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Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers
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We analyze the occurrence of normal-mode coupling (NMC) in bimodal lasers attributed to the collective
interaction of the cavity field with a mesoscopic number of quantum dots (QDs). In contrast to the conventional
NMC, here we observe locking of the frequencies and splitting of the linewidths of the system’s eigenmodes in
the coherent coupling regime. The theoretical analysis of the incoherent regime is supported by experimental
observations where the emission spectrum of one of the orthogonally polarized modes of a bimodal QD micropillar

laser demonstrates a distinct two-peak structure.
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Introduction. The study of cavity quantum electrodynamics
(CQED) in the strong-coupling regime between atomlike
emitters and the confined light field of microcavities has been
a subject of considerable attention. In the traditional CQED,
low-mode volume resonators are used to enhance the coupling
rate g between a single emitter and the field in comparison to
the system damping rates. Prominent realizations of the strong
coupling include experimental demonstrations of reversible
exchange of excitation between a single emitter and the field
from both atomic [1-3] and solid-state [4,5] systems. Typical
evidence of the strong-coupling regime represents splitting of
the two degenerate modes, i.e., normal-mode splitting, which is
a consequence of normal-mode coupling (NMC), e.g., between
the emitter polarization mode and the field mode leading to a
doublet cavity transmission spectrum [6]. In addition, NMC
occurs in exciton-photon and phonon-photon interactions [7]
and optomechanical phenomena [8], where the cavity field
couples to a mechanical mode [9].

In view of the variety of implications of the regime of
coherent coupling (see, e.g., [10]), a different approach to
achieve strong coupling has also attracted much attention.
Instead of reducing the cavity-mode volume to achieve large
g, the number of emitters N interacting with the field
can be increased, leading to the collective strong-coupling
regime, where the coupling rate scales as ~/Ng [11,12].
Various experimental observations of cavity-mode spectra
proportional to +/Ng due to the collective coherent coupling
with two [13,14] or multiple [15,16] emitters have been made,
including the case of a multimode cavity [17]. In solid-state
systems, the coherent coupling between a cavity mode and an
ensemble of emitters has been achieved in the classical regime
with semiconductor quantum wells [7,18]. However, in the
quantum regime the significant inhomogeneous broadening of
emission from self-assembled quantum dots (QDs) has so far
hindered the observation of collective coherent coupling for
semiconductor-based quantum emitters.
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In many different situations (see, e.g., Refs. [1-7,7-18]),
by convention coherent coupling of two (nearly degenerate)
modes is commonly explained by studying the eigenvalues of
the system,

Ai=w1+w2_i)/1+)/2

2 4
(w1 — w2)/2 — ity — y)/47 + Ng2 ' 2 (D)

where w;, and y;, are the frequencies and decay rates of
the modes, respectively. Analysis of this expression reveals
that in the resonant case (w; = w») for VNg < |y1 — y»|/4
the square-root term is fully imaginary and modifies the decay
rates of the modes. Further, for/Ng > |y; — y»|/4itbecomes
real and the frequencies exhibit a splitting attributed to NMC.

Coherent coupling is also relevant to laser physics for
achieving the regime of bistable lasing of two-mode lasers
[19,20]. In particular, in the case of large pump rates when
the strong-coupling regime of the emitter-field interaction
is achieved and the Rabi frequency is larger than the
mode separation, mode locking has been observed [21,22].
Otherwise, bimodal cavities are investigated in the context
of single-photon generation with whispering-gallery-mode
resonators [23,24], where an atom strongly interacts with two
cavity modes.

