brought to you by .{ CORE

provided by New University of Lisbon's Repository

View metadata, citation and similar papers at core.ac.uk

<

Hugo Menino Aguiar
Licenciado em Engenharia Informéatica

o S¥INO SN
o

Profiling of Real-World Web
Applications

Dissertacdo para obtencédo do Grau de Mestre em
Engenharia Informéatica

Orientador: Prof. Doutor Jodo Costa Seco, UNL-FCT
Co-orientador: Eng. Lucio Ferrdo, OutSystems SA

Presidente: Prof. Doutor Carlos Isaac Pil6 Viegas Damasio

Arguente: Prof. Doutor Maria Anténia Lopes
Vogal: Prof. Doutor Jodo Costa Seco

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Novembro de 2010

https://core.ac.uk/display/303716469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Profiling of Real-World Web Applications

Copyright © Hugo Menino Aguiar, Faculdade de Ciéncias e Tecnologia, Uni-
versidade Nova de Lisboa.

A Faculdade de Ciéncias e Tecnologia e a Universidade Nova de Lisboa tém o
direito, perpétuo e sem limites geograficos, de arquivar e publicar esta disserta-
cdo atraves de exemplares impressos reproduzidos em papel ou de forma digi-
tal, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a
divulgar através de repositorios cientificos e de admitir a sua cépia e distribui-
¢do com objectivos educacionais ou de investigacdo, ndo comerciais, desde que
seja dado crédito ao autor e editor.

To my father Carlos,
my mother Otilia
and my sister Loide.

I owe you more than I can ever say.

Acknowledgements

"One man may hit the mark, another blunder; but heed not these distinctions. Only from

the alliance of the one, working with and through the other, are great things born.”
— Antoine de Saint-Exupery

This thesis is the culmination of a long path started in the beginning of my B.Sc. Many pe-
ople contributed either directly or indirectly to this work. I hope I have remembered everyone.

Tomy advisors, Jodo Costa Seco and Lucio Ferrdo. They provided me guidance and support
at key moments in my work while also allowing me to work independently. Their careful
review of several versions of this manuscript improved the quality of this dissertation. Without

them this work would not have been possible.

To Luis Caires and Anténio Melo, they gave me the opportunity to do this thesis in a col-
laboration between the Faculdade de Ciéncias e Tecnologias of Universidade Nova de Lisboa (FCT-
UNL) and the R&D team of OutSystems. I also ankowledge FCT-UNL for giving me work
conditions and partial financial support.

To all my OutSystems colleagues for their insightful comments and discussion. Hugo Veiga,
Hélio Dolores and Lucio Ferrdo were key elements during the development of this work. They

took time away from their own lives to help me on this thesis.

And because I'm the sum of my life experiences and because there is more in life than work,
I would like to thank some people that helped me along time, either shaping my character or
sometimes righteously putting me on the wrong track.

Arlindo Lima, in the beginning of my B.Sc, when I was kind of lost, you were a key element
helping me in several subject courses.

Raul Testa, Jodo Paiva, Francisco Valente, Nelson Seabra, Ricardo Figueiredo, Vitor Rodri-
gues and Pedro Dias, I could not do the things I have done without your loyalty and friendship.
Pedro, thank you for proofreading this manuscript.

All the friends I made in Poland, during my erasmus year. You made my life in Poland
incredibly enjoyable and sociable. At least these I have to refer, Inés Nolasco, Filipe Mateus,
Carlos Tomads, Ludgero Santos, Ely Teixeira, Maria Jodo Rosa, Lukasz Kulbacki, Adam Gluszuk,

Pedro Vareda and Diogo Paulino.

vii

All the guys that helped making University an easygoing and straightforward challenge. I
shall enumerate just a few, Pedro Afonso, Sofia Gomes, Jodo Gomes, Jodo Sousa, Bruno Teixeira,
Marco Teixeira, Nuno Martins, Sofia Canelas, Tiago Amorim, Nelson Fonte and Ricardo Neves.
Fabio Santos and Jodo Ferreira, thank you for sharing car trips with me between our hometown
and Lisbon.

Associagdo Fazer Avangar, making time to go on community service projects contributed gre-
atly to retain my sanity. There are more important things out there in the real world than
writing thesis.

Finally, I would like to thank my loving Catia for putting up with me and my laptop for
days and nights. Thank you for your faithful support, courage and strength. My sister, thank
you for being my buddy and for helping me grow and avoiding mistakes. And my parents, you
always give me the freedom and opportunity to pursue my dreams, even when they appear
incomprehensible or dangerous.

All errors and limitations remaining in this thesis are mine alone.

viii

Abstract

The increasing dependency of business on web technologies causes a greater need for accurate
assessment of factors associated with the success of enterprise web applications. Performance
is one of these factors. Nevertheless, performance evaluation is usually only a concern when
problems arise as a consequence of bad-user experience.

Before being deployed to production, applications are assessed and analyzed in simulated
environments. However, it is not easy to simulate a real-world environment and the effective
use of the system, leading to poor and expensive performance data collection. Moreover, in
agile methodologies, where development is focused in fast time to market and getting early
feedback from end-users, upfront estimation and forward thinking about scalability is not in
the top priorities. This constrains even more performance analysis and tests, as developers
are only aware of performance issues when critical feedback from production systems is given
back to development. All this, commonly leads to enterprise web applications with scalability
problems, and low responsiveness.

This dissertation presents a structured way of giving continuous and real world perfor-
mance feedback to developers of enterprise web applications. By having early access to real
performance metrics, developers easily detect stress points in applications, allowing for timely
tuning actions, before reaching critical conditions for end-users. Metrics also help developers
assessing the impact of changing intensively used parts of existing applications.

In the first part of this thesis we present a structured overview of the state of the art on the
subject. Some profiling techniques are studied as a basis for our design and implementation
decisions.

We then focus on the solution architecture, we design and implement a system to run in real
world OutSystems environments. We also describe how our system collects, aggregates, and
transports data, and how is it made available to the developer, crossing different architectural
layers of the Agile Platform and avoiding significant impact.

To finish, we conclude with the validation of the profiling system and with the results of
this thesis.

Keywords: Profiling of Web Applications, Profiling in Production Evironments, Agile Devel-
opment, Measuring Time and Frequency, OutSystems Agile Platform.

ix

Sumario

O mundo empresarial estd cada vez mais dependente das aplicagdes web. Esta dependéncia
requer uma andlise exacta sobre os factores associados ao sucesso destas aplicagdes. A perfor-
mance é um destes factores. No entanto, a performance é geralmente analisada apenas depois
dos problemas serem expostos por consequéncia de experiéncias negativas do utilizador final.

Antes das aplicagdes serem colocadas em producdo, estas sdo avaliadas e analisadas em
ambientes simulados. Contudo, ndo é facil simular o mundo real e o uso efectivo do sistema,
isso faz com que a recolha de dados de performance seja ineficiente e cara. Além disso, as me-
todologias dgeis focam o desenvolvimento na rapidez da chegada do produto ao mercado e na
antecipacdo do feedback dos utilizadores finais, deixando de parte estimagdes e preocupacdes
sobre a escabilidade das aplicagdes. Isto restringe ainda mais a andlise de testes de desem-
penho, pois os programadores s6 tomam conhecimento destes problemas quando é dado um
feedback critico relativo ao comportamento das aplicagdes. Por todas estas razdes, as aplicagdes
tém normalmente problemas de escabilidade e de resposta.

Esta dissertagdo tem como objectivo, desenhar e implementar um sistema de profiling capaz
de recolher métricas em ambientes de produgdo, e disponibiliza-las aos programadores. Este
sistema ird fazer com que os programadores possam tomar decisdes de optimizagdo de cédigo
mais informadas e ajudard a identificar bottlenecks.

Na primeira parte deste documento, apresentamos um resumo estruturado sobre o estado
actual das investigagdes feitas sobre o assunto e sdo estudadas algumas técnicas de profiling
que serviram de base nas decisdes tomadas durante a fase de implementacéo.

Posteriormente, centramo-nos na arquitectura da solugdo. E projectado e implementado
um sistema para correr em ambientes de producdo OutSystems. Também descrevemos a forma
de recolha, agregacdo, disponibilizagdo e transporte de dados, atravessando diferentes cama-
das da arquitectuta da Agile Platform - usada aqui como caso de estudo - sem criar impacto
significativo.

Para finalizar, concluimos com a validac¢do do sistema de profiling e com os resultados desta
tese.

Keywords: Profiling de Aplicagdes Web, Profiling em Ambientes de Produgao, Agile Develop-
ment, Medi¢des de Tempo e Frequéncia, OutSystems Agile Platform.

xi

Contents

1 Introduction

1.1 Motivation L e e e e e e e
1.2 ThesisContext e e e e
1.3 Web Applications LifeCycle
1.4 Goals o e
1.5 Challenges e
1.6 Approach. e
1.7 Document Structure e

2 Agile Platform

21 ServiceStudio e
2.2 Visual Programming Language
23 PlatformServer e
24 Processof Deployment o oo

3 Measures and Metrics
31 Profiling
3.2 What Should We Measure? i i e

4 Profiling Techniques

4.1 Profiling of Web Applications L oo L
411 Gprof e
412 Google Analytics L
42 Measures e
43 ExecutionTime e
44 Nonblocking Counters

5 Profiling of Web Applications in OutSystems

51 CodeGeneration
52 InstrumentingCode o o
5.3 Collecting Runtime PerformanceData
54 Log Service and Data Structures
5.5 Transporting Metrics to Service Studio L.

xiii

11
15
16

19
19
21

23
23
24
24
25
26
27

CONTENTS

5.6 Connecting Development and Production Environments

5.7 Decorating ServiceStudio Lo Lo oL o

6 Results Analysis

6.1 Developer Experience while Looking for a Bottleneck
6.2 DiskSpaceUsage e
6.3 Runtime PerformanceImpact

6.4 Concluding Remarks

7 Conclusions

7.1 Work Experience . .
7.2 Conclusions
7.3 Future Work

A Appendix

A1l Glossary

Xiv

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

3.1

51
52
53
54
55
5.6
57
5.8
59
5.10
511

6.1
6.2
6.3
6.4
6.5
6.6

Simplified web applicationlifecycle, 4
Target architecture L 5
Service Studiolayout L L 10
Exampleofa Web Flow 11
Example of an Action Flow 12
Example of the OutSystems languagenodes 13
Displaying dataexample L oo 14
Submitting dataexample Lo L L o 14
Architecture of the Platform Server using multiple Front-end Servers 15
Environment implementation and 1-Click Publish 17
Another 1-Click Publishexample 17
Inquiryresults L 22
Action and eSpace treeexample L oo o L L 30
Example of data structures to store metrics 0L 33
Front-end dataflow L oo 33
Datastructures 35
Data flow when there is no performance datacached 37
Data flow when performance data is cached in the development environment . . 37
API for defining the address of production Service Center 38
Example of the properties pane for anaction L. 39
Example of the properties pane for a preparation screen 39
Example of the Properties Pane when a query is selected in a Action Flow 40
Example of an advanced query decorated with a waning sign 41
Example: detecting the bottleneck in a prepraration screen 45
Example: detecting the bottleneck in action flow 45
Graph of pages per second: test with 100 users, profiling ON 47
Graph of pages per second: test with 100 users, profiling OFF 47
Graph of pages per second: test with 150 users, profiling ON 47
Graph of pages per second: test with 150 users, profiling OFF 47

XV

LIST OF FIGURES

6.7
6.8
6.9
6.10

Graph of pages per second: test with 200 users, profiling ON 47
Graph of pages per second: test with 200 users, profiling OFF 47
Graph of average response time: test with 150 users, profiling ON 48
Graph of average response time: test with 150 users, profiling OFF 48

XVi

Listings

4.1
4.2
51
52

Example of a blocking algorithm to incrementacounter 27
Example of a Counter classwith CAS 28
(BEFORE) Example of generated code for anaction 31
(AFTER) Example of generated code foranaction 32

Xvii

Introduction

1.1 Motivation

Web based applications are widely used throughout industry, education, government and other
institutions. For instance, a study from NetCraft [9] estimates that on June 2010 there were
approximately 206 million sites on the Internet.

