
University of the Pacific
Scholarly Commons

University of the Pacific Theses and Dissertations Graduate School

2017

Autonomous Driving with a Simulation Trained
Convolutional Neural Network
Cameron Franke
University of the Pacific, camfranke@gmail.com

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds

Part of the Computer Sciences Commons, and the Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of
the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact
mgibney@pacific.edu.

Recommended Citation
Franke, Cameron. (2017). Autonomous Driving with a Simulation Trained Convolutional Neural Network. University of the Pacific,
Thesis. https://scholarlycommons.pacific.edu/uop_etds/2971

https://scholarlycommons.pacific.edu?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/graduate-school?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds/2971?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F2971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mgibney@pacific.edu

1

AUTONOMOUS DRIVING WITH A SIMULATION TRAINED
CONVOLUTIONAL NEURAL NETWORK

by

Cameron Franke

A Thesis Submitted to the

Graduate School

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

School of Engineering and Computer Science
Engineering Science

University of the Pacific
Stockton, California

2018

2

AUTONOMOUS DRIVING WITH A SIMULATION TRAINED
CONVOLUTIONAL NEURAL NETWORK

by

Cameron Franke

APPROVED BY:

Thesis Advisor: Elizabeth Basha, Ph.D.

Committee Member: Michael Doherty, Ph.D.

Committee Member: Chadi El Kari, Ph.D.

Department Chairperson: Michael Doherty, Ph.D.

Dean of Graduate School: Thomas H. Naehr, Ph.D.

3

ACKNOWLEDGMENTS

I would like to thank Dr. Elizabeth Basha for her support and encouragement without

which this research would not have been possible.

4

Autonomous Driving with a Simulation Trained Convolutional Neural Network

Abstract

by Cameron Franke

University of the Pacific
2018

Autonomous vehicles will help society if they can easily support a broad range of

driving environments, conditions, and vehicles. Achieving this requires reducing the

complexity of the algorithmic system, easing the collection of training data, and

verifying operation using real world experiments. Our work addresses these issues by

utilizing a reflexive neural network that translates images into steering and throttle

commands. This network is trained using simulation data from Grand Theft Auto

V [1], which we augment to reduce the number of simulation hours driven. We

then validate our work using a RC car system through numerous tests. Our system

successfully drive 98 of 100 laps of a track with multiple road types and difficult turns;

it also successfully avoids collisions with another vehicle in 90% of the trials.

5

TABLE OF CONTENTS

Chapter

1. Introduction . 7

1.1 Challenges . 7

1.2 Solution Overview . 8

1.3 Data Collection and Training . 9

1.4 Results . 10

1.5 Contributions . 11

1.6 Organization . 11

2. Background and Literature Review . 12

2.1 Neural Network Overview . 12

2.2 Related Works . 16

3. Neural Network . 22

3.1 Architecture . 22

3.2 Data Collection Process . 28

3.3 Training . 36

3.4 Architectural Development . 37

3.5 Validation . 41

4. Testing and Evaluation . 47

4.1 Remote Control Car . 47

4.2 Track Tests . 51

4.3 Results . 53

4.4 Turn Bias Analysis . 58

4.5 Discussion . 61

5. Conclusions . 64

6

5.1 Conclusion . 64

5.2 Future Research . 65

REFERENCES . 67

7

Chapter 1: Introduction

Self-diving vehicles will provide more than a simple luxury, they will eliminate

accidents caused by tired, intoxicated or distracted drivers. By freeing travelers of

the need to also be drivers, autonomous vehicles will bolster the productivity of

commuters by allowing passengers to work while they travel. As autonomous vehicles

become ubiquitous they will also reduce travel times by improving the flow of traffic.

Traffic jams caused by accidents, ‘rubber-necking’ and congestion will be eliminated

by the ability of autonomous vehicles to relay information about road conditions and

traffic patterns to each other. By giving us back the time we currently spend driving

and ensuring our safety, self-driving cars will offer significant value to humanity.

However, before trusting our lives to self-driving cars, we must ensure that they are

able to stand up to the complex challenges of real-world driving.

1.1 Challenges

Humans are effective at driving because of our powerful intuition. The human

brain is able to absorb large amounts of data, filter out what is important and use that

information to make decisions. Driving has traditionally been a very challenging task

for computers because of the wide variety of possible scenarios and lack of intuition.

Humans are easily able to identify obstacles, lane marking and other vehicles however,

this is a very challenging task for computers. The challenge of mimicking human

perception can be solved by machine learning algorithms. Although machine learning

algorithms represent a promising approach to autonomous driving, they come with

their own set of challenges. One such challenge is the amount of data that is required

to train them.

The sheer volume of data needed to create an effective vehicle controller presents

8

a sizable engineering challenge. In order to drive in a particular scenario an au-

tonomous vehicle controller must have human-collected data demonstrating the be-

havior necessitated by that scenario. For this reason driving has always been a human

dominated task. Humans are able to adapt to varying lighting, weather and traffic

conditions exceptionally well. Adapting to the wide variety of conditions that can

be observed on the road is a challenging task for computers and is one that is best

addressed by an algorithm that can learn and generalize in the same way that humans

do.

Autonomous vehicles are enabled by a collection of machine learning and other

algorithms. These algorithms rely heavily on data collected by human drivers and

require a layered approach to transform data into vehicle controls. This data often

consists of video streams from multiple on board sensors including cameras, lidar,

radar and infrared. This information can be used to tune or train algorithms, es-

sentially acting as experience to be learned from. Environmental changes such as

new road types or weather conditions require collection of hundreds of hours of data,

processing and labeling this data to train the algorithms, and re-training the sys-

tem. System changes such as new sensors require modifications to the algorithms

and intermediate layers that translate high-level algorithmic outputs into low-level

controls.

1.2 Solution Overview

Our work addresses the challenges of autonomous driving through training based

on realistic simulation data and providing an end-to-end learning approach. The

neural network that we present is reflexive, which means that it accepts raw sensor

data as input and directly produces vehicle controls as output. Neural networks

are computational representations of brains and are capable of learning in a similar

fashion. We used our realistic simulation data to train our neural network to operate

a car. We ensure the functionality of our approach through real world experiments

9

on a RC car test system. To the best of our knowledge, this combination of simulated

training, a reflexive neural network, and real world verification has not been previously

attempted and provides a novel approach to improving autonomous vehicles.

The neural network that we implemented is called a convolutional neural network

or ‘CNN’. The CNN is a modular architecture consisting of small networks tailored for

particular tasks. A smaller CNN is used for image processing as that network style

best suits that input, a more traditional multi-layer perceptron network processes

the steering data, and a deep multi-layer perceptron network merges the results to

provide a steering angle for the vehicle. Parallel to this network is an additional

multi-layer perceptron network focused solely on throttle and braking. By breaking

up the neural network in this manner we are able to achieve a high level of modularity.

Adding additional inputs to accommodate additional sensor readings would be trivial

due to this design. Beyond that, separating the steering control and throttle control

networks reduces training time and network complexity.

Neural networks perform what is called ‘imitation learning’ which means that

they learn to replicate behavior that they observe. To train the CNN that we de-

signed we needed a large amount of data. Because of the prohibitive cost and potential

danger of collecting data in a real-world car we decided to use a simulation environ-

ment to gather training data. The simulation that we chose to use is a video game

called Grand Theft Auto V [1]. We chose this game as our simulation because of it’s

realistic environment and the ease with which the game can be modified. We opted

to used examples of ourselves driving in Grand Theft Auto V as our training data.

1.3 Data Collection and Training

Before the neural network training process could begin we needed to collect the

data with which to train the neural network.

We begin the data collection process by modifying the game environment to our

liking and repositioning the in-game camera so that it is fixed to the hood of the

10

in-game test car. The simulated camera provides images in front of the vehicle as

it drives on a variety of road types and traffic conditions. A data collection script

running in the background collects information about the driver’s steering wheel angle

and throttle value. Each image from the simulation is labeled with the corresponding

steering and throttle values.

After the data has been recorded it is used as an example to train the neural

network. The image captured from the in-game camera is used as input to the neural

network which is then asked to produce the corresponding steering and throttle values.

By identifying the conditions present in each image the network is able to learn to

adapt to a variety of driving conditions and make generalizations about the task of

driving. To expand the set of data further, we augment the data through cropping

selected regions of each image, which provides examples of poor driving and the

correction needed in those scenarios. Not only does this increase the volume of data

that we have but it imbues the neural network with the ability to correct its mistakes.

1.4 Results

After collecting data and training our neural network, we verified the function-

ality on a verification data set, which resulted in an average error rate of 1.9%. We

then connect this network to a RC car system, which was chosen for safety during the

development process. The RC car provides a camera input and receives a steering

angle and throttle value. We test the steering sensitivity, reliability, performance,

and obstacle avoidance. The car successfully navigates 98 out of 100 laps of a track

specifically designed to challenge it with different road types and tight turns. It also

successfully avoids another car with a 90% success rate.

These performance results could certainly be improved by adding additional sen-

sors to our system. Another front-facing camera to enable stereoscopic 3D would

improve obstacle avoidance. Additional side and rear facing cameras could enable

behavior such as backing up, 3-point turns and safe lane changes. Although we

11

lacked these inputs we were still able to demonstrate the potential of end-to-end neu-

ral networks as vehicle controllers and the potential for simulations to be used as data

sources.

1.5 Contributions

Our contributions to this field of study can be summarized by the following:

• Training of an end-to-end convolutional neural network

• Training of a neural network with data taken from the video game Grand Theft

Auto V

• Testing of a neural network trained exclusively with simulation data in the real

world

• Instrumentation of a small scale vehicle controlled remotely by a neural network

• Support of the notion that simulations are a viable training ground for au-

tonomous vehicles

1.6 Organization

This paper first describes related work in Chapter 2 followed by a description of

our neural network’s architecture in Chapter 3. Chapter 4 discusses our experiments

with the RC car. Chapter 5 summarizes the results of our experimentation and

potential future work.

12

Chapter 2: Background and Literature Review

In this chapter we will present an overview of neural network concepts to provide

context to the forthcoming discussions. Section 2.1 includes the overview of neural

networks guided by a walk-though of a theoretical neural network. In Section 2.2, we

will discuss existing research that is relevant to our implementation of autonomous

vehicles.

