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Abstract. Bertrand Russell offered an influential paradox of propositions in Appendix
B of The Principles of Mathematics, but there is little agreement as to what to conclude
from it. We suggest that Russell’s paradox is best regarded as a limitative result on
propositional granularity. Some propositions are, on pain of contradiction, unable to
discriminate between classes with different members: whatever they predicate of one, they
predicate of the other. When accepted, this remarkable fact should cast some doubt upon
some of the uses to which modern descendants of Russell’s paradox of propositions have
been put in recent literature.

Bertrand Russell offered an influential paradox of propositions in Appendix B of
The Principles of Mathematics, but there is still little agreement as to what exactly
should be concluded from it. The paradox has been turned into an argument for
the conclusion that there is no set of all propositions Menzel (2012), and, more
recently, into an argument that, on pain of contradiction, some propositions are
not members of any classes Deutsch (2014). Moreover, closely related arguments
have traditionally been thought to establish that there is no set of all worlds Davies
(1981); that there is no set of all truths Grim (1984); that there are no maximal
states of affairs Bringsjord (1985); that there is no set of all possible states of affairs
Chihara (1998); and, more recently, that something is amiss in standard accounts
of propositions McGee & Rayo (2000).

The purpose of this article is twofold. One is to argue that the thesis that there is
no set of all propositions is ineffectual as a response to Russell’s paradox of proposi-
tions. The other is to suggest that Russell’s paradox is best regarded as a limitative
result on propositional granularity. On pain of contradiction, some propositions
must conflate classes with different members: whatever they predicate of one class,
they predicate of another class with different members. This interpretation, in turn,
should cast doubt upon some of the uses to which a family of modern descendants
of Russell’s paradox of propositions have been put in the literature.

§1. Russell’s paradox of propositions Russell summarizes the argument in
Appendix B of (Russell, 1903, .p. 527):
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Let us state this new contradiction more fully. If m be a class of
propositions, the proposition “every m is true” may or may not
be itself an m. But there is a one-one relation of this proposition
to m; if n be different from m, “every n is true” is not the same
proposition as “every m is true”. Consider now the whole class of
propositions of the form “every m is true,” and having the property
of not being members of their respective m’s. Let this class be w
and let p be the proposition “every w is true.” If p is a w, it must
possess the defining property of w; but this property demands that
p should not be a w. On the other hand, if p be not a w, then p
does possess the defining property of w, and therefore is a w. Thus
the contradiction appears unavoidable.

Let us make Russell’s premises completely explicit:

(1) If m is a class of propositions, there is a proposition of the form every
proposition in m is true.

(2) If m and n are different classes of propositions, then the proposition every
proposition in m is true is different from the proposition every proposition in
n is true.

(3) There is a class w of all and only propositions of the form every proposition
in m is true, for some class of propositions m to which the proposition does
not belong.

Russell’s paradox of propositions is the observation that a contradiction follows
from premises (1), (2), and (3).

Russell’s argument suggests a reductio of the assumption that there is a set of
all propositions. Menzel (2012) has pointed out how, given minimal set-theoretic
assumptions, a contradiction immediately follows from (4), (5), and (6):

(4) There is a set u of all propositions.
(5) If s is a subset of u, then there is a proposition ps associated with s, e.g., the

proposition every proposition in s is true.
(6) If s and t are different subsets of u, then the proposition ps is different from

the proposition pt.

The argument merely involves an appeal to the axiom of separation of Zermelo-
Fraenkel set theory with choice and ur-elements (ZFCU):

By separation, given (4), we form r = {p ∈ u : ∃s ⊆ u(p = ps ∧ p /∈
s)}.1 Since r ⊆ u, by (5), there is a proposition pr associated with
r. Now, on the one hand, if pr /∈ r, then pr is not an element of
a set to which it is associated, namely r, whence pr ∈ r. On the
other hand, if pr ∈ r, then, by definition of r, there is some s ⊆ u
such that pr = ps and pr /∈ s. Since pr ∈ r, r 6= s, and, by (6),
pr 6= ps. So, pr ∈ r iff pr /∈ r.

The conclusion that there is no set of all propositions appears to be inescapable.2

1 This observation corresponds to premise (3) in Russell’s original argument.
2 A less economical argument invokes Cantor’s basic result that there is no on-one

function from the power set of a set a into a: if there is a set u of all propositions,
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But this cannot the end of the matter. Even if there is no set of all propositions,
we can still speak of all propositions in the plural. We can ask whether, in line
with Russell’s first premise, given a plurality of propositions, there is a proposition
associated with them.3 And the question still arises whether, in line with Russell’s
second premise, different pluralities of propositions have different propositions asso-
ciated with them. There is even a plural variant of Russell’s third premise according
to which there is a plurality of all and only those propositions associated with a
plurality of propositions of which they are not one. So, we have all the ingredients
we need for a plural version of Russell’s paradox of propositions. This is, in fact,
the thrust of McGee & Rayo (2000), which concludes that something is amiss with
standard accounts of propositions.4

Now, Deutsch (2014) has recently offered a regimentation of Russell’s paradox of
propositions in a single-sorted extension of Morse-Kelley class theory (MK) from
which he concludes that propositions are members of classes. In the remainder of
the paper, we explain how to move from a single- to a two-sorted extension of
MK, where we develop a different diagnosis of the problem. We operate in a two-
sorted framework largely for ease of exposition, since we have in mind a plural
interpretation of the formalism: in the case of MK, we read quantification over
classes as plural quantification over sets, and we take a set to be a member of a
class of sets if and only if it is one of them.5 To speak of the class of all sets is to
speak of them in the plural. We write, as usual, that a class is proper if and only if
it fails to form a set.

