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Abstract

One might easily argue that the Classification of Finite Simple Groups is
one of the most important theorems of group theory. Given that any finite
group can be deconstructed into its simple composition factors, it is of great
importance to have a detailed knowledge of the structure of finite simple
groups.

One of the classes of finite groups that appear in the classification the-
orem are the simple classical groups, which are matrix groups preserving
some form. This thesis will shed some new light on almost simple classical
groups in dimension 13, 14 and 15. In particular we will determine their
maximal subgroups.

We will build on the results by Bray, Holt, and Roney-Dougal [§8] who
calculated the maximal subgroups of all almost simple finite classical groups
in dimension < 12. Furthermore, Aschbacher [2] proved that the maximal
subgroups of almost simple classical groups lie in nine classes. The maximal
subgroups in the first eight classes, i.e. the subgroups of geometric type,
were determined by Kleidman and Liebeck and all maximal subgroups in
dimension > 13 that are of geometric type can be found in [26].

Therefore this thesis concentrates on the ninth class of Aschbacher’s
Theorem. This class roughly consists of subgroups which are almost simple
modulo scalars and do not preserve a geometric structure. As our final
result we will give tables containing all maximal subgroups of almost simple
classical groups in dimension 13, 14 and 15.
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1 Introduction

Finding the maximal subgroups of almost simple classical groups is useful
for several reasons. Ever since the completion of the Classification of Fi-
nite Simple Groups it has become even more important to understand the
structure of the finite simple groups since they are in some way the building
blocks of all finite groups by Jordan-Hoélder. Furthermore, Cannon and Holt
[10] found a method to computationally construct the maximal subgroups
of any finite group G, using the maximal subgroups of the almost simple
extensions of the composition factors of G.

A lot of research has been done in order to understand the structure of
the maximal subgroups of classical groups. Probably the most important
result is Aschbacher’s Theorem [2]. Aschbacher managed to show that every
maximal subgroup of a classical group lies in one of nine classes, denoted by
C1 to Cy. The subgroups lying in the classes C; to Cg preserve some geometric
structure and are said to be of geometric type. The first mathematician to
systematically determine the maximal subgroups of specific classical groups
was Peter Kleidman. In his PhD thesis (1987) [25] he found the maximal
subgroups of the simple classical groups in dimension up to 12. A few years
later, Kleidman and Liebeck published a book ([26]) with tables containing
the maximal subgroups of geometric type of the almost simple classical
groups in dimension greater than 12. Furthermore, Bray, Holt, and Roney-
Dougal [8] achieved a complete classification of the maximal subgroups of
all almost simple classical groups in dimension < 12. For a more thorough
literature review see [8, Preface, p.x].

This thesis will build on the results by Bray, Holt and Roney-Dougal to
determine the maximal subgroups of all almost simple classical groups in
dimension 13, 14 and 15. As the maximal subgroups of geometric type are
given in [26], we will concentrate on subgroups lying in class Cg, which we
will denote by .. Roughly speaking these are the subgroups that do not
preserve some geometric structure and are almost simple modulo scalars.

Let Q € {SL,(q),SU.(q),Sp,,(q), 25, (q)}, where € € {o,+,—}, ¢ = p° for
some prime p, e € N, and n € {13,14,15}. Let T be a group such that
Q< T < A, where A/Z(A) = Aut(2/Z(Q2)). Even though our main aim
is to find the maximal subgroups of the almost simple groups T'/Z(T) we
will determine the maximal subgroups of T. The reason for this is that it
is a lot easier to work with matrix than with permutation representations.

11



Furthermore, we can show that once we know the maximal subgroups of T'
then we can easily deduce the maximal subgroups of T'/Z(T).

We will first give a brief discussion of some useful results in group and
representation theory before introducing classical groups in Chapter 3. This
will be followed by the theory that is needed to determine the maximal
subgroups that lie in Class .7 .

We will first consider the .#-subgroups G < €2 that are of cross charac-
teristic, i.e. the .#j-subgroups, in Chapter 4. In particular we will look at
the form preserved by G and we will find a way to determine which of the
automorphisms of {2 stabilise G.

In Chapters 5, 6 and 7 we will calculate the maximal .#;-subgroups in
dimension 13, 14 and 15 respectively. We will use the tables by Hiss and
Malle [18] to get our potential maximal subgroups G. In particular in these
three chapters we will often use Magma to determine the behaviour of our
groups G. In these cases we will use the phrase by ‘computer calculations’
which is followed by the name of the file containing the Magma commands.
These files can be found on a separate CD attached to this thesis.

The other type of .#-subgroups, the .#-subgroups, consisting of .#-
subgroups in defining characteristic, will then be considered in the following
two chapters. In Chapter 8 we will look at the theory behind .#-subgroups.
In particular we will define the heighest weight of a representation and give
an introduction to exterior and symmetric power modules and adjoint mod-
ules. In Chapter 9 we will show which of the potential .#-subgroups given
by Luebeck in [29] are indeed .#-maximal in dimension 13, 14 and 15.

Containments between .#- and .#-subgroups will then be determined
in Chapter 10. In this chapter we will also give a brief introduction to the
tables in [26] containing the maximal subgroups of all almost simple classical
groups in dimension > 13 that are of geometric type. Finally, we will show
which of our .-maximal subgroups also preserve a geometric structure, i.e
are subgroups of one of the geometric maximal subgroups and hence are not
maximal.

Our main results, the tables containing the maximal subgroups of clas-
sical groups in dimension 13, 14 and 15, can be found in Chapter 11.

12



2 Groups, Fields and Representations

In this chapter we will set up notation and give some definitions and lemmas
which will be helpful throughout this thesis. We will begin with group
theory, talk briefly about fields and finish this chapter with some useful
results in representation theory.

2.1 Groups and Fields

We will begin with a few group-theoretic definitions - mainly to set up some
notation.

Definition 2.1.1. A finite group G is almost simple if there exists a non-
abelian simple group S such that S <G < Aut(S). Here we identify S with
Inn(S), as S = Inn(S). A finite group G is quasisimple if G is perfect and
G = Z(G).S, where Z(G) = {z € G| zg = gz Vg € G} is the centre of G.

Definition 2.1.2. The derived series of a finite group G is a series of
subgroups of G,
G=G0>cV>a@> |

where G = ([g,h]|g,h € GE~V). Let G® be the intersection of all the
GO,

Definition 2.1.3. Let G be a finite simple group and assume that there
exists a group H such that H/Z(H) = G. If H is perfect then H is a
covering group of G. There exists a unique maximal covering group of
G which is finite ([33]) and is called the full covering group of G. The
Schur multiplier of G is the centre of its full covering group.

Definition 2.1.4. Let (z1,...,2,) be a sequence of elements of a group G
together with a set of conditions. These conditions can be e.g. conjugacy
class membership or orders of specific elements of G. Then (z1,...,x,) is
a sequence of standard generators of G if {(x1,...,z,) = G and for any
other generating sequence (y1,...,y,) of G satisfying the same conditions
as the z; there exists an a € Aut(G) such that y; = z$ for all i.

Note that in general we use K to denote an arbitrary field and F, to
denote the unique (up to isomorphism) finite field with ¢ = p® elements for
some prime p and some e > 1. Hence [, will always have characteristic p.
In general we will use w to denote a primitive element of F.
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Definition 2.1.5. Let K be a field and let K[z] be the ring of polynomials
in the variable x with coefficients in K. Then K is algebraically closed if
it contains a root of every non-constant polynomial in K[x].

Definition 2.1.6. Let K be a field and let K < L be such that for each
a € L there exists f € K[z] such that f(a) = 0. Then L is an algebraic
extension of K. Let h € K[x] be such that h(a) = 0 and let g € K[z]
be the greatest common divisor of all such h. Then the roots a,ay,...,ay
of g in L are the algebraic conjugates of a. Furthermore, the group of
automorphisms of L permutes the algebraic conjugates ([39, Lemma 2.7.12,

p.27]).
The following lemmas will be useful for this thesis.

Lemma 2.1.7. The element —1 is a square in F7 if and only if either q is
even or ¢ = 1 (mod 4).

Proof. If g is even then all elements of F; are square.

If ¢ is odd then —1 is a square if and only if there exists a primitive
element w of F such that w? = —1 for some j. This is the case if and only
if2j = % (mod g—1) which has a solution if and only if ¢ = 1 (mod 4). O

Lemma 2.1.8. Let u € IF;(Q. If p*t is square in B then p is square in FqXQ.

Proof. 1f q is even then any element of F is square. Hence suppose that g is
odd. Let pd*t! =a? ¢ Fy, with a € Fy. Then a = W@t for some primitive
element w of F; and some i. Hence pdtt = @2t and p = z(w?)? for

(¢=1)
some (g + 1)™ root of unity z. Then z = W=Dk = ()2 3 for some k and

w1 is indeed a square. O

2.2 Representation Theory

We will first state a few basic definitions and lemmas. Then there will
be a short introduction to splitting and fusion of representations, algebraic
irrationalities and Brauer characters.

We will denote a representation of a group G by p: G — GL(V), where
GL(V) is the group of linear transformations of a vector space V over a field
K. If dim(V) = n is finite, then we use GL,(K) instead of GL(V) and say
that n is the dimension of p. If we also have K = [, then we write GLy,(q)
instead of GL,,(F,).

14



Definition 2.2.1. Let p be a representation of a finite group G with p : G —
GL,,(K). The corresponding character of G is the function x : G —> K
defined by x(g) = Trace(gp) for all g € G.

Definition 2.2.2. Let G be finite and let p : G — GL,,(K) be a representa-
tion of G. The character ring of p is the ring generated by the character
values of p.

Definition 2.2.3. Let o € Aut(G) and let p : G — GL,(K) be a represen-
tation. Then “p : G — GL,(K) is defined by g(“p) = (¢g%)p for all g € G.
Let Gp < H. If B € Aut(H) then p? is defined by g(p®) = (gp)? for all
ge@.

Definition 2.2.4. Two representations p1,p2 : G — GL,(K) are equiva-
lent if there exists h € GL,(K) such that h=(gp1)h = gpo for all g € G.
Furthermore, p; and p2 are quasisequivalent if there exists a € Aut(G)
such that “p; and po are equivalent. We say that o stabilises p; if %p; is
equivalent to p;.

Lemma 2.2.5 ([8, Lemma 1.8.6, p.39]). Let p,p' : G — GL,(K) be two
faithful representations. Then p and p' are quasiequivalent if and only if
their images are conjugate subgroups of GLy,(K).

We will now consider the character values of representations over alge-
braically closed fields.

Lemma 2.2.6. Let G be a finite group and let K be an algebraically closed
field. Let p: G — GL,(K) be a representation of G with character x. Then
for all g € G, x(gp) equals the sum of the eigenvalues of gp.

Proof. Over algebraically closed fields any gp is conjugate to a matrix in
Jordan normal form. Furthermore, Trace(gp) = Trace(A~!(gp)A) for any
A e GL,(K). O

Lemma 2.2.7. Let A € GL,(K), where K is an algebraically closed field.
Suppose that A has order t < co. Then the eigenvalues of A are t™* roots of
unity.

Proof. Since A is finite, A® = I for some t. Let \ be an eigenvalue of A.
Then there exists a vector v # 0 such that vA = Av. Therefore, vA’ =
VAATL = MATT = v\ implying that ! is an eigenvalue of A’. Hence,
vA? = vI = Xv. This proves that \! = 1. O

The following will be used throughout this thesis.
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Definition 2.2.8. Let G < GL,(q). Then G acts on (F4)" for every
r € N\{0}. If G stabilises no proper non-zero subspace of Fy then G is
irreducible. Else G is reducible. Furthermore, G is absolutely irre-
ducible if for all r, G stabilises no proper nonzero subspace of (Fy)". Let
p : G — GL,(q) be a representation of a finite group G. Then p is abso-
lutely irreducible if Gp is absolutely irreducible.

Lemma 2.2.9. Schur’s Lemma [23, Thm 9.2, p.145]
The centraliser of an absolutely irreducible group G < GL,(q) consists of all
the scalar matrices of GLy(q).

Definition 2.2.10. Let G < H < GL,,(¢). Then G is scalar-normalising
in H if Ng(G) < GZ(GL,(q)).

2.2.1 Splitting and Fusion

Let p be an absolutely irreducible representation of a quasisimple group G,
let n be the dimension of p and let a be prime. Let p’ be defined on G.a,
using ATLAS ([12]) notation for cyclic groups and extensions. Then we can
either find a p’ such that for all g € G, gp’ = gp in which case we say that p
splits. Otherwise there does not exist any p’ such that for all g € G, gp’ = gp
in which case p is fused.

The description of the two cases was taken from [12, p.xxxviii].

Splitting Case
The first possibility is that p extends to p’ in such a way that gp’ = gp
for all g € G. Then p’ is absolutely irreducible and has dimension n.

Definition 2.2.11. Let V' be a vector space. Suppose that p : G — GL, (V)
is an absolutely irreducible representation and that there exists p’ : G.a —
GL, (V) such that gp’ = gp for all g € G. Then p splits.

If p splits then we get a non-equivalent absolutely irreducible represen-
tations p,t on G.a, where w is a primitive element of F), 0 < t < a, and
gp.t = gp for all g e G.

Let x,¢ denote the character values of p,: and let x be the character
value of p. Then

Xt (9) = {thwO (g) otherwise.

16



Lemma 2.2.12. Let p: G — GLy, (V) be an absolutely irreducible represen-
tation and suppose that there exists p' : G.a — GL, (V') such that gp' = gp
for all g € G. Let a generate the automorphism of G of order a such that
G{a) = G.a. Then “p is equivalent to p, i.e. « stabilises p.

Proof. Let G.a = (G, k) such that g¥ = g® for all g€ G. Let h = kp’. Then

(9p)" =1~ (gp)h
= (K"gk)p’
=g%p' = g%

from which it follows that p is equivalent to “p. O

Fusion Case

If there does not exist any p’ : G.a — GL(V') such that gp’ = gp for all
g € G then there exist a non-equivalent representations p1,...,pq (p = p1)
with dimension n such that pq,...,p, fuse to give a single representation
p = p1+...+ pg with dimension n - a defined on G.a. Let x; and x’ denote
the character values of p; and p’ respectively, where 1 < ¢ < a. Then

V(o) = { Yicixilg) ifgeG

0 otherwise.

2.2.2 Algebraic Irrationalities

For the algebraic irrationalities that are needed in this thesis we will use
the same notation as in the ATLAS [12]. In general, we let i € C be a fixed
square root of —1 and we let

zn = €2/ = cos(27/n) + isin(27/n)

h

be a particular primitive n'" root of unity. Furthermore,

(n—1)/2 .
o 2 [ (=14++/n)/2 ifn=1(mod4)
bui= 2, { (—1+iyn)/2  ifn =3 (mod 4)

by Gauss. We will also need the following irrationalities:

173 s
Cp 1= 3 Z z
r=1
I'n = \/ﬁ;
i i=+/—n=1i1p;
Vn = 2n + 2,1 = 2cos(21/n).

17



Note that these algebraic irrationalities are defined as elements of C. How-
ever, in most cases we will need to find the p-modular reduction of these
irrationalities, i.e. the interpretation of these irrationalities as elements of
the finite field we are interested in.

The following table, Table 2.2.1 (p.19), shows some properties of the
algebraic irrationalities that are needed for this thesis.

The first column of the table gives the name of the irrationality, followed
by its definition. The column ‘Real’ answers the question whether the irra-
tionality is a real number or not, whilst the last column gives the smallest
finite field over which these algebraic irrationalities can be realised as ele-
ments of this field. For example, if p = 2,3 (mod 5) then z5 can be realised
in [F,« but not in any subfield of Fa.

The content of this table was calculated using a number of different
methods of which we will demonstrate the most important ones.

We will start with the roots of unity z,. To find the p-modular reductions
of z,, it suffices to find the smallest ¢ such that ¢ — 1 is divisible by n.

The properties of the irrationality by = Z?:I zgz = 75 + zgl can be
determined as follows. Since bs = _1%‘/5 by definition it follows that 2bs +
1 = +/5 and hence that b? + bs — 1 = 0 squaring both sides. Therefore
bs has a minimal polynomial of degree 2 and bs € F,, if and only if /5 is.

Equivalently, bs € I, if and only if (%) = 1 using Legendre symbols ([34,
p.70]). By the quadratic reciprocity law ([34, p.72])

0)- @

Note that (2) = (p ) unless p = 2. Furthermore, p is square in F5 if and only
5

5
if p=1,4 (mod 5). Hence

-1)-(-)=1 ifp=2
1=1 if p=1,4 (mod 5)
-1)-1=-1  ifp=2,3(mod 5), p # 2.

N\
| ot
N———
I

A~ =~

Finally, we will consider yoq4 = zo4 + z2_41 = QCOS(%—Z). If p # 2,3 then
y24 € Fy if and only if ¢ = +1 (mod 24) by [8, Lemma 4.2.1, p.156]. Hence
yo4 € F if and only if p = 1,23 (mod 24). Furthermore, it is straightforward
to check that ya4 € F2\F) if p=5,7,11,13,17,19 (mod 24).

The p-modular reductions of the other algebraic irrationalities can be
determined using similar methods to the above. Note that we only find the
p-modular reduction of ci9 when p = 11 as this is sufficient for this thesis.

18



Table 2.2.1: Algebraic Irrationalities

Irr | Definition Real | p-mod reduction
23 | e3 = cos(&) + isin(Z) No Deg 1: p=1(mod 3)
Deg 2: p=2(mod 3), p #2
25 | e = cos(E) +isin(ZF) No Deg 1: p=1(mod 5)
Deg 2: p =4 (mod 5)
Deg 4: p=2,3(mod 5)
bs | $(—1++/5) =25 +78 Yes | Degl: p=1,4(mod 5)
Deg 2: p=2,3(mod 5), p # 2
bir | $(—1+iV11) No |Degl: p=1,3,4,509 (mod 11)
Deg 2: p=2,6,7,8,10 (mod 11)
bor | (=1 +iv/27) = 223 — 73 No | Degl: p=1(mod 3)
Deg 2: p=2(mod 3), p # 2
bao | (=1 +v29) = 31 2 Yes | Deg1: p=1,4,5,6,7,9,13, 16,20, 22,
23,24, 25,28 (mod 29)
Deg 2: p=2,3,8,10,11,12,14,15, 17,
18,19, 21, 26,27 (mod 29)
b | L(—1 +iv/31) No |Degl: p=1,24,578,9,10,14,16,18,
19, 20, 25, 28 (mod 31)
Deg 2: p=3,6,11,12,13,15,17,21, 22,23,
24, 26,27,29, 30 (mod 31)
crg | 4308, 2o Yes | Degl: p=11
i V-1=124 No Deg 1: p=1(mod 4)
Deg 2: p=3(mod 4)
ig i-1g No Deg 1: p=1,5,7,11 (mod 24)
Deg 2: p=13,17,19,23 (mod 24)
rg | V2 =12f +ug Yes | Degl: p=1,7(mod 8)
Deg 2: p=3,5(mod 8)
r3 | V3= —(z}, +22],) Yes | Degl: p=1,11 (mod 12)
Deg 2: p=5,7 (mod 12)
r5 | V5 =225+ 222 +1 Yes Deg 1: p=1,4(mod 5)
Deg 2: p=2,3(mod 5), p # 2
6 | V6 =123 Yes | Deg1: p=1,5,19,23 (mod 24)
= —(z3, + 29, + 223} + 22}]) Deg 2: p=17,11,13,17 (mod 24)
r7 | VT Yes | Degl: p=1,3,9,19,25,27 (mod 28)
= 2798 + 229 + 735 + 2233 Deg 2: p=5,11,13,15,17,23 (mod 28)
yi7 | z17 + 218 = cos(2%) Yes | Deg1: p=1,16 (mod 17)
Deg 2: p=4,13 (mod 17)
Deg 4: p=2,8,9,15 (mod 17)
Deg 8: p=3,5,6,7,10,11,12,14 (mod 17)
Vo4 | z24 + 233 = cos(ZE) Yes | Deg1: p=1,23(mod 24)
Deg 2: p=5,7,11,13,17,19 (mod 24)
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2.2.3 Brauer Characters

We will only give a short introduction to Brauer characters. For a more
detailed version see [23, Chp 15, p.262].

Let R be the ring of algebraic integers in C and let M be a maximal ideal
of R containing pR for some fixed prime p. Note that M is not necessarily
uniquely determined. Then K = R/M is a field of characteristic p. Let 7
be the natural homomorphism from R into K.

Lemma 2.2.13 ([23, Lemma 15.1, p.263]).
Let U ={k e C|k™ = 1,m € Z with p{ m}. Then
(i) U € R;
(ii) T is an injection from U to K* and there is an isomorphism between
U and the roots of unity of K*;
(iii) K is algebraically closed and algebraic over its prime field.

Let K be an algebraically closed field of characteristic p and let p :
G — GL,(K) be a representation of some finite group G. Then for all
g € G the eigenvalues of gp lie in K* since K is algebraically closed. Let
S={geG|pt]g|} and let x € S. Furthermore, let €1, ..., e, € K* denote
the eigenvalues of xp. Then for all i there exists a unique u; € U = {k €
C| k™ =1,m € Z with ptm} such that u;7 = ¢; by Lemma 2.2.13(ii).

Definition 2.2.14. We call the function v(x) = >, u; a Brauer character
of G.

Note that if p t |G| then the Brauer characters of G are in fact the
ordinary characters of G as given in the ATLAS [12] by [23, Thm 15.6,
p.265]. Equivalently, if we consider a representation p of G over a finite field
F,: where p { |G| then the ATLAS contains the Brauer characters of G. If
p||G| then the Brauer characters of some non-abelian simple groups G can
be found in [24].
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3 Classical Groups

There are 4 types of classical groups, namely linear, unitary, symplectic and
orthogonal groups which will be defined in this chapter. As the theory of
classical groups is quite complex we will only define concepts needed for this
thesis. For a more detailed introduction see e.g. Taylor [36].

Note that some of the theory developed in this chapter is not valid for
groups of smaller dimension. Therefore we will assume throughout that the
dimension of the classical groups is > 13 unless otherwise stated.

We will first define classical groups and their automorphisms. Then
we will briefly talk about the Schur indicator of a representation, quotient
spaces and various types of maximal subgroups of classical groups. After
that we will state Aschbacher’s Theorem and give a discussion on why we
will work with quasisimple classical groups even though we are interested in
finding the maximal subgroups of the almost simple classical groups.

3.1 An Introduction to Classical Groups

Let V be a vector space of dimension n > 0 over a field K unless otherwise
stated. We will define the forms preserved by the classical groups as maps.
We will mention how to write these maps as matrices but will not go into
any detail. For more information on the matrix formulation see [8, Section

1.5.1, p.17).

Definition 3.1.1. Let 0 € Aut(K). Amap 8 : V xV — K is a o-
sesquilinear form if
() Blu+v,w) = B, w) + B, w),
(i) Blu, v+ w) = Blu,v) + Blu, w), and
(iii) B(Au, pv) = Au?B(u, v)
forallu,v,we Vandall \,p € K. If B(u,v) = B(v,u) then 8 is symmetric.
If 0 = 1 then § is bilinear.

A map Q : V — K is a quadratic form if
(i) Q(\v) = A2Q(v) forallve V, Ae K, and
(ii) B(u,v) := Q(u+v) — Q(u) — Q(v) is a symmetric bilinear form for all
u,veV.
We call the bilinear form corresponding to @) the polar form of Q.

Note that over a field that does not have even characteristic § and @
uniquely determine each other.
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To write 5 and @ as matrices let (e,...,e,) be a basis of V. Then the
matrix of 8 is B = (bij)nxn Where b;; = [(e;,e;) for all ¢, j. The matrix of
@ is the upper triangular matrix A = (a;;) where a;; = B(e;,e5) if ¢ < j,
Qi = Q(el) and A5 = 0 for all i > ]

Definition 3.1.2. Let v € V be fixed. A o-sesquilinear form [ is non-
degenerate if f(v,u) = 0 for all u € V implies that v = 0. A quadratic
form @ is non-degenerate if its polar form is non-degenerate.

Note that if we write a o-sesquilinear map S as a matrix B then B is
non-degenerate if and only if det(B) # 0.

Definition 3.1.3. Let 8 be a o-sesquilinear form on V. A non-zero vector
v € V is singular if f(v,v) = 0. Otherwise, v is non-singular. If v, w e V
are singular and (v, w) = 1 then (v, w) is a hyperbolic line.

