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Identification of relevant wavelet functions for multiscale
characterization of manufactured surfaces using a genetically optimized
neural network

Sabeur Mezghani1

Abstract
Multiscale surface characterization is a powerful tool that is used for process monitoring, surface quality control, and manufactur-
ing optimization by establishing a link between process variables and functional performances. The multiscale decomposition
approach using continuous and discrete wavelets is widely applied to take into account scales dependency. However, the optimal
choice of the analysis wavelet function and the number of decomposition level is still a big issue. In this article, the artificial
neural network theory was combined with the wavelet concept and was optimized based on the genetic algorithm to identify the
relevant wavelet function for multiscale characterization of abraded surface topographies. Then, an extensive wavelet function
library was developed and the proposed algorithm was applied to topographic data obtained from various abrasive finishing
processes. The results show the pertinence of this approach to select the relevant wavelet, and a universal relevant wavelet
function for abraded surface characterization was determined.

Keywords Wavelet neural network . Genetic optimization .Multiscale characterization . Surface roughness . Abrasive process

1 Introduction

Inspection of workpiece surface topographies is actually con-
sidered an effective strategy for manufacturing process mon-
itoring [1–4] and product quality optimization and control
[5–7]. However, topographic data usually contain process
contributions at multiple scales because of different physical
phenomena occurring during processing at different localiza-
tions in time, space, and frequency. Hence, the use of standard
surface characterization methods (ISO 4287, ISO 13565, …)
may lead to unreliable results due to data pre-filtering leading
to a significant loss of information [8, 9]. Performances of
surface diagnostic and discrimination are then greatly altered.
To take into account such multiscale behavior, processing
techniques that decompose the observed data at different
scales are necessary [8]. Various harmonic and morphological
approaches were proposed in the literature [10] such as pass

band filtering, discrete [11, 12] and continuous [9, 13] wavelet
decomposition, the evaluation length variations method [14,
15], and modal decomposition [16].

Among these approaches, wavelet decomposition is well
suited to depicting surface features with local nonlinearities
and fast variations, thanks to their intrinsic properties of finite
support and self-similarity [17]. Further, it provides more flex-
ibility and rapidity for dividing a given n-dimensional func-
tion (signal, image…) into multiple-scale components in com-
parison to other spectral techniques.

However, one of the major limitations is the difficulty of
the choice of the optimal mother wavelet function and decom-
position levels [18, 19]. In fact, this choice can influence the
spatial and frequency resolution of the decomposition, which
is directly proportional to the width of the used wavelet in the
spatial and the Fourier space [20]. However, their impact on
the quality of feature detection and approximation remains a
controversial subject.

In fact, for example, in texture classification applications,
some comparative studies conclude that the wavelet function
selection is application dependent and has insignificant effects
on the results in some applications [20]. However, in case of
honed surface characterization, the influence of the choice of
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the wavelet functions was demonstrated [18] by analyzing the
capacity of a given wavelet function to detect typical honing
features at the right spatial frequency of their apparitions.
Further, the authors demonstrate that the regularity that is use-
ful for getting nice features such as smoothness of the recon-
structed signal or image is a fundamental property of the
wavelet family for the topographic profile analysis goal. In
another study, Bigerelle et al. show, by comparison of eight
wavelet functions based on a statistical indicator, that the anal-
ysis of the topographic profile of abraded surfaces leads to the
same spatial localization regardless of the parameters of the
abrasive process and the wavelet shapes [19]. It appears from
literature that there is not yet a universal methodology or cri-
terion allowing the identification of relevant wavelet function,
but it can be remarked that all approaches take into consider-
ation the quality of data reconstruction from all its compo-
nents. This reconstruction can be interpreted as an approxima-
tion problem of the considered data f x!� �

by the sum of its

component f a x!� �
at each scale a.

f x!
� �

¼ ~f x!
� �

þ ε ¼ ∑amax
amin f a x!

