
USING UNSUPERVISED MACHINE LEARNING FOR
FAULT IDENTIFICATION IN VIRTUAL MACHINES

Chris Schneider

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2015

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/7327

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30319647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/7327

Using Unsupervised Machine Learning for
Fault Identification in Virtual Machines

Chris Schneider

This thesis is submitted in partial fulfillment for the degree of

Doctor of Philosophy

at the University of St Andrews

June 2015

Abstract

Self-healing systems promise operating cost reductions in large-scale computing
environments through the automated detection of, and recovery from, faults.
However, at present appears to be little known empirical evidence comparing the
different approaches, or demonstrations that such implementations reduce costs.

This thesis compares previous and current self-healing approaches before demon-
strating a new, unsupervised approach that combines artificial neural networks with
performance tests to perform fault identification in an automated fashion,i.e. the
correct and accurate determination of which computer features are associated with
a given performance test failure.

Several key contributions are made in the course of this research including an
analysis of the different types of self-healing approaches based on their contex-
tual use, a baseline for future comparisons between self-healing frameworks that
use artificial neural networks, and a successful, automated fault identification in
cloud infrastructure, and more specifically virtual machines. This approach uses
three established machine learning techniques: Naïve Bayes, Baum-Welch, and
Contrastive Divergence Learning. The latter demonstrates minimisation of human-
interaction beyond previous implementations by producing a list in decreasing
order of likelihood of potential root causes (i.e. fault hypotheses) which brings
the state of the art one step closer toward fully self-healing systems.

This thesis also examines the impact of that different types of faults have on their
respective identification. This helps to understand the validity of the data being
presented, and how the field is progressing, whilst examining the differences in
impact to identification between emulated thread crashes and errant user changes –
a contribution believed to be unique to this research.

Lastly, future research avenues and conclusions in automated fault identification
are described along with lessons learned throughout this endeavor. This includes
the progression of artificial neural networks, how learning algorithms are being
developed and understood, and possibilities for automatically generating feature
locality data.

Acknowledgements

This research has been primarily funded by The Scottish Informatics and Computer
Science Alliance (SICSA) and by the University of St Andrews, and made possible
via the generous time and personal investments of other academics. Thanks go to
the following people, in particular:

My supervisors Simon Dobson and Adam Barker, along with Saleem Bhatti and
Graham Kirby – all of whom faculty members of The School of Computer Science
at the University of St Andrews – and my colleagues Ruth Hoffman and Ildikó Pete
– for their guidance, recommendations, time spent proofing, and their invaluable
feedback.

Brant Moriarity, Larry Yaeger, Mehmet Dalkilic, Luis Rocha, and Marty Siegel
of Indiana University for lessons both academic and social, and their personal
investments in my success.

Matt and Brea Carlson, most recently of Wabash College but also of Indiana
University, for their guidance, encouragement, and recommendations in getting me
started with the academy, and for their continued support.

Susan Hohenberger (Waters) of The Johns Hopkins University for their investment
in my education and furthering my foundational knowledge in computer science.

And, to Jeff House, who taught me to program in his own free time and asked
nothing in return.

Without the involvement and generosity of these individuals and organisations, it is
easy to imagine a life of less success. My fealty, and kindest, deepest thanks to you
all.

1. Candidate’s declarations:

I, Chris Schneider, hereby certify that this thesis, which is approximately 29,000 words in length, has been written by me, and that it
is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student in Sep. 2011 and as a candidate for the degree of PhD in [month, year]; the higher study for
which this is a record was carried out in the University of St Andrews between 2011 and 2015.

Date 5 Aug. 2015 signature of candidate

2. Supervisor’s declaration:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in
the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.

Date 5 Aug. 2015 signature of supervisor

3. Permission for electronic publication: (to be signed by both candidate and supervisor)

In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for
use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the
work not being affected thereby. We also understand that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested below, and that the library has the right to migrate my thesis
into new electronic forms as required to ensure continued access to the thesis. We have obtained any third-party copyright
permissions that may be required in order to allow such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the publication of this thesis:

PRINTED COPY
a) No embargo on print copy
b) Embargo on all or part of print copy for a period of … years (maximum five years) on the following ground(s):

 Publication would be commercially damaging to the researcher, or to the supervisor, or the University

 Publication would preclude future publication

 Publication would be in breach of laws or ethics
c) Permanent or longer term embargo on all or part of print copy for a period of … years (the request will be referred to the
Pro-Provost and permission will be granted only in exceptional circumstances).

Supporting statement for printed embargo request:

ELECTRONIC COPY
a) No embargo on electronic copy
b) Embargo on all or part of electronic copy for a period of … years (maximum five years) on the following ground(s):

 Publication would be commercially damaging to the researcher, or to the supervisor, or the University

 Publication would preclude future publication

 Publication would be in breach of law or ethics
c) Permanent or longer term embargo on all or part of electronic copy for a period of … years (the request will be referred
to the Pro-Provost and permission will be granted only in exceptional circumstances).

Supporting statement for electronic embargo request:

Date 5 Aug. 2015 signature of candidate signature of supervisor

Please note initial embargoes can be requested for a maximum of five years. An embargo on a thesis submitted to the Faculty of
Science and Medicine is rarely granted for more than two years in the first instance, without good justification. The Library will not
lift an embargo before confirming with the student and supervisor that they do not intend to request a continuation. In the absence
of an agreed response from both student and supervisor, the Head of School will be consulted. Please note that the total period of
an embargo, including a continuation, is not expected to exceed ten years.
Where part of a thesis is to be embargoed, please specify the part and the reason.

For Emma, who always believed.

Thank you.

CONTENTS

Contents i

List of Figures iii

List of Tables vii

1 Introduction 5
1.1 Motivation . 6
1.2 Hypothesis & Central Tenets. 7

1.2.1 Hypothesis . 7
1.2.2 Central Claims . 8

1.3 Main Contributions. 8
1.4 Definitions. 9
1.5 Published Works . 12
1.6 Organisation. 14

2 Background 15
2.1 Introduction . 15

2.1.1 Terminology . 16
2.1.2 Assumptions . 18

2.2 The History of Autonomic Computing. 20
2.2.1 Self-* Systems . 21
2.2.2 Self-Healing Systems. 23

2.3 Machine Learning Techniques. 24
2.3.1 Artificial Neural Networks. 25
2.3.2 Hidden Markov Models. 26
2.3.3 Restricted Boltzmann Machines. 27
2.3.4 Stochastic Primitives. 29

3 A Systematic Review of Self-Healing Systems 31
3.1 Methodology . 31

3.1.1 Search Process. 32
3.1.2 Research Questions. 33
3.1.3 Quality Assessment. 34
3.1.4 Data Collection & Analysis. 34
3.1.5 Results . 35

i

II CONTENTS

3.2 A Comparison of Self-Healing Systems. 35
3.2.1 Management Styles. 36
3.2.2 Computing Environments. 44
3.2.3 Learning Methodologies. 49

3.3 Synthesis . 54
3.4 Synopsis. 58

4 An Automated Approach for Identifying Faults 63
4.1 Problem Description . 63
4.2 Approach . 64

4.2.1 Running Example. 67
4.3 Experiments. 68

4.3.1 Hidden Markov Models & Artificial Neural Networks. 70
4.3.2 Restricted Boltzmann Machines. 72

4.4 Limitations . 73
4.5 Threats to Validity. 75

4.5.1 Construct . 75
4.5.2 Internal . 76
4.5.3 External. 77

4.6 Implementation. 78
4.7 Comparison & Inference. 84

4.7.1 Baseline Establishment. 84
4.7.2 UBL - An External Basis for Comparison. 85
4.7.3 Collection. 88
4.7.4 Classification. 89
4.7.5 Learning & Analysis . 91
4.7.6 Comparison Constraints. 96

5 Results & Discussion 99
5.1 Introduction . 99
5.2 Overview . 100
5.3 Results. 101

5.3.1 The FDFs. 103
5.3.2 UBL . 116

5.4 Discussion. 119

6 Conclusion 127
6.1 Findings. 127
6.2 Lessons . 128
6.3 Future Work. 131

Appendix A Appendix-A 133
A.1 UBL Results. 133

References 135

LIST OF FIGURES

2.1 Artificial Neural Network. ANNs are a type of statistical model that operates
by updating weights along paths between hidden and visible layers to forecast or
otherwise ‘learn’ a series of inputs.. 25

2.2 Hidden Markov Model. HMMs operate by forecasting the hidden layer (Zs) using
observations from a visible set of inputs (i.e. a Markov chain,Xs). Unlike ANNs,
HMMs do not use more than two independent layers to separate observed and
hidden data.. 27

2.3 Restricted Boltzmann Machine. RBMs operate similarly to ANNs and HMMs,
but adjust their weights by using an form of alternating Gibbs sampling. This allows
them to update their layers in parallel – an advantage over other stochastic primitives.29

3.1 Management Styles versus Computing Environments.Managed environments
– such as Cloud and n-Tier infrastructures – show a preference for top-down
management styles, whereas ad hoc computing environments prefer bottom-up
management styles.. 43

3.2 Learning Methodologies versus Computing Environments.Most self-healing
systems prefer a supervised learning methodology, regardless of the environment
it is implemented in. This is useful for ensuring correct behaviours, but also a
limitation in potential for autonomy.. 48

3.3 Learning Methodologies versus Management Styles.When self-healing system
are implemented in a top-down fashion, they tend to leverage supervised learning
methodologies. Likewise, bottom-up management styles are more likely to use
unsupervised and semi-supervised learning.. 54

3.4 Self-Healing Systems Frameworks.Self-healing systems frameworks as cate-
gorised by learning methodology, computing environment, and expected manage-
ment style by first author’s last name, year of introduction, and framework title (if
appropriate). In some cases frameworks exhibit abilities to operate under multiple
assumptions – these incidents are represented by additional bullets within the graph.
Figure 2.8 divides this information into percentages with each entry represented
once per category.. 55

3.5 Relative Coverage of Different Self-Healing Techniques.. 56

4.1 Fault Detection Framework Logic & Architecture Diagram using Greedy
Ingest. The FDF leveraging ANNs and HMMs operates by updating its primitives
as soon as feature data is recovered from the system.. 66

iii

IV List of Figures

4.2 Fault Detection Framework Logic & Architecture Diagram using Lazy Ingest.
The FDF leveraging RBMs operates identically to the FDF that uses ANNs and
HMMs except with a lazy ingest mechanism for feature behaviour data. Primitives
using a lazy ingest are only trained upon fault detection.. 67

4.3 Running Example – Successful Data Collection via FDFs.Cropped image
showing successful data collection when running an RBM-based FDF.. 68

4.4 Running Example – Fault Identification via FDFs. Cropped image showing a
sample of an FDF result screen. The full sized list has been truncated to save space
but can contain 5 to 300 leads.. 68

4.5 Fault Detection Framework Logic & Architecture using Hidden Markov Mod-
els and Artificial Neural Networks. Fault Detection Frameworks are provided
three inputs, set to run, and then injected with faults at varying time intervals. The
result is an ordered list of leads based on forecasted feature behaviours.. 71

5.1 FDF v1.0 - Time Taken. Time-Taken represents the number of “ElapsedTicks”
converted to milliseconds (ms) between when a fault is detected and the return of
an ordered list of potential root causes. The ANN took less time than the HMM
to produce an ordered list of fault hypotheses. Shortened times allow for a wider
range of recovery solutions making them more desirable. Both values grow linearly
per the amount of data being provided.. 105

5.2 FDF v1.0 - Confidence.Confidence conveys how likely the FDF’s suspect a given
lead is associated with the correct root cause of the detected fault. Converse to the
amount of time taken, the HMM produced much higher confidence values than the
ANN. This is a result that was unexpected because of the way that the Baum-Welch
algorithm calculates probabilities.. 105

5.3 FDF v1.0 - Fault Position.The average position of a correct root cause as returned
by the FDF is represented in this graph. As the lists are ordered by descending
probability, lower values are better. The averages from the experiments show that
the HMM outperforms the ANN in nearly every test. Additionally, fault position
improvement is much slower with the ANN.. 107

5.4 FDF v1.0 - Total Leads.FDFs generate leads when a fault is detected. This graph
represents the average total number of suspect features (i.e. ‘leads’) at 5-point
sample intervals. The FDF using HMMs is able to generate more leads than the
one using ANNs, however more leads is not always better. The ideal result is a list
containing only the features that are associated with the cause of the fault.. 107

5.5 FDF v1.0 - Precision.HMMs provide more precise results initially, but eventually
trade with ANNs. This is significant in that neither approach is particularly precise,
but as more information is added, the HMM appears to drop in precision. This
result correlates with more leads being generated, and some second ordering issues.109

5.6 FDF v1.0 - F-Measure. The F-Measure represents the overall performance of
the learning algorithms in relation to both Baum-Welch (HMM), and Naïve Bayes
(ANN) in terms of precision whilst accounting for outliers. Due to the way the trials
were executed, similar results were obtained in each examination.. 109

List of Figures V

5.7 FDF v2.0 - Time Taken. A switch from greedy to lazy data ingest caused an
expected increased time-based performance metrics. This is because all of the
calculations for training the RBMs was performed once a fault was detected versus
after every collection sample. 111

5.8 FDF v2.0 - Confidence.The gradual increase in confidence values via the CDL
appears to be more robust than previous approaches. Rather than a relative value
being given or steep increases, a gradual pattern emerges as more data is fed into
the FDF. 111

5.9 FDF v2.0 - Time Taken - RBMs - Variance.The computational time to generate
leads using RBMs remained largely predictable. The greater the number of features
identified for initial investigation, the more time required to complete the calcu-
lations. Variance occurred due to the number of leads needing to be investigated.
Note: HMM and ANN trials are not included. See Page 105.. 112

5.10 FDF v2.0 - Confidence - RBMs - Variance.Confidence values generally display
little variance. The learning rate of CDL operated as predicted in nearly all cases
with one notable exception where the number of features produced by the fault
injecting were smaller than previous trials. Investigation into the cause of this
yielded inconclusive results.. 112

5.11 FDF v2.0 - Fault Position.The average fault position when using the RBM appears
to be competitive and often outperform other approaches.. 113

5.12 FDF v2.0 - Total Leads.The total avenues for investigation are much higher when
a lazy data ingest is used.. 113

5.13 FDF v2.0 - Fault Position - RBMs - Variance. This graphs shows results of an
identical feature being selected between trials. Normally, the first related feature
to the root cause is selected from the list by a test administrator. In this case,
only the original feature is selected to help illustrate variance. This helps provide
an understanding of how the RBM makes suggestions. At 20 minutes all correct
features are categorised within the top 10 leads.. 114

5.14 FDF v2.0 - Accuracy - RBMs - Variance. The accuracy of the RBM approach
increases whilst variance decreases with the exception of differences between 25
and 30 minutes. The reason for this is not fully confirmed. An initial investigation
showed maintenance tasks being executed by the operating system at regular inter-
vals set for every 30 minutes. This may create additional features for investigation
and account for differences in the 30 minute trials.. 114

5.15 FDF v2.0 - Precision. Precision of the RBMs show a marked improvement on
previous ex-periments, however some ramp up time is necessary. Averages of
results show a marked improvement between the 20 and 25 minute marks and a
stronger trend than prior approaches.. 115

5.16 FDF v2.0 - Accuracy. RBMs show an improvement in accuracy over other
primitives. Initial values start out low, but higher than other approaches. They
continue to show steady improve-ment with the possibility of meeting the accuracy
of the HMM. 115

5.17 FDF v2.0 - Precision - RBMs - Variance.Precision tends to increase as more data
samples are used. This coincides with previous observations at around 20 minutes
where greater increases start to take hold.. 116

VI List of Figures

5.18 FDF v2.0 - F-Measure - RBMs - Variance.A number of minor outliers occurred
during the course of these experiments. Some tests provided a larger number of
features to examine than were expected, and variance in fault index had an impact
on results. 116

5.19 Prediction Accuracy Formulas: UBL 4.1: True Positive Rate4.2:False Positive
Rate . 117

5.20 Precision Measurements: UBL & the FDFs. The precision of both FDF ap-
proaches remains low, however the RBM approach shows a promising trend as
more data is added. UBL’s precision drops the more data is added. The first three
metrics show results for fault identification where all features above the correct root
cause are considered false positives. The bottom two results (-ALT) show precision
for fault detection. 120

5.21 Average Position of Faults Based on Approach: UBL & the FDFs. UBL
and the FDFs prioritise potential sources of faults. Correct recommendations are
represented as an average of all tests based on primitive type. Lower values signify
better recommendations.. 122

5.22 Time Taken Performance Metrics: UBL & the FDFs. The UBL experiment does
not post timing data but instead reports performance as a function of total samples.
Additionally, training times are also reported to last until each neuron has been
updated 10 times making variance a possibility. This information is not given in the
original study by Dean, et al [1]. The FDF experiments do provide timing data with
greater variances being confirmed when switching from a greedy to a lazy ingest.. 123

LIST OF TABLES

2.1 Autonomic Computing Levels, IBM, circa 2002.This table represents the initial
Autonomic Computing levels proposed by IBM, however a small addition of where
Supervised, Semi-supervised, and Unsupervised learning methodologies has been
appended.. 22

4.1 WMI Classes – Names & Unique Column Identifiers.This table illustrates the
classes and the columns used to uniquely identify rows within the sampled WMI data.79

4.2 Performance Tests – Names & Descriptions.. 81
4.3 UBL Testing Suites. UBL uses various testing suites on a number of application

platforms. Although some of these tests are used across all scenarios, the majority
are not. For simplification, a testing matrix is included here.. 88

4.4 Summary of Testing: UBL. In the original work, results for UBL are presented
textually, graphically, or sometimes not at all.G = Data via Graph Only, Blank =
No Data, TP = True Positives, FP = False Positives.. 95

4.5 FDF and UBL Property Comparison. This table presents a summary of the com-
parison of operating properties in unsupervised self-healing frameworks discussed
in this chapter.. 98

5.1 Lead Times: UBL. This chart represents the number of seconds UBL identified a
failure before it reached a terminal threshold; higher values are better. Blank = No
Data. 119

vii

GLOSSARY

Adverse Configuration Change (ACC) A configuration change either simulated or real made

by a human administrator that negatively impacts the performance of a computer system.

Artificial Neural Network (ANN) A family of statistical learning models used to estimate or

approximate functions. Artificial neural networks are generally presented as systems

of interconnected "neurons" which send messages to each other. The connections have

numeric weights and biases that can be tuned using a learning algorithm and observations

over time. This allows artificial neural networks to exhibit adaptive behaviours.

Application Programming Interface (API) A set of routines and protocols for interacting

with software applications.

Case-based Reasoning (CBR)The process of solving newly observed problems based on

those which are both similar and have been previously observed.

Contrastive Divergence Learning (CDL) A learning algorithm based on alternating Gibbs

Sampling commonly used to train Restricted Boltzmann Machines.

Central Processing Unit (CPU) Computer circuitry used to carry out instructions of a com-

puter program.

Direct Fault Injection (DFI) A type of fault either simulated or real that is not directly

associated with intended use of a computing program or configuration change. Examples

include unexpected thread termination, unexpected resource constraints such as out of

memory exceptions, and other computing events typically outwith the intended use of

software by a human administrator.

Domain Name Service (DNS)A service that resolves human-readable fully qualified domain

names to internet addresses;e.g. www.google.com –> 173.194.45.48. DNS services

underly much of the basic functionality of the internet.

1

2 Glossary

Fault Detection Framework (FDF) A computing application used to detect anomalies within

a computing system.

Genetic Algorithm (GA) An heuristic, iterative search algorithm that combines stochastic

generation of new "populations" subsets with fitness tests to dynamically generate new,

stronger outputs.

Generative Stochastic Network (GSN)A type of artificial neural network being pioneered

using revisions to the backward propagation of errors learning algorithm.

Hidden Markov Model (HMM) A statistical model that attempts to forecast behaviours based

on observed information – requires the system being observed to be a Markov process

with unobserved (i.e. hidden) states – that is typically paired with the Baum-Welch

learning algorithm.

Infrastructure as a Service (IaaS) A type of internet-based (i.e. cloud) service that provides

access to hardware and basic, low-level software services. This allows for greater

customisation potential for clients, but also more overhead. See "Software as a Service",

and "Platform as a Service".

Integrated Development Environment (IDE) Any environment used for programming soft-

ware on a computer system.

Internet Information Services (IIS) Microsoft branded service used for delivering web-based

content (i.e. HTTP, HTTPS) on the internet.

Java Virtual Machine (JVM) A virtual machine used for running Java-based programming

code. It is administrated by the Java Runtime Environment.

Java Runtime Environment (JRE) An environment for instantiating and controlling Java

Virtual Machines.

κ-Nearest Neighbour (κ-NN) A supervised method for building a classification model using

feature data. These models can be used to forecast computer feature behaviours.

Principal Component Analysis (PCA) An eigenvector-based multivariate analysis procedure

that uses an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables called principal

components. It is used primarily to reduce the dimensionality of data and determine

principal components of interest.

Peer-to-Peer (P2P)An ad-hoc system of communication, typically between computers.

3

Platform as a Service (PaaS)A type of internet-based (i.e. cloud) service that provides access

to a pre-determined platform for end users to interact with typically offering moderately

developed, self-contained services. This allows for less customisation potential than IaaS

offerings but also less overhead for use. See "Service as a Service" and "Infrastructure as

a Service".

Quality of Service (QoS) A term to represent the overall performance of a computing service

including availability, reliability, and similar measures.

Restricted Boltzmann Machine (RBM) A type of artificial neural network based on a Boltz-

mann Machine. It typically consists of hidden and observed layers of "neurons"; (see Arti-

ficial Neural Networks). Unlike fully recurrent neural networks, Restricted Boltzmann

Machines do not allow direct cross communication between neurons on their respective

layers.

Receiver Operating Characteristic (ROC) A graphical plot that illustrates the performance

of a binary classifier system as its discrimination threshold is varied. The curve is created

by plotting the true positive rate against the false positive rate at various threshold settings.

Service as a Service (SaaS)A type of internet-based (i.e. cloud) service that provides access

to a service front-end and minimal infrastructure resources or platform customisation.

This typically offers well developed, self-contained services with little to no customisa-

tion. (See Platform as a Service and Infrastructure as a Service).

Service Level Agreement (SLA)An agreed upon objective – usually between multiple enti-

ties – regarding computing performance.

Service Level Objective (SLO) A policy or other formal, written obligation regarding the

intended minimum performance of a computing system or service.

Self-organising Map (SOM) A type of artificial neural network (ANN) that is trained using

unsupervised learning to produce a low-dimensional representation of an input space.

Self-organizing maps are different from other artificial neural networks in that they use a

combination of neighborhood functions to preserve topological properties of the input.

Scalable Vector Graphic (SVG) A lossless image format that uses vectors to redraw scaled

images upon demand.

Unified Modelling Language (UML) A General purpose modelling language used for de-

scribing the architecture of a software system and sometimes its associated processes.

4 Glossary

Unsupervised Behavioural Learning (UBL) An approach for understanding errant comput-

ing system behaviours using unsupervised learning within a self-organising map.

Virtual Machine (VM) A simulated computing system typically running inside a hypervisor

or larger (sometimes physical) apparatus.

Windows Management Interface (WMI) A proprietary service offered by Microsoft Win-

dows for querying basic feature information.

1CHAPTER ONE

INTRODUCTION

This thesis focuses on self-healing systems, how they operate, and advances in their respective

detection strategies. It describes exigencies in this area of study and then demonstrates positive

results from two separate experiments using stochastic primitives that leverage unsupervised

learning. Using a combination of unsupervised learning, stochastic primitives, and per-

formance tests, the root cause of a fault in cloud infrastructure (i.e. virtual machines)

can accurately be identified by comparing a system’s observed and predicted feature

behaviours.

The increasing complexity of modern computing environments is continuing to produce chal-

lenges in reliable and efficient systems management. Complexity has convoluted administrative

requirements such that the static capabilities of human-based supervision are showing decreases

in their relative effectiveness [1, 2, 3, 4]. This is increasing the costs of systems management

whilst simultaneously failing to address longstanding problems–such as issues with change

management, and simple human error [5, 6]. These issues are particularly evident in multi-tier

architectures where services comprise of several sets of systems with differing responsibilities.

The advent of self-adaptive systems is an approach in addressing the rising complexity require-

ments of systems management [7, 8]. These systems address multiple problems within this

space from self-configuration (i.e. provisioning), self-optimisation, self-protection, and self-

healing. Self-healing systems attempt to classify and analyse sensory data to automate the

detection then mitigation of faults. This in turn reduces the need for systems to interface with

human administrators, which presumably lowers operational costs and, ideally, improves upon

existing mitigation techniques.

5

6 CHAPTER 1. INTRODUCTION

There are varying degrees of autonomy within self-healing systems. This is largely depen-

dent upon the type of computing environment, management style, and learning algorithms

or primitives used. The latter topic can broadly be summarised as the difference between

reactive versus proactive (i.e. supervised and unsupervised) strategies, respectively. Reactive

solutions are constrained to resolving faults only after they have been previously observed,

a fortiori. In order to realise fully self-healing systems, a shift must occur from supervised

to unsupervised learning strategies. Unsupervised strategies allow for this shift by anticipating

faults in circumstances that have not been previously observed and, principally, offer the highest

potential degree of reduction in human intervention. However, the use of such techniques come

with costs – including potentially higher rates of error, and a lack of scrutability for some types

of errors.

Additionally, criteria on the viability of self-healing – or self-adaptive – solutions have not been

agreed upon. The simple fact of the matter is that there is no public information on what types

of behaviours, error rates, or resource utilisations are acceptable for self-healing systems in

production environments. One of the primary goals of this thesis is to encourage adoption of

these techniques in such environments and demonstrate their potential viability.

1.1 Motivation

The realisation of self-healing systems presents a number of potential benefits in large-scale

computing environments including the reduction of operational costs, faster fault mitigation

than existing methodologies, and fewer problems related to complexity – such as human error

in the consistency of systems’ configurations and change control procedures [4]. However,

there is presently no public data to support these claims, nor – prior to this work – are there

any known studies that compare one type of self-healing system to another based on either

performance metrics or their intended use. For those works that do exist within this area of

research, their use depends on simulated data or they operate under artificial constraints.

Using stochastic primitives, performance tests, and unsupervised learning in conjunction allows

for the accurate identification of problem areas within an infrastructure without having to train

highly specialised members of staff – an action that is believed to be potentially cost reducing

– whilst also shifting from reactive to proactive fault mitigation. Proactive mitigation promises

faster resolutions than human counterparts, and reduction of down-time compared to reactive

approaches.

Additionally, there are still no known public studies regarding human-subjects in this area.

1.2. HYPOTHESIS & CENTRAL TENETS 7

However, it is anticipated that these types of studies will be more likely to occur once accuracy

and timing expectations having been clearly set – which this thesis helps to establish.

This thesis provides the first known direct comparison of self-healing systems methodologies

(i.e. frameworks) in order to establish a baseline, and it attempts to understand their respective

specialisations in terms of computing environment, preference in primitives and learning

algorithms, and their management styles. It then goes on to describe a novel approach for

identifying the root cause of faults using stochastic primitives and unsupervised learning using

non-simulated data in a fully reproducible manner. Results, code, and associated assets are

provided to the public for the purposes of validation.

1.2 Hypothesis & Central Tenets

The general hypothesis and claims within this thesis are summarised here. Many of these

statements rely upon further explanation or references that are provided later in their respective

chapters.

The central hypothesis is listed here first, with central claims following:

1.2.1 Hypothesis

Using a combination of unsupervised learning, stochastic primitives, and performance

tests, the root cause of a fault within virtual machines can accurately be identified in cloud

infrastructure by comparing a system’s observed and predicted feature behaviours.

Success is determined if an accurate list sorted by descending order of potential root causes

is correctly returned upon instantiation of a fault with a known root cause in a controlled

computing environment. A list will be accurate overall if it contains the correct root cause

in the top 10 recommendations. Accuracy and precision will be measured by understanding the

relative position of root causes in proximity toward the first position in the ordered list.

Failure is determined upon any result where the root cause of a fault is not immediately and

accurately evident or it is below the top 10 – this includes any failure of the software in question,

or its dependencies.

For constraint reasons at the minimum bound, the smallest dataset sample will be five minutes.

This provides some amount of time for the system to build an expected behavioural profile.

8 CHAPTER 1. INTRODUCTION

1.2.2 Central Claims

1. Automated fault detection is important and has the potential to reduce operating costs

and complexity in maintaining large-scale computing environments. This is based on the

assumption that systems within such environments can detect and enact recovery strategies

faster than their human counterparts, and that some environments – particularly auto-

provisioning clouds – are becoming too complex to manage manually.

2. Using high-level performance tests is necessary to categorise observed data and it emulates

and adheres to existing research within the field of administering systems using ‘policies’

rather than individual technical corrections [4].

3. This thesis assumes that: 1.) Some faults will not be detected by the framework application

presented in this thesis, and 2.) by definition, it is unknown which faults will not be detected.

For these reasons all of the generated outputs of the services described herein are evaluated

manually to ensure accuracy.

4. Some faults are not recoverable – such as hardware errors. The types of faults anticipated

in this book are limited to those that are recoverable only:adverse configuration changes

(ACCs) (i.e. human error) anddirect fault injections (DFIs)(i.e. intentionally crashing a

service or application by corrupting its allocated memory).

5. Finally, this thesis is limited in scope. It does not attempt to make new research claims or

changes to the state of the art regarding learning algorithms, stochastic primitives, or other,

related areas of study. Although some premises are provided for the selection and use of

the artificial intelligence techniques used in this thesis, operating theories behind learning

algorithms, stochastic primitives, and other topics are not addressed in depth. Likewise,

paradigm matters – such as if the primary focus of self-healing systems should be on fault

tolerance or fault remediation – are intentionally not addressed.

This thesis only focuses on providing a novel approach for the automated determination of

the root cause of a fault under controlled conditions, and attempts to lay the foundation for

further studies in this specific area of study.

1.3 Main Contributions

In summary, this thesis provides the following contributions:

1.4. DEFINITIONS 9

1. A survey of self-healing systems that contrasts computing environments, learning algo-

rithms, and management styles, (Chapters2, 3)

2. A novel approach for self-healing systems that combines unsupervised learning with

stochastic primitives to analyse feature changes in order to accurately generate a descending

ordered list of fault hypotheses, (Chapter4)

3. Foundational work for comparing fault identification approaches using unlabelled data,

including the first known direct comparison of self-healing systems’ approaches, (Chapter

4, Section4.3and Chapter5) and

4. Results that show a demonstrable improvement in accuracy over existing approaches under

similar conditions (Chapter5).

1.4 Definitions

The majority of terms used within this book are primarily in reference to IBM’s initial

parlance, or those terms provided in Rodosek, et al’s,Self-Healing Systems: Foundations and

Challenges[9]. Definitions to terms based on these prior works may be occasionally updated

to address current technological trends and research, with such instances being called out when

appropriate. In some cases new terminology is provided to accent critical areas of research, or

to call out important information – such as the difference between human error leading to faults

(ACCs), and faults caused by unexpected program failures (DFIs).

Definitions of common terms are provided here for ease of reference:

Accuracy How close the measured value is to the actual (true) value. Depending on the context

this is measured by whether or not the correct feature is in the top 10 features returned

in the ordered list of leads, or by measuring all correct cases overall all sampled cases –

(Nt p+ Ntn) / (Nt p+Ntn+N+ f p+Nf n). Any features ordered higher in the list than one

identified by the test administrator are considered false positives.

Availability Whether or not a computing system is accessible –e.g.via expected services.

Churn The rate at which computing device membership changes within a computing environ-

ment [10].

Clouds Collections of either real or virtualised computing devices that are centrally managed,

and controlled by a single entity. Devices that exist as part of a cloud are more likely to

10 CHAPTER 1. INTRODUCTION

be configured identically, housed in a data-centre, and operated by a large professional or

academic staff [10, 11].

Confidence A representation of a learning algorithm’s perceived likelihood that a specific

feature is related to the root cause of the fault –i.e. the probability of unexpected

behaviour of a feature given some number of prior observations.

Note: Confidence value generation depends on the learning algorithm being used. For

Naïve Bayes it is a weighted proportion of the previously viewed feature changes up to

the maximum window size –i.e. 30. For Baum-Welch, an expectation-maximisation

(EM) algorithm is used to find the maximum likelihood of potential behaviours using

all of the observed set of feature inputs – this produces a proportional result with one

value always equaling 100%. WithContrastive Divergence Learning (CDL), an “energy

function” is used – see Section2.3.3and associated literature [12, 13, 14].

Drift A specialised term used to describe the phenomenon of the potential loss of accuracy

between when a test completes as related to when feature data was last sampled from a

computing system.

ElapsedTicks A programming object used for tracking time in C# that automatically accounts

for differences incentral processing unit (CPU)frequencies. This is not to be confused

with “Elapsed Ticks”, which are a similarly named programming object also used in C#

for time calculations, but do not take into account differences inCPU cycles between

computing systems.

ElapsedTicksare used to ensure greater reproducibility – minute differences in machine

configurations and operating systems can impact the results gained from using traditional

timing mechanisms. These differences occur regardless of hardware specification and

can manifest even under identical configurations due to differences in timing frequency

on system boot [15].

Fault Detection The process of determining when a fault is present.

Fault Identification The process of determining the root cause of a fault, if present.

Fault Position The position of the correct root cause of a fault in a list of fault hypotheses or

“leads”.

Feature(s) Any property – such as a performance metric or configuration value – in a comput-

ing system that details or describes a computing system’s state. Examples include free

disk space, an internet protocol address on a network interface card, a working directory,

or the number of context switches being performed per second.

1.4. DEFINITIONS 11

Grids A voluntary collections of either physical or virtual computing systems that share

resources, and typically consist of multiple, heterogenous configurations. In these

environmentschurn– the rate at which membership changes – is expected to be high, and

systems are expected to be managed in anad hocfashion. This can translate to computing

environments that do not require professional services to operate, such as those housed in

a data-centre.

High Availability High availability is defined as having less than 5 minutes of service down-

time in a normal 365 day calendar year or ~99.999% availability; also known as “Five

Nines” in industry nomenclature.

Large-scale computing environmentA distributed, possibly world-wide, collection of com-

puters that consists of many different layers of components. This term is kept intentionally

ambiguous to address a plethora of acceptable solutions and conditions and avoid over

specialisation.

Although there are numerous interpretations as to what constitutes a computing environ-

ment the majority of terms applied within this thesis are taken from a single source [11].

Performance Test An human supplied set of logical conditions capable of being discretely

evaluated which indicate whether or not a computing system is operating within expected

and acceptable boundaries (see Service Level Objective(s)). Sometimes discussed in

association withFitness Testswhen discussing Genetic Algorithms.

Precision How close the measured values are to each other.

Root-cause AnalysisThe act of determining the source or sources of a particular fault; in this

case the determination of which feature or set of features triggered or contributed to said

fault such that a service-level objective or performance test failed to be met.