Definition 3.1.4. Let g € GL(V), let 8 be a o-sesquilinear form and @ be
a quadratic form on V. Then g is an isometry of g if S(ug,vg) = B(u,v)
for all u,v € V and an isometry of @Q if Q(vg) = Q(v) for all v € V. If
B(ug,vg) = AB(u,v) or Q(vg) = AQ(v) for some A € K\{0} then g is a
similarity of £ or Q.

Definition 3.1.5. Let V and W be vector spaces over K and let ¢ €
Aut(K). If f : V — W is a map satisfying (v + w)f = vf + wf and
(M) f = X(vf) forallve V, we W and A € K then f is a ¢-semilinear

map. If f is a ¢-semilinear map for some ¢ then f is semilinear.

Definition 3.1.6. Let f be a ¢-semilinear map and let 3 be a o-sesquilinear
and @ be a quadratic form on V. Then f is a semi-isometry of 5 or @
if Bluf,wf) = Bv,w)? or Q(vf) = Q(v)? for all v,w € V. If there exists
0 # A € K such that B(vf,wf) = AB(v,w)? or Q(vf) = AQ(v)? for all
v,w € V then f is a semi-similarity.

Definition 3.1.7. Two o-sesquilinear forms § and k on V are isometric
or equivalent if there exists g € GL(V) such that 5(ug,vg) = k(u,v) for
all u,v € V. If there exist g € GL(V) and A € K\{0} such that 5(ug,vg) =
Ak (u,v) for all u,v € V then § and k are said to be similar.

Lemma 3.1.8 ([8, Thm 1.5.13, p.16]). Let 5 be a o-sesquilinear form on
V. Assume that there exist A\ € K* and 7 € Aut(K) such that f(u,v) =

AB(u,v)" for all u,v € V. Then up to similarity one of the following holds
for allu,veV.

(i) B(u,v)=0.
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(ii) o0 =1, A= —1 and B(v,v) = 0.

(iii) 02 =1# 0 and A = 1, i.e. B(v,u) = B(u,v).

(iv) o =1and A =1, i.e. B(v,u) = B(u,v).
In characteristic 2 Case (ii) also satisfies Case (iv). Otherwise all cases are
mutually exclusive.

Definition 3.1.9. A o-sesquilinear form § is

(i) an alternating or symplectic form if 5 satisfies Case (ii),

(ii) a o-Hermitian form or unitary form if 5 satisfies Case (iii), or
(iii) symmetric bilinear in Case (iv).

Note that unitary forms give rise to unitary groups, symplectic forms
to symplectic groups and quadratic forms to orthogonal groups. If V is
equipped with a o-sesquilinear form [ such that S(u,v) = 0 for all u,v e V
then we say that V is equipped with the zero form which gives rise to linear
groups.

The isometry groups of o-sesquilinear, symplectic and quadratic forms
over finite fields will be considered in a bit more detail in the following
sections.

Let diag(a,...,a,b,...,b) denote a diagonal matrix with n/2 a’s and
n/2 b’s along the diagonal. Similarly let antidiag(a,...,a,b,...,b) be an
antidiagonal matrix with n/2 a’s and n/2 b’s along the antidiagonal.

3.1.1 Unitary Groups

Unitary groups preserve a non-degenerate o-Hermitian form /3, where o is
a field automorphism of order 2. Hence unitary groups only exist over F
and o : x — x¢. Furthermore, we will use F' = I,, as our standard unitary
form matrix and denote the isometry group of F' by GUy(q) over F,2. Note
that all isometry groups of non-degenerate o-Hermitian forms over a given
finite field are conjugate.

We will frequently use the superscript *, e.g. GL:;r (¢), to denote a linear
or unitary group. Here the + sign corresponds to the linear and the — sign
to a unitary group. Furthermore, if we use Fgu then we mean F2 if the
group on Fgu is a unitary group and F, otherwise.

3.1.2 Symplectic Groups

In this thesis we will use F' = antidiag(1,...,1,—1,...,—1) as our standard
symplectic form matrix. Note that the isometry groups of any two non-
degenerate symplectic forms on V' over [, are conjugate. We will denote
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the isometry group of F' by Sp,,(¢). Note that symplectic groups only exist
in even dimension.

3.1.3 Orthogonal Groups in Odd Dimension

We will first consider isometry groups of quadratic forms over F, in odd
dimension.

Theorem 3.1.10 ([36, Thm 11.9, p.143]). Let Q be a quadratic form on
Fy- If q is even and n is odd then the isometry group of Q is isomorphic to
a symplectic group of dimension n — 1.

Hence we will only consider odd dimensional orthogonal groups in odd
characteristic in which case it suffices to define the polar form of Q. We
will use F' = I,, as our standard non-degenerate symmetric bilinear form
matrix and denote the isometry group of F' by GO, (q). Note that there
are two isometry classes of non-degenerate symmetric bilinear forms in odd
dimension depending on whether the determinant of the form matrix is
square or non-square in F;. These two isometry classes lie in the same
similarity class.

3.1.4 Orthogonal Groups in Even Dimension

In even dimension there are two isometry classes of non-degenerate quadratic
forms which lie in two distinct similarity classes. Let § be the polar form
of . Then f and @ uniquely determine each other over a field of odd
characteristic.

Definition 3.1.11. Let ¢ be odd. Let 8 be a non-degenerate symmetric
bilinear form over F; in even dimension. Then 3 has plus-type if it is
isometric to our standard form matrix antidiag(1,...,1). Otherwise 8 has
minus-type. Similarly, a non-degenerate quadratic form @ in even dimen-
sion and even characteristic is of plus-type if @) is isometric to our standard
form matrix antidiag(1,...,1,0,...,0) and of minus-type otherwise. We de-
note the isometry group of a standard form of plus-type by GO (¢q) and the
isometry group of a standard form of minus-type (see Table 3.1.1 on p.25)
by GO,, (q).

Note that if we want to talk about an orthogonal group of plus- and
minus-type at the same time, we use the superscript *, e.g. GO (q). Fur-
thermore, if an orthogonal group does not preserve our standard form ma-
trices as defined above but some other non-degenerate symmetric bilinear
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or quadratic form B then we will denote this group by GO (g, B). Fur-
thermore, if we want to talk about an arbitrary orthogonal group in even
or odd dimension we will use the the superscript ¢, e.g. GO, (¢q), where
ee{o,+,—}.

We will need to introduce the concept of the discriminant of a form
matrix as this will enable us to determine whether an orthogonal group in
even dimension and odd characteristic is of plus- or minus-type.

Definition 3.1.12. Let ¢ be odd and let 8 be a non-degenerate symmetric
bilinear form over Fy with form matrix B. Then 8 has square discrimi-
nant if det(B) is square in F; and non-square discriminant otherwise.

Lemma 3.1.13 ([8, Thm 1.5.42(ii), p.24]). Let n be even and q be odd and
suppose that GO:;F(q, B) preserves a non-degenerate symmetric bilinear form
with matriz B. Then GOX(q, B) is of plus-type if and only if either det(B)
is square in F and n(q —1)/4 is even or det(B) is not a square in F; and
n(q—1)/4 is odd. Otherwise it is of minus-type.

3.1.5 Standard Forms and Definitions of Classical Groups

Let G be the isometry group of a zero, a o-Hermitian, a symplectic or a
quadratic form on Fy as described in the previous sections. The following
table, Table 3.1.1, gives the form matrices preserved by G that we will use
as our standard form matrices. It is taken from [8, Table 1.1, p.25]. In
odd characteristic we will give the matrix of the polar form of a quadratic
form instead of the form matrix of the quadratic form itself. Note that u in
the last line of the table is such that the polynomial 2% 4+ x + y is irreducible
over F,. Let m = n/2.

Table 3.1.1: Standard Classical Forms

Case Conditions Form Type Isom.Gp Form

L Zero GL,(q) Onxn

U — o-Hermitian ~ GU,(q) I,

S — alternating  Sp,(q) antidiag(1,...,1,-1,...,-1)
o° gn odd symmetric GO;.(q) I

o+ g odd, n even symmetric GO} (q)  antidiag(l,...,1)

o~ g odd, n even symmetric GO, (¢9) I, if n =2 (mod 4), ¢ = 3 (mod 4)
diag(w, 1,...,1) otherwise

ot q,n even quadratic GO} (q) antidiag(1,...,1,0,...,0)

(O q,m even quadratic GO, (q) antidiag(1,...,1,0,...,0)
+ Em,m + ,U’Em+1,m+l
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Let V' = . for some g, some n and some u € {1,2}. Suppose that
V is equipped with either a zero, a unitary or an alternating form g or a
quadratic form Q. Let u = 2 if V is equipped with a unitary form and let
u = 1 otherwise. In general we will define a series of subgroups corresponding
to each of the 8 (and Q). Let

N<S<G<C<T<A. (3.1.1)

Then G is the group of isometries of 5 (or @) as defined in the previous
sections. The special group S < G consists of all determinant 1 matrices
preserving 3 (or ). The commutator subgroup of S is denoted by €. Note
that S = Q except in the orthogonal case. We will discuss the orthogonal
case in the next section. Furthermore, let C' be the similarity group of V.
We can show that C' = Ngp,,(4)(€2). Let I be the group of all semi-isometries
of B (Q). If B is identically zero then the split extension of I" by the inverse
transpose map v = —T equals A. Otherwise A = I" since n > 13.

We will now consider the groups 2. The automorphisms of G are then
defined in Section 3.2.

3.1.6 The Quasisimple Classical Groups

In the linear, unitary and symplectic case €2 equals the respective special
group. We will now consider the orthogonal case.

Let € € {o,+,—}. Let GO} (q) be the isometry group preserving our
standard forms as in Table 3.1.1. Unlike in the linear, unitary or symplectic
case, the special orthogonal group SO (¢q) is never isomorphic to © in di-
mension > 13. Instead €2 is a normal subgroup of SOj,(q) of index 2, which
we will denote by Qf (¢). In the following we will describe Qf (¢) and give a
way to determine whether an element of SO5,(q) lies in €2, (q).

For this we will need to define the concept of the spinor norm and the
quasideterminant of an element.

Definition 3.1.14. Let V be a vector space equipped with a quadratic
form @ and polar form 3. Let v € V such that @Q(v) # 0. Then the map
1, : V > V defined by (2)r, = 2 — Q(v) ! B(v, z)v is called a reflection.

Lemma 3.1.15 ([26, Prop 2.5.6, p.28]). Let Q be a non-degenerate quadratic
form. If GOS(q, Q) # GOJF (2) then GOS,(q, Q) is generated by reflections.

Definition 3.1.16. Let ) be a non-degenerate quadratic form and let g
be the polar form of Q). Let g = Hle 1y, € GO;, (¢, @), where GO;,(q, Q) 2
GOJ (2). If ¢ is odd then the spinor norm of g, sp(g), is +1 if Hf;l B(vi, v;)
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is a square in F;' and —1 otherwise. If ¢ is even then the quasideterminant
of g is +1 if k is even and —1 otherwise.

Lemma 3.1.17 ([36, Thm 11.50, p.164]). The spinor norm map and the
quasideterminant map are homomorphisms.

Definition 3.1.18. Let Q¢ (q) be the subgroup of GOy, (¢q) consisting of
all elements of SO, (¢) with spinor norm 1 in odd characteristic and of all
elements of quasideterminant 1 in even characteristic.

The following lemma will help to calculate the spinor norm or quaside-
terminant of elements in GOS,(q).

Lemma 3.1.19 ([8, Prop 1.6.11, p.28]). Let B be a non-degenerate bilinear
form matriz in odd characteristic or a non-degenerate quadratic form matriz
in even characteristic and let g € GO5,(¢q,B). Let A := I, — g and let
k := rank(A). If q is odd, let B be the the matriz preserved by SOS (q, B).
Then the matriz M over Fy with rows forming a basis of a complement of
the nullspace of A has dimension k x n. Furthermore,
(i) if q is even and g ¢ GO} (2, B) then g has quasideterminant 1 if k is
even and —1 otherwise;
(i) if q is odd and det(MABM?) is a square in F) then the spinor norm
if g is 1. If det(MABM™) is not square then the spinor norm is —1.

Lemma 3.1.20. Let q be odd and let \e F;. Letge GOZ(q, B)\SOi (¢, B)
for some non-degenerate symmetric bilinear form matriz B. If A is square
in Fy, then sp(g, A\B) = sp(g, B), where sp(g, AB) is the spinor norm of g
with respect to AB. If X is non-square, then sp(g,\B) = —sp(g, B). The
spinor norm of elements of SO (q, B) is well defined.

Proof. Let f3 be the form associated with B. Then GOZ (¢, B) also preserves
AB for any A e F¥. Let g € GOZ(q, B) and suppose that g = Hle r,,, where
ry, is a reflection for all ¢. Then the spinor norm of g equals 1 if and only
if Hle B(vi,v;) is a square in F by Definition 3.1.19. Equivalently, the
spinor norm of g is 1 if and only if an even number of these 5(v;,v;)’s are
non-square. Let A be non-square. Then f(v,v) is square if and only if
AB(v,v) is non-square.

If g € GO (q, B)\SOZ (¢, B) then g is generated by an odd number of

reflections. If sp(g) = 1 then an even number of the [(v;,v;)’s is non-
square and an odd number square. However, if we consider Af3(v;,v;) then
sp(g) = —1 as we now have an odd number of AS(v;,v;)’s that are non-
square.
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Since Q£ (g, B) is simple and SO (g, B) only has one subgroup of index 2
it follows that the spinor norm map is well-defined on elements of SO (¢, B).
O

We will now determine the spinor norm of —1I,, € Q*(q, B), for any non-
degenerate symmetric bilinear form matrix B. The result follows directly
from Lemma 3.1.19.

Lemma 3.1.21. The element —I € 2 (q, B) if and only if 4 | n or (n =2
(mod 4) and g =1 (mod 4)) and —I € Q,, (¢, B) if and only if n = 2 (mod 4)
and ¢ = 3 (mod 4).

Lemma 3.1.22 ([26, Thm 2.1.3, p.16]). Let Q € {SL(q),Sp,(q), 25 (q)}.
In dimension = 13 all such Q) are quasisimple.

Finally, note that we will denote the projective version of € either by Q
or, if we talk about a specific quasisimple group, we will use Ly, (¢), Uy(q),

Sn(g) or OF(q)-

3.2 Outer Automorphisms of Classical Groups

In general there are three possible types of automorphisms that generate the
outer automorphism groups of projective simple classical groups €, where
Q e {Lf(q),S.(q),05(¢)}. These are the diagonal, graph (or duality) and
field automorphisms. (See [8, Section 1.7, p.32] for more details.) Note
that we will define these outer automorphisms with respect to our standard
classical forms as in Table 3.1.1 (p.25). Here, (a,b) denotes the greatest
common divisor of a and b.

Definition 3.2.1. We call the matrices inducing the outer automorphisms
that are given in this section our standard representative matrices for
their respective outer automorphisms.

Note that with the exception of the orthogonal groups in even dimension
the field automorphisms are generally generated by an outer automorphism
¢ which acts on the matrices (a;j)nxn by sending each entry to its pth-
power, where p is the characteristic of the underlying field F,. In other
words, ¢ sends every matrix (aj)nxn to (afj)nm. Therefore, ¢ replaces
each eigenvalue by its p*P-power.

Assume throughout that n > 13 to avoid exceptions in smaller dimen-

sions and let ¢ = p°.
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3.2.1 Case L:

Diagonal automorphisms: The diagonal automorphism ¢ is induced
by conjugation by the diagonal matrix diag(w,1,1,...,1) € GL,(q) where
w is a primitive element of F;. In Out(Ly(q)) it has order (¢ — 1,n) and
projectively extends L, (q) to PGL,(q).

Field automorphisms: Here ¢ has order e in Out(L,(¢q)) and projec-
tively ¢ extends PGL,(q) to PT'Ly,(q).

Graph automorphisms: The graph or duality automorphism v acts on
elements A € GL,(q) by sending them to their inverse transposes, i.e A7 =
(A~HT. Projectively it has order 2 and extends PI'L,(q) = (L,(q),d, ¢) to
Aut(L,(q)).

3.2.2 Case U:

Diagonal automorphisms: The diagonal automorphism ¢ is induced
by conjugation by the matrix diag(wggl, 1,1,...,1) € GU,(q), where w,e
is a primitive element of quz. Its order in Out(Uy(q)) is (¢ + 1,n) and
projectively it extends U, (q) to PGU,(q).

Field automorphisms: Here ¢ has order 2e in Out(U,(q)) and pro-
jectively extends PGU,(q) to PT'L,(q) = Aut(Uy,(q)).

Graph automorphisms: The graph (or duality) automorphism ~ acts
as inverse transpose on the elements of GU,(q). Projectively it has order 2.
Because of our choice of standard form, v = ¢°.

3.2.3 Case S:

Diagonal automorphisms: If ¢ is even then the diagonal automor-
phism 0 is trivial. If ¢ is odd, then § is induced by conjugation by the diago-
nal matrix diag(w,...,w,1,...,1) € CSp,(¢)\Sp,,(¢), where w is a primitive
element of F . Projectively it extends S,(q) to PCSp,(¢) and has order 2
in Out(Sy(q))-

Field automorphisms: Here the field automorphism ¢ has order e in
Out(Sy(¢)) and projectively extends PCSp,,(¢) to PCI'Sp,,(¢) = Aut(S.(q))
when n > 13.

Graph automorphisms: There are no graph automorphisms of S, (q)
in dimension > 13.
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3.2.4 Case O°:

Diagonal automorphisms: The diagonal automorphism ¢ is induced
by an element of SO; (q)\€2 (¢). Projectively it extends Oy, (¢q) to PSO; (q)
and has order 2 in Out(O;(q)).

Field automorphisms: Here ¢ has order e in Out(O;,(¢)) and projec-
tively extends PSO; (¢) = PCGO; (¢) to PCI'O;,(¢q) = Aut(O;,(q)).

Graph automorphisms: There are no graph automorphisms in this
case.

3.2.5 Case O7:

Let F be our standard non-degenerate symmetric bilinear form or our stan-
dard quadratic form preserved by QF(q) as in Table 3.1.1 (p.25).

Diagonal automorphisms: When ¢ is even then the diagonal au-
tomorphisms are trivial.

Assume that ¢ is odd. The diagonal automorphism ¢’ exists only when
F has square discriminant. It is induced by an element of SO (¢)\Q (q)
and projectively extends O (¢) to PSO7(¢). Furthermore it has order 2 in
Out(0% (q))-

The diagonal automorphism § extends PGO: (q) to PCGOZ (q) projec-
tively and exists for all orthogonal groups in even dimension and odd char-
acteristic. Depending on whether Q:(q) preserves a form of plus- or minus-
type, it has slightly different properties.

We will first consider 2 = Q7 (q). Then § is induced by the element ¢ =
diag(w,...,w,1,...,1) € CGO/ (¢)\GO; (q), where w is a primitive element
of F. Note that det(5) = w™? and that §F6T = wF. We can show that

if F' has non-square discriminant then ¢ has order 2 in Out(Q2). If n = 2
(mod 4) and F' has square discriminant then ¢ has order 4.

Now let © = Q. (q). Then 6 depends on the discriminant of F. Let
a,b € F, such that a® +b? = w for some primitive element w of Fy. Let X =
(¢5Yand Y = (_0%). If F has square discriminant (i.e. if F' = I,,) then ¢
is induced by ¢ = diag(X, ..., X) whereas if F' has non-square discriminant
(i.e. if F' = diag(w,1,...,1)) then ¢ = diag(Y, X,...,X). Similarly to the
case 4 (¢) we have F6T = wF and det(§) = w™?. We can show that § has
order 4 in Out(Q) if F has square discriminant and order 2 otherwise.

Graph automorphisms: Here the graph automorphism + has or-
der 2 in Out(QF(q)). If ¢ is odd then v is induced by an element of
GO (q)\SO:(¢q) and projectively extends PSOZ(q) to PGOL(q). If ¢ is
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even then v is induced by an element of SOX\Q:E(¢) and projectively ex-
tends O (q) to PSOZ(q) = PGOZ(g). In both cases v is induced by a
reflection with spinor norm 1.

Field automorphisms: There are two different field automorphisms ¢
and ¢ depending on {2 and F.

If Q = Qf(q) or if @ = Q, (q) with ¢ odd and F of square discrimi-
nant then ¢ is defined by sending every matrix (a;;)nxn to (afj)nxn, where
(aij)nxn € GOZ(g). It is undefined otherwise. Projectively, ¢ extends
PCGOZ(q) to PCT'OZ(q) and has order e in Out(9).

If Q = Q- (q) with ¢ odd and F of non-square discriminant then F® # F
and therefore Q¢ # Q. Let f = diag(w® V/2,1,...,1). Then fFfT = F?
which implies that (Q)?/ = Q. Hence we define the field automorphism ¢
to be ¢ followed by conjugation by f. Furthermore, ¢® = v in Out(fQ).
Projectively, ¢ extends PCGO,, (¢) to PCI'O,, (q). Note that if ¢ = p® with
q and e odd then by [7] there exists a form matrix that is fixed by ¢. Since
0 and ~ have order 2, ¢ centralises both § and «. Furthermore, ¢ has order
e and projectively extends PCGO,, (¢) to PCI'O,, (q).

Similarly, if @ = €, (2¢) with e even then we can find a matrix f such
that Q%7 = Q and we define ¢ to be ¢ followed by conjugation by f (see
[26, Section 2.8, p.36] for more details.) Again, ¢® = v in Out(Q) and
projectively ¢ extends PCGO,, (2¢) = PGO,, (2¢) to PCT'O,, (2¢). Note that
if e is odd then we can find a form matrix of Q that is stabilised by ¢ by [7].
Then ¢ extends PCGO,, (2°) = PGO,, (2°) to PCT'O,, (2°).

3.2.6 Presentations of Out(2)

The following presentations of the outer automorphism groups of simple
projective classical groups preserving our standard forms are taken from |8,
p.36/37]. Let ¢ = p® and assume that n > 13.

Case L:

(0,760 = 4% = ¢° = [,¢] = 1,87 =71, 5% = o).
Case U:

(8,07 180 = ¢ =7 = 1,87 =571, ¢° = 7, 8 = ).

Case S:
(6,016 = ¢¢ = [5,¢] = 1).
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Case O° (p odd):

6,6|6% = ¢° =1[6,¢] = 1).
Case O=:

O;F(2¢9):
(7,07 =¢° =[7,¢] = 1).

O, (29):
e =1,0° = ).

O} (p%), 4 | n, p odd:
(8,7,6,0]8% =72 =82 =1,(07)? = 0',¢° = [6,¢] = [, ¢] = ).
O+ (p°), n= 2 (mod 4), p° = 1 (mod 4):
(8,7,6,0|67 =42 =1,62=06,6"=0"",¢° = [7,¢] = 1,6% = o¥).
O (p°), n.= 2 (mod 4), p° = 3 (mod 4):
(1,8,017* = 6% = [6,7] = ¢° = [, ¢] = [6,¢] = 1).
0= (p°), 4| n or (p° = 1 (mod 4) and e even):
(18,0l =02 =[6,9] = [6,0] = 1,¢° = ).
05 (p°), n.= 2 (mod 4), p° = 1 (mod 4) and e odd:
(1,8,0|7% =8 = ¢° = [5,7] = [6,0] = [v, 9] = 1)
05 (5°), n.= 2 (mod 4), p° = 3 (mod 4):

(6,7,6,0]8% =7 = 1,6 = 8,87 =67, 0° = [7,9] = [3,6] = 1.

Note that the above presentations imply that if ¢ is odd and 62 = 1 then
(8,7) = Cg x Cy. Whereas if q is odd and §% = §’ # 1 then (§,7) = Ds.
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3.2.7 Useful Properties of Automorphisms

In this section we will state some properties of automorphisms of classical
groups that will be useful later on. We will first consider the conformal
groups which play an important part in this thesis.

Let Q € {SL¥(q),Sp,(q),2(¢)}. Then the conformal group C' equals
Nar, (g+)(©2) by [8, Lemma 1.8.9, p.41]. The following table, Table 3.2.1,
gives {2, the conformal group C of © and the size of C for each type of
classical group. This table was compiled using the information in [8, Section

1.7, p.32]. Let §,v € Out(f2) and denote their matrix representations by §
and v respectively.

