional information 
Concrete Eight-node brick C3D8R Reduced integration 

Steel Two-node truss T3D2 Embedded element 
Epoxy Eight-node cohesive COH3D8 Cohesive element 
CFRP Eight-node brick C3D8R Reduced integration 

To verify the FE analysis and mesh sensitivity, three different mesh sizes were selected 
for the simulation of the strengthened and un-strengthened beam as shown in Figure  5-15 (a), 
(b), and (c). The load-deflection curves obtained from FE model at different mesh size were 
compared. The FE models with the different mesh sizes were found to represent the behavior 
of CFRP-strengthened reinforced concrete beams well as shown in Figure  5-16. Although the 
beam stiffness was slightly stiffer and the ultimate load was slightly higher as the mesh size 
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was finer, the difference was negligible. Therefore, the fine mesh in Figure  5-15 (b) was 
selected for the rest of the simulations. 

 

 

Figure  5-13: One-quarter of the beam was modeled due to two plans of symmetry 

 

 

 

a) Boundary condition for FE model 

1550 mm 
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1000 mm 
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b) RC beam (control beam) c) CFRP-strengthened Rc beam 

 

Figure  5-14: details and boundary condition for FE model 

 

 

 
 

(c) Finer mesh (d) Fine mesh (e) Coarse mesh 

Figure  5-15: Mesh size used for FE model 
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Figure  5-16: load-deflection curve of FRP-strengthened RC-beams for different mesh size. 

5.4.2 FEM Creep Deformation of CFRP strengthened RC Beam 

A 3D-finite element model, developed in the Abaqus finite element program (Abaqus 
2010), was used to validate the power law creep model of the Reinforced concrete, Epoxy, 
and CFRP composites. The numerical results are compared with those obtained 
experimentally. The finite element (FE) creep analysis was performed by using the material 
properties and creep parameters obtained from fitting curves with the Equation ( 5-4) as 
discussed in this chapter. The same 3D-model used for simulating the flexural behavior of 
CFRP-strengthened RC beams (as shown in Figure  5-17) was used for studying the creep 
deformation of the strengthened beams. 

The eight-node brick element (C3D8R) was used for modeling the concrete, steel paltes, 
and CFRP laminates. The reinforcement steel bars were modeled using two-node truss 
element (T3D2). The interface between the concrete and CFRP layers were modeled by 
cohesive element (COH3D8) using the Abaqus fully bonded Tie multi-constraint option 
(Abaqus , 2010). The final CFRP-strengthened RC beam was simulated by using eight 
sequential steps, and the results of each step were recorded. 

90

80

70

60

50

40

30

20

10

0

50403020100

Lo
ad

, K
N

mid‐span deflection, mm

FEM, Fine Mesh

FEM, very fine mesh

FEM, coarse mesh



Chapter 5 Finite Element Modeling of long-term behavior 

98 
 

 

 

 

 

 

 

 

 

 

Figure  5-17: FE model used in this study 
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Chapter 6      Analysis and discussion of numerical results 

6.1 Numerical Model verification 

3D finite element model developed in chapter 5 was validated with the results obtained 
from the experimental test to estimate the failure load for the CFRP-strengthened RC beams 
at different CFRP plate length/breadth, and epoxy type. Also the calibrated model will be 
used to predict the long-term behavior of the CFRP-strengthened RC beams for different 
parametric study.  

6.1.1 Load deflection comparison 

The load-deflection relationship for both of reinforced concrete beam (controlled 
beams) and CFRP-strengthened reinforced concrete beams were shown in Figure  6-1. It can 
be seen that the CFRP increase the ultimate load and the bending resistance of the reinforced 
concrete beams by about 47% more than the un-strengthened beams. The increasing in 
ultimate capacity is due to the effect of composite action between external bonded CFRP and 
reinforced concrete beam on increasing the stiffness of the CFRP-strengthened RC beams.  

The ultimate load and corresponding deflection comparison between FEM and 
experimental test were shown in Table  6-1. 

Table  6-1: load-deflection results comparison between FEM and experimental test 

Specimen 
Pu 

(kN) 

δu  

(mm) 

Control RC- beam Experimental 49.75 18.9 

Control RC- beam FEM 51.56  15.57 

CFRP strengthened RC- beam Experimental 78.347  30.997 

CFRP strengthened RC- beam FEM 76.4212  30.0682 

CFRP strengthened RC- beam with 
plate at end of CFRP plate 

FEM 77.006 31.2627 

The load-deflection at mid-span obtained from FE model and that obtained from 
experimental test were shown in Figure  6-2; it can be observed that the stiffness of the FE 
model is higher than the stiffness of the  experimental specimen and this occurred till the yield 
of reinforcement steel bars, but at the failure load the difference in ultimate capacity and 
corresponding deflection between both of the FEM and experimental test was accepted and 
the model gives good result for the failure behavior of control beams and CFRP-strengthened 
RC beams. Also the transverse steel plates at the CFRP plate end has insignificant effect on 
the ultimate capacity. In this study the developed 3D FE model without plate at the end of 
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CFRP plate was used to study the short- and long-term behavior of CFRP-strengthened RC 
beams.  

Figure  6-1: load-deflection curve comparison between control beams and CFRP-
strengthened RC-beams. 

 

Figure  6-2: load-deflection curve comparison between control beams and CFRP-
strengthened RC-beams. 
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6.1.2 Failure mode 

The failure mode for control RC-beam was due to flexural cracks in the tension zone 
and yielding of the steel reinforcement in the tension side, also the failure takes place in a 
ductile manner. The first crack occurred at load 10 KN and the deflection was 1.07 mm, in the 
tension side near the applied load point.     

The failure mode of CFRP-strengthened RC beams was due to debonding of the CFRP 
plate from the plate end to near the under load position.  

The failure takes place at the concrete-epoxy interface. The crack pattern for control 
beam and CFRP-strengthened RC-beams were shown in Figure  6-3 (a & b) and Figure  6-4. 

 
 
 

 
 

(a) damage pattern of RC beam at ultimate load 

 

(b) damage pattern of FRP-strengthened RC beam at ultimate load 

Figure  6-3: FE crack patterns at ultimate load for (a) control RC beam; and (b) CFRP-
strengthened RC beam. 
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FE model  
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6.1.3 Comparison FE Modeling results with ACI 440 

The ultimate capacity obtained from experimental and FE model were compared to that 
obtained from the ACI 440 equation (See chapter 2; section 2.2.3 ); the summarized results of 
ultimate load was shown in Table  6-2 

The cross section properties for the strengthened specimen are as follow (Figure  6-5): 

 

 
 
 

Figure  6-4: FE crack patterns for interface separation of CFRP-strengthened RC beam. 

