-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by St Andrews Research Repository

USING UNSUPERVISED MACHINE LEARNING FOR
FAULT IDENTIFICATION IN VIRTUAL MACHINES

Chris Schneider

A Thesis Submitted for the Degree of PhD
at the
University of St Andrews

2015

Full metadata for this item is available in
Research@StAndrews:FullText
at:
http:/ /research-repository.st-andrews.ac.uk

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/7327

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

https://core.ac.uk/display/30319647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/7327

Using Unsupervised Machine Learning for
Fault Identification in Virtual Machines

Chris Schneider

This thesis is submitted in partial fulfillment for the degree of
Doctor of Philosophy
at the University of St Andrews

June 2015

Abstract

Self-healing systems promise operating cost reductions in large-scale computing
environments through the automated detection of, and recovery from, faults.
However, at present appears to be little known empirical evidence comparing the
different approaches, or demonstrations that such implementations reduce costs.

This thesis compares previous and current self-healing approaches before demon-
strating a new, unsupervised approach that combines artificial neural networks with
performance tests to perform fault identification in an automated fash@rthe
correct and accurate determination of which computer features are associated with
a given performance test failure.

Several key contributions are made in the course of this research including an
analysis of the different types of self-healing approaches based on their contex-
tual use, a baseline for future comparisons between self-healing frameworks that
use artificial neural networks, and a successful, automated fault identification in

cloud infrastructure, and more specifically virtual machines. This approach uses
three established machine learning techniques: Naive Bayes, Baum-Welch, and
Contrastive Divergence Learning. The latter demonstrates minimisation of human-

interaction beyond previous implementations by producing a list in decreasing

order of likelihood of potential root causese(fault hypotheses) which brings

the state of the art one step closer toward fully self-healing systems.

This thesis also examines the impact of that different types of faults have on their
respective identification. This helps to understand the validity of the data being
presented, and how the field is progressing, whilst examining the differences in
impact to identification between emulated thread crashes and errant user changes —
a contribution believed to be unique to this research.

Lastly, future research avenues and conclusions in automated fault identification
are described along with lessons learned throughout this endeavor. This includes
the progression of artificial neural networks, how learning algorithms are being
developed and understood, and possibilities for automatically generating feature
locality data.

Acknowledgements

This research has been primarily funded by The Scottish Informatics and Computer
Science Alliance (SICSA) and by the University of St Andrews, and made possible
via the generous time and personal investments of other academics. Thanks go to
the following people, in particular:

My supervisors Simon Dobson and Adam Barker, along with Saleem Bhatti and
Graham Kirby — all of whom faculty members of The School of Computer Science

at the University of St Andrews — and my colleagues Ruth Hoffman and Ildik6 Pete

— for their guidance, recommendations, time spent proofing, and their invaluable
feedback.

Brant Moriarity, Larry Yaeger, Mehmet Dalkilic, Luis Rocha, and Marty Siegel
of Indiana University for lessons both academic and social, and their personal
investments in my success.

Matt and Brea Carlson, most recently of Wabash College but also of Indiana
University, for their guidance, encouragement, and recommendations in getting me
started with the academy, and for their continued support.

Susan Hohenberger (Waters) of The Johns Hopkins University for their investment
in my education and furthering my foundational knowledge in computer science.

And, to Jeff House, who taught me to program in his own free time and asked
nothing in return.

Without the involvement and generosity of these individuals and organisations, itis
easy to imagine a life of less success. My fealty, and kindest, deepest thanks to you
all.

1. Candidate’s declarations:

I, Chris Schneider, hereby certify that this thesis, which is approximately 29,000 words in length, has been written by me, and that it
is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree.

| was admitted as a research student in Sep. 2011 and as a candidate for the degree of PhD in [month, year]; the higher study for
which this is a record was carried out in the University of St Andrews between 2011 and 2015.

Date 5 Aug. 2015 signature of candidate

2. Supervisor’'s declaration:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in
the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.

Date 5 Aug. 2015 signature of supervisor

3. Permission for electronic publication: (to be signed by both candidate and supervisor)

In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for
use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the
work not being affected thereby. We also understand that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested below, and that the library has the right to migrate my thesis
into new electronic forms as required to ensure continued access to the thesis. We have obtained any third-party copyright
permissions that may be required in order to allow such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the publication of this thesis:

PRINTED COPY

ELECTRONIC COPY

Date 5 Aug. 2015 signature of candidate signature of supervisor

Please note initial embargoes can be requested for a maximum of five years. An embargo on a thesis submitted to the Faculty of
Science and Medicine is rarely granted for more than two years in the first instance, without good justification. The Library will not
lift an embargo before confirming with the student and supervisor that they do not intend to request a continuation. In the absence
of an agreed response from both student and supervisor, the Head of School will be consulted. Please note that the total period of
an embargo, including a continuation, is not expected to exceed ten years.

Where part of a thesis is to be embargoed, please specify the part and the reason.

For Emma, who always believed.

Thank you.

Confents

List of Figured
ISt of Tables

1 Infroduction!
1.1 Mofivafiof

CONTENTS

BTT SearchRPracéss o i it i it e e e 32
BT7 ResearchQueshibns. 33
BT3 Qualfy Assessment. 34
BTZ4 DafaCollecion & ANalySiS v v v v v e e e e e 34
BTH REesHS o e e e e e e e e e 35

Il CONTENTS

A5 ThrealSToValdily o e e e e 75
AT Consfrutt. e e e e e e 75
B57 nfernal 76
AR3 EXternal. 77

.................................... 99
B2 OVENIEWV o o e e e e e e e e e e e 100
B3 Resulls e e e e 101
B3T ThEFEDHS. o o o e e e e e e e e e e e 103
B37 TBIL. e e e e e e e e 116
B4 _DISCUSSIAN e e e e e e e e e e e 119
b___Conclusiomn 127
BT FINAINGS. o o e e e e e e e e e 127
BZ TESSOMAS. o o o e e e e 128
B3 FEufure Work. e e e e e e e e 131
BppendixX A Appendix=Al 133
BT UBLCRESUB. o o o o o e e s e e e e e e e 133

LIST OF FIGURES

List of Figures

@7 Faulf Defecfion Framework [ogic & Architeciure Diagram using L azy Ingesf]

The EDE Teveraging RBMS operates idenfically To the FDF thaf uses ANNs and

HMM&excepumaJaAngesLmecnamsmiouealme_nenmmdala_Bummves

fed feature behaviours.. . . 71

result 1S an ardered ISt of leads based on forecasl

EFDE v1 0O - Time laken lime-laken rpprpqpmq the number HlﬁpQP(“I(‘RQC

converfed o milliseconds (ms) befween when a faulf 1S defected and the réturn of
an_ordered Tist of pofenfial roof causes The ANN fook Iess fime fhan thel[HMM

f0_ produce_an ordered 1ist of Taulf hypofheses _Shaorfened fimes allow for a wider

improvemenfis much slowerwiththe ANN.. 107

b4

EDEvT O - [ofal |l eads FDES anPrHTP leads when a taulf 1S detected. 1 NniIS gl"aph

tepresents the average fofal number of suspect teafieesTeads’) at b-point

sample infervals _The FDE using HMMS IS able to generate more leads than the
bne using ANNS, however more leads IS nof always hefter_The idealresnlfis a list
Confaining only fhe feaflres that are associated with the cause of the fault.. . 107

b5 FDFE VI (- Precision HVMS provide mare precise resulfs inifially, but eventually

frade with ANNS_This is significant in that neither approach is parficularly precise,

huf as maore information 1s added the HMM appears to drop in precision] This
result correlates with more leads being generated, and some second ordering i3es.

b.b

EDE vl 0 - F-Measure. 1he F-Measure rpnrpqpnm the averall nprmrmanbe of

[(ne learning algonthms 1n relaton 1o both baum-Welch (HMIM) _and Nalve Bayes

[(ANN) in ferms of precision whilst accounfing for oufliers_Due fo the way theltrials
Wwere execufed, similar resulfSwere obfained in each examination.. 109

List of Figures \%

b7 FDE V720 - Time Taken A switch from greedy fo lazy dafa ingest caused an
Expecfed increased fime-based perfarmance mefrics.__This is because all of the
calculafions for fraining the RBMS was performed once a faulf was defected versus
afferevery collection sample.. 111

orthe HMIMI o0 o 115
BT/ EDEVv7 0 -Precision - RBMS - Variance Precision tends fo increase as moreldata

Samples are used.This coincides with previols observafions at around 20Iminutes
Where greaferincreasessfarftofakehold. 116

A List of Figures

BTE EDE V2 (- E-Measire - RBVIS - Varance A NOmber of MInor OUFIers occirred

during the course of these expernmenis__Some tests pravided a larger number of
feaflires fo examine than were expected _and variance in faulf index _had an impact

ETY Predicfion Acciracy Farmilas UBL 4 T Triie Posifive Rafd 7~ False Posifive

b 20 Precision Measuremenis: UBl & the FDES [he Inrpr‘lqmn of both FDE r’-'lp-
proaches remains low__however the RBM approach showsS a promising ttend as
more dafa is added UBICS precision drops the more data is added__The firkt three

meftrics show resulfs for faulf idenfificafion where all features abaove the corréact root

WQMMW&(_&M&MCISIOH
C . 120

veradge =osiion o alllsS _based on Ihl’ﬂﬂ(‘ e S

122

b /27 lime laken Pertormance Metrics: Ubl & the FDES. The UBI pxpprlmpnr does

LIST OF TABLES

P T—Anionomic Compuiing I evels TBM Ccirca 2007 ThiS fable represents the initial

Bufonomic Compufing levels propased by IBM, however a smalladdifion af where

b1l lead limes: UBIl _1NhiS chart FPPFPQF\I’]TQ the number of secands UBI_ideniified a

failure before if reached a ferminal threshold; higher values are beffer. Blank = No
Data.. e 119

vii

GLOSSARY

Adverse Configuration Change (ACC) A configuration change either simulated or real made
by a human administrator that negatively impacts the performance of a computer system.

Artificial Neural Network (ANN) A family of statistical learning models used to estimate or
approximate functions. Artificial neural networks are generally presented as systems
of interconnected "neurons" which send messages to each other. The connections have
numeric weights and biases that can be tuned using a learning algorithm and observations
over time. This allows artificial neural networks to exhibit adaptive behaviours.

Application Programming Interface (API) A set of routines and protocols for interacting
with software applications.

Case-based Reasoning (CBRThe process of solving newly observed problems based on
those which are both similar and have been previously observed.

Contrastive Divergence Learning (CDL) A learning algorithm based on alternating Gibbs
Sampling commonly used to train Restricted Boltzmann Machines.

Central Processing Unit (CPU) Computer circuitry used to carry out instructions of a com-
puter program.

Direct Fault Injection (DFI) A type of fault either simulated or real that is not directly
associated with intended use of a computing program or configuration change. Examples
include unexpected thread termination, unexpected resource constraints such as out of
memory exceptions, and other computing events typically outwith the intended use of
software by a human administrator.

Domain Name Service (DNS)A service that resolves human-readable fully qualified domain
names to internet addressesg. www.google.com —> 173.194.45.48. DNS services
underly much of the basic functionality of the internet.

2 Glossary

Fault Detection Framework (FDF) A computing application used to detect anomalies within
a computing system.

Genetic Algorithm (GA) An heuristic, iterative search algorithm that combines stochastic
generation of new "populations” subsets with fitness tests to dynamically generate new,
stronger outputs.

Generative Stochastic Network (GSN)A type of artificial neural network being pioneered
using revisions to the backward propagation of errors learning algorithm.

Hidden Markov Model (HMM) A statistical model that attempts to forecast behaviours based
on observed information — requires the system being observed to be a Markov process
with unobservedi(e. hidden) states — that is typically paired with the Baum-Welch
learning algorithm.

Infrastructure as a Service (IaaS) A type of internet-based.€. cloud) service that provides
access to hardware and basic, low-level software services. This allows for greater
customisation potential for clients, but also more overhead. See "Software as a Service",
and "Platform as a Service".

Integrated Development Environment (IDE) Any environment used for programming soft-
ware on a computer system.

Internet Information Services (11S) Microsoft branded service used for delivering web-based
content {(e. HTTP, HTTPS) on the internet.

Java Virtual Machine (JVM) A virtual machine used for running Java-based programming
code. It is administrated by the Java Runtime Environment.

Java Runtime Environment (JRE) An environment for instantiating and controlling Java
Virtual Machines.

k-Nearest Neighbour €-NN) A supervised method for building a classification model using
feature data. These models can be used to forecast computer feature behaviours.

Principal Component Analysis (PCA) An eigenvector-based multivariate analysis procedure
that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called principal
components. It is used primarily to reduce the dimensionality of data and determine
principal components of interest.

Peer-to-Peer (P2P)An ad-hoc system of communication, typically between computers.

Platform as a Service (PaaS)A type of internet-based.é. cloud) service that provides access
to a pre-determined platform for end users to interact with typically offering moderately
developed, self-contained services. This allows for less customisation potential than laaS
offerings but also less overhead for use. See "Service as a Service" and "Infrastructure as
a Service".

Quality of Service (QoS) A term to represent the overall performance of a computing service
including availability, reliability, and similar measures.

Restricted Boltzmann Machine (RBM) A type of artificial neural network based on a Boltz-
mann Machine. It typically consists of hidden and observed layers of "neurons”; (see Arti-
ficial Neural Networks). Unlike fully recurrent neural networks, Restricted Boltzmann
Machines do not allow direct cross communication between neurons on their respective
layers.

Receiver Operating Characteristic (ROC) A graphical plot that illustrates the performance
of a binary classifier system as its discrimination threshold is varied. The curve is created
by plotting the true positive rate against the false positive rate at various threshold settings.

Service as a Service (SaaSh type of internet-based.€é. cloud) service that provides access
to a service front-end and minimal infrastructure resources or platform customisation.
This typically offers well developed, self-contained services with little to no customisa-
tion. (See Platform as a Service and Infrastructure as a Service).

Service Level Agreement (SLA)An agreed upon objective — usually between multiple enti-
ties — regarding computing performance.

Service Level Objective (SLO)A policy or other formal, written obligation regarding the
intended minimum performance of a computing system or service.

Self-organising Map (SOM) A type of artificial neural network (ANN) that is trained using
unsupervised learning to produce a low-dimensional representation of an input space.
Self-organizing maps are different from other artificial neural networks in that they use a
combination of neighborhood functions to preserve topological properties of the input.

Scalable Vector Graphic (SVG) A lossless image format that uses vectors to redraw scaled
images upon demand.

Unified Modelling Language (UML) A General purpose modelling language used for de-
scribing the architecture of a software system and sometimes its associated processes.

4 Glossary

Unsupervised Behavioural Learning (UBL) An approach for understanding errant comput-
ing system behaviours using unsupervised learning within a self-organising map.

Virtual Machine (VM) A simulated computing system typically running inside a hypervisor
or larger (sometimes physical) apparatus.

Windows Management Interface (WMI) A proprietary service offered by Microsoft Win-
dows for querying basic feature information.

CHAPTERONE

INTRODUCTION

This thesis focuses on self-healing systems, how they operate, and advances in their respective
detection strategies. It describes exigencies in this area of study and then demonstrates positive
results from two separate experiments using stochastic primitives that leverage unsupervised
learning. Using a combination of unsupervised learning, stochastic primitives, and per-
formance tests, the root cause of a fault in cloud infrastructure i(e. virtual machines)

can accurately be identified by comparing a system’s observed and predicted feature
behaviours.

The increasing complexity of modern computing environments is continuing to produce chal-
lenges in reliable and efficient systems management. Complexity has convoluted administrative
requirements such that the static capabilities of human-based supervision are showing decrease
in their relative effectivenesdl[?, 3, 4]. This is increasing the costs of systems management
whilst simultaneously failing to address longstanding problems—such as issues with change
management, and simple human erkrd]. These issues are particularly evident in multi-tier
architectures where services comprise of several sets of systems with differing responsibilities.

The advent of self-adaptive systems is an approach in addressing the rising complexity require-
ments of systems managemelit §]. These systems address multiple problems within this
space from self-configuration.€. provisioning), self-optimisation, self-protection, and self-
healing. Self-healing systems attempt to classify and analyse sensory data to automate the
detection then mitigation of faults. This in turn reduces the need for systems to interface with
human administrators, which presumably lowers operational costs and, ideally, improves upon
existing mitigation techniques.

6 CHAPTER 1. INTRODUCTION

There are varying degrees of autonomy within self-healing systems. This is largely depen-
dent upon the type of computing environment, management style, and learning algorithms
or primitives used. The latter topic can broadly be summarised as the difference between
reactive versus proactived. supervised and unsupervised) strategies, respectively. Reactive
solutions are constrained to resolving faults only after they have been previously observed,
a fortiori. In order to realise fully self-healing systems, a shift must occur from supervised
to unsupervised learning strategies. Unsupervised strategies allow for this shift by anticipating
faults in circumstances that have not been previously observed and, principally, offer the highest
potential degree of reduction in human intervention. However, the use of such techniques come
with costs — including potentially higher rates of error, and a lack of scrutability for some types
of errors.

Additionally, criteria on the viability of self-healing — or self-adaptive — solutions have not been
agreed upon. The simple fact of the matter is that there is no public information on what types
of behaviours, error rates, or resource utilisations are acceptable for self-healing systems in
production environments. One of the primary goals of this thesis is to encourage adoption of
these techniques in such environments and demonstrate their potential viability.

1.1 Motivation

The realisation of self-healing systems presents a number of potential benefits in large-scale
computing environments including the reduction of operational costs, faster fault mitigation
than existing methodologies, and fewer problems related to complexity — such as human error
in the consistency of systems’ configurations and change control procedliresgwever,

there is presently no public data to support these claims, nor — prior to this work — are there
any known studies that compare one type of self-healing system to another based on either
performance metrics or their intended use. For those works that do exist within this area of
research, their use depends on simulated data or they operate under artificial constraints.

Using stochastic primitives, performance tests, and unsupervised learning in conjunction allows
for the accurate identification of problem areas within an infrastructure without having to train
highly specialised members of staff — an action that is believed to be potentially cost reducing
— whilst also shifting from reactive to proactive fault mitigation. Proactive mitigation promises
faster resolutions than human counterparts, and reduction of down-time compared to reactive
approaches.

Additionally, there are still no known public studies regarding human-subjects in this area.

1.2. HYPOTHESIS & CENTRAL TENETS 7

However, it is anticipated that these types of studies will be more likely to occur once accuracy
and timing expectations having been clearly set — which this thesis helps to establish.

This thesis provides the first known direct comparison of self-healing systems methodologies
(i.e. frameworks) in order to establish a baseline, and it attempts to understand their respective
specialisations in terms of computing environment, preference in primitives and learning
algorithms, and their management styles. It then goes on to describe a novel approach for
identifying the root cause of faults using stochastic primitives and unsupervised learning using
non-simulated data in a fully reproducible manner. Results, code, and associated assets are
provided to the public for the purposes of validation.

1.2 Hypothesis & Central Tenets

The general hypothesis and claims within this thesis are summarised here. Many of these
statements rely upon further explanation or references that are provided later in their respective
chapters.

The central hypothesis is listed here first, with central claims following:

1.2.1 Hypothesis

Using a combination of unsupervised learning, stochastic primitives, and performance
tests, the root cause of a fault within virtual machines can accurately be identified in cloud
infrastructure by comparing a system'’s observed and predicted feature behaviours.

Success is determined if an accurate list sorted by descending order of potential root causes
is correctly returned upon instantiation of a fault with a known root cause in a controlled
computing environment. A list will be accurate overall if it contains the correct root cause

in the top 10 recommendations. Accuracy and precision will be measured by understanding the
relative position of root causes in proximity toward the first position in the ordered list.

Failure is determined upon any result where the root cause of a fault is not immediately and
accurately evident or it is below the top 10 — this includes any failure of the software in question,
or its dependencies.

For constraint reasons at the minimum bound, the smallest dataset sample will be five minutes.
This provides some amount of time for the system to build an expected behavioural profile.

CHAPTER 1. INTRODUCTION

1.2.2 Central Claims

Automated fault detection is important and has the potential to reduce operating costs
and complexity in maintaining large-scale computing environments. This is based on the
assumption that systems within such environments can detect and enact recovery strategies
faster than their human counterparts, and that some environments — particularly auto-
provisioning clouds — are becoming too complex to manage manually.

Using high-level performance tests is necessary to categorise observed data and it emulates
and adheres to existing research within the field of administering systems using ‘policies’
rather than individual technical correctiord.|

This thesis assumes that: 1.) Some faults will not be detected by the framework application
presented in this thesis, and 2.) by definition, itis unknown which faults will not be detected.
For these reasons all of the generated outputs of the services described herein are evaluated
manually to ensure accuracy.

Some faults are not recoverable — such as hardware errors. The types of faults anticipated
in this book are limited to those that are recoverable oBljZerse configurafion changes
[(ACCS) (i.e. human error) andirect faulf injecfions (DEIs)i.e. intentionally crashing a

service or application by corrupting its allocated memory).

Finally, this thesis is limited in scope. It does not attempt to make new research claims or

changes to the state of the art regarding learning algorithms, stochastic primitives, or other,
related areas of study. Although some premises are provided for the selection and use of
the artificial intelligence techniques used in this thesis, operating theories behind learning

algorithms, stochastic primitives, and other topics are not addressed in depth. Likewise,

paradigm matters — such as if the primary focus of self-healing systems should be on fault

tolerance or fault remediation — are intentionally not addressed.

This thesis only focuses on providing a novel approach for the automated determination of
the root cause of a fault under controlled conditions, and attempts to lay the foundation for
further studies in this specific area of study.

1.3 Main Contributions

In summary, this thesis provides the following contributions:

1.4. DEFINITIONS 9

1. A survey of self-healing systems that contrasts computing environments, learning algo-
rithms, and management styles, (Chap&®)

2. A novel approach for self-healing systems that combines unsupervised learning with
stochastic primitives to analyse feature changes in order to accurately generate a descending
ordered list of fault hypotheses, (Chapr

3. Foundational work for comparing fault identification approaches using unlabelled data,
including the first known direct comparison of self-healing systems’ approaches, (Chapter
@, Sectiond-=3and ChapteB) and

4. Results that show a demonstrable improvement in accuracy over existing approaches under
similar conditions (Chaptes).

1.4 Definitions

The majority of terms used within this book are primarily in reference to IBM’s initial
parlance, or those terms provided in Rodosek, et 8kdf-Healing Systems: Foundations and
Challenged<]. Definitions to terms based on these prior works may be occasionally updated
to address current technological trends and research, with such instances being called out wher
appropriate. In some cases new terminology is provided to accent critical areas of research, or
to call out important information — such as the difference between human error leading to faults
(BCCY), and faults caused by unexpected program failUiss).

Definitions of common terms are provided here for ease of reference:

Accuracy How close the measured value is to the actual (true) value. Depending on the context
this is measured by whether or not the correct feature is in the top 10 features returned
in the ordered list of leads, or by measuring all correct cases overall all sampled cases —
(Nep+ Nen) / (Nep+Nen +N+¢ p+- Ngn). Any features ordered higher in the list than one
identified by the test administrator are considered false positives.

Availability Whether or not a computing system is accessildeg-via expected services.

Churn The rate at which computing device membership changes within a computing environ-
ment [10].

Clouds Collections of either real or virtualised computing devices that are centrally managed,
and controlled by a single entity. Devices that exist as part of a cloud are more likely to

10

CHAPTER 1. INTRODUCTION

be configured identically, housed in a data-centre, and operated by a large professional or
academic stafflo, 11].

Confidence A representation of a learning algorithm’s perceived likelihood that a specific

Drift

feature is related to the root cause of the faulte- the probability of unexpected
behaviour of a feature given some number of prior observations.

Note: Confidence value generation depends on the learning algorithm being used. For
Naive Bayes it is a weighted proportion of the previously viewed feature changes up to
the maximum window size +e. 30. For Baum-Welch, an expectation-maximisation
(EM) algorithm is used to find the maximum likelihood of potential behaviours using
all of the observed set of feature inputs — this produces a proportional result with one

value always equaling 100%. Withonirasiive Divergence earning(CIDlgn “energy
function” is used — see Secti@3Band associated literaturg?, 13, 14].

A specialised term used to describe the phenomenon of the potential loss of accuracy
between when a test completes as related to when feature data was last sampled from a
computing system.

ElapsedTicks A programming object used for tracking time in C# that automatically accounts

for differences irceniral processing unif (CPWequencies. This is not to be confused
with “Elapsed Ticks”, which are a similarly named programming object also used in C#

for time calculations, but do not take into account differenceEHi cycles between
computing systems.

ElapsedTicksare used to ensure greater reproducibility — minute differences in machine
configurations and operating systems can impact the results gained from using traditional
timing mechanisms. These differences occur regardless of hardware specification and
can manifest even under identical configurations due to differences in timing frequency
on system bootTH5].

Fault Detection The process of determining when a fault is present.

Fault Identification The process of determining the root cause of a fault, if present.

Fault Position The position of the correct root cause of a fault in a list of fault hypotheses or

“leads”.

Feature(s) Any property — such as a performance metric or configuration value — in a comput-

ing system that details or describes a computing system’s state. Examples include free
disk space, an internet protocol address on a network interface card, a working directory,
or the number of context switches being performed per second.

1.4. DEFINITIONS 11

Grids A voluntary collections of either physical or virtual computing systems that share
resources, and typically consist of multiple, heterogenous configurations. In these
environmentg€hurn— the rate at which membership changes — is expected to be high, and
systems are expected to be managed iadihocfashion. This can translate to computing
environments that do not require professional services to operate, such as those housed ir
a data-centre.

High Availability High availability is defined as having less than 5 minutes of service down-
time in a normal 365 day calendar year or ~99.999% availability; also knowfias “
Nines in industry nomenclature.

Large-scale computing environmentA distributed, possibly world-wide, collection of com-
puters that consists of many different layers of components. This term is kept intentionally
ambiguous to address a plethora of acceptable solutions and conditions and avoid over
specialisation.

Although there are numerous interpretations as to what constitutes a computing environ-
ment the majority of terms applied within this thesis are taken from a single sdiiijce [

Performance Test An human supplied set of logical conditions capable of being discretely
evaluated which indicate whether or not a computing system is operating within expected
and acceptable boundaries (see Service Level Objective(s)). Sometimes discussed in
association witlFitness Testsrhen discussing Genetic Algorithms.

Precision How close the measured values are to each other.

Root-cause AnalysisThe act of determining the source or sources of a particular fault; in this
case the determination of which feature or set of features triggered or contributed to said
fault such that a service-level objective or performance test failed to be met.

Reliability A percentage of time that a computing system operates as expected.

Self-healing SystemsSelf-healing systems are defined as servers — either physical or virtual —
that detect and recover from faults without in an automated fashion without interrupting
the overall usable state of a service where possible; some faults are assumed to be
unavoidably service impacting.

Specifically, self-healing systems are virtual machines that are intended to exist within a
large-scale computing environment under the above definition. These environments are
assumed to host a service requiring high-availability.

Stability How fast a computing system can mitigate faults and return to its original state.

12 CHAPTER 1. INTRODUCTION

Standard Computing Environments (i.e. Traditional computing environments) are defined
as established, non-virtualised and typically legacy computing environments that are
otherwise similar in definition talouds

Stochastic Primitive A special, collective term for computing primitives that leverage a ran-
dom probability distribution or statistical model to forecast and approximate outputs of
a given function. This typically includes Artificial Neural Networks, Hidden Markov
Models, and Restricted Boltzmann Machines.

Supervised Learning The use of labelled data to train a computing primitive to infer a
function. Typically, this is achieved by pairing an expected output with an input.

Time-Taken The total time required ifclapsedTickdetweensenvice-level ohjeciive (SITD)
failure and print out of an ordered list of fault hypotheses to an output screen or terminal

(seeElapsedTicke

Total Leads The total number of fault hypotheses generated by a stochastic primitive at the
time of SO failure. This represents the total number of avenues to be explored by the

Eaulf Defecfion Framework (FDF)

Unsupervised Learning The use of unlabelled data to train a computing primitive to infer
a function. Data is provided to the primitive without reinforcement or an expected
output. This allows the primitive to build representations of the input for later decision
making [16].

1.5 Published Works

This thesis incorporates work that has been previously peer-reviewed, published, and presented:

1. C. Schneider. "Autonomic Techniques for Systems Management” (Poster SeSsxth).
International Workshop on Self-Organizing SystdigSOS) 2012. Delft University of
Technology. Delft, The Netherlands. 15-16 March 2017].[

This work was primarily focused on fault discovery mechanisms in self-healing systems,
and, broadly, discussed what autonomic techniques were currently in place for their subse-
guent self-management. An overview, motivation, and summary of the problem space as it
existed in 2012 were provided along with a preliminary description of the approach to be
taken in subsequent research (ChapieB.

1.5. PUBLISHED WORKS 13

2. C. Schneider, A. Barker, and S. Dobson, "A survey of self-healing systems frameworks", in
Software Practice and Experiendéiley, 2013. [/]

The journal ofSoftware Practice & Experiengaublished the literature survey included in
this book (ChapteB). It provides an overview of the history of the Autonomic Computing
initiative before focusing specifically on self-healing systems and a contextual examination
of their implementations.

3. C. Schneider, A. Barker, and S. Dobson, "Autonomous Fault Detection in Self-healing Sys-
tems: Comparing Hidden Markov Models and Artificial Neural NetworksRiaceedings
of International Workshop on Adaptive Self-tuning Computing Sys#®bsPT ‘14, (New
York, NY, USA), pp. 24:24-24:31, ACM, 2014T1§]

This is the first publication presenting the approach described in this thesis. It incorporates
the design, development, and metrics gathering processes associated with subsequent ex
periments, and provides a baseline for the more complex approach utilised in the following

paper.

4. C. Schneider, A. Barker, and S. Dobson, "Autonomous Fault Detection in Self-healing
Systems using Restricted Boltzmann Machines"11th IEEE International Conference
and Workshops on the Engineering of Autonomic Autonomous Syétamsl, Maryland),
IEEE Computer Society, IEEE, 20149

This paper represents the state of the art as proposed in this thesis for generating fault
hypotheses using stochastic primitives and unsupervised learning in self-healing systems. It
compares results with the previously mentioned approach before laying the foundation for
future work.

5. C. Schneider, A. Barker, and S. Dobson, “Evaluating unsupervised fault detection in self-
healing systems using stochastic primitivdsAlI Endorsed Transactions on Self-Adaptive
Systemsvol. 15, January 2015. DOI:10.4108/sas1.1.B6] |

This is a summary paper published in the jourB#I Endorsed Transactions on Self-
Adaptive Systenthat discusses and contrasts both prior works with an external experiment
that has similar goals. It contributes and provides an approach for practical implementation
and compares performance metrics against a related study in self-healing systems research

14 CHAPTER 1. INTRODUCTION

1.6 Organisation

This thesis is divided into five chapters and one appendix. Chapter 1 introduces self-healing
systems, the motivation and claims discussed herein, and provides an overview of contribu-
tions and structure within this thesis. Chapter 2 summarises prior research by contrasting
the management styles, computing environments, and learning algorithms of existing self-
healing systems before concluding with exigencies in the field, an in-depth motivation, and
an hypothesis. Chapters 3 and 4 describe the approaches used to evaluate the hypothesis,
including theoretical assumptions, technical specifications, and implementation details of the
experiments, and discusses their results, respectively, in chronological order of publication

starting withArificial Nearal Nefworks (ANNSJand Hidden Markov Models (HMM$) then
by Resiricied Balizmann Machines (RBM3J)he final chapter concludes with findings, lessons

learnt, and future avenues of research.

CHAPTERTWO

BACKGROUND

This chapter discusses the history of self-managing systems — chiefly from the context of IBM’s
Autonomic Computing Initiative. The following chapter builds on this information to expand
the motivation provided in chapter one.

2.1 Introduction

Self-healing methodologies are often realised through the use of machine learning techniques
or other aspects in artificial intelligence. They have have been described via architectural

differences ?1], network behavioursd], research area&¥), biological likenessesZ3], and,

most recently, by contrasting their learning algorithms, implementation, and management

styles [/]. These surveys have produced a broad spectrum of knowledge and highlighted notable
advances and exigencies within the field. However, the effectiveness of these solutions and the
commonalities shared between implementations have not yet been fully explored.

This chapter discusses the background of such systems, and helps to lay the foundation for
further exploration in comparing self-healing systems methodologies. It uniquely divides self-
healing behaviours contextually which is based on the idea that not all approaches are created
equal, nor appropriate given the purposes of their implementations.

The type of environment or infrastructure in which self-healing frameworks operate, the self-

healing behaviours or problems expected to be addressed, and their manageability require-
ments or hierarchical needs are critical for understanding self-healing systems research and
methodologies. These factors are categorised herein as computing environments, learning

15

16 CHAPTER 2. BACKGROUND

methodologies, and management styles, respectively. Analysing self-healing frameworks
based on commonly shared use-cases (iers) allows for a comparative understanding of
each methodology, their respective benefits, and their relative human costs. By contrasting
behavioural properties with their expected implementation and level of autonomy, this chapter
provides a greater understanding of which techniques are being leveraged, and under what
circumstances. It also examines correlations between these factors by exploring the type of
self-healing methodologies as related to their expected environment.

2.1.1 Terminology

Although some definitions have been attempted, the terminology used within self-healing
systems is not fully agreed upod, [€]. This has caused confusion when similar or sometimes
identical terms are used under different connotative assumptions. This is particularly evident in
self-healing systems where common goals are shared but approached under different ideologies-
such as self-*, self-managing, mimetic, and evolutionary computing. When this happens
definitions can have unexpected cross referencing problems — such as those between self-
healing, and self-configuring.

Ambiguity in terminology is also a major issue. Self-managing systems—a term broadly
associated with systems that can monitor and adjust their own behaviours—represents a large
area of study. As such, some approaches divide self-managing systems intoetgntBd4's

Self-* approach®, 4]. IBM’s tenets are categorised intelf-healing Self-configuring Self-
protecting andSelf-optimizingoehaviours. Self-healing systems, specifically, are defined as

“... systems [that] discover, diagnose, and react to disruptions. For a system to be
self-healing, it must be able to recover from a failed component by first detecting
and isolating the failed component, taking it off line, fixing or isolating the failed
component, and reintroducing the fixed or replacement component into service
without any apparent application disruptiori4] [p. 8].

However, what constitutes the successful implementation of self-healing systems is much more
equivocal.

In 2003 Ganek and Corbi state.self-healing and self-configuring is the ability to dynamically
insert new pieces of software and remove other pieces of code, without shutting down the
running system.[4] [p. 14]. This definition highlights the ambiguity between the differences
in these tenets, but it also highlights several problems with the definition provided by Ganek

2.1. INTRODUCTION 17

and Corbi: It does not readily address the current trends in technology, that some faults are
unpreventable and will require a system shutdown to mitigate, or that some faults may not be
predictable (but still recoverable).