The increasing dependency of business on web technologies causes a greater need for ac-
curate assessment of factors associated with the success of enterprise web applications. Non-
functional requirements like performance is one of these factors. However, performance eval-
uation is usually only a concern when problems arise as a consequence of bad end-user experi-
ence. Only in special cases there is the anticipation of performance issues, by earlier experiences
or obvious expectations, and a thorough performance evaluation is performed.

Hence, correctness and performance are usually assessed and analyzed in simulated envi-
ronments before being released into production. However, it is not easy to simulate real-world
environments and the effective use of the system, thus leading to poor and expensive perfor-
mance data collection and estimation of the whereabouts of application bottlenecks.

Agile methodologies focus in the fast time to market of software development and evolu-
tion based on early feedback from end-users. This causes development and maintenance to
be quite modular and raises another concern which is the developers” awareness about perfor-
mance issues when editing other developer’s code.

When developers work on a web application with considerable history, they are not usually
aware about the usage and responsiveness of the existing system. Since they are not informed

1

1. INTRODUCTION 1.2. Thesis Context

about the performance of the application in production, they commonly introduce features that
lead to performance gaps that have to be corrected later. The fact that no runtime application
performance data is usually available, means that execution bottlenecks are only detected when
end-users give critical (negative) performance feedback.

With our research we want to answer two different questions:

e Can we collect real world data about performance of web applications without significant
impact in the end-user experience?

e Can we give feedback to developers in a way that impact analysis is improved and that
anticipation of performance issues is achieved?

For that, we present a possible solution of a profiling system to run in real world OutSystems
environments. By measuring realtime performance, the profiling system helps developers to
detect stress points in applications, allowing for timely tuning actions before reaching critical
conditions for end-users. These metrics also help developers assessing the impact of changing
intensively used parts of existing applications.

1.2 Thesis Context

This work was developed while integrated in the Research and Development (R&D) team of
OutSystems, a software company founded in 2001, with offices in Portugal, Netherlands and
United States. The main solution of the company is the OutSystems Agile Platform, a tool to
develop web applications that evolve over time.

There are two main reasons why it is interesting to study this subject using OutSystems.
First, because OutSystems share the same motivations that were described in Section 1.1. And
second, because of the interesting characteristics of the Agile Platform that seemed to make
possible the creation of a profiling system to run within it.

Profiling of web applications is not an easy and common task in regular production environ-
ments. There may be some explanations for that fact, among which, we find the heterogeneous
context of web applications usually containing interface code, business logic and databases.
Collecting data in all tiers of an application and gathering it in a meaningful way is not a triv-
ial task. On the other hand, performance degradation caused by instrumentation and data
collection is usually the reason for not collecting real-world data.

The OutSystems Agile Platform [10] integrates the development of web applications in one
single programming language and one development environment that supports the whole life
cycle of applications. By presenting a unified solution, the Agile Platform has connections be-
tween development and production environments which allows to implement a complete col-
lect, transport and visualization solution. The implementation of this work also benefits from
services, already present in the platform, to handle the data transport between the different
layers of the architecture.

2

1. INTRODUCTION 1.3. Web Applications Life Cycle

Web applications are developed using a domain specific language (DSL) [31,43] that inte-
grates interface design, business logic and database manipulation operations in a single lan-
guage. Applications are then compiled to standard main stream technologies and applications
are set to run on a standard application server architecture. In our proposed solution, by in-
strumenting the generated code with efficient collecting profiling techniques, probes are placed
in the applications. So, when a user interact with a application, these probes are reached and

data is recorded and stored.

The high level of abstraction provided by the OutSystems programming language, leads de-
velopers to be unaware of many implementation details and to focus on the meaning of their
programs. It is true that the platform takes care of many code optimizations, but there are some
cases where the optimizer is simply not enough and where applications would benefit from a
clever design. By collecting simple runtime data at the level of the DSL, as execution counts and
duration, and considering as targets its course grain elements, and avoiding low level monitor-
ing we achieve two important milestones, we keep the interference level and the performance
impact in production environments at an acceptable level and we produce information that is
tightly connected to the programming elements and is easily shown to developers in the de-

velopment tool.

1.3 Web Applications Life Cycle

In order to describe the OutSystems applications life cycle and their target architecture we use
two types of environments: the development environment meaning the environment in which
developers program, design and test web applications, and the production environment where
the application goes out to the world and reaches final end-users. For the sake of simplicity
we omit here the quality assurance environment usually used to ensure the quality of the ap-
plication, open bugs and review bug fixes. We also omit some details of the development and

production environments but we will address them on the next chapter, in Section 2.4.

Consider the simplified life cycle of web applications depicted in Figure 1.1. Development
starts in the Service Studio, the visual development tool of the Agile Platform, that is typically
connected to a controlled development environment. The application code is compiled and
published in that environment for the first testing phase. Depending on the actual staging
architecture, the code is manually transported, by a delivery manager or a gatekeeper person,
to a production environment and put in use. In the standard installation, there are ad-hoc

processes for collecting users’ feedback and getting it back to the development teams.

After the application has been deployed to a production environment and users start to use
it, the delivery manager will receive feedback about the users” experience. This feedback is
then passed to the developers for making changes in the application.

1. INTRODUCTION 1.4. Goals

5 feedback feedback 4
Development Rt Production Q
Environment Delivery Manager Environment !.- [l| O
j ~LJ
Service Studio | A - '[' .J

[[3
1 G

Figure 1.1: Simplified web application life cycle

If we simplify the current web applications life cycle we can summarize it in five main steps

(see Figure 1.1):

1.

14

Developers use Service Studio, to design, create, modify and test web applications. When
necessary, applications can be published to the development environment to be tested

and analyzed.

When applications pass a test phase and there is a decision to deploy it, the delivery
manager transports it to the production environment.

Users interact with the application.
The delivery manager receives feedback about the users experience.

The feedback is analyzed and passed to developers for making changes in the application.
The cycle restarts in step 2.

Goals

The goal of this work is to reach the target architecture depicted in Figure 1.2. For that, we pro-

pose an extension of the existing life cycle, where data is continually collected and transported

to the development environment. Note that Service Studio always runs connected to an envi-

ronment and therefore it can retrieve collected data and show it to the developer. In this way,

the availability of this performance information, anticipates the need of explicit feedback from

users to detect bottlenecks and stress points of the application. We next present the main steps

of Figure 1.2 in more detail. Although we omit here the feedback given by clients and end-users,

we do not intend to replace this explicit feedback but only to anticipate needed changes to the

applications.

1. INTRODUCTION 1.5. Challenges

feedback rsadbiack
Development ~\ Production Q
B Environment Befivery Kanagse Environment (N 9
C > &
Service Studio f y L
2 ¢ 5

;‘1') WebAgp | ——mmm— WebADD &% (]

N,
i @, =) =
Usage Metrics . T 4 /Age Metrics

Figure 1.2: Target architecture

—_

. Developers use Service Studio, to design, create, modify and test web applications. When
necessary, applications can be published to the development environment to be tested

and analyzed.

N

. When applications pass a test phase and there is a decision to deploy it, the delivery

manager, transports it to the production environment.

W

. The application runs for a period of time in the production environment where the pro-

tiling system measures and stores relevant metrics.

4. Metrics are transported back to the development environment.

Q1

. Runtime performance data is shown in Service Studio. Developer can then visualize infor-
mation about the performance that each programming element of the application has in

production.

The final objective of implementing a profiling system to run in the Agile Platform is there-
fore to collect data efficiently, without causing impact on performance, and showing it to de-

velopers in the context where it is most necessary and useful.

1.5 Challenges

Among the goals defined above there are challenges that arise - it is essential to answer the

following questions:

1. Which information, concerning web applications analysis, is more relevant to the devel-
oper and what can we measure inside a production environment?

2. How to integrate a profiling system inside OutSystems production environments without

significant impact in application performance?

1. INTRODUCTION 1.6. Approach

3. How to decorate Service Studio with profiling information without cluttering the existing

environment and without significant impact to its performance?

4. How to send data back to the development environment? In the present situation, pro-
duction and development environments are always typically disconnected.

1.6 Approach

In this document, we describe the design and implementation of a profiling system to analyze
the performance of OutSystems web applications. This system collects runtime performance
data in production environments and automatically transports it to the development environ-
ment tool, thus allowing developers to make more informed decisions on code optimizations,
anticipating the critical feedback from end-users and helping to identify bottlenecks and stress
points that are sometimes difficult to detect.

In the first phase of this work, we inquired some key OutSystems developers to find out
which metrics are more relevant to measure on a production environment. The results of this
inquiry helped us avoiding the risk of implementing a system that wouldn’t reach its goals in
this real world context. We also studied some techniques that guided our decisions along the
design and implementation phase.

During the development phase, we created a system to collect and aggregate metrics in
production environments, a system to transport metrics to development environments and we
proposed a visualization solution, to show the metrics inside a development tool.

Since we aimed at providing automatic feedback in Service Studio, we connected the pro-
duction and development environments - in the existing architecture they are disconnected.

Finally, our solution is functionally complete, up and running. It is expected to see this pro-
filing system in a future release of the Agile Platform, contributing to the quality of development
and maintenance of OutSystems applications.

During this work we also wrote and submitted a paper, entitled Profiling of Real-World Web
Aplications [13], to the International Symposium on Software Testing and Analysis, Workshop
on Parallel and Distributed Systems: Testing, Analysis, and Debugging, where it was later

presented (13th July in Trento, Italy).

1.7 Document Structure

In Chapter 1 we give a vision about the context of this thesis. And we also present the current
life cycle of the OutSystems web applications, the goals and the challenges of our research.

We next describe the architecture of the OutSystems Agile Platform giving more importance
to the components that are more relevant for this work. We focus first on the development tool,
the Service Studio, and the main language constructions. We then describe the runtime support
system, the Platform Server, and the process of deployment of web applications (Chapter 2).

6

1. INTRODUCTION 1.7. Document Structure

Chapter 3 visits the basic notion of profiling and presents the inquiry made to experienced
OutSystems developers, that helped us understanding which properties are more relevant to be
measured. Then we describe some techniques and methodologies for profiling (Chapter 4).

In Chapter 5 we describe the most relevant aspects of the work developed. We show how
our profiling system collects, aggregates and transports data from the production environment
to the development environment crossing different architectural layers of the Agile Platform
avoiding significant impact.

Finally, the results analysis is addressed in Chapter 6 and the conclusions are presented in
Chapter 7 where we also describe the conditions and the different phases of the project devel-

opment.

Agile Platform

The OutSystems Agile Platform [10] is composed by several heterogeneous parts that contribute
to integrate the development, staging and execution of web applications. In this chapter, we
focus first on the development tool of the Agile Platform, the Service Studio, and the OutSystems
programming language. We then describe the runtime support system, the Platform Server,
which includes a Database Server, several Front-end Servers for load-balancing purposes, and a
Deployment Controller Server.

In particular, we describe the inner components of each Front-end Server. We also explain
the deployment process of OutSystems web applications and present the implementation of an

environment.

2.1 Service Studio

Service Studio is the development environment of the OutSystems Agile Platform. It allows a de-
veloper to design a complete web application in a single environment. Web page interfaces,
business logic, database tables and security settings are all set in this single and integrated
environment. The language of Service Studio is graphically oriented, all elements are visually
defined by dragging and dropping smaller elements and defining specific properties. Appli-
cations created using Service Studio can be compiled and published to the Platform Server and
accessed via web browsers. The Platform Server is the runtime support system for OutSystems

web applications, we give more details about this component in Section 2.3.