FE model  
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Debonding of FRP plate, interface failure 
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Figure  6-5: Internal strain and stress distribution for a rectangular section under 
flexure at ultimate stage. 

 

b =120 mm f′c= 44 MPa 

t=300 mm ft= 2.6 MPa 

L= 2900 Ec=23941 MPa 

As= 402 mm2 fy= 490 MPa 

A′s= 157 mm2 Es=200000 MPa 

ds= 264 mm EFRP=165000 MPa 

d′s= 33 mm fFRP= 2800 MPa 

AFRP= 96 mm2 ߝ௖௨ = 0.003 

dFRP= 301.6 mm ߝ௦ = 0.007178 > 0.005 

 ௦ = 0.001728′ߝ 

 ௙௘ = 0.0111ߝ 

Using the previous data and the equilibrium of internal forces in the diagram shown in 
Figure  6-5; the value of x can be determined as dollow: 

ݔ  ൌ
െܤ ൅ ଶܤ√ െ 4ܽܿ

2ܽ
 ( 6-1)

Where a =	0.85݂ܿ
′   ,ܾ	ߚ

B= ൫ܣ௦ᇱ ௦ܧ ൅ ௖௨ߝ௙௥௣൯ܧ௙௥௣ܣ െ ௦ܣ ௬݂ 

c=  െሺܣ௦ᇱ ௦݀ᇱܧ ൅  ௖௨ߝ௙௥௣݀௙௥௣ሻܧ௙௥௣ܣ

x= 77.8154 mm 

The ultimate moment can be determined as follow: 

 

௡ܯ ൌ ௦݂ܣ௦ ൬݀	 െ
ݔߚ
2
൰ ൅ ߰௙௥௣ܣ௙௥௣ܧ௙௥௣ߝ௙௘ ൬݀௙௥௣ െ
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2
൰

൅	ܣ௦ᇱ ௦݂
ᇱ ൬
ݔߚ
2
െ ݀ᇱ൰ 

( 6-2)

Mn = 83814 kN.mm 

For design, Mu = 0.9 Mn = 75433 kN.mm 
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Pu = 75.43 kN 

For the control RC beams the ultimate moment can be determined from Equation ( 6-3):  

௡ܯ  ൌ ௬݂ሺܣ௦ െ ௦ᇱܣ ሻ ቈ ݀௦ െ
௬݂ሺܣ௦ െ ௦ᇱܣ ሻ

2ሺ0.85 ௖݂
ᇱܾሻ

቉ ൅ ௬݂ܣ௦ᇱ ሺ݀௦ െ ݀ᇱሻ ( 6-3)

Mn = 47860 kN.mm 

Pu = 47.86 kN 

Table  6-2: ultimate load for control RC beams and FRP-strengthened RC beams 
comparison 

Specimen 
Pu 

(kN) 
Experimental CFRP strengthened RC- beam 78.347 

FEM CFRP strengthened RC- beam 76.4212 

ACI equation CFRP strengthened RC- beam 75.43 

Experimental control RC- beam 49.75 
FEM control RC- beam 51.56

ACI equation control RC- beam 47.86 

 

It can be observed that the FE model can be used to investigate the ultimate capacity of  
the CFRP-strengthened RC beams and the result gives good matching with the ultimate 
capacity obtained using the ACI 440 equation. 

The comparison between ultimate load for control RC beams and CFRP-strengthened 
RC beams for different calculation methods was shown in Figure  6-6. 

For the designer it is recommended to use reduction factor for the ultimate capacity 
between 0.7 to 0.9. 

It can be concluded that the FE model was matching both of the experimental and code 
equation for estimating the ultimate flexural capacity of the CFRP-strengthened RC beams 
and the verified model can be used to investigate the flexural and long-term behavior of the 
strengthened beams. 
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Figure  6-6: ultimate load for control RC beams and FRP-strengthened RC beams 
comparison. 

6.2 Parametric study using FE modeling of CFRP-strengthening RC-
beams 

The verified FE model for CFRP-strengthened reinforced concrete beams was used to 
study the effect of changing the CFRP plate to span ratio, CFRP width to beam width ratio, 
and cohesive properties to evaluate the ultimate flexural load of CFRP-strengthened RC 
beams which is important to predict the long-term behavior of CFRP-strengthened RC beams 
under service flexural load.  

6.2.1 CFRP plate length to span ratio and FRP width to beam width ratio 

The CFRP plate length to span ratio was varied from 40% to 96%; while the variation 
between CFRP plate breadth to beam width was varied from 41% to 100%. 

The load-deflection relationship and failure cracks are shown in Figure  6-7 and 
Figure  6-8 (1 to 9) respectively. 
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The ultimate load is compared to the ultimate load for control reinforced concrete beam 
(Prc = 51.56 kN) as shown in Table  6-3 

Figure  6-7: load-deflection curves of FRP-strengthened RC-beams with different Lfrp/Lbeam 
and bfrp/bbeam ratio. 

 

Table  6-3: FE model results for FRP-strengthened RC-beams with different Lfrp/Lbeam 
and bfrp/bbeam ratio. 

Lfrp/Lbeam 

% 

bfrp/bbeam 

% 

Pu 

(kN) 

u 

(mm) 

Pu,frp/Pu,rc  

% 
Failure mode 

40 
41  54.1662  15.9552  105  Yield of tension rebar  
67  55.1332  14.3326  107 CFRP-debonding 
100  55.448  14.2688  107.5 Interface separation 

75 
41  66.133  25.1571  128 Yield of tension rebar 
67  70.3292  22.4515  136.4 debonding 
100  68.9826  17.7835  134 Yield of tension rebar 

96 
41  68.32  23.5939  132.5 debonding 
67  76.4212  30.0682  148.22 debonding 
100  80.0254  24.908  155 Concrete cover failure 
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From the results it can be observed that the ultimate load was increased with increasing 
both of  CFRP plate length and the CFRP plate width. Also the  CFRP plate width improved 
the bond between concrete and CFRP plate. The increasing in flexural capacity was varied 
from 5% to 55% due to increasing in CFRP plate length to beam span ratio from 40% to 96% 
respectively. Furthermore, the increasing in CFRP plate breadth can be affected the ultimate 
capacity when using CFRP plate length more than 75% from the beam span,  also improved 
the ductility of the strengthened beam. For the short plate length the effect of strengthening is 
less than 10%, it is recommended to use CFRP plate extended with an anchorage length 
outside the maximum flexural stress to obtain the full effect of the CFRP plate on the 
strengthening. Also the breadth is very important to increase the ability of the strengthening 
system to resist the debonding effect at the CFRP plate end due to the concentration of 
stresses at the plate end.  