Technological trends have shaped the way in which self-healing systems are being defined.
The rise of mass virtualisation post 2003 has arguably allowed for large-scale computing
environments to accept the arbitrary shutdown of one system to be replaced by a new, better
configured virtual instance without interruption to live, production services. It is this environ-
ment upon which the theories in this book are largely based. However, these theories are built
with the expectation that if it works in virtual environments, it should also work in physical
environments.

Some faults will not be preventable — such as hardware failures, software corruption, or poor
decisional choices by human agents. In these circumstances a system shutdown may be
unavoidable. Such circumstances should not invalidate the legitimacy of self-healing systems
as an approach.

Some faults are not predictable but are still recoverable. In those instances the success of a self-
healing system should be defined by evaluating its enactment of a self elected course of action—
or recovery strategyA recovery strategy should be at least equivalent to a human counterpart in
terms of mitigating the faults, and ideally implemented in a faster, and yet still accurate fashion.

Under these considerations the latter stipulation — that a system cannot be shut down to address
a fault — is considered to be obsolete. Additionally, because Ganek and Corbi’s definitions do
not address current technological trends, they do not feel well enough defined to be of sufficient
use.

If a self-healing system automatically corrects a fault by changing a program’s feature be-
haviour, is that a form of self-configuration? What if that feature behaviour is adjusted
through a configuration file? The vast majority of self-healing systems experiments leverage
autonomous reconfiguration as a mechanism for addressing faults — either before or after they
happen. Broadly summarised, key approaches consist of local parameter tweaking (including
evolutionary, bio-inspired, and search-based techniques)1p, 24, 10, 25, 26, 27, 28, 29,
behavioural correlation30, 31, 37], contextual weighting of informationi.€. windowing)

[18, 19, 33, B4, P9, BH], self-election of roles based on availability and lo&, [37, 38], and
atomistic reconfiguration — the independent discovery and use of openly exposed rest8ljirces [
Notably, a number of frameworks implement more than one approach — particularly parameter
tweaking which is nearly universal.

18 CHAPTER 2. BACKGROUND

In fact, the changing of a system’s overall state in any self-elected manner — which happens
almost continuously in most systems anyway — provides ambiguity to the term in general. Self-

healing and self-configuring in these respects are, arguably, almost synonymous in definitions
in such cases.

Self-configuration does remain a unique and valid subset of self-management — however, due to
confusion between the defined areas of focus of the aforementioned @hétd¢hooves us

to expand on and clarify the initial definition of self-healing systems. Initially, self-configuring
systems were described in the following manner:

“When hardware and software systems have the ability to define themselves them-
selves ‘on-the fly, they are self-configuring. This aspect of self-managing means
that new features, software, and servers can be dynamically added to the enterprise
infrastructure with no disruption of serviceq4] [p. 8].

In modern parlance, this behaviour is more akirsétf-provisioning- the autonomous instan-
tiation and adoption of a configuration subset (or role) within an infrastructure. Many cloud
computing environments accomplish this behaviour thrqughisioning managers but their
specifics are varied and are outside of the scope of this work.

Self-healing systems are then taken to mean any system leveraging a framework that au-
tonomously detects and then subsequently generates a recovery strategy from said fault — where
possible. Caveats to this definition include the ability to detect faults that are not able to be
mitigated, and that some faults cannot (or occasionally will not) be detected before they occur.
That is to say a system need not detect every potential fault perfectly or risk not being able to
be defined as a self-healing system.

The decision to define self-healing systems in this manner is not arbitrary and is based on prior
work as described in the following Secti@il2 and in Sectiofi“2.

2.1.2 Assumptions

The definition of self-healing systems has been expanded to include behavioural aspects that
are commonly evaluated in modern computing infrastructures. It is no longer acceptable for a
system to simply detect and recover from faults — it must do so transparently, and within certain
performance criteria. As such, some assumptions about how self-healing computing systems
should operate have changed since 2001.

2.1. INTRODUCTION 19

The integration of behavioural aspects has helped to unify business needs with IBM’s original
vision of self-healing systems. By adopting partially self-healing systems into traditional
infrastructures, an evolution of techniques and new self-healing systems methodologies have
emerged. However, not all self-healing methodologies are compatible with existing infrastruc-
tures and the maturity of many of these techniques has not been fully realised. As self-healing
systems methodologies become more mature, less human supervision should be required.

One approach to understanding maturity in a self-healing environment is by evaluating systems
statevia behavioural propertie®[40, 6]. By understanding when and how long a system ex-
ecutes self-healing behaviours, it becomes possible to evaluate self-healing approaches agains
existing implementations. Understanding the effectiveness of self-healing computing systems
against current approaches provides a practical baseline for understanding the advancement o
self-healing systems outside of tAeatonomic Maturity Model

Although there are numerous physical components that make up large-scale computing envi-
ronments, the scope of this thesis primarily emphasises virtual servers as central points of focus.
It is important to note that exigencies can exist outside of this scope, which the server is still
responsible for identifying. Examples of this include network connectivity diagnosis, and being

able to determine resource availability, such as a rerapf#icafion programming interface

Devices in these environments are expected to have high-availability constraints, and be
relatively static in terms of their rate of churn. Typically, large-scale computing environments
utilise multi-tiered architectures divided into front-end, middleware, and back-end sub-divisions
that exist absent of virtualised components. Standagdt{aditional) computing environments

are intended to represent the most common configurations for small, mid, sometimes large-size
network-aware service applications.

It is assumed that self-healing behaviours in computing environments may never be fully
realised and that some problems will indefinitely require human interaction. Although this
is not in keeping with the initial proposal, at some point it is perhaps unavoidable. For example,
there are no known software solutions to mitigate non-redundant hardware failures. However,
diagnosing and escalating such a situation to an administrator is still a desirable self-healing
behaviour. As such, systems that can operate to the edge of their limitations are still considered
to be successfully self-healing.

That being said, shifting from supervised to unsupervised learning is assumed to be more likely
to produce fully automated self-healing behaviours. Supervised approaches, by definition, can
only respond to situations retrospectively and are not the most efficient mechanism for reducing

20 CHAPTER 2. BACKGROUND

costs as they still require human interacti@s][

As large-scalecomputing infrastructures have become more complex, existing methods for
operating and maintaining systems have become less effedfiv&iecdotal evidence suggests

that the use of skilled engineers to apply monitoring techniques that search for faults, engage in
root-cause analysis, and execute appropriate recovery strategies remaladdbtostandard

of most professional organisations. Most of these monitoring techniques utilise some form of
behavioural test to indicate when a fault is present. Self-healing systems seek to automate these
processes. If a service fails, rather than requiring an engineer to intervene, a self-healing system
would autonomously diagnose the fault and then execute a recovery strategy.

Lastly, recovery is assumed to be a more difficult problem than detection — as Kephari$eid: “
final stage, automated re-mediation of a problem once it has been localized, is perhaps the most
difficult” [5]. However, the detection of faulty states is necessary before executing recovery
strategiesa fortiori. This logic is the foundation upon which some aspects of framework
maturity are gauged — a topic discussed further in Se@ian.

2.2 The History of Autonomic Computing

Many of the methodologies discussed in this paper refer to existing works in Autonomic
Computing. Autonomic Computing covers a wide range of topics in self-managing systems—
including self-healing self-optimisationself-protection andself-configuratiorproperties. Al-
though a familiarity with this area of research is assumed, a summary of foundational literature
is provided here for ease of reference.

This section discusses in brief the Autonomic Computing Initiatkde &nd the goals and
criteria of self-healing systems, as initially described by IBM and subsequent publicalj&hs [

The illustration of these goals provides a way to narrow the problem space into addressable
components and brings context to the methodologies presented in this survey.

The Autonomic Computing Initiative was proposed in 2001 to address growing complexity in
systems managemeri]] IBM proposed building software that could autonomously manage
systems using a series of closed control loops emdronmental knowledgeer the work of

Dave Clark, et alia41]. Environmental knowledges often denoted simply as. Recursive
software elements combine contextual informatioa. (K) with a series of inferential steps

to make real-time decisions that mitigate problems and automate palliative maintenance tasks.
Over the last 10 years several advances have been made in realising these goals.

2.2. THE HISTORY OF AUTONOMIC COMPUTING 21

2.2.1 Self-* Systems

In 2003, IBM published two articles that built upon their initial proposal outlining the aforemen-
tioned four primary tenets in Autonomic Computing, a general process for autonomic systems
managementy], and a set of criteria that described behavioural levels and generic goals of self-
managing systemd]. The process for automating systems management tasks, often referred to
as MAPE+K, outlined a recursive approach for continuously understanding and making changes
to a system’s state. By utilisingnowledge(K) about a system’s environment, a designated
software agent would: Monitor, Analyse, Plan, and Execute (MAPE) instructions to meet user-
specified policies. Since its introduction, MAPE-has proven to be a central component in
many self-managing systems implementations.

In order to understand the effectiveness of a given MARH»ased process, behavioural
benchmarksi(e. levels) were used to evaluate the implementations’ matud}y [These

levels ranged from basic to fully autonomic and were evaluated based on whether they could
consolidate information, recommend an action, autonomously take an action, and finally
interpret a user-specified policy to do all of the aforementioned behaviours (Fi)e
Importantly, this article recommended an evolutionary approach in reaching each of these
stages. Building self-managing systems that operate at different levels permits heterogeneous
infrastructures, and allows for the gradual adoption of Autonomic Computing technology. This
includes environments where existing systems may not be compatible with all of the autonomic
computing levels.

To address the challenges proposed in these two articles, agent-based approaches for managir
systems were introducef][Utilising aspects in artificial intelligence, this work was based on

an earlier text discussing reflex, goal, and utility ageBf§.[Simply stated, reflex agents use
if-then rules to map actions to a specified state. In practice, this approach is used once some
condition is met to execute a pre-specified set of instructions. Goal and utility-based agents
attempt to exhibit rational decision making by autonomously determining what actions to take
based on expected results. The primary difference between goal and utility based agents is
that the former selects behaviours to attain a given objective, whilst the latter attempts to reach
and optimise behaviours such that suitable trade-offs between these multiple objectives can be
achieved at once. This was particularly useful if two goal policies contradicted each other.

Using this approach as a foundation, IBM proposed that self-managing solutions leverage
Action, Goal, and Utility policies. These policies incorporated high-level objectives with

systems tasks whilst allowing for resolution conflicts between enacted behaviours. However, the
implementation of broad level policies have produced challenges in evaluating the effectiveness

22 CHAPTER 2. BACKGROUND

Autonomic ‘Level’ Description

Basic » Multiple sources of systems generated data.
Requires extensive, highly skilled IT staff.

Managed » Consolidation of data through management tools.
IT staff analyses and takes actionSuperviseanethodologies.

Predictive » System monitors, correlates, and recommends actions.
IT staff approves and initiates actionsSemi-supervisethethodologies.

Adaptive » System monitors, correlations, and takes action.
IT staff manages performance against SLAdrsuperviseanethodologies.

Autonomic » Integrated components dynamically managed by business rules/policies.
IT staff focuses on enabling businesseds.

Table 2.1: Autonomic Computing Levels, IBM,circa 2002.This table represents the initial Autonomic
Computing levels proposed by IBM, however a small addition of where Supervised, Semi-supervised,
and Unsupervised learning methodologies has been appended.

of self-managing systems. In the following year, a framework called DTAC was introduced for
evaluating the performance of a self-healing systé#h [

DTAC unified the MAPEK control loop with industry requirements, and provided a baseline

for performance metrics for evaluating self-managing systems. It described and quantified
properties such as stability, accuracy, settling times, and efficiency. By using these properties

it became possible to conduct behavioural evaluations based on a system’s environmental
knowledge, and historical performance data. The evaluation of this information led to a more
expansive approach that discussed general research challenges in self-managing systems, and a
variety of scientific advances in self-managing systefis [

Specifically, self-managing systems solutions were divided into elements, systems, and inter-
faces, and standards definitions and requirements for each of these components were proposed.
This helped to unify the mission of Autonomic Computing with practical implementations by
illustrating examples of where actiod4, 45], goal [46], and utility policy approaches had

been implementedl/, 48, 49]. Technologies related to these policies varied from symptom
matching B4] and task schedulingdb], to more complex approaches such as event correlation
with performance metric&lZ, 49).

Notably, Kephart argued that the division of self-managing systems into autonomic elements
would allow for easier adoption of legacy systems. By incorporating existing services with
an autonomic interface, legacy architectures could be made to adopt self-managing strategies.

2.2. THE HISTORY OF AUTONOMIC COMPUTING 23

Once a legacy system had an access point for autonomic communications, self-managing
systems could exert some influence over the existing infrastructure. Indeed the notion of inter-
element communication was arguably the central thesis of this paper:

“The main new research challenge introduced by the autonomic computing initia-
tive is to achieve effective inter-operation among autonomic elements. In order
for this to happen, product developers must look beyond their natural product-
centric tendencies and cultivate a more holistic, system-level point of view. In other
words, specific autonomic elements must be designed with a greater awareness of
the fact that they will be situated in autonomic systems and intercommunicating
and interacting cooperatively with other autonomic eleméfptg[p. 2]

The challenge of reliable inter-operation and systems communication continues to be an open
problem in self-managing systems, under which self-healing systems research is frequently
categorised.

The establishment of core tenets, the MAPE+K process, evaluation methodologies, the auto-
nomic maturity model, and action, goal, and utility policies, created a foundation for further
contributions in self-managing systems. The ideas have also migrated into the domain of
communicationst]], and the progress made in the last 14 years has been largely sumnm@rised [
However, as the field has matured and new technological advances have been made — such a
systems, and environment virtualisation, and the rise of mobile platforms — research in self-
healing systems has diverged and become more specialised. There are now different types of
self-managing systems based on these contexts.

2.2.2 Self-Healing Systems

To achieve the goals of self-healing systems a set of criteria must first be defined that is present
in a majority of self-healing systems methodologies that are to be evaluated both now and in the
future. Itis for this reason that computing environment, learning methodology, and management
style were selected for comparison. Each of these properties exists in the prior literature in some
form making them easier to classify. Additionally, the effectiveness, capabilities, and contextual
uses for those systems are more readily captured.

It is no longer sufficient that self-healing systems can be analysed without first analysing and
understanding their intended purposes and requirements. A comparison of their effectiveness

24 CHAPTER 2. BACKGROUND

and categorisation of their uses must first be provided to understand the progress self-healing
systems have made, and to establish a baseline for future analysis.

2.3 Machine Learning Techniques

A number of machine learning techniques are used in the completion of the included experi-
ments. Chiefly, the use of statistical models that contain adaptive weights and biases turning
by learning algorithms make up the technical bulk of the discussed approaches. This section
briefly covers the structure and update mechanisms of the three stochastic primitives used in this
thesis to provide the reader with a general understanding of their operation. However, many of
these approaches are dependent upon prior works. Details of how the primitives operate beyond
a basic level, including mathematical background, history, and theory, are left to the reader to
explore at their discretion.

Stochastic primitives consist of three major components: a method for adjusting weights, a
mode] and some mechanism for approximating non-linear functions of a given input. Weighting
mechanisms can consist of multiple components such as a learning algorithm and an activation
function. Their primary purpose is to take input and reinforce paths along the model in a
consistent and predictable manner after some event has been observed. This can occur using
both closed and directed cycles, but for complexity and resource constraint reasons solutions
presented in this thesis are limited to the latter. The collective method for adjusting weights and
their associated models are sometimes callethdule

In call cases within this thesis a stochastic primitive consists\d&ible layer that represents

the actual behaviour of the computing system, andid@den layer — a computed, abstract
representation of the observed data. By correlating observed behaviours and mapped cases, a
stochastic primitive can leverage a learning algorithm to reinforce its paths or probabilistically
forecast information. Understanding how accurate and efficient these learning algorithms are,
within the context of self-healing systems, one of the primary goals of this studyBid the

learning algorithm when used under this speatfiedelsuccessfully correlate the root cause of

a fault based on feature behaviours?

Modelsrepresent the structure of the primitive. They define what paths are open for commu-
nication between a stochastic primitive’s different layers, and contain the weight values and
pathing objectsi(e. “neurons”). For operational reasons, learning algorithms are associated
with a specific model. This is because some assumptions must be made from which the learning
algorithms can infer information and where that information is to be stored — in this case, in a

2.3. MACHINE LEARNING TECHNIQUES 25

float that represents a weight on a neuron.

Function approximation can occur through numerous different methods, typically via target
functions. Target functions attempt to match the output of an observed state and then derive the
input. Differences in these functions vary substantially between primitives and are the bulk of
the following discussion.

2.3.1 Artificial Neural Networks
Artificial Neural Network

Input Layer

} Hidden Layers

Output Layer

Figure 2.1: Artificial Neural Network. ANNSs are a type of statistical model that operates by updating
weights along paths between hidden and visible layers to forecast or otherwise ‘learn’ a series of inputs.

A number of different computing primitives can be categorise , but for the purposes

of this thesis they most closely resemble a multi-layer network consisting of Sigmoid neurons.
A Sigmoid neuron uses a non-linear transfer function to determine activations for evaluation
against a step function that uses a weighted, moving average. In thisugageesents in all
cases to the weight sum ofinputs to the neuron, whekeis a vector olsynaptic weights

26 CHAPTER 2. BACKGROUND

n
u= 3 WX
i=1

A step function then evaluates whether or not the neuron activageslpng a given path). If
the given sum is above some threshd, then the neuron activates thus changing its eventual
output.

)1 u>06
y= 0 :u<?@6

A number of approaches exist for updating the threshold value. Which approach is used depends
in the type ofANN that has been implemented.

For example, in this case is hard-coded at 0.80; a value determined lé/smccess rate in the
minimum sample set size for the experiments. This is done suclHiSE in this thesis are

not able to operate until they have at least 5 samples to predict from, and that a potential root
cause will not be selected unless at least this many observations has been met. It also provides

for an arbitrary measure to truncate potential outliers.

Weight updates to the neuron occur in this case through Naive Bayes. In the simplest of terms,
this means the previously observed state is assumed to be the most likely observed state in the
future adjusted proportionally by the number of observed states that match the prior observation,
over the number of total observations. In this case, the total number of observation is limited to
the 30 — a topic discussed further in Sectibf

2.3.2 Hidden Markov Models

Like BNNS, divide observed and unobserved (latent) information iigible and
Hiddenlayers, respectively (Figuig2). HMMS operate by forecasting the hidden laygs)
using observations from a visible set of inpute.(a Markov chain Xs).

There are numerous training algorithms that can be used HAfiMS, such as the Vertibi
algorithm. With Vertibi, the goal is to find the most probable sequence of hidden states given
a set of visible states. This allows for multi-step ahead forecasting given a some number of
previously observed behaviours. A simplified version of this algorithm exists called Baum-
Welch, which allows for single step-ahead forecasting. Although both are algorithms are
discussed, it is Baum-Welch which is used the experiments contained within this thesis.

2.3. MACHINE LEARNING TECHNIQUES 27

Hidden Markov Model

e @ — — @ Hidden Layer
@ @ @ @ Visible Layer

Figure 2.2: Hidden Markov Model. HMMs operate by forecasting the hidden lay&s) using
observations from a visible set of inpuise(a Markov chainXs). Unlike ANNs, HMMs do not use
more than two independent layers to separate observed and hidden data.

Baum-Welch operates by using the joint probability of a collectioH@idenand observed
discrete random variables to find the maximum likelihood of an observed state. It assumes that
the hidden variable is independent of previous hidden variables and that the current observation
variables are only the result of current hidden state. By using expectation—maximisation (a topic
not covered in this thesis), forecasts can be made using historical observations.

In short, given a number of observations, Baum-Welch attempts to final a local maximum for
0, such that the probability of the given observed states is satisfied provided some previously
observed parameter. This local maximum is determined via the recursive forward-backward
propagation of errors, that describe, respectively, the probability of observing some event at a
specific time, and the probability of a given sequence as compared to a related observed series.

Afterwards, weights are updated based on probabilities as described in Bayes’ thedtem |

2.3.3 Restricted Boltzmann Machines

A special type oBNN called aRBM takes the two aforementioned approaches a bit further by
using a form ofAlternating Gibbs Samplingh1] calledCDI [T3]. Rather than using a number
of subsequent layers for trainill§BMS organise themselves into a two dimensional graph; one
top and one bottom layer.

The top layer acts as the hidden layer seen in previous approaches and corresponds to the
interpreted model of observed behaviours. The bottom layer is directly linked to observed
behaviours and serves as a guiding point for training data, without the need for supervision. Or,

28 CHAPTER 2. BACKGROUND

intuitively explained, on updating the top layer tREM attempts to model observed behaviour,
and on updating the latter, the ‘real’ data is updated to correct any errors — the goal is to match
the top layer to the bottom layer in terms of output as quickly and cheaply as possible.

RBMS use an energy-based model as opposed to a maximume-likelihood approach. Energy-

based models associate a scalar to each observed state a variable of interest. Learning
corresponds to modifying that activation potential such that its shape has desirable properties

similar to the Sigmoid function typically ascribedANNS.

The adjustments made to these energy-based functions are outside the scope of this thesis,
but they form the basis for adjusting weights and biases. In sumiB&)S can be thought

of as log-linear Markov random fields for which the energy function is linear in its free
parameters. To make this more powerful, an assumption is made to move from linear to non-
linear by assuming that some properties are never obsdrgeldidden), and we disallow direct
communication or updates between neurons on the same layer.

Energy functions foRBMS are defined a&(v,h) whereE(v,h) = —b'v—ch—hWv. W in

this case represents the weights of the connecting hidden and visible neurobsg arel the

offsets — gradual, co-related increases and decreases — of the visible and hidden layers’ values,
respectively.

The structure of alRBM provides it an advantage ovBIMMS — conditional independence

of the visible and hidden neurons (figuZe3). This allows for a cheap, multiplicative update
mechanism for said variables above which are typically much more expensive in other prim-
itives. When using binary inputs, such as those used in this thesis, it becomes very cheap to
update and adjust weights through the associated activation (energy) function. Further details
on this can be found in a number of resources I[7].

As a high-level overview oilRBM's weight update process, it first starts by using a training
vector on the visible layer’s neurons. It then alternates between updating all the hidden units’
weights and biases in parallel via the use of said energy formula and Monte Carlo sampling
before doing the same thing with the visible units. Details on this process are long but can be
found in external resourceS?]. The updating process occurs until a specific number of time
cycles (.e. epochs) are spent.

CDI allows theRBM to train in near real-time, and to do so more efficiently than previously
discussed primitives. BecauBE1 is good at using generative weights to convert posterior
distributions to learn, it can tier itself such that it never has to learn to model the posterior
distribution over the hidden units. In the simplest of terms, most learning algorithms aim to

2.3. MACHINE LEARNING TECHNIQUES 29

Restricted Boltzmann Machine

Q Q Q Hidden Layer
” » Visible Layer

Figure 2.3: Restricted Boltzmann Machine.RBMs operate similarly to ANNs and HMMs, but adjust
their weights by using an form of alternating Gibbs sampling. This allows them to update their layers in
parallel — an advantage over other stochastic primitives.

be good at the former, but are bad at the latter. RE&S can avoid the major difficulties in

modeling the posterior distribution over the hidden units.

Additionally, RBMS operate similarly tdHMMS by using Markov chains as inputs. However,

they have a distinct advantage in that adding additional layers provably improves the model of
the input data — although this increases their usage costs. The proof their continual improvement
is complex and omitted from this work but is described via parallels to “variational free energy”
via Hinton, et alia[T4].

2.3.4 Stochastic Primitives

Performance for stochastic primitives is primarily measured in terms accuracy — including
correct behavioural inference given an input, and the exclusion of extraneous information. It is
also sometimes measured via the ability to synthesise a series of inputs given an output — as is
the case with the Vertibi an@DI algorithms. To achieve this in all settings — including noisy
scenarios — is challenging and no single approach has proven completely reliable.

As previously stated, stochastic primitives are a type of statistical model governed by a series of
rules and functions. They can use both closed and directed cycles to adjust weights along paths
formed by these functions to form maps. The maps represent relationships between observed
and inferred information — in this case, changes in a feature’s behaviour and the state of a
system’s health.

30 CHAPTER 2. BACKGROUND

Maps can consist of paths, or be literal geometric maps in the caselfafrganiSing maps
(SOMS) Different primitives are more suitable for different problems depending on their
expected output®.qg.If the goal is to find the smallest overlap shape possible using a connected
graph SOMswill probably be a better solution thdi\MS.

Stochastic primitives are the objects of choice for this thesis because of their malleability

and their established research record in forecasting behaviours. Specifically, they can be
readily adapted to a number of different circumstances and their use is well established with
autonomously analysing and classifying data.

An alternative to this approach would have been to use Support Vector Machines (SVMs) or
Linear Classifiers (LCs). Although wide-spread and historically popular amongst researchers
for solving similar problems, these primitives primarily use supervised learning which makes
them unable to exhibit the highest degree of autonomous behaviour in self-managing systems.
The lack of suitable alternatives at the start of this research was one of the driving forces in this
area — although it is proving to be a more popular approach. This has been seen through the
adoption of this approach in existing self-healing systems environments, such as %g$-* [

and for generic problem solving using performance based me¥igs Qne experiment even
seems to replicate many of the results in this stid]. [

The experiments in this thesis could have been conducted sooner but research into some aspects
of stochastic primitives has been deterred due to technical challenges. The advent of the XOR
circuit and the costly mechanisms involved with its implementation in the 1960s and 70s,
discouraged the initial use due to complexity constraint®&$]. Resource utilisation

also represented another issue which is, comparatively, large. Although these costs have not
been lowered, available resources have improved greatly the cost per computational cycle
continues to decrease exponentiahy][

These circumstances have changed and it has allowed for the experiments explored and
discussed further in thesis.

CHAPTER THREE

A SYSTEMATIC REVIEW
OF SELF-HEALING
SYSTEMS

This chapter explores in greater detail the commonalities between self-healing systems by
discussing their backgrounds, contextual uses, and behavioural mechanisms. It provides a
point of origin for understanding existing problems in fault detection within these systems, and
then outlines and motivates problems within the field before concluding with a synopsis:

Although progress has been made in furthering the autonomy of self-managing systems,
implementations across most environments are still largely supervised. In order to fully realise
the benefits these systems can provide, a shift to unsupervised learning should be explored.

3.1 Methodology

The assessment of prior self-healing approaches was based loosely on existing systematic
literature reviews %8, 59, 60]. Research questions, search processes, quality assessment of
output, and how data collection and analysis occurred were sampled before interpreting general
results. In short, most self-healing systems were discovered to commonly have properties
in three major areas — a topic discussed in Sedigh- but only a few provided working
prototypes. In order to adhere to an evidence-based approach — such as the one described b

31

32 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

Kitchenham, et alf1] — only those systems that provided evidence of a working prototype were
studied in greater detail. The reasons for this will become more apparent later in this section.

3.1.1 Search Process

Discovery of associated literature happened through standard manual search of journals and
conference papers through a variety of online academic search engines. Major surveys were
evaluated through journals such as thmurnal of Systems and SoftwarfGransactions on
Information Theorylnternational Journal of Adaptive Control and Signal Processbgcision
Support Systemsand Transactions on Autonomous and Adaptive Systemsongst others.

More recent and cutting edge approaches were taken from conference-based publications.

The largest and most respected conferences were sampled for papers that covered the topic of
fault detection, identification, and self-healing systems includindriternational Conference

on Autonomic ComputindCAC), thelnternational Conference on Cloud and Autonomic Com-
puting (CAC), thelnternational Symposium on Cluster, Grid and Cloud Compu(@gGrid),
thelnternational Conference on Autonomic and Autonomous SygteAs), thelnternational
Symposium on Software Engineering for Adaptive and Self-Managing SY{SEEABIS), and

the International Workshop on Adaptive Self-tuning Computing Sys{aDaPT).

From both types of publications, references were taken for further literature to review and
then associated into basic categories including: relevant studies, research trends, technique
evaluation (both practical and theoretical). Additionally, resources were enquired about directly
from academic colleagues at the University of St Andrews believed to be familiar in the subject
matter based on their publications.

In total, the initial review focused on some 80 accredited research studies. This expanded
greatly when neighbouring topics such as theories behind learning algorithms and other aspects
of machine learning were taken into consideration. Ultimately, as many as 170 papers were
reviewed to varying degrees — some of which early technical reports, and pre-prints. Even some
unaccredited publications from arXiv.org from well known researchers were exanerged (
Bengio, et al. £7)).

In order to produce research that was more reliably founded on evidence-based approaches,
work that had a practical approach was emphasised. Specifically, publications that claimed
to have a working prototype or reproducible experiment were short-listed for review. This
collection of 20 papers became the base set of publications for further inference.

3.1. METHODOLOGY 33

3.1.2 Research Questions

Research questions were not immediately generated but rather synthesised based on commol
exigencies in the papers that were reviewed. During this time it was noticed that many self-
healing systems had common properties in their implementation and that it appeared some of
these properties were related.

Ultimately, the research questions synthesised were:

1.

In what computing environment is the fault generated®. What is the context of the
self-healing system implementation?)

How are self-healing computing systems being administered from a design perspective?
(e.g.ad-hoc, centrallyet cetera

What degree of human interaction is expected during operation of a self-healing system?

What degree of human administration is required to meet with the ultimate intended goal of
self-managing systems, and what, if any, methods have been agreed upon?

What kinds of faults are being examined in self-healing systems?

Are faults being detected accurately in self-healing systems?

If so,

a) How quickly is the fault detected?
b) Given a fault is detected, how accurately is the faldntified?

c) Is fidelity (.e. total number of samples or observations) an issue here and what is its
effect on results?

Finally, given two or more self-healing approaches with accurate results, what kinds of
direct comparisons exist?

This thesis bases its own research and experimental structure upon these questions (see Sectic
B1A. Although not fully addressed, they are the foundation for how the experiments contained
herein have been formulated.

34 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

3.1.3 Quality Assessment

To ensure quality, a table was created to track and assess properties noticed in self-healing
systems prototypes. This included intended operating environment, and how the systems were
being managed. Management of systems was divided into two parts: internal logic, and how
often human interaction was required. Of the initial 20 publications, two papers did not meet
requirements that clearly outlined the use of the software being proposed or they offered vague
descriptors of their implementation, and two papers required unique parameters to address some
of their operating characteristics (GPARY], and OSIRIS-SR®4]). In the latter case, both

were ultimately included.

The primary criteria used to select frameworks was based on the presence of:

1. A description of the intended computing environment or operating conditions,
2. A description of how the systems were expected to be instantiated and managed,

3. A claimed working prototype — papers exclusively focused on theory were not evaluated —
and,

4. A description of whether or not the system used labelled or unlabelled data when being
initialised.

From these criteria, 15 self-healing systems frameworks were evaluated directly. The remaining
excluded papers were not directly compared, but were still used for scientific inspiration.

3.1.4 Data Collection & Analysis

Data collected from each publication consisted of:

1. The name of the framework (if given), or the title of the paper in the case of its absence,
The authors of the framework and associated collaborators (if appropriate),
The year of publication,

2
3
4. Which self-* properties, if any, the paper discussed or addressed,
5. Citation details (in BiBTeX),

6

Notes on supervised, semi-supervised, and unsupervised requirements in using the frame-
works,

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 35

7. The frameworks associated management style (top-down or bottom-up), and

8. The intended computing operating environment (gagr-to-peer (PZPgloud, grid, etc).

For items 4-6, frameworks could meet more than one criteria as some of these properties
occurred more than once. For example, labelling requirements can be different within certain
components of the same framewotk7], and ad-hoc computing behaviours can take place
between systems designed to be centrally man&tigdd [

The collected information was reviewed by colleagues and peers both for validity and general
scientific interest. Reviews were subject to available time and resource constraints and although
are not proscribed standard practice were provided anyway.

3.1.5 Results

The initial survey revealed 12 instances of supervised learning, and 6 semi-supervised and
4 unsupervised learning approaches, respectively. Studies were divided between 8 bottom-
up and 12 top-down approaches — this would later even to 12 each during the development
time of this thesis. Eleven frameworks were assessed to be able to operate in standard, n-Tier
environments; 16 were able to operate in clouds. Nine showed the ability to work in grid or grid-
like environments — with many overlapping other possibilities. Only one study was exclusively
evaluated as operating in a gristy.

Throughout the course of this thesis, information surveyed evolved and, of course, the published

worked produced and included in this study added a number of factors. These details are further
explored in the subsequent sections, but a detailed synthesis of the collected, total results can
be found in Sectio=3, and in tabld3—2.

3.2 A Comparison of Self-Healing Systems

Self-healing frameworks leverage a diverse set of approaches to autonomously detect, identify,

and recover from faults. This section discusses and compares self-healing approaches base
on three primary aspectmanagement styleomputing environmenandlearning methodolo-

gies These aspects are often interrelated and can play an important role in determining the

36 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

effectiveness of a given self-healing solution. As such, some self-healing approaches have been
implemented more commonly under specific management styles and computing environments.

The following subsections are organised as follows: SedB@hl contrasts top-down and
bottom-up management styles that utilise self-healing frameworks. SdéfGAdiscusses
computing environments, and contrasts different self-healing behaviours commonly found
within grids, clouds, and standard infrastructures. Lastly, SeBfiaBprovides an overview of
learning methodologies used to autonomously detect and recover from faults. A distinction is
made between supervised, semi-supervised, and unsupervised methodologies, and under what
circumstances they are most commonly implemented.

3.2.1 Management Styles

Managing complexity in computing environments has led to an abundance of architectural and
systems management techniques. This chapter focuses on two specific styles: Top-down, and
bottom-up. Top-down approaches organise systems into hierarchies by leveraging authoritative
nodes. These nodes control, propagate, and validate the behaviours of subordinate child-nodes
within the computing environment. Conversely, bottom-up methodologies operatadtet

fashion, leveraging neighbouring devices to make or suggest changes to configuration state.

Each style divides computing environments into smaller, more manageable sub-components.
The division of systems into sub-components helps to address the natural complexity that arises
when managing multiple devices. This includes aspects from change management, divisions
in workflows, and enacting policies to automate systems tasks. Depending on the management
style, however, the nature of the sub-components also changes to provide different advantages
and disadvantages. It is often the case that management styles are selected based on computing
environment specific needs — a subject discussed further in SECHAGN

Top-down Management Styles

Top-down management styles are based on a hierarchical infrastructure for accepting and
enacting policies on child system&4]. This is often realised through the use of databases
on parent-nodes, which subordinate nodes periodically communicate. By changing information
within these databases, the collective behaviour of systems communicating with the parent can
be altered. Thus, rather than requiring an administrator to access each system individually,
top-down methodologies can execute instructions autonomously.

