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Abstract

One might easily argue that the Classification of Finite Simple Groups is
one of the most important theorems of group theory. Given that any finite
group can be deconstructed into its simple composition factors, it is of great
importance to have a detailed knowledge of the structure of finite simple
groups.

One of the classes of finite groups that appear in the classification the-
orem are the simple classical groups, which are matrix groups preserving
some form. This thesis will shed some new light on almost simple classical
groups in dimension 13, 14 and 15. In particular we will determine their
maximal subgroups.

We will build on the results by Bray, Holt, and Roney-Dougal [8] who
calculated the maximal subgroups of all almost simple finite classical groups
in dimension ď 12. Furthermore, Aschbacher [2] proved that the maximal
subgroups of almost simple classical groups lie in nine classes. The maximal
subgroups in the first eight classes, i.e. the subgroups of geometric type,
were determined by Kleidman and Liebeck and all maximal subgroups in
dimension ě 13 that are of geometric type can be found in [26].

Therefore this thesis concentrates on the ninth class of Aschbacher’s
Theorem. This class roughly consists of subgroups which are almost simple
modulo scalars and do not preserve a geometric structure. As our final
result we will give tables containing all maximal subgroups of almost simple
classical groups in dimension 13, 14 and 15.
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1 Introduction

Finding the maximal subgroups of almost simple classical groups is useful
for several reasons. Ever since the completion of the Classification of Fi-
nite Simple Groups it has become even more important to understand the
structure of the finite simple groups since they are in some way the building
blocks of all finite groups by Jordan-Hölder. Furthermore, Cannon and Holt
[10] found a method to computationally construct the maximal subgroups
of any finite group G, using the maximal subgroups of the almost simple
extensions of the composition factors of G.

A lot of research has been done in order to understand the structure of
the maximal subgroups of classical groups. Probably the most important
result is Aschbacher’s Theorem [2]. Aschbacher managed to show that every
maximal subgroup of a classical group lies in one of nine classes, denoted by
C1 to C9. The subgroups lying in the classes C1 to C8 preserve some geometric
structure and are said to be of geometric type. The first mathematician to
systematically determine the maximal subgroups of specific classical groups
was Peter Kleidman. In his PhD thesis (1987) [25] he found the maximal
subgroups of the simple classical groups in dimension up to 12. A few years
later, Kleidman and Liebeck published a book ([26]) with tables containing
the maximal subgroups of geometric type of the almost simple classical
groups in dimension greater than 12. Furthermore, Bray, Holt, and Roney-
Dougal [8] achieved a complete classification of the maximal subgroups of
all almost simple classical groups in dimension ď 12. For a more thorough
literature review see [8, Preface, p.x].

This thesis will build on the results by Bray, Holt and Roney-Dougal to
determine the maximal subgroups of all almost simple classical groups in
dimension 13, 14 and 15. As the maximal subgroups of geometric type are
given in [26], we will concentrate on subgroups lying in class C9, which we
will denote by S . Roughly speaking these are the subgroups that do not
preserve some geometric structure and are almost simple modulo scalars.

Let Ω P tSLnpqq,SUnpqq, Spnpqq,Ωε
npqqu, where ε P t˝,`,´u, q “ pe for

some prime p, e P N, and n P t13, 14, 15u. Let T be a group such that
Ω ď T ď A, where A{ZpAq “ AutpΩ{ZpΩqq. Even though our main aim
is to find the maximal subgroups of the almost simple groups T {ZpT q we
will determine the maximal subgroups of T . The reason for this is that it
is a lot easier to work with matrix than with permutation representations.
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Furthermore, we can show that once we know the maximal subgroups of T
then we can easily deduce the maximal subgroups of T {ZpT q.

We will first give a brief discussion of some useful results in group and
representation theory before introducing classical groups in Chapter 3. This
will be followed by the theory that is needed to determine the maximal
subgroups that lie in Class S .

We will first consider the S -subgroups G ď Ω that are of cross charac-
teristic, i.e. the S1-subgroups, in Chapter 4. In particular we will look at
the form preserved by G and we will find a way to determine which of the
automorphisms of Ω stabilise G.

In Chapters 5, 6 and 7 we will calculate the maximal S1-subgroups in
dimension 13, 14 and 15 respectively. We will use the tables by Hiss and
Malle [18] to get our potential maximal subgroups G. In particular in these
three chapters we will often use Magma to determine the behaviour of our
groups G. In these cases we will use the phrase by ‘computer calculations’
which is followed by the name of the file containing the Magma commands.
These files can be found on a separate CD attached to this thesis.

The other type of S -subgroups, the S2-subgroups, consisting of S -
subgroups in defining characteristic, will then be considered in the following
two chapters. In Chapter 8 we will look at the theory behind S2-subgroups.
In particular we will define the heighest weight of a representation and give
an introduction to exterior and symmetric power modules and adjoint mod-
ules. In Chapter 9 we will show which of the potential S2-subgroups given
by Luebeck in [29] are indeed S2-maximal in dimension 13, 14 and 15.

Containments between S1- and S2-subgroups will then be determined
in Chapter 10. In this chapter we will also give a brief introduction to the
tables in [26] containing the maximal subgroups of all almost simple classical
groups in dimension ě 13 that are of geometric type. Finally, we will show
which of our S -maximal subgroups also preserve a geometric structure, i.e
are subgroups of one of the geometric maximal subgroups and hence are not
maximal.

Our main results, the tables containing the maximal subgroups of clas-
sical groups in dimension 13, 14 and 15, can be found in Chapter 11.
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2 Groups, Fields and Representations

In this chapter we will set up notation and give some definitions and lemmas
which will be helpful throughout this thesis. We will begin with group
theory, talk briefly about fields and finish this chapter with some useful
results in representation theory.

2.1 Groups and Fields

We will begin with a few group-theoretic definitions - mainly to set up some
notation.

Definition 2.1.1. A finite group G is almost simple if there exists a non-
abelian simple group S such that S �G ď AutpSq. Here we identify S with
InnpSq, as S – InnpSq. A finite group G is quasisimple if G is perfect and
G – ZpGq.S, where ZpGq “ tz P G | zg “ gz @g P Gu is the centre of G.

Definition 2.1.2. The derived series of a finite group G is a series of
subgroups of G,

G “ Gp0q �Gp1q �Gp2q � . . . ,

where Gpiq “ xrg, hs | g, h P Gpi´1qy. Let G8 be the intersection of all the
Gpiq.

Definition 2.1.3. Let G be a finite simple group and assume that there
exists a group H such that H{ZpHq – G. If H is perfect then H is a
covering group of G. There exists a unique maximal covering group of
G which is finite ([33]) and is called the full covering group of G. The
Schur multiplier of G is the centre of its full covering group.

Definition 2.1.4. Let px1, . . . , xnq be a sequence of elements of a group G
together with a set of conditions. These conditions can be e.g. conjugacy
class membership or orders of specific elements of G. Then px1, . . . , xnq is
a sequence of standard generators of G if xx1, . . . , xny “ G and for any
other generating sequence py1, . . . , ynq of G satisfying the same conditions
as the xi there exists an α P AutpGq such that yi “ xαi for all i.

Note that in general we use K to denote an arbitrary field and Fq to
denote the unique (up to isomorphism) finite field with q “ pe elements for
some prime p and some e ě 1. Hence Fq will always have characteristic p.
In general we will use ω to denote a primitive element of Fˆq .
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Definition 2.1.5. Let K be a field and let Krxs be the ring of polynomials
in the variable x with coefficients in K. Then K is algebraically closed if
it contains a root of every non-constant polynomial in Krxs.

Definition 2.1.6. Let K be a field and let K ď L be such that for each
a P L there exists f P Krxs such that fpaq “ 0. Then L is an algebraic
extension of K. Let h P Krxs be such that hpaq “ 0 and let g P Krxs
be the greatest common divisor of all such h. Then the roots a, a1, . . . , an
of g in L are the algebraic conjugates of a. Furthermore, the group of
automorphisms of L permutes the algebraic conjugates ([39, Lemma 2.7.12,
p.27]).

The following lemmas will be useful for this thesis.

Lemma 2.1.7. The element ´1 is a square in Fˆq if and only if either q is
even or q ” 1 pmod 4q.

Proof. If q is even then all elements of Fˆq are square.
If q is odd then ´1 is a square if and only if there exists a primitive

element ω of Fˆq such that ω2j “ ´1 for some j. This is the case if and only
if 2j “ q´1

2 pmod q´1q which has a solution if and only if q ” 1 pmod 4q.

Lemma 2.1.8. Let µ P Fˆq2. If µq`1 is square in Fˆq then µ is square in Fˆq2.

Proof. If q is even then any element of Fˆq is square. Hence suppose that q is
odd. Let µq`1 “ a2 P Fˆq , with a P Fˆq . Then a “ ωipq`1q for some primitive
element ω of Fˆq2 and some i. Hence µq`1 “ ω2ipq`1q and µ “ zpωiq2 for
some pq ` 1qth root of unity z. Then z “ ωpq´1qk “ ω2k pq´1q

2 for some k and
µ is indeed a square.

2.2 Representation Theory

We will first state a few basic definitions and lemmas. Then there will
be a short introduction to splitting and fusion of representations, algebraic
irrationalities and Brauer characters.

We will denote a representation of a group G by ρ : GÑ GLpV q, where
GLpV q is the group of linear transformations of a vector space V over a field
K. If dimpV q “ n is finite, then we use GLnpKq instead of GLpV q and say
that n is the dimension of ρ. If we also have K “ Fq then we write GLnpqq
instead of GLnpFqq.

14



Definition 2.2.1. Let ρ be a representation of a finite group G with ρ : GÑ
GLnpKq. The corresponding character of G is the function χ : G Ñ K
defined by χpgq “ Tracepgρq for all g P G.

Definition 2.2.2. Let G be finite and let ρ : GÑ GLnpKq be a representa-
tion of G. The character ring of ρ is the ring generated by the character
values of ρ.

Definition 2.2.3. Let α P AutpGq and let ρ : GÑ GLnpKq be a represen-
tation. Then αρ : G Ñ GLnpKq is defined by gpαρq “ pgαqρ for all g P G.
Let Gρ ď H. If β P AutpHq then ρβ is defined by gpρβq “ pgρqβ for all
g P G.

Definition 2.2.4. Two representations ρ1, ρ2 : G Ñ GLnpKq are equiva-
lent if there exists h P GLnpKq such that h´1pgρ1qh “ gρ2 for all g P G.
Furthermore, ρ1 and ρ2 are quasisequivalent if there exists α P AutpGq
such that αρ1 and ρ2 are equivalent. We say that α stabilises ρ1 if αρ1 is
equivalent to ρ1.

Lemma 2.2.5 ([8, Lemma 1.8.6, p.39]). Let ρ, ρ1 : G Ñ GLnpKq be two
faithful representations. Then ρ and ρ1 are quasiequivalent if and only if
their images are conjugate subgroups of GLnpKq.

We will now consider the character values of representations over alge-
braically closed fields.

Lemma 2.2.6. Let G be a finite group and let K be an algebraically closed
field. Let ρ : GÑ GLnpKq be a representation of G with character χ. Then
for all g P G, χpgρq equals the sum of the eigenvalues of gρ.

Proof. Over algebraically closed fields any gρ is conjugate to a matrix in
Jordan normal form. Furthermore, Tracepgρq “ TracepA´1pgρqAq for any
A P GLnpKq.

Lemma 2.2.7. Let A P GLnpKq, where K is an algebraically closed field.
Suppose that A has order t ă 8. Then the eigenvalues of A are tth roots of
unity.

Proof. Since A is finite, At “ I for some t. Let λ be an eigenvalue of A.
Then there exists a vector v ‰ 0 such that vA “ λv. Therefore, vAi “
vAAi´1 “ λvAi´1 “ vλi, implying that λi is an eigenvalue of Ai. Hence,
vAt “ vI “ λtv. This proves that λt “ 1.

The following will be used throughout this thesis.
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Definition 2.2.8. Let G ď GLnpqq. Then G acts on pFqrqn for every
r P Nzt0u. If G stabilises no proper non-zero subspace of Fnq then G is
irreducible. Else G is reducible. Furthermore, G is absolutely irre-
ducible if for all r, G stabilises no proper nonzero subspace of pFqrqn. Let
ρ : G Ñ GLnpqq be a representation of a finite group G. Then ρ is abso-
lutely irreducible if Gρ is absolutely irreducible.

Lemma 2.2.9. Schur’s Lemma [23, Thm 9.2, p.145]
The centraliser of an absolutely irreducible group G ď GLnpqq consists of all
the scalar matrices of GLnpqq.

Definition 2.2.10. Let G ď H ď GLnpqq. Then G is scalar-normalising
in H if NHpGq ď GZpGLnpqqq.

2.2.1 Splitting and Fusion

Let ρ be an absolutely irreducible representation of a quasisimple group G,
let n be the dimension of ρ and let a be prime. Let ρ1 be defined on G.a,
using ATLAS ([12]) notation for cyclic groups and extensions. Then we can
either find a ρ1 such that for all g P G, gρ1 “ gρ in which case we say that ρ
splits. Otherwise there does not exist any ρ1 such that for all g P G, gρ1 “ gρ
in which case ρ is fused.

The description of the two cases was taken from [12, p.xxxviii].

Splitting Case
The first possibility is that ρ extends to ρ1 in such a way that gρ1 “ gρ

for all g P G. Then ρ1 is absolutely irreducible and has dimension n.

Definition 2.2.11. Let V be a vector space. Suppose that ρ : GÑ GLnpV q
is an absolutely irreducible representation and that there exists ρ1 : G.a Ñ
GLnpV q such that gρ1 “ gρ for all g P G. Then ρ splits.

If ρ splits then we get a non-equivalent absolutely irreducible represen-
tations ρωt on G.a, where ω is a primitive element of Fˆa , 0 ď t ă a, and
gρωt “ gρ for all g P G.

Let χωt denote the character values of ρωt and let χ be the character
value of ρ. Then

χωtpgq “

"

χpgq if g P G
ωtχω0pgq otherwise.
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Lemma 2.2.12. Let ρ : GÑ GLnpV q be an absolutely irreducible represen-
tation and suppose that there exists ρ1 : G.a Ñ GLnpV q such that gρ1 “ gρ
for all g P G. Let α generate the automorphism of G of order a such that
Gxαy “ G.a. Then αρ is equivalent to ρ, i.e. α stabilises ρ.
Proof. Let G.a “ xG, ky such that gk “ gα for all g P G. Let h “ kρ1. Then

pgρqh “ h´1pgρqh

“ pk´1gkqρ1

“ gαρ1 “ gαρ

from which it follows that ρ is equivalent to αρ.

Fusion Case
If there does not exist any ρ1 : G.a Ñ GLpV q such that gρ1 “ gρ for all

g P G then there exist a non-equivalent representations ρ1, . . . , ρa (ρ “ ρ1q
with dimension n such that ρ1, . . . , ρa fuse to give a single representation
ρ1 “ ρ1` . . .` ρa with dimension n ¨ a defined on G.a. Let χi and χ1 denote
the character values of ρi and ρ1 respectively, where 1 ď i ď a. Then

χ1pgq “

"
řa
i“1 χipgq if g P G

0 otherwise.

2.2.2 Algebraic Irrationalities

For the algebraic irrationalities that are needed in this thesis we will use
the same notation as in the ATLAS [12]. In general, we let i P C be a fixed
square root of ´1 and we let

zn :“ e2πi{n “ cosp2π{nq ` i sinp2π{nq

be a particular primitive nth root of unity. Furthermore,

bn :“
pn´1q{2
ÿ

r“1
zr2
n “

"

p´1`
?
nq{2 if n ” 1 pmod 4q

p´1` i
?
nq{2 if n ” 3 pmod 4q

by Gauss. We will also need the following irrationalities:

cn :“ 1
3

n´1
ÿ

r“1
zr3
n ;

rn :“
?
n;

in :“
?
´n “ i ¨ rn;

yn :“ zn ` z´1
n “ 2 cosp2π{nq.
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Note that these algebraic irrationalities are defined as elements of C. How-
ever, in most cases we will need to find the p-modular reduction of these
irrationalities, i.e. the interpretation of these irrationalities as elements of
the finite field we are interested in.

The following table, Table 2.2.1 (p.19), shows some properties of the
algebraic irrationalities that are needed for this thesis.

The first column of the table gives the name of the irrationality, followed
by its definition. The column ‘Real’ answers the question whether the irra-
tionality is a real number or not, whilst the last column gives the smallest
finite field over which these algebraic irrationalities can be realised as ele-
ments of this field. For example, if p ” 2, 3 pmod 5q then z5 can be realised
in Fp4 but not in any subfield of Fp4 .

The content of this table was calculated using a number of different
methods of which we will demonstrate the most important ones.

We will start with the roots of unity zn. To find the p-modular reductions
of zn, it suffices to find the smallest q such that q ´ 1 is divisible by n.

The properties of the irrationality b5 “
ř2
t“1 zt25 “ z5 ` z´1

5 can be
determined as follows. Since b5 “

´1`
?

5
2 by definition it follows that 2b5 `

1 “
?

5 and hence that b2
5 ` b5 ´ 1 “ 0 squaring both sides. Therefore

b5 has a minimal polynomial of degree 2 and b5 P Fp if and only if
?

5 is.
Equivalently, b5 P Fp if and only if

´

5
p

¯

“ 1 using Legendre symbols ([34,
p.70]). By the quadratic reciprocity law ([34, p.72])

ˆ

5
p

˙

“

ˆ

p

5

˙

p´1q
p´1

2 ¨
5´1

2 .

Note that
`5
p

˘

“
`

p
5
˘

unless p “ 2. Furthermore, p is square in F5 if and only
if p ” 1, 4 pmod 5q. Hence

ˆ

5
p

˙

“

$

&

%

p´1q ¨ p´1q “ 1 if p “ 2
1 ¨ 1 “ 1 if p ” 1, 4 pmod 5q
p´1q ¨ 1 “ ´1 if p ” 2, 3 pmod 5q, p ‰ 2.

Finally, we will consider y24 “ z24 ` z´1
24 “ 2 cosp2π

24 q. If p ‰ 2, 3 then
y24 P Fq if and only if q ” ˘1 pmod 24q by [8, Lemma 4.2.1, p.156]. Hence
y24 P Fp if and only if p ” 1, 23 pmod 24q. Furthermore, it is straightforward
to check that y24 P Fp2zFp if p ” 5, 7, 11, 13, 17, 19 pmod 24q.

The p-modular reductions of the other algebraic irrationalities can be
determined using similar methods to the above. Note that we only find the
p-modular reduction of c19 when p “ 11 as this is sufficient for this thesis.
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Table 2.2.1: Algebraic Irrationalities

Irr Definition Real p-mod reduction
z3 e

2πi
3 “ cosp2π

3 q ` i sinp2π
3 q No Deg 1: p ” 1 pmod 3q

Deg 2: p ” 2 pmod 3q, p ‰ 2
z5 e

2πi
5 “ cosp2π

5 q ` i sinp2π
5 q No Deg 1: p ” 1 pmod 5q

Deg 2: p ” 4 pmod 5q
Deg 4: p ” 2, 3 pmod 5q

b5
1
2p´1`

?
5q “ z5 ` z4

5 Yes Deg 1: p ” 1, 4 pmod 5q
Deg 2: p ” 2, 3 pmod 5q, p ‰ 2

b11
1
2p´1` i

?
11q No Deg 1: p ” 1, 3, 4, 5, 9 pmod 11q

Deg 2: p ” 2, 6, 7, 8, 10 pmod 11q
b27

1
2p´1` i

?
27q “ 2z3 ´ z2

3 No Deg 1: p ” 1 pmod 3q
Deg 2: p ” 2 pmod 3q, p ‰ 2

b29
1
2p´1`

?
29q “

ř14
r“1 zr2

29 Yes Deg 1: p ” 1, 4, 5, 6, 7, 9, 13, 16, 20, 22,
23, 24, 25, 28 pmod 29q

Deg 2: p ” 2, 3, 8, 10, 11, 12, 14, 15, 17,
18, 19, 21, 26, 27 pmod 29q

b31
1
2p´1` i

?
31q No Deg 1: p ” 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18,

19, 20, 25, 28 pmod 31q
Deg 2: p ” 3, 6, 11, 12, 13, 15, 17, 21, 22, 23,

24, 26, 27, 29, 30 pmod 31q
c19

1
3
ř18
r“1 zr3

19 Yes Deg 1: p “ 11
i

?
´1 “ z4 No Deg 1: p ” 1 pmod 4q

Deg 2: p ” 3 pmod 4q
i6 i ¨ r6 No Deg 1: p ” 1, 5, 7, 11 pmod 24q

Deg 2: p ” 13, 17, 19, 23 pmod 24q
r2

?
2 “ z7

8 ` z8 Yes Deg 1: p ” 1, 7 pmod 8q
Deg 2: p ” 3, 5 pmod 8q

r3
?

3 “ ´pz3
12 ` 2z7

12q Yes Deg 1: p ” 1, 11 pmod 12q
Deg 2: p ” 5, 7 pmod 12q

r5
?

5 “ 2z5 ` 2z4
5 ` 1 Yes Deg 1: p ” 1, 4 pmod 5q

Deg 2: p ” 2, 3 pmod 5q, p ‰ 2
r6

?
6 “

?
2
?

3 Yes Deg 1: p ” 1, 5, 19, 23 pmod 24q
“ ´pz3

24 ` z9
24 ` 2z11

24 ` 2z17
24q Deg 2: p ” 7, 11, 13, 17 pmod 24q

r7
?

7 Yes Deg 1: p ” 1, 3, 9, 19, 25, 27 pmod 28q
“ 2z28 ` 2z9

28 ` z21
28 ` 2z25

28 Deg 2: p ” 5, 11, 13, 15, 17, 23 pmod 28q
y17 z17 ` z16

17 “ cosp2π
17 q Yes Deg 1: p ” 1, 16 pmod 17q

Deg 2: p ” 4, 13 pmod 17q
Deg 4: p ” 2, 8, 9, 15 pmod 17q
Deg 8: p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q

y24 z24 ` z23
24 “ cosp2π

24 q Yes Deg 1: p ” 1, 23 pmod 24q
Deg 2: p ” 5, 7, 11, 13, 17, 19 pmod 24q
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2.2.3 Brauer Characters

We will only give a short introduction to Brauer characters. For a more
detailed version see [23, Chp 15, p.262].

Let R be the ring of algebraic integers in C and let M be a maximal ideal
of R containing pR for some fixed prime p. Note that M is not necessarily
uniquely determined. Then K “ R{M is a field of characteristic p. Let τ
be the natural homomorphism from R into K.

Lemma 2.2.13 ([23, Lemma 15.1, p.263]).
Let U “ tκ P C |κm “ 1,m P Z with p - mu. Then

(i) U Ď R;
(ii) τ is an injection from U to Kˆ and there is an isomorphism between

U and the roots of unity of Kˆ;
(iii) K is algebraically closed and algebraic over its prime field.

Let K be an algebraically closed field of characteristic p and let ρ :
G Ñ GLnpKq be a representation of some finite group G. Then for all
g P G the eigenvalues of gρ lie in Kˆ since K is algebraically closed. Let
S “ tg P G | p - |g|u and let x P S. Furthermore, let ε1, . . . , εn P Kˆ denote
the eigenvalues of xρ. Then for all i there exists a unique ui P U “ tκ P
C |κm “ 1,m P Z with p - mu such that uiτ “ εi by Lemma 2.2.13(ii).

Definition 2.2.14. We call the function υpxq “
ř

ui a Brauer character
of G.

Note that if p - |G| then the Brauer characters of G are in fact the
ordinary characters of G as given in the ATLAS [12] by [23, Thm 15.6,
p.265]. Equivalently, if we consider a representation ρ of G over a finite field
Fpt where p - |G| then the ATLAS contains the Brauer characters of G. If
p | |G| then the Brauer characters of some non-abelian simple groups G can
be found in [24].
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3 Classical Groups

There are 4 types of classical groups, namely linear, unitary, symplectic and
orthogonal groups which will be defined in this chapter. As the theory of
classical groups is quite complex we will only define concepts needed for this
thesis. For a more detailed introduction see e.g. Taylor [36].

Note that some of the theory developed in this chapter is not valid for
groups of smaller dimension. Therefore we will assume throughout that the
dimension of the classical groups is ě 13 unless otherwise stated.

We will first define classical groups and their automorphisms. Then
we will briefly talk about the Schur indicator of a representation, quotient
spaces and various types of maximal subgroups of classical groups. After
that we will state Aschbacher’s Theorem and give a discussion on why we
will work with quasisimple classical groups even though we are interested in
finding the maximal subgroups of the almost simple classical groups.

3.1 An Introduction to Classical Groups

Let V be a vector space of dimension n ą 0 over a field K unless otherwise
stated. We will define the forms preserved by the classical groups as maps.
We will mention how to write these maps as matrices but will not go into
any detail. For more information on the matrix formulation see [8, Section
1.5.1, p.17].

Definition 3.1.1. Let σ P AutpKq. A map β : V ˆ V Ñ K is a σ-
sesquilinear form if

(i) βpu` v, wq “ βpu,wq ` βpv, wq,
(ii) βpu, v ` wq “ βpu, vq ` βpu,wq, and
(iii) βpλu, µvq “ λµσβpu, vq

for all u, v, w P V and all λ, µ P K. If βpu, vq “ βpv, uq then β is symmetric.
If σ “ 1 then β is bilinear.

A map Q : V Ñ K is a quadratic form if
(i) Qpλvq “ λ2Qpvq for all v P V , λ P K, and
(ii) βpu, vq :“ Qpu` vq ´Qpuq ´Qpvq is a symmetric bilinear form for all

u, v P V .
We call the bilinear form corresponding to Q the polar form of Q.

Note that over a field that does not have even characteristic β and Q
uniquely determine each other.
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To write β and Q as matrices let pe1, . . . , enq be a basis of V . Then the
matrix of β is B “ pbijqnˆn where bij “ βpei, ejq for all i, j. The matrix of
Q is the upper triangular matrix A “ paijq where aij “ βpei, ejq if i ă j,
aii “ Qpeiq and aij “ 0 for all i ą j.

Definition 3.1.2. Let v P V be fixed. A σ-sesquilinear form β is non-
degenerate if βpv, uq “ 0 for all u P V implies that v “ 0. A quadratic
form Q is non-degenerate if its polar form is non-degenerate.

Note that if we write a σ-sesquilinear map β as a matrix B then B is
non-degenerate if and only if detpBq ‰ 0.

Definition 3.1.3. Let β be a σ-sesquilinear form on V . A non-zero vector
v P V is singular if βpv, vq “ 0. Otherwise, v is non-singular. If v, w P V
are singular and βpv, wq “ 1 then xv, wy is a hyperbolic line.

Definition 3.1.4. Let g P GLpV q, let β be a σ-sesquilinear form and Q be
a quadratic form on V . Then g is an isometry of β if βpug, vgq “ βpu, vq
for all u, v P V and an isometry of Q if Qpvgq “ Qpvq for all v P V . If
βpug, vgq “ λβpu, vq or Qpvgq “ λQpvq for some λ P Kzt0u then g is a
similarity of β or Q.

Definition 3.1.5. Let V and W be vector spaces over K and let φ P

AutpKq. If f : V Ñ W is a map satisfying pv ` wqf “ vf ` wf and
pλvqf “ λφpvfq for all v P V , w P W and λ P K then f is a φ-semilinear
map. If f is a φ-semilinear map for some φ then f is semilinear.

Definition 3.1.6. Let f be a φ-semilinear map and let β be a σ-sesquilinear
and Q be a quadratic form on V . Then f is a semi-isometry of β or Q
if βpvf, wfq “ βpv, wqφ or Qpvfq “ Qpvqφ for all v, w P V . If there exists
0 ‰ λ P K such that βpvf, wfq “ λβpv, wqφ or Qpvfq “ λQpvqφ for all
v, w P V then f is a semi-similarity.

Definition 3.1.7. Two σ-sesquilinear forms β and κ on V are isometric
or equivalent if there exists g P GLpV q such that βpug, vgq “ κpu, vq for
all u, v P V . If there exist g P GLpV q and λ P Kzt0u such that βpug, vgq “
λκpu, vq for all u, v P V then β and κ are said to be similar.

Lemma 3.1.8 ([8, Thm 1.5.13, p.16]). Let β be a σ-sesquilinear form on
V . Assume that there exist λ P Kˆ and τ P AutpKq such that βpu, vq “
λβpu, vqτ for all u, v P V . Then up to similarity one of the following holds
for all u, v P V .

(i) βpu, vq “ 0.
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(ii) σ “ 1, λ “ ´1 and βpv, vq “ 0.
(iii) σ2 “ 1 ‰ σ and λ “ 1, i.e. βpv, uq “ βpu, vqσ.
(iv) σ “ 1 and λ “ 1, i.e. βpv, uq “ βpu, vq.

In characteristic 2 Case (ii) also satisfies Case (iv). Otherwise all cases are
mutually exclusive.

Definition 3.1.9. A σ-sesquilinear form β is
(i) an alternating or symplectic form if β satisfies Case (ii),
(ii) a σ-Hermitian form or unitary form if β satisfies Case (iii), or

(iii) symmetric bilinear in Case (iv).

Note that unitary forms give rise to unitary groups, symplectic forms
to symplectic groups and quadratic forms to orthogonal groups. If V is
equipped with a σ-sesquilinear form β such that βpu, vq “ 0 for all u, v P V
then we say that V is equipped with the zero form which gives rise to linear
groups.

The isometry groups of σ-sesquilinear, symplectic and quadratic forms
over finite fields will be considered in a bit more detail in the following
sections.

Let diagpa, . . . , a, b, . . . , bq denote a diagonal matrix with n{2 a’s and
n{2 b’s along the diagonal. Similarly let antidiagpa, . . . , a, b, . . . , bq be an
antidiagonal matrix with n{2 a’s and n{2 b’s along the antidiagonal.

3.1.1 Unitary Groups

Unitary groups preserve a non-degenerate σ-Hermitian form β, where σ is
a field automorphism of order 2. Hence unitary groups only exist over Fq2

and σ : x ÞÑ xq. Furthermore, we will use F “ In as our standard unitary
form matrix and denote the isometry group of F by GUnpqq over Fq2 . Note
that all isometry groups of non-degenerate σ-Hermitian forms over a given
finite field are conjugate.

We will frequently use the superscript ˘, e.g. GL˘n pqq, to denote a linear
or unitary group. Here the ` sign corresponds to the linear and the ´ sign
to a unitary group. Furthermore, if we use Fqu then we mean Fq2 if the
group on Fqu is a unitary group and Fq otherwise.

3.1.2 Symplectic Groups

In this thesis we will use F “ antidiagp1, . . . , 1,´1, . . . ,´1q as our standard
symplectic form matrix. Note that the isometry groups of any two non-
degenerate symplectic forms on V over Fq are conjugate. We will denote
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the isometry group of F by Spnpqq. Note that symplectic groups only exist
in even dimension.

3.1.3 Orthogonal Groups in Odd Dimension

We will first consider isometry groups of quadratic forms over Fq in odd
dimension.

Theorem 3.1.10 ([36, Thm 11.9, p.143]). Let Q be a quadratic form on
Fnq . If q is even and n is odd then the isometry group of Q is isomorphic to
a symplectic group of dimension n´ 1.

Hence we will only consider odd dimensional orthogonal groups in odd
characteristic in which case it suffices to define the polar form of Q. We
will use F “ In as our standard non-degenerate symmetric bilinear form
matrix and denote the isometry group of F by GO˝npqq. Note that there
are two isometry classes of non-degenerate symmetric bilinear forms in odd
dimension depending on whether the determinant of the form matrix is
square or non-square in Fˆq . These two isometry classes lie in the same
similarity class.

3.1.4 Orthogonal Groups in Even Dimension

In even dimension there are two isometry classes of non-degenerate quadratic
forms which lie in two distinct similarity classes. Let β be the polar form
of Q. Then β and Q uniquely determine each other over a field of odd
characteristic.

Definition 3.1.11. Let q be odd. Let β be a non-degenerate symmetric
bilinear form over Fq in even dimension. Then β has plus-type if it is
isometric to our standard form matrix antidiagp1, . . . , 1q. Otherwise β has
minus-type. Similarly, a non-degenerate quadratic form Q in even dimen-
sion and even characteristic is of plus-type if Q is isometric to our standard
form matrix antidiagp1, . . . , 1, 0, . . . , 0q and of minus-type otherwise. We de-
note the isometry group of a standard form of plus-type by GO`n pqq and the
isometry group of a standard form of minus-type (see Table 3.1.1 on p.25)
by GO´n pqq.

Note that if we want to talk about an orthogonal group of plus- and
minus-type at the same time, we use the superscript ˘, e.g. GO˘n pqq. Fur-
thermore, if an orthogonal group does not preserve our standard form ma-
trices as defined above but some other non-degenerate symmetric bilinear
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or quadratic form B then we will denote this group by GO˘n pq,Bq. Fur-
thermore, if we want to talk about an arbitrary orthogonal group in even
or odd dimension we will use the the superscript ε, e.g. GOε

npqq, where
ε P t˝,`,´u.

We will need to introduce the concept of the discriminant of a form
matrix as this will enable us to determine whether an orthogonal group in
even dimension and odd characteristic is of plus- or minus-type.

Definition 3.1.12. Let q be odd and let β be a non-degenerate symmetric
bilinear form over Fnq with form matrix B. Then β has square discrimi-
nant if detpBq is square in Fˆq and non-square discriminant otherwise.

Lemma 3.1.13 ([8, Thm 1.5.42(ii), p.24]). Let n be even and q be odd and
suppose that GO˘n pq,Bq preserves a non-degenerate symmetric bilinear form
with matrix B. Then GO˘n pq,Bq is of plus-type if and only if either detpBq
is square in Fˆq and npq ´ 1q{4 is even or detpBq is not a square in Fˆq and
npq ´ 1q{4 is odd. Otherwise it is of minus-type.

3.1.5 Standard Forms and Definitions of Classical Groups

Let G be the isometry group of a zero, a σ-Hermitian, a symplectic or a
quadratic form on Fnq as described in the previous sections. The following
table, Table 3.1.1, gives the form matrices preserved by G that we will use
as our standard form matrices. It is taken from [8, Table 1.1, p.25]. In
odd characteristic we will give the matrix of the polar form of a quadratic
form instead of the form matrix of the quadratic form itself. Note that µ in
the last line of the table is such that the polynomial x2`x`µ is irreducible
over Fq. Let m “ n{2.

Table 3.1.1: Standard Classical Forms

Case Conditions Form Type Isom.Gp Form
L — zero GLnpqq 0nˆn
U — σ-Hermitian GUnpqq In
S — alternating Spnpqq antidiagp1, . . . , 1,´1, . . . ,´1q
O˝ qn odd symmetric GO˝npqq In
O` q odd, n even symmetric GO`n pqq antidiagp1, . . . , 1q
O´ q odd, n even symmetric GO´n pqq In if n ” 2 pmod 4q, q ” 3 pmod 4q

diagpω, 1, . . . , 1q otherwise
O` q, n even quadratic GO`n pqq antidiagp1, . . . , 1, 0, . . . , 0q
O´ q, n even quadratic GO´n pqq antidiagp1, . . . , 1, 0, . . . , 0q

+ Em,m + µEm`1,m`1
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Let V “ Fnqu for some q, some n and some u P t1, 2u. Suppose that
V is equipped with either a zero, a unitary or an alternating form β or a
quadratic form Q. Let u “ 2 if V is equipped with a unitary form and let
u “ 1 otherwise. In general we will define a series of subgroups corresponding
to each of the β (and Q). Let

Ω ď S ď G ď C ď Γ ď A. (3.1.1)

Then G is the group of isometries of β (or Q) as defined in the previous
sections. The special group S � G consists of all determinant 1 matrices
preserving β (or Q). The commutator subgroup of S is denoted by Ω. Note
that S “ Ω except in the orthogonal case. We will discuss the orthogonal
case in the next section. Furthermore, let C be the similarity group of V .
We can show that C “ NGLnpqqpΩq. Let Γ be the group of all semi-isometries
of β (Q). If β is identically zero then the split extension of Γ by the inverse
transpose map γ “ ´T equals A. Otherwise A “ Γ since n ě 13.

We will now consider the groups Ω. The automorphisms of G are then
defined in Section 3.2.

3.1.6 The Quasisimple Classical Groups

In the linear, unitary and symplectic case Ω equals the respective special
group. We will now consider the orthogonal case.

Let ε P t˝,`,´u. Let GOε
npqq be the isometry group preserving our

standard forms as in Table 3.1.1. Unlike in the linear, unitary or symplectic
case, the special orthogonal group SOε

npqq is never isomorphic to Ω in di-
mension ě 13. Instead Ω is a normal subgroup of SOε

npqq of index 2, which
we will denote by Ωε

npqq. In the following we will describe Ωε
npqq and give a

way to determine whether an element of SOε
npqq lies in Ωε

npqq.
For this we will need to define the concept of the spinor norm and the

quasideterminant of an element.

Definition 3.1.14. Let V be a vector space equipped with a quadratic
form Q and polar form β. Let v P V such that Qpvq ‰ 0. Then the map
rv : V ÞÑ V defined by pxqrv “ x´Qpvq´1βpv, xqv is called a reflection.

Lemma 3.1.15 ([26, Prop 2.5.6, p.28]). Let Q be a non-degenerate quadratic
form. If GOε

npq,Qq fl GO`4 p2q then GOε
npq,Qq is generated by reflections.

Definition 3.1.16. Let Q be a non-degenerate quadratic form and let β
be the polar form of Q. Let g “

śk
i“1 rvi P GOε

npq,Qq, where GOε
npq,Qq fl

GO`4 p2q. If q is odd then the spinor norm of g, sppgq, is `1 if
śk
i“1 βpvi, viq
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is a square in Fˆq and ´1 otherwise. If q is even then the quasideterminant
of g is `1 if k is even and ´1 otherwise.

Lemma 3.1.17 ([36, Thm 11.50, p.164]). The spinor norm map and the
quasideterminant map are homomorphisms.

Definition 3.1.18. Let Ωε
npqq be the subgroup of GOε

npqq consisting of
all elements of SOε

npqq with spinor norm 1 in odd characteristic and of all
elements of quasideterminant 1 in even characteristic.

The following lemma will help to calculate the spinor norm or quaside-
terminant of elements in GOε

npqq.

Lemma 3.1.19 ([8, Prop 1.6.11, p.28]). Let B be a non-degenerate bilinear
form matrix in odd characteristic or a non-degenerate quadratic form matrix
in even characteristic and let g P GOε

npq,Bq. Let A :“ In ´ g and let
k :“ rankpAq. If q is odd, let B be the the matrix preserved by SOε

npq,Bq.
Then the matrix M over Fq with rows forming a basis of a complement of
the nullspace of A has dimension k ˆ n. Furthermore,

(i) if q is even and g R GO`4 p2, Bq then g has quasideterminant 1 if k is
even and ´1 otherwise;

(ii) if q is odd and detpMABMTq is a square in Fˆq then the spinor norm
if g is 1. If detpMABMTq is not square then the spinor norm is ´1.

Lemma 3.1.20. Let q be odd and let λ P Fˆq . Let g P GO˘n pq,BqzSO˘n pq,Bq
for some non-degenerate symmetric bilinear form matrix B. If λ is square
in Fˆq , then sppg, λBq “ sppg,Bq, where sppg, λBq is the spinor norm of g
with respect to λB. If λ is non-square, then sppg, λBq “ ´sppg,Bq. The
spinor norm of elements of SO˘n pq,Bq is well defined.

Proof. Let β be the form associated with B. Then GO˘n pq,Bq also preserves
λβ for any λ P Fˆq . Let g P GO˘n pq,Bq and suppose that g “

śk
i“1 rvi , where

rvi is a reflection for all i. Then the spinor norm of g equals 1 if and only
if
śk
i“1 βpvi, viq is a square in Fˆq by Definition 3.1.19. Equivalently, the

spinor norm of g is 1 if and only if an even number of these βpvi, viq’s are
non-square. Let λ be non-square. Then βpv, vq is square if and only if
λβpv, vq is non-square.

If g P GO˘n pq,BqzSO˘n pq,Bq then g is generated by an odd number of
reflections. If sppgq “ 1 then an even number of the βpvi, viq’s is non-
square and an odd number square. However, if we consider λβpvi, viq then
sppgq “ ´1 as we now have an odd number of λβpvi, viq’s that are non-
square.
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Since Ω˘n pq,Bq is simple and SO˘n pq,Bq only has one subgroup of index 2
it follows that the spinor norm map is well-defined on elements of SO˘n pq,Bq.

We will now determine the spinor norm of ´In P Ω˘n pq,Bq, for any non-
degenerate symmetric bilinear form matrix B. The result follows directly
from Lemma 3.1.19.

Lemma 3.1.21. The element ´I P Ω`n pq,Bq if and only if 4 | n or pn ” 2
pmod 4q and q ” 1 pmod 4qq and ´I P Ω´n pq,Bq if and only if n ” 2 pmod 4q
and q ” 3 pmod 4q.

Lemma 3.1.22 ([26, Thm 2.1.3, p.16]). Let Ω P tSL˘n pqq, Spnpqq,Ωε
npqqu.

In dimension ě 13 all such Ω are quasisimple.

Finally, note that we will denote the projective version of Ω either by Ω
or, if we talk about a specific quasisimple group, we will use Lnpqq, Unpqq,
Snpqq or Oε

npqq.

3.2 Outer Automorphisms of Classical Groups

In general there are three possible types of automorphisms that generate the
outer automorphism groups of projective simple classical groups Ω̄, where
Ω̄ P tL˘n pqq,Snpqq,Oε

npqqu. These are the diagonal, graph (or duality) and
field automorphisms. (See [8, Section 1.7, p.32] for more details.) Note
that we will define these outer automorphisms with respect to our standard
classical forms as in Table 3.1.1 (p.25). Here, pa, bq denotes the greatest
common divisor of a and b.

Definition 3.2.1. We call the matrices inducing the outer automorphisms
that are given in this section our standard representative matrices for
their respective outer automorphisms.

Note that with the exception of the orthogonal groups in even dimension
the field automorphisms are generally generated by an outer automorphism
φ which acts on the matrices paijqnˆn by sending each entry to its pth-
power, where p is the characteristic of the underlying field Fq. In other
words, φ sends every matrix paijqnˆn to papijqnˆn. Therefore, φ replaces
each eigenvalue by its pth-power.

Assume throughout that n ě 13 to avoid exceptions in smaller dimen-
sions and let q “ pe.
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3.2.1 Case L:

Diagonal automorphisms: The diagonal automorphism δ is induced
by conjugation by the diagonal matrix diagpω, 1, 1, . . . , 1q P GLnpqq where
ω is a primitive element of Fˆq . In OutpLnpqqq it has order pq ´ 1, nq and
projectively extends Lnpqq to PGLnpqq.

Field automorphisms: Here φ has order e in OutpLnpqqq and projec-
tively φ extends PGLnpqq to PΓLnpqq.

Graph automorphisms: The graph or duality automorphism γ acts on
elements A P GLnpqq by sending them to their inverse transposes, i.e Aγ “
pA´1qT. Projectively it has order 2 and extends PΓLnpqq – xLnpqq, δ, φy to
AutpLnpqqq.

3.2.2 Case U:

Diagonal automorphisms: The diagonal automorphism δ is induced
by conjugation by the matrix diagpωq´1

q2 , 1, 1, . . . , 1q P GUnpqq, where ωq2

is a primitive element of Fˆq2 . Its order in OutpUnpqqq is pq ` 1, nq and
projectively it extends Unpqq to PGUnpqq.

Field automorphisms: Here φ has order 2e in OutpUnpqqq and pro-
jectively extends PGUnpqq to PΓLnpqq “ AutpUnpqqq.

Graph automorphisms: The graph (or duality) automorphism γ acts
as inverse transpose on the elements of GUnpqq. Projectively it has order 2.
Because of our choice of standard form, γ “ φe.

3.2.3 Case S:

Diagonal automorphisms: If q is even then the diagonal automor-
phism δ is trivial. If q is odd, then δ is induced by conjugation by the diago-
nal matrix diagpω, . . . , ω, 1, . . . , 1q P CSpnpqqzSpnpqq, where ω is a primitive
element of Fˆq . Projectively it extends Snpqq to PCSpnpqq and has order 2
in OutpSnpqqq.

Field automorphisms: Here the field automorphism φ has order e in
OutpSnpqqq and projectively extends PCSpnpqq to PCΓSpnpqq “ AutpSnpqqq
when n ě 13.

Graph automorphisms: There are no graph automorphisms of Snpqq
in dimension ě 13.
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3.2.4 Case O˝:

Diagonal automorphisms: The diagonal automorphism δ is induced
by an element of SO˝npqqzΩ˝npqq. Projectively it extends O˝npqq to PSO˝npqq
and has order 2 in OutpO˝npqqq.

Field automorphisms: Here φ has order e in OutpO˝npqqq and projec-
tively extends PSO˝npqq “ PCGO˝npqq to PCΓO˝npqq “ AutpO˝npqqq.

Graph automorphisms: There are no graph automorphisms in this
case.

3.2.5 Case O˘:

Let F be our standard non-degenerate symmetric bilinear form or our stan-
dard quadratic form preserved by Ω˘n pqq as in Table 3.1.1 (p.25).

Diagonal automorphisms: When q is even then the diagonal au-
tomorphisms are trivial.

Assume that q is odd. The diagonal automorphism δ1 exists only when
F has square discriminant. It is induced by an element of SO˘n pqqzΩ˘n pqq
and projectively extends O˘n pqq to PSO˘n pqq. Furthermore it has order 2 in
OutpO˘n pqqq.

The diagonal automorphism δ extends PGO˘n pqq to PCGO˘n pqq projec-
tively and exists for all orthogonal groups in even dimension and odd char-
acteristic. Depending on whether Ω˘n pqq preserves a form of plus- or minus-
type, it has slightly different properties.

We will first consider Ω “ Ω`n pqq. Then δ is induced by the element δ “
diagpω, . . . , ω, 1, . . . , 1q P CGO`n pqqzGO`n pqq, where ω is a primitive element
of Fˆq . Note that detpδq “ ωn{2 and that δFδT “ ωF . We can show that
if F has non-square discriminant then δ has order 2 in OutpΩ̄q. If n ” 2
pmod 4q and F has square discriminant then δ has order 4.

Now let Ω “ Ω´n pqq. Then δ depends on the discriminant of F . Let
a, b P Fq such that a2` b2 “ ω for some primitive element ω of Fˆq . Let X “
`

a b
´b a

˘

and Y “
` 0 ω
´1 0

˘

. If F has square discriminant (i.e. if F “ In) then δ
is induced by δ “ diagpX, . . . ,Xq whereas if F has non-square discriminant
(i.e. if F “ diagpω, 1, . . . , 1qq then δ “ diagpY,X, . . . ,Xq. Similarly to the
case Ω`n pqq we have δFδT “ ωF and detpδq “ ωn{2. We can show that δ has
order 4 in OutpΩ̄q if F has square discriminant and order 2 otherwise.

Graph automorphisms: Here the graph automorphism γ has or-
der 2 in OutpΩ˘n pqqq. If q is odd then γ is induced by an element of
GO˘n pqqzSO˘n pqq and projectively extends PSO˘n pqq to PGO˘n pqq. If q is
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even then γ is induced by an element of SO˘n zΩ˘n pqq and projectively ex-
tends O˘n pqq to PSO˘n pqq “ PGO˘n pqq. In both cases γ is induced by a
reflection with spinor norm 1.

Field automorphisms: There are two different field automorphisms φ
and ϕ depending on Ω and F .

If Ω “ Ω`n pqq or if Ω “ Ω´n pqq with q odd and F of square discrimi-
nant then φ is defined by sending every matrix paijqnˆn to papijqnˆn, where
paijqnˆn P GO˘n pqq. It is undefined otherwise. Projectively, φ extends
PCGO˘n pqq to PCΓO˘n pqq and has order e in OutpΩ̄q.

If Ω “ Ω´n pqq with q odd and F of non-square discriminant then F φ ‰ F
and therefore Ωφ ‰ Ω. Let f “ diagpωpp´1q{2, 1, . . . , 1q. Then fFfT “ F φ

which implies that pΩqφf “ Ω. Hence we define the field automorphism ϕ
to be φ followed by conjugation by f . Furthermore, ϕe “ γ in OutpΩ̄q.
Projectively, ϕ extends PCGO´n pqq to PCΓO´n pqq. Note that if q “ pe with
q and e odd then by [7] there exists a form matrix that is fixed by φ. Since
δ and γ have order 2, φ centralises both δ and γ. Furthermore, φ has order
e and projectively extends PCGO´n pqq to PCΓO´n pqq.

Similarly, if Ω “ Ω´n p2eq with e even then we can find a matrix f such
that Ωφf “ Ω and we define ϕ to be φ followed by conjugation by f (see
[26, Section 2.8, p.36] for more details.) Again, ϕe “ γ in OutpΩ̄q and
projectively ϕ extends PCGO´n p2eq “ PGO´n p2eq to PCΓO´n p2eq. Note that
if e is odd then we can find a form matrix of Ω that is stabilised by φ by [7].
Then φ extends PCGO´n p2eq “ PGO´n p2eq to PCΓO´n p2eq.

3.2.6 Presentations of OutpΩ̄q

The following presentations of the outer automorphism groups of simple
projective classical groups preserving our standard forms are taken from [8,
p.36/37]. Let q “ pe and assume that n ě 13.

Case L:

xδ, γ, φ | δpq´1,nq “ γ2 “ φe “ rγ, φs “ 1, δγ “ δ´1, δφ “ δpy.

Case U:

xδ, φ, γ | δpq`1,nq “ φ2e “ γ2 “ 1, δγ “ δ´1, φe “ γ, δφ “ δpy.

Case S:
xδ, φ | δpq´1,2q “ φe “ rδ, φs “ 1y.
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Case O˝ (p odd):

xδ, φ | δ2 “ φe “ rδ, φs “ 1y.

Case O˘:

O`n p2eq:
xγ, φ | γ2 “ φe “ rγ, φs “ 1y.

O´n p2eq:
xγ, ϕ | γ2 “ 1, ϕe “ γy.

O`n ppeq, 4 | n, p odd:

xδ1, γ, δ, φ | δ12 “ γ2 “ δ2 “ 1, pδγq2 “ δ1, φe “ rδ, φs “ rγ, φs “ 1y.

O`n ppeq, n ” 2 pmod 4q, pe ” 1 pmod 4q:

xδ1, γ, δ, φ | δ12 “ γ2 “ 1, δ2 “ δ1, δγ “ δ´1, φe “ rγ, φs “ 1, δφ “ δpy.

O`n ppeq, n ” 2 pmod 4q, pe ” 3 pmod 4q:

xγ, δ, φ | γ2 “ δ2 “ rδ, γs “ φe “ rγ, φs “ rδ, φs “ 1y.

O´n ppeq, 4 | n or (pe ” 1 pmod 4q and e even):

xγ, δ, ϕ | γ2 “ δ2 “ rδ, γs “ rδ, ϕs “ 1, ϕe “ γy.

O´n ppeq, n ” 2 pmod 4q, pe ” 1 pmod 4q and e odd:

xγ, δ, φ | γ2 “ δ2 “ φe “ rδ, γs “ rδ, φs “ rγ, φs “ 1y.

O´n ppeq, n ” 2 pmod 4q, pe ” 3 pmod 4q:

xδ1, γ, δ, φ | δ12 “ γ2 “ 1, δ2 “ δ1, δγ “ δ´1, φe “ rγ, φs “ rδ, φs “ 1y.

Note that the above presentations imply that if q is odd and δ2 “ 1 then
xδ, γy – C2 ˆ C2. Whereas if q is odd and δ2 “ δ1 ‰ 1 then xδ, γy – D8.
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3.2.7 Useful Properties of Automorphisms

In this section we will state some properties of automorphisms of classical
groups that will be useful later on. We will first consider the conformal
groups which play an important part in this thesis.

Let Ω P tSL˘n pqq,Spnpqq,Ωε
npqqu. Then the conformal group C equals

NGLnpquqpΩq by [8, Lemma 1.8.9, p.41]. The following table, Table 3.2.1,
gives Ω, the conformal group C of Ω and the size of C for each type of
classical group. This table was compiled using the information in [8, Section
1.7, p.32]. Let δ, γ P OutpΩ̄q and denote their matrix representations by δ
and γ respectively.

Table 3.2.1: Conformal groups

Case Ω C |C|

L SLnpqq GLnpqq “ xSLnpqq,ZpGLnpqqq, δy |GLnpqq|

U SUnpqq xSUnpqq,ZpGLnpq2qq, δy |GUnpqq|pq2´1q
pq`1q

“ |GUnpqq|pq ´ 1q
S Spnpqq xSpnpqq,ZpGLnpqqq, δy |Spnpqq|pq ´ 1q

O˝ Ω˝npqq xΩ˝npqq,ZpGLnpqqq, δy |GO˝npqq|pq´1q
2

O˘ Ω˘n pqq xΩ˘n pqq,ZpGLnpqqq, δ, γy |GO˘n pqq|pq ´ 1q

Lemma 3.2.2. Let A P GLnpCq, n ě 3, be of order m. Then duality sends
the trace of A to its complex conjugate.

Proof. By Lemma 2.2.7, TracepAq “
ř

λizim for some roots of unity zim P

C with multiplicity λi. Then TracepATq “
ř

λizim and TracepA´Tq “
ř

λiz´im “
ř

λizim “
ř

λizim, where a denote the complex conjugate of
a P C.

Lemma 3.2.3. Let q be odd, let g P GO`n pq, F q and let λ P Fˆq be non-
square. Then sppgδ, F q “ sppg, λF q, where sppg, F q is the spinor norm of g
with respect to F .

Proof. If |δ1| “ 2 then we know that GO`n pq, F q has 3 subgroups of index
2, namely SO`n pq, F q “ Ω`n pq, F q.xδ1y, Ω`n pq, F q.xγy and Ω`n pq, F q.xγδ1y. If
g P SO`n pq, F q then sppg, F q “ sppg, λF q by Lemma 3.1.20. Furthermore,
since Ω`n pq, F q� CGO`n pq, F q and SO`n pq, F q� CGO`n pq, F q it follows that
sppgδ, F q “ sppg, F q.
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Hence it remains to show that if g P Ω`n pq, F q.xγyzΩ`n pq, F q or g P
Ω`n pq, F q.xγδ1yzΩ`n pq, F q then sppgδ, F q “ sppg, λF qp“ ´sppg, F qq. I.e. we
want to show that pΩ`n pq, F q.xγyqδ “ Ω.xγδ1y. If 4 | n then δγδγ “ δ1 which
implies that γδ “ δ2δ´1γδ “ δ1γ. If n ” 2 pmod 4q and q ” 1 pmod 4q then
γδγ “ δ´1 from which it follows that δ´1γδ “ γδγγδ “ γδ1.

Finally, if |δ1| “ 1 then GO`n pq, F q has only one index 2 subgroup, namely
SO`n pq, F q and sppg, F q “ sppg, λF q “ sppgδ, F q for all g P GO`n pq, F q.

The following lemma will be particularly useful in Chapter 4.

Lemma 3.2.4 ([8, Lemma 1.8.10, p.41]).
(i) Let H,G ď GUnpqq such that they are both absolutely irreducible and

conjugate in GLnpq2q. Then G and H are also conjugate in GUnpqq.
(ii) If G and H are two absolutely irreducible subgroups of Spnpqq or

GOεpqq that are conjugate in GLnpqq then G and H are conjugate
in CSpnpqq or CGOε

npqq respectively.

3.3 Schur Indicator and Quotient Space

Related to classical groups is the Schur indicator of a representation.

Definition 3.3.1. Let ρ : G Ñ GLnpCq be an absolutely irreducible rep-
resentation of some finite group G. Then the Schur indicator indicates
which form Gρ preserves. If Gρ preserves a zero or a unitary form then
the Schur indicator is ˝. If Gρ preserves a symplectic form then the Schur
indicator is ´ and if Gρ is a subgroup of an orthogonal group then the Schur
indicator is `.

We will now define the quotient space of a vector space and show how a
symmetric bilinear form can act on such a quotient space.

Definition 3.3.2. Let V be a vector space and let U ď V be a subspace
of V . Then V {U is a vector space with elements of the form v ` U for all
v P V and V {U is a quotient space.

Lemma 3.3.3. Let V be a vector space on K with associated symmetric
bilinear form β. Let x P V and let V {xxy be a quotient space with associated
symmetric bilinear form β1. Assume that βpx, vq “ 0 for all v P V and that
if there exists y P V such that βpy, vq “ 0 for all v P V then y “ x. Let
v, w P V . Then β1pu` xxy, v ` xxyq “ βpu, vq.
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Proof. It is clear that

βpu` λx, v ` λxq “ βpu, vq ` βpu, λxq ` βpλx, vq ` βpλx, λxq

“ βpu, vq for all λ P Kzt0u.

Hence β1pu` xxy, v ` xxyq “ βpu, vq. Furthermore, u` xxy “ v ` xxy if and
only if v ´ u P xxy. This holds if and only if βpv ´ u, tq “ 0 for all t P V
which is the case if and only if βpv, tq “ βpu, tq for all t P V . Hence our map
is well defined.

3.4 Maximality

Let S be a finite simple group and let S ď T ď AutpSq. In this section we
will define different types of maximal subgroups of T .

Definition 3.4.1. ([40]) Let S be a simple finite group, let S ď T ď AutpSq
and let M be maximal in T .

(i) If S ďM then M is a triviality.
(ii) If S XM is maximal in S then M is ordinary maximal.
(iii) If S XM ‰ S is non-maximal in S then M is a novelty.

As trivialities correspond to maximal subgroups of soluble groups T {S
they will be omitted from all our tables.

Lemma 3.4.2. Let S be a finite simple group and let S � T ď AutpSq.
Suppose that H ă S is maximal and let N “ NT pHq. Then N is maximal
in T if NS{S “ T {S. If NS{S ă T {S then N is not maximal.

Proof. First suppose that NS{S ă T {S. Then there exists a maximal sub-
group M such that NS ď M ă T and in particular S ď M . Hence M is a
triviality and since S ę N it follows that N ăM ă T is not maximal.

Now suppose that NS{S “ T {S and suppose that there exists a maximal
subgroup M such that N ă M ă T . Then MS “ T and it follows that
S ę M . Hence M is either ordinary maximal or a novelty. Suppose first
that M is ordinary maximal. Then S XM is maximal in S. It follows that
H “ SXN ď SXM ă S which implies that SXM “ H since H is maximal
in S as well. Hence S XM “ S X N and M “ N , a contradiction. Hence
no such M exists and N is maximal. We get a similar contradiction if we
assume that M is a novelty.
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3.5 Aschbacher’s Theorem

Aschbacher’s Theorem which classifies the maximal subgroups of a classical
group is crucial for this thesis. Note that trivialities are excluded from
Aschbacher’s Theorem.
Theorem 3.5.1 (Aschbacher’s Theorem (approximate version)). Let A be
as in (3.1.1). Let H be a subgroup of A. Then H is either a geometric or
an S -subgroup of A.

The maximal subgroups of A that are of geometric type were determined
by Kleidman and Liebeck ([26]). Their results are stated in Chapter 11. We
will not give any detailed description of the geometric subgroups as this is
not required for this thesis.
Definition 3.5.2. ([8, Def 2.1.3, p.56]) Let G ď T , where Ω ď T ď A, A
is as in (3.1.1) and Ω P tSL˘n pqq,Spnpqq,Ωε

npqqu. Then we say that G is an
S -subgroup in T if G{pGXZpGLnpquqqq is almost simple and the following
conditions all hold:

(i) Ω ę G;
(ii) G8 is absolutely irreducible;

(iii) there does not exist any g P GLnpquq such that pG8qg is defined over
a proper subfield of Fqu ;

(iv) G8 preserves a non-zero unitary form if and only if Ω “ SUnpqq;
(v) G8 preserves a non-zero quadratic form if and only if Ω “ Ωε

npqq; and
(vi) G8 preserves a non-zero symplectic form and no non-zero quadratic

form if and only if Ω “ Spnpqq.
We will often divide S -subgroups into S1-subgroups and S2-subgroups.