(1) Lfrp/Lbeam = 40 %, bfrp/bbeam = 67 % 

(2) Lfrp/Lbeam = 75 %, bfrp/bbeam = 67 % 

(3) Lfrp/Lbeam = 96 %, bfrp/bbeam = 67 % 

(4) Lfrp/Lbeam = 40 %, bfrp/bbeam = 41 % 
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(5) Lfrp/Lbeam = 75 %, bfrp/bbeam = 41 % 
 

(6) Lfrp/Lbeam = 96 %, bfrp/bbeam = 41 % 
 

(7) Lfrp/Lbeam = 40 %, bfrp/bbeam = 100 % 

 

(8) Lfrp/Lbeam = 75 %, bfrp/bbeam = 100 % 
 

(9) Lfrp/Lbeam = 96 %, bfrp/bbeam = 100 % 
 

Figure  6-8: FE crack patterns at ultimate load for FRP strengthened RC-beams with 
different Lfrp/Lbeam and bfrp/bbeam ratio.  
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6.2.2 Effect of epoxy adhesive  

Results of ultimate load and deflection obtained from FE model for four types of epoxy 
adhesive used to bond the CFRP plate to the tension face of the RC beams are shown in 
Figure  6-9; it can be observed that different epoxy types has no significant effect on the the 
ultimate load of the CFRP-strengthened RC beams, this is due to the effect of small value of 
tensile strength of the concrete compared to that for epoxy, which is control the bond stress 
between concrete and epoxy and has the major effect in failure of the strengthened system. 
The data of epoxy used in FE model was summarized in Table  6-4 

Figure  6-9: load-deflection curve comparison between control beams and CFRP 
strengthened RC-beams. 

 

Table  6-4: material charactaristics for epoxy interface used in FE analysis 

Material Sikadur 30 Epoxy A Epoxy B Epoxy C 
Young modulus (GPa) 12 5.29 6 3.2 

Poisson’s ratio,   0.38 0.364 0.35 0.32 
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6.3 Numerical results of long-term behavior of CFRP-strengthened RC 
beams  

  The time-creep deflection curves obtained from the FE modeling and the 
corresponding experimental test results are compared in Figure  6-10. The experimental results 
and FE model result under applied load 17 kN and 26 kN were ploted and analysied. A good 
correlation between the FE and experimental results confirms that the creep behavior of 
CFRP-strengthened reinforced beams can be successfully predicted based on the creep 
properties of the epoxy, CFRP, and reinforced concrete beam using the developed 3D model.  

The FE model was then employed for conducting a parametric study to investigate the 
influence effect of the CFRP, and epoxy on the long-term performance of CFRP-strengthened 
reinforced concrete beams. Also the results from the finite element modeling will be 
compared with the recommended code equation for determining the creep deflection of the 
strengthened system.  

To study the creep effect of the CFRP-strengthened RC beams; first the creep 
deformation of reinforced concrete beam was simulated by Abaqus FE  program; after that the 
effect of epoxy adhesive alone was taken into consideration to evaluate the creep deflection of 
the CFRP strengthened RC beams. 

 

Figure  6-10: creep deflection at mid-span of control beam and FRP-strengthened RC beam 
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Then the creep of the CFRP was taken in the simulation FE model to evaluate the effect 
of every material in the creep deformation. The results of the FE model were discussed as 
follow: 

6.3.1 Effect of neglecting CFRP creep in Creep deflection deformation of 
CFRP-strengthened RC beams 

The creep deflection-time relationship at mid-span for control RC beam and CFRP-
strengthened RC beam was shown in Figure  6-11, in this model the creep of reinforced 
concrete beam and the creep of the epoxy interface is included in the model, while the creep 
of the CFRP plate was neglected. 

The applied load was constant (P = 34% from the ultimate load of RC beam) with time 
and the young’s modulus assumed to be constant to eliminate the FE model problems. 

It can be observed that the creep deflection of CFRP-strengthened RC beams is less 
than the creep deflection for control beam by about 7% due to the effect of the strengthening 
on increasing the stiffness of the CFRP-strengthened RC beams and decreasing the immediate 
deflection.  

Table  6-5 summarized the FE result for creep deflection at mid-span for RC beam and 
CFRP-strengthened RC beam.  

Figure  6-11: creep deflection at mid-span of control beam and CFRP-strengthened RC 
beam 
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Table  6-5:  long-term creep deflection at mid-span of FE model at load 17kN. 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 1825 

Control beam 0 1.36 1.59 1.74 2.021 2.35 2.52 3.25 

CFRP-strengthened 
RC beam 

0 1.27 1.48 1.625 1.89 2.19 2.35 3.01 

CFRP-strengthened 
RC beam 

neglecting FRP 
creep 

0 1.27 1.48 1.61 1.88 2.18 2.34 2.99 

Figure  6-12 shows the effect of the applied load in the creep deflection of control beam 
and CFRP-strengthened RC beam when neglecting creep effect of CFRP plate; from the 
results it can be observed that the creep deflection of the strengthened beams is less than the 
creep deflection of the unstrengthened beams by about 7%, this is due to the effect of the 
CFRP on the decreasing the immediate deflection of the strengthened beams. Also the creep 
deflection is increased proportionally to the applied load as expected.  

Figure  6-12: creep deflection at mid-span at different applied load without CFRP creep. 
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6.3.2 Effect of interface and CFRP creep in Creep deflection deformation of 
FRP strengthened RC beams 

Figure  6-13 shows the effect of CFRP, epoxy interface, and reinforced concrete creep in 
the creep deflection at mid-span of the CFRP-strengthened RC beam and comparing it to the 
FE model of the control beam at different applied load; from the relationship the CFRP creep 
increases the creep deflection of CFRP-strengthened RC beam with a very small value about 
0.5 % from the creep deflection of the strengthened beams with neglecting effect of CFRP 
creep in the model.   

From the results and comparing with the experimental creep deflection of CFRP-
strengthened RC beam it can be concluded that the FE model can evaluate the creep behavior 
of CFRP-strengthened RC beam at different applied load levels and the results had good 
matching with experimental results, as shown in Figure  6-14. 