Reliability A percentage of time that a computing system operates as expected.

Self-healing SystemsSelf-healing systems are defined as servers – either physical or virtual –

that detect and recover from faults without in an automated fashion without interrupting

the overall usable state of a service where possible; some faults are assumed to be

unavoidably service impacting.

Specifically, self-healing systems are virtual machines that are intended to exist within a

large-scale computing environment under the above definition. These environments are

assumed to host a service requiring high-availability.

Stability How fast a computing system can mitigate faults and return to its original state.

12 CHAPTER 1. INTRODUCTION

Standard Computing Environments (i.e. Traditional computing environments) are defined

as established, non-virtualised and typically legacy computing environments that are

otherwise similar in definition toclouds.

Stochastic Primitive A special, collective term for computing primitives that leverage a ran-

dom probability distribution or statistical model to forecast and approximate outputs of

a given function. This typically includes Artificial Neural Networks, Hidden Markov

Models, and Restricted Boltzmann Machines.

Supervised Learning The use of labelled data to train a computing primitive to infer a

function. Typically, this is achieved by pairing an expected output with an input.

Time-Taken The total time required inElapsedTicksbetweenservice-level objective (SLO)

failure and print out of an ordered list of fault hypotheses to an output screen or terminal

(seeElapsedTicks).

Total Leads The total number of fault hypotheses generated by a stochastic primitive at the

time of SLO failure. This represents the total number of avenues to be explored by the

Fault Detection Framework (FDF).

Unsupervised Learning The use of unlabelled data to train a computing primitive to infer

a function. Data is provided to the primitive without reinforcement or an expected

output. This allows the primitive to build representations of the input for later decision

making [16].

1.5 Published Works

This thesis incorporates work that has been previously peer-reviewed, published, and presented:

1. C. Schneider. "Autonomic Techniques for Systems Management" (Poster Session).Sixth

International Workshop on Self-Organizing Systems(IWSOS) 2012. Delft University of

Technology. Delft, The Netherlands. 15-16 March 2012. [17].

This work was primarily focused on fault discovery mechanisms in self-healing systems,

and, broadly, discussed what autonomic techniques were currently in place for their subse-

quent self-management. An overview, motivation, and summary of the problem space as it

existed in 2012 were provided along with a preliminary description of the approach to be

taken in subsequent research (Chapters4, 5).

1.5. PUBLISHED WORKS 13

2. C. Schneider, A. Barker, and S. Dobson, "A survey of self-healing systems frameworks", in

Software Practice and Experience, Wiley, 2013. [7]

The journal ofSoftware Practice & Experiencepublished the literature survey included in

this book (Chapter2). It provides an overview of the history of the Autonomic Computing

initiative before focusing specifically on self-healing systems and a contextual examination

of their implementations.

3. C. Schneider, A. Barker, and S. Dobson, "Autonomous Fault Detection in Self-healing Sys-

tems: Comparing Hidden Markov Models and Artificial Neural Networks", inProceedings

of International Workshop on Adaptive Self-tuning Computing Systems, ADAPT ‘14, (New

York, NY, USA), pp. 24:24–24:31, ACM, 2014. [18]

This is the first publication presenting the approach described in this thesis. It incorporates

the design, development, and metrics gathering processes associated with subsequent ex-

periments, and provides a baseline for the more complex approach utilised in the following

paper.

4. C. Schneider, A. Barker, and S. Dobson, "Autonomous Fault Detection in Self-healing

Systems using Restricted Boltzmann Machines", in11th IEEE International Conference

and Workshops on the Engineering of Autonomic Autonomous Systems, (Laurel, Maryland),

IEEE Computer Society, IEEE, 2014. [19]

This paper represents the state of the art as proposed in this thesis for generating fault

hypotheses using stochastic primitives and unsupervised learning in self-healing systems. It

compares results with the previously mentioned approach before laying the foundation for

future work.

5. C. Schneider, A. Barker, and S. Dobson, “Evaluating unsupervised fault detection in self-

healing systems using stochastic primitives,”EAI Endorsed Transactions on Self-Adaptive

Systems, vol. 15, January 2015. DOI:10.4108/sas1.1.e3. [20]

This is a summary paper published in the journalEAI Endorsed Transactions on Self-

Adaptive Systemsthat discusses and contrasts both prior works with an external experiment

that has similar goals. It contributes and provides an approach for practical implementation

and compares performance metrics against a related study in self-healing systems research.

14 CHAPTER 1. INTRODUCTION

1.6 Organisation

This thesis is divided into five chapters and one appendix. Chapter 1 introduces self-healing

systems, the motivation and claims discussed herein, and provides an overview of contribu-

tions and structure within this thesis. Chapter 2 summarises prior research by contrasting

the management styles, computing environments, and learning algorithms of existing self-

healing systems before concluding with exigencies in the field, an in-depth motivation, and

an hypothesis. Chapters 3 and 4 describe the approaches used to evaluate the hypothesis,

including theoretical assumptions, technical specifications, and implementation details of the

experiments, and discusses their results, respectively, in chronological order of publication

starting withArtificial Neural Networks (ANNs)andHidden Markov Models (HMMs), then

by Restricted Boltzmann Machines (RBMs). The final chapter concludes with findings, lessons

learnt, and future avenues of research.

2CHAPTER TWO

BACKGROUND

This chapter discusses the history of self-managing systems – chiefly from the context of IBM’s

Autonomic Computing Initiative. The following chapter builds on this information to expand

the motivation provided in chapter one.

2.1 Introduction

Self-healing methodologies are often realised through the use of machine learning techniques

or other aspects in artificial intelligence. They have have been described via architectural

differences [21], network behaviours [8], research areas [22], biological likenesses [23], and,

most recently, by contrasting their learning algorithms, implementation, and management

styles [7]. These surveys have produced a broad spectrum of knowledge and highlighted notable

advances and exigencies within the field. However, the effectiveness of these solutions and the

commonalities shared between implementations have not yet been fully explored.

This chapter discusses the background of such systems, and helps to lay the foundation for

further exploration in comparing self-healing systems methodologies. It uniquely divides self-

healing behaviours contextually which is based on the idea that not all approaches are created

equal, nor appropriate given the purposes of their implementations.

The type of environment or infrastructure in which self-healing frameworks operate, the self-

healing behaviours or problems expected to be addressed, and their manageability require-

ments or hierarchical needs are critical for understanding self-healing systems research and

methodologies. These factors are categorised herein as computing environments, learning

15

16 CHAPTER 2. BACKGROUND

methodologies, and management styles, respectively. Analysing self-healing frameworks

based on commonly shared use-cases (i.e. tiers) allows for a comparative understanding of

each methodology, their respective benefits, and their relative human costs. By contrasting

behavioural properties with their expected implementation and level of autonomy, this chapter

provides a greater understanding of which techniques are being leveraged, and under what

circumstances. It also examines correlations between these factors by exploring the type of

self-healing methodologies as related to their expected environment.

2.1.1 Terminology

Although some definitions have been attempted, the terminology used within self-healing

systems is not fully agreed upon [4, 9]. This has caused confusion when similar or sometimes

identical terms are used under different connotative assumptions. This is particularly evident in

self-healing systems where common goals are shared but approached under different ideologies-

such as self-*, self-managing, mimetic, and evolutionary computing. When this happens

definitions can have unexpected cross referencing problems – such as those between self-

healing, and self-configuring.

Ambiguity in terminology is also a major issue. Self-managing systems–a term broadly

associated with systems that can monitor and adjust their own behaviours–represents a large

area of study. As such, some approaches divide self-managing systems into tenets–e.g. IBM’s

Self-* approach [2, 4]. IBM’s tenets are categorised intoSelf-healing, Self-configuring, Self-

protecting, andSelf-optimizingbehaviours. Self-healing systems, specifically, are defined as

“... systems [that] discover, diagnose, and react to disruptions. For a system to be

self-healing, it must be able to recover from a failed component by first detecting

and isolating the failed component, taking it off line, fixing or isolating the failed

component, and reintroducing the fixed or replacement component into service

without any apparent application disruption.”[4] [p. 8].

However, what constitutes the successful implementation of self-healing systems is much more

equivocal.

In 2003 Ganek and Corbi state “...self-healing and self-configuring is the ability to dynamically

insert new pieces of software and remove other pieces of code, without shutting down the

running system.” [4] [p. 14]. This definition highlights the ambiguity between the differences

in these tenets, but it also highlights several problems with the definition provided by Ganek

2.1. INTRODUCTION 17

and Corbi: It does not readily address the current trends in technology, that some faults are

unpreventable and will require a system shutdown to mitigate, or that some faults may not be

predictable (but still recoverable).

Technological trends have shaped the way in which self-healing systems are being defined.

The rise of mass virtualisation post 2003 has arguably allowed for large-scale computing

environments to accept the arbitrary shutdown of one system to be replaced by a new, better

configured virtual instance without interruption to live, production services. It is this environ-

ment upon which the theories in this book are largely based. However, these theories are built

with the expectation that if it works in virtual environments, it should also work in physical

environments.

Some faults will not be preventable – such as hardware failures, software corruption, or poor

decisional choices by human agents. In these circumstances a system shutdown may be

unavoidable. Such circumstances should not invalidate the legitimacy of self-healing systems

as an approach.

Some faults are not predictable but are still recoverable. In those instances the success of a self-

healing system should be defined by evaluating its enactment of a self elected course of action–

or recovery strategy. A recovery strategy should be at least equivalent to a human counterpart in

terms of mitigating the faults, and ideally implemented in a faster, and yet still accurate fashion.

Under these considerations the latter stipulation – that a system cannot be shut down to address

a fault – is considered to be obsolete. Additionally, because Ganek and Corbi’s definitions do

not address current technological trends, they do not feel well enough defined to be of sufficient

use.

If a self-healing system automatically corrects a fault by changing a program’s feature be-

haviour, is that a form of self-configuration? What if that feature behaviour is adjusted

through a configuration file? The vast majority of self-healing systems experiments leverage

autonomous reconfiguration as a mechanism for addressing faults – either before or after they

happen. Broadly summarised, key approaches consist of local parameter tweaking (including

evolutionary, bio-inspired, and search-based techniques) [18, 19, 24, 10, 25, 26, 27, 28, 29],

behavioural correlation [30, 31, 32], contextual weighting of information (i.e. windowing)

[18, 19, 33, 34, 29, 35], self-election of roles based on availability and load [36, 37, 38], and

atomistic reconfiguration – the independent discovery and use of openly exposed resources [39].

Notably, a number of frameworks implement more than one approach – particularly parameter

tweaking which is nearly universal.

18 CHAPTER 2. BACKGROUND

In fact, the changing of a system’s overall state in any self-elected manner – which happens

almost continuously in most systems anyway – provides ambiguity to the term in general. Self-

healing and self-configuring in these respects are, arguably, almost synonymous in definitions

in such cases.

Self-configuration does remain a unique and valid subset of self-management – however, due to

confusion between the defined areas of focus of the aforementioned tenets [4], it behooves us

to expand on and clarify the initial definition of self-healing systems. Initially, self-configuring

systems were described in the following manner:

“When hardware and software systems have the ability to define themselves them-

selves ‘on-the fly,’ they are self-configuring. This aspect of self-managing means

that new features, software, and servers can be dynamically added to the enterprise

infrastructure with no disruption of services.”[4] [p. 8].

In modern parlance, this behaviour is more akin toself-provisioning– the autonomous instan-

tiation and adoption of a configuration subset (or role) within an infrastructure. Many cloud

computing environments accomplish this behaviour throughprovisioning managers– but their

specifics are varied and are outside of the scope of this work.

Self-healing systems are then taken to mean any system leveraging a framework that au-

tonomously detects and then subsequently generates a recovery strategy from said fault – where

possible. Caveats to this definition include the ability to detect faults that are not able to be

mitigated, and that some faults cannot (or occasionally will not) be detected before they occur.

That is to say a system need not detect every potential fault perfectly or risk not being able to

be defined as a self-healing system.

The decision to define self-healing systems in this manner is not arbitrary and is based on prior

work as described in the following Section2.1.2, and in Section1.4.

2.1.2 Assumptions

The definition of self-healing systems has been expanded to include behavioural aspects that

are commonly evaluated in modern computing infrastructures. It is no longer acceptable for a

system to simply detect and recover from faults – it must do so transparently, and within certain

performance criteria. As such, some assumptions about how self-healing computing systems

should operate have changed since 2001.

2.1. INTRODUCTION 19

The integration of behavioural aspects has helped to unify business needs with IBM’s original

vision of self-healing systems. By adopting partially self-healing systems into traditional

infrastructures, an evolution of techniques and new self-healing systems methodologies have

emerged. However, not all self-healing methodologies are compatible with existing infrastruc-

tures and the maturity of many of these techniques has not been fully realised. As self-healing

systems methodologies become more mature, less human supervision should be required.

One approach to understanding maturity in a self-healing environment is by evaluating systems

statevia behavioural properties [9, 40, 6]. By understanding when and how long a system ex-

ecutes self-healing behaviours, it becomes possible to evaluate self-healing approaches against

existing implementations. Understanding the effectiveness of self-healing computing systems

against current approaches provides a practical baseline for understanding the advancement of

self-healing systems outside of theAutonomic Maturity Model.

Although there are numerous physical components that make up large-scale computing envi-

ronments, the scope of this thesis primarily emphasises virtual servers as central points of focus.

It is important to note that exigencies can exist outside of this scope, which the server is still

responsible for identifying. Examples of this include network connectivity diagnosis, and being

able to determine resource availability, such as a remoteapplication programming interface

(API).

Devices in these environments are expected to have high-availability constraints, and be

relatively static in terms of their rate of churn. Typically, large-scale computing environments

utilise multi-tiered architectures divided into front-end, middleware, and back-end sub-divisions

that exist absent of virtualised components. Standard (i.e. traditional) computing environments

are intended to represent the most common configurations for small, mid, sometimes large-size

network-aware service applications.

It is assumed that self-healing behaviours in computing environments may never be fully

realised and that some problems will indefinitely require human interaction. Although this

is not in keeping with the initial proposal, at some point it is perhaps unavoidable. For example,

there are no known software solutions to mitigate non-redundant hardware failures. However,

diagnosing and escalating such a situation to an administrator is still a desirable self-healing

behaviour. As such, systems that can operate to the edge of their limitations are still considered

to be successfully self-healing.

That being said, shifting from supervised to unsupervised learning is assumed to be more likely

to produce fully automated self-healing behaviours. Supervised approaches, by definition, can

only respond to situations retrospectively and are not the most efficient mechanism for reducing

20 CHAPTER 2. BACKGROUND

costs as they still require human interaction [28].

As large-scalecomputing infrastructures have become more complex, existing methods for

operating and maintaining systems have become less effective [4]. Anecdotal evidence suggests

that the use of skilled engineers to apply monitoring techniques that search for faults, engage in

root-cause analysis, and execute appropriate recovery strategies remains thede factostandard

of most professional organisations. Most of these monitoring techniques utilise some form of

behavioural test to indicate when a fault is present. Self-healing systems seek to automate these

processes. If a service fails, rather than requiring an engineer to intervene, a self-healing system

would autonomously diagnose the fault and then execute a recovery strategy.

Lastly, recovery is assumed to be a more difficult problem than detection – as Kephart said: “The

final stage, automated re-mediation of a problem once it has been localized, is perhaps the most

difficult.” [5]. However, the detection of faulty states is necessary before executing recovery

strategies,a fortiori. This logic is the foundation upon which some aspects of framework

maturity are gauged – a topic discussed further in Section2.2.1.

2.2 The History of Autonomic Computing

Many of the methodologies discussed in this paper refer to existing works in Autonomic

Computing. Autonomic Computing covers a wide range of topics in self-managing systems–

includingself-healing, self-optimisation, self-protection, andself-configurationproperties. Al-

though a familiarity with this area of research is assumed, a summary of foundational literature

is provided here for ease of reference.

This section discusses in brief the Autonomic Computing Initiative [2], and the goals and

criteria of self-healing systems, as initially described by IBM and subsequent publications [4, 3].

The illustration of these goals provides a way to narrow the problem space into addressable

components and brings context to the methodologies presented in this survey.

The Autonomic Computing Initiative was proposed in 2001 to address growing complexity in

systems management [2]. IBM proposed building software that could autonomously manage

systems using a series of closed control loops andenvironmental knowledgeper the work of

Dave Clark, et alia [41]. Environmental knowledgeis often denoted simply asK. Recursive

software elements combine contextual information (i.e. K) with a series of inferential steps

to make real-time decisions that mitigate problems and automate palliative maintenance tasks.

Over the last 10 years several advances have been made in realising these goals.

2.2. THE HISTORY OF AUTONOMIC COMPUTING 21

2.2.1 Self-* Systems

In 2003, IBM published two articles that built upon their initial proposal outlining the aforemen-

tioned four primary tenets in Autonomic Computing, a general process for autonomic systems

management [3], and a set of criteria that described behavioural levels and generic goals of self-

managing systems [4]. The process for automating systems management tasks, often referred to

as MAPE+K, outlined a recursive approach for continuously understanding and making changes

to a system’s state. By utilisingknowledge(K) about a system’s environment, a designated

software agent would: Monitor, Analyse, Plan, and Execute (MAPE) instructions to meet user-

specified policies. Since its introduction, MAPE+K has proven to be a central component in

many self-managing systems implementations.

In order to understand the effectiveness of a given MAPE+K based process, behavioural

benchmarks (i.e. levels) were used to evaluate the implementations’ maturity [4]. These

levels ranged from basic to fully autonomic and were evaluated based on whether they could

consolidate information, recommend an action, autonomously take an action, and finally

interpret a user-specified policy to do all of the aforementioned behaviours (Figure2.1).

Importantly, this article recommended an evolutionary approach in reaching each of these

stages. Building self-managing systems that operate at different levels permits heterogeneous

infrastructures, and allows for the gradual adoption of Autonomic Computing technology. This

includes environments where existing systems may not be compatible with all of the autonomic

computing levels.

To address the challenges proposed in these two articles, agent-based approaches for managing

systems were introduced [6]. Utilising aspects in artificial intelligence, this work was based on

an earlier text discussing reflex, goal, and utility agents [42]. Simply stated, reflex agents use

if-then rules to map actions to a specified state. In practice, this approach is used once some

condition is met to execute a pre-specified set of instructions. Goal and utility-based agents

attempt to exhibit rational decision making by autonomously determining what actions to take

based on expected results. The primary difference between goal and utility based agents is

that the former selects behaviours to attain a given objective, whilst the latter attempts to reach

and optimise behaviours such that suitable trade-offs between these multiple objectives can be

achieved at once. This was particularly useful if two goal policies contradicted each other.

Using this approach as a foundation, IBM proposed that self-managing solutions leverage

Action, Goal, and Utility policies. These policies incorporated high-level objectives with

systems tasks whilst allowing for resolution conflicts between enacted behaviours. However, the

implementation of broad level policies have produced challenges in evaluating the effectiveness

22 CHAPTER 2. BACKGROUND

Autonomic ‘Level’ Description

Basic � Multiple sources of systems generated data.
Requires extensive, highly skilled IT staff.

Managed � Consolidation of data through management tools.
IT staff analyses and takes actions –Supervisedmethodologies.

Predictive � System monitors, correlates, and recommends actions.
IT staff approves and initiates actions –Semi-supervisedmethodologies.

Adaptive � System monitors, correlations, and takes action.
IT staff manages performance against SLAs –Unsupervisedmethodologies.

Autonomic � Integrated components dynamically managed by business rules/policies.
IT staff focuses on enabling businessneeds.

Table 2.1: Autonomic Computing Levels, IBM,circa 2002.This table represents the initial Autonomic
Computing levels proposed by IBM, however a small addition of where Supervised, Semi-supervised,
and Unsupervised learning methodologies has been appended.

of self-managing systems. In the following year, a framework called DTAC was introduced for

evaluating the performance of a self-healing system [43].

DTAC unified the MAPE+K control loop with industry requirements, and provided a baseline

for performance metrics for evaluating self-managing systems. It described and quantified

properties such as stability, accuracy, settling times, and efficiency. By using these properties

it became possible to conduct behavioural evaluations based on a system’s environmental

knowledge, and historical performance data. The evaluation of this information led to a more

expansive approach that discussed general research challenges in self-managing systems, and a

variety of scientific advances in self-managing systems [5].

Specifically, self-managing systems solutions were divided into elements, systems, and inter-

faces, and standards definitions and requirements for each of these components were proposed.

This helped to unify the mission of Autonomic Computing with practical implementations by

illustrating examples of where action [44, 45], goal [46], and utility policy approaches had

been implemented [47, 48, 49]. Technologies related to these policies varied from symptom

matching [44] and task scheduling [46], to more complex approaches such as event correlation

with performance metrics [47, 49].

Notably, Kephart argued that the division of self-managing systems into autonomic elements

would allow for easier adoption of legacy systems. By incorporating existing services with

an autonomic interface, legacy architectures could be made to adopt self-managing strategies.

2.2. THE HISTORY OF AUTONOMIC COMPUTING 23

Once a legacy system had an access point for autonomic communications, self-managing

systems could exert some influence over the existing infrastructure. Indeed the notion of inter-

element communication was arguably the central thesis of this paper:

“The main new research challenge introduced by the autonomic computing initia-

tive is to achieve effective inter-operation among autonomic elements. In order

for this to happen, product developers must look beyond their natural product-

centric tendencies and cultivate a more holistic, system-level point of view. In other

words, specific autonomic elements must be designed with a greater awareness of

the fact that they will be situated in autonomic systems and intercommunicating

and interacting cooperatively with other autonomic elements.” [5][p. 2]

The challenge of reliable inter-operation and systems communication continues to be an open

problem in self-managing systems, under which self-healing systems research is frequently

categorised.

The establishment of core tenets, the MAPE+K process, evaluation methodologies, the auto-

nomic maturity model, and action, goal, and utility policies, created a foundation for further

contributions in self-managing systems. The ideas have also migrated into the domain of

communications [8], and the progress made in the last 14 years has been largely summarised [1].

However, as the field has matured and new technological advances have been made – such as

systems, and environment virtualisation, and the rise of mobile platforms – research in self-

healing systems has diverged and become more specialised. There are now different types of

self-managing systems based on these contexts.

2.2.2 Self-Healing Systems

To achieve the goals of self-healing systems a set of criteria must first be defined that is present

in a majority of self-healing systems methodologies that are to be evaluated both now and in the

future. It is for this reason that computing environment, learning methodology, and management

style were selected for comparison. Each of these properties exists in the prior literature in some

form making them easier to classify. Additionally, the effectiveness, capabilities, and contextual

uses for those systems are more readily captured.

It is no longer sufficient that self-healing systems can be analysed without first analysing and

understanding their intended purposes and requirements. A comparison of their effectiveness

24 CHAPTER 2. BACKGROUND

and categorisation of their uses must first be provided to understand the progress self-healing

systems have made, and to establish a baseline for future analysis.

2.3 Machine Learning Techniques

A number of machine learning techniques are used in the completion of the included experi-

ments. Chiefly, the use of statistical models that contain adaptive weights and biases turning

by learning algorithms make up the technical bulk of the discussed approaches. This section

briefly covers the structure and update mechanisms of the three stochastic primitives used in this

thesis to provide the reader with a general understanding of their operation. However, many of

these approaches are dependent upon prior works. Details of how the primitives operate beyond

a basic level, including mathematical background, history, and theory, are left to the reader to

explore at their discretion.

Stochastic primitives consist of three major components: a method for adjusting weights, a

model, and some mechanism for approximating non-linear functions of a given input. Weighting

mechanisms can consist of multiple components such as a learning algorithm and an activation

function. Their primary purpose is to take input and reinforce paths along the model in a

consistent and predictable manner after some event has been observed. This can occur using

both closed and directed cycles, but for complexity and resource constraint reasons solutions

presented in this thesis are limited to the latter. The collective method for adjusting weights and

their associated models are sometimes called amodule.

In call cases within this thesis a stochastic primitive consists of aVisible layer that represents

the actual behaviour of the computing system, and aHidden layer – a computed, abstract

representation of the observed data. By correlating observed behaviours and mapped cases, a

stochastic primitive can leverage a learning algorithm to reinforce its paths or probabilistically

forecast information. Understanding how accurate and efficient these learning algorithms are,

within the context of self-healing systems, one of the primary goals of this study –i.e. Did the

learning algorithm when used under this specificmodelsuccessfully correlate the root cause of

a fault based on feature behaviours?

Modelsrepresent the structure of the primitive. They define what paths are open for commu-

nication between a stochastic primitive’s different layers, and contain the weight values and

pathing objects (i.e. “neurons”). For operational reasons, learning algorithms are associated

with a specific model. This is because some assumptions must be made from which the learning

algorithms can infer information and where that information is to be stored – in this case, in a

2.3. MACHINE LEARNING TECHNIQUES 25

float that represents a weight on a neuron.

Function approximation can occur through numerous different methods, typically via target

functions. Target functions attempt to match the output of an observed state and then derive the

input. Differences in these functions vary substantially between primitives and are the bulk of

the following discussion.

2.3.1 Artificial Neural Networks

Figure 2.1: Artificial Neural Network. ANNs are a type of statistical model that operates by updating
weights along paths between hidden and visible layers to forecast or otherwise ‘learn’ a series of inputs.

A number of different computing primitives can be categorised asANNs, but for the purposes

of this thesis they most closely resemble a multi-layer network consisting of Sigmoid neurons.

A Sigmoid neuron uses a non-linear transfer function to determine activations for evaluation

against a step function that uses a weighted, moving average. In this case,u represents in all

cases to the weight sum ofn inputs to the neuron, wherew is a vector ofsynaptic weights.

26 CHAPTER 2. BACKGROUND

u =
n
∑

i=1
wixi

A step function then evaluates whether or not the neuron activates (i.e. along a given path). If

the given sum is above some threshold (θ), then the neuron activates thus changing its eventual

output.

y =

{
1 : u≥ θ
0 : u < θ

A number of approaches exist for updating the threshold value. Which approach is used depends

in the type ofANN that has been implemented.

For example, in this caseθ is hard-coded at 0.80; a value determined by a4
5 success rate in the

minimum sample set size for the experiments. This is done such thatANNs in this thesis are

not able to operate until they have at least 5 samples to predict from, and that a potential root

cause will not be selected unless at least this many observations has been met. It also provides

for an arbitrary measure to truncate potential outliers.

Weight updates to the neuron occur in this case through Naïve Bayes. In the simplest of terms,

this means the previously observed state is assumed to be the most likely observed state in the

future adjusted proportionally by the number of observed states that match the prior observation,

over the number of total observations. In this case, the total number of observation is limited to

the 30 – a topic discussed further in Section4.6.

2.3.2 Hidden Markov Models

Like ANNs, HMMs divide observed and unobserved (latent) information intoVisible and

Hidden layers, respectively (Figure2.2). HMMs operate by forecasting the hidden layer (Zs)

using observations from a visible set of inputs (i.e. a Markov chain,Xs).

There are numerous training algorithms that can be used withHMMs, such as the Vertibi

algorithm. With Vertibi, the goal is to find the most probable sequence of hidden states given

a set of visible states. This allows for multi-step ahead forecasting given a some number of

previously observed behaviours. A simplified version of this algorithm exists called Baum-

Welch, which allows for single step-ahead forecasting. Although both are algorithms are

discussed, it is Baum-Welch which is used the experiments contained within this thesis.

2.3. MACHINE LEARNING TECHNIQUES 27

Figure 2.2: Hidden Markov Model. HMMs operate by forecasting the hidden layer (Zs) using
observations from a visible set of inputs (i.e. a Markov chain,Xs). Unlike ANNs, HMMs do not use
more than two independent layers to separate observed and hidden data.

Baum-Welch operates by using the joint probability of a collection ofHiddenand observed

discrete random variables to find the maximum likelihood of an observed state. It assumes that

the hidden variable is independent of previous hidden variables and that the current observation

variables are only the result of current hidden state. By using expectation–maximisation (a topic

not covered in this thesis), forecasts can be made using historical observations.

In short, given a number of observations, Baum-Welch attempts to final a local maximum for

θ , such that the probability of the given observed states is satisfied provided some previously

observed parameter. This local maximum is determined via the recursive forward-backward

propagation of errors, that describe, respectively, the probability of observing some event at a

specific time, and the probability of a given sequence as compared to a related observed series.

Afterwards, weights are updated based on probabilities as described in Bayes’ theorem [50].

2.3.3 Restricted Boltzmann Machines

A special type ofANN called aRBM takes the two aforementioned approaches a bit further by

using a form ofAlternating Gibbs Sampling[51] calledCDL [13]. Rather than using a number

of subsequent layers for trainingRBMsorganise themselves into a two dimensional graph; one

top and one bottom layer.

The top layer acts as the hidden layer seen in previous approaches and corresponds to the

interpreted model of observed behaviours. The bottom layer is directly linked to observed

behaviours and serves as a guiding point for training data, without the need for supervision. Or,

28 CHAPTER 2. BACKGROUND

intuitively explained, on updating the top layer theRBM attempts to model observed behaviour,

and on updating the latter, the ‘real’ data is updated to correct any errors – the goal is to match

the top layer to the bottom layer in terms of output as quickly and cheaply as possible.

RBMs use an energy-based model as opposed to a maximum-likelihood approach. Energy-

based models associate a scalar to each observed state a variable of interest. Learning

corresponds to modifying that activation potential such that its shape has desirable properties

similar to the Sigmoid function typically ascribed toANNs.

The adjustments made to these energy-based functions are outside the scope of this thesis,

but they form the basis for adjusting weights and biases. In summary,RBMs can be thought

of as log-linear Markov random fields for which the energy function is linear in its free

parameters. To make this more powerful, an assumption is made to move from linear to non-

linear by assuming that some properties are never observed (i.e. hidden), and we disallow direct

communication or updates between neurons on the same layer.

Energy functions forRBMs are defined asE(v,h) whereE(v,h) = −b′v− c′h− h′Wv. W in

this case represents the weights of the connecting hidden and visible neurons, andb,c are the

offsets – gradual, co-related increases and decreases – of the visible and hidden layers’ values,

respectively.

The structure of anRBM provides it an advantage overHMMs – conditional independence

of the visible and hidden neurons (figure2.3). This allows for a cheap, multiplicative update

mechanism for said variables above which are typically much more expensive in other prim-

itives. When using binary inputs, such as those used in this thesis, it becomes very cheap to

update and adjust weights through the associated activation (energy) function. Further details

on this can be found in a number of resources [13, 12].

As a high-level overview onRBM’s weight update process, it first starts by using a training

vector on the visible layer’s neurons. It then alternates between updating all the hidden units’

weights and biases in parallel via the use of said energy formula and Monte Carlo sampling

before doing the same thing with the visible units. Details on this process are long but can be

found in external resources [52]. The updating process occurs until a specific number of time

cycles (i.e. epochs) are spent.

CDL allows theRBM to train in near real-time, and to do so more efficiently than previously

discussed primitives. BecauseCDL is good at using generative weights to convert posterior

distributions to learn, it can tier itself such that it never has to learn to model the posterior

distribution over the hidden units. In the simplest of terms, most learning algorithms aim to

2.3. MACHINE LEARNING TECHNIQUES 29

Figure 2.3: Restricted Boltzmann Machine.RBMs operate similarly to ANNs and HMMs, but adjust
their weights by using an form of alternating Gibbs sampling. This allows them to update their layers in
parallel – an advantage over other stochastic primitives.

be good at the former, but are bad at the latter. TheRBMs can avoid the major difficulties in

modeling the posterior distribution over the hidden units.

Additionally, RBMs operate similarly toHMMs by using Markov chains as inputs. However,

they have a distinct advantage in that adding additional layers provably improves the model of

the input data – although this increases their usage costs. The proof their continual improvement

is complex and omitted from this work but is described via parallels to “variational free energy”

via Hinton,et alia [14].

2.3.4 Stochastic Primitives

Performance for stochastic primitives is primarily measured in terms accuracy – including

correct behavioural inference given an input, and the exclusion of extraneous information. It is

also sometimes measured via the ability to synthesise a series of inputs given an output – as is

the case with the Vertibi andCDL algorithms. To achieve this in all settings – including noisy

scenarios – is challenging and no single approach has proven completely reliable.

As previously stated, stochastic primitives are a type of statistical model governed by a series of

rules and functions. They can use both closed and directed cycles to adjust weights along paths

formed by these functions to form maps. The maps represent relationships between observed

and inferred information – in this case, changes in a feature’s behaviour and the state of a

system’s health.

30 CHAPTER 2. BACKGROUND

Maps can consist of paths, or be literal geometric maps in the case ofself-organising maps

(SOMs). Different primitives are more suitable for different problems depending on their

expected outputs.e.g.If the goal is to find the smallest overlap shape possible using a connected

graph,SOMswill probably be a better solution thanHMMs.

Stochastic primitives are the objects of choice for this thesis because of their malleability

and their established research record in forecasting behaviours. Specifically, they can be

readily adapted to a number of different circumstances and their use is well established with

autonomously analysing and classifying data.

An alternative to this approach would have been to use Support Vector Machines (SVMs) or

Linear Classifiers (LCs). Although wide-spread and historically popular amongst researchers

for solving similar problems, these primitives primarily use supervised learning which makes

them unable to exhibit the highest degree of autonomous behaviour in self-managing systems.

The lack of suitable alternatives at the start of this research was one of the driving forces in this

area – although it is proving to be a more popular approach. This has been seen through the

adoption of this approach in existing self-healing systems environments, such as WS-* [53],

and for generic problem solving using performance based metrics [54]. One experiment even

seems to replicate many of the results in this study [55].

The experiments in this thesis could have been conducted sooner but research into some aspects

of stochastic primitives has been deterred due to technical challenges. The advent of the XOR

circuit and the costly mechanisms involved with its implementation in the 1960s and 70s,

discouraged the initial use ofANNs due to complexity constraints [56]. Resource utilisation

also represented another issue which is, comparatively, large. Although these costs have not

been lowered, available resources have improved greatly the cost per computational cycle

continues to decrease exponentially [57].

These circumstances have changed and it has allowed for the experiments explored and

discussed further in thesis.

3CHAPTER THREE

A SYSTEMATIC REVIEW
OF SELF-HEALING

SYSTEMS

This chapter explores in greater detail the commonalities between self-healing systems by

discussing their backgrounds, contextual uses, and behavioural mechanisms. It provides a

point of origin for understanding existing problems in fault detection within these systems, and

then outlines and motivates problems within the field before concluding with a synopsis:

Although progress has been made in furthering the autonomy of self-managing systems,

implementations across most environments are still largely supervised. In order to fully realise

the benefits these systems can provide, a shift to unsupervised learning should be explored.

3.1 Methodology

The assessment of prior self-healing approaches was based loosely on existing systematic

literature reviews [58, 59, 60]. Research questions, search processes, quality assessment of

output, and how data collection and analysis occurred were sampled before interpreting general

results. In short, most self-healing systems were discovered to commonly have properties

in three major areas – a topic discussed in Section3.2 – but only a few provided working

prototypes. In order to adhere to an evidence-based approach – such as the one described by

31

32 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

Kitchenham, et al [61] – only those systems that provided evidence of a working prototype were

studied in greater detail. The reasons for this will become more apparent later in this section.