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 37

Rainbow BE5, 66] is a self-healing framework that leverages a centralised, top-down manage-
ment style. Utilising a set adystem concernghild-nodes are divided into clusters based on

a similar set of expected behaviours. These properties are collectively described as system
roles and are maintained by a single Rainbow instance. An administrator then provides a
set of constraints and recovery plans, which the service uses to evaluate systems behaviour.
Evaluations occurred using a three-tiered, abstract architectural model that autonomously
categorises systems behaviours. If a fault is detected, the server’s configuration is then altered
using recovery plans associated with the system’s synthesised role, and respective constrain
model.

Rainbow’s approach to dynamic systems evaluation, and its centralised methods, are arguably
foundational by many subsequent approaches. This includes the ability to utilise centrally
located recovery plans that are associated with the identification of specific fadltsapd

the use of recovery plans that have been created by systems administrators at run-time. Once
enacted these results are stored for later use within a centralised database — a technique

sometimes referred to &ase-based reasoning (CBR)

Localising configuration changes to a single point has the benefit of reducing human error
during implementation, and retaining a homogeneous configuration baseline within a comput-
ing environment. Top-down management styles are useful in ensuring predictable recovery
behaviour, and are widely utilise@%, 68, 69, 67]. Conversely, centralised infrastructures often

require extensive pre-configuration and training before they can exhibit self-healing behaviour.

MARKS+ [68] leverages a comparable approach to Rainbow by using what it refers to as
healing managemodes to select and implement pre-defined recovery plans. The recovery
plans are again evaluated based on a constraint model, but also incedece availability
mapping This mapping, combined with a collection of behavioural unit tests, provides context
to the evaluation of the constraint model. Systems determined to be in a faulty state are removed
from service until a ‘good’ behavioural context can be re-established via the the return of the
system to a previously known working configuratiorstate For MARKS+, healing managers
facilitate these behaviours by acting as a centralised orchestration service. This is similar to
Rainbow in that both approaches use an architectural perspective to facilitate resource discovery
and recovery behaviours.

The use ofbehavioural skeletons another perspective on understanding systems activities

in top-down infrastructures6d]. Behavioural skeletons are similar to models and consist of

an abstract collection of patterns that can be used to evaluate a system’s behavioural properties
When combined with a set of constraintscontract[69], top-down styles can attribute context

38 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

to systems behaviours without depending on pre-defined roles. This has the advantage of not
requiring developers to commit to pre-approved configuration states. Similarly, skeletons and

contracts can be used to provision a specific subset of information to child-nodes — such as
configuration data or faults. Whilst the child-nodes retain this information locally, a reduction

in the need for ‘call-backs’ to management services remains present. This allows the systems
to work more independently and utilise external resources only when required.

The use of locally provisioned self-healing logic is similar to the two previous approaches in that

it leverages rule-based action policies to decide on recovery strategies. However, it differs in
how systems are allowed to interact, and provides an approach for leveraging more autonomous
behaviours. The latter is an artefact that has been extended in subsequent publiBations [
Rather than using a series of contracts, SASSY handles infrastructure management through the
use of dynamic model generation callgdrvice Activity Schem&SAS’s).

By aggregating these SAS’s, an architecture can be dynamically mapped into subgraphs. This
allows not only the systems to be modeled individually, but the service architecture itself to be
evaluated in a dynamic fashion. Consequently, using this approach affords greater flexibility
in compartmentalising faults within the environment than other top-down frameworks, and
provides more effective management of resources than stand-alone top-down service discovery
methodologies.

MOSES [70)] takes a similar approach to SASSY in that management of the service architecture
itself is leveraged in detecting and recovering faulty systems components. Like SASSY,
MOSES dynamically models the architecture in which it is operating. By usipgséion
managerthis framework determines if the service’s detected resources can be combined into
a usable model. Once completed, ahaptation manageaddresses any faults or quality of
service issues encountered by using a series of vectors abstracted from the services model. This
information is then abstracted into an ordered list of service priorities that can then be used to
direct or redirect service flows — even in the presence of conflicts.

The sampled centralised management styles exhibit similar self-healing logic when recovering
from faults. In most instances, the use of behavioural testing is implemented with a contextual
reference — such as a constraint or systems model. This is further expanded upon by user val-
idation in the case of supervised methodologies, or by using predictive measures to synthesise
recovery solutions.

Furthermore, the use of these techniques in a centralised orchestration service affords many
benefits — including the ability to retain control of the infrastructure from singular management
points, and being able to leverage re-use of recovery strategies. This is seen most readily in

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 39

self-healing systems where the frameworks are given models at their instantiation, including
SASSY B8], RAINBOW [65, 66|, and other technique&¥, 69, 68]. This is in contrast to

systems that inherit or infer self-healing behaviours; a topic discussed furt&rinLearning
methodologies for each management style are discussed furfReri

Bottom-up Management Styles

Bottom-up management styles emphasidérocinteraction between systems. Systems within
these environments typically infer self-healing behaviours based on independent sampling,
either of the service infrastructure at large or neighbouring systems, and exhibit a greater degree
of administrative autonomy. They represent a direct alternative to approaches that leverage
centralised management, and typically demonstrate more exploratory behaviours. This type of
systems management can require less initial configuration than centrally managed approaches
but at the cost of predictability and individualised control.

Althoughad hocsystems management comes in a variety of forms, this survey focuses on three
distinct approaches: system-to-systeéif, [34, [71], localised healing®7, 36, 28, 24, 7, /7],

and those that utilise atomic interfaces to synthesise virtual resol#gesihese approaches
were selected based on commonalities observed in the sampled papers.

System-to-system frameworks are capable of making changes by sampling from or delegating
to neighbouring nodes. This is contrasted by localised healing frameworks which avoid
administering other devices, and use information obtained from neighbouring systems to self-
elect behavioural modifications. Atomic frameworks exist as a hybrid of these two approaches
by exposing their resources in an non-holistic, read-only fashion. They can either self-elect or
suggest changes to external devices, or directly access external resources as if they were locally
present.

In a system-to-system infrastructure authoritative actions are delegated dynamically through
the analysis of environmental knowledge. Examples include frameworks that observe both
the performance and service availability of neighbouring deviggsd7, 34]. In the case of
Embryo-wareB7], a set of administrator supplied configurations provides each system with the
ability to autonomously adapt from a ‘totipotent’ statee-a neutral configuration — into one of
several pre-specified roles. This behaviour is initiated based on each system’s local perception
of the over-all performance and relative needs of the service infrastructure. If a service has
reached a capacity threshold for its front-end web-services, for example, and the system has
a totipotent configuration, it can dynamically adopt a web-role and join the front-end pool to

40 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

increase capacity. Once the service has been evaluated as no longer needing additional front-end
resources it then reverts back to its neutral state.

By treating systems as modular components, Embryo-ware addresses a key problem present
in ad hocinfrastructures — drift in baseline systems configuration. As systems continue to
operate they naturally encounter events that create unique systems configurations and states.
This can create scenarios where systems are difficult to predict and can reduce the effectiveness
of existing self-healing behaviours. By resetting the local system’s state to pre-defined known-
working configurations, divergence in systems operations is dramatically reduced. This allows
for techniques that depend on assumptions related to the systems behaviour to continue to
be effective well after initial deployment. It also allows for servers to be treated as dynamic
resources within the service architecture and to transparently address the workloads associated
with predefined groups of individual service components.

Transparently updating service components is an approach also used by OSIRIS-SR — an
extension of OSIRISHZ] and Chord B3]. However, unlike Embryo-ware, OSIRIS-SR

uses a transitive management service to create ‘supervisor nodes’ that facilitate self-healing
behaviours. These nodes leverage a distributed hash-table to establish service parity, and to
facilitate work delegation of a given resource. This allows service availability to be preserved
even in infrastructures with high rates of churn, and for systems to orchestrate service flows
whilst addressing faults—all without a centralised infrastructure.

Rather than shifting a system’s role or instantiating a supervisory service, systems within the
computing environment may also have the ability to assign work directly to each @fijer [
VieCure utilises an activity management service to understand local and remote service
state I/1]. Like Embryo-ware, this framework is installed locally on each system, and
configured by a set of policies that guide self-healing behaviours. The policies combine
‘interaction patterns’ and constraints intb@haviour registry- a dictionary-like object capable

of recognisable systems states that are used to indicate when self-healing behaviours are
required. If a constraint violation occurs, the system can either choose to heal or delegate work
to a neighbouring node. VieCure, OSIRIS-SR, and Embryo-ware operate holistically. The
expression of their self-healing logic is based on the evaluation of their respective computing
environments as a whole. However, notadl hocframeworks operate in this fashion.

Atomistic perspectives, such as the General Purpose Autonomic Computing framework
(GPAC) [BY], view and evaluate systems’ resources as individual components based on
‘resource definition policies’ that are supplied by an administrator. The benefit of atomising

components is that they are usable remotely by other systems. To accomplish this, GPAC first

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 41

builds a model of local systems operations by utilising a four stage control loop similar to
MAPE+K. The model is populated by querying either a remote or locally running service that
discovers resources. Discovered resources are then integrated with the model information by a
policy engine to create the aforementiomedource definition policyThis allows resources to

be directly accessed, regardless of physical location.

Sharing resources leads to a natural integration between systems, and illustrates a perspectiv
for mitigating faults remotely in a bottom-up fashion. It also highlights the primary caveat
that exists between other approaches in that systems must be able to accept changes to thei
configurations from neighbouring nodes. In some computing environments this property is
undesirable — particularly when the trustworthiness of other nodes is an unknown. For these
cases, localised healing strategies are the preferred methodology.

Localised healing frameworks avoid directly administering other devices. Instead, each
framework instance is exclusively responsible for its local system’s health, resources, and
configuration state. This includes determining when issues are caused by local or external
factors. Localised faults are mitigated in a similar fashion as other frameworks. A set of
constraints and policies are provided by administrators which the systems use to detect and
recover from faults. However, faults determined to be external to the system are addressed
differently. External faults are either ignored, referred to another system, or, if possible,
mitigated locally. These approaches are not designed to address the source of the error, but
to maximise the availability and performance constraints of the computing environment — often
within predefined guidelines.

For example, lowering the fidelity of content being served by front-end web-servers is one way
to meet performance constrainBs]. If a server cannot deliver content at the rate expected —
e.g.due to too many concurrent connections — it can elect to reduce the volume of data sent for
subsequent data requests. This approach does not directly address the state of other systems, b
instead focuses on those issues that can be resolved locally. Frameworks that focus on localisec
self-healing techniques often usdesto facilitate the re-use of self-healing logic and to meet
constraints 85, 24]. This is particularly useful in self-healing systems that operate within a
single tier of a computing environment.

WS-DIAMOND [24] is a localised healing framework specifically developed for front-end web-
services. It uses two concurrent control loops to diagnose and recover from faults. The ‘inner’
control loop focuses on the mitigation of faults that prohibit basic systems operations. This
can include resources that are critical to the system’s role, and the state of services. The outer
control loop addresses issues relate@ialiy of service {QQoS)If a system is not capable of

42 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

performing within a set of constraints, an error is raised that the outer control loop attempts to
mitigate. Other frameworks have mimicked f@@$approach, but sans the use of multi-tiered
control loops I'3]. However, the basic approach used in these systems are essentially identical.
Each failure instance is treated as a separate case from which to analyse the results of systems
configuration tests. This allows faults to be categorised based on the systems role, and located
using differential analysis of the systems configuration data.

Determining the source of an error is a non-trivial process. Systems configurations are complex
sets of information, and often contain relationships between features and properties that are
not easily classifiable. Dynamic systems modelling represents one approach for understanding
correlations between faults and configuration state. In localised healing frameworks, such as
Plato [27], Unsupervised Behavioural T earning (UB[28], EDES$[18, 19], and Shadows7Z],

these approaches have been used to categorise and compare the state of a system with historical
information, such as systems configuration or performance data — a topic discussed further in
the following Section3=2"R

The bottom-up managementldBLl, theEDES Plato, and Shadows all follow in the footsteps of
top-down frameworks, such as Rainbow, that utilise architectural modeling techniques at system
run-time. However, these frameworks all leverage a set of operating constraints that allow for
differences to be discovered between systems behaviours, and recovery methodologies to be
synthesised, rather than requiring them to be applied by administrators.

Recovery strategies for these frameworks operate differently which in turn has an impact on how

they are managed. Plato utilises genetic algorithms to search for optimal systems configurations
and enacts recovery methodology via reconfiguration. The results of each configuration undergo
a differential analysis that examines the health and performance of various systems models
before implementation is done independently.

Shadows uses a model repository to determine a recovery strategy. The repository is populated
via two mechanisms - a code extraction methodology, afilBR-based approach similar to

rather than requiring administrators to update the repository manually, Shadows automatically
builds role-based recovery solutions without human intervention. This is accomplished by
using a combination of statistical and predictive modelling to synthesise configurations and
evaluate potential solutions to detected faults before (re)-implementation. Once a solution
has been found it can be validated and shared throughout the environment where behaviours
are determined to be similar. This unique use of case-based reasoning allows the framework
to leverage the advantagesai hocsystems management without depending on centralised

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 43

infrastructure or human administrator to approve new recovery methodologies. By removing
the supervision requirement of thiSBR approach anomalies can be detected that were not
previously known.

[OBL operates a little differently than the previous mentioned bottom-up approaches in that it has
some hybrid properties. Specifically, it uses a centralised tralnmigal machine (\/M)to help
independently evaluate solutions by populating and instantiati@&. Additionally, it has

the capability to resolve problems locally without this centralised component. This technique
allows systems to build their own recovery solutions at run-time by leveraging a vector based
approach for aggregating systems configuration and performance data. Once the information
has been obtained it is then classified and subsequently analyseddpped), faults are then
inferred through a differential analysis of changes in both behaviour and configuration state of
the system in question similar to the aforementioned bottom-up strategies. This framework is
the most similar in approach to the experiments described within this thesis — further details on
how it operates are discussed at length in subsequent Chapters.

D Top-Down

12
B Bottom-up

10

n-Tier Cloud Grid/P2P

Figure 3.1: Management Styles versus Computing EnvironmentdManaged environments — such as
Cloud and n-Tier infrastructures — show a preference for top-down management styles, whereas ad hoc
computing environments prefer bottom-up management styles.

The management style of a self-healing framework is often related to its computing environment
(FigureB1). In the case ofad hoc systems administration, the behaviours exhibited are
inherently less predictable than those that leverage centralised methodologies. This comes

44 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

as a caveat of allowing systems the ability to independently explore solutions outwith those
having been directly supplied. Specifically, systems that leverage a bottom-up management
style appear to be more prone to use semi-supervised and unsupervised learning techniques to
achieve dynamic recovery solutions. While this approach is by definition more autonomous, it
does not necessarily mean that it is more usable. Some environments may be required to use
only specified recovery solutions to address specific service aspects — such as risk management
or high availability requirements. In such cases solutions such as Embryo-ware may be better
suited thartIBI, Plato, or Shadows.

Choosing a management style for a self-healing framework is a multi-faceted problem and can
depend on a number of extraneous factors — such as the environment in which the system is
intended to operate, or acceptable levels of downtime or resource usage in searching for new
solutions. The attributes between environments and learning methodologies, and associated
self-healing behaviours, are discussed further in SecBoh2and32_3 respectively.

3.2.2 Computing Environments

Computing environments are collections of resources used to manage and facilitate a given set
of systems. Depending on the needs of the systems, computing environments can have different
infrastructures and assets. This survey focuses on three types of infrastructures: Standard,
virtualised, andad hoc Each infrastructure type presents differences in how self-healing
frameworks access, categorise, and utilise resources. These differences can have profound
impacts on the approaches used by self-healing frameworks and their respective goals.

Standard infrastructures typically comprise three categories when discussing systems respon-
sibilities: Front-end, middleware, and back-end. Front-end systems are responsible for es-
tablishing and maintaining connections to clients, middleware provides facilitating services
such as encapsulation, transport, or orchestration, and back-end systems are responsible for
the provisioning, storage, and parsing of information. This division of responsibility is the
basis for establishing reusable code in many self-healing frameworks — regardless of computing
environment — and promotes scalability by organising systems into reusable, interchangeable
components. This allows for extensibility in behaviours and interchangeability of failed devices.

Virtualised infrastructures emulate physical assets by using multi-system resource manage-
ment techniques. Instead of building a physical machine with a specific role, resources are
dynamically allocated from a collection of physical machines to build virtualised ‘instances’.
These instances operate in the same fashion as physical systems. However, as the hardware

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 45

itself is a software manifestation, ‘physical’ changes can occur more rapidly and in a more
autonomous fashion than in standard infrastructures. In addition to rapid reconfiguration,
virtualised infrastructures handle change control exceptionally well. This is primarily due to
the use of systems cloneise(image¥ when instantiating new instances. Images allow for
quick replacement, re-provisioning of faulty systems, and fast comparisons between systems’
configurations. These properties make virtualised infrastructures heavily leveraged in cloud
computing environments — a trend that has been increasing in recent yearsZigyure

Standard and virtualised infrastructures share several key properties. They are often owned or
operated by a single entity, have low rates of churn, and typically leverage centralised man-
agement styles (SectidhZ1). These aspects are vital in meeting established minimum opera-
tional requirements such as availability, reliability, and performance expectations — sometimes
referred to aservice-level agreements (STAsHowever, there are computing environments

that do not share or require these properties. In these cases self-healing frameworks é&erage
hocinfrastructures.

Ad hocinfrastructures are unique from other approaches in that systems membership is volun-
tary. This property is related tad hocmanagement styles, which enable systems to act as an
authoritative point and evaluate its infrastructure independently — sometimes referrexbli as
elected behaviours but is different in that it refers to the association a system has to a specific
environment. The ability for systems to join and leave an infrastructure has advantages in that
they are better suited for some distributed computing uses, and can potentially operate at lower
costs. The transient nature afl hocinfrastructures pose unique challenges for self-healing
frameworks. Notable examples include higher rates of cHiifh [ssues with reputatioriZb],
security [77, 78], multi-party administrationf3, [79], and a lack of baseline configurations
between system&1], amongst others.

Computing environments are sometimes comprised of multiple infrastructure types. Some
environments, for example, may have systems that are capable of interacting with each other in
anad hocfashion, but may also depend on a centralised service madetT].

In most cases self-healing frameworks have been developed to meet specific needs within a
single tier of an infrastructure — such as a front-end web-ser@t,&¥, 73, 18, 19, 67]. Nearly

all self-healing frameworks that are designed to operate within a single tier are capable of being
implemented in a virtual infrastructure. However, not all self-healing frameworks are restricted
to one area of responsibilitys}, 37]. The most common tier-specific self-healing frameworks

are those that focus on front-end systeBts 7’4, 24, 67).

Systems that approach front-end web-services utilise a variety of approaches, including multi-

46 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

tiered control loops44], fidelity reduction B5], and behavioural modeling6l], amongst
others. These self-healing frameworks can promote an intermediate stage for adapting existing
infrastructures towards stronger administrative automation.

Each system in a standard infrastructure must be maintained individually. This has several
notable consequences including increased provisioning times, the potential for inconsistencies
in configuration and implementation, and a natural deviation in configuration baselines over-
time. These problems have been partially addressed by self-healing frameworks through the
use of CBR and centralised management styfes 69, 68, 67, [/1]. Centralised approaches
leverage an often human supplied correlation between root causes of faults and their respective
recovery strategies. As the expected outcome is based upon assumptions of previous state,
these approaches can become less effective as configurations diverge. As changes occur within
separate infrastructures outside of the control of the framework, this problem becomes more
complex.

Virtual infrastructures help to address baseline configuration deviations, dynamically provision
new resources, minimise the impact of external infrastructure changes, and improve deployment
and recovery times. The majority of these advantages stem from the use of images which,
as previously mentioned, help to maintain standard configurations between systems. Virtual
infrastructures also come with several major disadvantages, the largest being cost to oper-
ate, proprietary standards for larger implementations, and challenges for physical expansion.
However, virtual infrastructures provide useful properties to frameworks that use tier-based and
search-space approaches to resolving faidisq 7).

Frameworks that leverage search space methodologies require one of two conditions to occur
before executing self-healing behaviours: Either an acceptable solution must be converged
upon, or all available resources are exhausted. In the latter case, the framework picks the
best solution foundd8, 80, 24]. Standard environments limit the availability of resources

to the physical capabilities of the system upon which the framework is instantiated. Virtual
environments provide an advantage by allocating resources beyond the immediate instance.
This promotes the self-healing behaviours from break-fix objectives to optimisation strategies
(e.g. B1, 27, [71)).

In addition to optimisation, the dynamic allocation of resources is useful for promoting sta-
bilisation in computing environments. There are several self-healing approaches that explore
stabilisation in standard environments including dynamic role-adopfdn 37], resource
discovery B5, 66], resource policies, atomisatioBY], and reduction in content fidelity3H].

In some cases, virtual infrastructures demonstrate comparable advantages by using instancing.

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 47

Embro-ware’s ability to use ‘totipotent’ systems to shift to and from needed roles is comparable
to virtual infrastructures’ ability to dynamically spawn new server instances — assuming an
image exists for the needed role and a feedback mechanism is actively monitoring service state.
Both approaches represent a way to preserve QoS in an environment, and minimise the need tc
reduce content fidelity.

Virtualisation universally addresses a major advantage of Embryo-ware: The ability to use a
single subset of resources to address multiple roles within a service or computing environment.
This concept is difficult to implement in standard, multi-tier infrastructures. Systems that are
organised into tiers have external considerations when communicating with other devices. This
includes networking configurations, security measures, and other exigencies of a practical na-
ture that are outwith the control of the framework. With standard and virtualised infrastructures,
the barriers between tiers are often preserved. One approach for avoiding these issues is to trea
the computing environment as a rir§Z] 33, 34]. However, it is worth noting this effectively
converts the standard tier-based environment intadahocinfrastructure.

Ad hocinfrastructures avoid many of the organisational requirements of standard and virtual
infrastructures. In ring-based approaches, systems are often required to accept a centralisec
point of management, and be operated within a confined set of conditions, such as a specific
configuration or role. Irad hocinfrastructures systems are defined by their ability to carry
divergent configurations and self-elect behavioural changes and states. These properties help tc
mitigate security issues, high rates of churn, diversity in systems configuration, and multi-party
administration. Although this chapter covers no frameworks that have been explicitly designed
for entirely ad hocinfrastructures, several approaches expect and usilishocself-healing
behaviours ¥8, 34, 37, 27].

These behaviours range from self-electing systems r&és34], to aggregating resources
between systems3$]. In the former case, each system evaluates the state of the service
independently by querying neighbouring devices. If a system chooses to adopt a new role
or configuration, it is ultimately centrally managed as the pre-specified roles must be provided
to each individual system before they can operate. However, the collective behaviour of each
individual system evaluating the service demonstrates an emergent approach to managing the
infrastructure health. Experiments with biologically inspired paradig#as further suggests

that gradients, fields and other “spatial” structurgs] [can offer robust adaptation to local
challenges and failures, and can act as a programming platform on which to construct complex
applications.

Plato 7], UOBO [28] and the EDES [18, 19] demonstrate this perspective by leveraging

48 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

systems that can holistically self-evaluate service state using biologically inspired computa-
tional approaches. These approaches have distinct advantages in that systems need not be
provided with pre-specified recovery strategies, and are specifically designed to exhibit self-
adaptive processes through continuous environmental analysis. This affords systems using
these frameworks a better suitability towards environments waetgocmanagement styles

and infrastructures are in place—such as the ability for systems to integrate their own self-
healing logic by using search-space methodologies. These approaches include (Ghmehy
Blgonthms (GAS)[36, 2], [18, 4], [18], andRBMS [[18, T9). However, search

and probabilistic methodologies lack the stable, predictable nature of approaches that leverage
periodic human intervention.

Computing environments and the services they house are interrelated. Systems that have the
ability to operate holistically require different supporting resources than those that operate in an
atomistic 39] or centralised fashiordl)]. The self-adaptive behaviours of systems leveraging

ad hocmethodologies appear to be more advanced with respect to self-autonomy than other
approaches. Evidence for this claim is best seen by dividing then comparing the behaviours
of systems that leverage either holistic, self-elected behavioural chang&@and other
typically supervised learning methodologies (FigB@.

B Unsupervised

2 | Semi-Supervised
10 I Supervised

8

6

4

2

. B |

n-Tier Cloud Grid/P2P

Figure 3.2: Learning Methodologies versus Computing Environments.Most self-healing systems
prefer a supervised learning methodology, regardless of the environment it is implemented in. This is
useful for ensuring correct behaviours, but also a limitation in potential for autonomy.

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 49

3.2.3 Learning Methodologies

Some self-healing systems frameworks rely on heuristic algorithms to correct or change be-
haviour without human intervention. In order to maximise the effectiveness of these algorithms,
learning methodologies have been developed that optimise when and how instructions are
executed. These methodologies often utilise recursive, evolutionary, or close-control loop
programming techniques to improve and evaluate behaviours. In the majority of cases a
feedback mechanism determines both the validity and efficiency of a specific solution. The
degree of required human interaction within a feedback mechanism is sometimes referred to as
its degree osupervisiordue to the labelling of training information either by a machine or by

a human.

Self-healing frameworks can be broadly categorised as being fully supervised, semi-supervised,
or unsupervised. Traditional definitions of these terms usually emphasise when or how a system
classifies its learned behaviour — either manually, or dynamically — and whether or not data
utilised by a specific algorithm has been labelled. As self-healing frameworks can implement
multiple learning methodologies — sometimes at varying points within their process structures
— cataloguing a framework’s learning taxonomy into a single category is challenging. Each
implementation must be evaluated independently before an overall assessment can be made
about that framework’s capabilities. To make matters more complicated, some approaches
are not reproducible or their methods entirely disclosed; this restricts the evaluation of their
capabilities to theoretical measures, only.

The most common approach to self-healing systems is to use a fully supervised methodology
[[70, 32, 34, 73, 38, BY, b7, 65, 68]. Supervised methodologies usually require frequent
interaction, and extend their self-healing behaviours only upon human intervention. This allows
for validated, controlled configuration updates and provides the least amount of uncertainty in
systems behaviour84, 85, 86].

S 4]

The most frequent implementations of supervised learningCB methodologies (Figure

B2). CBR typically utilises a database of prescribed recovery plans that are correlated to
specific faults or events. When a system encounters an error it queries the database for recovery
instructions. In those circumstances where recovery instructions have not been previously
included, the framework will ask an administrator for a solution, or refer to a default set of
actions. CBR approaches extend their behaviour by storing these additional solutions in their
databases. Typically, the requirement of human supervision as a required part of the self-healing
logic produces the natural caveat of only partial automation.

50 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

Rainbow p5] takes supervised methodologies a step further by leveraging dynamic resource
discovery with prescribed, role-based recovery logic. Using this approach computing envi-
ronments are divided into recognisable components that can be used to dynamically build
an architectural model of the service infrastructure. Using this model systems and services
are categorised within a specified role or type, whilst the architectural model continues to
choreograph service interaction and defines expected behaviours. These components are
provided by developers before deployment. Once errors are detected, they can be mitigated
using the architectural model to restore the service to a known working state or, if unsuccessful,
an administrator can update the model at run-time.

WS-DIAMOND [?4] and GPAC BY| take similar approaches to Rainbow in that a model

is specified to which a system’s performance is evaluated. However, rather than monitoring
an entire service, each system is managed independently. As previously mentioned, WS-
DIAMOND does this by instantiating two concurrent control loops to monitor and correct
systems behaviours. Dividing the recovery logic into separate components allows the frame-
work to prioritise and isolate recovery strategies. This is naturally conducive to goal and utility
policy implementation within the specified model. A number of extensions to this framework
have seen improvements to its detection and recoveryfiagatuding the ability to monitor
workflows, orchestrations, and choreographies.

GPAC contrasts this approach by utilisirggource-definition policie® autonomously discover

and atomise +e. individually expose — systems’ components into network accessible objects.
This non-holistic approach allows the framework to access resources on remote systems as
if they were locally present. When combined with a model of the service, systems can
transparently heal and optimise the service architecture in a semi-supervised or potentially
unsupervised fashion. These policies can also be used to tier service performance based on
priority of behaviours or resources.

Performance tiering is a self-healing methodology used to divide systems and service health
into levels [/2, 35]. These levels in turn are used to understBimbs changes and instantiate
behaviours that maximise the usage available resources. Arguably, the most direct approach to
defining service levels is to use statically assigned resource constraints. Each level corresponds
to a set oftQaS metrics or fitness criteria that tells the system when to dynamically reduce
content fidelity B5]. Primarily developed for front-end web-services, static service tiering
requires a human-supplied policy to determine when content fidelity can either be reduced or
increased.

http://wsdiamond.di.unito.it/status.html

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 51

In contrast, allowing policies to dynamically set thresholds for self-healing behaviours can have
more autonomous results(), 72, 31, 73, B7]. The Shadows framework, for example, uses a

set ofSCAS and utility policies to automatically generate behavioural expectations of a system.
This allows the system to perform more in line with human-readable goals, such as cost, average
service time, and other criteria instead of discrete metrics. It then combines this information
with historical performance data to provide internal revalidation of recovery solutions. By using

a time windowed mean expectations in behaviour can allow for elasticity versus pre-defined

QoI metrics.

In a supervised framework the revalidation of a new set of expectations is normally completed
by a member of technical staff. This occurs in a similar fashion as that being leveraged by
Shadows:SI'AS are compared against a system’s overall performance and combined with
historical data—such as application logs, configuration files, etc. The addition of correlating
events with systems faults provides an advantage in contextually evaluating anoialEs.

By sampling the system at key intervals, faults can be associated with specific changes and,
ideally, their respective source®d 19]. This is useful for establishing a root-cause analysis
and to map similar events with recovery solutions—sometimes referred Evexst Driven
Monitoring [78].

Event Driven Monitoringcombines a complex set of sensor classification algorithms with
run-time analysis techniques for isolating anomalies from normal or established patterns of
behaviour. These approaches can range from the reactive use of simple exponential smoothing
algorithms in a time series predictiof], to pro-active prediction of stateBd]. VieCure [/1]

is aCBR-style framework that leverages event detection in addition to direct analysis of metrics.
Instead of directly mapping faults to recovery plans, VieCure looks for deviations in expected
systems behaviours that can indicate when self-healing is needed.

Events can constitute a series of incidents within a log, or a set of incidents that exhibit either
a certain order or rate of occurrence. If an event is determined to coincide with a fault, then
a recovery strategy is selected from a known set of working solutions. As expected, unknown
events and faults require supervision in the same manner adiifiiframeworks — supervised
approaches are limited to reactive fault mitigation as by definition they cannot address what has
not yet been observed.

Periodic interaction by administrators remains a caveat of supervised and semi-supervised self-
healing frameworks. However, some frameworks have demonstrated an ability to dynamically
elect self-healing behaviours without this requiremeB#, P8, 36, 37, 26, 7], but the most

S [18, 78], HMMS [[18], RBMS [19],

-
NINHS

notable gains have occurred using the aforementi@

52 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

and biologically inspired behaviours, such as totipotent adapt&® @9, 36, 37] andGAS [26,

24]. Each of these techniques have different properties that relate to their suitability at solving
particular tasks — from producing candidate solutions within a given search &iilde fhe
autonomous classification of sensory informati®f]] These approaches range in degree of
suitability based on how much risk and resource commitment a specific computing environment
or service infrastructure is willing to accept.

Using alGA, Plato can search for and mitigate faults based on correlations between behavioural
properties and configuration data. This is a framework that dynamically produces self-healing
solutions based on a stochastic search methodology that comprises of multiple candidate
solutions P6, 27, 80]. By comparing the operation8ICAS and policies with the performance of

the candidates individually, a degree of fithess can be ascertained from the candidate. Once the
candidates have been evaluated, their individual features are analysed and correlated to produce
new candidates. This occurs until either preset resource constraints are met, or an optimal
solution is found per the associated fitness functions. In this instance, the utility functions in
previous frameworks are analogous to the properties that are emphasised by the fithess functions
in genetic algorithms. Each respective function provides the same base purpose: To translate
and enact human-readable goals into systems behaviours. Examples of these goals include cost
minimisation, application priorities, or performance traits.

This approach allows Plato to stochastically search for and build recovery strategies providing

a critical advantage over other methodologies. Rather than requiring prescribed recovery
solutions, either during development or run-time, Plato can autonomously produce viable self-

healing solutions. However, there is no assurance that an acceptable systems configuration will
always be found using this methodology, nor that it will be optimal. This is as expé&igd [

and inherent to the nature of existing search-space methodol&fileslato’s use ofGAS is

also computationally costly, and can produce behaviours that cannot be anticipated. Thus, a
high degree of risk can be associated with this approach.

Complimentary to usind=AsS, OB operates by using historical configuration data to au-
tonomously train [90]. Features in the historical configuration are converted into vectors
which are then used as input for predicting behaviour, and feature state. This information helps
to analyse the validity and impact on a system’s behaviours when configuration changes occur.
Once theSOM is trained, the system can then synthesise new, valid systems configurations
by predicting which features are causal to specific faults. This approach leverages a smaller
search space than the genetic algorithms used in Plato, and consequently presents less risk via
potentially divergent systems behaviours.

3.2. ACOMPARISON OF SELF-HEALING SYSTEMS 53

HoweverJBI displays some limitations in exploring new configurations and seems to produce

a stronger likelihood of local minima in configuration synthesis due to its inability to expire
sampled data. This is represented in the purposes of these two approaches being somewha
divergent: The ability to synthesise new, valid systems configurations upon fault, and the
prediction of failures within distributed infrastructures. Recently, a comparison of this approach
and other stochastic primitives demonstrated an improvement upon these r2ejltand
combined studies ifeature localitycontinue to display positive resuli@T, 31]. The findings in

the former study are the primary focus of this book and are discussed in the remaining chapters.

Separate from either of these approaches is the transparent management of resources within ;
service infrastructure via dynamic role or service adopt®#§7]. In each of these approaches
systems use information about the general state of the service infrastructure to dynamically
elect a localised reconfiguration. However, these approaches differ by allowing systems to
dynamically adopt roles through self reconfiguration, in the case of Embryo-&#repd the
self-instantiation of localised management servi&&s$. [

As previously mentioned, these systems are initially instantiated with a representation of the
service, a set of roles, and an ability to query service state on remote systems. Using these
three components the framework is then able to dynamically adopt new configurations or return
to an original, neutral configuration based on service performance. Any device found to be
without a base set of configuration data is automatically provisioned with the latest ‘genome’
via a replication agent. This provides a measure of self-configuration and provisioning; a
process typically referred to as a separate challenge in Autonomic CompBfiag [The
adoption of new roles is facilitated via a differentiation agent that tracks and contextualises
roles and expected functions. This agent must then self-elect a role-based on its independent
understanding of the state of service.