Figure  6-13: creep deflection at mid-span at different applied load. 
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6.3.3 Reinforcement steel bar creep strain 

The FE model results for long-term creep strain of reinforcement steel bar at different 
applied load level are shown in Figure  6-15, it can be observed that the creep strain of the 
reinforcement steel bars in the tension side of the CFRP-strengthened RC beams was 
decreased by about 15% from that of the RC control beam; due to the effect of CFRP plate. 
But the steel reinforcement strain at the compression side of the beam was decreased by about 
3%; this value can be neglected in the design consideration. 

Also the creep strain proportional to the applied load; with increasing the applied load 
by 58 % and 135 % the creep strain of reinforcement steel increases with 55% and 137% 
respectively; it is nearly the same percent of increasing in the applied load. It should be taken 
into account the effect of the applied load to be limited with the design service load for the 
CFRP strengthened RC beams. 

Figure  6-14: creep deflection at mid-span at different applied load comparison. 
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6.3.4 CFRP creep strain 

The creep of CFRP plate at the mid-span is proportional to applied load and there is 
neither damage nor failure occur due to creep. The creep strain of CFRP-plate at mid-span at 
different applied load level is shown in Figure  6-16.  

Figure  6-15: reinforcement creep strain at mid-span at different applied load comparison. 

Figure  6-16: CFRP creep strain at mid-span at different applied load comparison. 
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6.3.5 CFRP-plate end slip 

The long-term CFRP slip at the end of the CFRP plate at different applied load levels 
are shown in Figure  6-17; the slip increased with 50% and 124 % for increasing of the applied 
load from 53% to 135% respectively compared to slip at load level 17 kN. From the results it 
can be observed that the applied load level should be within the service load level to avoid the 
increasing in CFRP plate end slip due to increasing of the stress at the plate end.   

6.3.6 Shear stress along interface  

The shear stress on the epoxy interface is varied along the length of the interface; it was 
high at the end of the CFRP plate and decreased to its minimum value at the mid-span; due to 
the concentrated shear stress at the end of the CFRP plat as shown in Figure  6-18. 

It can be observed that there is neither failure nor debonding occur along the interface. 
Also the FE modeling can be used to predict the creep behavior of the CFRP-strengthened RC 
beams. 

Figure  6-17: CFRP slip at plate end at different applied load comparison. 
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6.4 Parametric study of creep behavior of CFRP-strengthening RC-beams 
using FE modeling 

The verified FE model was used to predict the creep behavior of CFRP-strengthened 
reinforced concrete beams. The effect of the interface epoxy properties, applied load level and 
effect of CFRP plate length/breadth to beam span/breadth ratio on the creep behavior of the 
CFRP-strengthened RC beams are the parameters used in this study. 

6.4.1 Effect of epoxy interface properties  

The epoxy interface has an important effect on the behavior of strengthened RC beams 
because the property of epoxy was affected by the temperature and the material properties of 
the epoxy. And also this material used to transfer the stresses from RC beam to CFRP plate. 

6.4.1.1 Type of epoxy interface 

To study the effect of the epoxy interface on the creep behavior of CFRP-strengthened 
RC beam; four types were selected based on the previous study of epoxy adhesive creep 
(Miguel Miravalles & IIP Dharmawan, 2007), the properties and creep parameters are shown 
in Table  6-6. 

 

 

Figure  6-18: shear stress along the interface at different time. 
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Table  6-6: creep parameters for epoxy interface used in FE analysis 

Material Epoxy A Epoxy B Epoxy C Epoxy D 
Young modulus (GPa) 5.29 4.57 6 6.54 

Poisson’s ratio,   0.364 0.312 0.35 0.329 
A 7.87 E-05  0.000297  1.23E-04  1.19E-06 
n 1.344 0.7658 0.9913 2.709 
m -0.67813 -0.73529 -0.65207 -0.71435 

Figure  6-19 shows the effect of type of epoxy adhesive in mid-span creep deflection; it 
can be observed that the effect on creep deflection can be neglected. 

The long-term slip of the end of CFRP plate was increased by about 3 to 3.6 times the 
initial slip at applied load P = 40 kN; as shown in Figure  6-20 this due to the increase in the 
strain along the interface. The creep strain along the interface after 5 years for different type 
of epoxy is shown in Figure  6-21, it can be seen that the strengthened creep has limited effect 
on the interface creep strain for epoxy type A, D, and Sikadur 30 and the effect of the creep of 
the strengthened beams on the interface creep strain is increased for epoxy B more than other 
types of epoxy.  

Figure  6-19: creep deflection at mid-span at different applied load for different epoxy 
adhesive comparison. 
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The shear stress along the interface at applied load P=40 kN at time 30, 180, 365, 1825 
days for different epoxy types are shown in Figure  6-22; the sikadur30 epoxy has very good 
resistance to creep and also the epoxy type D is good, while for the other types of epoxy the 
shear stress increase along the interface with time and this is affect the bond between CFRP 
and concrete. 

Figure  6-20: CFRP slip at plate end at different applied load comparison. 

Figure  6-21: interface creep strain for different epoxy adhesive comparison. 
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From the results of different epoxy types it can be observed that the epoxy type has no 
significant effect on the creep deflection of the CFRP-strengthened RC beams, on the other 
hand the effect of the epoxy type can limit the change on the interface strain due to creep.  
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6.4.1.2 Effect of temperature on creep of epoxy interface 

In this study the epoxy interface properties and the creep parameters evaluated based on 
the data from the previous study of (E. Ferrier , et al., 2011) shown in Table  6-7. 

Table  6-7: creep parameters for epoxy adhesive used in FE analysis 

Material Epoxy A Epoxy B Epoxy C 

Young modulus (MPa)  3200 3200 12000 

Glass transition temperature T (oC) 55 80 55 

T = 20 oC 

A 4.58605E-05 8.76142E-05 3.16036E-05 

n 0.9769 1.0946 0.7573 

m -0.9095 -0.8467 -0.8241 

T = 40 oC 

A 8.40539E-05 0.000137827 5.7885E-05 

n 0.9239 1.0862 0.994 

m -0.8871 -0.8412 -0.8488 

T = 60 oC  

A 0.00019246* 0.000168762 6.95357E-05* 

n 1.1178* 0.9873 1.0164* 

m -0.8565* -0.8148 -0.8972* 

* The creep parameter evaluated at 50 oC 

Figure  6-22: shear stress along the interface for different epoxy type. 
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It should be noticed that the effect of temperature not included in evaluated the creep 
parameter of reinforced concrete and CFRP. 