3.1.1 Search Process

Discovery of associated literature happened through standard manual search of journals and

conference papers through a variety of online academic search engines. Major surveys were

evaluated through journals such as theJournal of Systems and Software, Transactions on

Information Theory, International Journal of Adaptive Control and Signal Processing, Decision

Support Systems, and Transactions on Autonomous and Adaptive Systems, amongst others.

More recent and cutting edge approaches were taken from conference-based publications.

The largest and most respected conferences were sampled for papers that covered the topic of

fault detection, identification, and self-healing systems including theInternational Conference

on Autonomic Computing(ICAC), theInternational Conference on Cloud and Autonomic Com-

puting(CAC), theInternational Symposium on Cluster, Grid and Cloud Computing(CCGrid),

theInternational Conference on Autonomic and Autonomous Systems(ICAS), theInternational

Symposium on Software Engineering for Adaptive and Self-Managing Systems(SEAMS), and

theInternational Workshop on Adaptive Self-tuning Computing Systems(ADAPT).

From both types of publications, references were taken for further literature to review and

then associated into basic categories including: relevant studies, research trends, technique

evaluation (both practical and theoretical). Additionally, resources were enquired about directly

from academic colleagues at the University of St Andrews believed to be familiar in the subject

matter based on their publications.

In total, the initial review focused on some 80 accredited research studies. This expanded

greatly when neighbouring topics such as theories behind learning algorithms and other aspects

of machine learning were taken into consideration. Ultimately, as many as 170 papers were

reviewed to varying degrees – some of which early technical reports, and pre-prints. Even some

unaccredited publications from arXiv.org from well known researchers were examined (e.g.

Bengio, et al. [62]).

In order to produce research that was more reliably founded on evidence-based approaches,

work that had a practical approach was emphasised. Specifically, publications that claimed

to have a working prototype or reproducible experiment were short-listed for review. This

collection of 20 papers became the base set of publications for further inference.

3.1. METHODOLOGY 33

3.1.2 Research Questions

Research questions were not immediately generated but rather synthesised based on common

exigencies in the papers that were reviewed. During this time it was noticed that many self-

healing systems had common properties in their implementation and that it appeared some of

these properties were related.

Ultimately, the research questions synthesised were:

1. In what computing environment is the fault generated? (i.e. What is the context of the

self-healing system implementation?)

2. How are self-healing computing systems being administered from a design perspective?

(e.g.ad-hoc, centrally,et cetera)

3. What degree of human interaction is expected during operation of a self-healing system?

4. What degree of human administration is required to meet with the ultimate intended goal of

self-managing systems, and what, if any, methods have been agreed upon?

5. What kinds of faults are being examined in self-healing systems?

6. Are faults being detected accurately in self-healing systems?

If so,

a) How quickly is the fault detected?

b) Given a fault is detected, how accurately is the faultidentified?

c) Is fidelity (i.e. total number of samples or observations) an issue here and what is its

effect on results?

7. Finally, given two or more self-healing approaches with accurate results, what kinds of

direct comparisons exist?

This thesis bases its own research and experimental structure upon these questions (see Section

3.1.2). Although not fully addressed, they are the foundation for how the experiments contained

herein have been formulated.

34 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

3.1.3 Quality Assessment

To ensure quality, a table was created to track and assess properties noticed in self-healing

systems prototypes. This included intended operating environment, and how the systems were

being managed. Management of systems was divided into two parts: internal logic, and how

often human interaction was required. Of the initial 20 publications, two papers did not meet

requirements that clearly outlined the use of the software being proposed or they offered vague

descriptors of their implementation, and two papers required unique parameters to address some

of their operating characteristics (GPAC [39], and OSIRIS-SR [34]). In the latter case, both

were ultimately included.

The primary criteria used to select frameworks was based on the presence of:

1. A description of the intended computing environment or operating conditions,

2. A description of how the systems were expected to be instantiated and managed,

3. A claimed working prototype – papers exclusively focused on theory were not evaluated –

and,

4. A description of whether or not the system used labelled or unlabelled data when being

initialised.

From these criteria, 15 self-healing systems frameworks were evaluated directly. The remaining

excluded papers were not directly compared, but were still used for scientific inspiration.

3.1.4 Data Collection & Analysis

Data collected from each publication consisted of:

1. The name of the framework (if given), or the title of the paper in the case of its absence,

2. The authors of the framework and associated collaborators (if appropriate),

3. The year of publication,

4. Which self-* properties, if any, the paper discussed or addressed,

5. Citation details (in BiBTeX),

6. Notes on supervised, semi-supervised, and unsupervised requirements in using the frame-

works,

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 35

7. The frameworks associated management style (top-down or bottom-up), and

8. The intended computing operating environment (e.g.peer-to-peer (P2P), cloud, grid, etc).

For items 4–6, frameworks could meet more than one criteria as some of these properties

occurred more than once. For example, labelling requirements can be different within certain

components of the same framework [27], and ad-hoc computing behaviours can take place

between systems designed to be centrally managed [37].

The collected information was reviewed by colleagues and peers both for validity and general

scientific interest. Reviews were subject to available time and resource constraints and although

are not proscribed standard practice were provided anyway.

3.1.5 Results

The initial survey revealed 12 instances of supervised learning, and 6 semi-supervised and

4 unsupervised learning approaches, respectively. Studies were divided between 8 bottom-

up and 12 top-down approaches – this would later even to 12 each during the development

time of this thesis. Eleven frameworks were assessed to be able to operate in standard, n-Tier

environments; 16 were able to operate in clouds. Nine showed the ability to work in grid or grid-

like environments – with many overlapping other possibilities. Only one study was exclusively

evaluated as operating in a grid [63].

Throughout the course of this thesis, information surveyed evolved and, of course, the published

worked produced and included in this study added a number of factors. These details are further

explored in the subsequent sections, but a detailed synthesis of the collected, total results can

be found in Section3.3, and in table3.4.

3.2 A Comparison of Self-Healing Systems

Self-healing frameworks leverage a diverse set of approaches to autonomously detect, identify,

and recover from faults. This section discusses and compares self-healing approaches based

on three primary aspects:management style, computing environment, andlearning methodolo-

gies. These aspects are often interrelated and can play an important role in determining the

36 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

effectiveness of a given self-healing solution. As such, some self-healing approaches have been

implemented more commonly under specific management styles and computing environments.

The following subsections are organised as follows: Section3.2.1 contrasts top-down and

bottom-up management styles that utilise self-healing frameworks. Section3.2.2 discusses

computing environments, and contrasts different self-healing behaviours commonly found

within grids, clouds, and standard infrastructures. Lastly, Section3.2.3provides an overview of

learning methodologies used to autonomously detect and recover from faults. A distinction is

made between supervised, semi-supervised, and unsupervised methodologies, and under what

circumstances they are most commonly implemented.

3.2.1 Management Styles

Managing complexity in computing environments has led to an abundance of architectural and

systems management techniques. This chapter focuses on two specific styles: Top-down, and

bottom-up. Top-down approaches organise systems into hierarchies by leveraging authoritative

nodes. These nodes control, propagate, and validate the behaviours of subordinate child-nodes

within the computing environment. Conversely, bottom-up methodologies operate in anad hoc

fashion, leveraging neighbouring devices to make or suggest changes to configuration state.

Each style divides computing environments into smaller, more manageable sub-components.

The division of systems into sub-components helps to address the natural complexity that arises

when managing multiple devices. This includes aspects from change management, divisions

in workflows, and enacting policies to automate systems tasks. Depending on the management

style, however, the nature of the sub-components also changes to provide different advantages

and disadvantages. It is often the case that management styles are selected based on computing

environment specific needs – a subject discussed further in Section3.2.2.

Top-down Management Styles

Top-down management styles are based on a hierarchical infrastructure for accepting and

enacting policies on child systems [64]. This is often realised through the use of databases

on parent-nodes, which subordinate nodes periodically communicate. By changing information

within these databases, the collective behaviour of systems communicating with the parent can

be altered. Thus, rather than requiring an administrator to access each system individually,

top-down methodologies can execute instructions autonomously.

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 37

Rainbow [65, 66] is a self-healing framework that leverages a centralised, top-down manage-

ment style. Utilising a set ofsystem concerns, child-nodes are divided into clusters based on

a similar set of expected behaviours. These properties are collectively described as system

roles, and are maintained by a single Rainbow instance. An administrator then provides a

set of constraints and recovery plans, which the service uses to evaluate systems behaviour.

Evaluations occurred using a three-tiered, abstract architectural model that autonomously

categorises systems behaviours. If a fault is detected, the server’s configuration is then altered

using recovery plans associated with the system’s synthesised role, and respective constraint

model.

Rainbow’s approach to dynamic systems evaluation, and its centralised methods, are arguably

foundational by many subsequent approaches. This includes the ability to utilise centrally

located recovery plans that are associated with the identification of specific faults [67], and

the use of recovery plans that have been created by systems administrators at run-time. Once

enacted these results are stored for later use within a centralised database – a technique

sometimes referred to ascase-based reasoning (CBR).

Localising configuration changes to a single point has the benefit of reducing human error

during implementation, and retaining a homogeneous configuration baseline within a comput-

ing environment. Top-down management styles are useful in ensuring predictable recovery

behaviour, and are widely utilised [65, 68, 69, 67]. Conversely, centralised infrastructures often

require extensive pre-configuration and training before they can exhibit self-healing behaviour.

MARKS+ [68] leverages a comparable approach to Rainbow by using what it refers to as

healing managernodes to select and implement pre-defined recovery plans. The recovery

plans are again evaluated based on a constraint model, but also include aservice availability

mapping. This mapping, combined with a collection of behavioural unit tests, provides context

to the evaluation of the constraint model. Systems determined to be in a faulty state are removed

from service until a ‘good’ behavioural context can be re-established via the the return of the

system to a previously known working configuration orstate. For MARKS+, healing managers

facilitate these behaviours by acting as a centralised orchestration service. This is similar to

Rainbow in that both approaches use an architectural perspective to facilitate resource discovery

and recovery behaviours.

The use ofbehavioural skeletonsis another perspective on understanding systems activities

in top-down infrastructures [69]. Behavioural skeletons are similar to models and consist of

an abstract collection of patterns that can be used to evaluate a system’s behavioural properties.

When combined with a set of constraints, orcontract[69], top-down styles can attribute context

38 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

to systems behaviours without depending on pre-defined roles. This has the advantage of not

requiring developers to commit to pre-approved configuration states. Similarly, skeletons and

contracts can be used to provision a specific subset of information to child-nodes – such as

configuration data or faults. Whilst the child-nodes retain this information locally, a reduction

in the need for ‘call-backs’ to management services remains present. This allows the systems

to work more independently and utilise external resources only when required.

The use of locally provisioned self-healing logic is similar to the two previous approaches in that

it leverages rule-based action policies to decide on recovery strategies. However, it differs in

how systems are allowed to interact, and provides an approach for leveraging more autonomous

behaviours. The latter is an artefact that has been extended in subsequent publications [38].

Rather than using a series of contracts, SASSY handles infrastructure management through the

use of dynamic model generation calledService Activity Schemas(SAS’s).

By aggregating these SAS’s, an architecture can be dynamically mapped into subgraphs. This

allows not only the systems to be modeled individually, but the service architecture itself to be

evaluated in a dynamic fashion. Consequently, using this approach affords greater flexibility

in compartmentalising faults within the environment than other top-down frameworks, and

provides more effective management of resources than stand-alone top-down service discovery

methodologies.

MOSES [70] takes a similar approach to SASSY in that management of the service architecture

itself is leveraged in detecting and recovering faulty systems components. Like SASSY,

MOSES dynamically models the architecture in which it is operating. By using aposition

managerthis framework determines if the service’s detected resources can be combined into

a usable model. Once completed, anadaptation manageraddresses any faults or quality of

service issues encountered by using a series of vectors abstracted from the services model. This

information is then abstracted into an ordered list of service priorities that can then be used to

direct or redirect service flows – even in the presence of conflicts.

The sampled centralised management styles exhibit similar self-healing logic when recovering

from faults. In most instances, the use of behavioural testing is implemented with a contextual

reference – such as a constraint or systems model. This is further expanded upon by user val-

idation in the case of supervised methodologies, or by using predictive measures to synthesise

recovery solutions.

Furthermore, the use of these techniques in a centralised orchestration service affords many

benefits – including the ability to retain control of the infrastructure from singular management

points, and being able to leverage re-use of recovery strategies. This is seen most readily in

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 39

self-healing systems where the frameworks are given models at their instantiation, including

SASSY [38], RAINBOW [65, 66], and other techniques [67, 69, 68]. This is in contrast to

systems that inherit or infer self-healing behaviours; a topic discussed further in3.2.1. Learning

methodologies for each management style are discussed further in3.2.3.

Bottom-up Management Styles

Bottom-up management styles emphasisead hocinteraction between systems. Systems within

these environments typically infer self-healing behaviours based on independent sampling,

either of the service infrastructure at large or neighbouring systems, and exhibit a greater degree

of administrative autonomy. They represent a direct alternative to approaches that leverage

centralised management, and typically demonstrate more exploratory behaviours. This type of

systems management can require less initial configuration than centrally managed approaches,

but at the cost of predictability and individualised control.

Althoughad hocsystems management comes in a variety of forms, this survey focuses on three

distinct approaches: system-to-system [32, 34, 71], localised healing [37, 36, 28, 24, 27, 72],

and those that utilise atomic interfaces to synthesise virtual resources [39]. These approaches

were selected based on commonalities observed in the sampled papers.

System-to-system frameworks are capable of making changes by sampling from or delegating

to neighbouring nodes. This is contrasted by localised healing frameworks which avoid

administering other devices, and use information obtained from neighbouring systems to self-

elect behavioural modifications. Atomic frameworks exist as a hybrid of these two approaches

by exposing their resources in an non-holistic, read-only fashion. They can either self-elect or

suggest changes to external devices, or directly access external resources as if they were locally

present.

In a system-to-system infrastructure authoritative actions are delegated dynamically through

the analysis of environmental knowledge. Examples include frameworks that observe both

the performance and service availability of neighbouring devices [36, 37, 34]. In the case of

Embryo-ware [37], a set of administrator supplied configurations provides each system with the

ability to autonomously adapt from a ‘totipotent’ state –i.e. a neutral configuration – into one of

several pre-specified roles. This behaviour is initiated based on each system’s local perception

of the over-all performance and relative needs of the service infrastructure. If a service has

reached a capacity threshold for its front-end web-services, for example, and the system has

a totipotent configuration, it can dynamically adopt a web-role and join the front-end pool to

40 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

increase capacity. Once the service has been evaluated as no longer needing additional front-end

resources it then reverts back to its neutral state.

By treating systems as modular components, Embryo-ware addresses a key problem present

in ad hoc infrastructures – drift in baseline systems configuration. As systems continue to

operate they naturally encounter events that create unique systems configurations and states.

This can create scenarios where systems are difficult to predict and can reduce the effectiveness

of existing self-healing behaviours. By resetting the local system’s state to pre-defined known-

working configurations, divergence in systems operations is dramatically reduced. This allows

for techniques that depend on assumptions related to the systems behaviour to continue to

be effective well after initial deployment. It also allows for servers to be treated as dynamic

resources within the service architecture and to transparently address the workloads associated

with predefined groups of individual service components.

Transparently updating service components is an approach also used by OSIRIS-SR – an

extension of OSIRIS [32] and Chord [33]. However, unlike Embryo-ware, OSIRIS-SR

uses a transitive management service to create ‘supervisor nodes’ that facilitate self-healing

behaviours. These nodes leverage a distributed hash-table to establish service parity, and to

facilitate work delegation of a given resource. This allows service availability to be preserved

even in infrastructures with high rates of churn, and for systems to orchestrate service flows

whilst addressing faults–all without a centralised infrastructure.

Rather than shifting a system’s role or instantiating a supervisory service, systems within the

computing environment may also have the ability to assign work directly to each other [71].

VieCure utilises an activity management service to understand local and remote service

state [71]. Like Embryo-ware, this framework is installed locally on each system, and

configured by a set of policies that guide self-healing behaviours. The policies combine

‘interaction patterns’ and constraints into abehaviour registry– a dictionary-like object capable

of recognisable systems states that are used to indicate when self-healing behaviours are

required. If a constraint violation occurs, the system can either choose to heal or delegate work

to a neighbouring node. VieCure, OSIRIS-SR, and Embryo-ware operate holistically. The

expression of their self-healing logic is based on the evaluation of their respective computing

environments as a whole. However, not allad hocframeworks operate in this fashion.

Atomistic perspectives, such as the General Purpose Autonomic Computing framework

(GPAC) [39], view and evaluate systems’ resources as individual components based on

‘resource definition policies’ that are supplied by an administrator. The benefit of atomising

components is that they are usable remotely by other systems. To accomplish this, GPAC first

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 41

builds a model of local systems operations by utilising a four stage control loop similar to

MAPE+K. The model is populated by querying either a remote or locally running service that

discovers resources. Discovered resources are then integrated with the model information by a

policy engine to create the aforementionedresource definition policy. This allows resources to

be directly accessed, regardless of physical location.

Sharing resources leads to a natural integration between systems, and illustrates a perspective

for mitigating faults remotely in a bottom-up fashion. It also highlights the primary caveat

that exists between other approaches in that systems must be able to accept changes to their

configurations from neighbouring nodes. In some computing environments this property is

undesirable – particularly when the trustworthiness of other nodes is an unknown. For these

cases, localised healing strategies are the preferred methodology.

Localised healing frameworks avoid directly administering other devices. Instead, each

framework instance is exclusively responsible for its local system’s health, resources, and

configuration state. This includes determining when issues are caused by local or external

factors. Localised faults are mitigated in a similar fashion as other frameworks. A set of

constraints and policies are provided by administrators which the systems use to detect and

recover from faults. However, faults determined to be external to the system are addressed

differently. External faults are either ignored, referred to another system, or, if possible,

mitigated locally. These approaches are not designed to address the source of the error, but

to maximise the availability and performance constraints of the computing environment – often

within predefined guidelines.

For example, lowering the fidelity of content being served by front-end web-servers is one way

to meet performance constraints [35]. If a server cannot deliver content at the rate expected –

e.g.due to too many concurrent connections – it can elect to reduce the volume of data sent for

subsequent data requests. This approach does not directly address the state of other systems, but

instead focuses on those issues that can be resolved locally. Frameworks that focus on localised

self-healing techniques often useroles to facilitate the re-use of self-healing logic and to meet

constraints [35, 24]. This is particularly useful in self-healing systems that operate within a

single tier of a computing environment.

WS-DIAMOND [24] is a localised healing framework specifically developed for front-end web-

services. It uses two concurrent control loops to diagnose and recover from faults. The ‘inner’

control loop focuses on the mitigation of faults that prohibit basic systems operations. This

can include resources that are critical to the system’s role, and the state of services. The outer

control loop addresses issues related toquality of service (QoS). If a system is not capable of

42 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

performing within a set of constraints, an error is raised that the outer control loop attempts to

mitigate. Other frameworks have mimicked theQoSapproach, but sans the use of multi-tiered

control loops [73]. However, the basic approach used in these systems are essentially identical.

Each failure instance is treated as a separate case from which to analyse the results of systems

configuration tests. This allows faults to be categorised based on the systems role, and located

using differential analysis of the systems configuration data.

Determining the source of an error is a non-trivial process. Systems configurations are complex

sets of information, and often contain relationships between features and properties that are

not easily classifiable. Dynamic systems modelling represents one approach for understanding

correlations between faults and configuration state. In localised healing frameworks, such as

Plato [27], Unsupervised Behavioural Learning (UBL)[28], FDFs[18, 19], and Shadows [72],

these approaches have been used to categorise and compare the state of a system with historical

information, such as systems configuration or performance data – a topic discussed further in

the following Section,3.2.3.

The bottom-up management ofUBL, theFDFs, Plato, and Shadows all follow in the footsteps of

top-down frameworks, such as Rainbow, that utilise architectural modeling techniques at system

run-time. However, these frameworks all leverage a set of operating constraints that allow for

differences to be discovered between systems behaviours, and recovery methodologies to be

synthesised, rather than requiring them to be applied by administrators.

Recovery strategies for these frameworks operate differently which in turn has an impact on how

they are managed. Plato utilises genetic algorithms to search for optimal systems configurations

and enacts recovery methodology via reconfiguration. The results of each configuration undergo

a differential analysis that examines the health and performance of various systems models

before implementation is done independently.

Shadows uses a model repository to determine a recovery strategy. The repository is populated

via two mechanisms - a code extraction methodology, and aCBR-based approach similar to

those described by Carzaniga, et al. [74], Cheng, et al. [65], and Hassan, et al. [75]. However,

rather than requiring administrators to update the repository manually, Shadows automatically

builds role-based recovery solutions without human intervention. This is accomplished by

using a combination of statistical and predictive modelling to synthesise configurations and

evaluate potential solutions to detected faults before (re)-implementation. Once a solution

has been found it can be validated and shared throughout the environment where behaviours

are determined to be similar. This unique use of case-based reasoning allows the framework

to leverage the advantages ofad hocsystems management without depending on centralised

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 43

infrastructure or human administrator to approve new recovery methodologies. By removing

the supervision requirement of thisCBR approach anomalies can be detected that were not

previously known.

UBL operates a little differently than the previous mentioned bottom-up approaches in that it has

some hybrid properties. Specifically, it uses a centralised trainingvirtual machine (VM)to help

independently evaluate solutions by populating and instantiating aSOM. Additionally, it has

the capability to resolve problems locally without this centralised component. This technique

allows systems to build their own recovery solutions at run-time by leveraging a vector based

approach for aggregating systems configuration and performance data. Once the information

has been obtained it is then classified and subsequently analysed (i.e. mapped), faults are then

inferred through a differential analysis of changes in both behaviour and configuration state of

the system in question similar to the aforementioned bottom-up strategies. This framework is

the most similar in approach to the experiments described within this thesis – further details on

how it operates are discussed at length in subsequent Chapters.

Figure 3.1: Management Styles versus Computing Environments.Managed environments – such as
Cloud and n-Tier infrastructures – show a preference for top-down management styles, whereas ad hoc
computing environments prefer bottom-up management styles.

The management style of a self-healing framework is often related to its computing environment

(Figure 3.1). In the case ofad hoc systems administration, the behaviours exhibited are

inherently less predictable than those that leverage centralised methodologies. This comes

44 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

as a caveat of allowing systems the ability to independently explore solutions outwith those

having been directly supplied. Specifically, systems that leverage a bottom-up management

style appear to be more prone to use semi-supervised and unsupervised learning techniques to

achieve dynamic recovery solutions. While this approach is by definition more autonomous, it

does not necessarily mean that it is more usable. Some environments may be required to use

only specified recovery solutions to address specific service aspects – such as risk management

or high availability requirements. In such cases solutions such as Embryo-ware may be better

suited thanUBL, Plato, or Shadows.

Choosing a management style for a self-healing framework is a multi-faceted problem and can

depend on a number of extraneous factors – such as the environment in which the system is

intended to operate, or acceptable levels of downtime or resource usage in searching for new

solutions. The attributes between environments and learning methodologies, and associated

self-healing behaviours, are discussed further in Sections3.2.2and3.2.3, respectively.

3.2.2 Computing Environments

Computing environments are collections of resources used to manage and facilitate a given set

of systems. Depending on the needs of the systems, computing environments can have different

infrastructures and assets. This survey focuses on three types of infrastructures: Standard,

virtualised, andad hoc. Each infrastructure type presents differences in how self-healing

frameworks access, categorise, and utilise resources. These differences can have profound

impacts on the approaches used by self-healing frameworks and their respective goals.

Standard infrastructures typically comprise three categories when discussing systems respon-

sibilities: Front-end, middleware, and back-end. Front-end systems are responsible for es-

tablishing and maintaining connections to clients, middleware provides facilitating services

such as encapsulation, transport, or orchestration, and back-end systems are responsible for

the provisioning, storage, and parsing of information. This division of responsibility is the

basis for establishing reusable code in many self-healing frameworks – regardless of computing

environment – and promotes scalability by organising systems into reusable, interchangeable

components. This allows for extensibility in behaviours and interchangeability of failed devices.

Virtualised infrastructures emulate physical assets by using multi-system resource manage-

ment techniques. Instead of building a physical machine with a specific role, resources are

dynamically allocated from a collection of physical machines to build virtualised ‘instances’.

These instances operate in the same fashion as physical systems. However, as the hardware

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 45

itself is a software manifestation, ‘physical’ changes can occur more rapidly and in a more

autonomous fashion than in standard infrastructures. In addition to rapid reconfiguration,

virtualised infrastructures handle change control exceptionally well. This is primarily due to

the use of systems clones (i.e. images) when instantiating new instances. Images allow for

quick replacement, re-provisioning of faulty systems, and fast comparisons between systems’

configurations. These properties make virtualised infrastructures heavily leveraged in cloud

computing environments – a trend that has been increasing in recent years (figure3.4).

Standard and virtualised infrastructures share several key properties. They are often owned or

operated by a single entity, have low rates of churn, and typically leverage centralised man-

agement styles (Section3.2.1). These aspects are vital in meeting established minimum opera-

tional requirements such as availability, reliability, and performance expectations – sometimes

referred to asservice-level agreements (SLAs). However, there are computing environments

that do not share or require these properties. In these cases self-healing frameworks leveragead

hoc infrastructures.

Ad hocinfrastructures are unique from other approaches in that systems membership is volun-

tary. This property is related toad hocmanagement styles, which enable systems to act as an

authoritative point and evaluate its infrastructure independently – sometimes referred to asself-

elected behaviours– but is different in that it refers to the association a system has to a specific

environment. The ability for systems to join and leave an infrastructure has advantages in that

they are better suited for some distributed computing uses, and can potentially operate at lower

costs. The transient nature ofad hoc infrastructures pose unique challenges for self-healing

frameworks. Notable examples include higher rates of churn [11], issues with reputation [76],

security [77, 78], multi-party administration [63, 79], and a lack of baseline configurations

between systems [31], amongst others.

Computing environments are sometimes comprised of multiple infrastructure types. Some

environments, for example, may have systems that are capable of interacting with each other in

anad hocfashion, but may also depend on a centralised service model [72, 37].

In most cases self-healing frameworks have been developed to meet specific needs within a

single tier of an infrastructure – such as a front-end web-service [35, 24, 73, 18, 19, 67]. Nearly

all self-healing frameworks that are designed to operate within a single tier are capable of being

implemented in a virtual infrastructure. However, not all self-healing frameworks are restricted

to one area of responsibility [65, 37]. The most common tier-specific self-healing frameworks

are those that focus on front-end systems [35, 74, 24, 67].

Systems that approach front-end web-services utilise a variety of approaches, including multi-

46 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

tiered control loops [24], fidelity reduction [35], and behavioural modeling [67], amongst

others. These self-healing frameworks can promote an intermediate stage for adapting existing

infrastructures towards stronger administrative automation.

Each system in a standard infrastructure must be maintained individually. This has several

notable consequences including increased provisioning times, the potential for inconsistencies

in configuration and implementation, and a natural deviation in configuration baselines over-

time. These problems have been partially addressed by self-healing frameworks through the

use of CBR and centralised management styles [72, 69, 68, 67, 71]. Centralised approaches

leverage an often human supplied correlation between root causes of faults and their respective

recovery strategies. As the expected outcome is based upon assumptions of previous state,

these approaches can become less effective as configurations diverge. As changes occur within

separate infrastructures outside of the control of the framework, this problem becomes more

complex.

Virtual infrastructures help to address baseline configuration deviations, dynamically provision

new resources, minimise the impact of external infrastructure changes, and improve deployment

and recovery times. The majority of these advantages stem from the use of images which,

as previously mentioned, help to maintain standard configurations between systems. Virtual

infrastructures also come with several major disadvantages, the largest being cost to oper-

ate, proprietary standards for larger implementations, and challenges for physical expansion.

However, virtual infrastructures provide useful properties to frameworks that use tier-based and

search-space approaches to resolving faults [72, 27].

Frameworks that leverage search space methodologies require one of two conditions to occur

before executing self-healing behaviours: Either an acceptable solution must be converged

upon, or all available resources are exhausted. In the latter case, the framework picks the

best solution found [28, 80, 27]. Standard environments limit the availability of resources

to the physical capabilities of the system upon which the framework is instantiated. Virtual

environments provide an advantage by allocating resources beyond the immediate instance.

This promotes the self-healing behaviours from break-fix objectives to optimisation strategies

(e.g. [81, 27, 70]).

In addition to optimisation, the dynamic allocation of resources is useful for promoting sta-

bilisation in computing environments. There are several self-healing approaches that explore

stabilisation in standard environments including dynamic role-adoption [34, 37], resource

discovery [65, 66], resource policies, atomisation [39], and reduction in content fidelity [35].

In some cases, virtual infrastructures demonstrate comparable advantages by using instancing.

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 47

Embro-ware’s ability to use ‘totipotent’ systems to shift to and from needed roles is comparable

to virtual infrastructures’ ability to dynamically spawn new server instances – assuming an

image exists for the needed role and a feedback mechanism is actively monitoring service state.

Both approaches represent a way to preserve QoS in an environment, and minimise the need to

reduce content fidelity.

Virtualisation universally addresses a major advantage of Embryo-ware: The ability to use a

single subset of resources to address multiple roles within a service or computing environment.

This concept is difficult to implement in standard, multi-tier infrastructures. Systems that are

organised into tiers have external considerations when communicating with other devices. This

includes networking configurations, security measures, and other exigencies of a practical na-

ture that are outwith the control of the framework. With standard and virtualised infrastructures,

the barriers between tiers are often preserved. One approach for avoiding these issues is to treat

the computing environment as a ring [32, 33, 34]. However, it is worth noting this effectively

converts the standard tier-based environment into anad hocinfrastructure.

Ad hocinfrastructures avoid many of the organisational requirements of standard and virtual

infrastructures. In ring-based approaches, systems are often required to accept a centralised

point of management, and be operated within a confined set of conditions, such as a specific

configuration or role. Inad hoc infrastructures systems are defined by their ability to carry

divergent configurations and self-elect behavioural changes and states. These properties help to

mitigate security issues, high rates of churn, diversity in systems configuration, and multi-party

administration. Although this chapter covers no frameworks that have been explicitly designed

for entirely ad hoc infrastructures, several approaches expect and utilisead hocself-healing

behaviours [28, 34, 37, 27].

These behaviours range from self-electing systems roles [37, 34], to aggregating resources

between systems [39]. In the former case, each system evaluates the state of the service

independently by querying neighbouring devices. If a system chooses to adopt a new role

or configuration, it is ultimately centrally managed as the pre-specified roles must be provided

to each individual system before they can operate. However, the collective behaviour of each

individual system evaluating the service demonstrates an emergent approach to managing the

infrastructure health. Experiments with biologically inspired paradigms [82] further suggests

that gradients, fields and other “spatial” structures [83] can offer robust adaptation to local

challenges and failures, and can act as a programming platform on which to construct complex

applications.

Plato [27], UBL [28] and the FDFs [18, 19] demonstrate this perspective by leveraging

48 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

systems that can holistically self-evaluate service state using biologically inspired computa-

tional approaches. These approaches have distinct advantages in that systems need not be

provided with pre-specified recovery strategies, and are specifically designed to exhibit self-

adaptive processes through continuous environmental analysis. This affords systems using

these frameworks a better suitability towards environments wheread hocmanagement styles

and infrastructures are in place–such as the ability for systems to integrate their own self-

healing logic by using search-space methodologies. These approaches include, chiefly,Genetic

Algorithms (GAs)[36, 27], ANNs [18, 28], HMMs [18], andRBMs [18, 19]. However, search

and probabilistic methodologies lack the stable, predictable nature of approaches that leverage

periodic human intervention.

Computing environments and the services they house are interrelated. Systems that have the

ability to operate holistically require different supporting resources than those that operate in an

atomistic [39] or centralised fashion [40]. The self-adaptive behaviours of systems leveraging

ad hocmethodologies appear to be more advanced with respect to self-autonomy than other

approaches. Evidence for this claim is best seen by dividing then comparing the behaviours

of systems that leverage either holistic, self-elected behavioural changes orCBR and other

typically supervised learning methodologies (Figure3.2).

Figure 3.2: Learning Methodologies versus Computing Environments.Most self-healing systems
prefer a supervised learning methodology, regardless of the environment it is implemented in. This is
useful for ensuring correct behaviours, but also a limitation in potential for autonomy.

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 49

3.2.3 Learning Methodologies

Some self-healing systems frameworks rely on heuristic algorithms to correct or change be-

haviour without human intervention. In order to maximise the effectiveness of these algorithms,

learning methodologies have been developed that optimise when and how instructions are

executed. These methodologies often utilise recursive, evolutionary, or close-control loop

programming techniques to improve and evaluate behaviours. In the majority of cases a

feedback mechanism determines both the validity and efficiency of a specific solution. The

degree of required human interaction within a feedback mechanism is sometimes referred to as

its degree ofsupervisiondue to the labelling of training information either by a machine or by

a human.

Self-healing frameworks can be broadly categorised as being fully supervised, semi-supervised,

or unsupervised. Traditional definitions of these terms usually emphasise when or how a system

classifies its learned behaviour – either manually, or dynamically – and whether or not data

utilised by a specific algorithm has been labelled. As self-healing frameworks can implement

multiple learning methodologies – sometimes at varying points within their process structures

– cataloguing a framework’s learning taxonomy into a single category is challenging. Each

implementation must be evaluated independently before an overall assessment can be made

about that framework’s capabilities. To make matters more complicated, some approaches

are not reproducible or their methods entirely disclosed; this restricts the evaluation of their

capabilities to theoretical measures, only.

The most common approach to self-healing systems is to use a fully supervised methodology

[70, 32, 34, 73, 38, 69, 67, 65, 68]. Supervised methodologies usually require frequent

interaction, and extend their self-healing behaviours only upon human intervention. This allows

for validated, controlled configuration updates and provides the least amount of uncertainty in

systems behaviours [84, 85, 86].

The most frequent implementations of supervised learning areCBR methodologies (Figure

3.2). CBR typically utilises a database of prescribed recovery plans that are correlated to

specific faults or events. When a system encounters an error it queries the database for recovery

instructions. In those circumstances where recovery instructions have not been previously

included, the framework will ask an administrator for a solution, or refer to a default set of

actions. CBR approaches extend their behaviour by storing these additional solutions in their

databases. Typically, the requirement of human supervision as a required part of the self-healing

logic produces the natural caveat of only partial automation.

50 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

Rainbow [65] takes supervised methodologies a step further by leveraging dynamic resource

discovery with prescribed, role-based recovery logic. Using this approach computing envi-

ronments are divided into recognisable components that can be used to dynamically build

an architectural model of the service infrastructure. Using this model systems and services

are categorised within a specified role or type, whilst the architectural model continues to

choreograph service interaction and defines expected behaviours. These components are

provided by developers before deployment. Once errors are detected, they can be mitigated

using the architectural model to restore the service to a known working state or, if unsuccessful,

an administrator can update the model at run-time.