This approach is contrasted by OSIRIS-SR, a framework that leverages Gbtd produce

a Safety Ringo manage service infrastructur@l]. OSIRIS-SR operates by using supervisory
systems roles to monitor and recover from failures in resource availability. These systems
leverage meta-data to build an understanding of neighbouring systems behaviours, and then
aggregate that information across multiple supervisory nodes. This is similar to Embryo-ware
where only neighbouring nodes are monitored and influence the ability of those systems to adopt
roles. What makes this approach unique is that any system can elect to become a supervisory
node. This is useful for ensuring availability and reliable service management in infrastructures
where systems membership can change without ndfide [

The following diagram illustrates trends in the management styles associated with self-healing

54 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

frameworks (Figur&3.
0 | Top-Down
B Bottom-up
8
6

. ﬁl

Unsupervised Semi-supervised Supervised

Figure 3.3: Learning Methodologies versus Management StylesWhen self-healing system are
implemented in a top-down fashion, they tend to leverage supervised learning methodologies. Likewise,
bottom-up management styles are more likely to use unsupervised and semi-supervised learning.

There appears to be two key properties immediately evident within fi§j3rel.) self-healing
frameworks research is driving towards solutions that utilise supervision in centrally managed
systems; and 2.) the learning methodology leveraged by the self-healing framework appears to
be linked to its management style. Additionally, if we extrapolate this information, it seems that
progression towards less supervision is being driven chiefly in ad-hoc computing environments.
However, because of the sample size of grid BE®approaches being relatively low, this may

not be immediately evident. Instead, developments in this area appear to be occurring in cloud
computing and other environments that leverage virtualisation.

3.3 Synthesis

Self-healing systems methodologies are becoming more autonomous, but remain dependent
upon either required periodic human interaction or the acceptance of uncertainty in systems

behaviours. This finding comes as self-healing methodologies continue to specialise based

on external factors such as their intended computing environment and respective management
styles.

3.3. SYNTHESIS 55

Author Year Title Learning Methodology Management Style Computing Environment
g s
3 2 g
o} %) 0 i)
[} g - Q, g
9] 1 > nl = ko) - oy
- o Y | =z] > N
> 2 o IS o I ~ oy
9 & Q, o el el T ~
[} i >] I g > kel
Q g 2 + Q © o -~
=] g =] o o D ~ Y
n %1 D m E [95] @] O]
Schuleri 2004 OSIRIS L] [[} [}
Shang: 2004 Rainbow [L])
Messig: 2005 WSRF [) [J
Rillin: 2006 Vigne o ° ° °
Naccachei 2006 [] L] [}
Shehory: 2007 SHADOWS ° ° Y
Calinescu: 2007 GPAC ® [} [} [}
Aldinucci: 2008 [) ° [} [}
Cardinelli: 2009 MOSES L]) [}
Ramirez: 2009 Plato ° PY ° ° °
Ahmed: 2009 o L] []
Pernici: 2009 WS-DIAMOND [] [] [J
Miorandii 2010 Embryoware ° Y Y [} [}
Simmondsi 2010 [] Y °
Psaier: 2010 Viecure [} °)
Menasce: 2010 SASSY [] [} [
Stojnici 2012 OSIRIS-SR [} []) [} [}
Gomaa: 2012 SASSY-ext) ®)
Li: 2013 [] ® []
Dean: 2013 UBL ® ® ®
Schneider: 2014 ADF - 1.0 [] [] []
Schneideri 2014 ADF - 2.0 ° ° °

Figure 3.4: Self-Healing Systems FrameworksSelf-healing systems frameworks as categorised by
learning methodology, computing environment, and expected management style by first author’s last
name, year of introduction, and framework title (if appropriate). In some cases frameworks exhibit
abilities to operate under multiple assumptions — these incidents are represented by additional bullets
within the graph. Figure 2.8 divides this information into percentages with each entry represented once
per category.

Notably, a framework’s specialisation has been shown to provide distinct advantages in au-
tonomously identifying and resolving faults. These advantages play pivotal roles in under-
standing how self-healing frameworks are evolving.

Furthermore, many approaches display behaviours that are not universally desirable self-healing
approaches are diverging based on their specialisations. This is a concept that until now has
not been explicitly addressed within the field. By contrasting where self-healing frameworks
are being implemented, an understanding is gained of where self-healing systems are making
progress and towards which specific problems.

56 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

The intended computing environment of a given framework is a foundational factor in eval-
uating the success of its self-healing behaviours and has produced a divergence in the types
of self-healing systems that are being developed. Environments that require a greater degree of
control of their systems often exhibit centralised management techniBBgs1[65, 67, 38, 84,

73,132, [70]. These approaches are evaluated based on how predictable their behaviours are, and
often intentionally build in a requirement for human intervention. Conversely, frameworks that
operate irad hocinfrastructuresi?4, 39, 27, 37, 28, 34] are often expected to exhibit behaviours

that do not require human intervention, and in some cases to synthesise new self-healing
strategies. This result is an artefact of computing environments having inherently different
properties, exigencies, and requirements. The result has been that self-healing frameworks
have developed specialised strategies that address each of these factors, explicithBBigure

Computing Environments Learning Methodologies

Standard, Cloud, & Grid

4.5%

Grid
13.6%

Unsupervised

25.0%

Standard & Cloud Supervised
Grid & Cloud
54.5% 50.0%

Semi-supervised

25.0%

Management Styles Models & Primitives

Top-down Dynamic Model

33.3%
Evolutionary

Bottom-up

Case-based Reasoning

33.3% Fixed-Model

Figure 3.5: Relative Coverage of Different Self-Healing Techniques.

3.3. SYNTHESIS 57

Evidence of specialisation in self-healing strategies is becoming increasingly more common
as frameworks exhibit hybrid approaches for mobk&][and centralised computing envi-
ronments B7]. These approaches place a specific emphasis on leveraging different self-
healing strategies based on the environmental suitability of the approach at run-time, and by
anticipating resource availability. Notably, resource prediction is being leveraged more often
where assumptions cannot consistently be made about the state of computing environment —
particularly where resources are transie®f, [10, 33, 34], or virtualised P8, 97]. In these
situations self-healing frameworks leverage multiple concurrent strategies to address greater
degrees of systems volatility. Likewise, frameworks have leveraged various approaches for
identifying and mitigating faults based on local and remote observations within their respective

environments{2, 67, 93]. FigurelZ35 outlines the divisions of these approaches, visually.

Although the approaches used by self-healing systems are varied, there are trends as to whick
methodologies are being leveraged and under what circumstances. Systems within environ-
ments that exhibit a high degree of churn are more likely to leveaddecmanagement styles

[34, 33, 10, B7], and learning methodologies that require less supervisi8i 48, 277, 31].
Conversely, frameworks that do not have stable systems membership are more likely to utilise
a centralised form of systems managem&X (9, 87, 73, 67, 65], and exhibit supervised or
semi-supervised learning methodologiés, [72, (73, 34, 38, 67, 74, [70, 35, 66]. The predictabil-

ity of a self-healing framework’s actions are crucial in identifying operational requiremeats (
SICAS), and are a defining factor in what behaviours are allowed or desirable in its respective
computing environment. As behaviours are nearly solely defined by learning methodologies,
is it clear that the relationship between management style and environment is linked with the
degree of supervision required for its continual operation.

Using anad hoc management style allows self-healing frameworks to leverage more au-
tonomous strategies and learning methodologies. However, systems that engage in self-electec
behaviours — particularly those that have not been previously vetted — have been shown to be
inherently more risky when attempting to meet operational goals and less likely to produce
reusable solutions8E, 84, B5]. It is for this reason that the use of centralised management
technigues remains the preferred approach when environments are expected to exhibit a low
rate of churn — the most notable examples bdif§R and CBR-like learning methodolo-

gies [£3, 68, B9, 65, 74, 61].

The advantages of self-healing approaches are directly related to their supervisory requirements.
Although supervised learning methodologies have shown advances towards reducing human
overhead, when compared to unsupervised methodologies, they have ultimately produced
palliative results — particularly when executing recovery strategies. This is primarily due to

58 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

the fact that supervised techniques can only reactively detect f2t]{sajnd that the solutions

they generate often must be vetted via human intervention before being implemented. These
solutions can become increasingly more complex to manage as the interdependency of features
must be accounted for in subsequent self-healing strateégfigsJuch solutions are difficult to

vet as often relationships between features are notimmediately accessible either algorithmically
or intuitively.

Semi-supervised and unsupervised approaches have shown stronger capabilities in ascertaining
the root cause of a given fault, and producing non-palliative recovery solutions. In particular,
the use of evolutionary programming techniques has demonstrated the unique ability to au-
tonomously generate new systems configurations at run-time to mitigate tijjtarid the use

of BNINS have been shown to correlate specific systems configurations with operational fitness
levels to produce predictive fault detecti®t8]. These approaches show greater capabilities for
autonomously self-healing of faults, but, like supervised methodologies, also come with certain
restrictions.

Notably, the resources needed by unsupervised approaches can be much greater than super-
vised approaches, and frameworks leveraging these methods are not assured of finding a
solution 28, 24). These are properties inherent to the nature of search-space methodologies
— either a predefined constraint is exhaustd.fime), or an acceptable solution is converged

upon [BO]. Exploration into these issues remains a separate field of study and outwith the
scope of this survey — however it is clear they are deeply related to the viability of self-healing
solutions.

3.4 Synopsis

Unsupervised fault detection within self-healing systems is in a relative early stage of develop-
ment. The use of evolutionary programming techniques to successfully synthesise new, valid
self-healing strategies have been present as far back as Z609However, recent studies
have emphasised the use of stochastic primitives to achieve this same goal — albeit with limited
successi9, 18, 7, Z8]. In order to quickly understand where common effort is being placed,
an overview of these studies is provided. This includes their implemented primitive types,
learning algorithm(s), and software suites — which in turn detail how information is gathered,
and what faults are injected. Dividing these areas into distinct units for evaluation establishes
the groundwork to describe commonalities in their respective implementations and helps in
contextually understanding their results.

3.4. SYNOPSIS 59

To advance the state of the art in self-healing systems research, a self-healing system must
have an established baseline from which to understand its results, operate accurately using
unsupervised learning to determine the root cause of faults, and use non-simulated, unlabelled,
and contextually valid information to infer behavioural information. Successfully achieving
these results requires a number of assumptions to be made, as some of their criteria are outwith
the scope of this thesis — see Sectoh

In IBM’s Autonomic Maturity Model the most advanced self-healing actions occur when
general policies are applied to the system, andAatonomic Manageself-elects its own
behaviours. This idea represents a simplification of systems management into clear and concise
goals, and it is for this reason that it should be emulated. Systems should be managed using
a series of high-level operating goals, rather than being individually maintained at a technical
level.

Evolutionary Programming offers some immensely useful extensions to computing behaviours
that can, theoretically, address some of the problems self-healing systems research faces. The
previously cited example d&AS being able to reactively synthesise new, valid configurations
upon detection of a fault is one such approach. These techniques are unfortunately expensive,
and time-consuming. In a professional environment, both of these resources must be minimised
in terms of use. However, some of these techniques are more useful — and more importantly
less costly — than others.

Fitness tests are primitives in Evolutionary Programming for evaluating the validity and effec-
tiveness of a sample within a collection of potential solutions. These are akin to the performance
tests this instance: Performance tests operate by examining broad, high-level criteria captured
in SITO% When used in self-healing systems, the overall behaviour of a system can be used to
categorise its state. Additionally, by not identifying specific features to test, the application is
left to determine the source of the fault when using performance tests because it only looks at
the high-level behaviours. This allows for basic abductive reasoning to occur built exclusively
from the application’s logic.

Emulating the use of policies’ high-level nature makes performance tests ideal for achiev-
ing the combined goals in existing research to use policy-based strategies to manage sys-
tems B4, 1, 3, 6], and roughly mirrors standard practice in existing computing environments
where Operational Readiness Testingsb&S are required. It also establishes the groundwork

for feeding in the results of this experiment with existing evolutionary techniques — synthesising
fault mitigation strategies usifgAs being one such example.

Observing historical behavioural information is a tried and true method for learning and

60 CHAPTER 3. A SYSTEMATIC REVIEW OF SELF-HEALING SYSTEMS

predicting new information, however it is not an approach that has been widely adopted in
self-healing systems research P2, 8]. In fact, the majority of works still focus on supervised
techniques that only take into account external learning from human-subjects on unexpected
faults. Incorporating historical observation into windowed data-sets addresses contextual
information problems. By understanding behaviours within a specific time period, predictions
can infer the correct contextual information.

Which learning algorithm operates best under what circumstances is unknown. This is partially
due to the fact that as a community their use isn’t entirely understagd®DI]) [95]. Itis clear
however that some algorithms are preferred as they are more conducive to the primitive being
implemented, and to what feature sets they exhibit. For example Vit&ipahdCDI [13] are

both capable of multi-step ahead prediction, whilst Baum-Wed¢h97, 98], Back-Prop b7],

and Naive Bayeshl] are not. As mentioned, these algorithms often come paired with a
primitive — Viterbi operates oIMMS, andRBMS leverageCDI], respectively — but it is not
always the case. Fully recurrent networke.(unrestricted) stochastic primitives remain a grey
area, particularly as most do not have practical learning algorithms with the potential exception

of Generafive Stochasfic Nefworks (GSNsge Chaptes, Future Research).

Understanding and forecasting behaviours within a system are not enough to make an assess-
ment of the effectiveness of self-healing systems methodologies — either in terms of cost or
complexity. To do so would require a comparison against human-subjects of which there is
currently no known public research. Similarly, direct comparisons between self-healing systems
appear to be largely unavailable. To understand the strengths and weaknesses of these studies,
they must be compared.

The following chapters detail the experiments and results provided in this thesis. They focuses
on expanding the discussed approaches, analysing the validity of historical feature behaviour,
and outlining a new, accurate approach for determining both the presence and root cause of
faults.

Specifically, it emphasises using feature change data to address the problems mentioned in the
previous section by demonstrating the effectiveness of several types of stochastic primitives
using unsupervised learning to autonomous identify the root cause of faults. This approach
demonstrates not only the effectiveness of different types of stochastic primitives, but also
accurately identifies faults using both abnormal application termination and human-initiated
faults (OEIS and BCCS, respectively), mitigates convergence by using a windowed dataset,
compares greedy and lazy approaches, uses non-simulated data, and shows how noise can be an
indicator of expected feature behaviours.

3.4. SYNOPSIS 61

Positive results from these experiments demonstrate possibilities for reducing the resource
requirements associated with autonomous fault detection, and autonomously discovering rela-
tionships between features. This includes understanding the benefits of mitigating convergence
through the use of a windowed dataset, the potential of narrowing the search-space when using
GAS to synthesise valid systems configurations, and uBIh to forecast multi-step ahead
feature behaviours.

CHAPTERFOUR

AN AUTOMATED
APPROACH FOR
IDENTIFYING FAULTS

This chapter briefly summarises the problem statement of this thesis before theorising and then
postulating on a new approach to automating fault detection using stochastic primitives and
unsupervised learning. Afterwards, research questions, contributions, and the experimental
design for testing this hypothesis are detailed using two separate but related approaches:
One experiment usddMMS and BENNS, whilst the other useRBMS. It then describes the
limitations and threats to validity posed to these experiments, followed by their respective
implementations.

This chapter concludes with an outline of a comparison against a similar experiment leveraging
SOMsbefore leading into the following chapter, where results and a discussion are provided.

4.1 Problem Description

The question remains: How can we further automate the behaviours of self-healing systems
whilst reducing the operating costs of large-scale computing environments? Accurately iden-
tifying the root cause of a fault should allow for less human oversight and reduced costs.
However, identification of the root cause of faults is non-trivial. A number of problems exist
between the detection and subsequent correct identification of the root cause of a fault including

63

64 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

ambiguity in information, contextual inference, etc. A small step forward would be to automate
the diagnostic process that human engineers perform by short listing potential avenues for
investigation.

It is possible to leverage feature changes of a faulting system to accurately automate the
identification of their root cause(s) if, prior to the fault, working configurations have been
observed. This approach works for either sing®Bfs or physical computing systems.

It assumes that the features associated wigh leading to) the root cause have been observed

in both several working configurations and at least one faulty configuration, that there are
measurable metrics for deciding when a system is in a normal operating st O3,

and that there exists an uniquely identifiable, feature observation or collection interface — such

as the/proc filesystem ofindows Management Insirumeniation (\WMI)

There are two classes of faults this approach attempts to correctly identify the root cause of:
DEIS, andBCCs The former deals with faults directly caused by logic failures — such as

a crashed stack, or abnormal application termination — and the latter focuses on user-related
errors — such as switching off a service at the wrong time. Both of these types of faults deal
with application failures, or more specifically “services”. It does not matter where or how these
faults are generated, so long as they have an observable feature and that feature is observed by
theEDE.

This approach is expected to work on other operating systems besides Windows regardless of
the primitive used, as is indicated by the external comparigéh However, no comparison of
theEDES$are made on other operating systems due to the proprietary nature of the C# language
andi/MI.

4.2 Approach

Determining the root cause of a fault is a hard problem — one that may help reduce costs in
mitigating downtown in computing environments. The approach proposed in this thesis demon-
strates novel capabilities for analysing of the root cause of faults within a computing system,
with the aim of eventually producing demonstrable cost reduction capabilities. Uniquely, it
shows that monitoring the content of the data is not strictly necessary to determine the root cause
of a fault as monitoring the pattern of changes in the observed data can be sufficient. Using
machine learning techniques this can be automated, and provide a helping hand to existing
computer operating procedures.

4.2. APPROACH 65

This approach builds on prior art — chiefly from the Autonomic Computing initiative — but also
leverages Machine Learning and Computational Intelligence techniques. The approach operates
in two stages:

First, an application periodically samples feature behaviour data. This information is transduced
into vectors which form the basis for future analysis and forecasting. Second, the data is
labelled — a process that occurs through performance tests. If a system passes a number o
high-level objective goals and policies, the data at large can be assumed to be in a ‘good’ state.
If any of these tests fail, then the opposite is assumed and an analysis is performed against the
likelihood of the expected and observed behaviours using trained stochastic primitives via the
known ‘good’ feature data.

Finally, once trained, if any of the specified performance tests fail, then the primitives forecast

feature behaviour to varying degrees — both inherent to their respective learning algorithm(s),
and by how much training data is present. Any mismatches are detected and returned in a list
ordered by descending likelihood indicating the potential root cause of the fault.

This thesis explores two possible implementations of this approach — one using a greedy data
ingest mechanism (Vi&8NNS, and HVIMS, FigureZ™), and one using a lazy data ingest
mechanisnRBMS (FigureZ2) — both of which are detailed in Sectidd3 along with examples

of their operation. In all other ways, aside from the learning modules, the approaches are
identical.

To accurately identify faults, thEDESrequire a user to provide:
1. A polling interval (in milliseconds),

2. A‘learning module’, and

3. A set of performance tests.

A polling interval specifies how often the systems’ feature data should be gathered, evaluated,
and stored. The learning module consists of a stochastic primitive and an associated learning
algorithm. Using the AForge.NET and Accord.NET frameworks, it is possible to select

a number of previously built stochastic primitives and and associated learning algorithms.
However, a user may also specify their own primitives and learning algorithms. Performance
tests consist of user-designed code that evaluate the state of the system. This are simple test
written into the application to verify the health of the system and are akgitas All of the
specified tests must pass during each polling interval.

A user may also update the maximum number of samples to retain. This allows for greater

66 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

FDF - UML Activity Diagram - Greedy

Initial : . . . Generate Leads Produce List
Configuration Galzzilln 2l Se=afileli=z (Predict) (Execute)

—@

—

@ ¢ {
Polling Fyaluate .
Interval (PI) To Screen

Print List
PTs Unexpected
‘ Changes
.7 Polling

Performance Interval p‘

Tests (PT) Elapsed?
Build

. List of Leads
Learning
Module (LM)

Wait Until Sort

Pl Elapsed R Descending
Order

Older than

Collect Data - I
(WMI) ACtWE_'te Generate List
- Learning

Module

30 Samples

Figure 4.1: Fault Detection Framework Logic & Architecture Diagram using Greedy Ingest. The
FDF leveraging ANNs and HMMs operates by updating its primitives as soon as feature data is recovered
from the system.

control over the window of observed data desired to be retained Hylike&s For example, a
higher frequency collection rate of once per 5 seconds using the default value of 30 maximum
samples would only allow for a 150-second window of observation. It is unlikely this
window will be sufficient to capture changes in feature behaviour outside of this time-span.
Increasing the maximum number of samples thus increases the window size, and by adjusting
the maximum number of samples and the polling interval, it is therefore possible to control
fidelity of the information as well.

TheEDESare configured by default to run in a WindoW# to test the performance and state

of [nfernef Information_Services (IISMicrosoft's proprietary web service. No changes are

4.2. APPROACH

Initial
Configuration

FDF - UML Activity Diagram - Lazy

Collect (Monitor)

Classify (Analyse)

Generate Leads
(Predict)

Produce List
(Execute)

R
. o Activate ._)
Learning N
Polling Evaluate Module Print List
Interval (P1) - o Sereen
o >
Polling . -
Performance Interval Find
Tests (PT) Elapsed? l Any Unexpected
Fail Changes
Learning Yes No
Module (LM) All Pass Build
List of Leads

Drop Data
Older than

30 Samples

L

Collect Data n
(WMI)

Sort
Descending
Order

F_

Generate List

Figure 4.2: Fault Detection Framework Logic & Architecture Diagram using Lazy Ingest. The

FDF leveraging RBMs operates identically to the FDF that uses ANNs and HMMs except with a lazy
ingest mechanism for feature behaviour data. Primitives using a lazy ingest are only trained upon fault
detection.

required to the source code to revalidate the experiments described in this thesis. Although it is
believed that these results can be generalised to other operating systems, no attempt is made ti
demonstrate this.

4.2.1 Running Example

Step 1 (Optional) A user provides thEDE$with the three requirements describedtid, and
then compiles the code.

68 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Step 2 The application is run and then waits in the background whilst the computing system
operates normally for a desired period of time — in the case of these experiments, 5 — 30
minutes. After each polling interval the framework prints to screen memory usage and
the collective state of the performance tests as “System State” (FgRre

Figure 4.3: Running Example — Successful Data Collection via FDFsCropped image showing
successful data collection when running an RBM-based FDF.

Step 3 Upon injection or detection of a fault, tHe0H should break the loop it is currently
operating in and provide a list of fault hypotheses in descending order of likelihood
(Figured-2). If the monitoring loop is not broken then a False Negative must be accounted

for by hand.

Figure 4.4: Running Example — Fault Identification via FDFs. Cropped image showing a sample of
an FDF result screen. The full sized list has been truncated to save space but can contain 5 to 300 leads.

4.3 EXxperiments

This section broadly describes the approach taken whilst the technical implementation details
are described in SectidhB. The implementation of this approach details what is necessary to
run the framework and use it to identify faults. The rest of this section on approach describes
the overall operating strategy of tB&1ES

Both EDES periodically sample behavioural feature data from a local system usirig/Kig

This data is then converted into vectors for each individual observed feature of a specified
window of time — which in turn provides contextual inference and avoids convergence problems.
Vectors are used to train stochastic primitives for predicting the behaviour of features to analyse
features for potentially errant behaviour.

4.3. EXPERIMENTS 69

Errant behaviour is determined by comparing the actual and forecasted changes for each
monitored feature when &I O fails. Any feature that does not exhibit the predicted behaviour

by its respective stochastic primitive is short listed as a potential lead for the root cause of a

fault. Prioritisation and ordering of these leads is provided by sorting the leads in the inverse

likelihood of the change observed — less expected events are moved further toward the top of
the list.

In order to determine if the data should be used to train a stochastic primitive, a series of
performance tests determines the overall health of the system being observed. How these test:
operate is described in Sectid® — but, broadly stated, a passing series of performance tests
reinforces behaviours in the primitives through training, and a failure sends a signal to begin
forecasting and temporally comparing feature behaviours.

Using this approach validates or invalidates the hypothesis by testing the forecasting capabilities
of stochastic primitives. If the primitive successfully indicates the correct root cause of the
fault after a performance tests fails, then it is clear that the forecasting abilities are working
correctly. Conversely, if the primitives do not indicate the correct feature then the hypothesis is
not supported.

Fidelity being a chief concern in these experiments, different volumes of data are used to show
trends in the approach. Specifically, how much data is needed to train the primitives is explored
through the different volumes of input by using 5, 10, 15, 20, 25, and 30 samples. Each sample
corresponds to one minute intervals. These values were chosen arbitrarily with the intent to
provide a reasonable enough time for the system to accommodate changes.

This approach operates on a few assumptions. The first is that without changes within the
observed features’ values the stochastic primitives used in this experiment would not function
at all. This is one of the reasons for waiting 60 seconds between samples. The second is that the
fault must lie within the observed features’ behavioural data to have a chance of being accurately
indicated. One test explores beyond this assumption with surprisingly positive results, but those
results are, expectedly, not accurate.

Several key aspects are addressed wittHRES that appear to be missing from current self-

healing systems research. In addition to open questions about fidelity and a lack of basic
comparison of performance between different types of primitives, little research exists between
studies that explore solutions in the aforementioned fashion. Specifically, the simple observa-
tion of feature changes rather than their explicit values had not been examined. Additionally,
only one study so far has attempted to use evolutionary programming techniques to explore
recovery strategie®l]. This work attempts to address some of the search-space challenges

70 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

within that study by providing a mechanism for guidiB@s (see Chaptds, Future Work).

4.3.1 Hidden Markov Models & Artificial Neural Networks

The first experiment leverageBIMS andBNNS, to periodically sample configuration data via

an interface, then classify this data using a series of performance tests. Based on the collective
results of these tests, the information is categorised as either beingdadeor faulty state.
Afterwards, thdEDFE takes one of two potential actions.

The first action is to update a local data-store. When the system passes all of its performance
tests, the existing data-store is examined to make sure its total number of configuration samples
does not exceed the maximum threshold. Any data that is beyond the maximum number of
data-sets is dropped. The primitives are then greedily trained using their respective learning
algorithms using the remaining and latest configuration samples.

The second is to perform an analysis on the system’s feature behaviour data. Features that show
changes between the previous ‘good’ sample are compared to the ‘faulty’ configuration. If a
change is noted, it is short-listed for comparison. This is an optimisation technique that reduces
the maximum number of features for investigation. Any changes are fed into their respective
stochastic primitive where the likelihood of the change is then compared to a forecasted value.

The differences between the expecteel forecasted) value and the actual value (located within
thefaulty configuration) provide a measure of confidence or likelihood for the potential cause of
the fault. Once this comparison is complete the feature is added to a list of potential root causes.
Finally, this list is sorted by highest likelihood starting with the firdt{@ndex (FigureZ3).

Using this list, metrics are generated via EHBES$that indicate precision, accuracy, prediction
time, the aforementioned confidence value, and the total number of leads generated. The
conditions of these metrics, such as what constitutes True and False Positives or their respective
Negatives are explained in Sectidr3.

Testing is done through fault injections. These take two foldiSs andBCCS The details of

their implementations and differences are discussed in Se&ipbut the theory behind these

two approaches can be summarised as examining the differences between software errors and
human errors, respectively. In each case the root cause is known to the administrator but not to
theEDE. This allows for validation of the result provided by tBBIH, and an unbiased attempt

at identifying its respective source — the latter being the primary goal of these experiments.

Both the BENNI and HMM approaches operate using single-step prediction that has been

4.3. EXPERIMENTS 71

FDF - UML Activity Diagram - ANNs & HMMs

Initial Generate Leads Produce List

Configuration Collect (Monitor) Classify (Analyse)

(Predict)

(Execute)

— /___1\
_’ I\‘-__H/I
| tPc:IIlrI1gPI Evaluate TF‘rlgt List
fLerve PTs Unexpected O oereen
‘ Changes
.7 Polling ’7
Performance Interval "“
Tests (PT) Elapsed? Any
Fail Build
. List of Leads
Learning
Module (LM)
Wait Until Sort
Pl Elapsed i neE Descending
Older than Order
30 Samples

¢

Activate
Learning
Module

Generate List

Collect Data
(WMI)

Figure 4.5: Fault Detection Framework Logic & Architecture using Hidden Markov Models and
Artificial Neural Networks. Fault Detection Frameworks are provided three inputs, set to run, and then
injected with faults at varying time intervals. The result is an ordered list of leads based on forecasted
feature behaviours.

implemented in a reactive manner. Whilst unsupervised learning is generally meant to forecast
behaviours into the future, this experiment is meant to be a baseline to determine the accuracy
of future endeavours. Understanding their operational capacities is therefore emphasised.

Lastly, each of th&DES$requires basic instantiation before operating. As mentioned previously
this book does not centre on self-configuring.(self-provisioning) methods and an initial,
minimal setup is required. ThEDE must be provided with a polling interval, a set of
performance tests from which to ascertain the system’s overall health, and a stochastic primitive
with a coupled learning algorithm.

72 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

4.3.2 Restricted Boltzmann Machines

EDES$that leveragdRBMS operate under nearly identical assumptions and conditions as those
used forlBANNS andHMMS. The polling interval, performance tests, and learning modules are
provided to theEDE. Afterwards, it is allowed to run for 30 minutes before being subjected to
the samdEIS andACTsS

The primary difference when usifg§BMS is how the primitives are trained. In the former ex-
periment a greedy approach is used in conjunction with a windowed data-set. This necessitates
that the primitives are destroyed and retrained after every successful data collection. Thus,
although faster predictions can be made under these conditions, it also requires more persistent
use of a system’s resources. This can create an artificial limitation if the number of features
being parsed grows to a size greater than the system can parse within the polling interval.

To alleviate this problem thBBM approach uses a lazy implementation. Data is not directly
parsed until a potential fault has been detected. The caveat to this is tikdDd#Eie unable to
return potential root causes as quickly as its counterparts.

A secondary difference exists in that some of the vectors used to tralRBNE are partially
incomplete — this is intentional. Although the goals of these experiments remain intact by
not using simulated feature behaviour data, the requirements &Bh#& in how it is trained
requires some unique properties. Specifically, B3 cannot be trained without a complete
dataset because the learning inputs must be vectors of equal size.

There are two ways to address this problem. The first is to wait for double the amount of
time for a maximum window containing the maximum sample-size number of configurations

to populate — in this case 60 minutes. The second is to assume vectors the size of the data-set
window (.e. maximum sample size) and populate them as more information becomes available.

In the former, the amount of data being used by B is greater than those in the other
experiment. As the total time to observe the system is a key variable in understanding how
quickly the primitives can be trained, this is ruled out as a potential option. This additionally
allows the experiments to use the same amount of time to attempt to generate results.

are trained using half as much data as they could otherwise use. The vectors are
instantiated based on the provided maximum sample size. Each vector contains a series of
values, with each value indicating a certain observation of feature behaviatihrange no

change andunknown- (1, 0 andnull), respectively. Using the latter of these indicators, vector
information is gradually changed froomknowrto their correct, respective indicators.

4.4. LIMITATIONS 73

In contrast, theHMM and BENN EDE$ continue to increase their vectors by adding one
additional index until the maximum window size is reached; a third value is unnecessary.
However, in this case it was important to try to distinguish between all three states for the
sake of accurately inferring the vectors’ information. This is further described in S&Hon

4.4 Limitations

Feature prediction has proven to be a viable method for determining the root cause and potential
for impending faults #8, 20, 19, T8]. However, the accuracy of these approaches does not
appear to be compared outside of this thesis. A baseline for this information is presented and
analysed in order to understand relative effectiveness and performance criteria between studies
but remains to be validated (Chapt&randB, respectively).

Related, as more information is used to train stochastic primitives, their effectiveness diminishes
due to convergence. To mitigate convergence, stochastic primitives need to have a time-relative,
windowed dataset from which to infer behaviours. This means using the more computationally
expensive route of expiring old data and retraining primitives as needed. It is worth noting that
time to infer and predict failures is also important. Without a speedy prediction, forecasting a
failure may not occur within enough time. This means balancing greedy and lazy approaches
and average response times, with their respective resource utilisation. Some of these topics are
superficially addressed, but not specifically within the context of self-healing systems.

Contextual inference when understanding feature behaviours is important but assumed to be
difficult to attain in computing environments. To partially address this problem, the use of
windowed data-sets is required priori. Using time-specific sets of information for analysis
avoids problems with convergence and over-training primitives — a topic which is discussed in
several existing experimentdq, 28, 88, 100.

Stochastic primitives leveraging unsupervised learning currently represent the best known
approach for multi-step ahead forecasting of feature behavidir&].] The relationships
between features are too complex to be modeled accurately in real-time by any human due
to the dynamic and rapid nature of their interactions. However, as as many faults are suspect to
have a number of dependencies in their root cause identification, performing such an evaluation
appears to be necessary for fully featured self-healing systems frameworks.

Accurately labelling data in an autonomous fashion is not a problem this research claims to
solve, nor are recommendations provided for improving learning methodologies. Instead, these

74 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

are problems that are resolved through operational policies and direct comparisons, respectively.

Each feature has its own dedicated stochastic primitive. Although costly, the nature of broad,
context-free data collection contrasted with minute predictions at the feature level make this
requirement necessary.

The nature of the general approach described in this thesis in SE&CHoecessitates certain
guestions — such as “Should the primitives be trained every time data is collected, or only when
a potential fault is present?’, and “What data should be used to avoid the pitfalls of emulation?”
Respectively, both lazy and greedy implementations are investigated along with controlled,
direct injection of faults in specific threads along with adverse configuration changes to provide
realistic user behaviour data within a system’s feature-set(s).

Some of the data in thEBMS vectors are incomplete. It is not possible to completely fill the
vectors within the time allotted with a full value set — to do so would require 30 minutes of
waiting, followed by 30 minutes of training. Instead, the vectors are populated with values
indicating a lack of observed knowledge.

Specifically, RBMS require data to be presented in a square matrix of values. In this case that
matrix is bounded by the window size as defined at compile time. However, this isn’t compatible
with the default instantiation of tHEDE$and the iterative tests using the aforementioned subset
sizes. To address this, ‘no data’ values were implemented inf&Eh& inputs so that the input

data sizes were the same across all iterations between both frameworks. This alloRBfithe

to recieve, effectively, ‘no-op’ controls in the learning algorithm. The alternative was to allow
theRBM double the time to acquire data which would then make the tests unequal.