We need to attend to one last item of business before we begin our discussion.
One may initially take the claim that there is no set of all propositions to be in
tension with the iterative conception of set on which sets are “formed” in stages
of a procession of cumulative stages from an initial domain of ur-elements. Since
propositions are presumably ur-elements, they are all available for collection at the
very first stage of the iteration. So, one may reasonably expect the formation of a
set of all propositions—and, further, a set of all ur-elements—to occur at the very
first stage of the hierarchy alongside the formation of the empty set.

Some expositions of ZFCU simply take it for granted that there is a set of all ur-
elements.6 There is, however, no technical difficulty associated with the development

then, by the power set axiom, there is a set Pu of all subsets of u. But (5) and (6), if
true, will generate a one-one function from Pu to u, contradicting Cantor’s observation.

3 It is sometimes convenient to use the singular locution ‘plurality’ in order to refer to
some objects in the plural. The fact that this locution appears to yield grammatically
singular expressions such as ‘the plurality of all propositions’ should not be taken to
indicate that the expression refers in the singular to some setlike object to which all
propositions belong. All uses of the locution ‘plurality’ are to be officially eliminated
in favor of plural idioms.

4 Notice, incidentally, that, in order to deal with the plural counterpart of Russell’s
paradox of propositions, the proposal outlined in Deutsch (2014), for example, would
require one to deny that every proposition can enter into the one of relation.

5 Cartwright (2001) and Uzquiano (2003) look at the plural interpretation of
impredicative theories of classes in more detail.

6 Jech (2013), for example, supplements the language of ZFC with a new constant symbol
for a set of all ur-elements.
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of “impure” set theory without such a set.7 Indeed, some developments of impure set
theory explicitly add the requirement that there is no set of all ur-elements for the
sake of mathematical convenience.8 Still, there may appear to be a tension between
the conclusion of Russell’s paradox of propositions and the iterative conception. To
the extent to which the iterative conception provides the primary motivation for
most of the axioms of ZFCU, this tension should be a source of some concern.

There are two main options at this point. One is to develop an alternative to
ZFCU designed to accommodate the existence of a set of all ur-elements, and the
other is to opt for a more liberal interpretation of the iterative conception on which
ur-elements are no longer required to form a set. Menzel (2014) has recently explored
the first course of action in great detail. The proposed modification of ZFCU is
intended to accommodate the existence of “wide sets”, which, while formed at low
stages of the cumulative hierarchy, are not “mathematically determinable”, since
they are too numerous to be measured by any cardinal number. The axioms of
replacement and power set, in particular, are appropriately restricted in order to
accommodate them.9 In Menzel’s framework, the existence of a set of all proposi-
tions is an immediate consequence of the axiom of separation, and we must look
elsewhere for an appropriate response to the set-theoretic formulation of Russell’s
paradox. In fact, much of our discussion carries over to this case as the suggestion
that we view the inconsistency of (4), (5), and (6) as a reductio of (6), namely, the
claim that different sets of propositions have different propositions associated with
them.

One may alternatively confine the iterative conception of set to the thought that
sets are formed in stages of a cumulative hierarchy and argue that the existence of a
set of all ur-elements is, in fact, not mandated by it.10 Zermelo (1930) described the
cumulative hierarchy of models of ZFCU, which he called “normal domains”, which
are completely determined by (i) the “width” of the basis of ur-elements and (ii)
the “height” given by the supremum of ordinal numbers represented in the model.
Sets are formed in ranks of a cumulative hierarchy in each normal domain, but
there is some evidence that the existence of a set of ur-elements is not required by
the construction.11 There are, for example, normal domains in which the “height”
of the cumulative hierarchy is matched by its “width”. One way to accommodate

7 In Barwise (1975), KPU is Kripke-Platek set theory with ur-elements and KPU+ is the
theory augmented with the axiom that there is a set of all ur-elements.

8 Two axiomatizations of set theory augmented with the requirement that there is a
proper class of ur-elements are given by Barwise & Moss (1996) and Friedman (2004).

9 Replacement is restricted to the claim that, very roughly, the range F [a] of an operation
F on a set a is a set if either a is mathematically determinable or if F [a] is bounded
by a rank. The axiom of power set is similarly stated as the claim that for every set
a, there is a set of all and only “mathematically determinable” subsets of a. Menzel’s
proposal requires two more axioms intended to enforce the existence of a partition of
the universe into ranks and the thought that only mathematically determinable sets
admit an increase in cardinality.

10 Indeed, Forster (2008) argues that there is nothing the thought that sets are formed in
stages that rules out for example, the iterative formation of a set and its complement
in a two way cumulative process that is captured by Church-Oswald models in which
every set has a complement.

11 Kanamori (2004) has some discussion of this feature of Zermelo’s conception of a
“normal domain”.
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a proper class of ur-elements is to make sure only “mathematically determinable”
sets—which can, in fact, be measured by some cardinal number—are formed at a
given stage. More formally, if κ is a strongly inaccessible cardinal and U is the basis
of ur-elements, set P<κ(X) to be the set of all subsets of X of cardinality strictly
less than κ. We now define:

U0 = U ;

Uα+1 = Uα ∪ P<κ(Uα);

Uλ =
⋃
α<λ

Uα, for λ a limit ordinal.

If we set M = 〈Uκ,∈� Uκ〉 and we let Set denote Uκ − U , we obtain a model of
ZFCU in which there is no set of all ur-elements. In fact, M is a model in which no
rank of the form Uα (α < κ) forms a set. But there is still a clear sense in which
sets are formed in stages of a cumulative hierarchy.