� �
þ ε ð1Þ

where ~f x!� �
is the reconstructed signal or image from all its

components f a x!� �
from the lower scale amin to the maximal

scale amax and ε is the target error of reconstruction.
Otherwise, many studies [21–23] have been reported on the

ability of the wavelet neural networks (WNN) approach, pro-
posed by Zhang and Benveniste [22], for solving the nonlinear
function approximation problem that estimates an unknown
function G that relies on the input data x! to the output y by
the following expression [21]:

y ¼ G x!
� �

¼ F x!;ψa;b;w
� �

þ ε ð2Þ

where ε is the target error.
A conventional WNN consists of a feed-forward neural net-

work with one hidden layer and takes one or more inputs and
the output layer that consists of one or more linear combiners
or summers. It is based on the integration of two concepts: the
wavelets and the neural networks by applying wavelet function
ψ as activation function in every neuron in the hidden layer of
the neuronal network [22, 23]. The number of hidden neurons
that are not known in advance corresponds to the dilated and
translated wavelets (from a single-wavelet function called
mother wavelet) used in a WNN approximation model.

It is obvious that themost relevant mother wavelet function to
represent given data is that which allows its reconstruction with a
negligible target error ε and using the less complex wavelet basis
(by dilatation and translation of the mother wavelet).

This article proposes a methodology based on the genetic
algorithm (GA) optimized wavelet neural network to the iden-
tification of the pertinent wavelet function for multiscale

characterization of manufactured surface topography. Then,
the multiscale surface topography characterization using
wavelet decomposition is first presented. Next, the proposed
approach for relevant wavelet function selection is described.
Finally, application of this method to topography profiles gen-
erated by various abrasive processes is performed and results
are discussed.

2 Multiscale surface topography
characterization

Here, we give a brief description of the wavelet-based
multiscale surface characterization approach [24, 25].
Multiscale analysis of the surface texture allows determining
a quantitative expression for the manufacturing impact on the
surface. It involves the decomposition of its topographic pro-
files into different roughness scales.

This decomposition uses the continuous wavelet transform,
which can be considered a mathematical microscope, where the
resolutions are the basic functions obtained from a single wave-
let or mother wavelet ψ(x) by dilation (or compression) and
translation [24]. The result of the decomposition makes it pos-
sible to identify the various scales of the topographic signal
after a 1D inverse wavelet transformation [24, 25]. The inverse
continuous wavelet transformation can be computed based on a
discretized version of the single integral formula based on this
decomposition [25]; the characterization methodology consists
then of determining statistical parameters derived from
ISO4287, ISO13565, or ISO12085 at each scale from the scales
of waviness to roughness [24]. Then, a multiscale representa-
tion of the topographic profile that better reflects the variations
in the process or the intended function of the component is
obtained. Existing literatures in surfacemetrology show various
purposes of the application of this approach such as process
monitoring [11, 13, 24] and the identification of abrasive mech-
anisms activated during the finishing process [9, 14].

Figure 1 illustrates the influence of choosing the mother
wavelet function on the scale and amplitude of the detected
surface features. It shows a face-milled topographic profile
(Fig. 1a), its decomposition into 32 scales by using various
wavelet functions (Fig. 1b–d) and the determination of its Mq
multiscale spectrum (the quadratic mean height average of sur-
face irregularities at each scale) for each considered wavelet
function (Fig. 1e). We can observe firstly that the multiscale
wavelet decomposition separates surface components in differ-
ent ways according to the type of wavelets (Fig. 1b–d).

Moreover, two peaks are observed in the Mq spectrum
(Fig. 1e) independently of the used wavelet function. They
indicate clearly and respectively the largest wavelength com-
ponent of the topographic signal, i.e., the form component and
the periodic surface feature which can be related to the feed
rate variable of the turning operation.



Finally, it can be remarked that the detected peaks using
Paul wavelet are right shifted toward higher wavelengths
(lower frequencies) and become less skewed as order in-
creases. Thus, Paul wavelets offer poorer frequency resolution
and better spatial localization.

3 Methodology of relevant wavelet function
selection

The proposed methodology consists of establishing a network
regression model that mimics the multiscale surface

topography characterization approach described in Sect. 2,
that is, the direct wavelet transform followed by the inverse
wavelet transform (Fig. 2).We exploit here the fact that for the
continuous wavelet transform, the reconstructed profile can be
obtained by just the sum of the real part of the wavelet trans-
form over all scales due to the redundancy in time and scale as
detailed in [26]. Then, the wavelet function in the regression
network model substitutes the wavelet function of the direct
wavelet transformation.