2. AGILE PLATFORM

2.1. Service Studio

g | ’

&) MyContacts * - [Screen Flows\MainFlow\Contact_Edit\Preparation] - Service Studio [E=1C] ﬂ

File Edit View Insert eSpace Debugger Help

* - Jide & G @ A aa D vers -O0 T Y Pk

&} Tools | & MyContacts
3 User Actions Start £ Processes
&3 Process Actions J 4 L J Screen Flows 1
D Entity Actions 5 I CommonFlow
2 Timer Actions 4T3 MainFlow
£ Permission Actions 2 @ Starthiere
=3 Web Reference Actions v 4 Category_AddContactsPopllp |
3 Buiit-in Actions G._et[anl.._&:'. “ Category_Edit
|0 Referenced Actions = 4 Category_List
g Start —_ ¥ Category Show
o Execute Action B - 3 Categery_ShowContactsPopUp |
= Query v 4T Contact Edit
§ Advanced Query End 2 | Contactld
LA o & Preparation
o} Switch @ Save
Q) For Each 3 Contact Import
@ assign % Contact List
4| Record List To Excel ¥ Contact_ Show
&) Excel To Record List I3 RichWidgets -
W StartiSMS -
= Send Message
" Send Bulk Messages | Query Properties
¥ Send Emai Name GetContact
& Raise Error Descnption
o Destination Max. Records i
#] Downlcad Timeout in Seconds 3
] Er.—or Handler Guery
J End Contactld Contactld -
o| Comment ST p—

TrueChange™ b

@ Ok The eSpace is valid.

@ TrueChange™ |Debugger |

CAUsersihmahAppDataiLocal Temp\ Templ_6.4 PagingSorting- Lzip\MyContacts_Baseline.oml 17-11-2009 13:20:58 | Not Logged in |

Figure 2.1: Service Studio layout

The layout of Service Studio interface is depicted in Figure 2.1 and contains the following

elements:

1. The eSpace tree shows all the elements available in the eSpace.

2. The Flow Canvas where the developer designs the screen or Action Flows.

3. The Properties Pane where the developer can see and define the properties of the selected

element, either in the Flow Canvas or in the eSpace Tree.

4. The Lower Pane contains two tabs: 1) TrueChange where the developer can check for eSpace

errors and warnings; 2) Debugger where the developer can observe the runtime behaviour

of the eSpace.

5. The Tools Tree contains the elements that can be added to the flow. For example, the

developer can drag conditional nodes, assignments, queries, actions calls, or iteration

calls to the flow.

10

2. AGILE PLATFORM 2.2. Visual Programming Language

Contact_Show
StartHere g
wl
4 Ej — l
Caontact_List Contact_Edit
P _'—\-.,_‘ -
(e (s
i
\ ¥ \
Contact_Import C&egor,r_List Category_Edit
2 g B
o [] o
"“T——"’
\aﬁgory_shov.'
s]

Figure 2.2: Example of a Web Flow

2.2 Visual Programming Language

A DSL [31,43] is a programming language or executable specifcation language that offers,
through appropriate notations and abstractions, expressive power focused on, and usually re-

stricted to, a particular problem domain.

Service Studio implements a domain-specific language designed to represent web applica-
tions through high level constructs. With simple constructions, the developing tool interact
with diverse components of the system, facilitating the communication with the data reposi-
tories, the manipulation of data and the interface with the user. The main high level elements
of the language are Web Flows which define the connections between web pages, showing the
possible end-user interaction sequence, Web Screens and Web Blocks which graphically define
the interface of an application, Action Flows that define pieces of logic of an application, and
Entities that define the data model. All these elements are integrated by the tool with clear

benefits to correctness that in most cases is forced by design.

Figure 2.2 depicts the Web Flow of a simple web application implementing an address book
where the end-user can create, update, remove contacts from a database. A Web Flow defines
the entry point of an application, in this case it is screen Contact List, and which are the next
possible screens for each situation. For example, screen Contact List may lead to screens Con-
tact Show, Contact Edit, Category List, or Contact Import. Screens are web pages programmed to

interact with the application code in the server.

Action Flows define a piece of behavior that may be triggered by an end-user when interact-
ing with a screen, by following a link and loading a new page or by pressing a button.

11

2. AGILE PLATFORM 2.2. Visual Programming Language

Start

>

Invalid Email? Invalid Message

' True_a

-5

GatContactByEmail
—
—
o

Invalid Message Ewisbing Email?

@ @

as|ey

A, Valid? End

' False)
| =
CreatelrlpdateCONTACT

<

4
Contact_List

e‘,

Figure 2.3: Example of an Action Flow

Action Flows are visually modeled using basic programming elements, e.g. assignments,
queries, conditional and loop constructs. Figure 2.3 shows an Action Flow that inserts a new
contact in our sample database. This Action Flow is called when the user presses button "save"
in screen Contact Edit after filling all necessary information in a form. Notice that action Create-
OrUpdateCONTACT (predefined by the system) tries to update the entity and if it fails it creates
anew one.

Below we briefly describe the main language constructions integrated in Service Studio:

Start & End - Delimit the action flow.

If & Switch - Control the execution flow by evaluating expressions.

Assign - Allows to assign a value to a variable.

Foreach - Executes a single or a collection of actions for each element of a list.

Simple Query - Executes a database query. Service Studio provides a graphical interface

to define the parameters, entities, join condition and sorting.

Destination - Deviates the execution flow to a web page.

Execution Action - Executes a specified action.

12

2. AGILE PLATFORM

2.2. Visual Programming Language

Start End Far Each
If Switch Destination
N]
® 4 & ’
SimpleQuery AdvancedQuery Aszign
— — ‘
L —

Figure 2.4: Example of the OutSystems language nodes

For more information about the language constructs and Service Studio please refer to Chap-

ter Designing Actions in [11].

Now we will present two examples of a run of an application. The first one represents a

runtime sequence to display data and is depicted in Figure 2.5.
runtime sequence to submit data and is depicted in Figure 2.6.
tigures are referred on the examples description.

The second one represents a
The numbers shown on the

When a user types the address of the web application in a browser, a request is sent to the

application server (see Figure 2.5).

1. The entry point in the web application determines that it should display the ContactList

screen. So the request is made for the ContactList screen.

Preparation is used to get data to display on the screen.
. The query is performed.
4.

The query output is used as the screen data source.

5. The screen is drawn and sent back to the browser.

The Screen Preparation always runs before the screen is rendered. In this case the Screen

The layout of the screen is designed using the Screen Editor, usually with a kind of a form

with inputs for the end-user to type data, and a button to submit the form. To model the

behaviour of the button the developer uses a Screen Action. A Screen Action runs on a specific

event on a screen, usually the click of a button (see Figure 2.6).
1. A request is made to a screen that displays an empty form.

2. The end-user types data and clicks on the save button.

3. The Screen Action that specifies the behaviour of the button is triggered.

4. The database is updated using the forms data.

13

2. AGILE PLATFORM 2.2. Visual Programming Language

@ r,_.-.©:’:‘n:r-w:ra Preparation ~ (-E Screen Editor ————

Start
StartHere
& >
@) 2 ©
Cantact_List
9 bl My Contacts

: -
=[h
— b 1
‘\\\
H\‘
) Hams Ermeail Prione
@ P

Figure 2.5: Displaying data example

@D ©,

g E Sereen Editor = ,.-. Screen Action ——

Start
Edit Contact
CreateOrlp
dateCONTACT

Contact_List

’d'

Figure 2.6: Submitting data example

14

2. AGILE PLATFORM 2.3. Platform Server

r—— -1 r —— -

|

I Front End | . | Front End |
I Server Server I
-

— s — —

I I S I

5
I e I
I
I

| Production Database
Server

Figure 2.7: Architecture of the Platform Server using multiple Front-end Servers

2.3 Platform Server

Platform Server is the runtime support system for OutSystems web applications. A Platform
Server may be installed in a farm configuration for scalability and high availability purposes. In

this configurations a load balancer distributes web requests among multiple Front-end Servers.

The architecture of the Platform Server is depicted in Figure 2.7 and is composed by: the
Front-end Servers, the Deployment Controller Server and the Database Server:

e Front-end Server: A Front-end Server is a typical web application server with some extra

services:

— Service Center - a console to administrate the Platform Server; it provides centralized
access to all Platform resource information as application versioning and manage-
ment, runtime activity and runtime execution reports.

— Log Service - a service to asynchronously store errors generated by all running appli-

cations.

e Deployment Controller Server: Is in charge of compiling web application projects, and
deploying the compilation result in the Front-end Servers.

e Database Server: A relational database management system, such as Microsoft SQL
Server or Oracle.

Our profiling system must collect performance data in each Front-end Server. The way we

collect, aggregate the data and transport it will be addressed in Chapter 5.

15

2. AGILE PLATFORM 2.4. Process of Deployment

2.4 Process of Deployment

1-Click Publish (1CP) is the process for deployment of a web application into an environment.
In OutSystems a web application project is known as an eSpace. An eSpace is edited using Service
Studio and can be published to a development environment, to be tested and analyzed, or
published to a production environment. When the developer invokes the 1CP process, Service
Studio contacts Deployment Controller Server, which generates the web application code and to

deploy it to different Front-end Servers.

The environment architecture and the 1-Click Publish process is depicted in Figure 2.8 and

Figure 2.9. The 1CP process comprises the following steps:

1. The developer invokes the process 1-Click Publish that sends the eSpace definition to De-

ployment Controller Server.

2. The Deployment Controller Server in the web server, receives the eSpace and generates a
standard .NET or J2EE application code.

3. The 1CP operation ends with the deploy process - an operation that updates the eSpace
published version (area that contains the last published version for a specific eSpace). In
the end, the application is accessible through web browsers.

Both development and production environments contain the ingredients depicted in Fig-
ure 2.8: a Deployment Controller Server, a web server with a database, an application server that
runs inside the web server and the running web applications.

The purpose of this chapter is to describe the relevant components of the Agile Platform for

this work.

We first described Service Studio, the development tool for creating web applications, where
we want to implement a visualization solution to provide performance metrics in the level of
the DSL elements. We then focused on the OutSystems language that integrates interface design,
business logic and database manipulation. Applications are designed in a single language and
are then compiled to standard technologies to run on a server architecture, the Platform Server.
In this work we want to prepare the compiler with efficient collecting techniques, so during the
deployment process, probes will be placed in the applications to collect runtime performance
data.

By presenting a unified solution, the Agile Platform has connections between development
and production environments which allows to implement a complete collect, transport and

visualization solution.

16

2. AGILE PLATFORM 2.4. Process of Deployment

- C#/Java

Front End

|
| o Front End
Server |
-

.]
I

Server I
-

Service Studio

Production Database
Server

Figure 2.8: Environment implementation and 1-Click Publish

eSpace r | C#/ Java Front-End Server
| Deploy. |
Se
| e | | Web Application Server
- — — \
@ Y Web
Application
Service Studio
Web
Application

Figure 2.9: Another 1-Click Publish example

17

Measures and Metrics

This study is about profiling of web applications, we want to measure properties in a real world
environment and send the collected data, back to a development environment to be visualized
inside Service Studio. In this chapter, we define profiling and we present the results of an inquiry
made to the most experienced OutSystems developers. This inquiry, helped us to be focused on
what is really necessary, preventing the risk of implementing a system that wouldn't reach its

goals in this real world context.

3.1 Profiling

The importance of profiling has been emphasized in areas as science, management and engi-
neering for many years - profiling in is clear sense of measuring attributes of known objects.
We always needed to “measure what can be measured, and make measurable what cannot be mea-
sured” (Galileo Galilei’s). Probably the best statement about importance of measurement is
Lord Kelvin’s ! [1]:"When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind. It may be the beginning of knowledge, but you
have scarcely, in your thoughts, advanced to the stage of science.” [19]

In software engineering, program profiling, software profiling or simply profiling, is the
investigation of a program’s behavior using information gathered as the program executes.
Profiling is all type of activities related with the dynamic analysis of code, thus analysis of
an application execution. Profiling tools are essentially useful when we want to optimize an

'William Thomson (or Lord Kelvin), (26 June 1824 - 17 December 1907) was a British mathematical physicist and
engineer.