Definition 3.5.3. Let G be an S -subgroup of some classical group CLnpquq
in characteristic p. Then G is an S2-subgroup of CLnpquq if G8 is isomor-
phic to a group of Lie type in characteristic p. We say that G has defining
characteristic in this case. Otherwise G in an S1-subgroup and we say
that G has cross characteristic.

In Chapter 4 we will introduce the theory needed to determine the S1-
maximal subgroups. In Chapters 5, 6 and 7 we will then find the maximal
S1-subgroups in dimension 13, 14 and 15 respectively. In Chapter 8 we
will develop the theory behind S2-subgroups before determining the S2-
maximal subgroups in Chapter 9. Finally, in Chapter 10, we will identify
containments between S1- and S2-subgroups and between geometric and
S -subgroups. The tables with the maximal subgroups can be found in
Chapter 11.
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3.6 Simple versus Quasisimple

Our general aim is to determine the maximal subgroups of the almost sim-
ple classical groups. However, we will find the maximal subgroups of the
quasisimple classical groups Ω and their extensions by outer automorphisms
as it is easier to work with matrices than with permutations. The fol-
lowing lemmas show that we can easily deduce the maximal subgroups of
Ω{ZpΩq.R̄ where R̄ ď OutpΩ{ZpΩqq once we know the maximal subgroups
of Ω.R, where R ď OutpΩq.

Lemma 3.6.1. Let G be quasisimple and let Ḡ “ G{ZpGq. If H is a
maximal subgroup of G then ZpGq ď H. Furthermore H is maximal in G if
and only if H̄ “ H{ZpGq is maximal in Ḡ.

Proof. Suppose that Z “ ZpGq ę H. Then G “ xH,Zy “ HZ as Z is
central. It follows that G “ G1 “ pHZq1 ď H which gives the required con-
tradiction. Therefore Z ď H when H is maximal. By the Correspondence
Theorem H is maximal in G if and only if H{Z is maximal in G{Z.

Lemma 3.6.2 ([8, Lemma 1.3.4, p.8]). Let G “ Z.S be quasisimple where
Z “ ZpGq and S is non-abelian simple. Let α P AutpGq be non-trivial. Then
α is a non-trivial automorphism of G{Z, i.e. AutpGq embeds in AutpSq.

Furthermore, in all the dimensions we are interested in every β P OutpΩ̄q
corresponds to some outer automorphism of Ω.

Lemma 3.6.3. In dimension 13, 14 and 15 all outer automorphisms β P
OutpΩ̄q correspond to some β1 P OutpΩq.

Proof. By [26, Thm 5.1.4, p.173] the Schur multiplier of Ω̄ consists of scalars
and therefore any β P OutpΩ̄q corresponds to some β1 P OutpΩq.

The following lemma will come in useful when we want to deduce infor-
mation about the outer automorphisms of a classical group.

Lemma 3.6.4. Let T be a finite group, let R ď T and let α P OutpT q be
non-trivial with α “ bInnpT q. Then tRg | g P T uα “ tRg | g P T u if and only
if there exists a non-trivial a P AutpT q such that Ra “ R and a´1b P InnpT q.

Proof. First suppose that there exists α P OutpT q such that tRg | g P T uα “
tRg | g P T u. Then for all g P T there exists h P T such that pRgqb “ Rh

which implies that ppRgqbqh´1
“ R. Hence pRg1qb “ R for some g1 P T since

InnpT q�AutpT q. Since g1 P T it follows that conjugation by a “ g1b induces
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an automorphism in bInnpT q by quotienting by ZpT q. Hence g1b maps to
α P OutpT q and a´1b P InnpT q.

Now suppose that there exists a P AutpT q such that Ra “ R. Then
Rag “ Rg for all g P T . Therefore Rg2a “ Rg for some g2 P T and it follows
that tRguaInnpT q “ tRgu. Then α “ aInnpT q P OutpT q.
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4 S -Maximal Subgroups - The Cross Character-
istic Case

The aim of this thesis is to find the maximal subgroups of the almost simple
classical groups in dimension 13, 14 and 15. In this and Chapter 8 we will
look at methods used to determine the maximal subgroups that lie in the
last class in Aschbacher’s Theorem, which is denoted by S (see Definition
3.5.2).

Let G be an S -subgroup of some classical group. Then for each such G
there exists a non-abelian simple group S such that S �G{ZpGq ď AutpSq.
(Note that ZpGq consists of scalar matrices of G since G is absolutely ir-
reducible.) This group S can be of cross or defining characteristic (see
Definition 3.5.3).

In this chapter we will look at the theory behind the cross characteristic
subgroups, which we will also call S1-subgroups. In Chapter 8 we will then
discuss S2-subgroups in more detail, although a lot of the theory developed
in this chapter will also be relevant for S2-subgroups.

Definition 4.0.1. Let T be a classical group. We say that a subgroup
G ă T is an Si-maximal subgroup of T if G is an Si-subgroup and if G is
maximal among the Si-subgroups of T .

Let G be quasisimple. If G has a faithful absolutely irreducible represen-
tation of cross characteristic in dimension less than 250 then it appears in
the tables by Hiß and Malle ([18]). The groups with such a representation
in dimension 13, 14 and 15 together with their extensions by their outer
automorphisms are our potential S1-maximal subgroups. Our aim is there-
fore to find the normalisers of these quasisimple groups within the classical
groups in question.

Throughout this chapter let ρ be a faithful absolutely irreducible repre-
sentation of G unless otherwise stated. Let n ě 13 and let G – Gρ be an
S1-subgroup of a classical group CLnpquq. Here u “ 2 in the unitary case
and 1 otherwise. Let Ω P tSL˘n pqq,Spnpqq,Ωε

npqqu, where ε P t˝,`,´u, and
let C “ NGLnpquqpΩq be the conformal group of Ω. Then Gρ ď Ω as the
following lemma shows.

Lemma 4.0.2. Let n ě 13 and let ρ be an absolutely irreducible representa-
tion of G such that Gρ ď CLnpquq. If G is quasisimple then Gρ ď Ω, where
Ω P tSL˘n pqq, Spnpqq,Ωε

npqqu.
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Proof. If G is quasisimple then Gρ ď Ω is also quasisimple. Hence Gρ “
pGρq8 ď CLnpquq8. From the definition of classical groups and from Lemma
3.1.22 it follows that CLnpquq8 “ Ω since n ě 13.

We will adopt the following convention throughout this chapter.

Convention 4.0.3. Our classical groups CLnpquq preserve the respective
standard form matrices as defined in Table 3.1.1 on p.25 unless otherwise
stated.

Our first aim will be to find NΩpGρq because this might be a possible
S1-maximal subgroup of Ω (Section 4.2). Our main aim is, however, to find
the maximal subgroups of the almost simple classical groups in dimensions
13, 14 and 15. Hence we also have to consider the actions of the outer
automorphisms of Ω̄ – Ω{ZpΩq on NΩpGρq{ZpΩq. We will conclude this
chapter with a discussion about maximality of S1-subgroups (Section 4.9).

4.1 General Procedure

In this section the procedure is described which we will follow in order to
find the maximal subgroups in cross characteristic.

To begin with we will list all potential S1-subgroups G that appear in
[18]. By looking at the character values of the respective representations ρ
of G in [12] and [24] we determine the character rings (see Definition 2.2.2)
of ρ. Using this information, we can calculate the smallest fields over which
these representations exist. In the case where the Schur indicator is ˝ we
also need to identify the form preserved by Gρ. This could be a unitary or
only the zero form. Using [12] and [24] again, we can then find NCpGρq,
where C “ NGLnpquqpΩq is the conformal group of Ω. By considering the
form, the determinants of the elements in NCpGρq, the field size and (in
the orthogonal case only) the spinor norm, we can determine how much of
NCpGρq is contained in Ω. In other words, we find NΩpGρq.

Let β̄ denote the outer automorphism of Ω̄ corresponding to β P OutpΩq.
We also have to look at how elements of OutpΩ̄q act on the Ω̄-conjugacy
classes of NΩpGρq{ZpΩq corresponding to the conjugacy classes of NΩpGρq
in Ω. Once we have all this information we then have to decide which of
these groups are indeed S1-maximal.

Let ρ̂ be a characteristic 0 representation of G. Then by a p-modular
reduction of ρ̂ we mean that for all ĝ P Gρ̂, each entry of ĝ is reduced
modulo p. In most cases our representation ρ in characteristic p arises as
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a p-modular reduction of a characteristic 0 representation ρ̂ with character
ring R. Hence if we consider a specific representation ρ̂ of characteristic 0
then we need to check that we can indeed reduce ρ̂ modulo p.

Let ĝ P Gρ̂ ď GLnpCq be arbitrary. Assuming that a p-modular reduc-
tion of ĝ exists, it is clear that none of the denominators of the entries of ĝ is
divisible by p. The denominators may however be products of other prime
numbers pi and we cannot reduce ĝ modulo pi for any such pi.

Definition 4.1.1. If pi is a prime number that appears in the prime fac-
torisation of the denominator of some entry of ĝ P Gρ̂ ď GLnpCq, then pi is
an exceptional prime.

Let p1, . . . , pk be the exceptional primes of Gρ̂. Then the matrix entries
of all ĝ P Gρ̂ form a subring of Rr 1

p1
, . . . , 1

pk
s and we cannot reduce ρ̂ modulo

pi for any such prime number pi. Hence to show that we can reduce a
characteristic 0 representation ρ̂ modulo p we have to show that for all g P G
the entries of gρ̂ lie in Rr 1

p1
, . . . , 1

pk
s where p ‰ pi for all i. From the next

lemma it follows that it is in fact sufficient to look at the lowest common
multiples of the denominators of the entries of the matrices generating Gρ̂.

Lemma 4.1.2. Let Gρ̂ “ xĝ1, . . . , ĝmy and let ai denote the lowest common
multiple of the denominators of the entries of ĝi, where i P t1, . . . ,mu. Let
A denote the set containing the prime divisors of all ai and let R be the
character ring of ρ̂. Then A contains all exceptional primes.

Proof. Let ĝ be an arbitrary element of Gρ̂. We have to show that the
denominator of any entry of ĝ only contains elements of A and of R as its
prime divisors. Let ĝi P tĝ1, . . . , ĝmu for some i. Then ĝi “

1
ai
ĝ1i where all

entries of ĝ1i lie in R. Since ĝ is the product of some ĝj it can be written
as ĝ “ 1

a ĝ
1 where a is the product of the respective aj and ĝ1 only contains

entries in R. Therefore A contains all exceptional primes.

4.2 Determining the Preserved Form and Finding NΩpGρq

In this section we state a few results that will simplify the process of finding
the normaliser of Gρ in Ω. We will start by finding a way to determine the
preserved form when the Schur indicator is ˝.

Lemma 4.2.1 ([8, Lemma 4.4.1 and Cor 4.4.2, p.167]). Suppose G has an
absolutely irreducible representation ρ over Fq2 of Schur indicator ˝. Then
Gρ preserves a non-degenerate unitary form if and only if the action of the
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field automorphism σ : x ÞÑ xq on the Brauer characters is the same as
complex conjugation.

Suppose additionally that the character ring of ρ̂ is generated over Z
by the quadratic irrationalities â1, . . . , âr and let ai denote the p-modular
reduction of âi. Furthermore let ρ denote the p-modular reduction of ρ̂.
Then Gρ preserves a unitary form if and only if:

(i) âi P RØ ai P Fq; and
(ii) âi P CzRØ ai P Fq2zFq for all 1 ď i ď r.

In the next part of this chapter we will now consider the normaliser of
Gρ in C and Ω.
Lemma 4.2.2 ([8, Lemma 4.4.3, p.168]). Let ρ be an absolutely irreducible
representation of a quasisimple group G. Let Gρ ď Ω and let C be the
conformal group of Ω. Then the outer automorphisms of G that stabilise ρ
are induced by elements of NCpGρq.

Remark 4.2.3. The normaliser of Gρ in C is generated by the following
elements:

(i) elements in ZpCq, which are elements that centralise Gρ;
(ii) elements that lie in the inner automorphism group InnpGρq of Gρ;

(iii) outer automorphisms of Gρ that are induced by elements of NCpGρq.
These are the outer automorphisms that stabilise ρ by Lemma 4.2.2,
i.e. they split ρ (see Section 2.2.1).

To find NΩpGρq once we know NCpGρq is fairly straightforward in most
cases. We just need to decide how much of NCpGρq lies in Ω.

Let α P AutpGqzInnpGq, assume that α has prime order and suppose
that α is induced by an element of NCpGρq which does not centralise Gρ.
By Section 2.2.1 we are therefore in the case where ρ splits into |α| distinct
representations when extended to G.xαy.

In the following lemma we will consider the case when |α| “ 2. Then ρ
splits into two representations ρ1 and ρ2. Let χ1 and χ2 denote the character
values of ρ1 and ρ2 respectively. From Section 2.2.1 it follows that χ2pgq “
´χ1pgq for all g P G.xαyzG.
Lemma 4.2.4. Let ρ be an absolutely irreducible representation of G of di-
mension n such that an outer automorphism α of G of order 2 is induced
by an element g P NCpGρqzGρ of order 2. Let ρ1,2 denote the two represen-
tations into which ρ splits when extended to G.xαy. Then detpgρiq “ ˘1.
Furthermore, if n is even then detpgρ1q “ detpgρ2q, whereas if n is odd then
detpgρ1q “ ´detpgρ2q.
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Proof. Let k “ χ1pgq and let ´k “ χ2pgq, where χ1 and χ2 are the Brauer
characters of ρ1 and ρ2 respectively. Let a be the multiplicity of the eigen-
value 1 and let b be the multiplicity of the eigenvalue ´1 of gρ1. Further-
more, let a1 and b1 be the multiplicities of the eigenvalues 1 and ´1 of gρ2
respectively. Then

a` b “ n

a ¨ 1` b ¨ p´1q “ k

which implies that a “ n`k
2 and b “ n´k

2 . Similar calculations show that a1 “
n´k

2 and b1 “ n`k
2 . We know that detpgρ1q “ 1a ¨ p´1qb “ ˘1. Furthermore,

k “ n´ 2b and hence b1 “ n´ b. If follows that if n is even then b is even if
and only if b1 is even. If n is odd then either b is even or b1 is even.

4.3 Finding NΩ.xβypGρq

Since we are interested in finding the maximal subgroups of almost simple
classical groups, we now consider Ω̄ and its outer automorphisms. To this
purpose suppose that Gρ is an S -subgroup of Ω, where ρ is a faithful
representation of G. Let β P OutpΩ̄q. From Lemma 3.6.3 we know that
in dimensions 13, 14 and 15 this outer automorphism β always corresponds
to an outer automorphism of Ω. Therefore we will abuse notation and
say that β acts on Ω as well. Furthermore, β corresponds to a coset bΩ̄
where b P AutpΩ̄q. In the following we will usually identify β with a coset
representative in AutpΩ̄q and say that Gρ.xβy ď NΩ.xβypGρq. Similarly, if
α P AutpGq or β P AutpΩq induces a non-trivial outer automorphism, then
we will just write α P OutpGq or β P OutpΩq.

We want to know whether NΩ.xβypGρq is maximal in Ω.xβy. Let M
be a C-conjugacy class of subgroups isomorphic to Gρ that splits into the
conjugacy classes M1 to Mk in Ω.

Lemma 4.3.1. Let Gρ ď Ω and β P OutpΩq. If β stabilises an Ω-conjugacy
class of Gρ then (abusing notation) β normalises Gρ.

Proof. Let ci P C and let Mi “ tpGρq
cih |h P Ωu be an Ω-conjugacy class

of Gρ that is stabilised by β. Let β “ bInnpΩq. Then Mβ
i “ Mi and

therefore there exists an h P Ω such that pGρqcihb “ pGρqci . Since ρci is
equivalent to ρ we can without loss of generality assume that pGρqhb “ Gρ
for the representation ρ we have chosen. Since hbInnpΩq “ β, the result
follows.
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We will now look at the conjugacy classes of Gρ in C and Ω. For this
we will need the following definition.

Definition 4.3.2. Two representations ρ1, ρ2 : G Ñ GLnpqq are weakly
equivalent if there exist α P AutpGq, φ P AutpFqq and ˚, where ˚ is either
the duality or the trivial automorphism, such that for all g P G, gρ1 is
equivalent to ppgαρ2q

φq˚.

Lemma 4.3.3 ([8, Lemma 4.4.3, p.168]). Let G be a quasisimple group and
let tρ1, . . . , ρru denote (up to equivalence) all weakly equivalent absolutely
irreducible representations of G of dimension n. Let Gρi ď Ω and let C be
the conformal group of Ω.

(i) The orbits of OutpGq on tρ1, . . . , ρru are in natural bijection with the
conjugacy classes into which C partitions tGρ1, . . . , Gρru.

(ii) Each C-class of subgroups splits into |C : NCpGρiqΩ| classes in Ω.

In the following section we will look at the general behaviour of the
outer automorphisms of Ω̄ and how they act on the Ω-conjugacy classes of
Gρ before looking at each type of classical group individually.

Suppose there exists α P OutpGq such that αρ and ρβ are equivalent for
some β P OutpΩq. Then the following lemma shows that β permutes the
Ω-conjugacy classes of Gρ a single C-conjugacy class splits into.

Lemma 4.3.4. Let M be a single C-conjugacy class of Gρ and assume that
M splits into the classes M1 to Mt in Ω. Let β P OutpΩ̄q and assume that
Gρ ď Mi for some i. If there exists α P OutpGq such that αρ and ρβ are
equivalent then Mβ

i “Mk for some k.

Proof. By assumption there exists α P OutpGq such that αρ and ρβ are
equivalent. Hence there exists t P GLnpquq such that pGρβqt “ Gρ. There-
fore pGρqβ PMk for some k by Lemma 3.2.4. Since Mk is a conjugacy class
of Ω it follows that pGρqβΩ PMk and therefore Mβ

i “Mk.

It follows that β acts on these Ω-conjugacy classes of Gρ.

Definition 4.3.5. Let Gρ ď Ω and suppose that Ω is defined over Fqu . Let
g P NCpGρq. We say that g properly normalises G if g ‰ λh for any
h P Ω and any scalar λ P Fˆqu .
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4.3.1 Diagonal Automorphisms

We will first consider δ P OutpΩ̄q with d “ |δ|. Then δ corresponds to
conjugation by a matrix D, where D is as defined in Section 3.2. From the
definition of δ it follows that D P CzΩ.

Lemma 4.3.6. Let Gρ ď Ω be absolutely irreducible. Suppose that there
exists a single conjugacy class M of Gρ in C and suppose that all automor-
phisms of Gρ that are induced in C are induced in Ω.

(i) If Ω ‰ Ω˘n pqq then δ acts transitively on the d “ |δ| conjugacy classes
M splits into in Ω.

(ii) If Ω “ Ω˘n pqq then xδ, γy acts transitively on the 2d “ 2|δ| conjugacy
classes M splits into in Ω.

Proof. The number of conjugacy classes M splits into in Ω follows by Section
3.2 and Lemma 4.3.3. Let C̄ “ C{ZpCq. Then C̄ “ Ω̄.xδ, γy if Ω “ Ω˘n pqq
and C̄ “ Ω̄.xδy otherwise. Since there exists a single C-conjugacy class, δ or
xδ, γy have to act transitively on the Ω̄-conjugacy classes of Gρ.

From the above lemma and Lemma 4.3.4 it follows that if there exist
α P OutpGq and β P OutpΩ̄q such that αρ and ρβ are equivalent then at
least one Ω-conjugacy class is stabilised by βδk (or βγiδk in Case O˘) for
some k and i.

Lemma 4.3.7. Let β, µ P OutpΩ̄q be conjugate in OutpΩ̄q. Then β stabilises
an Ω-conjugacy class of Gρ if and only if µ stabilises a conjugacy class.

Proof. Since OutpΩ̄q acts transitively on the Ω̄-conjugacy classes of Gρ all
stabilisers are conjugate.

4.3.2 Field Automorphisms

Here we will consider some general properties of the field automorphisms
as defined in Section 3.2. Note that we will consider graph automorphisms
separately for Cases L, U and O˘.

Lemma 4.3.8. Let Gρ1, Gρ2 ď Ω, where ρ1 and ρ2 are two non-equivalent
absolutely irreducible faithful representations. Suppose that the associated
field of Ω is Fqu and suppose that αρ1 “ ρ2 for some outer automorphism
α P OutpGq of order |φ|. If pTracepgρ1qq

p “ Tracepgρ2q for all g P G then
αρ1 is equivalent to ρφ1 .
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Proof. For αρ1 to be equivalent to ρφ1 we need to show that

Traceppgρ1q
φq “ Tracepgαρ1q “ Tracepgρ2q

since two representations are equivalent if and only if they have the same
character values. Since Traceppgρ1q

φq “ Traceppgρ1q
pq “ pTracepgρ1qq

p the
result follows.

We will now consider the Cases L, U, S, O˝ and O˘ separately.

4.4 Graph Automorphisms for Case L:

In this section we will look at the outer automorphisms of a linear group.
Note that for the groups considered in this thesis it turns out that we will
not be required to look at the field automorphisms of linear groups. Hence
we only need to consider the duality automorphism γ as the diagonal auto-
morphism δ was discussed in Section 4.3.1. There is an easy way to prove
that there exists an α P OutpGq such that αρ is equivalent to ργ as the
following lemma shows.

Lemma 4.4.1. Let ρ1,2 be two absolutely irreducible representations of G
such that Tracepgρ1q equals the complex conjugate of Tracepgρ2q for all g P
G. If there exists α P OutpGq of order 2 such that αρ1 “ ρ2, then αρ1 is
equivalent to ργ1 .

Proof. This is clear by Lemma 3.2.2 for characteristic 0 representations.
By the definition of Brauer characters this also holds for characteristic p
representations using a similar argument as in the proof of Lemma 3.2.2.

We will first consider the case when d :“ pq ´ 1, nq is odd.

Lemma 4.4.2 ([8, Lemma 4.6.1, p.189]). Let ρ : G Ñ Ω “ SLnpqq be an
absolutely irreducible representation and suppose that d is odd. If there exists
α P OutpGq such that αρ is equivalent to ργ, then an Ω-conjugacy class of
Gρ is stabilised by γ in OutpΩ̄q.

Now assume that d is even. In this case it is a bit more complicated to
determine whether γ or γδ stabilises an SLnpqq-conjugacy class of Gρ.

Lemma 4.4.3 ([8, Lemma 4.6.2, p.189]). Assume that d is even and let ρ :
GÑ SLnpqq be a faithful absolutely irreducible representation. Also assume
that there exist α P OutpGq and x P GLnpqq such that x´1pgαρqx “ pgρqγ

for all g P G. If detpxq is a square in Fˆq then an SLnpqq-conjugacy class of
Gρ is stabilised by γ in OutpLnpqqq. Otherwise it is stabilised by γδ.
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Remark 4.4.4. Finally, we have to consider characteristic 0 representations
ρ̂ of G that preserve only the zero form. Let R be the character ring of ρ̂
and let K be the corresponding character field. Let tp1, . . . , pku be the set
of exceptional primes of ρ̂ (see Definition 4.1.1).

Suppose we want to determine the action of γ on the p-modular reduc-
tions of Gρ̂. For all the groups considered in this thesis we can find an
x̂ P GLnpKq and some α P OutpGq such that x̂´1pgρ̂q´Tx̂ “ pgαqρ̂ for all
g P G. Furthermore, we can find λ P C such that λx̂ and pλx̂q´1 only have
entries in Rr 1

p1
, . . . , 1

pk
s and detpλx̂q “ pe11 . . . pekk for some ei P N0. Hence

we can reduce λx̂ modulo p for all p ‰ pi. From this it follows that we can
apply Lemma 4.4.3 to x, the p-modular reduction of x̂. That way we can
deduce the action of γ on the p-modular reductions of our characteristic 0
representation.

4.5 Field Automorphisms for Case U:

Here we will consider the behaviour of the outer automorphisms γ and φ
of the unitary groups. Let q “ pe. Let d :“ pq ` 1, nq “ |δ| and let
Unpqq “ Unpq, Inq. Recall from Section 3.2.6 that

OutpUnpqqq “ xδ, φ, γ | δ
d “ φ2e “ γ2 “ 1, δγ “ δ´1, φe “ γ, δφ “ δpy.

Note that by [7] the isomorphism type of xUnpq,Bq, φy depends on the choice
of form B preserved by the unitary group when n is even and q is odd. Recall
that in Section 3.2 we defined σ and φ for groups preserving our standard
unitary form matrix In. The problem is that even though σ “ φe and φ are
automorphisms of SUnpq, Inq and stabilise this group, they do not necessarily
stabilise SUnpq,Bq for every non-degenerate unitary form B. One reason is
that these automorphisms might not fix the form at all and even if they fix
B, then xSUnpq, Inq, φy (or xSUnpq, Inq, σy) is not necessarily isomorphic to
xSUnpq,Bq, φy (or xSUnpq,Bq, σy).

To find the action of the field automorphism for any non-degenerate
unitary form B we find a way to map Gρ ď SUnpq,Bq to some isomorphic
group H ď SUnpq, Inq. Let A P GLnpq2q such that pGρqA “ H ď SUnpq, Inq.
Since ρA is equivalent to ρ it is sufficient for our purpose to determine the
action of the outer automorphisms of Unpq, Inq on H.

If we do not need to use any specific generators for Gρ however than
we can assume without loss of generality that Gρ preserves our standard
unitary form matrix In.

Assume throughout that each C “ CGUnpqq conjugacy class of Gρ splits
into d conjugacy classes in SUnpqq. By [8, Lemma 4.6.3, p.190] there are
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two OutpUnpqqq-conjugacy classes containing elements of the form φδi when
d is even and one such conjugacy class when d is odd. We will first consider
the case when d is odd.

Lemma 4.5.1. Let ρ : GÑ Ω “ SUnpqq be an absolutely irreducible repre-
sentation. Suppose that d is odd and that there exists α P OutpGq such that
αρ is equivalent to ρφ. Then an Ω-class of Gρ is stabilised by xφy in OutpΩ̄q.

Proof. This follows from [8, Lemma 4.6.3, p.190] and Lemma 4.3.7.

Now we will look at the case when d is even. The following lemma gives
us a way of deciding whether a subgroup of a unitary group is stabilised by
φ or by φδ.

Lemma 4.5.2 ([8, Lemma 4.6.5, p.191]). Let ρ : G Ñ GLnpq2q be an
absolutely irreducible representation such that Gρ ď SUnpq,Bq – SUnpqq,
where B is some non-degenerate unitary form. Assume that d “ pq ` 1, nq
is even. Also assume that there exist α P OutpGq and x P GLnpq2q such
that x´1pgρqφx “ gαρ for all g P G and xBxσT “ λBφ with λ P Fˆq . Let
A P GLnpq2q such that pGρqA ď SUnpqq and let l “

a

detpxq. Then a
conjugacy class of pGρqA in SUnpqq is stabilised in Unpqq by φ if and only
if either

φ “ γ and 1
λn{2

l1`σ detpBq “ 1
or

p
1

λn{2
ql1`σpdetpBqq

1´p
2 “ 1.

Since the representation ρA is equivalent to ρ, we will just say that an
SUnpqq-conjugacy class of Gρ is stabilised by φ in OutpUnpqqq.

Remark 4.5.3. Again we have to consider characteristic 0 representations
ρ̂ of G preserving a unitary form. Let R be the character ring of ρ̂ and let
tp1, . . . , pku be the set of exceptional primes of Gρ̂. Let B̂ be the positive
definite σ-Hermitian form preserved by ρ̂. Then there exists a complex
matrix Â such that ÂÂσT “ B̂ by [27]. The p-modular reduction µB of µ̂B̂
is a non-degenerate unitary form if the entries of both µ̂B̂ and pµ̂B̂q´1 lie
in Rr 1

p1
, . . . , 1

pk
s for some scalar µ̂ P C. Even if such a µ̂ exists, however, we

may not be able to find a suitable Â with entries only in Rr 1
p1
, . . . , 1

pk
s. From

this it follows that Â cannot necessarily be reduced modulo p and hence we
may not be able to use Lemma 4.5.2.

However we can find an x̂ P GLnpCq such that x̂´1pgρ̂qφx̂ “ pgαqρ̂ for all
g P G. If the entries of λx̂ and pλx̂q´1 lie in Rr 1

p1
, . . . , 1

pk
s for some scalar

48



λ and if φ “ γ, then we do not have to find Â explicitly, as the following
lemma shows.
Lemma 4.5.4 ([8, Prop 4.6.6, p.193]). Let ρ̂ : G Ñ SUnpB̂,Cq be a char-
acteristic 0 representation preserving some unitary form B̂ such that G has
an absolutely irreducible representation ρ with Gρ ď SUnpq,Bq that arises
as a p-modular reduction of ρ̂. Furthermore, let S “ Rr 1

p1
, . . . , 1

ps
s, where R

is the character ring of ρ̂ and the pis are the exceptional primes with pi ‰ p
for all i. Assume that:

(i) φ “ γ;
(ii) there exist α P AutpGq and x̂ P GLnpCq such that x̂´1pgρ̂qφx̂ “ pgαqρ̂

for all g P G;
(iii) B̂, B̂´1, x̂ and x̂´1 have entries in S; and
(iv) r̂ν̂2 with r̂ P R gives a factorisation of detpx̂q in S.

Now let r be the p-modular reduction of r̂ and let ε “ 1 if
?
r P Fˆq and ε “ ´1

otherwise. Let A P GLnpq2q such that pGρqA ď SUnpqq. If ε sgnpr̂q “ 1 then
an SUnpqq-conjugacy class of pGρqA is stabilised by φ in OutpUnpqqq. If
ε sgnpr̂q “ ´1 then a conjugacy class is stabilised by φδ.

4.6 Field Automorphisms for Case S:

Let Gρ ď Ω “ Spnpqq. In this thesis we can always assume that Gρ preserves
our standard symplectic form as in Table 3.1.1 (p.25). Recall from Section
3.2.6 that a presentation of the outer automorphism group of Snppeq is given
by

OutpSnppeqq “ xδ, φ | δpq´1,2q “ φe “ rδ, φs “ 1y – Cpq´1,2q ˆ Ce.

As for Cases L and U suppose that there exists α P OutpGq such that αρ is
equivalent to ρφ. (Recall that we can use Lemma 4.3.8 to determine whether
αρ is equivalent to ρφ.) Furthermore, assume that a single C “ CSpnpqq
conjugacy class of Gρ splits into pq ´ 1, 2q conjugacy classes in Spnpqq.

From this it follows that the two conjugacy classes are stabilised by φδi
for some i P t0, 1u. The following lemmas are sufficient for this thesis to
determine the class stabiliser of an Ω-conjugacy class of Gρ.
Lemma 4.6.1 ([8, Lemma 4.6.7, p.195]). Let CΓSpnpqq “ CSpn.xφy. All
involutions in PCΓSpnpqq lie in Snpqq.xφy Y PCSpnpqq when q is odd.

Lemma 4.6.2. Let Gρ ď Spnpp2q “ Ω with q odd. Assume that there exists
α P OutpGq of order 2 such that αρ is equivalent to ρφ. Furthermore, suppose
that δ R NCpGρq and that projectively xG,αyzG contains involutions. Then
an Ω-conjugacy class of Gρ is stabilised by xφy in OutpΩ̄q.
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Proof. Note that since δ R NCpGρq, no conjugacy class of Gρ is stabilised by
δ. Therefore an Ω-conjugacy class of Gρ has stabiliser xφδiy in Ω̄ for some
i P t0, 1u. Since this stabiliser induces α it follows that Gρ.xφδiy contains
involutions. By Lemma 4.6.1 the stabiliser is therefore xφy.

4.7 Field Automorphisms for Case O˝:

Now we consider the field automorphisms of orthogonal groups in odd di-
mension. Let Gρ ď Ω “ Ω˝npqq and suppose that αρ is equivalent to ρφ for
some α P OutpGq. Again we can assume that Gρ preserves our standard
form as in Table 3.1.1 (p.25). By Section 3.2.6,

OutpO˝nppeqq “ xδ, φ | δ2 “ φe “ rδ, φs “ 1y – C2 ˆ Ce

and δ is induced by a matrix in SO˝npqqzΩ˝npqq.
The following lemmas help to determine whether xφy or xφδy stabilises

an Ω-conjugacy class of Gρ.

Lemma 4.7.1 ([8, Lemma 4.9.40, p.239]). Let CΓO˝npqq denote the group
CO˝npqq.xφy and let CSO˝npqq “ CO˝npqq X SLnpqq. Then all involutions in
PCΓO˝npqq lie in PCSO˝npqq YO˝npqq.xφy.

Lemma 4.7.2. Let Gρ ď Ω˝npp2q “ Ω. Assume that δ R NCpGρq and
suppose that there exists α P OutpGq such that αρ is equivalent to ρφ, where
|φ| “ |α| “ 2. Also suppose that projectively xG,αyzG contains involutions.
Then an Ω-conjugacy class of Gρ is stabilised by xφy in OutpΩ̄q.

Proof. The proof is very similar to the proof of Lemma 4.6.2.

We will now consider the case when φ induces an outer automorphism
of Gρ of order 4. Then OutpO˝npp4qq – C2 ˆ C4.

Let Ω “ Ω˝npp4q. It is clear by Lemma 4.3.4 and Lemma 4.3.6 that if
there exists α P OutpGq of order 4 such that αρ is equivalent to ρφ then
at least one and hence both of the Ω-conjugacy classes of Gρ are either
stabilised by xφy or by xφδy in OutpΩ̄q. Hence we can assume without loss
of generality that the Ω-conjugacy class of Gρ is stabilised by φδi for some
i.

Lemma 4.7.3. Let Gρ ď Ω “ Ω˝npp4q and suppose that there exist α P
OutpGq of order 4 and x P GLnpp4q such that x´1pgρφqx “ gαρ for all
g P G. Suppose that there exists a single C conjugacy class of Gρ that
splits into 2 conjugacy classes in Ω. Then there exists λ P Fˆp4 such that
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λx P SO˝npp4q. Furthermore, if sppλxq “ 1 then the Ω-conjugacy class of Gρ
is stabilised by φ in OutpΩ̄q. Otherwise the conjugacy class is stabilised by
φδ.

Proof. By assumption the conjugacy class GρΩ is stabilised by φδi for some
i P t0, 1u. Furthermore, Gρφx “ Gρ which implies that φx P AutpΩq by
Lemma 3.2.4(ii). Since GρΩ is only stabilised by φδi we can deduce from
Lemma 3.6.4 that φx equals φδi in OutpΩq. Hence x “ λ´1δig for some
scalar λ and some g P InnpΩq. In particular this implies that λx P SO˝npp4q.
Then λx P Ω if and only if i “ 0, i.e. if and only if sppλxq “ 1.

4.8 Outer Automorphisms for Case O˘:

The theory of the outer automorphisms of the orthogonal groups in even
dimensions is quite complex as there are more automorphisms to consider.
Also, the outer automorphism group depends on the type of the orthogonal
group and on the discriminant of the preserved form matrix.

4.8.1 Field Automorphisms for Case O˘

Let B be a non-degenerate symmetric bilinear form matrix. We will first
consider the field automorphisms of O˘n pp2, Bq in odd characteristic.

Field Automorphisms in Odd Characteristic
The following lemma holds for all orthogonal groups in even dimension

(in fact it can be easily adapted to hold for all quasisimple classical groups).
Later on in this section we will only consider orthogonal groups of plus-type
with dimension n ” 2 pmod 4q though as this is what is needed for this
thesis.

Recall from Section 3.2.6 that when n ” 2 pmod 4q and p is odd the
presentation of the outer automorphism group of O`n pp2q is:

OutpO`n pp2qq “ xγ, δ, φ | δ4 “ γ2 “ 1, δγ “ δ´1, φ2 “ rγ, φs “ 1, δφ “ δpy,

since p2 ” 1 pmod 4q.
Furthermore, we can show that OutpO`n pp2qq – xγ, δy ˆ xνy, where

xγ, δy – D8, ν “ φ if p ” 1 pmod 4q and ν “ γφ if p ” 3 pmod 4q.

Lemma 4.8.1. Let n be even and q be odd. Let ρ : G Ñ GLnpqq be an
absolutely irreducible representation and assume that Gρ ď Ω˘n pq,Bq for
some non-degenerate symmetric bilinear form matrix B. Also suppose that
αρ is equivalent to ρφ for some α P OutpGq. Then:
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(i) there exists A P GLnpqq such that AFAT “ B, where F is our standard
form matrix of the same sign as B as given in Table 3.1.1. Further-
more, Gρ – pGρqA ď Ω˘n pq, F q “ Ω˘n pqq;

(ii) there exists x P GLnpqq such that x´1pgρqφx “ pgαqρ for all g P G.

Proof. (i) In even dimension all non-degenerate orthogonal forms of the
same sign are isometric by [8, Thm 1.5.3, p.20]. Hence there exists A P

GLnpqq such that AFAT “ B. Furthermore, if g P Ω˘n pq,Bq then gBgT “
B. From this it follows that AA´1gAA´1BA´TATgTA´TAT “ B. Hence
gAF pgAqT “ F . Since conjugation by the matrix A induces an isomorphism
we deduce that Gρ – GρA ď Ω˘n pqq.

(ii) This follows since αρ is equivalent to ρφ.

From now on we will only consider the case when Gρ preserves an or-
thogonal form of plus-type. Hence we do not have to deal with the field
automorphism ϕ. The following is based on [8, Lemma 4.6.7, p.195].

Lemma 4.8.2. Suppose that n is even and p is odd. Then any invo-
lution in PCΓO`n pp2q lies in either a xδy-conjugate of O`n pp2q.xφ, γy or in
PCGO`n pp2q.

Proof. Note that elements in GO`n pp2q preserve our standard form F “

antidiagp1, . . . , 1q but they also preserves any scalar multiple of F . Let
g P GO`n pp2qzSO`n pp2q. By Lemma 3.1.20, sppg, F q “ sppg, λF q if λ is square
in Fp2 and by Lemma 3.2.3, sppgδ, F q “ sppg, λF q if λ is non-square in Fˆp2 .
Since we only want to determine the containment of g up to conjugation
by δ, we can assume without loss of generality that elements in GO`n pp2q
preserve F .

Let g P PCΓΩ`n pp2q be of order 2. Then either g is the image of some
A P CGO`n pp2q in which case g P PCGO`n pp2q. Otherwise we can take g
to be the image of some Aσ, where σ P CΓO`n pp2qzCGO`n pp2q induces by
conjugation a field automorphism of order 2. We want to show that we have
g P O`n pp2q.xφ, γy.

We find that for some λ P Fˆp2

AAσ “ pAσq2 “ λI, (4.8.1)

since projectively Aσ has order 2. Since pAAσqA “ AσA “ λI and pAAσqσ “
AσA “ λσI it follows that λ P Fˆp . Also, AFAT “ µF for some µ P Fˆq2

since A P CGO`n pp2q. Furthermore, note that F “ F σ. Hence, pAFATqσ “
AσFAσT “ µσF . From this it follows that

pAAσqF pAAσqT “ µσ`1F “ λ2F
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since AAσ “ λI by (4.8.1). Using the fact that λ P Fˆp it follows from
Lemma 2.1.8 that µ is a square in Fˆp2 .

Next we want to show that (up to conjugacy) g P PGO`n pp2q.xφy in this
case. This holds if we can show that νA P GO`n pp2q for some scalar ν. Let
ν “ µ´

1
2 which exists since µ is square. Then pνAqF pνAqT “ ν2µF “ F as

required.
Furthermore we will show that νA has spinor norm 1. Let E “ νA P

GO`n pp2q. First of all note that EEσ “ ν1`pAAσ “ pµ1`pq´1{2λI “

pλ2q´1{2λI “ ˘I depending on the square root of λ2. Also, sppEq “ 1
if and only if τ “

śk
i“1 βpvi, viq, as defined in Definition 3.1.16, is square

in Fˆp2 . Since ˘I has spinor norm 1 in SO`n pp2q, it follows from the fact
that the spinor norm map is a homomorphism that τp`1 is a square in
Fp2 . By Lemma 2.1.8, τ is a square in Fp2 as well and hence sppEq “ 1.
Note that A “ ν´1E and hence conjugation by A corresponds to conjuga-
tion by E. It follows that sppAq “ 1. Therefore, up to conjugation by δ,
g P O`n pp2q.xφ, γy.

For the remainder of this subsection we will only consider the case when
n ” 2 pmod 4q.

Lemma 4.8.3. Let Ω “ Ω`n pp2q with n ” 2 pmod 4q and p odd. Assume that
there exists α P OutpGq of order 2 such that αρ is equivalent to ρφ. Suppose
that δ R NCpGρq and that projectively xG,αyzG contains involutions. Then
an Ω-conjugacy class of Gρ has either stabiliser xφy or xφγy in OutpΩ̄q.

Proof. The proof is similar to the proof of Lemma 4.6.2.

Lemma 4.8.4. Assume that Gρ ď Ω “ Ω`n pp2q, where p is odd and n ”
2 pmod 4q. Assume that NCpGρq “ ZpCqGρ and that all images of the
representations that are weakly equivalent to ρ lie in the same C-conjugacy
class. Assume there exists α P OutpGq such that αρ is equivalent to ρφ

and assume that projectively G.xαyzG contains involutions. Let c P C and
assume that the Ω-conjugacy class of pGρqc is stabilised by φγk in OutpΩ̄q
for some k P t0, 1u. Without loss of generality we can let c P t1, δu.

Proof. Let OutpΩ̄q “ Dˆxνy, where D “ xδ, γy, ν “ φ if p ” 1 pmod 4q and
ν “ φγ if p ” 3 pmod 4q.

By Lemma 4.8.3 the Ω-conjugacy class of pGρqc is stabilised by H “

xφγky. Furthermore, we know that OutpΩ̄q acts transitively on the cosets of
H.

53



If H “ xνy then it is clear that all cosets of H are stabilised by xνy. It
follows that all Ω-conjugacy classes of G are stabilised by H and hence we
can let c “ 1.

If H “ xγνy then the cosets H, γH, δ2H, δ2γH are stabilised by H,
whereas the cosets δH, δγH, δ´1H and δ´1γH are stabilised by Hδ. It
follows that either the Ω-conjugacy class of Gρ or the Ω-conjugacy class of
pGρqδ is stabilised by γν. Hence without loss of generality c P t1, δu in this
case.

Our aim is now to determine whether a conjugacy class is stabilised by
φ or φγ. To do so we will first of all find an expression for x, where x
conjugates pgρqφ to gαρ for all g P G.

Convention 4.8.5. Assume that Gρ ď Ω`n pp2, Bq, where B is some non-
degenerate symmetric bilinear form matrix of plus-type, p is odd and n ” 2
pmod 4q unless otherwise stated. Let C be the conformal group of Ω`n pp2, Bq.
Furthermore, let F “ antidiagp1, . . . , 1q, our standard non-degenerate sym-
metric bilinear form matrix of plus-type, and let A P GLnpp2q such that
pGρqA ď Ω`n pp2, F q “ Ω`n pp2q and AFAT “ B. Also assume that NCpGρq “
ZpCqGρ and that all images of the representations that are weakly equivalent
to ρ lie in the same C-conjugacy class.

Note that our convention implies that there exist eight Ω`n pp2q-conjugacy
classes of pGρqA and that the stabiliser of Gρ has order 2.

Lemma 4.8.6. Recall our Convention 4.8.5. Suppose that there exists x P
GLnpp2q such that x´1pgρqφx “ pgαqρ for all g P G. Also suppose that
pGρqAc is stabilised by φγkh for some c P t1, δu, some k P t0, 1u and some
h P Ω`n pp2q. Let y “ Aφcφγkhc´1A´1. Then yByT “ Bφ if c “ 1 and
yByT “ ωφ´1Bφ for some primitive element ω P Fˆp2 if c “ δ. Furthermore,
y “ µx for some scalar µ P Fˆp2.

Proof. By assumption pGρAcqφγkh “ GρAc. Hence ppGρqφqAφcφγkhc´1A´1
“

Gρ and so pGρqφy “ Gρ by definition. Furthermore, pGρqφx “ Gρ and x is
only defined up to multiplication by some element n P NCpGρq. However
by our convention, we know that either n P Gρ in which case it is an inner
automorphism and we can ignore it or n P ZpCq, i.e. a scalar matrix since
C is irreducible. Hence, without loss of generality, y “ µx for some µ P Fˆp2 .
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Now let c “ δ. Then

yByT “ Aφcφγkhc´1A´1BA´Tc´ThTγkTcφTAφT

“ Aφcφγkhc´1Fc´ThTγkTcφTAφT since AFAT “ B

“ ω´1AφcφFcφTAφT since h, γ P GO`n pp2q and cFcT “ ωF

“ ωφ´1AφFAφT since F “ F φ

“ ωφ´1Bφ.

If c “ 1 then it is straightforward to show that yByT “ Bφ.

In particular, the previous lemma implies that we can find an x P

GLnpp2q such that x´1pgρqφx “ gαρ for all g P G and xBxT “ Bφ since
ωφ´1 is square in Fp2 .

Lemma 4.8.7. Recall our Convention 4.8.5. Assume that there exists
x P GLnpp2q such that x´1pgρqφx “ gαρ for all g P G and xBxT “ Bφ.
Furthermore, suppose that pG.xαyqρ ę C and that projectively G.xαyzG con-
tains involutions. Let c P t1, δu. Then the Ω`n pp2q-conjugacy class of pGρqAc
is stabilised by xφy in OutpO`n pp2qq if and only if detpA1´φq detpxq “ 1.
Otherwise the Ω`n pp2q-conjugacy class of pGρqAc is stabilised by xφγy.

Proof. By Lemma 4.8.6 there exists y “ Aφcφγkhc´1A´1 for some h P

Ω`n pp2q and k P t0, 1u such that y “ µx for some µ P Fp2 .
First, let c “ δ. If xBxT “ Bφ it is straightforward to show that

x “ ωp1´pq{2y “ ωp1´pq{2Aφcφγkhc´1A´1. Furthermore, the conjugacy
class of pGρqAc is stabilised φ if and only if k “ 0. Note that γk “
ωpp´1q{2c´φA´φxAch´1 and hence a conjugacy class is stabilised by φ if
and only if detpγkq “ detpωpp´1q{2c´φA´φxAch´1q “ 1. Since detpc1´φq “
pdetpcqq1´φ “ ωp1´pqn{2, it follows that detpγkq “ detpA1´φqdetpxq. This
holds similarly when c “ 1.

Next we consider the case when the characteristic of the representation
is 0. Let ΩnpC, B̂q be the commutator subgroup of GOnpC, B̂q which is the
subgroup of all matrices in GLnpCq that preserve some given non-degenerate
quadratic form matrix B̂. Also let Ω̄npCq – ΩnpCq{ZpΩnpCqq.

Lemma 4.8.8. Let F̂ “ antidiagp1, . . . , 1q P GLnpCq. Then for all non-
degenerate symmetric bilinear form matrices B̂ over C there exists some
Â P GLnpCq such that ÂF̂ ÂT “ B̂. Furthermore, if Gρ̂ ď ΩnpC, B̂q, then
pGρ̂qÂ ď ΩnpC, F̂ q where ρ̂ is an absolutely irreducible representation of
characteristic 0.
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Proof. By [1, Thm 20.10, p.85] all non-degenerate quadratic forms over C
are congruent to each other. Furthermore, if the characteristic of the field
does not equal 2, then a quadratic form Q and a symmetric bilinear form β
uniquely determine each other. Let B̂ the form matrix of such a symmetric
bilinear form β. Hence for all such B̂ there exists some Â P GLnpCq such
that ÂF̂ ÂT “ B̂.

Now let ĝ P Gρ̂. Then ĝB̂ĝT “ B̂ from which it follows that ĝÂF̂ pĝÂqT “
F̂ . Therefore, Gρ̂ – pGρ̂qÂ ď ΩnpC, F̂ q.

Remark 4.8.9. If a quadratic form in characteristic p acts on a vector space
V , then V can be written as the sum of hyperbolic lines and a 2-dimensional
space W . If the quadratic form is of plus-type, then W is a hyperbolic line
as well but if the quadratic form is of minus-type, then W does not contain
any singular vectors ([36, p.138]). In characteristic 0, W always contains a
singular vector. This follows from the fact that C is algebraically closed and
so any quadratic equation in 2 variables has a non-zero root.

In comparison, if V “ F2
q , q odd, then x2 ` y2 and νx2 ` y2 are two

non-equivalent orthogonal forms on V , where ν P Fˆq is non-square. If q ” 1
pmod 4q, then ´1 “ τ2 is square in Fˆq by Lemma 2.1.7 and hence p1, τq is a
singular vector of the orthogonal form x2`y2, whereas there are no singular
vectors when the orthogonal form is given by νx2`y2. This works similarly
when q ” 3 pmod 4q ([9]).

If q is even then the vector p0, 1q is a singular vector of the quadratic
form Q “ xy whereas there is no non-zero vector px, yq P F2

q such that the
quadratic form Qppx, yqq “ x2 ` xy ` y2 “ 0 ([36, p.139]).

Field Automorphisms in Characteristic 2
We will now consider the case when the field has characteristic 2. Recall

that F “ antidiagp1, . . . , 1, 0, . . . , 0q is our standard quadratic form pre-
served by Ω`n p2iq by Table 3.1.1. Let Ω`n p2i, F q “ Ω`n p2iq. For this thesis it
is sufficient to consider the field automorphisms of Ω`n p22q.

Lemma 4.8.10. Assume that Gρ ď Ω`n p22q “ Ω and let α be an outer au-
tomorphism of G of order 2. Suppose that |OutpGq| “ 2. If αρ is equivalent
to ρφ, then the Ω-conjugacy class of Gρ is either stabilised by xφy or by xφγy
in OutpΩ̄q.

Proof. Since OutpΩ̄q “ xγ, φ | γ2 “ φ2 “ rγ, φs “ 1y – C2 ˆ C2 it is clear
that the Ω-conjugacy class of Gρ is stabilised by either φ or by φγ.
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Lemma 4.8.11. Suppose Gρ ď Ω`n p22q “ Ω where |OutpGq| “ 2. Let
α be an outer automorphism of order 2 of G. Assume that there exists
x P GLnp22q such that x´1pgρqφx “ gαρ for all g P G. Then there exists
λ P Fˆ4 such that λx P SO`n p22q. If the quasideterminant of λx equals 1 then
the Ω`n p22q-conjugacy class of Gρ has stabiliser xφy in OutpΩ̄q. Otherwise
the conjugacy class has stabiliser xφγy.

Proof. By Lemma 4.8.10 we know that the Ω-conjugacy class of Gρ is sta-
bilised by φγi where i P t0, 1u. Hence, Gρφγih “ Gρ for some h P Ω.

Furthermore, we know that there exists x P GLnp22q such that Gρφx “
Gρ. By assumption |OutpGq| “ 2 and it follows from Lemma 3.6.4 that φγh
equals φx in OutpΩq. Hence there exists λ P F4 such that λx P SO`n p22q.
Finally, note that γih has quasideterminant 1 if and only if i “ 0. Hence
the Ω-conjugacy class of Gρ is stabilised by φ if and only if λx has quaside-
terminant 1.

4.8.2 Diagonal and Graph Automorphisms for Case O˘

Finally we will consider diagonal and graph automorphisms of an orthogonal
group Ω “ Ω˘n pp,Bq preserving any non-degenerate symmetric bilinear form
B. We will begin with the case when p is odd. Let C denote the respective
conformal group of Ω.

We will only consider the case when n ” 2 pmod 4q and q “ p. By
Section 3.2.6 the presentation of the outer automorphism group of O˘n pp,Bq
is given by

OutpO˘n pp,Bqq “ xδ1, γ, δ | δ12 “ γ2 “ 1, δ2 “ δ1, δγ “ δ´1y

when the discriminant of B is square in Fp and by

OutpO˘n pp,Bqq “ xγ, δ | γ2 “ δ2 “ rδ, γs “ 1y

when the discriminant of B is non-square in Fp.

Lemma 4.8.12. Let Gρ ď Ω˘n pp,Bq, where B is the form matrix of some
non-degenerate symmetric bilinear form. Let n ” 2 pmod 4q, let p be odd
and let b be the discriminant of B. Let g P CGO˘n pp,Bq, assume that g
properly normalises Gρ and assume that g induces an outer automorphism
α of order 2 of Gρ. Let A P GLnpqq such that AFAT “ B, where F is
our standard form matrix as given in Table 3.1.1 and let Ω “ Ω˘n pp, F q.
Let λ P Fp such that gBgT “ λB. Then an Ω-conjugacy class of pGρqA is
stabilised by:
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(i) xγy in OutpΩ̄q if g P GO˘n pp,BqzSO˘n pp,Bq;
(ii) xδ1y in OutpΩ̄q if g P SO˘n pp,BqzΩ˘n pp,Bq and b is square in Fp;

(iii) xγδy in OutpΩ̄q if g P CGO˘n pp,BqzGO˘n pp,Bq and b is square in Fp;
(iv) xδy in OutpΩ̄q if g P CGO˘n pp,BqzGO˘n pp,Bq, b is non-square in Fp

and detpgq “ λn{2;
(v) xγδy in OutpΩ̄q if g P CGO˘n pp,BqzGO˘n pp,Bq, b is non-square in Fp

and detpgq “ ´λn{2.

Proof. Since g P CGO˘n pp,Bq it follows that gA P CGO˘n ppq by Lemma
4.8.1. Furthermore, gA induces some β P OutpO˘n ppqq. It is clear that
detpgAq “ detpgq. If g P GO˘n pp,BqzSO˘n pp,Bq then sppgAq does not nec-
essarily equal sppgq. However, if sppgAq ‰ sppgq then sppgAq “ sppgδq by
Lemma 3.2.3. Since we are only interested in the conjugacy classes of the
outer automorphisms stabilising Gρ by Lemma 4.3.7 we can without loss of
generality assume that g induces β P OutpΩ̄q.

(i) If g P GO˘n pp,BqzSO˘n pp,Bq then g induces γ if g has spinor norm 1
by Section 3.2.5 and Lemma 3.6.4. Now consider the case when sppgq “ ´1.
If b is square then g induces γδ1 but δ´1γδ “ γδ1 in OutpΩ̄q and hence
γ and γδ1 are conjugate in OutpΩ̄q. From this it follows by Lemma 4.3.7
that an Ω-conjugacy class of Gρ is stabilised by xγy. If b is non-square then
spp´gq “ 1 by Lemma 3.1.21 and ´g normalises Gρ as well. Hence we again
have that an Ω-conjugacy class of Gρ is stabilised by xγy.

(ii) This is obvious by Lemma 3.6.4.
(iii) Since α has order 2 and g P CGO˘n pp,BqzGO˘n pp,Bq it follows that

β P tγδ, γδ3u when b is square in Fp. Since δ´1pγδqδ “ γδ3 we can deduce
from Lemma 4.3.7 that an Ω-conjugacy class of Gρ is stabilised by xγδy.

(iv), (v) When b is non-square and g P CGO˘n pp,BqzGO˘n pp,Bq induces
an outer automorphism α of order 2 then α P tδ, δγu. Furthermore, δ and δγ
are not conjugate since they commute in OutpΩ̄q. Let D be the matrix corre-
sponding to δ as defined in Section 3.2.5. Then DFDT “ ωF for some prim-
itive element ω P Fˆp and detpDq “ ωn{2. Hence pADA´1qBpA´TDTATq “
ωB and there exists µ P Fp such that µ´1gpADA´1q´1 stabilises B. If
detpµ´1gpADA´1q´1q “ 1, then g is induced by δ and a conjugacy class
is stabilised by δ. If detpµ´1gpADA´1q´1q “ ´1 then a conjugacy class is
stabilised by δγ. By definition gBgT “ λB, where λ is non-square. Hence
λ “ ω2k`1 for some k. It is straightforward to show that µ “ ωk. Hence
detpgq “ ˘detpµADA´1q “ ˘λn{2.

Since pGρqA is equivalent to Gρ we will usually just say that an Ω-
conjugacy class of Gρ is stabilised by β in OutpΩ̄q.
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Now we consider the case when q “ 2. Then OutpO˘n p2qq “ xγ | γ2 “ 1y
and the following is obvious.

Lemma 4.8.13. Let Gρ ď Ω˘n p2q. Let g P SO˘n p2qzΩ˘n p2q and assume that g
properly normalises Gρ. Then a conjugacy class of Gρ in Ω˘n p2q is stabilised
by xγy in OutpO˘n p2qq.

Remark 4.8.14. Let ρ̂ be a characteristic 0 representation of G such that
Gρ̂ preserves an orthogonal form B̂ for all g P G. Suppose that the entries
of gρ̂ lie in Rr 1

p1
, . . . , 1

pk
s, where R is the character ring of ρ̂ and p1, . . . , pk

are the exceptional primes of this representation. If there exists µ P C such
that the entries of µ̂B̂ and pµ̂B̂q´1 lie in Rr 1

p1
, . . . , 1

pk
s then we can reduce

Gρ̂ modulo p for any odd p ‰ pi. Furthermore, for each such p-modular
reduction B of B̂ there exists A P GLnpFqq such that ABAT “ F , where F
is our standard form matrix as defined in Table 3.1.1. Hence we can always
use Lemma 4.8.12 since we never have to find A explicitly.

4.9 S1-Maximality

Finally, suppose that we have found all potential S1-maximal subgroups in
Ω.R, where Ω P tSL˘n pqq,Spnpqq,Ωε

npqqu and R ď OutpΩ̄q. The final step
is to show whether any of these S1-subgroups are contained in any other
S1-subgroup preserving the same form, because in this case they cannot be
maximal. The following is based on [8, Section 4.8, p.211].

Lemma 4.9.1. Let H1ρ1 and H2ρ2 be two S1-subgroups of Ω preserving
the same form. Assume that H1 ď H2 and assume that there does not exist
an element g P GLnpquq such that pH1ρ2q

g is defined over a proper subfield
of Fqu. If ρ2 reduces to an absolutely irreducible representation of H81 such
that ρ2 and ρ1 are equivalent on H81 then H1ρ1 cannot be maximal as an
S1-subgroup.

Proof. By definition, H1 and H2 are almost simple extensions of quasisimple
groups. Therefore, H1 “ H81 .R1 and H2 “ H82 .R2, where R1 and R2 are
subgroups of the outer automorphism groups of H81 and H82 respectively
such that H1ρ1 “ NΩpH

8
1 ρ1q and H2ρ “ NΩpH

8
2 ρ2q. By assumption H1 ď

H2 and therefore ρ2 is also a representation of H1.
We want to show that ρ2 is an absolutely irreducible representation of

H1. By assumption H81 ρ2 does not stabilise any non-zero subspace of pFqrqn
for any r. From this it follows that pH81 .R1qρ2 ě H81 ρ2 does not stabilise
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any subspace either. Since ρ1 is equivalent to ρ2 on H81 it follows that H1ρ1
is not S1-maximal.

For many groups it is straightforward to show that H81 ρ is irreducible.
There are two easy methods which work in most cases.

Lemma 4.9.2. Let ρ be a faithful absolutely irreducible representation of
H82 of dimension n and suppose that H81 ď H82 .

(i) If H81 has no non-trivial absolutely irreducible representation of di-
mension smaller than n then H81 ρ is absolutely irreducible since it cannot
be split into smaller parts.

(ii) If H81 has non-trivial absolutely irreducible representations ρ1, . . . , ρk
of dimensions ni, i P t1, . . . , ku, smaller than n with

ř

ni “ n but there
exists some g P H81 such that

ř

Tracepgρiq ‰ Tracepgρq for every such set
of representations ρ1, . . . , ρk, then H81 ρ is irreducible.
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5 Maximal S1-Subgroups in Dimension 13

In this chapter we are going to determine the S1-maximal subgroups G in
dimension 13. We will follow the procedure described in Chapter 4. Here
Ω P tSL˘13pqq,Ω˝13pqqu. Furthermore, we will denote the conformal group of
Ω by C.