By approaching the experiments in this fashion, use the same amount of data as
presented in the other experiments. Even with this limitation — imposed for fairness between
comparisons — the results are positive for this approach (Ch&ptetowever, the potential to
perform better, overall, readily exists. If fully trainddBMS appear more likely to continue to
demonstrate more accurate results.

WM is ineffective at gathering feature data in a manner that is uniquely identifiable. Although
touted as a mechanism for do exactly this, the notion of such structure in the data it returns is
entirely absent. In addition to lacking a unique identifier for the information it provides, other
problems include the nature of the data gatheredhi itself.

Deeper investigation showdiMTI is not a stand-alone service, but a conglomerate of registry
values, COM+ interfaces, and the occasional hard-coded performance counter. Whilst accessing
this information in one place is more accessible than gathering it separately, there is limited

4.5. THREATS TO VALIDITY 75

reliably as to how often the gathered information is updated. This appears to be due to
the individual policies of each of the aforementioned conglomerate pieces of code and their
individual update policies not aligning.

A lack of reliability in this respect is a problem when trying to document periodic feature
changes. To overcome this, each class withil\ARdl service had to be explored individually
and tested before use.

The described properties are not documented widely and — with the exception of the
unique identifier — were only noticed after extensive testing to ensure validity in results. In order
to ensure consistent results that were up to standard for both academic and industry rigour, these
problems had to be addressed. This is one aspect to how and why the initial tests were created,
including the decision to use one minute intervals.

If a fault is caused through feature locality — the notion that a fault manifests only when two or
more features have specific properties at the same time —then it is much harder to diagnose using
this approach unless they occur at the same time. This is a problem that was encountered three
quarters of the way through the research that would have been interesting to attempt to address
in the experiments. Instead, they have been anticipated by preparing for and accommodating
learning algorithms that can use a single output to generate a series of probabilistic inputs after
an initial learning phase (see Sect&l, Future Work).

Details of the implementations of these approaches are discussed further in the remainder of this
chapter. In summary, the application of this theory has met with overall success (Chapter

but many questions remain to be answered (Ch&ptersuch as which algorithm is best under
which circumstances? To help address these questions — and because results are best whe
compared with impartial, external data — a direct comparison with a similar study is included
(Section€72 andB) [20).

4.5 Threats to Validity

45.1 Construct

Confidence is intended to provide a human-readable metric for the expected margin of error
used by the learning algorithm. Overall this metric works as intended, however because
Baum-Welch uses a proportional probability, direct comparisons between other machine
learning approaches is not directly possible. This can cause some confusion if interpreting

76 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

the results as “100%” likely, despite misdiagnosis.

Time Taken measures the amount of time taken between when a fault is first suspected and
when the list of descending ordered fault hypotheses is generated was done with great
care. This was done to the point of using a programming obfekp&edTicks that
should produce similar results on any system, despite even minute differenC&%Jin
clock cycles and frequencies (see definitiBlapsedTicks However, the differences
between lazy and greedy approaches require an extra layer of inference to perform direct
comparison in some capacities due to a shift in where the bulk of the computation occurs.
This means using averaged results to provide the most accurate outputs, which is what
is provided. These value are converted to milliseconds (ms) for comparison and easier
consumption.

Total Leads are intended to represent the total number of fault hypotheses such that an under-
standing of the overall work-load of tlEJEScan be easily ascertained. In this capacity,
the Total Leads metric operates as intended and helps correlate expected increases in time
taken and changes in fault position.

Fault Position is the primary metric upon which the results of these experiments are based. An
ideal result is to have an expected feature reach position 0, along with other associated
features directly below it, if appropriate. It is believed that it serves this capacity
accurately, including the outcome that some high entropy variables were predicted to
be difficult to remove from the lowest{t) position.

45.2 Internal

Polling Interval is a value that determines how often the computing system should be sampled
for feature data. Increasing this value to a point that exceeds the capabilities of the
computing system to return data will result in failures at the application level and cause
the experiment to produce unusable results. Additionally, sampling information too
infrequently could mean losing fidelity or understanding of when feature changes are
occurring. A user must elect a Polling Interval that is appropriate for their situation —
a definition that is intentionally left open to interpretation so that a variety of services
and circumstances can be accommodated — and will provide, when combined with the
maximum number of configuration samples, an appropriate window of inference.

Maximum Total Configuration Samples is related to the Polling Interval and helps determine
the total window-size for making inferences and for forecasting. Increasing this value al-

4.5. THREATS TO VALIDITY 77

Epoch Count directly impacts the forecasting accuracy of primitives sud

lows for greater fidelity or larger windows of inference, but it comes with higher memory
utilisation and longer computation times when producing a list of fault hypotheses.

RIEBKIS. The value

used in these experiments was briefly explored by hand but ultimately the default value
of 5,000 was chosen after some anecdotal exploration of expected cycle times in other
implementations o0RBMS. Changing this value could deeply impact results, particularly
variance.

Faults (All) represent the core of the experiment. Injecting a fault that does not have an

associated, observed feature is assumed to be unlikely to produce accurate results. In
one instance this was tested and a partially accurate analysis did occur when using the
maximum number of samples. Specifically, unplugging an upstream router — which the
EDFE could not have known about or monitored — produced an arguably correct diagnosis
of a change in network throughput. This is considered to be an unusual result and similar
tests are expected to fail. Additionally, the type of fault injected matters in relation to the
accuracy of the output. This is discussed further in the Results Chapter (CBapter

45.3 External

Noise is an inherent problem in understanding feature behaviours; it may not be possible to

WMI

address it in all circumstances. Certain features or properties — such as free disk space
and the total number of active threads, respectively — can be extremely difficult to predict.
This creates problems in understanding if these traits are associated with a fault using
heuristic learning in a number of ways — particularly when using random values used to
instantiate stochastic primitives.

The approach described in this thesis attempts to accept that some features should exhibit
a certain level of randomness in their behaviours and then be alerted on if they start
displaying predictable patterns. This may impact reproducibility for specific tests, but
overall results should remain larger familiar in terms of overall output.

has a number of limitations, and no assurances can be given outside of systems that
are configured differently — including the version of software present on the system, e.g.
M/MI. Additionally, whichsVMI classes are selected for observation will impact results.
Details on the specific classes used for observations of the features observed in these
experiments are provided elsewhere in this chapgtey. FigureZ™1).

78 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Drift — the differences in configuration states between experimental trials is referred to in
this thesis — will impact results, even between similarly configured systems. This is
based on the assumption that that computing systems undergo continuous changes. As
a consequence evaluating exactly identical conditions between systems is not a state that
is easy to achieve. A best effort is made to reduce drift as much as possible by running
multiple tests via the same savE®l state. However, it is acknowledged that drift can
have an impact on results and that the extent of that impact isn’t entirely understood.

4.6 Implementation

Implementation of alEDES is done via a small (~40 kilobytes), console-based application
written in C#. This application uses th&MI framework to periodically collect data based

on a polling interval. Information collected in this manner is either immediately analysed upon
detection of a fault, or added to a collection of datasets for later use. Primitives are built and
trained through the Aforge.NETD1] and Accord.NET 107 frameworks.

There are other mechanisms for gathering feature behaviour information from a system, how-
ever this approach was initially thought to be the least diffiddiMI allows for a wide range

of feature data to be pulled. Existing methods within C#, and the .NET framework provide an
established interface for polling information. G&MI, and the combined, existing Machine
Learning frameworks, minimise development requirements; a property that remains absent from
other operating systems.

The polling interval is provided at compile time and determines whef\R# service should

be queried. When combined with a maximum number of datasets to keep in memory, an elastic
measure of control is afforded to testing conditions. Furthermore, by specifying the maximum
number of configurations to keep in memory, a window of inference is created. In this case,
assuming a 300 second interval, and a maximum of 50 samples, a 250 minute window would be
created for contextual learning. There are expected benefits and disadvantages to shorter versus
longer windows — such as stability in predictions, and time to fully train the framework(s),
respectively. The adjustment of these properties is not explored in favour of steady results.
Although both values are fully adjustable, the experiments in this book use a polling interval set

at 60 seconds, and the total size of the dataset collection is limited to 30 samples.

Data collected from thBYMI interface is stored in a dataset. Each dataset is referenced within
a list that corresponds to its collection time, and contains a collection of tables that individually
correspond to their respectiM@&MIl class. Each table contains a series of values — some of which

4.6. IMPLEMENTATION 79

are unigue, and some of which are not — this is an artefact of Microsoft's implementation. For
example, if the value for a system’s fully qualified domain-name is present if\GME class,
it may also be present in another such class.

WMI Class Name Unique Columidentifier
Win32_BIOS » \ersion
Win32_ComputerSystem » Caption
Win32_DiskDrive » DevicelD
Win32_LogicalDisk » DevicelD
Win32_NetworkAdapter » Caption
Win32_OperatingSystems » SerialNumber
Win32_PhysicalMemory » BankLabel
Win32_Processor » Processorld
Win32_QuickFixEngineering » HotFixID
Win32_Service » Caption
Win32_SystemAccount » SID

Table 4.1: WMI Classes — Names & Unique Column IdentifiersThis table illustrates the classes and
the columns used to uniquely identify rows within the sampled WMI data.

Thebl/MI classes are hand-picked in these experiments based on whether or not they might be
useful to an engineer diagnosing faults with a computing system running a web-service; all of
their available data is sampled (Tal#ll€l). Some of the information is expected to be more
directly applicable — such as Win32_Service — whilst others to supply supporting information
(e.g.Win32_Processor).

Unique identifers for these classes have all been selected for the same reason: Their values are
unique and expected to remain unchanged. This takes the place of a unique identifier being

supplied natively byf/MI. Although it was the original intention of the experiment to gather

and compare datasets using the previously mentioned criteria usingMalyin its ‘out of the

box’ state, critical limitations were discovered in Microsoft’s implementation that necessitated

a few fixes. Fixes include the use of bridging code between the organisational structures of the

EDE$andi/MI under the following scenarios:

1. As mentioned th8YMI frameworkdoes not provide a unique identifier for any of the data
it returns. This means comparisons based on unique values become nearly impossible

80 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

without a linear search through every tuple returned within a single class. As a partial
fix, a dictionary offtMMIl classes is provided to tHEDESthat indicates a column in which

a value can be used to uniquely identify the tuple. This is a mechanism that had to allow
for comparisons between the same features’ values — a necessary capability for analysing
feature changes.

2. The doubling of data is common MMI. In many places the same information will be
returned, but this will be viewed as a different or nominal piece of information. Because
there is slight drift between when the system queries the classes, sometimes these values
can appear to change — this can lead to false positives, or misrepresentative data. For the
most part these values are ignored and it is left to the primitives to properly diagnose these
features on their own. The end result is that memory is not used as efficiently as it could be.

When thel /M1 framework is queried, the respecti#MI tables and datasets are populated.

In total, about 7,500 features are extracted every 60 seconds. At the end of each collection, a
categorisation process occurs through the use of performance tests. Performance tests validate
the responsibilities of the machine running In this case the machine’s primary purpose

is to act as a web-server for both internal and external clients. As mentioned in Chapter
a3, Performance tests verify a series of high-level processes and functions and emphasise a
policy-based approach to systems administration. These tests are implemented as described in
Tabled2

Once a dataset is categorised as either valid or invalid the application will either update its
predictive capabilities or it will look for anomalies, respectively. The dataset is determined to
be valid if it passes all of its performance tests. If this occurs, each property within the collection
of datasets is evaluated against itself. The hardest part of this procedure is uniquely identifying
the objects that have been queried — a feature that is surprisingly not natively supp S, in

TheEDESin this experiment leverage one of three learning algorithms EIlesthat utilise an

HMMI leverage the Baum-Welch algorithi®d, 97, 96]. This algorithm has been chosen due to

its suitability withHMMS inherent forward—backward learning, and its ease of implementation
via the aforementioned AForge.NET(1] and Accord.NET Frameworksi)7]. Conversely,

the EDES that leveragdBNNS utilise a Naive Bayes approach. Each learning algorithm is
responsible for processing observed feature behaviours into probabilities, which are used in
conjunction with thdEDF's classification of the datasets collected MVAZI.

If the dataset is determined to be invalid, the feature’s behaviours are analysedEESkr
unexpected changes. Any property that does not matchIiiiEs predicted values is added to
a list of potential faults, along with a confidence value. As long as the fault source is collected

4.6. IMPLEMENTATION 81

Test Name Description

Physical Disk Access » Writes to physical disks. Fails on any system-level ex-
ceptions including permissions, free space, and others.

DNS Service Availability » Resolves three separate fully-qualified domain names:
google.com, yahoo.com, and microsoft.com. Fails if
all three sites fail to resolve.

M/MI Accessibility & Physical Memory » Queries thé&MMI service to ensure the total free phys-
ical memory is > 0 bytes. Fails on any state where
theBAZMT service cannot be queried, or memory=H$)
bytes.

ICMP Ping Test & Internet Connectivity » Performs ICMP Ping tests to localhost, addthe root
DNS server at 4.2.2.4. Fails on any state that does not
return a successful reply to both sites.

IIS Service State (W3SVC) » Uses a Windows Service Controller object to deter-
mine the state of the W3SVC service as eitRanning
StoppedPaused StopPendingor StartPendingstates.
Fails on any state that is nBiuNnning

HTTP Request (localhost) » Performs an end to end HTTP query to the localhost.
Fails on inability to connect and complete a request to
the service — all errors are considered valid if passed
from the web-serviceg.g.400, 404 500.

Table 4.2: Performance Tests — Names & Descriptions.

within theM/MI data, the potential exists for the root cause to be provided. Determining what
constitutes is sufficient potential is one of the goals of this experiment.

Implementation of thdEDDES$ occurs using three separate but nearly identically configured
MMS. EachMM runs Windows 7[IS 7.5, and one of three versions of th&H. The MMS

are clones from a single initial image which consists of an identical base configuration and
hardware specification: one 3.4 GHz Intel i7 4480, with one gigabyte of RAM and a
single virtualised disk split into three volumes spanning a single partition. The volumes host
the operating system, tliEDE$and their respective data, and 8 webroot, mounted on C:,

D:, and E: ‘drives’, respectively.

The M9 are allowed to run for 30 minutes collecting information about the systems whilst
under light load. Light load is defined as one web-service query per 30 seconds, on average,
sent via cURL. This behaviour is adjusted slightly via the randomisation of the starting time
using a ‘scheduled task’ on an external system outside of the virtual environment.

82 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

During this time, the performance tests are evaluated once every 60 seconds. If a system passes
all the tests, each respecti#®lE saves both the configuration and metric data it gathers along
with an XML schema file to a local data store. All of this information is stored in a sub-
directory called ‘data’, which is located based on where the application currently resides. These
files serve as a mechanism for loading saved configurations quickly and, as a consequence,
allow for likeness testing and comparison using the same inferential data.

The experiments themselves operate by comparing the effectiveness Biiethrough
accuracy, precision, prediction time, fault position, the number of leads, and confidence values.
To achieve realistic samples, tBBESare injected with two types of faults.

The first type of fault is configuration basefGC3), whilst the latter is instantiated by hard-
crashing specific process threa%{s). The former consists of shutting off services or making
changes to the system using normal administrative methods. These changes are made in
such a way that they are expected to intentionally generate faults. This includes changing
disk structures, service states, and other properties that administrators would normally have
access to. The latter consists of copying incorrect instructions directly into the address space of
another process, which in turn is expected to produce a controlled crash violating one or more
performance tests (Tabie2).

The BCCsinclude: Disabling the network card, disabling the W3SVC service, removing the

volume upon which the 1IS webroot is contained, removing all free space from any of the three
volumes, and disabling network access from outside the virtual machine’s local purview. The
DEIS we instantiated included crashing various services such as the Windows IIS 7.5 W3SVC

andDomain Name Service (DNService, and the IPv4 network stack.

EachACO orDEl is run six times on the sankH using 5, 10, 15, 20, 25, and 30 configuration
samples. This allows for the realisation of trends within each approach, and to see differences
in both output andEDE confidence during each specific test.

To keep the results viable each fault is induced using the same steps, and in rapid succession.
Due to hardware limitations and problems estimating resource allocation in cloud environments,
the results of these experiments are not run concurrently. Thus, although using the same data to
populate thdEDES there exists some amountarfift between tests.

It takes about two minutes to execute all six tests in eitheidRkor BCTO conditions using
scripts and/Ml snapshots. This is assumed to be an acceptable amount of time, so long as the
EDEs$are retrained with fresh data after each series of fault injections.

These steps are particularly helpful when trying to understand performance and effectiveness

4.6. IMPLEMENTATION 83

of the EDES It minimises external factors, whilst highlighting the properties inherent to the
stochastic primitives, such as learning algorithm, training time, and memory usage.

Critically, the systems train their stochastic primitives at different times. In the case of
HMMS andBNNS, primitives are discarded and retrained on every successful Performance test
evaluation. This requires an active service onMiMS to parse the data in rapid succession — it
also presents an upper limit to the amount of data that can be gathered. This limit is mitigated
in the RBM implementation of th&DH by using lazy parsing. The primitives in the latter are
trained only when a fault is detected via a performance test failure.

Once the primitives are trained they are used to generate potential root daudeads). Leads

are generated by examining the behaviour of the primitives sampled [i13R& As each
primitive is sampled, a vector is created that indicates whether or not the previously observed
value is identical to the value sampled at that specific time interval. The result is then used to
train a stochastic primitive that is assigned to a specific feature — either upon fault detection or
as soon as the data is ingested. This means there is one primitive per feature provided by the
SMVMT framework.

Measuring the results of tHeDE$is done using the traditional metrics lie positivesfalse
positives true negativesandfalse negatives True positives are determines when the correct
fault has been identified, whilst false positives are any faults above the ‘correct’ fault in the
ordered list of fault hypotheses — should it be present. Conversely, true negatives are determined
when a fault is not detected and is not expected to be present, whilst a false negative is when a
fault is expected but is not detected or identified by the system.

Due to the nature of false positives and false negatives, these metrics are evaluated by hand.
This is expected as there is no way, by definition, for the application to detect such a state
without external validation. It is also the reason why faults are injected in this experiment with
the source already being known.

The confidence values for each approach are generated using different methodologies based ot
their respective learning algorithms. In the casddMMS, the confidence value is provided
natively using the Baum—Welch algorithm based on the strict probability of the likelihood of
the suspected faulty feature’s ladtbehaviours, wher® is between two and the specified
windows size ite. 30). from these experiments use the simplest of prediction metrics:
Naive Bayes. The last observed state is assumed to be heavily weighted towards the expectec
behaviour of the feature’s next stalBBMS use the same approach asHM approach, with

the exception of the accompanying learning algorithm bEIhx].

84 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

Use of vector analysis to forecast the likelihood of a feature’s behaviour in Naive Bayes
requires setting a minimum confidence value — in this case, 80%. This is done as there is
no reinforcement learning from which the approach could dynamically weight its expectations.
As such, the last observed behaviour in a known good state less the probability of change for
the last number of up to 30 samples is utilised. Any feature behaviours that are not predicted
to or do not meet this 80% threshold are ignored. In all other cases, the learning algorithms are
not provided a minimum threshold.

4.7 Comparison & Inference

TheEDE$SandUOBI operate in similar fashions. Their behaviours regarding how information is
collected, parsed, and analysed is comparable, as are their intended purposes of reporting spe-
cific features suspected to be in error. However, their implementations and design assumptions
differ significantly. To understand the relative impact and successes of these approaches they
need to be compared.

The technical differences in how tliEYESandUOBI collect, classify, and analyse information

are described in this section. Specifically, the number and types of features being monitored,
and how the collected data is used, stored, and evaluated are examined. These properties are
discussed before a traditional analysis of the self-healing frameworks’ predicéopl@dnning)

and recovery strategies — including what learning algorithms have been implemented, and under
what assumptions.

4.7.1 Baseline Establishment

The following section describes the details for establishing a baseline and comparing results
between approaches, and discusses the application of the hypothesis descHB&d irt
consists of three experiments, each using different implementations but adhering to the same
overall logic: Training stochastic primitives with observations of feature behaviours to use
forecasting as a mechanism for identifying the root cause of a fault.

The first two experiments are original works that compare simple stochastic primiiess(
HMMS, RBMS) using Naive Bayes, Baum-Welch, aBfl learning algorithms, respectively.

The third experiment focuses on testing the stochastic primitives uskigh that is trained

via Euclidean Distance comparisons. The first two experiments are original works that have

4.7. COMPARISON & INFERENCE 85

been written, designed, and implemented by the author of this book. The third experiment is of
external origin and used as a basis for comparison for the state of tt¥art [

Each subsection provides implementation details for the aforementioned approaches. It dis-
cusses what tools are used, how the primitives are implemented, and provides a brief theoretical
background. The final subsections describe the physical implementation of the first two
experiments, and compare the external approach.

Results from these approaches are discussed in the following chapter.

4.7.2 UBL - An External Basis for Comparison

The ability to observe and learn from historical behaviours is not unique feli&or, for that

matter, to self-healing systems. The same approaches can be said to be at least tried in security
research@(03], amongst other areas. However, the ability to predict and forecast features to find
faults is somewhat more limited when considering the use of unsupervised learning.

Only one additional known external example of this approach exists in self-healing systems
research -HIBIJ [28]. OBII is a cloud-based approach for identifying faults by looking for
unexpected data in feature behaviours. It leverages a special tENalled aSOM. This
primitive reduces relationships between feature sets into a two-dimensional lattice. Informa-
tion contained in the lattice is traversed using neural weights which then model a system’s
behaviours. It is this modelling that allows for the forecasting of a system’s feature data.

At a high-level, UBI] operates similarly to th&DES however it has several fundamental
differences in how information is gathered, classified. (labelled), and forecasted. Like the
EDES OB periodically observes feature data which it then converts into vectors to train a
stochastic primitive. Once the vectors are created differences begin to emerge in how that
information is used. Instead of forecasting behaviours retroactiEBf] actively predicts
feature behaviours so that it can preempt faulty states.

OBD uses a small, custom written applicatiare(daemon) to monitor feature changes in

a fashion similar to th&DE$ Once instantiated it interfaces with and reads data from two
sources: The Xen 3.0.3Bomain Oand the/proc file system. Each gives access to behavioural
data associated with features — such as changes in free memory, disk I/O, and other, similar
properties.

Data is polled once a second before being used to either updd&ik#s learned behaviours
(i.e. neural weights) or to determine if a fault is present. LearninBI8] occurs under two

86 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

conditions: A ‘bootstrap’ phase is used to instantiate the primitive, after which a continuous
update mechanism is present to adjust neural weights with current operational values. In either
learning case, the neurons’ adjustments are made through a learning coefficient that manages
how fast the primitive updates its neural weights.

The labelling of data is done through this initial phase. The initial training data is assumed to
be valid, and all other data is evaluated based on the results of the bootstrap phase.

The bootstrap phase occurs until each neuron withinSG®1 has updated their respective
neural weights a total of 10 times. In this case, Hi&M's dimensions are 32 x 32 indicating

a total of 1024 neurons. Each neuron maps to an individual observed feature — therefore, all
features must have active data or will never complete training. This is an important
distinction as features with low behavioural frequency cannot be monitorediUBHg

Which neuron is selected for learning occurs by comparing the Euclidean distance of a sampled
input vector with each neuron’s weight vector within (B®8M. The neuron with the smallest
distance value is then used. Estimated times from the original work for initial training are
between 42 seconds and 7 minutes, depending on what percentagd_®flihe used for this

task.

The second type of learning is done incrementally whilst all neurons are in a ‘normal’ state.
Neural updates in this manner, however, have caveats and a deterministic operating period exists
for each neural weight. Dean, et al, describe this as a problem of convergence:

... too many incremental updates may degrade the quality @&h#as all weight
vectors may converge to a small number of vector values. This can happen when
the system starts to process a completely different new workl@i[p. 3]

UBL addresses this problem by reinitialising &M and then using another subsequenbt-
strapphase. There are potential implications to this methodology, but they are discussed further
in SectionZ—Z. Once théSOM is trained it can use the Manhattan distance of neighbourhood
size between neurons to forecast extreme shifts in feature behaviours.

Manhattan distance is calculated based on the distance between a neuron and its immediate or-
thogonally adjacent neighbours within t88M. This metric is referred to as timeighbourhood
area sizdn the original work. Anomalies are determined via this metric’s size:

If the neighborhood area size is small, we know that the neuron we have mapped to
is in a tight cluster of neurons, meaning the neuron is normal. On the other hand,

4.7. COMPARISON & INFERENCE 87

if a neuron maps to a neuron with a large neighborhood area value, we know that
the neuron is not close to other neurons, and thus, probably anomgiti}$p. 4]

Unfortunately, specifics as to what constitutes the range of these values is not explicitly given.
It is inferred, however, that the values described herein are relative. This is due to the fact that
all collected data is normalised within t&&3M.

The Manhattan distance is used to predict the performance of various features witiiahe

If the neighbourhood area size is large, thenli] framework attempts to make a multi-step
ahead prediction as to the trajectory of the neuron being observed. This is referred to as the
Mapping Phase

Prediction capabilities during the Mapping Phase are divided into three primary categories:
Normal Pre-Failure andFailure. These are notably different groupings than those used in the
EDHE approaches which operate in a reactive fashion. The first is an indicator of expected values
given a threshold for the area size. The second indicates a larger than expected set of values
and a trajectory exceeding the maximum threshold limit; the latter indicating a failure state.

Using the aforementioned logidBL continues to operate until it either encounters a pre-failure
or failure assessment for one or more neurons ifSiA#&4, or until it reaches a convergence due
to overtraining.

[IBI is implemented using Virtual Computing Lab to emulate Amazon’s EC2 infrastructure
and operational properties. Ea@iMl runs on top of one of five machines running Xen 3.0.3 on

a 64-bit version of CentOS 5.2. Each physical server, in turn, manages five virtual instances.
The polling information via Xen’s Domain 0 interface is done through two libraries: libxenstat
and libvirt.

Although training is done locally on some of these instan&&3[] has the ability to train
SOMs externally of the machine upon which they are running by transferring the vector state
information to dedicated learning systems — machines that are dedicated to blildIng
specificSOM$ Since these machines do not have external responsibilities, they can fully
dedicate availablEPUsto training of these primitives without performance impacts.

SOMs$need to be instantiated using not only the bootstrap phase, but also using cross-validation
from existing feature data for training. This is to avoid problems where &i3#s$"would only
represent a subset of training data valug28] [p. 3]. Otherwise, the result is partial training of
alSOMwhere some features are overlooked and their corresponding neurons remain untrained.

Faults are instantiated through a variety of stress and performance testing suites under severa

88 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

application platforms including RUBIS, IBM System S, and Hadoop. Each application platform
leverages 2 or more testing suites to induce faults via high-frequency resource utilisation —
a pattern that is in keeping withBIl's expected inputs. The testing suites &attleneck
CPUHog CPULeak Memleak andNetHog Not all application platforms are subject to the
same tests, however — with the exceptiotMaEmleak(TableZ=3).

Testing Suite RUBIS Hadoop Systen
Bottleneck » .
CPUHog > . .
CPULeak > .

MemLeak > . . .
NetHog > .

Table 4.3: UBL Testing Suites.UBL uses various testing suites on a number of application platforms.
Although some of these tests are used across all scenarios, the majority are not. For simplification, a
testing matrix is included here.

Tests are administeredé&tween 30 to 40 timé$28] [p. 5] before their comparisons against
Principle Component Analysis (POANd k-Nearest NeighbourkFNN) are displayed using
feceiver operafing characiensiic (ROEYrves. Some results are smoothed using between 5
and 50 points in addition to their existing normalisation.

4.7.3 Collection

Information collection for both approaches happens either through the use of local daemons or
vialBPl interfaces. These interfaces act as controlled, authenticated gateways into a host, and as
a mechanism for formatting the returned data. Their implementations differ, however, in both
their fidelity and their use. Still, each framework operates by interfacing with a common point
for sampling feature data.

In both EDFE instances, the features and attributes within the aforementioned classes are
catalogued at a rate of once per minute then stored locally both in volatile and non-volatile
memory. Each collection consists of datasets, tables, and tuples parsed into binary vectors or
raw configuration data stored as XML, respectively. Storing information in XML files is used
for resuming the service when running identical fault tests under variable conditions, such as
using fewer configuration samples.

Once data is collected it is then stored in an intermediate state — how and when depends on
the implementation. FAIBL, once the sampled information is collected it is used greedily to

4.7. COMPARISON & INFERENCE 89

train alSOM either locally or via a separalMl. This behaviour occurs continuously and is
not limited to a specific time-span or window. Eventually either predicts a fault or

a training convergence occurs. TRBIES are trained either greediHMMI, BNN) or lazily
(RBM), using windowed datasets of the user’s specified size in minutes. All approaches build
vectors out of change data between samples to form the basis for later analysis.

4.7.4 Classification

The information gathered by these approaches consists of unlabelled performance metrics and
configuration data. However, using this information to decide on the source of a fault first
requires that this information be accurately classified — a non-trivial problem.

The state of the art for autonomously and accurately classifying unlabelled data in general is
outside of the scope of this chapter. However, on occasion, problems in classifying unlabelled
data are discussed in brief and as needed. This includes the strategies implemented by each o
the aforementioned approaches, and their respective limitations.

There are a number of differences in how B andEDE approaches classify data — from

how much data is utilised, at what point the information is classified, and both how and when
data is processed. These differences are associated with the relative uses of each frameworl
although some properties are based on assumptions.

For example, the training phase is testedn situ before being applied. Using a training
phase provides an advantage in that it does not require a specific set of performance tests or role:
to be provided before classifying data. However, using performance tests follows a common
tenet in self-managing systems research — the ability to provide high-level policies to systems
as a primary form of administration. It also allows for the specification of specific areas of
interest — an approach that can reduce false positives.

The OBO and EDE implementations both use unlabelled data to forecast anomalies by pre-
dicting unexpected changes in feature attributes. Predictions are made by observing a period
of known or assumedood states to train primitives in order to recognise an expected set of
behaviours. Once this training is complete, observed data is then classified heuristically into
one of several states.

OBDO's three classifications for state are determined by calculating the Manhattan distance
of a neighbourhood area size using individual neurons. By analysing the differences in
neighbourhood area si#8I] is able to classify the behaviours of individual features as being

90 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

in one of three aforementioned categories.

The EDES classify information into only two statesgood or faulty. However, rather than
labelling the behaviours of individual features, the entirety of a system’s configuration is given

a classification before looking for feature changes using performance tests. Performance tests
consist of operational validation criteria — properties that indicate a system is operating within
its intended role. If any performance test fails, the entire set of features sampled is classified
asfaulty. Once a classification is made, the data is then parsed using either the previously
mentioned greedyll] or lazy fashions19Y], respectively.

Using three states offers the benefit of proactive analysis over reactive analysis. Although the
intention is to establish a solid understanding of accuracy in the detection of faults, doing so
proactively has several potential benefits over the reactive solutions presented here. However, it
may also be moot to need to address problems proactively under any of the following conditions:
the fault detected cannot be prevented, the fault manifests too quickly for a solution to be
implemented, or an evolutionary approach is used to prevent further instances of said fault(s).
In several instances, the second condition impaldigd’s results and performance.

Instantiation of classification properties are different betwEEfil and theEDES Both
experiments expect the systems to start off in a healthy state for the purposes of initial training.
The training then forms the basis of analysis for Big&=§ but for BT it also is the primary
component for classification of sampled data. This is because the initial neighbourhood area
size is calculated within this training period and thus where all other data must be inferred.
Additionally, as the data is not windowed, this is a static property outside of small, incremental
updates that effectively amount to an average of values.

How long the data is stored and how it is ingested plays a critical role in classification. Using a
windowed approach for information parsing allows for the avoidance of convergence in training
data, and greater adaptivity to changing environmental variables. Both of these properties
represent advantages in implementation but they come with a cost. Windowing necessitates
more memory and post-processing requirements as purely additive measures are no longer
sufficient. As such, the expectation is for windowed information to take longer to classify
and process. This is seen readily in the results of both approaches, independently.

The way data is ingested impacts when and how classification od8ihAH.provides attributes
associated with features in a semi-structured, non-uniquely identified tuple. In order to address
removals of devices and multiple features that share a similar namespace this exigency must
first be addressed. THEJESuse of a dictionary as BIMI class unique identifier serves this
purpose, but also necessitates much slower parsing then direct observation to vector conversion

4.7. COMPARISON & INFERENCE 91

— as occurs iJBL.

Xen samples metric data from a number of different features. As the values within these
samples have multiple ranges, their relative performance and consequent classifications can
become difficult.0BI's solution is to normalise this information to unilaterally use the same
evaluation techniques across all features. This reduces the fidelity of the content, but lowers
the programmatic overhead needed to classify the sampled datBEDHsomparatively have
greater fidelity as they do not trim or normalise their respective results.

The classification of data happens at the feature and system levdlEBiorand theEDES
respectively. This distinction impacts other aspects such as frequency of data collection and the
number of features and attributes sampled. It also affects how the data is analysed: There is
an implied relationship between the number of observations and what predictions, if any, can
be made. However, a larger number of observations does not always provide for more accurate
results.

4.7.5 Learning & Analysis

The categorisation of feature data allows for the training of primitives and, if necessary,
subsequent fault analysis. However, in order for a self-healing system to correctly identify
the potential cause of an fault it must first determine if a fault is present.

How each framework trains and detects potential abnormalities in feature behaviours varies,
both in assessment and implementation. The primitives used, what learning algorithms are
associated with those primitives, how much and what type of training data they receive, and for
what period of time are all variable with different values in the aforementioned experiments.
To understand the complex relationships between these variables some basic tenets about hov
these frameworks detect and isolate anomalies is given.

Fault detection in these self-healing systems occurs after data has been collected, but during
either categorisatiorilB] or when collected data is being pars@d®,[28]. In either case the
categorisation behaviours occur before an analysis is made. These stages consist of multiple
milestones including initial data collection, conversion into vectors, and their subsequent
assimilation into one or more stochastic primitives.

Each stage of this process is important as failures at any point will lower the capabilities of
the frameworks. If a failure occurs in detecting fault conditions for categorisation, the learning
capabilities of the primitives will be lowered — or potentially even rendered moot.

92 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

There are two primary stages associated with the use of stochastic primitives in self-healing
systems. The first stage is provisioning and instantiation. This includes the initial build of the
object, and its subsequent training. The second stage is the use of that object — typically to
either feed in a vector and understand if it is associated with patterns that have already been
observed, or to provide it with an output and synthesise a vector as in the daB&lof

Fault injection evaluates the effectiveness of the latter stage. How much data has been observed,
the learning rate, and the resource utilisation are just some of the key properties. As the variables
within each of these areas are large in number, keeping the tests consistent is important. There
is limited use in providing data without a control in this respect.