§2. Russell’s paradox in an impredicative theory of classes We set out
to regiment Russell’s paradox of propositions in a suitable extension of Morse-Kelley
class theory (MK). As presented in the Appendix to Kelley (1975), Morse-Kelley set
theory is formulated in a single-sorted language with uppercase variables X,Y, Z, ...
and two primitive non-logical symbols: a two-place predicate, ∈, and a class abstract
operator, { : }, which combines a variable X and a formula A(X) into a singular
term {X : A(X)}. Following Kelley, we introduce a one-place predicate MX, read:
“X is a member,” to abbreviate: ∃Y X ∈ Y . And we may now stipulate that classes
are governed by an Axiom of Extent and a Classification Schema:

∀X∀Y (X = Y ↔ ∀Z(Z ∈ X ↔ Z ∈ Y )) (Extent)

∀X(X ∈ {Y : A(Y )} ↔ (MX ∧A(X))) (Classification)

The first axiom tells us that classes are extensional, while the second tells us that,
given a condition A(X), there is a class of all and only members such that A(X). In
addition to these axioms, Kelley’s axiomatization has counterparts of axioms of ZF
such as union, power set, replacement, infinity, and foundation as well as an axiom
of global choice according to which there is a functional relation F selecting exactly
one element from each non-empty set, e.g., if x is non-empty, then F (x) ∈ x.

In what follows, we make two adjustments to Kelley’s axiomatization. First,
we let the uppercase variables range over propositions as well as classes. So, we
expand the language with primitive predicate, ΠX, read: “X is a proposition”, and
a primitive functional symbol π(C), which combines with a class term C to yield a
singular term π(C), read: “the proposition that every proposition in C is true.”12

We explicitly lay down an auxiliary assumption to make sure that π is, in fact, an
operation that maps a class of propositions into a proposition:

∀X Ππ(X) (Π1)

12 There is nothing special about the interpretation Russell had in mind. We could have
interpreted π(C) to read: “the proposition that C is consistent”; “the proposition that
C is self-identical”; etc.
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Since, like Russell, we conceive of propositions as ur-elements, we explicitly record
the auxiliary assumption that propositions are members by means of another axiom:

∀X(ΠX →MX) (Π2)

This will, in fact, be the crucial difference between our approach and the solution
advocated by Deutsch (2014), which, in the face of paradox, rejects (Π2). To bring
out the cost we associate with this view, we now explain how to move from the
single-sorted formulation of our extension of MK to a two-sorted formulation in
which reference to classes is analyzed as plural reference to sets and propositions.
The two-sorted formulation of the framework is similar the one given in Fraenkel
et al. (1973), but it is important to be clear on what exactly is involved in the
transition to a two-sorted formulation.

We now follow Mendelson (1997) and augment the language of MKU with lower-
case variables x, y, z, ..., which are stipulated to range over members. In other words,
we take a formula of the form ∀xA(x) to abbreviate: ∀X(MX → A(X)), and we
take ∃xA(x) to abbreviate: ∃X(MX ∧ A(X)).13 Finally, we take {x : A(x)} to
abbreviate: {X : MX ∧A(X)}. Given Kelley’s axioms of extent and classification,
the stipulation immediately yields the following two important consequences:

∀X∀Y (X = Y ↔ ∀z(z ∈ X ↔ z ∈ Y )) (Class Extensionality)

∀x(x ∈ {y : A(y)} ↔ A(x)) (Class Abstraction)

By existential generalization, Class Abstraction entails an impredicative form of
class comprehension commonly associated with MK:

∃X∀x(x ∈ X ↔ A(x)), (Impredicative Class Comprehension)

where X does not occur freely in A(x). Notice that we allow for class variables to
appear bound in A. This is, in fact, the key difference between MK and other pred-
icative theories of classes such as von Neumann-Bernays-Gödel class theory (NBG).
Unfortunately, we will not be able to make do with predicative instances of class
comprehension, if we want to reproduce Russell’s derivation of the contradiction.

Let me emphasize that the move to a two-sorted formulation of the extension of
MK is not motivated by purely technical considerations, but rather by the fact that
it invites a plural interpretation on which lowercase variables are taken to range over
sets and uppercase variables are interpreted as plural variables over sets. While an
atomic formula of the form x ∈ y is read: “x is an element of y”, an atomic formula
of the form x ∈ Y is read: “x is one of Y ”. On this interpretation, to claim that
some propositions are never members of classes is to claim that some propositions
never stand in the one of relation to some propositions. And this is exactly why
we find the move made by Deutsch (2014) very costly.

We are finally in a position to regiment each of Russell’s premises. The first
premise is the claim that there is, for every class of propositions X, a proposition
π(X) to the effect that every proposition in X is true. In symbols:

∀X(∀x(x ∈ X → Πx)→ ∃x x = π(X)) (R1)

Notice that the choice of regimentation is not completely innocent. Given (Π1) and
(Π2) above, once π is introduced as a functional symbol in a classical framework,

13 In each case, X should be the first variable not occurring in A(x).
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then the formula ∃x x = π(X) automatically becomes a theorem. No matter, by
itself, (R1) appears to be a harmless addition to the axioms of the present extension
of MK: to satisfy (R1) in a model of our extension of MK, we need only posit the
existence of two propositions: >,⊥, read: “the True” and “the False”. The extension
of the predicate Π will be given by the set: {>,⊥}, and the denotation of π(C) will
generally correspond to the truth value of the proposition that every proposition
in C is true.

The identification of materially equivalent propositions would hardly be faithful
to Russell’s intentions. The thrust of his second premise is to make sure that
different propositions are associated by π to different classes of propositions:

∀X∀Y (∀x(x ∈ X → Πx) ∧ ∀x(x ∈ Y → Πx)→ (X 6= Y → π(X) 6= π(Y ))) (R2)

But as Russell explicitly observed, the premise would quickly be falsified if one were
to identify materially equivalent propositions:

In order to deal with this contradiction, it is desirable to reopen the
question of the identity of equivalent propositional functions and
of the nature of the logical product of two propositions. If m be a
class of propositions, their logical product is the proposition “every
m is true”, which I shall denote ∧′m. If we now consider the logical
product of the class of propositions composed of m together with
∧′m, this is equivalent to “Everym is true and everym is true”, i.e.,
to “every m is true”, i.e., to ∧′m. [...] Thus if we identify equivalent
propositional functions (∧′m being a propositional function of m),
the proof of the above contradiction fails, since every proposition
of the form ∧′m is the logical product of a class of which it is a
member and of a class of which it is not a member.