5.1 S1-Subgroups in Dimension 13

Let G be a quasisimple group with an absolutely irreducible representation
ρ of dimension 13 in cross characteristic. All such groups are listed in Table
5.1.1 on p.62. We are interested in finding the extensions by automorphisms
of Gρ which might be S1-maximal in some classical group. The table also
contains some useful information about these groups which we will need
later.

In the first column of the table we can find the name of the group fol-
lowed by its order and Schur indicator. Column ‘#ρ’ gives the number of
weakly equivalent representations of ρ that do not lie in the same equiva-
lence class (see Definition 4.3.2). The outer automorphisms that stabilise
these representations are given in the ‘Stab’ column. The characteristics
over which these representations occur can then be found in the column
‘Charc’. Here 0 stands for all prime numbers that do not divide the order of
G. We also require the character rings of the representations (see Definition
2.2.2) which is given in the column ‘ChR’. In the final column we state the
size of the outer automorphism group of G. The list of groups G and the
characteristics of the representations where taken from [18], whereas the in-
formation in the other columns is mostly from [12, 24]. The ordinary and
Brauer character tables of A14 and A15 and the Brauer character tables of
S6p3q are not contained in [12, 24] and so GAP was used to determine these
character tables.

Comments on the character ring column in Table 5.1.1

(i) The algebraic irrationalities of the 13-dimensional absolutely irre-
ducible representations of U3p4q are b5 and z5, but b5 “ z5 ` z4

5 and hence
the character ring is Zrz5s.

(ii) The respective rows of the character table of S6p3q contain algebraic
conjugates of b27, z3 and i3. However, all of them are elements of Zrz3s
since i3 “ z3 ´ z2

3 and b27 “
1
2p´1 `

?
´27q “ 1

2p´1 ` i3q ` i3 “ b3 ` i3 “
z3 ` z3 ´ z2

3 “ 2z3 ´ z2
3.
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(iii) The algebraic irrationalities of the 13-dimensional absolutely irre-
ducible representations of S4p5q are, apart from algebraic conjugates of b5,
algebraic conjugates of r5, but r5 “ 1` 2b5.

Further information regarding the irrationalities can be found in Table
2.2.1 (p.19).

Table 5.1.1: Potential S1-maximal subgroups in dimension 13

Gp Order Ind #ρ Stab Charc ChR |Out|
L2p27q 22 ¨ 33 ¨ 7 ¨ 13 ˝ 2 3 0, 2, 7, 13 p‰ 3q Zrb27s 6
S6p3q 29 ¨ 39 ¨ 5 ¨ 7 ¨ 13 ˝ 2 1 0, 2, 5, 7, 13 p‰ 3q Zrz3s 2
U3p4q 26 ¨ 3 ¨ 52 ¨ 13 ˝ 4 1 0, 3, 13 p‰ 2, 5q Zrz5s 4
A7 23 ¨ 32 ¨ 5 ¨ 7 + 1 2 3, 5 Z 2
A8 26 ¨ 32 ¨ 5 ¨ 7 + 1 2 3, 5 Z 2
A14 210 ¨ 35 ¨ 52 ¨ 72 + 1 2 0, 3, 5, 11, 13 p‰ 2, 7q Z 2

¨11 ¨ 13
A15 210 ¨ 36 ¨ 53 ¨ 72 + 1 2 3, 5 Z 2

¨11 ¨ 13
L2p13q 22 ¨ 3 ¨ 7 ¨ 13 + 1 2 0, 3 p‰ 2, 7, 13q Z 2
L2p25q 23 ¨ 3 ¨ 52 ¨ 13 + 2 22 0, 3, 13 p‰ 2, 5q Z 22

L3p3q 24 ¨ 33 ¨ 13 + 1 2 0, 13 p‰ 2, 3q Z 2
S4p5q 26 ¨ 32 ¨ 54 ¨ 13 + 2 1 0, 3, 13 p‰ 2, 5q Zrb5s 2
J2 27 ¨ 33 ¨ 52 ¨ 7 + 2 1 3 Zrb5s 2

Theorem 5.1.1. Let G be an S1-subgroup of Ω P tSL˘13pqq,Ω˝13pqqu. Then
G is contained in Table 5.1.1.

Proof. See the tables in [18].

5.2 Schur Indicator ˝

By Table 5.1.1, the potential S1-maximal subgroups of quasisimple linear
and unitary classical groups in dimension 13 are extensions of L2p27q, S6p3q
and U3p4q. Recall from Section 3.2.6 that when q “ p2 the field automor-
phism φ and the graph automorphism γ in OutpUnppqq are equal. We will
usually use γ to denote this automorphism.
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Proposition 5.2.1 (L2p27q).

(i) If p ” 1 pmod 3q, then there are pp ´ 1, 13q conjugacy classes of S1-
subgroups of SL13ppq isomorphic to L2p27q.3, with class stabiliser xγy
in OutpL13ppqq.

(ii) If p ” 2 pmod 3q, then there are pp ` 1, 13q conjugacy classes of S1-
subgroups of SU13ppq isomorphic to L2p27q.3, with class stabiliser xγy
in OutpU13ppqq.

Proof. Let G “ L2p27q. Then OutpGq “ 6 and the character ring of a 13-
dimensional absolutely irreducible representation ρ of G is Zrb27s by Table
5.1.1. Therefore G ď SL13ppq when p ” 1 pmod 3q and G ď SU13ppq when
p ” 2 pmod 3q by Table 2.2.1 and Lemma 4.2.1. There are two weakly
equivalent 13-dimensional representations and their stabiliser is generated
by an automorphism of G of order 3 by Table 5.1.1.

Hence, L2p27q extends to a subgroup of shape L2p27q.3 inside GL13pp
eq

for some e. Let ρ1, ρ2, ρ3 denote the 3 representations ρ splits into on
G.3. Since the ρi have character ring Zrz3s and Schur indicator ˝ it follows
that L2p27q.3 ď GL13ppq if p ” 1 pmod 3q and L2p27q.3 ď GU13ppq if p ” 2
pmod 3q.

Now we have to find the determinants of all the matrices that lie in
pL2p27q.3qρizL2p27qρi. Since .3 is a cyclic extension it is sufficient to calcu-
late the determinant of an element h P G.3zG of order 3. Then h lies in the
conjugacy class 3C.

By Lemma 2.2.7 the eigenvalues of h are third roots of unity. By [12,
24], Tracephρ1q “ 1. Suppose the eigenvalue 1 exists with multiplicity a,
the eigenvalue z3 with multiplicity b and z2

3 with multiplicity c. We know
that there have to be 13 eigenvalues in total since it is a representation of
dimension 13. Therefore,

a` b` c “ 13
a ¨ 1` b ¨ z3 ` c ¨ z2

3 “ 1

for a, b, c P N. Hence,

bp1´ z3q ` cp1´ z2
3q “ 12,

which implies that c “ b since the imaginary parts of bz3 and cz2
3 have

to cancel. Since z3 ¨ z2
3 “ 1, the determinant of hρ1 is 1a ¨ zb3 ¨ pz2

3q
b “ 1.

Hence, L2p27q.3 ď SL13ppq if p ” 1 pmod 3q and L2p27q.3 ď SU13ppq if p ” 2
pmod 3q.
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Note that two weakly equivalent representations are fused by automor-
phisms of order 2 and 6 ([12, 24]). It follows that there exists a single conju-
gacy class of S1-subgroups isomorphic to L2p27q.3 in GL13ppq or CGU13ppq
by Lemma 4.2.2 and [12, 24]. Also, L2p27q.3 is scalar-normalising and δ acts
transitively on the conjugacy classes of L2p27q.3 in SL˘13ppq by Lemma 4.3.6.
Furthermore, by Lemma 4.3.3(ii), there exist pp¯1, 13q conjugacy classes of
G.3 in SL13ppq.

Finally, we have to consider the action of γ P OutpL˘13ppqq on G.3. Note
that the automorphism α P OutpL2p27qq of order 2 sends the representations
to their complex conjugates since b˚˚27 is the complex conjugate of b27 ([12,
24]). From this it follows that αρ is equivalent to ργ by Lemma 4.4.1. Since
d is odd, γ stabilises an SL13ppq-conjugacy class of G.3 by Lemma 4.4.2 and
similarly γ stabilises an SU13ppq-conjugacy class of G.3 by Lemma 4.5.1.

Proposition 5.2.2 (S6p3q).

(i) If p ” 1 pmod 3q, then SL13ppq has pp´1, 13q conjugacy classes of S1-
subgroups isomorphic to S6p3q, with class stabiliser xγy in OutpL13ppqq.

(ii) If p ” 2 pmod 3q, then SU13ppq has pp`1, 13q conjugacy classes of S1-
subgroups isomorphic to S6p3q, with class stabiliser xγy in OutpU13ppqq.

Proof. Let G “ S6p3q. Then OutpGq “ 2 and the character ring of a 13-
dimensional absolutely irreducible representation ρ of G is Zrz3s by Table
5.1.1. Hence S6p3q preserves a unitary form if p ” 2 pmod 3q and no non-zero
form if p ” 1 pmod 3q by Lemma 4.2.1 and Table 2.2.1.

There are two weakly equivalent representations of G that are fused by
the non-trivial outer automorphism α of G. Therefore there is one conjugacy
class of G in C by Lemma 4.2.2, and G is scalar-normalising. Hence the
number of conjugacy classes of subgroups isomorphic to S6p3q in SL˘13ppq is
d “ p13, q ¯ 1q respectively by Lemma 4.3.3(ii). Furthermore, by Lemma
4.3.6, the diagonal automorphism δ of SL˘13ppq acts transitively on these
conjugacy classes.

By looking at the character tables of S6p3q in [12] and using GAP for
the Brauer character tables we see that two non-equivalent 13-dimensional
absolutely irreducible representations are algebraic conjugates of each other.
Hence we have to prove that the algebraic conjugate of each irrationality
given here is indeed its complex conjugate. We can see that the algebraic
conjugate of i3 is ´i3 which is indeed its complex conjugate, the algebraic
conjugate of z3 is z2

3 which is also its complex conjugate and the algebraic
conjugate of b27 “

1
2p´1` i

?
27q is 1

2p´1´ i
?

27q. Again this is the complex
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conjugate of b27. Hence αρ is equivalent to ργ by Lemma 4.4.1. Since d is
odd, the result follows by Lemma 4.4.2 in Case L and by Lemma 4.5.1 in
Case U.

Proposition 5.2.3 (U3p4q).

(i) If p ” 1 pmod 5q, then there are pp ´ 1, 13q conjugacy classes of S1-
subgroups of SL13ppq isomorphic to U3p4q, with class stabiliser xγy in
OutpL13ppqq.

(ii) If p ” 2, 3 pmod 5q, p ‰ 2, then there are pp2`1, 13q conjugacy classes
of S1-subgroups of SU13pp

2q isomorphic to U3p4q, with class stabiliser
xφy in OutpU13pp

2qq.

(iii) If p ” 4 pmod 5q, then there are pp ` 1, 13q conjugacy classes of S1-
subgroups of SU13ppq isomorphic to U3p4q, with class stabiliser xγy in
OutpU13ppqq.

Proof. Let G “ U3p4q. Then OutpGq “ 4 and the relevant 13-dimensional
absolutely irreducible representations ρ of G have character ring the p-
modular reduction of Zrz5s by Table 5.1.1. By Table 2.2.1, z5 P Fp if and
only if p ” 1 pmod 5q and it is obvious that in this case G ď SL13ppq.

Let a be the Brauer character value of g P Gρ and let a denote the
complex conjugate of a. If a P Z, then aq “ a “ a. If a “ zi5 P C, then
aq “ pzi5qq “ z4i

5 “ z´i5 “ a, where q “ p if p ” 4 pmod 5q and q “ p2 when
p ” 2, 3 pmod 5q. Hence G ď SU13ppq if p ” 4 pmod 5q and G ď SU13pp

2q
when p ” 2, 3 pmod 5q by Lemma 4.2.1.

There are up to equivalence four weakly equivalent representations with
trivial stabiliser by Table 5.1.1. Hence G is scalar-normalising and since the
outer automorphism of order 4 of U3p4q fuses the representations there is
a single conjugacy class of subgroups G in C by Lemma 4.2.2. Therefore,
|C : NCpGρqΩ| “ pp´ 1, 13q in Case L and pp` 1, 13q or pp2` 1, 13q in Case
U by Lemma 4.3.3.

To find the stabiliser of one of these classes we will first consider the case
when p ” 1, 4 pmod 5q. Then OutpL˘13ppqq “ xδ, γy – C2 or D13ˆ2. Since
OutpGq “ 4 there exists α P OutpGq with |α| “ 2. By looking at [12] and
[24], we see that α sends the representations to their complex conjugates
and therefore αρ is equivalent to ργ . Since d “ pp¯ 1, 13q is odd, the result
follows from Lemma 4.4.2 in Case L and from Lemma 4.5.1 in Case U.

If p ” 2, 3 pmod 5q, we want to determine whether φ P OutpU13pp
2qq cor-

responds to an outer automorphism α of U3p4q of order 4. By Lemma 4.3.8
we need to show that for all p ” 2, 3 pmod 5q there exist two representations
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ρi and ρj such that Tracepgρjq “ pTraceppgρiqqp for all g P G. By looking
at [12, 24], we can see that this is indeed the case. In fact, αρ1 “ ρ3 when
p ” 3 pmod 5q and αρ1 “ ρ4 when p ” 3 pmod 5q. Here ρ1 corresponds to
the representation denoted by χ3 in [12], ρ3 to χ5 and ρ4 to χ6. The result
now follows from Lemma 4.5.1.

Maximality
The final step is now to show whether any of the three S1-subgroups

U3p4q, S6p3q and L2p27q.3 is contained in one of the others as an S1-
subgroup. By Lagrange’s theorem the only possible containment is L2p27q.3
in S6p3q.

Proposition 5.2.4.
Let d :“ pp´ 1, 13q in Case L and let d :“ pp` 1, 13q in Case U.

(i) No extension of dˆ L2p27q.3 is ever S1-maximal in any extension of
SL˘13ppq.

(ii) If p ‰ 3, then dˆ S6p3q is S1-maximal in SL˘13ppq.

(iii) If p ‰ 2, 5, then NSL˘13pqq
pU3p4qq is S1-maximal in SL˘13pqq.

Proof. (i) By [12], the group L2p27q.3 is a subgroup of S6p3q. Also, the
smallest non-trivial absolutely irreducible representations of L2p27q
have dimension 13 in characteristic 0, 2, 7 and 13 by [12, 24]. Hence
L2p27q.3 is never S1-maximal in SL˘13ppq by Lemma 4.9.2. Further-
more, L2p27q.6 is a subgroup of S6p3q.2 by [12]. Hence, no extension
of L2p27q is ever S1-maximal in any extension of SL˘13ppq.

(ii) and (iii) follow since the group orders are not divisors of each other.

5.3 Schur Indicator `

Now we consider the quasisimple groups whose 13-dimensional absolutely
irreducible representations preserve an orthogonal form. By Table 5.1.1
these groups are A7, A8 and A15 in characteristics 3 and 5, A14, L2p13q,
L2p25q, L3p3q and S4p5q in various characteristics and J2 in characteristic 3
only.

The outer automorphisms of Ω˝npq,Bq are independent of the preserved
non-degenerate symmetric bilinear form B. Hence, even if we work compu-
tationally with a representation ρ of G such that Gρ does not preserve our
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standard form matrix F as given in Table 3.1.1, we will give the stabiliser
of Gρ with respect to Ω˝13pq, F q “ Ω˝13pqq.

Proposition 5.3.1 (A7 in characteristics 3 and 5).

(i) There is a unique conjugacy class of S1-subgroups of Ω˝13p3q isomor-
phic to A7, with class stabiliser xδy in OutpO˝13p3qq.

(ii) There are two conjugacy classes of S1-subgroups of Ω˝13p5q isomorphic
to A7.2, with trivial class stabiliser in OutpO˝13p5qq.

Proof. Let G “ A7 and let Ω “ Ω˝13ppq. Then OutpGq “ 2 and the unique
(up to equivalence) absolutely irreducible representation ρ of G has character
ring Z. Hence A7 ď Ω when p “ 3, 5. Also ρ splits into ρ1 and ρ2 under an
outer automorphism of order 2 of G by Table 5.1.1. By [24], G.2 preserves
an orthogonal form and has character ring Z. Using Lemma 4.2.4 it is
straightforward to show that G.2 ď SO˝13ppq. We will use Magma and the
specific absolutely irreducible 13-dimensional representations of G given in
[6] (file a7d13comp) to determine the spinor norm of elements of G.2zG.
Note that two elements x, y P G are standard generators of G if y lies in
class 3A, y has order 5 and xy has order 7 by [6].

Since Gρ preserves an orthogonal form we know that there exists a form
matrix B that is induced by a symmetric bilinear form. Then pgρqBpgρqT “
B for all g P G. Rearranging we get B´1pgρqB “ pgρq´T for all gρ P
Gρ and by using the GHom command in Magma we can find a matrix
homomorphism B that sends gρ to pgρq´T by conjugation for all gρ P Gρ.
Furthermore we have to find an element g P pG.2qρ1zGρ. By using the
automorphism of order 2 that sends x to x´1 and y to y ([6]) we can generate
a group H “ xx´1, yy isomorphic to Gρ and again using the GHom command
we can then find an element g P pG.2qρ1zGρ such that g´1Hg “ Gρ. Using
the SpinorNorm command in Magma we see that sppgq “ ´1 in characteristic
3 and sppgq “ 1 in characteristic 5.

Hence, in characteristic 3, A7.2 ę Ω˝13p3q. Furthermore, there exists
a unique C-conjugacy class of S1-subgroups G and |C : NCpGqΩ| “ 1
conjugacy class of G in Ω˝13p3q by Lemma 4.3.3(ii). This conjugacy class is
stabilised by δ since S7 ď SO˝13p3q.

In characteristic 5, A7.2 ď Ω˝13p5q. Since G.2 is scalar-normalising there
are 2 conjugacy classes in Ω˝13p5q by Lemma 4.3.3. Furthermore G has no
further outer automorphisms and therefore the stabiliser of these classes is
trivial.
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Proposition 5.3.2 (A8 in characteristics 3 and 5).

(i) There is a unique conjugacy class of S1-subgroups of Ω˝13p3q isomor-
phic to A8, with class stabiliser xδy in OutpO˝13p3qq.

(ii) There are two conjugacy classes of S1-subgroups of Ω˝13p5q isomorphic
to A8.2, with trivial class stabiliser in OutpO˝13p5qq.

Proof. The proof is very similar to the proof of Proposition 5.3.1. Again we
use Magma to find the spinor norm of elements (file a8d13comp). Let ρ be
a 13-dimensional absolutely irreducible representation of S8. If g P S8ρzA8ρ
then sppgq “ ´1 in characteristic 3 and sppgq “ 1 in characteristic 5.

Proposition 5.3.3 (A14).

(i) If p ” 1, 3, 9, 19, 25, 27 pmod 28q then there are two conjugacy classes of
S1-subgroups of Ω˝13ppq isomorphic to A14.2, with trivial class stabiliser
in OutpO˝13ppqq.

(ii) If p ” 5, 11, 13, 15, 17, 23 pmod 28q then there exists a unique conjugacy
class of S1-subgroups of Ω˝13ppq isomorphic to A14, with class stabiliser
xδy in OutpO˝13ppqq.

Proof. Let G “ A14, let Ω “ Ω˝13ppq and let ρ be the unique (up to equiva-
lence) absolutely irreducible representation of dimension 13 of G. By Table
5.1.1 and [12, 24] we know that G.2 ď GO˝13ppq. Furthermore, by Lemma
4.2.4, either G.2ρ1 ď SO˝13ppq or G.2ρ2 ď SO˝13ppq, where ρ1 and ρ2 are
the two representations into which ρ splits when extended to G.2. Hence
G.2 ď SO˝13ppq. To find the spinor norm of an element g P Gρ.2zGρ we will
use Magma as for Proposition 5.3.1 (see file a14d13comp). Let B be the
symmetric bilinear form preserved by Gρ.

Let A :“ I13 ´ g and let M be the matrix whose rows form a basis
of a complement of the nullspace of A using Magma again. We find that
detpMABMTq “ 212 ¨ 7 which is a square in Fp if and only if 7 is a square
in Fp. By Table 2.2.1 and Lemma 3.1.19 this implies that A14.2 ď Ω if
and only if p ” 1, 3, 9, 19, 25, 27 pmod 28q. Otherwise A14.2 ď SO˝13ppq but
A14.2 ę Ω.

If A14.2 ď Ω then G.2 is scalar-normalising and by Lemma 4.3.3 there
exist 2 conjugacy classes of S1-subgroups isomorphic to A14.2 in Ω. Since
A14 has no further non-trivial outer automorphisms the stabiliser of these
classes is trivial.
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If p – 5, 11, 13, 15, 17, 23 pmod 28q then G.2 ę Ω and there is a unique
C-conjugacy class of S1-subgroups A14 in C and hence a unique class in Ω.
This class is stabilised in OutpΩ̄q by xδy since S14 ď SO˝13ppq.

Proposition 5.3.4 (A15 in characteristics 3 and 5).

(i) There are two conjugacy classes of S1-subgroups of Ω˝13p3q isomorphic
to S15, with trivial class stabiliser in OutpO˝13p3qq.

(ii) There is a unique conjugacy class of S1-subgroups of Ω˝13p5q isomor-
phic to A15, with class stabiliser xδy in OutpO˝13p5qq.

Proof. The proof is very similar to the proof of Proposition 5.3.1. The infor-
mation about this group was taken from GAP and [6]. See file a15d13comp
for the Magma commands.

Proposition 5.3.5 (L2p13q).

(i) If p ” 1, 3, 9, 19, 25, 27 pmod 28q then there are two conjugacy classes
of S1-subgroups of Ω˝13ppq isomorphic to L2p13q.2, with trivial class
stabiliser in OutpO˝13ppqq.

(ii) If p ” 5, 11, 13, 15, 17, 23 pmod 28q then there is a unique conjugacy
class of S1-subgroups of Ω˝13ppq isomorphic to L2p13q, with class sta-
biliser xδy in OutpO˝13ppqq.

Proof. Let G “ L2p13q and let Ω “ Ω˝13ppq. Following the same procedure
as for Proposition 5.3.3 it is straightforward to show that G.2 ď SO˝13ppq.
Furthermore, using Magma and Lemma 3.1.19, we can show that G.2 ď
Ω˝13ppq if and only if 7 is a square in Fp (see file l213d13comp). The number
of conjugacy classes follows from Lemma 4.3.3.

Proposition 5.3.6 (L2p25q).

(i) If p ” 1, 4 pmod 5q, then there exist two conjugacy classes of S1-
subgroups of Ω˝13ppq isomorphic to L2p25q.22, with trivial class sta-
biliser in OutpO˝13ppqq.

(ii) If p ” 2, 3 pmod 5q, p ‰ 2, then there exists a single conjugacy class of
S1-subgroups of Ω˝13ppq isomorphic to L2p25q, with class stabiliser xδy
in OutpO˝13ppqq.

69



Proof. Let G “ L2p25q. Then OutpGq “ 22 by [12]. Up to equivalence there
are two absolutely irreducible 13-dimensional representations ρ1 and ρ2 of G
that are weakly equivalent. Since the character ring of ρ1 and ρ2 is Z we can
deduce that L2p25q ď Ω˝13ppq “ Ω pp ‰ 2, 5q. Since the two representations
are fused by the 21 outer automorphism of G by Table 5.1.1, there is a single
conjugacy class in C. The 22 outer automorphism on the other hand splits
the representations ρ1 and ρ2 and therefore G.22 ď NCpGρq. By [12, 24]
and Lemma 4.2.4, L2p25q.22 ď SO˝13ppq.

To show that L2p25q.22 ď Ω we have to check the spinor norm of the
elements. Computations in Magma (file l225d13comp) show that the spinor
norm is 1 if and only if 5 is a square in Fp. If 5 is not square then the 22
outer automorphism induces δ P OutpΩ̄q. The number of conjugacy classes
follows from Lemma 4.3.3.

Proposition 5.3.7 (L3p3q).

(i) If p ” 1, 11 pmod 12q then Ω˝13ppq has 2 conjugacy classes of S1-
subgroups isomorphic to L3p3q.2. Both classes have trivial class sta-
biliser in OutpO˝13ppqq.

(ii) If p ” 5, 7 pmod 12q then there exists a single conjugacy class of S1-
subgroups of Ω˝13ppq isomorphic to L3p3q, with class stabiliser xδy in
OutpO˝13ppqq.

Proof. Let G “ L3p3q and let Ω “ Ω˝13ppq. Then OutpGq “ 2 and there is
(up to equivalence) one absolutely irreducible 13-dimensional representation
ρ of G. This representation is split by the outer automorphism of order 2
of G by Table 5.1.1. Since the character ring is Z we have L3p3q ď Ω if
p ‰ 2, 3. By [12, 24] and Lemma 4.2.4, G.2 ď SO˝13ppq.

To find the spinor norm of the elements of G.2zG we will use Lemma
3.1.19 and Magma (see file l33d13comp). We find that G.2 ď Ω if and only
if 3 is a square in Fp. The number of conjugacy classes can be calculated
using Lemma 4.3.3.

Proposition 5.3.8 (S4p5q).

(i) If p ” 1, 4 pmod 5q then there exist two conjugacy classes of S1-
subgroups of Ω˝13ppq isomorphic to S4p5q, with trivial class stabiliser
in OutpO˝13ppqq.

(ii) If p ” 2, 3 pmod 5q, p ‰ 2, then there are two conjugacy classes of
S1-subgroups of Ω˝13pp

2q isomorphic to S4p5q, with class stabiliser xφy
in OutpO˝13pp

2qq.
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Proof. Let G “ S4p5q. Then OutpGq “ 2 and there are up to equivalence
two weakly equivalent 13-dimensional absolutely irreducible representations
ρ1 and ρ2 of G with character ring Zrb5s by [12, 24] and Table 5.1.1.

Hence if p ” 1, 4 pmod 5q, then G ď Ω˝13ppq “ Ω by Table 5.1.1 and Table
2.2.1. Also there is no outer automorphism of G that splits these represen-
tations. But the two representations are fused by the outer automorphism
of G of order 2 ([12, 24]) which implies that there is a single conjugacy class
in C and hence there exist two conjugacy classes of G in Ω by Lemma 4.3.3.
Since there are no field automorphisms and the diagonal automorphism acts
transitively on the two Ω-conjugacy classes by Lemma 4.3.6, the stabiliser
of these classes is trivial.

If p ” 2, 3 pmod 5q, p ‰ 2, then S4p5q can only be realised in an or-
thogonal group with field size at least p2 by Table 5.1.1 and Table 2.2.1.
Again, there are two conjugacy classes of S1-subgroups isomorphic to S4p5q
in Ω “ Ω˝13pp

2q. Let φ be the field automorphism of order 2 of Ω. Let α be
an outer automorphism of order 2 of G such that α fuses ρ1 and ρ2. We can
show that αρ1 is equivalent to ρφ1 using Lemma 4.3.8. Since G.2zG contains
involutions, an Ω-conjugacy class of S4p5q is stabilised by xφy P OutpΩ̄q by
Lemma 4.7.2.

Proposition 5.3.9 (J2).
There are exactly 2 conjugacy classes of S1-subgroups of Ω13p32q isomorphic
to J2, with class stabiliser xφy in OutpO˝13p9qq.

Proof. Let G “ J2. Then OutpGq “ 2 by [12]. Since the character ring of
the 13-dimensional absolutely irreducible representations ρ of G is Zrb5s by
Table 5.1.1 it follows that J2 ď Ω˝13p9q “ Ω by Table 2.2.1. Up to equivalence
there are two weakly equivalent representations of G which are fused by an
outer automorphism α of order 2 of J2 by [24]. Therefore, NCpGqΩ “ ZpCqΩ
which implies that there are two conjugacy classes of G in Ω by Lemma 4.3.3.

Finally we want to know how the field automorphism φ of order 2 of Ω
acts on these conjugacy classes. Using Lemma 4.3.8 we can show that ρφ
is equivalent to αρ, where α P OutpGq of order 2. Since J2.2zJ2 contains
involutions, the class stabiliser of G in Ω is xφy by Lemma 4.7.2.
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Maximality
Finally we have to consider possible containments between all of the S1-

subgroups of orthogonal groups in dimension 13. The following proposition
summarises the S1-containments of the S1-subgroups of orthogonal groups
in dimension 13.

Proposition 5.3.10.

(i) No extension of A7 is S1-maximal in any extension of Ω˝13ppq.

(ii) The group A8 is not S1-maximal in Ω˝13p3q but A8.2 is S1-maximal
in Ω˝13p3q.xδy. Furthermore, A8.2 is not S1-maximal in Ω˝13p5q.

(iii) Let G “ A14 with p ‰ 2, 7. If p “ 3, 5 then no extension of G is S1-
maximal in any extension of Ω˝13ppq. Otherwise NΩ˝13ppq

pGq is always
S1-maximal in Ω˝13ppq.

(iv) If p “ 3, 5 then NΩ˝13ppq
pA15q is S1-maximal in Ω˝13ppq.

(v) No extension of L2p13q is S1-maximal in any extension of Ω˝13ppq.

(vi) If p ” 1, 4 pmod 5q then no extension of L2p25q.22 is S1-maximal in
any extension of Ω˝13ppq. If p ” 2, 3 pmod 5q, p ‰ 2, then L2p25q is
S1-maximal in Ω˝13ppq.

(vii) If p ‰ 2, 3, then NΩ˝13ppq
pL3p3qq is S1-maximal in Ω˝13ppq.

(viii) If there exists an S1-subgroup G “ S4p5q of Ω˝13pqq then G is S1-
maximal.

(ix) The group J2 is S1-maximal in Ω˝13p9q.

Proof. (i) Using Magma (file s1dim13cont) it is straightforward to show
that the S1-subgroup A7 is a subgroup of the S1-subgroup A8 in
dimension 13. Furthermore, S7 ď S8 and hence no extension of A7 is
ever S1-maximal.

(ii) Using Magma (file s1dim13cont) we can show that the 13-dimensional
absolutely irreducible representation of A15 has an absolutely irre-
ducible subgroup isomorphic to A8 in both characteristic 3 and 5.
Hence S8 ď A15 ď Ω˝13p5q is never maximal. However S15 ď Ω˝13p3q
whereas S8 ę Ω˝13p3q. To show that A8.2 is S1-maximal in Ω˝13p3q.xδy
we have to show that A8.2 is not contained in any other S1-subgroup.
By Lagrange’s theorem the only other possible containment not yet
considered is whether A8 is a subgroup of J2. We can show (file
s1dim13cont) that A8 is not a subgroup of J2.
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(iii) The only S1-subgroup that can contain A14 is A15 by Lagrange’s the-
orem. The smallest non-trivial absolutely irreducible representation in
characteristic 3 and 5 of A14 has dimension 13 by GAP and the charac-
ter values of the respective absolutely irreducible 13-dimensional rep-
resentations match. Furthermore, S14 ď S15. Hence no extension of
A14 is S1-maximal in characteristic 3 and 5 by Lemma 4.9.2.

(iv) The group A15p.2q is always S1-maximal since it is not contained in
any of the other S1-subgroups in Ω˝13ppq by Lagrange’s theorem.

(v) By [12], L2p13q is a subgroup of A14. Let ρ be an absolutely irreducible
representation of dimension 13 of L2p13q. All character values of ρ are
integers and there is no combination of absolutely irreducible repre-
sentations of L2p13q of dimension less than 13 that gives only integer
character values. Furthermore, the character values of the absolutely
irreducible representation of dimension 13 of A14 correspond to ρ and
L2p13q.2 ď S14 by [6].

(vi) By Lagrange’s theorem we have to check whether L2p25q.22 is an S1-
subgroup of S4p5q, A14 or A15.
By [12], L2p25q.22 is a subgroup of S4p5q and has trivial stabiliser in
Ω˝13ppq. Since the character values in dimension 13 match and since
the smallest non-trivial absolutely irreducible representation of L2p25q
is of dimension 13, we know by Lemma 4.9.1 and Lemma 4.9.2 that
this is sufficient to show that L2p25q.22 is an S1-subgroup of S4p5q
if p ” 1, 4 pmod 5q. If p ” 2, 3 pmod 5q then L2p25q.22 ď Ω˝13ppq but
S4p5q ę Ω˝13ppq.
Furthermore, L2p25q.22 cannot be a subgroup of either A14 or A15 since
its smallest permutation representation acts on 26 points by [17].

(vii) Since the smallest permutation representation of L3p3q.2 is of dimen-
sion 26 by [6], L3p3q.2 is not a subgroup of A14p.2q or A15p.2q. There-
fore, if p ” 1, 11 pmod 12q then L3p3q.2 is S1-maximal in Ω˝13ppq. By
[12], L3p3q is a subgroup of A13 however and hence a subgroup of A14.
But by [12, 24], L3p3q has elements of order 2 with character value
´3 in dimension 13 whereas no element of order 2 of A14 (or A15) has
character value ´3 by GAP. Therefore L3p3q is not an S1-subgroup of
A14 (or A15). There are no other possible containments by Lagrange’s
theorem and the result follows.

(viii) Since S4p5q cannot be a subgroup of any of the other S1-subgroups by
Lagrange’s theorem, it has to be S1-maximal.

(ix) By Lagrange’s theorem the only possible S1-subgroups containing J2
would be A14 or A15 but A14 and A15 are subgroups of Ω˝13p3q whereas
J2 is a subgroup of Ω˝13p9q and not of Ω˝13p3q.
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6 Maximal S1-Subgroups in Dimension 14

To calculate the maximal S1-subgroups in dimension 14, we will follow
the same pattern as in Chapter 5. We will first find all potential maximal
subgroups G and then we will determine in which classical group G and its
extension by outer automorphisms sits.

6.1 S1-Subgroups in Dimension 14

We start by writing down all potential S1-maximal subgroups, as given in
[18]. Table 6.1.1 contains all such groups G. Please see Section 5.1 for a
description of how to read the table.

Note that the irrationalities appearing as entries of the 14-dimensional
representations in the character tables of 2.S6p3q are b27, z3 and i3 by [12, 24].
Since i3 “ z3 ´ z2

3 and b27 “
1
2p´1 `

?
´27q “ 2z3 ´ z2

3 it follows that the
character ring of 2.S6p3q is Zrz3s.

Also note that 2.L2p13q has two non-equivalent absolutely irreducible
representations ρ1 and ρ2 of dimension 14 with character ring Zrr3s by [12,
24]. In Lemma 6.1.2 we shall show that ρ1 and ρ2 are weakly equivalent if
and only if p ” 5, 7 pmod 12q.

Let H P tA7,L2p13q, 2.L2p13qu. By [12, 24] there exist two absolutely
irreducible representations of H in dimension 14 that are not weakly equiv-
alent. We denote the images of H under these two representations by H1
and H2.

Theorem 6.1.1. Let G be an S1-subgroup of Ω P tSL˘14pqq,Sp14pqq,Ω˘14pqqu.
Then G is contained in Table 6.1.1.

Proof. See the tables in [18].
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Table 6.1.1: Possible S1-maximal subgroups in dimension 14

Gp Order Ind #ρ Stab Charc ChR |Out|
2.L2p27q 23 ¨ 33 ¨ 7 ¨ 13 ˝ 2 3 0, 7, 13 p‰ 2, 3q Zrb27s 6
2.S6p3q 210 ¨ 39 ¨ 5 ¨ 7 ¨ 13 ˝ 2 1 0, 5, 7, 13 p‰ 2, 3q Zrz3s 2
Szp8q 26 ¨ 5 ¨ 7 ¨ 13 ˝ 2 3 0, 5, 7, 13 p‰ 2q Zri1s 3
2.A7 24 ¨ 32 ¨ 5 ¨ 7 ´ 2 1 0, 5, 7 p‰ 2, 3q Zrr2s 2
2.L2p13q1 23 ¨ 3 ¨ 7 ¨ 13 ´ 1 2 0, 3, 7 p‰ 2, 13q Z 2
2.L2p13q2 23 ¨ 3 ¨ 7 ¨ 13 ´ 1, 1 or 2a 2 0, 7 p‰ 2, 3, 13q Zrr3s 2
L2p29q 22 ¨ 3 ¨ 5 ¨ 7 ¨ 29 ´ 2 1 2 Zrb29s 2
2.L2p29q 23 ¨ 3 ¨ 5 ¨ 7 ¨ 29 ´ 2 1 0, 3, 5, 7 p‰ 2, 29q Zrb29s 2
2.J2 28 ¨ 33 ¨ 52 ¨ 7 ´ 1 2 0, 3, 5, 7 p‰ 2q Z 2
A71 23 ¨ 32 ¨ 5 ¨ 7 ` 1 2 0, 7 p‰ 2, 3, 5q Z 2
A72 23 ¨ 32 ¨ 5 ¨ 7 ` 1 2 0, 7 p‰ 2, 3, 5q Z 2
A7 23 ¨ 32 ¨ 5 ¨ 7 ` 1 2 2 Z 2
A8 26 ¨ 32 ¨ 5 ¨ 7 ` 1 2 0, 7 p‰ 2, 3, 5q Z 2
A15 210 ¨ 36 ¨ 53 ¨ 72 ` 1 2 0, 7, 11, 13 p‰ 2, 3, 5q Z 2

¨11 ¨ 13
A15 210 ¨ 36 ¨ 53 ¨ 72 ` 1 2 2 Z 2

¨11 ¨ 13
A16 214 ¨ 36 ¨ 53 ¨ 72 ` 1 2 2 Z 2

¨11 ¨ 13
L2p13q1 22 ¨ 3 ¨ 7 ¨ 13 ` 1 2 0, 7 p‰ 2, 3, 13q Z 2
L2p13q2 22 ¨ 3 ¨ 7 ¨ 13 ` 1 2 0, 7 p‰ 2, 3, 13q Z 2
L2p13q 22 ¨ 3 ¨ 7 ¨ 13 ` 1 2 2 Z 2
S6p2q 29 ¨ 34 ¨ 5 ¨ 7 ` 1 1 3 Z 1
U3p3q 25 ¨ 33 ¨ 7 ` 1 2 0, 7 p‰ 2, 3q Z 2
U3p3q 25 ¨ 33 ¨ 7 ` 1 2 2 Z 2
G2p3q 26 ¨ 36 ¨ 7 ¨ 13 ` 1 2 0, 7, 13 p‰ 2, 3q Z 2
G2p3q 26 ¨ 36 ¨ 7 ¨ 13 ` 1 2 2 Z 2
J1 23 ¨ 3 ¨ 5 ¨ 7 ¨ 11 ¨ 19 ` 1 1 11 Zrb5, c19s 1
J2 27 ¨ 33 ¨ 52 ¨ 7 ` 1 2 5 Z 2
J2 27 ¨ 33 ¨ 52 ¨ 7 ` 2 1 0, 2, 7 p‰ 3, 5q Zrb5s 2
a If p ” 1, 11 pmod 12q then there are two representations that are not weakly equivalent whereas if
p ” 5, 7 pmod 12q then the two representations are weakly equivalent under a field automorphism
of Sp14pp

2q.

Lemma 6.1.2. Let G “ 2.L2p13q and let ρ1 and ρ2 be two non-equivalent
absolutely irreducible 14-dimensional representations of G with character
ring Zrr3s. Then ρ1 and ρ2 are weakly equivalent if and only if p ” 5, 7
pmod 12q.

Proof. By Table 6.1.1, G ď Sp14pqq. Hence ρ1 and ρ2 are weakly equivalent
if and only if there exists α P OutpGq or a non-trivial φ P OutpS14pqqq such
that gρ1 and pgαρ2q

φ are equivalent for all g P G by Definition 4.3.2. Since
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the only non-trivial automorphism of OutpGq stabilises the representations
we know that α is trivial.

Furthermore, φ is non-trivial if and only if the smallest e such that
Gρi ď Sp14pp

eq is strictly greater than 1. By Table 6.1.1 and Table 2.2.1
this is the case if and only if p ” 5, 7 pmod 12q. In this case Gρi ď Sp14pp

2q.
To prove that pgρ1q and pgρ2q

φ are equivalent for all g P G if p ” 5, 7
pmod 12q we have to prove that χ1pg

φq “ χ2pgq for all g P G where χ1 and
χ2 are the associated characters of ρ1 and ρ2 respectively.

Note that all conjugacy classes with the exception of 12A and 12B are
fixed under φ since χ1pgq “ χ2pgq P Z by see [12, 24]. Hence it remains to
show that χ1pg

φq “ pχ1pgqq
p “ χ2pgq for all g that lie in one of the conjugacy

classes 12A or 12B. If p ” 5 pmod 12q it is straightforward to check that
pχ1pgqq

p “ rp3 “ ´pz3¨5
12 ` 2z7¨5

12 q “ ´r3 “ χ2pgq for all g P 12A. This holds
similarly for g P 12B. If p ” 7 pmod 12q then a similar argument shows that
χ1pgq “ χ2pg

φq for all g P G.

Information regarding the algebraic irrationalities can be found in Ta-
ble 2.2.1 (p.19). Let Ω P tSL˘14pqq,Sp14pqq,Ω˘14pqqu and let C denote the
conformal group of Ω.

6.2 Schur Indicator ˝

The potential maximal S1-subgroups in dimension 14 with Schur indicator
˝ are 2.L2p27q, 2.S6p3q and Szp8q.

Proposition 6.2.1 (2.L2p27q).

(i) If p ” 1 pmod 3q, then SL14ppq has pp ´ 1, 14q conjugacy classes of
S1-subgroups isomorphic to 2.L2p27q.3. If p ” 1, 7 pmod 24q then the
class stabiliser is xγy in OutpL14ppqq and if p ” 13, 19 pmod 24q then
the class stabiliser is xγδy in OutpL14ppqq.

(ii) If p ” 2 pmod 3q, p ‰ 2, then SU14ppq has pp`1, 14q conjugacy classes
of S1-subgroups isomorphic to 2.L2p27q.3. If p ” 17, 23 pmod 24q then
the class stabiliser is xγy in OutpU14ppqq and if p ” 5, 11 pmod 24q
then the class stabiliser is xγδy.

Proof. Let G “ 2.L2p27q. Then OutpGq “ 6 and up to equivalence there
exist two weakly equivalent 14-dimensional representations ρ of G with char-
acter ring Zrb27s by Table 6.1.1. From this it follows by Table 2.2.1 and
Lemma 4.2.1 that G ď SL14ppq if p ” 1 pmod 3q and G ď SU14ppq if p ” 2
pmod 3q, p ‰ 2.
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The stabiliser of ρ is the outer automorphism of G of order 3. Using
[12, 24] it is straightforward to show that G.3 ď SL14ppq if p ” 1 pmod 3q
and G.3 ď SU14ppq if p ” 2 pmod 3q.

Since the two non-equivalent representations are fused by the outer au-
tomorphism α of order 2 of G there exists one conjugacy class of G in C.
Hence, by Lemma 4.3.3, there exist pp¯1, 14q conjugacy classes of subgroups
isomorphic to 2.L2p27q.3 in SL˘14ppq respectively.

Furthermore, α acts by complex conjugation on the two non-equivalent
representations of dimension 14 of G. It follows that αρ is equivalent to ργ
by Lemma 4.4.1.

First consider Case L. We want to find a matrix x P GL14ppq such that
x´1pgαρqx “ pgρqγ for all g P G in order to use Lemma 4.4.3. Since we
do not want to find such an x for each possible prime p individually, we
will work with a characteristic 0 representation ρ̂ and show that it can be
reduced modulo p for all p ” 1 pmod 3q (see file 2l227d14comp).

Note that the character field corresponding to the ring Zrb27s is Qrz3s
since b´1

27 “ ´
1
14 ´

3
14 i3, b27 “ 2z3 ´ z2

3 and i3 “ z3 ´ z2
3.

Let a and b be standard generators of 2.L2p27qρ̂. It is straightforward to
check that the denominators of the entries of a and b are only divisible by 2.
Hence we can reduce Gρ̂ “ xa, by modulo p for all p ‰ 2, 3 by Lemma 4.1.2.

Furthermore, α acts on a and b by sending a to a´1 and b to b´1 by [19].
Using the GHom command in Magma we can find a matrix x̂ P GL14pCq
such that x̂´1pgαρ̂qx̂ “ pgρ̂q´T for all g P G. Note that x̂ has entries in
Zri3s.

The lowest common multiples of the denominators of the entries of x̂
and x̂´1 are 1 and 6 respectively and detpx̂q “ ´212 ¨ 36 ¨ p1` i3q. Hence we
can reduce x̂ modulo p for all p ‰ 2, 3. It follows from Remark 4.4.4 that we
can use Lemma 4.4.3 to determine whether an SL14ppq-conjugacy class of
subgroups isomorphic to 2.L2p27q.3 is stabilised by γ or γδ in OutpL14ppqq.

We find that detpx̂q is a square in Fp if and only if ´p1` i3q is a square
in Fp.Note that ´p1` i3q “ 1

4pr2´ i6q2 and we can show that 1
2pr2´ i6q P Fp

if and only if p ” 1, 7 pmod 24q using Table 2.2.1. Hence it follows from
Lemma 4.4.3 that 2.L2p27q.3 is stabilised by xγy if p ” 1, 7 pmod 24q and by
xγδy if p ” 13, 19 pmod 24q.

In Case U we have to find a matrix B̂ of the unitary form preserved byGρ̂
and we hope to show that B̂ can be reduced modulo p for all p ” 2 pmod 3q,
p ‰ 2. As in Case L there exists x̂ P GL14pCq such that x̂´1pgαρ̂qx̂ “ pgρ̂q´T

for all g P G and x̂ is reducible modulo p for all p we are interested in. Hence
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we can apply Lemma 4.5.4 (see file 2l227d14comp).
Note that we can use the same generators a and b as in Case L. Using

Magma we can find a form matrix B̂ and a matrix x̂ both with entries in
Zri3s.

Let S “ Zrb27,
1
2 ,

1
3 s. Then B̂, B̂´1, x̂ and x̂´1 have entries in S since

1
2p1 ` i3q “ 1

3p2 ` b27q. Furthermore, detpx̂q “ ´213 ¨ 36 ¨ 1
2p1 ` i3q “

´213 ¨ 35 ¨ p2`b27q “ 213 ¨ 34 ¨ p1´b27q
2 since ´3p2`b27q “ p1´b27q

2. This
gives a factorisation in S.

Let r̂ “ 213 ¨ 34 with p-modular reduction r. Then r̂ ą 0 and
?
r P Fp if

and only if
?

2 P Fp. So by Lemma 4.5.4 an SU14ppq-conjugacy class of G.3
is stabilised by γ if r2 P Fp and by γδ otherwise. By Table 2.2.1, r2 P Fp if
and only if p ” 1, 7 pmod 8q. Since we are in Case U and p ” 2 pmod 3q,
p ‰ 2, we deduce that a conjugacy class of G.3 is stabilised by γ if p ” 17, 23
pmod 24q and by γδ if p ” 5, 11 pmod 24q.

Proposition 6.2.2 (2.S6p3q).

(i) If p ” 1 pmod 3q, then SL14ppq has pp´1, 14q conjugacy classes of S1-
subgroups isomorphic to 2.S6p3q. If p ” 1, 7 pmod 24q then the class
stabiliser is xγy in OutpL14ppqq and if p ” 13, 19 pmod 24q then the
class stabiliser is xγδy.

(ii) If p ” 2 pmod 3q, p ‰ 2, then SU14ppq has pp`1, 14q conjugacy classes
of S1-subgroups isomorphic to 2.S6p3q. If p ” 17, 23 pmod 24q then
the class stabiliser is xγy in OutpU14ppqq and if p ” 5, 11 pmod 24q
then the class stabiliser is xγδy.

Proof. Let G “ 2.S6p3q. By Table 6.1.1, OutpGq “ 2 and the character ring
of the 14-dimensional absolutely irreducible representations of G is Zrz3s.
Hence it follows from Lemma 4.2.1 and Table 2.2.1 thatG preserves a unitary
form if and only if p ” 2 pmod 3q. Again by Table 6.1.1, G has (up to
equivalence) two weakly equivalent absolutely irreducible representations ρ
in dimension 14. There is one conjugacy class of G in C since the non-trivial
outer automorphism α of G fuses these two representations. Hence the
number of conjugacy classes of subgroups isomorphic to 2.S6p3q in SL˘14ppq
is p14, q ¯ 1q respectively by Lemma 4.3.3.

Now we want to determine how γ P OutpL˘14ppqq acts on the SL˘14ppq-
conjugacy classes of G. Using Lemma 4.4.1 it is straightforward to show
that αρ is equivalent to ργ .

Let ρ̂ be the 14-dimensional absolutely irreducible representation of G
in characteristic 0 given in [19]. Then we can find a matrix x̂ P GL14pCq
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such that x̂´1pgαρ̂qx̂ “ pgρ̂qγ for all g P G. Here detpx̂q “ 213 ¨ z3 and x̂ is
reducible modulo p for all p ‰ 2, 3 (file 2s63d14comp).

Hence, in Case L we have to determine when 2z3 “ ´2 ` 2
3p2 ` b27q “

´1 ` i3 “ 1
4pr2 ` i6q2 (using 1

2p1 ` i3q “ 1
3p2 ` b27q) is square in Fp. Using

Table 2.2.1 we can show that 2z3 is square in Fp if and only if p ” 1, 7
pmod 24q. It follows from Lemma 4.4.3 that an SL14ppq-conjugacy class of
G is stabilised by xγy when p ” 1, 7 pmod 24q and by xγδy when p ” 13, 19
pmod 24q.

For Case U note that the outer automorphism φ of U14ppq acts on z3 by
sending z3 to ´z3´ 1. Furthermore, we can find a form matrix B̂ preserved
by Gρ̂ that can be reduced modulo p for all p ‰ 2, 3. All entries of x̂, x̂´1, B̂
and B̂´1 lie in S “ Zrz3,

1
2 ,

1
3 s. Furthermore, detpx̂q “ 213 ¨z3 “ 213 ¨p1`z3q

2

gives a factorisation in S.
Let r̂ “ 213 and let r denote the p-modular reduction of r̂. Then

?
r P Fp

if and only if
?

2 P Fp. By Table 2.2.1, r2 P Fp if and only if p ” 1, 7 pmod 8q.
By Lemma 4.5.4 it follows that an SU14ppq-conjugacy class of G is stabilised
by γ if p ” 17, 23 pmod 24q and by γδ if p ” 5, 11 pmod 24q.

Proposition 6.2.3 (Szp8q).

(i) If p ” 1 pmod 4q, then there are 2 ¨ pp ´ 1, 14q conjugacy classes of
S1-subgroups of SL14ppq isomorphic to Szp8q.3 in SL14ppq, with trivial
class stabiliser in OutpL14ppqq.

(ii) If p ” 3 pmod 4q, then there are 2 ¨ pp` 1, 14q conjugacy classes of S1-
subgroups of SU14ppq isomorphic to Szp8q.3, with trivial class stabiliser
in OutpU14ppqq.

Proof. Let G “ Szp8q with OutpGq “ 3. By Table 6.1.1 there are up to
equivalence 2 weakly equivalent 14-dimensional absolutely irreducible rep-
resentations of G with character ring Zris. It follows from Table 2.2.1 and
Lemma 4.2.1 that G ď SL14ppq when p ” 1 pmod 4q and G ď SU14ppq when
p ” 3 pmod 4q.

Furthermore, Gρ.3 ď NCpGρq by Table 6.1.1. Using [12, 24] it follows
that G.3 ď SL14ppq if p ” 1 pmod 4q and G.3 ď SU14ppq if p ” 3 pmod 4q.

The two non-equivalent 14-dimensional absolutely irreducible represen-
tations of G are not fused by any outer automorphism of G. Hence there are
two conjugacy classes of G in C by Lemma 4.2.2. By Lemma 4.3.3 each of
these classes splits into pp¯ 1, 14q conjugacy classes in SL˘14ppq respectively.
Note that γ fuses two non-equivalent representations and hence there is one
AutpL˘14ppqq-conjugacy class.
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Furthermore, the conjugacy classes of G in SL˘14ppq have trivial stabiliser
since OutpGq “ 3 and since δ P OutpL˘14ppqq acts transitively on the conju-
gacy classes by Lemma 4.3.6.

Maximality
Now we determine the possible S1-containments between the groups

2.L2p27q.3, 2.S6p3q and Szp8q.3.

Proposition 6.2.4.
Let d :“ pp´ 1, 14q in Case L and let d :“ pp` 1, 14q in Case U.

(i) No extension of d˝2.L2p27q is S1-maximal in any extension of SL˘14ppq.

(ii) If p ‰ 2, 3 then d ˝ 2.S6p3q is S1-maximal in SL˘14ppq.

(iii) If p ‰ 2 then dˆ Szp8q.3 is S1-maximal in SL˘14ppq.

Proof. (i) By [6], L2p27q.3 is a subgroup of S6p3q and it follows that
2.L2p27q.3 is a subgroup of 2.S6p3q. Furthermore, the smallest non-
trivial absolutely irreducible representations of 2.L2p27q have dimen-
sion 14. Hence, 2.L2p27q.3 is an S1-subgroup of 2.S6p3q by Lemma
4.9.2. Furthermore, L2p27q.6 is a subgroup of S6p3q by [12] from which
it follows that no extension of 3.L2p27q is S1-maximal in dimension
14.

(ii) By Lagrange’s theorem neither 2.L2p27q.3 nor Szp8q.3 could contain
2.S6p3q.

(iii) By Lagrange’s theorem, Szp8q.3 could be a subgroup of 2.S6p3q. Look-
ing at the character tables of 2.S6p3q and Szp8q in [12, 24], however, it
can easily be seen that Szp8q cannot be an S1-subgroup of 2.S6p3q in
dimension 14 as the respective character values do not match.

6.3 Schur Indicator ´

By Table 6.1.1 the potential 14-dimensional S1-maximal subgroups with
Schur indicator ´ are 2.A7, 2.L2p13q1,2, L2p29q, 2.L2p29q and 2.J2.

Proposition 6.3.1 (2.A7).

(i) If p ” 1, 7 pmod 8q, then there are 2 conjugacy classes of S1-subgroups
of Sp14ppq isomorphic to 2.A7, which have trivial class stabiliser in
OutpS14ppqq.
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(ii) If p ” 3, 5 pmod 8q, p ‰ 3, then there are 2 conjugacy classes of S1-
subgroups of Sp14pp

2q isomorphic to 2.A7, with class stabiliser xφy in
OutpS14pp

2qq.

Proof. Let G “ 2.A7. Then OutpGq “ 2 and there are (up to equivalence)
two weakly equivalent absolutely irreducible 14-dimensional representations
ρ of G with character ring Zrr2s by Table 6.1.1. It follows from Table 2.2.1
that 2.A7 ď Sp14ppq when p ” 1, 7 pmod 8q and 2.A7 ď Sp14pp

2q when
p ” 3, 5 pmod 8q, p ‰ 3. Since the two representations are fused by the
outer automorphism α of order 2 of G, there exist two conjugacy classes of
G in Sp14pqq by Lemma 4.3.3.

Since the field automorphism of Sp14ppq is trivial, the stabiliser of these
conjugacy classes is trivial when p ” 1, 7 pmod 8q.

If p ” 3, 5 pmod 8q then, using Lemma 4.3.8, αρ is equivalent to ρφ since
the p-modular reduction of rt2 “ z7t

8 ` zt8 “ ´r2 when t P t3, 5u. Projectively
G.2zG contains involutions and hence a conjugacy class of 2.A7 in Sp14pp

2q
is stabilised by xφy by Lemma 4.6.2.

Proposition 6.3.2 (2.L2p13q1).
Let 2.L2p13q1 be the image of an absolutely irreducible 14-dimensional rep-
resentation ρ of 2.L2p13q with character ring Z.

(i) If p ” 1, 7 pmod 8q, then there exist two conjugacy classes of S1-
subgroups of Sp14ppq weakly equivalent to 2.L2p13q1.2, with trivial class
stabiliser in OutpS14ppqq.

(ii) If p ” 3, 5 pmod 8q, p ‰ 13, then there is a single conjugacy class of
S1-subgroups G of Sp14ppq weakly equivalent to 2.L2p13q1, with class
stabiliser xδy in OutpS14ppqq.

Proof. Let G “ 2.L2p13q1. Then OutpGq “ 2 by [12] and G ď Sp14ppq,
p ‰ 2, 13, since the character ring of ρ is Z. By [12, 24] the 14-dimensional
absolutely irreducible representation ρ1 of G.2 preserves a symplectic form
and has character ring Zrr2s. Therefore, G.2 ď Sp14ppq if p ” 1, 7 pmod 8q
and G.2 ď Sp14pp

2q if p ” 3, 5 pmod 8q by Table 2.2.1.
If G.2 ď Sp14ppq then there are no other non-trivial outer automorphisms

of G that could stabilise the representation. Hence there exists one conju-
gacy class of G in the conformal group by Table 6.1.1 which splits into two
classes in Sp14ppq by Lemma 4.3.3.

Now let p ” 3, 5 pmod 8q. Then ρ1 is defined over Fp2 , i.e. G.2 ď

Sp14pp
2q. Let g P Sp14pp

2qzSp14ppq such that g induces the outer auto-
morphism α of order 2 of G. Let C “ CSp14ppq. We also know that
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G.2 ď NCpGq by Lemma 4.2.2. Hence α is also induced by conjugation
by an element g1 P C. We are going to show that g1 induces δ P OutpS14ppqq.

Since α is induced by both g and g1, g1g´1 stabilises G. Hence g1g´1 “ λI
for some scalar λ by Lemma 2.2.9. Note that λ P Fp2zFp and in particular
that λI ‰ ˘I.

Let B be the matrix of the symplectic form preserved by Sp14pp
2q. Then

gTBg “ B, but pg1qTBg1 “ pλgqTBpλgq “ λ2B ‰ B. Hence, NCpGq is
generated by G, scalars and δ.

Furthermore, there is a single conjugacy class of G in C by Table 6.1.1.
By Lemma 4.3.3(ii) this class splits into |C : NCpGqSp14ppq| classes in
Sp14ppq. It follows that Sp14ppq has a single conjugacy class of S1-subgroups
isomorphic to G.

Proposition 6.3.3 (2.L2p13q2).
Let 2.L2p13q2 be the image of an absolutely irreducible 14-dimensional rep-
resentation of 2.L2p13q with character ring Zrr3s.

(i) If p ” 1, 23 pmod 24q, then there exist 4 conjugacy classes of S1-
subgroups of Sp14ppq weakly equivalent to 2.L2p13q2.2, with trivial class
stabiliser in OutpS14ppqq. Furthermore, there exist two AutpS14ppqq-
conjugacy classes of 2.L2p13q2.2.

(ii) If p ” 5, 7, 17, 19 pmod 24q, then there are 4 conjugacy classes of S1-
subgroups of Sp14pp

2q isomorphic to 2.L2p13q2.2, with trivial class sta-
biliser in OutpS14pp

2qq.

(iii) If p ” 11, 13 pmod 24q, p ‰ 13, then there are 2 conjugacy classes
of S1-subgroups G of Sp14ppq isomorphic to 2.L2p13q2, with class sta-
biliser xδy in OutpS14ppqq. Furthermore, there are two AutpS14ppqq-
conjugacy classes of 2.L2p13q2.

Proof. Let G “ 2.L2p13q2 with OutpGq “ 2. Recall that by Lemma 6.1.2
two non-equivalent 14-dimensional absolutely irreducible representations of
2.L2p13q with character ring Zrr3s are weakly equivalent if and only if p ” 5, 7
pmod 12q. Since these two representations share the same main properties,
we only look at the first of the two representations, ρ1, because we do not
get any new results by looking at the second representation ρ2. We only
have to consider ρ2 when we calculate the number of conjugacy classes.