2.1 Neural Network Overview

Figure 1: Single Layer Perceptron

Although the computational model for neural networks was first introduced in

1943 [2], it has only been the past twenty years that they have begun to come into their

own as a component of Artificial Intelligence. The exact structural implementation of

13

neural networks varies widely from simple, single layer perceptrons to convolutional

deep neural networks. Neural networks can be easily represented with graphs. A

neuron is simply a node on the graph that accepts one or more pieces of numeric

input data, applies some arithmetic function, and produces an output value. The

arithmetic function applied by a neuron to its input is called the ‘activation function’.

The function is named this way because it controls the degree to which the neuron

activates. The single layer perceptron featured in Figure 1 is the simplest form of

an artificial neural network, or ‘ANN’, as it features only one neuron. Each of the

blue circles represents a feature of the input data point, denoted X. To determine the

neuron’s output the numeric values for each of those features is multiplied by a weight

value, W . The resulting values are then passed to the neuron, which is represented

as the orange circle. The neuron will perform a summation of the weighted inputs

that it receives. The resulting value will then be passed to the neuron’s activation

function. Two of the most basic implementations of the activation function are the

step function and the sigmoid function. The step function relies on a threshold value

and returns 0 if the weighted sum is less than that threshold, and it returns 1 if

the weighted sum is greater than the threshold. The output of the sigmoid function,

S(t) = 1/(1 + e−t), approaches 1 as t goes to infinity and approaches -1 as t goes to

negative infinity.

One method of handling neural network output is to have the number of neurons

in the final layer be equal to the number of categories that the network is able to

identify. In this situation, a given neuron would correspond to one class of output

and would fire if the network thinks that the input data is a member or that class.

Under this paradigm, the single neuron network in Figure 1 would only be able to

determine if its input is a member of one single category or not.

If more neurons are added to this network, more objects can be identified. For

example, suppose there exists a data set {x, y, z} such that x is the number of legs an

animal has, y is the animal’s height in inches and z has the value 1 or 0 representing

14

Figure 2: Animal Classifying Neural Network

whether the animal has hair or feathers. If this data set was fed to a single neuron

network, like the one in Figure 1, it would only be able to learn to classify whether or

not the input data belonged to one specific animal. For example, the neuron would

output 1 if it thought that the sample was a cow and 0 if it did not. However, if this

same data set were to be provided to a network of five neurons, we may be able to

classify a sample as being a cow, chicken, horse, ostrich, or dog. In this situation,

each of the neurons would correspond to an animal, as seen in Figure 2. If a given

data point representing the features of a cow was supplied to the network, one would

expect the chicken, horse, ostrich and dog neurons to all output 0 while the cow

neuron, and only the cow neuron, would output 1. This output scheme is sometimes

referred to as ‘one-hot’ since only one of the neurons should be ‘hot’ and output a 1.

15

While this example illuminates some of the potential of ANNs, it still only deals with

single layered networks.

Figure 3: Animal Classifying Deep Neural Network

To expand on the ‘animal classifier’ outlined above, consider a few modifications.

First, replace the step function in each of the neurons with the sigmoid function

S(t) = 1/(1 + e−t). This way, instead of a 1 or 0 each neuron will output a floating

point value between −1 and 1. Second, add a row of five more neurons so that

the outputs of the first five neurons are the inputs to all of the new neurons. This

new layer of neurons will serve as the output layer and will use the step function.

Notice that each neuron in the first layer, or the input layer, receives three pieces of

information and the neurons in the second layer, or the output layer, receive five pieces

of information, one from each of the neurons in the input layer. This new network

is called a multilayer perceptron or a Deep Neural Network (DNN) because there is

now depth to the network. Because there are more connections in this new DNN

16

‘animal classifier’, it is capable of learning more complex patterns and has increased

its maximum potential accuracy. Following this strategy, one could continue to add

layers to the network indefinitely. Although in this example, increasing the network

depth would result in improved performance, that is not always the case. Depending

on the complexity of a task the ideal dimensions of a network vary significantly.

Another way to structure neural network output is to use a single output neuron

with a sigmoid activation function in the last layer. In the above examples, the output

neurons all use a step function. We can see this because they only output a 1 or 0.

However, if we change to a single output neuron with sigmoid activation, or another

activation function that produces a floating point value, we can produce a wider range

of outputs. Producing a floating point value allows us to estimate the certainty of

our classifications or classify things that fall on a sliding scale, such as the angle to

turn a steering wheel.

2.2 Related Works

Autonomous vehicle research has focused on a wide range of approaches. Our

focus is on those using neural networks; in this section we provide an overview of the

related research using that approach with a specific focus on those using simulations,

end-to-end networks, or real world verification.

2.2.1 Neural networks and non-driving tasks. Although there are a

large number of works that fall into this category, we have chosen to include the

papers in this section because they express the capability of machine learning algo-

rithms to solve computer vision tasks.

In this section we will review research focused on the use of neural networks to

solve image processing problems unrelated to autonomous driving. Although these

task are unrelated to autonomous driving itself, the problems are framed in a very

similar way. Autonomous driving systems that employ neural networks must per-

form classifications on images from a video stream. These works describe the same

17

methodology that we use to achieve autonomous driving, but applied to different

tasks.

In their research paper published in 2012 Ciresan et. al. presented a neural

network capable of correctly classifying street signs 99.4% of the time [3]. While the

proposed system was trained on images pertaining to driving, the classifier itself could

be trained to classify any type of image. In fact, Ciresan et. al. published another

paper in 2012 using a similar neural network that was trained to classify human

handwriting [4]. That network scored a 0.23% error rate on the MNIST handwriting

data set. The work of Ciresan et. al. goes to show that neural networks are highly

capable image classifiers. The authors claim that their classifier is insensitive to

contrast and illumination. Dealing with varying lighting conditions is a considerable

challenge in image processing problems.

In the paper published by researchers at University of Toronto in 2012, authors

Krizhevsky et. al. outline a neural network used to classify images from the ImageNet

image database [5]. The ImageNet data set contains images from 1000 different

classes. Krizhevsky et. al. were able to achieve a record breaking error rate of 15.3%

in the 2012 ImageNet Large Scale Visual Recognition Challenge.

Convolutional neural networks have become well known for their effectiveness in

solving computer vision problems. Karpathy et. al. created a neural network trained

to determine the sport being played in a video clip [6]. Video classification can be

challenging due to the additional dimension in the data space. By looking at multiple

frames across a period of time, networks can learn to identify spaciotemporal features.

Karpathy et. al. presents a variety of methodologies for feeding the information from

multiple video frames into a neural network. Although the classifications are different

in autonomous driving tasks, the ability to perform classifications on a stream of

images is highly relevant.

18

2.2.2 Autonomous driving without machine learning. In this section

we will review significant attempts to create autonomous vehicles that do not incor-

porate machine learning methodologies.

The most commonly known facet of autonomous driving research is the DARPA

Grand Challenge [7]. The first DARPA Grand Challenge took place in 2004 and

required competitors to instrument vehicles to drive a long distance course in the

Mojave Desert. In the first race, none of the competitors successfully completed the

course. In 2005 DARPA held a second grand challenge which was not only completed

but won by Stanford Racing Team’s Stanley vehicle [8].

To the best of our knowledge, none of the cars used machine learning approaches

instead opting to perform vehicle control with more conventional algorithms depen-

dent on input from a variety of sensors such as cameras, GPS, and lidar [8, 9]. Machine

learning algorithms are generally applied to images when used for autonomous driving

tasks. In the DARPA Grand Challenge camera input was less useful than it normally

would be due to the terrain. In the first DARPA Grand Challenge the track was

entirely off-road and much of it covered uneven terrain. Because much of the road

and surrounding terrain was brown, color had no easily discernible meaning. Thus

camera input could not be relied upon as much as radar and lidar.

In 2007 DARPA hosted a second grand challenge, the DARPA Urban Grand

Challenge. The Urban Grand Challenge took place at George Air Force Base in Vic-

torville, California and covered 60 miles of urban road. Urban grand challenge teams

were provided with aerial imagery of the region of the challenge. Team Tartan from

Carnegie Mellon University entered the competition with a robot built on a Chevro-

let Tahoe chassis [10]. Team Tartan’s robot used camera imagery, lidar and radar as

input to it’s control algorithms. Like past grand challenges, lidar and radar played

a large role in navigational decision making processes. In this case however, camera

imagery was used for basic line following functionality. Team Tartan did in fact use

machine learning for the challenge but only in off-line preprocessing. Tartan used

19

a convolutional neural network to aid in the process of extracting road information

from the provided aerial imagery which was later used for high-level path planning.

Since the neural network was not used at drive-time, this paper is not included in

Section 2.2.3.

2.2.3 Machine learning and autonomous driving. In this section we

will review research pertaining to machine learning and autonomous driving.

To the best of our knowledge the first use of a neural network for driving was

Carnegie Mellon University’s ALVINN [11]. ALVINN used a reflexive neural network

to control its steering output. Reflexive neural networks map input information di-

rectly to a control output. In this case, the input is imagery from ALVINN’s camera

and the output is a steering angle [12, 13, 14]. The network used to control was

trained with real world data as well as tested on a real world vehicle. Due to the lim-

ited computational power of the time, ALVINN’s neural network needed to operate

on very small inputs; the images provided to the network were only 30x32 pixels.

The mediated perception approach to autonomous driving with neural networks

involves classifying objects such as lane markings and other cars in an image; ad-

ditional algorithms then utilize the classified objects to determine the driving ap-

proach [15, 16, 17]. Johnson et. al. and Filipowicz present two separate methodolo-

gies for modifying GTA V specifically for the purpose of supporting the training of

mediated perception systems [18, 19].

Filipowics used his system to train a network to classify the distance to stop

signs [17, 18]. This network was trained on simulated data and tested within the same

simulation environment but, not verified on a real world system. Like the work of

Johnson et. al., Filipowicz’s paper is predicated on the idea that the graphical quality

of GTA is high enough to be passable for reality. The performance on Filipowicz’s

classifier supports the notion that GTA V is a viable training ground for autonomous

vehicle control systems.

20

Johnson et. al. also created a system for annotating images from GTA V [17].

Instead of classifying distance to stop lights Johnson chose to detect vehicles in images.

To test his vehicle classification system Johnson used 7481 images from the KITTI

dataset. Johnson was able to show that neural networks trained with annotated

data generated from simulations were as effective at identifying vehicles in the KITTI

dataset as networks trained with real-world data.