There is not much solace in Russell’s observation:

But such an escape is in reality impracticable, for it is quite self-
evident that equivalent propositional functions are not identical.
Who will maintain, for example, that “x is an even prime other
than 2” is identical with “x is one of Charles II’s wise deeds or
foolish sayings”? Yet those are equivalent if a well-known epitaph
is to be credited.

But we do better if we opt for necessary equivalence as a more reasonable
standard for the individuation of propositions. Consider, for example, a coarse-
grained account of propositions on which each proposition amounts to a class of
possible worlds in the tradition of David Lewis and Robert Stalnaker. They have a
ready response to Russell’s paradox of propositions: (R2), in particular, is simply
false: given two different propositions p and q, {p,¬p} and {q,¬q} are classes with
different members. And yet, the proposition every proposition in {p,¬p} is true is
necessarily equivalent to the proposition that every proposition in {q,¬q} is true.

Russell’s second premise requires a fine-grained account of propositions on which
one is allowed to distinguish two propositions on the grounds that they involve
different predications: whatever a proposition predicates of a given class, it cannot
be identical to a proposition that predicates something of a class with different
members. To the extent to which the propositions involve different predications,
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they must be different.14 There is no denying that this is a prima facie very
attractive thought, and its great appeal is part of the reason why Russell’s paradox
of propositions raises a serious difficulty.

The final premise Russell requires follows directly from the instance of Class
Abstraction corresponding to {x : ∃Y (∀y(y ∈ Y → Πy) ∧ x = π(Y ) ∧ x /∈ Y ))} by
existential generalization:

∃X∀x(x ∈ X ↔ ∃Y (∀y(y ∈ Y → Πy) ∧ x = π(Y ) ∧ x /∈ Y )) (R3)

A contradiction follows directly from (R1), (R2), and (R3) by Russell’s argument.
By (R3), there is a class R to which a given x belongs iff x = π(Y ) for some class
Y to which x does not belong. By (R1), there is a proposition r identical to π(R).
Since all propositions are members, they lie in the range of the lowercase variables.
Now, if π(R) /∈ R, then π(R) satisfies the condition associated to R and π(R) ∈ R.
But if π(R) ∈ R, then given our definition of R, there is some class of propositions
Y such that π(R) is π(Y ) and π(R) /∈ Y . Since π(R) ∈ R, R 6= Y , which contradicts
(R2).

Just to be clear, given the choice of regimentation, (R1) follows from (Π1)
and (Π2) by classical logic. And (R3) is just an instance of impredicative class
comprehension. So, maybe (R2) should be subjected to closer scrutiny.

§3. What is the moral of Russell’s paradox of propositions? One may
hope to bring Cantor’s theorem to bear to the question of whether there is a set
of all propositions. Cantor’s theorem is often glossed as the claim that a set has
strictly more subsets than elements. But if there is a set u of all propositions, (5)
and (6) will induce a one-one function from the power set of u into u, which appears
to contradict Cantor’s theorem. One drawback of this argument, when compared
to the argument given at the outset, is the implicit appeal to the power set axiom,
which plays no role in the original reductio. Still, one may wonder whether an
appropriate generalization of Cantor’s theorem for classes can shed some light on
the class-theoretic version of the problem.

Cantor’s theorem does not speak to the question of whether a class has more
subclasses than members, but Bernays (1942) explained how to prove a generaliza-
tion of Cantor’s theorem for classes. But while Cantor’s theorem is concerned with
an explicit cardinality comparison between a given set a and its powerset Pa, one
difficulty at this point is that, unlike sets, classes are never members, which means
that there is never opportunity to collect all subclasses of a class A into another
class. No matter, one may still hope to generalize Cantor’s basic result as the claim
that, given some class A, there is no “function F from A onto all subclasses of A.”
But this raises another challenge, since it is not obvious how to make sense of a
“class-valued” function, which maps members of a class A to subclasses of A.15

14 Beall (2000) makes a similar point in response to Grim’s argument for the conclusion
that there is no set of all truths as developed in Grim (1984).

15 Some definitions:

• A relational class R is a class of ordered pairs.
• A functional class F is a relational class such that for all x, y, z, 〈x, y〉 ∈ F and
〈x, z〉 ∈ F , then y = z. We write F (x) = y to abbreviate: 〈x, y〉 ∈ f .
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In the context of a predicative theory of classes, Bernays (1942) explained how to
simulate a “class-valued” function from members of a given class A to subclasses of
A by means of a binary relational class on A.16 In particular, we can take a binary
relational class R on A to map a member a of A to the class {x ∈ A : 〈a, x〉 ∈
R}, which is itself a subclass of A. We can even write R(a) = B to abbreviate:
∀x(〈a, x〉 ∈ R↔ x ∈ B). Bernays’ generalization of Cantor’s theorem for classes is
merely the observation that no binary relational class on A simulates a class-valued
function from members of A onto subclasses of A: given a binary relational class
R on A, there is, on pain of contradiction, a subclass D of A such that no member
d of A is such that R(d) = D.

Theorem 3.1. (Bernays’ Theorem) (NBG) No binary relational class R on a
class A simulates a class-valued function from members of A onto subclasses of A.

Proof. Let R be a binary relation on A, and consider the class D = {x ∈ a : 〈x, x〉 /∈
R}, which exists by predicative comprehension.17 Now, there is no member d of A
such that R(d) = D. Otherwise, if a member d of A is such that R(d) = D, then
〈d, d〉 ∈ R iff d ∈ D iff 〈d, d〉 /∈ R, which leads to contradiction. �

To bring Bernays’ result to bear on the question of whether (R1) and (R2) are
satisfiable, we need to move beyond the resources of predicative comprehension.
First, let me mention a suggestive result: No operation π from subclasses of a given
class A to members of A gives us a one-one map from subclasses of A to members
of A:

Corollary 3.2. (MK) If π is an operation from subclasses of a given class A
to members of A, then there are two different subclasses B and C of A such that
π(B) = π(C).