WS-DIAMOND [24] and GPAC [39] take similar approaches to Rainbow in that a model

is specified to which a system’s performance is evaluated. However, rather than monitoring

an entire service, each system is managed independently. As previously mentioned, WS-

DIAMOND does this by instantiating two concurrent control loops to monitor and correct

systems behaviours. Dividing the recovery logic into separate components allows the frame-

work to prioritise and isolate recovery strategies. This is naturally conducive to goal and utility

policy implementation within the specified model. A number of extensions to this framework

have seen improvements to its detection and recovery logic1 including the ability to monitor

workflows, orchestrations, and choreographies.

GPAC contrasts this approach by utilisingresource-definition policiesto autonomously discover

and atomise –i.e. individually expose – systems’ components into network accessible objects.

This non-holistic approach allows the framework to access resources on remote systems as

if they were locally present. When combined with a model of the service, systems can

transparently heal and optimise the service architecture in a semi-supervised or potentially

unsupervised fashion. These policies can also be used to tier service performance based on

priority of behaviours or resources.

Performance tiering is a self-healing methodology used to divide systems and service health

into levels [72, 35]. These levels in turn are used to understandQoSchanges and instantiate

behaviours that maximise the usage available resources. Arguably, the most direct approach to

defining service levels is to use statically assigned resource constraints. Each level corresponds

to a set ofQoS metrics or fitness criteria that tells the system when to dynamically reduce

content fidelity [35]. Primarily developed for front-end web-services, static service tiering

requires a human-supplied policy to determine when content fidelity can either be reduced or

increased.

1http://wsdiamond.di.unito.it/status.html

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 51

In contrast, allowing policies to dynamically set thresholds for self-healing behaviours can have

more autonomous results [70, 72, 31, 73, 87]. The Shadows framework, for example, uses a

set ofSLAsand utility policies to automatically generate behavioural expectations of a system.

This allows the system to perform more in line with human-readable goals, such as cost, average

service time, and other criteria instead of discrete metrics. It then combines this information

with historical performance data to provide internal revalidation of recovery solutions. By using

a time windowed mean expectations in behaviour can allow for elasticity versus pre-defined

QoSmetrics.

In a supervised framework the revalidation of a new set of expectations is normally completed

by a member of technical staff. This occurs in a similar fashion as that being leveraged by

Shadows: SLAs are compared against a system’s overall performance and combined with

historical data–such as application logs, configuration files, etc. The addition of correlating

events with systems faults provides an advantage in contextually evaluating anomalies [72, 71].

By sampling the system at key intervals, faults can be associated with specific changes and,

ideally, their respective sources [18, 19]. This is useful for establishing a root-cause analysis

and to map similar events with recovery solutions–sometimes referred to asEvent Driven

Monitoring [28].

Event Driven Monitoringcombines a complex set of sensor classification algorithms with

run-time analysis techniques for isolating anomalies from normal or established patterns of

behaviour. These approaches can range from the reactive use of simple exponential smoothing

algorithms in a time series prediction [81], to pro-active prediction of states [88]. VieCure [71]

is aCBR-style framework that leverages event detection in addition to direct analysis of metrics.

Instead of directly mapping faults to recovery plans, VieCure looks for deviations in expected

systems behaviours that can indicate when self-healing is needed.

Events can constitute a series of incidents within a log, or a set of incidents that exhibit either

a certain order or rate of occurrence. If an event is determined to coincide with a fault, then

a recovery strategy is selected from a known set of working solutions. As expected, unknown

events and faults require supervision in the same manner as otherCBRframeworks – supervised

approaches are limited to reactive fault mitigation as by definition they cannot address what has

not yet been observed.

Periodic interaction by administrators remains a caveat of supervised and semi-supervised self-

healing frameworks. However, some frameworks have demonstrated an ability to dynamically

elect self-healing behaviours without this requirement [87, 28, 36, 37, 26, 27], but the most

notable gains have occurred using the aforementionedANNs [18, 28], HMMs [18], RBMs[19],

52 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

and biologically inspired behaviours, such as totipotent adaptation [89, 29, 36, 37] andGAs[26,

27]. Each of these techniques have different properties that relate to their suitability at solving

particular tasks – from producing candidate solutions within a given search space [80] to the

autonomous classification of sensory information [90]. These approaches range in degree of

suitability based on how much risk and resource commitment a specific computing environment

or service infrastructure is willing to accept.

Using aGA, Plato can search for and mitigate faults based on correlations between behavioural

properties and configuration data. This is a framework that dynamically produces self-healing

solutions based on a stochastic search methodology that comprises of multiple candidate

solutions [26, 27, 80]. By comparing the operationalSLAsand policies with the performance of

the candidates individually, a degree of fitness can be ascertained from the candidate. Once the

candidates have been evaluated, their individual features are analysed and correlated to produce

new candidates. This occurs until either preset resource constraints are met, or an optimal

solution is found per the associated fitness functions. In this instance, the utility functions in

previous frameworks are analogous to the properties that are emphasised by the fitness functions

in genetic algorithms. Each respective function provides the same base purpose: To translate

and enact human-readable goals into systems behaviours. Examples of these goals include cost

minimisation, application priorities, or performance traits.

This approach allows Plato to stochastically search for and build recovery strategies providing

a critical advantage over other methodologies. Rather than requiring prescribed recovery

solutions, either during development or run-time, Plato can autonomously produce viable self-

healing solutions. However, there is no assurance that an acceptable systems configuration will

always be found using this methodology, nor that it will be optimal. This is as expected [27],

and inherent to the nature of existing search-space methodologies [80]. Plato’s use ofGAs is

also computationally costly, and can produce behaviours that cannot be anticipated. Thus, a

high degree of risk can be associated with this approach.

Complimentary to usingGAs, UBL operates by using historical configuration data to au-

tonomously train aSOM[90]. Features in the historical configuration are converted into vectors

which are then used as input for predicting behaviour, and feature state. This information helps

to analyse the validity and impact on a system’s behaviours when configuration changes occur.

Once theSOM is trained, the system can then synthesise new, valid systems configurations

by predicting which features are causal to specific faults. This approach leverages a smaller

search space than the genetic algorithms used in Plato, and consequently presents less risk via

potentially divergent systems behaviours.

3.2. A COMPARISON OF SELF-HEALING SYSTEMS 53

However,UBL displays some limitations in exploring new configurations and seems to produce

a stronger likelihood of local minima in configuration synthesis due to its inability to expire

sampled data. This is represented in the purposes of these two approaches being somewhat

divergent: The ability to synthesise new, valid systems configurations upon fault, and the

prediction of failures within distributed infrastructures. Recently, a comparison of this approach

and other stochastic primitives demonstrated an improvement upon these results [20], and

combined studies infeature localitycontinue to display positive results [91, 31]. The findings in

the former study are the primary focus of this book and are discussed in the remaining chapters.

Separate from either of these approaches is the transparent management of resources within a

service infrastructure via dynamic role or service adoption [34, 37]. In each of these approaches

systems use information about the general state of the service infrastructure to dynamically

elect a localised reconfiguration. However, these approaches differ by allowing systems to

dynamically adopt roles through self reconfiguration, in the case of Embryo-ware [37], and the

self-instantiation of localised management services [34].

As previously mentioned, these systems are initially instantiated with a representation of the

service, a set of roles, and an ability to query service state on remote systems. Using these

three components the framework is then able to dynamically adopt new configurations or return

to an original, neutral configuration based on service performance. Any device found to be

without a base set of configuration data is automatically provisioned with the latest ‘genome’

via a replication agent. This provides a measure of self-configuration and provisioning; a

process typically referred to as a separate challenge in Autonomic Computing [3, 5]. The

adoption of new roles is facilitated via a differentiation agent that tracks and contextualises

roles and expected functions. This agent must then self-elect a role-based on its independent

understanding of the state of service.

This approach is contrasted by OSIRIS-SR, a framework that leverages Chord [33] to produce

aSafety Ringto manage service infrastructures [34]. OSIRIS-SR operates by using supervisory

systems roles to monitor and recover from failures in resource availability. These systems

leverage meta-data to build an understanding of neighbouring systems behaviours, and then

aggregate that information across multiple supervisory nodes. This is similar to Embryo-ware

where only neighbouring nodes are monitored and influence the ability of those systems to adopt

roles. What makes this approach unique is that any system can elect to become a supervisory

node. This is useful for ensuring availability and reliable service management in infrastructures

where systems membership can change without notice [10].

The following diagram illustrates trends in the management styles associated with self-healing

54 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

frameworks (Figure3.3.

Figure 3.3: Learning Methodologies versus Management Styles.When self-healing system are
implemented in a top-down fashion, they tend to leverage supervised learning methodologies. Likewise,
bottom-up management styles are more likely to use unsupervised and semi-supervised learning.

There appears to be two key properties immediately evident within figure3.3: 1.) self-healing

frameworks research is driving towards solutions that utilise supervision in centrally managed

systems; and 2.) the learning methodology leveraged by the self-healing framework appears to

be linked to its management style. Additionally, if we extrapolate this information, it seems that

progression towards less supervision is being driven chiefly in ad-hoc computing environments.

However, because of the sample size of grid andP2Papproaches being relatively low, this may

not be immediately evident. Instead, developments in this area appear to be occurring in cloud

computing and other environments that leverage virtualisation.

3.3 Synthesis

Self-healing systems methodologies are becoming more autonomous, but remain dependent

upon either required periodic human interaction or the acceptance of uncertainty in systems

behaviours. This finding comes as self-healing methodologies continue to specialise based

on external factors such as their intended computing environment and respective management

styles.

3.3. SYNTHESIS 55

Figure 3.4: Self-Healing Systems Frameworks.Self-healing systems frameworks as categorised by
learning methodology, computing environment, and expected management style by first author’s last
name, year of introduction, and framework title (if appropriate). In some cases frameworks exhibit
abilities to operate under multiple assumptions – these incidents are represented by additional bullets
within the graph. Figure 2.8 divides this information into percentages with each entry represented once
per category.

Notably, a framework’s specialisation has been shown to provide distinct advantages in au-

tonomously identifying and resolving faults. These advantages play pivotal roles in under-

standing how self-healing frameworks are evolving.

Furthermore, many approaches display behaviours that are not universally desirable self-healing

approaches are diverging based on their specialisations. This is a concept that until now has

not been explicitly addressed within the field. By contrasting where self-healing frameworks

are being implemented, an understanding is gained of where self-healing systems are making

progress and towards which specific problems.

56 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

The intended computing environment of a given framework is a foundational factor in eval-

uating the success of its self-healing behaviours and has produced a divergence in the types

of self-healing systems that are being developed. Environments that require a greater degree of

control of their systems often exhibit centralised management techniques [68, 71, 65, 67, 38, 87,

73, 32, 70]. These approaches are evaluated based on how predictable their behaviours are, and

often intentionally build in a requirement for human intervention. Conversely, frameworks that

operate inad hocinfrastructures [24, 39, 27, 37, 28, 34] are often expected to exhibit behaviours

that do not require human intervention, and in some cases to synthesise new self-healing

strategies. This result is an artefact of computing environments having inherently different

properties, exigencies, and requirements. The result has been that self-healing frameworks

have developed specialised strategies that address each of these factors, explicitly (Figure3.4).

Figure 3.5: Relative Coverage of Different Self-Healing Techniques.

3.3. SYNTHESIS 57

Evidence of specialisation in self-healing strategies is becoming increasingly more common

as frameworks exhibit hybrid approaches for mobile [34] and centralised computing envi-

ronments [37]. These approaches place a specific emphasis on leveraging different self-

healing strategies based on the environmental suitability of the approach at run-time, and by

anticipating resource availability. Notably, resource prediction is being leveraged more often

where assumptions cannot consistently be made about the state of computing environment –

particularly where resources are transient [39, 10, 33, 34], or virtualised [28, 92]. In these

situations self-healing frameworks leverage multiple concurrent strategies to address greater

degrees of systems volatility. Likewise, frameworks have leveraged various approaches for

identifying and mitigating faults based on local and remote observations within their respective

environments [72, 67, 93]. Figure3.5outlines the divisions of these approaches, visually.

Although the approaches used by self-healing systems are varied, there are trends as to which

methodologies are being leveraged and under what circumstances. Systems within environ-

ments that exhibit a high degree of churn are more likely to leveragead hocmanagement styles

[34, 33, 10, 32], and learning methodologies that require less supervision [87, 28, 27, 37].

Conversely, frameworks that do not have stable systems membership are more likely to utilise

a centralised form of systems management [70, 69, 87, 73, 67, 65], and exhibit supervised or

semi-supervised learning methodologies [71, 72, 73, 34, 38, 67, 24, 70, 35, 66]. The predictabil-

ity of a self-healing framework’s actions are crucial in identifying operational requirements (i.e.

SLAs), and are a defining factor in what behaviours are allowed or desirable in its respective

computing environment. As behaviours are nearly solely defined by learning methodologies,

is it clear that the relationship between management style and environment is linked with the

degree of supervision required for its continual operation.

Using anad hoc management style allows self-healing frameworks to leverage more au-

tonomous strategies and learning methodologies. However, systems that engage in self-elected

behaviours – particularly those that have not been previously vetted – have been shown to be

inherently more risky when attempting to meet operational goals and less likely to produce

reusable solutions [86, 84, 85]. It is for this reason that the use of centralised management

techniques remains the preferred approach when environments are expected to exhibit a low

rate of churn – the most notable examples beingCBR and CBR-like learning methodolo-

gies [73, 68, 69, 65, 24, 67].

The advantages of self-healing approaches are directly related to their supervisory requirements.

Although supervised learning methodologies have shown advances towards reducing human

overhead, when compared to unsupervised methodologies, they have ultimately produced

palliative results – particularly when executing recovery strategies. This is primarily due to

58 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

the fact that supervised techniques can only reactively detect faults [28], and that the solutions

they generate often must be vetted via human intervention before being implemented. These

solutions can become increasingly more complex to manage as the interdependency of features

must be accounted for in subsequent self-healing strategies [31]. Such solutions are difficult to

vet as often relationships between features are not immediately accessible either algorithmically

or intuitively.

Semi-supervised and unsupervised approaches have shown stronger capabilities in ascertaining

the root cause of a given fault, and producing non-palliative recovery solutions. In particular,

the use of evolutionary programming techniques has demonstrated the unique ability to au-

tonomously generate new systems configurations at run-time to mitigate faults [27], and the use

of ANNs have been shown to correlate specific systems configurations with operational fitness

levels to produce predictive fault detection [28]. These approaches show greater capabilities for

autonomously self-healing of faults, but, like supervised methodologies, also come with certain

restrictions.

Notably, the resources needed by unsupervised approaches can be much greater than super-

vised approaches, and frameworks leveraging these methods are not assured of finding a

solution [28, 27]. These are properties inherent to the nature of search-space methodologies

– either a predefined constraint is exhausted (e.g. time), or an acceptable solution is converged

upon [80]. Exploration into these issues remains a separate field of study and outwith the

scope of this survey – however it is clear they are deeply related to the viability of self-healing

solutions.

3.4 Synopsis

Unsupervised fault detection within self-healing systems is in a relative early stage of develop-

ment. The use of evolutionary programming techniques to successfully synthesise new, valid

self-healing strategies have been present as far back as 2009 [26]. However, recent studies

have emphasised the use of stochastic primitives to achieve this same goal – albeit with limited

success [19, 18, 7, 28]. In order to quickly understand where common effort is being placed,

an overview of these studies is provided. This includes their implemented primitive types,

learning algorithm(s), and software suites – which in turn detail how information is gathered,

and what faults are injected. Dividing these areas into distinct units for evaluation establishes

the groundwork to describe commonalities in their respective implementations and helps in

contextually understanding their results.

3.4. SYNOPSIS 59

To advance the state of the art in self-healing systems research, a self-healing system must

have an established baseline from which to understand its results, operate accurately using

unsupervised learning to determine the root cause of faults, and use non-simulated, unlabelled,

and contextually valid information to infer behavioural information. Successfully achieving

these results requires a number of assumptions to be made, as some of their criteria are outwith

the scope of this thesis – see Section4.5.

In IBM’s Autonomic Maturity Model the most advanced self-healing actions occur when

general policies are applied to the system, and anAutonomic Managerself-elects its own

behaviours. This idea represents a simplification of systems management into clear and concise

goals, and it is for this reason that it should be emulated. Systems should be managed using

a series of high-level operating goals, rather than being individually maintained at a technical

level.

Evolutionary Programming offers some immensely useful extensions to computing behaviours

that can, theoretically, address some of the problems self-healing systems research faces. The

previously cited example ofGAs being able to reactively synthesise new, valid configurations

upon detection of a fault is one such approach. These techniques are unfortunately expensive,

and time-consuming. In a professional environment, both of these resources must be minimised

in terms of use. However, some of these techniques are more useful – and more importantly

less costly – than others.

Fitness tests are primitives in Evolutionary Programming for evaluating the validity and effec-

tiveness of a sample within a collection of potential solutions. These are akin to the performance

tests this instance: Performance tests operate by examining broad, high-level criteria captured

in SLOs. When used in self-healing systems, the overall behaviour of a system can be used to

categorise its state. Additionally, by not identifying specific features to test, the application is

left to determine the source of the fault when using performance tests because it only looks at

the high-level behaviours. This allows for basic abductive reasoning to occur built exclusively

from the application’s logic.

Emulating the use of policies’ high-level nature makes performance tests ideal for achiev-

ing the combined goals in existing research to use policy-based strategies to manage sys-

tems [94, 1, 3, 6], and roughly mirrors standard practice in existing computing environments

where Operational Readiness Testing orSLAs are required. It also establishes the groundwork

for feeding in the results of this experiment with existing evolutionary techniques – synthesising

fault mitigation strategies usingGAsbeing one such example.

Observing historical behavioural information is a tried and true method for learning and

60 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

predicting new information, however it is not an approach that has been widely adopted in

self-healing systems research [7, 22, 8]. In fact, the majority of works still focus on supervised

techniques that only take into account external learning from human-subjects on unexpected

faults. Incorporating historical observation into windowed data-sets addresses contextual

information problems. By understanding behaviours within a specific time period, predictions

can infer the correct contextual information.

Which learning algorithm operates best under what circumstances is unknown. This is partially

due to the fact that as a community their use isn’t entirely understood (e.g.CDL) [95]. It is clear

however that some algorithms are preferred as they are more conducive to the primitive being

implemented, and to what feature sets they exhibit. For example Viterbi [25] andCDL [13] are

both capable of multi-step ahead prediction, whilst Baum-Welch [96, 97, 98], Back-Prop [62],

and Naïve Bayes [50] are not. As mentioned, these algorithms often come paired with a

primitive – Viterbi operates onHMMs, andRBMs leverageCDL, respectively – but it is not

always the case. Fully recurrent networks (i.e. unrestricted) stochastic primitives remain a grey

area, particularly as most do not have practical learning algorithms with the potential exception

of Generative Stochastic Networks (GSNs)(see Chapter6, Future Research).

Understanding and forecasting behaviours within a system are not enough to make an assess-

ment of the effectiveness of self-healing systems methodologies – either in terms of cost or

complexity. To do so would require a comparison against human-subjects of which there is

currently no known public research. Similarly, direct comparisons between self-healing systems

appear to be largely unavailable. To understand the strengths and weaknesses of these studies,

they must be compared.

The following chapters detail the experiments and results provided in this thesis. They focuses

on expanding the discussed approaches, analysing the validity of historical feature behaviour,

and outlining a new, accurate approach for determining both the presence and root cause of

faults.

Specifically, it emphasises using feature change data to address the problems mentioned in the

previous section by demonstrating the effectiveness of several types of stochastic primitives

using unsupervised learning to autonomous identify the root cause of faults. This approach

demonstrates not only the effectiveness of different types of stochastic primitives, but also

accurately identifies faults using both abnormal application termination and human-initiated

faults (DFIs and ACCs, respectively), mitigates convergence by using a windowed dataset,

compares greedy and lazy approaches, uses non-simulated data, and shows how noise can be an

indicator of expected feature behaviours.

3.4. SYNOPSIS 61

Positive results from these experiments demonstrate possibilities for reducing the resource

requirements associated with autonomous fault detection, and autonomously discovering rela-

tionships between features. This includes understanding the benefits of mitigating convergence

through the use of a windowed dataset, the potential of narrowing the search-space when using

GAs to synthesise valid systems configurations, and usingCDL to forecast multi-step ahead

feature behaviours.

4CHAPTER FOUR

AN AUTOMATED
APPROACH FOR

IDENTIFYING FAULTS

This chapter briefly summarises the problem statement of this thesis before theorising and then

postulating on a new approach to automating fault detection using stochastic primitives and

unsupervised learning. Afterwards, research questions, contributions, and the experimental

design for testing this hypothesis are detailed using two separate but related approaches:

One experiment usesHMMs andANNs, whilst the other usesRBMs. It then describes the

limitations and threats to validity posed to these experiments, followed by their respective

implementations.

This chapter concludes with an outline of a comparison against a similar experiment leveraging

SOMsbefore leading into the following chapter, where results and a discussion are provided.

4.1 Problem Description

The question remains: How can we further automate the behaviours of self-healing systems

whilst reducing the operating costs of large-scale computing environments? Accurately iden-

tifying the root cause of a fault should allow for less human oversight and reduced costs.

However, identification of the root cause of faults is non-trivial. A number of problems exist

between the detection and subsequent correct identification of the root cause of a fault including

63

64 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

ambiguity in information, contextual inference, etc. A small step forward would be to automate

the diagnostic process that human engineers perform by short listing potential avenues for

investigation.

It is possible to leverage feature changes of a faulting system to accurately automate the

identification of their root cause(s) if, prior to the fault, working configurations have been

observed. This approach works for either singularVMs or physical computing systems.

It assumes that the features associated with (i.e. leading to) the root cause have been observed

in both several working configurations and at least one faulty configuration, that there are

measurable metrics for deciding when a system is in a normal operating state (e.g. SLOs),

and that there exists an uniquely identifiable, feature observation or collection interface – such

as the/procfilesystem orWindows Management Instrumentation (WMI).

There are two classes of faults this approach attempts to correctly identify the root cause of:

DFIs, and ACCs. The former deals with faults directly caused by logic failures – such as

a crashed stack, or abnormal application termination – and the latter focuses on user-related

errors – such as switching off a service at the wrong time. Both of these types of faults deal

with application failures, or more specifically “services”. It does not matter where or how these

faults are generated, so long as they have an observable feature and that feature is observed by

theFDF.

This approach is expected to work on other operating systems besides Windows regardless of

the primitive used, as is indicated by the external comparison [28]. However, no comparison of

theFDFsare made on other operating systems due to the proprietary nature of the C# language

andWMI.

4.2 Approach

Determining the root cause of a fault is a hard problem – one that may help reduce costs in

mitigating downtown in computing environments. The approach proposed in this thesis demon-

strates novel capabilities for analysing of the root cause of faults within a computing system,

with the aim of eventually producing demonstrable cost reduction capabilities. Uniquely, it

shows that monitoring the content of the data is not strictly necessary to determine the root cause

of a fault as monitoring the pattern of changes in the observed data can be sufficient. Using

machine learning techniques this can be automated, and provide a helping hand to existing

computer operating procedures.

4.2. APPROACH 65

This approach builds on prior art – chiefly from the Autonomic Computing initiative – but also

leverages Machine Learning and Computational Intelligence techniques. The approach operates

in two stages:

First, an application periodically samples feature behaviour data. This information is transduced

into vectors which form the basis for future analysis and forecasting. Second, the data is

labelled – a process that occurs through performance tests. If a system passes a number of

high-level objective goals and policies, the data at large can be assumed to be in a ‘good’ state.

If any of these tests fail, then the opposite is assumed and an analysis is performed against the

likelihood of the expected and observed behaviours using trained stochastic primitives via the

known ‘good’ feature data.

Finally, once trained, if any of the specified performance tests fail, then the primitives forecast

feature behaviour to varying degrees – both inherent to their respective learning algorithm(s),

and by how much training data is present. Any mismatches are detected and returned in a list

ordered by descending likelihood indicating the potential root cause of the fault.

This thesis explores two possible implementations of this approach – one using a greedy data

ingest mechanism (viaANNs, and HMMs, Figure 4.1), and one using a lazy data ingest

mechanismRBMs(Figure4.2) – both of which are detailed in Section4.3along with examples

of their operation. In all other ways, aside from the learning modules, the approaches are

identical.

To accurately identify faults, theFDFsrequire a user to provide:

1. A polling interval (in milliseconds),

2. A ‘learning module’, and

3. A set of performance tests.

A polling interval specifies how often the systems’ feature data should be gathered, evaluated,

and stored. The learning module consists of a stochastic primitive and an associated learning

algorithm. Using the AForge.NET and Accord.NET frameworks, it is possible to select

a number of previously built stochastic primitives and and associated learning algorithms.

However, a user may also specify their own primitives and learning algorithms. Performance

tests consist of user-designed code that evaluate the state of the system. This are simple tests

written into the application to verify the health of the system and are akin toSLOs. All of the

specified tests must pass during each polling interval.

A user may also update the maximum number of samples to retain. This allows for greater

66 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Figure 4.1: Fault Detection Framework Logic & Architecture Diagram using Greedy Ingest. The
FDF leveraging ANNs and HMMs operates by updating its primitives as soon as feature data is recovered
from the system.

control over the window of observed data desired to be retained by theFDFs. For example, a

higher frequency collection rate of once per 5 seconds using the default value of 30 maximum

samples would only allow for a 150-second window of observation. It is unlikely this

window will be sufficient to capture changes in feature behaviour outside of this time-span.

Increasing the maximum number of samples thus increases the window size, and by adjusting

the maximum number of samples and the polling interval, it is therefore possible to control

fidelity of the information as well.

TheFDFsare configured by default to run in a WindowsVM to test the performance and state

of Internet Information Services (IIS), Microsoft’s proprietary web service. No changes are

4.2. APPROACH 67

Figure 4.2: Fault Detection Framework Logic & Architecture Diagram using Lazy Ingest. The
FDF leveraging RBMs operates identically to the FDF that uses ANNs and HMMs except with a lazy
ingest mechanism for feature behaviour data. Primitives using a lazy ingest are only trained upon fault
detection.

required to the source code to revalidate the experiments described in this thesis. Although it is

believed that these results can be generalised to other operating systems, no attempt is made to

demonstrate this.

4.2.1 Running Example

Step 1 (Optional) A user provides theFDFswith the three requirements described in4.1, and

then compiles the code.

68 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Step 2 The application is run and then waits in the background whilst the computing system

operates normally for a desired period of time – in the case of these experiments, 5 – 30

minutes. After each polling interval the framework prints to screen memory usage and

the collective state of the performance tests as “System State” (Figure4.3).

Figure 4.3: Running Example – Successful Data Collection via FDFs.Cropped image showing
successful data collection when running an RBM-based FDF.

Step 3 Upon injection or detection of a fault, theFDF should break the loop it is currently

operating in and provide a list of fault hypotheses in descending order of likelihood

(Figure4.4). If the monitoring loop is not broken then a False Negative must be accounted

for by hand.

Figure 4.4: Running Example – Fault Identification via FDFs. Cropped image showing a sample of
an FDF result screen. The full sized list has been truncated to save space but can contain 5 to 300 leads.

4.3 Experiments

This section broadly describes the approach taken whilst the technical implementation details

are described in Section4.6. The implementation of this approach details what is necessary to

run the framework and use it to identify faults. The rest of this section on approach describes

the overall operating strategy of theFDFs.

Both FDFsperiodically sample behavioural feature data from a local system using theWMI.

This data is then converted into vectors for each individual observed feature of a specified

window of time – which in turn provides contextual inference and avoids convergence problems.

Vectors are used to train stochastic primitives for predicting the behaviour of features to analyse

features for potentially errant behaviour.

4.3. EXPERIMENTS 69

Errant behaviour is determined by comparing the actual and forecasted changes for each

monitored feature when anSLOfails. Any feature that does not exhibit the predicted behaviour

by its respective stochastic primitive is short listed as a potential lead for the root cause of a

fault. Prioritisation and ordering of these leads is provided by sorting the leads in the inverse

likelihood of the change observed – less expected events are moved further toward the top of

the list.

In order to determine if the data should be used to train a stochastic primitive, a series of

performance tests determines the overall health of the system being observed. How these tests

operate is described in Section4.6 – but, broadly stated, a passing series of performance tests

reinforces behaviours in the primitives through training, and a failure sends a signal to begin

forecasting and temporally comparing feature behaviours.

Using this approach validates or invalidates the hypothesis by testing the forecasting capabilities

of stochastic primitives. If the primitive successfully indicates the correct root cause of the

fault after a performance tests fails, then it is clear that the forecasting abilities are working

correctly. Conversely, if the primitives do not indicate the correct feature then the hypothesis is

not supported.

Fidelity being a chief concern in these experiments, different volumes of data are used to show

trends in the approach. Specifically, how much data is needed to train the primitives is explored

through the different volumes of input by using 5, 10, 15, 20, 25, and 30 samples. Each sample

corresponds to one minute intervals. These values were chosen arbitrarily with the intent to

provide a reasonable enough time for the system to accommodate changes.

This approach operates on a few assumptions. The first is that without changes within the

observed features’ values the stochastic primitives used in this experiment would not function

at all. This is one of the reasons for waiting 60 seconds between samples. The second is that the

fault must lie within the observed features’ behavioural data to have a chance of being accurately

indicated. One test explores beyond this assumption with surprisingly positive results, but those

results are, expectedly, not accurate.

Several key aspects are addressed with theFDFsthat appear to be missing from current self-

healing systems research. In addition to open questions about fidelity and a lack of basic

comparison of performance between different types of primitives, little research exists between

studies that explore solutions in the aforementioned fashion. Specifically, the simple observa-

tion of feature changes rather than their explicit values had not been examined. Additionally,

only one study so far has attempted to use evolutionary programming techniques to explore

recovery strategies [27]. This work attempts to address some of the search-space challenges

70 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

within that study by providing a mechanism for guidingGAs (see Chapter6, Future Work).

4.3.1 Hidden Markov Models & Artificial Neural Networks

The first experiment leveragesHMMs andANNs, to periodically sample configuration data via

an interface, then classify this data using a series of performance tests. Based on the collective

results of these tests, the information is categorised as either being in agood or faulty state.

Afterwards, theFDF takes one of two potential actions.

The first action is to update a local data-store. When the system passes all of its performance

tests, the existing data-store is examined to make sure its total number of configuration samples

does not exceed the maximum threshold. Any data that is beyond the maximum number of

data-sets is dropped. The primitives are then greedily trained using their respective learning

algorithms using the remaining and latest configuration samples.

The second is to perform an analysis on the system’s feature behaviour data. Features that show

changes between the previous ‘good’ sample are compared to the ‘faulty’ configuration. If a

change is noted, it is short-listed for comparison. This is an optimisation technique that reduces

the maximum number of features for investigation. Any changes are fed into their respective

stochastic primitive where the likelihood of the change is then compared to a forecasted value.

The differences between the expected (i.e. forecasted) value and the actual value (located within

thefaultyconfiguration) provide a measure of confidence or likelihood for the potential cause of

the fault. Once this comparison is complete the feature is added to a list of potential root causes.

Finally, this list is sorted by highest likelihood starting with the first (0th) index (Figure4.5).

Using this list, metrics are generated via theFDFsthat indicate precision, accuracy, prediction

time, the aforementioned confidence value, and the total number of leads generated. The

conditions of these metrics, such as what constitutes True and False Positives or their respective

Negatives are explained in Section4.3.

Testing is done through fault injections. These take two forms:DFIs andACCs. The details of

their implementations and differences are discussed in Section4.3, but the theory behind these

two approaches can be summarised as examining the differences between software errors and

human errors, respectively. In each case the root cause is known to the administrator but not to

theFDF. This allows for validation of the result provided by theFDF, and an unbiased attempt

at identifying its respective source – the latter being the primary goal of these experiments.

Both the ANN and HMM approaches operate using single-step prediction that has been

4.3. EXPERIMENTS 71

Figure 4.5: Fault Detection Framework Logic & Architecture using Hidden Markov Models and
Artificial Neural Networks. Fault Detection Frameworks are provided three inputs, set to run, and then
injected with faults at varying time intervals. The result is an ordered list of leads based on forecasted
feature behaviours.

implemented in a reactive manner. Whilst unsupervised learning is generally meant to forecast

behaviours into the future, this experiment is meant to be a baseline to determine the accuracy

of future endeavours. Understanding their operational capacities is therefore emphasised.

Lastly, each of theFDFsrequires basic instantiation before operating. As mentioned previously

this book does not centre on self-configuring (i.e. self-provisioning) methods and an initial,

minimal setup is required. TheFDF must be provided with a polling interval, a set of

performance tests from which to ascertain the system’s overall health, and a stochastic primitive

with a coupled learning algorithm.

72 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

4.3.2 Restricted Boltzmann Machines

FDFsthat leverageRBMs operate under nearly identical assumptions and conditions as those

used forANNs andHMMs. The polling interval, performance tests, and learning modules are

provided to theFDF. Afterwards, it is allowed to run for 30 minutes before being subjected to

the sameDFIs andACCs.

The primary difference when usingRBMs is how the primitives are trained. In the former ex-

periment a greedy approach is used in conjunction with a windowed data-set. This necessitates

that the primitives are destroyed and retrained after every successful data collection. Thus,

although faster predictions can be made under these conditions, it also requires more persistent

use of a system’s resources. This can create an artificial limitation if the number of features

being parsed grows to a size greater than the system can parse within the polling interval.

To alleviate this problem theRBM approach uses a lazy implementation. Data is not directly

parsed until a potential fault has been detected. The caveat to this is that theFDF is unable to

return potential root causes as quickly as its counterparts.

A secondary difference exists in that some of the vectors used to train theRBMs are partially

incomplete – this is intentional. Although the goals of these experiments remain intact by

not using simulated feature behaviour data, the requirements of theRBM in how it is trained

requires some unique properties. Specifically, theRBMs cannot be trained without a complete

dataset because the learning inputs must be vectors of equal size.

There are two ways to address this problem. The first is to wait for double the amount of

time for a maximum window containing the maximum sample-size number of configurations

to populate – in this case 60 minutes. The second is to assume vectors the size of the data-set

window (i.e. maximum sample size) and populate them as more information becomes available.

In the former, the amount of data being used by theRBM is greater than those in the other

experiment. As the total time to observe the system is a key variable in understanding how

quickly the primitives can be trained, this is ruled out as a potential option. This additionally

allows the experiments to use the same amount of time to attempt to generate results.

RBMs are trained using half as much data as they could otherwise use. The vectors are

instantiated based on the provided maximum sample size. Each vector contains a series of

values, with each value indicating a certain observation of feature behaviours –change, no

change, andunknown– (1, 0 andnull), respectively. Using the latter of these indicators, vector

information is gradually changed fromunknownto their correct, respective indicators.