19

3. MEASURES AND METRICS 3.1. Profiling

application or detect potential problems of resources usage such as memory. The usual goal of

this analysis is to determine which sections of a program to optimize, for example, to increase

its speed or to decrease its memory requirement.

There are specific types of profilers, depending on what they report, for example count

profilers, function profilers, call graph profilers and trace profilers - all these examples are
described in [24].

Profilers use a wide variety of techniques to collect data, below are some examples of these

techniques.

hardware interrupts - An hardware interrupt causes the processor to save its state of

execution and begin execution of an interrupt handler.

code instrumentation - Code instructions that monitor specific components in a system.
This technique inserts code into the program to analyze it.

instruction set simulation - Is a simulation model, it mimics the behavior of a mainframe
or microprocessor reading instructions and maintaining internal variables which repre-

sent the processor’s registers.

operating system hooks - Covers a range of techniques used to alter the behavior of an
operating system, applications, or other software components by intercepting function
calls or messages or events passed between software components. The code that handles
such intercepted function calls, events or messages is called a hook.

performance counters - A set of special-purpose registers built into modern micropro-
cessors to store the counts of hardware-related activities within computer systems. Often
used to conduct low-level performance analysis or tuning.

It was already written that there are different types of profilers depending of the the in-

formation that they report. But profilers are also characterized by the way they proceed [23].

They are divided in two main categories:

e Statistical profilers [23] - A sampling profiler does not require instrumentation, it pro-

ceeds by a statistical analysis - periodically (regular intervals of time) looks at which code
is currently being executed by the application. As it is statistical, it doesn’t see all code,
it actually sees the code that is taking more time to be executed. These profilers are con-
sidered not as intrusive to the target program, and thus don’t have as many side effects.
They are used to find bottlenecks in production code as they focus on what code is taking

more execution time.

Instrumenting profilers [32] - Some profilers instrument the target program with addi-
tional instructions to collect the required information. They work by changing an appli-
cation source code or binary, and adding calls to functions that count how many times
each procedure was called or how much time was spent inside. This approach allows for
an exhaustive analysis. However, instrumenting always has some impact on the program

20

3. MEASURES AND METRICS 3.2. What Should We Measure?

execution [41]. It can be minimal depending on the placement and the mechanism used

to capture the trace.

Code instrumentation is one of the most common techniques to register the behavior of
programs and to measure its performance [14,16,17]. Nevertheless, due to the impact of in-
strumentation on the systems’ performance [41], this type of profiling is not usually performed
on production environments. Other works [18,21,44] use sampling to reduce the cost of in-
strumentation. However, since these profilers proceed by statistical analysis, they may lead to
wrong performance measures. Gprof [23] is an example of a profiler that uses both instrumen-
tation and sampling. Instrumentation is used to gather caller information and the actual timing
values are obtained by sampling. A work that discusses the advantages and disadvantages of
these techniques is presented by Hall [24].

3.2 What Should We Measure?

In general, developers want to have as much information as they can get, and in more detail as
possible, so that developers can effectively change the web application when necessary, assur-
ing its success and performance, increasing its life time. However, our approach is to increase
developers awareness on simple performance information rather than providing complex and
expensive to get information.

To understand what would help developers to focus in the most relevant areas, both in
terms of efficiency and relevance, we prepared an inquiry with possibly relevant metrics that
we presented to the most experienced group of OutSystems developers. The idea was to un-
derstand which metrics would help the most these developers to anticipate inefficiency. The

following metrics were included on the inquiry:
1. Execution count and average execution time for actions, screens and queries.
2. Unstable code markers (elements that raise unexpected errors more than X% of times).
3. Caller frequency (who calls an action or screen?).
4. For each web screen - page size, average session size, average view state size.
5. Average of number of records returned for each query.
6. Hit ratio for cache mechanisms.
7. Code coverage (code "used" in last X weeks).
8. Common user navigation path.

9. Bounce rate (percentage of visitors that hit the website on a given page and then leave it

without visiting any other pages).

10. Exit rate (percentage of visitors that leave the system on a given page).

21

3. MEASURES AND METRICS 3.2. What Should We Measure?

Inquiry Results

User Navigation Path

Execution Counts and Time

Caller Frequency

Unstable Code Markers

Figure 3.1: Inquiry results

Each developer could select only two metrics. As depicted in Figure 3.1, all developers
inquired, considered more relevant to measure the execution counts and time of the program-
ming elements. Developers also considered relevant to measure the calls frequency and to be
informed about the common user navigation path, both metrics were selected four times. Fi-
nally, two developers considered relevant to know which elements raise unexpected errors.
The other metrics were not selected. Note here that this study was done to guide the initial
metrics to capture.

The results of the survey were clear. Developers considered more relevant to have execution
counts and average execution time for actions, queries and screen preparations (special kind of
action) and to keep the impact of the data collection as low as possible. This means that it is
absolutely necessary to measure as few properties as possible.

The execution counts and average execution time of actions, queries and screen prepara-
tions, allow developers to understand what is heavier on a web application, either by being
executed more often or by taking more time to execute. Showing this information to develop-
ers results in two clear benefits:

1. It decreases the risk of code modifications having unexpected and significant impact on
performance. Developers know they are changing sensible code and will correctly iden-

tify the risk of changing it.

2. Developers can monitor and identify bottlenecks of the applications before reaching crit-
ical status for end-users.

In the next chapter we describe some techniques and methodologies that were studied as a
basis for the development and implementation phase of our project.

22

Profiling Techniques

4.1 Profiling of Web Applications

With the growth of the internet and the increase demand of software, in particular of web
applications, sometimes companies are forced to shorten development software time and to
release software without performing enough analysis and testing.

In the context of web applications, techniques have been studied to validate these applica-
tions before being deployed into production [22,28,29,39]. A web application is considered
valid when it is guaranteed that all paths in the site which satisfy a selected criterion are prop-

erly exercised before delivery.

After an application has been implemented, it usually goes through a phase of testing before
going into production, this phase is performed in a development environment. Techniques and
tools to test and profile software on a development environment [2,3,8,20], have also been
created and studied. These techniques and tools try to address the best practices to improve

the software development team productivity and software quality.

The techniques and tools used to analyze these applications, in development environments,
usually collect huge amounts of data. There are visualization techniques that can be very effec-
tive, transforming program-execution data into visual information [15,37,38].

23

4. PROFILING TECHNIQUES 4.1. Profiling of Web Applications

41.1 Gprof

Gprof [23] is a classical profiler, widely referred among the community. This profiler was
created to help developers figuring which functions should be optimized, either because they
are called very often or because they take significant time to run.

Gprof is a call graph profiler that provides information about which functions in a program
call which other functions; about the number of calls; and about the amount of time spent
in each one. Therefore it gathers three pieces of information during program execution: call
counts and execution times for each profiled routine, and the arcs of the dynamic call graph
traversed by this execution of the program. By post-processing of this data, it builds the dy-
namic call graph for the execution of the program and propagate times along the edges of the
graph to attribute times for routines to the routines that invoke them.

To avoid impact on the running of the program it gathers profiling data in memory during
program execution and condense it to a file as the profiled program exits. This file is then
processed by a separate program to produce the listing of the profile data. An advantage of
this approach is that the profile data for several executions of a program can be combined by
the post-processing to provide a profile of many executions.

Gprof uses instrumentation to gather caller information and the actual timing values are
obtained by sampling.

When a program is compiled with gprof support, monitoring routines are inserted at strate-
gic points in the code to produce a trace of events. To measure the execution time it uses a
method that samples the value of the program counter at some interval, and infers execution

time from the distribution of the samples within the program.

4.1.2 Google Analytics

Several tools for profiling web applications have been created and are highly popular, but most
of these are useful for marketers and managers. They usually provide metrics about traffic
of data on the network and marketing effectiveness by following users paths. This kind of
profilers can determine, for instance, the direct impact of a specific marketing campaign by
analyzing the entry point of each user.

Google Analytics [4,27] is perhaps the most significative example inside this category - its a
solution that analyzes traffic data, helps clients to better target their ads, to strength marketing
initiatives, and to create web applications that better match their market goals.

The web analytics provided by Google, can help, for instance, to determine whether blog
visitors have a positive impact on a web application, or which visitors acquisition channels
work best and to what extent these should be increased or decreased.

The purpose of Google Analytics is to give the knowledge from which, marketeers and man-
agers, can make informed decisions about changing online strategies.

In this solution, all data collection, processing and maintenance are managed by Google.
When a user interacts with a web application with the Google Analytics Tracking Code (GATC),
visitor data as page URL, unique ID, screen resolution, are collected. For each pageview, the

24

4. PROFILING TECHNIQUES 4.2. Measures

GATC sends information to Google data collection servers. Finally, reports are typically dis-
played (updated) every 4 hours.

4.2 Measures

Conclusions of Section 3.2 pointed to measure the execution counts and the execution time of
screens, actions and queries. Thus we analyze Frequency and Time.

Frequency is the measure that describes the number of occurrences of a repeating event per
time unit. For instance:

e "How many times did users select the button "send to a friend" of the page newPro-

file.html last week?"
¢ "How many times was the page bestProfile.html rendered during last week?"
¢ "How many times is a function called?"
¢ "How many times is a function or a block of code executed?"

The other property is a component of the measurement system and is used to compare the
duration of events and the intervals between them. It adds information to the questions:

e "What was the average execution time of the function X during last week?"
e "Which functions are taking more than 6 seconds of execution time?"

e "What is taking longer since the new version was deployed?"

Execution counts and average execution time are two metrics that make sense to show
together. They allow, for instance, to tackle the following situation where a development team
have access to the metrics:

e "last week the average execution time of function X was 6 seconds"
¢ "last week the average execution time of function Y was 1 second"

A proactive team would probably try to optimize function X instead of function Y. However,
if function X was executed 10 times in that period in opposition to 10000 times of function Y,
our optimization on function X would have almost no impact on the end-users experience. A

careful optimization on function ¥ would certainly have more impact.

25

4, PROFILING TECHNIQUES 4.3. Execution Time

4.3 Execution Time

There are several techniques to measure execution time which are characterized by four key
attributes [41]:

e Accuracy - Defines how far is the measured time from the actual execution time of a
procedure. When a measurement is made, there is usually some amount of error, the
measurement is usually a result of actual execution time +/- some amount of error, where

some amount of error corresponds to the accuracy.

e Difficulty - Defines the necessary effort to obtain measurements. A method that only
requires the user to run the code and it produces an answer, is considered easy. A method
that requires usage of a logic analyzer and filtering of data to obtain answers is considered
hard.

e Granularity - Defines the size of the part of the code being measured. For example, coarse
granularity methods would generally measure execution time per process, per procedure
or per function basis. A method with fine granularity can measure execution time of a

loop or even a single instruction.

e Resolution - Represents the measure limitation. For example, a stop watch measures with
a 0.01 sec resolution, while a logic analyzer might be able to measure with a resolution of

50 nsec.

The design of the software can also have a major impact on the ability to obtain measure-
ments of execution time. If a software has a single entry and exit point for any part of it that
needs to be measured, and those points are designed consistently for all code segments that
have similar functionality then achieving accurate metrics can be possible.

Software Analyzer method is a term used for software tools designed for measuring execu-
tion time as CodeTest [3]. Usually software analyzers are based on the system clock and thus
the resolution is on the order of a millisecond. A good analyzer not only provides informa-
tion about functions and processes, but also means to measure execution time of loops, blocks
of code and statements. For example, in our context, timing trace must be correlated with the

OutSystems DSL elements to identify which element is responsible for each period of execution.

Each programming language provides a mechanism to retrieve the current time from the
system. These mechanisms save the system time on specific instants and then compute the
time intervals by subtracting the values of the system taken at different moments. The Java,
for example, creates an object that can be used as a stopwatch to measure the time execution of
code blocks.