Proof. Define R to be a relational class on A such that for all x, y ∈ A, 〈x, y〉 ∈ R if
and only if either (i) there is exactly one class B of members of A such that x = π(B)
and y ∈ B or else (ii) y ∈ A. R is supposed to simulate a class-valued function that
maps a member x of A to the unique subclass B of A such that π(B) = x, if such a
class exists, and to A, otherwise. The existence of R is sanctioned by impredicative
class comprehension. Now, by Bernays’ theorem, there is some class B of members
of A such that no member b of A is such that R(b) 6= B. It follows that π(B) = π(C)
for some other class C of members of A. Otherwise, since π(B) ∈ A, we would have
R(π(B)) = B. �

Apart from the use of impredicative comprehension, it may be helpful to note
that the argument gives no clue as to the identity of the subclasses B and C of A
for which π(B) = π(C). We can do better if we adapt Russell’s original argument
into an alternative proof of Corollary 3.2.

Proof. Set R to be the class {x : ∃Y ⊆ A(x = π(Y ) ∧ x /∈ Y )}, which exists by
impredicative class comprehension. Given (Π1) and (Π2), π(R) is a member, which

16 R is relational class R on A if, and only if, R is a relational class and R ⊆ A × A,
where A×A is the class of ordered pairs of members of A.

17 The axiom schema of predicative comprehension of NBG generates the existence of a
class of exactly the sets that satisfy an open formula A(x) of the language of NBG in
which no bound class variables occur.
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lies in the range of the lowercase variables. Now, observe that π(R) ∈ R, since, if
π(R) /∈ R, then, by definition of R, π(R) ∈ R. It follows that there is some Y ⊆ R
such that π(R) = π(Y ), even though π(R) /∈ Y . Since π(R) ∈ R, we have that
R 6= Y . �

Russell’s argument constitutes an improvement over the original proof by pro-
viding a partial specification of a counterexample to the claim that π is a one-one
operation from subclasses of A to members of A: one class,namely, R, but not the
other, is explicitly defined in terms of π. So, the question naturally arises whether
there is a more informative argument whereby one is a position to explcitly define
in terms of π two different subclasses B and C of A for which π(B) = π(C).

This is the class-theoretic version of the question of whether there are “construc-
tive” proofs of the Cantorian proposition that there is no one-one function from
Pa into a given set a, i.e., proofs which, given a function f from Pa to a, specify
two different subsets b and c of a for which f(b) = f(c). This question has, in fact,
been discussed by Boolos (1997) and Kanamori (2004).18 Here is a first pass at a
“constructive” version of the Cantorian result.

Theorem 3.3. Given a function f : Pa → a, there are two different subsets b
and c of a definable from f such that f(b) = f(c).

Proof. Define a functional class F from the ordinals into a by transfinite recursion
on the ordinals:

F (α) = f({F (β) : β < α}).19

By Hartogs’ theorem, there is a least ordinal β such that F (β) = F (γ) for some
β < γ.20 We set b = {F (α) : α < β} and c = {F (α) : α < γ}. Then:

• f(b) = f(c). (This is because, by choice of b and c, f(b) = F (β) = F (γ) =
f(c).)

• b 6= c. (This is because f(c) /∈ b but f(c) ∈ c. For recall that f(c) = F (β), for
β < γ, but f(c) 6= F (α), for α < β.)

�

While quite simple, the proof just now given is not without shortcomings. One
drawback of the argument is that it appears to rely on the prior development of
the theory of ordinals, which makes extensive appeal to the axiom of replacement.
But the other, more important problem, is that the proof cannot be generalized for
the case of classes. In the set-theoretic case, we rely on the assumption that the
range of F is a set in order to be able to exploit Hartogs’ theorem to guarantee
the existence of some ordinal β such that F (β) = F (γ) for some γ < β. But in

18 See, for example, Corollary 3 in Kanamori (2004).
19 The picture is one in which F maps ordinals into elements of a as follows:

• F (0) = f(∅)
• F (1) = f({F (0)}) = f({f(∅)})
• F (2) = f({F (0), F (1)}) = f({f(∅), f({f({∅})})
• · · ·

20 Hartogs’ theorem states, roughly, that if a is a set, some ordinal α is such that no
one-one function exists from α to a.
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the class-theoretic case in which we are given an operation π from subclasses of a
given class A to members of A, there is no reason to take the range of F to be a
set, which blocks the application of Hartogs’ theorem.

Boolos (1997) and Kanamori (2004) have independently employed a different style
of argument for the same conclusion, one which makes no use of replacement and can
be generalized to the case of classes. As presented in Kanamori (2004), the argument
makes crucial use of a lemma, which he attributes to Zermelo, corresponding,
roughly, to the choiceless part of Zermelo’s proof of the well-ordering theorem.21 In
what follows, we state a class-theoretic version of the lemma in the framework of
MK.22

Theorem 3.4. (MK) If π is an operation from subclasses of A to members of A,
there is a unique subclass M of A and a strict well-ordering R on M such that:

(i) For all x ∈M , π(Rx) = x.
(ii) π(M) = M .

Proof. Call a subclass M of A a π-chain iff there is a strict well-ordering R on M
such that for each x ∈ M , π(Rx) = x. Quite generally, π-chains take the following
form:

∅, {π(∅)}, {π(∅), π({π(∅)})}, {π(∅), π({π(∅)}), π({π(∅), π({π(∅)})})}, ...

where each of them comes with a unique witnessing strict well-ordering. Following
Kanamori (2004), uniqueness follows from the following observation:

21 This is Theorem 1 in Kanamori (2004).
22 Some definitions:

• The domain of a relational class R, dom(R), is the class {x : ∃y〈x, y〉 ∈ R}.
• The range of a relational class R, ran(R), is {x : ∃y〈y, x〉 ∈ R}.
• The field of a relational class R, field(R), is dom(R) ∪ ran(R), which exists by

predicative comprehension.
• A relational class R is a strict well-ordering iff:

— R is irreflexive on field(R), e.g., for all x ∈ field(R), 〈x, x〉 /∈ R,
— R is connected on field(R), e.g., for all x, y ∈ field(R), 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.
— R is anti-symmetric on field(R), e.g., for all x, y ∈ field(R), if 〈x, y〉 ∈ R and
〈y, x〉 ∈ R, then x = y.