The mid-span creep deflection for different type of epoxy was shown in Figure  6-23   

From the results it can be seen that the epoxy type has no significant effect on the creep 
deflection of the CFRP-strengthened RC beams at different temperature level. This is due to 
the very small thickness of the epoxy compared to the concrete section, also the effect of the 
temperature level was on the strain and stiffness of the epoxy layer.  

The interface strain at different temperature level for different epoxy types are shown in 
Figure  6-24. From the results it can be observed that there is no significant effect on the creep 
deflection of the CFRP-strengthened RC beams due to the high level of the interface type at 
different temperature levels. Also the creep strain along the interface was increased from 2 to 
3 times more than the immediate interface strain when the temperature was changed from 20 
oC to 50 oC, but for the epoxy with combined high modulus of elasticity (high shear modulus) 
and high glass transition temperature the interface strain was decreased by about 40 % less 
than the other types of epoxy.  

From the results for the previous epoxy types in this parametric study, it can be 
concluded that, using epoxy with combined high modulus of elasticity (more than 6 GPa) and 
high glass transition temperature (more than 55 oC) will improve the interface strain but did 
not affect the creep deflection of the strengthened RC beams. This result can be approved 

Figure  6-23: creep deflection at mid-span of CFRP-strengthened RC beam for different 
epoxy type 
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with the experimental results obtained by (E. Ferrier , et al., 2011) he recommended to use 
epoxy adhesive with high shear modulus (more than 10 GPa) and in my study the shear 
modulus can be decreased to be 20% (shear modulus more than 2.3 GPa, and modulus of 
elasticity more than 6 GPa) from the results obtained by (E. Ferrier , et al., 2011).  

Figure  6-24: shear strain along the interface for epoxy type A, B and C at different 
temperature after 5 years 
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6.4.2 Effect of applied load level 

Figure  6-25 shows the effect of applied load on the creep deflection at mid-span of the 
CFRP-strengthened RC beam, it can be showed that the deflection due to creep was 3.86 mm, 
5.896 mm, 9.052 mm, 13.882 mm at applied load P= 17 kN, P= 26 kN, P= 40 kN and P= 60 
kN respectively. Also the increasing in the deflection due to creep was gradually and 
proportion to the increase in the applied load. The variation of the increase in applied load 
were 0, 0.53, 1.35, and 2.53 for applied load P= 17 kN, P= 26 kN, P= 40 kN and P= 60 kN 
respectively; while the increase in the deflection due to creep of the CFRP-strengthened RC 
beams were 0, 0.53, 1.34, and 2.53.  

From the results it can be concluded that the applied load level should be within the 
service load limit (about 59% from ultimate capacity).  

 

 

 

Figure  6-25: creep deflection at mid-span of FRP-strengthened RC beam at different 
applied load 
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6.4.3 Effect of CFRP plate length/breadth to beam span/breadth ratio 

To study the effect of CFRP plate length/breadth as a ratio from the beam span 
length/breadth; three groups were studied using the calibrated finite element model. Each 
group consists of three CFRP-strengthened RC beams with same CFRP plate length to beam 
span length ratio and different CFRP plate breadth. In the FE model the applied load (40kN) 
was constant for all the beams to predict the effect of changing CFRP plate dimensions on the 
creep deflection of the strengthened beams. Also the results obtained from the finite element 
model were compared to the creep deflection of the control RC beam under the same load. 
The details of the studied groups were summarized in Table  6-8. 

Table  6-8: Mid-span creep deflection for different CFRP length/breadth to beam 
span/breadth ratio obtained from FE model 

Lcfrp/Lbeam 

% 

bcfrp/bbeam 

% 

Creep deflection  
cr (mm) 

percentage of 
decreasing in 

creep deflection 
due to 

strengthened 
% 

30 days 90 days 6 months 1 year 5 years 5 years 

40 
41  3.095  3.955  4.596  5.335 7.354 3.74 

67  3.037  3.880  4.506 5.229 7.197 5.80 

100  2.970  3.788  4.398 5.100 7.011 8.23 

75 
41  3.067  3.915  4.549 5.279 7.271 4.83 

67  2.995  3.820  4.435 5.144 7.072 7.43 

100  2.909  3.706  4.299 4.982 6.834 10.55 

96 
41  3.064  3.916  4.552 5.283 7.268 4.87 

67  2.991  3.818  4.434 5.141 7.059 7.60 

100  2.901  3.700  4.293 4.973 6.814 10.81 

Control RC beam  3.197  4.088  4.756 5.527 7.640 0 

The effect of CFRP plate length to beam span ratio and CFRP plate breadth to beam 
breadth ratio were studied in this section using the calibrated finite element model, the CFRP 
plate length to beam span ratio was varied from 0.4 to 0.96, and CFRP plate breadth to beam 
breadth ratio was varied from 0.4 to 1, the load to mid-span relationship is shown in 
Figure  6-26. From the results it can be seen that using CFRP with varied length and breadth 
from 40% - more than 96% to beam span and breadth ratio decreases the creep deflection by 
3.74% - 10.81% after 5 years. The relationship between percentage of decreasing in creep 
deflection and different CFRP plate length/breadth ration was shown in Figure  6-27.  
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a) creep deflection at mid-span of CFRP-strengthened RC beam for 40% CFRP plate length 
ratio and  different breadth ratio 

b) creep deflection at mid-span of CFRP-strengthened RC beam for 75% CFRP plate length 
ratio and  different breadth ratio 

c) creep deflection at mid-span of CFRP-strengthened RC beam for 96% CFRP plate length 
ratio and  different breadth ratio 

Figure  6-26:  creep deflection at mid-span of CFRP-strengthened RC beam for  different   
CFRP plate length/ breadth ratio 
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From Figure  6-27, it can be predict the percentage of decreasing in mid-span creep 
deflection of the CFRP-strengthened RC beams for different CFRP plate length/breadth ratio 
under service load from the unstrengthened RC beams.  

It can be concluded that the creep deflection of the unstrengthened beams can be used 
for estimating the creep deflection of the CFRP-strengthened RC beams. The creep deflection 
of both CFRP-strengthened RC beams and unstrengthened RC beams can be calculated as 
immediate deflection multiplying by creep coefficient, the creep coefficient for concrete 
calculated using the code equation will be checked in the next section to validate its ability to 
estimate the creep deflection of the CFRP-strengthened RC beams.  