Here, we show that interaction of the modes of a pas-
sive bimodal microcavity (cavity modes) with a mesoscopic
number of quantum emitters induces unconventional coherent
coupling between these modes in the lasing regime. In
contrast to the conventional NMC described above, here,
in the case of near-resonant cavity modes the eigenmodes
of the total active system (eigenmodes) exhibit frequency
locking, and the effective coupling rate with the emitters ~/N g
induces splitting of the linewidths of the eigenmodes. Further,
for sufficiently large spectral splitting between the cavity
modes, the incoherent coupling between the modes leads to a
mixing of the “bare” cavity-mode frequencies in the emission
spectrum. We report below the experimental observation of
this mode mixing for bimodal micropillar lasers. Moreover,
our theoretical study shows that in the case of incoherent
coupling and approximately equal mode-QD coupling rates,
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the eigenmode linewidths demonstrate locking, leading to
almost equal values of the coherence times of the cavity-mode
emission. This intriguing and unexpected scenario has been
recently observed for bimodal microlasers [25], where the
inferior mode which exhibits large superthermal intensity
fluctuations indeed has a coherence time of the same order
of magnitude as the dominant lasing mode.

Theoretical model. We consider a system consisting of
two orthogonal cavity modes with the Hamiltonian Hp, =
Zg ﬁa)gbgbg (§ = 1,2; D¢ is the annihilation operator of the
photon in the £th cavity mode) and QDs as gain medium,
where the s-shell transition is resonantly coupled to the
cavity electromagnetic field and the p-shell is pumped at a
constant rate. The QD part of the Hamiltonian consists of
single-particle contributions for conduction and valence-band
carriers with the energies 7", HO. =D (& c! ici+ eva Vi)
and the two-particle Coulomb 1nteract10n (see [25]). For the
total Hamiltonian of the system the free Hamiltonian terms are
complemented with the interaction energy of the QDs with the
electromagnetic field; the latter in the dipole approximation
reads

Hp = —i Zggj(cj»vj + vj:cj)bg + H.c., 2)
&.J

where the approximation of equal wave-function envelopes for
conduction- and valence-band states is used and the coupling
strengths g¢; are assumed to be positive and real.

The coherent features of the output radiation are described
by the (normalized) first-order correlation function

G(l)
g (1) = Lﬂ £=12, 3)
(bl)be(r)

with Gélg),(t,r) = (bg (t + 7)be (1)). The coherence times and
the frequency spectra are given, respectively, by

o0
=2 / drigP P,
" 4)
Se(w) = 2Re / dvg{’()e .
0

We restrict ourselves to the case of continuous-wave excitation
and assume that two-time quantities such as the correlation
function gél)(t,r) are f-time independent in the steady-state
regime for large enough times 7. Therefore, the two-time
evolution problem can be separated into two single-time
problems, which is analogous to the method of the quantum
regression theorem [26]. Then the equations of motion with
respect to the delay time t can be solved with initial values
given by the stationary steady-state result of the 7-time problem
[27]. The Heisenberg equations of motion for expectation
values of the quantities of interest lead to a hierarchy problem
which can be treated by the cluster expansion (see [25,28]).
Further, assuming carrier generation in the p-shell at a fixed
rate we derive a system of Heisenberg equations of motion
and introduce phenomenological dissipative terms, where both
pump and dissipative processes are described by a Lindblad
form [29]. To obtain the dynamical equations of first-order
coherence the cluster expansion up to doublet level is required,
which implies the following factorization [in the following
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we omit the dependence on the time ¢, as bg (1) = b(t,7),
be = be(,0), etc.]
(cHD)e;(DbLbe (D) & (e[ (De;(ONbbe (D). (5)
where (c (t)c;(1)) in the stationary regime is T-time inde-
pendent. Thus assuming identical QDs with equal transition
energies and coupling rates g = g¢;, we obtain the closed
system of linear differential equations for the correlation func-
tions G¢; = Gglg(r) and Pe(t) = Pj(r) = (C}(‘L’)Uj(l’)bg) in
the rotating-wave approximation and in the frame rotating at
¢ — gV
J J’

d
—Pe(7) =

it —IPe(r) + 121G 1e(t) + 182G2(T), (6)

d 1
EGlg(f) = (iAl - EKI)GIS(T) +Ng1P:(v), (1)

G0 = (iAz - %Kz) G0+ NexPe(0), (®)
where Ag = Agj =€ —¢] — hwg is the detuning of the
cavity modes from the QD transition, and k) > describe cavity-
mode losses. The inhomogeneous broadening is approximated
by the spectral line broadening rate I' in Eq. (6). The excitation
of emitters with a given pump rate is encoded into the steady-
state inversion per QD, I = I;(t) = (ctcj) (v Vi) which
represents an important pump-rate-dependent parameter for
the T dynamics.