Although it does not deal with directly with steering control, Vallon et. al.

present an approach to controlling lane changes autonomously [15]. Vallon et. al. use

support vector machines, or SVMs, to learn the optimal lane change timing based

on the distance to other cars that may be present on the road. This paper addresses

one of the many challenges involved in achieving an autonomous vehicle with a high

degree of autonomy.

Huvel created another neural network powered autonomous driving system that

would fall under the mediated perception category [16]. The system proposed by

the Stanford research team is capable of classifying other vehicles on the road and

lane markings. Vehicles are classified by sub sampling small context windows and

determining if a vehicle is present in that window. Many sub samples are taken

and the results are aggregated and used to place a bounding box over the vehicle or

vehicles in the original image. The results of this process are paired with the return

from a radar sensor and used to determine the distance to each vehicle.

Chen et. al. designed a “direct perception” approach. As described by the

authors “direct perception” is the mid-way point between reflexive neural networks

and mediated perception systems. Rather than classifying objects and then using

the object’s location in the image to determine it’s distance, the “direct perception”

system classifies distances to objects such as cars or lane markings directly. This

saves the programmer from having to perform one step of the processing pipeline

needed for autonomous vehicle control [20]. The paper utilized real world data for

training and then tested the system in the ‘Torcs’ simulation environment. This is an

21

interesting contrast to our own neural network which was trained in a virtual world

and tested in reality.

In 2016, NVIDIA researchers Marius Bojarski et. al. trained a reflexive network

to drive a Lincoln MKZ [12]. NVIDIA’s system was trained with real world-data,

verified in a simulation with real world data and tested in the real world. To collect

the large volume of training data needed to perform their research, Bojarski et. al.

drove in a car for approximately 70 hours while recording video of the road and

the actions of the driver. NVIDIA’s work demonstrated the potential of end-to-end

systems given modern processing technology.

Muller et. al. developed an off road car capable of obstacle avoidance using an

end-to-end network and two input cameras to produce what is essentially stereoscopic

3D [13]. The system was trained on real world data and tested in real world experi-

ments. Muller’s work shows that neural networks are capable of learning to perceive

depth from a two camera system but, the car had no path to follow and would wander

aimlessly.

Our approach combines aspects of these works to extend existing knowledge.

To the best of our knowledge, no prior work combines the use of a reflexive neural

network trained using simulation data and tested in real world experiments.

22

Chapter 3: Neural Network

In this chapter we will define the architecture of the neural network that we

designed. Discussion of the architecture will begin in Section 3.1. In Section 3.2 we

will cover the data collection process and in Section 3.3, we will discuss the neural

network training process. Section 3.4 will cover the neural network revision process

and Section 3.5 will cover the validation process.

3.1 Architecture

Our overall neural network is a convolutional network, consisting of a convolu-

tional network for image processing, a multi-layer perceptron network for past steer-

ing, a deep multi-layer perceptron network for merging image and steering, and a

second, independent, convolutional network for braking. Modularizing the architec-

ture to combine different networks allows tailoring of the network type for the different

input data and needs. Additionally, the architecture enables easy additions for differ-

ent driving tasks, such as a future expansion to support traffic lights and input from

additional sensors. We used the Python and the Keras API to implement our neural

networks [21]. Keras is a wrapper around Google’s ‘Tensorflow’ neural network back

end API.

Figure 4 outlines the overall hierarchy and the details of the smaller networks.

Within each network box, the colored lines represent its layers with the line width

representing the number of neurons and the color representing the type of network

layer.

The system accepts camera images and the current steering angle as input and

produces a steering angle as well as throttle. This structure of minimally processed

sensor input data and control outputs is characteristic of an end-to-end network ar-

23

Figure 4: Overall Network Architecture

chitecture or a reflexive system. The alternative to reflexive systems is mediated

perception in which case a neural network is used to classify objects in an image such

as lane markings, vehicles and pedestrians for later use by another control algorithm.

Reflexive systems require less human time to implement and maintain and less com-

puting power to operate. These benefits are at the expense of operational clarity; the

neural network is a black box that provides limited insight into how it will operate.

We have four network modules within the network: (1) steering image processing,

(2) short term memory processing, (3) merging, and (4) anti-collision. The next

sections describe each network in detail. We will begin Section 3.1.1 with a discussion

of our first attempt to create a neural network driver. In Sections 3.1.2 through 3.1.5

24

we will discuss the finalized neural network architecture.

3.1.1 Initial architecture. Our first attempt to create a neural network fea-

tured a significantly different architecture from our final implementation. Following

in the footsteps of Karpathy et. al. we initially implemented a neural network that

leveraged the early fusion video processing methodology [6]. Early fusion is char-

acterized by feeding multiple adjacent frames from a video stream into one branch

of a neural network at the same time. Our intuition in this case was that by pro-

viding the neural network with multiple frames it would learn to infer the way that

the car was moving. Figure 5 illustrates various methods of aggregating time series

information in a neural network. The gray rectangles at the bottom of the figure

represent frames from a video stream and the colored rectangles above represent the

architecture needed to support the given fusion methodology.

Figure 5: Temporal Fusion Methods [6]

Validation results on this neural network were not as good as we would have

liked. The validation error rate at this stage was 2.5%. In order to improve the

system, we considered what additional information humans use to drive that we could

provide to the network. What we realized is that the neural network had no means of

determining the current position of the steering wheel. The position of the steering

25

wheel is critical to the task of driving but is a piece of information that human drivers

do not consciously consider. We added recursiveness to our neural network by feeding

the most recent steering classification back into the neural network. This approach is

valid because the steering action at any given instant is closely related to the steering

action at the preceding instant.

We performed a variety of tests on the initial version of our architecture which

will be covered in detail in Section 3.4. The results of those tests lead us to implement

the modular architecture described in Sections 3.1.2 through 3.1.5.

3.1.2 Steering processing network. We first need to learn from the cam-

era images for which we use a convolutional neural network (CNN). CNNs are an

effective method for image classification and are often used to identify objects in an

image. However, in our implementation, the CNN identifies the steering angle ne-

cessitated by a given input. The neural networks that we implemented are primarily

composed of three layer types: convolutional layers, max pooling layers and densely

connected neuron layers. Convolutional layers are composed of a series of convolu-

tional kernels that aid in pattern detection. Max pooling layers serve to reduce the

size of the throughput data by simplifying a ‘pool’ of data points to a single value.

This value is selected by taking the maximum value from the pool. Densely connected

neuron layers are standard perceptron-style neuron layers in which each neuron in a

given layer has a connection to every neuron in the subsequent layer.

The image processing network features several layers of convolution and pooling

followed by several layers of densely connected neurons; the selection of the layers

was optimized during development to provide the best results [22]. The input layer

is a convolutional layer followed by a max pooling layer. After that, there are two

more convolutional layers followed by a max pooling layer. Then there is one final

convolutional layer before five layers of densely connected neurons. The layers contain

1500, 1000, 1000, 256 and 128 neurons.

26

By including a large number of initial neurons as well as large internal layers,

the network has more connections, allowing it store and learn more information. The

depth of this network allows it to learn more complex behaviors and the narrowing

of the network towards the end allows for the consolidation of information as it flows

through the network.

In addition to the number of layers and neurons, the network requires an activa-

tion function for each layer’s neurons; this activation function determines the degree

to which a neuron fires, or activates. For the steering network, the neurons in each

of these layers use a ‘relu’ activation function. The term ‘relu’ is an abbreviation for

rectified linear unit and it is an effective activation function for convolutional neural

networks. Neural networking defines ‘relu’ functions as f(x) = max(0, x) [23].

3.1.3 Short term memory steering network. An image classifier on its

own could make an effective driver; however, knowledge of the current and past

positions of the steering wheel provide valuable information to leverage while driving.

To leverage this information, we create a multi-layer perceptron network dedicated

to processing an array of previous classifications made by the network.

The steering short term memory (STM) branch is a smaller network than the

image processing branch, requiring only a small amount of processing power. The

image classification branch must handle the large, multidimensional arrays that rep-

resent images. The steering branch, however, is only responsible for handling a single

array of at most 12 of the previous steering angles. The network starts with two

layers of 12 densely connected neuron layers followed by a single layer of 128 neurons.

This final layer is bigger than needed due to the requirements of the implementa-

tion environment. In order to merge the STM network with the image processing

sub-network, all networks being merged must have the same number of neurons in

the bottom layer [21]. Therefore, to match the image processing network, we expand

the steering STM network to contain a 128 neuron layer. Finally, like the steering

27

processing network, every neuron in each layer of this network uses ‘relu’ activation.

3.1.4 Merging network. Merging the two neural networks allows the re-

sulting compound network to decide on its steering based on the greatest amount

of useful data. The merged network serves to process the output of each of the two

previously described networks. To achieve this, we use a deep multi-layer perceptron

network consisting of six layers. After both of the previous networks have produced

their output, the results are concatenated together and fed to the merging network

as if it were simply input from a previous layer. In a sense, the three networks form

a tree shape and act as if they are one network.

The bottommost layers of the image processing branch and the steering short-

term memory branch both contain 128 neurons. Thus, the merged network starts

with the outputs from the combined 256 neurons. The merged network then feeds

through several layers of densely connected neurons. The first layer of the merged

network contains 768 neurons followed by layers containing 1000, 512, 256 and 16

neurons. The final layer of the neural network contains a single neuron that outputs

the final steering angle. Finally, all of these layers employ ‘relu’ activation except

for the last layer of 16 neurons which uses linear activation. We change to linear

activation for the final layer because ‘relu’ activation only allows for positive outputs

and our network needs to produce values between -100 and 100 to cover left and right

turns.

3.1.5 Anti-collision network. The braking network runs independently from

the other three networks. This reduces the computational complexity, allowing it to

respond promptly. It receives exactly the same input as the steering processing net-

work. The braking network is a simpler network than the steering processing network

as its sole job is to ensure the safety of the vehicle by applying the brakes when an

object gets too close.

The braking network starts with a convolutional layer followed by a max pooling

28

layer and a Gaussian noise layer to reduce overfitting while training. There are then

two convolutional layers before a final max pooling layer. Next are five layers of

densely connected neurons with 384, 256, 128, 16 and 1 neuron respectively. Just like

the previously described merging network, the braking network uses ‘relu’ activation

at all layers except for the second to last layer which uses linear activation. The

benefit to the separation of this network is that it not only provides modularity but

simplifies and accelerates the training process.