4.4. LIMITATIONS 73

In contrast, theHMM and ANN FDFs continue to increase their vectors by adding one

additional index until the maximum window size is reached; a third value is unnecessary.

However, in this case it was important to try to distinguish between all three states for the

sake of accurately inferring the vectors’ information. This is further described in Section4.5.

4.4 Limitations

Feature prediction has proven to be a viable method for determining the root cause and potential

for impending faults [28, 20, 19, 18]. However, the accuracy of these approaches does not

appear to be compared outside of this thesis. A baseline for this information is presented and

analysed in order to understand relative effectiveness and performance criteria between studies

but remains to be validated (Chapters5 and6, respectively).

Related, as more information is used to train stochastic primitives, their effectiveness diminishes

due to convergence. To mitigate convergence, stochastic primitives need to have a time-relative,

windowed dataset from which to infer behaviours. This means using the more computationally

expensive route of expiring old data and retraining primitives as needed. It is worth noting that

time to infer and predict failures is also important. Without a speedy prediction, forecasting a

failure may not occur within enough time. This means balancing greedy and lazy approaches

and average response times, with their respective resource utilisation. Some of these topics are

superficially addressed, but not specifically within the context of self-healing systems.

Contextual inference when understanding feature behaviours is important but assumed to be

difficult to attain in computing environments. To partially address this problem, the use of

windowed data-sets is required,a priori. Using time-specific sets of information for analysis

avoids problems with convergence and over-training primitives – a topic which is discussed in

several existing experiments [99, 28, 88, 100].

Stochastic primitives leveraging unsupervised learning currently represent the best known

approach for multi-step ahead forecasting of feature behaviours [7, 1]. The relationships

between features are too complex to be modeled accurately in real-time by any human due

to the dynamic and rapid nature of their interactions. However, as as many faults are suspect to

have a number of dependencies in their root cause identification, performing such an evaluation

appears to be necessary for fully featured self-healing systems frameworks.

Accurately labelling data in an autonomous fashion is not a problem this research claims to

solve, nor are recommendations provided for improving learning methodologies. Instead, these

74 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

are problems that are resolved through operational policies and direct comparisons, respectively.

Each feature has its own dedicated stochastic primitive. Although costly, the nature of broad,

context-free data collection contrasted with minute predictions at the feature level make this

requirement necessary.

The nature of the general approach described in this thesis in Section4.2 necessitates certain

questions – such as “Should the primitives be trained every time data is collected, or only when

a potential fault is present?’, and “What data should be used to avoid the pitfalls of emulation?”

Respectively, both lazy and greedy implementations are investigated along with controlled,

direct injection of faults in specific threads along with adverse configuration changes to provide

realistic user behaviour data within a system’s feature-set(s).

Some of the data in theRBMs vectors are incomplete. It is not possible to completely fill the

vectors within the time allotted with a full value set – to do so would require 30 minutes of

waiting, followed by 30 minutes of training. Instead, the vectors are populated with values

indicating a lack of observed knowledge.

Specifically,RBMs require data to be presented in a square matrix of values. In this case that

matrix is bounded by the window size as defined at compile time. However, this isn’t compatible

with the default instantiation of theFDFsand the iterative tests using the aforementioned subset

sizes. To address this, ‘no data’ values were implemented into theRBM inputs so that the input

data sizes were the same across all iterations between both frameworks. This allowed theRBM

to recieve, effectively, ‘no-op’ controls in the learning algorithm. The alternative was to allow

theRBM double the time to acquire data which would then make the tests unequal.

By approaching the experiments in this fashion, theRBMs use the same amount of data as

presented in the other experiments. Even with this limitation – imposed for fairness between

comparisons – the results are positive for this approach (Chapter5). However, the potential to

perform better, overall, readily exists. If fully trained,RBMs appear more likely to continue to

demonstrate more accurate results.

WMI is ineffective at gathering feature data in a manner that is uniquely identifiable. Although

touted as a mechanism for do exactly this, the notion of such structure in the data it returns is

entirely absent. In addition to lacking a unique identifier for the information it provides, other

problems include the nature of the data gathered byWMI itself.

Deeper investigation showedWMI is not a stand-alone service, but a conglomerate of registry

values, COM+ interfaces, and the occasional hard-coded performance counter. Whilst accessing

this information in one place is more accessible than gathering it separately, there is limited

4.5. THREATS TO VALIDITY 75

reliably as to how often the gathered information is updated. This appears to be due to

the individual policies of each of the aforementioned conglomerate pieces of code and their

individual update policies not aligning.

A lack of reliability in this respect is a problem when trying to document periodic feature

changes. To overcome this, each class within theWMI service had to be explored individually

and tested before use.

The described properties ofWMI are not documented widely and – with the exception of the

unique identifier – were only noticed after extensive testing to ensure validity in results. In order

to ensure consistent results that were up to standard for both academic and industry rigour, these

problems had to be addressed. This is one aspect to how and why the initial tests were created,

including the decision to use one minute intervals.

If a fault is caused through feature locality – the notion that a fault manifests only when two or

more features have specific properties at the same time – then it is much harder to diagnose using

this approach unless they occur at the same time. This is a problem that was encountered three

quarters of the way through the research that would have been interesting to attempt to address

in the experiments. Instead, they have been anticipated by preparing for and accommodating

learning algorithms that can use a single output to generate a series of probabilistic inputs after

an initial learning phase (see Section6.3, Future Work).

Details of the implementations of these approaches are discussed further in the remainder of this

chapter. In summary, the application of this theory has met with overall success (Chapter5),

but many questions remain to be answered (Chapter6) – such as which algorithm is best under

which circumstances? To help address these questions – and because results are best when

compared with impartial, external data – a direct comparison with a similar study is included

(Sections4.7.2, and5) [20].

4.5 Threats to Validity

4.5.1 Construct

Confidence is intended to provide a human-readable metric for the expected margin of error

used by the learning algorithm. Overall this metric works as intended, however because

Baum-Welch uses a proportional probability, direct comparisons between other machine

learning approaches is not directly possible. This can cause some confusion if interpreting

76 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

the results as “100%” likely, despite misdiagnosis.

Time Taken measures the amount of time taken between when a fault is first suspected and

when the list of descending ordered fault hypotheses is generated was done with great

care. This was done to the point of using a programming object (ElapsedTicks) that

should produce similar results on any system, despite even minute differences inCPU

clock cycles and frequencies (see definitionElapsedTicks). However, the differences

between lazy and greedy approaches require an extra layer of inference to perform direct

comparison in some capacities due to a shift in where the bulk of the computation occurs.

This means using averaged results to provide the most accurate outputs, which is what

is provided. These value are converted to milliseconds (ms) for comparison and easier

consumption.

Total Leads are intended to represent the total number of fault hypotheses such that an under-

standing of the overall work-load of theFDFscan be easily ascertained. In this capacity,

the Total Leads metric operates as intended and helps correlate expected increases in time

taken and changes in fault position.

Fault Position is the primary metric upon which the results of these experiments are based. An

ideal result is to have an expected feature reach position 0, along with other associated

features directly below it, if appropriate. It is believed that it serves this capacity

accurately, including the outcome that some high entropy variables were predicted to

be difficult to remove from the lowest (0th) position.

4.5.2 Internal

Polling Interval is a value that determines how often the computing system should be sampled

for feature data. Increasing this value to a point that exceeds the capabilities of the

computing system to return data will result in failures at the application level and cause

the experiment to produce unusable results. Additionally, sampling information too

infrequently could mean losing fidelity or understanding of when feature changes are

occurring. A user must elect a Polling Interval that is appropriate for their situation –

a definition that is intentionally left open to interpretation so that a variety of services

and circumstances can be accommodated – and will provide, when combined with the

maximum number of configuration samples, an appropriate window of inference.

Maximum Total Configuration Samples is related to the Polling Interval and helps determine

the total window-size for making inferences and for forecasting. Increasing this value al-

4.5. THREATS TO VALIDITY 77

lows for greater fidelity or larger windows of inference, but it comes with higher memory

utilisation and longer computation times when producing a list of fault hypotheses.

Epoch Count directly impacts the forecasting accuracy of primitives such asRBMs. The value

used in these experiments was briefly explored by hand but ultimately the default value

of 5,000 was chosen after some anecdotal exploration of expected cycle times in other

implementations ofRBMs. Changing this value could deeply impact results, particularly

variance.

Faults (All) represent the core of the experiment. Injecting a fault that does not have an

associated, observed feature is assumed to be unlikely to produce accurate results. In

one instance this was tested and a partially accurate analysis did occur when using the

maximum number of samples. Specifically, unplugging an upstream router – which the

FDF could not have known about or monitored – produced an arguably correct diagnosis

of a change in network throughput. This is considered to be an unusual result and similar

tests are expected to fail. Additionally, the type of fault injected matters in relation to the

accuracy of the output. This is discussed further in the Results Chapter (Chapter5).

4.5.3 External

Noise is an inherent problem in understanding feature behaviours; it may not be possible to

address it in all circumstances. Certain features or properties – such as free disk space

and the total number of active threads, respectively – can be extremely difficult to predict.

This creates problems in understanding if these traits are associated with a fault using

heuristic learning in a number of ways – particularly when using random values used to

instantiate stochastic primitives.

The approach described in this thesis attempts to accept that some features should exhibit

a certain level of randomness in their behaviours and then be alerted on if they start

displaying predictable patterns. This may impact reproducibility for specific tests, but

overall results should remain larger familiar in terms of overall output.

WMI has a number of limitations, and no assurances can be given outside of systems that

are configured differently – including the version of software present on the system, e.g.

WMI. Additionally, whichWMI classes are selected for observation will impact results.

Details on the specific classes used for observations of the features observed in these

experiments are provided elsewhere in this chapter (e.g.Figure4.1).

78 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Drift – the differences in configuration states between experimental trials is referred to in

this thesis – will impact results, even between similarly configured systems. This is

based on the assumption that that computing systems undergo continuous changes. As

a consequence evaluating exactly identical conditions between systems is not a state that

is easy to achieve. A best effort is made to reduce drift as much as possible by running

multiple tests via the same savedVM state. However, it is acknowledged that drift can

have an impact on results and that the extent of that impact isn’t entirely understood.

4.6 Implementation

Implementation of allFDFs is done via a small (~40 kilobytes), console-based application

written in C#. This application uses theWMI framework to periodically collect data based

on a polling interval. Information collected in this manner is either immediately analysed upon

detection of a fault, or added to a collection of datasets for later use. Primitives are built and

trained through the Aforge.NET [101] and Accord.NET [102] frameworks.

There are other mechanisms for gathering feature behaviour information from a system, how-

ever this approach was initially thought to be the least difficult.WMI allows for a wide range

of feature data to be pulled. Existing methods within C#, and the .NET framework provide an

established interface for polling information. C#,WMI, and the combined, existing Machine

Learning frameworks, minimise development requirements; a property that remains absent from

other operating systems.

The polling interval is provided at compile time and determines when theWMI service should

be queried. When combined with a maximum number of datasets to keep in memory, an elastic

measure of control is afforded to testing conditions. Furthermore, by specifying the maximum

number of configurations to keep in memory, a window of inference is created. In this case,

assuming a 300 second interval, and a maximum of 50 samples, a 250 minute window would be

created for contextual learning. There are expected benefits and disadvantages to shorter versus

longer windows – such as stability in predictions, and time to fully train the framework(s),

respectively. The adjustment of these properties is not explored in favour of steady results.

Although both values are fully adjustable, the experiments in this book use a polling interval set

at 60 seconds, and the total size of the dataset collection is limited to 30 samples.

Data collected from theWMI interface is stored in a dataset. Each dataset is referenced within

a list that corresponds to its collection time, and contains a collection of tables that individually

correspond to their respectiveWMI class. Each table contains a series of values – some of which

4.6. IMPLEMENTATION 79

are unique, and some of which are not – this is an artefact of Microsoft’s implementation. For

example, if the value for a system’s fully qualified domain-name is present in oneWMI class,

it may also be present in another such class.

WMI Class Name Unique ColumnIdentifier

Win32_BIOS � Version

Win32_ComputerSystem � Caption

Win32_DiskDrive � DeviceID

Win32_LogicalDisk � DeviceID

Win32_NetworkAdapter � Caption

Win32_OperatingSystems � SerialNumber

Win32_PhysicalMemory � BankLabel

Win32_Processor � ProcessorId

Win32_QuickFixEngineering � HotFixID

Win32_Service � Caption

Win32_SystemAccount � SID

Table 4.1: WMI Classes – Names & Unique Column Identifiers.This table illustrates the classes and
the columns used to uniquely identify rows within the sampled WMI data.

TheWMI classes are hand-picked in these experiments based on whether or not they might be

useful to an engineer diagnosing faults with a computing system running a web-service; all of

their available data is sampled (Table4.1). Some of the information is expected to be more

directly applicable – such as Win32_Service – whilst others to supply supporting information

(e.g.Win32_Processor).

Unique identifers for these classes have all been selected for the same reason: Their values are

unique and expected to remain unchanged. This takes the place of a unique identifier being

supplied natively byWMI. Although it was the original intention of the experiment to gather

and compare datasets using the previously mentioned criteria using onlyWMI in its ‘out of the

box’ state, critical limitations were discovered in Microsoft’s implementation that necessitated

a few fixes. Fixes include the use of bridging code between the organisational structures of the

FDFsandWMI under the following scenarios:

1. As mentioned theWMI frameworkdoes not provide a unique identifier for any of the data

it returns. This means comparisons based on unique values become nearly impossible

80 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

without a linear search through every tuple returned within a single class. As a partial

fix, a dictionary ofWMI classes is provided to theFDFsthat indicates a column in which

a value can be used to uniquely identify the tuple. This is a mechanism that had to allow

for comparisons between the same features’ values – a necessary capability for analysing

feature changes.

2. The doubling of data is common inWMI. In many places the same information will be

returned, but this will be viewed as a different or nominal piece of information. Because

there is slight drift between when the system queries the classes, sometimes these values

can appear to change – this can lead to false positives, or misrepresentative data. For the

most part these values are ignored and it is left to the primitives to properly diagnose these

features on their own. The end result is that memory is not used as efficiently as it could be.

When theWMI framework is queried, the respectiveWMI tables and datasets are populated.

In total, about 7,500 features are extracted every 60 seconds. At the end of each collection, a

categorisation process occurs through the use of performance tests. Performance tests validate

the responsibilities of the machine running theFDFs. In this case the machine’s primary purpose

is to act as a web-server for both internal and external clients. As mentioned in Chapter

4.3, Performance tests verify a series of high-level processes and functions and emphasise a

policy-based approach to systems administration. These tests are implemented as described in

Table4.2.

Once a dataset is categorised as either valid or invalid the application will either update its

predictive capabilities or it will look for anomalies, respectively. The dataset is determined to

be valid if it passes all of its performance tests. If this occurs, each property within the collection

of datasets is evaluated against itself. The hardest part of this procedure is uniquely identifying

the objects that have been queried – a feature that is surprisingly not natively supported inWMI,

TheFDFsin this experiment leverage one of three learning algorithms. TheFDFsthat utilise an

HMM leverage the Baum-Welch algorithm [98, 97, 96]. This algorithm has been chosen due to

its suitability withHMMs inherent forward–backward learning, and its ease of implementation

via the aforementioned AForge.NET [101] and Accord.NET Frameworks [102]. Conversely,

the FDFs that leverageANNs utilise a Naïve Bayes approach. Each learning algorithm is

responsible for processing observed feature behaviours into probabilities, which are used in

conjunction with theFDF’s classification of the datasets collected viaWMI.

If the dataset is determined to be invalid, the feature’s behaviours are analysed by theFDFsfor

unexpected changes. Any property that does not match theFDF’s predicted values is added to

a list of potential faults, along with a confidence value. As long as the fault source is collected

4.6. IMPLEMENTATION 81

Test Name Description

Physical Disk Access � Writes to physical disks. Fails on any system-level ex-
ceptions including permissions, free space, and others.

DNS Service Availability � Resolves three separate fully-qualified domain names:
google.com, yahoo.com, and microsoft.com. Fails if
all three sites fail to resolve.

WMI Accessibility & Physical Memory � Queries theWMI service to ensure the total free phys-
ical memory is > 0 bytes. Fails on any state where
theWMI service cannot be queried, or memory is= 0
bytes.

ICMP Ping Test & Internet Connectivity � Performs ICMP Ping tests to localhost, andK , the root
DNS server at 4.2.2.4. Fails on any state that does not
return a successful reply to both sites.

IIS Service State (W3SVC) � Uses a Windows Service Controller object to deter-
mine the state of the W3SVC service as eitherRunning,
Stopped, Paused, StopPending, or StartPendingstates.
Fails on any state that is notRunning.

HTTP Request (localhost) � Performs an end to end HTTP query to the localhost.
Fails on inability to connect and complete a request to
the service – all errors are considered valid if passed
from the web-service,e.g.400, 404,500.

Table 4.2: Performance Tests – Names & Descriptions.

within theWMI data, the potential exists for the root cause to be provided. Determining what

constitutes is sufficient potential is one of the goals of this experiment.

Implementation of theFDFs occurs using three separate but nearly identically configured

VMs. EachVM runs Windows 7,IIS 7.5, and one of three versions of theFDF. The VMs

are clones from a single initial image which consists of an identical base configuration and

hardware specification: one 3.4 GHz Intel i7 4770CPU, with one gigabyte of RAM and a

single virtualised disk split into three volumes spanning a single partition. The volumes host

the operating system, theFDFsand their respective data, and theIIS webroot, mounted on C:,

D:, and E: ‘drives’, respectively.

The VMs are allowed to run for 30 minutes collecting information about the systems whilst

under light load. Light load is defined as one web-service query per 30 seconds, on average,

sent via cURL. This behaviour is adjusted slightly via the randomisation of the starting time

using a ‘scheduled task’ on an external system outside of the virtual environment.

82 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

During this time, the performance tests are evaluated once every 60 seconds. If a system passes

all the tests, each respectiveFDF saves both the configuration and metric data it gathers along

with an XML schema file to a local data store. All of this information is stored in a sub-

directory called ‘data’, which is located based on where the application currently resides. These

files serve as a mechanism for loading saved configurations quickly and, as a consequence,

allow for likeness testing and comparison using the same inferential data.

The experiments themselves operate by comparing the effectiveness of theFDFs through

accuracy, precision, prediction time, fault position, the number of leads, and confidence values.

To achieve realistic samples, theFDFsare injected with two types of faults.

The first type of fault is configuration based (ACCs), whilst the latter is instantiated by hard-

crashing specific process threads (DFIs). The former consists of shutting off services or making

changes to the system using normal administrative methods. These changes are made in

such a way that they are expected to intentionally generate faults. This includes changing

disk structures, service states, and other properties that administrators would normally have

access to. The latter consists of copying incorrect instructions directly into the address space of

another process, which in turn is expected to produce a controlled crash violating one or more

performance tests (Table4.2).

The ACCs include: Disabling the network card, disabling the W3SVC service, removing the

volume upon which the IIS webroot is contained, removing all free space from any of the three

volumes, and disabling network access from outside the virtual machine’s local purview. The

DFIs we instantiated included crashing various services such as the Windows IIS 7.5 W3SVC

andDomain Name Service (DNS)service, and the IPv4 network stack.

EachACC or DFI is run six times on the sameFDFusing 5, 10, 15, 20, 25, and 30 configuration

samples. This allows for the realisation of trends within each approach, and to see differences

in both output andFDF confidence during each specific test.

To keep the results viable each fault is induced using the same steps, and in rapid succession.

Due to hardware limitations and problems estimating resource allocation in cloud environments,

the results of these experiments are not run concurrently. Thus, although using the same data to

populate theFDFs, there exists some amount ofdrift between tests.

It takes about two minutes to execute all six tests in either theDFI or ACC conditions using

scripts andVM snapshots. This is assumed to be an acceptable amount of time, so long as the

FDFsare retrained with fresh data after each series of fault injections.

These steps are particularly helpful when trying to understand performance and effectiveness

4.6. IMPLEMENTATION 83

of the FDFs. It minimises external factors, whilst highlighting the properties inherent to the

stochastic primitives, such as learning algorithm, training time, and memory usage.

Critically, the systems train their stochastic primitives at different times. In the case of

HMMs andANNs, primitives are discarded and retrained on every successful Performance test

evaluation. This requires an active service on theVMs to parse the data in rapid succession – it

also presents an upper limit to the amount of data that can be gathered. This limit is mitigated

in theRBM implementation of theFDF by using lazy parsing. The primitives in the latter are

trained only when a fault is detected via a performance test failure.

Once the primitives are trained they are used to generate potential root causes (i.e. leads). Leads

are generated by examining the behaviour of the primitives sampled by theFDFs. As each

primitive is sampled, a vector is created that indicates whether or not the previously observed

value is identical to the value sampled at that specific time interval. The result is then used to

train a stochastic primitive that is assigned to a specific feature – either upon fault detection or

as soon as the data is ingested. This means there is one primitive per feature provided by the

WMI framework.

Measuring the results of theFDFsis done using the traditional metrics oftrue positives, false

positives, true negatives, andfalse negatives. True positives are determines when the correct

fault has been identified, whilst false positives are any faults above the ‘correct’ fault in the

ordered list of fault hypotheses – should it be present. Conversely, true negatives are determined

when a fault is not detected and is not expected to be present, whilst a false negative is when a

fault is expected but is not detected or identified by the system.

Due to the nature of false positives and false negatives, these metrics are evaluated by hand.

This is expected as there is no way, by definition, for the application to detect such a state

without external validation. It is also the reason why faults are injected in this experiment with

the source already being known.

The confidence values for each approach are generated using different methodologies based on

their respective learning algorithms. In the case ofHMMs, the confidence value is provided

natively using the Baum–Welch algorithm based on the strict probability of the likelihood of

the suspected faulty feature’s lastN behaviours, whereN is between two and the specified

windows size (i.e. 30). ANNs from these experiments use the simplest of prediction metrics:

Naïve Bayes. The last observed state is assumed to be heavily weighted towards the expected

behaviour of the feature’s next state.RBMsuse the same approach as theHMM approach, with

the exception of the accompanying learning algorithm beingCDL.

84 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Use of vector analysis to forecast the likelihood of a feature’s behaviour in Naïve Bayes

requires setting a minimum confidence value – in this case, 80%. This is done as there is

no reinforcement learning from which the approach could dynamically weight its expectations.

As such, the last observed behaviour in a known good state less the probability of change for

the last number of up to 30 samples is utilised. Any feature behaviours that are not predicted

to or do not meet this 80% threshold are ignored. In all other cases, the learning algorithms are

not provided a minimum threshold.

4.7 Comparison & Inference

TheFDFsandUBL operate in similar fashions. Their behaviours regarding how information is

collected, parsed, and analysed is comparable, as are their intended purposes of reporting spe-

cific features suspected to be in error. However, their implementations and design assumptions

differ significantly. To understand the relative impact and successes of these approaches they

need to be compared.

The technical differences in how theFDFsandUBL collect, classify, and analyse information

are described in this section. Specifically, the number and types of features being monitored,

and how the collected data is used, stored, and evaluated are examined. These properties are

discussed before a traditional analysis of the self-healing frameworks’ prediction (i.e. planning)

and recovery strategies – including what learning algorithms have been implemented, and under

what assumptions.

4.7.1 Baseline Establishment

The following section describes the details for establishing a baseline and comparing results

between approaches, and discusses the application of the hypothesis described in1.2.1. It

consists of three experiments, each using different implementations but adhering to the same

overall logic: Training stochastic primitives with observations of feature behaviours to use

forecasting as a mechanism for identifying the root cause of a fault.

The first two experiments are original works that compare simple stochastic primitives (ANNs,

HMMs, RBMs) using Naïve Bayes, Baum-Welch, andCDL learning algorithms, respectively.

The third experiment focuses on testing the stochastic primitives using aSOM that is trained

via Euclidean Distance comparisons. The first two experiments are original works that have

4.7. COMPARISON & INFERENCE 85

been written, designed, and implemented by the author of this book. The third experiment is of

external origin and used as a basis for comparison for the state of the art [28].

Each subsection provides implementation details for the aforementioned approaches. It dis-

cusses what tools are used, how the primitives are implemented, and provides a brief theoretical

background. The final subsections describe the physical implementation of the first two

experiments, and compare the external approach.

Results from these approaches are discussed in the following chapter.

4.7.2 UBL - An External Basis for Comparison

The ability to observe and learn from historical behaviours is not unique to theFDFsor, for that

matter, to self-healing systems. The same approaches can be said to be at least tried in security

research [103], amongst other areas. However, the ability to predict and forecast features to find

faults is somewhat more limited when considering the use of unsupervised learning.

Only one additional known external example of this approach exists in self-healing systems

research –UBL [28]. UBL is a cloud-based approach for identifying faults by looking for

unexpected data in feature behaviours. It leverages a special type ofANN called aSOM. This

primitive reduces relationships between feature sets into a two-dimensional lattice. Informa-

tion contained in the lattice is traversed using neural weights which then model a system’s

behaviours. It is this modelling that allows for the forecasting of a system’s feature data.

At a high-level, UBL operates similarly to theFDFs, however it has several fundamental

differences in how information is gathered, classified (i.e. labelled), and forecasted. Like the

FDFs, UBL periodically observes feature data which it then converts into vectors to train a

stochastic primitive. Once the vectors are created differences begin to emerge in how that

information is used. Instead of forecasting behaviours retroactively,UBL actively predicts

feature behaviours so that it can preempt faulty states.

UBL uses a small, custom written application (i.e. daemon) to monitor feature changes in

a fashion similar to theFDFs. Once instantiated it interfaces with and reads data from two

sources: The Xen 3.0.3’sDomain 0and the/proc file system. Each gives access to behavioural

data associated with features – such as changes in free memory, disk I/O, and other, similar

properties.

Data is polled once a second before being used to either update theSOM’s learned behaviours

(i.e. neural weights) or to determine if a fault is present. Learning inUBL occurs under two

86 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

conditions: A ‘bootstrap’ phase is used to instantiate the primitive, after which a continuous

update mechanism is present to adjust neural weights with current operational values. In either

learning case, the neurons’ adjustments are made through a learning coefficient that manages

how fast the primitive updates its neural weights.

The labelling of data is done through this initial phase. The initial training data is assumed to

be valid, and all other data is evaluated based on the results of the bootstrap phase.

The bootstrap phase occurs until each neuron within theSOM has updated their respective

neural weights a total of 10 times. In this case, theSOM’s dimensions are 32 x 32 indicating

a total of 1024 neurons. Each neuron maps to an individual observed feature – therefore, all

features must have active data or theSOM will never complete training. This is an important

distinction as features with low behavioural frequency cannot be monitored usingUBL.

Which neuron is selected for learning occurs by comparing the Euclidean distance of a sampled

input vector with each neuron’s weight vector within theSOM. The neuron with the smallest

distance value is then used. Estimated times from the original work for initial training are

between 42 seconds and 7 minutes, depending on what percentage of theCPUis used for this

task.

The second type of learning is done incrementally whilst all neurons are in a ‘normal’ state.

Neural updates in this manner, however, have caveats and a deterministic operating period exists

for each neural weight. Dean, et al, describe this as a problem of convergence:

... too many incremental updates may degrade the quality of theSOMas all weight

vectors may converge to a small number of vector values. This can happen when

the system starts to process a completely different new workload.[28] [p. 3]

UBL addresses this problem by reinitialising theSOMand then using another subsequentboot-

strapphase. There are potential implications to this methodology, but they are discussed further

in Section4.7. Once theSOM is trained it can use the Manhattan distance of neighbourhood

size between neurons to forecast extreme shifts in feature behaviours.

Manhattan distance is calculated based on the distance between a neuron and its immediate or-

thogonally adjacent neighbours within theSOM. This metric is referred to as theneighbourhood

area sizein the original work. Anomalies are determined via this metric’s size:

If the neighborhood area size is small, we know that the neuron we have mapped to

is in a tight cluster of neurons, meaning the neuron is normal. On the other hand,

4.7. COMPARISON & INFERENCE 87

if a neuron maps to a neuron with a large neighborhood area value, we know that

the neuron is not close to other neurons, and thus, probably anomalous.[28] [p. 4]

Unfortunately, specifics as to what constitutes the range of these values is not explicitly given.

It is inferred, however, that the values described herein are relative. This is due to the fact that

all collected data is normalised within theSOM.

The Manhattan distance is used to predict the performance of various features within theSOM.

If the neighbourhood area size is large, then theUBL framework attempts to make a multi-step

ahead prediction as to the trajectory of the neuron being observed. This is referred to as the

Mapping Phase.

Prediction capabilities during the Mapping Phase are divided into three primary categories:

Normal, Pre-Failure, andFailure. These are notably different groupings than those used in the

FDFapproaches which operate in a reactive fashion. The first is an indicator of expected values

given a threshold for the area size. The second indicates a larger than expected set of values,

and a trajectory exceeding the maximum threshold limit; the latter indicating a failure state.

Using the aforementioned logic,UBL continues to operate until it either encounters a pre-failure

or failure assessment for one or more neurons in theSOM, or until it reaches a convergence due

to overtraining.

UBL is implemented using Virtual Computing Lab to emulate Amazon’s EC2 infrastructure

and operational properties. EachVM runs on top of one of five machines running Xen 3.0.3 on

a 64-bit version of CentOS 5.2. Each physical server, in turn, manages five virtual instances.

The polling information via Xen’s Domain 0 interface is done through two libraries: libxenstat

and libvirt.

Although training is done locally on some of these instances,UBL has the ability to train

SOMsexternally of the machine upon which they are running by transferring the vector state

information to dedicated learning systems – machines that are dedicated to buildingUBL

specificSOMs. Since these machines do not have external responsibilities, they can fully

dedicate availableCPUsto training of these primitives without performance impacts.

SOMsneed to be instantiated using not only the bootstrap phase, but also using cross-validation

from existing feature data for training. This is to avoid problems where someSOMs"would only

represent a subset of training data values" [28] [p. 3]. Otherwise, the result is partial training of

aSOMwhere some features are overlooked and their corresponding neurons remain untrained.

Faults are instantiated through a variety of stress and performance testing suites under several

88 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

application platforms including RUBiS, IBM System S, and Hadoop. Each application platform

leverages 2 or more testing suites to induce faults via high-frequency resource utilisation –

a pattern that is in keeping withUBL’s expected inputs. The testing suites areBottleneck,

CPUHog, CPULeak, Memleak, andNetHog. Not all application platforms are subject to the

same tests, however – with the exception ofMemleak(Table4.3).

Testing Suite RUBiS Hadoop SystemS

Bottleneck � •
CPUHog � • •
CPULeak � •
MemLeak � • • •
NetHog � •

Table 4.3: UBL Testing Suites.UBL uses various testing suites on a number of application platforms.
Although some of these tests are used across all scenarios, the majority are not. For simplification, a
testing matrix is included here.

Tests are administered “between 30 to 40 times" [28] [p. 5] before their comparisons against

Principle Component Analysis (PCA)andκ-Nearest Neighbour (κ-NN) are displayed using

receiver operating characteristic (ROC)curves. Some results are smoothed using between 5

and 50 points in addition to their existing normalisation.

4.7.3 Collection

Information collection for both approaches happens either through the use of local daemons or

via API interfaces. These interfaces act as controlled, authenticated gateways into a host, and as

a mechanism for formatting the returned data. Their implementations differ, however, in both

their fidelity and their use. Still, each framework operates by interfacing with a common point

for sampling feature data.

In both FDF instances, the features and attributes within the aforementioned classes are

catalogued at a rate of once per minute then stored locally both in volatile and non-volatile

memory. Each collection consists of datasets, tables, and tuples parsed into binary vectors or

raw configuration data stored as XML, respectively. Storing information in XML files is used

for resuming the service when running identical fault tests under variable conditions, such as

using fewer configuration samples.

Once data is collected it is then stored in an intermediate state – how and when depends on

the implementation. ForUBL, once the sampled information is collected it is used greedily to

4.7. COMPARISON & INFERENCE 89

train aSOM either locally or via a separateVM. This behaviour occurs continuously and is

not limited to a specific time-span or window. Eventually theSOM either predicts a fault or

a training convergence occurs. TheFDFsare trained either greedily (HMM, ANN) or lazily

(RBM), using windowed datasets of the user’s specified size in minutes. All approaches build

vectors out of change data between samples to form the basis for later analysis.

4.7.4 Classification

The information gathered by these approaches consists of unlabelled performance metrics and

configuration data. However, using this information to decide on the source of a fault first

requires that this information be accurately classified – a non-trivial problem.

The state of the art for autonomously and accurately classifying unlabelled data in general is

outside of the scope of this chapter. However, on occasion, problems in classifying unlabelled

data are discussed in brief and as needed. This includes the strategies implemented by each of

the aforementioned approaches, and their respective limitations.

There are a number of differences in how theUBL andFDF approaches classify data – from

how much data is utilised, at what point the information is classified, and both how and when

data is processed. These differences are associated with the relative uses of each framework

although some properties are based on assumptions.

For example, the training phase forUBL is testedin situbefore being applied. Using a training

phase provides an advantage in that it does not require a specific set of performance tests or roles

to be provided before classifying data. However, using performance tests follows a common

tenet in self-managing systems research – the ability to provide high-level policies to systems

as a primary form of administration. It also allows for the specification of specific areas of

interest – an approach that can reduce false positives.

The UBL and FDF implementations both use unlabelled data to forecast anomalies by pre-

dicting unexpected changes in feature attributes. Predictions are made by observing a period

of known or assumedgoodstates to train primitives in order to recognise an expected set of

behaviours. Once this training is complete, observed data is then classified heuristically into

one of several states.

UBL’s three classifications for state are determined by calculating the Manhattan distance

of a neighbourhood area size using individual neurons. By analysing the differences in

neighbourhood area sizeUBL is able to classify the behaviours of individual features as being

90 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

in one of three aforementioned categories.

The FDFs classify information into only two states:good or faulty. However, rather than

labelling the behaviours of individual features, the entirety of a system’s configuration is given

a classification before looking for feature changes using performance tests. Performance tests

consist of operational validation criteria – properties that indicate a system is operating within

its intended role. If any performance test fails, the entire set of features sampled is classified

as faulty. Once a classification is made, the data is then parsed using either the previously

mentioned greedy [18] or lazy fashions [19], respectively.

Using three states offers the benefit of proactive analysis over reactive analysis. Although the

intention is to establish a solid understanding of accuracy in the detection of faults, doing so

proactively has several potential benefits over the reactive solutions presented here. However, it

may also be moot to need to address problems proactively under any of the following conditions:

the fault detected cannot be prevented, the fault manifests too quickly for a solution to be

implemented, or an evolutionary approach is used to prevent further instances of said fault(s).

In several instances, the second condition impactedUBL’s results and performance.

Instantiation of classification properties are different betweenUBL and theFDFs. Both

experiments expect the systems to start off in a healthy state for the purposes of initial training.