This regression network model is based on the GA-
optimized WNN algorithm to adapt the wavelet basis to the
training data. It is determined by pondering a set of wavelets

X (mm)

(a)

(e)

(d)

(c)

(b)

Sc
al

es
Sc

al
es

Sc
al

es

Central Fourier wavelength (mm)

Cu�ng
feed pa�ern

Form component 
pa�ern

Form component

Cu�ng feed
Fig. 1 Multiscale characterization
of topographic profile of milled
surface. a The topographic
profile, examples of its multiscale
decomposition using different
wavelet functions. b Mexican hat
also called DoG2 (second
Gaussian derivative). c Morlet
and d Paul2 (color scale is
normalized in the range [0,1] for a
better visual comparison). e The
Multiscale Mq spectrum obtained
based on various wavelet
functions



dilated and translated from one mother wavelet with weight
values to approximate a given signal [27, 28].

3.1 Principle of WNN-optimized GA method

The general WNN structure relating the input data X (topo-
graphic profile data) to the output data Y (reconstructed profile
data) is presented in Fig. 3. Note that in our case since we look
to reconstructing exactly the analyzed profile, X = Yand n =m.

The numbers of neurons in input and output layers are
equal and depend on the profile length.

The weights ωi, k and ~ωk; j are optimized by the back-
propagation algorithm until they reach the desired value of error
criteria or the predefined number of iterations (epochs) [29].

To assess the quality of the developed model and the re-
constructed profile, two error criteria comparing the input and
output data of the WNN structure are considered here:

– The mean square error (MSE):

MSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Y−Xð Þ2
q

ð3Þ

– The correlation coefficient:

r ¼ n∑XY− Xð Þ ∑Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n ∑X 2
� �

− ∑Xð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n ∑Y 2
� �

− ∑Yð Þ2
q ð4Þ

X and Y are, respectively, the measured and predicted to-
pographic profile by the developedmodel, and n is the number
of the dataset.

The scale parameter ak and translation parameter bk of
WNN allow wavelets to analyze signals in different scales
and to access specific information. These two variables are
initialized in a random manner [22, 23, 29]. GA evolves here,
adjusts, and optimizes automatically the scale parameter ak and
translation parameter bk of each hidden neuron of the WNN as
proposed [29] until the end condition is satisfied. GA is a di-
rected random search technique that is widely used in optimi-
zation problems where the number of parameters is large and
the analytical solutions are difficult to obtain [30–32]. It uses
the concept of the evolution mechanism (crossover and muta-
tion) [32, 33], in which the genetic information changes for
every generation, and the individuals who better adapt to their
environment survive preferentially [31, 32].

The basic genetic algorithm is as follows [33]:

1. Create randomly an initial population of the two consid-
ered variable values (translation and dilatation coefficients
of the wavelet mother function).

2. Evaluate all the individuals using an evaluation function.
3. Select a new population from the old population based on the

fitness of the individuals as given by the evaluation function.
4. Apply mutation and crossover genetic operators to mem-

bers of the population to create new solutions.
5. Evaluate these newly created individuals.
6. Repeat steps 3 to 6 (one generation) until the fixed maximal

number of generations (stopping criteria) has been reached.

For this GA-optimized WNN model, the number of neurons
in the hidden layer of the WNN structure is an important charac-
teristic. In fact, if the number of neurons is insufficient, the net-
work will be unable to approximate the topographic profile.
However, if too many neurons are used, overfitting occurs, the
model fits the training data extremely well, but it generalizes
poorly to new data [22, 23]. Then, we look at studying the evo-
lution of the two defined criteria of the nonlinear GA-WNN
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approximation model versus the number of hidden neurons to
highlight the relevance of a given mother wavelet function.

3.2 Wavelet library

In this work, an extensive wavelet function library composed
by 16 wavelet functions with differing characteristics such as
the regularity (the number of vanishing moments), compact
support (the speed of convergence to 0), and orthogonality
was introduced. Figure 4 shows the shape difference between
the wavelet functions of this library.