— R is transitive on field(R), e.g., for all x, y, z ∈ field(R), if 〈x, y〉 ∈ R and
〈y, z〉 ∈ R, then 〈x, z〉 ∈ R.

— If X ⊆ field(R) and X 6= ∅, then X has an R-minimal member x, e.g., for all
y ∈ X, 〈x, y〉 ∈ R.

• A relational class R is a strict well-ordering on A iff R is a strict well-ordering and
R ⊆ A×A.

• X is a initial segment of R iff X ⊆ field(R) and for all x ∈ field(R), for all y ∈ X,
if 〈x, y〉 ∈ R, then x ∈ X.

• Ra is the strict initial segment of R determined by a, which we define as the largest
initial segment of R not containing a, e.g.,

⋃
{X : X is an initial segment of R∧a /∈

X}.
• If 〈M,R〉 and 〈N,S〉 are well-orderings, then 〈M,R〉 is similar to 〈N,S〉 iff there

is a one-one functional class F from M onto N such that for all x, y ∈ M xRy iff
F (x)SF (y).
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• If M1 and M2 are two π-chains with corresponding well-orderings R1 and R2

on them, then one of 〈M1, R1〉 and 〈M2, R2〉 is an initial segment of the other.

By the comparability of well-orderings, we can assume without loss of generality
that 〈M1, R1〉 is similar to an initial segment of 〈M2, R2〉. Let I be a one-one
functional relation from M1 onto some subclass of M2 where for all x, y ∈ M1,
xR1y iff I(x)R2I(y). We argue that I is, in fact, the identity map. For if not, let m
be the R1-minimal member of M for which m 6= I(m). By R1-minimality of m, we
know that R1m = R2I(m). But now:

I(m) = π(R2I(m)) = π(R1m) = m.

Contradiction. In particular, if M1 = M2, then R1 = R2.
Another consequence of the preceding observation is that the union of two π-

chains is itself a π-chain, whose witnessing strict well-ordering is given by the union
of the strict well-orderings corresponding to the initial π-chains. Now, let M be
the union of all π-chains, i.e.,

⋃
{N : N is a π-chain}, which exists by impredicative

comprehension. The union of witnessing well-orderings R for all π-chains will give us
a strict well-ordering of M satisfying condition (i) in the statement of the theorem.
To check that M also verifies condition (ii), notice that if π(M) /∈ M , then M ∪
{π(M)} would generate another π-chain, contradicting the definition of M as the
union of all π-chains. �

We are finally in a position to state a generalization of Theorem 3.3.

Corollary 3.5. (MK) If π is an operation from subclasses of A to members of
A, then there are two subclasses B and C of A definable from π such that B 6= C
and π(B) = π(C).

Proof. Given π, set M and R as in Theorem 3.4. and let B = Rπ(M) and C = M .
We have the following:

• B 6= C, since π(M) ∈ C but π(M) /∈ B, and
• π(B) = π(C), since π(Rπ(M)) = π(M).

�

The argument, in fact, proves a non-obvious strengthening of the corollary: if π is
an operation from subclasses of A to members of A, then there are two well-orderable
subclasses B and C of A definable from π such that B ⊂ C and π(B) = π(C).23

The main interest of Corollary 3.5. is that, in the presence of Π1 and Π2,
it provides a recipe for the construction of an explicit counterexample to (R2).
Although we had originally flagged (R2) for closer scrutiny, we had not yet been in
a position to provide a completely explicit illustration of its failure.

Two comments are in order. Notice, first, that the formulation of the counterex-
ample is perfectly general and does not rely on any specific interpretation of π. In
particular, we can let π(C) denote a simple predication of the form “C is F ,” e.g.,
C is consistent. In this respect, π(C) resembles a singular proposition like Beth is
a philosopher and Scott is a philosopher. Now, the last two propositions involve
two simple predications of two different individuals: one is directly concerned with

23 Call a class B well-orderable iff B is the field of some strict well-ordering R.
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Beth whereas the other is directly concerned with Scott. Since they involve different
predications, we find it almost irresistible to conclude that they are different propo-
sitions. On the plural interpretation of the formalism, π(C) is not exactly a singular
proposition, since, when read “C is consistent”, it involves a collective predication
of some objects in the plural. However, it is still very difficult to resist the pull of
the claim that, when concerned with two classes C and D with different members,
C is consistent and D is consistent involve two different simple predications, which
should result in two different propositions. And yet, corollary 3.5. now enables us
to construct two classes C and D with different members such that the proposition
that C is consistent turns out to be identical to the proposition that D is consistent.
So, a simple predication of consistency of C turns out to be tantamount to a simple
predication of consistency of D.24

The formulation of an explicit counterexample to (R2) does not, by itself, tell us
how pervasive the failure of π to map subclasses of A in a one-one fashion into A
must be. A glance at the set-theoretic case may be of some help. It follows from
the Zermelo-König inequality, which is a theorem of ZFC, that the cofinality of the
cardinality of the power set of a is strictly larger than the cardinality of a: if κ is
the cardinality of a, then the union of κ sets of cardinality less than 2κ will still
have cardinality strictly less than 2κ. So, if f is a function from the power set of a
onto a, then there is at least one member b of a to which f maps as many subsets
of a as there are subsets of a altogether. Given an appropriate form of global choice
for classes, a class-theoretic generalization of the Zermelo-König inequality would
seem to suggest that, given an operation π from subclasses of A to members of A,
one member a of A must be assigned by π to as many subclasses of A as there are
subclasses of A altogether.