The training then forms the basis of analysis for theFDFs, but for UBL it also is the primary

component for classification of sampled data. This is because the initial neighbourhood area

size is calculated within this training period and thus where all other data must be inferred.

Additionally, as the data is not windowed, this is a static property outside of small, incremental

updates that effectively amount to an average of values.

How long the data is stored and how it is ingested plays a critical role in classification. Using a

windowed approach for information parsing allows for the avoidance of convergence in training

data, and greater adaptivity to changing environmental variables. Both of these properties

represent advantages in implementation but they come with a cost. Windowing necessitates

more memory and post-processing requirements as purely additive measures are no longer

sufficient. As such, the expectation is for windowed information to take longer to classify

and process. This is seen readily in the results of both approaches, independently.

The way data is ingested impacts when and how classification occurs.WMI provides attributes

associated with features in a semi-structured, non-uniquely identified tuple. In order to address

removals of devices and multiple features that share a similar namespace this exigency must

first be addressed. TheFDFsuse of a dictionary as aWMI class unique identifier serves this

purpose, but also necessitates much slower parsing then direct observation to vector conversion

4.7. COMPARISON & INFERENCE 91

– as occurs inUBL.

Xen samples metric data from a number of different features. As the values within these

samples have multiple ranges, their relative performance and consequent classifications can

become difficult.UBL’s solution is to normalise this information to unilaterally use the same

evaluation techniques across all features. This reduces the fidelity of the content, but lowers

the programmatic overhead needed to classify the sampled data. TheFDFscomparatively have

greater fidelity as they do not trim or normalise their respective results.

The classification of data happens at the feature and system levels forUBL and theFDFs,

respectively. This distinction impacts other aspects such as frequency of data collection and the

number of features and attributes sampled. It also affects how the data is analysed: There is

an implied relationship between the number of observations and what predictions, if any, can

be made. However, a larger number of observations does not always provide for more accurate

results.

4.7.5 Learning & Analysis

The categorisation of feature data allows for the training of primitives and, if necessary,

subsequent fault analysis. However, in order for a self-healing system to correctly identify

the potential cause of an fault it must first determine if a fault is present.

How each framework trains and detects potential abnormalities in feature behaviours varies,

both in assessment and implementation. The primitives used, what learning algorithms are

associated with those primitives, how much and what type of training data they receive, and for

what period of time are all variable with different values in the aforementioned experiments.

To understand the complex relationships between these variables some basic tenets about how

these frameworks detect and isolate anomalies is given.

Fault detection in these self-healing systems occurs after data has been collected, but during

either categorisation [18] or when collected data is being parsed [19, 28]. In either case the

categorisation behaviours occur before an analysis is made. These stages consist of multiple

milestones including initial data collection, conversion into vectors, and their subsequent

assimilation into one or more stochastic primitives.

Each stage of this process is important as failures at any point will lower the capabilities of

the frameworks. If a failure occurs in detecting fault conditions for categorisation, the learning

capabilities of the primitives will be lowered – or potentially even rendered moot.

92 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

There are two primary stages associated with the use of stochastic primitives in self-healing

systems. The first stage is provisioning and instantiation. This includes the initial build of the

object, and its subsequent training. The second stage is the use of that object – typically to

either feed in a vector and understand if it is associated with patterns that have already been

observed, or to provide it with an output and synthesise a vector as in the case ofCDL.

Fault injection evaluates the effectiveness of the latter stage. How much data has been observed,

the learning rate, and the resource utilisation are just some of the key properties. As the variables

within each of these areas are large in number, keeping the tests consistent is important. There

is limited use in providing data without a control in this respect.

UBL implements its stochastic primitives differently than theFDFs. The authors describe it as

starting out by instantiating a singleSOM that consists of 1,024 neurons that are arranged in

a 32x32 lattice. It then populates each neuron with a randomised weight. This weight is what

determines the paths vectors take as they traverse through theSOM. Any path that meets an

edge in the lattice can run into problems as the evaluation may be incomplete as distance is a

factor in accuracy in terms of this traversal.

Afterwards, abootstrap phaseis used to train theSOM using historical data from the IRCache

project (circa 1995) – this continues until each neuron has their respective weights adjusted 10

times. The reasons for using these values or this dataset is not explicitly given in the original

work.

Once theSOM is trained it begins periodically sampling the system for further data via Xen’s

‘Domain 0’ interface. The data is then either updated into theSOM or a differential analysis is

performed using the Euclidean distance of an input measurement vector against each neuron’s

weight vectors, respectively. The weights in theSOM are then updated incrementally every

time a sample is provided.

In this case, a sample is provided every 60 seconds. When the update occurs, each neuron in

theSOMhas its weights validated via a neighbourhood area size calculation using the summed

Manhattan distance of each of its neighbours.

The FDFs take a completely different approach to instantiation: For each feature being

observed, a separate primitive is built and trained. LikeUBL, these primitives are built with

default weights. In this case all objects consist of three layers, and randomised weight values

– there is no cross validation. Once the primitive is ready one of several training use case

scenarios exist. Broadly summarised, they can be viewed as being under the greedy or lazy data

consumption models.

4.7. COMPARISON & INFERENCE 93

Any system using a greedy model will train the primitive immediately. If the primitive currently

has learned less than the total number of maximum samples, that information is simply added

to that primitive’s existing knowledge. If the maximum number of samples has been reached,

the primitive is destroyed, and a new windowed subset of information is built. Using this new

information, a new primitive is instantiated and trained to take the old primitive’s place.

Systems using the lazy model simply aggregate training data until a fault is suspected to have

occurred. Once detected, a primitive is built for each feature, trained using existing data up to

the maximum sample size, and then an analysis is run. This saves total computational resource

usage, but slows down result generation due to the lack of pre-computation.

In either case training is dependent on several factors. In addition to primitive type, how long

it takes to train theFDF is related to how many cycles (i.e. epochs) are specified, and the total

number of features in question. In this case, 5,000 epochs are specified forRBMs, whereas the

other two types of primitives are left to train only once per provided sample.

Once the primitives are trained they can forecast either single (ANN, HMM) or multiple points

of behaviour (RBM). This ability is gained from the predictive reasoning capabilities of the

algorithm along with the physical structure of the primitive(s). In the case ofRBMs, for

example, an undirected graphical model uses an approximated gradient for the log-likelihood

of a specific behaviour. This is sampled using a Markov chain which is weighted towards the

last observed state.

For reasons of scope and complexity, the functional and operational aspects of the respective

learning algorithms are not addressed here in detail. The details of these algorithms are

generally agreed to be well documented and readily available. However,CDL remains an

evolving and not entirely understood methodology [13, 99, 95].

Fault detection is the primary catalyst between learning and analytical behaviour for all of the

aforementioned approaches. TheFDFshandle fault identification through performance tests;

a simplification of expected system operating behaviours.UBL’s approach however is much

more involved.

The total Manhattan distance metric is the primary indicator of both fault presence and source.

Neurons that have a small area mapping are assumed to be operating normally. Those neurons

with larger distance spreads are indicators of either precursors to potential or existing anomalies

depending on severity. The threshold for making these determinations is not explicitly given in

the original work, but a 50% increase over the example value is given as an indicator of a

pre-failure neuron.

94 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

The source of a fault is determined using the preserved geometric positions of each of the

neurons within theSOM. Mapping neurons’ expected behaviours with those near to the neurons

suspected to be in an anomalous state provide an updated distance measurement from which to

evaluate the cause. The inference between the feature and its associated neurons provides an

avenue for identification.UBL’s low level analysis has advantages in that it does not require

roles or additional pre-requisites to be supplied outside of the bootstrap phase before becoming

operational.

TheFDFsfault analysis approach is similar toUBL’s. Both approaches look for differences in

observed and current behaviours with the context of expected performance benchmarks. The

difference betweenUBL and theFDFsis that analysis is done in the latter based on forecasting

specific feature behaviours.

Once a system’s configuration is labelled as having not passed its performance tests, a set of

stochastic primitives is made ready via the knowngoodconfiguration samples. This represents

a control from which to test the currentfaulty configuration. A differential analysis is done to

see what features changed between the last known good sample, and the current fault sample

data. Any features that show a change are short listed, and their behaviours are forecasted using

only the knowngooddata.

This information is then compared to the actual data present in the faulty configuration set.

Once a forecast has been made a confidence value is provided via the learning algorithm that

indicates the likelihood of that forecast being correct. Forecasts that are sorted in descending

order based on likelihood (confidence) as an indicator of the potential root cause of a fault. Data

produced by the application is then either passed on to an individual for evaluation, or can be

used to hand off data to a third party application.

Perhaps the most critical point in evaluating these frameworks is how faults are injected into

them. In both sets of experiments, a range of software suites are used to induce anomalies.

These suites focus on performance criteria and volumetric approaches, as is the case withUBL,

or controlled thread crashes and adverse configuration changes.

Each suite of approaches offers a mechanism for testing against conditions that are considered

undesirable specifically in professional computing environments. However, these tests are

performed equally in theUBL experiment . The technical aspects of these testing suites

are covered in Tables4.3, and 4.2, respectively, however, comparisons of their respective

approaches are not.

UBL emphasises a performance based model to understanding feature behaviours. The testing

4.7. COMPARISON & INFERENCE 95

suites it uses emulate this perspective by forcibly injecting data into a system’s services. The

results manifest at different observable levels within the machine itself, including raw resource

utilisation – such as memory, orCPU– and via service controls. An example of this is running

Reduce functions through Hadoop until an abnormal signal is returned. However, not all tests

are run across all instances (Table4.4).

Hadoop System S RUBiS
TestingSuite TP FP TP FP TP FP
Bottleneck G G
CpuHog G G 93% 0.5%
CpuLeak G G
MemLeak G G 98% 1.7% 97% 2.0%
NetHog 87% 4.7%

Table 4.4: Summary of Testing: UBL. In the original work, results for UBL are presented textually,
graphically, or sometimes not at all.G = Data via Graph Only, Blank = No Data, TP = True Positives,
FP = False Positives.

As mentioned previously, there are two types of fault injection mechanisms within theFDFs:

ACCs, andDFIs. To understand how each of these approaches operate and their criteria during

testing they are expanded upon here.

ACCs operate by inducing valid inputs into the system in such a way as the result is expected

to cause a fault. This is to understand how user error might be caught by the application in

comparison to when a system’s internal logic or other factor fails outside of human control.

Faults in theACC category are triggered by running scripted commands against the system

using included service controls only.

DFIs handle this second category by inducing controlled thread crashes. This second type of

error is the more traditional focus in prior art, but it is not the only issue worth exploring.

Anecdotal evidence suggests that change controls made by individuals in professional environ-

ments are difficult to perform consistently – particularly when done by hand. Understanding

the differences in a self-healing system’s ability to differentiate between the two is therefore

valuable,a priori. DFIsare instantiated through the use of process termination signals, random

pointer walks within specific threads, or the use of a hex-editor to write (w) faulty, no-op/ eax,

(0x90) instructions.

Testing suites within theFDFsoperate under a similar philosophy as those inUBL in that their

results are specifically tested against operational performance metrics. In this case, the change

of a specific feature’s behaviour by the test administrator is expected to induce a state that will

96 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

cause a fault. This can occur under rather obvious assumptions – such as directly shutting off

a service – but this is not always the case. For example: An external router is disabled under

one of theFDFtests – a property not monitored by the frameworks – and a root cause of loss of

network throughput is indicated. This is further discussed in the following chapter on results.

4.7.6 Comparison Constraints

There are some constraints and implementation details that differ between theFDF instances

andUBL that are worth mentioning explicitly. Understanding and detailing these properties

before discussing the results of each approach offers greater context to the information being

provided.

TheFDFsoperate under similar conditions and principles toUBL. However, instead of focusing

exclusively on feature behaviours, a combination of systems validation (i.e. performance) tests

are used to provide context to changes in attribute data. Contextual information offers clues as

to what shifts in attribute behaviours are expected or unexpected by attributing their values with

SLOs. If all SLOsare successfully being met, then the configuration is given a context of being

in the aforementionedgoodstate. In this caseSLOsare incorporated into and represented by

performance tests.

TheSOM within UBL can update its weight incrementally but not indefinitely. In the current

implementation there is no way to expire old data as it is immediately incorporated within

theSOM and then the sample is expired. Since the information cannot be expired theSOM’s

weights will eventually converge. This eventually creates an inability to perform the differential

methods needed for classification and analysis.

The feature data examined byUBL is normalised into a range from 0 to 100. By examining

both the minimum and maximum possible values of a feature before executing the number of

neurons required drops substantially as their use is tied to the maximum and minimum values

of observed features. However, as mentioned, normalisation of values may produce a drop in

the fidelity of information. For example, if the change in the neuron’s actual value represents

less than 1% of its total possible value, then the change may not occur within theSOM. In some

instances the original work states that normalisation values have also been reported to be over

100. These incidents are claimed to be non-impacting, but are not completely understood in

terms of implementation or how they might influence the analysis of anomalies.

One of the primary differences between this work [18, 19, 20] and that of Dean, et al [28]. is

that entropy in feature behaviour is not ignored in theFDFs, nor is any data normalised. These

4.7. COMPARISON & INFERENCE 97

are important distinctions as more data is handled in theFDF approaches in terms of the total

number of features than inUBL, and that the potential for identifying the root cause of a fault

can be truncated under normalisation conditions.

Forecasting behaviours is not an exact process. In each instance the abilities of the primitives

are constrained by mathematical problems – such as the accumulation of error – but also the

additional restrictions of their learning algorithms. This includes accepted and expected error

in probabilistic learning, and numerous other factors.

Before being able to forecast behaviours a lead time is required in all of the aforementioned

experiments. The amount of lead time and the level of accuracy are topics discussed in the

Results section. However, there are some minimums that are present in each approach. A

minimum of twogoodsamples must be provided before a failure can be analysed by theFDFs.

This is similar toUBL’s 10-update per neuron pre-requisite, but with the added difference that

FDFsuse polling intervals at fixed time differences. This allows for some measure of prediction

as to when training will be complete for theFDFsversusUBL.

Using performance tests may have some advantages in specificity, but it requires greater initial

human oversight. TheFDFsemphasise a high-level approach to determining both the presence

and source of a fault. They are designed to automate alerting procedures and operate as inde-

pendent services running in large-scale, centrally managed computing environments. However,

requiring a set of role-based performance tests means that they operate less agnostically than

UBL.

By looking for general areas where problems may exist it stands to reason that correctly

detecting a fault that is associated within such an area is more likely – so long as the tests

and analysis logic use the same points of reference. For example, a network connectivity

performance test may help indicate which features are more likely to be the source of the fault

assuming the context of the test is incorporated into the analysis logic.

Training RBMs is relatively expensive computationally. Compared to the iterative updates of

UBL and the firstFDF framework, the secondFDF approaches are particularly intensive. Each

RBM requires thousands of training cycles before being utilised. If there are a large number of

differences in attribute states between the last known good and fault configuration samples, it

could take several minutes for a potential root cause to be proffered by the application.

There is a certain amount of elasticity in anFDF’s ability to forecast feature behaviours. The

size of the training sets – both with respect to the number of features being monitored and

the total number of observed configurations – influences the processing time, adaptivity, and

98 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

accuracy metrics. By increasing the frequency of the polling interval, theFDF’s maximum

window is constrained to a shorter time period. Once the maximum number of samples is

reached, old data is discarded. Consequently, the ability to forecast data becomes restricted to

a small subset of information. Increasing the maximum number of observed samples used for

parsing comes with higher resource constraints, but it also provides more stable predictions and

less sensitivity to outliers. Expiring old information helps to retain the correct scope from which

to draw conclusions and avoids problems in over-training and convergence.

Lastly, different learning algorithms provide different results – which is both why they are

interesting and why they are difficult to compare. It is not always clear as to how factors impact

each other, or if there are relationships between attributes either in the learning algorithm or the

data when a fault is detected. However, some of the results suggest that it should be possible to

help determine the existence of such relationships. ?

In summary, both theFDFs and UBL look for feature changes to determine the root cause

of faults. However, in the case of the latter a different primitives and learning algorithms are

used alongside different tests:FDFs use the same tests for each experiment, andUBL uses

different tests per the authors’ selected performance testing suites. Additionally, both of these

experiments evaluate slightly different conditions – both are looking for faults, butUBL looks

for changes in performance metrics outside of an expected range that is dynamically generated,

whilst FDFs look for violations ofSLOs via performance tests. Nominal other differences

remain as summarised in Table4.5.

Property UBL FDFs

Primitives ANN (SOM) ANN, HMM RBM
Learning Algorithms Tested 3 2 2
Training Cycles Conditional* 5–30 5,000
Windowed No Yes Yes
Polling Interval 1 second 60 seconds 60 seconds
Forecasting Multi-point Single-point Both
Ingest Type Greedy Greedy Lazy

* Training in UBL occurs randomly until each neuron has been updated tentimes.

Table 4.5: FDF and UBL Property Comparison. This table presents a summary of the comparison of
operating properties in unsupervised self-healing frameworks discussed in this chapter.

5CHAPTER FIVE

RESULTS& D ISCUSSION

The FDF experiments demonstrate the ability to accurately identify the root cause of faults

by using a combination of unsupervised learning, performance tests, and stochastic primitives.

Most results are show support for the hypothesis and overall the work in this thesis helps to

enable the autonomous identification of the root cause of errors.

This chapter provides the results from eachFDF experiment whilst contrasting them with an

external approach calledUBL before providing a discussion and leading into conclusions.

5.1 Introduction

This chapter presents the findings from the two separate but relatedFDFexperiments discussed

in the previous chapter. The first experiment focuses explicitly onANNs andHMMs whilst the

latter explores a nearly identical implementation usingRBMs. The difference between these

experiments is that the primitives are not trained until a fault is detected when usingRBMs.

Switching from a greedy to a lazy ingest mechanism provides notable changes in some of the

timing and list size results, but otherwise all aspects are identical including what kinds of faults

are injected, how they are induced, and the volume of data used to train the primitives.

The results of these experiments are described sequentially as they are contrasted with an

external experiment (UBL). This guides the interpretation of both series of results from the

FDF experiments along with an external measure for comparison. A discussion section then

provides a degree of synthesis in these findings before outlining future areas of exploration and

conclusions in the following chapter.

99

100 CHAPTER 5. RESULTS & DISCUSSION

5.2 Overview

This thesis partially answers the research questions as described in Section3.1.2.

Chiefly, the experiments explore the degree of human interaction required to accurately find the

root cause of a fault by using unsupervised learning with stochastic primitives (Question 3), the

impact of information fidelity on such an approach (Question 6.c), the impact of different types

of faults on fault identification (Question 5), how quickly faults can be identified (Question

6.a), and the viability of examining only feature change data to accurately determine a root

cause (Question 6.b).

More generally, the experiments emulate the IBM’s proposed “policy-based” approach of

managing systems [4] by implementingSLOsand general performance tests rather than a series

of software unit tests (Question 4), whilst Chapter3, separately, provides a comparison of

self-healing systems frameworks’ computing environments, management styles, and learning

algorithms (Questions 1 and 2).

Finally, a comparison is provided directly between three distinct primitives and learning

algorithms using the same experimental controls. The first two primitives form a baseline whilst

the latter is intended to demonstrate capabilities of the approach. To verify these capabilities and

understand relative performance, an evaluation against a similar, independent fourth experiment

is presented using publicly available results [28].

Although other attempts at comparing the performance of self-healing systems frameworks

have been made, such as with the aforementioned DTAC project [43], there does not appear to

be much in the way of contributions in this capacity. This limited the scale of the comparison

made, but a best effort was made and the results seem both usable and interesting (Question 7).

The evaluation of the experiments within this book focus on whether or not it is possible to

correctly detect the presence of a fault and then identify its source using a combination of

unsupervised learning algorithms and a comparison of actual and synthesised feature behaviour

data. In each experiment,ANNs, HMMs, andRBMs are able to complete this task accurately

and within not more than 15 seconds. In addition, the autonomous classification of feature

behaviours by using performance tests is also shown to be an accurate approach for labelling

data.

Although results are largely positive, there are some caveats that presently include a necessary

training period between 5 and 30 minutes before the fault identification capabilities can be used,

moderate to high computational costs, and a compulsory initial set-up by a human administrator

5.3. RESULTS 101

where a system’s role is defined (i.e. the instantiation of said performance tests). These are

hurdles that present future areas for improvement, but it is not believed that they deter from the

validity of the results nor their contribution to the state of the art.

The approaches employed in theFDF experiments are also compared and validated against

an external experiment –UBL. The findings fromUBL offer support for the validity of

the approach, and demonstrate some of the advantages theFDFs provide to the academic

community over prior research. Examples include the importance of contextually relevant data,

that proper labelling and training sets for primitives remain important factors to consider, and

that synthesised, older or normalised information are all factors in guiding dynamic system

behaviours.

A variety of potential improvements remain open for further study. Fidelity of information

and entropy in data-sets represent two such areas – it is worth noting that both theFDF and

UBL experiments run into areas of difficulty when high degrees of entropy in feature behaviour

are encountered. However, difficulty establishing patterns of behaviour when such patterns

are seemingly not present are to be expected. Alternative techniques such as cross-referencing

the likelihood of multiple feature behaviours could help relieve some of these problems. This

avenue of potential research and others are discussed in further detail in the following chapter.

5.3 Results

The results in this thesis came over a substantial period of time, through much process, and

with concerted effort. Initially, the experiments described herein were intended to be iterated

over a range of values concerning three primary variables: window size, sample frequency,

and learning module. This was designed such that individual markers for the volume of data

being used, the resource costs involved, and the accuracy of each of these properties could be

evaluated holistically and explored through multiple iterations.

Although this type of experiment is still possible using the resources from this thesis, the initial

creation and setup of theFDFs introduced some unintended resource constraints. This is a

problem that is multifaceted in nature – from programming priorities moving from building a

simulator to an actual, working application consistent with the properties of an independent

framework, to ensuring accurate reproducibility in the results using academic and industry best

practices and standards. Once these problems were solved, iterating the experiments became

difficult to address with the remaining time constraints.

102 CHAPTER 5. RESULTS & DISCUSSION

The creation of theFDFsoccurred over two separate development cycles including a separate

series of trials for gathering information on variance. In the latter case, an identical feature is

selected that is related to the correct root cause of a fault. The first feature correctly identified

with the root cause was selected. This feature may or may not be the same feature selected in

subsequent trials as each fault may have multiple valid sources. This mirrors other approaches,

such asUBL, allowing for easier external comparison. The sole purpose in the variance trial is

to watch how one specific feature traverses the graphs.

The first FDF included building an ingest mechanism after deciding upon the correct tools

for storing, parsing, and interfacing with feature data and took about a year of development

work. This included writing up proper testing procedures so that results could be validated and

building an ingest mechanism, global variables that could be adjusted trivially, a simplistic

testing interface that addressed IBM’s initial criteria, and the ability to replay and recall

information from prior observations. This also includes designing tests for theFDFs. Although

not explicitly noted in the literature review, it became clear that faults had different types of

instigators – including human error. Testing the difference between detecting a legitimate fault

and one intentionally manifested then became a priority.

Development of the second framework took an additional three months to validate, implement,

and integrate new primitives and learning modules. The complexity of theRBM code necessi-

tated additional development work for the Accord.NET and AForge.NET frameworks that was

not anticipated. Specifically, test cases had to be implemented to ensure that the primitives were

being populated correctly, and that the ingest of data was presented in the correct format using

the same amount of data as in the previous experiment.

In the end, each experiment was run 30 times for each sample size subset. Subsets were divided

into 5 minute intervals to keep the graphs readable and to highlight differences more clearly. The

subsets tested were addressed as 5, 10, 15, 20, 25, and 30 minutes worth of data, respectively,

to address the maximum window size. Further samples were not taken beyond the initial 30

minutes as they would have been expired and thus remained the same total size. The window

size of 30 was decided upon based on anecdotal evidence based on normal operational testing

windows – specifically my personal experience as an engineer, and loosely questioning peers

in industry. It represents a normal time-span in which rapid traffic changes could occur in the

monitored service, whilst still being short enough to be highly adaptive.

The number of runs was decided based on the central limit theorem. There seems to be some

disagreement with using the value 30, however, and that the recommended number of samples

can readily vary from 20 to 50. The value of 30 was decided upon based on a consensus and

5.3. RESULTS 103

discussion with peers within the Computer Science department of the University of St Andrews.

5.3.1 The FDFs

Is it possible to accurately identify the root cause of a fault using performance tests, stochastic

primitives, and unsupervised learning?

These experiments demonstrate positive results and overall show support for the hypothesis

under both conditions – where success is determined either by the fault being in the top 10

recommended features, or based on proximity to the 0th index – for finding and identifying the

root cause of faults based on feature change behaviour without human intervention.

However, although most of the results demonstrate success, some of the results in eachFDF’s

performance did not meet these conditions and show potential for improvement. Overall, it

takes about 20 minutes before getting consistent results that are useful for fault identification.

Concrete results were generated showing:

1. The number of computing samples within theFDFsdirectly impacted the amount of time

it took to generate a descending ordered list of fault hypothesis. Using ~7,500 features, in

implementations where a greedy algorithm was used each sample added ~150ms forHMMs

using Baum-Welche, and ~90ms forANNs using Naïve Bayes. Likewise, lazy algorithms

using anRBM leveragingCDL being trained at 5,000 epochs added ~560ms per sample.

This is important in understanding the computational cost of each approach, and how much

time is needed per sample to generate leads if attempting a proactive solution.

2. Sampling the probabilistic likelihood of feature behaviours allowed for accurate determina-

tion of potential root causes as expressed viaconfidence. ANNs, HMMs, andRBMs, each

provided accurate, descending ordered lists with the correct faults based on confidence.

The proportional calculation used with theHMMs was an artefact that was not initially

considered. Ultimately it did not allow for monitoring the progress of reinforcement in

observations because all results were relative to the perceived most likely root cause (i.e.

feature). Still, bothFDFsproduced usable, accurate results using this metric regardless of

the primitive or learning algorithm used.

Thus, when compared with the accuracy and precision results, concrete evidence is given

that confidenceis a good indicator of the learning algorithms ability to correctly detect

abnormal behaviours in features, and thatCDL in particular is an excellent learning

104 CHAPTER 5. RESULTS & DISCUSSION

algorithm for this type of analysis.

3. The ability to indicate the correct potential root cause viafault positionwas clearly demon-

strated, regardless the fault type, withRBMs being more successful over other approaches.

This is indicated by the ability to generate descending ordered lists with the correct root

cause more towards position zero than the other approaches in almost all cases.

Specifically, at 5 samples, all approaches perform similarly – however, drops in fault

position occur with theHMM and RBM approaches – notably without a decrease in

accuracy. The rate of decrease in fault position is sharpest inRBMs, which showed an

average decrease of about half a position per 5 samples.HMMs show a similar overall

decrease, but not as consistently or sharply; at 30 samples this metric converged with

RBMs. ANNs produced the least desirable results with the correct root cause oscillating

between positions 4 and 5 regardless the number of samples provided. Highly chaotic

feature data such as Free Disk Space provided limitations to the analysis abilities of the

learning algorithms associated with the primitives, which was expected.

4. A smaller number of fault hypotheses (i.e. leads) occur when using greedy ingests, but

using this approach costs more computationally, overall. The details of this conclusion

are technical and discussed further in Section5.4, but in summary the smaller subsets

of calculations provide a mechanism for reducing the number of potential leads when

compared to analysing feature behaviours at larger key intervals. For each good sample that

was expired, the computations performed to understand feature behaviours were effectively

wasted. A lazy algorithm avoids this pitfall in exchange for longer times at during fault

identification (i.e. generating a list of fault hypotheses) at the time of fault detection.

5. A windowed data-set is a necessity to avoid problems with convergence. This is confirmed

through the presence and suspected root cause of such a problem in the comparison study

(UBL) (as confirmed by its authors [28]), and the notable absence of this problem in the

FDFs. By intentionally running similar experiments designed to avoid this problem, a case

has been developed that lends evidence to the mitigation of this problem.

The first experiment attempts to fulfil two primary purposes: to explore the validity of the

approach, and to establish a baseline for understanding the effectiveness of this and future

experiments. Before this experiment, no public studies were known to provide a direct

comparison of stochastic primitives for finding and identifying faults within a self-healing

system.

The measurements taken to compare approaches includesconfidence, total leads, time-taken,

5.3. RESULTS 105

andfault position. Each of these measurements are defined in Section1.4, but a brief overview is

also provided near figures in this chapter, where appropriate. The values in the figures contained

within this chapter are averages from each experiment.

Variance measurements are absent in the trials involvingANNs andHMMs. This is due to the

fact that trials were executed using the same feature data viaVM “snapshots” – literal byte-level

copies of the systems being tested. Once an object was instantiated, given the same information

under nearly identical conditions, it performed identically with the exception of minor (< 10ms)

timing differences.

In summary, it is possible for both anHMM and anANN to identify faults by generating

an ordered list of potential root causes. However, using Baum-Welch and Naïve Bayes,

respectively, did not produce particularly precise results, and their computational resource

utilisation is higher than expected. Also, as expected, theHMM approach outperforms the

simpleANN in a number of trials.

Figure 5.1: FDF v1.0 - Time Taken. Time-Taken
represents the number of “ElapsedTicks” converted
to milliseconds (ms) between when a fault is de-
tected and the return of an ordered list of potential
root causes. The ANN took less time than the
HMM to produce an ordered list of fault hypotheses.
Shortened times allow for a wider range of recovery
solutions making them more desirable. Both values
grow linearly per the amount of data being provided.

Figure 5.2: FDF v1.0 - Confidence. Confidence
conveys how likely the FDF’s suspect a given lead
is associated with the correct root cause of the de-
tected fault. Converse to the amount of time taken,
the HMM produced much higher confidence values
than the ANN. This is a result that was unexpected
because of the way that the Baum-Welch algorithm
calculates probabilities.

The time needed to train eachFDF and how likely each a feature is believed to be the correct

root cause can be seen in the time-taken and confidence graphs, respectively (Figures5.1, 5.2).

Time-taken is a metric designed to provide a high-level understanding of the computational

106 CHAPTER 5. RESULTS & DISCUSSION

resources required to obtain a result. It also directly relates to what constraints may exist

relevant for forecasting feature behaviours. Longer time-taken implies a greater required lead-in

time between when the fault is suspected to be manifesting and when a solution is implemented.

Being able to detect manifestations of faults through forecasting allows for a shift from a

reactive to proactive set of solutions, a related topic for future study.

In every case, theHMM required more time to provide a list of potential root causes than the

ANN. These results are as expected as theANN implementation is intentionally simplistic by

comparison to theHMM. It also sets a baseline with averages between less than 1 second and

4.5 seconds for the diagnosis of faults.

Confidence values are a probabilistic measure of a feature’s behaviour given some number of

previously observed states. How this occurs is covered earlier in the thesis (see Section1.4),

but ultimately the value represents the inverse likelihood of an observed feature behaviour. This

is evaluated by comparing the state of a feature in a faulty configuration when compared to a

series of configurations that passed their respectiveSLOs. The less likely the change to occur,

the higher the confidence value.

The difference between theANN and HMM approaches is immediately obvious in terms

of confidence. HMMs always return the most unlikely feature change in the sampled data

as a value near 100%. This is an unexpected result, and as described in Section4.5.1,

make comparisons between Baum-Welch and other learning algorithms less conclusive than

is desired.

Ideally, the results should show a gradual increase such that reinforcement gains can be tracked

and then compared. This is observed in bothANNs and laterRBMs producing expected

results. As expected,ANNs in this experiment do not show a particularly fast or high valued

reinforcement.

Interestingly, the type of fault impacted the degree of confidence. When the fault is introduced

into the system viaDFI, the ANN predicted the problem with greater confidence. Upon

further investigation an interesting property is made evident when usingACCs: Controlled

stops of systems touch multiple dependencies typically producing a larger number of correctly

identifiable features.

In contrast, direct observation reveals a smaller number of noticeable feature changes underDFI

conditions. Eventually, dependent features change under these circumstances but they seem to

take longer to occur. The net result is thatACCsprovide a greater number of leads for eachFDF

to investigate. This has some impact on precision as the evaluation criteria for these experiments

5.3. RESULTS 107

are focused on identifying a single feature (Figure5.5).

Since all changes associated with the fault are equally weighted, diagnosingACC generated

faults is more challenging. Often several leads have the same confidence values and thus same

fault position. Regardless, when attempting to ascertain the root cause theHMM is still able to

identify the correct feature more often than theANN. This is seen readily in the fault position

results, and attributed to the more sophisticated Baum-Welch learning algorithm.

Figure 5.3: FDF v1.0 - Fault Position. The
average position of a correct root cause as re-
turned by the FDF is represented in this graph.
As the lists are ordered by descending prob-
ability, lower values are better. The averages
from the experiments show that the HMM out-
performs the ANN in nearly every test. Ad-
ditionally, fault position improvement is much
slower with the ANN.

Figure 5.4: FDF v1.0 - Total Leads. FDFs
generate leads when a fault is detected. This
graph represents the average total number of
suspect features (i.e. ‘leads’) at 5-point sample
intervals. The FDF using HMMs is able to
generate more leads than the one using ANNs,
however more leads is not always better. The
ideal result is a list containing only the features
that are associated with the cause of the fault.

Fault position is a human validated metric based on knowing the cause of the fault,a priori, and

monitoring the effects of either aDFI or ACC (Figure5.3). It illustrates theFDFs’ prediction of

the correct root cause and is the primary metric for evaluating the precision and accuracy of the

FDFs. Accuracy and precision metrics are directly related to how close the selected root cause

is to the first index of the list . The lower the fault position value (i.e. index), the more correct

the diagnosis made by theFDF. Again, theHMM regularly outperforms itsANN counterpart

by frequently placing the correct root cause nearer to its 0th index. This is the expected result

based on the sophistication of the learning algorithms between these two primitives.

Converse to fault position, total leads is an autonomously generated metric that represents the

total number of fault hypothesises generated by theFDF. Total leads is used to understand how

many potential avenues for investigation are generated at the time of fault detection (Figure5.4).

This allows for an understanding of the performance of theFDF, and what correlated factors

108 CHAPTER 5. RESULTS & DISCUSSION

may exist with other metrics, such as time-taken or precision. By understanding the reduction

from the total number of features we start to understand the gains created by using theFDFs

during fault identification.

Anecdotal evidence suggests that human administrators would find a singular or even three to

five potential avenues feasible for use. However, list sizes with the correct fault ranging between

12 to 30 in the tests were not uncommon for both theANN andHMM trials. Although this is

an improvement over the 7,500 initial features, there is clearly room for improvement.

Additionally, the correct fault must be present otherwise the list size is not a useful measure-

ment. In this experiment the correct feature is identified in most trials, however that may be

more an artefact of the investigatory logic than the behaviour of the stochastic primitives.

In both theHMM andANN basedFDFs, changes in a feature’s behaviour alone are not enough

to trigger an addition to the list of leads. The changes must cross a certain threshold before they

can be forecasted accurately and then evaluated as either expected or unexpected behaviours.