Table 3.2.1: Conformal groups

Case | © C |C|
L SLn(q) | GLx(q) = (SLn(q), Z(GLn(q)),d) | |GLn(q)|
U | SUu(q) | (SUA(). Z(GLn(¢%)). 8 Lty 1

= |GUn(q)|(g - 1)
S Spn(q) | SP,(9), Z(GLn(q)), 6) Spn(9)[(g —1)
0 | 2(a) | (%(a),Z(CLa(q)),5) [Eoaglle-t)
O* | Q3(q) | <% (2),Z(GLn(q)), 8,7 GO (g)l(g — 1)

Lemma 3.2.2. Let A € GL,(C), n = 3, be of order m. Then duality sends
the trace of A to its complex conjugate.

Proof. By Lemma 2.2.7, Trace(A4) = > \jzt, for some roots of unity z¢, €
C with multiplicity A;. Then Trace(AT) = Y \;izl, and Trace(A™T) =
SNzt = Y Nizh, = . \izh,, where @ denote the complex conjugate of
aceC. O

Lemma 3.2.3. Let q be odd, let g € GO, (q,F) and let X € F)* be non-
square. Then sp(g°, F) = sp(g, \F), where sp(g, F) is the spinor norm of g
with respect to F.

Proof. If |§'] = 2 then we know that GO, (¢, F) has 3 subgroups of index
2, namely SO} (¢, F) = Qf (q, F).{8"), QO (g, F).{y) and QF (q, F).(y8"). If
g € SO (q, F) then sp(g, F) = sp(g, \F) by Lemma 3.1.20. Furthermore,
since Q. (¢, F) < CGO; (¢, F) and SO, (¢, F) < CGO;! (g, F) it follows that
sp(¢g°, F) = sp(g, F).
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Hence it remains to show that if g € Qf (¢, F).(y)\Q (¢, F) or g €
0F (g, F)(v8")\Qf (g, F) then sp(g°, F) = sp(g, AF)(= —sp(g, F)). Le. we
want to show that (QF (¢, F).(7))® = Q.(y0"). If 4 | n then §ydy = &' which
implies that 4% = 6267 1yd = ¢'y. If n = 2 (mod 4) and ¢ = 1 (mod 4) then
76y = 6~ from which it follows that §~'vd = y6yyd = 6.

Finally, if |¢’| = 1 then GO;" (¢, F') has only one index 2 subgroup, namely
SO (g, F) and sp(g, F) = sp(g, \F) = sp(¢°, F) for all g€ GO, (¢, F). O

The following lemma will be particularly useful in Chapter 4.

Lemma 3.2.4 ([8, Lemma 1.8.10, p.41]).
(i) Let H,G < GU,(q) such that they are both absolutely irreducible and
conjugate in GLy,(q%). Then G and H are also conjugate in GU,(q).
(it) If G and H are two absolutely irreducible subgroups of Sp,(q) or
GO“(q) that are conjugate in GL,(q) then G and H are conjugate

in CSp,,(q) or CGOY,(q) respectively.

3.3 Schur Indicator and Quotient Space

Related to classical groups is the Schur indicator of a representation.

Definition 3.3.1. Let p : G — GL,(C) be an absolutely irreducible rep-
resentation of some finite group G. Then the Schur indicator indicates
which form Gp preserves. If Gp preserves a zero or a unitary form then
the Schur indicator is o. If Gp preserves a symplectic form then the Schur
indicator is — and if Gp is a subgroup of an orthogonal group then the Schur
indicator is +.

We will now define the quotient space of a vector space and show how a
symmetric bilinear form can act on such a quotient space.

Definition 3.3.2. Let V be a vector space and let U < V be a subspace
of V. Then V/U is a vector space with elements of the form v + U for all
veV and V/U is a quotient space.

Lemma 3.3.3. Let V' be a vector space on K with associated symmetric
bilinear form . Let x € V and let V /{x) be a quotient space with associated
symmetric bilinear form B'. Assume that 3(z,v) = 0 for allv eV and that
if there exists y € V' such that B(y,v) = 0 for allv € V then y = x. Let
v,weV. Then B'(u+ {(z),v+{x)) = B(u,v).
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Proof. 1t is clear that

B(u+ Az, v+ Ax) = B(u,v) + B(u, Az) + B(Az,v) + B(Az, A\x)
= B(u,v) for all A e K\{0}.

Hence 3'(u + {(x),v + {(x)) = f(u,v). Furthermore, u + (z) = v + {(z) if and
only if v — u € {x). This holds if and only if S(v —u,t) = 0 forall t € V
which is the case if and only if 8(v,t) = B(u,t) for all t € V. Hence our map
is well defined. O

3.4 Maximality

Let S be a finite simple group and let S < T < Aut(S). In this section we
will define different types of maximal subgroups of T'.

Definition 3.4.1. ([40]) Let S be a simple finite group, let S < T < Aut(S5)
and let M be maximal in T
(i) If S < M then M is a triviality.
(ii) If S n M is maximal in S then M is ordinary maximal.
(iii) If S n M # S is non-maximal in S then M is a novelty.

As trivialities correspond to maximal subgroups of soluble groups 7'/S
they will be omitted from all our tables.

Lemma 3.4.2. Let S be a finite simple group and let S IT < Aut(S).
Suppose that H < S is mazimal and let N = Np(H). Then N is mazimal
inT if NS/S=T/S. If NS/S <T/S then N is not mazimal.

Proof. First suppose that NS/S < T/S. Then there exists a maximal sub-
group M such that NS < M < T and in particular S < M. Hence M is a
triviality and since S € NV it follows that N < M < T is not maximal.
Now suppose that NS/S = T'/S and suppose that there exists a maximal
subgroup M such that N < M < T. Then MS = T and it follows that
S € M. Hence M is either ordinary maximal or a novelty. Suppose first
that M is ordinary maximal. Then S n M is maximal in S. It follows that
H=5nN < SnM < S which implies that Sn M = H since H is maximal
in S as well. Hence Sn M = S N and M = N, a contradiction. Hence
no such M exists and N is maximal. We get a similar contradiction if we
assume that M is a novelty. O
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3.5 Aschbacher’s Theorem

Aschbacher’s Theorem which classifies the maximal subgroups of a classical
group is crucial for this thesis. Note that trivialities are excluded from
Aschbacher’s Theorem.

Theorem 3.5.1 (Aschbacher’s Theorem (approximate version)). Let A be
as in (3.1.1). Let H be a subgroup of A. Then H is either a geometric or
an . -subgroup of A.

The maximal subgroups of A that are of geometric type were determined
by Kleidman and Liebeck ([26]). Their results are stated in Chapter 11. We
will not give any detailed description of the geometric subgroups as this is
not required for this thesis.

Definition 3.5.2. ([8, Def 2.1.3, p.56]) Let G < T, where Q < T < A, A
is as in (3.1.1) and Q € {SLI(q),Sp, (), (¢)}. Then we say that G is an
-subgroup in T if G/(GnZ(GLy(¢"))) is almost simple and the following
conditions all hold:
(i) QG
(ii) G* is absolutely irreducible;
(iii) there does not exist any g € GLy(¢") such that (G*)Y is defined over
a proper subfield of Fyu;
(iv) G* preserves a non-zero unitary form if and only if Q = SU,(¢);
(v) G preserves a non-zero quadratic form if and only if Q = Q¢ (¢); and
(vi) G preserves a non-zero symplectic form and no non-zero quadratic
form if and only if Q = Sp,,(¢).

We will often divide .¥-subgroups into .#;-subgroups and .#,-subgroups.

Definition 3.5.3. Let G be an .-subgroup of some classical group CL,,(¢%)
in characteristic p. Then G is an .#a-subgroup of CL,,(¢") if G® is isomor-
phic to a group of Lie type in characteristic p. We say that G has defining
characteristic in this case. Otherwise G in an .#3-subgroup and we say
that G has cross characteristic.

In Chapter 4 we will introduce the theory needed to determine the .-
maximal subgroups. In Chapters 5, 6 and 7 we will then find the maximal
S1-subgroups in dimension 13, 14 and 15 respectively. In Chapter 8 we
will develop the theory behind .#-subgroups before determining the .%-
maximal subgroups in Chapter 9. Finally, in Chapter 10, we will identify
containments between .#- and .%%-subgroups and between geometric and
#-subgroups. The tables with the maximal subgroups can be found in
Chapter 11.
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3.6 Simple versus Quasisimple

Our general aim is to determine the maximal subgroups of the almost sim-
ple classical groups. However, we will find the maximal subgroups of the
quasisimple classical groups €2 and their extensions by outer automorphisms
as it is easier to work with matrices than with permutations. The fol-
lowing lemmas show that we can easily deduce the maximal subgroups of
Q/Z(Q).R where R < Out(2/Z(9)) once we know the maximal subgroups
of Q.R, where R < Out(Q).

Lemma 3.6.1. Let G be quasisimple and let G = G/Z(G). If H is a
mazimal subgroup of G then Z(G) < H. Furthermore H is mazimal in G if
and only if H = H/Z(G) is mazimal in G.

Proof. Suppose that Z = Z(G) <« H. Then G = (H,Z) = HZ as Z is
central. It follows that G = G’ = (HZ)' < H which gives the required con-
tradiction. Therefore Z < H when H is maximal. By the Correspondence
Theorem H is maximal in G if and only if H/Z is maximal in G/Z. O

Lemma 3.6.2 ([8, Lemma 1.3.4, p.8]). Let G = Z.S be quasisimple where
Z =7(G) and S is non-abelian simple. Let o € Aut(G) be non-trivial. Then
a is a non-trivial automorphism of G/Z, i.e. Aut(G) embeds in Aut(S).

Furthermore, in all the dimensions we are interested in every 5 € Out(2)
corresponds to some outer automorphism of €.

Lemma 3.6.3. In dimension 13,14 and 15 all outer automorphisms B €

Out(Q2) correspond to some ' € Out(f2).

Proof. By [26, Thm 5.1.4, p.173] the Schur multiplier of € consists of scalars

and therefore any 3 € Out(Q) corresponds to some 5’ € Out(Q). O

The following lemma will come in useful when we want to deduce infor-
mation about the outer automorphisms of a classical group.

Lemma 3.6.4. Let T be a finite group, let R < T and let a € Out(T") be
non-trivial with o = bInn(T"). Then {R9 |ge T}* = {R9|g € T} if and only
if there exists a non-trivial a € Aut(T) such that R* = R and a='b € Inn(T).

Proof. First suppose that there exists o € Out(7') such that {RY|ge T}* =
{R9|g e T}. Then for all g € T there exists h € T such that (R9)® = R"
which implies that ((R9)?)""" = R. Hence (R9)" = R for some g; € T since
Inn(7T) <Aut(T). Since g1 € T it follows that conjugation by a = g;b induces
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an automorphism in bInn(7") by quotienting by Z(7T'). Hence g1b maps to
a € Out(T) and a='b € Inn(T).

Now suppose that there exists a € Aut(7T) such that R* = R. Then
R* = RY for all g € T. Therefore R92* = RY for some go € T and it follows
that {R9}*(T) = {R9}. Then a = alnn(T) € Out(T). O
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4 .Y-Maximal Subgroups - The Cross Character-
istic Case

The aim of this thesis is to find the maximal subgroups of the almost simple
classical groups in dimension 13, 14 and 15. In this and Chapter 8 we will
look at methods used to determine the maximal subgroups that lie in the
last class in Aschbacher’s Theorem, which is denoted by . (see Definition
3.5.2).

Let G be an .-subgroup of some classical group. Then for each such G
there exists a non-abelian simple group S such that S IG/Z(G) < Aut(S).
(Note that Z(G) consists of scalar matrices of G since G is absolutely ir-
reducible.) This group S can be of cross or defining characteristic (see
Definition 3.5.3).

In this chapter we will look at the theory behind the cross characteristic
subgroups, which we will also call .#;-subgroups. In Chapter 8 we will then
discuss .%-subgroups in more detail, although a lot of the theory developed
in this chapter will also be relevant for .#-subgroups.

Definition 4.0.1. Let T be a classical group. We say that a subgroup
G < T is an “;-maximal subgroup of 7' if G is an .#;-subgroup and if G is
maximal among the .#;-subgroups of 7.

Let G be quasisimple. If G has a faithful absolutely irreducible represen-
tation of cross characteristic in dimension less than 250 then it appears in
the tables by Hiff and Malle ([18]). The groups with such a representation
in dimension 13, 14 and 15 together with their extensions by their outer
automorphisms are our potential .#1-maximal subgroups. Our aim is there-
fore to find the normalisers of these quasisimple groups within the classical
groups in question.

Throughout this chapter let p be a faithful absolutely irreducible repre-
sentation of G' unless otherwise stated. Let n > 13 and let G = Gp be an
S1-subgroup of a classical group CL,(¢"). Here u = 2 in the unitary case
and 1 otherwise. Let Q € {SLI(q),Sp,,(q),25(q)}, where € € {0, +, -}, and
let C' = Ngr,,(qv)(2) be the conformal group of . Then Gp < Q as the
following lemma shows.

Lemma 4.0.2. Let n = 13 and let p be an absolutely irreducible representa-
tion of G such that Gp < CL,(¢"). If G is quasisimple then Gp < 2, where
Q e {SL(q), Spa(q), %,(q)}-

39



Proof. If G is quasisimple then Gp < € is also quasisimple. Hence Gp =
(Gp)* < CLy(¢")®. From the definition of classical groups and from Lemma
3.1.22 it follows that CL,,(¢")* = €2 since n > 13. O

We will adopt the following convention throughout this chapter.

Convention 4.0.3. Our classical groups CL,(¢") preserve the respective
standard form matrices as defined in Table 3.1.1 on p.25 unless otherwise
stated.

Our first aim will be to find N(Gp) because this might be a possible
S1-maximal subgroup of  (Section 4.2). Our main aim is, however, to find
the maximal subgroups of the almost simple classical groups in dimensions
13, 14 and 15. Hence we also have to consider the actions of the outer
automorphisms of Q =~ Q/Z(2) on Nq(Gp)/Z(). We will conclude this
chapter with a discussion about maximality of .#}-subgroups (Section 4.9).

4.1 General Procedure

In this section the procedure is described which we will follow in order to
find the maximal subgroups in cross characteristic.

To begin with we will list all potential .#;-subgroups G that appear in
[18]. By looking at the character values of the respective representations p
of G in [12] and [24] we determine the character rings (see Definition 2.2.2)
of p. Using this information, we can calculate the smallest fields over which
these representations exist. In the case where the Schur indicator is o we
also need to identify the form preserved by Gp. This could be a unitary or
only the zero form. Using [12] and [24] again, we can then find N¢(Gp),
where C' = Ng,, (4+)(€2) is the conformal group of €2. By considering the
form, the determinants of the elements in N¢o(Gp), the field size and (in
the orthogonal case only) the spinor norm, we can determine how much of
Nc(Gp) is contained in Q. In other words, we find Nq(Gp).

Let 3 denote the outer automorphism of Q corresponding to 3 € Out(€Q).
We also have to look at how elements of Out(Q) act on the Q-conjugacy
classes of Nq(Gp)/Z(§2) corresponding to the conjugacy classes of No(Gp)
in 2. Once we have all this information we then have to decide which of
these groups are indeed .#7-maximal.

Let p be a characteristic 0 representation of G. Then by a p-modular

reduction of p we mean that for all § € Gp, each entry of § is reduced
modulo p. In most cases our representation p in characteristic p arises as
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a p-modular reduction of a characteristic 0 representation p with character
ring R. Hence if we consider a specific representation p of characteristic 0
then we need to check that we can indeed reduce p modulo p.

Let g € Gp < GL,(C) be arbitrary. Assuming that a p-modular reduc-
tion of g exists, it is clear that none of the denominators of the entries of g is
divisible by p. The denominators may however be products of other prime
numbers p; and we cannot reduce § modulo p; for any such p;.

Definition 4.1.1. If p; is a prime number that appears in the prime fac-
torisation of the denominator of some entry of § € Gp < GL,,(C), then p; is
an exceptional prime.

Let pq,...,pr be the exceptional primes of Gp. Then the matrix entries
of all § € Gp form a subring of R[p%, cee i] and we cannot reduce p modulo
p; for any such prime number p;. Hence to show that we can reduce a
characteristic 0 representation p modulo p we have to show that for all g € G
the entries of gp lie in R[p%, el pik] where p # p; for all i. From the next
lemma it follows that it is in fact sufficient to look at the lowest common
multiples of the denominators of the entries of the matrices generating Gp.
Lemma 4.1.2. Let Gp = {g1,...,Gmy and let a; denote the lowest common
multiple of the denominators of the entries of §;, where i € {1,...,m}. Let
A denote the set containing the prime divisors of all a; and let R be the
character ring of p. Then A contains all exceptional primes.

Proof. Let § be an arbitrary element of Gp. We have to show that the
denominator of any entry of § only contains elements of A and of R as its
prime divisors. Let §; € {g1,...,Gm} for some i. Then §; = a%g; where all
entries of §; lie in R. Since § is the product of some §; it can be written
as g = %f]’ where a is the product of the respective a; and §’ only contains
entries in R. Therefore A contains all exceptional primes. O

4.2 Determining the Preserved Form and Finding Nq(Gp)

In this section we state a few results that will simplify the process of finding
the normaliser of Gp in 2. We will start by finding a way to determine the
preserved form when the Schur indicator is o.

Lemma 4.2.1 ([8, Lemma 4.4.1 and Cor 4.4.2, p.167]). Suppose G has an
absolutely irreducible representation p over Fp2 of Schur indicator o. Then
Gp preserves a non-degenerate unitary form if and only if the action of the
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field automorphism o : x — x% on the Brauer characters is the same as
complex conjugation.

Suppose additionally that the character ring of p is generated over Z
by the quadratic irrationalities a1, ...,a, and let a; denote the p-modular
reduction of G;. Furthermore let p denote the p-modular reduction of p.
Then Gp preserves a unitary form if and only if:

(i) 4; e R < a; € Fy; and
(ii) a; € C\R < a; € F2\Fy for all 1 <i<r.

In the next part of this chapter we will now consider the normaliser of
Gp in C and Q.

Lemma 4.2.2 ([8, Lemma 4.4.3, p.168)). Let p be an absolutely irreducible
representation of a quasisimple group G. Let Gp < Q) and let C be the
conformal group of 2. Then the outer automorphisms of G that stabilise p
are induced by elements of No(Gp).

Remark 4.2.3. The normaliser of Gp in C is generated by the following
elements:
(i) elements in Z(C'), which are elements that centralise Gp;
(ii) elements that lie in the inner automorphism group Inn(Gp) of Gp;
(iii) outer automorphisms of Gp that are induced by elements of N¢o(Gp).
These are the outer automorphisms that stabilise p by Lemma 4.2.2,
i.e. they split p (see Section 2.2.1).

To find Nq(Gp) once we know N (Gp) is fairly straightforward in most
cases. We just need to decide how much of N¢(Gp) lies in €.

Let o € Aut(G)\Inn(G), assume that o has prime order and suppose
that « is induced by an element of No(Gp) which does not centralise Gp.
By Section 2.2.1 we are therefore in the case where p splits into |a/| distinct
representations when extended to G.{a).

In the following lemma we will consider the case when |a| = 2. Then p
splits into two representations p; and p2. Let x1 and x2 denote the character
values of p; and ps respectively. From Section 2.2.1 it follows that x2(g) =

—x1(g) for all g € GLa)\G.

Lemma 4.2.4. Let p be an absolutely irreducible representation of G of di-
mension n such that an outer automorphism a of G of order 2 is induced
by an element g € No(Gp)\Gp of order 2. Let p1 2 denote the two represen-
tations into which p splits when extended to G.{a). Then det(gp;) = +1.
Furthermore, if n is even then det(gp1) = det(gp2), whereas if n is odd then

det(gp1) = —det(gp2).
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Proof. Let k = x1(g) and let —k = x2(g), where x; and x2 are the Brauer
characters of p; and ps respectively. Let a be the multiplicity of the eigen-
value 1 and let b be the multiplicity of the eigenvalue —1 of gp;. Further-
more, let @’ and O’ be the multiplicities of the eigenvalues 1 and —1 of gps
respectively. Then

a+b=n

a-1+b-(-1)=k
which implies that a = "7% and b = ”7_]“ Similar calculations show that a’ =
2=k and b = 2%, We know that det(gp1) = 1¢- (—1)® = £1. Furthermore,
k = n — 2b and hence b/ = n —b. If follows that if n is even then b is even if
and only if &’ is even. If n is odd then either b is even or b’ is even. O

4.3 Finding Nq.5,(Gp)

Since we are interested in finding the maximal subgroups of almost simple
classical groups, we now consider  and its outer automorphisms. To this
purpose suppose that Gp is an .#-subgroup of €2, where p is a faithful
representation of G. Let 8 € Out(2). From Lemma 3.6.3 we know that
in dimensions 13, 14 and 15 this outer automorphism S always corresponds
to an outer automorphism of . Therefore we will abuse notation and
say that 8 acts on Q as well. Furthermore, 8 corresponds to a coset bQ

where b € Aut(Q2). In the following we will usually identify § with a coset
representative in Aut(Q) and say that Gp.(8) < Na.(sy(Gp). Similarly, if
a € Aut(G) or B € Aut(2) induces a non-trivial outer automorphism, then
we will just write a € Out(G) or B € Out(£2).

We want to know whether Nq g,(Gp) is maximal in Q.(3). Let M
be a C-conjugacy class of subgroups isomorphic to Gp that splits into the

conjugacy classes My to My in €.

Lemma 4.3.1. Let Gp < Q and § € Out(QQ). If B stabilises an Q-conjugacy
class of Gp then (abusing notation) 3 normalises Gp.

Proof. Let ¢; € C and let M; = {(Gp)%" |h € Q} be an Q-conjugacy class
of Gp that is stabilised by f. Let f = bInn(Q2). Then Mf = M; and
therefore there exists an h € Q such that (Gp)%" = (Gp)%. Since p% is
equivalent to p we can without loss of generality assume that (Gp)"* = Gp

for the representation p we have chosen. Since hbInn(Q2) = (3, the result
follows. O
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We will now look at the conjugacy classes of Gp in C and (). For this
we will need the following definition.

Definition 4.3.2. Two representations pi,p2 : G — GL,(q) are weakly
equivalent if there exist o € Aut(G), ¢ € Aut(F,) and *, where * is either
the duality or the trivial automorphism, such that for all ¢ € G, gp; is
equivalent to ((g%p2)?)*.

Lemma 4.3.3 ([8, Lemma 4.4.3, p.168]). Let G be a quasisimple group and
let {p1,...,pr} denote (up to equivalence) all weakly equivalent absolutely
irreducible representations of G of dimension n. Let Gp; < Q and let C be
the conformal group of §2.
(i) The orbits of Out(G) on {p1,...,pr} are in natural bijection with the
conjugacy classes into which C' partitions {Gp1,...,Gpr}.
(ii) Each C-class of subgroups splits into |C : No(Gp;)Q| classes in Q.

In the following section we will look at the general behaviour of the
outer automorphisms of Q and how they act on the Q-conjugacy classes of
Gp before looking at each type of classical group individually.

Suppose there exists a € Out(G) such that ®p and p? are equivalent for
some [ € Out(f2). Then the following lemma shows that § permutes the
Q-conjugacy classes of Gp a single C-conjugacy class splits into.

Lemma 4.3.4. Let M be a single C-conjugacy class of Gp and assume that
M splits into the classes My to My in Q. Let B € Out(Q) and assume that
Gp < M; for some i. If there exists o € Out(G) such that “p and p® are

equivalent then ]\41’8 = My, for some k.

Proof. By assumption there exists o € Out(G) such that “p and p? are
equivalent. Hence there exists ¢ € GLy,(q%) such that (Gp?)! = Gp. There-
fore (Gp)? € My, for some k by Lemma 3.2.4. Since M, is a conjugacy class
of Q it follows that (Gp)?? € My and therefore Mf = Mj. O

It follows that 3 acts on these (2-conjugacy classes of Gp.

Definition 4.3.5. Let Gp < ) and suppose that ) is defined over Fqu. Let
g € No(Gp). We say that g properly normalises G if g # Ah for any
h €  and any scalar X € F..
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4.3.1 Diagonal Automorphisms

We will first consider 6 € Out(f2) with d = [6|]. Then § corresponds to
conjugation by a matrix D, where D is as defined in Section 3.2. From the
definition of ¢ it follows that D € C\{.