Normal-mode coupling. The system of six equations above
consists of two independent subsystems with £ = 1,2. Auto-
correlation functions of two cavity modes Gélé)(r) are coupled
to each other indirectly, namely, through coupling to P:(7),
representing the common gain medium. To provide a simple
understanding of the coupling of the two cavity modes, we
use an approximation of fast relaxation of P¢(t) compared to
the time scale of the dynamics of Ge,(t)—typically valid
for semiconductor systems [30]. Then we formally insert
(d/dt)P:(r) = 0 into Eq. (6) and reduce Eqgs. (6)—(8) to

d (G _ i A tik/2  —iNIgig/T) (Gie ©)
dt \Gax —iNIgig2/T Ay +iky/2 J\Gx )’
which represents two identical 2 x 2 matrices and character-

izes the coupling of the two cavity modes. The eigenvalues of
the matrix above read

A+ Ay K+
+ = 1
2 4
H{[(A] — A2)/2 +i(R) — &2)/41* —(N1g1g2/ T)*}'/2,

(10)

where the notation &z = kg — 2N 1 g§ / T reveals that increas-

ing NI gg / I effectively reduces the linewidths. Inspection of
Eq. (10) shows that the dependence of the eigenvalues on the
involved parameters behaves quite differently from the case
of conventional NMC, Eq. (1). For A; = A, and g = g»,
the square-root term of A remains imaginary and modifies the
peak widths independently of how large the effective coupling
INIg1g2/T'| is chosen in comparison with |k| — x3|. In the
case when x| = k; and g; = g», the square-root term leads to
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FIG. 1. (Color online) Peak positions (a),(c) and peak widths
(b),(d) [cf. Eq. (10)] vs A, for fixed pump strength [(a),(b), I =
0.3] and vs NI [(c),(d), A; =115 pneV], N =42, k; =44 peV,
ko =36 ueV, A, =0, ' = 1.38 meV, g, =304 peV, and g, =
30.3 neV. The shaded regions indicate incoherent coupling. The
hatched area indicates the range of N/ that corresponds to our
experimental results presented below (see Fig. 3). The values of «;
and A; are measured in the experiment, and the values of N, I', and
g are estimated in correspondence to the experiment.

two regimes. For [NIg g,/ '| < |A| — Ay|/2, the regime of
incoherent coupling, the term is real and modifies the peak
positions of the modes. On the other hand, in the regime
of coherent coupling, i.e., for |N1g g/ T| > |A] — Az]/2, it
becomes imaginary and modifies the peak widths of the modes.
Note that this striking behavior is qualitatively opposite from
that of conventional NMC. Furthermore, since the effective
coupling |[N1g,g,/T'| is proportional to |7|, the experimental
observation of the coherent regime of collective coupling
requires || to be close to unity.

To demonstrate the unconventional NMC we plot the
real and imaginary parts of the eigenvalues for a coupled
bimodal cavity system in Fig. 1. The dependence on the
detuning A; (A, =0) [Figs. 1(a) and 1(d)] reveals that
in the near-resonant region where the coherent coupling
regime is maintained, a splitting of the imaginary parts of
the eigenvalues (peak widths) is observed. For increasing
detuning between the cavity modes, in the incoherent coupling
regime, the eigenvalues demonstrate splitting in the real parts
(peak positions) and locking of the peaks widths. To illustrate
the dependence on the effective coupling rate the real and
imaginary parts of the eigenvalues are presented as functions
of NI in Figs. 1(c) and 1(d). In the regime of incoherent
coupling, for small effective coupling rate (small N|I|), the
splitting of the peak positions is observed. In the regime of
coherent coupling the splitting of the peak widths increases
for an increasing effective coupling rate, whereas in the case
of the conventional coherent NMC, Eq. (1), the splitting of the
mode resonances increases for increasing N [31].