3.1.6 CNN implementation. We implement the neural network using a

Python API called Keras [21]. Keras is a neural network API that is capable of

running on top of Tensorflow [24], CNTK [25], or Theano [26]. We chose to implement

the neural network in Keras because of its usability and high-performance capability.

We could have built our network using only Tensorflow or Theano, but Keras provides

all of the same functionality with a much easier to use interface. Additionally, the

Keras API provides a variety of popular activation functions including ‘relu’ and

linear as mentioned previously as well as sigmoid, ‘tanh’, ‘softmax’, and others.

In this case, the Tensorflow back-end is used with the GPU acceleration feature

enabled. GPU acceleration enables the very high throughput needed to support the

task of autonomous driving. The laptop used in the real-world RC car test contains a

Nvidia GTX970m, which allows us to utilize the GPU acceleration offered by Keras.

Without GPU acceleration, we would not have been able to perform our real world

tests because the neural network would take more than a second to process each frame

on the CPU.

With our neural network implemented we were then able to collect a large train-

ing data set.

3.2 Data Collection Process

Although GTA V is well suited to our data collection needs, the default con-

figurations unusable for our purposes. After modifying the camera controller and

29

environment in GTA V we were able to implement a script to collect raw data.

3.2.1 Simulation justification In Section 3.2.1 we will discuss the aspects

of simulation environments that make them good candidates for training data collec-

tion.

When addressing a task with a neural network, there are two criteria that must

be met. First, the task must be transformed into a classification problem. Second, a

source of training data must be acquired. For autonomous driving this can be a very

expensive task. In order to get training data for a car, actual driving data must be

taken so that the neural network can train and gain ‘experience’ by example. Many

companies and research institutions with large budgets often opt to rig a car up with

all of the required sensors, have a human driver operate the car and record all of the

sensor data to use as their training set [12]. The first problem with this approach

is financial. In order to speed up the task of data collection companies or research

teams might opt to instrument multiple vehicles to collect data simultaneously. These

vehicles are expensive to purchase and time consuming to build. Using a simulation

can reduce or eliminate this cost. Second, collecting data on the open road deprives

developers of the ability to control their environment. Using a simulation could allow

for control of factors like weather, traffic conditions, time of day, road type and more.

One approach to finding a usable simulator for autonomous vehicle training is

to build it yourself. This, however, can be even more time consuming and expen-

sive than instrumenting vehicles for real world driving. A custom built simulator

does have its advantages but for many developers finding a preexisting simulation is

a better choice. To support our research, we began looking for simulators built for

autonomous vehicle training. We quickly found that there are only small number

realistic driving simulators built specifically for autonomous driving training. Unfor-

tunately, those simulators are all proprietary. Even if they were open to public use,

most simulators are build with mediated perception approaches in mind. What we

30

turned to instead was video games. Open world driving games have become popular

in recent years and have become highly realistic to improve the impressiveness of the

gameplay experience.

One of our primary research questions is to determine the viability of using a

simulation as a training environment for autonomous vehicles. What this question

comes down to is how accurately a simulation is able to match reality. Driving is

currently a human dominated task and humans are considered to be very good at it.

If a simulator were to be so accurate that it could fool a human into thinking it is

reality then that simulation would certainly be good enough to use as an autonomous

vehicle training platform. Unfortunately, no such simulation exists. Since, no perfect

simulation of reality is likely to ever exist the question becomes ‘can an imperfect

simulation be effectively used to train a self driving vehicle?’. One reasonable place

to start exploring this question is with virtual worlds that humans use for entertain-

ment. Video games provide immersive and interactive environments which players

can explore. One such video game is Grand Theft Auto Five.

Grand Theft Auto Five (‘GTA’) is an open world action action game published

by Rockstar Games [1]. GTA V takes place in the fictional city of Los Santos which

closely imitates the real-world city of Los Angeles, California. The game was released

on the PC in April of 2015 and was commended for its rich environment and detailed

graphics. GTA V also received several “Game of the Year” awards. GTA V is an

‘open-world’ game which means players can complete missions in whatever order they

chose. It also means that players are allowed to freely explore the game world. As

many open-world games do, GTA developed an online community of modders. ‘Mod-

ders’ are people who modify games in order in order to create a different gameplay

experience. Common game modifications include adding missions, vehicles, weapons,

new locations and graphical alterations. The existence of this community means that

there are readily available tools to assist with the game modification process. These

tools allowed us to create a controllable, consistent environment in which we can

31

collect training data for our neural network [1, 18].

Using GTA V as a platform for data collection has a variety of benefits. First

and foremost GTA V is cheap; a $30.00 investment is all it takes to secure a license

of the game. This is an insignificant amount of money compared to the cost of a

car and necessary sensors. Second, GTA is a highly realistic game. This game was

designed to appease a community of online gamers with a keen eye for details and

as a result the game is visually impressive. Although impressive, even at extremely

high resolutions such as 4K (3840 x 2160) GTA V is not passable for reality by the

human eye. However, computer vision systems do not require high levels of detail for

tasks like following roads. In fact, most computer vision systems downsample images

to as low as 20 x 20 pixels. ALVINN, the grandfather of autonomous cars, used

input images of 30 x 32. The resolution of the images in the primary data stream fed

into the neural network we have employed are 195 x 110. This resolution provides

for significantly more detail than ALVINN’s system was able to provide but it saves

a significant amount of processor time as compared to a full resolution 1920 x 1080

frame. At a resolution of 195 x 110, GTA V is nearly indistinguishable from reality to

the human eye. Because of this low resolution subsampling and the realistic in-game

environment provided by Rockstar Games GTA V is an excellent candidate for data

collection. What further strengthens GTA’s case is the diversity of environmental

factors that are controllable thanks to the game’s modding community. Things like

the number of cars on the road, the number of pedestrians walking around, the time

of day and the weather are all controllable via game modification script.

3.2.2 GTA V modifications The first step of the data collection process

was to modify GTA V. The most important modification that needed to be made was

to the camera position and angle. The standard camera options available in GTA V

are designed to be cinematic and are largely variations on a third-person perspective.

Third person camera angles would be infeasible to reproduce on a real-world car so

32

those options could not be used for data collection. There is one first-person camera

setting available to players, but it places the camera inside the car where the head

of the driver would be. We wanted to place the camera on the virtual car in the

same place that we would position the camera on a real-world car. We decided to

place the camera on the hood of the in-game car and the default camera controller was

overwritten so that the camera would move and rotate as if it were physically attached

to the car the same way it would be on any real-world test system that we might later

use. The green circle in Figure 6 represents the placement of the camera on the in-

game car. The camera was also tiled down 12.5◦. When the camera was pointed

parallel to the ground, the horizon line on the images taken from that viewpoint was

approximately half way up the image. By tilting the camera down we were able to

ensure that a greater area in the resulting image contained information about the

road. We did not tilt the camera further down because we still wanted the neural

network to view the environment around the road. We hoped that by providing some

environmental information to the network, we would enhance its ability to regulate

speed by allowing it to determine the differences between, for example, a residential

road and a freeway.

Figure 7 depicts the difference in point of view before and after the camera

is tilted down 12.5◦. Image A shows the point of view after tilting downwards and

Image B shows a neutral camera angle. The horizontal line in each image represents

the horizon line. Notice that a significantly larger portion of Image A is below the

horizon line. By angling the camera down, we are able to increase the amount of

space that the road takes up in our images and by extension, information density in

our training images.

During the development of the neural network the number of pedestrians was

decreased to the lowest available settings and the number of vehicles on the road was

also reduced to the lowest available setting. This allowed for data collection in a less

chaotic environment and resulted in a data set with fewer variables. Later in the

33

Figure 6: Camera Position on In-Game Car

development cycle, once the viability of the neural network driver had been verified,

these values were changed to their highest setting. This was done to ensure that the

neural network had experience driving with other cars on the road under high traffic

conditions.

The final modification was to set the in-game player’s ‘wanted level’ to a static

value of 0. If the player’s wanted level increases past 0 they start to be chased by the

police. By setting the wanted level to 0 and preventing it from increasing we were

able to eliminate the need for the researcher to reload the game in the event that they

make a mistake what would cause them to be chased by the in-game police.

The game’s built-in day and night cycles were left intact in efforts to imbue the

neural network with some degree of light invariance. The weather cycle was also left

in place. The weather conditions that are present in the training data include varying

levels of sunniness, cloud cover and light rain.

3.2.3 Data recording. Data collection is performed by having a researcher

drive around the virtual world of GTA and recording the video frames and control

34

Figure 7: Camera Tilt Comparison

inputs of the researcher. As the researcher drives, a Python script runs in the back-

ground to record data. First, the script takes a screenshot of the game window using

the ‘win32gui’ package and downsamples it to a resolution of 640x320. This image is

immediately written to a .JPG file and stored for later use. The name of the .JPG is

generated using the driving session identifier and the frame number within the driving

session. Immediately after the screenshot is taken the ‘pygame’ API is used to poll

for the angle of the steering wheel, the gas pedal activation level and the brake pedal

activation level. Pygame is a Python API that provided utilities for making games,

including easy access to controller inputs. After being collected, the steering, gas

and brake values are then appended to a .CSV file along with the numeric identifier

associated with the image.

Because the goal of the neural network is to follow the road that it is on, the

researcher driving the in-game car was not allowed to execute road transitions at

intersections while recording. To allow the driver freedom to drive around the city a

button on the controller was programmed to allow the driver to pause recording while

the button was held down. This flexibility prevented the driver from getting stuck on

one road. In addition, before being written to a file, all frames were stored in a buffer

for approximately 10 seconds. This design decision was made so that another button

on the controller could be programmed to delete all of the frames in the buffer. This

35

afforded the researcher the ability to delete the last 10 seconds of driving in case they

made a mistake.

3.2.4 Input hardware. Originally, a gamepad controller was used as the

researchers input mechanism. Gamepad controllers are considered by the gaming

community to be preferable to keyboard input for driving games. While this is true,

using a gamepad for scientific data collection leads to an unacceptably noisy dataset.

This is because analog sticks can be mechanically difficult to operate accurately. Very

slight thumb stick movements can result in dramatic steering changes. The creates a

tendency for the car to swerve back and for on the road as the driver continuously over-

steers and over-corrects. Upon discovering the shortcoming we decided to upgrade

to a racing wheel controller. The racing wheel used for data collection clamps onto a

table which provides a familiar driving experience for the operator. There are also foot

pedals on the floor to more accurately imitate a car-like environment. The steering

wheel allows for very fine steering adjustments which eliminate the jerky steering

tendency of the gamepad. As a result, the amount of noise present in the data was

significantly reduced.