[JBL implements its stochastic primitives differently than The authors describe it as
starting out by instantiating a singlOM that consists of 1,024 neurons that are arranged in

a 32x32 lattice. It then populates each neuron with a randomised weight. This weight is what
determines the paths vectors take as they traverse throudhdlRke Any path that meets an

edge in the lattice can run into problems as the evaluation may be incomplete as distance is a
factor in accuracy in terms of this traversal.

Afterwards, aootstrap phases used to train th&0OM using historical data from the IRCache
project girca 1995) — this continues until each neuron has their respective weights adjusted 10
times. The reasons for using these values or this dataset is not explicitly given in the original
work.

Once théSOM is trained it begins periodically sampling the system for further data via Xen'’s
‘Domain 0’ interface. The data is then either updated intdShEM or a differential analysis is
performed using the Euclidean distance of an input measurement vector against each neuron’s
weight vectors, respectively. The weights in are then updated incrementally every

time a sample is provided.

In this case, a sample is provided every 60 seconds. When the update occurs, each neuron in
the[SOM has its weights validated via a neighbourhood area size calculation using the summed
Manhattan distance of each of its neighbours.

The EDES take a completely different approach to instantiation: For each feature being
observed, a separate primitive is built and trained. WK, these primitives are built with
default weights. In this case all objects consist of three layers, and randomised weight values
— there is no cross validation. Once the primitive is ready one of several training use case
scenarios exist. Broadly summarised, they can be viewed as being under the greedy or lazy data
consumption models.

4.7. COMPARISON & INFERENCE 93

Any system using a greedy model will train the primitive immediately. If the primitive currently
has learned less than the total number of maximum samples, that information is simply added
to that primitive’s existing knowledge. If the maximum number of samples has been reached,
the primitive is destroyed, and a new windowed subset of information is built. Using this new
information, a new primitive is instantiated and trained to take the old primitive’s place.

Systems using the lazy model simply aggregate training data until a fault is suspected to have
occurred. Once detected, a primitive is built for each feature, trained using existing data up to
the maximum sample size, and then an analysis is run. This saves total computational resource
usage, but slows down result generation due to the lack of pre-computation.

In either case training is dependent on several factors. In addition to primitive type, how long
it takes to train th&DFE is related to how many cycles€. epochs) are specified, and the total
number of features in question. In this case, 5,000 epochs are specifl€HNH, whereas the
other two types of primitives are left to train only once per provided sample.

Once the primitives are trained they can forecast either si@fE, HMMI) or multiple points

of behaviour RBM). This ability is gained from the predictive reasoning capabilities of the
algorithm along with the physical structure of the primitive(s). In the casEBiMS, for
example, an undirected graphical model uses an approximated gradient for the log-likelihood
of a specific behaviour. This is sampled using a Markov chain which is weighted towards the
last observed state.

For reasons of scope and complexity, the functional and operational aspects of the respective
learning algorithms are not addressed here in detail. The details of these algorithms are
generally agreed to be well documented and readily available. HowEY#E:, remains an
evolving and not entirely understood methodolo@$, [29, 95].

Fault detection is the primary catalyst between learning and analytical behaviour for all of the
aforementioned approaches. THBEShandle fault identification through performance tests;

a simplification of expected system operating behaviolllBL's approach however is much
more involved.

The total Manhattan distance metric is the primary indicator of both fault presence and source.
Neurons that have a small area mapping are assumed to be operating normally. Those neuron:
with larger distance spreads are indicators of either precursors to potential or existing anomalies
depending on severity. The threshold for making these determinations is not explicitly given in
the original work, but a 50% increase over the example value is given as an indicator of a
pre-failure neuron.

94 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

The source of a fault is determined using the preserved geometric positions of each of the
neurons within th&OM. Mapping neurons’ expected behaviours with those near to the neurons
suspected to be in an anomalous state provide an updated distance measurement from which to
evaluate the cause. The inference between the feature and its associated neurons provides an
avenue for identificationIBL's low level analysis has advantages in that it does not require
roles or additional pre-requisites to be supplied outside of the bootstrap phase before becoming
operational.

TheEDESfault analysis approach is similar EBI's. Both approaches look for differences in
observed and current behaviours with the context of expected performance benchmarks. The
difference betweebIBIl and theEDESis that analysis is done in the latter based on forecasting
specific feature behaviours.

Once a system’s configuration is labelled as having not passed its performance tests, a set of
stochastic primitives is made ready via the knayaodconfiguration samples. This represents

a control from which to test the currefaulty configuration. A differential analysis is done to

see what features changed between the last known good sample, and the current fault sample
data. Any features that show a change are short listed, and their behaviours are forecasted using
only the knowngooddata.

This information is then compared to the actual data present in the faulty configuration set.
Once a forecast has been made a confidence value is provided via the learning algorithm that
indicates the likelihood of that forecast being correct. Forecasts that are sorted in descending
order based on likelihood (confidence) as an indicator of the potential root cause of a fault. Data
produced by the application is then either passed on to an individual for evaluation, or can be
used to hand off data to a third party application.

Perhaps the most critical point in evaluating these frameworks is how faults are injected into
them. In both sets of experiments, a range of software suites are used to induce anomalies.
These suites focus on performance criteria and volumetric approaches, as is the cBE&yith

or controlled thread crashes and adverse configuration changes.

Each suite of approaches offers a mechanism for testing against conditions that are considered
undesirable specifically in professional computing environments. However, these tests are
performed equally in th&IBILl experiment . The technical aspects of these testing suites
are covered in Tabled3, andHB2, respectively, however, comparisons of their respective
approaches are not.

OB emphasises a performance based model to understanding feature behaviours. The testing

4.7. COMPARISON & INFERENCE 95

suites it uses emulate this perspective by forcibly injecting data into a system’s services. The
results manifest at different observable levels within the machine itself, including raw resource
utilisation — such as memory, BIPU-— and via service controls. An example of this is running
Reduce functions through Hadoop until an abnormal signal is returned. However, not all tests
are run across all instances (TaBl&).

Hadoop System S RUBIS
TestingSuite TP|FP| TP | FP | TP | FP
Bottleneck G G
CpuHog G| G[93%] 0.5%
CpuLeak G G
MemLeak G| G |98%|1.7%]|97% | 2.0%
NetHog 87% | 4.7%

Table 4.4: Summary of Testing: UBL. In the original work, results for UBL are presented textually,
graphically, or sometimes not at alk = Data via Graph Only, Blank = No Data, TP = True Positives,
FP = False Positives.

As mentioned previously, there are two types of fault injection mechanisms withla[k&
BCCS, andDEIS. To understand how each of these approaches operate and their criteria during
testing they are expanded upon here.

BCCS operate by inducing valid inputs into the system in such a way as the result is expected
to cause a fault. This is to understand how user error might be caught by the application in
comparison to when a system'’s internal logic or other factor fails outside of human control.
Faults in theBCO category are triggered by running scripted commands against the system
using included service controls only.

DEIS handle this second category by inducing controlled thread crashes. This second type of
error is the more traditional focus in prior art, but it is not the only issue worth exploring.
Anecdotal evidence suggests that change controls made by individuals in professional environ-
ments are difficult to perform consistently — particularly when done by hand. Understanding
the differences in a self-healing system’s ability to differentiate between the two is therefore
valuable a priori. DEIS are instantiated through the use of process termination signals, random
pointer walks within specific threads, or the use of a hex-editor to writég(ulty, no-op/ eax

(0x90) instructions.

Testing suites within thEDESoperate under a similar philosophy as thosEIRL] in that their
results are specifically tested against operational performance metrics. In this case, the change
of a specific feature’s behaviour by the test administrator is expected to induce a state that will

96 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

cause a fault. This can occur under rather obvious assumptions — such as directly shutting off
a service — but this is not always the case. For example: An external router is disabled under
one of theEDH tests — a property not monitored by the frameworks — and a root cause of loss of
network throughput is indicated. This is further discussed in the following chapter on results.

4.7.6 Comparison Constraints

There are some constraints and implementation details that differ betweEEastances

and B that are worth mentioning explicitly. Understanding and detailing these properties
before discussing the results of each approach offers greater context to the information being
provided.

TheEDESoperate under similar conditions and principleBi&. However, instead of focusing
exclusively on feature behaviours, a combination of systems validate@mérformance) tests

are used to provide context to changes in attribute data. Contextual information offers clues as
to what shifts in attribute behaviours are expected or unexpected by attributing their values with
SIOs If all SLO$are successfully being met, then the configuration is given a context of being
in the aforementionedoodstate. In this casBLO$are incorporated into and represented by
performance tests.

The SOM within OBIL can update its weight incrementally but not indefinitely. In the current
implementation there is no way to expire old data as it is immediately incorporated within
the SOM and then the sample is expired. Since the information cannot be expir&iikis
weights will eventually converge. This eventually creates an inability to perform the differential
methods needed for classification and analysis.

The feature data examined BIBL is normalised into a range from 0 to 100. By examining
both the minimum and maximum possible values of a feature before executing the number of
neurons required drops substantially as their use is tied to the maximum and minimum values
of observed features. However, as mentioned, normalisation of values may produce a drop in
the fidelity of information. For example, if the change in the neuron’s actual value represents
less than 1% of its total possible value, then the change may not occur witlideln some
instances the original work states that normalisation values have also been reported to be over
100. These incidents are claimed to be non-impacting, but are not completely understood in
terms of implementation or how they might influence the analysis of anomalies.

One of the primary differences between this wdtk,[19, 20] and that of Dean, et aPH]. is

i

that entropy in feature behaviour is not ignored inHi&$ nor is any data normalised. These

4.7. COMPARISON & INFERENCE 97

are important distinctions as more data is handled ifHIRE approaches in terms of the total
number of features than IABT, and that the potential for identifying the root cause of a fault
can be truncated under normalisation conditions.

Forecasting behaviours is not an exact process. In each instance the abilities of the primitives
are constrained by mathematical problems — such as the accumulation of error — but also the
additional restrictions of their learning algorithms. This includes accepted and expected error
in probabilistic learning, and numerous other factors.

Before being able to forecast behaviours a lead time is required in all of the aforementioned
experiments. The amount of lead time and the level of accuracy are topics discussed in the
Results section. However, there are some minimums that are present in each approach. A
minimum of twogoodsamples must be provided before a failure can be analysed k&

This is similar toOBDO's 10-update per neuron pre-requisite, but with the added difference that
EDE3use polling intervals at fixed time differences. This allows for some measure of prediction
as to when training will be complete for tkEXESversudIBL.

Using performance tests may have some advantages in specificity, but it requires greater initial
human oversight. ThHEDESemphasise a high-level approach to determining both the presence
and source of a fault. They are designed to automate alerting procedures and operate as inde
pendent services running in large-scale, centrally managed computing environments. However,
requiring a set of role-based performance tests means that they operate less agnostically thar
OBL.

By looking for general areas where problems may exist it stands to reason that correctly
detecting a fault that is associated within such an area is more likely — so long as the tests
and analysis logic use the same points of reference. For example, a network connectivity
performance test may help indicate which features are more likely to be the source of the fault
assuming the context of the test is incorporated into the analysis logic.

Training RBMS is relatively expensive computationally. Compared to the iterative updates of
[IBTI and the firsEDE framework, the seconBDE approaches are particularly intensive. Each
RBM requires thousands of training cycles before being utilised. If there are a large number of
differences in attribute states between the last known good and fault configuration samples, it
could take several minutes for a potential root cause to be proffered by the application.

There is a certain amount of elasticity in BRIF's ability to forecast feature behaviours. The
size of the training sets — both with respect to the number of features being monitored and
the total number of observed configurations — influences the processing time, adaptivity, and

98 CHAPTER 4. AN AUTOMATED APPROACH FOR IDENTIFYING FAULTS

accuracy metrics. By increasing the frequency of the polling intervalEIBEs maximum
window is constrained to a shorter time period. Once the maximum number of samples is
reached, old data is discarded. Consequently, the ability to forecast data becomes restricted to
a small subset of information. Increasing the maximum number of observed samples used for
parsing comes with higher resource constraints, but it also provides more stable predictions and
less sensitivity to outliers. Expiring old information helps to retain the correct scope from which

to draw conclusions and avoids problems in over-training and convergence.

Lastly, different learning algorithms provide different results — which is both why they are
interesting and why they are difficult to compare. It is not always clear as to how factors impact
each other, or if there are relationships between attributes either in the learning algorithm or the
data when a fault is detected. However, some of the results suggest that it should be possible to
help determine the existence of such relationships. ?

In summary, both th&DE$ andUBLI look for feature changes to determine the root cause

of faults. However, in the case of the latter a different primitives and learning algorithms are
used alongside different testEDES use the same tests for each experiment, uses
different tests per the authors’ selected performance testing suites. Additionally, both of these
experiments evaluate slightly different conditions — both are looking for fault€JBiit looks

for changes in performance metrics outside of an expected range that is dynamically generated,
whilst EDE$ look for violations of STO% via performance tests. Nominal other differences
remain as summarised in Taleles,

Property UBL FDFs

Primitives ANN (SOM) ANN, HMM RBM
Learning Algorithms Tested 3 2 2
Training Cycles Conditional* 5-30 5,000
Windowed No Yes Yes
Polling Interval 1second 60 seconds 60 seconds
Forecasting Multi-point Single-point Both
Ingest Type Greedy Greedy Lazy

* Training in UBL occurs randomly until each neuron has been updatetintess.

Table 4.5: FDF and UBL Property Comparison. This table presents a summary of the comparison of
operating properties in unsupervised self-healing frameworks discussed in this chapter.

CHAPTERFIVE

RESULTS & DISCUSSION

The EDE experiments demonstrate the ability to accurately identify the root cause of faults
by using a combination of unsupervised learning, performance tests, and stochastic primitives.
Most results are show support for the hypothesis and overall the work in this thesis helps to
enable the autonomous identification of the root cause of errors.

This chapter provides the results from e&dBE experiment whilst contrasting them with an
external approach callddBTl before providing a discussion and leading into conclusions.

5.1 Introduction

This chapter presents the findings from the two separate but réBiédxperiments discussed

in the previous chapter. The first experiment focuses explicitBXERIS andHMMS whilst the

latter explores a nearly identical implementation udgi§Ms. The difference between these
experiments is that the primitives are not trained until a fault is detected when RERT.
Switching from a greedy to a lazy ingest mechanism provides notable changes in some of the
timing and list size results, but otherwise all aspects are identical including what kinds of faults
are injected, how they are induced, and the volume of data used to train the primitives.

The results of these experiments are described sequentially as they are contrasted with an
external experimentdBIL). This guides the interpretation of both series of results from the
EDFE experiments along with an external measure for comparison. A discussion section then
provides a degree of synthesis in these findings before outlining future areas of exploration and
conclusions in the following chapter.

99

100 CHAPTER 5. RESULTS & DISCUSSION

5.2 Overview

This thesis partially answers the research questions as described in S&tfibn

Chiefly, the experiments explore the degree of human interaction required to accurately find the
root cause of a fault by using unsupervised learning with stochastic primitives (Question 3), the
impact of information fidelity on such an approach (Question 6.c), the impact of different types
of faults on fault identification (Question 5), how quickly faults can be identified (Question
6.a), and the viability of examining only feature change data to accurately determine a root
cause (Question 6.b).

More generally, the experiments emulate the IBM’s proposed “policy-based” approach of
managing systemd] by implementindSCO$and general performance tests rather than a series
of software unit tests (Question 4), whilst ChapBrseparately, provides a comparison of
self-healing systems frameworks’ computing environments, management styles, and learning
algorithms (Questions 1 and 2).

Finally, a comparison is provided directly between three distinct primitives and learning
algorithms using the same experimental controls. The first two primitives form a baseline whilst
the latter is intended to demonstrate capabilities of the approach. To verify these capabilities and
understand relative performance, an evaluation against a similar, independent fourth experiment
is presented using publicly available resultg][

Although other attempts at comparing the performance of self-healing systems frameworks
have been made, such as with the aforementioned DTAC prdi#ctthere does not appear to

be much in the way of contributions in this capacity. This limited the scale of the comparison
made, but a best effort was made and the results seem both usable and interesting (Question 7).

The evaluation of the experiments within this book focus on whether or not it is possible to
correctly detect the presence of a fault and then identify its source using a combination of
unsupervised learning algorithms and a comparison of actual and synthesised feature behaviour
data. In each experimer&BNNS, HMMS, andRBMS are able to complete this task accurately

and within not more than 15 seconds. In addition, the autonomous classification of feature
behaviours by using performance tests is also shown to be an accurate approach for labelling
data.

Although results are largely positive, there are some caveats that presently include a necessary
training period between 5 and 30 minutes before the fault identification capabilities can be used,
moderate to high computational costs, and a compulsory initial set-up by a human administrator

5.3. RESULTS 101

where a system'’s role is definede(the instantiation of said performance tests). These are
hurdles that present future areas for improvement, but it is not believed that they deter from the
validity of the results nor their contribution to the state of the art.

The approaches employed in tBEIE experiments are also compared and validated against
an external experiment HBEIL. The findings fromBIL offer support for the validity of

the approach, and demonstrate some of the advantagdsliie provide to the academic
community over prior research. Examples include the importance of contextually relevant data,
that proper labelling and training sets for primitives remain important factors to consider, and
that synthesised, older or normalised information are all factors in guiding dynamic system
behaviours.

A variety of potential improvements remain open for further study. Fidelity of information
and entropy in data-sets represent two such areas — it is worth noting that b&HHrend

[IBI] experiments run into areas of difficulty when high degrees of entropy in feature behaviour
are encountered. However, difficulty establishing patterns of behaviour when such patterns
are seemingly not present are to be expected. Alternative techniques such as cross-referencing
the likelihood of multiple feature behaviours could help relieve some of these problems. This
avenue of potential research and others are discussed in further detail in the following chapter.

5.3 Results

The results in this thesis came over a substantial period of time, through much process, and
with concerted effort. Initially, the experiments described herein were intended to be iterated
over a range of values concerning three primary variables: window size, sample frequency,
and learning module. This was designed such that individual markers for the volume of data
being used, the resource costs involved, and the accuracy of each of these properties could be
evaluated holistically and explored through multiple iterations.

Although this type of experiment is still possible using the resources from this thesis, the initial
creation and setup of tHeEDES introduced some unintended resource constraints. This is a
problem that is multifaceted in nature — from programming priorities moving from building a
simulator to an actual, working application consistent with the properties of an independent
framework, to ensuring accurate reproducibility in the results using academic and industry best
practices and standards. Once these problems were solved, iterating the experiments becam:
difficult to address with the remaining time constraints.

102 CHAPTER 5. RESULTS & DISCUSSION

The creation of th&DESoccurred over two separate development cycles including a separate
series of trials for gathering information on variance. In the latter case, an identical feature is
selected that is related to the correct root cause of a fault. The first feature correctly identified
with the root cause was selected. This feature may or may not be the same feature selected in
subsequent trials as each fault may have multiple valid sources. This mirrors other approaches,
such adJBI], allowing for easier external comparison. The sole purpose in the variance trial is
to watch how one specific feature traverses the graphs.

The firstEDFE included building an ingest mechanism after deciding upon the correct tools
for storing, parsing, and interfacing with feature data and took about a year of development
work. This included writing up proper testing procedures so that results could be validated and
building an ingest mechanism, global variables that could be adjusted trivially, a simplistic
testing interface that addressed IBM’s initial criteria, and the ability to replay and recall
information from prior observations. This also includes designing tests f&flbea Although

not explicitly noted in the literature review, it became clear that faults had different types of
instigators — including human error. Testing the difference between detecting a legitimate fault
and one intentionally manifested then became a priority.

Development of the second framework took an additional three months to validate, implement,
and integrate new primitives and learning modules. The complexity dRB¥ code necessi-

tated additional development work for the Accord.NET and AForge.NET frameworks that was
not anticipated. Specifically, test cases had to be implemented to ensure that the primitives were
being populated correctly, and that the ingest of data was presented in the correct format using
the same amount of data as in the previous experiment.

In the end, each experiment was run 30 times for each sample size subset. Subsets were divided
into 5 minute intervals to keep the graphs readable and to highlight differences more clearly. The
subsets tested were addressed as 5, 10, 15, 20, 25, and 30 minutes worth of data, respectively,
to address the maximum window size. Further samples were not taken beyond the initial 30
minutes as they would have been expired and thus remained the same total size. The window
size of 30 was decided upon based on anecdotal evidence based on normal operational testing
windows — specifically my personal experience as an engineer, and loosely questioning peers
in industry. It represents a normal time-span in which rapid traffic changes could occur in the
monitored service, whilst still being short enough to be highly adaptive.

The number of runs was decided based on the central limit theorem. There seems to be some
disagreement with using the value 30, however, and that the recommended number of samples
can readily vary from 20 to 50. The value of 30 was decided upon based on a consensus and

5.3. RESULTS 103

discussion with peers within the Computer Science department of the University of St Andrews.

5.3.1 The FDFs

Is it possible to accurately identify the root cause of a fault using performance tests, stochastic
primitives, and unsupervised learning?

These experiments demonstrate positive results and overall show support for the hypothesis
under both conditions — where success is determined either by the fault being in the top 10
recommended features, or based on proximity to tRén@dlex — for finding and identifying the

root cause of faults based on feature change behaviour without human intervention.

However, although most of the results demonstrate success, some of the resultskiFach
performance did not meet these conditions and show potential for improvement. Overall, it
takes about 20 minutes before getting consistent results that are useful for fault identification.

Concrete results were generated showing:

1. The number of computing samples within fEBESdirectly impacted the amount of time
it took to generate a descending ordered list of fault hypothesis. Using ~7,500 features, in
implementations where a greedy algorithm was used each sample added ~15H0M&®r
using Baum-Welche, and ~90ms using Naive Bayes. Likewise, lazy algorithms
using arRBM leveragindCDII being trained at 5,000 epochs added ~560ms per sample.

This is important in understanding the computational cost of each approach, and how much
time is needed per sample to generate leads if attempting a proactive solution.

2. Sampling the probabilistic likelihood of feature behaviours allowed for accurate determina-
tion of potential root causes as expressedcaafidence BNNS, HMMS, andRBMS, each
provided accurate, descending ordered lists with the correct faults based on confidence.
The proportional calculation used with tBHVMS was an artefact that was not initially
considered. Ultimately it did not allow for monitoring the progress of reinforcement in
observations because all results were relative to the perceived most likely root icause (
feature). Still, botiEEDES produced usable, accurate results using this metric regardless of
the primitive or learning algorithm used.

Thus, when compared with the accuracy and precision results, concrete evidence is given
that confidences a good indicator of the learning algorithms ability to correctly detect
abnormal behaviours in features, and thdd0 in particular is an excellent learning

104 CHAPTER 5. RESULTS & DISCUSSION

algorithm for this type of analysis.

3. The ability to indicate the correct potential root causefaidt positionwas clearly demon-
strated, regardless the fault type, WRENMS being more successful over other approaches.
This is indicated by the ability to generate descending ordered lists with the correct root
cause more towards position zero than the other approaches in almost all cases.

Specifically, at 5 samples, all approaches perform similarly — however, drops in fault
position occur with theéHMM and RBM approaches — notably without a decrease in
accuracy. The rate of decrease in fault position is sharpelRBIRIS, which showed an
average decrease of about half a position per 5 sam&&MS show a similar overall
decrease, but not as consistently or sharply; at 30 samples this metric converged with
RBMS. BNNS produced the least desirable results with the correct root cause oscillating
between positions 4 and 5 regardless the number of samples provided. Highly chaotic
feature data such as Free Disk Space provided limitations to the analysis abilities of the
learning algorithms associated with the primitives, which was expected.

4. A smaller number of fault hypothesese(leads) occur when using greedy ingests, but
using this approach costs more computationally, overall. The details of this conclusion
are technical and discussed further in Sectiody but in summary the smaller subsets
of calculations provide a mechanism for reducing the number of potential leads when
compared to analysing feature behaviours at larger key intervals. For each good sample that
was expired, the computations performed to understand feature behaviours were effectively
wasted. A lazy algorithm avoids this pitfall in exchange for longer times at during fault
identification (.e. generating a list of fault hypotheses) at the time of fault detection.

5. A windowed data-set is a necessity to avoid problems with convergence. This is confirmed
through the presence and suspected root cause of such a problem in the comparison study
(OBD) (as confirmed by its author®4]), and the notable absence of this problem in the
EDES$ By intentionally running similar experiments designed to avoid this problem, a case
has been developed that lends evidence to the mitigation of this problem.

The first experiment attempts to fulfil two primary purposes: to explore the validity of the
approach, and to establish a baseline for understanding the effectiveness of this and future
experiments. Before this experiment, no public studies were known to provide a direct
comparison of stochastic primitives for finding and identifying faults within a self-healing
system.

The measurements taken to compare approaches inatodéigencetotal leads time-taken

5.3. RESULTS 105

andfault position Each of these measurements are defined in SeE#phut a brief overview is
also provided near figures in this chapter, where appropriate. The values in the figures contained
within this chapter are averages from each experiment.

Variance measurements are absent in the trials involiKBS andHMMS. This is due to the

fact that trials were executed using the same feature dakAWissnapshots” — literal byte-level
copies of the systems being tested. Once an object was instantiated, given the same information
under nearly identical conditions, it performed identically with the exception of minor (< 10ms)
timing differences.

In summary, it is possible for both ddMM and anBANN to identify faults by generating

an ordered list of potential root causes. However, using Baum-Welch and Naive Bayes,
respectively, did not produce particularly precise results, and their computational resource
utilisation is higher than expected. Also, as expected HM8M approach outperforms the
simpleBNN in a number of trials.

Time-Taken - ANNs & HMMs Confidence - ANNs & HMMs

5000 —

100

e HMM —=— ANN

4000 — —s=— ANN —=— HMM

3000 —
80—

Time (ms)
Confidence

2000 —

1000

60
0 10 15 20 5 30 5 10 15 20 25 30

w

Time (Minutes) Time (Minutes)

Figure 5.1: FDF v1.0 - Time Taken. Time-Taken Figure 5.2: FDF v1.0 - Confidence. Confidence
represents the number oEfapsedTicKsconverted conveys how likely the FDF's suspect a given lead
to milliseconds (ms) between when a fault is des associated with the correct root cause of the de-
tected and the return of an ordered list of potentitdcted fault. Converse to the amount of time taken,
root causes. The ANN took less time than thiae HMM produced much higher confidence values
HMM to produce an ordered list of fault hypotheseshan the ANN. This is a result that was unexpected
Shortened times allow for a wider range of recoveilyecause of the way that the Baum-Welch algorithm
solutions making them more desirable. Both valuesiculates probabilities.

grow linearly per the amount of data being provided.

The time needed to train eaBiDE and how likely each a feature is believed to be the correct
root cause can be seen in the time-taken and confidence graphs, respectively Blh&ras

Time-taken is a metric designed to provide a high-level understanding of the computational

106 CHAPTER 5. RESULTS & DISCUSSION

resources required to obtain a result. It also directly relates to what constraints may exist
relevant for forecasting feature behaviours. Longer time-taken implies a greater required lead-in
time between when the fault is suspected to be manifesting and when a solution is implemented.
Being able to detect manifestations of faults through forecasting allows for a shift from a
reactive to proactive set of solutions, a related topic for future study.

In every case, thEIMM required more time to provide a list of potential root causes than the
BNN. These results are as expected adARE implementation is intentionally simplistic by
comparison to th&IMML. It also sets a baseline with averages between less than 1 second and
4.5 seconds for the diagnosis of faults.

Confidence values are a probabilistic measure of a feature’s behaviour given some number of
previously observed states. How this occurs is covered earlier in the thesis (see B&tion

but ultimately the value represents the inverse likelihood of an observed feature behaviour. This
is evaluated by comparing the state of a feature in a faulty configuration when compared to a
series of configurations that passed their respe8iMas The less likely the change to occur,

the higher the confidence value.

The difference between thBNN and HMM approaches is immediately obvious in terms

of confidence. HMMS always return the most unlikely feature change in the sampled data
as a value near 100%. This is an unexpected result, and as described in #&afipn
make comparisons between Baum-Welch and other learning algorithms less conclusive than
is desired.

Ideally, the results should show a gradual increase such that reinforcement gains can be tracked
and then compared. This is observed in bBIKNS and laterRBMS producing expected
results. As expectedNNS in this experiment do not show a particularly fast or high valued
reinforcement.

Interestingly, the type of fault impacted the degree of confidence. When the fault is introduced
into the system vidDEl, the BNN predicted the problem with greater confidence. Upon
further investigation an interesting property is made evident when UEifigs Controlled

stops of systems touch multiple dependencies typically producing a larger number of correctly
identifiable features.

In contrast, direct observation reveals a smaller number of noticeable feature chang&3inder
conditions. Eventually, dependent features change under these circumstances but they seem to
take longer to occur. The net result is tB&EIC3$provide a greater number of leads for e BEHF

to investigate. This has some impact on precision as the evaluation criteria for these experiments

5.3. RESULTS 107

are focused on identifying a single feature (Fighrs).

Since all changes associated with the fault are equally weighted, diagri&Sgenerated

faults is more challenging. Often several leads have the same confidence values and thus sam:
fault position. Regardless, when attempting to ascertain the root cauS®/i#is still able to

identify the correct feature more often than BEN. This is seen readily in the fault position
results, and attributed to the more sophisticated Baum-Welch learning algorithm.

Fault Position - ANNs & HMMs Total Leads - ANNs & HMMs

5 30
—=— ANN —=— ANN

4+ —=— HMM 25 —=— HMM

20

Fault Position (lower is better)
Total Leads

‘ ‘ ‘ ‘ ‘
5 0 15 20 25 30 5 0o 200 50 30

Time (Minutes) Time (Minutes)

Figure 5.3: FDF v1.0 - Fault Position. The Figure 5.4: FDF v1.0 - Total Leads. FDFs
average position of a correct root cause as rgenerate leads when a fault is detected. This
turned by the FDF is represented in this graplgraph represents the average total number of
As the lists are ordered by descending prolBuspect features.€. ‘leads’) at 5-point sample
ability, lower values are better. The averageastervals. The FDF using HMMs is able to
from the experiments show that the HMM outgenerate more leads than the one using ANNs,
performs the ANN in nearly every test. Ad-however more leads is not always better. The
ditionally, fault position improvement is muchideal result is a list containing only the features
slower with the ANN. that are associated with the cause of the fault.

Fault position is a human validated metric based on knowing the cause of thafauditi, and
monitoring the effects of eitherlakEl or BCO (Figurebd). Itillustrates thdEDES prediction of

the correct root cause and is the primary metric for evaluating the precision and accuracy of the
EDES$ Accuracy and precision metrics are directly related to how close the selected root cause
is to the first index of the list . The lower the fault position value.(index), the more correct

the diagnosis made by tieDE. Again, theHMM! regularly outperforms it&NN counterpart

by frequently placing the correct root cause nearer to'itsr@lex. This is the expected result
based on the sophistication of the learning algorithms between these two primitives.

Converse to fault position, total leads is an autonomously generated metric that represents the
total number of fault hypothesises generated byHRBE . Total leads is used to understand how
many potential avenues for investigation are generated at the time of fault detection Eefjure

This allows for an understanding of the performance ofEh®, and what correlated factors

108 CHAPTER 5. RESULTS & DISCUSSION

may exist with other metrics, such as time-taken or precision. By understanding the reduction
from the total number of features we start to understand the gains created by usiigEbe
during fault identification.

Anecdotal evidence suggests that human administrators would find a singular or even three to
five potential avenues feasible for use. However, list sizes with the correct fault ranging between
12 to 30 in the tests were not uncommon for both @&\l andHMM trials. Although this is

an improvement over the 7,500 initial features, there is clearly room for improvement.

Additionally, the correct fault must be present otherwise the list size is not a useful measure-
ment. In this experiment the correct feature is identified in most trials, however that may be
more an artefact of the investigatory logic than the behaviour of the stochastic primitives.

In both theHMM andBENN basedEDES changes in a feature’s behaviour alone are not enough

to trigger an addition to the list of leads. The changes must cross a certain threshold before they
can be forecasted accurately and then evaluated as either expected or unexpected behaviours.
This is where differences in the learning algorithms are most obvious.

TheHMM ! is capable of setting a dynamic threshold for feature behaviours, whereABIiie

uses a statically assigned 80% value. The net result is thEli¥fid generates more leads when
compared to th&NNI. Although more leads can indicate greater sensitivity in detecting faults,
higher values in this instance are not always better. In a perfect scenario only the exact root
cause(s) are provided.

As mentionedEDES usingHMMS are more likely to select the correct root cause tBAINS.
Although selecting the correct root cause is a clear indicator VKIS performance as being
more desirable than tH&NIN], the generation of larger numbers of leads is perhaps not. This is
seen most readily when faults are not correctly positioned within the list visltHgl.

Direct observation revealed that when this happensHRB has often weighed multiple
correct root causes together. These are features often within thel&afieclass related to

some dependency or service associated with the fault. When confidence values are the same,
the list uses a second-order sort by feature name, alphabetically. Weighing two or more fault
hypothesises identically but forcing the correct feature artificially down the list then impacts
precision and related metrics. This is a topic sometimes addressed through feature &tality [

a topic discussed further in the following subsection.

For example, when thES web services are disabled using approach, four properties
are returned that are all correctly associated with the change. The correct lead is labelled with
anS(i.e. state), but because these properties are equally weighted and some are labelled with

5.3. RESULTS 109

values closer t@é\ thenS it pushes the correct lead further down the list.

One improvement might be to associate the root attributes — the data listedMMiigpath
between the root classes and end features — of a lead and then list properties in a hierarchy. This
would allow the root cause to be diagnosed as a subset of a specific feature and may lead to
greater precision in future approaches. Unfortunately this is something that wasn’t considered
at inception. For consistently, this approach is kept throughout.

Precision - ANNs & HMMs F-Measure - ANNs & HMMs

—=a— ANN 0.25 ANN

030~ —=— HMM HMM

025 020

F-Measure

Precision
o
N
o
T

0.15 -
015

5 10 15 20 25 30 0.10 5 10 15 20 25 30

Time (Minutes) Time (Minutes)

Figure 5.5: FDF v1.0 - Precision. HMMs pro- Figure 5.6: FDF v1.0 - F-Measure.The F-Measure
vide more precise results initially, but eventuallyepresents the overall performance of the learning
trade with ANNs. This is significant in that nei-algorithms in relation to both Baum-Welch (HMM),
ther approach is particularly precise, but as moead Naive Bayes (ANN) in terms of precision whilst
information is added, the HMM appears to drop iaccounting for outliers. Due to the way the trials
precision. This result correlates with more leadsere executed, similar results were obtained in each
being generated, and some second ordering issuesxamination.