Note that, in this study, they are considered only mother
wavelet functions having explicit formulae because we cannot
work out their derivatives.

Their expressions are as follows:

1. Haar wavelet function

It is defined as follows:

Ψ xð Þ ¼
1 if 0≤x <

1

2

−1 if
1

2
≤x < 1

0 else

8>>><
>>>:

ð5Þ

2. Morlet wavelet function

It is defined by the following equation:

Ψ xð Þ ¼ cos 1:75xð Þexp −
x2

2

� �
ð6Þ

3. Gaussian wavelet function

It has the following expression:

Ψ xð Þ ¼ tffiffiffiffiffiffi
2π

p exp −
x2

2

� �
ð7Þ

4. DoG wavelet function

It is themth order derivative of a Gaussian wavelet wherem
is a positive integer.

Ψn xð Þ ¼ −1ð Þmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ mþ 1

2

� �s dm

dxm
e−

x2
2

� �
ð8Þ

In this study, we consider three different values of the order
parameters m: 1, 3, and 8.

5. Mexican Hat wavelet function

Ψ xð Þ ¼ 2ffiffiffi
3

p π−0:25 1−x2
� �

exp −
x2

2

� �
ð9Þ

The Mexican hat wavelet is an isotropic wavelet family. It
is also known as the Ricker wavelet, and it is a special case of
themth order derivative of a Gaussian wavelet withm = 2. It is
obtained by applying the Laplacian operator to the 2D
Gaussian.
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6. Shannon wavelet function

It is based on the sinus cardinal function (Eq. 10)

Ψ xð Þ ¼ sinπ x−0:5ð Þ−sin2π x−0:5ð Þ
π x−0:5ð Þ ð10Þ

7. Meyer wavelet function

It is defined by the following approximate expression:

Ψ xð Þ ¼ 35x4−85x5 þ 70x6−20x7 ð11Þ

8. Spline wavelet function

It is defined by the following expression:

Ψn xð Þ ¼ sin πx
m

� �
πx
m

� �m

ei4π
2x ð12Þ

Cubic spline is considered in this study with m = 3.

9. Beta wavelet function

It based on beta function and described by Eq. 13:

Ψn xð Þ ¼ dnþ1β xð Þ
dxnþ1 Pnþ1 xð Þβ xð Þ ð13Þ

where Pn xð Þ ¼ Pn−1 xð ÞP1 xð Þ þ Pn 1 xð Þ ∀n > 1 ð14Þ
and P1 xð Þ ¼ p

x−x0
−

q
x1−x

ð15Þ

and β x; p; q; x0; x1ð Þ ¼
x−x0
xc−x0

� �p

−
x1−x
x1−xc

� �q

∀x0 ≤ x ≤x1
0 else

8<
:

ð16Þ

and xc ¼ px1 þ qx0
pþ q

ð17Þ

Bellil et al. show [34] that the beta wavelet-based salient
point’s technique can capture the local feature information,
and therefore, they provide a better characterization than
Haar or Daubechies wavelets since they are more distinctive
and invariant.

10. Paul wavelet function

It has m as an order parameter and is defined by Eq. (18):

Ψ xð Þ ¼ 2mimm!ffiffiffi
π

p
2mð Þ! 1−ixð Þ− mþ1ð Þ ð18Þ

A different value of the order parameter is considered in
this study: m = 1, 2, 3, and 4.

11. GGW wavelet function

It is not a common wavelet function (Eq. 19). It is devel-
oped by authors in [29].

Ψ xð Þ ¼ sin 3xð Þ þ sin 0:3xð Þ þ sin 0:03xð Þ ð19Þ

4 Identification of relevant wavelet function
for multiscale characterization of abraded
surfaces

The relevance of the considered wavelet functions for dealing
with the quality of the reconstruction of the topographic pro-
file of abraded surfaces and the detection of its features was
investigated.