3.2.5 Data augmentation process. The simulation environment provides

a reasonable set of images. However, to increase the amount of data as well as the

different experiences, we augment the data. This allowed us to transform one training

drive in simulation to the equivalent of fourteen different drives by creating viewpoints

of driving the car closer to the different lines on the road.

Figure 8 shows the data augmentation process and resulting set of seven images.

We first resize the 640x320 images to a resolution of 160x90. Then the center 90x90

square of the image is selected and given the same label as the original image. The

next step is to shift the square to the left or right five pixels, selecting and creating

new images with each shift [11]. For each five pixels that the image is shifted to the

left or right, the labels are incremented or decremented by 0.75. This augmentation

36

Figure 8: Data Augmentation Process

process provides the network with the ability to handle situations outside of normal

centered driving, allowing it to better correct for its mistakes. The data set used to

train the neural networks was the result of approximately five hours of driving and

contained 35,000 images. Using the data augmentation process, the dataset expanded

to 490,000 images. The augmentation process essentially gave the neural network 70

hours worth of training data.

In addition to providing new new viewpoints on which to train, this system can

also be repeated during operation of the RC car. By cropping out 1:1 images from

the 16:9 image provided by that car’s camera, multiple different classifications can be

made and then used to determine the final steering angle.

3.3 Training

The training process for our neural network is identical to the standard process

for training back-propagation neural networks. Each branch of the steering control

network receives its input simultaneously and the entire network produces an output

prediction. If the prediction does not exactly match the label the weights of the

inter-neuron connections are modified accordingly and proportionally. This process

is repeated for the entire dataset. Since the steering control network and the anti-

37

collision network do not interact they are trained interdependently. One iteration

through all of the training data is called an ‘epoch’. For a complex task such as

driving it will often take between fifty and one hundred epochs before the networks

become proficient. The entire training process is automated by the Keras machine

learning package. Keras leverages Google’s Tensorflow technology to create networks

and accelerate them using GPUs. This network was trained using a GTX970 GPU.

3.4 Architectural Development

This section will cover the tests that we performed on the first iteration of our

neural network described in Section 3.1.1.

3.4.1 Parameter analysis. Before we commenced with our on-track tests,

we needed to optimize the network to determine the optimal input configuration. The

initial neural network used to drive the remote control car could handle a multitude of

input data configurations. As previously stated there are two primary pieces of input

data: images and past steering angles. The images and steering angles are fed into

the network as arrays. Let us call the most recent image frame n and the number or

previous frames j. The set of images provided to the neural network can be defined

as n to n− j. The same can be said for the previous steering angles. Let us call the

most recent steering angle m and the number of previous steering angles i. The set

of steering angles provided to the network can be defined as m to m− i. The purpose

of parameter analysis is to determine the values of i and j which result in the most

effective driver.

To keep the architecture of the network static, the range of values for j were

limited to {2 . . . 8}. As discussed in the network architecture section, the neural

network leverages three-dimensional convolution as a means of data dimensionality

reduction. Due to the nature of three-dimensional convolution, reducing j below 3

will result in an invalid data configuration partway through the network. The upper

bound is set at 8 because any value larger than 8 will result in ‘out-of-memory’ errors

38

on the systems used to run the networks. The values tested for i are defined by the

set {1, 2, 4, 6, 8, 10}.

Tests were performed by training a network with each of the possible (i, j) com-

binations for 20 epochs and then testing each network’s validation performance in

terms of accuracy and throughput. Accuracy is given in terms of average steering

error. Accuracy is the most obvious metric to consider, but data throughput is nearly

as important. The longer it takes the network to classify a given data point the fur-

ther the car will have traveled during processing and the less relevant the resulting

control action will be. The training dataset consists of 8167 data points and the test-

ing set consists of 1843 data points. There is no overlap between the two sets. Each

accuracy score is the average of five tests. It is worth noting that this is a small test

by machine learning standards and network architecture changes may yield different

results, especially as j approaches 8.

The clearest result of this testing is that i has no appreciable effect on processing

time. The processing time was constant across all values of i for each value of j.

This is not surprising seeing as each image contains 160 ∗ 90 ∗ 3 = 43, 200 values

and at most the past steering angles will contribute 10 values. Figure 9 shows the

relationship between the number of frames per data point and the time needed to

process a given data point. Since the processing time is constant for all values of i at

a given j value, the graph has been limited to include only j.

At (i, j) = (4, 4) the network achieved its lowest error rating and processing time

is fairly low. It somewhat defies intuition that more data does not correlate to better

accuracy, but there is only some much knowledge that can be stored in a network of a

given size. At (i, j) = (4, 4) this neural network reaches its balance point. Figure 10

shows the average error rate for all values of i at a given value of j. From this chart

we can see the four frames per data point offers the lowest error rate.

39

Figure 9: Frames per data point with respect to Computation Time

3.4.2 Analysis. The early fusion methodology proved to be a GPU memory

intensive approach. Limited GPU memory and large input data sets meant that the

neural network needed to be shallower to fit into GPU memory. This early fusion

network with four frames performed well in validation tests with a 2.2 percent error

rate. Once implemented on the RC car, the neural network proved ineffective, unable

to successfully complete a single lap of out test track. One possible reason for this

performance deficit is the slow movement speed of the RC car. Since the car moved so

slowly, each of the input images were similar and thus each successive frame provided

little to no additional useful information. Another possible reason is that too much

GPU memory was used for managing the large volume of input data. This meant

that the underlying perception style network needed to be very small to fit into the

GPU’s memory. The reduced neuron count of the underlying network limited the

classification ability of the entire network.

40

Figure 10: Frames per data point with respect to error rate

One of our concerns about the RC car performance stems from the video stream-

ing system that we employed on our RC test system. Streaming video introduces a

large amount of control latency as frames need to be streamed via wifi to a laptop.

This delay meant that our control inputs would always be late and is what neces-

sitated the slow movement speed mentioned above. The longer the delay, the less

relevant our control inputs are. The addition of long computation time can exacer-

bate this issue. The problem that arises from this situation is that the RC car tends

to get itself into situations that it had never seen in training by driving too close to

the edge of the track. Once in an unfamiliar road position the performance of the car

could become unpredictable.

3.4.3 Revisions. To address our concerns we altered our neural network ar-

chitecture to use only single frames. This allowed for deeper neural networks to be

loaded into GPU memory, which in turn allowed the network to learn a wider variety

41

of behaviors. It also allowed us to implement the data augmentation methodology

described in Section 3.2.5. After learning from our mistakes, we were able to design

and implement the neural network described the Section 3.1.

3.5 Validation

After completing the training process, we validated the neural network. The data

used for validation was collected from GTA V in the same manner as the training data.

Validation provides an intermediate step between training and real world testing by

allowing us to test the accuracy of the neural network on data similar to the training

data. During validation testing, the neural network classified 10127 augmented images

to which it had not been exposed during training. Using the existing labels, we

computed the mean absolute steering error between the network’s calculated steering

angle and the labeled steering angle. In validation testing, the network used for

track testing produced a mean absolute error of 1.9%. By achieving a error rate this

low, we can be fairly confident in the neural network’s ability to mimic the behavior

demonstrated by the human driver during data collection.

3.5.1 Road type analysis. To gain a deeper understanding of the capabil-

ities of the neural network we collected additional validation data and evaluated the

neural network’s performance on four different types of road. An example of each

type of road is provided in Figure 11. The difference between dashed center line,

double center line and no outer white line roads is the way that the lane boundaries

are marked. The freeways, however, feature two, three or four lanes going in each

direction with dashed white lines separating the lanes.

Figure 12 illustrates the performance of the neural network across the four road

types that we tested. Each point in Figure 12 represents the mean error rate on

the respective road type. The error bars around each point represent one standard

deviation. The mean values are specifically enumerated in the table in Figure 13.

The error rates are fairly consistent across all of the road types except for the road

42

Figure 11: In-game road types

without outer lane markings. The error rate on roads without outer lane marking is

roughly four times higher than the three other road types. This discrepancy indicates

to us that our autonomous vehicle control system performs significantly better on

roads with outer lanes and needs improvement to drive safely on roads without outer

lanes. Because positive steering values correspond to right turns, negative steering

values correspond to left turns, and the error rates across all road types are negative,

we can conclude that the neural network has a leftward bias. This may be due to the

fact that the the charcoal gray color of the pavement and the yellow color of the road

markings creates a significant contrast that is easily identified by the neural network.

Figures 14, 15, 16 and 17 extend this analysis by illustrating the specific error

rates on each road type.

Figure 14 depicts the neural network’s error rate on each of the validation frames

with dashed center lines. When turning left on roads with dashed center lines the

neural network had an average error of -1.35% per frame. When turning right the

neural network exhibited an error rate of 1.27% per frame. In Figure 14 we can see

43

Dashed Center Line Double Center Lines Freeway No Outer Marking

Road Types

-5

-4

-3

-2

-1

0

1

2

E
rr

or
 P

er
ce

nt
ag

e

Figure 12: Mean error percentage with respect to type of road

Dashed Center Line Double Center Line No Outer Line Freeway

-0.434 -0.550 -2.290 -0.646

Figure 13: Mean error percentage with respect to type of road

that there is a slight increase in error rate in the first 400 frames and another, more

significant, increase in error rate from Frame 1100 to Frame 1600. The first 400 frames

take place at night, which likely accounts for the slight increase in error. The second

cluster of high error rates towards the end encompasses a group of frames that take

place at sunset when the car is pointed almost directly at the sun. The sunset causes

these frames to have a significant orange tint and the angle of the vehicle relative to

the sun means that there are reflections of the sun on the road. The combination of

these two characteristics creates oddly bright frames that are most likely the cause of

the sharp increase in error rate. Collection of additional training data under similar

conditions would likely correct for this performance deficiency.