We would like to note that despite formal similarities the
collective NMC described by Eq. (9) [cf. Egs. (6)—(8)] is fun-
damentally different from the nonlinear equations of motion
for the field amplitudes of a bimodal laser obtained within
the semiclassical theory [32]. First of all, the semiclassical
theory neglects spontaneous emission and therefore describes
neither the laser fluctuations nor the field coherence times.
Most importantly, the mode coupling in the semiclassical
theory controls only the existence and stability of the dual-
mode operation. But the frequency characteristics of the
modes emerge from the self-consistency equations of wave
equations—and not from the coupling matrix of the system.
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FIG. 2. (Color online) Absolute values of the autocorrelation
functions and the frequency spectra (inset, semilogarithmic scale)
for the emission in the basis of the cavity modes for I = 0.65,
A = 115 peV, and an estimated cavity-enhanced QD spontaneous
emission rate of 20 ns~!. Other parameter values are from Figs. 1(c)
and 1(d). The vertical lines mark the passive cavity-mode frequencies.

Spectra. Importantly, the effects discussed above can be
deduced starting with the more general Eqgs. (6)—(8). In
the following we use Egs. (6)—(8) to obtain r-dependent
expressions for the autocorrelation functions. Note that the
initial values of the quantities P¢(7) and G;¢(7) and the values
of the t-time-independent /(¢) of the gain medium are taken
as the stationary solutions of 7-time-dependent problem [25].
Figure 2 reveals that in the regime of incoherent coupling
the coherence times of the dominant and inferior modes,
which correspond to the decay rates of |g§l)(r)| and |g§])(t)|,
respectively, are of the same order of magnitude. This coun-
terintuitive behavior, which has been experimentally observed
earlier [see Fig. 2(b) of Ref. [25]], is particularly interesting
considering that the inferior mode features large superthermal
intensity fluctuations with g®(0) ~ 3 [Fig. 2(f) of Ref. [25]].
The spectra of both modes, shown in the inset of Fig. 2,
exhibit a two-peak structure according to the eigenvalues in
Eq. (10). Indeed, for the chosen parameters N/ = 27.3, which
correspond to the case of the incoherent coupling, Figs. 1(c)
and 1(d) reveal the splitting of the peak positions and locking
of the widths. Obviously, emission in the basis of the two
cavity modes carries both “bare” frequencies of the passive
cavity modes due to NMC via the common gain medium.
The emission peak positions and widths are established by the
real and imaginary parts of the eigenvalues A, since every
mode carries both basis eigenvectors. The mode coupling is

also associated with the oscillations of | gél)(t)| [this is easy

to see in Fig. 2 for [g{"(z)| but holds true for |g!"(z)[].
In particular, the oscillation amplitudes are attributed to the
corresponding frequency spectra peak heights, whereas the
oscillation frequency is defined by the peak position difference,
which in turn is related to the relative detuning of the cavity
modes. Importantly, the oscillations of | gél)(t)| originate from
mode coupling and need to be distinguished from those
reported in Ref. [33], which arise from the interference of
emission in two different polarization directions.
Experimental realization. Here we present the experimental
investigation of NMC in bimodal lasers, where we study
electrically pumped micropillar lasers based on a doped planar
microcavity sample with a single layer of self-assembled
InGaAs QDs acting as active medium (for technological
details, see Refs. [34,35]). An asymmetry of the cross section
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FIG. 3. (Color online) (a) Injection-current-dependent uEL
emission spectra in 90° polarization for 2.1 < [y /I, < 5.5, plotted
relative to the high-energy peak values to compensate for an
injection-current-dependent shift of the emission energy [see (d)].
(b) Calculated frequency spectrum in 90° polarization for inversion
values 0.63 < I < 0.67. Parameter values are the same as in Fig. 2.
(c) Calculated inversion (green, crosses) vs injection current and
integrated ©EL intensity for 0° and 90° polarizations. (d) Emission
energy (relative to the reference point 1.366 eV) of the 0° component
and the two-mode features in 90° detection vs injection current.

of the pillar and/or the upper ring-shaped electrical contact
lifts the degeneracy of the resonator fundamental mode, and
thus two frequency-separated linearly (orthogonally) polarized
cavity modes are supported [36]. The micropillar laser under
study has a diameter of 3.6 um, and the two modes of 0°
and 90° polarizations and Q factors of 10 000 and 10 800
are split by 115 peV. The emission has been investigated
at low temperature (10 K) by a microelectroluminescence
(1EL) setup (spectral resolution 20 neV). A linear polarizer
in combination with a A /4-wave plate is installed to perform
polarization-resolved measurements.