Since ρ1 has character ring Zrr3s by Table 6.1.1, G ď Sp14ppq if and only
if p ” 1, 11 pmod 12q, p ‰ 13, by Table 2.2.1. Otherwise, when p ” 5, 7
pmod 12q, then G ď Sp14pp

2q.
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By [12, 24] G.2 ď Sp14pp
eq for some e and the character ring of this

extension is Zrr2, y24s. Therefore, the matrices of G.2zG have entries only
in Fp if p ” 1, 11 pmod 12q and r2, y24 P Fp, i.e. if p ” 1, 23 pmod 24q.
Otherwise they have entries from Fp2 .

If p ” 5, 7 pmod 12q then G ď Sp14pp
2q and G.2 ď Sp14pp

2q. It is clear
that G.2 is scalar normalising and since there are two weakly equivalent
representations that do not lie in the same orbit of OutpGq, there are 2 ¨ 2 “
4 conjugacy classes of groups isomorphic to 2.L2p13q2.2 in Sp14pp

2q using
Lemma 4.2.4, Lemma 4.2.2 and Lemma 4.3.3. There are no other outer
automorphisms of G and it follows that the stabiliser of these conjugacy
classes has to be trivial.

If G ď Sp14ppq and G.2 ď Sp14ppq then p ” 1, 23 pmod 24q. Since ρ1 and
ρ2 are not weakly equivalent, the group Sp14ppq has 2 ¨2 conjugacy classes of
S1-subgroups isomorphic to 2.L2p13q2.2 by Lemma 4.2.4 and Lemma 4.3.3.
These conjugacy classes lie in two distinct AutpSp14ppqq-classes.

If p ” 11, 13 pmod 24q, p ‰ 13, then G ď Sp14ppq but G.2 ę Sp14ppq.
Using a similar argument as in Proposition 6.3.2, we can show that a con-
jugacy class of G in Sp14ppq is stabilised by δ. Hence Sp14ppq contains 2 ¨ 1
conjugacy classes of groups isomorphic to G.

Proposition 6.3.4 (L2p29q in characteristic 2).
There is a single conjugacy class of S1-subgroups of Sp14p4q isomorphic to
L2p29q, with class stabiliser xφy in OutpS14p4qq.

Proof. Let G “ L2p29q. Then OutpGq “ 2 and there are (up to equivalence)
two 14-dimensional absolutely irreducible representations of G. They are
weakly equivalent and have character ring Zrb29s by [24]. Hence L2p29q ď
Sp14p22q by Table 2.2.1. By [24] these two representations are fused by the
outer automorphism α of order 2 of G. Hence there is one conjugacy class
of G in Sp14p22q by Lemma 4.3.3. Furthermore, αρ is equivalent to ρφ by
Lemma 4.3.8 and [24] which implies that this single conjugacy class has to
be stabilised by φ.

Proposition 6.3.5 (2.L2p29q).

(i) If p ” 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 pmod 29q then there are
2 conjugacy classes of S1-subgroups of Sp14ppq isomorphic to 2.L2p29q,
with trivial class stabiliser in OutpS14ppqq.

(ii) If p ” 2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 pmod 29q, p ‰ 2,
then Sp14pp

2q has 2 conjugacy classes of S1-subgroups isomorphic to
2.L2p29q, with class stabiliser xφy in OutpS14pp

2qq.
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Proof. Let G “ 2.L2p29q. Then OutpGq “ 2 and G has (up to equivalence)
two weakly equivalent absolutely irreducible representations ρ of dimension
14 with character ring Zrb29s by Table 6.1.1. It follows that G ď Sp14ppq
if p ” 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 pmod 29q and G ď Sp14pp

2q
otherwise by Table 2.2.1.

These two representations are fused by the outer automorphism α of
order 2 of G. Hence there are two conjugacy classes of G in the respective
symplectic group by Lemma 4.3.3. If G ď Sp14ppq then the field auto-
morphism of Sp14ppq is trivial and therefore the stabiliser of the conjugacy
classes of G is trivial.

If p ” 2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 pmod 29q, p ‰ 2, then
αρ is equivalent to ρφ using Lemma 4.3.8 and [12, 24]. Furthermore, pro-
jectively 2.L2p29q.2z2.L2p29q contains involutions which implies by Lemma
4.6.2 that an Sp14pp

2q-conjugacy classes of G is stabilised by xφy.

Proposition 6.3.6 (2.J2).

(i) If p ” 1, 7 pmod 8q then there are 2 conjugacy classes of S1-subgroups
of Sp14ppq isomorphic to 2.J2.2, which have trivial class stabiliser in
OutpS14ppqq.

(ii) If p ” 3, 5 pmod 8q then there exists a single conjugacy class of S1-
subgroups of Sp14ppq isomorphic to 2.J2, which has class stabiliser xδy
in OutpS14ppqq.

Proof. Let G “ 2.J2. Then OutpGq “ 2 and since the character ring of the
unique (up to equivalence) absolutely irreducible representation of dimension
14 of G is Z by [12, 24], it follows that G ď Sp14ppq, p ‰ 2. Furthermore,
G.2 preserves a symplectic form and has character ring Zrr2s. It follows that
G.2 ď Sp14ppq when p ” 1, 7 pmod 8q. In this case there are 2 conjugacy
classes of G.2 in Sp14ppq by Lemma 4.3.3 which have trivial stabiliser.

If p ” 3, 5 pmod 8q then we can show using a similar argument as in
Proposition 6.3.2 that an Sp14ppq-conjugacy class of G is stabilised by xδy.

Furthermore, there is a single conjugacy class of G in Sp14ppq by Lemma
4.3.3.
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Maximality
Finally, we want to determine whether any of these groups with Schur

Indicator ´ could be contained in one another as S1-subgroups.

Proposition 6.3.7.
Let G be an S1-subgroup of Sp14pqq. Then NSp14pqq

pGq is S1-maximal in
Sp14pqq.

Proof. The only S1-subgroup of Sp14pqq in even characteristic is L2p29q
which implies that L2p29q is S1-maximal. In odd characteristic the only
possible containment by Lagrange’s theorem is 2.A7 in 2.J2. Using Magma
(file s1dim14cont) we can show that A7 is not a subgroup of J2 and hence
2.A7 cannot be a subgroup of 2.J2.

6.4 Schur Indicator `

The groups G to consider here are A7, A8, A15, A16, L2p13q, S6p2q, U3p3q,
G2p3q, J1 and J2.

Let q be odd and let Gρ ď Ω˘14pq,Bq, where B is the matrix of a non-
degenerate symmetric bilinear form. The following table, Table 6.4.1, will
help to determine when detpBq is square in Fp and hence whether B is
of type + or ´ by Lemma 3.1.13. It will also be useful for spinor norm
calculations. It shows whether an element a is a square in Fp. The symbol
‘2’ indicates that a is square, i.e.

?
a P Fp, for given primes p and ‘4’

indicates that a is not a square.

In this section we will mostly use Magma to determine the behaviour of
the outer automorphisms of O˘14pqq. Hence we will usually work with a spe-
cific absolutely irreducible representation ρ of G such that Gρ ď Ω˘14pq,Bq
for some non-degenerate symmetric bilinear form B. With the exception of
J2 we only have to look at δ, γ P OutpO˘14pp,Bqq. Since δ and γ are indepen-
dent of the preserved form we will state our final results with respect to our
standard form matrices as in Table 3.1.1 (p.25). In case J2 we will determine
the behaviour of the field automorphisms with respect to our standard form
matrices.
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Table 6.4.1: Square root containments

a
?
a 2{4

3 r3 “ ´pz3
12 ` 2z7

12q 2 p ” 1, 11 pmod 12q
4 p ” 5, 7 pmod 12q

5 r5 “ 1` 2z5 ` 2z4
5 2 p ” 1, 4 pmod 5q

4 p ” 2, 3 pmod 5q
13 r13 “ 1` 2z13 ` 2z3

13 ` 2z4
13 2 p ” 1, 3, 4, 9, 10, 12 pmod 13q

`2z9
13 ` 2z10

13 ` 2z12
13 4 p ” 2, 5, 6, 7, 8, 11 pmod 13q

15 r15 2 p ” 1, 7, 11, 17, 43, 49, 53, 59 pmod 60q
4 p ” 13, 19, 23, 29, 31, 37, 41, 47 pmod 60q

39 r39 2 p ” 1, 5, 7, 19, 23, 25, 31, 35, 41, 49, 61,
67, 89, 95, 107, 115, 121, 125, 131,
133, 137, 149, 151, 155 pmod 156q

4 p ” 11, 17, 29, 37, 43, 47, 53, 55, 59, 71,
73, 77, 79, 83, 85, 97, 101, 103, 109,
113, 119, 127, 139, 145 pmod 156q

1
2 ´

r3
4 p r2

4 ´
r6
4 q “

1
4p2z3

24 ` z9
24 ` 2z11

24 2 p ” 1, 23 pmod 24q
`2z17

24 ` z21
24q 4 p ” 5, 7, 11, 13, 17, 19 pmod 24q

1
2 `

r3
4 p r2

4 `
r6
4 q 2 p ” 1, 23 pmod 24q

“ 1
4p´z9

24 ´ 2z11
24 ´ 2z17

24 ` z21
24q 4 p ” 5, 7, 11, 13, 17, 19 pmod 24q

Proposition 6.4.1 (A71).
Let A71 be the image of a 14-dimensional absolutely irreducible representa-
tion ρ of A7 whose associated character value for all elements of order 6 is
2.

(i) If p ” 1, 49 pmod 60q then there are eight conjugacy classes of S1-
subgroups of Ω`14ppq weakly equivalent to A71 .2, with trivial class sta-
biliser in OutpO`14ppqq.

(ii) If p ” 7, 19, 31, 43 pmod 60q then there are four conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A71 .2, with trivial class
stabiliser in OutpO`14ppqq.

(iii) If p ” 13, 37 pmod 60q then there exist four conjugacy classes of S1-
subgroups of Ω`14ppq weakly equivalent to A71, with class stabiliser xδ1y
in OutpO`14ppqq.
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(iv) If p ” 11, 59 pmod 60q then there are eight conjugacy classes of S1-
subgroups of Ω´14ppq weakly equivalent to A71 .2, with trivial class sta-
biliser in OutpO´14ppqq.

(v) If p ” 17, 29, 41, 53 pmod 60q then there are four conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A71 .2, with trivial class
stabiliser in OutpO´14ppqq.

(vi) If p ” 23, 47 pmod 60q then there are four conjugacy classes of S1-
subgroups of Ω´14ppq weakly equivalent to A71, with class stabiliser xδ1y
in OutpO´14ppqq.

Proof. Let G “ A71 . Then OutpGq “ 2 and by Table 6.1.1, G ď Ω˘14ppq
since the character ring of ρ is Z. We find the form matrix B preserved
by Gρ using Magma (file a71d14comp). Since B has determinant 3 times
a square it follows that B has square discriminant if and only if p ” 1, 11
pmod 12q by Table 6.4.1. Hence G ď Ω`14pp,Bq if p ” 1, 7 pmod 12q and
G ď Ω´14pp,Bq if p ” 5, 11 pmod 12q by Lemma 3.1.13.

Now we consider Gρ.2 “ xGρ, gy. Computer calculations show that g has
determinant 1 and preserves the form B. It follows that G.2 ď SO˘14pp,Bq.
Note that G.2 – xG,´gy ď SO˘14pp,Bq as well. Hence if the spinor norm of
g or of ´g is 1 then G.2 ď Ω˘14pp,Bq.

Computer calculations show that g has spinor norm 1 if and only if 5
is square in Fp, and ´g has spinor norm 1 if and only if either both 3 and
5 are square or if they are both non-square in Fp. Hence G.2 ď Ω˘14pp,Bq
if p ” 1, 11, 19, 29, 31, 41, 49, 59 pmod 60q or if p ” 1, 7, 11, 17, 43, 49, 53, 59
pmod 60q by Table 6.4.1. The number of Ω˘14pp,Bq-conjugacy classes follows
from Lemma 4.3.3.

If G.2 ę Ω˘14pp,Bq then 5 is non-square in Fp and 3 is square. Hence the
discriminant of B is square and we can use Lemma 4.8.12(ii) to show that
in this case a conjugacy class of G is stabilised by xδ1y. Therefore each C-
conjugacy class of G splits into 4 conjugacy classes in Ω˘14pp,Bq by Lemma
4.3.3.

Proposition 6.4.2 (A72).
Let A72 be the image of a 14-dimensional absolutely irreducible represen-
tation of A7 that affords the character value ´1 for all elements of order
6.

(i) If p ” 1, 17, 49, 53 pmod 60q then there are four conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A72, with class stabiliser
xγy in OutpO`14ppqq.

87



(ii) If p ” 19, 23, 31, 47 pmod 60q then there are two conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A72, with class stabiliser
xγy in OutpO`14ppqq.

(iii) If p ” 7, 11, 41, 59 pmod 60q then there exist four conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A72, with class stabiliser
xγy in OutpO´14ppqq.

(iv) If p ” 13, 29, 37, 43 pmod 60q then there exist two conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A72, with class stabiliser
xγy in OutpO´14ppqq.

Proof. Let G “ A72 . Then OutpGq “ 2 and G ď Ω˘14ppq by Table 6.1.1.
Computer calculations (file a72d14comp) show that the determinant of the
form matrix B preserved by G is 15 times a square. From this it follows
by Lemma 3.1.13 and Table 6.4.1 that G ď Ω`14pp,Bq if p ” 1, 17, 19, 23,
31, 47, 49, 53 pmod 60q and G ď Ω´14pp,Bq if p ” 7, 11, 13, 29, 37, 41, 43, 59
pmod 60q. Furthermore, the matrix inducing the outer automorphism of G
sits inside GO˘14pp,BqzSO˘14pp,Bq. Therefore an Ω˘14pp,Bq-conjugacy class
of G is stabilised by xγy by Lemma 4.8.12(i). The number of conjugacy
classes follows from Lemma 4.3.3.

Proposition 6.4.3 (A7 in characteristic 2).
There are two conjugacy classes of S1-subgroups of Ω´14p2q isomorphic to
A7.2, with trivial stabiliser in OutpO´14p2qq.

Proof. Computer calculations (file a7ch2d14comp) show that A7.2 ď Ω´14p2q
in characteristic 2. Furthermore, since OutpA7q “ 2, the stabiliser of any of
the 2 conjugacy classes of A7.2 in Ω´14p2q has to be trivial.

Proposition 6.4.4 (A8).

(i) If p ” 1, 17, 49, 53 pmod 60q then there are four conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A8, with class stabiliser
xγy in OutpO`14ppqq.

(ii) If p ” 19, 23, 31, 47 pmod 60q then there are two conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A8, with class stabiliser
xγy in OutpO`14ppqq.

(iii) If p ” 7, 11, 41, 59 pmod 60q then there exist four conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A8, with class stabiliser
xγy in OutpO´14ppqq.
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(iv) If p ” 13, 29, 37, 43 pmod 60q then there exist two conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A8, with class stabiliser
xγy in OutpO´14ppqq.

Proof. Let G “ A8. Then OutpGq “ 2 and A8 ď Ω˘14ppq by Table 6.1.1. Let
ρ be an absolutely irreducible 14-dimensional representation ofG. Computer
calculations (a8d14comp) show that the matrix B of the form preserved
by Gρ has determinant a square times 15. By Lemma 3.1.13 and Table
6.4.1, A8 ď Ω`14pp,Bq if p ” 1, 17, 19, 23, 31, 47, 49, 53 pmod 60q and A8 ď
Ω´14pp,Bq if p ” 7, 11, 13, 29, 37, 41, 43, 59 pmod 60q. Also, using Magma
again, we can show that the matrix g inducing the outer automorphism of
G sits inside GO˘14pp,BqzSO˘14pp,Bq. Hence it follows from Lemma 4.8.12(i)
that a conjugacy class of G in Ω˘14pp,Bq is stabilised by xγy. The number of
conjugacy classes follows from Lemma 4.3.3.

Proposition 6.4.5 (A15).

(i) If p ” 1, 17, 49, 53 pmod 60q then there are four conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A15, with class stabiliser
xγy in OutpO`14ppqq.

(ii) If p ” 19, 23, 31, 47 pmod 60q then there are two conjugacy classes of
S1-subgroups of Ω`14ppq weakly equivalent to A15, with class stabiliser
xγy in OutpO`14ppqq.

(iii) If p ” 7, 11, 41, 59 pmod 60q then there exist four conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A15, with class stabiliser
xγy in OutpO´14ppqq.

(iv) If p ” 13, 29, 37, 43 pmod 60q then there exist two conjugacy classes of
S1-subgroups of Ω´14ppq weakly equivalent to A15, with class stabiliser
xγy in OutpO´14ppqq.

(v) There is a unique conjugacy class of S1-subgroups of Ω`14p2q isomor-
phic to A15 with class stabiliser xγy in OutpO`14p2qq.

Proof. Let G “ A15. Then OutpGq “ 2 and G ď Ω˘14ppq since the character
ring of a 14-dimensional absolutely irreducible representation of G is Z by
Table 6.1.1.

In odd characteristic computer calculations (file a15d14comp) show that
the discriminant of the preserved form matrix B is square if and only if 15
is square in Fp. Hence it follows from Lemma 3.1.13 and Table 6.4.1 that
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A15 ď Ω`14pp,Bq if p ” 1, 17, 19, 23, 31, 47, 49, 53 pmod 60q. Otherwise A15 is
a subgroup of Ω´14pp,Bq pp ‰ 2, 3, 5q.

Using Magma again we can show that the matrix g inducing the outer
automorphism of order 2 of G sits inside GO˘14pp,BqzSO˘14pp,Bq. Therefore
a conjugacy class of G is stabilised by xγy by Lemma 4.8.12(i). The number
of conjugacy classes of G in Ω˘14pp,Bq follows from Lemma 4.3.3.

If p “ 2 then computer calculations (file a15d14comp) show that A15 ď
Ω`14p2q. Furthermore, the matrix inducing the non-trivial outer automor-
phism of A15 sits inside SO`14p2qzΩ`14p2q. Therefore there is exactly one con-
jugacy class of G in Ω`14p2q by Lemma 4.3.3 which is stabilised by xγy.

Proposition 6.4.6 (A16 in characteristic 2).
There is a unique conjugacy class of S1-subgroups of Ω`14p2q isomorphic to
A16, with class stabiliser xγy in OutpO`14p2qq.

Proof. Computer calculations in Magma (file a16d14comp) show that A16 ď
Ω`14p2q. Furthermore, the matrix inducing the non-trivial outer automor-
phism of A16 is an element of SO`14p2qzΩ`14p2q. It follows that there exists
one Ω`14p2q-conjugacy class of A16 by Lemma 4.3.3 which is stabilised by
xγy.

Proposition 6.4.7 (L2p13q1).
Let L2p13q1 be the image of a 14-dimensional absolutely irreducible represen-
tation of L2p13q whose associated character value of all elements of order 2
is 2.

(i) If p ” 1, 5, 25, 41, 49, 61, 89, 121, 125, 133, 137, 149 pmod 156q there ex-
ist four conjugacy classes of S1-subgroups of Ω`14ppq weakly equivalent
to L2p13q1, with class stabiliser xγy in OutpO`14ppqq.

(ii) If p ” 11, 43, 47, 55, 59, 71, 79, 83, 103, 119, 127, 139 pmod 156q there ex-
ist two conjugacy classes of S1-subgroups of Ω`14ppq weakly equivalent
to L2p13q1, with class stabiliser xγy in OutpO`14ppqq.

(iii) If p ” 7, 19, 23, 31, 35, 67, 95, 107, 115, 131, 151, 155 pmod 156q there ex-
ist four conjugacy classes of S1-subgroups of Ω´14ppq weakly equivalent
to L2p13q1, with class stabiliser xγy in OutpO´14ppqq.

(iv) If p ” 17, 29, 37, 53, 73, 77, 85, 97, 101, 109, 113, 145 pmod 156q there ex-
ist two conjugacy classes of S1-subgroups of Ω´14ppq weakly equivalent
to L2p13q1, with class stabiliser xγy in OutpO´14ppqq.
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Proof. Let G “ L2p13q1. Then OutpGq “ 2 and by Table 6.1.1, G ď Ω˘14ppq
for all p ‰ 2, 3, 13. Furthermore, computer calculations (file l2131d14comp)
show that the discriminant of the preserved form matrix B is square if and
only if 3 ¨ 13 is square in Fp. The type of orthogonal form now follows from
Lemma 3.1.13 and Table 6.4.1.

Computer calculations show as well that the matrix g which induces
the outer automorphism of order 2 of G sits inside GO˘n pp,BqzSO˘n pp,Bq.
Therefore a conjugacy class of G is stabilised by xγy by Lemma 4.8.12(i).
The number of conjugacy classes follows from Lemma 4.3.3.

Proposition 6.4.8 (L2p13q2).
Let L2p13q2 be the image of a 14-dimensional absolutely irreducible represen-
tation of L2p13q whose associated character value of all elements of order 2
is ´2.

(i) If p ” 1, 25, 49, 61, 121, 133 pmod 156q, then there are four conjugacy
classes of S1-subgroups of Ω`14ppq weakly equivalent to L2p13q2, with
class stabiliser xγy in OutpO`14ppqq.

(ii) If p ” 11, 47, 59, 71, 83, 119 pmod 156q, then there are two conjugacy
classes of S1-subgroups of Ω`14ppq weakly equivalent to L2p13q2, with
class stabiliser xγy in OutpO`14ppqq.

(iii) If p ” 5, 41, 89, 125, 137, 149 pmod 156q, then there are four conjugacy
classes of S1-subgroups of Ω`14ppq weakly equivalent to L2p13q2, with
class stabiliser xγδy in OutpO`14ppqq.

(iv) If p ” 43, 55, 79, 103, 127, 139 pmod 156q, then there are two conjugacy
classes of S1-subgroups of Ω`14ppq weakly equivalent to L2p13q2, with
class stabiliser xγδy in OutpO`14ppqq.

(v) If p ” 23, 35, 95, 107, 131, 155 pmod 156q, then there are four conjugacy
classes of S1-subgroups of Ω´14ppq weakly equivalent to L2p13q2, with
class stabiliser xγy in OutpO´14ppqq.

(vi) If p ” 37, 73, 85, 97, 109, 145 pmod 156q, then there are two conjugacy
classes of S1-subgroups of Ω´14ppq weakly equivalent to L2p13q2, with
class stabiliser xγy in OutpO´14ppqq.

(vii) If p ” 7, 19, 31, 67, 115, 151 pmod 156q there are four conjugacy classes
of S1-subgroups of Ω´14ppq isomorphic to L2p13q2, with class stabiliser
xγδy in OutpO´14ppqq.
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(viii) If p ” 17, 29, 53, 77, 101, 113 pmod 156q there are two conjugacy classes
of S1-subgroups of Ω´14ppq isomorphic to L2p13q2, with class stabiliser
xγδy in OutpO´14ppqq.

Proof. Let G “ L2p13q2. Then OutpGq “ 2 and G ď Ω˘14ppq by Table 6.1.1.
Furthermore the discriminant of the preserved form matrix B is square if
and only if 39 is square in Fp (file l2132d14comp). The type of orthogonal
form preserved by G follows from Lemma 3.1.13 and Table 6.4.1.

Computations in Magma show that the matrix g inducing the outer
automorphism of order 2 of G is an element of GO˘14pp,BqzSO˘14pp,Bq if 3 is
a square in Fp. Otherwise g P CGO˘14pp,BqzGO˘14pp,Bq with detpgq “ ´37.

If 3 is square in Fp, i.e. if p ” 1, 11 pmod 12q by Table 6.4.1, then a
conjugacy class of G in Ω˘14pp,Bq is stabilised by xγy by Lemma 4.8.12(i).
The number of conjugacy classes follows from Lemma 4.3.3.

If 3 is not a square in Fp then we can show that gBgT “ 3B. Hence
this conjugacy class is stabilised by xγδy by Lemma 4.8.12 and the number
of conjugacy classes follows from Lemma 4.3.3.

Proposition 6.4.9 (L2p13q in characteristic 2).
There is a unique conjugacy class of S1-subgroups of Ω`14p2q isomorphic to
L2p13q, with class stabiliser xγy in OutpO`14p2qq.

Proof. In characteristic 2 computer calculations (file l213ch2d14comp) show
that L2p13q ď Ω`14p2q. Furthermore, the matrix inducing the non-trivial
outer automorphism of L2p13q sits inside SO`14p2qzΩ`14p2q. From this it fol-
lows by Lemma 4.8.13 and Lemma 4.3.3 that the unique conjugacy class of
G in Ω`14p2q is stabilised by xγy.

Proposition 6.4.10 (S6p2q in characteristic 3).
There are four conjugacy classes of S1-subgroups of Ω`14p3q isomorphic to
S6p2q, with trivial class stabiliser in OutpO`14p3qq.

Proof. Let G “ S6p2q. Computer calculations (file s62d14comp) show that
G ď Ω`14p3q. Since |OutpGq| “ 1, any proper normaliser of G has to be trivial
and there are four conjugacy classes of G in Ω`14p3q by Lemma 4.3.3.

Proposition 6.4.11 (U3p3q).

(i) If p ” 1 pmod 12q then there are 8 conjugacy classes of S1-subgroups
of Ω`14ppq isomorphic to U3p3q.2, which have trivial class stabiliser in
OutpO`14ppqq.
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(ii) If p ” 7 pmod 12q then there are 4 conjugacy classes of S1-subgroups
of Ω`14ppq isomorphic to U3p3q.2, which have trivial class stabiliser in
OutpO`14ppqq.

(iii) If p ” 5 pmod 12q then there are 4 conjugacy classes of S1-subgroups
of Ω´14ppq isomorphic to U3p3q.2, which have trivial class stabiliser in
OutpO´14ppqq.

(iv) If p ” 11 pmod 12q then there are 8 conjugacy classes of S1-subgroups
of Ω´14ppq isomorphic to U3p3q.2, which have trivial class stabiliser in
OutpO´14ppqq.

(v) There are 2 conjugacy classes of S1-subgroups of Ω´14p2q isomorphic
to U3p3q.2, with trivial class stabiliser in OutpO´14p2qq.

Proof. Let G “ U3p3q. Then OutpGq “ 2 and G ď Ω˘14ppq by Table 6.1.1.
In odd characteristic we find using Magma (file u33d14comp) that the

discriminant of the preserved form matrix B is a square if and only if 3 is
square in Fp (p ‰ 2, 3). From this it follows by Lemma 3.1.13 and Table
6.4.1 that G ď Ω`14pp,Bq if p ” 1, 7 pmod 12q. Otherwise G ď Ω´14pp,Bq.

Furthermore, the matrix g inducing the outer automorphism of order 2
of G sits inside SO˘14pp,Bq and ´g has always spinor norm 1. Therefore
G.2 ď Ω˘14pp,Bq for all p (p ‰ 2, 3). By Lemma 4.3.3 each C-conjugacy
class of subgroups isomorphic to G splits into 4 or 8 conjugacy classes in
Ω˘14pp,Bq. Also, since G does not afford any further outer automorphisms
the stabiliser of any of these conjugacy classes is trivial.

If p “ 2 then U3p3q.2 ď Ω´14p2q using Magma (file u33d14comp). By
Lemma 4.3.3, there are 2 conjugacy classes of subgroups isomorphic to G in
Ω´14p2q. Since G does not afford any other non-trivial outer automorphism,
the stabiliser of these classes has to be trivial.

Proposition 6.4.12 (G2p3q).

(i) If p ” 1 pmod 24q then there are 8 conjugacy classes of S1-subgroups
of Ω`14ppq isomorphic to G2p3q.2, which have trivial class stabiliser in
OutpO`14ppqq.

(ii) If p ” 13 pmod 24q then there are 4 conjugacy classes of S1-subgroups
of Ω`14ppq isomorphic to G2p3q. The class stabiliser in OutpO`14ppqq is
xδ1y.
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(iii) If p ” 7, 19 pmod 24q then there exist 2 conjugacy classes of S1-
subgroups of Ω`14ppq isomorphic to G2p3q, with class stabiliser xδy in
OutpO`14ppqq.

(iv) If p ” 23 pmod 24q then there are 8 conjugacy classes of S1-subgroups
of Ω´14ppq isomorphic to G2p3q.2, which have trivial class stabiliser in
OutpO´14ppqq.

(v) If p ” 11 pmod 24q then there are 4 conjugacy classes of S1-subgroups
of Ω´14ppq isomorphic to G2p3q. The class stabiliser in OutpO´14ppqq is
xδ1y.

(vi) If p ” 5, 17 pmod 24q then there 2 conjugacy classes of S1-subgroups of
Ω´14ppq isomorphic to G2p3q, with class stabiliser xδy in OutpO´14ppqq.

(vii) There are 2 conjugacy classes of S1-subgroups of Ω´14p2q isomorphic
to G2p3q.2, which have trivial class stabiliser in OutpO´14p2qq.

Proof. Let G “ G2p3q. Then G ď Ω˘14ppq and OutpGq “ 2 by Table 6.1.1.
In odd characteristic calculations in Magma (file g23d14comp) show that

the discriminant of the preserved form matrix B is square if and only if 3
is square in Fp (p ‰ 2, 3). Therefore, by Table 6.4.1 and Lemma 3.1.13,
G ď Ω`14pp,Bq if and only if p ” 1, 7 pmod 12q. If p ” 5, 11 pmod 12q then
G preserves an orthogonal form of minus-type.

Computer calculations show that the matrix g inducing the outer auto-
morphism of order 2 of G sits inside CGO˘14pp,Bq and preserves the form
up to scalar multiplication by 3. It follows that if 3 is a square in Fp then
r´1
3 g has determinant 1, preserves B and induces the outer automorphism

of order 2 of G. Furthermore, ˘r´1
3 g has spinor norm 1 if and only if 1

2 ¯
r3
4

is square in Fp which holds if and only if p ” 1, 23 pmod 24q by Table 6.4.1.
Hence, if p ” 1, 23 pmod 24q then G.2 ď Ω˘14pp,Bq and there are 8 conju-

gacy classes of G.2 in Ω˘14pp,Bq by Lemma 4.3.3. If p ” 11, 13 pmod 24q then
r´1
3 g P SO˘14pp,BqzΩ˘14pp,Bq and it follows that an Ω˘14pp,Bq-conjugacy class

of G is stabilised by xδ1y by Lemma 4.8.12(ii). There are 4 such conjugacy
classes by Lemma 4.3.3.

If p ” 5, 7, 17, 19 pmod 24q then g P CGO˘14pp,BqzGO˘14pp,Bq and we
can show that detpgq “ 37. There are 2 Ω˘14ppq-conjugacy classes of G by
Lemma 4.3.3 and the class stabiliser is xδy by Lemma 4.8.12(iv).

If p “ 2 then G2p3q.2 ď Ω´14p2q (file g23d14comp) and there are two
conjugacy classes of G in Ω´14p2q by Lemma 4.3.3. Furthermore, since G
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does not afford any further non-trivial outer automorphism, the stabiliser
in OutpO´14p2qq of these Ω´14p2q-conjugacy classes of G has to be trivial.

Proposition 6.4.13 (J1).
There are eight conjugacy classes of S1-subgroups of Ω´14p11q isomorphic to
J1, with trivial class stabiliser in OutpO´14p11qq.

Proof. Let G “ J1. Then computer calculations (file j1d14comp) show that
G ď Ω´14p11q. Since the outer automorphism group of G is trivial, every
conjugacy class has trivial stabiliser. There are 8 conjugacy classes of G in
Ω´14p11q by Lemma 4.3.3.

Proposition 6.4.14 (J2 in characteristic ‰ 2, 3, 5).

(i) If p ” 1, 49 pmod 60q then there are eight conjugacy classes of S1-
subgroups of Ω`14ppq isomorphic to J2, with trivial class stabiliser in
OutpO`14ppqq.

(ii) If p ” 19, 31 pmod 60q then there are four conjugacy classes of S1-
subgroups of Ω`14ppq isomorphic to J2, with trivial class stabiliser in
OutpO`14ppqq.

(iii) If p ” 7, 13, 37, 43 pmod 60q then there are eight conjugacy classes of
S1-subgroups of Ω`14pp

2q isomorphic to J2, with class stabiliser xφy in
OutpO`14pp

2qq.

(iv) If p ” 17, 23, 47, 53 pmod 60q then there are eight conjugacy classes of
S1-subgroups of Ω`14pp

2q isomorphic to J2, with class stabiliser xφγy
in OutpO`14pp

2qq.

(v) If p ” 11, 59 pmod 60q then there are eight conjugacy classes of S1-
subgroups of Ω´14ppq isomorphic to J2, with trivial class stabiliser in
OutpO´14ppqq.

(vi) If p ” 29, 41 pmod 60q then there are four conjugacy classes of S1-
subgroups of Ω´14ppq isomorphic to J2, with trivial class stabiliser in
OutpO´14ppqq.

Proof. Let G “ J2 which implies that OutpGq “ 2. By Table 6.1.1 the
14-dimensional absolutely irreducible representations ρ of G have character
ring Zrb5s and Schur indicator + from which it follows by Table 2.2.1 that
G ď Ω˘14ppq if p ” 1, 4 pmod 5q and G ď Ω˘14pp

2q if p ” 2, 3 pmod 5q.
Furthermore, the discriminant of the form matrix B preserved by Gρ

is square if and only if 3 is square in Fp (file j2d14comp). Hence if G ď
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Ω˘14pp,Bq thenG preserves an orthogonal form of plus-type if p ” 1, 19, 31, 49
pmod 60q by Table 6.4.1 and Lemma 3.1.13. If G ę Ω˘14pp,Bq then p2 ” 1
pmod 4q and the discriminant of the form matrix is always square. Hence,
G preserves an orthogonal form of plus-type in this case.

By [12, 24] the outer automorphism of G can only be induced by an
element that does not sit inside C “ CGO˘14pp

t, Bq, t P t1, 2u since it fuses
the representations. Therefore there are either 4 or 8 conjugacy classes of
G in Ω˘14pp

t, Bq by Lemma 4.3.3.
If G ď Ω˘14pp,Bq then Ω˘14ppq does not have any non-trivial field auto-

morphism. It follows that the stabiliser of these conjugacy classes of G in
Ω˘14pp,Bq is trivial.

If p ” 7, 13, 17, 23, 37, 43, 47, 53 pmod 60q, i.e. if G ď Ω`14pp
2, Bq, then

there are eight Ω`14pp
2, Bq-conjugacy classes of G by Lemma 4.3.3. Further-

more, using Lemma 4.3.8, we can show that αρ is equivalent to ρφ, where
α is the outer automorphism of order 2 of G. To find the stabiliser of these
conjugacy classes, we work in characteristic 0 first.

Let ρ̂ be an absolutely irreducible 14-dimensional representation of G.
Then computer calculations in Magma (file j2d14comp) show that Gρ̂ pre-
serves a bilinear form B̂ with detpB̂q “ 313. Hence Gρ̂ ď Ω14pK, B̂q for some
characteristic 0 field K. Here K ď Qpwq, where w4 `w3 `w2 `w ` 1 “ 0,
from which it follows that w is a fifth root of unity. Furthermore, all ele-
ments of K are of the form a` bpw2 `w3q, a, b P Q. Let φ̂ : w ÞÑ w2. Then
pa` bpw2 `w3qqφ̂ “ pa´ bq ´ bpw2 `w3q and it is straightforward to check
that φ̂ is a field automorphism of K.

Computationally we can also find x̂1 P GL14pKq such that x̂´1
1 pgρ̂qφ̂x̂1 “

gαρ̂ for all g P G. Furthermore, if we let x̂ “ x̂1{pw
2`w3q, then x̂B̂x̂T “ B̂φ̂

with detpx̂q “ 1. Let F̂ “ antidiagp1, . . . , 1q. We also know that there exists
Â P GL14pCq such that ÂF̂ ÂT “ B̂ and pGρ̂qÂ ď Ω`14pC, F̂ q by Lemma
4.8.8. From this it follows that detpÂq2 “ ´detpB̂q “ ´313.

Since we want to use Lemma 4.8.7, we need to consider the p-modular
reductions of Â, B̂, F̂ and x̂. Note that this is straightforward for B̂, F̂ and
x̂ as these matrices can easily be calculated. We do not know Â explicitly
though and hence we do not know whether we can actually reduce Â modulo
p for all the prime numbers p we are interested in.

Let B, F , x and ρ denote the p-modular reductions of B̂, F̂ , x̂ and ρ̂ re-
spectively where B is the form matrix of a bilinear form of plus-type. There-
fore we know that there exists some A1 P GL14pp

2q such that A1FA1T “ B
by Lemma 4.8.1. Furthermore, detpA1q2 is equal to the p-modular reduction
of ´313.
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Note that in characteristic 0, we defined φ̂ on K by sending w to w2.
However, we could have defined φ̂ by sending w to w3 as well as this induces
the same field automorphism on K since

ra` bpw2 ` w3qsφ̂ “ a` bppw2q2 ` pw3q2q

“ a` bpw4 ` wq

“ a` bppw3q3 ` pw2q3q.

In characteristic p, a field automorphism φ sends w to wp, where p ” 2, 3
pmod 5q in this case. Therefore, without loss of generality, we can define
the p-modular reduction φ of φ̂ by sending w to w2 if p ” 2 pmod 5q and
by sending w to w3 if p ” 3 pmod 5q. Hence considering the p-modular
reduction of B̂φ̂ we find that xBxT “ Bφ. Also note that detpxq “ 1 and
x´1pgρqφx “ gαρ for all g P G.

Note as well that projectively pG.2qρzGρ contains involutions. Hence, if
detpA1q1´φ “ 1 then an Ω`14pp

2q-conjugacy class of pGρqA1 is stabilised by
φ in OutpΩ`14pp

2qq by Lemma 4.8.7. Taking the square root, we find that
detpA1q is a p-modular reduction of ε ¨ p

?
3q ¨ 36i, where ε P t˘1u. Therefore,

we need to calculate the p-modular reduction of pp
?

3q ¨ 36q1´p ¨ i1´p since
ε1´p “ 1.

First of all note that i1´p “ 1 if and only if 1´p ” 0 pmod 4q. This is the
case if and only if p ” 1 pmod 4q. Furthermore, pp

?
3q ¨ 36q1´p “ ˘1 if and

only if pp
?

3q¨36qp´1 “ ˘1 and pp
?

3q¨36qp´1 “ 1 if and only if p
?

3q¨36 P Fp.
This is the case if and only if

?
3 P Fp. By Table 2.2.1,

?
3 P Fp if and only if

p ” 1, 11 pmod 12q. Hence, detpA11´pq “ 1 if and only if p ” 1, 7 pmod 12q.
Therefore a conjugacy class of Gρ is stabilised by φ if p ” 7, 13, 37, 43

pmod 60q and by φγ if p ” 17, 23, 47, 53 pmod 60q.

Proposition 6.4.15 (J2 in characteristic 2).
There are two conjugacy classes of S1-subgroups of Ω`14p4q isomorphic to
J2, with class stabiliser xφγy in OutpO`14p4qq.

Proof. Let G “ J2. Using Magma (see file j2ch2d14comp) we can find a
14-dimensional absolutely irreducible representation of J2 that preserves our
standard quadratic form matrix antidiagp1, . . . , 1, 0, . . . , 0q (see Table 3.1.1).
Hence J2 ď Ω`14p4q and there are two Ω`14p4q-conjugacy classes of G by
Lemma 4.3.3.

Let α be the automorphism of order 2 of J2. Then the matrix x P GL14p4q
that conjugates gαρ to pgρqφ for all g P G has quasideterminant -1. Hence,
by Lemma 4.8.11, an Ω`14p22q-conjugacy class of J2 has stabiliser φγ.
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Proposition 6.4.16 (J2 in characteristic 5).
There are four conjugacy classes of S1-subgroups of Ω´14p5q isomorphic to
J2.2, with trivial class stabiliser in OutpO´14p5qq.

Proof. Let G “ J2. Then OutpGq “ 2 and J2 ď Ω˘14p5q since the 14-
dimensional absolutely irreducible representation of G in characteristic 5
has character ring Z by Table 6.1.1. Furthermore computer calculations (file
j2ch5d14comp) show that in fact J2.2 ď Ω´14p5q. By Lemma 4.3.3 there are 4
conjugacy classes of J2.2 in Ω´14p5q. Since J2.2 does not afford any non-trivial
outer automorphism the stabiliser of these classes has to be trivial.

Maximality
Finally, we want to show which of these groups are S1-maximal in

Ω˘14pqq.

Proposition 6.4.17.
In Case O` let d :“ 1 if q even or if q ” 3 pmod 4q and d :“ 2 if q ” 1
pmod 4q. In Case O´ let d :“ 1 if q even or if q ” 1 pmod 4q and d :“ 2 if
q ” 3 pmod 4q.

(i) If p ‰ 2, 3, 5 then NΩ˘14ppq
pA71q is S1-maximal in Ω˘14ppq.

(ii) No extension of dˆA72 is S1-maximal in any extension of Ω˘14ppq.

(iii) The group A7.2 is S1-maximal in Ω´14p2q.

(iv) No extension of dˆA8 is S1-maximal in any extension of Ω˘14ppq.

(v) If p ‰ 2, 3, 5 then NΩ˘14ppq
pA15q is S1-maximal in Ω˘14ppq. No extension

of A15 is S1-maximal in any extension of Ω`14p2q.

(vi) The group A16 is S1-maximal in Ω`14p2q.

(vii) If p ‰ 2, 3, 13 then NΩ˘14ppq
pL2p13q1q is S1-maximal in Ω˘14ppq.

(viii) If p ‰ 2, 3, 13 then NΩ˘14ppq
pL2p13q2q is S1-maximal in Ω˘14ppq.

(ix) The group L2p13q is S1-maximal in Ω`14p2q.

(x) The group S6p2q is S1-maximal in Ω`14p3q.

(xi) No extension of d ˆ U3p3q.2 is ever S1-maximal in any extension of
Ω˘14ppq.
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(xii) If p ‰ 3 then NΩ˘14ppq
pG2p3qq is S1-maximal in Ω˘14ppq.

(xiii) The group 2ˆ J1 is S1-maximal in Ω´14p11q.

(xiv) If there exists an S1-subgroup G – d ˆ J2 in Ω˘14pqq then G is S1-
maximal.

Proof. (i) We find that A7 could be a subgroup of A8, A15 and J2 by
Lagrange’s theorem. It is clear that A7 ď A8 and A7 ď A15 but
A7 ę J2 using Magma (file s1dim14cont). Furthermore, note that
A71 is not an S1-subgroup of A8 as A71 has character value 2 for all
elements of order 6 whereas the 14-dimensional absolutely irreducible
representation of A8 has character values ´1 or 0 for all elements of
order 6 ([12, 24]). Now we consider a possible containment of A71

in A15. We can show that A15 has 4 conjugacy classes of subgroups
isomorphic to A7, two of which are conjugate in S15 (file s1dim14cont).
Hence these 4 conjugacy classes correspond to 3 non-equivalent 14-
dimensional representations of A7. By looking at the traces of elements
of order 6 of groups contained in these conjugacy classes, we find that
A71 ę A15 in dimension 14.

(ii) It is clear that A7 is a subgroup of A8 in an abstract way. Furthermore,
the character values of A72 correspond to the character values of the
14-dimensional absolutely irreducible representation ρ of A8 and there
are no reducible representations of A7 that afford the same character
values as ρ by [14, 24]. Furthermore, A7 and A8 preserve the same
orthogonal form in dimension 14, S7 ď S8 and both A7 and A8 are
stabilised by γ in OutpO˘14ppqq.

(iii) By looking at the respective character tables ([14, 24]) it straightfor-
ward to see that in even characteristic A7 can only be an S1-subgroup
of A15 or A16 in dimension 14. However A15 and A16 preserve an or-
thogonal form of plus-type whereas A7 preserves an orthogonal form
of minus-type.

(iv) It is clear that A8 ď A15 in an abstract way and so we need to check
whether A8 is also on S1-subgroup of A15 in dimension 14. Note that
A15 has 3 conjugacy classes of subgroups isomorphic to A8, two of
which are conjugate in S15 (file s1dim14cont). Since S15 ď GL14ppq
by Proposition 6.4.5, we can deduce that these two conjugacy classes
correspond to equivalent representations of A8. Looking at the traces
of elements of groups contained in these conjugacy classes we see that
A8 is an S1-subgroup of A15. Furthermore, S8 ď S15 and A8 and A15
have the same class stabiliser in OutpO˘14ppqq.
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(v) The only group that could contain A15 is A16 but A16 only has a 14-
dimensional absolutely irreducible representation in characteristic 2.
Hence dˆA15 is S1-maximal in odd characteristic. If the characteristic
is 2 then we can show using Magma (file s1dim14cont) that A15 is an
S1-subgroup of A16. Furthermore, S15 ď S16 and both A15 and A16
have class stabiliser xγy.

(vi) By Lagrange’s theorem A16 has to be S1-maximal.
(vii) By [12], L2p13q is a subgroup of both A15 and G2p3q and there are no

other possible containments by Lagrange’s theorem. Looking at the
character tables of these three groups ([12, 24, 14]), it is clear that
L2p13q1 can only be an S1-subgroup of A15. Using Magma we see
that A15 has exactly one conjugacy class A of subgroups isomorphic
to L2p13q (file s1dim14cont). By looking at the traces of elements of A
we see that this conjugacy class does not correspond to an absolutely
irreducible 14-dimensional representation of L2p13q. Hence dˆL2p13q1
is not an S1-subgroup of dˆA15 and hence has to be S1-maximal.

(viii) Looking at the character tables [12, 24, 14], we can see that L2p13q2
could only be an S1-subgroup of G2p3q. We can easily check that G2p3q
has exactly one conjugacy class of subgroups isomorphic to L2p13q (file
s1dim14cont). Looking at elements of order 3 it follows that G2p3q has
no conjugacy class of subgroups corresponding to L2p13q2.

(ix) Computer calculations show that neither A15, A16 nor G2p3q have any
absolutely irreducible subgroups isomorphic to L2p13q in characteristic
2 (see file s1dim14cont). Hence L2p13q is S1-maximal in Ω`14p2q.

(x) In characteristic 3 there are no 14-dimensional S1-subgroups of Ω`14p3q
that could contain S6p3q by Lagrange’s theorem.

(xi) By [12], U3p3q.2 is a subgroup of G2p3q. Furthermore the character
values of the two 14-dimensional absolutely irreducible representations
of U3p3q and G2p3q coincide and there are no reducible representations
of U3p3q with character values corresponding to the 14-dimensional
absolutely irreducible representation of G2p3q. Finally, OutpU3p3qq “
2 and hence no extension of dˆU3p3q is S1-maximal.

(xii) The only possible containment is G2p3q ď A15,A16 but the smallest
permutation representation of G2p3q acts on 351 points by [17].

(xiii) By Lagrange’s theorem 2ˆJ1 can not be contained in any of the other
S1-subgroups and hence has to be maximal.

(xiv) Note that A15 and A16 are the only S1-subgroups that could contain
J2 by Lagrange’s theorem. It is straightforward to check using Magma
(file s1dim14cont) that J2 is not a subgroup of A16 and hence not a
subgroup of A15.
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7 Maximal S1-Subgroups in Dimension 15

To determine the S1-maximal subgroups of classical groups in dimension 15
we will again use the theory developed in Chapter 4. This chapter has the
same structure as the previous two chapters, Chapter 5 and Chapter 6.

7.1 S1-Subgroups in Dimension 15

The following table, Table 7.1.1, contains information about the potential
15-dimensional S1-maximal subgroups. It was put together using the paper
by Hiß and Malle ([18]), the ATLAS ([12]), the Brauer character tables
([24]), and GAP ([14]). For a description on how to read this table please
see Section 5.1.

Note that 3.A7 and U4p2q have two 15-dimensional absolutely irreducible
representations that are not weakly equivalent and we denote the images of
these representations by the subscripts 1 and 2.

The following lemma gives the number of weakly equivalent representa-
tions of L2p16q.

Lemma 7.1.1. Let G “ L2p16q. If p ” 1, 2, 4, 8, 9, 13, 15, 16 pmod 17q then
G has (up to equivalence) two sets of four weakly equivalent 15-dimensional
representations, whereas if p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q then there
are (up to equivalence) eight weakly equivalent representations of G.

Proof. Let ρi be one of the 15-dimensional representations with characters
χ2, χ3, χ4 or χ5 and let ρj denote one of the 15-dimensional representations
with characters χ6, χ7, χ8 or χ9 as given in [12, 24].

To show that ρi and ρj are weakly equivalent we need to show that
there exists α P OutpGq or φ P OutpO˝15pqqq such that gρi and pgαρjqφ are
equivalent for all g P G by Definition 4.3.2 and Table 7.1.1. Using [12, 24], it
is straightforward to show that the outer automorphism α P OutpGq of order
4 fuses the four representations ρi and it also fuses the four representations
ρj .

Furthermore, φ is non-trivial if and only if the smallest e such that
Gρi ď Ω˝15pp

eq is strictly greater than 1. By Table 7.1.1 and Table 2.2.1 we
find that e “ 2 when p ” 4, 13 pmod 17q, e “ 4 when p ” 2, 8, 9, 15 pmod 17q
and e “ 8 when p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q.

We can show that if e ď 4, then φ permutes the representations of the
form ρi among each other and similarly for ρj . When e “ 8 however, then
for all i we can find a j such that gρi “ pgρjqφ for all g P G.
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Table 7.1.1: Potential S1-maximal subgroups in dimension 15

Gp Order Ind #ρ Stab Charc ChR Out
3.A6 23 ¨ 33 ¨ 5 ˝ 2 23 0, 5 p‰ 2, 3q Zrz3s 22

3.A71 23 ¨ 33 ¨ 5 ¨ 7 ˝ 2 1 0, 5, 7 p‰ 2, 3q Zrz3s 2
3.A72 23 ¨ 33 ¨ 5 ¨ 7 ˝ 2 1 0, 5 p‰ 2, 3, 7q Zrz3s 2
3.A7 23 ¨ 33 ¨ 5 ¨ 7 ˝ 2 1 2 Zrz3s 2
L2p31q 25 ¨ 3 ¨ 5 ¨ 31 ˝ 2 1 0, 2, 3, 5 p‰ 31q Zrb31s 2
3.L3p4q 26 ¨ 33 ¨ 5 ¨ 7 ˝ 6 21 0, 5, 7 p‰ 2, 3q Zrz3s 2ˆ S3
31.U4p3q 27 ¨ 37 ¨ 5 ¨ 7 ˝ 2 22 0, 2, 5, 7 p‰ 3q Zrz3s 22b

M12 26 ¨ 33 ¨ 5 ¨ 11 ˝ 2 1 3 Zrb11s 2
3.M22 27 ¨ 33 ¨ 5 ¨ 7 ¨ 11 ˝ 2 1 2 Zrb11, z3s 2
A7 23 ¨ 32 ¨ 5 ¨ 7 + 1 2 0, 3, 5 p‰ 2, 7q Z 2
A16 214 ¨ 36 ¨ 53 ¨ 72 + 1 2 0, 3, 5, 7, 11, 13 p‰ 2q Z 2

¨11 ¨ 13
A17 214 ¨ 36 ¨ 53 ¨ 72 + 1 2 17 Z 2

¨11 ¨ 13 ¨ 17
L2p16q 24 ¨ 3 ¨ 5 ¨ 17 + 4, 4 or 8a 1 0, 3, 5 p‰ 2, 17q Zry17s 4
L2p16q 24 ¨ 3 ¨ 5 ¨ 17 + 1 4 17 Z 4
L2p29q 22 ¨ 3 ¨ 5 ¨ 7 ¨ 29 + 2 1 0, 3, 5, 7 p‰ 2, 29q Zrb29s 2
L3p4q 26 ¨ 32 ¨ 5 ¨ 7 + 3 22 3 Z 2ˆ S3
S6p2q 29 ¨ 34 ¨ 5 ¨ 7 + 1 1 0, 5, 7 p‰ 2, 3q Z 1
U4p2q1 26 ¨ 34 ¨ 5 + 1 2 0, 5 p‰ 2, 3q Z 2
U4p2q2 26 ¨ 34 ¨ 5 + 1 2 0, 5 p‰ 2, 3q Z 2

a If p ” 1, 2, 4, 8, 9, 13, 15, 16 pmod 17q then there are (up to equivalence) two sets of four
weakly equivalent representations, whereas if p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q then
(up to equivalence) all eight 15-dimensional representations are weakly equivalent.

b Note that OutpU4p3qq “ D8 but Outp31.U4p3qq “ 22 by [12, p.xx and p.52].

Information regarding the algebraic irrationalities that appear in dimen-
sion 15 can be found in Table 2.2.1 on p.19.

Theorem 7.1.2. Let G be an S1-subgroup of Ω P tSL˘15pqq,Ω˝15pqqu. Then
G is contained in Table 7.1.1.

Proof. See the tables in [18].

7.2 Schur Indicator ˝

In this section we will look at the groups 3.A6, 3.A71,2 , 3.A7, L2p31q, 3.L3p4q,
31.U4p3q, M12 and 3.M22 as they have Schur indicator ˝ by Table 7.1.1.

Proposition 7.2.1 (3.A6).

(i) If p ” 1 pmod 3q then SL15ppq has pp ´ 1, 15q conjugacy classes of
S1-subgroups isomorphic to 3.A6.23 which have class stabiliser xγy in
OutpL15ppqq.
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(ii) If p ” 2 pmod 3q, p ‰ 2, then there exist pp` 1, 15q conjugacy classes
of S1-subgroups of SU15ppq isomorphic to 3.A6.23, with class stabiliser
xγy in OutpU15ppqq.

Proof. Let G “ 3.A6. Then OutpGq “ 22 and the character ring of a 15-
dimensional absolutely irreducible representation ρ of G is Zrz3s by Table
7.1.1. Hence, it follows from Lemma 4.2.1 and Table 2.2.1 that G ď SL15ppq
if p ” 1 pmod 3q and G ď SU15ppq if p ” 2 pmod 3q (p ‰ 2).

Furthermore, ρ splits into ρ1 and ρ2 and pG.23qρi has Schur indicator
˝ and character ring Zrz3s. Hence pG.23qρi preserves only the zero form if
p ” 1 pmod 3q and a unitary form otherwise. Note that pG.23qρi – xG, gy
where g is some element of order 4 inG.23zG with g2 P G. Here Tracepgρ2q “
Tracepg2ρq “ ´1. A straightforward calculation shows that G.23 ď SL˘15ppq.

Since OutpGq “ 22 and both the 21 and the 22 outer automorphisms of
G fuse the two weakly-equivalent representations of G we find that there is
one conjugacy class of G.23 in the respective conformal group C by Lemma
4.3.3. Then C splits into pp¯1, 15q classes in SL˘15ppq respectively by Lemma
4.3.3.

If p ” 1 pmod 3q then it is straightforward to show using Lemma 4.4.1
and Lemma 4.4.2 that γ stabilises one of these conjugacy classes. If p ” 2
pmod 3q then this follows from Lemma 4.4.1 and Lemma 4.5.1.

Proposition 7.2.2 (3.A71).
Let 3.A71 be the image of a 15-dimensional absolutely irreducible represen-
tation ρ of 3.A7 which has character value ´1 for all involutions.

(i) If p ” 1 pmod 3q, then there are pp ´ 1, 15q conjugacy classes of S1-
subgroups of SL15ppq weakly equivalent to 3.A71, with class stabiliser
xγy in OutpL15ppqq.

(ii) If p ” 2 pmod 3q, p ‰ 2, then SU15ppq has pp`1, 15q conjugacy classes
of S1-subgroups weakly equivalent to 3.A71, with class stabiliser xγy in
OutpU15ppqq.

Proof. Let G “ 3.A71 . Then OutpGq “ 2 and the character ring of ρ is
Zrz3s by Table 7.1.1. Hence it follows from Lemma 4.2.1 and Table 2.2.1
that G ď SL15ppq if p ” 1 pmod 3q and G ď SU15ppq if p ” 2 pmod 3q
(p ‰ 2). By Lemma 4.3.3 there are p15, p ¯ 1q conjugacy classes of G in
SL˘15ppq since two weakly equivalent representations of G are fused by the
outer automorphism α of order 2 of G. By Lemma 4.4.1, αρ is equivalent
to ργ . Hence, by Lemma 4.4.2 and Lemma 4.5.1, one of these conjugacy
classes is stabilised by γ.
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Proposition 7.2.3 (3.A72).
Let 3.A72 correspond to the image of a 15-dimensional absolutely irreducible
representation of 3.A7 which has character value 3 for all involutions.

(i) If p ” 1 pmod 3q, then there are pp ´ 1, 15q conjugacy classes of S1-
subgroups of SL15ppq weakly equivalent to 3.A72, with class stabiliser
xγy in OutpL15ppqq.

(ii) If p ” 2 pmod 3q, p ‰ 2, then there are pp ` 1, 15q conjugacy classes
of S1-subgroups of SU15ppq weakly equivalent to 3.A72, with class sta-
biliser xγy in OutpU15ppqq.

Proof. Similar to Proposition 7.2.3.

Proposition 7.2.4 (3.A7 in characteristic 2).
There are three conjugacy classes of S1-subgroups of SU15p2q isomorphic to
3.A7, with class stabiliser xγy in OutpU15p2qq.

Proof. Let G “ 3.A7 with OutpGq “ 2. Since the character ring of a 15-
dimensional absolutely irreducible representation ρ of G is Zrz3s by Table
7.1.1, G is a subgroup of SU15p2q by Lemma 4.2.1 and Table 2.2.1. Further-
more, the two weakly equivalent representations of G are fused by an outer
automorphism α of order 2 of G. Hence there are p3, 15q “ 3 conjugacy
classes of G in SU15p2q by Lemma 4.3.3. Using Lemma 4.4.1 it is straight-
forward to show that αρ is equivalent to ργ . Hence, by Lemma 4.5.1, the
class stabiliser is xγy.

Proposition 7.2.5 (L2p31q).

(i) If p ” 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28 pmod 31q, then there
are pp´1, 15q conjugacy classes of S1-subgroups of SL15ppq isomorphic
to L2p31q, with class stabiliser xγy in OutpL15ppqq.

(ii) If p ” 3, 6, 11, 12, 13, 15, 17, 21, 22, 23, 24, 26, 27, 29, 30 pmod 31q, then
there are pp` 1, 15q conjugacy classes of S1-subgroups of SU15ppq iso-
morphic to L2p31q, with class stabiliser xγy in OutpU15pqqq.

Proof. Let G “ L2p31q. Then OutpGq “ 2 and the character ring of the 15-
dimensional absolutely irreducible representations of G is Zrb31s by Table
7.1.1. From Table 2.2.1 and Lemma 4.2.1 it follows therefore that G ď

SL15ppq when b31 P Fp and G ď SU15ppq when b31 P Fp2zFp. Since the two
weakly equivalent representations of G are fused by the non-trivial outer
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automorphism of G, there are pp¯ 1, 15q conjugacy classes of G in SL˘15ppq
by Lemma 4.3.3.

Now note that b˚˚31 “
ř15
r“1 z´r2

31 which is the complex conjugate of b31.
Hence the character values of two weakly equivalent representations are
complex conjugates of each other by [12, 24] and therefore at least one of
the conjugacy classes of G in SL˘15ppq is stabilised by γ by Lemma 4.4.1,
Lemma 4.4.2 and Lemma 4.5.1.

Proposition 7.2.6 (3.L3p4q).

(i) If p ” 1 pmod 3q, then SL15ppq has pp´1, 15q conjugacy classes of S1-
subgroups isomorphic to 3.L3p4q.21 – SL3p4q.21, with class stabiliser
xγy in OutpL15pqqq.

(ii) If p ” 2 pmod 3q, p ‰ 2, then SU15ppq has pp`1, 15q conjugacy classes
of S1-subgroups isomorphic to 3.L3p4q.21 – SL3p4q.21, with class sta-
biliser xγy in OutpU15pqqq.