26

4. PROFILING TECHNIQUES 4.4, Nonblocking Counters

4.4 Nonblocking Counters

The traditional way to coordinate access to shared variables is to use blocking algorithms, en-
suring that all access to shared fields is done holding the appropriate lock.

Synchronization assures that whichever thread holds the lock, will have exclusive access to
those variables, and changes to those variables will become visible to other threads only when
they acquire the lock.

The counter in Listing 4.1 is thread-safe. To safely increment the counter, the thread take
the current value, add one to it, and write the new value out, all as a single operation that
cannot be interrupted by another thread. Otherwise, if two threads tried to execute the incre-
ment simultaneously, an unlucky interleaving of operations would result in the counter being
incremented only once, instead of twice.

When multiple threads ask for the same lock at the same time, one acquires the block and
the others block. JVMs typically increment blocking by suspending the blocked thread and
rescheduling it later. This implementation can cause a significant delay relative to the few
instructions protected by the lock. More details about this example can be consulted in [6].

Listing 4.1: Example of a blocking algorithm to increment a counter

public final class Counter {
private long value = 0;

public synchronized long getValue() {
return value;

}

public synchronized long increment () {
return ++value;

}

But there are alternatives, for example, the compare-and-set (CAS) method. The CAS
method basically works by trying to update the value of the counter, but it fails if some other
thread changed the value since it was looked.

The CAS method includes a memory location (M), the expected old value (A), and a new
value (B). It starts by reading a value A from an address M, then it performs a computation
to derive a new value B, and then use CAS to change the value of V from A to B. The CAS
succeeds if the value at V has not been changed in the meantime. If another thread did modify
the variable, the CAS would detect it (and fail) and the algorithm could retry the operation.

A simple nonblocking algorithm using CAS, can have a performance advantage over the
lock-based versions. Loosing threads can retry immediately rather than being suspended and
rescheduled. And even with few failed CAS operations, this approach seems to be faster than
being rescheduled [33]. Listing 4.2 shows the counter class rewritten to use CAS instead of
locking. More details about this example can be consulted in a document written by Brian
Goetz [5].

27

4. PROFILING TECHNIQUES 4.4. Nonblocking Counters

In this chapter we described some methodologies and techniques for profiling. We started
by referring some work related with profiling of web applications and by describing the clas-
sical Gprof. We also presented Google Analytics which, although is a known web profiling an-
alyzer, it is not directly related with our work. We want to apply a classic profiling strategy
to measure other kind of properties. We want to implement profiling techniques that retrieve
relevant metrics for developers and IT managers.

We also described some techniques that we will use on our solution. For instance, we will
use instrumentation to collect runtime performance data. We are also interested in measuring
time and frequency and providing these two metrics together.

Listing 4.2: Example of a Counter class with CAS

public class CasCounter {
private Simulated value;

public int getValue() {
return value.getValue();

}

public void increment () {
int oldvalue = value.getValue();
while (value.compareAndSwap (oldValue, oldvValue + 1) != oldvValue)

oldvalue = value.getValue();

28

Profiling of Web Applications in
OutSystems

In this chapter, we describe the most relevant aspects of the work developed during this disser-
tation. We start by addressing the compilation process of the OutSystems language and then,
we describe the design, implementation and development of our profiling system to run in real
world OutSystems environments.

We focus first on the instrumentation of the OutSystems compiler. And then, we describe
how our system collects, aggregates, and transports data from the production environment to
the development environment, and how they are made available to the developer, crossing

different architectural layers of the Agile Platform avoiding significant impact.

5.1 Code Generation

When a web application is created with Service Studio it can generate Microsoft .NET [36] or
JAVA [42] code, depending on the target web application server, either IIS [34] or JBOSS [7]. In
this work, we defined changes in the generation of code .NET.

The DSL compiler generate C# [25,26] for the applicational logic and ASP [35] for the cre-
ation of web pages.

The syntactic analysis and validation of code is done in Service Studio. So, the OutSystems
DSL compiler receives a model that was previously validated and then proceeds with its tran-
scription to .NET.

29

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.2. Instrumenting Code

W AddCperation
I2) Processes
[I Screen Flows
1 = I Actions
*eé =l) AddOperation
2] X
ARG
& Result
Add _ -] ML|‘.i|:.|5‘
) Web Services
3 I} ‘Web References
[I References
[I Entities
I Structures
End [+ I} Sessicn Variables
[# |} Site Propertiss
"'@B I Timers
[+ I} Permission Aress Pl
[# |} Exceptions

I Imnages ;I

| »

Start

Figure 5.1: Action and eSpace tree example

5.2 Instrumenting Code

In our work we use code instrumentation because we are interested, in the first place, in giving
a flow of continuous real-data information to developers, and probabilistic results (sampling
profilers) are not as accurate as desired. Another and perhaps the mostimportant one is that the
impact of the data collection is diminished by associating counters to high level programming
elements.

We collect data by instrumentation of the code generated by the DSL compiler. Remember
that a developer invokes a process (1-Click Publish) in Service Studio to deploy the application
to a development environment. At that moment, Service Studio send the eSpace to the compiler
that generates a standard J2EE or .NET application. Then, when the application is ready;, it is
transported to a production environment where it is used by final end-users.

We adapted the compiler to insert probes in the generated code for each specific element
we chose to monitor. These probes are used every time that one of these elements are executed.

When an application is deployed to a development environment it is automatically instru-
mented. And when it is transported to a production environment, end-users interact with the
application and these probes are reached and data is recorded and stored in a structured way.

In Figure 5.1 we can see a simple example of an action and of an eSpace tree. The purpose
of action Add is to sum the value of variable X with the value of variable Y. In Listing 5.1 we
can see the generated code for that action before the profiler was implemented. In Listing 5.2
we can see the generated code for the same action with the profiling system running. After the
method declaration, we declare and initialize an object Stopwatch. The object Stopwatch has two
important methods: a Start method that stores the time at the moment it was called, and a Stop
method that calculate the difference between the time at the moment the method Start and Stop
were called. We also declare a boolean variable _profilerError, and we initialize the variable as

false.

30

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.3. Collecting Runtime Performance Data

In the end of the method, if the code rose an expected error, we change the value of _pro-
fileError to true. Then we call the method Stop of the object Stopwatch and we finally call the
method ProfileElement that stores all this information in a data structure that is integrated in the
running environment of the web application. Note here that, as we will see in the next section,
every web application is hosted by a running environment that contains a data structure with
the counters for all elements of the application being monitored. When probes are reached,
they interact with these data structures according to the usage of the applications.

In this example we show the instrumented code for an action flow, but our profiling system
is measuring the execution time, execution counts and error counts for other elements of the
language: buttons, queries, actions and iterator cycles (for each). The profiler also measures

the average number of iterations of for each cycles.

Listing 5.1: (BEFORE) Example of generated code for an action

public static void ActionAddOperation (HeContext heContext, int inParamX,
int inParamY, out int outParamResult) {
lcoAddOperation result = new lcoAddOperation();

lcvAddOperation localVars = new lcvAddOperation (inParamX, inParamY);
try {
//Add
result.outParamResult = (localVars.inParamX +
localVars.inParamY; //Result = X + Y
} //try
finally{
outParamResult = result.outParamResult;

}

5.3 Collecting Runtime Performance Data

In order to minimize the impact of profiling on applications” performance, we adopt an archi-
tecture with multiple layers and priorities to collect, aggregate, and transport data from the
running application back to the developer. Profiling code inlined in the application code to
count the number of times an action gets executed or the time it takes to terminate is crucial
and runs with the highest priority, and hence must be designed to have minimum impact on
execution time. Collected data is stored close to the programming elements being monitored.
This data must then be aggregated and transported across the Platform Server architecture. This
is performed in persistent state, with less and less priority and more and more spread in time.
We next explain in greater detail each step of the process.

Each running application (an eSpace) is hosted by a running environment which holds a data
structure containing a counter for the executions, errors and the total execution time for all its
programming elements being monitored. In order to transport the data through the different
architecture layers of the Agile Platform we then use services that run on low priority to avoid

competing with the processing of web applications.

31

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.3. Collecting Runtime Performance Data

Listing 5.2: (AFTER) Example of generated code for an action

public static void ActionAddOperation (HeContext heContext, int inParamX,
int inParamY, out int outParamResult) {
System.Diagnostics.Stopwatch _profilerStopWatch = new System Diagnostics.Stopwatch();

bool _profilerError = false;
try {
lcoAddOperation result = new lcoAddOperation();
lcvAddOperation localVars = new lcvAddOperation (inParamX, inParamY);
try {
//Add
result.outParamResult = (localVars.inParamX +
localVars.inParamY; //Result = X + Y
} //try
finally{
outParamResult = result.outParamResult;

}

catch (Exception) {
_profilerError = true;
throw;

finally {
_profilerStopwatch.Stop () ;
OutSystems.HubEdition.RuntimePlatform.Profiler.ProfileElement ("H6ekx40c6k+vcs5 QWMKTQA",
"/UserActions .NrVoz+h8XUCKuWhvZPp7yw", _profilerStopWatch.ElapsedMilliseconds,
_profilerError);

}

Figure 5.2 represents the data structures of applications that are running in a Front-end
Server. For the sake of simplicity, the image is simplified. Although each data structure only
shows the execution counts for some actions, these data structures contain the metrics for all
elements being monitored. The probes that were inserted by the DSL compiler, during the gen-
eration of the code for the applications, interact with these data structures according to their
usage. For example, when a user runs the application Enterprise Manager and proceed with

the user login, the execution counts for the action login is incremented.

Since the application server recycles running applications in regular time intervals we store
data into persistent state whenever necessary. Approximately every 15 minutes, all measure-
ments in the running environment are pushed to the nearest Log Service and stored in the

database and all counters and timers are put to zeros.

The next step is to store data in a secondary persistent state, the filesystem. This intermedi-
ate step of storing results in the Log Service could be by-passed, but the Log Service is optimized
to avoid the impact of logging information on the application’s performance, this service runs
with low priority in the Front-end Server so it never competes with the normal processing of

web applications.

32

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.3. Collecting Runtime Performance Data

Front-End Server
Web Application Server
OnLine Shop Enterprise Manager
OnLine | Actonx | 15 Enterprise Login i
Shop Action ¥ 45 Manager Action K 15
Action Z 45
\ [
Log Service .
15/15min . 15/15min
Enterprise Login 123
Manager A
OnLine —|Action X 33
Shop ActionY | 145

Figure 5.2: Example of data structures to store metrics

Front-End Server

Web Application Server
Enterprise Manager OnLine Shop
A
(15/15min 15/15min

File System

currentDay pastDays

Figure 5.3: Front-end data flow

33

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.4. Log Service and Data Structures

Figure 5.3 shows the data flow inside a Front-end Server. Every 60 minutes, the Log Service
appends the currentDay file with the collected data. Note here that the file system contains two
tiles, a currentDay file that contains the metrics of the current day, and a pastDays file that main-
tain a pool of the metrics for the last 7 days, where the oldest is replaced by a new one each

day. Hence, the profiling system has a continuous flow of information of about one week.

These intervals of time arise from a balance between the risk of loosing data and the effi-
ciency of storing that can be tuned according to the experience using the system. For example,
if the web application server, for some reason, stops working, we just lose, in the worst case,
metrics of about 15 minutes. The Log Service is much more stable, but, even so, if for some
reason it stops working, in the worst case, with very low probability, we lose metrics of about
60 minutes. In addition, the amount of collected data in 60 minutes doesn’t make the process

of aggregation and storage inefficient.