4.1 Wavelet function classification

In this study, topographic profiles of abraded surfaces by six
different abrasive finishing processes (turning, face milling,
milling, grinding, honing, and polishing) are considered. For
each abrasive process, the input topographic data are com-
posed by 40 profiles generated under various operating con-
ditions. Overall, 30 of each dataset (75%) were used in the
training phase and 10 profiles (25%) were used in the valida-
tion phase of each model. All the surface micro-profiles are
acquired perpendicularly to the machining direction by using
a 2D Surfscan stylus profilometer. This device consists of a
diamond tip with a 2-μm rounded-end radius and has a 10-nm
vertical resolution. Each recorded profile consists of 2405
points that are equally spaced by 2-μm distance.

For each wavelet function from the library, WNN models
were trained and validated by varying the imposed number of
hidden neurons from 4 to 64 neurons. The number of hidden
neurons corresponds to the number of scaled and translated
wavelets, that is, to the level of decomposition. The parame-
ters of the GA and WNN algorithm for each simulation are
shown in Table 1. A measure of the quality of each resulted
approximation model is then computed by using the mean
square error and correlation criteria.

Results of the evolution of MSE function of the number of
hidden neurons show that the considered wavelet functions of
this library can be classified into three groups:

1. Group 1 (nonadapted wavelet): This first group is com-
posed by beta, Meyer, and Shannon wavelet functions. It
does not permit to establish a valuable model of the
multiscale decomposition while even varying the number
of wavelet hidden neurons. In this case, the MSE error
reaches high values and correlation criterion r is low (<
0.7). It can also be remarked that MSE and correlation



criteria vary randomly with the increases in the number of
scaled wavelet functions (hidden neuron). Tables 2 and 3
resume, respectively, MSE and correlation criteria of the

model’s performances by using wavelets belonging to this
group for the topographic data of different abrasive pro-
cesses and by using 4, 16, or 64 hidden neurons. Then, we
can conclude that wavelet functions of this group do not
allow to describe features of abraded topographic profiles.

2. Group 2 (nonrelevant wavelet): This group of wavelet
function allows during the validation step of the trained
model to obtain an output signal correlated to the input
topographic signal (r > 0.85) for all the studied abraded
surfaces. However, they present a random performance
behavior or any amelioration (reduction) in terms of mean
square error criteria when varying the number of scaled
and translated wavelets that compose the model (Fig. 5).
Then, we can conclude that wavelet functions of this
group are not well adapted to properly analyze abraded
topographic profiles. We find the eight derivatives of
Gaussian (DoG8) and spline wavelet function belonging
to this group for all the considered abrasive processes
(Fig. 5).

3. Group 3 (adapted wavelet): The third category of wavelet
function allows developing a model that has the consid-
erable capability to be applied with satisfactory accuracy.
In fact, correlation criteria are always greater than 0.97 by
using 4, 16, or 64 hidden neurons in the GA-WNN struc-
ture. Moreover, the MSE error decreases systematically
with each addition of novel wavelet neurons in the
WNN structure. Further, it reaches an acceptable value
for most of this wavelet function category by using only
almost 16 hidden neurons (Fig. 6).

Table 1 The parameters of the GA and WNN algorithm for each
simulation

GA parameters

Population size 30

Number of generations 80

Number of individuals in each
tournament selection

5

Ranking selection method Normalized geometric
distribution [33]

Crossover method Arithmetic crossover by linear
interpolation [33]

Mutation method Multi-nonuniform mutation [33]

Number of trials 10

WNN architecture and training parameters

The number of layers 3

The number of neurons on the layers Input: data vector size

Hidden: 4; 16; 64

Output: data vector size

The initial weights and biases Random values

Learning rule Back-propagation

Training rate 0.001

Momentum coefficient 0.95

Number of epochs 300

Table 2 MSE criteria of the approximating model using the first group
of wavelet functions

Abrasion process Number Beta Meyer Shannon

Milling 4 2.81E−03 1.30E+147 1.59E−02
16 1.79E+05 2.70E+154 1.50E−02
64 1.54E+154 5.40E+188 9.27E+03

Face milling 4 1.05E+01 1.50E+132 2.03E−02
16 8.52E−03 3.70E+122 1.54E−02
64 2.00E+145 2.40E+152 3.06E+01