§4. The significance of Russell’s paradox of propositions Russell’s para-
dox of propositions has had many modern descendants. For a taste, consider the
argument for the claim that there is no set of all truths given in Grim (1984). As
Menzel (2012) observes, the argument is parallel to Russell’s paradox of propositions
when we substitute “class of truths” for “class of propositions”. Grim concludes that
there is no set of all truths, but the problem remains when we make allowance for
proper classes of propositions:

(7) If T is a class of truths, there is a truth associated with T.25

(8) If T and Υ are different classes of truths, then the truth associated with T is
different from the truth associated with Υ.

In symbols, let T be a predicate read: “is a truth”, and let τ(X) be a singular term
for the proposition associated with X. Given auxiliary assumptions to the effect

24 While certainly difficult to fathom, the present response to Russell’s paradox of
propositions is perhaps not unprecedented. Theorem 1.3 in Zalta (1999) involves a
similar claim in the framework of Zalta’s theory of abstract objects: for each property
F , there is at least a pair of different abstract objects such that the singular propositions
that predicate F of each of them turn out to be identical. Thanks to Christopher Menzel
for this reference.

25 If t is a given truth, then we may consider t ∈ T, if t ∈ T, or t /∈ T, otherwise.
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that all truths are members and thus lie in the range of the lowercase variables of
the language, we can regiment the two principles as follows:

∀X(∀x(x ∈ X → Tx)→ ∃x τ(X)) (G1)

∀X∀Y (∀x(x ∈ X → Tx) ∧ ∀x(x ∈ Y → Tx)→ (X 6= Y → τ(X) 6= τ(Y ))) (G2)

But we know that (G2) is unattainable. This is not unlike the response given by
Beall (2000), except that we need not rely on the identification of necessarily iden-
tical propositions. (G2) is admittedly incompatible with a coarse-grained account
of propositions, but the larger point is that (G2) is incoherent: some truths conflate
classes of truths with different members; whatever they predicate of one, they must,
on pain of contradiction, predicate of the others.

Modern descendants of Russell’s paradox have been thought to raise a serious
threat for possible worlds accounts of modality, which are generally committed to
instances of the following schema:

(3) It is possible that p iff p is true at some possible world w.

Notice that (3) is meant to remain neutral as to what exactly is the nature
of possible worlds. Possible worlds have been conceived as maximal consistent
classes of propositions Adams (1974), total consistent propositions (Poscript to
Prior (1977)), total states of affairs Plantinga (1992) Plantinga (1976), ways the
world might be Stalnaker (1976), possible states of the world Kripke (1980), or
spatio-temporally disconnected concrete universes Lewis (1986).

The problem requires minimal assumptions. First, we make explicit two common,
albeit not universal, presuppositions:

(9) Every proposition p has a negation: ¬p.26
(10) If p is a proposition and w is a world, then either p is true at w or ¬p is true

at w.

Now, call a class of propositions M maximal if and only if for every proposition p, M
contains either p or the negation of p as a member. And call a class of propositions
M compossible if, and only if, it is possible that every proposition in M is true. A
maximal compossible class of propositions is a maximal class of propositions such
that it is possible that every one of them is true.

The key observation is that (3), given minimal assumptions, appears to commit
one to the existence of maximal compossible classes of propositions. Whatever
possible worlds may be, if propositions are true at them, then they determine
maximal compossible classes of propositions—whether or not one proceeds to define
a possible world as a maximal compossible class of propositions:

(11) For each possible world w, there is maximal compossible class of propositions,
i.e., the class of propositions that are true at w.

But the existence of maximal compossible classes of propositions appears to be
directly threatened by a variant of Russell’s paradox of propositions. The paradox,
in particular, arises from the inconsistency of the following apparently plausible
principles:

26 Adams (1981), for example, takes exception to this claim.
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(C1) There is a maximal compossible class of propositions M .
(C2) For each class C of propositions in M , there is a proposition pC associated

with C, e.g., the proposition that C is a class of propositions.
(C3) If C and D are different classes of propositions in M , then the propositions

pC , pD, ¬pC , and ¬pD are pairwise different.
(C4) There is a class of propositions to which a proposition p belongs if and only if p

is neither the proposition pC associated with a class C of propositions to which
p does not belong nor the negation ¬pC , of the proposition pC associated with
a class C of propositions to which p does not belong.

The argument should be familiar by now: given a maximal compossible class M of
propositions, by (C1), there is, by (C4) a subclass R of M to which a proposition p
belongs iff p is not pC for some subclass C of M to which p does not belong or ¬pD
for some subclass D of M to which p does not belong. Now, consider pR, which
exists by (C2). If pR /∈ R, then, since pR is different from ¬pR, by definition of R,
pR ∈ R. Contradiction. It follows that pR ∈ R. So, either pR = pC for some class
C such that pR /∈ C or pR = ¬pD for some class D such that pR /∈ D. Either way,
since pR ∈ R, neither pR /∈ C nor pR /∈ D, which means that R 6= C or R 6= D,
which contradicts (C3).

Notice that (C3) is no more plausible than (R2) was in Russell’s original argu-
ment. So, by rejecting (C3), we seem to block the derivation of the contradiction.
Whatever concerns one may have with (3), the fact that a contradiction follows
from utterly plausible premises should not be one of them.

§5. A desperate move? The suggestion that, on pain of contradiction, some
propositions conflate classes with different members difficult to fathom. How could
a proposition, in addition, conflate such a vast range of classes of propositions
as required by an appropriate generalization of the Zermelo-König inequality? It
may be fine to adopt some coarse-grained account of propositions or another, but
it seems difficult to accept that the choice is handed down to us by logic alone.
Desperate times call for desperate measures. So, one may be tempted by the thesis
that whatever propositions may be, they are not objects. For if propositions are
not objects, then they cannot be members of classes. Nor can they enter into the
one of relation to other classes. So, Russell’s paradox of propositions never arises.