 

 

 

 

 

 

Figure  6-27:  percentage of decreasing in creep deflection at mid-span of CFRP-
strengthened RC beam for  different   CFRP plate length/ breadth ratio 
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6.5 Comparison results with ACI 209R-92 and CEB-FIP 1990 

In this section; a comparison between creep coefficient obtained from experimental 
results and  numerical results for CFRP-strengthened RC beams and the creep coefficient of 
concrete results estimated from code equation to verify the ability of creep coefficient of 
concrete for determining the creep coefficient and creep deflection of the CFRP-strengthened 
RC beams.  

6.5.1 ACI 209R-92 

The creep coefficient of concrete is estimated as follows: 

 ߮ሺݐ, ௢ሻݐ ൌ ߮ஶሺݐ௢ሻ ∙
ሺݐ െ ௢ሻ଴.଺ݐ

10 ൅ ሺݐ െ ௢ሻ଴.଺ݐ
 ( 6-4)

Where 

φሺt, t୭ሻ : Creep coefficient at time t 

φஶሺt୭ሻ	: Ultimate creep coefficient 

to   : Time of loading 

The ultimate creep coefficient can be expressed as: 

 ߮ஶሺݐ௢ሻ ൌ ௖ߛ ∙ ߮ஶ ( 6-5)

The constant φஶ = 2.35 is recommended. The correction factors γୡ consist of the 
following terms: 

௖ߛ  ൌ ௟௔ߛ ∙ ோுߛ ∙ ௔௧ߛ ∙ ௦ߛ ∙ ఘߛ ∙ ௔ ( 6-6)ߛ

Where 

γ୪ୟ : Correction factor for loading age.  

For loading ages later than 7 days and moist cured concrete, γ୪ୟ ൌ 1.25 x to
-0.118  

For loading ages later than 1-3 days and steam cured concrete, γ୪ୟ ൌ 1.13 x to
-0.094 

 ோு : Correction factor ambient relative humidity. For ambient relative humidity greaterߛ

than 40%, γୖୌ  = 1.27 − 0.0067 RH; (RH is the ambient relative humidity in %) 
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γୟ୲	:	Correction factor for thickness of member. When the average thickness or volume 
to surface ratio of a structural member differs from 150 mm or 38 mm, respectively. 

γୱ : Correction factor for slump of fresh concrete; 

 γୱ = 0.82 + 0.00264 S1  

S1 : is the slump in mm. 

γ஡ : Correction factor for fine to total aggregate ratio. 

 γ஡= 0.88 + 0.0024 ρa  

ρa : is fine to total aggregate ratio 

γୟ : Correction factor for air content. γୟ = 0.46 + 0.09aa 

aa is air content. 

The data used in this study are as following: 

b =120 mm f′c= 44 MPa 

t=300 mm ft= 2.6 MPa 

L= 2900 Ec=23941 MPa 

As= 402 mm2 fy= 490 MPa 

A′s= 157 mm2 Es=200000 MPa 

ds= 264 mm EFRP=165000 MPa 

d′s= 33 mm fFRP= 2800 MPa 

AFRP= 96 mm2 to=260 days 

dFRP= 301.6 mm  

γ୪ୟ ൌ 0.65 

γୖୌ  = 0.935   for  RH = 50 % 

γୟ୲  = 1 

γୱ  = 1 

γ஡  = 1 

γ஡  = 1 

γୡ  = ߛ௟௔ ∙ ோுߛ ∙ ௔௧ߛ ∙ ௦ߛ ∙ ఘߛ ∙ ௔ߛ ൌ 0.61 

߮ஶሺݐ௢ሻ ൌ ௖ߛ ∙ ߮ஶ ൌ 1.43    
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6.5.2 CEB-FIP 1990 

The creep strain can be predicted by the following equation: 

,ݐ௖௥ሺߝ  ௢ሻݐ ൌ
௖ߪ
௖ܧ
∙ ߮ሺݐ, ௢ሻ ( 6-7)ݐ

Where;  

εୡ୰ሺt, t୭ሻ : is the creep strain at time t 

σୡ : is the applied stress 

φ(t,t0) : is the creep coefficient 

Eୡ : is the concrete modulus of elasticity at 28 days. 

The creep coefficient, φ(t,t0), is usually used to describe the magnitude of the creep 
deformations. It is defined as the total deformation (including creep) divided by the 
instantaneous deformation 

The creep coefficient of concrete φ(t,t0) can be calculated from the following expression:  

 ߮ሺݐ, ௢ሻݐ ൌ ߮௢ߚ௖ሺݐ, ௢ሻ ( 6-8)ݐ

Where 

߮௢  : is the notional creep coefficient  

,ݐ௖ሺߚ 	.loading	after	time	with	creep	of	progress	the	describes	that	coefficient	a	is	:	௢ሻݐ

The notational creep coefficient can be estimated as follows: 

 ߮௢ ൌ ߮ோு ∙ ሺߚ ௖݂௠ሻ ∙ ௢ሻ ( 6-9)ݐሺߚ

Where 

߮ோு : is a factor that takes the relative humidity into account, 

ሺߚ ௖݂௠ሻ: is a factor for the effect of concrete strength, and 

 .௢ሻ : is a factor for the effect of concrete age at loading, t0ݐሺߚ

The factor ߮ோு  is calculated with the following equation: 

 ߮ோு ൌ 1 ൅
1 െ 100/ܪܴ

0.46ሺ ݄
100ሻ

ଵ/ଷ
 ( 6-10)

where  

RH : is the relative humidity for the surrounding, expressed in percentage and 
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h : is the notional size of the concrete member in mm, calculated as: 

 ݄ ൌ
௖ܣ2
ݑ

 ( 6-11)

Where  

Aୡ: Cross-sectional area (in mm2) 

u : Perimeter of the member in contact with the atmosphere (in mm) 

The factor ߚሺ ௖݂௠ሻ is calculated with the following expression: 

ሺߚ  ௖݂௠ሻ ൌ
5.3

ඥ ௖݂௠/10
 ( 6-12)

Where 

௖݂௠ : is the mean compressive strength of concrete, in MPa at the age of 28 days 

The factor ߚሺݐ௢ሻ is calculated from the following equation: 

௢ሻݐሺߚ  ൌ
1

0.1 ൅ ௢଴.ଶݐ
 ( 6-13)