Honing 4 1.05E+01 1.20E+92 1.29E−02
16 8.53E−03 6.70E+103 1.48E−02
64 2.00E+145 3.40E+138 5.31E+31

Grinding 4 1.45E+04 3.05E+141 2.03E−02
16 5.64E−01 1.25E+149 2.02E−02
64 2.41E+150 4.40E+142 1.74E+05

Turning 4 1.17E+04 9.04E+142 1.63E−02
16 2.03E+08 1.57E+147 2.02E−03
64 1.24E+149 3.76E+141 1.60E+17

Polishing 4 1.09E−02 4.26E+142 1.97E−02
16 1.17E+01 4.98E+145 2.37E−02
64 1.99E+148 6.13E+136 1.91E−01

Table 3 Correlation criteria of the approximating model using the first
group of wavelet functions

Abrasion process Number Beta Meyer Shannon

Milling 4 1.00 0.01 0.24

16 0.14 0.03 0.47

64 0.04 0.07 0.07

Face milling 4 0.02 0.01 0.08

16 0.02 0.02 0.70

64 0.02 0.07 0.87

Honing 4 − 0.98 0.02 0.66

16 − 0.97 0.05 0.39

64 − 0.96 0.09 0.04

Grinding 4 1.00 0.02 0.10

16 0.97 0.04 0.13

64 0.99 0.09 0.07

Turning 4 1.00 0.04 0.04

16 0.12 0.10 0.99

64 0.33 0.14 − 0.03
Polishing 4 1.00 0.03 0.70

16 0.90 0.09 − 0.87
64 0.89 0.12 0.08



A ranking of the relevance of wavelet functions of the
third group can be addressed by comparing the MSE evo-
lution with the hidden neuron number. The most relevant
wavelet function from this category is the one that leads
to the more reduced MSE using less hidden neurons.
Based on this classification condition, we can draw the
conclusion that the Gaussian wavelet and its derivative
are the more relevant wavelet functions for the

characterization of surfaces generated by abrasive process-
es (Fig. 6) than Morlet and Paul wavelets.

Further, inside the Gaussian wavelet and its deriva-
tives, we found that the first derivative of the Gaussian
wavelet function (DoG1) leads to the lower MSE for all
the abrasive processes (Fig. 7); then, it is more appro-
priate and can be considered a universal wavelet
adapted to the analysis of abraded surface textures.
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processes, respectively. a Grinding. b Honing. c Polishing. d Milling. e Face milling. f Turning



Two widespread criteria were commonly used by re-
searchers to determine qualitatively the suitability of a
wavelet function for a given application which are as
follows:

1. The wavelet function properties such as

& Symmetry: If the wavelets are not symmetric, then the
wavelet transform of the mirror of an image is not the
mirror of the wavelet transform.

& Smoothness: This property is determined by the number
of vanishing moments. If the wavelet has N vanishing
moments, the wavelet transform can be interpreted as a
multiscale differential operator of order N. This yields a
first relation between the differentiability of the analyzed
signal and its wavelet transform decay at fine scales.

& Orthogonality: This property can be too restrictive at
times.

& Compact support: This property is a function of the
filter length.
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Fig. 6 Mean square errors of the approximating model using the third category of wavelet functions for finished surfaces with different abrasive
processes, respectively. a Grinding. b Honing. c Polishing. d Milling. e Face milling. f Turning



2. The matching between the shape of profile features and
the one of the wavelet function.

In the two next sections, results of the proposed approach
are then compared to those resulting from these two qualita-
tive methods.

4.2 Influence of wavelet properties on wavelet
function relevance

Table 4 summarizes the principal properties of the library
wavelet functions used in this study, and the identified wavelet
function pertinence using the proposed selection approach.
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We can conclude clearly from Table 4 that relevant wavelets
do not require specific properties to decide on its suitability for
multiscale characterization of an abraded surface. Indeed, no
rule can be established to justify the wavelet function choice.

4.3 Influence of wavelet shape and decomposition
levels on wavelet function relevance

The topographic profile of the abraded surface can be seen as
the superposition of a unique elementary pattern that physically
represents the footprint of the elementary mechanical process
that creates the abrasion of the surface [18, 19] (Fig. 8).