Figure 15 depicts the neural network’s error rate on each of the validation frames

with a double yellow line. When turning left on roads with double center lines the

neural network had an average error of -1.35% per frame. When turning right the

44

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frame

-50

-40

-30

-20

-10

0

10

20

30

40

50

E
rr

or
 P

er
ce

nt
ag

e

Figure 14: Error percentage by frame on roads with dashed center lines

neural network exhibited an error rate of 1.41% per frame. Similarly to Figure 14,

Figure 15 exhibits an increase in error rate in the first 500 frames and another around

the 5000th frame. Once again, the first spike in error rate is likely due to the fact

that it is nighttime in those images and the road is poorly lit. However the large spike

around the 5000th frame is likely due to the color of the road. The frames around

Frame 5000 cover a section of road which is a very light gray, unlike the typical

charcoal color of most roads. The pavement is so light that is difficult to discern an

edge between the yellow line in the center of the road and the road itself. The neural

network likely relies on the contrast between the color of the line and the color of the

road to identify the lane.

Figure 16 depicts the neural network’s error rate on each of the validation frames

with no outer white line. When turning left on roads with no outer lines the neural

network had an average error of -3.13% per frame. When turning right the neural

network exhibited an error rate of 1.90% per frame. Both of these error rates are

substantially higher than the previous two road types. It is also interesting to note

that the boundary line on the right side of the road has a significant effect on the

neural network’s ability to accurately classify a left turn. This is likely due to the fact

45

0 1000 2000 3000 4000 5000 6000 7000

Frame

-50

-40

-30

-20

-10

0

10

20

30

40

50

E
rr

or
 P

er
ce

nt
ag

e

Figure 15: Error percentage by frame on roads with double center lines

that the neural network had learned to use the distance from the outer white line as

a reference point.

Figure 17 depicts the neural network’s error rate on each of the validation frames

which take place on a freeway. On freeways the neural network exhibited the lowest

error rates on both left and right turns. On left turns on freeways the neural network

showed an error rate of -0.65% and on right turns an error rate of 0.72%. These low

error rates are most likely due to the fact the freeway driving generally only involves

gentle turns and minor corrections.

After completing the design of our neural network and verifying its ability to

navigate we moved on to real-world testing. In Chapter 4 we describe the tests that

we performed to quantify the capabilities of our neural network control system.

46

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Frame

-50

-40

-30

-20

-10

0

10

20

30

40

50

E
rr

or
 P

er
ce

nt
ag

e

Figure 16: Error percentage by frame on roads with no outer white line

0 1000 2000 3000 4000 5000 6000 7000 8000

Frame

-50

-40

-30

-20

-10

0

10

20

30

40

50

E
rr

or
 P

er
ce

nt
ag

e

Figure 17: Error percentage by frame on freeways

47

Chapter 4: Testing and Evaluation

In this chapter we will discuss the various tests performed to tune and character-

ize both the RC car system and the neural network. This chapter will begin with a

discussion of the instrumentation of the RC car in Section 4.1. Section 4.2 will cover

track tests including track design, sensitivity tuning, performance testing, throttle

characterization and anti-collision testing.

4.1 Remote Control Car

To verify the neural network in a real world scenario, we instrumented and mod-

ified a RC car, which we then connected to the neural network running on a laptop.

The RC car allowed us to build a scaled down environment to test multiple road types

and turns that are not feasible on a larger car. The car is not large enough to carry

the computational system and the batteries needed so we modify the remote control

to communicate with the car as well as with a laptop running the neural network.

Figure 18 shows the different system components and how they connect.

We used a Latrax 1/18th scale rally RC car; it has a reasonable cost and provides

the correct style of remote controls for easy instrumentation. To allow the car to

drive at slower speeds and not stall in corners, we designed and 3D printed new

wheels that reduce the gear ratio. The RC car utilizes a SainSmart Wide Angle

Camera with a 160◦ wide angle lens. The camera captures images at a resolution of

200x116 using UV4L and runs at a framerate of 40fps. The wide angle lens allows for

more information to be captures per frame and the relatively high frame rate allows

for frequent control updates. The camera attaches to a Raspberry Pi Zero W that

streams the images over WiFi to the laptop.

The laptop accepts the images over WiFi and keeps track of previous steering

48

Steering and Throttle
Commands (via WiFi)

Steering and Throttle
Commands (via RF)

Video Data (via WiFi)

Figure 18: System Overview

output locally. After receiving the source image, the laptop scales the image to

160x90 and then generates two additional images. One image is taken from 10 pixels

to the right of center and the other is taken 10 pixels to the left. The steering neural

network then classifies each of the images as inputs and computes the steering angle.

By averaging two classifications from different points of view, we can widen the field

of view and reduce the effects of errors in a single classification. The anti-collision

network is provided with a center 90x90 crop of the original image to maximize its

ability to spot oncoming vehicles.

This steering angle provided by the neural network is a percentage ranging from

-100 to 100. However, the RC car system requires a value between 0 and 4095 with

2047 corresponding to pointing the wheels straight ahead. Translating between the

two values is challenging due to the differences between the RC car and the GTA car,

49

including angle value requirements, wheelbase, and steering rate. As such, we need

to tune the sensitivity of this translation. The translation is made by multiplying

the neural network output by the absolute value of itself and then multiplying by a

static tuning amplification constant. Despite the added tuning, we decided on this

translation layer to allow the network to control different vehicles. However, the

translation process will need to be tuned to each specific vehicle system.

Throttle control operates slightly differently. Because we have a video trans-

mission delay due to WiFi, it is important that the car moves slowly while driving.

During track testing, the throttle was set to a static value so that the car would not

stop anywhere on the track or accelerate to a high speed. During anti-collision test-

ing, the neural network is allowed to control the throttle unless the throttle output

drops below a threshold determined by our throttle characterization tests, in which

case the speed is reduced to 0. This way the car will stop if it gets too close to another

vehicle.

The laptop then streams steering and throttle commands over WiFi to a Photon

microcontroller in the existing RC remote control. The Photon uses two DAC outputs

to bypass the existing manual controls and provide steering and throttle values to the

car.

4.1.1 Experiment setup and methodology. Once the RC car system was

functional, we designed a track and experiment methodology to test the network. We

performed four experiments using the RC car system: (1) tuning of the sensitivity of

the control system, (2) validation on the complete track of the system performance

and stability, (3) characterization of the throttle output, and (4) validation of the

anti-collision performance.

4.1.1.1 Track design. The test track that we developed for testing consists

of multiple road and turn types as seen in Figure 19. The track features three road

types: (1) two lanes each direction with a double yellow line running down the middle,

50

Figure 19: Test Track

(2) single lane each direction with a double yellow line going down the middle, and

(3) a single lane each direction with a dashed yellow line going down the middle.

There are also a variety of turn types including a long straight, gentle s-bends, wide

s-bends, sharp turns, and turns with varying angles. These track conditions were

chosen to test the robustness of the control system across a variety of common road

types. Multiple vehicles are shown in Figure 19 to illustrate the size of the track

relative to the test vehicle.

We subdivided the track into four sections as labeled in Figure 19 with each

section containing a specific road type. Section A is composed of Type 1 shown in

Figure 20. Section B is composed of Type 3 while Sections C and D are composed of

Type 2.

Figure 20: Road Types

51

4.2 Track Tests

Real-world track testing is one of the most vital parts of our research process. In

this section we will present the testing methodologies for four different performance

characteristics.

4.2.1 Sensitivity tuning methodology. The goal of control sensitivity

testing was to find the sensitivity setting that results in the smoothest possible driv-

ing. The sensitivity tuning process consisted of two phases. The first phase deter-

mined which sensitivity settings to analyze further and the second phase tested those

settings under stricter conditions.

First, the preliminary testing process allowed the car three trials to complete a

lap of the track. If the car completed any of these trials, the car passed that setting.

If the car was unable to complete any laps, the car failed that setting.

For the settings that the car passed, the second phase of the tuning process

determined the smoothness and the safeness of the viable sensitivity settings. In

these tests, the car drove around the track five times at its lowest speed. We tracked

the number of instances where either of the front two wheels came in contact with

a lane marking. If the left wheel of the car touched the middle yellow line or the

right front right wheel of the car touched the outer white line, we added a point to

that trial’s score. If the car committed some sort of unrecoverable failure such as

completely crossing the yellow lane divider or driving off the track so far as to lose

sight of it, then that trial received an automatic score of one hundred points. We

used the sensitivity setting with the lowest score for the performance testing.

Figure 21 illustrates the different scenarios for point deductions. Image A of

Figure 21 represents a neutral road position, maintaining this road position would

result in no deductions. Images B and D represent the conditions that constitute

touching the yellow or white line, respectively. Images C and E represent the condi-

tions that constitute crossing the yellow or white line, respectively. Please note that

52

the rear wheel positions do not count towards scoring.

Figure 21: Point Deduction Scenarios

4.2.2 Performance methodology. The goal of the performance testing was

to determine the robustness of the navigational capability of the steering control

neural network. In track testing, the car attempts to drive 100 counterclockwise

laps of the track. To ensure accurate assessment of neural network performance,

errors due to video streaming failure or the RC transmitter were not counted against

the system as these would not be present in a full size implementation. The final

metric of robustness is the number of laps that can be performed before committing

an unrecoverable error (crossing the yellow lane divider or exiting the track). In

addition, the track was split into four sections; the number and type of errors were

recorded for each section. The errors include touching either the center or outer lines

with a wheel and crossing either the center or outer lines with a wheel.

53

4.2.3 Throttle characterization methodology. To evaluate the anti-collision

system, we first characterized the throttle output from the anti-collision network when

another car is placed at various distances in front of the autonomous RC car. The

lead car was placed at discrete one inch intervals from the front of the autonomous car

ranging from 1 to 20 inches. During this characterization test, the autonomous car

was not moving and the result was taken directly from the neural network’s output.

4.2.4 Anti-collision performance methodology. After characterizing the

anti-collision network performance, we performed an experiment to assess its capa-

bilities while driving. The RC car was placed on our track six feet behind another

car on the track. The second car remained stationary for this test. The RC car

started driving and approached the stationary car. When the RC car stopped due

to the anti-collision network, we measured the distance between the two cars. We

performed 20 trials of this test.

4.3 Results

After determining how to test the system and the appropriate metrics, we per-

formed all experiments.

4.3.1 Sensitivity results. The first phase of sensitivity testing resulted in

a sensitivity multiplier of 25. There is a clear lower bound for the steering multiplier.

When the steering multiplier was set to 11, the car was unable to turn hard enough

to complete many of the turns. However, at 12, the car successfully completes a lap

of the track on its first trial. The range of values that allow the car to successfully

lap the track range all the way up to 200. However, at any setting above 100, the

behavior of the car clearly becomes erratic as the car continuously turns too hard and

then over-corrects.