Proof. Let G “ 3.L3p4q. Then OutpGq “ 2 ˆ S3 and there are (up to
equivalence) 6 weakly equivalent 15-dimensional absolutely irreducible rep-
resentations of G with character ring Zrz3s by [12, 24]. Hence, by Lemma
4.2.1 and Table 2.2.1, G ď SL15ppq if and only if p ” 1 pmod 3q. Further-
more, by [12, 24] and Lemma 4.2.4 we find that G.21 ď SL15ppq when p ” 1
pmod 3q and G.21 ď SU15ppq when p ” 2 pmod 3q pp ‰ 2q.

Let z be the central element of 2 ˆ S3. Then z corresponds to the 21
automorphism in [12, 24]. Let b be an element of order 2 of S3. Without
loss of generality we can let b and zb correspond to the 22 and the 23 auto-
morphism of G respectively. Then b1, b2 and bz1, bz2 are conjugates of b and
z respectively under automorphisms of S3. Hence over G.21, b and bz (and
any images under automorphisms of them) are induced by γ P OutpL˘15pqqq
by Lemma 4.4.1. The number of conjugacy classes follows from Lemma 4.3.3
and the stabiliser of the conjugacy classes follows now from Lemma 4.4.2
and 4.5.1.

Proposition 7.2.7 (31.U4p3q in characteristic not 2).

(i) If p ” 1 pmod 3q then SL15ppq has pp ´ 1, 15q conjugacy classes of
S1-subgroups isomorphic to 31.U4p3q.22, with class stabiliser xγy in
OutpL15ppqq.

(ii) If p ” 2 pmod 3q then SU15ppq has pp ` 1, 15q conjugacy classes of
S1-subgroups isomorphic to 31.U4p3q.22, with class stabiliser xγy in
OutpU15ppqq.
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Proof. Let G “ 31.U4p3q. Then OutpGq “ 22 and the character ring of
the absolutely irreducible 15-dimensional representations of G is Zrz3s by
Table 7.1.1. Hence G ď SL15ppq when p ” 1 pmod 3q and G ď SU15ppq
when p ” 2 pmod 3q by Lemma 4.2.1 and Table 2.2.1. Since the two non-
equivalent representations are fused by the 21 automorphism of G there is
one conjugacy class of G in the respective conformal group which splits into
pp ¯ 15q classes in SL˘15ppq respectively by Lemma 4.3.3. Furthermore it
follows from [12, 24], Lemma 4.2.4 and Lemma 4.2.1 that G.22 ď SL15ppq
when p ” 1 pmod 3q and G.22 ď SU15ppq when p ” 2 pmod 3q. Finally, by
Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.5.1, at least one of these conjugacy
classes is stabilised by γ.

Proposition 7.2.8 (M12 in characteristic 3).
There is one conjugacy class of S1-subgroups of SL15p3q isomorphic to M12,
with class stabiliser xγy in OutpL15p3qq.

Proof. Let G “ M12, so OutpGq “ 2. Then the character ring of the 15-
dimensional absolutely irreducible representations of G is Zrb11s by Table
7.1.1. From Lemma 4.2.1 and Table 2.2.1 it follows therefore that G ď

SL15p3q. Since the non-trivial outer automorphism of G fuses the two 15-
dimensional absolutely irreducible weakly equivalent representations of G
it follows that there is p3 ´ 1, 15q “ 1 conjugacy class of G in SL15p3q by
Lemma 4.3.3. Furthermore, the class stabiliser is xγy by Lemma 4.4.1 and
Lemma 4.4.2.

Proposition 7.2.9 (3.M22).
There are three conjugacy classes of S1-subgroups of SU15p2q isomorphic to
3.M22, with class stabiliser xγy in OutpU15p2qq.

Proof. Let G “ 3.M22. Then OutpGq “ 2 and the character ring of the
absolutely irreducible 15-dimensional representations of G is Zrb11, z3s by
Table 7.1.1. Therefore, G ď SU15p2q by Table 2.2.1 and Lemma 4.2.1.
Furthermore, the non-trivial outer automorphism of G fuses the two weakly
equivalent representations and hence there are p2 ` 1, 15q “ 3 conjugacy
classes by Lemma 4.3.3. Finally, one can show that the character values of
the two non-equivalent 15-dimensional absolutely irreducible representations
of G are complex conjugates of each other and hence, by Lemma 4.4.1 and
Lemma 4.5.1, the class stabiliser is xγy.
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Maximality
Finally we will show which of these groups are S1-maximal in SL˘15pqq.

Proposition 7.2.10.
Let d :“ pp´ 1, 15q in Case L and let d :“ pp` 1, 15q in Case U.

(i) No extension of d ˝ 3.A6 is S1-maximal in any extension of SL˘15ppq.

(ii) If p ‰ 2, 3 then d˝3.A71 is not S1-maximal in SL˘15ppq but d˝3.A71 .xγy
is S1-maximal in SL˘15ppq.xγy.

(iii) If p ‰ 2, 3, 7 then d ˝ 3.A72 is S1-maximal in SL˘15ppq.

(iv) The group 3.A7 is not S1-maximal in SU15p2q but 3.A7.xγy is S1-
maximal in SU15p2q.xγy.

(v) If p ‰ 31 then dˆ L2p31q is S1-maximal in SL˘15ppq.

(vi) If p ‰ 2, 3 then d ˝ 3.L3p4q.21 is S1-maximal in SL˘15ppq.

(vii) If p ‰ 3 then d ˝ 31.U4p3q.22 is S1-maximal in SL˘15ppq.

(viii) The group M12 is S1-maximal in SL15p3q.

(ix) The group 3.M22 is S1-maximal in SU15p2q.

Proof. (i) By Lagrange’s theorem 3.A6 can be a subgroup of 3.A7, 3.L3p4q
or of 31.U4p3q. By [12], 3.A6.23 is a subgroup of 3.L3p4q.21. Let ρ be an
absolutely irreducible 15-dimensional representation of 3.L3p4q. Look-
ing at the character values of the subgroups of 3.L3p4qρ isomorphic to
3.A6, we see that 3.A6 is indeed an absolutely irreducible subgroup of
3.L3p4qρ (see file s1dim15cont). Furthermore, A6.22 ď L3p4q.22 by [12]
and hence no extension of 3.A6 is S1-maximal.

(ii) By Lagrange’s theorem 3.A7 can be a subgroup of 3.L3p4q and of
31.U4p3q in odd characteristic. By Magma (file s1dim15cont) 3.A7 ď
31.U4p3q. Let ρ be an absolutely irreducible 15-dimensional represen-
tation of 31.U4p3q. We can show using [12, 24], that 3.A7ρ “ 3.A71 .
By [12] S7 ď U4p3q.22 but 3.A71 .2 ę SL˘15ppq whereas 31.U4p3q.22 ď
SL˘15ppq. Hence d ˝ 3.A71 .xγy is S1-maximal in SL˘15ppq.xγy.

(iii) Using [12, 24], 3.A72 is not an S1-subgroup of 3.L3p4q and by (ii),
3.A72 is not an S1-subgroup of 31.U4p3q either. There are no other
possible containments by Lagrange’s theorem.

107



(iv) In characteristic 2 we can use Magma (see file s1dim15cont) to show
that 3.A7 is an absolutely irreducible subgroup of the S1-subgroup
3.M22 in dimension 15. However S7 ę M22.2 by [12] and hence d˝3.A7
extends to a novelty under xγy. If 3.A7 ď 31.U4p3q then 3.A7 would
also extend to a novelty by (ii).

(v) By Lagrange’s theorem, L2p31q cannot be contained in any of the other
15-dimensional S1-subgroups of SL˘15ppq.

(vi) By [12], L3p4q is a subgroup of U4p3q but L3p4q.21 is not a subgroup
of U4p3q.22. Hence 3.L3p4q.21 cannot be a subgroup of 31.U4p3q.22.
Furthermore, note that 3.L3p4q cannot be an S1-subgroup of 3.M22 as
the S1-subgroup 3.M22 only exists in characteristic 2. There are no
other containments possible by Lagrange’s theorem.

(vii) By Lagrange’s theorem, NSL˘15ppq
p31.U4p3qq has to be S1-maximal.

(viii) By Lagrange’s theorem, M12 could be a subgroup of 3.M22. However
in dimension 15, M12 is an S1-subgroup in characteristic 3, whereas
the S1-subgroup 3.M22 only exists in characteristic 2.

(ix) The S1-subgroup 3.M22 cannot be a subgroup of any of the other
15-dimensional S1-subgroups of SL˘15pqq by Lagrange’s theorem.

7.3 Schur Indicator `

Here we will determine the behaviour of the groups A7, A16, A17, L2p16q,
L2p29q, L3p4q, S6p2q and U4p2q1,2.

Proposition 7.3.1 (A7).
If p ‰ 2, 7 then Ω˝15ppq has 2 conjugacy classes of S1-subgroups isomorphic
to A7.2 with trivial stabiliser in OutpO˝15ppqq.

Proof. Let G “ A7 with OutpGq “ 2. By Table 7.1.1, G ď Ω˝15ppq when
p ‰ 2, 7. Furthermore, computer calculations (file a7d15comp) show that
in fact A7.2 ď Ω˝15ppq for all p ‰ 2, 7. There is up to equivalence one
absolutely irreducible 15-dimensional representation of G and hence there
are 2 conjugacy classes of G in Ω˝15ppq by Lemma 4.3.3. Since G.2 does not
afford any non-trivial outer automorphism, the stabiliser of the conjugacy
classes has to be trivial.
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Proposition 7.3.2 (A16).

(i) If p ” 1, 7 pmod 8q, then there are 2 conjugacy classes of S1-subgroups
of Ω˝15ppq isomorphic to A16.2, with trivial stabiliser in OutpO˝15ppqq.

(ii) If p ” 3, 5 pmod 8q then there exists a single conjugacy class of S1-
subgroups of Ω˝15ppq isomorphic to A16, with class stabiliser xδy in
OutpO˝15ppqq.

Proof. Let G “ A16. Then OutpGq “ 2 and by Table 7.1.1 it is clear that
G ď Ω˝15ppq. Computer calculations (file a16d15comp) and Table 2.2.1 show
that G.2 ď Ω˝15ppq if and only if p ” 1, 7 pmod 8q. Otherwise the element
inducing the non-trivial outer automorphism of G sits inside SO˝15ppqzΩ˝15ppq
and hence is induced by δ. The number of conjugacy classes follows from
Table 7.1.1 and Lemma 4.3.3.

Proposition 7.3.3 (A17 in characteristic 17).
There exist two conjugacy classes of S1-subgroups of Ω˝15p17q isomorphic to
A17.2, with trivial stabiliser in OutpO˝15p17qq.

Proof. Let G “ A17. Then OutpGq “ 2 and computer calculations (file
a17d15comp) show that S17 ď Ω˝15p17q. Hence there are 2 conjugacy classes
of G in Ω˝15p17q by Table 7.1.1 and Lemma 4.3.3.

Proposition 7.3.4 (L2p16q in characteristic not 17).

(i) If p ” 1, 16 pmod 17q, then there exist 4 conjugacy classes of S1-
subgroups of Ω˝15ppq isomorphic to L2p16q, which have trivial stabiliser
in OutpO˝15ppqq. Furthermore, there exist two AutpO˝15ppqq-classes of
L2p16q.

(ii) If p ” 4, 13 pmod 17q, then there exist 4 conjugacy classes of S1-
subgroups of Ω˝15pp

2q isomorphic to L2p16q, which have class stabiliser
xφy in OutpO˝15pp

2qq. Furthermore, there are two AutpO˝15pp
2qq-classes

of L2p16q.

(iii) If p ” 2, 8, 9, 15 pmod 17q, p ‰ 2, then Ω˝15pp
4q has 4 conjugacy classes

of S1-subgroups isomorphic to L2p16q which have class stabiliser xφy
in OutpO˝15pp

4qq. Furthermore, there exist two AutpO˝15pp
4qq-classes

of L2p16q.

(iv) If p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q, then Ω˝15pp
8q has 4 conjugacy

classes of S1-subgroups isomorphic to L2p16q, with class stabiliser xφ2y
in OutpO˝15pp

8qq.
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Proof. Let G “ L2p16q, so OutpGq “ 4. In dimension 15 there are (up to
equivalence) either two sets of four weakly equivalent absolutely irreducible
representations or 8 weakly equivalent absolutely irreducible representations
ρ of G with character ring Zry17s by Table 7.1.1 and Lemma 7.1.1. Hence
G ď Ω˝15pp

eq, where e follows from Table 2.2.1. Furthermore, there are either
1 or 2 conjugacy classes of G in CO˝15pp

eq by Lemma 4.3.3 depending on e.
If e “ 8, then there exist 2 classes and otherwise there exists 1 conjugacy
class by Lemma 4.3.3. By Lemma 4.3.3 each of these conjugacy classes splits
into 2 classes in Ω˝15pp

eq. Note that there are two AutpO˝15pp
eqq-conjugacy

classes of G when e ă 8.
If p ” 1, 16 pmod 17q then Ω˝15ppq has no non-trivial outer automorphism

that could induce any non-trivial outer automorphism of G and hence the
stabiliser of the conjugacy classes is trivial.

If p ” 4, 13 pmod 17q then it follows by Lemma 4.7.2 that the Ω˝15pp
2q-

conjugacy classes of G are stabilised by φ in OutpO˝15pp
2qq since G.2zG

contains involutions.
If p ” 2, 8, 9, 15 pmod 17q then αρ is equivalent to ρφ using Lemma 4.3.8,

where α is the outer automorphism of order 4 of G. Furthermore, we can find
a matrix x P GL15pp

4q with x´1pgρqφx “ gαρ for all g P G and xFxT “ F ,
where F is our standard form matrix preserved by Gρ (see file l216d15comp).
Hence, by Lemma 4.7.3, if sppxq “ 1 then all conjugacy classes of Gρ are
stabilised by φ. Using Magma it is straightforward to show that the spinor
norm of x is indeed 1 in all relevant characteristics.

If p ” 3, 5, 6, 7, 10, 11, 12, 14 pmod 17q then αρ is equivalent to ρφ2 using
Lemma 4.3.8 again. Furthermore, when p ‰ 3, 5, then there exists a matrix
x P GL15pp

8q of spinor norm 1 such that x´1pgρqφ
2
x “ gαρ for all g P G

and xFxT “ F . Hence, by Lemma 4.7.3, a conjugacy class is stabilised
by xφ2y in OutpO˝15pp

2qq. If p “ 3, 5, then our computer calculations show
that there exists a matrix x P SO˝15pp

8q such that x´1pgρqφ
´2
x “ gαρ for all

g P G. Using a similar approach as in Lemma 4.7.3, we can show that Gρ is
stabilised by φ2 since x has spinor norm 1.

Proposition 7.3.5 (L2p16q in characteristic 17).
There exist two conjugacy classes of S1-subgroups of Ω˝15p17q isomorphic to
L2p16q.4, with trivial stabiliser in OutpO˝15p17qq.

Proof. Let G “ L2p16q. Then OutpGq “ 4 and from Table 7.1.1 it follows
that G ď Ω˝15p17q. Computer calculations (l216ch17d15comp) show that
L2p16q.4 ď Ω˝15p17q. The number of conjugacy classes now follows from
Table 7.1.1 and Lemma 4.3.3.
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Proposition 7.3.6 (L2p29q).

(i) If p ” 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 pmod 29q then Ω˝15ppq
has 2 conjugacy classes of S1-subgroups isomorphic to L2p29q, with
trivial stabiliser in OutpO˝15ppqq.

(ii) If p ” 2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 pmod 29q, p ‰ 2,
then Ω˝15pp

2q has 2 conjugacy classes of S1-subgroups isomorphic to
L2p29q, with class stabiliser xφy in OutpO˝15pp

2qq.

Proof. Let G “ L2p29q. Then OutpGq “ 2 and the character ring of an
absolutely irreducible 15-dimensional representation ρ of G is Zrb29s by Ta-
ble 7.1.1. Hence it follows from Table 2.2.1 that G ď Ω˝15ppq if and only if
b29 P Fp. Otherwise G ď Ω˝15pp

2q. Furthermore, the outer automorphism α
of order 2 of G fuses two weakly equivalent 15-dimensional absolutely irre-
ducible representations of G. Hence the number of conjugacy classes follows
from Lemma 4.3.3.

If b29 P Fp, then the stabiliser of these conjugacy classes is trivial. Now
suppose that b29 P Fp2zFp. To show that αρ is equivalent to ρφ it is sufficient
to show that bp29 “ b˚29 by Lemma 4.3.8 and [12, 24]. This is indeed the case.
Since G.2zG contains involutions it follows from Lemma 4.7.2 that the class
stabiliser is φ.

Proposition 7.3.7 (L3p4q in characteristic 3).
There is a single conjugacy class of S1-subgroups of Ω˝15p3q isomorphic to
L3p4q.22, with class stabiliser xδy in OutpO˝15p3qq.

Proof. Let G “ L3p4q. Then OutpGq “ 2 ˆ S3. Since the 15-dimensional
absolutely irreducible representations of G have Schur indicator + and char-
acter ring Z, it follows that G ď Ω˝15p3q. Furthermore, G.22 has an abso-
lutely irreducible 15-dimensional representation with character ring Z and
Schur indicator `. Computer calculations (file l34d15comp) show that only
G.22 ď Ω˝15p3q. The other two outer automorphisms 21 and 22 are induced
by elements in SO˝15p3qzΩ˝15p3q. Note that the 21 outer automorphism is in-
duced by the central element z of 2ˆ S3. Let b be an element of S3 of order
2. Without loss of generality we can assume that b induces the 22 outer au-
tomorphism and bz the 23 outer automorphism of G. Hence over G.22, the
21 and the 23 automorphism are induced by δ P OutpO˝15p3qq. Finally, there
is one conjugacy class in the conformal group as the three weakly equivalent
representation are fused by outer automorphisms of G. Hence there is one
conjugacy class of G in Ω˝15p3q by Lemma 4.3.3.
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Proposition 7.3.8 (S6p2q).
If p ‰ 2, 3 then Ω˝15ppq has 2 conjugacy classes of S1-subgroups isomorphic
to S6p2q, with trivial stabiliser in OutpO˝15ppqq.

Proof. Since OutpS6p2qq “ 1 the result follows immediately from Table 7.1.1
and Lemma 4.3.3.

Proposition 7.3.9 (U4p2q1).
Let U4p2q1 be the image of a 15 dimensional absolutely irreducible represen-
tation of U4p2q with character value ´1 for all involutions.

If p ‰ 2, 3 then there are two conjugacy classes of S1-subgroups of Ω˝15ppq
weakly equivalent to U4p2q1.2, with trivial stabiliser in OutpO˝15ppqq.

Proof. Since OutpU4p2qq “ 2 this follows from Table 7.1.1, computer calcu-
lations (file u421d15comp) and Lemma 4.3.3.

Proposition 7.3.10 (U4p2q2).
Let U4p2q2 be to the image of a 15-dimensional absolutely irreducible repre-
sentation of U4p2q whose involutions have character values 7 or 3.

If p ‰ 2, 3 then there are two conjugacy classes of S1-subgroups of Ω˝15ppq
weakly equivalent to U4p2q2.2, with trivial stabiliser in OutpO˝15ppqq.

Proof. Let G “ U4p2q2. Then OutpGq “ 2 and the result follows from
computer calculations (file u422d15comp), Table 7.1.1 and Lemma 4.3.3.

Maximality
Here we will determine which of these groups are indeed S1-maximal in

any extension by outer automorphisms of Ω˝15pqq.

Proposition 7.3.11.

(i) If p ‰ 2, 7 then A7.2 is S1-maximal in Ω˝15ppq.

(ii) If p ‰ 2, 17 then NΩ˝15ppq
pA16q is S1-maximal in Ω˝15ppq. No extension

of A16 is S1-maximal in any extension of Ω˝15p17q.

(iii) The group A17.2 is S1-maximal in Ω˝15p17q.

(iv) If there exists an S1-subgroup G “ L2p16q of Ω˝15pqq, q ‰ 17, then G
is S1-maximal.

(v) No extension of L2p16q is S1-maximal in any extension of Ω˝15p17q.
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(vi) If there exists an S1-subgroup G “ L2p29q of Ω˝15pqq then G is S1-
maximal.

(vii) The group L3p4q.22 is S1-maximal in Ω˝15p3q.

(viii) If p ‰ 2, 3 then S6p2q is S1-maximal in Ω˝15ppq.

(ix) If p ‰ 2, 3 then U4p2q1.2 is S1-maximal in Ω˝15ppq.

(x) No extension of U4p2q2.2 is S1-maximal in any extension of Ω˝15ppq.

Proof. (i) By Lagrange’s theorem, A7 could be a subgroup of A16, A17,
L3p4q or S6p2q. Using Magma (file s1dim15cont) we can show that A7
is not a subgroup of L3p4q. Since S8 is a subgroup of S6p2q ([12]),
A7.2 is a subgroup of S6p2q. Using Magma again we can show that
the 15-dimensional absolutely irreducible representations of S6p2q in-
duce reducible representations of A7. We can also show that the 15-
dimensional absolutely irreducible representations of A16 and A17 in-
duce reducible representations of A7.

(ii) It is clear that A16 ď A17 and that this is the only possible contain-
ment. However, A17 is only an S1-subgroup of Ω˝15pqq in characteristic
17 and hence A16 is S1-maximal in the other characteristics. Compar-
ing the Brauer character tables ([14]) of A17 and A16 and using Lemma
4.9.2 it follows that A16 is indeed an S1-subgroup of A17 in charac-
teristic 17. Furthermore, S16 ď S17 and both have trivial stabiliser in
OutpO˝15p17qq.

(iii) There are no containments possible by Lagrange’s theorem.
(iv) The only other S1-subgroup that could contain L2p16q is A17. But

A17 is only an S1-subgroup of Ω˝15pqq in characteristic 17.
(v) Using Magma (file s1dim15cont), we find that A17 has (up to conju-

gacy) two subgroups isomorphic to L2p16q.4 in dimension 15 and both
of these subgroups are absolutely irreducible. Furthermore, L2p16q.4
has trivial stabiliser.

(vi) By Lagrange’s theorem, L2p29q cannot be an S1-subgroup of any of
the other S1-subgroups of Ω˝15pqq.

(vii) The possible groups that could contain L3p4q by Lagrange’s theorem
are A16, A17 and S6p2q. However, the smallest permutation represen-
tation of L3p4q has degree 21 ([17]) and S6p2q is not an S1-subgroup
of Ω˝15p3q.

(viii) Since the smallest permutation representation of S6p2q has degree 28
by [17], S6p2q cannot be a subgroup of A16 or A17 which are the only
possible containments by Lagrange’s theorem.
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(ix) The group U4p2q1.2 can be a subgroup of A16, A17 and S6p2q by La-
grange’s theorem. However, the smallest permutation representation
of U4p2q acts on 27 points by [17]. Hence U4p2q is not a subgroup
of either A16 or A17. Even though U4p2q.2 is a subgroup of S6p2q
the character values of the respective 15-dimensional absolutely irre-
ducible representations do not match by [12, 24]. Hence U4p2q1.2 is
S1-maximal.

(x) By [12], U4p2q.2 is a subgroup of S6p2q. Furthermore the respective
character values match and there is no combination of irreducible rep-
resentations of U4p2q of dimension smaller than 15 that could have
been induced by the absolutely irreducible 15-dimensional representa-
tions of S6p2q. Hence U4p2q2.2 is a subgroup of S6p2q in dimension 15
by Lemma 4.9.2.
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8 S -Maximal Subgroups - The Defining Charac-
teristic Case

In this chapter we will develop the theory necessary to calculate the maximal
S2-subgroups. Recall from Definition 3.5.3 that S2-subgroups are groups
of Lie type in characteristic p. Since their representations arise from those
of their associated algebraic groups, we will give a very short introduction
to the theory behind algebraic groups. For a more thorough introduction
see e.g. [15]. The book by Malle and Testerman [30] also gives an exposition
of algebraic groups and gives more details regarding their representations.
Another standard textbook covering this topic is by Carter [11].

We will briefly discuss representations of S2-subgroups and their as-
sociated weights in Section 8.1. Most of these representations arise as
symmetric or exterior powers (Section 8.2) or as adjoint modules (Section
8.4). In Section 8.3 we then consider the representations of SL2pqq and in
Section 8.5 we will consider the behaviour of the outer automorphisms of
Ω P tSL˘n pqq, Spnpqq,Ωε

npqqu acting on the S2-subgroups.

8.1 Algebraic Groups and Highest Weight Theory

In this section we will briefly discuss the theory behind the highest weight
of an algebraic group. This is a vector associated with each representation
of an algebraic group. Note that the theory behind this is fairly complex
and therefore we will only concentrate on the groups that are needed for
this thesis. The following is based on [30].

We will first define an algebraic group. To do so we will need to set up
some notation first.

Definition 8.1.1. Let K be an algebraically closed field. Let

XpJq “ tpx1, . . . , xnq P K
n | fpx1, . . . , xnq “ 0 for all f P Ju,

where J �KrT1, . . . , Tns is an ideal. Then XpJq is called an algebraic set.
These algebraic sets in Kn form the closed sets of a topology on Kn, called
the Zariski topology (see [15, Section 1.1, p.1]). An affine variety is an
algebraic set together with the induced Zariski topology.

Definition 8.1.2. Let X,Y be two affine varieties. Then a map µ : X Ñ Y
which can be defined by polynomial functions in the coordinates is said to
be a morphism.
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Now we have the necessary setup to give a definition of an algebraic
group.

Definition 8.1.3. Let X be an affine variety and let X be equipped with
a group structure such that multiplication and inversion are morphisms of
varieties. Then X is a linear algebraic group. Note that any linear
algebraic group can be embedded as a subgroup of GLnpKq for some n and
some algebraically closed field K by [30, Thm 1.7, p.5].

Definition 8.1.4. A morphism of algebraic groups is a group homo-
morphism that is also a morphism of varieties.

From now on let K be an algebraically closed field and let A be a linear
algebraic group. Note that we will often just say that A is an algebraic
group.

Definition 8.1.5. A subgroup T of an algebraic group A is called a torus if
it is isomorphic to Dm for some m, where Dm is the group generated by the
diagonal matrices of GLmpKq. A torus is a maximal torus if it is maximal
among the tori of A with respect to inclusion.

Definition 8.1.6. A character of an algebraic group A is a morphism from
A into Kˆ. The set of characters is denoted by XpAq. A cocharacter of
A is a morphism µ : Kˆ Ñ A. The set of cocharacters is denoted by Y pAq.

Characters and cocharacters will play an important part in finding the
highest weight of a group, partly due to the following lemma.

Lemma 8.1.7 ([30, Prop 3.6, p.23]). Let T be a torus of an algebraic group
A with character set XpT q and cocharacter set Y pT q. Let x, y be a map
XpT qˆY pT q Ñ Z such that χpµptqq “ txχ,µy for all χ P XpT q, µ P Y pT q and
t P Kˆ. Then any homomorphism XpT q Ñ Z is of the form χ ÞÑ xχ, γy for
some γ P Y pT q and any homomorphism Y pT q Ñ Z is of the form γ ÞÑ xχ, γy
for some χ P XpT q.

We will now consider a special subset of the set of characters.

Definition 8.1.8. Let T be a maximal torus of an algebraic group A and
let χ P XpT q. Let g be the Lie algebra of A (see [30, Section 7, p.44]) and
let gχ “ tv P g | t´1vt “ χptqv for all t P T u. Then the set ΦpAq :“ tχ P
XpT q |χ ‰ 0, gχ ‰ 0u is the set of roots of A.

A subset ∆ Ď Φ is a base of Φ if for any β P Φ we can find an integral
linear combination such that β “

ř

αP∆ cαα with either all cα ď 0 or all
cα ě 0, cα P Z.
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By [30, Lemma 8.15 and Lemma 8.19, p.60] for each root αi there exists
a unique coroot α̌i such that xαi, α̌iy “ 2, using the map XpT qˆY pT q Ñ Z
as in Lemma 8.1.7.

We say that λ P XpT q is dominant if xλ, α̌y ě 0 for all α P ∆.

Example 8.1.9. Let H “ SL3pKq, where K is an algebraically closed field.
Then a maximal torus T of H is given by T :“ xdiagpα, β, α´1β´1q |α, β P
Kˆy. Furthermore,

ΦpHq “ tχij | 1 ď i, j ď 3, i ‰ ju,

where χijptq “ tit
´1
j for all t “ diagpt1, t2, t3q P T . Then ∆pHq “ tχ12, χ23u

with χ12ptq “ αβ´1 and χ23ptq “ αβ2 by [30, Example 8.2(2), p.51 and
Example 9.8, p.67].

From now on we will only consider the groups that are actually needed
in this thesis. Let K “ Fp and let P P tSL˘n pKq,SpnpKq,ΩnpKq,G2pKqu.
Then P is a linear algebraic group by [30].

We now have the necessary setup to consider representations of P .

Definition 8.1.10. Let ρ : P Ñ GLpV q be a representation such that V is
a finite dimensional vector space over K and ρ is a morphism of algebraic
groups. Then ρ is a rational representation. Let T ď P be a maximal
torus, let χ P XpT q and let

Vχ “ tv P V | vptρq “ χptqv for all t P T u.

If Vχ ‰ 0 then χ is a weight of V .

We also need to define a very important subgroup of an algebraic group
called a Borel subgroup. For a more general definition see [30, Def 6.3, p.37].

Definition 8.1.11. Let Un :“
"ˆ

˚ 0. . .
˚ ˚

˙

P GLnpKq
*

be the group of all

lower triangular matrices of GLnpKq. Then B “ Un X P is a Borel sub-
group of P .

Definition 8.1.12. Let B ď P be as in Definition 8.1.11 and let ρ : P Ñ
GLpV q be a rational representation. Then there exists v` P V zt0u such that
xv`y is invariant under Bρ (see [30, Thm 4.1, p.26]). Then v` is a maximal
vector of V with respect to B.

Note that xv`y is stabilised by every maximal torus Tρ of Bρ and hence
xv`y P Vλ for some λ P XpT q.
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Lemma 8.1.13 ([30, Thm 15.9, p.125]). Let ρ : P Ñ GLpV q be a rational
representation and let v` be a maximal vector of V (with respect to B). Let
λ be the weight associated with v`. Then λ is dominant.

Now we can finally define the highest weight of P with respect to a
rational representation ρ.
Definition 8.1.14. Let ρ : P Ñ GLpV q be a rational representation, where
V “ xpPρqv`y for some maximal vector v` P V (with respect to a fixed
Borel subgroup B). If xv`y ď Vλ then λ is the highest weight of ρ. We
denote an irreducible KP -module with highest weight λ by Lpλq.
Definition 8.1.15. Let ∆ “ tα1, . . . , αlu be a base of the root system Φ
of P with respect to a maximal torus T . Let ∆̌ “ tα̌1, . . . , α̌lu be the
unique set of coroots of ∆. In particular that implies that xαi, α̌iy “ 2 for
all i. Furthermore, let R “ tλ1, . . . , λlu be a set of characters such that
xλi, α̌jy “ δij . Then the λi are fundamental dominant weights. Note
that this implies that a weight is dominant if it is a non-negative linear
combination of the fundamental dominant weights.
Remark 8.1.16. The highest weight λ of a representation can be written
as λ “

ř

aiλi, where ai P N0. In the tables of [29] the highest weight of a
rational representation ρ is denoted by pal, al´1, . . . , a1q, where p0, . . . , 0, 1q
is the highest weight of the natural representation of P .
Example 8.1.17. Let H “ SL3pKq. Recall from Example 8.1.9 that every
element t of a maximal torus T of H is of the form t “ diagpα, β, α´1β´1q,
where α, β P Kˆ and ∆pHq “ tχ12, χ23u, where χ12ptq “ αβ´1 and χ23ptq “
αβ2 for all t P T . Then ∆̌ “ tχ̌12, χ̌23u, where χ̌12paq “ diagpa, a´1, 1q and
χ̌23paq “ diagp1, a, a´1q for all a P Kˆ. To find the fundamental dominant
weight λ1 recall from Definition 8.1.15 that xλ1, χ̌12y “ 1 and xλ1, χ̌23y “ 0.
Hence axλ1,χ̌12y “ λ1pχ̌12paqq “ λ1pdiagpa, a´1, 1qq “ a1 and axλ1,χ̌23y “

λ1pχ̌23paqq “ λ1pdiagp1, a, a´1qq “ a0 from which it follows that λ1ptq “ α
for all t P T . We can show similarly that λ2ptq “ αβ for all t P T .

The following lemmas will be useful when it comes to determining irre-
ducibility of representations and later for maximality calculations.
Lemma 8.1.18 ([30, Thm 15.17, p.128]).

(i) Two irreducible rational representations ρ1 and ρ2 of P of highest
weights µ1 and µ2 are equivalent if and only if µ1 “ µ2.

(ii) If λ is a dominant weight of a rational representation ρ of P then there
exists an irreducible rational representation of P with highest weight
λ.
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Lemma 8.1.19 ([30, Prop 14.12, p.127]). Suppose that M1 and M2 are
two irreducible modules with highest weights µ1 and µ2 respectively. Then
the tensor product M1bM2 contains an irreducible subquotient (quotient of
submodule) with highest weight µ1 ` µ2.

Definition 8.1.20. Let λ “
ř

aiλi be a dominant weight of P . Then λ is
m-restricted if 0 ď ai ď m´ 1 for some m P Nzt0u.

Theorem 8.1.21 (Steinberg’s Tensor Product Thm, [35]). Let φ be a field
automorphism of K “ Fp, raising elements to their pth-power. Furthermore,
let λ0, λ1, . . . , λn be p-restricted weights associated with a KP -module. Then
as KP -modules,

Lpλ0 ` pλ1 ` . . .` p
nλnq – Lpλ0q b

φ Lpλ1q b . . .b
φr Lpλrq.

Note that so far we have only considered representations of P defined
over Fp. However we are interested in finding the representations of the finite
group P pqq P tSL˘n pqq,Spnpqq,Ωε

npqq,G2pqqu. Here the P pqq consists of the
fixed points of P under the map sending matrix entries to their qth-powers.
We have to find a way to restrict our representations of P to representations
of P pqq.

Theorem 8.1.22 ([35]). Any module in characteristic p for P pqq is isomor-
phic to the restriction of Lpλq to the module of P pqq, where λ is a q-restricted
weight of P .

Lemma 8.1.23. Let n P t13, 14, 15u. Let P pqq have an absolutely irreducible
representation ρ : P pqq Ñ Ω P tSL˘n pqtq,Spnpqtq,Ωε

npq
tqu that is absolutely

tensor indecomposable. Let C be the conformal group associated with Ω.
Then P pqqρ is conjugate in C to a representation listed in [29].

Proof. This follows from the proof of [8, Cor 5.1.10, p.272].

We will also need the following.

Definition 8.1.24. A group G ď GLnpqq is self-dual if there exists h P
GLnpqq such that h´1g´Th “ g for all g P G.

Lemma 8.1.25 ([31, Thm 8.11, p.106]). Let ρ : SLnpKq Ñ GLpV q be
an irreducible representation of SLnpKq with highest weight λ “

řl
i“1 aiλi.

Here l “ n´1 is the Lie rank of SLnpKq and the λi are uniquely determined
by the roots αi “ χi,i`1 which form a basis of the root system of SLnpKq.
Then SLnpKqρ is self-dual if and only if ai “ al`1´i for all i.
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Lemma 8.1.26 ([3, Thm 8.11, p.106]). If a group G ď GLnpqq is self-
dual and q is odd, then G preserves a non-degenerate symmetric bilinear or
antisymmetric bilinear form.

Lemma 8.1.27 ([8, Prop 5.1.12, p.273]). Over K “ Fp all representations
of SpnpKq and Ωε

npKq are self-dual.

8.2 Exterior and Symmetric Powers

In many instances the representations of algebraic groups arise as symmetric
or exterior powers of their natural modules. In this section we will define
exterior and symmetric powers and state some useful results. For a more
in-depth introduction see [8, Section 5.2.1, p.276].

Let G be a group, K a field and let Vr be a KG-module. Suppose that Vr
has K-basis pe1, . . . , erq. We will define the symmetric and exterior powers
as submodules of the tensor power module V bkr “ Vr b . . . b Vr with k
factors.

Definition 8.2.1. Let εpπq be the sign of the permutation π P Sk and let
pu1 b . . .b ukqπ “ u1π b . . .b ukπ for all ui P Vr. The kth-exterior power
of Vr is

ΛkpVrq :“ x
ÿ

πPSk

εpπqpu1 b u2 b . . .b ukqπ |ui P VryK .

We denote the image of u1bu2b. . .buk in ΛkpVrq by u1^u2^. . .^uk. Then
the standard basis of ΛkpVrq is pei1 ^ ei2 ^ . . .^ eik | 1 ď i1 ă . . . ă ik ď rq
ordered lexicographically.

Now let charpKq ą k or let charpKq “ 0. The kth-symmetric power
of Vr is

SkpVrq :“ x
ÿ

πPSk

pu1 b u2 b . . .b ukqπ |ui P VryK .

We denote the image of u1 b u2 b . . . b uk in SkpVrq by u1u2 . . . uk. The
standard basis of SkpVrq is pei1ei2 . . . eik | 1 ď i1 ď . . . ď ik ď rq ordered
lexicographically.

Lemma 8.2.2. The dimension of the symmetric power module SkpVrq is
`

r`k´1
k

˘

.

Proof. The symmetric power SkpVrq has basis pei1ei2 . . . eik | 1 ď i1 ď i2 ď
. . . ď ik ď rq ordered lexicographically. It follows that to find the dimension
of SkpVrq we have to count the number of multisets of size k with entries
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from r1, . . . , rs. Here a multiset is an extension of the concept of a set in the
sense that a multiset may contain multiple occurences of the same element.
By [13, p.39] this number is given by

`

r`k´1
k

˘

.

Lemma 8.2.3. The dimension of the exterior power module ΛkpVrq is
`

r
k

˘

.

Proof. The exterior power ΛkpVrq has basis pei1 ^ . . . ^ eik | 1 ď i1 ă . . . ă
ik ď rq. Hence any such basis element can be constructed by choosing k
basis elements of Vr and then rearranging them such that the subscripts
appear in ascending order. It follows that dimpΛkpVrqq “

`

r
k

˘

.

Lemma 8.2.4 ([8, Prop 5.2.4, p.277]). Suppose that G preserves the form
β which is either σ-Hermitian, alternating or symmetric. Then on Λ2pVkq
or S2pVkq G preserves the forms

β2´pei ^ ej , ek ^ elq “ βpei, ekqβpej , elq ´ βpei, elqβpej , ekq

and
β2`peiej , ekelq “ βpei, ekqβpej , elq ` βpei, elqβpej , ekq

respectively. Furthermore, if β is symmetric or alternating then both β2´

and β2` are symmetric, whereas if β is σ-Hermitian then so are β2´ and
β2`.

Lemma 8.2.5 ([8, Prop 5.2.5, p.278]). Let G be a group in odd characteristic
and let χ be a complex or Brauer character of G. Then for all g P G
pχpgq2`χpg2qq{2 and pχpgq2´χpg2qq{2 are the character values on g of the
symmetric and exterior squares of the CG-modules corresponding to χ.

We will conclude this section by calculating the fundamental dominant
weights of SL2pKq on SnpV2q and G2pKq on Λ2pV7q, where K “ Fp.

Lemma 8.2.6.
Let K “ Fp.

(i) Let Φ be a root system of SL2pKq with respect to a maximal torus
T “ xdiagpα, α´1q |α P Kˆy. Then ∆ “ tχ12u, χ̌12paq “ diagpa, a´1q
for all a P Kˆ and λ1ptq “ α for all t P T .

(ii) Let K have characteristic ě m` 1. The highest weight of the rational
representation ρ of SL2pKq on SmpV2q is pmq.

Proof. (i) It is clear that a maximal torus of SL2pKq is given by T “

xdiagpα, α´1q |α P Kˆy and that B “ x
`

a 0
b a´1

˘

| a, b P Ky is a Borel subgroup
of SL2pKq. Furthermore, Φ “ tχ12, χ21u and ∆ “ tχ12u, where χ12ptq “ α2
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for all t P T . Then χ̌12paq “ diagpa, a´1q for all a P Kˆ. Furthermore,
axλ1,χ̌12y “ λ1pχ̌12paqq “ λ1pdiagpa, a´1qq “ a1 which implies that λ1ptq “ α
for all t P T .

(ii) By [8, Lemma 5.3.1, p.280], the representation ρ of SL2pKq acting
on SmpV2q is absolutely irreducible and has dimension m ` 1. Let T be a
maximal torus and B be a Borel subgroup of SL2pKq. It is straightforward
to show that

Tρ “ xdiagpαm, αm´2, . . . , α´mq |α P Kˆy

and that we can choose B such that Bρ consists of lower triangular matrices.
Then Bρ stabilises the subspace xv`y “ xp1, 0, . . . , 0qy. We know that v` P
Vχ “ xv P V | vptρq “ χptqv for all t P T y for some non-zero weight χ. Here
v`ptρq “ αmv` for all t P T . Hence the weight connected to v` is χ where
χptq “ αm for all t P T . This weight is dominant by Lemma 8.1.13 and since
ρ is irreducible, pmq is the highest weight of ρ by Lemma 8.1.18.

Lemma 8.2.7. (i) A maximal torus T of the group G2 is of the form
T “ xdiagpa2b, ab, a, 1, a´1, a´1b´1, a´2b´1q | a, b P Kˆy, where K is
an algebraically closed field.

(ii) Let Φ be the root system of G2 with respect to T and let ∆ be a base
of Φ. Then ∆ “ tχ12, χ23u, where χ12ptq “ a and χ23ptq “ b for
all t P T . Furthermore, we find that ∆̌ “ tχ̌12, χ̌23u with χ̌12paq “
diagpa, a´1, a2, 1, a´2, a, a´1q and χ̌23paq “ diagp1, a, a´1, 1, a, a´1, 1q
for all a P Kˆ. We also have that R “ tλ1, λ2u with λ1ptq “ a2b and
λ2ptq “ a3b2 for all t P T .

Proof. (i) Note that a maximal torus T of G2 has two generators. We
will first work over Fq. If G2pqq is defined over Fq then T is isomorphic
to Cq´1 ˆ Cq´1. We also know that T has to preserve a non-degenerate
symmetric bilinear form B since G2pqq ď SO˝7pq,Bq by [8, Prop 5.7.2, p.305].
Let B “ antidiagp1,´1, 1, p´1

2 , 1,´1, 1q since this is the form preserved by
the generators of G2pqq given in [22].

The first generator of T is t1 “ diagpω, ω´1, ω2, 1, ω´2, ω, ω´1q of order
q ´ 1 where ω is a primitive element of Fˆq as given in [22]. Let g2 be the
second generator of G2pqq given in [22]. Then l :“ t

pq´1q{2
1 ¨g´1

2 ¨t
pq´1q{2
1 ¨g2 “

diagp1,´1,´1, 1,´1,´1, 1q. Hence we can take the second generator of T
to be t2 “ l ¨ t1 “ diagpω, ωpq´3q{2, ωpq`3q{2, 1, ωp´q´3q{2, ωp3´qq{2, ω´1q.

Now let t “ diagpα, β, γ, δ, ε, ζ, ηq be an arbitrary element of T . Since
tBtT “ B it follows that α “ η´1, β “ ζ´1, γ “ ε´1 and δ2 “ 1. Furthermore
detptq “ 1 and hence δ “ 1. Adding to this, by looking at t1 and t2 we can
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deduce that α “ βγ. Hence t “ diagpβγ, β, γ, 1, γ´1, β´1, β´1γ´1q is an
arbitrary element of T . Now let β “ ab and let γ “ a. Note that this
convention is purely to get the same results as in [30]. It follows that t “
diagpa2b, ab, a, 1, a´1, a´1b´1, a´2b´1q is an arbitrary element of T ď G2pqq.

We can restrict the natural module of G2pKq to G2pqq by considering the
fixed points of G2pKq under a map sending the matrix entries to their qth

power. Hence we know that any torus element of T ď G2pKq has to satisfy
the same rules as over Fq. It follows that over K an arbitrary element of T
is of the form t “ diagpa2b, ab, a, 1, a´1, a´1b´1, a´2b´1q, where a, b P Kˆ.

(ii) Let t “ diagpt1, t2, t3, t4, t5, t6, t7q, ti P Kˆ and let χijptq “ tit
´1
j .

Since G2 “ G2pKq is a subgroup of SL7pKq, its root system is a subsystem
of the root system of SL7pKq which is tχij | 1 ď i, j ď 7, i ‰ ju by [30,
Example 8.2(2), p.51]. To determine the root system of G2 we need to
find the elements of the Lie Algebra sop7,K, Jq of SO7pK,Jq, where J is
a non-degenerate symmetric bilinear form matrix. By [16, Section 1.2.2,
p.14], A “ paijq P sop7,K, Jq if and only if ATJ “ ´JA. If we let J “
antidiagp1,´1, 1, µ, 1,´1, 1q for some µ P Kˆ then a71 “ a62 “ a53 “ a44 “
a35 “ a26 “ a17 “ 0. Let S “ tp1, 7q, p7, 1q, p2, 6q, p6, 2q, p3, 5q, p5, 3q, p4, 4qu.
It is clear that χij is not a root of G2 when pi, jq P S. Furthermore, by [30,
Example 9.5(4), p.65] G2 has exactly 12 roots and we can show that

Φ “ tχij | 1 ď i, j ď 7, i ‰ j, pi, jq R Su

is a root system of G2, where each of these 12 roots appears multiple times.
The base of this root system is given by ∆ “ tχ12, χ23u, where χ12ptq “ a

and χ23ptq “ b for all t P T “ xdiagpa2b, ab, a, 1, a´1, a´1b´1, a´2b´1q | a, b P
Kˆy.

Now we also have to find χ̌12 such that xχ12, χ̌12y “ 2 and, by [30, Ex-
ample 15.21(1)], x3χ12 ` 2χ23, χ̌12y “ 0. The first condition xχ12, χ̌12y “ 2
implies that χ12pχ̌12pαqq “ α2 for all α P Kˆ. Furthermore, χ̌12pαq “
diagpαi, αj , αi´j , 1, αj´i, α´j , α´iq for some i and j. Hence χ12pχ̌12pαqq “
αi´j “ α2. Therefore, χ̌12pαq “ diagpα4β, α2β, α2, 1, α´2, α´2β´1, α´4β´1q
for some β yet to be determined. For the second condition to be satis-
fied we additionally need pχ12pχ̌12pαqqq

3pχ23pχ̌12pαqqq
2 “ α0. We find that

pα4βα´2β´1q3pα2βα´2q “ α0 if and only if β “ α´3. Hence χ̌12paq “
diagpa, a´1, a2, 1, a´2, a, a´1q for all a P Kˆ.

Similarly, we want to find χ̌23 such that xχ23, χ̌23y “ 2 and x3χ12 `
2χ23, χ̌23y “ 1 by [30, Example 15.21(1), p.129]. It is straightforward to
show that χ̌23paq “ diagp1, a, a´1, 1, a, a´1, 1q for all a P Kˆ.

Finally, we need to find the fundamental dominant weights λ1 and λ2
of G2 such that xλ1, χ̌12y “ xλ2, χ̌23y “ 1 and xλ2, χ̌12y “ xλ1, χ̌23y “ 0. A
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straightforward calculation shows that λ1ptq “ a2b and λ2ptq “ a3b2. (This
also agrees with the results in [30, Example 15.21(1), p.129].)

8.3 SL2pqq “ Sp2pqq

In this section we will consider the 13-, 14- and 15-dimensional S2-subgroups
isomorphic to SL2pqq and L2pqq. For a more detailed version of the following
see [8, Section 5.3, p.80]. Note that since SL2p2q and SL2p3q are soluble, we
will assume throughout that q ě 4. For m ě 1, let Vm`1 be the pm ` 1q-
dimensional module SmpV2q.

Since SL2pqq “ Sp2pqq, it follows that SL2pqq preserves a bilinear form
β. Furthermore, a representation of SL2pqq on SmpV2q preserves the form

βmpei1ei2 . . . eim , ej1ej2 . . . ejmq

“
ÿ

πPSm
βpei1 , ej1πqβpei2 , ej2πq . . . βpeim , ejmπq.

By Lemma 8.1.27, Vm`1 is self-dual.
Let V1 be the trivial module of SL2pqq. Let m P N with 0 ď m ď q ´ 1

and let a0, a1, . . . , as P t0, . . . , p ´ 1u such that m “ a0 ` a1p ` . . . ` asp
s

with as ‰ 0. Then let

Mpmq :“ Va0`1 b V
φ
a1`1 b . . .b V

φs

as`1

with dimension pa0 ` 1qpa1 ` 1q . . . pas ` 1q ď m` 1.

Theorem 8.3.1 ([5, p.588]). If 0 ď m ď q´ 1 then each Mpmq is an abso-
lutely irreducible module for SL2pqq and furthermore Mpiq is not isomorphic
to Mpjq for any 0 ď i ă j ď q ´ 1. Conversely, for each absolutely irre-
ducible module for SL2pqq there exists some 0 ď m ď q ´ 1 such that the
module is isomorphic to Mpmq.

First we will consider the p-restricted modules with p ě n “ dimpMpmqq.
We then get the following.

Lemma 8.3.2 ([8, Prop 5.3.6, p.283]).
Let δH and φH denote the generating diagonal and field automorphism of a
group H respectively.

(i) If n ą 2 is even and p ě n, then there exists a single conjugacy class
of S2-subgroups of Spnpqq isomorphic to SL2pqq. This conjugacy class
is stabilised by δSpnpqq and φSpnpqq which induce δSL2pqq and φSL2pqq

respectively.
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(ii) If n ” ˘3 pmod 8q and p ě n then there exists a single conjugacy class
of S2-subgroups of Ω˝npqq isomorphic to L2pqq. The automorphisms
δΩ˝npqq and φΩ˝npqq induce δSL2pqq and φSL2pqq respectively and stabilise
the conjugacy class.

(iii) If n ” ˘1 pmod 8q and p ě n then there exist two conjugacy classes
of S2-subgroups of Ω˝npqq isomorphic to L2pqq.2 “ PGL2pqq. Further-
more, φΩ˝npqq stabilises the conjugacy classes and induces φL2pqq whereas
δΩ˝npqq interchanges the conjugacy classes.

For the p-unrestricted modules we will need the following corollary.

Corollary 8.3.3 ([8, Cor 5.3.3, p.281]). Let q “ pe and let m “ a0 ` a1p`
. . .` ae´1p

e´1, where 0 ď ai ď p´ 1 for all i. Then the minimal field over
which Mpmq “ Va0`1 b . . .b V

φe´1

ae´1`1 can be realised is Fpf if and only if
(i) f | e

(ii) f is minimal such that ai “ aj whenever i ” j pmod fq.

Finally, we can show that there are in fact no maximal absolutely irre-
ducible p-unrestricted representations of SL2pqq or L2pqq in dimensions 13,
14 or 15. Note that there might be S2-maximal subgroups isomorphic to
SL2pqq or L2pqq but since they cannot be maximal we will not consider them
any further.

Lemma 8.3.4. Let q “ pe. There are no p-unrestricted representations of
SL2pqq or L2pqq that induce maximal subgroups in dimensions 13, 14 and
15.

Proof. The proof follows the same outline as the proof of [8, Thm 5.3.9,
p.287]. Let Mpmq “ Va0`1 b . . . b V φe´1

ae´1`1 with 0 ď ai ď p ´ 1 and m “

a0 ` a1p ` . . . ` ae´1p
e´1. By Lemma 8.3.1 we need to consider all such

Mpmq with dimension pa0 ` 1qpa1 ` 1q . . . pas ` 1q P t13, 14, 15u.
Note that each p-unrestricted module Mpmq with only one non-trivial

tensor factor is an algebraic conjugate of a p-restricted module and hence
gives a subgroup that is conjugate to one of the groups considered in Lemma
8.3.2 using a similar argument as in Lemma 8.1.23. Hence we assume that M
has at least 2 non-trivial tensor factors which is only possible in dimensions
14 and 15. In dimension 14 we have a0 “ 1, a1 “ 6 and Mpmq “ V2 b V φ

7 .
In dimension 15 we get a0 “ 2, a1 “ 4 and Mpmq “ V3 b V φ

5 . (Note that
a0 and a1 could be interchanged in both cases.) By [8, Prop 5.1.14, p.274],
either Mpmq can be written over a proper subfield Fpe{t for some t ą 1 or
M preserves a form other then the induced symplectic or symmetric form.

125



To show that Mpmq cannot be written over a proper subfield we can use
Corollary 8.3.3. In dimension 14 we havem “ 13 “ 1`6p (orm “ 13 “ 6`p)
and e “ 2 which implies that f has to equal 1. Therefore, for Corollary 8.3.3
to hold, we would require a0 to equal a1 which is not the case. Similarly in
dimension 15. Hence we can assume that Mpmq cannot be written over a
proper subfield.

Now suppose that Mpmq preserves either a unitary form or, when p “ 2,
a quadratic form. By [8, Lemma 1.8.8, p.40] a representation of SL2pqq
can only preserve a unitary and a bilinear form at the same time if the
representation can be written over a proper subfield of Fq - a contradiction.
When p “ 2, then ai P t0, 1u and hence Mpmq has dimension a power of 2.
Again this does not occur in dimensions 13, 14 or 15.

8.4 Adjoint Module

In this section we will briefly introduce the concept of adjoint modules. For
a more detailed discussion see [8, Section 5.4.1, p.293].

Definition 8.4.1. Let ρ be a representation of some group and let V be
the module of ρ. Then V ˚ is the dual module acted on by ρ´T.

Let G “ GL˘t pqq and let g P G. Let V be the natural module of G over
Fqu and let V ˚ be the dual module of V . Define a representation ρ : G Ñ
V b V ˚ by gρ “ g b g´T. Let M be the FqGLtpqq-module MtˆtpFqq or let
M be the FqGUtpqq-module M “ tA PMtˆtpFq2q |AT “ Aσu corresponding
to Gρ. Here σ sends the entries aij of A to aqij .

Definition 8.4.2. Let M be as above. Let U be the submodule of M
consisting of all matrices of trace 0 and let U 1 be the submodule of M
consisting of all scalar matrices. Then the adjoint module W is

W “ U{pU X U 1q.

Lemma 8.4.3 ([8, Lemma 5.4.10, p.294]). Let G “ GL˘t pqq and let W be
as in Definition 8.4.2. If p | t then W has dimension t2 ´ 2. Otherwise
W has dimension t2 ´ 1. Furthermore, W is absolutely irreducible as an
FqSL˘t pqq-module.

By [8, p.294] we can define a quadratic form Q on M by

QpAq “
ÿ

1ďiăjďn
paijaji ´ aiiajjq.
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Throughout the reminder of this section let B be the form matrix of the
polar form β of Q. Let E be the subset of M containing the matrices with
all diagonal entries equal to 0 and let D be the set of diagonal matrices of
M .

Lemma 8.4.4 ([8, Lemma 5.4.11, p.295]).
Let G “ GL˘t pqq and let M , U , U 1, W , E, D and β be as defined above.
Then:

(i) W – E K pD X Uq{U 1;
(ii) E is a non-degenerate space of plus-type if G “ GLtpqq and a non-

degenerate space of type p´1qp
t
2q if G “ GUtpqq;

(iii) If p | t then β is degenerate.

Hence we have to determine the type of orthogonal form of the non-
degenerate space pD X Uq{U 1. We will only have to consider the case when
p “ 2 and t “ 4.

Lemma 8.4.5. Let G “ GL˘t pqq and let M , U , U 1 and D be as above. If
p “ 2 and t “ 4, then pD X Uq{U 1 is a non-degenerate space of minus-type
in any odd extension of F2 and an orthogonal space of plus-type in any even
extension of F2.

Proof. By the proof of [8, Lemma 5.4.11(iv), p.295], D X U “ xd1, d2, d3y,
where dj “ Ej,j ´ E4,4 for all 1 ď j ď 3 and Ei,j “ palkq is a matrix with
alk “ 1 if l “ i, k “ j and alk “ 0 otherwise. Furthermore, the form matrix
with respect to this basis td1, d2, d3u is

B “
´ 0 1 1

1 0 1
1 1 0

¯

and Qpdjq “ 1 for all j.
Let U 1 “ xdy, where d “ diagp1, 1, 1, 1q “ d1 ` d2 ` d3. It is clear that

pD X Uq{U 1 “ xd1 ` U 1, d2 ` U 1y. We now have to find the quadratic form
Q1 with polar form β1 on pD X Uq{U 1. We have

Qpdj ` αdq “ Qpdjq `Qpαdq ` βpdj , αdq

“ 1` α2Qpdq ` αpβpdj , d1q ` βpdj , d2q ` βpdj , d3qq

“ 1` 6α2 ` 2α
“ 1 for all α P F2i .

If k ‰ j then β1pdj ` U 1, dk ` U 1q “ βpdj , dkq “ 1 by Lemma 3.3.3. Hence,
the matrix of Q1 is

` 1 1
0 1

˘

which is of minus-type if and only if x2 ` x` 1 is
irreducible in F2i by [8, Prop 1.5.42(iii), p.24].
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It is clear that x2 ` x ` 1 is irreducible in F2 and from [28, Cor 3.47,
p.100] it follows that x2`x`1 is irreducible in any odd extension of F2 and
reducible otherwise.

Corollary 8.4.6. Let G “ SL˘4 p2iq and let U , U 1, W , E and D be as above.
Then the adjoint module W of G preserves an orthogonal form of plus-type
if and only if i is even and an orthogonal form of minus-type otherwise.

Proof. By Lemma 8.4.4, W – E K pD X Uq{U 1 and E is a space of type
k1 “ `. Let k2 be the type of the space pDXUq{U 1. By [8, Prop 1.5.42(iv),
p.24], W has type k1k2. The result follows from Lemma 8.4.5.

Lemma 8.4.7 ([8, Lemma 5.4.13, p.297]). Let ρ be the adjoint representa-
tion of SL˘t pqq and let d generate the diagonal automorphisms of SL˘t pqq.
Then dρ P SOε

npq,Bq. Furthermore, dρ P Ωε
npq,Bq if and only if t is odd or

q is even.

Lemma 8.4.8 ([8, Lemma 5.4.14, p.297]). Suppose that G “ SL˘t pqq has an
adjoint representation ρ of dimension n. Then γ P OutpL˘t pqqq is induced
by an element g P GOε

npq,Bq. If
`

t
2
˘

is even or if qn is odd then g P

Ωε
npq,Bq or ´g P Ωε

npq,Bq. If
`

t
2
˘

and q are odd and n is even then g P

GOε
npq,BqzSOε

npq,Bq. If
`

t
2
˘

is odd and q is even then we can show that
g P SOε

npq,BqzΩε
npq,Bq.

8.5 Outer Automorphisms

Let Ω P tSL˘n pqq,Spnpqq,Ωε
npqqu, where ε P t˝,`,´u, and let ρ : G Ñ Ω be

an absolutely irreducible representation of a quasisimple group G such that
Gρ is an S2-subgroup of Ω. In this section we will consider how the outer
automorphisms of Ω act on Gρ. To avoid confusion we will denote an outer
automorphism β P OutpHq for some group H by βH .

Lemma 8.5.1 ([8, Prop 5.1.9, p.272]). Let G be quasisimple and let Ω P

tSL˘n pqq, Spnpqq,Ωε
npqqu, where ε P t˝,`,´u. Let ρ : G Ñ Ω be a represen-

tation such that Gρ is an S2-subgroup of Ω.
(i) Let δ P OutpGq. Then pG.xδyqρ ď C, the conformal group of Ω.

(ii) Let φG P OutpGq and let φΩ P OutpΩq. Then φGρ is equivalent to ρφΩ.
(iii) Let G “ SLtpqq and let Ω “ SLnpqq. Then γGρ is equivalent to ργΩ.