5.4 Log Service and Data Structures

A Front-end Server can host more than one web application and, in every Front-end Server there is
a Log Service that contains all metrics for the elements being monitored of the web applications.
To handle these metrics we designed the data structures that are depicted in Figure 5.4 and are
described as follows (note that each Log Service contains only runtime performance data for the

Front-end Server in which it is running):

e A Log Service contains a ProfilerWeekData that contains a list of objects of the type Profiler-
Data with the metrics of the last 7 days, and a object of ProfilerData with the metrics of the

current day.

e The object ProfilerData contains a date and a HashTable where a key is a eSpaceKey and a
value is an object of the type eSpaceProfilerData.

e An EspaceProfilerData contains a HashTable where a key is elementKey and a value is an

object of the type elementProfilerData.

e Finally, an ElementProfilerData contains all the metrics of an element: the total time execu-
tion, the number of executions, the number of errors, and the number of iterations if the

element being monitored is a for each.

34

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.4. Log Service and Data Structures

ProfilerWeekData

List<ProfilerData> pastDaysData;

ProfilerData currentData;

1

-

ProfilerData

DateTime date;
HashTable<string, eSpaceProfilerData> espacesProfilerData
1

*

EspaceProfilerData

HashTable<string, elementsProfilerData> elementProfilerData

1

w

ElementProfilerData

long elapsedMiliseconds;
int executionCount, errorCaunt, iterationCount;

Figure 5.4: Data structures

We now describe the activity of a Log Service in our profiling system:

e On Start it gets all the metrics that are stored in the file system.
o It maintains all the metrics of the web applications running in the given Front-end Server.

o It aggregates and receives metrics from the web applications that are running in the same
Front-end Server. Every web application, in a regular interval of 15 minutes send its met-
rics to the nearest Log Service.

e Every 60 minutes, it stores the metrics of the current day (currentData) in a secondary

persistent state, the file system.
e Every 24 hours:

— it adds the metrics of the current day (currentData) to the list with the metrics of the

last 7 days (pastDaysData) replacing the oldest one;
— creates a new currentData for the new day;

— stores the metrics of the last 7 days (pastDaysData) and replace the old file currentDay
by a new one.

e On Stop it stores all the metrics in the file system.

35

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.5. Transporting Metrics to Service Studio

5.5 Transporting Metrics to Service Studio

Our goal is to provide production metrics inside Service Studio. In Figure 5.5 we can see both
the development and production environments, this figure also represents the situation when
there is no performance data in the development database for a given eSpace. This process
follows the steps:

1. When a developer opens an eSpace with Service Studio, a request for performance data for
the given eSpace, is sent to the development Service Center.

2. Since there is no fresh data available in the development database, the development Ser-
vice Center sends a request for metrics, for the given eSpace, to the production Service
Center.

3. Production Service Center communicates with every Front-end Server configured, by con-
tacting the Log Service and requesting the performance collected data.

4. Each Log Service sends back to the production Service Center all the metrics for the given
eSpace. The Service Center is responsible for aggregating the metrics received from the
different Front-end Servers.

5. Production Service Center sends back to the development Service Center all the metrics.

6. Finally, development Service Center provides the metrics to Service Studio and caches all
performance data in the development database.

Figure 5.6 represents the situation when the performance data for a given eSpace is available
in the development database. This process follows the steps:

1. When a developer opens an eSpace with Service Studio, a request for performance data for
the given eSpace is sent to the development Service Center.

2. Since the performance data for the given eSpace is available in the development database,
the development Service Center retrieves it.

3. Finally, all the performance data for the given eSpace is provided to Service Studio.

Note that this process is asynchronous. The developer can work on Service Studio while
the data is being imported. The transport of data is done on demand to avoid unnecessary
communication and process between the two environments. For example, if a development
team stop the development process during a period of time, it isn’t necessary to transport the
runtime performance data of the web application to the development environment.

36

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS

5.5. Transporting Metrics to Service Studio

Production Environment
Front-End Server Front-End Server
Web Application Server Web Application Server
Enterprise OnLine Enterprise OnLine
Manager Shop Manager Shop
.
A
Log Service Service 4 Log Service
(et) ey T
]
File System) File System
) 2 ~ o
curnentDay pastDays currentDay pastDays
P
e
Devel t Envi t
i i nwropménﬂ____ 1 Service Studio
Server / b \
Web App. Service
Server Center \ | s — | 4 5.3 :

Figure 5.5: Data flow when there is no performance data cached

Development Environment

| 1 Service Studio
Server b \
Web App. Service i 3 'S
Server Genter\v '
>

Figure 5.6: Data flow when performance data is cached in the development environment

37

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS5.6. Connecting Development and Production Environments

I agilepidtfurm admin - My Satfngs - Logout SEARC I
HOME [FACTORY | MOMITORING ADMINISTRATION AMALYTICS
Users | Roles | Server Configuration | Front-end Servers | Zones | Database Connectons | Email Configuration | Phones | Certificates | Licensing
-
Server Configuration Platform Server
Unlimited Edition
Server Name: Platform Server bt
Default DNS Name: localhost
Recent items
Running Mode Development - sSpacE
; . Al
Production Server Tost (OnineShop
Date Format YYYY-MM-DD - Enterpree Manager
Administration Emai
Show Email on login screen
Number of timer refries 3
Enable Daily Acthity Reports: [V
Enable Weekly Repor 'l

| Apply

Figure 5.7: API for defining the address of production Service Center

5.6 Connecting Development and Production Environments

As we described in the previous section, the data is transported from the production to the
development environment through communications initiated from the development Service
Center to the production Service Center.

To implement our profiling system, we connected the development and production envi-
ronments. Note that, until now, these two environments were completely disconnected. There

wasn’t any communication protocol between these two environments.

Production Service Center exposes a web service that is consumed by the development Ser-
vice Center. To establish this communication, a person that has administration privileges, can
define the production Service Center address in the development Service Center. Figure 5.7 shows

the new interface where this parameter is defined.

The security challenge of this connection was not addressed since we are not transporting
business data but statistical data which is only useful for those that can access the application
model. However, it will be probably solved in a future work by establishing a trust relationship

between the development Service Center and the production Service Center.

38

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.7. Decorating Service Studio

5.7 Decorating Service Studio

In the beginning of this document we listed the challenges of this work and one of them was to
decorate Service Studio with profiling information without cluttering the existing environment
and without significant impact to its performance.

To provide information in Service Studio, after inquiring the OutSystems user interface team,
we decided to provide the metrics for the DSL elements on the properties pane. The Properties
Pane is where the developer can see and define the properties of the selected element, either in
the Flow Canvas or in the eSpace Tree. Figure 5.8 and Figure 5.9 show the metrics that are provided

when a developer either selects a Preparation Screen or an Action in the eSpace Tree.

Category_List

W MyContacts e
|2 Processes
4 |} Screen Flows p—h__l\%'l}{ontactz ’
4 0 CammonFlow Processes
< Header 4 | Screen Flows
4 I3 MainFlow = 485 CommonFlow
¥ StartHere % Header
¥ Category_AddContactsPopUp - N rﬂﬁlnHG\-‘f =
¥ Category_Edit) StartHere
» Category_List Cat&gDr}-j_-'—'\dflio":actsl:'opUp
« Category_Show Category_Edit
b
]

Category_ShowContactsPopUp

C L L L LC

4 Contact_Edit Category_Show
® | Contactld Category_ShowContactsPoplp
W' Preparation 4 Contact_Edit
W Save @] Contactld
» Contact_Import W Preparation
5 i |
< Contact_List W Save
¥ Contact_Show -~ ¥ Contact Import
= - < Contact_List
Screen Action Properties _ b Ia Contact_Show =
Mame Save

Preparation Properties

Description

Figure 5.8: Example of the prop- Figure 5.9: Example of the prop-
erties pane for an action erties pane for a preparation screen

When a developer either selects an Action or a Preparation Screen in the eSpace Tree, the Ac-
tion Flow opens in the Flow Canvas. For the sake of simplicity, we show in Figure 5.10 a simple
example of an Action Flow. We can see the Action Flow of the Preparation Screen for the page
Contact_List. Since the query GetContacts is selected, we can see in the properties pane, the met-
rics of the last week for that element. In this case, the action is simple, but as we will see in the
next section Action Flows can be very complex and that’s where our profiling system become
more valuable. When an Action Flow has more elements, a developer can navigate along it, by

selecting the different language elements and having access to their performance metrics.

39

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.7. Decorating Service Studio

~
W} MyContacts@localhost * - [Screen Flows\MainFlow\Contact_List\Preparation] - Service Studio | = | S |

File Edit View Insert eSpace Debugger Help Debug

@~ DEH | # Ga@E 9™ & A G @ Nore) ~ Q)R Search Online P
W Tools = = ‘f} StartHere

) User Actions | 7 Il o Category_AddContactsPoplp

3 Process Actions o Category Edit =

[Entity Actions Start < Category_List =

3 Timer Actions J < Category_Show

3 Permission Actions 1 o Category_ShowContactsPopUp

) Web Refersnce Actions | & Contact_Edit

3 Built-in Actions | < Contact Import

:l Referenced Actions |E 4 o Contact List

W Start Gelth.ontaUcts W Preparation

i Execute Action : @ Export -

£ Query — :

% Advanced Query | QI_JE!'_}" Pro_pertl es

& If i Mame GetContacts

& Switch End Description

\) For Each J | Max. Records =

@ Assign " || Tirmeaut in Seconds

=% Record List To Excel Query

"@ Excel To Record List Keyword Session.Contact_Filter, v

e Start iSMS L2] Categonyld Session.Contact_Filter. ~
TrueChange™ B [(N rgument)

E g 1/

| & 0k The eSpace is valid. i i) 15
_\OTmeChangﬂ_i@qggﬂi un 0
CAUsers\hma'\DesktopiMyContacts_Baseline.oml 21-07-2010 14:28:45 | Server: localhost | User: admin

b

Figure 5.10: Example of the Properties Pane when a query is selected in a Action Flow

To help identifying bottlenecks or stress points in the web applications, we added a warn-
ing sign that appears in the right bottom corner of the language elements that either rose unex-
pected errors more than 25% of the times they were executed or have an average execution time
of more than 200 milliseconds. Again these values are guessed to be satisfiable but should be
tuned with the help of real experience. Figure 5.11 shows an action that has an advanced query
that is decorated with the warning sign, meaning that this query is either taking more than 200
milliseconds to be executed or, more than 25% of the times it is executed, it raises unexpected

errors.

40

5. PROFILING OF WEB APPLICATIONS IN OUTSYSTEMS 5.7. Decorating Service Studio

Start

3
\ -

v
GetMovie

o =]
g
O |

» -

Set Title

Tithe <> ™7
True
' > e

a5y

Mowield =
GetMinMovield Set New Id

Nulﬂdentrﬂir{}?
True g
S 4 . @

Figure 5.11: Example of an advanced query decorated with a waning sign

Results Analysis

In this chapter, we analyze the results of our profiling system. In the first part we focus the
benefits of having production metrics inside Service Studio. For instance, we describe a real ex-
ample of a developer experience while looking for a performance bottleneck. We then present a
summary of the results of performance tests that were made to validate and analyze the impact
in production of our profiling system.

We used WAPT [12], a load and stress testing tool that provides a consistent way of testing
web applications and web servers. WAPT uses a number of techniques to simulate real load
conditions. It creates a simulation of many different users coming from different IP addresses,
each with their own parameters: cookies, input data for various page forms, name, connection
speed and their own specific path through the site.

Our approach was to analyze the performance characteristics of a web application and of
a web server, under various load conditions. This metrics were recorded with the profiling
system running, and compared with the metrics recorded with the profiling system off.

6.1 Developer Experience while Looking for a Bottleneck

By having early access to real performance metrics, developers easily detect stress points in
applications, allowing for timely tuning actions, before reaching critical conditions for end-
users.

However, there are cases where development teams stop the development process during
a period of time and a web application may reach critical conditions. In these cases, based
on the developers opinion, our profiling system decreases dramatically the time to detect the
bottleneck.

43

6. RESULTS ANALYSIS 6.1. Developer Experience while Looking for a Bottleneck

Metrics also help developers assessing the impact of changing intensively used parts of
existing applications. This is relevant, because uninformed modifications may have significant

impact on the applications performance.