This is where differences in the learning algorithms are most obvious.

TheHMM is capable of setting a dynamic threshold for feature behaviours, whereas theANN

uses a statically assigned 80% value. The net result is that theHMM generates more leads when

compared to theANN. Although more leads can indicate greater sensitivity in detecting faults,

higher values in this instance are not always better. In a perfect scenario only the exact root

cause(s) are provided.

As mentioned,FDFsusingHMMs are more likely to select the correct root cause thanANNs.

Although selecting the correct root cause is a clear indicator of theHMMs performance as being

more desirable than theANN, the generation of larger numbers of leads is perhaps not. This is

seen most readily when faults are not correctly positioned within the list via theHMM.

Direct observation revealed that when this happens theHMM has often weighed multiple

correct root causes together. These are features often within the sameWMI class related to

some dependency or service associated with the fault. When confidence values are the same,

the list uses a second-order sort by feature name, alphabetically. Weighing two or more fault

hypothesises identically but forcing the correct feature artificially down the list then impacts

precision and related metrics. This is a topic sometimes addressed through feature locality [31],

a topic discussed further in the following subsection.

For example, when theIIS web services are disabled using theACC approach, four properties

are returned that are all correctly associated with the change. The correct lead is labelled with

anS (i.e. state), but because these properties are equally weighted and some are labelled with

5.3. RESULTS 109

values closer toA thenS, it pushes the correct lead further down the list.

One improvement might be to associate the root attributes – the data listed in theWMI path

between the root classes and end features – of a lead and then list properties in a hierarchy. This

would allow the root cause to be diagnosed as a subset of a specific feature and may lead to

greater precision in future approaches. Unfortunately this is something that wasn’t considered

at inception. For consistently, this approach is kept throughout.

Figure 5.5: FDF v1.0 - Precision. HMMs pro-
vide more precise results initially, but eventually
trade with ANNs. This is significant in that nei-
ther approach is particularly precise, but as more
information is added, the HMM appears to drop in
precision. This result correlates with more leads
being generated, and some second ordering issues.

Figure 5.6: FDF v1.0 - F-Measure.The F-Measure
represents the overall performance of the learning
algorithms in relation to both Baum-Welch (HMM),
and Naïve Bayes (ANN) in terms of precision whilst
accounting for outliers. Due to the way the trials
were executed, similar results were obtained in each
examination.

Precision describes the relative position of the correct leads within the ordered list with respect

to the total leads generated by theFDF (Figure 5.5). Having only leads that are correctly

associated with the fault shows higher precision, as does having localised groups of correct

leads. To achieve the latter, a measurement by hand is performed since evaluation of the same

feature instance is not supported natively in theFDFs.

TheHMM categorises most leads with a greater degree of precision than theANN. However,

as the number of samples increases this position reverses itself and theANN shows greater

precision than theHMM.

The expected result is that the number of root causes suspected by each respective approach

increases in number with the number of total samples. Based on the observed data it would

appear that this metric actually peaks at about half of the total number of samples. The

110 CHAPTER 5. RESULTS & DISCUSSION

causal factor as to why this occurs remains unconfirmed, but it is suspected to be related to

the aforementioned second ordering problem combined with increased list size.

Another theory is that infrequent changes in features essentially start an examination process.

This means that although there may be 30 samples of data collected overall, perhaps only 5

exist for a specific feature. Without smaller amounts of information features are more difficult

predict – a problem that is exacerbated if information is expired prematurely due to a small

maximum configuration sample size.

It would be worth exploring a larger sample size of systems’ configurations to see if either

FDFs’ precision values continue to peak at 15 samples, or if there is a trend towards1
2x, where

x is the number of samples theFDF has access to when the fault is detected.

To test whether or not the value of 15 has a special importance, the window size would need to

be modified such that the median was substantially larger or smaller than 15. Doing this would

necessitate an entirely new set of experiments that would not be directly comparable with these

results – hence why they were not immediately explored. However, exploring this property is

looking to be more necessary to optimally explore the capabilities ofRBMs.

The f-measure, which in this instance is represented similarly to the precision metric, takes into

account outliers and subsets of the sampled data by examining the number of relevant leads

versus relevant leads detected by theFDF (Figure5.6). The results are similar between both

the f-measure and precision as there are few outliers. In fact, there is only one series of trials in

which a correct fault hypothesis is not generated by anFDF. However, even in that instance the

fault is detected.

The performance of theHMM exceeds that of theANN in many of the trials performed.

The most notable exception is seen in stability of ordering and generating fault hypothesises.

Although results appear deterministic, between trials the fault indexes of root causes can shift.

– the contributing factors of which are previously discussed.

The secondFDFexperiment attempts to build on the baseline established in the prior experiment

and demonstrate improvements using as many similar conditions as possible. This includes

volume of data, polling interval, feature selection, and numerous other properties.

In summary, using anRBM to detect faults comes with the costs of higher time-taken, notice-

able variability within the fault index results, and, ideally, larger training sets but ultimately

demonstrates some positive results. Although it does not outperform the previous experiment

in all cases, it does in later trials and it shows potential for more advanced behaviours.

5.3. RESULTS 111

In the RBM trials, the number of training sets is identical to the number used in the previous

experiment. However, this volume of data represents only half of the ideal amount needed by

the RBM. This is because full training of theRBM normally cannot start until the maximum

sample size is reached. This is due to a restriction on the dimensions of the input data. Despite

this, results are competitive in a number of cases.

Figure 5.7: FDF v2.0 - Time Taken. A switch
from greedy to lazy data ingest caused an expected
increased time-based performance metrics. This is
because all of the calculations for training the RBMs
was performed once a fault was detected versus after
every collection sample.

Figure 5.8: FDF v2.0 - Confidence.The gradual
increase in confidence values via the CDL appears
to be more robust than previous approaches. Rather
than a relative value being given or steep increases,
a gradual pattern emerges as more data is fed into
the FDF.

The RBM requires more time to complete its training and evaluation tasks than the prior

approach (Figure5.7). This is expected to be due to the fact that this version of theFDFdoes not

pre-compute the vectors before a fault is detected. Additionally, the increase in time per minutes

of sampled data appears to be associated with the number ofRBMs generated during fault

identification. The more primitives generated, the more time is necessary to examine potential

leads. Performing all of the calculations at a single time provides an advantage, however, in that

overhead during the operation of theRBM-basedFDF is heavily reduced.

Confidence is markedly improved under theRBM conditions (Figure:5.8). By comparing

the evidence between this [19], previous [18], and other experiments [28], improvements are

believed to be due to the feedback mechanism used when training the primitive. Rather than

returning a relative value, gradual reinforcement is illustrated as more data is fed into the

primitive. This is both a desired and expected result, and one that appears to be produced

with more predictability than in the previous approach.

There exists some variance in both the time-taken and confidence metrics. Using the resources

112 CHAPTER 5. RESULTS & DISCUSSION

Figure 5.9: FDF v2.0 - Time Taken - RBMs -
Variance. The computational time to generate leads
using RBMs remained largely predictable. The
greater the number of features identified for initial
investigation, the more time required to complete the
calculations. Variance occurred due to the number
of leads needing to be investigated. Note: HMM and
ANN trials are not included. See Page 105.

Figure 5.10: FDF v2.0 - Confidence - RBMs -
Variance. Confidence values generally display lit-
tle variance. The learning rate of CDL operated
as predicted in nearly all cases with one notable
exception where the number of features produced
by the fault injecting were smaller than previous
trials. Investigation into the cause of this yielded
inconclusive results.

provided to theVM it takes an average of about 12 seconds to parse all 30 samples in each

iteration. This value can vary depending on the volume of data collected, and how many leads

being investigated. Each lead will require a newRBM to be generated. As more data is added

a wider range of variance is observed – and in some cases, certain tests produce more variance

in results (Figure5.9). In the latter case, Red,∗-like markers indicate a near outlier, whilst Red

o symbols indicate a far outlier. These are observed values that were 1.5 or 3 times the median

distance between the upper and lower quartiles, respectively.

Near outliers for time-taken are heavily associated with one specific test – those related to

causing faults in Window’s disk services. A larger number of changes were produced in the

faulty configuration which in turn increased the number ofRBMsneeding to be trained. In two

cases this value is just inside the delimiter between an outlier and standard range data. This

same test had similar results for confidence, fault-position, and accuracy which can also be seen

in subsequent results.

An opposite trend in variance is observed in the confidence values as seen in time-taken (Figure

5.10). With more data comes less variance, and seemingly more accurate predictions (Figures

5.14, 5.16). This observation comes from cross referencing the variance in confidence with the

5.3. RESULTS 113

average fault index (Figure5.11), and the variance in the fault indices (Figure5.13).

In the majority of cases theRBM is able to consistently produce a lower index for the corret root

cause than previous approaches (Figure5.11). When using 30 configuration samples theHMM

is able to identify a correct feature slightly more accurately than theRBM with an average

fault position of 0.83 versus 0.838, respectively. The gradient of each of these approaches

suggests that theHMM could continue to outpace theRBM and further research is required

before drawing stronger conclusions.

Figure 5.11: FDF v2.0 - Fault Position.The aver-
age fault position when using the RBM appears to be
competitive and often outperform other approaches.

Figure 5.12: FDF v2.0 - Total Leads. The total
avenues for investigation are much higher when a
lazy data ingest is used.

The RBM produced a higher number of leads than the two previous approaches (Figure

5.12). By switching from greedy to lazy evaluation, changes in the system’s configuration are

accounted for all at once when a fault is detected. This poses challenges in terms of discerning

which leads are more or less correct. The result seems to be near linear growth over time for the

total number of features that need to be evaluated. These values provide supporting evidence

for the increases in the time-taken data (Figures5.7, 5.9, 5.22).

In the original series of trials there were often more than 250 total leads. However, during

a separate trial for measuring variance fewer total leads were returned. An investigation into

the cause revealed deprecated functionality ofWMI and migration of certainAPIs caused by

installing security patches between trials1. It showed that the same number of features were

being sampled, but a higher than expected number of 0 values were being returned.

Interestingly, total leads does not seem to influence the accuracy of theRBM negatively (Figures

1https://technet.microsoft.com/en-us/library/Hh831568.aspx

114 CHAPTER 5. RESULTS & DISCUSSION

5.14, 5.16). Based on direct evaluations of the average correct fault position, a correct lead is

given more precisely and more accurately than previous approaches.

Figure 5.13: FDF v2.0 - Fault Position - RBMs -
Variance. This graphs shows results of an identical
feature being selected between trials. Normally,
the first related feature to the root cause is selected
from the list by a test administrator. In this case,
only the original feature is selected to help illustrate
variance. This helps provide an understanding of
how the RBM makes suggestions. At 20 minutes
all correct features are categorised within the top 10
leads.

Figure 5.14: FDF v2.0 - Accuracy - RBMs - Vari-
ance.The accuracy of the RBM approach increases
whilst variance decreases with the exception of dif-
ferences between 25 and 30 minutes. The reason for
this is not fully confirmed. An initial investigation
showed maintenance tasks being executed by the
operating system at regular intervals set for every
30 minutes. This may create additional features for
investigation and account for differences in the 30
minute trials.

Variance in theRBM’s fault position output seems to be at least partly associated with how

the RBMs are instantiated (Figure5.13). A random seed is used to help build weights and

biases within each neuron of theRBM. This value dictates the initial state of the neuron, and

consequently the paths for each output are somewhat different if these are adjusted. Since

the object are constructed upon fault detection, differentRBMs exist between different trials.

This seems the most likely explanation for the higher rates of non-deterministic output seen in

previous trials.

Both the fault position and accuracy values show strong results compared to those in the

previous experiment. A majority of fault indices appear to be lower, particularly after the 20

minute mark, as well as the previously described increase in accuracy. Still, there is room for

improvement.

As mentioned, the idealFDFwill return a list of fault hypotheses that consists of only correctly

5.3. RESULTS 115

associated leads to the detected fault. For continuity, this experiment continues operate on

the assumption there is a single feature being returned indicating the absolute root cause of

a fault. This continues to be a less than ideal measure as it is often the case that multiple

features can be correctly abstracted as part of the diagnosis. With the randomisation of the

RBMs, however, some variance occurs in which feature is placed making this an arguably more

noticeable phenomenon in slight increases in fault index (Figure5.15). It seems that accuracy

is improved over other approaches despite this (Figure5.16) with fewer false positives being

present overall in the results.

Figure 5.15: FDF v2.0 - Precision.Precision of the
RBMs show a marked improvement on previous ex-
periments, however some ramp up time is necessary.
Averages of results show a marked improvement
between the 20 and 25 minute marks and a stronger
trend than prior approaches.

Figure 5.16: FDF v2.0 - Accuracy. RBMs show
an improvement in accuracy over other primitives.
Initial values start out low, but higher than other
approaches. They continue to show steady improve-
ment with the possibility of meeting the accuracy of
the HMM.

A couple of outliers are present in the results and this is directly observable in the variance

graphs for precision and f-measure (Figures5.17, 5.18). In trials where fewer numbers of leads

were returned, precision seemed to increase. The fact that the correct root causes are still listed,

might imply that leads are sometimes harder to rule out than they are to confirm as fault sources.

However, this claim would need further testing to be substantiated.

The overall range of values produced in the trials for theRBMs modest improvements. There

are a couple of tests where it took longer for the precision metrics to increase than expected.

Direct observation of those tests revealed ambiguity in the results of certain experiments, where

a feature or series of features appeared to be missing from the data collection tables. This

seems to imply a problem exists at the data gathering stage viaWMI versus theRBM’s learning

capabilities.

116 CHAPTER 5. RESULTS & DISCUSSION

A sharp increase in desirable performance metrics and observed traits in multiple graphs after

20 samples. A longer running test seems to be necessary to understand the limitations of the

experiments that have been performed. Unfortunately, it was assumed that 30 minutes would

be sufficient, where as it seems it is perhaps not.

Figure 5.17: FDF v2.0 - Precision - RBMs -
Variance. Precision tends to increase as more data
samples are used. This coincides with previous
observations at around 20 minutes where greater
increases start to take hold.

Figure 5.18: FDF v2.0 - F-Measure - RBMs -
Variance. A number of minor outliers occurred
during the course of these experiments. Some tests
provided a larger number of features to examine than
were expected, and variance in fault index had an
impact on results.

5.3.2 UBL

UBL’s results show that aSOM can be used in some situations to forecast feature behaviours

accurately far enough into the future to take corrective action before a fault fully manifests –

notably when the fault manifests slowly in non-noisy datasets. However, noise and limitations

on the amount of data that can be observed before convergence and a forced re-instantiation

make this approach arguably less effective than alternative approaches. Evaluation ofUBL

is based upon a comparison between the results via theSOM and two unsupervised learning

schemes:PCAandκ-NN.

Detailed results from theUBL experiment can be found in the original publication [28], but

relevant results are summarised here for convenience. The majority of results associated with

the UBL approach are presented in graph form using the aforementionedROC curves and

their associated bar charts. These graphs describe the fault prediction accuracy ofUBL via

5.3. RESULTS 117

true positive rateandfalse positive rateperformance metrics using theSOM, PCA, andκ-NN

(Figure5.19).

AT =
Nt p

Nt p +Nf n
(5.1)

AF =
Nf p

Nf p +Ntn
(5.2)

Figure 5.19: Prediction Accuracy Formulas: UBL

4.1: True Positive Rate
4.2:False Positive Rate

Furthermore,UBL consistently provides two sets of results for eachROC curve – a non-

smoothed series and 5 point moving average smoothed series. These datasets are labelled

as UBL-NS andUBL-5PtS, respectively. The graphs demonstrate supporting evidence for

several advancements in unsupervised fault detection as evident by suite and application. These

results are described in terms ofaccuracy, lead time, and the effects smoothing has on fault

identification.

In low noise datasets (MemLeak, CPULeak) with RUBiS, UBL claims a high rate of true

positives – up to 97%. This is contrasted with the slightly noisier dataset produced by NetHog

with an 87% true positive rate. Notably, the higher accuracy in the former is attributed by the

authors as being due to the gradual nature of the fault’s instantiation. Faster occurring faults are

claimed to be less likely to be detected under all three algorithms.

Smoothing in theMemLeakis also attributed as being beneficial to the true positive rates in the

test – a claim of up to 20% greater true positive rates than without. When the dataset’s results are

modified in this way, they are more likely to remove outliers associated with what the authors

describe as “transient noise”. The gradual manifestation of the fault then supports a higher

true positive rate since it is less likely that data associated with the correct fault hypothesis is

removed.

Test results using IBM’sSystem Sreturn the most successful results. A true positive rate of

98% is achieved on average, with individual tests such asCPUHog achieving 93%. False

positive rates for these tests are reported to be as low as 0.5%. High true positive rates are again

associated with their longer instantiation times, including another testing tool calledBottleneck

118 CHAPTER 5. RESULTS & DISCUSSION

which manifests quickly producing lower success rates. A skew in the dataset is noted in that

less noise is associated with howSystem Sreturns its sensor data.

It is here that smoothing is described as not being particularly helpful and that the associated

benefit from its inclusion is directly related to the volume of noise involved. That is to say, when

the observed information frequently peaks and troughs between minimum and maximum values

it is less likely to be predicted correctly – a problem that is possibly exacerbated when you

normalise values. Additionally, as smoothing can remove critical points of data, it sometimes

helps to increase the false positive rate – as seen in this instance. Regardless, the best results for

Bottleneckare when smoothing is not used.

TheHadoopresults are divided in terms of the best true positive rates betweenMemLeakand

CPUHog. As both of these tests cause faults to instantiate rapidly, and since theHadoopdatasets

are the noisiest, results from these tests show the highest false positive rates. Again, smoothing

is attributed to the removal of some critical points of inference, as noted when the authors use

both 5 and 50 point smoothing to try and achieve better results under this specific set of tests.

Unfortunately, true and false positive rates are not directly provided in the text, and instead are

inferred through manual calculation (as described in Section5.4).

The most important results fromUBL are arguably thelead timesit produces. One critical

difference betweenUBL and theFDFs is that the former focuses on a proactive solution to

anomalies. To successfully complete self-healing operations,UBL must be able to recognise a

pre-fault state and recommend a recovery strategy before the fault fully manifests.

UBL claims an average of 38 to 40 seconds oflead timefor theCPULeaktest under RUBiS;

for Memleak, the results average only 7 seconds. This variation in results is explained due

to variation in the ‘background noise system’ influencing the input data, but arguably such

circumstances can be expected under normal operating conditions. Similar results are observed

under theSystem Stests – 47 seconds of lead time, on average, forMemLeak, but as few as 3

seconds forCPUHogand 5 forBottleneck. Hadoopresults are similar still, with 24 seconds of

lead timefor MemLeak, and 3 forCPUHog, respectively.

A summary of the lead times generated byUBL is provided for ease of reference: (Table5.1)

How much time is necessary to correct a fault is an open question. Supporting work for

UBL claims a range of 10 to 30 seconds [104]. Objectively, this means that under non-noisy

datasets where faults manifest slowly, theUBL approach is effective at generating a correct

fault hypothesis.

5.4. DISCUSSION 119

Hadoop System S RUBiS
TestingSuite Avg Max Avg Max Avg Max
Bottleneck 5 6
CpuHog 3 4 3 4
CpuLeak 40
MemLeak 24 25 47 50 7 50
NetHog 7 7

Table 5.1: Lead Times: UBL. This chart represents the number of seconds UBL identified a failure
before it reached a terminal threshold; higher values are better. Blank = No Data.

5.4 Discussion

Differences in the approaches of both theUBL and theFDFsmake direct comparison difficult.

This is specifically due to the lack of common tests between theUBL testing suites (see Ta-

ble 4.3), and the lack of detailed, publicly accessible results. To mitigate this issue a common

baseline between each approach is synthesised using similar performance metrics and criteria

whilst also acknowledging their fundamental distinctions.

Data was extracted directly from the original publication via XML contained within theROC

graphics. TheROC curves describeUBL’s results in terms of "fault prediction accuracy" via

the true positive rate and false positive rate metrics (Figure5.19). . Using this information, a

common baseline between each approach is synthesised by extrapolating similar performance

metrics from the raw data in the results from each experiment. All associated data is made

public (AppendixA.1).

There are a number of differences betweenUBL and theFDF approaches both in terms of

the data provided and their fundamental behaviours. In addition to sampling frequency, major

distinctions include: The type and volume of data being sampled, forecasting capabilities, pro-

active versus reactive behaviours, and classification criteria. The resultant data for each of these

studies is thus presented differently.

Using the publicly providedFDFresults forfault position, time taken, precision, confidence, and

total leads, and the various true and false positive rates fromUBL the following performance

metrics are synthesised:precision, prediction time, andfault position. Further metrics are not

generated as some of their fundamental values are missing fromUBL’s public results and were

not obtainable upon enquiry.

Precision data is generated by taking true positive rates fromUBL and theFDFsand averaging

the values of all relevant experiments at identical time intervals.

120 CHAPTER 5. RESULTS & DISCUSSION

Precision - FDFs & UBL

Time (Minutes)

Pr
ec

is
io

n

0

20

40

60

80

100
ANN

HMM

RBM - STD

RBM - ALT

UBL - ALT

30252015105

Figure 5.20: Precision Measurements: UBL & the FDFs.The precision of both FDF approaches
remains low, however the RBM approach shows a promising trend as more data is added. UBL’s
precision drops the more data is added. The first three metrics show results for fault identification where
all features above the correct root cause are considered false positives. The bottom two results (-ALT)
show precision for fault detection.

In the case of theFDFs this means using values for tests that leveraged the same primitives

in 5 minute intervals. Each interval represents a sixth of the total results. Similarly, theUBL

data uses both the NS and 5-PtS datasets to generate the precision data points at intervals that

matched a sixth of the volume of data.

The definition of precision is different betweenUBL and theFDFs. UBL determines a true

positive if the selected feature is both correct and returned within a specific time period:

‘ ‘We say the models make a true positive prediction if it raises an anomaly alert

at time t1 and the anomaly indeed happens at time t2-t1 < t2 < t1 + W, where W

denotes the upper- bound of the anomaly pending time”.

Per their original paper,W is decided arbitrarily by Dean,et al, after manual observation of prior

results – see page 6 of the original publication [28]. This is a definition that is incompatible with

theFDFsfor two reasons: It is based on fault detection and not identification, and it emphasises

forecasting within a specific time period rather than accuracy in diagnosis.

Because theFDFsretroactively investigateSLO violations, a direct comparison using identical

definitions of true positives is not possible. Instead, using the earlier started goal of automating

the root cause analysis, we can assume a similar comparison by returning a true positive if the

5.4. DISCUSSION 121

root cause is correctly identified within the first 10 leads. This condition has been chosen based

on an anecdotal assumption that an engineer looking for a root cause would be willing to look

through such a list.

For reasons of comparison, Figure5.20shows two sets of data. The first three metrics show

the traditional definition ofprecision: Nt p / (Nt p +Nf p), where aNf p is, as stated, the number

of features listed above the correct root cause of a fault –i.e. the fault position. The latter

two metrics in Figure5.20describe when a fault is correctly identified within an arbitrary time

bracket (UBL - ALT), and when a fault is correctly identified within the top 10 features once

the fault hypotheses are ordered (RBM - ALT).

RBMs show continued improvement overtime when compare to other approaches – a situation

that could be explained by possible over-training. As more data is received by the primitives

and learned, their sensitivity to new information is reduced, but they do not converge or lose

precision asUBL seems to.

A lack of sensitivity is more evident in situations where learned information is not expired.

UBL lists a known convergence problem after too many learning updates to theSOM – this

effectively limits the maximum operating time of this approach, a problem the authors work-

around by using forced reinstantiation and training of theSOMat periodic intervals. Conversely,

theFDFexperiments use a rolling window of information to make inferences from as specified

at run-time by a user. This value is derived via the the polling frequency (in milliseconds) and

total number of samples to keep. Although both experiments incur degradation,UBL’s appears

to be much more rapid – however the variability in theRBM data makes it difficult to be certain

in all cases.

Using true positive rates demonstrates that if the correct solution is discovered, in many

instances multiple potential faults are also provided. InUBL, neurons ‘vote’ between possible

root causes, whilst theFDFs use confidence values based on prediction likelihood. Both

experiments then order their respective fault hypotheses. Arguably, both experiments can

be seen as basic recommendation engines with solutions being ordered or weighted in some

fashion. By understanding where the correct fault is within these engines – either by weight or

by position – a demonstrable type of effectiveness is provided for each approach (Figure5.21).

The fault position of the correct root cause is evaluated against the total number of recommen-

dations (Figure5.21). The lower the value, the sooner the engine selects the correct root cause.

FDFs using ANNs are the most consistent technique when examined via this performance

metric, exclusively, but this level of performance is eventually matched by bothRBM andHMM

given a sufficient volume of data.

122 CHAPTER 5. RESULTS & DISCUSSION

Fault Position - FDFs & UBL

Time (Minutes)

0

1

2

3

4

5
UBL

ANN

HMM

RBM

30252015105

Fa
ul

t P
os

iti
on

 (l
ow

er
 is

 b
et

te
r)

Figure 5.21: Average Position of Faults Based on Approach: UBL & the FDFs.UBL and the FDFs
prioritise potential sources of faults. Correct recommendations are represented as an average of all tests
based on primitive type. Lower values signify better recommendations.

Accuracy in predictions is often directly related to resource availability. The balance between

how fast an application returns a result and its level of accuracy is paramount. Fault position

is therefore contrasted with resource utilisation by examining the total amount of time a

framework took to indicate the source of a fault – collectively referred to asprediction time.

Prediction time is based on the total number of milliseconds from when a fault was first

suspected and when the results – an ordered or weighted list of fault hypotheses – are fully

produced by the primitive(s).

In instances where greedy algorithms are used the amount of time it takes to predict a fault is

fairly static. This is an expected result as the systems in question process the same amount of

data in the same fashion at regular intervals. However, theFDF using a lazy implementation

with RBMs shows a varying amount of time to process information (Figure5.22).

UBL reportedly takes a static 490ms per minute of data gathered to update theSOM before

generating a prediction. Using this value the total amount of time per sample is plotted out in

minutes to match the interval results of theFDFs. TheFDFsinitially followed the same pattern

asUBL – although due to the complexity differences of their respective learning algorithms

they execute much faster. The one exception being thatCDL requires nearly the same amount

of time as theSOM to update its neurons – despite the former’s lack of continuous data ingest.

Implementation plays a role in the evaluation of time-based performance metrics. The two

5.4. DISCUSSION 123

Time-Taken - FDFs & UBL

Time (Minutes)

Ti
m

e
(m

s)

0

3000

6000

9000

12000

15000
HMM

ANN

UBL

RBM

30252015105

Figure 5.22: Time Taken Performance Metrics: UBL & the FDFs. The UBL experiment does not
post timing data but instead reports performance as a function of total samples. Additionally, training
times are also reported to last until each neuron has been updated 10 times making variance a possibility.
This information is not given in the original study by Dean, et al [1]. The FDF experiments do provide
timing data with greater variances being confirmed when switching from a greedy to a lazy ingest.

primitives in the firstFDF experiment leveraged a greedy implementation using a windowed

collection of datasets. This means that once a minute all primitives are discarded and retrained

– an action requiring 50% of the totalCPU activity on theVM for about 15 seconds. By

processing this data upfront the system is able to return results relatively quickly – between

500ms and 4,500ms depending on the size of the dataset being parsed.

However, the impact to each system’s performance is clearly a disadvantage.UBL’s linear

training and fast prediction times illustrate an effective approach for determining errant feature

behaviours within 2,450ms and 14,700ms (Figures5.1, 5.22) ± 2.5ms. AsUBL’s primary goal

is to proactively predict anomalies this time is particularly important. Faults that are identified

quickly enough could ideally be addressed before fully manifesting. This is a fundamental

difference from theFDF approaches which emphasise reactive behaviour by updating future

iterations ofVMs.

RBMsin theFDFapproach compare similarly toUBL time-wise when predicting the root cause

of a fault. A substantial increase in time is noted between the twoFDFs– the latter, again, based

on a lazy implementation for data ingest. This accounts for both the increase and difference

between the processing times for the same volume of data in the otherFDFexperiments. Times

range from ~1,250ms to ~14,250ms depending on the number of samples provided to theFDF.

124 CHAPTER 5. RESULTS & DISCUSSION

Direct observation shows that prediction times plateau once the maximum number of samples

is reached – in this case 30.

Prediction time shares a relationship with training time. If the majority of training comes before

the prediction takes place, then the prediction time is reduced. Notably, training time for the

primitives varies based on a number of characteristics including required epochs, neurons per

primitive, volume of data, type of data, and of course which learning algorithm is being utilised.

Of the two instances where lazy algorithms are implemented training times appear to be similar.

Neuron count totals 1,024 and ~7,200 in theSOM and variousFDF approaches, respectively.

Primitives incorporating these neurons require up to 6,000 training epochs forUBL, and 5,000

per primitive whenRBMs are in place. In otherFDF instances training periods use as few as 5

epochs per primitive. Naturally, depending upon which learning algorithm is in place, the time

for completing training in a primitive varies. Clearly different learning algorithms have different

rates of success, but their overall effectiveness is also bounded by resource constraints. Given a

greater number of resources – such as memory and clock cycles – the accuracy of the predictions

increases, but only to a point. However, in the vast majority of the examined cases it is possible

to generate and select an accurate fault hypothesis using stochastic primitives.

A shift from reactive to predictive measures is currently underway within unsupervised fault

detection for self-healing systems. Specific attributes can be correctly associated with a fault

using abnormal variations in either performance metrics or raw frequency analysis of feature

changes. However, there is room for improvement in these approaches – particularly in noisy

datasets, feature locality, and distributed learning.

Other approaches in the reactive space may yield better results under the ephemeral compu-

tational model of cloud computing. Allowing systems to fail has some benefits in resolving

deterministic fault loops – the first steps have been taken, between generating an accurate list

of potential root causes [7, 18, 19, 20, 28], and the ability to synthesise new, valid systems

configurations [27]. Not all results meet with their respective expectations. Due to the volume

of data, theFDFsare expected to take longer to find a solution thanUBL. Instead, the time

values are similar but the accuracy values are not. Two important inferences are gained from

this observation.

Firstly, accuracy and resource utilisation seem to share a relationship in theFDF experiments.

By increasing the number of training epochs it may be possible to achieve greater accuracy –

using both markers could produce a way to cross reference efficiency in future approaches.

Secondly, by comparing the precision (Figure5.20) and fault position (Figure5.21) per-

5.4. DISCUSSION 125

formance metrics, it is evident that theRBM approach demonstrates fewer false positives

than UBL. This is excellent news for environments seeking to reduce type I errors, but the

computational costs of usingRBMs could benefit from optimisation. Additionally, other types

of primitives may yield stronger results – a topic for further exploration.

Training periods are necessary for both theFDFandUBL approaches before operating. Whilst

an improvement over prior research in their ability to use unlabelled data, the existence of these

requirements represent a fundamental problem: How to balance instantiating a framework that

can accurately detect faults and reducing the initial training period. Several problems have

emerged in trying to balance these two factors. However, there may be a solution to this problem

using an evolutionary approach.

SLOsand performance tests provide measures of a system’s health, whilst offering a way to

administer a system from a higher administrative level. This is one of the primary goals of

self-managing and self-adaptive systems research [2, 1]. In each of the aforementioned studies,

progress in this area is apparent. However, not allSLOsare created equal. During normal use

variance needs to be accounted for whilst preserving contextual validity. TheFDFsaccomplish

this using a windowed approach, but this approach is notably absent inUBL.

In each experiment the use of presumed or verified datasets help classify sampled information.

TheFDFs’ use of performance tests to determine the general health for the system allows for

faster training, but does not take into account individual feature changes until after a fault is

detected. This makes feature locality more difficult to determine in its current form – a critical

step in subsequent phases of research.

Similarly, UBL uses a vetted series of inputs to resolve a number of factors associated with

SOM instantiation and training. However, it requires several stop-gap procedures to operate

such as the periodic re-instantiation and retraining of theSOM. Periodically interrupting service

availability is unacceptable in practical implementations, and rebuilding theSOM comes with

a long training delay effectively causing built-in outages toUBL’s self-healing capabilities.

Additionally, the use of a static training mechanism is, arguably, a potential source of problems

for dynamic fault detection,a priori.

The use of a layered approach towards classification is one of the primary differences between

the FDFsandUBL. The UBL study ignores so-called ‘constant’ metrics – those values that

change very infrequently – in favour of minimising resource usage. However, theFDF ap-

proaches do exactly the opposite: They reinforce non-changing attributes as nominal behaviours

and use this information to update confidence values when changes occur and only when

necessary. This is an important distinction at multiple levels – noise can be normal, a fact

126 CHAPTER 5. RESULTS & DISCUSSION

entirely ignored byUBL. By attempting to mitigate such factors, much of the information is

irreparably lost, and arguably, more likely to induce errors.

Conversely, not having to write independent policies is one advantage thatUBL has over other

approaches: No policies need to be written explicitly outlining the purpose of the machine.

Normalising all values and providing a static minimum and maximum allows for autonomous

evaluation of the system regardless of role. This means faster provisioning but, again, less

targeted behavioural adjustments after instantiation.

UBL also analyses some self-healing aspects that are beyond the scope of theFDFs – such

as comparing centralised versus localised training of primitives by exporting information to a

training VM. The goal of delegating the training of the primitive is to try and centralise the

re-population of theSOM, but doing so requires all training and corrective actions to complete

before said fault fully manifests. This needs to be accomplished within the lead time generated

by UBL, and, unfortunately, the time to transfer data to and from a trainingVM plus its

subsequent implementation often exceeds the lead time that is generated by theSOM.

Acquiring information regardingUBL was not easy. Without being able to instantiate the

experiment locally, much work went into dissecting and understanding the exact operation of

the system as reported publicly. Inconsistencies occasionally showed up in this exploration, and

the result was a limited dataset for comparison. As there were few other experiments at the time

to compare against, this left few options for validating the approach. Conversely, this particular

style of observation and the use of stochastic primitives in this fashion are gaining popularity.

6CHAPTER SIX

CONCLUSION

This chapter provides a summary of the lessons learned, future research, and conclusions from

the aforementioned experiments. In brief, the use of stochastic primitives such asANNs,

HMMs, andRBMsprovide valid, accurate approaches for generating fault hypotheses but there

is room for improvement in a number of areas.

6.1 Findings

This thesis provides and meets several major claims. The first and most relevant of these is

that by building an application that uses a combination of unsupervised learning, stochastic

primitives, and performance tests, the root cause of a fault within virtual machines can

accurately be identified by comparing a system’s observed and predicted feature behaviours.

A root cause of a fault can be heuristically obtained by generating values that represent the

likelihood of observed changes and cross referenced them in configuration samples that have

passed their respectiveSLOs.