We will need to consider the Cases L , U and O` separately.
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Cases L and U
We will consider the unitary and linear cases first. The following lemma

is an adaptation of [8, Lemma 5.9.1, p.310].

Lemma 8.5.2. Let G “ SL˘t pqq and let ρ : GÑ SL˘n pqq be a representation
of G with module U P tS2pVtq,S4pVtq,Λ2pVtqu. Let n “ dimpUq and let A
denote an nˆ tm matrix, m P t2, 4u, whose rows form the basis vectors for
U as a subspace of V bmt .

(i) If AATD “ In, then D PMnˆnppq.
(ii) For g P SL˘t pqq the action matrix Mpgq of g on U is AgbmATD.

(iii) If G “ SL˘t pqq and n is odd, then φL˘n pqq is contained in the stabiliser
of Gρ in OutpL˘n pqqq. Furthermore, φ˘Lnpqq induces φG.

(iv) If G “ SLtpqq and n is odd, then γLnpqq is contained in the stabiliser
of Gρ in OutpLnpqqq. Furthermore, γLnpqq induces γG.

Proof. (i)-(iii) It is straightforward to see that the proof of [8, Lemma 5.9.1,
p.310] extends to all our cases.

(iv) By the proof of [8, Lemma 5.9.1(iv), p.310] we know that MpgγGq “
D´1MpgqγLnpqqD. The result follows now from Lemma 4.4.2.

Case O`

In Case O` we have the added difficulty that there are up to 2 isomor-
phism classes of groups xΩ`n ppf , Bq, φy when f is even by [7]. However if f
is odd then there is only one isomorphism class.

Lemma 8.5.3. Let G be a quasisimple group. Let ρ be an absolutely irre-
ducible representation of G such that Gρ is an S2-subgroup of Ω`n ppf , Bq,
where f is even and B is a non-degenerate symmetric bilinear form ma-
trix (or quadratic form matrix if p is even) of plus-type. Assume that
B P Mnˆnppq. Let F be our standard symmetric or quadratic form ma-
trix of plus-type. Then:

(i) There exists x P GLnppf q such that pGρqx ď Ω`n ppf , F q;
(ii) If p is odd then xpGρqx, φy and xGρ, φy lie in the same isomorphism

class if and only if detpBq ¨detpF q is a square in Fˆp . If detpBq ¨detpF q
is not square and pGρqx is stabilised by φ then Gρ is stabilised by φγ;

(iii) If p is even then xpGρqx, φy and xGρ, φy lie in the same isomorphism
class if and only if px´1qφx has quasideterminant 1. If the quaside-
terminant is ´1 and pGρqx is stabilised by φ then Gρ is stabilised by
φγ.
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Proof. (i) This follows by Lemma 4.8.1 for odd p and it is clear that Lemma
4.8.1 also holds for even p.

(ii) and (iii) follow from [7, Prop 12].

Note that in our final results we will always give the stabiliser of pGρqx.

8.6 Maximality

The following lemma is useful when we want to determine containments
between the various S2-subgroups.

Lemma 8.6.1. Let L˘t pqqρn be a reducible subgroup of L˘n pqq where 2 ď t ă
n. Furthermore let ρ be a representation of L˘n pqq such that L˘n pqqρ acts on
S2pVnq or Λ2pVnq. Then pL˘t pqqρnqρ is reducible.

Proof. Let xe1, . . . , eny be an n-dimensional vector space acted on by L˘n pqq.
Without loss of generality we can assume that L˘t pqqρn fixes the subspace
xe1, . . . , ery, where t ď r ď n ´ 1 since L˘t pqq is irreducible but L˘t pqqρn is
not. Let tei b ej ´ ej b ei | 1 ď i ă j ď nu be a basis of Λ2pVnq and let
teib ei | 1 ď i ď nuY teib ej ` ej b ei | 1 ď i ă j ď nu be a basis for S2pVnq.
Then it follows that pL˘t pqqρnqρ fixes the subspace xeib ej ´ ej b ei | 1 ď i ă
j ď ry in the exterior square case. In the symmetric square case pL˘t pqqρnqρ
fixes the subspace xpeibei | 1 ď i ď rq, peibej`ejbei | 1 ď i ă j ď rqy.
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9 Maximal S2-Subgroups in Dimension 13, 14 and
15

In this chapter we will determine the maximal S2-subgroups of the classical
groups in dimension 13, 14 and 15. We will start by finding the potential
S2-candidates. Rather than looking at the dimensions individually as we
did for the S1-candidates, we will group the representations according to
their behaviour as in Chapter 8.

We will start by determining the representations of SL2pqq. This is fol-
lowed by finding the S2-subgroups that act on exterior or symmetric power
modules. We will then discuss adjoint modules before determining the max-
imal S2-subgroups.

9.1 S2-candidates

The following table, Table 9.1.1, gives the potential S2-maximal subgroups
G taken from [29] with the exception of L2pqq whose information was taken
from Section 8.3.

The first column gives the dimension in which such a group G has an
absolutely irreducible representation in defining characteristic. This is fol-
lowed by its Lie name as it appear in the tables of [29]. The corresponding
classical group name is then given which is also the name which we will use
throughout this chapter. The ‘Weight’ column shows the highest weight of
G in the respective dimensions (see Definition 8.1.14). The final column
then gives the characteristics in which these groups appear. The results in
the final column were partially taken from [29] and partially determined by
inspection of the highest weights.

Note that Sp6pqq has two absolutely irreducible representations with dis-
tinct weights in dimension 14. We will denote the images of these represen-
tations by Sp6pqq1 and Sp6pqq2. Similarly, we will denote the images of the
two 15-dimensional absolutely irreducible representations of SL˘3 pqq with
distinct weights by SL˘3 pqq1 and SL˘3 pqq2.

Let Ei,j “ palkq be a square matrix with alk “ 1 if l “ i, k “ j and
alk “ 0 otherwise.

Theorem 9.1.1. Let G be an S2-subgroup of Ω P tSL˘n pqq,Sp14pqq,Ωε
npqqu,

n P t13, 14, 15u that is potentially maximal. Then G is contained in Table
9.1.1.

Proof. This follows from the tables in [29] and Section 8.3.

131



Table 9.1.1: S2-Subgroups in Dimension 13, 14 and 15

Dim Lie Name Weight Char
13 A1 L2pqq p12q ě 13

B2 O˝5pqq p0, 2q 5
C3 S6pqq p0, 1, 0q 3

14 A1 L2pqq p13q ě 17
A3 L4pqq p1, 0, 1q 2
2A3 U4pqq p1, 0, 1q 2
B2 O˝5pqq p0, 2q ‰ 2, 5
C31 S6pqq p0, 1, 0q ‰ 3
C32 S6pqq p1, 0, 0q ‰ 2
G2 G2pqq p1, 0q ‰ 3

15 A1 L2pqq p14q ě 17
A21 L3pqq1 p0, 4q ‰ 2, 3
2A21 U3pqq1 p0, 4q ‰ 2, 3
A22 L3pqq2 p1, 2q ‰ 2
2A22 U3pqq2 p1, 2q ‰ 2
A3 L4pqq p1, 0, 1q ‰ 2
2A3 U4pqq p1, 0, 1q ‰ 2
A4 L5pqq p0, 0, 0, 2q ‰ 2
2A4 U5pqq p0, 0, 0, 2q ‰ 2
A5 L6pqq p0, 0, 0, 1, 0q all
2A5 U6pqq p0, 0, 0, 1, 0q all

9.2 SL2pqq “ Sp2pqq

The results in this section follow directly from Lemma 8.3.2 and Lemma
8.3.4.
Proposition 9.2.1 (SL2pqq).

(i) If p ě 13 then there is one conjugacy class of S2-subgroups of Ω˝13pqq
isomorphic to L2pqq, with class stabiliser xδ, φy in OutpO˝13pqqq.

(ii) If p ě 14 then there is one conjugacy class of S2-subgroups of Sp14pqq
isomorphic to SL2pqq, with class stabiliser xδ, φy in OutpS14pqqq.

(iii) If p ě 15 then there are two conjugacy classes of S2-subgroups of
Ω˝15pqq isomorphic to L2pqq.2, with class stabiliser xφy in OutpO˝15pqqq.

Proof. This follows from Lemma 8.3.2.
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9.3 Exterior and Symmetric Powers

Let G be one of the groups appearing in Table 9.1.1 and let ρi be an arbitrary
representation of G of dimension i. Let Gρn ď Ω P tSL˘n pqq, Spnpqq,Ωε

npqqu,
where n P t13, 14, 15u, and suppose that the module associated with ρn
is a subquotient of a symmetric or exterior power module. (Note that we
will often just say that ρn acts on a subquotient of a symmetric or exterior
power.) Let Gρi be generated by gi and hi, let bi denote the preserved
form matrix and let di be an automorphism of G that lies in the conformal
group of Ω. Here δΩ stands for any generating diagonal automorphism of Ω,
whereas di may or may not denote a diagonal automorphism δG of G.

9.3.1 Dimension 13

Proposition 9.3.1 (Sp6p3iq).
There is a single conjugacy class of S2-subgroups of Ω˝13p3iq isomorphic to
S6p3iq, with class stabiliser xδ, φy in OutpO˝13p3iqq.

Proof. Let G “ Sp6p3iq. By [26, Table 5.4.A, p.199] there exists a 15-
dimensional representation ρ15 of G that acts on Λ2pV6q, a 14-dimensional
representation of G acting on a submodule of Λ2pV6q and a 13-dimensional
representation acting on a subquotient of Λ2pV6q.

We will first find b15 “ β´2 (see Lemma 8.2.4), g15 “ g6ρ15, h15 and d15
before calculating the matrices for the 14-dimensional representation (see
file s2sp61comp for the explicit matrices). By Lemma 8.2.4 the matrix of
b15 is given by b15 “ c ` cT, where c “ 1

2pE5,5 ` E8,8 ` E10,10q ´ pE1,15 `
E2,14`E6,13q`E3,12`E4,9`E7,11. For a basis of Λ2pV6q we choose the set
tei ^ ej | 1 ď i ă j ď 6u ordered lexicographically. Then we can show that
b15, g15, h15 and d15 preserve the 14-dimensional subspace

W “xe1 ^ e2, e1 ^ e3, e1 ^ e4, e1 ^ e5, e1 ^ e6 ´ e3 ^ e4, e2 ^ e3, e2 ^ e4,

e2 ^ e5 ´ e3 ^ e4, e2 ^ e6, e3 ^ e5, e3 ^ e6, e4 ^ e5, e4 ^ e6, e5 ^ e6y.

Therefore we can calculate the respective 14-dimensional matrices g14, h14
and d14 induced by δG using this basis of W . We can also find b14 “ a`aT,
where a “ E5,5`E8,8`E3,11`E4,9`E5,8`E7,10´ pE1,14`E2,13`E6,12q,
which is an orthogonal form matrix with detpb14q “ 3. It follows that over
F3i the form is not non-degenerate.

It is straightforward to show that when v “ p00001001000000q then
vb14w

T “ 0 for all w P F14
3i . Hence b14 induces a non-degenerate form on the

quotient module F14
3i {xvy by Lemma 3.3.3. From this it follows that Sp3p3iq
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preserves a 13-dimensional orthogonal form by Lemma 3.3.3. Furthermore,
we can find a d13 induced by δG with determinant 1 and spinor norm -1.

Finally, ´I6ρ13 “ I13 which implies that the kernel of the representation
is x˘I6y and therefore the image of the representation ρ13 is isomorphic to
S6p3iq. Since there is only one conjugacy class of Gρ13 in Ω˝13p3i, b13q by
Lemma 8.1.23 and Lemma 4.3.3, it follows that this class is stabilised by
φΩ˝13p3iq.

Proposition 9.3.2 (Ω˝5p5iq).
There is a unique conjugacy class of S2-subgroups of Ω˝13p5iq isomorphic to
Ω˝5p5iq, with class stabiliser xδ, φy in OutpO˝13p5iqq.

Proof. Let G “ Ω˝5p5iq. It is straightforward to check that G has a 14-
dimensional representation ρ14 acting on a submodule of S2pV5q (see file
s2o5comp). We find that Gρ14 preserves the bilinear form b14 “ c`cT, where
c “ 3

2pE5,5`E8,8q ` 2pE1,14`E5,8`E6,12q `E2,13`E4,9`
1
2pE3,11`E7,10q

with determinant 5. Hence b14 is degenerate in characteristic 5. We can
show that b14 induces a non-degenerate form on the 13-dimensional quotient
space F14

5i {xp00001001000000qy from which it follows that Gρ13 preserves
an orthogonal form by Lemma 3.3.3. Furthermore, we can show that d13
induced by δG has determinant 1 and spinor norm -1 by Lemma 3.1.19.
Finally, there is a single conjugacy class of G in Ω˝13p5i, b13q by Lemma
8.1.23 and Lemma 4.3.3 and hence this conjugacy class has to be stabilised
by φΩ˝13p5iq.

Finally, we have to show that ρ13 is indeed absolutely irreducible. By
[29], there exists a 13-dimensional absolutely irreducible representation τ of
Ω˝5p5iq with weight p0, 2q which implies that Gτ acts absolutely irreducible
on a subquotient of V5bV5. Since ρ13 acts on a subquotient of V5bV5 as well,
we know that ρ13 is equivalent to τ and hence absolutely irreducible.

9.3.2 Dimension 14

Proposition 9.3.3 (Sp6pqq1 in characteristic p ‰ 2, 3).
Let ρ14 be a representation of G “ Sp6pqq with highest weight p0, 1, 0q and
let Gρ14 “ S6pqq1.

(i) If p ” 1 pmod 12q then Ω`14pp
iq has 4 conjugacy classes of S2-subgroups

ot type S6pp
iq1, with class stabiliser xδ1, φy in OutpO`14pp

iqq.

(ii) If p ” 7 pmod 12q and i is odd, then Ω`14pp
iq has 4 conjugacy classes

of S2-subgroups of type PCSp6pp
iq1, which have class stabiliser xφy in

134



OutpO`14pp
iqq. If i is even, then Ω`14pp

iq has 4 conjugacy classes of S2-
subgroups of type S6pp

iq1, with class stabiliser xδ1, φy in OutpO`14pp
iqq.

(iii) If p ” 5 pmod 12q and i is odd, then Ω´14pp
iq has 4 conjugacy classes

of S2-subgroups of type PCSp6pp
iq1, which have class stabiliser xφy in

OutpO´14pp
iqq. If i is even, then Ω`14pp

iq has 4 conjugacy classes of S2-
subgroups of type S6pp

iq1, with class stabiliser xδ1, φγy in OutpO`14pp
iqq.

(iv) If p ” 11 pmod 12q and i is odd, then Ω´14pp
iq has 4 conjugacy classes

of S2-subgroups of type S6pp
iq1, which have class stabiliser xδ1, φy in

OutpΩ´14pp
iqq. If i is even, then Ω`14pp

iq has 4 conjugacy classes of S2-
subgroups of type S6pp

iq1, with class stabiliser xδ1, φγy in OutpO`14pp
iqq.

Proof. Let Ω “ Ω˘14pqq. By Table 9.1.1, Sp6pqq1 is only defined for charac-
teristic ě 5 since we treat the characteristic 2 case separately. By [26, Table
5.4.A, p.199] there exists a 14-dimensional irreducible representation ρ14 of
G acting on a submodule of Λ2pV6q. By Proposition 9.3.1 the form matrix
preserved by Gρ14 is b14 “ c ` cT, where c “ E5,5 ` E8,8 ` E3,11 ` E4,9 `
E5,8 ` E7,10 ´ pE1,14 ` E2,13 ` E6,12q. This is an orthogonal form matrix
with detpb14q “ 3. Hence, by Lemma 3.1.13, Sp6pqq1 preserves a form of
plus-type if and only if q ” 1, 7 pmod 12q.

We can also show that ´I6ρ15 “ I15 corresponds to I14 P Ω˘14pqq in
dimension 14. This implies that the kernel of ρ14 consists of the elements
˘I6 and hence Gρ14 is isomorphic to S6pqq1.

Calculations show that detpd14q “ ω14 for some primitive element ω P
Fˆq . Hence 1

ωd14 has determinant 1 and preserves b14. Using Lemma 3.1.19
we find that 1

ωd14 has spinor norm 1 if and only if pω´1 ´ 1q6ω is square in
Fˆq (see file s2s61comp). Since this is never the case in odd characteristic,
the spinor norm of 1

ωd14 is always ´1. Hence xS6pqq,
1
ωd14y ď SO˘14pq, b14q.

If detpb14q “ 3 is square in Fq, then 1
ωd14 is induced by δ1Ω by the def-

inition of δ1. If 3 is not a square in Fq then ´ 1
ωd14 has spinor norm 1 by

Lemma 3.1.21. Therefore ´ 1
ωd14 P Ω˘14pq, b14q in this case. Note however

that ´ 1
ωd14 R Ω˘14pp

2i, b14q for any i ě 1. The number of conjugacy classes
follows from Lemma 8.1.23 and Lemma 4.3.3.

Let K “ Ω˘14pp
i, b14q. It is straightforward to show that bφK14 “ b14,

hφK14 “ h14 and gφK14 “ gp14. Hence Gρ14 ď K is stabilised by φK . By Lemma
4.8.1, there exists x P GL14pp

iq such that pGρ14q
x ď Ω˘14pp

iq preserves our
respective standard form matrices. It follows from Lemma 8.5.3(ii) that
pGρ14q

x is stabilised by pφγqΩ if and only if i is even and ´3 is not a square
in Fˆp and by φΩ otherwise. By Table 2.2.1, ´3 is not a square if and only
if p ” 5, 11 pmod 12q.
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Proposition 9.3.4 (Sp6p2iq1 in characteristic 2).
Let ρ14 be a representation of G “ Sp6p2iq with highest weight p0, 1, 0q and
let Gρ14 “ Sp6p2iq1.

If i is odd then there exist two conjugacy classes of S2-subgroups of
Ω´14pp

iq of type Sp6p2iq1, with class stabiliser xφy in OutpO´14p2iqq. If i is
even then there exist two conjugacy classes of S1-subgroups of Ω`14p2iq of
type Sp6p2iq1, with class stabiliser xφγy in OutpO`14p2iqq.

Proof. Let Ω “ Ω˘14p2iq. Using a similar method as for Sp6pqq1, p ‰ 2, 3,
we can show that Sp6p2iq1 acts on a submodule of Λ2pV6q and preserves
the symmetric bilinear form matrix b14 :“ c` cT, where c “ E1,14`E2,13`
E3,11`E4,9`E5,8`E6,12`E7,10 (see file s2sp61ch2comp). This form implies
that our 14-dimensional vector space V can be written as an orthogonal sum
([36, p.56]) as follows:

V :“xe1 ^ e2, e5 ^ e6yKxe1 ^ e3, e4 ^ e6yKxe1 ^ e4, e3 ^ e6y

Kxe1 ^ e5, e2 ^ e6yKxe2 ^ e3, e4 ^ e5yKxe2 ^ e4, e3 ^ e5y

Kxe1 ^ e6 ` e3 ^ e4, e2 ^ e5 ` e3 ^ e4y,

where tei^ ej | 1 ď i ă j ď 6u is a basis of Λ2pV6q ordered lexicographically.
To find the sign of the orthogonal form, we have to determine the number

of hyperbolic lines. Note that there are at least 6 hyperbolic lines. Let Q
be the quadratic form associated with b14 and let xa, by be any summand of
the orthogonal sum above. If Qpa` αbq “ 0 for some α P F2i then, by [36,
Thm 7.3, p.56], xa, by forms a hyperbolic line. However, using Magma we
can show that Sp6p2q preserves an orthogonal form of minus-type. Hence,
there exists a summand xa, by which does not contain any singular vectors
in F2. Without loss of generality we can then assume that Qpaq “ Qpbq “ 1
which holds in all field extensions of F2. Since b14pa, bq “ 1, we can use [8,
Prop 1.5.42(iii), p.24] to show that the quadratic form on this 2-dimensional
subspace is of minus-type if and only if x2 ` x ` 1 is irreducible in the
respective field.

By [28, Cor 3.47, p.100], we find that an irreducible polynomial of degree
n over a field Fq remains irreducible over any extension Fqk of Fq if and only
if k and n are coprime. From this it follows that x2 ` x` 1 is irreducible in
F2i for all odd i. Hence Sp6p2iq preserves an orthogonal form of plus-type
in dimension 14 if and only if i is even.

Let K “ Ω˘14p2i, Qq. It is clear that φK stabilises Sp6p2iq1 since bφK14 “

b14, hφK14 “ h14 and gφK14 “ g2
14. However, b14 is not our standard form. We

can find x P GL14p4q such that pSp6p4qρ14q
x preserves our standard form
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(see file s2sp61ch2comp). We can show that px´1qφx has quasideterminant
´1 and hence it follows from Lemma 8.5.3 that Sp6p4q1 is stabilised by
pγφqΩ. Since Sp6p2iq1 contains Sp6p4q1 as a subgroup when i is even it
follows that Sp6p2iq1 is stabilised by pφγqΩ for all even i. If i is odd then
Sp6p2iq1 is stabilised by φΩ since there is only one isomorphism class of
groups xΩ´14p2i, Bq, φy by [7], where B is a non-degenerate quadratic form.

Proposition 9.3.5 (Sp6pqq2).
Let ρ14 be a representation of G “ Sp6pqq with highest weight p1, 0, 0q and
let Sp6pqq2 “ Gρ14.

For p odd there exists one conjugacy class of S2-subgroups of Sp14pqq of
type Sp6pqq2 which has class stabiliser xδ, φy in OutpS14pqqq.

Proof. There exists a 20-dimensional representation of G that acts on Λ3pV6q
and, by [26, Table 5.4.A, p.199], there also exists a 14-dimensional irreducible
representation that acts on a submodule of Λ3pV6q. Using a similar method
as for Sp6pqq1 we can show (see file s2sp62comp) that Sp6pqq2 preserves the
symplectic form b14 “ c ´ cT , where c “ E2,13 ` E5,11 ´ pE1,14 ` E7,10q `
2pE3,12 ` E4,9 ` E6,8q. Furthermore, the diagonal automorphism δG of G
induces d14 “ diagpω3, ω2, ω2, ω2, ω2, ω2, ω, ω, ω, ω2, ω, ω, ω, 1q with determi-
nant ω21, where ω is a primitive element of Fˆq . From this it follows that
projectively d14 has determinant ω7 and preserves b14 up to multiplication
by ω. Furthermore, the number of Ω “ Sp14pqq conjugacy classes can be
determined using Lemma 8.1.23 and Lemma 4.3.3. We can show that there
is only one conjugacy class which has to be stabilised by φΩ. Finally, since
´I6ρ14 “ ´I14, the kernel of ρ14 is trivial and hence Sp6pqq2 ď Sp14pqq.

Proposition 9.3.6 (Ω˝5pqq).

(i) If p ” 1, 9 pmod 20q then there are 4 conjugacy classes of S2-subgroups
of Ω`14pp

iq isomorphic to Ω˝5ppiq, which have class stabiliser xδ1, φy in
OutpO`14pp

iqq.

(ii) Let p ” 3, 7 pmod 20q. If i is odd then there are 4 conjugacy classes
of S2-subgroups of Ω`14pp

iq isomorphic to SO˝5ppiq, with class stabiliser
xφy in OutpO`14pp

iqq. If i is even then there are 4 conjugacy classes
of S2-subgroups of Ω`14pp

iq isomorphic to Ω˝5ppiq, with class stabiliser
xδ1, φy in OutpO`14pp

iqq.

(iii) Let p ” 13, 17 pmod 20q. If i is odd then there are 4 conjugacy classes
of S2-subgroups of Ω´14pp

iq isomorphic to SO˝5ppiq, with class stabiliser

137



xφy in OutpO´14pp
iqq. If i is even then there are 4 conjugacy classes

of S2-subgroups of Ω`14pp
iq isomorphic to Ω˝5ppiq, with class stabiliser

xδ1, φγy in OutpO`14pp
iqq.

(iv) Let p ” 11, 19 pmod 20q. If i is odd then there are 4 conjugacy classes
of S2-subgroups of Ω´14pp

iq isomorphic to Ω˝5ppiq, with class stabiliser
xδ1, φy in OutpO´14pp

iqq. If i is even then there are 4 conjugacy classes
of S2-subgroups of Ω`14pp

iq isomorphic to Ω˝5ppiq, with class stabiliser
xδ1, φγy in OutpO`14pp

iqq.

Proof. Let G “ Ω˝5pqq, where p ‰ 2, 5 and let Ω “ Ω˘14pqq. It is straight-
forward to show that G has a 14-dimensional representation ρ14 acting on
a submodule of S2pV5q (see file s2o5comp). We need to show that ρ14 is
irreducible though. Since G has weight p0, 2q in dimension 14 we know, by
Lemma 8.1.19, that G acts irreducibly on a subquotient of V5 b V5. Since
S2pV5q is a submodule of V5 b V5, we know that the 14-dimensional repre-
sentation we have found must be absolutely irreducible.

We can show that Gρ14 preserves the bilinear form b14 with determinant
5 as in Proposition 9.3.2. Hence the type of the preserved orthogonal form
follows from Lemma 3.1.13 and Table 2.2.1.

Furthermore, we know that xG, δGyρ14 ď Ω˘14pq, b14q if and only if d14 “
diagpω, 1, 1, 1, ω´1qρ14 is an element of Ω˘14pqq, where ω is a primitive element
of Fˆq . A straightforward calculation shows that

d14 “ diagpω2, ω, ω, ω, 1, 1, 1, 1, ω´1, 1, ω´1, 1, ω´1, ω´2q

with detpd14q “ 1 and that d14 preserves b14. Furthermore, using Lemma
3.1.19, d14 has spinor norm 1 if and only if ω5p1´ω´2q2p1´ω´1q6 is square
in Fˆq which can never be the case.

By the definition of δ1Ω, d14 is induced by δ1Ω P OutpO˘14pqqq if 5 is a square
in Fˆq . When 5 is not square, we can show using Lemma 3.1.21 that ´d14 P

Ω˘14pq, b14q, where q “ pi with i odd. Hence xGρ14,´d14y ď Ω˘14pp
i, b14q in

this case.
It is straightforward to show that φΩ˘14pq,b14q

stabilises Gρ14. Let H –

Gρ14 preserve our standard form matrices. We can use Lemma 8.5.3 to show
when H is stabilised by φΩ or by pφγqΩ.
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Proposition 9.3.7 (G2pqq).

(i) No extension of G2p2iq is S2-maximal in any extension of Ω˘14p2iq.

(ii) If p ” 1 pmod 12q then there are 8 conjugacy classes of S2-subgroups of
Ω`14pp

iq isomorphic to G2pp
iq, with class stabiliser xφy in OutpO`14pp

iqq.

(iii) If p ” 7 pmod 12q and i is odd, then there exist 4 conjugacy classes of
S2-subgroups of Ω`14pp

iq isomorphic to G2pp
iq, with class stabiliser xφy

in OutpO`14pp
iqq. If i is even then there exist 8 such conjugacy classes,

with class stabiliser xφy in OutpO`14pp
iqq.

(iv) If p ” 5 pmod 12q and i is odd, then there exist 4 conjugacy classes
of S2-subgroups of Ω´14pp

iq isomorphic to G2pp
iq, with class stabiliser

xφy in OutpO´14pp
iqq. If i is even then there exist 8 conjugacy classes

of S2-subgroups of Ω`14pp
iq isomorphic to G2pp

iq, with class stabiliser
xφγy in OutpO`14pp

iqq.

(v) If p ” 11 pmod 12q and i is odd, then there exist 8 conjugacy classes
of S2-subgroups of Ω´14pp

iq isomorphic to G2pp
iq, with class stabiliser

xφy in OutpO´14pp
iqq. If i is even then there exist 8 conjugacy classes

of S2-subgroups of Ω`14pp
iq isomorphic to G2pp

iq, with class stabiliser
xφγy in OutpO`14pp

iqq.

Proof. We will first consider the even characteristic case. By [8, Prop 5.7.1,
p.305], G2p2iq is an S2-subgroup of Sp6p2iq. Furthermore, there exists a 14-
dimensional absolutely irreducible representation ρ of Sp6p2iq acting on a
submodule of Λ2pV6q by Proposition 9.3.4. Using Magma, we can show that
the 14-dimensional representation of G2p2q acting on a submodule of Λ2pV6q
is absolutely irreducible. Hence the image of the 14-dimensional represen-
tation of G2p2iq is absolutely irreducible for all i and therefore is an S2-
subgroup of Sp6p2iqρ. Furthermore, G2p2iq.xφSp6p2iqy ď Sp6p2iq.xφSp6p2iqy

and Sp6p2iq.xφSp6p2iqy ď Ω˘14p2iq.xβy, where β P tφΩ˘14p2iq
, pφγqΩ˘14p2iq

u by
Proposition 9.3.4. It follows that no extension of G2p2iqρ is S2-maximal.

Now let G “ G2pqq, where p ‰ 2, 3 and let Ω “ Ω˘14pqq. Then there
exists a 7-dimensional representation of G which is absolutely irreducible by
[22] and there exists a 21-dimensional representation of G acting on Λ2pV7q.
Furthermore, we can find a 14-dimensional representation ρ14 of G acting
on a submodule of Λ2pV7q (see s2g2comp). To show that ρ14 is absolutely
irreducible we will determine its highest weight. Note that the results in
Lemma 8.2.7 also apply to the finite group G by Theorem 8.1.22.
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Let B be a Borel subgroup of the natural representation of G2pKq over
an algebraically closed field K and let

T “ xdiagpa2b, ab, a, 1, a´1, a´1b´1, a´2b´1q | a, b P Kˆy

be a maximal torus of G2pKq as given in Lemma 8.2.7. Then we can choose
B such that Bρ14 consists of lower triangular matrices and stabilises the
subspace xv`y “ xp1, 0, . . . , 0qy. Furthermore,

Tρ14 “ xdiagpa3b2, a3b, a2b, ab, a, 1, b, 1, a´1, b´1, a´1b´1,

a´2b´1, a´3b´1, a´3b´2qy.

Hence the weight associated with v` is a3b2 which is dominant by Lemma
8.1.13. Furthermore there exists an absolutely irreducible representation
of G2pKq with a3b2 as its highest weight by Lemma 8.1.18. Note that
a3b2 “ λ2, where λ2 is one of the fundamental dominant weights of G2pKq by
Lemma 8.2.7. By [29] the irreducible representation of G2pKq with highest
weight p1, 0q has dimension 14 and hence G2pqqρ14 is absolutely irreducible
using Lemma 8.1.22.

We find that Gρ14 preserves the orthogonal form b14 “ c ` cT, where
c “ E1,14`E7,10´ pE2,13`E6,6`E6,8`E8,8q ` 3pE5,9´E4,11q `

3
4E3,12. It

follows that detpb14q “ 2´437 and hence G preserves an orthogonal form of
plus-type if either p ” 1, 7 pmod 12q or (p ” 5, 11 pmod 12q and q “ p2i) and
a form of minus-type otherwise by Lemma 3.1.13. The number of conjugacy
classes follows from Lemma 8.1.23 and Lemma 4.3.3. It is straightforward
to show that φΩ˘14pq,b14q

stabilises Gρ14. Let H – Gρ14 preserve our standard
form matrices. We can use Lemma 8.5.3 to show whether H is stabilised by
φΩ or pφγqΩ.

9.3.3 Dimension 15

Proposition 9.3.8 (SL˘3 pqq1).
Let ρ15 be an absolutely irreducible representation of G “ SL˘3 pqq with high-
est weight p0, 4q and let Gρ15 “ SL˘3 pqq1.

(i) If p ě 5, then there are exactly t “ p5, q ´ 1q conjugacy classes of
S2-subgroups of SL15pqq of type SL3pqq1, with class stabiliser xδt, γ, φy
in OutpL15pqqq.

(ii) If p ě 5, then there are exactly t “ p5, q ` 1q conjugacy classes of
S2-subgroups of SU15pqq of type SU3pqq1, with class stabiliser xδt, φy
in OutpU15pqqq.
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Proof. Let Ω “ SL˘15pqq. We can find a 15-dimensional representation ρ of G
such thatGρ acts on the symmetric power module S4pV3q (see file s2sl31comp
in the linear and file s2su31comp in the unitary case). We need to show that
ρ is absolutely irreducible and hence equivalent to ρ15. Note that Gρ acting
on S4pV3q has weight p0, 4q since it is a submodule of V3 b V3 b V3 b V3.
Furthermore, ρ15 has weight p0, 4q. Hence the representation ρ we have
found is indeed equivalent to ρ15. It follows that p ě 5 and that the module
is not self-dual. In particular that implies that Gρ15 preserves either only
the zero or an Hermitian form.

If G “ SL3pqq and q “ pe with e odd, then Gρ15 preserves only the
zero form. So suppose now that e is even and let τΩ “ φ

e{2
Ω . We want to

show that τΩ ‰ γΩ and hence that SL3pp
eq never preserves a unitary form in

dimension 15 when e is even. By [8, Prop 5.1.9, p.272], φe{2Ω sends p0, 4q to
p0, 4pe{2q, whereas γΩ sends p0, 4q to p4, 0q. Hence SL3pqqρ15 preserves only
the zero form.

If G “ SU3pqq then we can show using Magma that Gρ15 preserves a
unitary form (see file s2su31comp). Note that the G we have chosen for our
computer calculations preserves the unitary form antidiagp1, 1, 1q as given
in Magma. Since all isometry groups of non-degenerate unitary forms are
conjugate it does not matter which unitary form G preserves.

Now consider the kernel of ρ15 and let λI3 P ZpGq. Then λI3ρ15 “
λ4I15. Since detpλI3q “ 1 it follows that λ P t1, z3, z´1

3 u and so the only
possibility for λ4 to equal 1 is when λ “ 1. Hence kerpρ15q “ 1 and ρ15
is a faithful representation of G. Let d3 “ diagpω, 1, 1q in Case L and let
d3 “ diagpω´1, 1, ωqq in Case U induce the diagonal automorphism of G,
where ω is a primitive element of Fˆq or Fˆq2 respectively. Then d15 has
determinant ω20 or ω20pq´1q and projectively d15 has determinant ω5 or
ω5pq´1q. We want to show that projectively di15 never has determinant 1
for any 1 ď i ă pq ˘ 1, 3q “ |δG|, i.e. we will show that w´1di15 never has
determinant 1.

We will consider Case L first. Suppose that µpω´1di15q has determinant
1 for some i and some scalar µ P Fˆq . Then µ15ω5i “ 1 and hence pµ5q3 “
ω´3iω´2i. From this it follows that ω2i is a cube which is a contradiction
unless i is a multiple of 3 or 3 - q´1. However i ă pq´1, 3q ď 3 by definition
and if 3 - q ´ 1 then |δSL3pqq| “ 1.

Similarly in Case U this implies that ω2ipq´1q is a cube which only holds
if 3 divides q ´ 1, i.e. 3 - q ` 1, since i ă pq ` 1, 3q ď 3. If 3 divides
q´ 1 however then pq` 1, 3q “ 1 and the diagonal automorphism of SU3pqq
is trivial. Therefore, no non-trivial diagonal automorphism of SL˘3 pqq1 is
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induced by an element of SL˘15pqq.
Finally, using Lemma 4.3.3 and Lemma 8.1.23, there are p5, q ¯ 1q con-

jugacy classes of G in SL˘15pqq respectively. Hence, δtΩ stabilises Gρ15. By
Lemma 8.5.2, SL˘3 pqq1 is stabilised by φΩ and γΩ.

Proposition 9.3.9 (SL˘3 pqq2).
Let ρ15 be an absolutely irreducible representation of G “ SL˘3 pqq with high-
est weight p1, 2q and let Gρ15 “ SL˘3 pqq2. Let t “ p5, q´1q in the linear case
and let t “ p5, q ` 1q in the unitary case.

(i) If p ě 3, then there are exactly t conjugacy classes of S2-subgroups of
SL15pqq of type SL3pqq2, with class stabiliser xδt, γ, φy in OutpL15pqqq.

(ii) If p ě 3, then there are exactly t conjugacy classes of S2-subgroups of
SU15pqq of type SU3pqq2, with class stabiliser xδt, φy in OutpU15pqqq.

Proof. Let Ω “ SL˘15pqq. It follows from Lemma 8.1.19 that SL˘3 pqq2 acts on
a subquotient of the 18-dimensional module V ˚3 bS2pV3q, where V ˚3 denotes
the dual module of V3. Let ρ18 be a representation of SL˘3 pqq such that ρ18
acts on V ˚3 b S2pV3q.

Since the module of SL˘3 pqq2 is not self-dual it carries only the zero
or a unitary form. If SL3pqq2 preserves a unitary form then pSL3pqq2q

γΩ “

ppSL3pqq2q
φ
e{2
Ω , where q “ pe. But γΩ sends the weight p1, 2q to p2, 1q whereas

φ
e{2
Ω sends p1, 2q to ppe{2, 2pe{2q by [8, Prop 5.1.9, p.272]. It follows that

SLpqq2 always preserves no other than the zero form, whereas computer
calculations (see file s2su32comp) show that SU3pqq2 preserves a unitary
form.

Now let λI3 P G. It is straightforward to show that λI3ρ15 “ λI15 and
hence kerpρ15q “ I3 which implies that ρ15 is a faithful representation of G.

Note that d15 induced by δG has determinant ω5 or ω5p1´qq in the linear or
unitary case respectively. Using the same argument as in Proposition 9.3.8,
we can show that di15 never has determinant 1 for any 1 ď i ă pq¯1, 3q “ |δ3|.
Furthermore, the number of conjugacy classes follows from Lemma 8.1.23,
Lemma 4.3.3 and the fact that δtΩ stabilises the representation.

Let Ω “ L˘15pqq. As our final step we have to consider the action of γL15pqq

and φΩ in OutpΩq on SL˘3 pqq2. By Lemma 4.4.2 and Lemma 8.5.1 it is clear
that γL15pqq stabilises SL3pqq2. Furthermore, by Lemma 8.5.1, ρφU15pqq

15 is
equivalent to φU3pqqρ15 and hence it follows from Lemma 4.5.1, that φU15pqq

stabilises SU3pqq2. Hence it remains to consider the action of φL15pqq.
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We can show that SL3pqqρ18 preserves the 15-dimensional subspace

W “ xf1 ´ 2f15, f2 ´ f17, f3 `
q´1

2 f18, f4, f5, f6, f7, f8 ´ f15, f9, f10 ´ 2f17,

f11 `
q´1

2 f18, f12, f13, f14, f16y,

where the fi are the 18-dimensional standard basis vectors of F18
q . Now let

A denote the 15 ˆ 18 matrix whose rows are the basis vectors of W as a
subspace of V ˚3 bS2pV3q (see file s2sl32comp). Then A has entries in Fp and
hence AATD “ I15 for some D implies that D P M15ˆ15ppq. Furthermore,
using a similar approach as in Lemma 8.5.2 we can show that g P SL3pqq acts
on the 15-dimensional subspace as Apg˚ b g2qA

TD, where g2 is the action
matrix of g on S2pV3q. Hence

pApg˚ b g2qA
TDqφL15pqq “ AppgφL3pqqq˚ b gφR2 qATD,

where R “ SL6pqq. By [8, Lemma 5.9.1, p.310], the automorphism φR
induces φSL3pqq.

Hence SL˘3 pqq2 is stabilised by γΩ and φΩ.

Proposition 9.3.10 (SL˘5 pqq).

(i) For odd q, there are t “ p3, q ´ 1q conjugacy classes of S2-subgroups
G of SL15pqq isomorphic to SL5pqq, with class stabiliser xδt, γ, φy in
OutpL15pqqq.

(ii) For odd q, there are t “ p3, q ` 1q conjugacy classes of S2-subgroups
G of SU15pqq isomorphic to SU5pqq, with class stabiliser xδt, φy in
OutpU15pqqq.

Proof. Let Ω “ SL˘15pqq. By [26, Table 5.4.A, p.199] there exists a 15-
dimensional representation ρ15 of SL˘5 pqq such that SL˘5 pqqρ15 acts irre-
ducibly on S2pV5q. Furthermore, by Table 9.1.1 this representation has
weight p0, 0, 0, 2q and is not self-dual by Lemma 8.1.25. Hence the image of
ρ15 preserves either only the zero or a unitary form. In the case G “ SU5pqq,
Gρ15 preserves a unitary form by Lemma 8.2.4. If G “ SL5pp

eq then it is
clear that if e is odd, Gρ15 cannot preserve a unitary form. Hence assume
that e is even. Then it follows from [8, Prop 5.1.9, p.272] that φe{2Ω ‰ γΩ
and hence SL5pqqρ15 never preserves a unitary form.

Note that if λI5 P SL˘5 pqq then λ5 “ 1 whereas pλI5qρ15 “ λ2I15 P
kerpρ15q if and only if λ “ ˘1. Hence ρ15 is a faithful representation of
SL˘5 pqq.

143



Now consider the case G “ SL5pqq and let d5 generate the diagonal auto-
morphisms of G. Then d15 “ diagpω2, ω, ω, ω, ω, 1, . . . , 1q with determinant
ω6, where ω is primitive in Fˆq . Suppose that projectively di15 P SL15pqq for
some i. This holds if we can find µI15 P SL15 such that detpµdi15q “ 1 for
some µ P Fˆq . Then µ15 “ ω´6i and pµ3q5 “ ω´5iω´i which implies that we
require ωi to be a fifth power. This holds either if 5 | i or if 5 - q ´ 1. Since
|δG| “ p5, q ´ 1q it follows that i ď 4. Furthermore, if 5 - q ´ 1 then δG is
trivial. Hence di15 R SL15pqq for any 1 ď i ď 4. Since detpdi15q “ ω6, the
diagonal automorphism of G is induced by δ6

L15pqq
P OutpL15pqqq.

If G “ SU5pqq, then d15 “ diagpω2pq´1q, ωq´1, ωq´1, ωq´1, ωq´1, 1, . . . , 1q.
If projectively di15 P SU15pqq for some 1 ď i ď 4, then there exists µ P Fˆq2

such that detpµdi15q “ µ15ω6ipq´1q “ 1. Similarly to the linear case this
holds if and only if ωipq´1q is a fifth power. Again i ď 4 and ω “ λ5 for
some λ P Fˆq2 if and only if δG is trivial. So assume that 5 | pq´ 1q but then
5 - pq ` 1q and hence δG is trivial again. It follows that δG is induced by
δ6

U15pqq
P OutpU15pqqq.

Finally, there is one conjugacy class of SL˘5 pqq in the respective conformal
group C of SL˘15pqq by Lemma 8.1.23 and each such class splits into t “
|C : NCpSL˘5 pqqρ15q| classes in SL˘15pqq by Lemma 4.3.3. In the linear case
t “ p3, q´ 1q since |xδ6

L15pqq
y| “

p15,q´1q
p6,p15,q´1qq “

p15,q´1q
p3,q´1q . Similarly we can show

that in the unitary case t “ p3, q ` 1q.
The action of γΩ and φΩ follows from Lemma 8.5.2.

Proposition 9.3.11 (SL˘6 pqq).
Let tl “ p5, q ´ 1q and let tu “ p5, q ` 1q.

(i) If p ě 3 then there are tl conjugacy classes of S2-subgroups G of
SL15pqq isomorphic to pq´1,6q

2 .L6pqq.2, with class stabiliser xδtl , γ, φy in
OutpL15pqqq.

(ii) If p ě 3 then there are tu conjugacy classes of S2-subgroups G of
SU15p3iq isomorphic to pq`1,6q

2 .U6pqq.2, with class stabiliser xδtu , φy in
OutpU15pqqq.

(iii) If p “ 2 then there are tl conjugacy classes of S2-subgroups of SL15p2iq
isomorphic to SL6p2iq, with class stabiliser xδtl , γ, φy in OutpL15p2iqq.
There are also tu conjugacy classes of S2-subgroups of SU15p2iq iso-
morphic to SU6p2iq, with class stabiliser xδtu , φy in OutpU15p2iqq.

Proof. Let Ω “ SL˘15pqq. By [26, Table 5.4.A, p.199] there exists a 15-
dimensional absolutely irreducible representation ρ15 of SL˘6 pqq such that
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SL˘6 pqqρ15 acts on the exterior power Λ2pV6q and by Table 9.1.1 has weight
p0, 0, 0, 1, 0q. Hence the weight is not self-dual by Lemma 8.1.25 and the
image of ρ15 preserves either only the zero or a unitary form. It follows by
[8, Prop 5.1.9, p.272] and Lemma 8.2.4 that SU6pqqρ15 preserves a unitary
form whereas SL6pqqρ15 preserves no non-zero form.

To find kerpρ15q, let λI6 P SL˘6 pqq, i.e. λ P t˘1, z˘1
6 , z˘1

3 u. Then λI6ρ15 “
λ2I15 from which it follows that λI6 P kerpρ15q if and only if λ “ ˘1.
Therefore, pq¯1,6q

2 .L˘6 pqq ď SL˘15pqq if q is odd and SL˘6 pqq ď SL˘15pqq if q is
even.

We will first assume that q is odd. We want to determine whether
di6ρ15 ď SL˘15pqq for any i. First let G “ SL6pqq. Then δiG is induced by
di6 “ diagpωi, 1, 1, 1, 1, 1q, where ω is a primitive element of Fˆq . Furthermore,
di15 “ diagpωi, ωi, ωi, ωi, ωi, 1, . . . , 1q with determinant ω5i. Now suppose
that there exists µI15 P GL15pqq such that detpµdi15q “ 1. Then µ15ω5i “ 1
and so pµ5q3 “ ω´3iω´2i. This implies that ω2i needs to be a cube which
holds if and only if 3 | i or 3 - q ´ 1. We will first consider the case
when 3 - q ´ 1. Then |δG| “ p6, q ´ 1q “ 2 and di15 P SL15pqq for all i.
Hence L6pqq.xδGy ď SL15pqq in this case. If 3 | q ´ 1 then 1 ď i ă |δG| “
p6, q ´ 1q “ 6. It follows that the cubes of the diagonal automorphisms
of L6pqq are induced by elements of SL15pqq and 3.L6pqq.xδ

3
Gy ď SL15pqq.

Furthermore, since detpd15q “ ω5 the class stabiliser of Gρ15 is induced by
δ5

L15pqq
P GL15pqq. The number of conjugacy classes follows from Lemma

8.1.23 and Lemma 4.3.3.
Now consider the case G “ SU6pqq. Then δG is induced by d6 “

diagpωq´1, 1, . . . , 1q, where ω is a primitive element of Fˆq2 , and it follows that
d15 “ diagpωq´1, ωq´1, ωq´1, ωq´1, ωq´1, 1, . . . , 1q with determinant ω5pq´1q.
Similarly to the linear case we find that if 3 - q`1 then U6pqq.xδ6y ď SU15pqq
and if 3 | q ` 1 then 3.U6pqq.xδ

3
6y ď SU15pqq. Furthermore, since detpd15q “

ω5pq´1q the class stabiliser is generated by δ5
U15pqq

P CGU15pqq. The number
of conjugacy classes follows from Lemma 4.3.3 and Lemma 8.1.23.

Now let p “ 2. To consider the diagonal automorphisms, let G “

SL6p2jq. Assume that there exists µI15 P GL15p2jq such that detpµdi15q “
µ15ω5i “ 1. Again this implies that we require ω2i to be a cube. First note
that i ă 3 since |δG| “ p6, 2j ´ 1q “ p3, 2j ´ 1q. Suppose that there exists
λ P F2j such that λ3 “ ω2. Since all elements are square in characteristic 2,
this implies in particular that there exists some ν P F2j such that ν2 “ λ.
Hence we want to find ν such that ν3 “ ω. This is possible if and only if
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p3, 2j ´ 1q “ 1 but then |δG| “ 1. Therefore no diagonal automorphism of
G is induced by an element of SL15p2jq. Let t “ p2j ´ 1, 5q. Then there are
t conjugacy classes of G in GL15p2jq. The normaliser of G in GL15p2jq is
generated by G itself, δtL15pqq

and scalars.
If G “ SU6p2jq then a diagonal automorphism of G is induced by an

element of SU15p2jq if and only if we can find µ P F2j such that µ15 “
ω5ip2j´1q for some i. Again i ă 3. If 3 - 2j ´ 1 then we can show using a
similar argument as in the linear case that it is possible to find ν P F22j such
that ν3 “ ω if and only if p3, 2j ` 1q “ 1. Hence no automorphism of G is
induced by an element of SU15p2jq in this case. If 3 | 2j ´ 1 then 3 - 2j ` 1
and hence the diagonal automorphism of G has order 1 in this case giving
the same result as before. Again δG is induced by δ5

U15pqq
.

Finally, by Lemma 8.5.2 we know that φΩ and γΩ stabilise SL˘6 pqqρ15.

9.4 Adjoint Modules

In this section we will consider the representations that act on adjoint mod-
ules. The theory behind this was given in Section 8.4.

9.4.1 Dimension 14

Proposition 9.4.1 (L˘4 p2iq).

(i) If i is odd there are two conjugacy classes of S2-subgroups of Ω´14p2iq
isomorphic to SL4p2iq.2, with class stabiliser xφy in OutpO´14p2iqq. If i
is even then there are two conjugacy classes of S2-subgroups of Ω`14p2iq
isomorphic to SL4p2iq.2, with class stabiliser xφy in OutpO`14p2iqq.

(ii) If i is odd there are two conjugacy classes of S2-subgroups of Ω´14p2iq
isomorphic to SU4p2iq.2, with class stabiliser xφy in OutpO´14p2iqq. If
i is even there are two conjugacy classes of S2-subgroups of Ω`14p2iq
isomorphic to SU4p2iq.2, with class stabiliser xφy in OutpO`14p2iqq.

Proof. Let G “ SL˘4 p2iq, let Ω “ Ω˘14p2i, Bq for some non-degenerate sym-
metric bilinear form B and let ρ14 be the adjoint representation of G. The
type of orthogonal form preserved by Gρ14 follows from Corollary 8.4.6. By
Lemma 8.4.8, the automorphism γ P OutpL˘4 p2iqq is induced by an element
of Ω. By Lemma 8.5.1, φΩ induces either φG or pφγqG. Since γ stabilises
Gρ14 it follows that Gρ14 is always stabilised by φΩ.
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9.4.2 Dimension 15

Proposition 9.4.2 (L˘4 pqq in odd characteristic).

(i) If p ě 3 then Ω˝15pqq has a single conjugacy class of S2-subgroups
isomorphic to L4pqq.2, with class stabiliser xδ, φy in OutpO˝15pqqq.

(ii) If p ě 3 then Ω˝15pqq has a single conjugacy classes of S2-subgroups
isomorphic to U4pqq.2, with class stabiliser xδ, φy in OutpO˝15pqqq.

Proof. Let Ω “ Ω˝15pqq. By [8, Lemma 5.4.10, p.294] there exists a 15-
dimensional adjoint representation ρ15 of SL˘4 pqq in odd characteristic. Then
SL˘4 pqqρ15 preserves an orthogonal form. By Lemma 8.4.7 the diagonal
automorphism of SL˘4 pqqρ15 – L˘4 pqq sits inside SO˝15pqqzΩ and hence is
induced by δΩ.

Furthermore, it follows from Lemma 8.4.8 that the duality automorphism
of SL˘4 pqqρ is induced by an element of Ω. By Lemma 8.5.1, no element of
CGO˝15pqq induces the field automorphism of SL˘4 pqqρ15. By Lemma 4.3.3
and Lemma 8.1.23 there is one conjugacy class of SL˘4 pqqρ15 in Ω and this
class is therefore stabilised by φΩ.

9.5 S2-Maximality

In this section we will determine which of the S2-subgroups in Table 9.1.1
are S2-maximal in dimension 13, 14 and 15.

Proposition 9.5.1 (S2-maximal subgroups in dimension 13).

(i) The group S6p3iq is S2-maximal in Ω˝13p3iq.

(ii) The group Ω˝5p5iq is S2-maximal in Ω˝13p5iq.

(iii) In characteristic ě 13 the group L2pqq is S2-maximal in Ω˝13pqq.

Proof. All the 13-dimensional S2-subgroups occur in different characteris-
tics.

Proposition 9.5.2 (S2-maximal subgroups in dimension 14).

(i) In characteristic ě 17 the group SL2pqq is S2-maximal in Sp14pqq.

(ii) In odd characteristic Sp6pqq2 is S2-maximal in Sp14pqq.

(iii) The groups SL˘4 p2iq.2 are S2-maximal in Ω˘14p2iq.
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(iv) If p ‰ 3 then NΩ˘14pqq
pS6pqq1q is S2-maximal in Ω˘14pqq.

(v) If p ‰ 2, 5 then NΩ˘14pqq
pΩ˝5pqqq is S2-maximal in Ω˘14pqq.

(vi) If p ‰ 2, 3 then NΩ˘14pqq
pG2pqqq is S2-maximal in Ω˘14pqq. No extension

of G2p2iq is S2-maximal in any extension of Ω˘14p2iq.

Proof. (i) The only (up to equivalence) S2-subgroup that can contain
SL2pqq is Sp6pqq2. By [8, Section 8.2, p.377] Sp6pqq has only one ab-
solutely irreducible subgroup H isomorphic to SL2pqq. Let ρ14 be the
absolutely irreducible representation of Sp6pqq. We are going to cal-
culate the highest weight of Hρ14 (see Section 8.1). Note that we can
work over Fq by Lemma 8.1.22.
It is straightforward to calculate the maximal torus T of H and its
Borel group B using Lemma 8.2.6. Then

T “ xdiagpα5, α3, α, α´1, α´3, α´5q |α P Fˆq y

and we can let B consist of lower triangular matrices. It can be shown
that

Tρ14 “ xdiagpα9, α7, α5, α3, α3, α, α, α´1, α´3, α´1, α´3, α´5, α´7, α´9qy

and that Bρ14 consists of lower triangular matrices. Hence Bρ14 sta-
bilises the subspace xp1, 0, . . . , 0qy with weight χptq “ α9 for all t P T .
By Table 9.1.1 the 14-dimensional absolutely irreducible representa-
tion ρ of SL2pqq has highest weight p13q. Hence Hρ14 is not equivalent
to SL2pqqρ. It follows that SL2pqqρ is S2-maximal.

(ii) By Lagrange’s theorem Sp6pqq2 has to be S2-maximal.
(iii) By [8, Section 8.2, p.377], SL˘4 p2iq is not a subgroup of G2p2iq or

Sp6p2iq.
(iv) By Lagrange’s theorem Sp6pqq is not a subgroup of G2pqq.
(v) By [8, Section 8.2, p.377], Ω˝5pqq is not a subgroup of G2pqq or Sp6pqq.

(vi) Since the natural representation of G2pqq has dimension 7 in odd char-
acteristic, it can not be a subgroup of any of the other S2-subgroups
in dimension 14. In even characteristic the result follows from Propo-
sition 9.3.7.

Proposition 9.5.3 (S2-maximal subgroups in dimension 15).

(i) No extension of NSL˘15pqq
pSL˘3 pqq2q is S2-maximal in any extension of

SL˘15pqq.
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(ii) If p ‰ 2, 3 then NSL˘15pqq
pSL˘3 pqq1q is S2-maximal in SL˘15pqq.

(iii) If p ‰ 2 then NSL˘15pqq
pSL˘5 pqqq is S2-maximal in SL˘15pqq.

(iv) If p ě 3 then NSL˘15pqq
pp3, q ¯ 1q.L˘6 pqqq is S2-maximal in SL˘15pqq.

Furthermore, NSL˘15p2iq
pSL˘6 p2iqq is S2-maximal in SL˘15p2iq.

(v) If p ě 17 then NΩ˝15pqq
pL2pqqq is S2-maximal in Ω˝15pqq.

(vi) If p ě 3 then NΩ˝15pqq
pL˘4 pqqq is S2-maximal in Ω˝15pqq.

Proof. (i) By [8, Table 8.25, p.389 and Table 8.27, p.391], SL˘6 pqq has
an irreducible subgroup H isomorphic to SL˘3 pqq. Let ρ15 be a 15-
dimensional absolutely irreducible representation of SL˘6 pqq. We are
going to to show that Hρ15 is of type SL˘3 pqq2. To do so we will find
the highest weight of Hρ15. By Lemma 8.1.18 if the highest weight of
Hρ15 is p1, 2q then SL˘3 pqq2 is an S2-subgroup of SL˘6 pqq equivalent to
Hρ15 and hence can never be maximal.
We will first consider SL3pqq. Note that we can use our result of
SL3pFpq in Section 8.1 since by Theorem 8.1.22 we get equivalent re-
sults for SL3pqq. By Example 8.1.9 the maximal torus of SL3pqq is
given by T “ xdiagpα, β, α´1β´1qy for α, β P Fˆq . Furthermore, by Ex-
ample 8.1.17, λ1ptq “ α and λ2ptq “ αβ and the Borel subgroup can be
chosen to consist of lower triangular matrices. Then there exists a 6-
dimensional representation ρ6 of SL3pqq acting on S2pV3q which is irre-
ducible by [8, Prop 5.4.5, p.291] and therefore, without loss of general-
ity, H “ SL3pqqρ6. Then Tρ6 “ xdiagpα2, αβ, β´1, β2, α´1, α´2β´2qy
is the maximal torus of H. Furthermore, Bρ6 consists of lower trian-
gular matrices. Since SL6pqqρ15 acts on Λ2pV6q we will now determine
pTρ6qρ15 and pBρ6qρ15. A straightforward calculation shows that

pTρ6qρ15 “ xdiagpα3β, α2β´1, α2β2, α, β´2, α, αβ3, β, α´1β´1, β,

β´1α´1, α´2β´3, α´1β2, α´2, α´3β´2qy

and pBρ6qρ15 is again generated by lower triangular matrices. Hence
pBρ6qρ15 stabilises the 1-dimensional subspace xv`y “ xp1, 0, . . . , 0qy.
By Definition 8.1.10, the weight related to v` is λ “ χpptρ6qρ15q “
α3β for all t P T which is dominant by Lemma 8.1.13. Hence, by
Lemma 8.1.18 there exists up to isomorphism a unique irreducible
representation of H with highest weight λ “ 2λ1 ` λ2. Since there
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exists a 15-dimensional representation ρ of SL3pqq with highest weight
p1, 2q, ρ15 has to be equivalent to ρ and hence SL3pqq2 is not S2-
maximal.
Let Ω “ SL15pqq. Recall from Proposition 9.3.11 that pq´1, 3q.L6pqq.2
is stabilised by xδtΩ, γΩ, φΩy in odd characteristic, where t “ pq´ 1, 5q.
Let K “ SL6pqq. Then G “ SL3pqq has stabiliser xδ2

K , φK , γKy in
OutpL6pqqq if q ” ˘1 pmod 8q and stabiliser xδ2

K , φK , pγδqKy if q ”
˘3 pmod 8q by [8, Section 8.2, p.377]. We are going to show that
pq ´ 1, 3q.L6pqq.OutpL6pqqq is contained in SL15pqq.xδ

t
Ω, γΩ, φΩy. In

particular this implies that SL3pqq2 never extends to a novelty. Let
r “ p3, q ´ 1q. Then |δΩ| “ p5, q ´ 1qr and |δK | “ 2r from which
it follows that |OutpL6q| “ |xδK , φK , γKy| “ 2r ¨ e ¨ 2. Furthermore,
|xδtΩ, γΩ, φΩy| “ r ¨2 ¨ e. We also know that pq´1, 3q.L6p2q.2 ď SL15pqq
which proves our claim.
We can similarly show that SU3pqq2 is not S2-maximal. The maximal
torus of SU3pqq is T “ xdiagpα, β, α´1β´1q |αασ “ ββσ “ 1, α, β P
Fˆq2y. As in the linear case no extension of SU3pqq2 is ever S2-maximal
in any extension of SU15pqq.