The devil is in the details. If propositions are not objects, what exactly are they?
In a broadly Fregean framework, one may enforce a distinction between objects,
first-level concepts under which objects fall, second-level concepts under which first-
level concepts fall, etc. The Fregean hiearchy is supposed to align with a hiearchy of
linguistic expressions: names stand for objects, first-level predicates stand for first-
level concepts, etc. One proposal at this point might be to identify propositions
with the values of zero-place predicate variables. Propositions would, on this view,
belong to the same ontological category as Fregean first-level concepts, and they
should not be confused with objects. This, I should hasten to add, is not Frege’s
own view, who seemed unfazed by Russell’s paradox on the grounds that he could
sidestep it by appeal to the distinction between sense and reference.27

27 It is very much an open question whether he should have in fact been much more
concerned than he appeared to be. Klement (2001) discusses both Frege’s calm reaction
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One problem with the suggestion is that it is exposed by a variation on Russell’
paradox framed in terms of predication. In order to regiment the paradox, we may
adopt a Fregean formal language similar to the one described by Bell (1995).28 For
ease of exposition, we may reserve uppercase letters X,Y, Z, ... for first-level con-
cepts and underline uppercase letters for second-level concepts X,Y , Z, .... Notice
that even if propositions are not objects, they still fall under second-level concepts.
We may, in addition, introduce an identity symbol in order to express a second-
level relation of identity between first-level concepts. Finally, we supplement the
language with a functional term, %, which combines with a second-level predicate
in order to yield a first-level concept term, %X, which stands for a zero-place first-
level concept, e.g., the proposition that every first-level concept falling under X is
self-identical. The following two principles are inconsistent:

∀X ∃X X = %X) (F1)

∀X∀Y (X 6= Y → %X 6= %Y ) (F2)

(F1) states that every second-level concept is correlated with a proposition uniquely
associated with it, e.g., the proposition that all its instances are self-identical.
In contrast, (F2) states that different second-level concepts give rise to different
propositions uniquely associated with them. The derivation of the contradiction
should now be familiar.

Impredicative comprehension for second-level concepts yields:

∃X∀X(XX ↔ ∃Y ∃Y (Y = %Y ∧ ¬Y Y )

Let R be such a second-level concept. By (F1), %R is a proposition
uniquely associated to it. If ¬R%R, then the proposition satisfies
the condition associated with the second-level concept and R%R.
But if R%R, then there is some second-level concept Y such that
%R = %Y but ¬Y%R, which contradicts (F2).

Even if propositions belong to the same ontological category as first-level con-
cepts, we should not expect them to be able to discriminate between different
second-level concepts. This conclusion is not much more comfortable than the
suggestion that if propositions are objects, then not all of them can discriminate
classes with different members.

The Fregean framework may suggest perhaps a different resolution of the para-
dox. The problem arises only because we take the operation % to assign to each
second-level concepts a zero-place first-level concept. But maybe we could avoid the
difficulty if we make sure that % does not map n+1th-level concepts into lower level
zero-place concepts. Maybe propositions are layered in different levels of the Fregean
hierarchy as zero-place concepts of different levels. One way in which the proposal
may be implemented is by means of the inchoate requirement that propositions
concerned with items of level n in the Fregean hierarchy be themselves items of level

to the paradox and the question of whether similar difficulties arise for his account of
sense.

28 Bell (1995) takes the framework to be regimented in a many-sorted first-order language,
but this is not compulsory for present purposes. Instead, one may take the intended
interpretation of the framework to be given by the Fregean hierarchy of concepts.
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at least n in the Fregean hierarchy. While the general thought may seem enough
to dispel the risk of paradox, it comes at a high cost: all propositions occur at one
level or another of the Fregean hierarchy, which means that no proposition appears
to be concerned with all propositions. We seem deprived from the resources to state
genuinely general propositions concerned with all the propositions there are.

§6. Conclusion There is an intense debate in the philosophy of language as to
whether propositions are fine or coarse-grained. Even after we discard the identifi-
cation of materially equivalent propositions as obviously inadequate, we are still left
with a wide range of live answers to this question. At one end of the spectrum, we
find a coarse-grained view of propositions as classes of possible worlds, one which
identifies necessarily equivalent propositions. At the other end, we find a Russellian
conception of propositions as complex objects made out of simpler constituents,
one on which propositions are, one and all, fine-grained: in particular, when a
proposition predicates something of a class, then it contains the very class as one
of the constituents of the proposition, and we have every reason to distinguish
propositions with different constituents.

We have suggested that Russell’s paradox of propositions is best viewed as a
constraint on propositional granularity: no matter how fine-grained one may like
propositions to be, they cannot all be as fine-grained as to be able to discriminate
between any two classes. This is, by itself, hardly a vindication of the identification
of necessarily equivalent propositions, but it appears to put pressure on the Russel-
lian conception of propositions to the extent to which one is no longer in a position
to hold that propositions, one and all, are fine grained. However one seeks to develop
a fine-grained view of propositions, one must make room for the identification
of propositions predicating one and the same thing of two different classes.This
observation provides a neglected response to a family of modern descendants of
Russell’s paradox. One may, to be sure, be surprised to learn that the fact that
some propositions are coarse-grained is handed down to us by logic alone, but once
we come to terms with it, we have the resources to respond to a wide variety of
related problems discussed in recent literature.

§7. Acknowledgments I’m grateful to Andrew Bacon, John Hawthorne, Jeff
Russell, and an anonymous referee for helpful comments and discussion. Special
thanks are due to Christopher Menzel for many detailed comments, which lead to
substantive improvements over previous drafts of the paper.

BIBLIOGRAPHY

Adams, R. M. (1974). Theories of actuality. Noûs 8(3), 211–231.
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