Lemma 4.3.6. Let Gp < Q) be absolutely irreducible. Suppose that there
exists a single conjugacy class M of Gp in C and suppose that all automor-
phisms of Gp that are induced in C are induced in §2.
(i) If Q # Qi (q) then § acts transitively on the d = |8| conjugacy classes
M splits into in €.
(ii) If Q = Q= (q) then (6,7) acts transitively on the 2d = 2|5| conjugacy
classes M splits into in €.

Proof. The number of conjugacy classes M splits into in € follows by Section
3.2 and Lemma 4.3.3. Let C = C/Z(C). Then C = Q.{6,7) if Q = Qi (q)
and C' = Q.{5) otherwise. Since there exists a single C-conjugacy class, ¢ or
(6,7 have to act transitively on the Q-conjugacy classes of Gp. O

From the above lemma and Lemma 4.3.4 it follows that if there exist
a € Out(G) and B € Out(Q) such that ®p and p? are equivalent then at
least one Q-conjugacy class is stabilised by 36* (or 3v'6* in Case O%) for
some k and 1.

Lemma 4.3.7. Let 3, u € Out(Q) be conjugate in Out($). Then (3 stabilises
an Q-conjugacy class of Gp if and only if i stabilises a conjugacy class.

Proof. Since Out(Q) acts transitively on the Q-conjugacy classes of Gp all
stabilisers are conjugate. O

4.3.2 Field Automorphisms

Here we will consider some general properties of the field automorphisms
as defined in Section 3.2. Note that we will consider graph automorphisms
separately for Cases L, U and O=.

Lemma 4.3.8. Let Gp1,Gpa < ), where p1 and p2 are two non-equivalent
absolutely irreducible faithful representations. Suppose that the associated
field of 2 is Fgu and suppose that “p1 = pa for some outer automorphism
a € Out(G) of order |¢|. If (Trace(gpr))? = Trace(gpa) for all g € G then

“p1 s equivalent to p“lb.
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Proof. For “p; to be equivalent to p‘f we need to show that

Trace((gp1)?) = Trace(¢g®p1) = Trace(gps)

since two representations are equivalent if and only if they have the same
character values. Since Trace((gp1)?) = Trace((gp1)?) = (Trace(gp1))? the
result follows. O

We will now consider the Cases L, U, S, O° and O* separately.

4.4 Graph Automorphisms for Case L:

In this section we will look at the outer automorphisms of a linear group.
Note that for the groups considered in this thesis it turns out that we will
not be required to look at the field automorphisms of linear groups. Hence
we only need to consider the duality automorphism v as the diagonal auto-
morphism § was discussed in Section 4.3.1. There is an easy way to prove
that there exists an a € Out(G) such that “p is equivalent to p? as the
following lemma shows.

Lemma 4.4.1. Let p12 be two absolutely irreducible representations of G
such that Trace(gp1) equals the complex conjugate of Trace(gpz) for all g €
G. If there ezists a € Out(G) of order 2 such that “p; = pa, then ®py is
equivalent to pJ.

Proof. This is clear by Lemma 3.2.2 for characteristic 0 representations.
By the definition of Brauer characters this also holds for characteristic p
representations using a similar argument as in the proof of Lemma 3.2.2. [

We will first consider the case when d := (¢ — 1,n) is odd.

Lemma 4.4.2 ([8, Lemma 4.6.1, p.189]). Let p : G — Q = SL,(q) be an
absolutely irreducible representation and suppose that d is odd. If there exists
a € Out(G) such that ®p is equivalent to p?, then an Q-conjugacy class of
Gy is stabilised by vy in Out(€).

Now assume that d is even. In this case it is a bit more complicated to
determine whether v or ¢ stabilises an SL,(¢)-conjugacy class of Gp.

Lemma 4.4.3 ([8, Lemma 4.6.2, p.189]). Assume that d is even and let p
G — SL,(q) be a faithful absolutely irreducible representation. Also assume
that there exist o € Out(G) and x € GL,(q) such that x=1(g%p)x = (gp)”
for all ge G. If det(z) is a square in F) then an SLy(q)-conjugacy class of
Gp is stabilised by ~v in Out(Ly,(q)). Otherwise it is stabilised by 4.
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Remark 4.4.4. Finally, we have to consider characteristic 0 representations
p of G that preserve only the zero form. Let R be the character ring of j
and let K be the corresponding character field. Let {p1,...,px} be the set
of exceptional primes of p (see Definition 4.1.1).

Suppose we want to determine the action of v on the p-modular reduc-
tions of Gp. For all the groups considered in this thesis we can find an
# € GL,(K) and some o € Out(G) such that 27 (gp)~ T2 = (¢%)p for all
g € G. Furthermore, we can find A € C such that A\# and (A\2)~! only have
entries in R[p%v cee i] and det(A\£) = p'...p* for some e; € NO. Hence
we can reduce AZ modulo p for all p # p;. From this it follows that we can
apply Lemma 4.4.3 to x, the p-modular reduction of Z. That way we can
deduce the action of v on the p-modular reductions of our characteristic 0
representation.

4.5 Field Automorphisms for Case U:

Here we will consider the behaviour of the outer automorphisms v and ¢
of the unitary groups. Let ¢ = p®. Let d := (¢ + 1,n) = [d] and let
Un(q) = Un(g, I,). Recall from Section 3.2.6 that

Out(Un(q)) = (8,¢,7[0% = ¢* =4* = 1,87 = 67", ¢° = v, 6% = 7).

Note that by [7] the isomorphism type of (U, (¢, B), ¢) depends on the choice
of form B preserved by the unitary group when n is even and ¢ is odd. Recall
that in Section 3.2 we defined ¢ and ¢ for groups preserving our standard
unitary form matrix I,,. The problem is that even though o = ¢° and ¢ are
automorphisms of SU, (¢, I),) and stabilise this group, they do not necessarily
stabilise SU,,(q, B) for every non-degenerate unitary form B. One reason is
that these automorphisms might not fix the form at all and even if they fix
B, then (SU,(q, I,), ¢y (or (SU,(q, I,),0)) is not necessarily isomorphic to
(SUn(q, B), ¢) (or {(SUn(q, B),0)).

To find the action of the field automorphism for any non-degenerate
unitary form B we find a way to map Gp < SU,(q, B) to some isomorphic
group H < SU, (¢, I,,). Let A € GL,(¢?) such that (Gp)4 = H < SU,(q, I,).
Since pA is equivalent to p it is sufficient for our purpose to determine the
action of the outer automorphisms of U, (g, I,,) on H.

If we do not need to use any specific generators for Gp however than
we can assume without loss of generality that Gp preserves our standard
unitary form matrix I,,.

Assume throughout that each C = CGU,(q) conjugacy class of Gp splits
into d conjugacy classes in SU,(¢). By [8, Lemma 4.6.3, p.190] there are
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two Out(U,(q))-conjugacy classes containing elements of the form ¢d° when
d is even and one such conjugacy class when d is odd. We will first consider
the case when d is odd.

Lemma 4.5.1. Let p: G — Q = SU,(q) be an absolutely irreducible repre-
sentation. Suppose that d is odd and that there exists o € Out(G) such that
“p is equivalent to p®. Then an Q-class of Gp is stabilised by (¢) in Out(Q).

Proof. This follows from [8, Lemma 4.6.3, p.190] and Lemma 4.3.7. O

Now we will look at the case when d is even. The following lemma gives
us a way of deciding whether a subgroup of a unitary group is stabilised by

¢ or by ¢d.

Lemma 4.5.2 ([8, Lemma 4.6.5, p.191]). Let p : G — GL,(¢?) be an
absolutely irreducible representation such that Gp < SU,(q, B) = SU,(q),
where B is some non-degenerate unitary form. Assume that d = (¢ + 1,n)
is even. Also assume that there exist « € Out(G) and v € GL,(¢?) such
that 21 (gp)?x = g%p for all g € G and xBx°" = A\B? with \ € Fy. Let

A € GLy,(q?) such that (Gp)* < SU,(q) and let | = /det(x). Then a
conjugacy class of (Gp)? in SU,(q) is stabilised in U,(q) by ¢ if and only
if either
_ 1 1+o0 _
¢ = and Wl det(B) =1

or

1
()\n/Q

P

)17 (det(B)) 2" = 1.

Since the representation p? is equivalent to p, we will just say that an
SU,(q)-conjugacy class of Gp is stabilised by ¢ in Out(U,(q)).

Remark 4.5.3. Again we have to consider characteristic 0 representations
p of G preserving a unitary form. Let R be the character ring of p and let
{p1,...,pr} be the set of exceptional primes of Gp. Let B be the positive
definite o-Hermitian form preserved by p. Then there exists a complex
matrix A such that AA°T = B by [27]. The p-modular reduction pB of AB
is a non-degenerate unitary form if the entries of both B and (4B)~! lie
in R[p%> ce pik] for some scalar 1 € C. Even if such a i exists, however, we

may not be able to find a suitable A with entries only in R[p%v ey pik
this it follows that A cannot necessarily be reduced modulo p and hence we
may not be able to use Lemma 4.5.2.

However we can find an & € GL,,(C) such that 27(gp)?% = (g*)p for all

g € G. If the entries of A& and (\#)~! lie in R[pil, cee i] for some scalar

]. From
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X and if ¢ = v, then we do not have to find A explicitly, as the following
lemma shows.

Lemma 4.5.4 ([8, Prop 4.6.6, p.193]). Let p : G — SU,(B,C) be a char-
acteristic 0 representation preserving some unitary form B such that G has
an absolutely irreducible representation p with Gp < SU,(q, B) that arises
as a p-modular reduction of p. Furthermore, let S = R[p%, e pis], where R
is the character ring of p and the p;s are the exceptional primes with p; # p
for alli. Assume that:

(i) ¢=";

(ii) there exist o € Aut(G) and & € GL,(C) such that 27 (gp)%% = (¢%)p

for all g € G;

(iii) B,B',% and £~ have entries in S; and

(iv) 70? with 7 € R gives a factorisation of det(%) in S.
Now let r be the p-modular reduction of ¥ and let e = 1 if /1 € Fy ande = —1
otherwise. Let A € GLy,,(q%) such that (Gp)® < SU,(q). If esgn(7) = 1 then
an SU,(q)-conjugacy class of (Gp)* is stabilised by ¢ in Out(U,(q)). If
esgn(7) = —1 then a conjugacy class is stabilised by ¢9.

4.6 Field Automorphisms for Case S:

Let Gp < Q = Sp,,(¢). In this thesis we can always assume that Gp preserves
our standard symplectic form as in Table 3.1.1 (p.25). Recall from Section
3.2.6 that a presentation of the outer automorphism group of S, (p¢) is given
by

Out(Sn(p)) = (6,681 = ¢¢ = [§,¢] = 1) = C(,_1.9) x Ce.

As for Cases L and U suppose that there exists o € Out(G) such that “p is
equivalent to p?. (Recall that we can use Lemma 4.3.8 to determine whether
@p is equivalent to p®.) Furthermore, assume that a single C = CSp,,(q)
conjugacy class of Gp splits into (¢ — 1,2) conjugacy classes in Sp,,(q).

From this it follows that the two conjugacy classes are stabilised by ¢d°
for some ¢ € {0,1}. The following lemmas are sufficient for this thesis to
determine the class stabiliser of an {2-conjugacy class of Gp.

Lemma 4.6.1 ([8, Lemma 4.6.7, p.195]). Let CI'Sp,,(q) = CSp,,.{¢). All
involutions in PCI'Sp,,(q) lie in S, (q).{¢) U PCSp,,(q¢) when q is odd.

Lemma 4.6.2. Let Gp < Sp,,(p?) = Q with q odd. Assume that there exists
a € Out(G) of order 2 such that ®p is equivalent to p®. Furthermore, suppose
that 6 ¢ No(Gp) and that projectively (G, a)\G contains involutions. Then

an Q-conjugacy class of Gp is stabilised by (¢ in Out(£2).
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Proof. Note that since § ¢ No(Gp), no conjugacy class of Gp is stabilised by
§. Therefore an Q-conjugacy class of Gp has stabiliser (¢6*) in Q for some
i € {0,1}. Since this stabiliser induces « it follows that Gp.{¢pd%) contains
involutions. By Lemma 4.6.1 the stabiliser is therefore (¢). O

4.7 Field Automorphisms for Case O°:

Now we consider the field automorphisms of orthogonal groups in odd di-
mension. Let Gp < Q = Q%(q) and suppose that ®p is equivalent to p? for
some a € Out(G). Again we can assume that Gp preserves our standard
form as in Table 3.1.1 (p.25). By Section 3.2.6,

Out (05, (p°)) = (6,6 16% = ¢° = [§,¢] = 1) = Ca x Ce

and ¢ is induced by a matrix in SO; (¢)\€25(g).
The following lemmas help to determine whether (¢ or (¢d) stabilises
an {)-conjugacy class of Gp.

Lemma 4.7.1 ([8, Lemma 4.9.40, p.239]). Let CT'O; (q) denote the group
COy; (q)L¢) and let CSO; (q) = CO; (q) N SLy(q). Then all involutions in
PCT'O;,(q) lie in PCSO; (q) u O (q){$).

Lemma 4.7.2. Let Gp < Q5 (p?) = Q. Assume that § ¢ No(Gp) and
suppose that there exists o € Out(Q) such that “p is equivalent to p®, where
|p| = |a| = 2. Also suppose that projectively (G, a)\G contains involutions.

Then an Q-conjugacy class of Gp is stabilised by (¢) in Out(£2).
Proof. The proof is very similar to the proof of Lemma 4.6.2. O

We will now consider the case when ¢ induces an outer automorphism
of Gp of order 4. Then Out(O%(p?)) = Cq x Cy.

Let Q = Q2 (p*). It is clear by Lemma 4.3.4 and Lemma 4.3.6 that if
there exists a € Out(G) of order 4 such that ®p is equivalent to p? then
at least one and hence both of the 2-conjugacy classes of Gp are either
stabilised by (¢) or by (¢d) in Out(f2). Hence we can assume without loss
of generality that the Q-conjugacy class of Gp is stabilised by ¢4’ for some

1.

Lemma 4.7.3. Let Gp < Q = Q% (p*) and suppose that there exist o €
Out(G) of order 4 and x € GL,(p*) such that x=(gp®)x = g%p for all
g € G. Suppose that there exists a single C conjugacy class of Gp that
splits into 2 conjugacy classes in ). Then there exists A € IF;4 such that
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Az € SO (ph). Furthermore, if sp(Ax) = 1 then the Q-conjugacy class of Gp
is stabilised by ¢ in Out(QY). Otherwise the conjugacy class is stabilised by

3.

Proof. By assumption the conjugacy class Gp® is stabilised by ¢d* for some
i € {0,1}. Furthermore, Gp?* = Gp which implies that ¢z € Aut(Q) by
Lemma 3.2.4(ii). Since Gp® is only stabilised by ¢6° we can deduce from
Lemma 3.6.4 that ¢x equals ¢4° in Out(Q). Hence x = A~ 1§%g for some
scalar A and some g € Inn(Q2). In particular this implies that Az € SO, (p?).
Then Az € Q if and only if ¢ = 0, i.e. if and only if sp(Az) = 1. O

4.8 Outer Automorphisms for Case O*:

The theory of the outer automorphisms of the orthogonal groups in even
dimensions is quite complex as there are more automorphisms to consider.
Also, the outer automorphism group depends on the type of the orthogonal
group and on the discriminant of the preserved form matrix.

4.8.1 Field Automorphisms for Case O*

Let B be a non-degenerate symmetric bilinear form matrix. We will first
consider the field automorphisms of O (p?, B) in odd characteristic.

Field Automorphisms in Odd Characteristic

The following lemma holds for all orthogonal groups in even dimension
(in fact it can be easily adapted to hold for all quasisimple classical groups).
Later on in this section we will only consider orthogonal groups of plus-type
with dimension n = 2 (mod 4) though as this is what is needed for this
thesis.

Recall from Section 3.2.6 that when n = 2 (mod 4) and p is odd the
presentation of the outer automorphism group of O, (p?) is:

Out(0} (p%)) = {7,6,0|6' =+* = 1,67 =071, ¢ = [v,6] = 1,6 = &*),

since p? =1 (mod 4).
Furthermore, we can show that Out(O; (p?)) = (v,d) x (v), where
(7,0) =Dg, v=¢if p=1(mod 4) and v = ¢ if p = 3 (mod 4).

Lemma 4.8.1. Let n be even and q be odd. Let p : G — GLy(q) be an
absolutely irreducible representation and assume that Gp < Q(q,B) for
some non-degenerate symmetric bilinear form matriz B. Also suppose that
“p is equivalent to p® for some o€ Out(G). Then:
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(i) there exists A € GLy,(q) such that AF AT = B, where I is our standard
form matriz of the same sign as B as given in Table 3.1.1. Further-
more, Gp = (Gp)* < 9 (g, F) = 0£(q);

(ii) there exists x € GLy(q) such that x~(gp)%x = (g%)p for all g € G.

Proof. (i) In even dimension all non-degenerate orthogonal forms of the
same sign are isometric by [8, Thm 1.5.3, p.20]. Hence there exists A €
GL,(q) such that AFAT = B. Furthermore, if g € Q(q, B) then gBg"' =
B. From this it follows that AA 'gAAT'BA"TAT¢TA=TAT = B. Hence
gAF(g")T = F. Since conjugation by the matrix A induces an isomorphism
we deduce that Gp = Gp? < Qi (q).

(ii) This follows since “p is equivalent to p?. O

From now on we will only consider the case when Gp preserves an or-
thogonal form of plus-type. Hence we do not have to deal with the field
automorphism ¢. The following is based on [8, Lemma 4.6.7, p.195].

Lemma 4.8.2. Suppose that n is even and p is odd. Then any invo-
lution in PCTO;! (p?) lies in either a {(§)-conjugate of O} (p*).Ld,~) or in
PCGO} (p?).

Proof. Note that elements in GO (p?) preserve our standard form F =
antidiag(1,...,1) but they also preserves any scalar multiple of F. Let
g € GO} (p?)\SO;! (p?). By Lemma 3.1.20, sp(g, F) = sp(g, AF) if \ is square
in F2 and by Lemma 3.2.3, sp(g?, F) = sp(g, AF) if A is non-square in IF;Q.
Since we only want to determine the containment of g up to conjugation
by &, we can assume without loss of generality that elements in GO (p?)
preserve F'.

Let g € PCT! (p?) be of order 2. Then either g is the image of some
A € CGO; (p?) in which case g € PCGO;! (p?). Otherwise we can take g
to be the image of some Ao, where o € CT'O;! (p?)\CGO; (p?) induces by
conjugation a field automorphism of order 2. We want to show that we have
g€ 05 (1) Lo, ).

We find that for some ) € IF;Q

AA° = (Ao)? = M, (4.8.1)

since projectively Ao has order 2. Since (AA4%)4 = A°A = X\ and (AA%)° =
A7A = X1 it follows that A € F7. Also, AFAT = pF for some p € quz

since A € CGO;! (p?). Furthermore, note that F' = F°. Hence, (AFAT)? =
A?FA°T = 4, F. From this it follows that

(AATYF(AAT)Y = o T F = N2F
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since AA” = Al by (4.8.1). Using the fact that A € F) it follows from
Lemma 2.1.8 that p is a square in F;z.

Next we want to show that (up to conjugacy) g € PGO; (p?).{(¢) in this
case. This holds if we can show that vA € GO, (p?) for some scalar v. Let
V= ,Lf% which exists since y is square. Then (vA)F(vA)T = v2uF = F as
required.

Furthermore we will show that ¥A has spinor norm 1. Let £ = vA €
GO (p?). First of all note that EE? = v'tPAAT = (p'+P)=12)I =
(A\)~Y2X\I = £1 depending on the square root of A2. Also, sp(E) = 1
if and only if 7 = Hle B(vi,v;), as defined in Definition 3.1.16, is square
in IF;Q. Since +I has spinor norm 1 in SO;! (p?), it follows from the fact
that the spinor norm map is a homomorphism that 7P*! is a square in
F,2. By Lemma 2.1.8, 7 is a square in 2 as well and hence sp(E) = 1.
Note that A = v~'E and hence conjugation by A corresponds to conjuga-
tion by E. It follows that sp(A) = 1. Therefore, up to conjugation by 9,

g€ O} (p*) Lo, 7). =

For the remainder of this subsection we will only consider the case when
n =2 (mod 4).

Lemma 4.8.3. Let Q = Q. (p?) withn = 2 (mod 4) and p odd. Assume that
there exists a € Out(G) of order 2 such that “p is equivalent to p®. Suppose
that 6 ¢ No(Gp) and that projectively (G, a)\G contains involutions. Then

an Q-conjugacy class of Gp has either stabiliser {¢) or {¢ry) in Out(2).
Proof. The proof is similar to the proof of Lemma 4.6.2. O

Lemma 4.8.4. Assume that Gp < Q = Q. (p?), where p is odd and n =
2 (mod 4). Assume that No(Gp) = Z(C)Gp and that all images of the
representations that are weakly equivalent to p lie in the same C'-conjugacy
class. Assume there exists o € Out(G) such that ®p is equivalent to p®
and assume that projectively G.{a)\G contains involutions. Let ¢ € C and
assume that the Q-conjugacy class of (Gp)© is stabilised by ¢* in Out(Q)
for some k € {0,1}. Without loss of generality we can let ¢ € {1,8}.

Proof. Let Out(Q)) = D x{v), where D = (§,v), v = ¢ if p=1 (mod 4) and
v = ¢ if p= 3 (mod 4).

By Lemma 4.8.3 the Q-conjugacy class of (Gp)¢ is stabilised by H =
{¢7*). Furthermore, we know that Out(Q) acts transitively on the cosets of
H.
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If H = (v) then it is clear that all cosets of H are stabilised by (v). It
follows that all (2-conjugacy classes of G are stabilised by H and hence we
can let ¢ = 1.

If H = {yv) then the cosets H, vH, 62H, 6>yH are stabilised by H,
whereas the cosets 0H, 6vH, § 'H and 6~ '~vH are stabilised by H®. It
follows that either the 2-conjugacy class of Gp or the {)-conjugacy class of
(Gp)? is stabilised by yv. Hence without loss of generality ¢ € {1,§} in this
case. O

Our aim is now to determine whether a conjugacy class is stabilised by
¢ or ¢y. To do so we will first of all find an expression for x, where z
conjugates (gp)? to g%p for all g € G.

Convention 4.8.5. Assume that Gp < Q. (p?, B), where B is some non-
degenerate symmetric bilinear form matrix of plus-type, p is odd and n = 2
(mod 4) unless otherwise stated. Let C be the conformal group of Q.7 (p?, B).
Furthermore, let F' = antidiag(1,...,1), our standard non-degenerate sym-
metric bilinear form matrix of plus-type, and let A € GL,(p?) such that
(Gp)A <t (p?, F) = QF (p?) and AFAT = B. Also assume that No(Gp) =
Z(C)Gp and that all images of the representations that are weakly equivalent
to p lie in the same C-conjugacy class.

Note that our convention implies that there exist eight ;" (p?)-conjugacy
classes of (Gp)? and that the stabiliser of Gp has order 2.

Lemma 4.8.6. Recall our Convention 4.8.5. Suppose that there exists x €
GL,(p?) such that x7'(gp)?x = (g“)p for all g € G. Also suppose that
(Gp)A¢ is stabilised by ¢py*h for some c € {1,0}, some k € {0,1} and some
h e QFf(p?). Lety = A%c®y*hec YA~ Then yBy™ = B® if ¢ = 1 and
yByT = w?~1B? for some primitive element w € IF;Z if c = 4. Furthermore,

y = px for some scalar p € IE‘;;Q.