Finally, our profiling system, promotes an agile approach to scalability requirements. Since
the developer focus only the main problems. Developers just optimize what is really necessary

to increase the performance of the application.

Example

Now, we describe a hands on example that was applied to a real scenario. Consider that
a web application is deployed to a production environment. After a period of time, critical
feedback about the application is given back to a developer. The problem is related with the
time response of the application. When a user opens a specific page, the new screen takes too
much time to render.

To solve this performance issue, the developer needs to open the application eSpace, selects
the Screen Preparation for the page which takes too much time to render, find which logic is
responsible for this delay, and finaly proceed with an optimization. Remember that a Screen

Preparation is a type of an Action Flow that always runs before a specific screen is rendered.

Until now, this is done in a trial and error iterative process, that requires developers” expe-
rience and some speculation about where the time is effectively being spent in the production
environment (as the development environment has a different context in the database). And
the developer needed to capture the metrics using either a small debug session or explicit audit
operations in the middle of the code. In a small debug session, the developer tries to under-
stand where the time is being spent. This is a experience statistically irrelevant. In the other
hand, with explicit audit operations, the developer needs to collect metrics before and after
every element of the language. This is a hard work and usually requires a considerably long

period of time.

With our profiling system the developer has to open the Preparation Screen that is related to
the page defined. And the metrics for the last week of that screen are provided. As we can see
in Figure 6.1, the average execution time of the screen is 573 milliseconds and it was executed
114 times. The developer can now navigate on the flow, by selecting the different language
nodes and check the metrics of each element. Note that this is a complex Action Flow and these
tigures just show part of it. As shown in Figure 6.1, the element responsible for most of the time
execution of the Screen Preparation, is the action Solution_GetReferences.

Knowing this, the developer opens the action Solution_GetReferences to open the related
Action Flow and navigates along it. In this case, as we can see in Figure 6.2, the forEach is
responsible for almost all of the average time execution of the action Solution_GetReferences.
Since the bottleneck was detected, it can now be resolved.

44

6. RESULTS ANALYSIS 6.1. Developer Experience while Looking for a Bottleneck

If this process would been done without this system, the developer would have to design
an ad hoc scheme to collect metrics either by using audit events or a debugging session. The
application would probably have to run for another period of time or to be tested and analyzed
in a controlled development environment. However, this collected data is not representative
of the real world production environment, as it is not possible to reproduce the size of data
nor the number of different users. The current processes to identify bottlenecks is complex and
requires time.

In this real example we reduced the time for detecting the bottleneck from hours or even

days to just a few minutes.

114 exec counts
573 msecavg |
2 errors

Figure 6.1: Example: detecting the bottleneck in a prepraration screen

112 exec counts
561 avg ms
0 errors

Figure 6.2: Example: detecting the bottleneck in action flow

45

6. RESULTS ANALYSIS 6.2. Disk Space Usage

6.2 Disk Space Usage

As described in Chapter 5, in every Front-end Server configured in a farm, the profiler stores the
metrics in the file system for persistency purposes.

To measure the disk usage of the profiling system in each Front-end Server we tested a web
application that has 60 screens, which is considered a medium size web application in Out-
Systems context. With WAPT, we simulated 300 users accessing the web application visiting
all web application screens. Note here, that only some parameters have impact on the size
of the files containing the runtime performance metrics: the number of elements being mon-
itored that are typically correlated with the number of screens (every screen has more or less
the same number of elements being monitored); the number of days; and the number of web
applications.

After our test, the disk usage of the profiling system in the Front-end Server was of 144KB
per day and per application. We cannot be exact about the disk usage of our profiling system
in a real world environment but we can estimate it. For that, we multiply this value for 7, since
our profiling system has a continuous flow of information of 7 days, and we then multiply the
result for 40. A Front-end Server can host 40 web applications, sometimes even more. We are
considering that all web applications are similar to this one, containing 60 different screens.
To sum up, we estimate that our profiling system has a total and permanent disk usage of
approximately 40MB (144KB x 7 x 40 = 39.375 MB), which is acceptable in terms of disk space.

6.3 Runtime Performance Impact

To see if our profiling system is having impact on the responsiveness performance of web ap-
plications, we did several load tests. We analyzed the average response time of a web application
and the number of pages that are executed per second (pages per second), and we compared the
results with the profiling system running and with the profiling system inactive. The number
of pages per second is a valuable result of testing an application capacity and overall perfor-
mance. The metric average response time is also an important characteristic of load testing an
application, it measures web user experience. Response time graph tells how long a user waits
for server response to his request.

First, we did several tests, increasing the number of users accessing a web application, and
passing through all possible screens. Our goal in this first phase, was to see the maximum pages
per second that the web application was capable to execute while running in a sustained way.
In both cases, the web application, couldn’t execute more that an average of 55 pages per second.
We reached this value, in both cases, on tests with 100 users. We did several tests, with more
users, as 150, 200, 300 and we conclude that the web application in the testing environment
could not execute more than an average of 55 pages per second. This result was the same with
the profiling running, and with the profiling inactive. In figures 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8, we
can see that the average of executed pages per second is always near the value of 55. The small
triangles in the graph represent the number of users that are concurrently accessing the web

application.

46

6. RESULTS ANALYSIS

6.3. Runtime Performance Impact

ﬂEEHRBESﬁS@

- St
“ Frodler ON d: \/\/ \j V\sfﬂ\fﬂ

0:00:00 0:02:03 0:04:07 0:06:111 0:08:14

Figure 6.3: Graph of pages per second: test
with 100 users, profiling ON

Profiler ON

8 4 & 883 838

=“5589888&8®853

= S
—
=3
’/O’
=y
Lo

=

0:01:40 0:03:21 0S:01 D42 0-08:22 0:10:03

Figure 6.5: Graph of pages per second: test
with 150 users, profiling ON

Profler ON f : !I ——r f .
— A
MLAVTT T

msasusasag@saa

002:20 00441 00701 0922 T:11:43 1403

Figure 6.7: Graph of pages per second: test
with 200 users, profiling ON

j] f"\ H 1

AT W
Vahday VWYY 'v’\., E
\ Lo

0:00:00 n0140 @:03:20 0:0%:00 0:06:40

Figure 6.4: Graph of pages per second: test
with 100 users, profiling OFF

¥ Il -

0:01:40 0:03:20 0:05:00 0:06:40 0:08:20 0:10:00

Figure 6.6: Graph of pages per second: test
with 150 users, profiling OFF

20
‘4"{ Profiler OFF 180
L]

40

an
0

&0
20 40
10 20
o 0

0:05:00 0:06:40 0:08:20 10000 0:11:40 0:1320 0:15:00

Figure 6.8: Graph of pages per second: test
with 200 users, profiling OFF

47

6. RESULTS ANALYSIS 6.4. Concluding Remarks

The next step, was to analyze the graph of average time response. Note that in the previous
tests, the average time response is not represented. But, since the web application could just
execute 55 pages per second, as long as we increase the number of users, the response time also
increases. Our approach, in this second phase, was to identity the load conditions to reach a
specific value of average response time. We did several tests, increasing the number of users until
the performance of the web application started to break. We considered that a web application
started to break when the value of the average response time reached the value of 0.5 seconds.
Figure 6.9 and Figure 6.10 show that comparing to the graph with the profiling off, the average
response time is longer with the profiling on.

Note that in Figure 6.9, although the test ends up with 150 users accessing the web appli-
cation, the graph reaches the 0.5 seconds when the web application is being used by 120 users.
But in Figure 6.10, the graph of the average response time only reaches the value of 0.5 seconds

with 150 users.

150 0.75 pistdid el 150
e Profiler ON /-‘“A 140 070 Profiler OFF £ 14
0.60 Aﬁﬁu - 065 al k=
o users 0.60 _ 150 users 120
AAé)us " o f (J

0.50 s 110 258 2l
— 100 0.50 ; = 1oc
PAAA o 0.45 AA’XA 90
0:40 & 040 A“L(“ il
0.35 70 0.35 5&5 70
0.30 F 0 0.30 [fs 60
A 0.25 ye 50

025 EA 50 2
a0 0.20 40
20 AAA o 015 30
0.15 Aﬁﬁa - 0.10 AL{:\ 20
o ﬁ'j " 0.05 ¢ 10
s 0.00]

0:01:40 0:03:20 0:05:00 0:06:40 0:08:20 0:10:00 0:01:40 0:03:21 0:05:01 0:06:42 0:08:22 0:10:03
Figure 6.9: Graph of average response time: Figure 6.10: Graph of average response time:
test with 150 users, profiling ON test with 150 users, profiling OFF

6.4 Concluding Remarks

In this chapter we first referred to the value of this our profiling system, describing some bene-
tits of providing production runtime performance information to developers and we described
a real example of a developer experience looking for a performance bottleneck. We then an-
alyzed the impact of our profiling in production systems and we conclude that it keeps the
interference level and the performance impact in production environments at an acceptable
level.

48

Conclusions

7.1 Work Experience

This thesis is integrated in the Research and Development (R&D) team of the OutSystems com-
pany.
During the first phase of this thesis, we described a preliminary study and a possible solu-

tion for a profiling system. Some profiling techniques were studied as a basis for the decisions
that we later made along the development and implementation phase.

It was necessary to understand the functionalities and purposes of the different components
of the Agile Platform: Service Studio, Integration Studio, Service Center and Platform Server. It was
also important to understand the DSL compiler and the OutSystems language. The next step
was to start skimming the Agile Platform which is formed by a set of more than 70 projects
developed in Microsoft Visual Studio 2008 with a code base of more than 1 million lines. It was
important to focus the DSL compiler to understand the process of code generation.

The first phase occupied 40% of the time available and was already made in collaboration

with the company.

The development and implementation phase was addressed on a full time basis at the com-
pany, and it was integrated in the team responsible for the development of the version 6.0 of
the Agile Platform. In this phase, it followed the OutSystems Agile Methodology, a methodology
based on SCRUM Agile Methodologies [30,40], for control and organization of projects.

49

7. CONCLUSIONS 7.2. Conclusions

The development was done in iterative process, that suffered some changes. For exam-
ple, the architecture of the profiling system was first designed to use the database production,
but later, with the help of the engineering team we considered an advantage to avoid bulk in-
serts on the database and use the file system as a secondary persistent state. With the arise of
new challenges, we were forced to reinforce the solution and rethink our decisions along time.
Therefore, it was extremely important to be integrated in a team of specialists that provided
insightful comments and relevant discussions.

In the context of the project developed during this master thesis, it was written and submit-
ted a paper, titled Profiling of Real-World Web Aplications [13], to the International Symposium on
Software Testing and Analysis, Workshop on Parallel and Distributed Systems: Testing, Anal-
ysis, and Debugging, where it was later presented (13th July in Trento, Italy). The paper was
accepted by the conference committee and is available in the ACM Digital Library. This was a
joint work with Lucio Ferrdo from OutSystems and with Jodo Costa Seco from the CITI research
center of Universidade Nova de Lisboa.

The final result of this project is fully functional and integrated in the development branch
of the Agile Platform. It is now waiting for a product management release date decision, with the

corresponding deeper investment in quality control, usability, and product marketing teams.

7.2 Conclusions

Non-functional requirements of enterprise web applications, like performance, are usually as-
sessed and analyzed in simulated environments before being released into production. How-
ever, it is not easy to simulate a real-world environment and the effective use of the system,
leading to poor and expensive performance data collection. Moreover, in agile methodologies,
where development is focused in the fast time to market and getting early feedback from end-
users, upfront estimation and forward thinking about scalability is not in the top priorities.
This constrains even more performance analysis and tests, as developers are only aware of
performance issues when critical feedback from production systems is given back to develop-
ment. This commonly leads to enterprise web applications with scalability problems, and low
responsiveness. All this results in bad end-user experience and high maintenance costs.

We were primarily motivated to answer two different questions with our work:

e Can we collect real world data about performance of web applications without significant
impact in the end-user experience?

e Can we give feedback to developers in a way that impact analysis is improved and that
anticipation of performance issues is achieved?