Shape matching between wavelet base function and ana-
lyzed profile features has been considered as an alternative
approach to wavelet function selection. In fact, it is well
known that wavelet analysis is a measure of the correlation
between surface features and the wavelet shape at different
positions and scales of the analyzed signal, and therefore,
the signal reconstruction and statistical estimators are strongly
influenced by the wavelet shape. However, it is generally dif-
ficult to accurately match the shape of a signal to that of a base
wavelet through a visual comparison.

It can be remarked that the major nonadapted wavelet func-
tions (group 1 and group 2) have a different shape from this

main elementary pattern of abraded surfaces (Figs. 4 and 8).
However, wavelet functions belonging to group 3 (relevant
wavelet) have a shape with single oscillation similarly to the
abraded surface pattern. In particular, the DoG1 wavelet func-
tion was found to be more relevant than the Paul2 wavelet
function, although this latter has a more similar shape to the
elementary main pattern. This can be explained by the fact that
the shape of the optimal wavelet DoG1 reproduces only one
ridge of the elementary abrasion pattern. In consequence, the
elementary abrasion pattern is entirely approximated not only
by a one-scaled and translated wavelet but by a two-scaled and
translated DoG1wavelet. This then permits a better adaption to
the abrasion pattern and especially allows a better approxima-
tion of prospective nonsymmetric ridges surrounding a groove.

We can also remark that although the Haar wavelet is not a
continuous function and therefore introduces discontinuity in-
to the decomposed profile, it appears in the group of adapted
wavelet function (group 3) for practically all the abrasive pro-
cesses (Fig. 6). This can be explained by its shape presenting
only one oscillation like the other wavelet functions of this
group and its capacity to adapt to sharp features such as steps
and grooves.

It can be concluded that classification of the relevance of an
analysis wavelet function is not based only on its shape but
also on its capacity to properly replicate surface features and
that the proposed approach allows an objective qualification
of wavelet function relevance.

Otherwise, it can be observed that the influence of the
shape of the wavelet function can be greatly reduced by in-
creasing the number of decomposition level (Figs. 6 and 7),
but it is obvious that, in this case, the representation of surface
features will became sparse and each pertinent information
will be diluted between several wavelet scales and spatial

Table 4 Wavelet functions properties and its determined relevance

Wavelet families Properties Relevance

Real/Complex Orthogonal Compact support Symmetry Regularity

Meyer Real Yes No Yes Infinitely differentiable –

Shannon Real Yes No Yes Infinitely differentiable –

Beta (3,3) Real Yes Yes Yes Infinitely differentiable –

Spline (order = 3) Complex Yes No Yes Infinitely differentiable o

Dog (N) Real No Yes Yes Number of the derivative (N) o (N = 8)
++ (N = 1;3)

Mexican Hat Real No No Yes 2 +

Gaussian Real No No Yes 1 +

Haar Real Yes Yes Yes Discontinuous o/+

Morlet Real No No Yes Infinitely differentiable +

Paul (order = m) Complex No No Yes Infinitely differentiable +

GGW Real No No Yes Infinitely differentiable −/o

– Group 1 (not adapted wavelet), o group 2 (not relevant wavelet), + group 3 (relevant wavelet)

Fig. 8 Schematic representation of groove and ridge profiles generated
by individual abrasive grit [19]



positions, thus making it difficult to properly detect all the
textural characteristics.

5 Conclusions

A novel method for the classification of wavelet function rel-
evance for multiscale surface topography characterization was
proposed. It consists of tracking the performance of nonlinear
regression models of the multiscale wavelet decomposition
based on the genetic algorithm-optimized wavelet neural net-
work by varying the number of hidden neurons. It was suc-
cessively applied to the identification of relevant wavelet
function for multiscale characterization of various abrasive
finishing processes. Considering a wavelet library composed
by 16 different wavelet basis functions, results show that
Gaussian and its derivative wavelet functions are the more
relevant and particularly the first derivative (DoG1) is the
most relevant to highlight the multiscale patterns of abraded
surfaces. Further, it demonstrated that increasing the decom-
position level can reduce the impact of the wavelet function
choice.
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