Precision describes the relative position of the correct leads within the ordered list with respect
to the total leads generated by th&F (Figureb3). Having only leads that are correctly
associated with the fault shows higher precision, as does having localised groups of correct
leads. To achieve the latter, a measurement by hand is performed since evaluation of the same
feature instance is not supported natively in

TheHMM) categorises most leads with a greater degree of precision th&NKRe However,
as the number of samples increases this position reverses itself aBdieshows greater
precision than thEMM.

The expected result is that the number of root causes suspected by each respective approac
increases in number with the number of total samples. Based on the observed data it would
appear that this metric actually peaks at about half of the total number of samples. The

110 CHAPTER 5. RESULTS & DISCUSSION

causal factor as to why this occurs remains unconfirmed, but it is suspected to be related to
the aforementioned second ordering problem combined with increased list size.

Another theory is that infrequent changes in features essentially start an examination process.
This means that although there may be 30 samples of data collected overall, perhaps only 5
exist for a specific feature. Without smaller amounts of information features are more difficult
predict — a problem that is exacerbated if information is expired prematurely due to a small
maximum configuration sample size.

It would be worth exploring a larger sample size of systems’ configurations to see if either
EDBs’ precision values continue to peak at 15 samples, or if there is a trend to%vendlaere
x is the number of samples tk#FE has access to when the fault is detected.

To test whether or not the value of 15 has a special importance, the window size would need to
be modified such that the median was substantially larger or smaller than 15. Doing this would
necessitate an entirely new set of experiments that would not be directly comparable with these
results — hence why they were not immediately explored. However, exploring this property is
looking to be more necessary to optimally explore the capabiliti€S3HIS.

The f-measure, which in this instance is represented similarly to the precision metric, takes into

account outliers and subsets of the sampled data by examining the number of relevant leads
versus relevant leads detected by HigE (Figureb8). The results are similar between both

the f-measure and precision as there are few outliers. In fact, there is only one series of trials in

which a correct fault hypothesis is not generated biEBR. However, even in that instance the

fault is detected.

The performance of thBEIMM exceeds that of th&NN in many of the trials performed.

The most notable exception is seen in stability of ordering and generating fault hypothesises.
Although results appear deterministic, between trials the fault indexes of root causes can shift.
— the contributing factors of which are previously discussed.

The secon#DHE experiment attempts to build on the baseline established in the prior experiment
and demonstrate improvements using as many similar conditions as possible. This includes
volume of data, polling interval, feature selection, and numerous other properties.

In summary, using aBBM to detect faults comes with the costs of higher time-taken, notice-
able variability within the fault index results, and, ideally, larger training sets but ultimately
demonstrates some positive results. Although it does not outperform the previous experiment
in all cases, it does in later trials and it shows potential for more advanced behaviours.

5.3. RESULTS 111

In the RBM trials, the number of training sets is identical to the number used in the previous
experiment. However, this volume of data represents only half of the ideal amount needed by
the RBM. This is because full training of tHEBM normally cannot start until the maximum
sample size is reached. This is due to a restriction on the dimensions of the input data. Despite
this, results are competitive in a number of cases.

Time-Taken - FDFs Confidence - FDFs
_ 100 —
15000 —=— ANN
—a— HMM
—a— HMM
12000 —=— ANN
° —=— RBM
2 —=— RBM ©
£ 9000+ S
° E 80—
£ s
= 6000 o
3000 - /
0 | ! ! ! ! 60 5 10 15 20 25 30
5 10 15 20 25 30
Time (Minutes) Time (Minutes)

Figure 5.7: FDF v2.0 - Time Taken. A switch Figure 5.8: FDF v2.0 - Confidence.The gradual
from greedy to lazy data ingest caused an expectedrease in confidence values via the CDL appears
increased time-based performance metrics. Thistisbe more robust than previous approaches. Rather
because all of the calculations for training the RBMthan a relative value being given or steep increases,
was performed once a fault was detected versus aftegradual pattern emerges as more data is fed into
every collection sample. the FDF.

The RBM requires more time to complete its training and evaluation tasks than the prior
approach (FigurB). Thisis expected to be due to the fact that this version dEibédoes not
pre-compute the vectors before a fault is detected. Additionally, the increase in time per minutes
of sampled data appears to be associated with the humdeBRIS generated during fault
identification. The more primitives generated, the more time is necessary to examine potential
leads. Performing all of the calculations at a single time provides an advantage, however, in that
overhead during the operation of tB&M-basedEDH is heavily reduced.

Confidence is markedly improved under conditions (Figureb38). By comparing

the evidence between thi&Y], previous [[8], and other experiment&§], improvements are
believed to be due to the feedback mechanism used when training the primitive. Rather than
returning a relative value, gradual reinforcement is illustrated as more data is fed into the
primitive. This is both a desired and expected result, and one that appears to be produced
with more predictability than in the previous approach.

There exists some variance in both the time-taken and confidence metrics. Using the resources

112 CHAPTER 5. RESULTS & DISCUSSION

Time-Taken - RBMs -Variance Confidence - RBMs - Variance
30000 1 —
—— ——
—— 4]
[—] N Lo

= 5

25000
20000

*
15000 :
o
& 0.4

10000 k.S

] =

]
é

5 10 15 20 5 E] 5 10 15 20 25 Esl
Time [Minutes) of Observed Data Time [Minutes) of Observed Data

Time-Takan [ms)
Cornfidence
o
in

Figure 5.9: FDF v2.0 - Time Taken - RBMs - Figure 5.10: FDF v2.0 - Confidence - RBMs -
Variance. The computational time to generate lead¢ariance. Confidence values generally display lit-
using RBMs remained largely predictable. Th#e variance. The learning rate of CDL operated
greater the number of features identified for initiads predicted in nearly all cases with one notable
investigation, the more time required to complete trexception where the number of features produced
calculations. Variance occurred due to the numbby the fault injecting were smaller than previous
of leads needing to be investigated. Note: HMM artmials. Investigation into the cause of this yielded
ANN trials are not included. See Page 105. inconclusive results.

provided to the/M it takes an average of about 12 seconds to parse all 30 samples in each
iteration. This value can vary depending on the volume of data collected, and how many leads
being investigated. Each lead will require a ne®M to be generated. As more data is added

a wider range of variance is observed — and in some cases, certain tests produce more variance
in results (Figurd9). In the latter case, Red:like markers indicate a near outlier, whilst Red

o symbols indicate a far outlier. These are observed values that were 1.5 or 3 times the median
distance between the upper and lower quartiles, respectively.

Near outliers for time-taken are heavily associated with one specific test — those related to
causing faults in Window’s disk services. A larger number of changes were produced in the
faulty configuration which in turn increased the numbeR&MS needing to be trained. In two

cases this value is just inside the delimiter between an outlier and standard range data. This
same test had similar results for confidence, fault-position, and accuracy which can also be seen
in subsequent results.

An opposite trend in variance is observed in the confidence values as seen in time-taken (Figure
ET0). With more data comes less variance, and seemingly more accurate predictions (Figures
K14 5TH). This observation comes from cross referencing the variance in confidence with the

5.3. RESULTS 113

average fault index (FigulgT1), and the variance in the fault indices (Fig&é&3).

In the majority of cases tHEBM is able to consistently produce a lower index for the corret root
cause than previous approaches (Figufid). When using 30 configuration samples H
is able to identify a correct feature slightly more accurately thanEB®&1 with an average

fault position of 0.83 versus 0.838, respectively. The gradient of each of these approaches
suggests that thEIMM could continue to outpace tH&BM and further research is required
before drawing stronger conclusions.

Fault Position - FDFs Total Leads - ADFs
3T 300
—=— ANN —=— ANN
% 4 —=— HMM 2501 —=— HMM
el
@ — s REBM v 2001 —=— RBM
T osk E
3 2 qsob
5 E
2 27 °
3 100
a
= 1
2 50 -
4-/I-—I
O O Il Il Il
5 10 15 20 25 30 5 10 15 20 25 30
Time (Minutes) Time (Minutes)

Figure 5.11: FDF v2.0 - Fault Position.The aver- Figure 5.12: FDF v2.0 - Total Leads. The total
age fault position when using the RBM appears to lawenues for investigation are much higher when a
competitive and often outperform other approachdszy data ingest is used.

The RBM produced a higher number of leads than the two previous approaches (Figure
5T7). By switching from greedy to lazy evaluation, changes in the system’s configuration are
accounted for all at once when a fault is detected. This poses challenges in terms of discerning
which leads are more or less correct. The result seems to be near linear growth over time for the
total number of features that need to be evaluated. These values provide supporting evidence
for the increases in the time-taken data (Figlgasbh9, 5272).

In the original series of trials there were often more than 250 total leads. However, during
a separate trial for measuring variance fewer total leads were returned. An investigation into
the cause revealed deprecated functionalit8fll and migration of certai®PIS caused by
installing security patches between trfaldt showed that the same number of features were
being sampled, but a higher than expected number of O values were being returned.

Interestingly, total leads does not seem to influence the accuracylRBikEnegatively (Figures

https://technet.microsoft.com/en-us/library/Hh831568.aspx

114 CHAPTER 5. RESULTS & DISCUSSION

5 T4 5ET%). Based on direct evaluations of the average correct fault position, a correct lead is
given more precisely and more accurately than previous approaches.

Fault Position - RBMs - Variance Accuracy -RBMs - Variance

*

- =
==
0s o X
o
0
=
oy
Eos -
E L+
15 kS
04
10 ® @
o]
i -
. . 1 — © X 02
%
o
5 1 5 2 x5 2

5 10 15 20 25 30

Time [Minutes) of Observed Data Time [Minutes) of Observed Data

Fault Position (Lower is Better)

[+

Figure 5.13: FDF v2.0 - Fault Position - RBMs - Figure 5.14: FDF v2.0 - Accuracy - RBMs - Vari-
Variance. This graphs shows results of an identicance. The accuracy of the RBM approach increases
feature being selected between trials. Normallwhilst variance decreases with the exception of dif-
the first related feature to the root cause is selectiiences between 25 and 30 minutes. The reason for
from the list by a test administrator. In this casehis is not fully confirmed. An initial investigation
only the original feature is selected to help illustratshowed maintenance tasks being executed by the
variance. This helps provide an understanding operating system at regular intervals set for every
how the RBM makes suggestions. At 20 minute30 minutes. This may create additional features for
all correct features are categorised within the top lfivestigation and account for differences in the 30
leads. minute trials.

Variance in thedRBM's fault position output seems to be at least partly associated with how
the RBMS are instantiated (FigurBT3. A random seed is used to help build weights and
biases within each neuron of tliEBM. This value dictates the initial state of the neuron, and
consequently the paths for each output are somewhat different if these are adjusted. Since
the object are constructed upon fault detection, diffeEAKS exist between different trials.

This seems the most likely explanation for the higher rates of non-deterministic output seen in
previous trials.

Both the fault position and accuracy values show strong results compared to those in the
previous experiment. A majority of fault indices appear to be lower, particularly after the 20
minute mark, as well as the previously described increase in accuracy. Still, there is room for
improvement.

As mentioned, the ide®DHE will return a list of fault hypotheses that consists of only correctly

5.3. RESULTS 115

associated leads to the detected fault. For continuity, this experiment continues operate on
the assumption there is a single feature being returned indicating the absolute root cause of
a fault. This continues to be a less than ideal measure as it is often the case that multiple
features can be correctly abstracted as part of the diagnosis. With the randomisation of the
RBMS, however, some variance occurs in which feature is placed making this an arguably more
noticeable phenomenon in slight increases in fault index (FiBLI®. It seems that accuracy

is improved over other approaches despite this (Fi§E®) with fewer false positives being
present overall in the results.

Precision - FDFs Accuracy - FDFs

40 -

o
1

—=— ANN —=— RBM
=T —=— HVMM 08 —— HMM
30 —=— RBM > ANN

c § 0.6
2 25 g
¢ < 04r
& 20t
02
15+
00 1 1 1 1 1
10— n i % % I 5 10 15 20 25 30
Time (Minutes) Time (Minutes)

Figure 5.15: FDF v2.0 - PrecisionPrecision of the Figure 5.16: FDF v2.0 - Accuracy. RBMs show
RBMs show a marked improvement on previous egn improvement in accuracy over other primitives.
periments, however some ramp up time is necessdnjtial values start out low, but higher than other
Averages of results show a marked improvemeapproaches. They continue to show steady improve-
between the 20 and 25 minute marks and a strongeent with the possibility of meeting the accuracy of
trend than prior approaches. the HMM.

A couple of outliers are present in the results and this is directly observable in the variance
graphs for precision and f-measure (FigUseBl, B-T8). In trials where fewer numbers of leads

were returned, precision seemed to increase. The fact that the correct root causes are still listed.
might imply that leads are sometimes harder to rule out than they are to confirm as fault sources.
However, this claim would need further testing to be substantiated.

The overall range of values produced in the trials forEi&S modest improvements. There

are a couple of tests where it took longer for the precision metrics to increase than expected.
Direct observation of those tests revealed ambiguity in the results of certain experiments, where
a feature or series of features appeared to be missing from the data collection tables. This
seems to imply a problem exists at the data gathering sta@@MEversus thd&BM's learning
capabilities.

116 CHAPTER 5. RESULTS & DISCUSSION

A sharp increase in desirable performance metrics and observed traits in multiple graphs after
20 samples. A longer running test seems to be necessary to understand the limitations of the
experiments that have been performed. Unfortunately, it was assumed that 30 minutes would
be sufficient, where as it seems it is perhaps not.

05 Precision - RBMs - Variance 038 F-Measure - RBMs - Variance

0.45
5

i

[=]
w

=]
=
n

=]

w
o
=)

»

Precision (TP (TP +FP))
@
e
in

(o]

F-Measure 2 * ([Pracision * Recall |/ (Precision + Recall)
[=]
e

¥ <
g £+
as | |2 |
’ x
*
01

5 10 15 20 5 30 5 10 15 20 25 30
Time (Minutes) of Observed Data Time [Minutes) of Observed Data

=)
(=]
n

Figure 5.17: FDF v2.0 - Precision - RBMs - Figure 5.18: FDF v2.0 - F-Measure - RBMs -

Variance. Precision tends to increase as more dat@riance. A number of minor outliers occurred

samples are used. This coincides with previoukiring the course of these experiments. Some tests

observations at around 20 minutes where greapovided a larger number of features to examine than

increases start to take hold. were expected, and variance in fault index had an
impact on results.

5.3.2 UBL

OBD's results show that can be used in some situations to forecast feature behaviours
accurately far enough into the future to take corrective action before a fault fully manifests —
notably when the fault manifests slowly in non-noisy datasets. However, noise and limitations
on the amount of data that can be observed before convergence and a forced re-instantiation
make this approach arguably less effective than alternative approaches. EvaludiiBil of

is based upon a comparison between the results vi&T& and two unsupervised learning
schemesPCA andik=NN.

Detailed results from thEIBLl experiment can be found in the original publicatié&]| but
relevant results are summarised here for convenience. The majority of results associated with
the OBIL approach are presented in graph form using the aforementigtEd curves and
their associated bar charts. These graphs describe the fault prediction accut#glj gfa

5.3. RESULTS 117

true positive rateandfalse positive rat@erformance metrics using ti&EOM, PCA, andk=-NN

(FigurebT™9).

At = ——— 5.1
T th+an ()
A = —— 5.2
F Nt p+ Nen (52)

Figure 5.19: Prediction Accuracy Formulas: UBL

4.1: True Positive Rate
4.2: False Positive Rate

Furthermore JUBL consistently provides two sets of results for e&fA0 curve — a non-
smoothed series and 5 point moving average smoothed series. These datasets are labelle
asOBI-NS andUOBII-5PtS, respectively. The graphs demonstrate supporting evidence for
several advancements in unsupervised fault detection as evident by suite and application. These
results are described in terms adcuracy lead time and the effects smoothing has on fault
identification.

In low noise datasetsMemLeak CPULeaR with RUBIS claims a high rate of true
positives — up to 97%. This is contrasted with the slightly noisier dataset produced by NetHog
with an 87% true positive rate. Notably, the higher accuracy in the former is attributed by the
authors as being due to the gradual nature of the fault’s instantiation. Faster occurring faults are
claimed to be less likely to be detected under all three algorithms.

Smoothing in thevlemLeakis also attributed as being beneficial to the true positive rates in the
test—a claim of up to 20% greater true positive rates than without. When the dataset’s results are
modified in this way, they are more likely to remove outliers associated with what the authors
describe astfansient noise The gradual manifestation of the fault then supports a higher
true positive rate since it is less likely that data associated with the correct fault hypothesis is
removed.

Test results using IBM’'System Seturn the most successful results. A true positive rate of
98% is achieved on average, with individual tests suciCB&Hog achieving 93%. False
positive rates for these tests are reported to be as low as 0.5%. High true positive rates are agair
associated with their longer instantiation times, including another testing tool &dlddneck

118 CHAPTER 5. RESULTS & DISCUSSION

which manifests quickly producing lower success rates. A skew in the dataset is noted in that
less noise is associated with h@&ystem $eturns its sensor data.

It is here that smoothing is described as not being particularly helpful and that the associated
benefit from its inclusion is directly related to the volume of noise involved. That is to say, when

the observed information frequently peaks and troughs between minimum and maximum values

it is less likely to be predicted correctly — a problem that is possibly exacerbated when you
normalise values. Additionally, as smoothing can remove critical points of data, it sometimes
helps to increase the false positive rate — as seen in this instance. Regardless, the best results for
Bottleneckare when smoothing is not used.

The Hadoopresults are divided in terms of the best true positive rates betivesnLeakand
CPUHog As both of these tests cause faults to instantiate rapidly, and sincat®pdatasets

are the noisiest, results from these tests show the highest false positive rates. Again, smoothing
is attributed to the removal of some critical points of inference, as noted when the authors use
both 5 and 50 point smoothing to try and achieve better results under this specific set of tests.
Unfortunately, true and false positive rates are not directly provided in the text, and instead are
inferred through manual calculation (as described in Seé&idn

The most important results frofdBT are arguably théead timesit produces. One critical
difference betweelIBI] and theEDES$is that the former focuses on a proactive solution to
anomalies. To successfully complete self-healing operatldB&] must be able to recognise a
pre-fault state and recommend a recovery strategy before the fault fully manifests.

OB claims an average of 38 to 40 seconddeaid timefor the CPULeaktest under RUBIS;

for Memleak the results average only 7 seconds. This variation in results is explained due
to variation in the ‘background noise system’ influencing the input data, but arguably such
circumstances can be expected under normal operating conditions. Similar results are observed
under theSystem $ests — 47 seconds of lead time, on averageMemLeak but as few as 3
seconds foCPUHogand 5 forBottleneck Hadoopresults are similar still, with 24 seconds of

lead timefor MemLeakand 3 forCPUHog respectively.

A summary of the lead times generated#$L is provided for ease of reference: (Tabld)

How much time is necessary to correct a fault is an open question. Supporting work for
OBID claims a range of 10 to 30 second®4]. Objectively, this means that under non-noisy
datasets where faults manifest slowly, {80 approach is effective at generating a correct
fault hypothesis.

5.4. DISCUSSION 119

Hadoop System S RIBIS
TestingSuite Avg | Max | Avg | Max | Avg | Max
Bottleneck 5 6
CpuHog 3 4 3 4
CpuLeak 40
MemLeak 24 | 25 | 47 | 50 7 50
NetHog 7 7

Table 5.1: Lead Times: UBL. This chart represents the number of seconds UBL identified a failure
before it reached a terminal threshold; higher values are better. Blank = No Data.

5.4 Discussion

Differences in the approaches of both and theEDE$make direct comparison difficult.

This is specifically due to the lack of common tests betweerdBE testing suites (see Ta-

ble d=3), and the lack of detailed, publicly accessible results. To mitigate this issue a common
baseline between each approach is synthesised using similar performance metrics and criteria
whilst also acknowledging their fundamental distinctions.

Data was extracted directly from the original publication via XML contained withiiEB&l
graphics. ThdRQOU curves describEIBL's results in terms of "fault prediction accuracy” via

the true positive rate and false positive rate metrics (Fi§IE®. . Using this information, a
common baseline between each approach is synthesised by extrapolating similar performance
metrics from the raw data in the results from each experiment. All associated data is made
public (AppendixAT).

il |

There are a number of differences betw&#al and theEDE approaches both in terms of

the data provided and their fundamental behaviours. In addition to sampling frequency, major
distinctions include: The type and volume of data being sampled, forecasting capabilities, pro-
active versus reactive behaviours, and classification criteria. The resultant data for each of these

studies is thus presented differently.

Using the publicly provideBDE results forfault position time takenprecision confidenceand
total leads and the various true and false positive rates fidBil the following performance
metrics are synthesisegrecision prediction time andfault position Further metrics are not
generated as some of their fundamental values are missinddRid's public results and were
not obtainable upon enquiry.

Precision data is generated by taking true positive rates ff&i and theEDE$and averaging
the values of all relevant experiments at identical time intervals.

120 CHAPTER 5. RESULTS & DISCUSSION

Precision - FDFs & UBL

100 -
—=— ANN
80 [~ —— HMM
c —o— RBM - STD
o 60
=2
o —=— RBM - ALT
(a1 40
—=— UBL-ALT
20 -

O 1 1 1 1 1
5 10 15 20 25 30

Time (Minutes)

Figure 5.20: Precision Measurements: UBL & the FDFs.The precision of both FDF approaches
remains low, however the RBM approach shows a promising trend as more data is added. UBL's
precision drops the more data is added. The first three metrics show results for fault identification where
all features above the correct root cause are considered false positives. The bottom two results (-ALT)
show precision for fault detection.

In the case of th&DES$this means using values for tests that leveraged the same primitives

in 5 minute intervals. Each interval represents a sixth of the total results. SimilaridBhe

data uses both the NS and 5-PtS datasets to generate the precision data points at intervals that
matched a sixth of the volume of data.

The definition of precision is different betwe&BL and theEDES UBD determines a true
positive if the selected feature is both correct and returned within a specific time period:

“‘We say the models make a true positive prediction if it raises an anomaly alert
at time ¢ and the anomaly indeed happens at tiguyt< t, <t; + W, where W
denotes the upper- bound of the anomaly pending’time

Per their original papeYy is decided arbitrarily by Deaet al, after manual observation of prior
results — see page 6 of the original publicati@#][This is a definition that is incompatible with
theEDESfor two reasons: Itis based on fault detection and not identification, and it emphasises
forecasting within a specific time period rather than accuracy in diagnosis.

Because thEDESretroactively investigatBLO violations, a direct comparison using identical
definitions of true positives is not possible. Instead, using the earlier started goal of automating
the root cause analysis, we can assume a similar comparison by returning a true positive if the

5.4. DISCUSSION 121

root cause is correctly identified within the first 10 leads. This condition has been chosen based
on an anecdotal assumption that an engineer looking for a root cause would be willing to look
through such a list.

For reasons of comparison, Figuse?l shows two sets of data. The first three metrics show
the traditional definition oprecision Nip / (Ntp+ N¢p), where aN¢ is, as stated, the number
of features listed above the correct root cause of a fauk.—the fault position. The latter
two metrics in Figurd&20describe when a fault is correctly identified within an arbitrary time
bracket [JBL - ALT), and when a fault is correctly identified within the top 10 features once
the fault hypotheses are order&HM - ALT).

RBMS show continued improvement overtime when compare to other approaches — a situation
that could be explained by possible over-training. As more data is received by the primitives
and learned, their sensitivity to new information is reduced, but they do not converge or lose
precision adIBI1 seems to.

A lack of sensitivity is more evident in situations where learned information is not expired.
[IBTI lists a known convergence problem after too many learning updates &Qke— this
effectively limits the maximum operating time of this approach, a problem the authors work-
around by using forced reinstantiation and training ofSkBM at periodic intervals. Conversely,

the EDH experiments use a rolling window of information to make inferences from as specified
at run-time by a user. This value is derived via the the polling frequency (in milliseconds) and
total number of samples to keep. Although both experiments incur degraddBal's appears

to be much more rapid — however the variability in data makes it difficult to be certain

in all cases.

Using true positive rates demonstrates that if the correct solution is discovered, in many
instances multiple potential faults are also providedlEi], neurons ‘vote’ between possible

root causes, whilst thEDES use confidence values based on prediction likelihood. Both
experiments then order their respective fault hypotheses. Arguably, both experiments can
be seen as basic recommendation engines with solutions being ordered or weighted in some
fashion. By understanding where the correct fault is within these engines — either by weight or
by position — a demonstrable type of effectiveness is provided for each approach &lifiyre

The fault position of the correct root cause is evaluated against the total number of recommen-
dations (Figuré&21). The lower the value, the sooner the engine selects the correct root cause.
EDES using BNNS are the most consistent technique when examined via this performance
metric, exclusively, but this level of performance is eventually matched byEiaM andHMM]

given a sufficient volume of data.

122 CHAPTER 5. RESULTS & DISCUSSION

Fault Position - FDFs & UBL

—=— UBL
4 —=— ANN
—=— HMM

—=— RBM

Fault Position (lower is better)

0 I I I I I J
5 10 15 20 25 30

Time (Minutes)

Figure 5.21: Average Position of Faults Based on Approach: UBL & the FDFsUBL and the FDFs
prioritise potential sources of faults. Correct recommendations are represented as an average of all tests
based on primitive type. Lower values signify better recommendations.

Accuracy in predictions is often directly related to resource availability. The balance between
how fast an application returns a result and its level of accuracy is paramount. Fault position
is therefore contrasted with resource utilisation by examining the total amount of time a
framework took to indicate the source of a fault — collectively referred tpradiction time
Prediction time is based on the total number of milliseconds from when a fault was first
suspected and when the results — an ordered or weighted list of fault hypotheses — are fully
produced by the primitive(s).

In instances where greedy algorithms are used the amount of time it takes to predict a fault is
fairly static. This is an expected result as the systems in question process the same amount of
data in the same fashion at regular intervals. HoweverFihE using a lazy implementation

with RBMS shows a varying amount of time to process information (Fi§Pa).

OBD reportedly takes a static 490ms per minute of data gathered to updd&iidefore
generating a prediction. Using this value the total amount of time per sample is plotted out in
minutes to match the interval results of BBES TheEDESinitially followed the same pattern
aslOBD - although due to the complexity differences of their respective learning algorithms
they execute much faster. The one exception being@hai requires nearly the same amount

of time as thdsOM to update its neurons — despite the former’s lack of continuous data ingest.

Implementation plays a role in the evaluation of time-based performance metrics. The two

5.4. DISCUSSION 123

Time-Taken - FDFs & UBL

15000 —

HMM
—_—
12000 [—aANN

UBL

- .

£ 9000

P RBM

£

= 6000

3000 - /

5 10 15 20 25 30

Time (Minutes)

Figure 5.22: Time Taken Performance Metrics: UBL & the FDFs. The UBL experiment does not

post timing data but instead reports performance as a function of total samples. Additionally, training
times are also reported to last until each neuron has been updated 10 times making variance a possibility.
This information is not given in the original study by Dean, et al [1]. The FDF experiments do provide
timing data with greater variances being confirmed when switching from a greedy to a lazy ingest.

primitives in the firstEDE experiment leveraged a greedy implementation using a windowed
collection of datasets. This means that once a minute all primitives are discarded and retrained
— an action requiring 50% of the tot&IPU activity on thef&Ml for about 15 seconds. By
processing this data upfront the system is able to return results relatively quickly — between
500ms and 4,500ms depending on the size of the dataset being parsed.

However, the impact to each system’s performance is clearly a disadvarlifgjés linear
training and fast prediction times illustrate an effective approach for determining errant feature
behaviours within 2,450ms and 14,700ms (Fig&gdsb22) + 2.5ms. A4IBII's primary goal

is to proactively predict anomalies this time is particularly important. Faults that are identified
quickly enough could ideally be addressed before fully manifesting. This is a fundamental
difference from théEDE approaches which emphasise reactive behaviour by updating future
iterations of/MS.

RBMS in theEDE approach compare similarly B98I time-wise when predicting the root cause

of a fault. A substantial increase in time is noted between thé — the latter, again, based

on a lazy implementation for data ingest. This accounts for both the increase and difference
between the processing times for the same volume of data in theEfftszxperiments. Times
range from ~1,250ms to ~14,250ms depending on the number of samples provideBi#the

124 CHAPTER 5. RESULTS & DISCUSSION

Direct observation shows that prediction times plateau once the maximum number of samples
is reached — in this case 30.

Prediction time shares a relationship with training time. If the majority of training comes before
the prediction takes place, then the prediction time is reduced. Notably, training time for the
primitives varies based on a number of characteristics including required epochs, neurons per
primitive, volume of data, type of data, and of course which learning algorithm is being utilised.
Of the two instances where lazy algorithms are implemented training times appear to be similar.

Neuron count totals 1,024 and ~7,200 in and variou€EDFE approaches, respectively.
Primitives incorporating these neurons require up to 6,000 training epochiarand 5,000

per primitive wherRBMS are in place. In othdEDE instances training periods use as few as 5
epochs per primitive. Naturally, depending upon which learning algorithm is in place, the time
for completing training in a primitive varies. Clearly different learning algorithms have different
rates of success, but their overall effectiveness is also bounded by resource constraints. Given a
greater number of resources — such as memory and clock cycles —the accuracy of the predictions
increases, but only to a point. However, in the vast majority of the examined cases it is possible
to generate and select an accurate fault hypothesis using stochastic primitives.

A shift from reactive to predictive measures is currently underway within unsupervised fault
detection for self-healing systems. Specific attributes can be correctly associated with a fault
using abnormal variations in either performance metrics or raw frequency analysis of feature
changes. However, there is room for improvement in these approaches — particularly in noisy
datasets, feature locality, and distributed learning.

Other approaches in the reactive space may vyield better results under the ephemeral compu-
tational model of cloud computing. Allowing systems to fail has some benefits in resolving
deterministic fault loops — the first steps have been taken, between generating an accurate list
of potential root causes] 18, 19, 20, 28], and the ability to synthesise new, valid systems
configurations?7]. Not all results meet with their respective expectations. Due to the volume

of data, theEDE$ are expected to take longer to find a solution thEL. Instead, the time

values are similar but the accuracy values are not. Two important inferences are gained from
this observation.

Firstly, accuracy and resource utilisation seem to share a relationshipEHexperiments.
By increasing the number of training epochs it may be possible to achieve greater accuracy —
using both markers could produce a way to cross reference efficiency in future approaches.

Secondly, by comparing the precision (FiguEe?l) and fault position (Figurde21) per-

5.4. DISCUSSION 125

formance metrics, it is evident that th&8M approach demonstrates fewer false positives
thanOBL. This is excellent news for environments seeking to reduce type | errors, but the
computational costs of usifgBMS could benefit from optimisation. Additionally, other types

of primitives may yield stronger results — a topic for further exploration.

Training periods are necessary for both Hige andUBL approaches before operating. Whilst

an improvement over prior research in their ability to use unlabelled data, the existence of these
requirements represent a fundamental problem: How to balance instantiating a framework that
can accurately detect faults and reducing the initial training period. Several problems have
emerged in trying to balance these two factors. However, there may be a solution to this problem
using an evolutionary approach.

SIOsand performance tests provide measures of a system’s health, whilst offering a way to
administer a system from a higher administrative level. This is one of the primary goals of
self-managing and self-adaptive systems rese&:;ct.[In each of the aforementioned studies,
progress in this area is apparent. However, ndBalD$are created equal. During normal use
variance needs to be accounted for whilst preserving contextual validityelDR&accomplish

this using a windowed approach, but this approach is notably absEiffTin

In each experiment the use of presumed or verified datasets help classify sampled information.
The EDES use of performance tests to determine the general health for the system allows for
faster training, but does not take into account individual feature changes until after a fault is
detected. This makes feature locality more difficult to determine in its current form — a critical
step in subsequent phases of research.

Similarly, OB uses a vetted series of inputs to resolve a number of factors associated with
instantiation and training. However, it requires several stop-gap procedures to operate
such as the periodic re-instantiation and retraining o8@&4. Periodically interrupting service
availability is unacceptable in practical implementations, and rebuildin&&i& comes with

a long training delay effectively causing built-in outagedIBLI's self-healing capabilities.
Additionally, the use of a static training mechanism is, arguably, a potential source of problems
for dynamic fault detectiorg priori.

The use of a layered approach towards classification is one of the primary differences between
the EDES andJBL. The OB study ignores so-called ‘constant’ metrics — those values that
change very infrequently — in favour of minimising resource usage. HoweveEbieap-
proaches do exactly the opposite: They reinforce non-changing attributes as nominal behaviours
and use this information to update confidence values when changes occur and only when
necessary. This is an important distinction at multiple levels — noise can be normal, a fact

126 CHAPTER 5. RESULTS & DISCUSSION

entirely ignored byUBII. By attempting to mitigate such factors, much of the information is
irreparably lost, and arguably, more likely to induce errors.

Conversely, not having to write independent policies is one advantageiiahas over other
approaches: No policies need to be written explicitly outlining the purpose of the machine.
Normalising all values and providing a static minimum and maximum allows for autonomous
evaluation of the system regardless of role. This means faster provisioning but, again, less
targeted behavioural adjustments after instantiation.

OBI also analyses some self-healing aspects that are beyond the scopeEbiEhe such

as comparing centralised versus localised training of primitives by exporting information to a
training Ml. The goal of delegating the training of the primitive is to try and centralise the
re-population of th&OM, but doing so requires all training and corrective actions to complete
before said fault fully manifests. This needs to be accomplished within the lead time generated
by OBTI], and, unfortunately, the time to transfer data to and from a traiRikf) plus its
subsequent implementation often exceeds the lead time that is generatedhiMhe

Acquiring information regardindIBL was not easy. Without being able to instantiate the
experiment locally, much work went into dissecting and understanding the exact operation of
the system as reported publicly. Inconsistencies occasionally showed up in this exploration, and
the result was a limited dataset for comparison. As there were few other experiments at the time
to compare against, this left few options for validating the approach. Conversely, this particular
style of observation and the use of stochastic primitives in this fashion are gaining popularity.

CHAPTER SIX

CONCLUSION

This chapter provides a summary of the lessons learned, future research, and conclusions from
the aforementioned experiments. In brief, the use of stochastic primitives SUBNTHS,

HMMS, andRBMS provide valid, accurate approaches for generating fault hypotheses but there
is room for improvement in a number of areas.

6.1 Findings

This thesis provides and meets several major claims. The first and most relevant of these is
that by building an application that uses a combination of unsupervised learning, stochastic
primitives, and performance tests, the root cause of a fault within virtual machines can
accurately be identified by comparing a system’s observed and predicted feature behaviours.
A root cause of a fault can be heuristically obtained by generating values that represent the
likelihood of observed changes and cross referenced them in configuration samples that have
passed their respectiE 0%

This has been shown in a number of the results, but primarily in the fault index figures. Reducing
the number of potential leads to less than 10 occurred frequently, but with optimal results usually
occurring after 20 minutes of testing. Variance in output has been accounted for and although
decreases in variance occur overtime, returning the correct fault position more consistently is
an area for improvement — particularly in trials using less than 20 minutes of observed data.
Beyond 20 minutes, an improvement between approaches is demonstrated.