The coefficient ߚ௖ሺݐ,  :௢ሻ can be calculated using the following expressionݐ

,ݐ௖ሺߚ  ௢ሻݐ ൌ ൤
ሺݐ െ ଵݐ/௢ሻݐ

ுߚ ൅ ሺݐ െ ଵݐ/௢ሻݐ
൨
଴.ଷ

 ( 6-14)

 

ுߚ  ൌ 	150 ቈ1 ൅ ൬1.2
ܪܴ
100

൰
ଵ଼

቉ ∙
݄
100

൅ 250 ൑ 1500 ( 6-15)

Where 

 t:  is the age of concrete in days at the moment considered, 

t0 : is the age of concrete in days when loaded  

t1 = 1 day 

 ு: is a coefficient depending on the relative humidity and the notional size of theߚ
concrete member 

The data used in this study are as following: 

b =120 mm f′c= 44 MPa 
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t=300 mm ft= 2.6 MPa 

L= 2900 Ec=23941 MPa 

As= 402 mm2 fy= 490 MPa 

A′s= 157 mm2 Es=200000 MPa 

ds= 264 mm EFRP=165000 MPa 

d′s= 33 mm fFRP= 2800 MPa 

AFRP= 96 mm2 to=260 days 

dFRP= 301.6 mm  

u ൌ 840 

2Ac = 72000  

h = 85.72 

RH = 50 % 

߮ோு  = 2.14 

 

ሺߚ ௖݂௠ሻ= 2.65 

 ௢ሻ  = 0.318ݐሺߚ

߮௢  = 1.809 

 ு = 378.58ߚ

,ݐ௖ሺߚ  ,௢ሻ  =  0.457, 0.551, 0.61, 0.711, 0.808ݐ

0.848, and 0.945 

߮ሺݐ, ௢ሻݐ ൌ ߮௢ߚ௖ሺݐ,  ௢ሻݐ

The creep deflection = ࣐ሺ࢚,  ሻ x initial deflection࢕࢚

The comparison between results obtained from experimental, FE model, ACI 209-2R, 
ACI 318 and CEB-FIP 1990 are summarized in Figure  6-28 and Table  6-9  

It can be observed that the value of the creep coefficient of concrete which calculated 

using ACI 209 equation when using initial creep coefficient  φஶ = 2.35 is higher than creep  
the creep coefficient of CFRP-strengthened RC beams obtained from both of experimental 
and FE model results. Also the creep coefficient estimated using CEB-FIP 1990  is the highest 
one. Furthermore the concrete creep coefficient of concrete calculated using ACI 209 

equation when using initial creep coefficient  φஶ = 1.60 gives good matching creep 

coefficient results with both experimental and FE modelling for CFRP-strengthened RC 
beams. 

It is recommended to use initial creep coefficient  φஶ = 1.6 when estimating the creep 
coefficient of concrete to predict the creep deflection of CFRP-strengthened RC beams using 
the code equation. 

It can be concluded that the creep coefficient of concrete estimated from code equation 
can be used to predict the creep deflection of both unstrengthened and CFRP-strengthened RC 
beams. 
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Table  6-9 creep coeffecient comparison 

           Time, day 
 

Specimen 
0 30 60 90 180 365 515 

5 
years

Experimental FRP-
strengthened RC beam 

0 0.23 0.29 0.42 0.42 0.51 0.56 -- 

FEM CFRP-
strengthened RC beam 

0 0.32 0.38 0.41 0.48 0.53 0.56 0.77 

ACI 209 Equation for 
concrete; φஶ = 2.35 

0 0.62 0.77 0.855 0.99 1.11 1.15 1.30 

ACI 209 Equation for 
concrete; φஶ = 1.6 

0 0.42 0.52 0.58 0.67 0.75 0.79 0.88 

CEB-FIP 1990 Equation 
concrete; φ୭ = 1.809 

0 0.83 1 1.1 1.29 1.46 1.53 1.76 

 

 

 

Figure  6-28:  creep coefficient for CFRP-strengthened RC beam and concrete comparison 
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6.6 Summary of numerical analysis 

In this chapter, the finite element program (Abaqus) was used to simulate the long-term  
behavior of CFRP-strengthened RC beams, the results obtained from the finite element model 
was compared to the results obtained from the experimental program to validate the ability of 
the model for investigating the long-term behavior of the CFRP-strengthened RC beams. The 
results obtained from the FE model had good agreement with the experimental results and the 
calibrated model was used for parametric study to predict the flexural and long-term behavior 
of the CFRP-strengthened reinforced concrete beams. The results obtained from the finite 
element modeling were plotted and analyzed and the following can be drawn: 

 The FE model can predict the flexural and long-term behavior of the CFRP-
strengthened RC with good agreement with experimental and codes equations.  

 The FE model can predict the slip at the end of CFRP plate and also can be used 
to predict the CFRP/concrete interface stress (strains) at any load step, which is 
very difficult to evaluate it in the experimental test. 

 Using CFRP plate with length near to the span of the beam and with breadth not 
less than the half of the reinforced concrete beam breadth was improving the 
behavior of the strengthening system because the length of CFRP plate should 
be extended with an anchorage length outside the maximum flexural stress to 
obtain the full effect of the CFRP plate on the strengthening system. Also the 
breadth is very important to increase the ability of the strengthened beams to 
resist the debonding effect at the CFRP plate end due to the concentration of 
stresses at the plate end. 

 The properties of the epoxy adhesive had no significant effect in the ultimate 
capacity of the strengthened system because the interface stress depends on the 
concrete tensile strength, beam breadth and CFRP breadth which controls the 
interface failure stresses.  

 The externally bonded CFRP decreased the creep deflection of the CFRP-
strengthened RC beams by varied value which depends on the ratio of the  CFRP 
plate length/breadth to the beams span/breadth. This decreasing of creep 
deflection was due to the effect of the CFRP plate on increasing the stiffness of 
the beam and decreasing the initial deflection of the strengthened beams.  

 The deflection due to creep was increased proportionally to the applied load 
level with nearly the same value of the increasing in the applied load level. It 
should be considered in design that the applied load should be in the limit of the 
service load used by the international codes. 
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 The interface strain was decreased at high temperature level (50 oC) by about 40 
% for the epoxy type with high modulus of elasticity from epoxy type with low 
modulus of elasticity, while the interface strain was increased to 2-3 times due to 
varying in temperature level from 20 oC to 50 oC. Using epoxy with combined 
high glass transition temperature and high modulus of elasticity will improve the 
interface strain (stress) and limit the creep effect on the interface. The modulus 
of elasticity of the epoxy decreases due to increasing of temperature. In this 
case, the interface bond stress will decrease due to the decreasing in the interface 
stiffness at high level of temperature. 