Having determined the range of viable sensitivities, the second phase of sensitiv-

ity testing started at the minimum viable setting of 12. We next tested at a setting

of 15 and incremented the steering multiplier by five until we reached 60. Figure 22

54

demonstrates the number of errors made at each sensitivity level. The settings of 25,

30 and 35 all performed well, scoring an average of 2.2, 2.6 and 2.4 points respec-

tively. Above 35, though, a trend began to emerge. The car began to make jerky

movements and would over-correct for its mistakes. Each setting after 35 performed

worse, resulting in a higher score than the previous setting. Once the steering multi-

plier reached 60, we concluded testing; at that point the car earned an average score

of 8.6.

The multiplier setting of 25 provided the best result with the lowest score of

2.2. We used this value for our performance testing. Although the performance did

vary across the settings tested, all of these settings, other than the first, were able to

successfully complete multiple laps around out test track. This is possible because

the neural network is able to correct for its errors if it happened to steer too far. This

behavior demonstrates a high level of flexibility and indicates that the same control

system could be applied to other vehicles.

Steering Multiplier
10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 L
in

e
C

on
ta

ct
s

0

5

10

15

20

25

30
Steering Analysis Results

Figure 22: Sensitivity Results

55

4.3.2 Performance results. On the 100 lap track test, the car successfully

completed 98 laps with only two failures due to navigation issues. The first occurred

at Lap 77 and the second occurred at Lap 94. Both of these failures caused the car

to drive off the track at which point we replaced it back on the track at the same

location it exited and continued the test. This results in a mean distance to failure

of 47 laps.

Additionally, we monitored how the car performed in each section shown in

Figure 19. Figure 23 shows the results of these tests with the road sections along the

x-axis and the average error rate along the y-axis. These rates do not include the two

laps where the car experienced navigation failures.

As shown in the figure, Section A performed the worst. This section of the track

is characterized by a single lane in each direction, a dashed center yellow line, and

several wide turns. While driving this section, the car touched the outer lane marking

an average of 1.28 times per lap and crossed the center line an average of 0.56 times

per lap. However, the car never crossed the center lane. While not ideal, this is

most likely due to the relatively narrow field of view and could be easily corrected by

averaging more croppings of the original image take from different offsets.

Section B performed the best. It features two lanes in each direction with a

double center line. On this section, the car crossed a lane marking only once and

touched either lane marking only 0.28 times per lap. The car always merged directly

into the left lane and stayed there until the two lanes merged back together.

Overall, on average per lap, the car experienced 1.52 center lane touches, 3.16

outer lane touches, 0.0 center lane crossings, and 0.64 outer lane crossings. From

this information we can see that the system displays a strong bias against the center

yellow line. As no other papers provide this level of detail on their results, we cannot

compare to prior work. We would like to reduce crossings and touches even further by

reducing video latency and augmenting our data more significantly by using viewpoint

transformations.

56

Track Layout
Section A Section B Section C Section D

A
ve

ra
ge

 O
cc

ur
an

ce
s

P
er

 L
ap

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Track Testing Results

Center Line Touches
Outer Line Touches
Outer Markings Crossed
Inner Markings Crosed

Figure 23: Performance Results

It is worth reiterating that we had the test car drive counterclockwise around the

track. We did this because the test car was unable to consistently drive around the

track clockwise. In Section 4.4 we discuss the cause of this performance deficiency.

4.3.3 Throttle characterization results. Figure 24 shows the results of

the throttle characterization tests. The x-axis shows the distance between the two

cars while the y-axis depicts the throttle value produced by the neural network.

These results depict two clear characteristics of the system: a minimum and a

maximum effective distance. Below four inches, the lead car takes up the majority

of the field of view of the camera leaving no view of the road to use as a reference.

Therefore, the throttle control outputs large and meaningless values. Above nine

inches the throttle output varies between 20 and 25, indicating that the car in front of

57

the camera is either too small to see or too small to warrant braking action. However,

between the range of four and nine inches, we can see the the car consistently applies

additional brake pressure as the leading obstacle approaches.

4.3.4 Anti-collision performance results. We performed 20 trials of the

anti-collision test. The car successfully avoided a collision in 16 of the trials with the

anti-collision network applying the brakes and stopping the car. The average stopping

distance of these successful trials was six inches.

However, in two of the 20 trials, neither the anti-collision network nor the steering

control network were able to prevent a collision and the system hit the stationary car.

The other two remaining tests were not collision failures, but stopping failures. In one

of these other tests, the steering network drove off the road to avoid the car before

the anti-collision network could apply the brakes. It appears that the steering control

network may have also learned to avoid certain obstacles by driving around them. In

the other test, the car drove off the road to avoid the car and then drove back onto

the road after passing the stationary car.

Distance (in)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
et

w
or

k
T

hr
ot

tle
 O

ut
pu

t

0

5

10

15

20

25

30

35

40
Throttle Characterization Results

Figure 24: Throttle Characterization Results

58

4.4 Turn Bias Analysis

The strangest aspect of our track testing was the inability of the RC car to

reliably complete counter-clockwise laps of the test track. Upon observation of this

behavior we returned our focus to neural network validation testing.

4.4.1 Left vs. right analysis. We first hypothesized that the neural net-

work may be less accurate on right turns than left turns, which would explain the

behavior that we observed. To test this hypothesis, we designed a test to see if there

was a difference in accuracy on left turns and right turns in our validation data. To

do this we grouped together multiple frames that encompassed driving through a

particular turn on the road. In the context of this analysis we will use the term ‘turn’

to reference a set of frames that represent a particular arc in the road. Our validation

test set broke into a set of 79 left turns and a set 53 right turns. Figures 25 and 26

illustrate the mean error rates of the neural network on left and right turns. The data

points are sorted in an attempt to determine whether or not the system displays a

bias towards any given side. The error bars around each point represent the standard

deviation of the error rates across all of the frames in a given turn. Because there

are approximately equal numbers of turns with positive and negative errors in each

turn direction we can conclude that there is no significant bias to the left or right

while turning. Because the vast majority of the error rates on both turns are close to

zero and the standard deviations are relatively small for both turn directions we were

able to conclude that there was no significant difference between the neural networks

performance on left or right turns.

4.4.2 Turn sharpness analysis. In pursuit of an explanation for the ob-

served bias against right turns we returned to the test track. We noticed that since

our track is a loop, the lane on the outside of the loop is a greater distance than

the lane on the inside of the track. This mean that driving along the inside of the

track resulted in sharper turns than the outside lane. With this information we then

59

0 10 20 30 40 50 60 70 80

Turn Number

-20

-10

0

10

20

E
rr

or
 P

er
ce

nt
ag

e

Figure 25: Mean error rate by turn: Left Turns

hypothesized that higher turn angles would result in higher error rates which could

explain the anomalous behavior that we had observed on the test track. To test this

theory we plotted each individual frame from our turn data on a scatter plot such that

the x-axis represents the absolute value of the correct steering angle and the y-axis

represents error after classification. If our hypothesis is correct we could expect to see

error percentage increase as the absolute value of the steering angle increases. This

plot is represented in Figure 27. In Figure 27 we can see that there is no connection

between magnitude of steering angle and error, once again disproving our hypothesis.

4.4.3 Left vs. right with latency analysis. Having seen no difference in

the neural network’s ability to turn left or right in validation data, and seeing no

difference in error rate based on turn sharpness, we considered the characteristics

of our testing setup. One of the limitations that we had to deal with throughout

our real-world testing was the video transmission latency. We hypothesized that our

video transmission delay may be affecting left and right turns differently. To test this

hypothesis we delayed our steering classifications by one frame. This way Frame n

would be labeled with the steering angle from Frame n + 1. This creates the same

effect as video delay.

60

0 10 20 30 40 50 60

Turn Number

-20

-10

0

10

20
E

rr
or

 P
er

ce
nt

ag
e

Figure 26: Mean error rate by turn: Right Turns

After shifting our labels we performed the same test as we did in 4.4.1 to produce

Figures 28 and 29. These figures show significantly higher standard deviations than

Figures 25 and 26. We can see that right turns are affected disproportionately by

this delay penalty. Figure 29 shows a greater number of turns with high standard

deviations. The average of the error for each of the left turn is 3.0 and the average

of the error of all of the right turns is 3.7. It should be noted that these metrics are

averages of averages and are therefore somewhat diluted. This phenomenon effectively

explains the inability of the RC car to consistently complete clockwise laps of the test

track. These results make sense given the difference in viewpoint for right and left

turns created by driving on the right side of the road. From the right lane, a driver

can see further down their path along a left turn than they can around a right turn.

It is also worth noting that left turn 57 and right turn 1 take place at night. As

mentioned in Section 3.5.1, poor lighting has an adverse effect on vehicle performance.

The combination of poor lighting and simulated latency is most likely the cause of

the high standard deviation in these turns.

61

0 5 10 15 20 25 30 35 40

Absolute value of steering angle

0

5

10

15

20

25

30

E
rr

or
 P

er
ce

nt
ag

e

Figure 27: Steering angle ground truth with respect to classification error

4.5 Discussion

The results of our testing indicate that virtual training data is a viable option for

neural network training. Our RC car is able to drive for long periods of time without

making an unrecoverable error as well as to detect oncoming obstacles and stop to

avoid a collision. Therefore, we can conclude that simulation training does translate

to the real world if the simulated environment matches reality closely enough. In

addition, the control system is able to drive effectively under a wide range of steering

sensitivity settings. This indicates that the control system is flexible enough to be

applied to a variety of different vehicles.

Our test track features three different road types, providing a good indicator of

the flexibility of our system on different road types. In Section 3.5.1 we observed that

the system performed well on roads with an outer lane marking. The results of our

real-world experimentation provide additional support for that notion. Not only was

the car able to complete 98 of 100 laps without an unrecoverable error but, on the

multiple lane road section, the car always chooses to drive in the left lane closest to

the white line.

62

0 10 20 30 40 50 60 70 80

Turn Number

-20

-10

0

10

20

E
rr

or
 P

er
ce

nt
ag

e

Figure 28: Mean error rate by turn: left turns with simulated delay

Our tests in Section 4.4.1 showed that the neural network performed significantly

worse after we introduced artificial latency and that the latency would negatively

affect right turns more than left turns. Our track tests allowed us to observe both of

these phenomenon in the real-world. To compensate for the performance penalty of

the video transmission delay we had to ensure that the RC car drove at a very low

speed. On our track tests, the car drove relatively long distances without an error due

to the control system despite the data transmission delay. In addition, the test car

was able to consistently complete counterclockwise laps of our track, which contain

mostly left turns. However, the test car struggled with clockwise laps because that

are dominated by right turns.