Proof. By assumption (Gp™©)#""h = GpAc. Hence ((Gp)?)A?c*1 he A7
Gp and so (Gp)?Y = Gp by definition. Furthermore, (Gp)?* = Gp and z is
only defined up to multiplication by some element n € No(Gp). However
by our convention, we know that either n € Gp in which case it is an inner
automorphism and we can ignore it or n € Z(C), i.e. a scalar matrix since
C is irreducible. Hence, without loss of generality, y = px for some p € Iﬁ‘gg.
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Now let ¢ = §. Then

yByT = A%cP~Fhe AT BA=T e TRTART AT 49T
= AP he P e TRTAFT T AT gince AFAT = B
= w A2 F T AT since h, v € GO (p?) and cFet = wF
= w?tA?F AT since F = F?
= w? B2

If ¢ = 1 then it is straightforward to show that yByT = B?. O

In particular, the previous lemma implies that we can find an x €

GL,(p?) such that 27! (gp)?z = ¢g%p for all g € G and zB2T = B? since
w?~ ! is square in Fpo.
Lemma 4.8.7. Recall our Convention 4.8.5. Assume that there exists
x € GLy,(p?) such that x= (gp)®x = g%p for all g € G and xBx™ = B?.
Furthermore, suppose that (G.{a))p £ C and that projectively G {a)\G con-
tains involutions. Let c € {1,0}. Then the Q; (p?)-conjugacy class of (Gp)A4°
is stabilised by (@) in Out(O; (p?)) if and only if det(A1~?)det(x) = 1.
Otherwise the Q. (p?)-conjugacy class of (Gp)A¢ is stabilised by {¢).

Proof. By Lemma 4.8.6 there exists y = A®c®y*h¢ 1A~ for some h €
Q. (p?) and k € {0,1} such that y = pa for some p € Fp.

First, let ¢ = 6. If zBx¥ = B? it is straightforward to show that
z = w22y = A-P)/2QSb~kpe=t A1 Furthermore, the conjugacy
class of (Gp)A¢ is stabilised ¢ if and only if k¥ = 0. Note that * =
w®D2c=¢ A=%2 Ach~! and hence a conjugacy class is stabilised by ¢ if
and only if det(7*) = det(w®1/2¢=?A=%2Ach™') = 1. Since det(c'~?) =
(det(c))'=? = w(I=P)"/2 it follows that det(y*) = det(A'~?)det(z). This
holds similarly when ¢ = 1. O

Next we consider the case when the characteristic of the representation
is 0. Let Q,(C, B) be the commutator subgroup of GO,,(C, B) which is the
subgroup of all matrices in GL,,(C) that preserve some given non-degenerate
quadratic form matrix B. Also let Q,(C) = Q,(C)/Z(22,(C)).

Lemma 4.8.8. Let F' = antidiag(1,...,1) € GL,(C). Then for all non-
degenerate symmetric bilinear form matrices B over C there exists some
A € GL,(C) such that AFAT = B. Furthermore, if Gp < Q,(C, B), then
(Gﬁ)’z1 < Q.(C, F) where p is an absolutely irreducible representation of
characteristic 0.

95



Proof. By [1, Thm 20.10, p.85] all non-degenerate quadratic forms over C
are congruent to each other. Furthermore, if the characteristic of the field
does not equal 2, then a quadratic form @) and a symmetric bilinear form g
uniquely determine each other. Let B the form matrix of such a symmetric
bilinear form 8. Hence for all such B there exists some A € GL,(C) such
that AFAT = B. -
Now let §j € Gp. Then §B§T = B from which it follows that g4 F (3T =
F'. Therefore, Gp =~ (Gp)* < 0, (C, F). O

Remark 4.8.9. If a quadratic form in characteristic p acts on a vector space
V', then V can be written as the sum of hyperbolic lines and a 2-dimensional
space W. If the quadratic form is of plus-type, then W is a hyperbolic line
as well but if the quadratic form is of minus-type, then W does not contain
any singular vectors ([36, p.138]). In characteristic 0, W always contains a
singular vector. This follows from the fact that C is algebraically closed and
so any quadratic equation in 2 variables has a non-zero root.

In comparison, if V = Fg, q odd, then z? + y? and vz? + 32 are two
non-equivalent orthogonal forms on V', where v € F is non-square. If ¢ =1
(mod 4), then —1 = 72 is square in F) by Lemma 2.1.7 and hence (1, 7) is a
singular vector of the orthogonal form z2 442, whereas there are no singular
vectors when the orthogonal form is given by vz? + y2. This works similarly
when ¢ = 3 (mod 4) ([9]).

If ¢ is even then the vector (0,1) is a singular vector of the quadratic
form @ = zy whereas there is no non-zero vector (x,y) € Fg such that the
quadratic form Q((z,v)) = 2% + xy + y? = 0 ([36, p.139]).

Field Automorphisms in Characteristic 2

We will now consider the case when the field has characteristic 2. Recall
that F' = antidiag(1l,...,1,0,...,0) is our standard quadratic form pre-
served by Q. (2%) by Table 3.1.1. Let Q,(2¢, F) = Q. (2%). For this thesis it

is sufficient to consider the field automorphisms of Q.7 (22).

Lemma 4.8.10. Assume that Gp < Q1 (2%) = Q and let a be an outer au-
tomorphism of G of order 2. Suppose that |Out(G)| = 2. If *p is equivalent
to p?, then the Q-conjugacy class of Gp is either stabilised by {¢) or by {¢7)
in Out(Q).

Proof. Since Out(Q) = {(v,¢|7> = ¢* = [v,6] = 1) = Cy x Cq it is clear
that the Q-conjugacy class of Gp is stabilised by either ¢ or by ¢-. O
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Lemma 4.8.11. Suppose Gp < Q}(2?) = Q where |Out(G)| = 2. Let
a be an outer automorphism of order 2 of G. Assume that there exists
x € GL,(22) such that 2= (gp)®x = g%p for all g € G. Then there exists
A € FY such that Az € SO} (22). If the quasideterminant of Az equals 1 then
the Q4 (22)-conjugacy class of Gp has stabiliser (¢) in Out(Q). Otherwise
the conjugacy class has stabiliser {¢ry).

Proof. By Lemma 4.8.10 we know that the {2-conjugacy class of Gp is sta-
bilised by ¢7* where i € {0,1}. Hence, Gp?’"* = Gp for some h € Q.
Furthermore, we know that there exists 2 € GL,(22) such that Gp?* =
Gp. By assumption |Out(G)| = 2 and it follows from Lemma 3.6.4 that ¢yh
equals ¢z in Out(f2). Hence there exists A € Fy such that Az € SO, (22).
Finally, note that vh has quasideterminant 1 if and only if i = 0. Hence
the Q-conjugacy class of Gp is stabilised by ¢ if and only if Az has quaside-
terminant 1. O

4.8.2 Diagonal and Graph Automorphisms for Case O*

Finally we will consider diagonal and graph automorphisms of an orthogonal
group {2 = Q:{ (p, B) preserving any non-degenerate symmetric bilinear form
B. We will begin with the case when p is odd. Let C' denote the respective
conformal group of €.

We will only consider the case when n = 2 (mod 4) and ¢ = p. By
Section 3.2.6 the presentation of the outer automorphism group of O (p, B)
is given by

Out(0OX(p,B)) =(8',7,6|6% =~+*=1,62=¢,67=6"1)
when the discriminant of B is square in F, and by
Out(O5 (p, B)) = (7,0|~* = 8* = [§,7] = 1)
when the discriminant of B is non-square in [Fp,.

Lemma 4.8.12. Let Gp < QX (p, B), where B is the form matriz of some
non-degenerate symmetric bilinear form. Let n = 2 (mod 4), let p be odd
and let b be the discriminant of B. Let g € CGOX(p, B), assume that g
properly normalises Gp and assume that g induces an outer automorphism
a of order 2 of Gp. Let A € GL,(q) such that AFAT = B, where F is
our standard form matriz as given in Table 3.1.1 and let Q = QX (p, F).
Let X\ € F), such that gBgT = AB. Then an Q-conjugacy class of (Gp)A is
stabilised by:

o7



(i) () in Out(Q) if g € GOZ (p, B)\SOZ (p. B);
(ii) ('Y in Out(Y) if g € SOF (p, B)\QE (p, B) and b is square in F;
(7ii) {yd) in Out(Q) if g € CGOZ (p, B)\GO: (p, B) and b is square in F;
(iv) {5y in Out(Q) if g € CGOL(p, B)\GO; (p, B), b is non-square in F,
and det(g) = A"/2;
(v) {y6) in Out(Q) if g € CGO; (p, B)\GO;: (p, B), b is non-square in T,
and det(g) = —\"/2.

Proof. Since g € CGO; (p, B) it follows that ¢g* € CGO;(p) by Lemma
4.8.1. Furthermore, g# induces some § € Out(OE(p)). It is clear that
det(g4) = det(g). If g € GO (p, B)\SO; (p, B) then sp(g') does not nec-
essarily equal sp(g). However, if sp(g?) # sp(g) then sp(¢?) = sp(¢g°) by
Lemma 3.2.3. Since we are only interested in the conjugacy classes of the
outer automorphisms stabilising Gp by Lemma 4.3.7 we can without loss of
generality assume that g induces 8 € Out(Q).

(i) If g € GO (p, B)\SOZ (p, B) then g induces 7 if ¢ has spinor norm 1
by Section 3.2.5 and Lemma 3.6.4. Now consider the case when sp(g) = —1.
If b is square then g induces &' but 614§ = ~¢ in Out(Q) and hence
v and vd' are conjugate in Out(Q2). From this it follows by Lemma 4.3.7
that an Q-conjugacy class of Gp is stabilised by (7). If b is non-square then
sp(—g) = 1 by Lemma 3.1.21 and —g normalises Gp as well. Hence we again
have that an Q-conjugacy class of Gp is stabilised by (7).

(ii) This is obvious by Lemma 3.6.4.

(iii) Since a has order 2 and g € CGOZ (p, B)\GOZ (p, B) it follows that
B € {76,763} when b is square in F,. Since 6~ 1(7d)d = v§3 we can deduce
from Lemma 4.3.7 that an Q-conjugacy class of Gp is stabilised by {vyJ).

(iv), (v) When b is non-square and g € CGOZ (p, B)\GOZ (p, B) induces
an outer automorphism « of order 2 then a € {J, Jv}. Furthermore, § and é~
are not conjugate since they commute in Out(Q). Let D be the matrix corre-
sponding to § as defined in Section 3.2.5. Then DF DT = wF for some prim-
itive element w € )’ and det(D) = w™?, Hence (ADA™)B(A-TDTAT) =
wB and there exists u € F, such that p='g(ADA™Y)~! stabilises B. If
det(u=tg(ADA=1)~1) = 1, then g is induced by & and a conjugacy class
is stabilised by §. If det(u=tg(ADA~1)~1) = —1 then a conjugacy class is
stabilised by §vy. By definition gBgT = AB, where X is non-square. Hence
A = w?*! for some k. It is straightforward to show that p = w*. Hence
det(g) = + det(uADA™) = £ X2, O

Since (Gp)? is equivalent to Gp we will usually just say that an Q-
conjugacy class of Gp is stabilised by 8 in Out(€2).
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Now we consider the case when ¢ = 2. Then Out(O£(2)) = (y[7? = 1)
and the following is obvious.

Lemma 4.8.13. Let Gp < QE(2). Let g € SOF(2)\Q:E(2) and assume that g
properly normalises Gp. Then a conjugacy class of Gp in QE(2) is stabilised

by {v) in Out(O5(2)).

Remark 4.8.14. Let p be a characteristic O representation of G such that
Gp preserves an orthogonal form B for all g € G. Suppose that the entries
of gp lie in R[p%, cee pik]’ where R is the character ring of p and p1,...,pk
are the exceptional primes of this representation. If there exists p € C such
that the entries of pB and (iB)~' lie in R[p%’ cee 19%@] then we can reduce
Gp modulo p for any odd p # p;. Furthermore, for each such p-modular
reduction B of B there exists A € GL,(F,) such that ABAT = F, where F
s our standard form matriz as defined in Table 3.1.1. Hence we can always

use Lemma 4.8.12 since we never have to find A explicitly.

4.9 .Y1-Maximality

Finally, suppose that we have found all potential .#;-maximal subgroups in
Q.R, where Q € {SLI(¢),Sp,(q),25(¢)} and R < Out(Q). The final step
is to show whether any of these .#}-subgroups are contained in any other
S1-subgroup preserving the same form, because in this case they cannot be
maximal. The following is based on [8, Section 4.8, p.211].

Lemma 4.9.1. Let Hip1 and Haps be two #1-subgroups of Q preserving
the same form. Assume that H1 < Hy and assume that there does not exist
an element g € GL,,(q") such that (Hip2)? is defined over a proper subfield
of Fgu. If pa reduces to an absolutely irreducible representation of H® such
that pa and p1 are equivalent on H{° then Hipi cannot be mazimal as an
A1 -subgroup.

Proof. By definition, H1 and Hs are almost simple extensions of quasisimple
groups. Therefore, Hy = H{°.R; and Hy = H.Ry, where R; and Ry are
subgroups of the outer automorphism groups of H{® and H° respectively
such that Hip; = No(Hp1) and Hap = Nq(H5 p2). By assumption H; <
H, and therefore ps is also a representation of Hj.

We want to show that po is an absolutely irreducible representation of
H;. By assumption H{°ps does not stabilise any non-zero subspace of (Fg-)"
for any r. From this it follows that (H{°.R1)p2 = H{°p2 does not stabilise
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any subspace either. Since p; is equivalent to pa on H{° it follows that Hip;
is not .¥7-maximal. O

For many groups it is straightforward to show that H{°p is irreducible.
There are two easy methods which work in most cases.

Lemma 4.9.2. Let p be a faithful absolutely irreducible representation of
HS° of dimension n and suppose that H{® < Hs".

(i) If H{® has no non-trivial absolutely irreducible representation of di-
mension smaller than n then H{°p is absolutely irreducible since it cannot
be split into smaller parts.

(7i) If H® has non-trivial absolutely irreducible representations p1, . . ., px

of dimensions n;, i € {1,...,k}, smaller than n with Y )n; = n but there
exists some g € H{° such that Y Trace(gp;) # Trace(gp) for every such set
of representations pi, ..., px, then H{°p is irreducible.
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5 Maximal .¥;-Subgroups in Dimension 13

In this chapter we are going to determine the .#j-maximal subgroups G in
dimension 13. We will follow the procedure described in Chapter 4. Here
Q e {SL(q), Q95(¢)}. Furthermore, we will denote the conformal group of
Qby C.

5.1 ./;-Subgroups in Dimension 13

Let G be a quasisimple group with an absolutely irreducible representation
p of dimension 13 in cross characteristic. All such groups are listed in Table
5.1.1 on p.62. We are interested in finding the extensions by automorphisms
of Gp which might be .#1-maximal in some classical group. The table also
contains some useful information about these groups which we will need
later.

In the first column of the table we can find the name of the group fol-
lowed by its order and Schur indicator. Column ‘#p’ gives the number of
weakly equivalent representations of p that do not lie in the same equiva-
lence class (see Definition 4.3.2). The outer automorphisms that stabilise
these representations are given in the ‘Stab’ column. The characteristics
over which these representations occur can then be found in the column
‘Charc’. Here 0 stands for all prime numbers that do not divide the order of
G. We also require the character rings of the representations (see Definition
2.2.2) which is given in the column ‘ChR’ In the final column we state the
size of the outer automorphism group of G. The list of groups G and the
characteristics of the representations where taken from [18], whereas the in-
formation in the other columns is mostly from [12, 24]. The ordinary and
Brauer character tables of A14 and A5 and the Brauer character tables of
Se(3) are not contained in [12, 24] and so GAP was used to determine these
character tables.

Comments on the character ring column in Table 5.1.1

(i) The algebraic irrationalities of the 13-dimensional absolutely irre-
ducible representations of Us(4) are bs and zs5, but by = z5 + zg and hence
the character ring is Z[zs].

(ii) The respective rows of the character table of S¢(3) contain algebraic
conjugates of bo7, z3 and i3. However, all of them are elements of Z[z3]
since i3 = z3 — Z% and bo7 = %(—1 + \/—27) = %(—1 + 13) +i3 =bsg +i3 =
Z3+Z3—Z§ = 2Z3—Z§.
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(iii) The algebraic irrationalities of the 13-dimensional absolutely irre-
ducible representations of S4(5) are, apart from algebraic conjugates of bs,
algebraic conjugates of r5, but r5 = 1 + 2bs.

Further information regarding the irrationalities can be found in Table
2.2.1 (p.19).

Table 5.1.1: Potential .#j-maximal subgroups in dimension 13

Gp Order Ind +#p Stab Charc ChR  |Out|

Lo(27) 22.3%.7.13 o 2 3 0,2,7,13 (+ 3) Z[bar] 6

S¢(3) 2°-3°.5.7-13 o 2 1 0,2,5,7,13 (# 3) Z[z3] 2

Us(4) 26-.3.5%2.13 o 4 1 0,3,13 (+ 2,5) Z[zs) 4

A 23.32.5.7 + 1 2 3,5 7 2

Ag 26.32.5.7 + 1 2 3,5 7 2

Ay 210.35.52. 72 + 1 2 0,3,5,11,13(# 2,7) Z 2
11-13

Ags 210.36.53. 72 + 1 2 3,5 Z 2
11-13

Lo(13) 22.3.7-13 + 1 2 0,3(+#2,7,13) Z 2

Lo(25) 2%.3.52.13 + 2 2, 0,3,13(#2,5) 7 22

L3(3) 2*.3%.13 + 1 2 0,13 (+2,3) Z

S4(5) 26.32.5%.13 + 2 0,3,13 (+ 2,5) Z[bs]

Ja 27.33.52.7 + 2 1 3 Z[bs] 2

Theorem 5.1.1. Let G be an %1 -subgroup of Q € {SLi3(q), Q5(q)}. Then
G is contained in Table 5.1.1.

Proof. See the tables in [18]. O

5.2 Schur Indicator o

By Table 5.1.1, the potential .#4-maximal subgroups of quasisimple linear
and unitary classical groups in dimension 13 are extensions of Ly (27), S¢(3)
and U3z(4). Recall from Section 3.2.6 that when ¢ = p? the field automor-
phism ¢ and the graph automorphism ~ in Out(U,(p)) are equal. We will
usually use v to denote this automorphism.
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Proposition 5.2.1 (L2(27)).

(i) If p =1 (mod 3), then there are (p — 1,13) conjugacy classes of /-
subgroups of SL13(p) isomorphic to La(27).3, with class stabiliser {7y)
m Out(ng(p)).

(i) If p = 2 (mod 3), then there are (p + 1,13) conjugacy classes of .-
subgroups of SU13(p) isomorphic to La(27).3, with class stabiliser ()
in Out(Ulg(p)).

Proof. Let G = Ly(27). Then Out(G) = 6 and the character ring of a 13-
dimensional absolutely irreducible representation p of G is Z[ba7] by Table
5.1.1. Therefore G < SLj3(p) when p = 1 (mod 3) and G < SU;3(p) when
p = 2(mod 3) by Table 2.2.1 and Lemma 4.2.1. There are two weakly
equivalent 13-dimensional representations and their stabiliser is generated
by an automorphism of G of order 3 by Table 5.1.1.

Hence, L2(27) extends to a subgroup of shape Ly(27).3 inside GLj3(p°)
for some e. Let p1, p2, ps denote the 3 representations p splits into on
G.3. Since the p; have character ring Z[zs] and Schur indicator o it follows
that L2(27).3 < GL13(p) if p = 1 (mod 3) and L2(27).3 < GUy3(p) if p =2
(mod 3).

Now we have to find the determinants of all the matrices that lie in
(L2(27).3)pi\L2(27)p;. Since .3 is a cyclic extension it is sufficient to calcu-
late the determinant of an element h € G.3\G of order 3. Then h lies in the
conjugacy class 3C.

By Lemma 2.2.7 the eigenvalues of h are third roots of unity. By [12,
24], Trace(hp1) = 1. Suppose the eigenvalue 1 exists with multiplicity a,
the eigenvalue z3 with multiplicity b and z3 with multiplicity c. We know
that there have to be 13 eigenvalues in total since it is a representation of
dimension 13. Therefore,

a+b+c=13
a-l—i—b-z;;—i—c-z%:l

for a, b, c € N. Hence,
b(1 — z3) + c(1 — 22) = 12,

which implies that ¢ = b since the imaginary parts of bzg and cz3 have
to cancel. Since z3 - z3 = 1, the determinant of hp;y is 19 -2} - (z3)° = 1.
Hence, L2(27).3 < SL13(p) if p =1 (mod 3) and Ly(27).3 < SUj3(p) if p=2
(mod 3).
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Note that two weakly equivalent representations are fused by automor-
phisms of order 2 and 6 ([12, 24]). It follows that there exists a single conju-
gacy class of .#]-subgroups isomorphic to L2(27).3 in GL13(p) or CGU13(p)
by Lemma 4.2.2 and [12, 24]. Also, L(27).3 is scalar-normalising and d acts
transitively on the conjugacy classes of L(27).3 in SLi;(p) by Lemma 4.3.6.
Furthermore, by Lemma 4.3.3(ii), there exist (p F 1, 13) conjugacy classes of
G.3 in Sng(p).

Finally, we have to consider the action of v € Out(Lf;(p)) on G.3. Note
that the automorphism o € Out(Ly(27)) of order 2 sends the representations
to their complex conjugates since b3¥ is the complex conjugate of bay ([12,
24]). From this it follows that ®p is equivalent to p” by Lemma 4.4.1. Since
d is odd, ~ stabilises an SL13(p)-conjugacy class of G.3 by Lemma 4.4.2 and
similarly v stabilises an SU13(p)-conjugacy class of G.3 by Lemma 4.5.1. [J

Proposition 5.2.2 (S¢(3)).

(i) If p=1 (mod 3), then SLi3(p) has (p—1,13) conjugacy classes of -
subgroups isomorphic to S¢(3), with class stabiliser () in Out(L13(p)).

(7i) If p =2 (mod 3), then SU13(p) has (p+1,13) conjugacy classes of .7 -
subgroups isomorphic to Sg(3), with class stabiliser (v) in Out(U1s(p)).

Proof. Let G = S¢(3). Then Out(G) = 2 and the character ring of a 13-
dimensional absolutely irreducible representation p of G is Z[z3] by Table
5.1.1. Hence Sg(3) preserves a unitary form if p = 2 (mod 3) and no non-zero
form if p = 1 (mod 3) by Lemma 4.2.1 and Table 2.2.1.

There are two weakly equivalent representations of G that are fused by
the non-trivial outer automorphism « of G. Therefore there is one conjugacy
class of G in C by Lemma 4.2.2, and G is scalar-normalising. Hence the
number of conjugacy classes of subgroups isomorphic to Sg(3) in SLiz(p) is
d = (13,9 F 1) respectively by Lemma 4.3.3(ii). Furthermore, by Lemma
4.3.6, the diagonal automorphism ¢ of SLI%(p) acts transitively on these
conjugacy classes.

By looking at the character tables of S¢(3) in [12] and using GAP for
the Brauer character tables we see that two non-equivalent 13-dimensional
absolutely irreducible representations are algebraic conjugates of each other.
Hence we have to prove that the algebraic conjugate of each irrationality
given here is indeed its complex conjugate. We can see that the algebraic
conjugate of iz is —iz which is indeed its complex conjugate, the algebraic
conjugate of z3 is z3 which is also its complex conjugate and the algebraic
conjugate of by = 3(—1+4iv/27) is 1(—1—1i+/27). Again this is the complex
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conjugate of bo7. Hence %*p is equivalent to p” by Lemma 4.4.1. Since d is
odd, the result follows by Lemma 4.4.2 in Case L and by Lemma 4.5.1 in
Case U. O

Proposition 5.2.3 (U3(4)).

(i) If p =1 (mod 5), then there are (p — 1,13) conjugacy classes of /-
subgroups of SL13(p) isomorphic to Us(4), with class stabiliser () in
Out(ng(p)).

(ii) If p=2,3 (mod 5), p # 2, then there are (p*> +1,13) conjugacy classes
of #1-subgroups of SU13(p?) isomorphic to Uz(4), with class stabiliser
(¢) in Out(Ur(p?)).

(iii) If p = 4 (mod 5), then there are (p + 1,13) conjugacy classes of .7 -
subgroups of SU13(p) isomorphic to Us(4), with class stabiliser () in
Out(Uiz(p))-

Proof. Let G = U3(4). Then Out(G) = 4 and the relevant 13-dimensional
absolutely irreducible representations p of G have character ring the p-
modular reduction of Z[z5] by Table 5.1.1. By Table 2.2.1, z5 € [, if and
only if p =1 (mod 5) and it is obvious that in this case G < SL13(p).