(ii) By [8, Section 8.2, p.377], SL˘6 pqq has only one (up to equivalence)
irreducible subgroup H isomorphic to SL˘3 pqq. Let ρ15 be an absolutely
irreducible 15-dimensional representation of SL˘6 pqq. By (i) Hρ15 is of
type SL˘3 pqq2. Furthermore, again by [8, Section 8.2, p.377], SL˘5 pqq
has no irreducible subgroups isomorphic to SL˘3 pqq. By Lemma 8.6.1
any reducible subgroup of either SL6pqq or SL5pqq remains reducible
in their respective 15-dimensional representations.

(iii) By [8, Section 8.2, p.377] there are no irreducible subgroups of SL˘6 pqq
isomorphic to SL˘5 pqq. Hence by Lemma 8.6.1 the 15-dimensional ab-
solutely irreducible representation of SL˘6 pqq acting on Λ2pV6q has no
irreducible subgroups isomorphic to SL˘5 pqq.

(iv) The group SL˘6 pqq is the largest S2-subgroup of SL˘15pqq.
(v) The only other S2-subgroup of Ω˝15pqq is SL˘4 pqq.2. By [8, Section

8.2, p.377] the only subgroups of SL˘4 pqq that could contain an S2-
subgroup isomorphic to L2pqq are the classical groups Ω˘4 pqq, Sp4pqq
and SU4pqq. However by looking at the respective tables of Ω´4 pqq,
Sp4pqq and SU4pqq in [8, Section 8.2, p.377] we see that there is no
containment. Furthermore, Ω`4 pqq “ SL2pqq ˝ SL2pqq does not contain
L2pqq either.

(vi) The group SL˘4 pqq is the largest S2-subgroup of Ω˝15pqq.
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10 Containments

In this chapter we will find all maximal subgroups of the quasisimple classi-
cal groups, and their extensions by outer automorphisms, in dimension 13,
14 and 15. We will first determine the S -subgroups that are potentially
maximal before identifying containments between the maximal geometric
subgroups and these S -subgroups.

Definition 10.0.1. An S2-subgroup G is potentially maximal in some
extension of Ω P tSL˘n pqq,Spnpqq,Ωε

npqqu if G is S2-maximal but G is not
the image of a p-unrestricted representation of some cover of L2pqq which
might be S2-maximal but is not maximal overall.

10.1 S -Maximals

We will look at each dimens ion individually. The 13, 14 and 15-dimensional
S1-subgroups are considered in Chapter 5, Chapter 6 and Chapter 7 respec-
tively. The potentially maximal S2-subgroups are given in Chapter 9.

Definition 10.1.1. A group G is an S1-novelty if G is an S1-subgroup of
Ω P tSL˘n pqq, Spnpqq,Ωε

npqqu and if G is a novelty among the S1-subgroups.
A subgroup is S -maximal if it is either S1- or potentially S2-maximal

and maximal among the union of the S1- and S2-subgroups.

We will also need the following lemma.

Lemma 10.1.2. Let ∆ P tΛ2pV6q, Λ2pV7q, Λ3pV6q, S2pV5q, S4pV3q, S12pV2q,
S13pV2q,S14pV2q, V

˚
3 b S2pV3q, V

˚
4 b V4u be a module, where t is the dimen-

sion of the underlying vector space Vt. Let H be the quasisimple preim-
age of one of the defining characteristic representations ρ given in Ta-
ble 9.1.1 with natural representation τ of dimension t. Then Hρ ď Ω P

tSL˘n pqq,Spnpqq,Ωε
npqqu, n P t13, 14, 15u, and Hρ acts on a subquotient of

∆. Let G be a quasisimple subgroup of Hρ. If G ď Hρ and G is an S1-
subgroup of Ω then G1τ “ pGρ

´1qτ is absolutely irreducible as a subgroup of
Hτ .

Proof. Let ρ1 be a representation of H such that Hρ1 acts on ∆ and assume
that G1τ is reducible. We are going to show that G is reducible in this case.

We will first consider the case ∆ “ Λ2pV6q. Let te1, . . . , e6u be a basis
of V6. Then tei b ej ´ ej b ei | 1 ď i ă j ď 6u is a basis of Λ2pV6q. Without
loss of generality suppose that pG1τq fixes the subspace te1, . . . , eru, r ď 5.
Then pG1τqρ

1 fixes the subspace xei b ej ´ ej b ei | 1 ď i ă j ď ry, which
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has dimension at most
`5

2
˘

“ 10. Hence pG1τqρ fixes a subspace of at most
dimension 10 which implies that G is reducible.

Now let ∆´ “ ΛkpVt´1q if ∆ “ ΛkpVtq. Similarly, let ∆´ “ SkpVt´1q,
V ˚2 bS2pV2q or V ˚3 bV3. It is straightforward to show that pG1τqρ stabilises a
subspace of at most dimp∆´q if G1τ is reducible. The following table shows
that unless ∆ “ Λ2pV7q, G is reducible if G1τ is reducible.

∆ dimp∆q dimp∆´q dimpρq
Λ2pV6q

`6
2
˘

“ 15
`5

2
˘

“ 10 13, 14, 15
Λ2pV7q

`7
2
˘

“ 21
`6

2
˘

“ 15 14
Λ3pV6q

`6
3
˘

“ 20
`5

3
˘

“ 10 14
S2pV5q

`6
2
˘

“ 15
`5

2
˘

“ 10 13, 14,15
S4pV3q

`6
4
˘

“ 15
`5

4
˘

“ 5 15
S12pV2q 13 1 13
S13pV2q 14 1 14
S14pV2q 15 1 15
V ˚3 b S2pV3q 3ˆ

`4
2
˘

“ 18 2ˆ
`3

2
˘

“ 6 15
V ˚4 b V4 4ˆ 4 “ 16 3ˆ 3 “ 9 14, 15

Now let H “ G2pqq, p ě 5, and let ∆ “ Λ2pV7q. Then ρ has dimension 14
and Hρ ď Ω˘14pqq. Furthermore, dimpΛ2pV7qq “ 21, dimpΛ2pV6qq “ 15 and
dimpΛ2pV5qq “ 10. Hence we have to show that G cannot be not absolutely
irreducible if G1τ stabilises a 6-dimensional subspace.

Let π be an absolutely irreducible 6-dimensional representation of some
cover G˚1 of a group isomorphic to G. By Proposition 6.4.17 and [8, Thm
4.3.3, p.162], we can deduce that the only possibilities for G ď Ω˘14pqq
and G˚1 with absolutely irreducible 6-dimensional representation are G P

tA7,L2p13q1,2u and G˚1 P tA7, 3.A7, 6.A7, 2.L2p13qu.
By looking at the maximal subgroups of G2pqq ([8, Table 8.41, p.397])

we see that G needs to be isomorphic to a subgroup of GL2pqq, PGL2pqq,
SL˘3 pqq, 23.L3p2q or J1 if G ď Hρ. By [6], G cannot be isomorphic to
a subgroup of J1 or 23.L3p2q. Furthermore, by looking at the tables in
[8, Section 8.2, p.377], we see that in fact the only possible containment
is p3.A7qτ ď G2p5q. Computer calculations (file s1ins2cont) show that
p3.A7τqρ is reducible.

Finally, we will assume that G1τ is irreducible but not absolutely irre-
ducible. Then there exists some s ą 1 such that G1τ is reducible in GLtpqsq
and hence pG1τqρ is reducible over Fqs . In particular this implies that G is
not absolutely irreducible, which proves our claim.
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10.1.1 S -Maximals in Dimension 13

The following table, Table 10.1.1 gives all 13-dimensional S1- and S2-
maximal subgroups G that are potentially maximal. The groups are taken
from Theorem 5.1.1, Proposition 5.2.4, Proposition 5.3.10 and Proposition
9.5.1.

The table shows whether G is S1- or S2-maximal, it gives the Schur
indicator of G, G8, the order of G8 and the characteristics in which G
occurs. If the column ‘PermRep’ is non-empty then some extension of G8
is S -maximal. This column gives the degree of the smallest permutation
representation of H, where H “ G8{ZpG8q. This is mostly useful for
determining whether an S -maximal subgroup is contained in a geometric
subgroup. If there is an ˚ next to a group name, then G is an S1-novelty.

The degrees of the smallest permutation representations were taken from
[6] and [17]. The remaining information comes from Table 5.1.1 and Table
9.1.1 with the exception of the group orders of the S2-subgroups which
comes from [17].

Table 10.1.1: Potential S -maximal subgroups in dimension 13

Si Ind Gp Order Charc PermRep
S1 ˝ S6p3q 29 ¨ 39 ¨ 5 ¨ 7 ¨ 13 ‰ 3 364
S1 ˝ U3p4q 26 ¨ 3 ¨ 52 ¨ 13 ‰ 2, 5 65
S1 ` A˚8 26 ¨ 32 ¨ 5 ¨ 7 3 8
S1 ` A14 210 ¨ 35 ¨ 52 ¨ 72 ¨ 11 ¨ 13 ‰ 2, 3, 5, 7 14
S1 ` A15 210 ¨ 36 ¨ 53 ¨ 72 ¨ 11 ¨ 13 3, 5 15
S1 ` L2p25q 23 ¨ 3 ¨ 52 ¨ 13 ” 2, 3 pmod 5q,‰ 2 26
S1 ` L3p3q 24 ¨ 33 ¨ 13 ‰ 2, 3 13
S1 ` S4p5q 26 ¨ 32 ¨ 54 ¨ 13 ‰ 2, 5 156
S1 ` J2 27 ¨ 33 ¨ 52 ¨ 7 3 —
S2 ` L2pqq

1
2qpq

2 ´ 1q ě 13 ě 14
S2 ` S6p3iq 1

239iś3
j“1p32ij ´ 1q 3 ě 364

S2 ` Ω˝5p5iq 1
254iś2

j“1p52ij ´ 1q 5 ě 156

Theorem 10.1.3. Let G be an S1- or potentially S2-maximal subgroup
of any extension of Ω P tSL˘13pqq,Ω˝13pqqu. Then G8 is contained in Table
10.1.1.

Proof. This can be seen using Theorem 5.1.1, Proposition 5.2.4, Proposition
5.3.10, Theorem 9.1.1 and Proposition 9.5.1.
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Proposition 10.1.4 (S -maximal subgroups in dimension 13).
No extension of J2 is S -maximal in any extension of Ω˝13p9q and no exten-
sion of the S2-subgroup L2p13q is S -maximal in any extension of Ω˝13p13q.
There are no other containments between the S1-maximal subgroups and the
S2-maximal subgroups considered in Theorem 10.1.3.

Proof. First we will consider possible containments of S2-subgroups in S1-
subgroups. By looking at Table 10.1.1, using Lagrange’s theorem and by
considering the characteristics in which the respective representations occur,
it is clear that L2p13q ď A14 ď Ω˝13p13q is the only possible containment.
Using Magma (file s2ins1cont), we can show that the image of an absolutely
irreducible 13-dimensional representation of A14 in characteristic 13 has an
absolutely irreducible subgroup isomorphic to L2p13q. Both A14 and L2p13q
are stabilised by δ P OutpO˝13p13qq and L2p13q.2 ď S14 by [6]. Hence, no
extension of L2p13q is maximal in any extension of Ω˝13p13q.

Now we will consider potential containments of S1-subgroups in S2-
subgroups. The 13-dimensional S2-subgroups in Table 10.1.1 preserve an
orthogonal form and a cover of each one can be realised in dimension ď 6.
Let G be an S1-subgroup in Table 10.1.1. If G is contained in one of the
S2-subgroups in Table 10.1.1 then G needs to have Schur indicator ` in di-
mension 13 and there needs to exist an absolutely irreducible 2-dimensional
representation of G, or an absolutely irreducible 5-dimensional represen-
tation of G preserving an orthogonal form or an absolutely irreducible 6-
dimensional representation of G preserving a symplectic form by Lemma
10.1.2. By looking at [8, Thm 4.3.3, p.162], we see that the only possible
containment is J2 ď S6p9q ď Ω˝13p9q.

By Table [8, Table 8.29, p.392], there exists an S1-subgroup H of Sp6p9q
isomorphic to 2.J2 with class stabiliser xφSp6p9qy. Let ρ13 be a 13-dimensional
absolutely irreducible representation of Sp6p9q acting on a subquotient of
Λ2pV6q as in Proposition 9.3.1. Computer calculations (file s1ins2cont) show
that Hρ13 – J2 is absolutely irreducible. By Proposition 5.3.9 an absolutely
irreducible subgroup of Ω “ Ω˝13p9q isomorphic to J2 has stabiliser xφΩy.
By Proposition 9.3.1, pSp6p9q.xδSp6p9q, φSp6p9qyqρ13 ď Ω.xδΩ, φΩy since δΩ in-
duces δSp6p9q and φΩ induces either φSp6p9q or pφδqSp6p9q. It follows that no
extension of J2 is ever S -maximal in any extension of Ω.

10.1.2 S -Maximals in Dimension 14

In dimension 14 we will consider the S -maximal subgroups depending on the
type of form they preserve. Note that there are no S2-maximal subgroups
of SL˘14pqq.
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The following table, Table 10.1.2 contains the S1- and potentially S2-
maximal subgroups. Apart from whether G is S1- or S2-maximal, the
Schur indicator of G, G8, the order of G8 and the characteristics in which
G exists, the table also give the smallest permutation representation of H,
where G8 “ ZpHq.H. If the degree is not given then no extension of G8 is
S -maximal in any characteristic. The information in the table comes from
[6], [17], Table 6.1.1 and Table 9.1.1.

Table 10.1.2: Potential S -maximal subgroups in dimension 14

Si Ind Gp Order Charc PermRep
S1 ˝ 2.S6p3q 210 ¨ 39 ¨ 5 ¨ 7 ¨ 13 ‰ 2, 3 364
S1 ˝ Szp8q 26 ¨ 5 ¨ 7 ¨ 13 ‰ 2 65
S1 ´ 2.A7 24 ¨ 32 ¨ 5 ¨ 7 ‰ 2, 3 7
S1 ´ 2.L2p13q1 23 ¨ 3 ¨ 7 ¨ 13 ‰ 2, 13 14
S1 ´ 2.L2p13q2 23 ¨ 3 ¨ 7 ¨ 13 ‰ 2, 3, 13 14
S1 ´ L2p29q 22 ¨ 3 ¨ 5 ¨ 7 ¨ 29 2 30
S1 ´ 2.L2p29q 23 ¨ 3 ¨ 5 ¨ 7 ¨ 29 ‰ 2, 29 30
S1 ´ 2.J2 28 ¨ 33 ¨ 52 ¨ 7 ‰ 2 100
S2 ´ SL2pqq qpq2 ´ 1q ě 17 ě 18
S2 ´ Sp6pqq q9 ś3

j“1pq
2j ´ 1q ‰ 2 ě 364

S1 ` A71 23 ¨ 32 ¨ 5 ¨ 7 ‰ 2, 3, 5 7
S1 ` A7 23 ¨ 32 ¨ 5 ¨ 7 2 7
S1 ` A15 210 ¨ 36 ¨ 53 ¨ 72 ¨ 11 ¨ 13 ‰ 2, 3, 5 15
S1 ` A16 214 ¨ 36 ¨ 53 ¨ 72 ¨ 11 ¨ 13 2 16
S1 ` L2p13q1 22 ¨ 3 ¨ 7 ¨ 13 ‰ 2, 3, 13 14
S1 ` L2p13q2 22 ¨ 3 ¨ 7 ¨ 13 ‰ 2, 3, 13 14
S1 ` L2p13q 22 ¨ 3 ¨ 7 ¨ 13 2 14
S1 ` S6p2q 29 ¨ 34 ¨ 5 ¨ 7 3 28
S1 ` G2p3q 26 ¨ 36 ¨ 7 ¨ 13 ‰ 3 351
S1 ` J1 23 ¨ 3 ¨ 5 ¨ 7 ¨ 11 ¨ 19 11 —
S1 ` J2 27 ¨ 33 ¨ 52 ¨ 7 ‰ 3 —
S2 ` L4p2iq 26iś4

j“2p2ij ´ 1q 2 ě 8
S2 ` U4p2iq 26iś4

j“2p2ij ´ p´1qjq 2 ě 27
S2 ` Ω˝5pqq 1

2q
4 ś2

j“1pq
2j ´ 1q ‰ 2, 5 ě 27

S2 ` S6pqq
1

p2,q´1qq
9 ś3

j“1pq
2j ´ 1q ‰ 3 ě 28

S2 ` G2pqq q6pq2 ´ 1qpq6 ´ 1q ‰ 2, 3 ě 3906
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Theorem 10.1.5. Let G be S1-maximal or potentially S2-maximal in any
extension of Ω P tSL˘14pqq, Sp14pqq,Ω˘14pqqu. Then G8 is contained in Table
10.1.2.

Proof. This follows from Theorem 6.1.1, Proposition 6.2.4, Proposition 6.3.7,
Proposition 6.4.17, Theorem 9.1.1 and Proposition 9.5.1.

Proposition 10.1.6 (S -maximal subgroups in dimension 14 - Case L{U).
All S1-maximal subgroups in Proposition 6.2.4 are S -maximal.

Proof. All S1-maximal subgroups are S -maximal since there are no S2-
subgroups of SL˘14pqq by Proposition 9.5.2.

Proposition 10.1.7 (S -maximal subgroups in dimension 14 - Case S).
All S1-subgroups and all S2-maximal subgroups in Theorem 10.1.5 preserv-
ing a symplectic form are S -maximal with the following exceptions:

(i) If p “ ˘3,˘27,˘29,˘35,˘43,˘51 pmod 104q then 2.L2p13q1 is not
S -maximal in Sp14ppq but extends to a novelty under xδy.

(ii) If p ” 11, 19, 21, 29 pmod 40q then 2.J2 is not S -maximal in Sp14ppq
but extends to a novelty under xδy. Furthermore, no extension of 2.J2
is S -maximal in any extension of Sp14p5q.

Proof. We will first determine whether any of the S2-maximal subgroups
SL2pqq, p ě 17, or Sp6pqq2 are not S -maximal. First note that the only
S1-subgroups with order divisible by a prime ě 17 are L2p29q and 2.L2p29q
which have order divisible by 29. However neither of these groups is isomor-
phic to an S1-subgroup in characteristic 29. Hence SL2pqq is S -maximal.
Furthermore, Sp6pqq2 has order divisible by q9 and none of the S1-subgroups
in Table 10.1.2 with Schur indicator ´ has order divisible by q9. It follows
that Sp6pqq2 is S -maximal as well.

Now we will show which of the S1-subgroups are S -maximal. By
Lemma 10.1.2, we only have to consider S1-subgroups with an absolutely
irreducible 2 or 6 dimensional representation. These groups in the relevant
characteristics are

(i) 2.L2p13q ď Sp6ppq ď Sp14ppq and
(ii) 2.J2 ď Sp6ppq ď Sp14ppq

by [8, Thm 4.3.3, p.162].
From now on let ρ14 be an absolutely irreducible 14-dimensional rep-

resentation of Sp6pqq acting on a submodule of Λ3pV6q as in Proposition
9.3.5.
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We will first consider 2.L2p13q. There exists an irreducible subgroup H
of Sp6pqq isomorphic to 2.L2p13q by Table [8, Table 8.29, p.392]. Further-
more, H ď Sp6ppq if and only if p ” ˘1,˘3,˘4 pmod 13q and has trivial
class stabiliser. Otherwise H ď Sp6pp

2q.
Computer calculations (file s1ins2cont) show that Hρ14 is equivalent to

2.L2p13q1 using [12]. By Proposition 6.3.2, 2.L2p13q1.2 ď Sp14ppq with trivial
class stabiliser if p ” 1, 7 pmod 8q. It follows that 2.L2p13q1.2 is S -maximal
in this case. If p ” 3, 5 pmod 8q then 2.L2p13q1 ď Sp14ppq and has class
stabiliser xδSp14ppq

y. Hence, if p ” ˘1,˘3,˘4 pmod 13q and p ” 3, 5 pmod 8q
then 2.L2p13q1 is not S -maximal in Sp14ppq but extends to a novelty under
xδSp14ppq

y.
Finally we will consider 2.J2. By [8, Table 8.29, p.392], Sp6pqq has an

absolutely irreducible subgroup H isomorphic to 2.J2. Here H ď Sp6ppq
with trivial stabiliser if p ” 1, 4 pmod 5q, H ď Sp6p5q with class stabiliser
xδSp6pqq

y and H ď Sp6pp
2q otherwise. By Proposition 6.3.6, there exists an

S1-subgroup G of Sp14ppq isomorphic to 2.J2. Here G.2 ď Sp14ppq if p ” 1, 7
pmod 8q and G ď Sp14ppq with class stabiliser xδSp14ppq

y if p ” 3, 5 pmod 8q.
It follows that NSp14ppq

pGq is S -maximal if p ” 1, 7 pmod 8q or if pp ” 3, 5
pmod 8q and p ” 2, 3 pmod 5qq.

Hence assume from now on that pp ” 3, 5 pmod 8q and p ” 1, 4 pmod 5qq
or p “ 5. We can show using Magma (file s1ins2cont) and [12] that 2.J2ρ14
is equivalent to G. If pp ” 3, 5 pmod 8q and p ” 1, 4 pmod 5qq then 2.J2 has
class stabiliser xδSp14pqq

y in OutpS14pqqq but trivial stabiliser in OutpS6pqqq.
Hence G extends to a novelty in this case. If p “ 5 then we know that
2.J2.2 ď Sp6pqq.xδSp6pqq

y. Furthermore, it follows from Proposition 9.3.5 that
Sp6pqq.xδSp6pqq

, φSp6pqq
y ď Sp14pqq.xδSp14pqq

, φSp14pqq
y. Therefore no extension

of G is ever S -maximal in characteristic 5.

Proposition 10.1.8 (S -maximal subgroups in dimension 14 - Case O˘).
All S1-maximal subgroups and all S2-maximal subgroups considered in The-
orem 10.1.9 that preserve an orthogonal form are S -maximal with the ex-
ception of the following groups:

(i) No extension of Ω˝5p3q.2 is S -maximal in any extension of Ω`14p3q.

(ii) No extension of A71 is S -maximal in any extension of Ω`14p7q.

(iii) No extension of J1 is S -maximal in any extension of Ω´14p11q.

(iv) If p ” 1, 3, 4, 9, 10, 12 pmod 13q then L2p13q1 is not S -maximal in
Ω˘14ppq but extends to a novelty under xγy.
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(v) If p ” 1, 3, 4, 9, 10, 12 pmod 13q then L2p13q2 is not S -maximal in
Ω˘14ppq but L2p13q2.xγy and L2p13q2.xγδy are S -maximal in Ω˘14ppq.xγy
and Ω˘14ppq.xγδy respectively.

(vi) If p ‰ 3, 5 then no extension of J2 is S -maximal in any extension of
Ω˘14pqq.

Proof. We will first consider possible containments of S2-subgroups in S1-
subgroups. The S2-subgroups to consider are SL˘4 p2iq.2, S6pqq1, Ω˝5pqq and
G2pqq.

By Lagrange’s theorem L˘4 p2q.2 could be a subgroup of A15 or A16.
However we know that L˘4 p2q.2 ď Ω´14p2q, whereas A15,A16 ď Ω`14p2q. There
are no other containments possible by Lagrange’s theorem which implies
that L˘4 p2q.2 is S -maximal.

Similarly, S6p2q could be a subgroup of A15 or A16. Again we find that
S6p2q ď Ω´14p2q, whereas A15,A16 ď Ω`14p2q. Since q9 | |S6pqq| there does not
exist any other S1-subgroup that could contain S6pqq1.

The 14-dimensional S2-subgroup Ω˝5ppiq does not exist in characteristic
2 or 5. In characteristic 3 computer calculations (file s2ins1cont) show that
Ω˝5p3q.2 ď S6p2q ď Ω`14p3q and that Ω˝5p3q is absolutely irreducible. Fur-
thermore, Ω˝5p3q.2 has trivial stabiliser and hence no extension of Ω˝5p3q is
S -maximal. None of the other S1-subgroups has order divisible by p4 for
p ě 3 with the exception of G2p3q which has order divisible by 34. However,
G2p3q has no cross characteristic representation in characteristic 3. Hence,
any extension of Ω˝5pqq, q ‰ 3, is S -maximal.

Finally, since none of the relevant S1-maximal subgroups has order di-
visible by q6, when p ě 5, it follows that G2pqq is always S -maximal in
Ω˘14pqq.

Next we will consider the potential containments of S1-subgroups in
S2-subgroups. Let G be an S1-subgroup with Schur indicator ` in Table
10.1.2 and let K be an S2-subgroup with Schur indicator ` in Table 10.1.2
such that K has a natural representation ρ in dimension t. If G ď K then
there has to exist an absolutely irreducible t-dimensional representation τ
of some cover of G such that Gτ ď Kρ by Lemma 10.1.2.

The only possible containments by [8, Thm 4.3.3, p.162] are
(i) A7 ď SL4p2q.2 ď Ω´14p2q,
(ii) A71,2 .2 ď Ω˝5p7q.2 ď Ω`14p7q,

(iii) J1 ď G2p11q ď Ω´14p11q,
(iv) L2p13q1,2 ď S6ppq1 ď Ω˘14ppq,
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(v) J2 ď S6pqq1 ď Ω˘14pqq and
(vi) L2p13q1,2 ď G2ppq ď Ω˘14ppq.

Note that L2p13q is not an irreducible subgroup of S6p2q1 in dimension 14
since L2p13q ď Ω`14p2q whereas S6p2q1 ď Ω´14p2q.

Computer calculations (file s1ins2cont) show that A7 is not an irre-
ducible subgroup of SL4p2q ď Ω´14p2q. However, we can show using Magma
that A71.2 is an absolutely irreducible subgroup of Ω˝5p7q.2 ď Ω`14p7q (file
s1ins2cont). Since A71 .2 has trivial stabiliser it follows that no extension of
A71 is ever S -maximal in characteristic 7.

Further calculations in Magma (file s1ins2cont) show that J1 is an ab-
solutely irreducible subgroup of G2p11q ď Ω´14p11q with trivial stabiliser.
Hence no extension of J1 is S -maximal in any extension of Ω´14p11q.

From now on let ρ14 be a 14-dimensional absolutely irreducible repre-
sentation of Sp6pqq acting on a submodule of Λ2pV6q (see Proposition 9.3.3
and Proposition 9.3.4).

By [8, Table 8.29, p.392] there exists an S1-subgroup H of Sp6pqq
isomorphic to 2.L2p13q. Here q “ p if p ” 1, 3, 4, 9, 10, 12 pmod 13q in
which case H has trivial stabiliser and q “ p2 otherwise. Computations
in Magma (file s1ins2cont) show that Hρ14 is equivalent to L2p13q1. By
Proposition 6.4.7, L2p13q1 ď Ω “ Ω˘14ppq and has stabiliser xγΩy. It fol-
lows that if p ” 2, 5, 6, 7, 8, 11 pmod 13q then L2p13q1 is S -maximal. If
p ” 1, 3, 4, 9, 10, 12 pmod 13q then Sp6pqqρ14 and L2p13q1 preserve the same
orthogonal form. It follows that L2p13q1 is not S -maximal in this case but
extends to a novelty under xγΩy.

We will now consider J2. By [8, Table 8.29 and Table 8.30, p.392] there
exists an S1-subgroup H of Sp6pqq isomorphic to 2.J2 (J2 in characteristic
2). Here q “ p and H has trivial stabiliser if p ” 1, 4 pmod 5q, q “ p2 and
H has stabiliser xφSp6pqq

y if p ” 2, 3 pmod 5q and q “ p and H has stabiliser
xδSp6pqq

y if p “ 5. Since J2.2 ď Ω´14p5q by Proposition 6.4.16, it follows that
J2.2 is S -maximal in characteristic 5. Hence assume now that p ‰ 3, 5.

Let G be an S1-subgroup of Ω˘14pqq isomorphic to J2. Computer calcu-
lations (file s1ins2cont) show that Hρ14 is equivalent to G by looking at the
character values ([12]). Furthermore, G and Sp6pqqρ14 preserve the same
orthogonal form. By Propositions 6.4.14 and 6.4.15, G ď Ω˘14ppq if and only
if p ” 1, 4 pmod 5q and G ď Ω`14pp

2q otherwise. Hence G is not S -maximal
in Ω˘14pqq.

If p ” 1, 4 pmod 5q then G has trivial stabiliser and if p ” 2, 3 pmod 5q
then G and Sp6pp

2qρ14 are both stabilised by xφΩ`14pp
2qy if p ” 7, 13, 37, 43

pmod 60q and by xpφγqΩ`14pp
2qy if p ” 17, 23, 47, 53 pmod 60q or if p “ 2.
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Furthermore, Sp6pp
2qρ14 is stabilised by xδ1Ω`14pp

2q
y. It is clear that δ1Ω`14pp

2q

induces δSp6pp
2q and that φΩ`14pp

2q and pφγqΩ`14pp
2q induce either φSp6pp

2q or
pφδqSp6pp

2q. Hence, S6pp
2q.OutpS6pp

2qq ď Ω`14pp
2q.xδ1Ω`14pp

2q
, µy, where µ P

tφΩ`14pp
2q, pφγqΩ`14pp

2qu. It follows that no extension of G is S -maximal if
p ‰ 3, 5.

There also exists an absolutely irreducible subgroup H of G2ppq iso-
morphic to L2p13q if p ” 1, 3, 4, 9, 10, 12 pmod 13q, p ‰ 3, by [8, Table
8.41, p.397]. Computer calculations (file s1ins2cont) show that H acts on
a 14-dimensional submodule of Λ2pV7q. Let ρ114 denote this 14-dimensional
representation of H. Looking at the character values of Hρ114 we find that
Hρ114 is equivalent to L2p13q2. Furthermore, H has trivial stabiliser in di-
mension 7 whereas L2p13q2 has stabiliser xγΩ˘14ppq

y or xpγδqΩ˘14ppq
y. Hence

L2p13q2 extends to a novelty.

10.1.3 S -Maximals in Dimension 15

Let G be one of the S1-maximal subgroups in Proposition 7.2.10 or Proposi-
tion 7.3.11 or let G be an S2-maximal subgroup in Proposition 9.5.3. Then
G8 together with its Schur indicator, group order and the characteristics
in which G exists is given in Table 10.1.3. The column ‘PermRep’ gives
the degree of the smallest permutation representation of H “ G8{ZpG8q
if some extension of G8 is S -maximal. Otherwise the entry is left empty.
The ˚ next to a group name signifies that G is an S1-novelty.

The content of the table was taken from Table 7.1.1, Table 9.1.1, [6] and
[17].

Theorem 10.1.9. Let G be an S1- or S2-maximal subgroup of any exten-
sion of Ω P tSL˘15pqq,Ω˝15pqqu and suppose that G is potentially maximal.
Then G8 is contained in Table 10.1.3.

Proof. This follows from Theorem 7.1.2, Proposition 7.2.10, Proposition
7.3.11, Theorem 9.1.1 and Proposition 9.5.1.
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Table 10.1.3: Potential S -maximal subgroups in dimension 15

Si Ind Gp Order Charc PermRep
S1 ˝ 3.A˚71 23 ¨ 33 ¨ 5 ¨ 7 ‰ 2, 3 —
S1 ˝ 3.A72 23 ¨ 33 ¨ 5 ¨ 7 ‰ 2, 3, 7 7
S1 ˝ 3.A˚7 23 ¨ 33 ¨ 5 ¨ 7 2 —
S1 ˝ L2p31q 25 ¨ 3 ¨ 5 ¨ 31 ‰ 31 32
S1 ˝ 3.L3p4q 26 ¨ 33 ¨ 5 ¨ 7 ‰ 2, 3 —
S1 ˝ 31.U4p3q 27 ¨ 37 ¨ 5 ¨ 7 ‰ 3 —
S1 ˝ M12 26 ¨ 33 ¨ 5 ¨ 11 3 —
S1 ˝ 3.M22 27 ¨ 33 ¨ 5 ¨ 7 ¨ 11 2 —
S2 ˝ SL3pqq q3 ś3

j“2pq
j ´ 1q ě 5 ě 31

S2 ˝ SU3pqq q6 ś3
j“2pq

j ´ p´1qjq ě 5 ě 50
S2 ˝ SL5pqq q10 ś5

j“2pq
j ´ 1q ‰ 2 ě 121

S2 ˝ SU5pqq q10 ś5
j“2pq

j ´ p´1qjq ‰ 2 ě 2440
S2 ˝ p3, q ´ 1q.L6pqq

1
2q

15 ś6
j“2pq

j ´ 1q all ě 63
S2 ˝ p3, q ´ 1q.U6pqq

1
2q

15 ś6
j“2pq

j ´ p´1qjq all ě 672
S1 ` A7 23 ¨ 32 ¨ 5 ¨ 7 ‰ 2, 7 —
S1 ` A16 214 ¨ 36 ¨ 53 ¨ 72 ¨ 11 ¨ 13 ‰ 2, 17 16
S1 ` A17 214 ¨ 36 ¨ 53 ¨ 72 ¨ 11 ¨ 13 ¨ 17 17 17
S1 ` L2p16q 24 ¨ 3 ¨ 5 ¨ 17 ‰ 2, 17 17
S1 ` L2p29q 22 ¨ 3 ¨ 5 ¨ 7 ¨ 29 ‰ 2, 29 30
S1 ` L3p4q 26 ¨ 32 ¨ 5 ¨ 7 3 21
S1 ` S6p2q 29 ¨ 34 ¨ 5 ¨ 7 ‰ 2, 3 28
S1 ` U4p2q1 26 ¨ 34 ¨ 5 ‰ 2, 3 —
S2 + L2pqq

1
2qpq

2 ´ 1q ě 17 ě 18
S2 ` L4pqq

1
p4,q´1qq

6 ś4
j“2pq

j ´ 1q ‰ 2 ě 40
S2 ` U4pqq

1
p4,q`1qq

6 ś4
j“2pq

j ´ p´1qjq ‰ 2 ě 112

Before considering containments we will first prove the following lemma
as it will be very useful later on.

Lemma 10.1.10. Let ρ be a 15-dimensional absolutely irreducible repre-
sentation of SL˘6 ppq acting on the exterior square Λ2pV6q as in Proposition
9.3.11. Then pSL˘6 ppq.OutpL˘6 ppqqqρ ď SL˘15ppq.xδ

t
SL˘15ppq

, γSL˘15ppq
y, where

t “ pp, 5¯ 1q.

Proof. By Proposition 9.3.11, SL˘6 p2qρ – SL˘6 p2q and SL˘6 ppqρ – pp ¯
1, 3q.L˘6 ppq in odd characteristic.
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Suppose first that p is odd and let r “ p3, p¯ 1q. Then pr.L˘6 ppqq.2qρ ď
SL˘15ppq and pr.L˘6 ppq.2qρ is stabilised by xδtSL˘15ppq

, γSL˘15ppq
y. Furthermore,

|OutpL˘6 ppqq| “ 2r ¨ 2 and |xδSL˘15ppq
, γSL˘15ppq

y| “ r ¨ 2. It follows that
pr.L˘6 ppq.OutpL˘6 ppqqqρ is a subgroup of SL˘15pqq.xδ

t
SL˘15ppq

, γSL˘15ppq
y.

In even characteristic we can similarly show that SL˘6 p2q.OutpL˘6 p2qq –
SL˘6 p2q.xδSL˘6 p2q

, γSL˘6 p2q
y is a subgroup of SL˘15p2q.xδSL˘15p2q

, γSL˘15p2q
y.

Proposition 10.1.11 (S -maximal subgroups in dimension 15 - L/U).
Let t “ pp ´ 1, 5q in Case L and let t “ pp ` 1, 5q in Case U. All S2-
maximal subgroups considered in Theorem 10.1.9 that preserve only the zero
or a unitary form are S -maximal in dimension 15.

(i) No extensions of 3.M22 or 3.A7 are S -maximal in any extension of
SU15p2q.

(ii) No extension of M12 is S -maximal in any extension of SL15p3q.
(iii) No extension of 3.A72 is S -maximal in any extension of SU15p5q.
(iv) No extension of tˆ 3.A71 is S -maximal in any extension of SL˘15ppq.

If p ” 1, 7, 17, 23 pmod 24q, p ‰ 7, then t ˆ 3.A72 is not S -maximal
in SL˘15ppq but extends to a novelty under xγy.

(v) No extension of t ˆ 3.L3p4q.21 is S -maximal in any extension of
SL˘15ppq.

(vi) No extension of t ˆ 31.U4p3q.22 is S -maximal in any extension of
SL˘15ppq.

All other S1-maximal subgroups with Schur indicator ˝ considered in The-
orem 10.1.9 are S -maximal.

Proof. To begin with we will prove that all S2-maximal subgroups given
in Theorem 10.1.9 that preserve either only the zero or a unitary form are
S -maximal. The only S2-subgroup in even characteristic is SL˘6 pqq and
q15 | |SL˘6 pqq|. However none of the S1-subgroups with Schur indicator
˝ in Theorem 10.1.9 has order divisible by q15. In characteristic ě 3, we
need to show that none of the S1-subgroups has order divisible by q10 since
q10 | |SL˘5 pqq| and in characteristic ě 5 we have to show that none of the
S1-subgroups has order divisible by q3 since q3 | |SL˘3 pqq|. By looking at
Table 10.1.3 it is straightforward to see that the maximal S2-subgroups in
Theorem 10.1.9 are all S -maximal in Cases L and U.

We will now consider containments of S1- in S2-subgroups. By Lemma
10.1.2, Theorem 10.1.9, Table 10.1.3 and [8, Thm 4.3.3, p.162] we have the
following potential containments:
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(i) 3.A7 ď SU3p5q ď SU15p3q,
(ii) 3.M22 ď SU6p2q ď SU15p2q,
(iii) M12 ď L6p3q ď SL15p3q,
(iv) 3.A7 ď pp¯ 1, 3q.L˘6 ppq ď SL˘15ppq,
(v) 3.L3p4q ď pp¯ 1, 3q.L˘6 ppq ď SL˘15ppq and

(vi) 31.U4p3q ď pp¯ 1, 3q.L˘6 ppq ď SL˘15ppq.
By [8, Table 8.6, p.379], SU3p5q has (up to equivalence) one S1-subgroup

H isomorphic to 3.A7. Computer calculations (file s1ins2cont) show that
there exists an absolutely irreducible 15-dimensional representation ρ of H
on S4pV3q. Furthermore, by [24], Hρ is equivalent to 3.A72 . By [8, Table 8.6,
p.379], H has stabiliser xγSU3p5qy and 3.A72 has stabiliser xγSU15p5qy by Propo-
sition 7.2.3. By Proposition 9.3.9, SU3p5q2 has stabiliser xδSU15p5q, γSU15p5qy.
Since γSU15p5q induces γSU3p5q by Lemma 8.5.2 it follows that no extension
of 3.A72 is ever S -maximal in characteristic 5.

Computer calculations (file s1ins2cont) show that there exists 3.M22 ď

SU6p2q ď SU15p2q which is absolutely irreducible in dimension 15 and
is stabilised by xγSU6p2qy in OutpU6p2qq and by xγSU15p2qy in OutpU15p2qq.
By Lemma 10.1.10, pSU6p2q.OutpU6p2qqqρ15 ď SU15p2q.xδSU15p2q, γSU15p2qy
which implies that 3.M22 is never S -maximal.

Throughout the remainder of this proof let ρ15 be a 15-dimensional abso-
lutely irreducible representation of SL˘6 pqq acting on Λ2pV6q as in Proposition
9.3.11.

By [8, Table 8.25, p.389] there exists an S1-subgroupH of SL6p3q isomor-
phic to 2.M12 which has stabiliser xpγδqSL6p3qy. Computer calculations (file
s1ins2cont) show that Hρ15 is absolutely irreducible and that Hρ15 – M12.
Furthermore, the image G of a 15-dimensional absolutely irreducible repre-
sentation of M12 has stabiliser xγSL15p3qy by Proposition 7.2.8. By Lemma
10.1.10, G.xγSL15p3qy ď pSL6p3q.OutpL6p3qqqρ15 ď SL15p3q.xγSL15p3q, δSL15p3qy.
It follows that no extension of G is S -maximal.

Now we will consider 3.A7 ď SL˘6 ppq. Let H be an S1-subgroup of
SL˘6 ppq isomorphic to 3.A7. Using Lemma 8.2.5 and [12, 24], we can show
that Hρ15 is absolutely irreducible in odd characteristic and computer cal-
culations (file s1ins2cont) show that Hρ15 is also absolutely irreducible in
even characteristic. In odd characteristic we can furthermore show that
Hρ15 is equivalent to 3.A71 . By [8, Prop 4.7.10, p.206], H is either sta-
bilised by xpγδqL˘6 ppq

y or by xγL˘6 ppq
y. Furthermore, 3.A71 has stabiliser

xγL˘15ppq
y and in even characteristic an S1-subgroup G of SU15p2q isomorphic

to 3.A7 has stabiliser xγU15p2qy. By Lemma 10.1.10, r.L˘6 ppq.OutpL˘6 ppqq ď
SL˘15ppq.xδSL˘15ppq

, γSL˘15ppq
y, where r “ p3,¯1q. This implies that no extension
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of 3.A71 or of G is S -maximal.
Continuing with 3.A7, let H be an S1-subgroup of SL˘6 ppq isomorphic

to 6.A7. By [8, Table 8.25, p.389 and Table 8.27, p.391], we find that
H ď SL˘6 ppq if and only if p ” 1, 7, 17, 23 pmod 24q. Using Magma (see file
s1ins2cont) we can show that Hρ15 is equivalent to 3.A72 . However, 3.A72 ď

SL˘15ppq for all p ‰ 2, 3, 7. Hence, tˆ 3.A72 is S -maximal if p ” 5, 11, 13, 19
pmod 24q. Furthermore, H has trivial stabiliser whereas 3.A72 is stabilised
by xγSL˘15ppq

y. It follows that 3.A72 extends to a novelty if p ” 1, 7, 17, 23
pmod 24q, p ‰ 7.

The next group to consider is 3.L3p4q. By [8, Table 8.25, p.389 and Table
8.27, p.391] there exists an S1-subgroup H of SL˘6 ppq isomorphic to 6.L3p4q.
Here H ď SL6ppq if p ” 1 pmod 3q and H ď SU6ppq if p ” 2 pmod 3q, p ‰ 2.
We also find that H.2´1 ď SL˘6 ppq if p ” 1, 5, 19, 23 pmod 24q with stabiliser
xγSL˘6 ppq

y. Otherwise H ď SL˘6 ppq with stabiliser xδ3
SL˘6 ppq

, γSL˘6 ppq
y, where

δ3
SL˘6 ppq

induces the 21 outer automorphism of H. By Proposition 7.2.6 there
exists an absolutely irreducible subgroup G of SL˘15ppq isomorphic to 3.L3p4q.
Here G.21 ď SL15ppq if p ” 1 pmod 3q and G.21 ď SU15ppq if p ” 2 pmod 3q.
In both cases G.21 is stabilised by xγSL˘15ppq

y. Computer calculations (file
s1ins2cont) show that Hρ15 is equivalent to G.

Let H.21 “ xH,Ay. Then H.2´1 “ xH, iAy by [12, p.xxiii]. Further-
more, piAqρ15 “ i2pAρ15q “ ´Aρ15. Since kerpρ15q “ ˘1 it follows that
pH.2´1 qρ15 – 3.L3p4q.21. Hence, if H.2´1 ď SL6ppq then G is not S -maximal.
Now suppose that H ď SL˘6 ppq but H.2´1 ę SL6ppq. By Proposition 9.3.11,
pSL˘6 ppq.xδ3

L˘6 ppq
yqρ15 ď SL˘15ppq in the cases we are interested in. Since

δ3
L˘6 ppq

induces the 21 outer automorphism of H, it follows that we always
have G.21 ď pSL˘6 ppq.xδ3

L˘6 ppq
yqρ15 ď SL˘15ppq. Hence G.21 is not S -maximal.

By Lemma 10.1.10, no extension of tˆ 3.L3p4q.21 is ever S -maximal.
Our final group to consider is 31.U4p3q. We will first assume that p

is odd. Then the proof works similarly to the proof of 3.L3p4q. By [8,
Table 8.25, p.389 and Table 8.27, p.391] there exists an S1-subgroup H of
SL˘6 ppq isomorphic to 61.U4p3q. Here either H.2´2 ď SL˘6 ppq with stabiliser
xγSL˘6 ppq

y or H ď SL˘6 ppq with stabiliser xδ3
SL˘6 ppq

, γSL˘6 ppq
y, where δ3

SL˘6 ppq
induces the 22 outer automorphism of H. By Proposition 7.2.7 there exists
an S1-subgroup G of SL˘15ppq isomorphic to 31.U4p3q and G.22 ď SL˘15ppq
with stabiliser xγSL˘15ppq

y. Computer calculations (file s1ins2cont) show that
Hρ15 is equivalent to G. As for 3.L3p4q we can similarly show that G.22 ď
p3.L˘6 ppq.xδ3

L˘6 ppq
yqρ15 ď SL˘15ppq. By Lemma 10.1.10, no extension of t ˆ
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31.U4p3q.22 is ever S -maximal in SL˘15ppq in odd characteristic.
In even characteristic there is an S1-subgroup H in SU6p2q isomorphic

to 31.U4p3q by [8, Table 8.27, p.391]. In fact we have H.22 ď SU6p2q which
has stabiliser xγSU6p2qy. Computations in Magma (file s1ins2cont) show that
Hρ15 is absolutely irreducible and hence Hρ15.22 has stabiliser xγSU15p2qy. It
follows from Lemma 10.1.10 that no extension of 31.U4p3q.22 is S -maximal
in any extension of SU15p2q.

Proposition 10.1.12 (S -maximal subgroups in dimension 15 - Case O˝).
All S2-maximal subgroups in Theorem 10.1.9 that preserve an orthogonal
form are S -maximal.

(i) No extension of A7.2 is S -maximal in any extension of Ω˝15ppq.
(ii) No extension of U4p2q1.2 is S -maximal in any extension of Ω˝15ppq.

All other S1-maximal subgroups with Schur indicator ` in Theorem 10.1.9
are S -maximal.

Proof. We will first consider potential containments of S2- in S1-subgroups.
Here we have to consider L2pqq, p ě 17, and L˘4 pqq. By Lagrange’s theorem
L2pqq could be a subgroup of A17 ď Ω˝15p17q, but L2pqq acts on q ` 1 ą 17
points and hence there is no containment. There are no other relevant S1-
subgroups containing L2pqq.

By Lagrange’s theorem L˘4 p3q.2 could be a subgroup of A16. But look-
ing at the degree of the smallest permutation representations of L˘4 p3q in
Table 10.1.3, we see that there is no containment. There are no further con-
tainments since q6 | |L˘4 pqq.2|, q odd, and none of the other S1-subgroups
has order divisible by q6 “ p6i and a cross characteristic 15-dimensional
absolutely irreducible representation in characteristic p.

Now we will consider potential containments of S1-maximal in S2-
maximal subgroups. By Lemma 10.1.2, Theorem 10.1.9, Table 10.1.3 and
[8, Thm 4.3.3, p.162], we have the following potential containments:

(i) L3p4q ď U4p3q ď Ω˝15p3q,
(ii) A7 ď L˘4 ppq ď Ω˝15ppq and

(iii) U4p2q ď L˘4 ppq ď Ω˝15ppq.
From now on let ρ15 be an absolutely irreducible adjoint representation of
SL˘4 pqq in odd characteristic as in Proposition 9.4.2.

We will first consider L3p4q. By [8, Table 8.11, p.382] there exists
an S1-subgroup H of SU4p3q isomorphic to 42.L3p4q which has stabiliser
xδ2

SU4p3q, pγδqSU4p3qy. Here δ2
SU4p3q induces the 22 outer automorphism of H.

By Proposition 7.3.7 there exists an S1-subgroup G of Ω˝15p3q isomorphic to
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L3p4q, where G.22 ď Ω˝15p3q and has stabiliser xδΩ˝15p3qy. Computer calcula-
tions (file s1ins2cont) show that 42.L3p4qρ15 is equivalent to G. By Proposi-
tion 9.4.2, pSU4p3q.xγU4p3qyqρ15 ď Ω˝15p3q but pSU4p3q.xδ2

U4p3qyqρ15 ę Ω˝15p3q.
It follows that G.22 ę U4p3q.2 ď Ω˝15p3q. Hence L3p4q.22 is S -maximal in
Ω˝15p3q.

The next group to consider is A7. By [8, Table 8.9, p.381 and Ta-
ble 8.11, p.382], there exists an S1-subgroup H of SL˘4 ppq isomorphic to
2.A7 with stabiliser xγSL˘4 ppq

y. Furthermore, there exists an S1-subgroup
G of Ω˝15ppq isomorphic to A7 and G.2 ď Ω˝15ppq by Proposition 7.3.1.
Computer calculations (file s1ins2cont) show that Hρ15 is equivalent to G.
Since pSL˘4 ppq.xγSL˘4 ppq

yqρ15 ď Ω˝15ppq by Proposition 9.4.2 it follows that
G.2 ď pSL˘4 ppq.xγSL˘4 ppq

yqρ15 ď Ω˝15ppq. Hence no extension of A7.2 is S -
maximal in any extension of Ω˝15ppq.

Finally we will consider U4p2q. By [8, Table 8.9, p.381 and Table 8.11,
p.382], there exists an S1-subgroup H of SL˘4 ppq isomorphic to 2.U4p2q with
stabiliser xγSL˘4 ppq

y. Computations in Magma (file s1ins2cont) and [12] show
that Hρ15 is equivalent to U4p2q1. By Proposition 7.3.9, U4p2q1.2 ď Ω˝15ppq.
From Proposition 9.4.2 it follows that U4p2q1.2 ď pSL˘4 ppq.xγSL˘4 ppq

yqρ15 ď

Ω˝15ppq. Hence no extension of U4p2q1.2 is S -maximal.

10.2 G-Subgroups

In this section we will give a short discussion of the tables in [26] which
state the maximal subgroups of geometric type of the almost simple clas-
sical groups in dimension ě 12. In particular, we will consider the novelty
subgroups given in these tables. For the tables containing the maximal
subgroups of geometric type in dimension 13, 14 and 15 see Chapter 11.

Let Ω P tSL˘n pqq, Spnpqq,Ωε
npqqu unless otherwise stated and let T̄ “

T {ZpT q for any group T . Recall that for orthogonal groups in odd dimension
we only consider the case when q is odd.

Definition 10.2.1. Let H be a subgroup of a classical group T , such that
Ω̄ ď T̄ ď AutpΩ̄q. If H lies in one of the Aschbacher classes C1 to C8, then
H is a G-subgroup of T .

Roughly speaking (see e.g. [8, Table 2.1, p.55]) the geometric classes can
be described as follows:

• C1 : stabilisers of totally singular or non-singular subspaces,
• C2 : stabilisers of decompositions V “ ‘ti“1Vi, dimpViq “ n{t,
• C3 : stabilisers of extension fields of Fqu of prime index dividing n,
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• C4 : stabilisers of tensor product decompositions V “ V1 b V2,
• C5 : stabilisers of subfields of Fqu of prime index,
• C6 : normalisers of symplectic type or extraspecial groups in absolutely

irreducible representations,
• C7 : stabilisers of decompositions V “ bti“1Vi, dimpViq “ a, n “ at,
• C8 : groups of similarities of non-degenerate classical forms.

Note that some of the outer automorphisms of classical groups are de-
noted slightly differently in [26] than in this thesis as defined in Section 3.2.
For a more detailed discussion of the following see [8, p.57-58]. The main
things to note are as follows.

In Case L, the graph automorphism γ P OutpLnpqqq is denoted by :ι in [26].

Nothing changes in Cases U and S.

In Case O˝, the outer automorphism :r2:r4 defined in [26] stands for the
diagonal automorphism δ P OutpO˝npqqq.

In Case O`, we find that :r2 corresponds to γ P OutpO`n pqqq and in dimen-
sion 14, when q ” 1 pmod 4q then :r2:r4 “ δ1 P OutpO`n pqqq. Hence we can
deduce that :r4δ corresponds to γδ3. Furthermore, in dimension 14,

ker:Γp:γq “

$

’

&

’

%

xφy if q is even
xδ, φy if q ” 3 pmod 4q
xδ, δ1, φy if q ” 1 pmod 4q

by [26, Prop 2.7.4, p.38]. Now let ΓpV,Fq, Qq denote the group of semi-
similarities of a vector space V with underlying field Fq and non-degenerate
quadratic form Q. To determine ker:Γp:τq when q is odd, note that by [26,
Lemma 2.1.2, p.12], τ is a map from ΓpV,Fq, Qq to Fˆq given by τpgq “ λ
for all such g P ΓpV,Fq, Qq. Here λ is uniquely determined for any g by
Qpvgq “ λQpvqσ, σ P AutpFqq, for all v P V . Hence in dimension 14 it is
clear that projectively kerΓpτq equals

ker:Γp:τq “

#

xδ1, γ, φy if q ” 1 pmod 4q
xγ, φy if q ” 3 pmod 4q.

Finally, for Case O´ note that :r2 “ γ P OutpO´n pqqq and that in dimen-
sion 14, :r2:r4 “ δ1 when q ” 3 pmod 4q and :φ “ ϕ when q ” 1 pmod 4q.
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Furthermore we find that, in dimension 14,

ker:Γp:τq “

#

xγ, ϕy if q ” 1 pmod 4q
xδ1, γ, φy if q ” 3 pmod 4q.

Let H be a representative of a conjugacy class of a G-subgroup. The
following table lists all the geometric subgroups in dimension 13, 14 and 15
where HΩ̄ “ H̄X Ω̄ is not maximal in Ω̄ but H extends to a novelty in some
extension by outer automorphisms. It gives the groups H and K with their
respective stabilisers such that HΩ̄ ă KΩ̄ ă Ω̄. Note that there are always
two distinct KΩ̄ containing HΩ̄ that are not conjugate in Ω̄.

Table 10.2.1: Geometric Novelty Groups

a “ kpn´ kq, b “ kp2n´ 3kq, d “ pq ´ 1, 2q
Case Type of H Stab Type of K Stab

of H of K
L pSLkpqq ˆ SLn´kpqqq : pq ´ 1q xδ, γ, φy Eaq : pSLkpqq ˆ SLn´kpqqq : pq ´ 1q xδ, φy

Ebq : pSLkpqq2 ˆ SLn´2kpqqq.pq ´ 1q2 xδ, γ, φy Eaq : pSLkpqq ˆ SLn´kpqqq : pq ´ 1q xδ, φy

O` E27
q : p 1

d
GL6pqq ˆ Ω`2 pqqq.d xδ, γ, φy E21

q : 1
d
GL7pqq xδ, φy

pΩ`2 p3q ˆ Ω`12p3qq.22
xδ, γ, φy Ω˝13p3q.2 xδ1, γ, φy

Ω`2 p5q7.212.S7 xδ, γ, φy 213.A14 xδ1, γ, φy

SL7pqq.
pq´1q
d

xδ, γ, φy E21
q : 1

d
GL7pqq xδ, φy

O´ pΩ`2 p3q ˆ Ω´12p3qq.22
xδ, γ, φy Ω˝13p3q.2 xδ1, γ, φy

Ω´2 p3q7.212.S7 xδ, γ, φy 213.A14 xδ1, γ, φy

Let HΩ̄ ď KΩ̄ ď Ω̄ ď T ď AutpΩ̄q. The following lemma shows when
NT pHΩ̄qΩ̄ “ T but NT pKΩ̄qΩ̄ ‰ T , i.e. when HΩ̄ extends to a novelty.

Lemma 10.2.2. Let H and K be as given in Table 10.2.1. Suppose that
KΩ̄ has stabiliser R ă OutpΩ̄q and HΩ̄ has stabiliser xR, κy ď OutpΩ̄q where
κ R R and |κ| “ 2. Then HΩ̄.R

1 is never maximal in Ω̄.R1 for any subgroup
R1 ď R. However HΩ̄.xκ,R

1y is maximal in Ω̄.xκ,R1y for any R1 ď R.

Proof. Note that there exists one Ω̄-class of HΩ̄ but two Ω̄-conjugacy classes
of KΩ̄. Denote the Ω̄-conjugacy class of HΩ̄ by rHΩ̄s “ tH

x
Ω̄ |x P Ω̄u and let

rK1s and rK2s denote the two distinct conjugacy classes of KΩ̄. Without
loss of generality let K1 and K2 be the two representatives of rK1s and
rK2s respectively that contain HΩ̄. Then they are the unique members of
their respective conjugacy classes that contain HΩ̄. Let T “ Ω̄.R1. Then
R1 fixes one and hence all the Ω̄-conjugacy classes. Since HΩ̄ “ NΩ̄pHΩ̄q
by [26, Lemma 3.2.1, p.63] it follows that HΩ̄.R

1 “ NT pHΩ̄q. Therefore
NT pHΩ̄q fixes the class rKis for all i P t1, 2u. Furthermore since HΩ̄ is
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normalised by NT pHΩ̄q, Ki has to be normalised by NT pHΩ̄q since Ki is the
unique member of its respective conjugacy class such that HΩ̄ ď Ki. Hence
NT pHΩ̄q ď NT pKiq and HΩ̄.R

1 is never maximal in Ω̄.R1.
If T “ Ω̄.xκ,R1y then NT pHΩ̄q “ HΩ̄.xκ,R

1y. Since rK1s
κ “ rK2s it

follows that NT pHΩ̄q ę NT pKiq. By [26, p.68] all Ω̄.xκ,R1y novelties that
occur in dimensions 13, 14 and 15 are maximal in Ω̄.xκ,R1y.

10.3 G and S Containments

We will first develop some theory that will be useful when it comes to deter-
mining the maximal subgroups of the quasisimple classical groups and their
extensions by outer automorphisms. Let Ω P tSL˘n pqq,Spnpqq,Ωε

npqqu with
n P t13, 14, 15u.

Lemma 10.3.1. Let G “ ZpGq.S be quasisimple, where S is non-abelian
simple, and let G ď H. Then K.S embeds in Ni{Ni`1 for some i, where
H “ N0 �N1 � . . .�Nt “ 1 is a composition series of H and K ď ZpGq.

Proof. Consider the chain G “ N0 XG ě N1 XG ě . . . ě Nt XG “ 1. Let
a P Ni XG, b P Ni´1 XG. Then b´1ab P Ni XG as Ni �Ni´1 and a, b P G.
Hence we have the following chain G “ N0XG�N1XG� . . .�NtXG “ 1.
Since we have a chain of normal subgroups and all normal subgroups of
G are contained in ZpGq there exists some i such that Ni X G “ G and
Ni`1XG ď ZpGq. Hence (NiXGq{pNi`1XGq – K.S, where K ď ZpGq and
K.S is quasisimple. Then G ď Ni and Ni`1 X pK.Sq “ 1. It follows that
GNi`1{Ni`1 ď Ni{Ni`1. Furthermore,

GNi`1{Ni`1 “ pK.SqNi`1{Ni`1

– K.S{ppK.Sq XNi`1q (2nd Isomorphism Thm)
“ K.S.

Hence K.S embeds in Ni{Ni`1.

Lemma 10.3.2. Let H “ pGL1pqq o Snq X Ω be a C2-subgroup of Ω in di-
mension n. Let S ď An be non-abelian simple and assume that S is an
S -subgroup of Ω. Then S is not a subgroup of H.

Proof. Assume that S ď H. Since S is non-abelian simple, S is a subgroup
of the non-abelian composition factor An of H by Lemma 10.3.1. However,
An is reducible in dimension n and hence cannot contain an irreducible
subgroup which leads to a contradiction.
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Lemma 10.3.3 ([8, Prop 5.3.10, p.287]). Let K “ SnpV2q b SmpV2q for
n ě m ě 1, where SkpV2q is a symmetric power of a 2-dimensional vector
space as in Section 8.3. Then K is reducible.

We will also need to introduce the concept of an induced representation.
These will be useful when we want to show whether a group G is a subgroup
of group H P C2.

Definition 10.3.4. Let X be a finite group and let Y ď X. Let τ be a
representation of Y with character χ. Then for all g P X, the induced
character χX is given by

χXpgq “
1
|Y |

ÿ

xPX

χ˝pxgx´1q,

where

χ˝pyq “

#

χpyq if y P Y
0 otherwise.