The input-output dependence of the emission in detection
angles of 0° and 90° is depicted in Fig. 3(c). The emission
mode in 0° polarization shows a threshold current of about
L, = 4 uA. The smooth transition at threshold and the S-
shaped input-output characteristics indicate the high-8 lasing
with 8 ~ 0.2 [25]. A similar behavior is observed for emission
in 90° polarization up to Ijp; = 1.57y. At higher injection
currents, saturation and even a decrease of the output intensity
is observed. This anticorrelation between emission of the
dominant mode in 0° and the inferior mode in 90° polarization
is explained by means of the microscopic semiconductor
model in terms of gain competition [25]. Moreover, the model
allows us to determine the inversion / vs pump rate which
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changes from —0.8 to 0.8 for the parameter values used
[see Fig. 3(c)]. The corresponding NI range is indicated in
Figs. 1(c) and 1(d) as the hatched area.

Interestingly, the intensity of emission in 90° polarization
increases again for Iy 2 41 [see Fig. 3(c)]. To analyze this
feature we study the emission spectra of the laser for different
injection currents. While in the 0° orientation emission a
single peak is observed (not shown), for the 90° orientation
at injection currents exceeding about 1.51 a transition of a
single emission peak into a doublet occurs [see Fig. 3(a)],
where the intensity of the low-energy component rises with
increasing current and dominates for fi,; > 51y,. This double-
peak feature of the 90° orientation emission and its peculiar
current dependence are in very good agreement with the cal-
culated emission spectra presented in Fig. 3(b) for incoherent
collective coupling [37]. Indeed, for the range of the chosen
parameters N1 ~ 26-28, which, according to Figs. 1(c) and
1(d), corresponds to the region of incoherent coupling.

In Fig. 3(d) mode energies of 0° and 90° polarizations
vs injection current are plotted. At low injection currents the
single-peak emission in both polarization directions corre-
sponds to the bare frequencies of the cavity modes. Moreover,
the low-energy component of the 90° emission for low
injection currents coincides spectrally with the 0° emission,
but at high excitation currents it approaches the energy of the
high-energy peak in the 90° orientation. This clearly shows
that this emission does not originate from possible cross-talk
between the 0° and 90° components, but is in accordance with
the theoretical prediction in Fig. 1(c), namely, that the peak
positions approach each other with increasing N 1.

In summary, we have demonstrated the existence of
collective NMC in bimodal microlasers. In contrast to the
conventional case, here, in the coherent coupling regime, the
increase of the effective coupling rate produces a splitting of
the linewidths instead of the frequencies. In the incoherent cou-
pling regime, increasing effective coupling induces splitting
of frequencies and locking of linewidths. The consequence is
a double-peak structure of the output spectra of the modes
and large coherence times for both dominant lasing and
inferior modes, which we have confirmed experimentally in
QD-based bimodal micropillar lasers. The latter offer unique
possibilities to study collective coupling, since the stimulated
emission of the dominant mode leads to clamping of the carrier
density with large inversion (/ =~ 0.8), while the inferior
mode experiences collective coupling mediated by multiple
inverted emitters. Note that the unconventional NMC is not a
semiconductor effect, but can be observed in the case of the
collective weak interaction of two modes with a mesoscopic
number of atoms. We expect to observe further interesting
effects related to NMC in bimodal lasers in the coherent
coupling regime which could be accessed by using micropillar
cavities with small mode splitting and larger inversion rate
and/or number of involved QDs.
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