 The creep coefficient of concrete estimated from any code equation can be used 
to evaluate the creep deflection of the strengthening system because of the 
insignificant effect of CFRP and epoxy on the creep deflection of the 
strengthening system and the higher factor of safety used by the code equations 
for estimating the creep coefficient of the concrete.    

 The creep deflection of strengthening system obtained from experimental and 
FEM results in this study had good agreement with the creep deflection 

estimated from ACI code equations when using initial creep coefficient  φஶ = 
1.6 for estimating the creep coefficient of the concrete.  
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Chapter 7      Summary and Conclusions 

7.1 Summary 

Strengthening reinforced concrete beams with externally bonded carbon fiber reinforced 
polymer was widely used as a retrofitting technique for reinforced structures. Engineers have 
to be able to predict the behavior of the strengthening system using a simplified method for 
preliminary design. Evaluation of flexural short- and long-term behavior of the CFRP-
strengthened RC beams, especially the effect of the creep phenomenon on the behavior of the 
strengthening beams during the life time of the structure, was set as the aim of this thesis. To 
achieve this aim, experimental and numerical models were carried out to evaluate the flexural 
short- and long-term behavior of CFRP-strengthened reinforced concrete beams.  

Experimental program consisting of twelve simply supported beams, (six of them were 
strengthened with externally bonded CFRP plates), was carried out and divided into two parts. 
In Part I, three CFRP-strengthened RC beams were tested to evaluate the flexural behavior up 
to failure and the results were compared to the unstrengthening reinforced concrete beams, 
while in Part II, three CFRP-strengthened RC beams were tested to evaluate the long-term 
behavior of the CFRP-strengthened RC beams under constant load in the lab condition and 
the results were compared to the unstrengthening reinforced concrete beams.  

3D numerical model using Abaqus finite element program was developed and validated 
with the experimental results to investigate the flexural and long-term behavior of CFRP-
strengthened RC beams. The material properties for concrete, steel, epoxy interface and CFRP 
were evaluated based on the available data from experimental and literature. The time 
hardening power law creep equation available in Abaqus program was used to evaluate the 
creep behavior of the and the results were compared to the unstrengthening reinforced 
concrete beams.  Furthermore, a parametric study using the calibrated finite element model 
was also carried out. The effect of CFRP, epoxy type, temperature level at interface, and the 
applied load level were the parameters used in evaluating the long-term behavior of the 
CFRP-strengthened RC beams.   

7.2 Conclusions and Recommendation 

In this study, the short and long-term behavior of CFRP-strengthened RC beams were 
investigated. Based on the experimental and finite element modeling results the following 
general conclusions can be drawn: 

1. It is recommended to use externally bonded CFRP with length closed to the span 
of the RC beams, and width equal to the RC beam section width if possible, to 
get the full increasing effect in the flexural behavior of the CFRP-strengthened 
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RC beams. The length of the CFRP plate should be extended with enough length 
to cover the area of the maximum flexural stress to obtain the full effect of the 
CFRP plate on the ultimate behavior of CFRP-strengthened RC beams. Also the 
breadth is very important to increase the ability of the CFRP-strengthened RC 
beams to resist the debonding effect at the CFRP plate end due to the 
concentration of stresses at the plate end. 

2. Most of the creep deformation occurs in the first 90 days and the total deflection 
of the strengthening system after about one and half year was about 1.55 times 
the initial deflection of the strengthening system. This value of total deflection 
increased to about 2.3 times the initial deflection after about 20 years under 
service load level due to creep. The creep deflection must be taken into 
consideration in the design of the CFRP-strengthened RC beams. 

3. The externally bonded CFRP decreases the creep deflection of the CFRP-
strengthened RC beams by decreasing rate depends on the CFRP plate 
length/breadth to beam span/breadth ratio, because the CFRP plate increases the 
stiffness of the beams and decreases the immediate deflection, this will improve 
to the creep deflection which was a function of immediate deflection. 

4. The creep coefficient of concrete estimated from any international code equation 
can be used to evaluate the creep deflection of the CFRP-strengthened RC 
beams because of the higher factor of safety used in the code equations for 
estimating the creep coefficient of the concrete. 

5. Based on long-term results of the CFRP-strengthened RC beams, there is no slip 
observed between CFRP and concrete, also the cracks are limited in the tension 
side of the RC beam due to the effect of the strengthening with CFRP in 
increasing the stiffness of the beams and the limitation of the applied service 
load level. 

6. The deflection due to creep was increased proportionally to the applied load 
level for both strengthened and unstrengthened systems. It should be considered 
the service load of the strengthening system to be limited with the code value. 

7. Based on the FE model for creep of the CFRP-strengthened RC beams at 
different temperature levels for different epoxy types it can be concluded that the 
epoxy adhesive is very sensitive to the change of the temperature and the 
interface strain due to creep was increased with about 2 to 3 times its initial 
strain due to increasing the temperature level from 20 oC to 50 oC; although 
there is no failure occurs in the interface due to creep. It is suggested to use 
epoxy adhesive with high modulus of elasticity and it is recommended to be 
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with high glass transition temperature more than 55 oC to resist the change in the 
interface behavior due to the creep of the strengthened system at high 
temperature level. The modulus of elasticity of the epoxy decreases due to 
increasing of temperature level. In this case, the interface bond strength will 
decrease due to the decreasing in the interface stiffness at high level of 
temperature. Using epoxy with combined high glass temperature and high 
modulus of elasticity will improve the interface strain (stress) and limit the creep 
effect on the interface at high temperature levels. 

8. Based on the results obtained for 5 years creep deflection of the CFRP-
strengthened RC beams from the FE model; it is suggested to use an initial creep 
factor of 1.6 to estimate the creep coefficient of the concrete using ACI 209 
equation to evaluate the creep deflection of the CFRP-strengthened RC beams 
for the designer because the initial creep factor of 2.35 is a little high.  

7.3 Future study 

 Effect of fire in the behavior of FRP-strengthened RC structures. 

 Experimental effect of high temperature on the creep behavior of FRP-
strengthened RC structures for different types of FRP, epoxy and concrete 
compressive strength. 

 Extracting design charts to evaluate the ultimate capacity of FRP-strengthened 
RC beams for different concrete section dimensions, steel reinforcement ratio, 
FRP types/area ratio, epoxy type, and concrete compressive strength. 
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