The representation corresponding to χX is the induced representation
τX of X.

Theorem 10.3.5 ([23, Thm 5.8, p.65]). Let ρ : X Ñ GLpV q be an irre-
ducible characteristic 0 representation with character µ. Let V “W1` . . .`
Wk be an imprimitive decomposition of V . Let Y ď X and suppose that Y ρ
is the stabiliser of Wi for some i. Let χ be the character of Y acting on Wi.
Then µ “ χX .

Theorem 10.3.6 ([23, Thm 5.9, p.65]). Let Y ď X, where X is a finite
group and let τ : Y Ñ GLpW q. Then XτX is an imprimitive matrix group
acting on V “W1`. . .`Wk, where Wi –W and k “ |X : Y |. Furthermore,
Y τ stabilises one of these subspaces Wi.

Lemma 10.3.7 ([23, p.64]). Let Y ď X and let τ “ τ1 ` τ2 be a reducible
representation of Y . Then the induced representation τX “ pτ1 ` τ2q

X “

τX1 ` τX2 is reducible.

We will now determine the maximal subgroups of T , where Ω̄ ď T̄ ď
AutpΩ̄q in dimension 13, 14 and 15. Let X ď T and let XΩ “ X X Ω.
We will consider each dimension separately. By [26] all maximal geometric
subgroups of T in dimension 13, 14 and 15 are maximal. Hence we only
have to consider potential containments of S -subgroups in G-subgroups.
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10.3.1 Maximal Subgroups in Dimension 13

We will start by determining the maximal subgroups of classical groups
in dimension 13. We can show that there are no containments of S - in
G-maximal subgroups.

Proposition 10.3.8. All S -maximal subgroups in Proposition 10.1.4 are
maximal in their respective quasisimple classical groups.

Proof. For an S -subgroup GΩ to sit inside a G-subgroup HΩ, the group HΩ
must lie in Class C2, C4, C6 or C7. This implies that we only have to consider
groups HΩ in Classes C2 and C6 in Cases L and U and groups in Class C2 in
Case O˝ by the tables in [26]. It is clear that there are no containments when
HΩ lies in Class C6 as no cover of either of S6p3q or U3p4q has a 2-dimensional
absolutely irreducible representation.

We will now consider the possible containments when HΩ lies in Class C2.
Then HΩ “ pq¯1q12.S13 in Cases L and U respectively or HΩ “ 212.A13p.2q
in Case O˝. Let S be the simple part of GΩ “ ZpGΩq.S. Then K.S has to
be a subgroup of A13 for some K ď ZpGΩq by Lemma 10.3.1. By Lagrange’s
theorem and considering the smallest permutation representations of S (Ta-
ble 10.1.1), the only possible containments are GΩ “ A8 in HΩ “ 212.A13
in characteristic 3 or GΩ “ L3p3q in HΩ “ 212.A13p.2q, both in Case O˝.
However none of these containments are possible by Lemma 10.3.2.

10.3.2 Maximal Subgroups in Dimension 14

In the following lemmas we will consider the potential containments of S -
subgroups in G-subgroups. We will then prove in Proposition 10.3.12 that
the S -maximal subgroups in Proposition 10.1.6, Proposition 10.1.7 and
Proposition 10.1.8 are in fact maximal.

Lemma 10.3.9. Let GΩ “ SL2pqq, p ě 17, be an S -maximal subgroup of
Sp14pqq. Let HΩ “ GL7pqq.2 ď Sp14pqq lie in Class C2. Then GΩ is not a
subgroup of HΩ.

Proof. If GΩ ď HΩ then pGΩq
8 ď pHΩq

8. But pGΩq
8 “ SL2pqq is irre-

ducible whereas pHΩq
8 “ SL7pqq ˆ SL7pqq is reducible, a contradiction.

Lemma 10.3.10. Let G be an S -subgroup of a 14-dimensional quasisimple
classical group Ω and let H be a C2-subgroup of Ω. If GΩ{ZpGΩq – A7, then
GΩ ę HΩ.
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Proof. Suppose that GΩ is imprimitive and preserves a decomposition into
seven 2-dimensional subspaces. Since GΩ “ p2.qA7 by Table 6.1.1, the only
subgroups of GΩ of index 7 are K “ p2.qA6 by [12]. By [12, 24], K only
has an absolutely irreducible 2-dimensional representation in characteristic
3 but GΩ does not exist in characteristic 3 by Table 6.1.1. Hence in all
our cases, K only has reducible 2-dimensional representations. Therefore, if
GΩ is an induced representation, then GΩ is reducible by Lemma 10.3.7, a
contradiction.

Lemma 10.3.11. Let GΩ be an S -maximal subgroup of Ω˘14pqq and let
HΩ ď Ω˘14pqq lie in Class C2. If

(i) GΩ “ L2p13q or GΩ “ G2pqq, HΩ “ SO˝7ppq2,
(ii) GΩ “ L2p13q or GΩ “ G2pqq, HΩ “ Ω˝7pqq2.22.S2,

(iii) GΩ “ L2p13q or GΩ “ G2pqq, HΩ “ SL7pqq.
pq´1q
pq´1,2q in Case O`,

(iv) GΩ “ S6p2q, HΩ “ SO˝7p3q2, or
(v) GΩ “ S6p2q, HΩ “ SL7p3q

then GΩ ę HΩ.

Proof. Since GΩ is non-abelian simple it has to be a subgroup of either
Ω˝7pqq2 or SL7pqq. By [21], Ω˝7pqq2 and SL7pqq are reducible and hence cannot
contain GΩ.

Proposition 10.3.12. All 14-dimensional S -maximal subgroups in Propo-
sition 10.1.6, Proposition 10.1.7 and Proposition 10.1.8 are maximal in their
respective classical groups.

Proof. Note that we only have to consider possible containments of S -
subgroups GΩ in GΩ-subgroups HΩ when HΩ lies in Class C2 or C4 by [26].

Suppose first that HΩ lies in Class C4. Then HΩ does not preserve an
orthogonal form by [26]. In Cases L, U and S none of the S1-subgroups has
a 2-dimensional absolutely irreducible representation in cross characteristic
by [8, Thm 4.3.3, p.162]. The only S2-subgroup with a 2-dimensional abso-
lutely irreducible representation is SL2pqq. Hence GΩ “ SL2pqq is a potential
subgroup of HΩ “ Sp2pqq˝GO˝7pqq. By Section 8.3, SL2pqq acts on the mod-
ules Sn´1pV2q and therefore, GΩ acts on S13pV2q. If GΩ ď HΩ then GΩ acts
on S1pV2qbS6pV2q as well. This implies that S1pV2qbS6pV2q – S13pV2q. How-
ever, S13pV2q is irreducible whereas S1pV2q b S6pV2q is reducible by Lemma
10.3.3, a contradiction.

Now suppose that HΩ lies in Class C2. In Cases L and U there are no
S -subgroups acting on 14 or less points by Table 10.1.2. There are also
no groups with a 7-dimensional absolutely irreducible representation in the
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appropriate characteristics by [8, Thm 4.3.3, p.162]. Hence all S -maximal
subgroups preserving a unitary or zero form are maximal.

In Case S there are two potential containments of S -subgroups in sub-
groups of type C2 by Lagrange’s theorem and [29], namely SL2pqq in GL7pqq.2
and 2.A7 in Sp2pqq

7 : S7. However it follows from Lemma 10.3.9 and Lemma
10.3.10 that these containments are not possible.

Finally, in Case O˘ it follows from Lemma 10.3.2 that the images of ab-
solutely irreducible 14-dimensional representations of L2p13q and A71 are not
subgroups of HΩ “ 213.A14p.2q ď Ω˘14ppq. All other potential containments
are considered in Lemma 10.3.10 and Lemma 10.3.11.

10.3.3 Maximal Subgroups in Dimension 15

We will first consider a possible containment of an S -subgroup in a G-
subgroup and then show that this is in fact the only containment.

Proposition 10.3.13. In Cases L and U the S -subgroup GΩ “ 3.A72 is a
subgroup of the C2-subgroup HΩ “ pp ¯ 1q14.S15 in dimension 15. Further-
more, no extension of GΩ is maximal.

Proof. By [12] the only subgroup (up to conjugacy in 3.S7) of 3.A7 of index
15 is K “ 3ˆ L2p7q. We want to show that GΩ is the image of the induced
representation τGΩ , where τ is a 1-dimensional representation of K. Using
Magma (file sgcont) we can determine the character values of τ .

Let R1, R2 and R3 be the conjugacy classes of K denoted by Class 3,
4 and 5 in the character tables of K (see file sgcont). Then elements of
R1, R2 and R3 contain elements of order 3 with character values 1, z3 and
z´1

3 with respect to τ . We can show that the only conjugacy classes of K
that are conjugate in 3.A7 are R1, R2 and R3. Let g P P , where P is the
single conjugacy class of 3.A72 containing the Ri„ and let χ be the character
associated with τ . Let

χ˝pgq “

#

χpgq if g P K
0 otherwise

as in Definition 10.3.4. Then
ř

xPGΩ
χ˝pxgx´1q “ αp1` z3 ` z´1

3 q for some
α P Nzt0u. Note that P has 840 elements and |Ri| “ 56. Hence α “

|GΩ|
3¨56
840 “

|GΩ|
5 and χGΩpgq “ 1

|K|

ř

xPGΩ
χ˝pxgx´1q “ |GΩ|

5|K| ¨ 0 “ 0 which is
the indeed the character value of elements of P . Using similar calculations we
can determine χGΩ . We can show that GΩ is indeed the image of τGΩ . Hence
GΩ is an imprimitive matrix group acting on 15 1-dimensional subspaces.
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Looking at [12], we can see that 3.S7 has no index 15 subgroup. In fact,
A7 has two conjugacy classes of subgroups isomorphic to L2p7q which are
fused under S7. Hence 3.S72 ę HΩ. Let t P 3.S7z3.A7. Then

3.S72 – x

´

GΩ 0
0 GΩ

t

¯

,
´

0 I15
I15 0

¯

y,

since the outer automorphism of order 2 of GΩ is induced by γ. Furthermore,
γ interchanges GΩ and GΩ

t which implies that GΩ
t “ GΩ

´T. Since

HΩ.xγy – x
´

HΩ 0
0 HΩ

´T

¯

,
´

0 I15
I15 0

¯

y

it follows that GΩ.xγy ď HΩ.xγy.

Proposition 10.3.14. In dimension 15 no extension of 3.A72 is maximal
in any extension of SL˘15ppq. All other S -maximal subgroups are maximal
in dimension 15.

Proof. Note that we only have to consider possible containments of S -
subgroups GΩ in HΩ when HΩ lies in Class C2 or C4 by [26].

First suppose that HΩ lies in Class C4. In Cases L and U this implies
that HΩ “ SL˘3 ˝SL˘5 pqq. However there is no S -subgroup GΩ that has both
an absolutely irreducible representation in dimension 3 and 5 by [8, Thm
4.3.3, p.162] and [29]. In Case O˝, GΩ “ L2pqq.2 is a potential subgroup of
HΩ “ pΩ˝3pqq ˆ Ω˝5pqqq.2. By Section 8.3, GΩ acts on S14pV2q. If GΩ ď HΩ
then GΩ also has to act on the module S2pV2q b S4pV2q. By Lemma 10.3.3,
S2pV2q b S4pV2q is reducible whereas S14pV2q is not. Hence there are no
containments of S -subgroups in HΩ when HΩ lies in Class C4.

If HΩ lies in Class C2 then HΩ has shape M o St for some t by [8, Table
2.5, p.63], where M P tGL˘mpqq,GO˝mpqqu. Hence K.S ď GΩ, where K ď

ZpGΩq and S – GΩ{ZpGΩq, has to be a subgroup of At. By looking at the
smallest permutation representations of the S -subgroups (Table 10.1.3) and
using Lagrange’s theorem, we can see that the only possible containments
is GΩ “ 3.A7 in HΩ “ pp¯ 1q14.S15 in Cases L and U, which is considered
in Lemma 10.3.13.
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11 Final Tables

Let Ω P tSLnpqq,SUnpqq, Spnpqq,Ωε
npqqu, where n P t13, 14, 15u, and let

Ω ď T ď A as in (3.1.1) (p.26). Let K̄ “ K{ZpKq be the projective version
of any group K. Then Ā “ AutpΩ̄q. Furthermore, let q “ pi for some
prime p and some i ě 1 and let C denote the respective conformal group
of Ω. Recall that the outer automorphisms of Ω where defined in Section
3.2. The tables in this chapter contain the maximal subgroups of T but it
is straightforward to deduce the maximal subgroups of the almost simple
classical groups T̄ .

The tables are ordered by dimension and within each dimension we will
first give the tables in Case L, followed by Case U, Case S and Case O. In
dimension 14 we will first state the results for Case O` and then for Case
O´. For each family of classical group there are two tables, the first one will
give the maximal subgroups of T that are of geometric type and the second
one the maximal subgroups that lie in class S . These two types of tables
have very similar but not identical structure.

In general each row in a table denotes an AutpΩq-class of a maximal
subgroup K of Ω. Note that unless K is a novelty, K̄.R̄ is a maximal
subgroup of Ω̄.R̄ for all R̄ ď OutpΩ̄q if R stabilises K.

The G-subgroup tables
Let H be a representative of a conjugacy class of maximal geometric

subgroups. The first column of the tables states the Aschbacher class in
which H lies followed by the structure of H. In the ‘Notes’ column we
give restrictions on q and p and state whether H is a novelty which we will
denote by Nu, where u P N. The column labelled ‘c’ then gives the number
of conjugacy classes a single C-conjugacy class of H splits into in Ω. The
stabiliser of H in OutpΩ̄q is given in the final column. If the information
regarding the stabiliser of a group is too long to be conveniently included in
a table, we will denote this by Su, for some u P N. Information regarding
novelty subgroups and stabilisers can be found in an auxiliary table directly
following the respective table.

The S -subgroup tables
The first column of the tables gives the maximal subgroups G of type

S . We will use the notation in the ATLAS [12] to denote these groups. This
is followed by restrictions on q and p. If any of these groups G extends to a
novelty subgroup then the table includes a column ‘Notes’. Otherwise this
column is omitted. Again we have a column giving the number of conjugacy
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classes a single C-conjugacy class of G splits into in Ω and a column giving
the stabiliser of G in OutpΩ̄q. Further information about novelty subgroups
and stabilisers can again be found in an auxiliary table directly following
the respective table.

Table 11.0.1: Maximal subgroups of SL13pqq of geometric type

d :“ |ZpSL13pqqq| “ pq ´ 1, 13q, |δ| “ d, |φ| “ e, |γ| “ 2, q “ pe.
Ci Subgroup Notes c Stab
C1 E12

q : GL12pqq 2 xδ, φy

C1 E22
q : pSL2pqq ˆ SL11pqqq : pq ´ 1q 2 xδ, φy

C1 E30
q : pSL3pqq ˆ SL10pqqq : pq ´ 1q 2 xδ, φy

C1 E36
q : pSL4pqq ˆ SL9pqqq : pq ´ 1q 2 xδ, φy

C1 E40
q : pSL5pqq ˆ SL8pqqq : pq ´ 1q 2 xδ, φy

C1 E42
q : pSL6pqq ˆ SL7pqqq : pq ´ 1q 2 xδ, φy

C1 GL12pqq N1 1 xδ, γ, φy

C1 pSL2pqq ˆ SL11pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL3pqq ˆ SL10pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL4pqq ˆ SL9pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL5pqq ˆ SL8pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL6pqq ˆ SL7pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 E23
q : pGL11pqq ˆ pq ´ 1qq N1 1 xδ, γ, φy

C1 E40
q : pSL2pqq

2
ˆ SL9pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E51
q : pSL3pqq

2
ˆ SL7pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E56
q : pSL4pqq

2
ˆ SL5pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E55
q : pSL5pqq

2
ˆ SL3pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E48
q : GL6pqq

2 N1 1 xδ, γ, φy

C2 pq ´ 1q12.S13 q ě 5 1 xδ, γ, φy

C3
q13´1
q´1 .13 1 xδ, γ, φy

C5 SL13pq0q.rp
q´1
q0´1 , 13qs q “ qr0 , r prime p

q´1
q0´1 , 13q xδc, γ, φy

C6 ppq ´ 1, 13q ˝ 133
q.Sp2p13q q “ p ” 1 pmod 13q or pq ´ 1, 13q xδc, γ, φy

pq “ p3 & p ” 3, 9 pmod 13qq
C8 SO˝13pqq.pq ´ 1, 13q q odd pq ´ 1, 13q xδc, γ, φy

C8 SU13pq
1{2
q.pq1{2

´ 1, 13q q square pq1{2
´ 1, 13q xδc, γ, φy

N1 Maximal under subgroups not contained in xδ, φy

Table 11.0.2: Maximal subgroups of SL13pqq in Class S

In all examples q “ p. So d :“ |ZpSL13ppqq| “ pp´ 1, 13q, |δ| “ d, |φ| “ 1, |γ| “ 2.
Subgroup Conditions on q c Stab
dˆ S6p3q q “ p ” 1 pmod 3q d xγy

dˆU3p4q q “ p ” 1 pmod 5q d xγy
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Table 11.0.3: Maximal subgroups of SU13pqq of geometric type

d :“ |ZpSU13pqqq| “ pq ` 1, 13q, |δ| “ d, |φ| “ 2e, q “ pe.
Ci Subgroup Notes c Stab
C1 E23

q : SU11pqq.pq
2
´ 1q 1 xδ, φy

C1 E40
q : pSL2pq

2
q ˆ SU9pqqq.pq

2
´ 1q 1 xδ, φy

C1 E51
q : pSL3pq

2
q ˆ SU7pqqq.pq

2
´ 1q 1 xδ, φy

C1 E56
q : pSL4pq

2
q ˆ SU5pqqq.pq

2
´ 1q 1 xδ, φy

C1 E55
q : pSL5pq

2
q ˆ SU3pqqq.pq

2
´ 1q 1 xδ, φy

C1 E48
q : GL6pq

2
q 1 xδ, φy

C1 GU12pqq 1 xδ, φy

C1 pSU2pqq ˆ SU11pqqq.pq ` 1q 1 xδ, φy

C1 pSU3pqq ˆ SU10pqqq.pq ` 1q 1 xδ, φy

C1 pSU4pqq ˆ SU9pqqq.pq ` 1q 1 xδ, φy

C1 pSU5pqq ˆ SU8pqqq.pq ` 1q 1 xδ, φy

C1 pSU6pqq ˆ SU7pqqq.pq ` 1q 1 xδ, φy

C2 pq ` 1q12.S13 1 xδ, φy

C3
q13`1
q`1 .13 1 xδ, φy

C5 SU13pq0q.rp
q`1
q0`1 , 13qs q “ qr0 , r odd prime p

q`1
q0`1 , 13q xδc, φy

C5 SO˝13pqq.rpq ` 1, 13qs q odd pq ` 1, 13q xδc, φy

C6 ppq ` 1, 13q ˝ 133
q.Sp2p13q pq “ p2 & p ” 5, 8 pmod 13qq or pq ` 1, 13q xδc, φy

pq “ p6 & p ” 2, 6, 7, 11 pmod 13qq

Table 11.0.4: Maximal subgroups of SU13pqq in Class S

d :“ |ZpSU13pqqq| “ pq ` 1, 13q, |δ| “ d, |φ| “ 2e, q “ pe, φe “ γ.
Subgroup Conditions on q c Stab
dˆ S6p3q q “ p ” 2 pmod 3q d xγy

dˆU3p4q q “ p ” 4 pmod 5q d xγy

q “ p2, p ” 2, 3 pmod 5q, p ‰ 2 d xφy
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Table 11.0.5: Maximal subgroups of Ω˝13pqq of geometric type

d :“ |ZpΩ˝13pqqq| “ 1, |δ| “ 2, |φ| “ e, q “ pe odd.
Ci Subgroup Notes c Stab
C1 E11

q : p q´1
2 ˆ Ω˝11pqqq.2 1 xδ, φy

C1 E19
q : p 1

2 GL2pqq ˆ Ω˝9pqqq.2 1 xδ, φy

C1 E24
q : p 1

2 GL3pqq ˆ Ω˝7pqqq.2 1 xδ, φy

C1 E26
q : p 1

2 GL4pqq ˆ Ω˝5pqqq.2 1 xδ, φy

C1 E25
q : p 1

2 GL5pqq ˆ Ω˝3pqqq.2 1 xδ, φy

C1 E21
q : 1

2 GL6pqq 1 xδ, φy

C1 Ω`12pqq.2 1 xδ, φy

C1 Ω´12pqq.2 1 xδ, φy

C1 pΩ`2 pqq ˆ Ω˝11pqqq.22 q ‰ 3 1 xδ, φy

C1 pΩ´2 pqq ˆ Ω˝11pqqq.22 1 xδ, φy

C1 pΩ˝3pqq ˆ Ω`10pqqq.22 1 xδ, φy

C1 pΩ˝3pqq ˆ Ω´10pqqq.22 1 xδ, φy

C1 pΩ`4 pqq ˆ Ω˝9pqqq.22 1 xδ, φy

C1 pΩ´4 pqq ˆ Ω˝9pqqq.22 1 xδ, φy

C1 pΩ˝5pqq ˆ Ω`8 pqqq.22 1 xδ, φy

C1 pΩ˝5pqq ˆ Ω´8 pqqq.22 1 xδ, φy

C1 pΩ`6 pqq ˆ Ω˝7pqqq.22 1 xδ, φy

C1 pΩ´6 pqq ˆ Ω˝7pqqq.22 1 xδ, φy

C2 212.A13 q “ p ” ˘3 pmod 8q 1 xδ, φy

C2 212.S13 q “ p ” ˘1 pmod 8q 2 xφy

C5 Ω˝13pq0q q “ qr0 , r odd prime 1 xδ, φy

C5 SO˝13pq0q q “ q2
0 2 xφy
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Table 11.0.6: Maximal subgroups of Ω˝13pqq in Class S

d :“ |ZpΩ˝13pqqq| “ 1, |δ| “ 2, |φ| “ e, q “ pe odd.
Subgroup Conditions on q Notes c Stab
A8 q “ 3 N1 1 xδy

S14 q “ p ” ˘1,˘3,˘9 pmod 28q, p ‰ 3 2
A14 q “ p ” ˘5,˘11,˘13 pmod 28q, p ‰ 5 1 xδy

S15 q “ 3 2
A15 q “ 5 1 xδy

L2p25q q “ p ” 2, 3 pmod 5q, p ‰ 2 1 xδy

L3p3q.2 q “ p ” 1, 11 pmod 12q 2
L3p3q q “ p ” 5, 7 pmod 12q 1 xδy

S4p5q q “ p ” 1, 4 pmod 5q 2
S4p5q q “ p2, p ” 2, 3 pmod 5q, p ‰ 2 2 xφy

S6pqq p “ 3 1 xδ, φy

Ω˝5pqq p “ 5 1 xδ, φy

L2pqq p ě 13, q ‰ 13 1 xδ, φy

N1 Maximal under xδy
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Table 11.0.7: Maximal subgroups of SL14pqq of geometric type

d :“ |ZpSL14pqqq| “ pq ´ 1, 14q, |δ| “ d, |φ| “ e, |γ| “ 2, q “ pe.
Ci Subgroup Notes c Stab
C1 E13

q : GL13pqq 2 xδ, φy

C1 E24
q : pSL2pqq ˆ SL12pqqq : pq ´ 1q 2 xδ, φy

C1 E33
q : pSL3pqq ˆ SL11pqqq : pq ´ 1q 2 xδ, φy

C1 E40
q : pSL4pqq ˆ SL10pqqq : pq ´ 1q 2 xδ, φy

C1 E45
q : pSL5pqq ˆ SL9pqqq : pq ´ 1q 2 xδ, φy

C1 E48
q : pSL6pqq ˆ SL8pqqq : pq ´ 1q 2 xδ, φy

C1 E49
q : pSL7pqq ˆ SL7pqqq : pq ´ 1q 1 xδ, γ, φy

C1 GL13pqq N1 1 xδ, γ, φy

C1 pSL2pqq ˆ SL12pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL3pqq ˆ SL11pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL4pqq ˆ SL10pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL5pqq ˆ SL9pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL6pqq ˆ SL8pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 E25
q : pGL12pqq ˆ pq ´ 1qq N1 1 xδ, γ, φy

C1 E44
q : pSL2pqq

2
ˆ SL10pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E57
q : pSL3pqq

2
ˆ SL8pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E64
q : pSL4pqq

2
ˆ SL6pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E65
q : pSL5pqq

2
ˆ SL4pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E60
q : pSL6pqq

2
ˆ SL2pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C2 pq ´ 1q13.S14 q ě 5 1 xδ, γ, φy

C2 SL2pqq
7.pq ´ 1q6.S7 q ‰ 2 1 xδ, γ, φy

C2 SL7pqq
2.pq ´ 1q.S2 1 xδ, γ, φy

C3 p
pq´1,2qpq7´1q

q´1 ˝ SL2pq
7
qq.7 1 xδ, γ, φy

C3 ppq ´ 1, 7qpq ` 1q ˝ SL7pq
2
qq.pq ` 1, 7q.2 1 xδ, γ, φy

C4 SL2pqq ˝ SL7pqq q ‰ 2 1 xδ, γ, φy

C5 SL14pq0q.rp
q´1
q0´1 , 14qs q “ qr0 , r prime p

q´1
q0´1 , 14q xδc, γ, φy

C8 pq ´ 1, 14q¨S14pqq q odd pq ´ 1, 7q xδc, γ, φy

C8 pq ´ 1, 14q¨PCSp14pqq q even pq ´ 1, 7q xδc, γ, φy

C8 SO`14pqq.pq ´ 1, 14q q odd pq ´ 1, 7q xδc, γ, φy

C8 SO´14pqq.pq ´ 1, 14q q odd pq ´ 1, 7q S1
C8 SU14pq

1{2
q.pq1{2

´ 1, 14q q square pq1{2
´ 1, 14q xδc, γ, φy

N1 Maximal under subgroups not contained in xδ, φy
S1 xδc, γ, φy if q ” 3 pmod 4q

xδc, φδpp´1q{2, γδ´1
y if q ” 1 pmod 4q
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Table 11.0.8: Maximal subgroups of SL14pqq in Class S

In all examples q “ p. So d :“ |ZpSL14ppqq| “ pp´ 1, 14q, |δ| “ d, |φ| “ 1, |γ| “ 2.
Subgroup Conditions on q c Stab
d ˝ 2.S6p3q q “ p ” 1, 7 pmod 24q d xγy

q “ p ” 13, 19 pmod 24q d xγδy

dˆ Szp8q.3 q “ p ” 1 pmod 4q 2d

Table 11.0.9: Maximal subgroups of SU14pqq of geometric type

d :“ |ZpSU14pqqq| “ pq ` 1, 14q, |δ| “ d, |φ| “ 2e, q “ pe.
Ci Subgroup Notes c Stab
C1 E25

q : SU12pqq.pq
2
´ 1q 1 xδ, φy

C1 E44
q : pSL2pq

2
q ˆ SU10pqqq.pq

2
´ 1q 1 xδ, φy

C1 E57
q : pSL3pq

2
q ˆ SU8pqqq.pq

2
´ 1q 1 xδ, φy

C1 E64
q : pSL4pq

2
q ˆ SU6pqqq.pq

2
´ 1q 1 xδ, φy

C1 E65
q : pSL5pq

2
q ˆ SU4pqqq.pq

2
´ 1q 1 xδ, φy

C1 E60
q : pSL6pq

2
q ˆ SU2pqqq.pq

2
´ 1q 1 xδ, φy

C1 E49
q : SL7pq

2
q.pq ´ 1q 1 xδ, φy

C1 GU13pqq 1 xδ, φy

C1 pSU2pqq ˆ SU12pqqq.pq ` 1q 1 xδ, φy

C1 pSU3pqq ˆ SU11pqqq.pq ` 1q 1 xδ, φy

C1 pSU4pqq ˆ SU10pqqq.pq ` 1q 1 xδ, φy

C1 pSU5pqq ˆ SU9pqqq.pq ` 1q 1 xδ, φy

C1 pSU6pqq ˆ SU8pqqq.pq ` 1q 1 xδ, φy

C2 pq ` 1q13.S14 1 xδ, φy

C2 SU2pqq
7.pq ` 1q6.S7 q ‰ 2 1 xδ, φy

C2 SU7pqq
2.pq ` 1q.S2 1 xδ, φy

C2 SL7pq
2
q.pq ´ 1q.2 1 xδ, φy

C3 p
pq`1,2qpq7`1q

q`1 ˝ SU2pq
7
qq.7 1 xδ, φy

C4 SU2pqq ˝ SU7pqq q ‰ 2 1 xδ, φy

C5 SU14pq0q.rp
q`1
q0`1 , 14qs q “ qr0 , r odd prime p

q`1
q0`1 , 14q xδc, φy

C5 SO`14pqq.rpq ` 1, 14qs q odd pq ` 1, 7q S1
C5 SO´14pqq.rpq ` 1, 14qs q odd pq ` 1, 7q S2
C5 Sp14pqq.rpq ` 1, 7qs pq ` 1, 7q xδc, φy
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S1 xδc, φy if q ” 1 pmod 4q
xδc, φδpp´1q{2

y if q ” 3 pmod 4q
S2 xδc, φδpp´1q{2

y if q ” 1 pmod 4q
xδc, φy if q ” 3 pmod 4q

Table 11.0.10: Maximal subgroups of SU14pqq in Class S

In all examples q “ p. So d :“ |ZpSU14ppqq| “ pp` 1, 14q, |δ| “ d, |φ| “ 2, φ “ γ.
Subgroup Conditions on q c Stab
d ˝ 2.S6p3q q “ p ” 17, 23 pmod 24q d xγy

q “ p ” 5, 11 pmod 24q d xγδy

dˆ Szp8q.3 q “ p ” 3 pmod 4q 2d

Table 11.0.11: Maximal subgroups of Sp14pqq of geometric type

d :“ |ZpSp14pqqq| “ pq ´ 1, 2q, |δ| “ d, |φ| “ e, q “ pe.
Ci Subgroup Notes c Stab
C1 E13

q : ppq ´ 1q ˆ Sp12pqqq 1 xδ, φy

C1 E23
q : pGL2pqq ˆ Sp10pqqq 1 xδ, φy

C1 E30
q : pGL3pqq ˆ Sp8pqqq 1 xδ, φy

C1 E34
q : pGL4pqq ˆ Sp6pqqq 1 xδ, φy

C1 E35
q : pGL5pqq ˆ Sp4pqqq 1 xδ, φy

C1 E33
q : pGL6pqq ˆ Sp2pqqq 1 xδ, φy

C1 E28
q : GL7pqq 1 xδ, φy

C1 Sp2pqq ˆ Sp12pqq 1 xδ, φy

C1 Sp4pqq ˆ Sp10pqq 1 xδ, φy

C1 Sp6pqq ˆ Sp8pqq 1 xδ, φy

C2 Sp2pqq
7 : S7 q ‰ 2 1 xδ, φy

C2 GL7pqq.2 q odd 1 xδ, φy

C3 Sp2pq
7
q.7 1 xδ, φy

C3 GU7pqq.2 q odd 1 xδ, φy

C4 Sp2pqq ˝GO˝7pqq q odd 1 xδ, φy

C5 Sp14pq0q.2 q “ q2
0 odd 2 xφy

C5 Sp14pq0q q “ qr0 , r odd prime 1 xδ, φy

or q even
C8 GO`14pqq q even 1 xφy

C8 GO´14pqq q even 1 xφy
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Table 11.0.12: Maximal subgroups of Sp14pqq in Class S

d :“ |ZpSp14pqqq| “ pq ´ 1, 2q, |δ| “ d, |φ| “ e, q “ pe.
Subgroup Conditions on q Notes c Stab
2.A7 q “ p ” 1, 7 pmod 8q 2

q “ p2, p ” 3, 5 pmod 8q, p ‰ 3 2 xφy

2.L2p13q.2 q “ p ” 1, 7 pmod 8q 2
2.L2p13q q “ p ” ˘5,˘11,˘19,˘21,˘37,˘45 pmod 104q 1 xδy

2.L2p13q q “ p ” ˘3,˘27,˘29,˘35,˘43,˘51 pmod 104q N1 1 xδy

2.L2p13q.2 q “ p ” 1, 23 pmod 24q 2
q “ p ” 1, 23 pmod 24q 2
q “ p2, p ” 5, 7 pmod 12q 4

2.L2p13q q “ p ” 11, 13 pmod 24q, p ‰ 13 1 xδy

q “ p ” 11, 13 pmod 24q, p ‰ 13 1 xδy

L2p29q q “ 4 1 xφy

2.L2p29q q “ p ” ˘1,˘4,˘5,˘6,˘7,˘9,˘13 pmod 29q 2
q “ p2, p ” ˘2,˘3,˘8,˘10,˘11,˘12,˘14 pmod 29q, p ‰ 2 2 xφy

2.J2.2 q “ p ” 1, 7 pmod 8q 2
2.J2 q “ p ” 3, 13, 27, 37 pmod 40q 1 xδy

2.J2 q “ p ” 11, 19, 21, 29 pmod 40q N1 1 xδy

SL2pqq p ě 17 1 xδ, φy

Sp6pqq p ě 3 1 xδ, φy

N1 Maximal under xδy
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Table 11.0.13: Maximal subgroups of Ω`14pqq of geometric type

q “ 2e : |ZpΩ`14pqqq| “ 1, |δ| “ 1, |γ| “ 2, |δ1| “ 1, |φ| “ e.
q “ pe ” 1 pmod 4q : |ZpΩ`14pqqq| “ 2, |δ| “ 4, |γ| “ 2, δ2

“ δ1, |φ| “ e.
q “ pe ” 3 pmod 4q : |ZpΩ`14pqqq| “ 1, |δ| “ 2, |γ| “ 2, |δ1| “ 1, |φ| “ e.

t :“ pq ´ 1, 2q
Ci Subgroup Notes c Stab
C1 E12

q : p q´1
t
ˆ Ω`12pqqq.t 1 xδ, γ, φy

C1 E21
q : p 1

t
GL2pqq ˆ Ω`10pqqq.t 1 xδ, γ, φy

C1 E27
q : p 1

t
GL3pqq ˆ Ω`8 pqqq.t 1 xδ, γ, φy

C1 E30
q : p 1

t
GL4pqq ˆ Ω`6 pqqq.t 1 xδ, γ, φy

C1 E30
q : p 1

t
GL5pqq ˆ Ω`4 pqqq.t 1 xδ, γ, φy

C1 E27
q : p 1

t
GL6pqq ˆ Ω`2 pqqq.t N1 1 xδ, γ, φy

C1 E21
q : 1

t
GL7pqq 2 xδ, φy

C1 Ω˝13pqq.2 q odd 2 xδ1, γ, φy

C1 pΩ`2 p3q ˆ Ω`12p3qq.22 q “ 3, N2 1 xδ, γ, φy

C1 pΩ`2 pqq ˆ Ω`12pqqq.2t q ě 4 1 xδ, γ, φy

C1 pΩ´2 pqq ˆ Ω´12pqqq.2t 1 xδ, γ, φy

C1 pΩ˝3pqq ˆ Ω˝11pqqq.22 q odd 2 xδ1, γ, φy

C1 pΩ`4 pqq ˆ Ω`10pqqq.2t 1 xδ, γ, φy

C1 pΩ´4 pqq ˆ Ω´10pqqq.2t 1 xδ, γ, φy

C1 pΩ˝5pqq ˆ Ω˝9pqqq.22 q odd 2 xδ1, γ, φy

C1 pΩ`6 pqq ˆ Ω`8 pqqq.2t 1 xδ, γ, φy

C1 pΩ´6 pqq ˆ Ω´8 pqqq.2t 1 xδ, γ, φy

C1 Sp12pqq q even 1 xγ, φy

C2 213.S14 q “ p ” 1 pmod 8q 4 xγ, φy

C2 213.A14 q “ p ” 5 pmod 8q 2 xδ1, γ, φy

C2 Ω`2 p5q7.212.S7 q “ 5, N2 1 xδ, γ, φy

C2 Ω`2 pqq7.212.S7 q ě 7 1 xδ, γ, φy

C2 Ω˝7pqq2.22.S2 q ” 1 pmod 4q 2 xδ1, γ, φy

C2 SL7pqq.
pq´1q
t

N1 1 xδ, γ, φy

C2 SO˝7pqq2 q ” 3 pmod 4q 1 xδ, γ, φy

C3 2ˆ Ω˝7pq2
q.2 q ” 1 pmod 4q 2 S1

C3 Ω˝7pq2
q.2 q ” 3 pmod 4q 1 xδ, γ, φy

C5 Ω`14pq0q q “ qr0 , r odd prime or q even 1 xδ, γ, φy

C5 SO`14pq0q q “ q2
0 , q0 ” 1 pmod 4q 2 xδ1, γ, φy

C5 SO`14pq0q.2 q “ q2
0 , q0 ” 3 pmod 4q 4 xγ, φy

C5 Ω´14pq0q q “ q2
0 even 1 xγ, φy

C5 SO´14pq0q.2 q “ q2
0 , q0 ” 1 pmod 4q 4 xγ, φy

C5 SO´14pq0q q “ q2
0 , q0 ” 3 pmod 4q 2 xδ1, γ, φy
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N1 Maximal under subgroups not contained in xδ, φy
N2 Maximal under subgroups not contained in xδ1, γ, φy
S1 xγδ, γδ3, φy if p ” 1 pmod 4q

xγδ, γδ3, γφy if p ” 3 pmod 4q, q ” 1 pmod 4q

Table 11.0.14: Maximal subgroups of Ω`14pqq in Class S

q “ 2e : |ZpΩ`14pqqq| “ 1 “ d, |δ| “ 1, |γ| “ 2, |δ1| “ 1, |φ| “ e.
q “ pe ” 1 pmod 4q : |ZpΩ`14pqqq| “ 2 “ d, |δ| “ 4, |γ| “ 2, δ2

“ δ1, |φ| “ e.
q “ pe ” 3 pmod 4q : |ZpΩ`14pqqq| “ 1 “ d, |δ| “ 2, |γ| “ 2, |δ1| “ 1, |φ| “ e.

Subgroup Conditions on q Notes c Stab
pdˆA7q.2 q “ p ” 1, 7, 19, 31, 43, 49 pmod 60q, p ‰ 7 4d
2ˆA7 q “ p ” 13, 37 pmod 60q 4 xδ1y

dˆA15 q “ p ” 1, 17, 19, 23, 31, 47, 49, 53 pmod 60q 2d xγy

A16 q “ 2 1 xγy

dˆ L2p13q q “ p ” 5, 11, 41, 47, 59, 71, 83, 89, 119, 2d xγy

125, 137, 149 pmod 156q
dˆ L2p13q q “ p ” 1, 25, 43, 49, 55, 61, 79, 103, 121, N1 2d xγy

127, 133, 139 pmod 156q
L2p13q q “ p ” 11, 47, 59, 71, 83, 119 pmod 156q 2 xγy

2ˆ L2p13q q “ p ” 1, 25, 49, 61, 121, 133 pmod 156q N1 4 xγy

2ˆ L2p13q q “ p ” 5, 41, 89, 125, 137, 149 pmod 156q 4 xγδy

L2p13q q “ p ” 43, 55, 79, 103, 127, 139 pmod 156q N2 2 xγδy

L2p13q q “ 2 1 xγy

S6p2q q “ 3 4
p2ˆG2p3qq.2 q “ p ” 1 pmod 24q 8
2ˆG2p3q q “ p ” 13 pmod 24q 4 xδ1y

G2p3q q “ p ” 7, 19 pmod 24q 2 xδy

SL4pqq.2 q “ 2i, i even 2 xφy

SU4pqq.2 q “ 2i, i even 2 xφy

2ˆ S6pqq q ” 1 pmod 12q 4 S1
S6pqq.2 q ” 7 pmod 12q 4 xφy

S6pqq q “ 2i, i even 2 xφγy

2ˆ Ω˝5pqq q ” 1, 9 pmod 20q 4 S2
Ω˝5pqq.2 q ” 3, 7 pmod 20q, q ‰ 3 4 xφy

dˆG2pqq q ” 1, 7 pmod 12q 4d S3
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S1 xδ1, φy if p ” 1, 7 pmod 12q
xδ1, φγy if p ” 5, 11 pmod 12q

S2 xδ1, φy if p ” 1, 3, 7, 9 pmod 20q
xδ1, φγy if p ” 11, 13, 17, 19 pmod 20q

S3 xφy if p ” 1, 7 pmod 12q
xφγy if p ” 5, 11 pmod 12q

N1 Maximal under xγy
N2 Maximal under xγδy
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Table 11.0.15: Maximal subgroups of Ω´14pqq of geometric type

q “ 2e : |ZpΩ´14pqqq| “ 1, |δ| “ 1, |γ| “ 2, |δ1| “ 1, |φ| “ e.
q “ pe ” 1 pmod 4q : |ZpΩ´14pqqq| “ 1, |δ| “ 2, |γ| “ 2, |δ1| “ 1, |ϕ| “ 2e, ϕe “ γ.

q “ pe ” 3 pmod 4q : |ZpΩ´14pqqq| “ 2, |δ| “ 4, |γ| “ 2, δ2
“ δ1, |φ| “ e.

t :“ pq ´ 1, 2q
Ci Subgroup Notes c Stab
C1 E12

q : p q´1
t
ˆ Ω´12pqqq.t 1 S1

C1 E21
q : p 1

t
GL2pqq ˆ Ω´10pqqq.t 1 S1

C1 E27
q : p 1

t
GL3pqq ˆ Ω´8 pqqq.t 1 S1

C1 E30
q : p 1

t
GL4pqq ˆ Ω´6 pqqq.t 1 S1

C1 E30
q : p 1

t
GL5pqq ˆ Ω´4 pqqq.t 1 S1

C1 E27
q : p 1

t
GL6pqq ˆ Ω´2 pqqq.t 1 S1

C1 Ω˝13pqq.2 q odd 2 S2
C1 pΩ`2 p3q ˆ Ω´12p3qq.2t q “ 3, N1 1 S1
C1 pΩ`2 pqq ˆ Ω´12pqqq.2t q ě 3 1 S1
C1 pΩ´2 pqq ˆ Ω`12pqqq.2t 1 S1
C1 pΩ˝3pqq ˆ Ω˝11pqqq.22 q odd 2 S2
C1 pΩ`4 pqq ˆ Ω´10pqqq.2t 1 S1
C1 pΩ´4 pqq ˆ Ω`10pqqq.2t 1 S1
C1 pΩ˝5pqq ˆ Ω˝9pqqq.22 q odd 2 S2
C1 pΩ`6 pqq ˆ Ω´8 pqqq.2t 1 S1
C1 pΩ´6 pqq ˆ Ω`8 pqqq.2t 1 S1
C1 Sp12pqq q even 1 xγ, ϕy

C2 213.S14 q “ p ” 7 pmod 8q 4 xγy

C2 213.A14 q “ p ” 3 pmod 8q 2 xδ1, γ, φy

C2 Ω´2 pqq7.212.S7 q “ 3, N1 1 xδ, δ1, γ, φy

C2 Ω´2 pqq7.26t.S7 q ‰ 3 1 S1
C2 Ω˝7pqq2.22.S2 q ” 3 pmod 4q 2 xδ1, γ, φy

C2 SO˝7pqq2 q ” 1 pmod 4q 1 xδ, γ, ϕy

C3 p
q`1

pq`1,2q ˝ SU7pqqq.pq ` 1, 7q 1 S1
C3 Ω˝7pq2

q.2 q ” 1 pmod 4q 1 xδ, γ, ϕy

C3 2ˆ Ω˝7pq2
q.2 q ” 3 pmod 4q 2 xδ, δ1φy

C5 Ω´14pq0q q “ qr0 , r odd prime 1 S1

N1 Maximal under subgroups not contained in xδ1, γ, φy
S1 xγ, ϕy if q even

xδ, γ, ϕy if q ” 1 pmod 4q
xδ, δ1, γ, φy if q ” 3 pmod 4q

S2 xγ, ϕy if q ” 1 pmod 4q
xδ1, γ, φy if q ” 3 pmod 4q
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Table 11.0.16: Maximal subgroups of Ω´14pqq in Class S

q “ 2e : |ZpΩ´14pqqq| “ 1 “ d, |δ| “ 1, |γ| “ 2, |δ1| “ 1, |φ| “ e.
q “ pe ” 1 pmod 4q : |ZpΩ´14pqqq| “ 1 “ d, |δ| “ 2, |γ| “ 2, |δ1| “ 1, |φ| “ e.
q “ pe ” 3 pmod 4q : |ZpΩ´14pqqq| “ 2 “ d, |δ| “ 4, |γ| “ 2, δ2

“ δ1, |φ| “ e.
Subgroup Conditions on q Notes c Stab
pdˆA7q.2 q “ p ” 11, 17, 29, 41, 53, 59 pmod 60q 4d
2ˆA7 q “ p ” 23, 47 pmod 60q 4 xδ1y

A7.2 q “ 2 2
dˆA15 q “ p ” 7, 11, 13, 29, 37, 41, 43, 59 pmod 60q 2d xγy

dˆ L2p13q q “ p ” 7, 19, 31, 37, 67, 73, 85, 97, 109, 2d xγy

115, 145, 151 pmod 156q
dˆ L2p13q q “ p ” 17, 23, 29, 35, 53, 77, 95, 101, 107, N1 2d xγy

113, 131, 155 pmod 156q
L2p13q q “ p ” 37, 73, 85, 97, 109, 145 pmod 156q 2 xγy

2ˆ L2p13q q “ p ” 23, 35, 95, 107, 131, 155 pmod 156q N1 4 xγy

2ˆ L2p13q q “ p ” 7, 19, 31, 67, 115, 151 pmod 156q 4 xγδy

L2p13q q “ p ” 17, 29, 53, 77, 101, 113 pmod 156q N2 2 xγδy

p2ˆG2p3qq.2 q “ p ” 23 pmod 24q 8
2ˆG2p3q q “ p ” 11 pmod 24q 4 xδ1y

G2p3q q “ p ” 5, 17 pmod 24q 2 xδy

G2p3q.2 q “ 2 2
J2.2 q “ 5 4
SL4pqq.2 q “ 2i, i odd 2 xφy

SU4pqq.2 q “ 2i, i odd 2 xφy

2ˆ S6pqq q ” 11 pmod 12q 4 xδ1, φy

S6pqq.2 q ” 5 pmod 12q 4 xφy

S6pqq q “ 2i, i odd 2 xφy

Ω˝5pqq.2 q ” 13, 17 pmod 20q 4 xφy

2ˆ Ω˝5pqq q ” 11, 19 pmod 20q 4 xδ1, φy

dˆG2pqq q ” 5, 11 pmod 12q 4d xφy

N1 Maximal under xγy
N2 Maximal under xγδy
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Table 11.0.17: Maximal subgroups of SL15pqq of geometric type

d :“ |ZpSL15pqqq| “ pq ´ 1, 15q, |δ| “ d, |φ| “ e, |γ| “ 2, q “ pe.
Ci Subgroup Notes c Stab
C1 E14

q : GL14pqq 2 xδ, φy

C1 E26
q : pSL2pqq ˆ SL13pqqq : pq ´ 1q 2 xδ, φy

C1 E36
q : pSL3pqq ˆ SL12pqqq : pq ´ 1q 2 xδ, φy

C1 E44
q : pSL4pqq ˆ SL11pqqq : pq ´ 1q 2 xδ, φy

C1 E50
q : pSL5pqq ˆ SL10pqqq : pq ´ 1q 2 xδ, φy

C1 E54
q : pSL6pqq ˆ SL9pqqq : pq ´ 1q 2 xδ, φy

C1 E56
q : pSL7pqq ˆ SL8pqqq : pq ´ 1q 2 xδ, φy

C1 GL14pqq N1 1 xδ, γ, φy

C1 pSL2pqq ˆ SL13pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL3pqq ˆ SL12pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL4pqq ˆ SL11pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL5pqq ˆ SL10pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL6pqq ˆ SL9pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 pSL7pqq ˆ SL8pqqq : pq ´ 1q N1 1 xδ, γ, φy

C1 E27
q : pGL13pqq ˆ pq ´ 1qq N1 1 xδ, γ, φy

C1 E48
q : pSL2pqq

2
ˆ SL11pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E63
q : pSL3pqq

2
ˆ SL9pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E72
q : pSL4pqq

2
ˆ SL7pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E75
q : pSL5pqq

2
ˆ SL5pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E72
q : pSL6pqq

2
ˆ SL3pqqq : pq ´ 1q2 N1 1 xδ, γ, φy

C1 E63
q : GL7pqq

2 N1 1 xδ, γ, φy

C2 pq ´ 1q14.S15 q ě 5 1 xδ, γ, φy

C2 SL3pqq
5.pq ´ 1q4.S5 1 xδ, γ, φy

C2 SL5pqq
3.pq ´ 1q2.S3 1 xδ, γ, φy

C3 p
pq´1,3qpq5´1q

q´1 ˝ SL3pq
5
qq. pq

5´1,3q
pq´1,3q .5 1 xδ, γ, φy

C3 p
pq´1,5qpq3´1q

q´1 ˝ SL5pq
3
qq. pq

3´1,5q
pq´1,5q .3 1 xδ, γ, φy

C4 SL3pqq ˝ SL5pqq 1 xδ, γ, φy

C5 SL15pq0q.rp
q´1
q0´1 , 15qs q “ qr0 , r prime p

q´1
q0´1 , 15q xδc, γ, φy

C8 SO˝15pqq.pq ´ 1, 15q q odd pq ´ 1, 15q xδc, γ, φy

C8 SU15pq
1{2
q.pq1{2

´ 1, 15q q square pq1{2
´ 1, 15q xδc, γ, φy

N1 Maximal under subgroups not contained in xδ, φy
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Table 11.0.18: Maximal subgroups of SL15pqq in Class S

d :“ |ZpSL15pqqq| “ pq ´ 1, 15q, |δ| “ d, |φ| “ e, |γ| “ 2, q “ pe,
t :“ p5, q ´ 1q, r :“ p3, q ´ 1q.

Subgroup Conditions on q c Stab
dˆ L2p31q q “ p ” 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, d xγy

18, 19, 20, 25, 28 pmod 31q
tˆ SL3pqq p ‰ 2, 3 t xδt, γ, φy

r ˆ SL5pqq p ‰ 2 r xδr, γ, φy

ptˆ r.L6pqqq.2 p ‰ 2 t xδt, γ, φy

tˆ SL6pqq p “ 2 t xδt, γ, φy

Table 11.0.19: Maximal subgroups of SU15pqq of geometric type

d :“ |ZpSU15pqqq| “ pq ` 1, 15q, |δ| “ d, |φ| “ 2e, q “ pe.
Ci Subgroup Notes c Stab
C1 E27

q : SU13pqq.pq
2
´ 1q 1 xδ, φy

C1 E48
q : pSL2pq

2
q ˆ SU11pqqq.pq

2
´ 1q 1 xδ, φy

C1 E63
q : pSL3pq

2
q ˆ SU9pqqq.pq

2
´ 1q 1 xδ, φy

C1 E72
q : pSL4pq

2
q ˆ SU7pqqq.pq

2
´ 1q 1 xδ, φy

C1 E75
q : pSL5pq

2
q ˆ SU5pqqq.pq

2
´ 1q 1 xδ, φy

C1 E72
q : pSL6pq

2
q ˆ SU3pqqq.pq

2
´ 1q 1 xδ, φy

C1 E63
q : GL7pq

2
q 1 xδ, φy

C1 GU14pqq 1 xδ, φy

C1 pSU2pqq ˆ SU13pqqq.pq ` 1q 1 xδ, φy

C1 pSU3pqq ˆ SU12pqqq.pq ` 1q 1 xδ, φy

C1 pSU4pqq ˆ SU11pqqq.pq ` 1q 1 xδ, φy

C1 pSU5pqq ˆ SU10pqqq.pq ` 1q 1 xδ, φy

C1 pSU6pqq ˆ SU9pqqq.pq ` 1q 1 xδ, φy

C1 pSU7pqq ˆ SU8pqqq.pq ` 1q 1 xδ, φy

C2 pq ` 1q14.S15 1 xδ, φy

C2 SU3pqq
5.pq ` 1q4.S5 1 xδ, φy

C2 SU5pqq
3.pq ` 1q2.S3 1 xδ, φy

C3 p
pq`1,3qpq5`1q

q`1 ˝ SU3pq
5
qq. pq

5`1,3q
pq`1,3q .5 1 xδ, φy

C3 p
pq`1,5qpq3`1q

q`1 ˝ SU5pq
3
qq. pq

3`1,5q
pq`1,5q .3 1 xδ, φy

C4 SU3pqq ˝ SU5pqq 1 xδ, φy

C5 SU15pq0q.rp
q`1
q0`1 , 15qs q “ qr0 , r odd prime p

q`1
q0`1 , 15q xδc, φy

C5 SO˝15pqq.rpq ` 1, 15qs q odd pq ` 1, 15q xδc, φy
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Table 11.0.20: Maximal subgroups of SU15pqq in Class S

d :“ |ZpSU15pqqq| “ pq ` 1, 15q, |δ| “ d, |φ| “ 2e, φe “ γ, q “ pe,
t :“ p5, q ` 1q, r :“ p3, q ` 1q.

Subgroup Conditions on q c Stab
dˆ L2p31q q “ p ” 3, 6, 11, 12, 13, 15, 17, 21, 22, d xγy

23, 24, 26, 27, 29, 30 pmod 31q
tˆ SU3pqq p ‰ 2, 3 t xδt, φy

r ˆ SU5pqq p ‰ 2 r xδr, φy

ptˆ r.U6pqqq.2 p ‰ 2 t xδt, φy

tˆ SU6pqq p “ 2 t xδt, φy
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Table 11.0.21: Maximal subgroups of Ω˝15pqq of geometric type

|ZpΩ˝15pqqq| “ 1, |δ| “ 2, |φ| “ e, q “ pe odd.
Ci Subgroup Notes c Stab
C1 E13

q : p pq´1q
2 ˆ Ω˝13pqqq.2 1 xδ, φy

C1 E23
q : p 1

2 GL2pqq ˆ Ω˝11pqqq.2 1 xδ, φy

C1 E30
q : p 1

2 GL3pqq ˆ Ω˝9pqqq.2 1 xδ, φy

C1 E34
q : p 1

2 GL4pqq ˆ Ω˝7pqqq.2 1 xδ, φy

C1 E35
q : p 1

2 GL5pqq ˆ Ω˝5pqqq.2 1 xδ, φy

C1 E33
q : p 1

2 GL6pqq ˆ Ω˝3pqqq.2 1 xδ, φy

C1 E28
q : 1

2 GL7pqq 1 xδ, φy

C1 Ω`14pqq.2 1 xδ, φy

C1 Ω´14pqq.2 1 xδ, φy

C1 pΩ`2 pqq ˆ Ω˝13pqqq.22 q ‰ 3 1 xδ, φy

C1 pΩ´2 pqq ˆ Ω˝13pqqq.22 1 xδ, φy

C1 pΩ˝3pqq ˆ Ω`12pqqq.22 1 xδ, φy

C1 pΩ˝3pqq ˆ Ω´12pqqq.22 1 xδ, φy

C1 pΩ`4 pqq ˆ Ω˝11pqqq.22 1 xδ, φy

C1 pΩ´4 pqq ˆ Ω˝11pqqq.22 1 xδ, φy

C1 pΩ˝5pqq ˆ Ω`10pqqq.22 1 xδ, φy

C1 pΩ˝5pqq ˆ Ω´10pqqq.22 1 xδ, φy

C1 pΩ`6 pqq ˆ Ω˝9pqqq.22 1 xδ, φy

C1 pΩ´6 pqq ˆ Ω˝9pqqq.22 1 xδ, φy

C1 pΩ˝7pqq ˆ Ω`8 pqqq.22 1 xδ, φy

C1 pΩ˝7pqq ˆ Ω´8 pqqq.22 1 xδ, φy

C2 214.A15 q “ p ” ˘3 pmod 8q 1 xδ, φy

C2 214.S15 q “ p ” ˘1 pmod 8q 2 xφy

C2 Ω˝3pqq5.28.S5 q ‰ 3 1 xδ, φy

C2 Ω˝5pqq3.24.S3 1 xδ, φy

C3 Ω˝3pq5
q.5 1 xδ, φy

C3 Ω˝5pq3
q.3 1 xδ, φy

C4 pΩ˝3pqq ˆ Ω˝5pqqq.2 q ‰ 3 1 xδ, φy

C5 Ω˝15pq0q q “ qr0 , r odd prime 1 xδ, φy

C5 SO˝15pq0q q “ q2
0 2 xφy
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Table 11.0.22: Maximal subgroups of Ω˝15pqq in Class S

|ZpΩ˝15pqqq| “ 1, |δ| “ 2, |φ| “ e, q “ pe odd.
Subgroup Conditions on q c Stab
A16.2 q “ p ” 1, 7 pmod 8q, p ‰ 17 2
A16 q “ p ” 3, 5 pmod 8q 1 xδy

A17.2 q “ 17 2
L2p16q q “ p ” ˘1 pmod 17q 2

q “ p ” ˘1 pmod 17q 2
q “ p2, p ” ˘4 pmod 17q 2 xφy

q “ p2, p ” ˘4 pmod 17q 2 xφy

q “ p4, p ” ˘2,˘8 pmod 17q, p ‰ 2 2 xφy

q “ p4, p ” ˘2,˘8 pmod 17q, p ‰ 2 2 xφy

q “ p8, p ” ˘3,˘5,˘6,˘7 pmod 17q 4 xφ2
y

L2p29q q “ p ” ˘1,˘4,˘5,˘6,˘7,˘9,˘13 pmod 29q 2
q “ p2, p ” ˘2,˘3,˘8,˘10,˘11,˘12,˘14 pmod 29q, p ‰ 2 2 xφy

L3p4q.22 q “ 3 1 xδy

S6p2q q “ p ‰ 2, 3 2
L2pqq.2 p ě 17 2 xφy

L4pqq.2 p ‰ 2 1 xδ, φy

U4pqq.2 p ‰ 2 1 xδ, φy
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Borel subgroup, 117
Brauer character, 20

character of algebraic group, 116
character of representation, 15
character ring, 15
cocharacter, 116
coroot, 117
covering group, 13
cross characteristic, 36

defining characteristic, 36
dimension of representation, 14
discriminant, 25

dominant root, 117
dual module, 126

equivalent representations, 15
exceptional prime, 41
exterior power, 120

full covering group, 13
fundamental dominant weight, 118

highest weight, 118
hyperbolic line, 22

induced character, 170
induced representation, 170
irreducible, 16
isometric, 22
isometry, 22

linear algebraic group, 116

maximal torus, 116
maximal vector, 117
minus-type, 24
morphism of affine variety, 115
morphism of algebraic group, 116

non-degenerate, 22
non-singular vector, 22
novelty, 35

ordinary maximal, 35

p-modular reduction, 18
p-restricted, 119
plus-type, 24
polar form, 21
potentially maximal, 151
properly normalise, 44
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quadratic form, 21
quasideterminant, 27
quasiequivalent representations, 15
quasisimple, 13
quotient space, 34

rational representation, 117
reducible, 16
reflection, 26
root, 116

scalar-normalising, 16
Schur indicator, 34
Schur multiplier, 13
self-dual, 119
semi-isometry, 22
semi-similarity, 22
semilinear map, 22
similar forms, 22
similarity, 22
singular vector, 22
spinor norm, 26
splitting, 16
stabilise representation, 15
standard form matrix, 25
standard generators, 13
symmetric bilinear form, 23
symmetric form, 21
symmetric power, 120
symplectic, 23

torus, 116
triviality, 35

unitary form, 23

weakly equivalent, 44
weight, 117

Zariski topology, 115
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