Profiling of web applications is not a common task in industrial environments. There are
some explanations for that fact among which we find the heterogeneous context of web ap-
plications the most relevant. Collecting data in all tiers of an application and gathering it in a
meaningful way is not a trivial task. A second reason for this is related with the performance
degradation caused by instrumentation and data collection.

50

7. CONCLUSIONS 7.3. Future Work

In this work, we presented an architecture of a profiling system that collects real world
data from web applications. By focusing on a DSL we reduced the impact of measurements on
the performance and the end-user experience. By giving feedback to developers proactively
we improved the whole agile development cycle. Although this is not a common practice, it
should be, since the value is obvious. The problem is that most development environments fail

to offer the integration and abstraction level that exists in OutSystems context.

Finally, we believe that we achieved positive results since the goals that were considered to

make this a successful project were accomplished:

1. To collect metrics at runtime, without significant degradation on the server and applica-

tions performance.

2. To gather and transport data from a production environment to a development environ-

ment.

3. To decorate Service Studio with profiling information, without cluttering the existing en-

vironment and without significant impact to its performance.

4. To achieve positive results on the agile maintenance process of enterprise web applica-
tions. This goal was subdivided in: helping developers to easily detect stress points and
bottlenecks; allowing developers to fix them before reaching critical status for end-users;

and increasing the developers” awareness when changing intensively used code.

7.3 Future Work

In order to completely prove the value of our study, we will have to analyze and measure
the benefits of the profiling system along time. In the future, we need to have statistics on
how these runtime performance metrics contribute to increase the end-user satisfaction, and to

decrease the costs of maintenance.

The work developed during this master thesis may also evolve to provide other types of
metrics. One important metric is measuring how many cache hits occur in an application.
This would help developers validating the configurations of cache. For example, if a query is
cached during 2 minutes, and usually has 20 cache hits during this period, the developer can
conclude that the use of cache in this element is increasing the execution performance since,
approximately every 2 minutes, it is avoiding 19 accesses to the database. This metric gives to
developers, a possibility to balance the parameters of cache to increase its value. But there are
other type of metrics that can be interesting, as the data tables size, for example to understand if
a menu should be auto-complete instead of drop-down (for a database with considerably data,
it is erroneous to use a drop-down menu) or the most frequent navigation path, to increase the

awareness about the hot spot of the application.

51

7. CONCLUSIONS 7.3. Future Work

This work may also contribute to the development of future works, for instance:

o Using statistical information of real data flow from production environments, it is possi-
ble to generate specially optimized code for the most relevant data flows. Without such

information, it is only possible to optimize the generated code for the worst scenario;

e Using the information of changes between production and quality assurance environ-
ments, together with the profiling information, it is possible to answer two relevant ques-
tions: a) did I test all the statistically relevant code that has changed since last quality
assurance tests? b) did I test all the code that is frequently used in production?

e Using the profiler information it is possible to suggest relevant unit tests in development

environments;

e Using the profiler information it is possible to offer real-time impact analysis warnings of

changes in the database model and changes in the long term process models.

52

Appendix

A1 Glossary

e 1-Click Publishing - operation that involves the following steps: Save (save the eSpace
in a specified folder), Upload (upload it to the Platform Server), Compile (the oml file is
translated in the Platform Server into .NET or JAVA and Deploy (operation that updates
the area that contains the last published version.

o Action Flow - a guided graph, potentially cyclical, that contains an initial node and a set
of terminal nodes. For example, the developer can have a flow to control elements (If,
For Each, ..., End) and can invoke other actions. Its the graph that represents the Screen

Action.

o Bottleneck - a bottleneck is a phenomenon where the performance or capacity of a system
is limited by a single or limited number of components or resources. In programming it
can be a loop, a method or other block of code depending on the granularity used to refer

the bottleneck point.

e Domain Specific Language (DSL) - is a specification language, dedicated to a particu-
lar problem domain, a particular problem representation technique, and/or a particular

solution technique.

e Development Environment - the environment in which developers design, create, mod-
ify and test applications.

53

A. APPENDIX A.1. Glossary

Deployment Controller Server - is in charge of compiling eSpaces, and deploying the
compilation result in the Front-end Servers. There is only one Deployment Controller Server
for each Platform Server installation.

Integration Studio - visual environment to create connectors, actions, entities, structures
in the OutSystems terminology, for integrating with existing enterprise systems.

Environment - an environment represents some stage of the application development.
In this document we refer to two types of environments: development environment and
production environment. Both contain a web server, service center, a compiler, a database,

and the running web applications.

eSpace - a web application project. We can develop and change eSpaces in Service Studio.
They contain all definition needed for developing and managing web applications, such
as web pages, business logic, database tables, security settings, and lot of more.

OML - atands for OutSystems Markup Language and is the format by which the eSpaces are

saved to disk. It is also the file extension (.oml) for the eSpaces.

Refactoring - code refactoring is the process of changing a computer program’s internal
structure without modifying its external functional behavior or existing functionality, in

order to improve internal quality attributes.

Service Center - a web console that enables the operational management of the Agile
Platform. It provides, for example, version control and configuration management of all

web business applications, services, and other resources.

Service Studio - the visual development environment to fully develop projects: design,
create, modify and finally test them. With Service Studio developers assemble all compo-
nents necessary to completely define a web business application, without writing any
code. The tool enables the modeling of user interfaces, business logic, web services,

scheduled processes and security.

Screen Preparation - runs before the screen is rendered. Can be used to get data o display
on the screen.

Screen Action - runs on specific events on the screen (usually the click of a button).

Platform Server - runtime platform that controls all runtime, deployment, and manage-
ment activities for every application designed with the Service Studio in a standard ap-

plication server infrastructure.

Production Environment - an web application is inside a Production Environment when
is on a Server and available on Web.

54

Bibliography

[1] Index of Mathematicians, Dec 2009. http://turnbull.mcs.st—-and.ac.uk/

history/Mathematicians/Thomson.html.
[2] Bullseye. A code coverage analyser, Jan 2010. http://www.bullseye.com/.
[3] CodeTEST Software Analysis Tools, Jan 2010. http://www.freescale. com.
[4] Google Analytics, Jan 2010. http://www.google.com/analytics/.
[5] Java theory and practice: Going atomic, Jan 2010. https://www. ibm.com.

[6] Java theory and practice: Introduction to nonblocking algorithms, Jan 2010. http://

www.lbm.com.

[7] JBOSS, Jul 2010. http://jboss.org.

[8] JTest. Java Static Analysis, Code Review, Unit Testing, Runtime Error Detection, Jan 2010.
http://www.parasoft.com.

[9] Netcraft.com. Web site statistics 2010, June 2010. http://news.netcraft.com.
[10] OutSystems, Jan 2010. http://www.OutSystems.com/.

[11] Service Studio Help, OutSystems Agile Platform 5.1, Jun 2010. http://www.

outsystems.com/help/servicestudio/5.1.
[12] Web Application Testing - WAPT, Jul 2010. http://www.loadtestingtool.com/.

[13] Hugo Menino Aguiar, Jodo Costa Seco, and Licio Ferrdo. Profiling of real-world web ap-
plications. In ISSTA’ 10: Proceedings of the 2010 International Symposium on Software Testing
& Analysis, and co-Located Workshops MIT'10, PADTAD’10, STOV’10, and WODA'10, Trento,
Italy, 2010. ACM.

55

BIBLIOGRAPHY

[14] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of instru-
mented code. In PLDI "01: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 168-179, New York, NY, USA, 2001. ACM.

[15] Marla J. Baker and Stephen G. Eick. Space-filling software visualization. In Readings in
information visualization: using vision to think, pages 160-182, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[16] Thomas Ball and James R. Larus. Optimally profiling and tracing programs. In ACM
Trans. Program. Lang. Syst., volume 16, pages 1319-1360, New York, NY, USA, 1994. ACM.

[17] Geoffrey Owen Blandy, Maher Afif Saba, and Robert J. Urquhart. Code instrumentation
system with non intrusive means and cache memory optimization for dynamic monitor-
ing of code segments. Number 5940618, August 1999.

[18] M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T. Vandevoorde, C. A. Waldspurger,
K. Walker, and W. E. Weihl. Efficient and flexible value sampling. SIGPLAN Not.,
35(11):160-167, 2000.

[19] Dhyani Devanshu, Keong Ng Wee, and Bhowmick S. Sourav. A survey of web metrics.
ACM Computing Surveys (CSUR), 34(4):269-503, 2002.

[20] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with perfor-

mance profiles. ArXiv Computer Science e-prints, cs.MS/0102001, 2001.

[21] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction: less is
more. In ASPLOS-IX: Proceedings of the ninth international conference on Architectural support
for programming languages and operating systems, pages 202-211, New York, NY, USA, 2000.
ACM.

[22] Sebastian Elbaum, Gregg Rothermel, Srikanth Karre, and Marc Fisher II. Leveraging user-
session data to support web application testing. IEEE Trans. Softw. Eng., 31(3):187-202,
2005.

[23] Susan L. Graham, Marshall Kessler, and K. McKusick. Gprof: a call graph execution pro-
filer. ACM SIGPLAN Notices, 17(6):120-126, 1982.

[24] Robert J. Hall. Call path profiling. ACM, Proceedings of the 14th international conference on
Software Engineering, pages 296-306, 1992.

[25] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[26] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Programming Language, The (2nd
Edition) (Microsoft .Net Deveolpment Series). Addison-Wesley Professional, June 2006.

[27] Jerri Ledford and Mary E. Tyler. Google Analytics 2.0. Wiley Publishing, 2007.

56

BIBLIOGRAPHY

[28] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Structural testing of
web applications. In ISSRE 00: Proceedings of the 11th International Symposium on Software
Reliability Engineering, page 84, Washington, DC, USA, 2000. IEEE Computer Society.

[29] G. Di Lucca, A. Fasolino, and F. Faralli. Testing web applications. In ICSM "02: Proceedings
of the International Conference on Software Maintenance (ICSM’02), page 310, Washington,
DC, USA, 2002. IEEE Computer Society.

[30] Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices. Alan Apt
Series. Prentice Hall, Upper Saddle River, NJ, October 2002.

[31] Marjen Mernik, Jan Heering, and Anthony M. Sloan. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316-344, 2005.

[32] Edu Metz and Raimondas Lencevicius. Efficient instrumentation for performance profil-
ing, 2003.

[33] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-safe
locking on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput.,
51(1):1-26, 1998.

[34] Microsoft. Microsoft IIS, Jul 2010. http://www.iis.net/.
[35] Microsoft. MSDN ASP, Jul 2010. msdn.microsoft.com.

[36] Microsoft. MSDN .NET Development Website, Jul 2010. http://msdn.microsoft.

com.

[37] Alessandro Orso, James Jones, and Mary Jean Harrold. Visualization of program-
execution data for deployed software. In SoftVis ‘03: Proceedings of the 2003 ACM sym-
posium on Software visualization, pages 67—ff, New York, NY, USA, 2003. ACM.

[38] Steven P. Reiss and Manos Renieris. Encoding program executions. In ICSE "01: Proceed-
ings of the 23rd International Conference on Software Engineering, pages 221-230, Washington,
DC, USA, 2001. IEEE Computer Society.

[39] Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In ICSE "01:
Proceedings of the 23rd International Conference on Software Engineering, pages 25-34, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[40] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

[41] David B. Stewart. Measuring execution time and real-time performance. In In: Proceedings
of the Embedded Systems Conference (ESC SF), pages 1-15, 2002.

[42] Sun. Java 2EE, Jul 2010. java.sun.com/ javaee/.

57

BIBLIOGRAPHY

[43] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35:26-36, 2000.

[44] John Whaley. A portable sampling-based profiler for java virtual machines. In JAVA "00:
Proceedings of the ACM 2000 conference on Java Grande, pages 78-87, New York, NY, USA,
2000. ACM.

58