Let a be the Brauer character value of g € Gp and let @ denote the
complex conjugate of a. If a € Z, then a? = a = @. If a = z{ € C, then
al = (z})? = 78" = 722" = @, where ¢ = p if p = 4 (mod 5) and ¢ = p? when
p = 2,3 (mod 5). Hence G < SUj3(p) if p = 4 (mod 5) and G < SU;3(p?)
when p = 2,3 (mod 5) by Lemma 4.2.1.

There are up to equivalence four weakly equivalent representations with
trivial stabiliser by Table 5.1.1. Hence G is scalar-normalising and since the
outer automorphism of order 4 of Us(4) fuses the representations there is
a single conjugacy class of subgroups GG in C' by Lemma 4.2.2. Therefore,
|C : No(Gp)Q)| = (p—1,13) in Case L and (p+1,13) or (p? +1,13) in Case
U by Lemma 4.3.3.

To find the stabiliser of one of these classes we will first consider the case
when p = 1,4 (mod 5). Then Out(Liz(p)) = (6,7) = Cy or Dy3x2. Since
Out(G) = 4 there exists o € Out(G) with |o| = 2. By looking at [12] and
[24], we see that « sends the representations to their complex conjugates
and therefore “p is equivalent to p?. Since d = (p F 1, 13) is odd, the result
follows from Lemma 4.4.2 in Case L and from Lemma 4.5.1 in Case U.

If p = 2,3 (mod 5), we want to determine whether ¢ € Out(Uy3(p?)) cor-
responds to an outer automorphism a of Us(4) of order 4. By Lemma 4.3.8
we need to show that for all p = 2,3 (mod 5) there exist two representations
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pi and p; such that Trace(gp;) = (Trace((gp;))P for all g € G. By looking
at [12, 24], we can see that this is indeed the case. In fact, *p; = p3 when
p = 3 (mod 5) and “p; = ps when p = 3 (mod 5). Here p; corresponds to
the representation denoted by xs in [12], p3 to x5 and ps to xg. The result
now follows from Lemma 4.5.1. O

Maximality

The final step is now to show whether any of the three .#;-subgroups
Us(4), Se(3) and L9(27).3 is contained in one of the others as an .#3-
subgroup. By Lagrange’s theorem the only possible containment is Lo (27).3
in 86(3)

Proposition 5.2.4.
Let d := (p — 1,13) in Case L and let d := (p + 1,13) in Case U.

(i) No extension of d x Lg(27).3 is ever #1-maximal in any extension of
SLI_Fs(P)'

(i) If p # 3, then d x Se(3) is #1-mazimal in SL(p).
(iii) If p # 2,5, then NSLliB(q) (Us(4)) is .#1-mazimal in SLi3(q).

Proof. (i) By [12], the group L2(27).3 is a subgroup of Sg(3). Also, the
smallest non-trivial absolutely irreducible representations of Lo (27)
have dimension 13 in characteristic 0,2,7 and 13 by [12, 24]. Hence
L2(27).3 is never .#;-maximal in SLi3(p) by Lemma 4.9.2. Further-
more, L2(27).6 is a subgroup of Sg(3).2 by [12]. Hence, no extension
of 1y(27) is ever .#3-maximal in any extension of SLi3(p).

(ii) and (iii) follow since the group orders are not divisors of each other.
O

5.3 Schur Indicator +

Now we consider the quasisimple groups whose 13-dimensional absolutely
irreducible representations preserve an orthogonal form. By Table 5.1.1
these groups are A7, Ag and Ajs in characteristics 3 and 5, A4, La(13),
L2(25), L3(3) and S4(5) in various characteristics and Jo in characteristic 3
only.

The outer automorphisms of Q (¢, B) are independent of the preserved
non-degenerate symmetric bilinear form B. Hence, even if we work compu-
tationally with a representation p of G such that Gp does not preserve our
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standard form matrix F' as given in Table 3.1.1, we will give the stabiliser
of G)p with respect to Q75(g, F') = Q5(q).

Proposition 5.3.1 (A7 in characteristics 3 and 5).

(i) There is a unique conjugacy class of .#1-subgroups of §255(3) isomor-
phic to Ay, with class stabiliser {§) in Out(095(3)).

(ii) There are two conjugacy classes of .#1-subgroups of Q5(5) isomorphic
to A7.2, with trivial class stabiliser in Out(O75(5)).

Proof. Let G = A7 and let Q = Q93(p). Then Out(G) = 2 and the unique
(up to equivalence) absolutely irreducible representation p of G has character
ring Z. Hence A7 < Q when p = 3,5. Also p splits into p; and py under an
outer automorphism of order 2 of G by Table 5.1.1. By [24], G.2 preserves
an orthogonal form and has character ring Z. Using Lemma 4.2.4 it is
straightforward to show that G.2 < SO75(p). We will use Magma and the
specific absolutely irreducible 13-dimensional representations of G given in
[6] (file a7d13comp) to determine the spinor norm of elements of G.2\G.
Note that two elements z,y € G are standard generators of G if y lies in
class 34, y has order 5 and zy has order 7 by [6].

Since Gp preserves an orthogonal form we know that there exists a form
matrix B that is induced by a symmetric bilinear form. Then (gp)B(gp)T =
B for all g € G. Rearranging we get B~!(gp)B = (gp)~ " for all gp €
Gp and by using the GHom command in Magma we can find a matrix
homomorphism B that sends gp to (gp)~T by conjugation for all gp € Gp.
Furthermore we have to find an element g € (G.2)p1\Gp. By using the
automorphism of order 2 that sends x to z=! and y to y ([6]) we can generate
a group H = {(z~!,y) isomorphic to Gp and again using the GHom command
we can then find an element g € (G.2)p1\Gp such that g~'Hg = Gp. Using
the SpinorNorm command in Magma we see that sp(g) = —1 in characteristic
3 and sp(g) = 1 in characteristic 5.

Hence, in characteristic 3, A7.2 € Q93(3). Furthermore, there exists
a unique C-conjugacy class of #j-subgroups G and |C' : No(G)Q| = 1
conjugacy class of G in 975(3) by Lemma 4.3.3(ii). This conjugacy class is
stabilised by ¢ since S7 < SO75(3).

In characteristic 5, A7.2 < Q75(5). Since G.2 is scalar-normalising there
are 2 conjugacy classes in 293(5) by Lemma 4.3.3. Furthermore G has no
further outer automorphisms and therefore the stabiliser of these classes is
trivial. O
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Proposition 5.3.2 (Ag in characteristics 3 and 5).

(i) There is a unique conjugacy class of 1 -subgroups of Q53(3) isomor-
phic to Ag, with class stabiliser {§) in Out(095(3)).

(ii) There are two conjugacy classes of .#1-subgroups of Q5(5) isomorphic
to Ag.2, with trivial class stabiliser in Out(O55(5)).

Proof. The proof is very similar to the proof of Proposition 5.3.1. Again we
use Magma to find the spinor norm of elements (file a8d13comp). Let p be
a 13-dimensional absolutely irreducible representation of Sg. If g € Sgp\Agp
then sp(g) = —1 in characteristic 3 and sp(g) = 1 in characteristic 5. O

Proposition 5.3.3 (Ai4).

(i) If p=1,3,9,19,25,27 (mod 28) then there are two conjugacy classes of
A1-subgroups of Q295(p) isomorphic to A14.2, with trivial class stabiliser
in Out(O73(p)).

(ii) Ifp=5,11,13,15,17,23 (mod 28) then there exists a unique conjugacy
class of S1-subgroups of Q75(p) isomorphic to A4, with class stabiliser
(6 in Out(O73(p))-

Proof. Let G = Ay, let Q = Qf5(p) and let p be the unique (up to equiva-
lence) absolutely irreducible representation of dimension 13 of G. By Table
5.1.1 and [12, 24] we know that G.2 < GO75(p). Furthermore, by Lemma
4.2.4, either G.2p; < SO75(p) or G.2p2 < SO73(p), where p; and ps2 are
the two representations into which p splits when extended to G.2. Hence
G.2 < SO75(p). To find the spinor norm of an element g € Gp.2\Gp we will
use Magma as for Proposition 5.3.1 (see file al4d13comp). Let B be the
symmetric bilinear form preserved by Gp.

Let A := I13 — g and let M be the matrix whose rows form a basis
of a complement of the nullspace of A using Magma again. We find that
det(MABMT) = 2'2. 7 which is a square in F,, if and only if 7 is a square
in IF,. By Table 2.2.1 and Lemma 3.1.19 this implies that A;4.2 < Q if
and only if p = 1,3,9,19,25,27 (mod 28). Otherwise A14.2 < SO73(p) but
A14.2 € Q.

If A14.2 < Q then G.2 is scalar-normalising and by Lemma 4.3.3 there
exist 2 conjugacy classes of .#j-subgroups isomorphic to A14.2 in ). Since
A14 has no further non-trivial outer automorphisms the stabiliser of these
classes is trivial.
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If p =~ 5,11,13,15,17,23 (mod 28) then G.2 €  and there is a unique
C-conjugacy class of .#1-subgroups A14 in C and hence a unique class in 2.

This class is stabilised in Out(€2) by (d) since Si14 < SO3(p). O
Proposition 5.3.4 (Aj5 in characteristics 3 and 5).

(i) There are two conjugacy classes of /1 -subgroups of Q5(3) isomorphic
to Si5, with trivial class stabiliser in Out(O095(3)).

(i) There is a unique conjugacy class of #1-subgroups of Q5(5) isomor-
phic to A1s, with class stabiliser {§) in Out(O75(5)).

Proof. The proof is very similar to the proof of Proposition 5.3.1. The infor-
mation about this group was taken from GAP and [6]. See file al5d13comp
for the Magma commands. O

Proposition 5.3.5 (L2(13)).

(i) If p=1,3,9,19,25,27 (mod 28) then there are two conjugacy classes
of S1-subgroups of Qi5(p) isomorphic to La(13).2, with trivial class
stabiliser in Out(O95(p)).

(i) If p = 5,11,13,15,17,23 (mod 28) then there is a unique conjugacy
class of S1-subgroups of Q75(p) isomorphic to La(13), with class sta-
biliser {6y in Out(O75(p)).

Proof. Let G = La(13) and let Q = Qf5(p). Following the same procedure
as for Proposition 5.3.3 it is straightforward to show that G.2 < SO73(p).
Furthermore, using Magma and Lemma 3.1.19, we can show that G.2 <
Q95(p) if and only if 7 is a square in [F,, (see file 1213d13comp). The number
of conjugacy classes follows from Lemma 4.3.3. O

Proposition 5.3.6 (L2(25)).

(i) If p = 1,4 (mod 5), then there exist two conjugacy classes of /-
subgroups of Q55(p) isomorphic to Lg(25).22, with trivial class sta-
biliser in Out(O%5(p)).

(i) If p=2,3 (mod 5), p # 2, then there exists a single conjugacy class of
S1-subgroups of Q55(p) isomorphic to La(25), with class stabiliser {§)
in Out(0%4(p)).
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Proof. Let G = L5(25). Then Out(G) = 22 by [12]. Up to equivalence there
are two absolutely irreducible 13-dimensional representations p; and py of G
that are weakly equivalent. Since the character ring of p; and ps is Z we can
deduce that Ly(25) < Q93(p) = Q (p # 2,5). Since the two representations
are fused by the 2; outer automorphism of G by Table 5.1.1, there is a single
conjugacy class in C'. The 25 outer automorphism on the other hand splits
the representations p; and ps and therefore G.29 < N¢(Gp). By [12, 24]
and Lemma 4.2.4, L5(25).25 < SO75(p)-

To show that L2(25).29 < ©Q we have to check the spinor norm of the
elements. Computations in Magma (file 1225d13comp) show that the spinor
norm is 1 if and only if 5 is a square in F,,. If 5 is not square then the 25
outer automorphism induces § € Out(£2). The number of conjugacy classes
follows from Lemma 4.3.3. O

Proposition 5.3.7 (L3(3)).

(i) If p = 1,11 (mod 12) then Q95(p) has 2 conjugacy classes of -
subgroups isomorphic to L3(3).2. Both classes have trivial class sta-

biliser in Out(Of5(p)).

(i) If p = 5,7 (mod 12) then there exists a single conjugacy class of .7 -
subgroups of Q93(p) isomorphic to Ls(3), with class stabiliser (&) in
Out(O73(p))-

Proof. Let G = L3(3) and let Q = Q95(p). Then Out(G) = 2 and there is
(up to equivalence) one absolutely irreducible 13-dimensional representation
p of G. This representation is split by the outer automorphism of order 2
of G by Table 5.1.1. Since the character ring is Z we have L3(3) < Q if
p # 2,3. By [12, 24] and Lemma 4.2.4, G.2 < SO75(p).

To find the spinor norm of the elements of G.2\G we will use Lemma
3.1.19 and Magma (see file 133d13comp). We find that G.2 < Q if and only
if 3 is a square in IF,. The number of conjugacy classes can be calculated
using Lemma 4.3.3. O

Proposition 5.3.8 (S4(5)).

(i) If p = 1,4 (mod 5) then there exist two conjugacy classes of /-
subgroups of Q95(p) isomorphic to S4(5), with trivial class stabiliser
in Out(O93(p)).

(i) If p = 2,3 (mod 5), p # 2, then there are two conjugacy classes of
S -subgroups of Q55(p?) isomorphic to S4(5), with class stabiliser {¢)

in Out(073(p?)).
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Proof. Let G = S4(5). Then Out(G) = 2 and there are up to equivalence
two weakly equivalent 13-dimensional absolutely irreducible representations
p1 and pg of G with character ring Z[bs] by [12, 24] and Table 5.1.1.

Hence if p = 1,4 (mod 5), then G < Q93(p) = 2 by Table 5.1.1 and Table
2.2.1. Also there is no outer automorphism of G that splits these represen-
tations. But the two representations are fused by the outer automorphism
of G of order 2 ([12, 24]) which implies that there is a single conjugacy class
in C' and hence there exist two conjugacy classes of G in 2 by Lemma 4.3.3.
Since there are no field automorphisms and the diagonal automorphism acts
transitively on the two Q-conjugacy classes by Lemma 4.3.6, the stabiliser
of these classes is trivial.

If p=2,3(mod5), p# 2, then S4(5) can only be realised in an or-
thogonal group with field size at least p? by Table 5.1.1 and Table 2.2.1.
Again, there are two conjugacy classes of .#1-subgroups isomorphic to S4(5)
in Q = Q35(p?). Let ¢ be the field automorphism of order 2 of 2. Let a be
an outer automorphism of order 2 of G such that « fuses p; and pa. We can
show that “p; is equivalent to p‘f using Lemma 4.3.8. Since G.2\G contains
involutions, an Q-conjugacy class of S4(5) is stabilised by (¢) € Out(Q) by
Lemma 4.7.2. O

Proposition 5.3.9 (J2).
There are exactly 2 conjugacy classes of /1 -subgroups of Q13(32) isomorphic
to Jo, with class stabiliser {¢) in Out(073(9)).

Proof. Let G = Ja. Then Out(G) = 2 by [12]. Since the character ring of
the 13-dimensional absolutely irreducible representations p of G is Z[bs] by
Table 5.1.1 it follows that Jo < Q75(9) = Q by Table 2.2.1. Up to equivalence
there are two weakly equivalent representations of G which are fused by an
outer automorphism « of order 2 of Jo by [24]. Therefore, No(G)Q = Z(C)2
which implies that there are two conjugacy classes of G in 2 by Lemma 4.3.3.

Finally we want to know how the field automorphism ¢ of order 2 of Q2
acts on these conjugacy classes. Using Lemma 4.3.8 we can show that p?
is equivalent to “p, where a € Out(G) of order 2. Since J3.2\Jy contains
involutions, the class stabiliser of G in 2 is {¢) by Lemma 4.7.2. O
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Maximality

Finally we have to consider possible containments between all of the .-
subgroups of orthogonal groups in dimension 13. The following proposition
summarises the .#]-containments of the .#-subgroups of orthogonal groups
in dimension 13.

Proposition 5.3.10.
(i) No extension of Ay is /1-mazimal in any extension of Q75(p).

(ii) The group Ag is not #1-maximal in Q75(3) but Ag.2 is .#1-maximal
in 293(3).(0). Furthermore, Ag.2 is not % -mazximal in Q75(5).

(iii) Let G = Ayq with p # 2,7. If p = 3,5 then no extension of G is /-
mazimal in any extension of Qi3(p). Otherwise Ngo_ (,)(G) is always
L1 -mazimal in Q75(p).

(iv) If p=3,5 then Noo_ () (A1s) is #1-mazimal in Q3(p).
(v) No extension of La(13) is /1 -maximal in any extension of 293(p).

(vi) If p = 1,4 (mod 5) then no extension of La(25).29 is .#1-maximal in
any extension of Q75(p). If p = 2,3 (mod 5), p # 2, then La(25) is
Z1-mazimal in QF5(p).

(vit) If p # 2,3, then Noo () (L3(3)) is 1 -mazimal in Q75(p).

(viii) If there exists an #1-subgroup G = S4(5) of Q93(q) then G is .7
mazimal.

(ix) The group Jo is 1 -mazimal in Q75(9).

Proof. (i) Using Magma (file sldim13cont) it is straightforward to show
that the .#j-subgroup A7 is a subgroup of the .#j-subgroup Ag in
dimension 13. Furthermore, S; < Sg and hence no extension of A7 is
ever .-maximal.

(ii) Using Magma (file sldim13cont) we can show that the 13-dimensional
absolutely irreducible representation of A5 has an absolutely irre-
ducible subgroup isomorphic to Ag in both characteristic 3 and 5.
Hence Sg < A5 < Q93(5) is never maximal. However Si5 < Q75(3)
whereas Sg € 0275(3). To show that Ag.2 is .#j-maximal in Q{5(3).{(0)
we have to show that Ag.2 is not contained in any other .#-subgroup.
By Lagrange’s theorem the only other possible containment not yet
considered is whether Ag is a subgroup of Jo. We can show (file
sldim13cont) that Ag is not a subgroup of Js.
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(iii)

(vi)

(vii)

(viii)

(ix)

The only .#;-subgroup that can contain A4 is A5 by Lagrange’s the-
orem. The smallest non-trivial absolutely irreducible representation in
characteristic 3 and 5 of A1, has dimension 13 by GAP and the charac-
ter values of the respective absolutely irreducible 13-dimensional rep-
resentations match. Furthermore, S14 < S15. Hence no extension of
Aq4 is 1-maximal in characteristic 3 and 5 by Lemma 4.9.2.

The group Ai5(.2) is always .#7-maximal since it is not contained in
any of the other .#;-subgroups in Q73(p) by Lagrange’s theorem.

By [12], Lo(13) is a subgroup of A14. Let p be an absolutely irreducible
representation of dimension 13 of La(13). All character values of p are
integers and there is no combination of absolutely irreducible repre-
sentations of Lo(13) of dimension less than 13 that gives only integer
character values. Furthermore, the character values of the absolutely
irreducible representation of dimension 13 of A4 correspond to p and
L2(13).2 < 814 by [6]

By Lagrange’s theorem we have to check whether Ly(25).22 is an .7~
subgroup of S4(5), A4 or Ajs.

By [12], La(25).22 is a subgroup of S4(5) and has trivial stabiliser in
93(p). Since the character values in dimension 13 match and since
the smallest non-trivial absolutely irreducible representation of Lo (25)
is of dimension 13, we know by Lemma 4.9.1 and Lemma 4.9.2 that
this is sufficient to show that L3(25).29 is an .#j-subgroup of S4(5)
if p=1,4(mod 5). If p = 2,3 (mod 5) then Lg(25).29 < N95(p) but
S4(5) < Qi3(p).

Furthermore, L2(25).25 cannot be a subgroup of either A4 or A;5 since
its smallest permutation representation acts on 26 points by [17].
Since the smallest permutation representation of L3(3).2 is of dimen-
sion 26 by [6], L3(3).2 is not a subgroup of Aj4(.2) or Ay5(.2). There-
fore, if p = 1,11 (mod 12) then L3(3).2 is .1-maximal in 95(p). By
[12], L3(3) is a subgroup of Aj3 however and hence a subgroup of Ay.
But by [12, 24], L3(3) has elements of order 2 with character value
—3 in dimension 13 whereas no element of order 2 of A4 (or Ays) has
character value —3 by GAP. Therefore L3(3) is not an .#;-subgroup of
Ay (or Ajs). There are no other possible containments by Lagrange’s
theorem and the result follows.

Since S4(5) cannot be a subgroup of any of the other .#}-subgroups by
Lagrange’s theorem, it has to be .#;-maximal.

By Lagrange’s theorem the only possible .#-subgroups containing Jo
would be A4 or A5 but A and Ajs are subgroups of §295(3) whereas
Jo is a subgroup of £295(9) and not of 295(3). O
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6 Maximal .¥;-Subgroups in Dimension 14

To calculate the maximal .#;-subgroups in dimension 14, we will follow
the same pattern as in Chapter 5. We will first find all potential maximal
subgroups G and then we will determine in which classical group G and its
extension by outer automorphisms sits.

6.1 .“;-Subgroups in Dimension 14

We start by writing down all potential .#;-maximal subgroups, as given in
[18]. Table 6.1.1 contains all such groups G. Please see Section 5.1 for a
description of how to read the table.

Note that the irrationalities appearing as entries of the 14-dimensional
representations in the character tables of 2.5¢(3) are bz, z3 and iz by [12, 24].
Since i3 = z3 — 73 and byy = %(—1 + 4/—27) = 223 — 72 it follows that the
character ring of 2.54(3) is Z[z3].

Also note that 2.L2(13) has two non-equivalent absolutely irreducible
representations p; and py of dimension 14 with character ring Z[rs] by [12,
24]. In Lemma 6.1.2 we shall show that p; and py are weakly equivalent if
and only if p = 5,7 (mod 12).

Let H € {A7,L2(13),2.L2(13)}. By [12, 24] there exist two absolutely
irreducible representations of H in dimension 14 that are not weakly equiv-
alent. We denote the images of H under these two representations by H;
and Hos.

Theorem 6.1.1. Let G be an .71 -subgroup of Q € {SLE,(q), Sp14(q), Q1 (¢)}-
Then G is contained in Table 6.1.1.

Proof. See the tables in [18]. O
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Table 6.1.1: Possible .#;-maximal subgroups in dimension 14

Gp Order Ind #p Stab  Charc ChR |Out|
215(27) 2%-3%.7-13 o 2 3 0,7,13(#2,3) Z[bar] 6
2.86(3) 210.39.5.7.13 o 2 1 0,5,7,13 (# 2,3) Z|z3] 2
Sz(8) 26.5.7-13 o 2 3 0,5,7,13 (+# 2) Z[i1] 3
2.A7 24.32.5.7 - 2 1 0,5,7(+# 2,3) Z[r2] 2
21,(13); 23-3.7-13 - 1 2 0,3,7(#2,13) Z 2
215(13)y 2%-3-7-13 - Llor2* 2 0,7(#2313) Z[rs] 2
Lo(29) 22.3.5-7-29 - 2 1 2 Z[bag] 2
212(29) 2%-3.5.7-.29 - 2 1 0,3,5,7 (# 2,29) Z[bao] 2
2.Jy 28.3%.52.7 - 1 2 0,3,5,7(# 2) 7 2
Aq, 23.32.5.7 + 1 2 0,7 (+# 2,3,5) Z 2
Az, 23.32.5.7 + 1 2 0,7 (+# 2,3,5) VA 2
Az 23.32.5.7 + 1 2 2 Z 2
Ag 26.32.5.7 + 1 2 0,7 (+# 2,3,5) Z 2
Ais 2103653 . 72 + 1 2 0,7,11,13(# 2,3,5) Z 2
11-13
A 210.36. 53 .72 + 1 2 2 VA 2
11-13
Asg 214.36. 53 .72 + 1 2 2 7 2
11-13
Lo(13); 22-3.7-13 + 1 2 0,7(#2,3,13) Z 2
Lo(13), 22-3.7-13 + 1 2 0,7(+2,3,13) Z 2
Lo(13) 22.3.7-13 + 1 2 2 Z 2
S6(2) 29.34.5.7 + 1 1 3 Z 1
Us(3) 25.33.7 + 1 2 0,7(#2,3) Z 2
Us(3) 25.33.7 + 1 2 2 Z 2
G2(3) 26.36.7.13 + 1 2 0,7,13 (# 2,3) Z 2
G2(3) 26.36.7.13 + 1 2 2 Z 2
J1 23.3.5.7-11-19  + 1 1 11 7Z[bs, c19] 1
Jo 27.3%.52.7 + 1 2 5 Z 2
Ja 27.3%.52.7 + 2 1 0,2,7(# 3,5) Z[bs] 2

aIf p=1,11 (mod 12) then there are two representations that are not weakly equivalent whereas if
p = 5,7 (mod 12) then the two representations are weakly equivalent under a field automorphism

of SP14(P2)-

Lemma 6.1.2. Let G = 2.1.2(13) and let p1 and pa be two non-equivalent
absolutely irreducible 14-dimensional representations of G with character
ring Zlrs]. Then p1 and ps are weakly equivalent if and only if p = 5,7
(mod 12).