Without the delay of transmitting video and instructions via WiFi and the RC re-

mote control, we can safely assume that the RC car’s performance would be smoother.

We can also assume that the test car would be able to successfully navigate right turns

a greater percentage of the time. On a full-sized vehicle, there would be plenty of

room for computing equipment, which would eliminate the video transmission delay.

Because of the delay, our track tests presented the system with a more challenging

test than real roads.

63

0 10 20 30 40 50 60

Turn Number

-20

-10

0

10

20
E

rr
or

 P
er

ce
nt

ag
e

Figure 29: Mean error rate by turn: right turns with simulated delay

Our system is reliant on a single, fixed camera, which presents a few limitations.

Depth perception and turn radius are both limited by the monocular view provided

to the neural networks. The depth perception needed by the anti-collision network is

achieved by comparing relative size. Furthermore, the turn radius is limited because

the camera is unable to pivot, which would keep the most relevant information about

the road inside of the field of view. These limitations could easily be solved by using

more cameras. The performance of the system could be further enhanced by providing

the system with a greater variety of sensors. This, however, would likely require a

custom built simulation environment for data collection.

64

Chapter 5: Conclusions

5.1 Conclusion

Our work supports the notion that autonomous vehicles can operate using re-

flexive convolutional neural networks trained with augmented simulation data. We

implemented a neural network and trained it using data taken from the popular video

game Grand Theft Auto Five. We then tested the performance of the neural network

using testing data also taken from the game. Then, we verified the capabilities of the

network by having it operate a small scale car in the real world. Real world validation

is critical to autonomous driving research. As we discovered in our own experiments,

simulation performance and real world performance can differ significantly. This is

why it was so important that we verify the functionality of our system in the real

world. Some researchers opt to limit their explorations to simulation and never test

their systems in the real-world. Our work illustrates the importance and effectiveness

of transitioning from simulations to the real-world.

Through a number of real world experiments, our system successfully drove 98%

of the laps on our track without navigation issues as well as achieving a 90% success

rate in avoiding collisions. We were able to achieve these results using only a single

camera as input. This demonstrates a useful and novel method of creating and

training an autonomous vehicle system that allows for fast redeployment under new

conditions and new systems.

In the future, we plan to expand our work to support traffic lights and roads

missing outer painted lines. Additionally, we plan to confirm operation on an au-

tonomous golf cart, increasing the scale of the real world experiments to further

prove the validity of our approach.

65

5.2 Future Research

In this section we will propose a variety of hardware and software changes. The

changes that we propose in the forthcoming sections would allow us to either test our

system more extensively or improve the system’s performance.

5.2.1 Neural network retraining. In alignment with the conclusions that

we drew in Section 4.4.3, a natural extension of this research would be to retrain the

existing neural network with the original data with offset labels. By offsetting labels to

simulate video transmission latency we may be able to, not only improve performance

on right turns, but improve performance in all scenarios. Even though there would

be no video transmission delay if our control system were to be implemented on a

full size vehicle, there would be some delay associated with the time needed for the

neural network to process the frame. Retraining the neural network to account for

processing and transmission delays would likely improve performance significantly.

5.2.2 Additional vehicles. Having verified the functionality of our autonomous

car controller on a small scale RC car the next logical step is to implement then same

controller on a full scale vehicle. One avenue that we are currently exploring is in-

strumenting a golf cart. A golf cart is large enough to drive on regular roads and is

easier to work with than a regular car due to its relative simplicity. While a golf cart

would allow us to perform a wide variety of tests it would not allow us to test our

system on the freeway. To perform freeway tests with our system we would need to

instrument a car capable of driving at freeway speeds safely. Instrumentation of a

full scale vehicle would allow us to perform a comprehensive set of tests to formally

define the capabilities of our control system.

5.2.3 Stereoscopic 3d. Due to the modular nature of the neural network

that we designed it would be simple to add an additional input image from an addi-

tional camera. By observing two camera angles the neural network would be able to

learn to determine the distance to objects in the scene. This could greatly improve the

66

obstacle avoidance capabilities of the system. The only challenge would be collecting

data from the game. The current data collection tools would need to be redesigned.

Fortunately, GTA V supports 3D gameplay it may be possible to leverage existing

graphics drivers to capture the additional camera angle and image from it.

5.2.4 Neural network architecture. There is more exploration that could

be done in the realm of neural network architecture. One of the limiting factors that

we had to deal with throughout our research process is the size of GPU memory.

Given a GPU with a greater amount of on-board memory we could implement more

complex networks and experiment with different structures. Given the additional sys-

tem resources it may be possible to combine our throttle control network and steering

control network into a single, branching, neural network. This could potentially save

us the overhead of needing to run two networks simultaneously.

5.2.5 Increase autonomy. In its current state our system is only able to

achieve autonomy by following the road that it is on. In the future, we plan to

expand our work to support traffic lights, roads missing outer painted lines and turn

signal input. By recognizing traffic lights and stop signs our system will be able to

maintain autonomy in a greater number of driving scenarios. This addition would

significantly improve usefulness in urban environments. By supporting roads without

outer lane markings we would further increase the number of roads that our system

would be able to function on. Finally, by accepting the state of the turn signal our

system could learn to cope with intersections. Furthermore, by accepting turn signal

input and learning to correctly handle intersections, our controller could then be

connected to a GPS navigation system to achieve nearly full autonomy.

67

REFERENCES

[1] R. Games, “Grand Theft Auto V,” Accessed 2017-1-10. [Online]. Available:

http://www.rockstargames.com/V/

[2] W. P. Warren S. McCulloch, “A logical calculus of the ideas immanent in nervous

activity,” Bulletin of Mathmatical Biophysics v5, 1943.

[3] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column

deep neural network for traffic sign classification,” Neural Networks,

vol. 32, no. Supplement C, pp. 333–338, Aug. 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0893608012000524

[4] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column Deep Neural

Networks for Image Classification,” arXiv:1202.2745 [cs], Feb. 2012, arXiv:

1202.2745. [Online]. Available: http://arxiv.org/abs/1202.2745

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with

Deep Convolutional Neural Networks,” in Advances in Neural Information Pro-

cessing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[6] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,

“Large-scale video classification with convolutional neural networks,” in Proceed-

ings of the IEEE conference on Computer Vision and Pattern Recognition, 2014,

pp. 1725–1732.

[7] DARPA, “Darpa Urban Challenge 2007,” Accessed 2017-1-15. [Online].

Available: http://archive.darpa.mil/grandchallenge/

68

[8] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,

P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey,

C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,

S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that

won the DARPA Grand Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp.

661–692, Sep. 2006.

[9] A. Broggi, C. Caraffi, P. P. Porta, and P. Zani, “The Single Frame Stereo Vision

System for Reliable Obstacle Detection Used during the 2005 DARPA Grand

Challenge on TerraMax,” in 2006 IEEE Intelligent Transportation Systems Con-

ference, Sep. 2006, pp. 745–752.

[10] D. U. C. Team, C. Urmson, J. A. Bagnell, C. Baker, M. Hebert, A. Kelly,

R. Rajkumar, P. Rybski, S. Scherer, R. Simmons, S. Singh, A. Stentz,

W. Whittaker, and J. Ziglar, “Tartan Racing: A Multi-Modal Approach to the

DARPA Urban Challenge,” Robotics Institute, Apr. 2007. [Online]. Available:

http://repository.cmu.edu/robotics/967

[11] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous

navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97, 1991.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End

to End Learning for Self-Driving Cars,” Apr. 2016.

[13] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoid-

ance through end-to-end learning,” in Advances in neural information processing

systems, 2006, pp. 739–746.

[14] J. Mannes, “Training self-driving cars on the streets of

69

Los Santos with GTA V just got easier.” [Online]. Avail-

able: http://social.techcrunch.com/2017/01/11/training-self-driving-cars-on-

the-streets-of-los-santos-with-gta-v-just-got-easier/

[15] C. Vallon, Z. Ercan, A. Carvalho, and F. Borrelli, “A machine learning

approach for personalized autonomous lane change initiation and control.”

[Online]. Available: http://www.me.berkeley.edu/ frborrel/pdfpub/machine-

learning-approach.pdf

[16] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. An-

driluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica, A. Coates, and

A. Y. Ng, “An empirical evaluation of deep learning on highway driving,” CoRR,

vol. abs/1504.01716, 2015.

[17] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,

and R. Vasudevan, “Driving in the Matrix: Can Virtual Worlds Replace

Human-Generated Annotations for Real World Tasks?” arXiv:1610.01983 [cs],

Oct. 2016. [Online]. Available: http://arxiv.org/abs/1610.01983

[18] A. Filipowicz, J. Liu, and A. Kornhauser, “Learning to Recognize Distance

to Stop Signs Using the Virtual World of Grand Theft Auto 5,” in TRB

96th Annual Meeting Compendium of Papers, 2017. [Online]. Available:

https://trid.trb.org/view.aspx?id=1439152

[19] Johnny Manson, “GTA V Scripting Tutorial | Installation & First Script | #1.”

[Online]. Available: https://www.youtube.com/watch?v=NmuoN6z7C8Y

[20] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affor-

dance for direct perception in autonomous driving,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 2722–2730.

70

[21] “Keras Documentation,” Accessed 2017-09-05. [Online]. Available:

https://keras.io/

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in

Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, G. Gordon, D. Dunson, and M. Dud́ık, Eds., vol. 15. Fort

Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.

[24] TensorFlow, “Tensorflow,” Accessed 2017-1-17. [Online]. Available:

https://www.tensorflow.org/

[25] Microsoft, “Microsoft cognitive toolkit (cntk),” Accessed 2017-1-17. [Online].

Available: https://github.com/Microsoft/CNTK/

[26] Theano, “Theano,” Accessed 2017-1-17. [Online]. Available:

https://github.com/Theano/Theano

	University of the Pacific
	Scholarly Commons
	2017

	Autonomous Driving with a Simulation Trained Convolutional Neural Network
	Cameron Franke
	Recommended Citation

	tmp.1521506531.pdf.wTPkf