127

128 CHAPTER 6. CONCLUSION

A baseline has been established for the performance of three different primitives using two
similar approaches. This has allowed for some comparison between performance of imple-
mentations, and provided minor insight into an expectation for evaluating performance against
human subjects tests.

The implementation of various self-healing systems has been discussed based on computing
environment, learning algorithm, and management style. Although no concrete results can
been drawn it appears that contextual use does play a part in the development of self-healing
approaches and methodologies. Terminology in this area has also been briefly explored; despite
attempts by others to do this alread},[it could use a refresh, This is particularly true for
self-configuring versus self-provisioning systems.

Some automation in fault identification has been demonstrated using unsupervised learning. It
remains to be seen whether or not an approach like this will reduce costs, however autonomy
over supervised approaches appears to be at least partially demonstrated. The identification
of the root cause occurs without ever having seen a prior case which is further toward the
definition of autonomous systems managem@nis]. Additionally, the use of performance

tests successfully emulated high level management of systenf & This approach was
rudimentary, however, and an engine that generates these tests into code could provide a useful
measure of automated in the future.

Differences between application crashes and controlled stops were analysed with results show-
ing clear differences in impact to fault identification in some circumstances. Often, it appeared
that crashes were marginally easier to identify if detected within 60 seconds of manifestation.
Understanding the full impact of this observation remains unresolved, however.

6.2 Lessons

These achievements did not come trivially. There are a number of hurdles that have been
overcome during these experiments. This includes the in-depth examination of related studies,
discovering and overcoming technical limitations and constraints within a number of operating
systems and environments, and superficially exploring multiple disciplines that border and
relate to the study of self-healing systems. In addition to the scientific research gained from
these experiments, a certain level of understanding in processes and form have been ascertained
along with a number of lessons.

Root causes may be detected differently based on how faults are instantiatedn the

6.2. LESSONS 129

initial outline of this thesis, it was assumed that faults stemming from the same root cause but
instantiated differently may produce different results. This thesis explored this idea by injecting
two different types of faultsBCCS, andDEIS. The latter is similar to the traditional approach

of other experiments, with the exception of how quickly they are instantiated, whilst the former
Is more akin to user error.

The combination of these two properties made for interesting results. It's clear that user errors
sometimes produce more of a footprint to gather information from. Preliminary data shows that
self-healing systems are more likely to det®€ICstype issues, but the accuracy of determining

the root cause is lower. This is a finding believed to be unique to this study.

The speed at which the faults manifest in this study makes their detection harder to
mitigate than other approaches. Although no recovery strategy is explicitly implemented

by theEDES the detection capabilities need to be more precise than other approaches. Where-
as other self-healing systems gradually evaluate behavioural and performance data against hare
SIO% the EDES need to dynamically adjust their expectations and capture a result in much
shorter time spans. Comparatively, tests between other systems would run for 30 times longer
than those run in the experiments mentioned in this thesis — and in fewer iterations.

The nearest metrics seen to HEESIN this respect came frofdBL. They ran their experiment

“30 to 40 times” for each of 6 tests — where as this experiment ran 30 times for each of 6 tests
for the aforementioned two types of faults, 3 times. In total about 10,800 tests have been run so
far in this respect and catalogued.

Performance tests with stochastic primitives works as a preliminary policy-engine. The ability
to easily specify boundaries for desirable behaviour in a system is not something that has been
accomplished universally. In order to interlock with the planned future adoption of Evolutionary
Programming techniques, this experiment uniquely chose to implement performance tests as
used iNGAS.

This has come out with a successful result in terms of being able to specify utility-policies at a
high-level to the system and have them understood b¥he frameworks, however it could

be improved. Due to resource constraints hard limits on development of the policy-engine had
to be put in place. There are improvements that can and should happen in this area so that
specialist knowledge isn’t required to continue to develop operational “fitness” policies, and so
that the tests are extensible and more easily reusable between systems.

Stochastic primitives can be used to accurately identify potential root causes of faults but
not immediately. This has been tested under multiple conditions — including primitive type

130 CHAPTER 6. CONCLUSION

(BENNS, HMMS, RBMS, SOMS), learning algorithm (Naive Bayes, Baum-Wel&H)), and
volume of information (between 5 and 30 samples). In addition, preliminary work has been
done to extend these studies for ustBEN&— a new type of stochastic primitive that revisits
back-propagation style learning — and multi-point forecasting.

Findings so far indicate improvements after 20 minutes, but it remains untested if the number
of epochs could be increased to improve this sooner or if another primitive might be more
successful than thEBM. Additionally, updated learning algorithms are not readily available
and this area remains largely unexplored.

Drift between systems’ configurations can impact results, and it is hard to minimiseJn-
derstanding how to resume tests using the same information, run these tests in parallel without
impacting a hypervisor, accounting for the amount of time between tests, and reinitialising
variables precisely in a way that excludes chances for accidental faults in configuration is a
non-trivial task. This did not occur perfectly during the initial tests and sometimes they had to
be redone in batches — a frustrating but educational experience.

In the end, a schema had to be developed along with a reading, parsing, and strongly typed
verification mechanism for storing to and from the file system. This was combined with careful
instantiation ofZMS on a hypervisor to use separate but identical hardware via system snapshots
whilst capturing data by hand — a requirement to validate and look for false negatives. By
definition, theEDES$are incapable of understanding when a fault has not been correctly detected.

Using non-simulated data provides an edge and keeps results relevaim.at least one other
experiment outmoded data was used to test self-healing behavisirsThis was something

of a motivation factor in calling out unfit tests, and galvanised the already made decision to use
live information for evaluating thEDES

Although no samples were provided by a third party or agency, queries via common tools such
as cURL and HPING3 were leveraged to generate input for the systems under test. This at least
kept the protocols within the correct decade and provided a reasonable level of certainty to the
results as these are standard tools of the trade — at least for the moment.

Self-healing systems continue to specialise based on contextual usage and future evalua-
tions should take account of this. In the initial survey of self-healing systems frameworks

it became apparent that some technologies are more likely to be implemented under certain
conditions. This was most notable in areas where risk and trust were factors — such as ownership
of a system in ad-hoc management styles and computing environrBéhts [

In these cases certain priorities may arise in the development and evaluation of a self-healing

6.3. FUTURE WORK 131

system. A more extensive set of evaluation criteria may need to be designed such that systems
can be examined under the requirement of specific roles. This would also help to understand
and correlate the behaviours of these systems with their respective uses.

6.3 Future Work

Self-healing systems research continues to face a number of open problems with major areas of
emphasis including feature locality and the dynamic generation of recovery strategies.

Even in the tests within this thesis that tried to use single points of origin for failures, multiple
factors become obvious after the fact. To understand the root cause of a problem, itis clear that a
collection of behaviours must be observed and understood of any single feature. Thus, iterating
over a singular point — although useful — will not be enough for professional implementations.

Studies in feature locality are progressing but studies exploring links between the relationships

of feature behaviour have not been produced using stochastic primitives. One approach might
be to generate hypergraphs of associated features based on their likelihood to change within a
certain time interval and then watch for behaviours in those subsets. This could conceivably

be done using a similar approach as to the one listed here however it is expected to be

computationally costly.

Understanding costs in general for stochastic primitives is not an area that has been greatly
explored. A large amount of research remains for the base of such approaches — including how
learning algorithms operate, and how to minimise problems such as the accumulation of errors

when forecasting. These are not issues specific to self-healing systems, but they are dependenc
points which should be examined.

In a related context, a number of new primitives and optimisations have been produced. This
includes optimisations to backprop iaSN§ and exploration into building fully recurrent
neural networks. There appears to be a race between stackintagering) primitives such
asRBMSs and developing new technologies. The results of this are impossible to predict, but
the training costs of fully recurrent primitives appear to be the largest stumbling block. If
not solved, it may be the case that the goal of ‘networked learning’ will be achieved through
the former approach — something which is already claimed to be achievable via mathematical
proof [14].

When this thesis was first started there were no known experiments in using unsupervised
learning and stochastic primitives to make predictions based on feature changes to identify

132 CHAPTER 6. CONCLUSION

faults. Within two years, three studies were produced including the two primary experiments
in this thesis 18, 19, 28] that explored fault identification under these or similar conditions.
Additionally new studies usinFBMS and feature prediction began to appear in fields outside
of self-healing systems — including computer security and psychology — that focused on
vulnerability detectionM03 and consumer purchasing habil$fj, respectively. It's too early

to say if the approach is gaining popularity, but a cursory look shows a number of new studies
in 2015 have also started to emerge.

As expected, no human subjects tests exist within self-healing systems. The lack of opportunity
for these tests — including the collection of suitable subjects, participation from eligible agen-
cies, and the approval of such studies — make for difficulties in achieving this goal. However,
progress in this area would allow for definitive responses to questions about effectiveness.

It seems that a divide in research is occurring based on the environments under which self-
healing systems operate. As systems become smaller and less integrated into large data centres,
reliance is being moved toward the client for certain properties and responsibilities — and
for sensor data. Few studies exist on these emerging business models and how they impact
decisions on self-managing systems. Basic observations include data integrity problems being
mitigated by shifting toward specialised, centralised infrastructures — effectively removing such
concerns from client hardware. Additionally, risk to the availability of the service and data
integrity appears to be a strong factor as to how much autonomy a system displays. In several
cases, the highest risks seem to also be linked with the highest levels of afi@dcy [

Finally, tying together a fault source recommendation engine with evolutionary techniques is
one of the goals of this thesis. It is the intent of the author to explore this further by making a
recommendation engine using the aforementioned techniques to guide the automatic synthesis
of new, valid configurations for systems once a fault is detected.

This research has demonstrated that stochastic primitives can be used to to accurately generate
fault hypotheses based on feature behaviours. Also, how to prioritise and model information
within stochastic primitives to exhibit specific behaviours within a system, what learning algo-
rithms are most efficient under which circumstances, and what correlations can be discovered,
if any, between multiple feature changes to correctly identify the source of a fault remain open
areas for exploration. Exploration into feature locality is of particular interest as it may represent

a more precise approach to reasoning the source of a fault. These topics — if explored — would
build a stronger foundation upon which to establish new self-healing technologies.

APPENDIXA

APPENDIX-A

A.1 UBL Results

Results sampleed from UBL, along with the latest FDF source code and a subset of results, can
be acquired at the following web-resourtetp://bit.ly/10GBX67

133

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

J. O. Kephart, “Autonomic computing: The first decade,’lernational Conference
on Autonomic ComputingKarlsruhe, Germany), pp. 1-56, ACM SIGARCH/USENIX,
2011. New York, NY.

P. Horn, “Autonomic computing: IBM’s perspective on the state of information technol-
ogy.,” 2001.

J. O. Kephartand D. M. Chess, “The vision of autonomic computi@gyhputeyvol. 36,
Issue: 1, pp. 41-50, 2003.

A. G. Ganek and T. A. Corbi, “The dawning of the autonomic computing diiyi
Systems Journabol. 42 , Issue: 1, pp. 5-18, 2003.

J. O. Kephart, “Research challenges of autonomic computing,” (New York, NY), pp. 15—
22, ACM, 2005. St. Louis, MO, USA.

J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective on autonomic
computing policies,” (Yorktown Heights, NY, USA), pp. 3-12, IEEE Computer Society,
June 2004. Washington, DC, USA.

C. Schneider, A. Barker, and S. Dobson, “A survey of self-healing systems frameworks,”
in Software Practice and Experiend#iley, 2013.

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic communications,”
ACM Transactions on Autonomous and Adaptive Systeohsl, pp. 223-259, 2006.

G. D. Rodosek, K. Geihs, H. Schmeck, and S. Burkhard, “Self-healing systems: Foun-
dations and challenges,” Belf-Healing and Self-Adaptive Systemsgstuhl Seminar
Proceedings Series, (Dagstuhl, Germany), Schlof3 Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, 2009.

135

136

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

M. Tauber, G. Kirby, and A. Dearle, “Autonomic management of maintenance scheduling
in chord,” CoRR vol. abs/1006.1578, pp. 1-11, 2010.

G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes, “An approach to ad hoc cloud
computing,”’ArXiv.org, 2010. http://arxiv.org/pdf/1002.4738.pdf.

deeplearning.net, “Restricted boltzmann machines.”
http://deeplearning.net/tutorial/rom.html, December 2014. Last Accessed: 17-
June-2015.

M. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning,” 2002. De-
partment of Computer Science, University of Toronto.

G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” in
Neural Computation2006.

J. Hare, “Cl.net little pitfalls: Stopwatch ticks are not timespan ticks.” Blog Entry,
January 2012. http://geekswithblogs.net/BlackRabbitCoder/archive/2012/01/12/c.net-
little-pitfalls-stopwatch-ticks-are-not-timespan-ticks.aspx.

Z. Ghahramani, “Unsupervised learning,”@atsby Computational Neuroscience Unit
University College London, UK, 2004.

C. Schneider,Autonomic Techniques for Systems Manageme8ixth International
Workshop on Self-Organizing Systems (IWSOS), Delft, The Netherlands, March 2012.

C. Schneider, A. Barker, and S. Dobson, “Autonomous fault detection in self-healing
systems: Comparing hidden markov models and artificial neural networkBroteed-

ings of International Workshop on Adaptive Self-tuning Computing Sys#&eDisPT

14, (New York, NY, USA), pp. 24:24-24:31, ACM, 2014.

C. Schneider, A. Barker, and S. Dobson, “Autonomous fault detection in self-healing sys-
tems using restricted boltzmann machines,1irth IEEE International Conference and
Workshops on the Engineering of Autonomic Autonomous Sy<lesmsel, Maryland),
IEEE Computer Society, IEEE, 2014. Submitted 15 May 2014, Accepted 12 August
2014.

C. Schneider, A. Barker, and S. Dobson, “Evaluating unsupervised fault detection in
self-healing systems using stochastic primitivds&l Endorsed Transactions on Self-
Adaptive Systemsol. 15, January 2015. doi 10.4108 sasl1.1.e3.

REFERENCES 137

[21] J. Kramer and J. Magee, “Self-managed systems: an architectural challengetura
of Software Engineering (FOSE ’'Q7jWashington, DC, USA), pp. 259 — 268, IEEE
Computer Society, 2007. Minneapolis, MN.

[22] H. Psaier and S. Dustdar, “A survey on self-healing systems: approaches and systems,”
Computingvol. 91, Issue: 1, pp. 43-73, 2010.

[23] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, “Self-healing systems -
survey and synthesisDecision Support Systemsl. 42, pp. 2164-2185, January 2007.

[24] B. Pernici, “Self-healing systems and web services: The ws-diamond approaBhgiin
ness Process Management Worksheps 17 of Lecture Notes in Business Information
Processingpp. 440-442, Springer Berlin Heidelberg, 2009.

[25] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,IEEE Transactions on Information Theormyol. 13, pp. 260-269,
April 1967.

[26] A. J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K. McKinley, “Applying genetic
algorithms to decision making in autonomic computing systemsrateedings of the
6th international conference on Autonomic computi@AC '09, (New York, NY, USA),
pp. 97-106, ACM, 20009.

[27] A.J. Ramirez, D. B. Knoester, B. H. Cheng, and P. K. Mckinley, “Plato: a genetic al-
gorithm approach to run-time reconfiguration in autonomic computing systéiuster
Computingvol. 14, pp. 229-244, September.

[28] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior learning for predicting
performance anomalies in virtualized cloud systemsPlioceedings of the 9th interna-
tional conference on Autonomic computihf@AC '12, (New York, NY, USA), pp. 181-
190, ACM, 2012.

[29] L. Prodan, G. Tempesti, D. Mange, and A. Stauffer, “Embryonics: artificial stem cells,”
in In: Proc. of ALife VIII, pp. 101-105, Cambridge, MA, USA: MIT Press, 2002.

[30] B.J. Garvin, M. B. Cohen, and M. B. Dwyer, “Using feature locality: Can we leverage
history to avoid failures during reconfiguration?,” Rroceedings of the 8th Workshop
on Assurances for Self-adaptive SysteA8AS ‘11, (New York, NY, USA), pp. 24-33,
ACM, 2011. Szeged, Hungary.

[31] B. Garvin, M. Cohen, and M. Dwyer, “Failure avoidance in configurable systems through
feature locality,” vol. 7740, pp. 266—296, 2013.

138

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

REFERENCES

C. Schuler, R. Weber, H. Schuldt, and H. j. Schek, “Scalable peer-to-peer process man-
agement - the osiris approach,”lim Proceedings of the 2nd International Conference

on Web Services (ICWS '2004pan Diego, CA), pp. 26—-34, IEEE Computer Society,
2004. Washington DC, USA.

I. Stoica, R. Morris, D. Karger, and M. F. Kaashoek, “Chord: A scalable peer-to-peer
lookup service for internet,” ifProceedings of the ACM SIGCOMM '01 Conference
(San Diego, CA), pp. 1-12, ACM, 2001. New York, NY.

N. Stojnic and H. Schuldt, “Osiris-sr: A safety ring for self-healing distributed composite
service execution,” irBoftware Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop, ¢aurich, Switzerland), pp. 21-26, ACM, 2012. New
York, NY.

H. Naccache, G. Gannod, and K. Gary, “A self-healing web server using differentiated
services,” inService-Oriented Computing - ICSOC 2006I. 4294 ofLecture Notes in
Computer Sciengep. 203—-214, Springer Berlin / Heidelberg, 2006.

D. Miorandi, I. Carreras, E. Altman, L. Yamamoto, and I. Chlamtac, “Bio-inspired
approaches for autonomic pervasive computing systemBjoiinspired Computing and
Communicationvol. 5151, pp. 217-228, Springer Berlin, 2008.

D. Miorandi, D. Lowe, and L. Yamamoto, “Embryonic models for self-healing dis-
tributed services,” irBioinspired Models of Network, Information, and Computing Sys-
tems vol. 39 ofLecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineerimp. 152-166, Springer Berlin Heidelberg, 2010.

D. Menasce, H. Gomaa, S. Malek, and J. Sousa, “Sassy: A framework for self-
architecting service-oriented systemSgftware, IEEEvol. 28, no. 6, pp. 78-85, 2011.

R. Calinescu, “General-purpose autonomic computingAirilonomic Computing and
Networking pp. 3—30, Springer US, 2009.

M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research chal-
lenges,”ACM Trans. Auton. Adapt. Systol. 4, pp. 14:1-14:42, May 2009.

D. D. Clark, C. Partidge, J. C. Ramming, and J. T. Wroclawski, “A knowledge plane
for the iternet,” inProceeding of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communicati@®&COMM 03, (New York,

NY, USA), pp. 3-10, ACM, 2003. doi: 10.1145 - 863955.863957.

REFERENCES 139

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S. Russell and P. NorvigArtificial Intelligence: A Modern Approach. 2nd Edition
Prentice Hall, 2003.

Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, “Self-managing
systems: A control theory foundatiorEhgineering of Computer-Based Systevas. 23,
pp. 2213-2222, 2005.

M. Brodie, S. Ma, G. Lohman, T. Syeda, L. Mahmood, N. Mignet, Modani, M. Wilding,
J. Champlin, and P. Sohn, “Quickly finding known software problems via automated
symptom matching.,” (Washington, DC, USA), pp. 101-110, IEEE Computer Society,
2005. Seattle, WA.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot-a technique
for cheap recovery,” vol. 6, (Berkeley, CA, USA), p. 3, USENIX Association, 2004. San
Francisco, CA.

D. E. Irwin, L. E. Grit, and J. Chase, “Balancing risk and reward in market-based task
scheduling,” (Honolulu, HI), pp. 160-169, IEEE Proceedings 2004, 2004. Washington,
DC, USA.

C. Boudtilier, R. Das, J. O. Kephart, G. Tesauro, and W. E. Walsh, “Cooperative nego-
tiation in autonomic systems using incremental utility elicitation,” (San Francisco, CA,
USA), pp. 89-97, Morgan Kaufmann Publishers Inc., 2003. Aalborg, Denmark.

R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat, “Opus: an overlay
peer utility service.,” inin Proceedings of the 5th International Conference on Open
Architectures and Network Programming (OPENARCEyew York, NY), pp. 167 —
178, IEEE Communications, 2002. Atlanta, GA. USA.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions in autonomic
systems,” irProceedings of the First International Conference on Autonomic Computing
(Washington, DC, USA), pp. 70-77, IEEE Computer Society, 2004. New York, NY,
USA.

J. PearlProbabilistic reasoning in intelligent systems: networks of plausible infetence
Morgan Kaufmann, 1988.

G. Casella and E. George, “Explaining the gibbs sampleng American Statistician
vol. 46, no. 3, pp. 167-174, 1992.

140

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

REFERENCES

A. Fischer and C. Igel, “An introduction to restricted boltzmann machinefragress
in Pattern Recognition, Image Analysis, Computer Vision, and Applicatimhs/441 of
Lecture Notes in Computer Scienpep. 14-36, Springer Berlin Heidelberg, 2012.

O. Tibermacine, C. Tibermacine, and F. Cherif, “A process to identify relevant substitutes
for healing failed ws-* orchestrationsJournal of Systems and Softwa@®15. Elsevier.

E. U. Warriach, T. Ozcelebi, and J. J. Lukkien, “Self-* properties in smart environments:
Requirements and performance metrics,Workshop Proceedings of the 10th Interna-
tional Conference on Intelligent Environmengs 194, I0S Press, 2014.

Q. Shen, J. Cao, and H. Gu, “A similarity network based behavior anomaly detection
model for computer systems,” @omputational Science and Engineering (CSE), 2014
IEEE 17th International Conference ppp. 1738-1745, IEEE, 2014.

M. Minksey and S. Paperf\n Introductions to Computational GeometriMIT Press,
1969. ISBN 0-262-63022-2.

R. R. Schaller, “Moore’s law: Past, present, and futuleEE Spectr.vol. 34, pp. 52-59,
June 1997. DOI 10.1109 6.591665.

J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos, “System engineering and
computer science department coppe/ufrj, technical report es,” Tech. Rep. 05, 2005.

B. Kitchenham, “Procedures for undertaking systematic reviews,” tech. rep., Keele
University and National ICT Australia Ltd., 2004.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering - a systematic literature review,”
Inf. Softw. Technglpp. 7-15, 2009. Newton, MA, USA.

B. Kitchenham, T. Dybal3, and M. Jgrgensen, “Evidence-based software engineering,
in roceedings of the 26th International Conference on Software Engineering (ICSES04)
(Washington DC, USA), IEEE Computer Society, 2004.

Y. Bengio, E. Thibodeau-Laufer, and J. Yosinski, “Deep generative stochastic networks
trainable by backprop,” ifProceedings of the Thirty-one International Conference on
Machine Learning (ICML’14)Springer, 2014.

L. Rilling, “Vigne: Towards a self-healing grid operating system,”Hnro-Par 2006
Parallel Processingvol. 4128 ofLecture Notes in Computer Scienqgep. 437-447,
Springer Berlin / Heidelberg, 2006.

REFERENCES 141

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Sloman, “Policy driven management for distributed systedwmjtnal of Network and
Systems Managemenbl. 2, pp. 333-360, 1994.

S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and P. Steenkiste, “Rainbow:
Architecture-based self-adaptation with reusable, JT@QAC, (New York, NY, USA),
pp. 276-277, IEEE Computer Society, 2004. New York, NY.

S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-adaptation in the
presence of multiple objectives,” ICSE 2006 Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEANS)anghai, China), pp. 2-8, ACM, 2006.
New York, NY.

J. Simmonds, S. Ben-David, and M. Chechik, “Monitoring and recovery of web service
applications,” inThe Smart Internetvol. 6400 ofLecture Notes in Computer Science
pp. 250-288, Berlin, Germany: Springer-Verlag, 2010.

S. Ahmed, S. I. Ahamed, M. Sharmin, and C. S. Hasan, “Self-healing for autonomic
pervasive computing,” idutonomic Communicatiopp. 285-307, Springer US, 2009.

M. Aldinucci, M. Danelutto, G. Zoppi, and P. Kilpatrick, “Advances in autonomic
components and services,” ilom Grids to Service and Pervasive Comput({iigPriol
and M. Vanneschi, eds.), pp. 3-17, Springer US, 2008.

V. Cardellini, E. Casalicchio, V. Grassi, S. lannucci, F. Lo Presti, and R. Mirandola,
“Moses: A framework for qos driven runtime adaptation of service-oriented systems,”
IEEE Transactions on Software Engineeringl. PP, no. 99, pp. 1-23, 2011.

H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behavior monitoring in self-healing
service-oriented systems,” iBocially Enhanced Services Compufingp. 95-116,
Springer Vienna, 2011.

O. ShehoryA Self-healing Approach to Designing and Deploying Complex, Distributed
and Concurrent Software Systenw®l. 4411 ofLecture Notes in Computer Science
pp. 3—-13. Springer-Verlag, 2007.

G. Li, L. Liao, D. Song, J. Wang, F. Sun, and G. Liang, “A self-healing framework for
gos-aware web service composition via case-based reasonivgghirmechnologies and
Applications vol. 7808 ofLecture Notes in Computer Sciengp. 654-661, Springer
Berlin Heidelberg, 2013.

142

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

REFERENCES

A. Carzaniga, A. Gorla, and M. Pezze, “Healing web applications through automatic
workarounds,nternational Journal on Software Tools for Technology Transfer (STTT)
vol. 10, pp. 493-502, 2008. 10.1007/s10009-008-0088-8.

S. Hassan, D. McSherry, and D. Bustard, “Autonomic self healing and recovery informed
by environment knowledgeAtrtificial Intelligence Revieywvol. 26, pp. 89-101, 2006.
10.1007/s10462-007-9033-6.

S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for reputation
management in p2p networks,” Proceedings of the 12th international conference on
World Wide WepWWW ‘03, (New York, NY, USA), pp. 640-651, ACM, 2003.

D. M. Chess, “Security in autonomic computing,” vol. 33, 2005.

R. Gustavsson and B. Stahl, “Self-healing and resilient critical infrastructures,” in
Critical Information Infrastructure Securityvol. 5508 ofLecture Notes in Computer
Sciencepp. 84-94, Springer Berlin / Heidelberg, 2009.

L. Baduel and S. Matsuoka, “A decentralized, scalable, and autonomous grid monitoring
system,” inPrinciples of Distributed Systemsgol. 4878 ofLecture Notes in Computer
Sciencepp. 1-15, Springer Berlin / Heidelberg, 2007.

J. H. Holland, “Adaptation in natural and artificial systenM|T Press, Cambridge, MA.
UsS, 1992.

A. Metzger, O. Sammodi, and K. Pohl, “Accurate proactive adaptation of service-
oriented systems,” issurances for Self-Adaptive SystghsCamara, R. a. Lemos,

C. Ghezzi, and A. a. Lopes, eds.), vol. 7740Lafcture Notes in Computer Science
pp. 240-265, Springer Berlin Heidelberg, 2013.

J. Fernandez-Marquez, G. Di Marzo Serugendo, and S. Montagna, “Bio-core: Bio-
inspired self-organising mechanisms core, Bio-Inspired Models of Networks, Infor-
mation, and Computing Systemsl. 103 ofLecture Notes of the Institute for Computer
Sciencespp. 59-72, Berlin, Germany: Springer Berlin Heidelberg, social informatics
and telecommunications engineering ed., 2012. Social Informatics and Telecommunica-
tions Engineering Volume.

S. Montagna, D. Pianini, and M. Virolio, “Gradient-based self-organisatioGthiEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASQ 2012)
(Washington DC, USA), pp. 10-14, IEEE Computer Society, 2012. Lyon, France.

REFERENCES 143

[84] J. McCann, R. de Lemos, M. Heubscher, F. O. Rana, and A. Wombacher, “Can self-
managed systems be trusted? some views and trefdgyvledge Engineering Review
vol. 21, pp. 239-248, September 2006.

[85] J.McCann and M. Huebscher, “Evaluation issues in autonomic computin@fidnand
Cooperatve Computing - GCC 2004 Workshoms. 3252, pp. 597-608, Springer Berlin,
2004.

[86] R. de Lemos, “The conflict between self-* capabilities and predictability Satf-star
Properties in Complex Information Systemsl. 3460 ofLecture Notes in Computer
Sciencepp. 218-228, Spinger Berlin Heidelberg, 2005.

[87] H. Gomaa and K. Hashimoto, “Dynamic self-adaptation for distributed service-
oriented transactions,” iBoftware Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2012 ICSE Workshop,ofZurich, Switzerland), pp. 11-20, ACM, 2012.
Washington, DC, USA.

[88] Y. Engel and O. Etzion, “Towards proactive event-driven computing Plioceedings
of the 5th ACM international conference on Distributed event-based syB#eBS '11,
(New York, NY, USA), pp. 125-136, ACM, 2011.

[89] C. Ortega-Sanchez, M. Mange, S. Smith, and A. Tyrrell, “Embryonics: a bio-inspired
cellular architecture with fault-tolerant properties,”@enetic Programming and Evolv-
able Machinesvol. 1, pp. 187-215, Dordrecht, the Netherlands: Kluwer Academic
Publishers, 2000.

[90] T. Kohonen, “The self-organizing mapProceedings of the IEEEvol. 78, no. 9,
pp. 1464-1480, 1990.

[91] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause diagnosis via co

analysis,” inProceedings of the 9th international conference on Autonomic computing
ICAC '12, (New York, NY, USA), pp. 181-190, ACM, 2012.

[92] Y. Dali, Y. Xiang, and G. Zhang, “Self-healing and hybrid diagnosis in cloud computing,”
in Cloud Computing vol. 5931 of Lecture Notes in Computer Sciengap. 45-56,
Springer Berlin / Heidelberg, 2009.

[93] P. Snyder, G. Valetto, J. Fernandez-Marquez, and G. di Marzo Serugendo, “Augmenting
the repertoire of design patterns for self-organized software by reverse engineering a
bio-inspired p2p system,” iRroceedings of the 6th IEEE International Conference on

144

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

REFERENCES

Self-Adaptive and Self-Organizing Systems (SASO 2(4®)n, France), pp. 199-204,
IEEE Computer Society, September 2012. Washington, DC, USA.

D. M. Chess, V. Kumar, A. Segal, and I. Whalley, “Work in progress: Availability-aware
self-configuration in autonomic systems,” Wtility Computing vol. 3278 ofLecture
Notes in Computer Sciengap. 257—-258, Springer Berlin / Heidelberg, 2004.

l. E. Fellows, “Why (and when and how) contrastive divergence.” ArXiv.org, May 2014.
http://arxiv.org/pdf/1405.0602v1.pdf.

L. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite state
markov chains,"The Annals of Mathematical Statisticgol. 37, no. 6, pp. 1554-63,
1966.

L. Baum and T. Petrie, “An inequality with applications to statistical estimation for
probabilistic functions of markov processes and to a model for ecol8g§igtin of the
American Mathematical Societyol. 73, no. 3, pp. 360-3, 1967.

L. Baum and T. Petrie, “A maximization technique occurring in the statistical analysis of
probabilistic functions of markov chainsfhe Annals of Mathematical Statistie®I. 41,
no. 1, pp. 164-71, 1970.

H. Schulz, A. Mlller, and S. Behnke, “Investigating convergence of restricted boltzmann
machine learning,” ilNIPS 2010 Workshop on Deep Learning and Unsupervised Feature
Learning 2010.

E. J. Humphrey, J. P. Bello, and Y. LeCun, “Moving beyond feature design: Deep
architectures and automatic feature learning in music informaticESMiR (F. Gouyon,

P. Herrera, L. G. Martins, and M. Miiller, eds.), pp. 403-408, FEUP Edicdes, 2012.
ISBN: 978-972-752-144-9.

A. Kirillov, “Aforge.net framework.” http://www.aforgenet.com/framework/members.html,
2013.

C. R. Souza, “Accord.net framework,” 2013. http://accord-framework.net/.

K. Soska and N. Christin, “Automatically detecting vulnerable websites,23rd
USENIX Security Symposiun{San Diego, CA), USENIX, 2014.

Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan, “Prepare: Predictive
performance anomaly prevention for virtualized cloud systemdCICS’12 pp. 285—
294, 2012.

REFERENCES 145

[105] A. Keller and M. Brunner, “Self-managing systems and networksjrnal of Network
and Systems Managemewbl. 13, pp. 147-149, 2005. 10.1007/s10922-005-4438-5.

[106] A.Burnap, Y.Ren, H. Lee, R. Gonzalez, and P. Papalambros, “Improving preference pre-
diction accuracy with feature learning,” Proceedings of the ASME 2014 International
Design Engineering Technical Conferences Computers and Information in Engineering
ConferencéN. Y. U. S. August 17-20, 2014, ed.), DETC/CIE 2014, ASME, 2014.

[107] G.Brady, R. Sterrit, and G. Wilkie, “An adaptive approach to self-healing in an intelligent
environment,” inProceedings for ADAPTIVE 2014, The Sixth International Conference
on Adaptive and Self-Adaptive Systems and Applicatigd®l A, May 2014. ISBN 978
161208 341 4.

	Insert from: "cs_thesis_st_andrews_4_aug_2015_EDIT_new declaration page added.pdf"
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Hypothesis & Central Tenets
	Hypothesis
	Central Claims

	Main Contributions
	Definitions
	Published Works
	Organisation

	Background
	Introduction
	Terminology
	Assumptions

	The History of Autonomic Computing
	Self-* Systems
	Self-Healing Systems

	Machine Learning Techniques
	Artificial Neural Networks
	Hidden Markov Models
	Restricted Boltzmann Machines
	Stochastic Primitives

	A Systematic Review of Self-Healing Systems
	Methodology
	Search Process
	Research Questions
	Quality Assessment
	Data Collection & Analysis
	Results

	A Comparison of Self-Healing Systems
	Management Styles
	Computing Environments
	Learning Methodologies

	Synthesis
	Synopsis

	An Automated Approach for Identifying Faults
	Problem Description
	Approach
	Running Example

	Experiments
	 Hidden Markov Models & Artificial Neural Networks
	 Restricted Boltzmann Machines

	Limitations
	Threats to Validity
	Construct
	Internal
	External

	Implementation
	Comparison & Inference
	Baseline Establishment
	UBL - An External Basis for Comparison
	Collection
	Classification
	Learning & Analysis
	Comparison Constraints

	Results & Discussion
	Introduction
	Overview
	Results
	The FDFs
	UBL

	Discussion

	Conclusion
	Findings
	Lessons
	Future Work

	Appendix-A
	UBL Results

	References