Proof. By Table 6.1.1, G < Spy4(q). Hence p; and py are weakly equivalent
if and only if there exists a € Out(G) or a non-trivial ¢ € Out(S14(q)) such
that gp; and (g%p2)? are equivalent for all g € G' by Definition 4.3.2. Since
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the only non-trivial automorphism of Out(G) stabilises the representations
we know that « is trivial.

Furthermore, ¢ is non-trivial if and only if the smallest e such that
Gp; < Spyy(p°) is strictly greater than 1. By Table 6.1.1 and Table 2.2.1
this is the case if and only if p = 5,7 (mod 12). In this case Gp; < Spy4(p?).

To prove that (gp1) and (gp2)? are equivalent for all g € G if p = 5,7
(mod 12) we have to prove that x1(¢?) = x2(g) for all g € G where x; and
X2 are the associated characters of p; and ps respectively.

Note that all conjugacy classes with the exception of 124 and 12B are
fixed under ¢ since x1(g9) = x2(g) € Z by see [12, 24]. Hence it remains to
show that x1(9%) = (x1(g))? = x2(g) for all g that lie in one of the conjugacy
classes 12A or 12B. If p = 5 (mod 12) it is straightforward to check that
(x1(9))P =185 = —(z35 + 22]9) = —13 = x2(g) for all g € 12A. This holds
similarly for g € 12B. If p = 7 (mod 12) then a similar argument shows that
x1(9) = x2(g?) for all g € G. O

Information regarding the algebraic irrationalities can be found in Ta-
ble 2.2.1 (p.19). Let Q € {SL{;(q),Sp14(q), %4 (q)} and let C denote the
conformal group of .

6.2 Schur Indicator o

The potential maximal .#]-subgroups in dimension 14 with Schur indicator
o are 2.L2(27), 2.5¢(3) and Sz(8).

Proposition 6.2.1 (2.L3(27)).

(i) If p = 1 (mod 3), then SLi4(p) has (p — 1,14) conjugacy classes of
F1-subgroups isomorphic to 2.12(27).3. If p= 1,7 (mod 24) then the
class stabiliser is {7y) in Out(L14(p)) and if p = 13,19 (mod 24) then
the class stabiliser is (y0) in Out(Li4(p)).

(i) If p=2 (mod 3), p # 2, then SU14(p) has (p+1,14) conjugacy classes
of S1-subgroups isomorphic to 2.1.9(27).3. If p= 17,23 (mod 24) then
the class stabiliser is {y) in Out(Ui4(p)) and if p = 5,11 (mod 24)
then the class stabiliser is (J).

Proof. Let G = 2.12(27). Then Out(G) = 6 and up to equivalence there
exist two weakly equivalent 14-dimensional representations p of G with char-
acter ring Z[boy] by Table 6.1.1. From this it follows by Table 2.2.1 and
Lemma 4.2.1 that G < SLj4(p) if p = 1 (mod 3) and G < SUq4(p) if p =2
(mod 3), p # 2.
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The stabiliser of p is the outer automorphism of G of order 3. Using
[12, 24] it is straightforward to show that G.3 < SLj4(p) if p = 1 (mod 3)
and G.3 < SU4(p) if p =2 (mod 3).

Since the two non-equivalent representations are fused by the outer au-
tomorphism « of order 2 of G there exists one conjugacy class of G in C.
Hence, by Lemma 4.3.3, there exist (pF1, 14) conjugacy classes of subgroups
isomorphic to 2.15(27).3 in SL;(p) respectively.

Furthermore, o acts by complex conjugation on the two non-equivalent
representations of dimension 14 of G. It follows that ®p is equivalent to p”
by Lemma 4.4.1.

First consider Case L. We want to find a matrix x € GL14(p) such that
x7Yg%p)z = (gp)? for all g € G in order to use Lemma 4.4.3. Since we
do not want to find such an x for each possible prime p individually, we
will work with a characteristic 0 representation p and show that it can be
reduced modulo p for all p =1 (mod 3) (see file 21227d14comp).

Note that the character field corresponding to the ring Z[ba7] is Q[zs]
since b2_71 = —ﬁ — %i:;, b27 = 2Z3 - Z% and i3 =73 — Z%.

Let a and b be standard generators of 2.15(27)p. It is straightforward to
check that the denominators of the entries of a and b are only divisible by 2.
Hence we can reduce Gp = {(a, by modulo p for all p # 2,3 by Lemma 4.1.2.

Furthermore, « acts on a and b by sending a to a~! and b to b=! by [19)].
Using the GHom command in Magma we can find a matrix & € GL14(C)
such that 271(¢g%p)# = (gp)~ " for all g € G. Note that & has entries in
Zis].

The lowest common multiples of the denominators of the entries of &
and 27! are 1 and 6 respectively and det(%) = —2!2-3%. (1 4 i3). Hence we
can reduce £ modulo p for all p # 2,3. It follows from Remark 4.4.4 that we
can use Lemma 4.4.3 to determine whether an SLj4(p)-conjugacy class of
subgroups isomorphic to 2.L5(27).3 is stabilised by v or 49 in Out(L14(p))-

We find that det(%) is a square in F), if and only if —(1 + i3) is a square
in F),.Note that —(1 +i3) = 1(r2 —ig)? and we can show that 3(ry —ig) € F,,
if and only if p = 1,7 (mod 24) using Table 2.2.1. Hence it follows from
Lemma 4.4.3 that 2.1L5(27).3 is stabilised by {vy) if p=1,7 (mod 24) and by
(o) if p=13,19 (mod 24).

In Case U we have to find a matrix B of the unitary form preserved by Gp
and we hope to show that B can be reduced modulo p for all p = 2 (mod 3),
p # 2. Asin Case L there exists # € GL14(C) such that 271(g*p)& = (gp)~ T
for all g € G and z is reducible modulo p for all p we are interested in. Hence
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we can apply Lemma 4.5.4 (see file 21227d14comp).

Note that we can use the same generators a and b as in Case L. Using
Magma we can find a form matrix B and a matrix & both with entries in
Z|is]. o

Let S = Z[bay, %, %] Then B, B~', # and 2! have entries in S since
$(1 +1i3) = %(2 + byr). Furthermore, det(#) = —2'3-36.1(1 +i3) =
—213.3%. (2 4+ bgy) = 213-3% - (1 — bay)? since —3(2 + bar) = (1 —bar)2. This
gives a factorisation in S.

Let # = 213 . 3% with p-modular reduction r. Then # > 0 and /r € F,, if
and only if /2 € F,. So by Lemma 4.5.4 an SU14(p)-conjugacy class of G.3
is stabilised by v if ro € F, and by 76 otherwise. By Table 2.2.1, ry € I, if
and only if p = 1,7 (mod 8). Since we are in Case U and p = 2 (mod 3),
p # 2, we deduce that a conjugacy class of G.3 is stabilised by ~ if p = 17,23
(mod 24) and by 74 if p = 5,11 (mod 24). O

Proposition 6.2.2 (2.54(3)).

(i) If p=1(mod 3), then SL14(p) has (p—1,14) conjugacy classes of /-
subgroups isomorphic to 2.5¢(3). If p = 1,7 (mod 24) then the class
stabiliser is (y) in Out(Lia(p)) and if p = 13,19 (mod 24) then the
class stabiliser is ().

(ii) If p =2 (mod 3), p # 2, then SU14(p) has (p+1,14) conjugacy classes
of S1-subgroups isomorphic to 2.5¢(3). If p = 17,23 (mod 24) then
the class stabiliser is () in Out(Ui4(p)) and if p = 5,11 (mod 24)
then the class stabiliser is {y0).

Proof. Let G = 2.S¢(3). By Table 6.1.1, Out(G) = 2 and the character ring
of the 14-dimensional absolutely irreducible representations of G is Z[z3].
Hence it follows from Lemma 4.2.1 and Table 2.2.1 that G preserves a unitary
form if and only if p = 2 (mod 3). Again by Table 6.1.1, G has (up to
equivalence) two weakly equivalent absolutely irreducible representations p
in dimension 14. There is one conjugacy class of G in C since the non-trivial
outer automorphism « of GG fuses these two representations. Hence the
number of conjugacy classes of subgroups isomorphic to 2.56(3) in SL{;(p)
is (14,q F 1) respectively by Lemma 4.3.3.

Now we want to determine how v € Out(L{;(p)) acts on the SLf,(p)-
conjugacy classes of G. Using Lemma 4.4.1 it is straightforward to show
that “p is equivalent to p”.

Let p be the 14-dimensional absolutely irreducible representation of G
in characteristic 0 given in [19]. Then we can find a matrix & € GL14(C)
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such that 271(g%p)2 = (gp)? for all g € G. Here det(2) = 2!3 - 23 and £ is
reducible modulo p for all p # 2,3 (file 2s63d14comp).

Hence, in Case L we have to determine when 2z3 = —2 + %(2 + bo7) =
—1+1i3 = X(r2 +i6)? (using (1 +i3) = %(2 + boy)) is square in F,,. Using
Table 2.2.1 we can show that 2z3 is square in F, if and only if p = 1,7
(mod 24). It follows from Lemma 4.4.3 that an SLj4(p)-conjugacy class of
G is stabilised by (v) when p = 1,7 (mod 24) and by {yd) when p = 13,19
(mod 24).

For Case U note that the outer automorphism ¢ of Uy4(p) acts on z3 by
sending z3 to —z3 — 1. Furthermore, we can find a form matrix B preserved
by G that can be reduced modulo p for all p # 2,3. All entries of &, 271, B
and B! lie in S = Z[z3, 5, 3]. Furthermore, det(2) = 2'3.23 = 213 (14 23)?
gives a factorisation in S.

Let 7 = 2!3 and let r denote the p-modular reduction of 7. Then /7 € F,,
if and only if v/2 € F,. By Table 2.2.1, 15 € F,, if and only if p = 1,7 (mod 8).
By Lemma 4.5.4 it follows that an SU14(p)-conjugacy class of G is stabilised
by v if p = 17,23 (mod 24) and by 74 if p = 5,11 (mod 24). O

Proposition 6.2.3 (Sz(8)).

(i) If p = 1 (mod 4), then there are 2 - (p — 1,14) conjugacy classes of
F1-subgroups of SL14(p) isomorphic to Sz(8).3 in SL14(p), with trivial
class stabiliser in Out(L14(p)).

(ii) If p = 3 (mod 4), then there are 2- (p+ 1,14) conjugacy classes of .7 -
subgroups of SU14(p) isomorphic to Sz(8).3, with trivial class stabiliser
in Out(Uy4(p)).

Proof. Let G = Sz(8) with Out(G) = 3. By Table 6.1.1 there are up to
equivalence 2 weakly equivalent 14-dimensional absolutely irreducible rep-
resentations of G with character ring Z[i]. It follows from Table 2.2.1 and
Lemma 4.2.1 that G < SL14(p) when p =1 (mod 4) and G < SU14(p) when
p =3 (mod 4).

Furthermore, Gp.3 < N¢(Gp) by Table 6.1.1. Using [12, 24] it follows
that G.3 < SLi4(p) if p=1 (mod 4) and G.3 < SUy4(p) if p = 3 (mod 4).

The two non-equivalent 14-dimensional absolutely irreducible represen-
tations of G are not fused by any outer automorphism of G. Hence there are
two conjugacy classes of G in C' by Lemma 4.2.2. By Lemma 4.3.3 each of
these classes splits into (p F 1, 14) conjugacy classes in SL;(p) respectively.
Note that v fuses two non-equivalent representations and hence there is one
Aut (L (p))-conjugacy class.
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Furthermore, the conjugacy classes of G in SLi;(p) have trivial stabiliser
since Out(G) = 3 and since § € Out(L{;(p)) acts transitively on the conju-
gacy classes by Lemma 4.3.6. O

Maximality
Now we determine the possible .#j-containments between the groups
2.19(27).3, 2.56(3) and Sz(8).3.

Proposition 6.2.4.
Let d:= (p—1,14) in Case L and let d := (p + 1,14) in Case U.

(i) No extension of do2.1y(27) is S1-mazimal in any extension of SLi;(p).
(ii) If p # 2,3 then d o 2.56(3) is %1 -mazimal in SLE;(p).
(iii) If p # 2 then d x Sz(8).3 is ./ -mazimal in SLi,(p).

Proof. (i) By [6], L2(27).3 is a subgroup of Sg(3) and it follows that
2.12(27).3 is a subgroup of 2.S4(3). Furthermore, the smallest non-
trivial absolutely irreducible representations of 2.L2(27) have dimen-
sion 14. Hence, 2.1.2(27).3 is an .#;-subgroup of 2.S4(3) by Lemma
4.9.2. Furthermore, L(27).6 is a subgroup of S¢(3) by [12] from which
it follows that no extension of 3.L3(27) is .1-maximal in dimension
14.

(ii) By Lagrange’s theorem neither 2.12(27).3 nor Sz(8).3 could contain
2.54(3).

(iii) By Lagrange’s theorem, Sz(8).3 could be a subgroup of 2.S¢(3). Look-
ing at the character tables of 2.54(3) and Sz(8) in [12, 24], however, it
can easily be seen that Sz(8) cannot be an .#}-subgroup of 2.54(3) in
dimension 14 as the respective character values do not match. 0

6.3 Schur Indicator —

By Table 6.1.1 the potential 14-dimensional .#j-maximal subgroups with
Schur indicator — are 2.A7, 2.L2(13)1 2, L2(29), 2.L2(29) and 2.J,.

Proposition 6.3.1 (2.A7).

(i) If p=1,7 (mod 8), then there are 2 conjugacy classes of %1 -subgroups
of Sp4(p) isomorphic to 2.A7, which have trivial class stabiliser in
Out(SM(p)).
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(ii) If p= 3,5 (mod 8), p # 3, then there are 2 conjugacy classes of .7 -
subgroups of Spy4(p?) isomorphic to 2.A7, with class stabiliser {¢) in
Out<814(p2)).

Proof. Let G = 2.A7. Then Out(G) = 2 and there are (up to equivalence)
two weakly equivalent absolutely irreducible 14-dimensional representations
p of G with character ring Z[r2] by Table 6.1.1. It follows from Table 2.2.1
that 2.A7 < Spy4(p) when p = 1,7 (mod 8) and 2.A7 < Spyyu(p?) when
p = 3,5 (mod 8), p # 3. Since the two representations are fused by the
outer automorphism « of order 2 of G, there exist two conjugacy classes of
G in Spy4(q) by Lemma 4.3.3.

Since the field automorphism of Spy,(p) is trivial, the stabiliser of these
conjugacy classes is trivial when p = 1,7 (mod 8).

If p = 3,5 (mod 8) then, using Lemma 4.3.8, ®p is equivalent to p? since

the p-modular reduction of r, = z* + z§ = —15 when t € {3,5}. Projectively
G.2\G contains involutions and hence a conjugacy class of 2.A7 in Spy,(p?)
is stabilised by (¢) by Lemma 4.6.2. O

Proposition 6.3.2 (2.L2(13);).
Let 2.1.5(13)1 be the image of an absolutely irreducible 14-dimensional rep-
resentation p of 2.19(13) with character ring 7Z.

(i) If p = 1,7 (mod 8), then there exist two conjugacy classes of .7-
subgroups of Spy4(p) weakly equivalent to 2.1.5(13)1.2, with trivial class
stabiliser in Out(S14(p)).

(i) If p = 3,5 (mod 8), p # 13, then there is a single conjugacy class of
S -subgroups G of Spy4(p) weakly equivalent to 2.1(13)1, with class
stabiliser {5y in Out(S14(p)).

Proof. Let G = 2.1.3(13);. Then Out(G) = 2 by [12] and G < Spy,(p),
p # 2,13, since the character ring of p is Z. By [12, 24| the 14-dimensional
absolutely irreducible representation p’ of G.2 preserves a symplectic form
and has character ring Z[rz]. Therefore, G.2 < Spy4(p) if p = 1,7 (mod 8)
and G.2 < Spy,4(p?) if p = 3,5 (mod 8) by Table 2.2.1.

If G.2 < Spy4(p) then there are no other non-trivial outer automorphisms
of GG that could stabilise the representation. Hence there exists one conju-
gacy class of G in the conformal group by Table 6.1.1 which splits into two
classes in Spy4(p) by Lemma 4.3.3.

Now let p = 3,5 (mod 8). Then p’ is defined over F, ie. G2 <
Sp14(p?). Let g € Spys(p?)\Spy4(p) such that g induces the outer auto-
morphism « of order 2 of G. Let C = CSpy,(p). We also know that
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G.2 < N¢(G) by Lemma 4.2.2. Hence « is also induced by conjugation
by an element ¢’ € C. We are going to show that ¢’ induces § € Out(S14(p)).

Since « is induced by both g and ¢/, ¢'g ! stabilises G. Hence ¢'¢g~* = A\I
for some scalar A by Lemma 2.2.9. Note that A € F2\F, and in particular
that AT # +1.

Let B be the matrix of the symplectic form preserved by Sp;,(p?). Then
g'Bg = B, but (¢)'Bg = (A\g)TB(\g) = B # B. Hence, N¢(G) is
generated by G, scalars and 4.

Furthermore, there is a single conjugacy class of GG in C' by Table 6.1.1.
By Lemma 4.3.3(ii) this class splits into |C' : N¢o(G)Spa(p)| classes in
Sp14(p)- It follows that Spy,(p) has a single conjugacy class of .#}-subgroups
isomorphic to G. O

Proposition 6.3.3 (2.L2(13)2).
Let 2.1.5(13)2 be the image of an absolutely irreducible 14-dimensional rep-
resentation of 2.19(13) with character ring Z[rs].

(i) If p = 1,23 (mod 24), then there exist 4 conjugacy classes of /-
subgroups of Spy4(p) weakly equivalent to 2.1L9(13)2.2, with trivial class
stabiliser in Out(S14(p)). Furthermore, there exist two Aut(S14(p))-
conjugacy classes of 2.1.2(13)2.2.

(i) If p=5,7,17,19 (mod 24), then there are 4 conjugacy classes of .-
subgroups of Spy4(p?) isomorphic to 2.15(13)9.2, with trivial class sta-
biliser in Out(S14(p?)).

(i) If p = 11,13 (mod 24), p # 13, then there are 2 conjugacy classes
of S1-subgroups G of Spy14(p) isomorphic to 2.L(13)2, with class sta-
biliser {6y in Out(S14(p)). Furthermore, there are two Aut(Si4(p))-
conjugacy classes of 2.1.2(13)s.

Proof. Let G = 2.1.9(13)2 with Out(G) = 2. Recall that by Lemma 6.1.2
two non-equivalent 14-dimensional absolutely irreducible representations of
2.L(13) with character ring Z[r3] are weakly equivalent if and only if p = 5,7
(mod 12). Since these two representations share the same main properties,
we only look at the first of the two representations, p;, because we do not
get any new results by looking at the second representation ps. We only
have to consider ps when we calculate the number of conjugacy classes.

Since p; has character ring Z[r3] by Table 6.1.1, G < Sp4(p) if and only
if p = 1,11 (mod 12), p # 13, by Table 2.2.1. Otherwise, when p = 5,7
(mod 12), then G < Spy,(p?).
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By [12, 24] G.2 < Spy4(p®) for some e and the character ring of this
extension is Z[ra,y24]. Therefore, the matrices of G.2\G have entries only
in Fp if p = 1,11 (mod 12) and ry,y24 € Fp, ie. if p = 1,23 (mod 24).
Otherwise they have entries from F ..

If p = 5,7 (mod 12) then G < Spy4(p?) and G.2 < Spyy(p?). It is clear
that G.2 is scalar normalising and since there are two weakly equivalent
representations that do not lie in the same orbit of Out(G), there are 2-2 =
4 conjugacy classes of groups isomorphic to 2.L2(13)2.2 in Spy4(p?) using
Lemma 4.2.4, Lemma 4.2.2 and Lemma 4.3.3. There are no other outer
automorphisms of G and it follows that the stabiliser of these conjugacy
classes has to be trivial.

If G < Spyy(p) and G.2 < Spyy(p) then p = 1,23 (mod 24). Since p; and
p2 are not weakly equivalent, the group Spy,(p) has 2-2 conjugacy classes of
S1-subgroups isomorphic to 2.L2(13)2.2 by Lemma 4.2.4 and Lemma 4.3.3.
These conjugacy classes lie in two distinct Aut(Spy4(p))-classes.

If p = 11,13 (mod 24), p # 13, then G < Spy,(p) but G.2 € Spy,(p).
Using a similar argument as in Proposition 6.3.2, we can show that a con-
jugacy class of G in Spy4(p) is stabilised by §. Hence Spy,(p) contains 2 - 1
conjugacy classes of groups isomorphic to G. O

Proposition 6.3.4 (L2(29) in characteristic 2).
There is a single conjugacy class of #1-subgroups of Spi4(4) isomorphic to
L2(29), with class stabiliser {¢) in Out(S14(4)).

Proof. Let G = L2(29). Then Out(G) = 2 and there are (up to equivalence)
two 14-dimensional absolutely irreducible representations of G. They are
weakly equivalent and have character ring Z[bag] by [24]. Hence L2(29) <
Sp14(22) by Table 2.2.1. By [24] these two representations are fused by the
outer automorphism « of order 2 of G. Hence there is one conjugacy class
of G in Spy4(2?) by Lemma 4.3.3. Furthermore, ®p is equivalent to p® by
Lemma 4.3.8 and [24] which implies that this single conjugacy class has to
be stabilised by ¢. O

Proposition 6.3.5 (2.L2(29)).

(i) If p=1,4,5,6,7,9,13, 16, 20, 22, 23, 24, 25, 28 (mod 29) then there are
2 conjugacy classes of 1 -subgroups of Sp4(p) isomorphic to 2.12(29),
with trivial class stabiliser in Out(S14(p)).

(i) If p = 2,3,8,10,11,12,14,15,17,18,19, 21, 26,27 (mod 29), p # 2,
then Spy4(p?) has 2 conjugacy classes of .71 -subgroups isomorphic to
2.L2(29), with class stabiliser {¢) in Out(S14(p?)).
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Proof. Let G = 2.12(29). Then Out(G) = 2 and G has (up to equivalence)
two weakly equivalent absolutely irreducible representations p of dimension
14 with character ring Z[bag] by Table 6.1.1. It follows that G < Spy4(p)
if p=1,4,56,7,9,13, 16,20, 22,23, 24, 25,28 (mod 29) and G < Spy,(p®)
otherwise by Table 2.2.1.

These two representations are fused by the outer automorphism « of
order 2 of G. Hence there are two conjugacy classes of G in the respective
symplectic group by Lemma 4.3.3. If G < Spy4(p) then the field auto-
morphism of Spy4(p) is trivial and therefore the stabiliser of the conjugacy
classes of G is trivial.

If p = 2,3,8,10,11,12, 14, 15,17, 18, 19, 21, 26, 27 (mod 29), p # 2, then
@p is equivalent to p® using Lemma 4.3.8 and [12, 24]. Furthermore, pro-
jectively 2.15(29).2\2.L2(29) contains involutions which implies by Lemma
4.6.2 that an Spy4(p?)-conjugacy classes of G is stabilised by (¢). O

Proposition 6.3.6 (2.J2).

(i) If p=1,7 (mod 8) then there are 2 conjugacy classes of .1 -subgroups
of Sp14(p) isomorphic to 2.J2.2, which have trivial class stabiliser in

Out(S14(p)).

(i) If p = 3,5 (mod 8) then there exists a single conjugacy class of .7 -
subgroups of Spy4(p) isomorphic to 2.J2, which has class stabiliser {J)
m Out(S14(p)).

Proof. Let G = 2.Jo. Then Out(G) = 2 and since the character ring of the
unique (up to equivalence) absolutely irreducible representation of dimension
14 of G is Z by [12, 24], it follows that G < Spy4(p), p # 2. Furthermore,
G.2 preserves a symplectic form and has character ring Z[rs]. It follows that
G.2 < Spyy(p) when p = 1,7 (mod 8). In this case there are 2 conjugacy
classes of G.2 in Spy4(p) by Lemma 4.3.3 which have trivial stabiliser.