This has been shown in a number of the results, but primarily in the fault index figures. Reducing

the number of potential leads to less than 10 occurred frequently, but with optimal results usually

occurring after 20 minutes of testing. Variance in output has been accounted for and although

decreases in variance occur overtime, returning the correct fault position more consistently is

an area for improvement – particularly in trials using less than 20 minutes of observed data.

Beyond 20 minutes, an improvement between approaches is demonstrated.

127

128 CHAPTER 6. CONCLUSION

A baseline has been established for the performance of three different primitives using two

similar approaches. This has allowed for some comparison between performance of imple-

mentations, and provided minor insight into an expectation for evaluating performance against

human subjects tests.

The implementation of various self-healing systems has been discussed based on computing

environment, learning algorithm, and management style. Although no concrete results can

been drawn it appears that contextual use does play a part in the development of self-healing

approaches and methodologies. Terminology in this area has also been briefly explored; despite

attempts by others to do this already [9], it could use a refresh, This is particularly true for

self-configuring versus self-provisioning systems.

Some automation in fault identification has been demonstrated using unsupervised learning. It

remains to be seen whether or not an approach like this will reduce costs, however autonomy

over supervised approaches appears to be at least partially demonstrated. The identification

of the root cause occurs without ever having seen a prior case which is further toward the

definition of autonomous systems management [4, 105]. Additionally, the use of performance

tests successfully emulated high level management of systems viaSLOs. This approach was

rudimentary, however, and an engine that generates these tests into code could provide a useful

measure of automated in the future.

Differences between application crashes and controlled stops were analysed with results show-

ing clear differences in impact to fault identification in some circumstances. Often, it appeared

that crashes were marginally easier to identify if detected within 60 seconds of manifestation.

Understanding the full impact of this observation remains unresolved, however.

6.2 Lessons

These achievements did not come trivially. There are a number of hurdles that have been

overcome during these experiments. This includes the in-depth examination of related studies,

discovering and overcoming technical limitations and constraints within a number of operating

systems and environments, and superficially exploring multiple disciplines that border and

relate to the study of self-healing systems. In addition to the scientific research gained from

these experiments, a certain level of understanding in processes and form have been ascertained

along with a number of lessons.

Root causes may be detected differently based on how faults are instantiated.In the

6.2. LESSONS 129

initial outline of this thesis, it was assumed that faults stemming from the same root cause but

instantiated differently may produce different results. This thesis explored this idea by injecting

two different types of faults:ACCs, andDFIs. The latter is similar to the traditional approach

of other experiments, with the exception of how quickly they are instantiated, whilst the former

is more akin to user error.

The combination of these two properties made for interesting results. It’s clear that user errors

sometimes produce more of a footprint to gather information from. Preliminary data shows that

self-healing systems are more likely to detectACCstype issues, but the accuracy of determining

the root cause is lower. This is a finding believed to be unique to this study.

The speed at which the faults manifest in this study makes their detection harder to

mitigate than other approaches. Although no recovery strategy is explicitly implemented

by theFDFs, the detection capabilities need to be more precise than other approaches. Where-

as other self-healing systems gradually evaluate behavioural and performance data against hard

SLOs, the FDFs need to dynamically adjust their expectations and capture a result in much

shorter time spans. Comparatively, tests between other systems would run for 30 times longer

than those run in the experiments mentioned in this thesis – and in fewer iterations.

The nearest metrics seen to theFDFsin this respect came fromUBL. They ran their experiment

“30 to 40 times” for each of 6 tests – where as this experiment ran 30 times for each of 6 tests

for the aforementioned two types of faults, 3 times. In total about 10,800 tests have been run so

far in this respect and catalogued.

Performance tests with stochastic primitives works as a preliminary policy-engine. The ability

to easily specify boundaries for desirable behaviour in a system is not something that has been

accomplished universally. In order to interlock with the planned future adoption of Evolutionary

Programming techniques, this experiment uniquely chose to implement performance tests as

used inGAs.

This has come out with a successful result in terms of being able to specify utility-policies at a

high-level to the system and have them understood by theFDF frameworks, however it could

be improved. Due to resource constraints hard limits on development of the policy-engine had

to be put in place. There are improvements that can and should happen in this area so that

specialist knowledge isn’t required to continue to develop operational “fitness” policies, and so

that the tests are extensible and more easily reusable between systems.

Stochastic primitives can be used to accurately identify potential root causes of faults but

not immediately. This has been tested under multiple conditions – including primitive type

130 CHAPTER 6. CONCLUSION

(ANNs, HMMs, RBMs, SOMs), learning algorithm (Naïve Bayes, Baum-Welch,CDL), and

volume of information (between 5 and 30 samples). In addition, preliminary work has been

done to extend these studies for usingGSNs– a new type of stochastic primitive that revisits

back-propagation style learning – and multi-point forecasting.

Findings so far indicate improvements after 20 minutes, but it remains untested if the number

of epochs could be increased to improve this sooner or if another primitive might be more

successful than theRBM. Additionally, updated learning algorithms are not readily available

and this area remains largely unexplored.

Drift between systems’ configurations can impact results, and it is hard to minimise.Un-

derstanding how to resume tests using the same information, run these tests in parallel without

impacting a hypervisor, accounting for the amount of time between tests, and reinitialising

variables precisely in a way that excludes chances for accidental faults in configuration is a

non-trivial task. This did not occur perfectly during the initial tests and sometimes they had to

be redone in batches – a frustrating but educational experience.

In the end, a schema had to be developed along with a reading, parsing, and strongly typed

verification mechanism for storing to and from the file system. This was combined with careful

instantiation ofVMs on a hypervisor to use separate but identical hardware via system snapshots

whilst capturing data by hand – a requirement to validate and look for false negatives. By

definition, theFDFsare incapable of understanding when a fault has not been correctly detected.

Using non-simulated data provides an edge and keeps results relevant.In at least one other

experiment outmoded data was used to test self-healing behaviours [28]. This was something

of a motivation factor in calling out unfit tests, and galvanised the already made decision to use

live information for evaluating theFDFs.

Although no samples were provided by a third party or agency, queries via common tools such

as cURL and HPING3 were leveraged to generate input for the systems under test. This at least

kept the protocols within the correct decade and provided a reasonable level of certainty to the

results as these are standard tools of the trade – at least for the moment.

Self-healing systems continue to specialise based on contextual usage and future evalua-

tions should take account of this. In the initial survey of self-healing systems frameworks

it became apparent that some technologies are more likely to be implemented under certain

conditions. This was most notable in areas where risk and trust were factors – such as ownership

of a system in ad-hoc management styles and computing environments [86].

In these cases certain priorities may arise in the development and evaluation of a self-healing

6.3. FUTURE WORK 131

system. A more extensive set of evaluation criteria may need to be designed such that systems

can be examined under the requirement of specific roles. This would also help to understand

and correlate the behaviours of these systems with their respective uses.

6.3 Future Work

Self-healing systems research continues to face a number of open problems with major areas of

emphasis including feature locality and the dynamic generation of recovery strategies.

Even in the tests within this thesis that tried to use single points of origin for failures, multiple

factors become obvious after the fact. To understand the root cause of a problem, it is clear that a

collection of behaviours must be observed and understood of any single feature. Thus, iterating

over a singular point – although useful – will not be enough for professional implementations.

Studies in feature locality are progressing but studies exploring links between the relationships

of feature behaviour have not been produced using stochastic primitives. One approach might

be to generate hypergraphs of associated features based on their likelihood to change within a

certain time interval and then watch for behaviours in those subsets. This could conceivably

be done using a similar approach as to the one listed here however it is expected to be

computationally costly.

Understanding costs in general for stochastic primitives is not an area that has been greatly

explored. A large amount of research remains for the base of such approaches – including how

learning algorithms operate, and how to minimise problems such as the accumulation of errors

when forecasting. These are not issues specific to self-healing systems, but they are dependency

points which should be examined.

In a related context, a number of new primitives and optimisations have been produced. This

includes optimisations to backprop viaGSNs, and exploration into building fully recurrent

neural networks. There appears to be a race between stacking (i.e. layering) primitives such

asRBMs and developing new technologies. The results of this are impossible to predict, but

the training costs of fully recurrent primitives appear to be the largest stumbling block. If

not solved, it may be the case that the goal of ‘networked learning’ will be achieved through

the former approach – something which is already claimed to be achievable via mathematical

proof [14].

When this thesis was first started there were no known experiments in using unsupervised

learning and stochastic primitives to make predictions based on feature changes to identify

132 CHAPTER 6. CONCLUSION

faults. Within two years, three studies were produced including the two primary experiments

in this thesis [18, 19, 28] that explored fault identification under these or similar conditions.

Additionally new studies usingRBMs and feature prediction began to appear in fields outside

of self-healing systems – including computer security and psychology – that focused on

vulnerability detection [103] and consumer purchasing habits [106], respectively. It’s too early

to say if the approach is gaining popularity, but a cursory look shows a number of new studies

in 2015 have also started to emerge.

As expected, no human subjects tests exist within self-healing systems. The lack of opportunity

for these tests – including the collection of suitable subjects, participation from eligible agen-

cies, and the approval of such studies – make for difficulties in achieving this goal. However,

progress in this area would allow for definitive responses to questions about effectiveness.

It seems that a divide in research is occurring based on the environments under which self-

healing systems operate. As systems become smaller and less integrated into large data centres,

reliance is being moved toward the client for certain properties and responsibilities – and

for sensor data. Few studies exist on these emerging business models and how they impact

decisions on self-managing systems. Basic observations include data integrity problems being

mitigated by shifting toward specialised, centralised infrastructures – effectively removing such

concerns from client hardware. Additionally, risk to the availability of the service and data

integrity appears to be a strong factor as to how much autonomy a system displays. In several

cases, the highest risks seem to also be linked with the highest levels of agency [107].

Finally, tying together a fault source recommendation engine with evolutionary techniques is

one of the goals of this thesis. It is the intent of the author to explore this further by making a

recommendation engine using the aforementioned techniques to guide the automatic synthesis

of new, valid configurations for systems once a fault is detected.

This research has demonstrated that stochastic primitives can be used to to accurately generate

fault hypotheses based on feature behaviours. Also, how to prioritise and model information

within stochastic primitives to exhibit specific behaviours within a system, what learning algo-

rithms are most efficient under which circumstances, and what correlations can be discovered,

if any, between multiple feature changes to correctly identify the source of a fault remain open

areas for exploration. Exploration into feature locality is of particular interest as it may represent

a more precise approach to reasoning the source of a fault. These topics – if explored – would

build a stronger foundation upon which to establish new self-healing technologies.

AAPPENDIX A

APPENDIX-A

A.1 UBL Results

Results sampleed from UBL, along with the latest FDF source code and a subset of results, can

be acquired at the following web-resource:http://bit.ly/1oGBX67.

133

REFERENCES

[1] J. O. Kephart, “Autonomic computing: The first decade,” inInternational Conference

on Autonomic Computing, (Karlsruhe, Germany), pp. 1–56, ACM SIGARCH/USENIX,

2011. New York, NY.

[2] P. Horn, “Autonomic computing: IBM’s perspective on the state of information technol-

ogy.,” 2001.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”Computer, vol. 36,

Issue: 1, pp. 41–50, 2003.

[4] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing era,”IBM

Systems Journal, vol. 42 , Issue: 1, pp. 5–18, 2003.

[5] J. O. Kephart, “Research challenges of autonomic computing,” (New York, NY), pp. 15–

22, ACM, 2005. St. Louis, MO, USA.

[6] J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective on autonomic

computing policies,” (Yorktown Heights, NY, USA), pp. 3–12, IEEE Computer Society,

June 2004. Washington, DC, USA.

[7] C. Schneider, A. Barker, and S. Dobson, “A survey of self-healing systems frameworks,”

in Software Practice and Experience, Wiley, 2013.

[8] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon,

F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic communications,”

ACM Transactions on Autonomous and Adaptive Systems, vol. 1, pp. 223–259, 2006.

[9] G. D. Rodosek, K. Geihs, H. Schmeck, and S. Burkhard, “Self-healing systems: Foun-

dations and challenges,” inSelf-Healing and Self-Adaptive Systems, Dagstuhl Seminar

Proceedings Series, (Dagstuhl, Germany), Schloß Dagstuhl - Leibniz-Zentrum fuer

Informatik, Germany, 2009.

135

136 REFERENCES

[10] M. Tauber, G. Kirby, and A. Dearle, “Autonomic management of maintenance scheduling

in chord,”CoRR, vol. abs/1006.1578, pp. 1–11, 2010.

[11] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes, “An approach to ad hoc cloud

computing,”ArXiv.org, 2010. http://arxiv.org/pdf/1002.4738.pdf.

[12] deeplearning.net, “Restricted boltzmann machines.”

http://deeplearning.net/tutorial/rbm.html, December 2014. Last Accessed: 17-

June-2015.

[13] M. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning,” 2002. De-

partment of Computer Science, University of Toronto.

[14] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” in

Neural Computation, 2006.

[15] J. Hare, “C/.net little pitfalls: Stopwatch ticks are not timespan ticks.” Blog Entry,

January 2012. http://geekswithblogs.net/BlackRabbitCoder/archive/2012/01/12/c.net-

little-pitfalls-stopwatch-ticks-are-not-timespan-ticks.aspx.

[16] Z. Ghahramani, “Unsupervised learning,” inGatsby Computational Neuroscience Unit,

University College London, UK, 2004.

[17] C. Schneider,Autonomic Techniques for Systems Management. Sixth International

Workshop on Self-Organizing Systems (IWSOS), Delft, The Netherlands, March 2012.

[18] C. Schneider, A. Barker, and S. Dobson, “Autonomous fault detection in self-healing

systems: Comparing hidden markov models and artificial neural networks,” inProceed-

ings of International Workshop on Adaptive Self-tuning Computing Systems, ADAPT

’14, (New York, NY, USA), pp. 24:24–24:31, ACM, 2014.

[19] C. Schneider, A. Barker, and S. Dobson, “Autonomous fault detection in self-healing sys-

tems using restricted boltzmann machines,” in11th IEEE International Conference and

Workshops on the Engineering of Autonomic Autonomous Systems, (Laurel, Maryland),

IEEE Computer Society, IEEE, 2014. Submitted 15 May 2014, Accepted 12 August

2014.

[20] C. Schneider, A. Barker, and S. Dobson, “Evaluating unsupervised fault detection in

self-healing systems using stochastic primitives,”EAI Endorsed Transactions on Self-

Adaptive Systems, vol. 15, January 2015. doi 10.4108 sas1.1.e3.

REFERENCES 137

[21] J. Kramer and J. Magee, “Self-managed systems: an architectural challenge,” inFuture

of Software Engineering (FOSE ’07), (Washington, DC, USA), pp. 259 – 268, IEEE

Computer Society, 2007. Minneapolis, MN.

[22] H. Psaier and S. Dustdar, “A survey on self-healing systems: approaches and systems,”

Computing, vol. 91, Issue: 1, pp. 43–73, 2010.

[23] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, “Self-healing systems -

survey and synthesis,”Decision Support Systems, vol. 42, pp. 2164–2185, January 2007.

[24] B. Pernici, “Self-healing systems and web services: The ws-diamond approach,” inBusi-

ness Process Management Workshops, vol. 17 ofLecture Notes in Business Information

Processing, pp. 440–442, Springer Berlin Heidelberg, 2009.

[25] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm,”IEEE Transactions on Information Theory, vol. 13, pp. 260–269,

April 1967.

[26] A. J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K. McKinley, “Applying genetic

algorithms to decision making in autonomic computing systems,” inProceedings of the

6th international conference on Autonomic computing, ICAC ’09, (New York, NY, USA),

pp. 97–106, ACM, 2009.

[27] A. J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K. Mckinley, “Plato: a genetic al-

gorithm approach to run-time reconfiguration in autonomic computing systems,”Cluster

Computing, vol. 14, pp. 229–244, September.

[28] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior learning for predicting

performance anomalies in virtualized cloud systems,” inProceedings of the 9th interna-

tional conference on Autonomic computing, ICAC ’12, (New York, NY, USA), pp. 181–

190, ACM, 2012.

[29] L. Prodan, G. Tempesti, D. Mange, and A. Stauffer, “Embryonics: artificial stem cells,”

in In: Proc. of ALife VIII, pp. 101–105, Cambridge, MA, USA: MIT Press, 2002.

[30] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature locality: Can we leverage

history to avoid failures during reconfiguration?,” inProceedings of the 8th Workshop

on Assurances for Self-adaptive Systems, ASAS ‘11, (New York, NY, USA), pp. 24–33,

ACM, 2011. Szeged, Hungary.

[31] B. Garvin, M. Cohen, and M. Dwyer, “Failure avoidance in configurable systems through

feature locality,” vol. 7740, pp. 266–296, 2013.

138 REFERENCES

[32] C. Schuler, R. Weber, H. Schuldt, and H. j. Schek, “Scalable peer-to-peer process man-

agement - the osiris approach,” inIn: Proceedings of the 2nd International Conference

on Web Services (ICWS ’2004), (San Diego, CA), pp. 26–34, IEEE Computer Society,

2004. Washington DC, USA.

[33] I. Stoica, R. Morris, D. Karger, and M. F. Kaashoek, “Chord: A scalable peer-to-peer

lookup service for internet,” inProceedings of the ACM SIGCOMM ’01 Conference,

(San Diego, CA), pp. 1–12, ACM, 2001. New York, NY.

[34] N. Stojnic and H. Schuldt, “Osiris-sr: A safety ring for self-healing distributed composite

service execution,” inSoftware Engineering for Adaptive and Self-Managing Systems

(SEAMS), 2012 ICSE Workshop on, (Zürich, Switzerland), pp. 21–26, ACM, 2012. New

York, NY.

[35] H. Naccache, G. Gannod, and K. Gary, “A self-healing web server using differentiated

services,” inService-Oriented Computing - ICSOC 2006, vol. 4294 ofLecture Notes in

Computer Science, pp. 203–214, Springer Berlin / Heidelberg, 2006.

[36] D. Miorandi, I. Carreras, E. Altman, L. Yamamoto, and I. Chlamtac, “Bio-inspired

approaches for autonomic pervasive computing systems,” inBio-Inspired Computing and

Communication, vol. 5151, pp. 217–228, Springer Berlin, 2008.

[37] D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic models for self-healing dis-

tributed services,” inBioinspired Models of Network, Information, and Computing Sys-

tems, vol. 39 ofLecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pp. 152–166, Springer Berlin Heidelberg, 2010.

[38] D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “Sassy: A framework for self-

architecting service-oriented systems,”Software, IEEE, vol. 28, no. 6, pp. 78–85, 2011.

[39] R. Calinescu, “General-purpose autonomic computing,” inAutonomic Computing and

Networking, pp. 3–30, Springer US, 2009.

[40] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research chal-

lenges,”ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 14:1–14:42, May 2009.

[41] D. D. Clark, C. Partidge, J. C. Ramming, and J. T. Wroclawski, “A knowledge plane

for the iternet,” inProceeding of the 2003 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, SIGCOMM 03, (New York,

NY, USA), pp. 3–10, ACM, 2003. doi: 10.1145 - 863955.863957.

REFERENCES 139

[42] S. Russell and P. Norvig,Artificial Intelligence: A Modern Approach. 2nd Edition.

Prentice Hall, 2003.

[43] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, “Self-managing

systems: A control theory foundation,”Engineering of Computer-Based Systems, vol. 23,

pp. 2213–2222, 2005.

[44] M. Brodie, S. Ma, G. Lohman, T. Syeda, L. Mahmood, N. Mignet, Modani, M. Wilding,

J. Champlin, and P. Sohn, “Quickly finding known software problems via automated

symptom matching.,” (Washington, DC, USA), pp. 101–110, IEEE Computer Society,

2005. Seattle, WA.

[45] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot-a technique

for cheap recovery,” vol. 6, (Berkeley, CA, USA), p. 3, USENIX Association, 2004. San

Francisco, CA.

[46] D. E. Irwin, L. E. Grit, and J. Chase, “Balancing risk and reward in market-based task

scheduling,” (Honolulu, HI), pp. 160–169, IEEE Proceedings 2004, 2004. Washington,

DC, USA.

[47] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E. Walsh, “Cooperative nego-

tiation in autonomic systems using incremental utility elicitation,” (San Francisco, CA,

USA), pp. 89–97, Morgan Kaufmann Publishers Inc., 2003. Aalborg, Denmark.

[48] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat, “Opus: an overlay

peer utility service.,” inIn Proceedings of the 5th International Conference on Open

Architectures and Network Programming (OPENARCH), (New York, NY), pp. 167 –

178, IEEE Communications, 2002. Atlanta, GA. USA.

[49] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in autonomic

systems,” inProceedings of the First International Conference on Autonomic Computing,

(Washington, DC, USA), pp. 70–77, IEEE Computer Society, 2004. New York, NY,

USA.

[50] J. Pearl,Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann, 1988.

[51] G. Casella and E. George, “Explaining the gibbs sampler,”The American Statistician,

vol. 46, no. 3, pp. 167–174, 1992.

140 REFERENCES

[52] A. Fischer and C. Igel, “An introduction to restricted boltzmann machines,” inProgress

in Pattern Recognition, Image Analysis, Computer Vision, and Applications, vol. 7441 of

Lecture Notes in Computer Science, pp. 14–36, Springer Berlin Heidelberg, 2012.

[53] O. Tibermacine, C. Tibermacine, and F. Cherif, “A process to identify relevant substitutes

for healing failed ws-* orchestrations,”Journal of Systems and Software, 2015. Elsevier.

[54] E. U. Warriach, T. Ozcelebi, and J. J. Lukkien, “Self-* properties in smart environments:

Requirements and performance metrics,” inWorkshop Proceedings of the 10th Interna-

tional Conference on Intelligent Environments, p. 194, IOS Press, 2014.

[55] Q. Shen, J. Cao, and H. Gu, “A similarity network based behavior anomaly detection

model for computer systems,” inComputational Science and Engineering (CSE), 2014

IEEE 17th International Conference on, pp. 1738–1745, IEEE, 2014.

[56] M. Minksey and S. Papert,An Introductions to Computational Geometry. MIT Press,

1969. ISBN 0-262-63022-2.

[57] R. R. Schaller, “Moore’s law: Past, present, and future,”IEEE Spectr., vol. 34, pp. 52–59,

June 1997. DOI 10.1109 6.591665.

[58] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos, “System engineering and

computer science department coppe/ufrj, technical report es,” Tech. Rep. 05, 2005.

[59] B. Kitchenham, “Procedures for undertaking systematic reviews,” tech. rep., Keele

University and National ICT Australia Ltd., 2004.

[60] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

“Systematic literature reviews in software engineering - a systematic literature review,”

Inf. Softw. Technol., pp. 7–15, 2009. Newton, MA, USA.

[61] B. Kitchenham, T. Dybaß, and M. Jørgensen, “Evidence-based software engineering,”

in roceedings of the 26th International Conference on Software Engineering (ICSEŠ04),

(Washington DC, USA), IEEE Computer Society, 2004.

[62] Y. Bengio, E. Thibodeau-Laufer, and J. Yosinski, “Deep generative stochastic networks

trainable by backprop,” inProceedings of the Thirty-one International Conference on

Machine Learning (ICML’14), Springer, 2014.

[63] L. Rilling, “Vigne: Towards a self-healing grid operating system,” inEuro-Par 2006

Parallel Processing, vol. 4128 of Lecture Notes in Computer Science, pp. 437–447,

Springer Berlin / Heidelberg, 2006.

REFERENCES 141

[64] M. Sloman, “Policy driven management for distributed systems,”Journal of Network and

Systems Management, vol. 2, pp. 333–360, 1994.

[65] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and P. Steenkiste, “Rainbow:

Architecture-based self-adaptation with reusable,” inICAC, (New York, NY, USA),

pp. 276–277, IEEE Computer Society, 2004. New York, NY.

[66] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-adaptation in the

presence of multiple objectives,” inICSE 2006 Workshop on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), (Shanghai, China), pp. 2–8, ACM, 2006.

New York, NY.

[67] J. Simmonds, S. Ben-David, and M. Chechik, “Monitoring and recovery of web service

applications,” inThe Smart Internet, vol. 6400 ofLecture Notes in Computer Science,

pp. 250–288, Berlin, Germany: Springer-Verlag, 2010.

[68] S. Ahmed, S. I. Ahamed, M. Sharmin, and C. S. Hasan, “Self-healing for autonomic

pervasive computing,” inAutonomic Communication, pp. 285–307, Springer US, 2009.

[69] M. Aldinucci, M. Danelutto, G. Zoppi, and P. Kilpatrick, “Advances in autonomic

components and services,” inFrom Grids to Service and Pervasive Computing(T. Priol

and M. Vanneschi, eds.), pp. 3–17, Springer US, 2008.

[70] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola,

“Moses: A framework for qos driven runtime adaptation of service-oriented systems,”

IEEE Transactions on Software Engineering, vol. PP, no. 99, pp. 1–23, 2011.

[71] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behavior monitoring in self-healing

service-oriented systems,” inSocially Enhanced Services Computing, pp. 95–116,

Springer Vienna, 2011.

[72] O. Shehory,A Self-healing Approach to Designing and Deploying Complex, Distributed

and Concurrent Software Systems, vol. 4411 ofLecture Notes in Computer Science,

pp. 3–13. Springer-Verlag, 2007.

[73] G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A self-healing framework for

qos-aware web service composition via case-based reasoning,” inWeb Technologies and

Applications, vol. 7808 ofLecture Notes in Computer Science, pp. 654–661, Springer

Berlin Heidelberg, 2013.

142 REFERENCES

[74] A. Carzaniga, A. Gorla, and M. Pezzè, “Healing web applications through automatic

workarounds,”International Journal on Software Tools for Technology Transfer (STTT),

vol. 10, pp. 493–502, 2008. 10.1007/s10009-008-0088-8.

[75] S. Hassan, D. McSherry, and D. Bustard, “Autonomic self healing and recovery informed

by environment knowledge,”Artificial Intelligence Review, vol. 26, pp. 89–101, 2006.

10.1007/s10462-007-9033-6.

[76] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation

management in p2p networks,” inProceedings of the 12th international conference on

World Wide Web, WWW ‘03, (New York, NY, USA), pp. 640–651, ACM, 2003.

[77] D. M. Chess, “Security in autonomic computing,” vol. 33, 2005.

[78] R. Gustavsson and B. Ståhl, “Self-healing and resilient critical infrastructures,” in

Critical Information Infrastructure Security, vol. 5508 ofLecture Notes in Computer

Science, pp. 84–94, Springer Berlin / Heidelberg, 2009.

[79] L. Baduel and S. Matsuoka, “A decentralized, scalable, and autonomous grid monitoring

system,” inPrinciples of Distributed Systems, vol. 4878 ofLecture Notes in Computer

Science, pp. 1–15, Springer Berlin / Heidelberg, 2007.

[80] J. H. Holland, “Adaptation in natural and artificial systems,”MIT Press, Cambridge, MA.

US., 1992.

[81] A. Metzger, O. Sammodi, and K. Pohl, “Accurate proactive adaptation of service-

oriented systems,” inAssurances for Self-Adaptive Systems(J. Cãmara, R. a. Lemos,

C. Ghezzi, and A. a. Lopes, eds.), vol. 7740 ofLecture Notes in Computer Science,

pp. 240–265, Springer Berlin Heidelberg, 2013.

[82] J. Fernandez-Marquez, G. Di Marzo Serugendo, and S. Montagna, “Bio-core: Bio-

inspired self-organising mechanisms core,” inBio-Inspired Models of Networks, Infor-

mation, and Computing Systems, vol. 103 ofLecture Notes of the Institute for Computer

Sciences, pp. 59–72, Berlin, Germany: Springer Berlin Heidelberg, social informatics

and telecommunications engineering ed., 2012. Social Informatics and Telecommunica-

tions Engineering Volume.

[83] S. Montagna, D. Pianini, and M. Virolio, “Gradient-based self-organisation,” in6th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012),

(Washington DC, USA), pp. 10–14, IEEE Computer Society, 2012. Lyon, France.

REFERENCES 143

[84] J. McCann, R. de Lemos, M. Heubscher, F. O. Rana, and A. Wombacher, “Can self-

managed systems be trusted? some views and trends,”Knowledge Engineering Review,

vol. 21, pp. 239–248, September 2006.

[85] J. McCann and M. Huebscher, “Evaluation issues in autonomic computing,” inGrid and

Cooperatve Computing - GCC 2004 Workshops, vol. 3252, pp. 597–608, Springer Berlin,

2004.

[86] R. de Lemos, “The conflict between self-* capabilities and predictability,” inSelf-star

Properties in Complex Information Systems, vol. 3460 ofLecture Notes in Computer

Science, pp. 218–228, Spinger Berlin Heidelberg, 2005.

[87] H. Gomaa and K. Hashimoto, “Dynamic self-adaptation for distributed service-

oriented transactions,” inSoftware Engineering for Adaptive and Self-Managing Systems

(SEAMS), 2012 ICSE Workshop on, (Zürich, Switzerland), pp. 11–20, ACM, 2012.

Washington, DC, USA.

[88] Y. Engel and O. Etzion, “Towards proactive event-driven computing,” inProceedings

of the 5th ACM international conference on Distributed event-based system, DEBS ’11,

(New York, NY, USA), pp. 125–136, ACM, 2011.

[89] C. Ortega-Sanchez, M. Mange, S. Smith, and A. Tyrrell, “Embryonics: a bio-inspired

cellular architecture with fault-tolerant properties,” inGenetic Programming and Evolv-

able Machines, vol. 1, pp. 187–215, Dordrecht, the Netherlands: Kluwer Academic

Publishers, 2000.

[90] T. Kohonen, “The self-organizing map,”Proceedings of the IEEE, vol. 78, no. 9,

pp. 1464–1480, 1990.

[91] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause diagnosis via co-

analysis,” inProceedings of the 9th international conference on Autonomic computing,

ICAC ’12, (New York, NY, USA), pp. 181–190, ACM, 2012.

[92] Y. Dai, Y. Xiang, and G. Zhang, “Self-healing and hybrid diagnosis in cloud computing,”

in Cloud Computing, vol. 5931 of Lecture Notes in Computer Science, pp. 45–56,

Springer Berlin / Heidelberg, 2009.

[93] P. Snyder, G. Valetto, J. Fernandez-Marquez, and G. di Marzo Serugendo, “Augmenting

the repertoire of design patterns for self-organized software by reverse engineering a

bio-inspired p2p system,” inProceedings of the 6th IEEE International Conference on

144 REFERENCES

Self-Adaptive and Self-Organizing Systems (SASO 2012), (Lyon, France), pp. 199–204,

IEEE Computer Society, September 2012. Washington, DC, USA.

[94] D. M. Chess, V. Kumar, A. Segal, and I. Whalley, “Work in progress: Availability-aware

self-configuration in autonomic systems,” inUtility Computing, vol. 3278 ofLecture

Notes in Computer Science, pp. 257–258, Springer Berlin / Heidelberg, 2004.

[95] I. E. Fellows, “Why (and when and how) contrastive divergence.” ArXiv.org, May 2014.

http://arxiv.org/pdf/1405.0602v1.pdf.

[96] L. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state

markov chains,”The Annals of Mathematical Statistics, vol. 37, no. 6, pp. 1554–63,

1966.

[97] L. Baum and T. Petrie, “An inequality with applications to statistical estimation for

probabilistic functions of markov processes and to a model for ecology,”Bulletin of the

American Mathematical Society, vol. 73, no. 3, pp. 360–3, 1967.

[98] L. Baum and T. Petrie, “A maximization technique occurring in the statistical analysis of

probabilistic functions of markov chains,”The Annals of Mathematical Statistics, vol. 41,

no. 1, pp. 164–71, 1970.

[99] H. Schulz, A. Müller, and S. Behnke, “Investigating convergence of restricted boltzmann

machine learning,” inNIPS 2010 Workshop on Deep Learning and Unsupervised Feature

Learning, 2010.

[100] E. J. Humphrey, J. P. Bello, and Y. LeCun, “Moving beyond feature design: Deep

architectures and automatic feature learning in music informatics,” inISMIR(F. Gouyon,

P. Herrera, L. G. Martins, and M. Müller, eds.), pp. 403–408, FEUP Edições, 2012.

ISBN: 978-972-752-144-9.

[101] A. Kirillov, “Aforge.net framework.” http://www.aforgenet.com/framework/members.html,

2013.

[102] C. R. Souza, “Accord.net framework,” 2013. http://accord-framework.net/.

[103] K. Soska and N. Christin, “Automatically detecting vulnerable websites,” in23rd

USENIX Security Symposium., (San Diego, CA), USENIX, 2014.

[104] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan, “Prepare: Predictive

performance anomaly prevention for virtualized cloud systems,” inICDCS’12, pp. 285–

294, 2012.

REFERENCES 145

[105] A. Keller and M. Brunner, “Self-managing systems and networks,”Journal of Network

and Systems Management, vol. 13, pp. 147–149, 2005. 10.1007/s10922-005-4438-5.

[106] A. Burnap, Y. Ren, H. Lee, R. Gonzalez, and P. Papalambros, “Improving preference pre-

diction accuracy with feature learning,” inProceedings of the ASME 2014 International

Design Engineering Technical Conferences Computers and Information in Engineering

Conference(N. Y. U. S. August 17-20, 2014, ed.), DETC/CIE 2014, ASME, 2014.

[107] G. Brady, R. Sterrit, and G. Wilkie, “An adaptive approach to self-healing in an intelligent

environment,” inProceedings for ADAPTIVE 2014, The Sixth International Conference

on Adaptive and Self-Adaptive Systems and Applications, IARIA, May 2014. ISBN 978

1 61208 341 4.

	Insert from: "cs_thesis_st_andrews_4_aug_2015_EDIT_new declaration page added.pdf"
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Hypothesis & Central Tenets
	Hypothesis
	Central Claims

	Main Contributions
	Definitions
	Published Works
	Organisation

	Background
	Introduction
	Terminology
	Assumptions

	The History of Autonomic Computing
	Self-* Systems
	Self-Healing Systems

	Machine Learning Techniques
	Artificial Neural Networks
	Hidden Markov Models
	Restricted Boltzmann Machines
	Stochastic Primitives

	A Systematic Review of Self-Healing Systems
	Methodology
	Search Process
	Research Questions
	Quality Assessment
	Data Collection & Analysis
	Results

	A Comparison of Self-Healing Systems
	Management Styles
	Computing Environments
	Learning Methodologies

	Synthesis
	Synopsis

	An Automated Approach for Identifying Faults
	Problem Description
	Approach
	Running Example

	Experiments
	 Hidden Markov Models & Artificial Neural Networks
	 Restricted Boltzmann Machines

	Limitations
	Threats to Validity
	Construct
	Internal
	External

	Implementation
	Comparison & Inference
	Baseline Establishment
	UBL - An External Basis for Comparison
	Collection
	Classification
	Learning & Analysis
	Comparison Constraints

	Results & Discussion
	Introduction
	Overview
	Results
	The FDFs
	UBL

	Discussion

	Conclusion
	Findings
	Lessons
	Future Work

	Appendix-A
	UBL Results

	References