If p = 3,5 (mod 8) then we can show using a similar argument as in
Proposition 6.3.2 that an Spy4(p)-conjugacy class of G is stabilised by (J).

Furthermore, there is a single conjugacy class of G in Spy,4(p) by Lemma
4.3.3. O
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Maximality
Finally, we want to determine whether any of these groups with Schur
Indicator — could be contained in one another as .%;-subgroups.

Proposition 6.3.7.
Let G be an #1-subgroup of Spi4(q). Then Ng, (4)(G) is F1-mazimal in

Sp14(q)-

Proof. The only .#-subgroup of Sp;4(q) in even characteristic is L2(29)
which implies that Lo(29) is .j-maximal. In odd characteristic the only
possible containment by Lagrange’s theorem is 2.A7 in 2.J5. Using Magma
(file sldiml4cont) we can show that A7 is not a subgroup of Jo and hence
2.A7 cannot be a subgroup of 2.Js. O

6.4 Schur Indicator +

The groups G to consider here are A7, Ag, Ais, Aig, Lo(13), Se(2), Us(3),
G2(3), J1 and Ja.

Let ¢ be odd and let Gp < Qﬂ(q, B), where B is the matrix of a non-
degenerate symmetric bilinear form. The following table, Table 6.4.1, will
help to determine when det(B) is square in F, and hence whether B is
of type + or — by Lemma 3.1.13. It will also be useful for spinor norm
calculations. It shows whether an element a is a square in F,. The symbol
‘0’ indicates that a is square, i.e. 4/a € F,, for given primes p and ‘&’
indicates that a is not a square.

In this section we will mostly use Magma to determine the behaviour of
the outer automorphisms of OF;(¢). Hence we will usually work with a spe-
cific absolutely irreducible representation p of G such that Gp < Qﬁ(q, B)
for some non-degenerate symmetric bilinear form B. With the exception of
Jo we only have to look at 8,7 € Out(O7,(p, B)). Since § and v are indepen-
dent of the preserved form we will state our final results with respect to our
standard form matrices as in Table 3.1.1 (p.25). In case J2 we will determine
the behaviour of the field automorphisms with respect to our standard form
matrices.
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Table 6.4.1: Square root containments

a Va O/=
3 r3 = —(z35 + 22]5) O p=1,11 (mod 12)
X p=05,7(mod 12)
5 r5 = 1+ 225 + 273 O p=1,4(mod5)
K p=23(mod5)
13 r13 = 1+ 2253 + 223, + 223, 0O p=1,3,4,9,10,12 (mod 13)
+2795 + 2219 + 2212 B p=2,56,7,8,11 (mod 13)
15 I5 O p=1,7,11,17,43,49, 53,59 (mod 60)
B p=13,19,23,29,31,37,41,47 (mod 60)
39 I39 o p=1,5,719,23,25,31,35,41,49,61,
67,89,95,107,115,121,125,131,
133,137,149,151, 155 (mod 156)
® p=11,17,29,37,43,47,53,55,59,71,
73,77,79,83,85,97,101, 103, 109,
113,119,127,139, 145 (mod 156)
T8 ()= (223, +29, + 2205 | O p=1,23(mod 24)
+2217 + 221 ® p=5,7,11,13,17,19 (mod 24)
T4 (2+5) O p=1,23(mod 24)
=1(—29, — 224} — 224 +23}) | ® p=5,7,11,13,17,19 (mod 24)

Proposition 6.4.1 (A7, ).
Let A7, be the image of a 14-dimensional absolutely irreducible representa-
tion p of A7 whose associated character value for all elements of order 6 is

2.
()

(i)

(iii)

If p = 1,49 (mod 60) then there are eight conjugacy classes of .7 -
subgroups of Qf,(p) weakly equivalent to Az,.2, with trivial class sta-
biliser in Out(Of,(p))-

If p =7,19,31,43 (mod 60) then there are four conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Az,.2, with trivial class
stabiliser in Out(O,(p)).

If p = 13,37 (mod 60) then there exist four conjugacy classes of -
subgroups of Q,(p) weakly equivalent to Az, , with class stabiliser (&)
in Out(07,(p).
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(iv) If p = 11,59 (mod 60) then there are eight conjugacy classes of S1-
subgroups of Q4(p) weakly equivalent to A7, .2, with trivial class sta-
biliser in Out(O14(p))-

(v) If p=17,29,41,53 (mod 60) then there are four conjugacy classes of
A1-subgroups of Q,(p) weakly equivalent to Az, .2, with trivial class
stabiliser in Out(O14(p)).

(vi) If p = 23,47 (mod 60) then there are four conjugacy classes of -
subgroups of Q1,(p) weakly equivalent to A, , with class stabiliser (")
in Out(O,(p)).

Proof. Let G = A7,. Then Out(G) = 2 and by Table 6.1.1, G < Qf;(p)
since the character ring of p is Z. We find the form matrix B preserved
by Gp using Magma (file a71d14comp). Since B has determinant 3 times
a square it follows that B has square discriminant if and only if p = 1,11
(mod 12) by Table 6.4.1. Hence G < Qf;(p, B) if p = 1,7 (mod 12) and
G < Qy(p,B) if p= 5,11 (mod 12) by Lemma 3.1.13.

Now we consider Gp.2 = {(Gp, g). Computer calculations show that g has
determinant 1 and preserves the form B. Tt follows that G.2 < SOF,(p, B).
Note that G.2 = (G, —g) < SO7,(p, B) as well. Hence if the spinor norm of
g or of —g is 1 then G.2 < Q3,(p, B).

Computer calculations show that ¢ has spinor norm 1 if and only if 5
is square in F),, and —g has spinor norm 1 if and only if either both 3 and
5 are square or if they are both non-square in F,. Hence G.2 < Qﬁ(p, B)
if p=1,11,19,29, 31,41, 49,59 (mod 60) or if p = 1,7,11,17,43,49,53,59
(mod 60) by Table 6.4.1. The number of Q3 (p, B)-conjugacy classes follows
from Lemma 4.3.3.

IfG.2 « Qﬁ (p, B) then 5 is non-square in F,, and 3 is square. Hence the
discriminant of B is square and we can use Lemma 4.8.12(ii) to show that
in this case a conjugacy class of G is stabilised by (¢"). Therefore each C-
conjugacy class of G splits into 4 conjugacy classes in Qﬁ (p, B) by Lemma
4.3.3. O

Proposition 6.4.2 (Az,).
Let A7, be the image of a 14-dimensional absolutely irreducible represen-
tation of A7 that affords the character value —1 for all elements of order

6.

(i) If p = 1,17,49,53 (mod 60) then there are four conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Az,, with class stabiliser

{y) in Out(0F;(p))-
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(i) If p = 19,23,31,47 (mod 60) then there are two conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Az,, with class stabiliser

() in Out(Ofy(p)).

(iii) If p = 7,11,41,59 (mod 60) then there exist four conjugacy classes of
S1-subgroups of Q7,(p) weakly equivalent to Az,, with class stabiliser
() in Out(Oy4(p))-

(iv) If p=13,29,37,43 (mod 60) then there exist two conjugacy classes of
A1-subgroups of Qy,(p) weakly equivalent to Az,, with class stabiliser

(v in Out(O14(p))-

Proof. Let G = Az,. Then Out(G) = 2 and G < Q7,(p) by Table 6.1.1.
Computer calculations (file a72d14comp) show that the determinant of the
form matrix B preserved by G is 15 times a square. From this it follows
by Lemma 3.1.13 and Table 6.4.1 that G < Qf,(p, B) if p = 1, 17, 19, 23,
31,47,49,53 (mod 60) and G < Qp(p, B) if p = 7,11,13,29, 37,41, 43,59
(mod 60). Furthermore, the matrix inducing the outer automorphism of G
sits inside GOT;(p, B)\SOT;(p, B). Therefore an QF;(p, B)-conjugacy class
of G is stabilised by (y) by Lemma 4.8.12(i). The number of conjugacy
classes follows from Lemma 4.3.3. O

Proposition 6.4.3 (A7 in characteristic 2).
There are two conjugacy classes of 1 -subgroups of Q14(2) isomorphic to
A7.2, with trivial stabiliser in Out(07,(2)).

Proof. Computer calculations (file a7ch2d14comp) show that A7.2 < Q,(2)
in characteristic 2. Furthermore, since Out(A7) = 2, the stabiliser of any of
the 2 conjugacy classes of A7.2 in £7,(2) has to be trivial. O

Proposition 6.4.4 (Ag).

(i) If p = 1,17,49,53 (mod 60) then there are four conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Ag, with class stabiliser

{v) in Out(0F;(p))-

(it) If p = 19,23,31,47 (mod 60) then there are two conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Ag, with class stabiliser

{yy in Out(Of,(p)).

(iii) If p = 7,11,41,59 (mod 60) then there exist four conjugacy classes of
A1-subgroups of Q14 (p) weakly equivalent to Ag, with class stabiliser
(7 in Out(O14(p)).
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(iv) If p=13,29,37,43 (mod 60) then there exist two conjugacy classes of
S1-subgroups of Q1,(p) weakly equivalent to Ag, with class stabiliser

(v in Out(O14(p))-

Proof. Let G = Ag. Then Out(G) = 2 and Ag < QF;(p) by Table 6.1.1. Let
p be an absolutely irreducible 14-dimensional representation of G. Computer
calculations (a8dl4comp) show that the matrix B of the form preserved
by Gp has determinant a square times 15. By Lemma 3.1.13 and Table
6.4.1, Ag < Qfy(p, B) if p = 1,17,19,23,31,47,49,53 (mod 60) and Ag <
Q(p,B) if p = 7,11,13,29,37,41,43,59 (mod 60). Also, using Magma
again, we can show that the matrix ¢ inducing the outer automorphism of
G sits inside GO7,(p, B)\SO3;(p, B). Hence it follows from Lemma 4.8.12(i)
that a conjugacy class of G in Qf,(p, B) is stabilised by (7). The number of
conjugacy classes follows from Lemma 4.3.3. O

Proposition 6.4.5 (Ajs).

(i) If p = 1,17,49,53 (mod 60) then there are four conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Ays, with class stabiliser

() in Out(O{y(p))-

(it) If p = 19,23,31,47 (mod 60) then there are two conjugacy classes of
S -subgroups of Qf,(p) weakly equivalent to Ays, with class stabiliser

{yy in Out(OF,(p)).

(iii) If p = 7,11,41,59 (mod 60) then there exist four conjugacy classes of
A1-subgroups of Q,(p) weakly equivalent to Ays, with class stabiliser

(v in Out(O14(p))-

(iv) If p=13,29,37,43 (mod 60) then there exist two conjugacy classes of
F1-subgroups of Q1,(p) weakly equivalent to Ay, with class stabiliser

(v) in Out(Oyy(p))-

(v) There is a unique conjugacy class of #1-subgroups of Qf,(2) isomor-
phic to A5 with class stabiliser () in Out(07,(2)).

Proof. Let G = Ays. Then Out(G) = 2 and G < Q7 (p) since the character
ring of a 14-dimensional absolutely irreducible representation of G is Z by
Table 6.1.1.

In odd characteristic computer calculations (file al5d14comp) show that
the discriminant of the preserved form matrix B is square if and only if 15
is square in [F,. Hence it follows from Lemma 3.1.13 and Table 6.4.1 that
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A5 < Qfy(p, B) if p=1,17,19,23, 31,47,49, 53 (mod 60). Otherwise A1 is
a subgroup of Qy,(p, B) (p # 2,3,5).

Using Magma again we can show that the matrix g inducing the outer
automorphism of order 2 of G sits inside GO, (p, B)\SOF,(p, B). Therefore
a conjugacy class of G is stabilised by () by Lemma 4.8.12(i). The number
of conjugacy classes of G in QF,(p, B) follows from Lemma 4.3.3.

If p = 2 then computer calculations (file al5d14comp) show that Aj5 <
Q7,(2). Furthermore, the matrix inducing the non-trivial outer automor-
phism of Ay sits inside SO, (2)\Q{,(2). Therefore there is exactly one con-
jugacy class of G in Q7;(2) by Lemma 4.3.3 which is stabilised by (y). [

Proposition 6.4.6 (A in characteristic 2).
There is a unique conjugacy class of %1 -subgroups of Qf,(2) isomorphic to
Ay, with class stabiliser (v) in Out(0,(2)).

Proof. Computer calculations in Magma (file al6d14comp) show that Ajg <
Q7,(2). Furthermore, the matrix inducing the non-trivial outer automor-
phism of Ajg is an element of SO, (2)\Q7,(2). It follows that there exists
one €7,(2)-conjugacy class of Ajg by Lemma 4.3.3 which is stabilised by

- 0

Proposition 6.4.7 (L2(13);).

Let L3(13)1 be the image of a 14-dimensional absolutely irreducible represen-
tation of La(13) whose associated character value of all elements of order 2
s 2.

(i) If p=1,5,25,41,49, 61,89, 121, 125, 133, 137, 149 (mod 156) there ex-
ist four conjugacy classes of #1-subgroups of Qf,(p) weakly equivalent
to La(13)1, with class stabiliser () in Out(O7,(p)).

(ii) Ifp=11,43,47,55,59,71,79,83,103,119, 127,139 (mod 156) there ex-
ist two conjugacy classes of #1-subgroups of Q,(p) weakly equivalent
to Lio(13)1, with class stabiliser () in Out(O7,(p)).

(ii) Ifp="7,19,23,31,35,67,95,107,115,131, 151, 155 (mod 156) there ex-
ist four conjugacy classes of .71 -subgroups of Qy,(p) weakly equivalent
to La(13)1, with class stabiliser {y) in Out(O1,(p)).

(iv) Ifp=17,29,37,53,73,77,85,97,101, 109, 113, 145 (mod 156) there ez-
ist two conjugacy classes of 1 -subgroups of Q4(p) weakly equivalent
to La(13)1, with class stabiliser () in Out(O4(p)).
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Proof. Let G = Ly(13);. Then Out(G) = 2 and by Table 6.1.1, G < Q7 (p)
for all p # 2,3,13. Furthermore, computer calculations (file 12131d14comp)
show that the discriminant of the preserved form matrix B is square if and
only if 3 - 13 is square in F,,. The type of orthogonal form now follows from
Lemma 3.1.13 and Table 6.4.1.

Computer calculations show as well that the matrix g which induces
the outer automorphism of order 2 of G sits inside GO (p, B)\SO: (p, B).
Therefore a conjugacy class of G is stabilised by (7) by Lemma 4.8.12(i).
The number of conjugacy classes follows from Lemma 4.3.3. O

Proposition 6.4.8 (L2(13)2).

Let Lo(13)2 be the image of a 14-dimensional absolutely irreducible represen-
tation of La(13) whose associated character value of all elements of order 2
is —2.

(i) If p = 1,25,49,61,121,133 (mod 156), then there are four conjugacy
classes of #1-subgroups of Q7,(p) weakly equivalent to La(13)s, with
class stabiliser () in Out(O7,(p)).

(ii) If p = 11,47,59,71,83,119 (mod 156), then there are two conjugacy
classes of .#1-subgroups of Q7,(p) weakly equivalent to La(13)s, with
class stabiliser () in Out(O07,(p)).

(iii) If p = 5,41,89,125,137,149 (mod 156), then there are four conjugacy
classes of #1-subgroups of Qf,(p) weakly equivalent to La(13)a, with
class stabiliser {y§) in Out(O7,(p)).

(iv) If p=43,55,79,103,127,139 (mod 156), then there are two conjugacy
classes of #1-subgroups of Qf,(p) weakly equivalent to La(13)a, with
class stabiliser (&) in Out(OF,(p)).

(v) If p = 23,35,95,107,131, 155 (mod 156), then there are four conjugacy
classes of 1-subgroups of Qy,(p) weakly equivalent to La(13)2, with
class stabiliser () in Out(O14(p)).

(vi) If p = 37,73,85,97,109, 145 (mod 156), then there are two conjugacy
classes of 1-subgroups of Q,(p) weakly equivalent to La(13)2, with
class stabiliser {y) in Out(O1,(p)).

(vii) If p=17,19,31,67,115,151 (mod 156) there are four conjugacy classes
of S1-subgroups of Q27,(p) isomorphic to La(13)2, with class stabiliser
(y6) in Out(O14(p)).
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(viii) If p=17,29,53,77,101,113 (mod 156) there are two conjugacy classes
of S1-subgroups of Q7,(p) isomorphic to La(13)2, with class stabiliser

(v6) in Out(Oy(p))-

Proof. Let G = Ly(13)2. Then Out(G) = 2 and G < Qf,(p) by Table 6.1.1.
Furthermore the discriminant of the preserved form matrix B is square if
and only if 39 is square in I, (file 12132d14comp). The type of orthogonal
form preserved by G follows from Lemma 3.1.13 and Table 6.4.1.

Computations in Magma show that the matrix g inducing the outer
automorphism of order 2 of G is an element of GO, (p, B)\SO7,(p, B) if 3 is
a square in F,. Otherwise g € CGOT,(p, B)\GOT,(p, B) with det(g) = —3.

If 3 is square in [, ie. if p = 1,11 (mod 12) by Table 6.4.1, then a
conjugacy class of G in Qf;(p, B) is stabilised by (y) by Lemma 4.8.12(i).
The number of conjugacy classes follows from Lemma 4.3.3.

If 3 is not a square in [F, then we can show that gBgT = 3B. Hence
this conjugacy class is stabilised by () by Lemma 4.8.12 and the number
of conjugacy classes follows from Lemma 4.3.3. O

Proposition 6.4.9 (L2(13) in characteristic 2).
There is a unique conjugacy class of #1-subgroups of Q,(2) isomorphic to
Lo(13), with class stabiliser () in Out(07,(2)).

Proof. In characteristic 2 computer calculations (file 1213ch2d14comp) show
that Lo(13) < Q7,(2). Furthermore, the matrix inducing the non-trivial
outer automorphism of Ly(13) sits inside SO, (2)\Q{,(2). From this it fol-
lows by Lemma 4.8.13 and Lemma 4.3.3 that the unique conjugacy class of
G in Q7,(2) is stabilised by (7). O

Proposition 6.4.10 (S¢(2) in characteristic 3).
There are four conjugacy classes of %1 -subgroups of Qf,(3) isomorphic to
S6(2), with trivial class stabiliser in Out(O74(3)).

Proof. Let G = S¢(2). Computer calculations (file s62d14comp) show that
G < Q7,(3). Since |Out(G)| = 1, any proper normaliser of G has to be trivial
and there are four conjugacy classes of G in Qf;(3) by Lemma 4.3.3. O

Proposition 6.4.11 (Us(3)).

(i) If p =1 (mod 12) then there are 8 conjugacy classes of ./ -subgroups
of Qf,(p) isomorphic to Us(3).2, which have trivial class stabiliser in

Out(O{4(p))-
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(7i) If p =7 (mod 12) then there are 4 conjugacy classes of %) -subgroups
of Qf,(p) isomorphic to Us(3).2, which have trivial class stabiliser in
Out(O(p))-

of Q1,(p) isomorphic to Us(3).2, which have trivial class stabiliser in
Out(O14(p))-

(iv) If p= 11 (mod 12) then there are 8 conjugacy classes of 1 -subgroups
of Q14(p) isomorphic to Us(3).2, which have trivial class stabiliser in

Out(Oy4(p))-

(
)
(
(iii) If p = 5 (mod 12) then there are 4 conjugacy classes of 1-subgroups
)
(p

(v) There are 2 conjugacy classes of #1-subgroups of 21,(2) isomorphic
to Us(3).2, with trivial class stabiliser in Out(O1,4(2)).

Proof. Let G = Us(3). Then Out(G) = 2 and G < Qf,(p) by Table 6.1.1.

In odd characteristic we find using Magma (file u33d14comp) that the
discriminant of the preserved form matrix B is a square if and only if 3 is
square in F), (p # 2,3). From this it follows by Lemma 3.1.13 and Table
6.4.1 that G < Qf,(p, B) if p=1,7 (mod 12). Otherwise G < Q7,(p, B).

Furthermore, the matrix g inducing the outer automorphism of order 2
of G sits inside SOﬂ(p, B) and —g has always spinor norm 1. Therefore
G.2 < Qf(p,B) for all p (p # 2,3). By Lemma 4.3.3 each C-conjugacy
class of subgroups isomorphic to G splits into 4 or 8 conjugacy classes in
QF,(p, B). Also, since G does not afford any further outer automorphisms
the stabiliser of any of these conjugacy classes is trivial.

If p = 2 then U3(3).2 < Q7,4(2) using Magma (file u33dl4comp). By
Lemma 4.3.3, there are 2 conjugacy classes of subgroups isomorphic to G in
274(2). Since G does not afford any other non-trivial outer automorphism,
the stabiliser of these classes has to be trivial. O

Proposition 6.4.12 (G3(3)).

(i) If p =1 (mod 24) then there are 8 conjugacy classes of /1 -subgroups
of Qf,(p) isomorphic to Go(3).2, which have trivial class stabiliser in
Out(O,(p))-

(ii) If p =13 (mod 24) then there are 4 conjugacy classes of .1 -subgroups
of Q4 (p) isomorphic to Ga(3). The class stabiliser in Out(Of,(p)) is

&)
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(iii) If p = 7,19 (mod 24) then there exist 2 conjugacy classes of /-
subgroups of Qf,(p) isomorphic to Go(3), with class stabiliser {§) in
Out(0;(p)).

(iv) If p =23 (mod 24) then there are 8 conjugacy classes of 1 -subgroups
of Q1,(p) isomorphic to G2(3).2, which have trivial class stabiliser in

Out(O14(p))-

(v) If p= 11 (mod 24) then there are 4 conjugacy classes of 1 -subgroups
of Q14(p) isomorphic to Ga(3). The class stabiliser in Out(O1,(p)) is

(.

(vi) If p= 5,17 (mod 24) then there 2 conjugacy classes of /1 -subgroups of
Q4(p) isomorphic to Ga(3), with class stabiliser (§) in Out(O14(p))-

(vit) There are 2 conjugacy classes of .1 -subgroups of §21,4(2) isomorphic
to G2(3).2, which have trivial class stabiliser in Out(O4(2)).

Proof. Let G = Ga(3). Then G < Qf;(p) and Out(G) = 2 by Table 6.1.1.

In odd characteristic calculations in Magma (file g23d14comp) show that
the discriminant of the preserved form matrix B is square if and only if 3
is square in F), (p # 2,3). Therefore, by Table 6.4.1 and Lemma 3.1.13,
G < Qf,(p, B) if and only if p = 1,7 (mod 12). If p = 5,11 (mod 12) then
G preserves an orthogonal form of minus-type.

Computer calculations show that the matrix g inducing the outer auto-
morphism of order 2 of G sits inside CGOT,(p, B) and preserves the form
up to scalar multiplication by 3. It follows that if 3 is a square in I, then
ry 1g has determinant 1, preserves B and induces the outer automorphism
of order 2 of G. Furthermore, +r3 !¢ has spinor norm 1 if and only if % F3
is square in F), which holds if and only if p = 1,23 (mod 24) by Table 6.4.1.

Hence, if p = 1,23 (mod 24) then G.2 < Qﬂ(p, B) and there are 8 conju-
gacy classes of G.2 in Qf,(p, B) by Lemma 4.3.3. If p = 11,13 (mod 24) then
r3 g € SO, (p, B)\Q{,(p, B) and it follows that an Q3 (p, B)-conjugacy class
of G is stabilised by (0") by Lemma 4.8.12(ii). There are 4 such conjugacy
classes by Lemma 4.3.3.

If p = 5,7,17,19 (mod 24) then g € CGO7,(p, B)\GOT,(p, B) and we
can show that det(g) = 37. There are 2 QF;(p)-conjugacy classes of G by
Lemma 4.3.3 and the class stabiliser is (§) by Lemma 4.8.12(iv).

If p = 2 then G2(3).2 < Q74(2) (file g23d14comp) and there are two
conjugacy classes of G in €27,(2) by Lemma 4.3.3. Furthermore, since G
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does not afford any further non-trivial outer automorphism, the stabiliser
in Out(O74(2)) of these £7,(2)-conjugacy classes of G has to be trivial. [

Proposition 6.4.13 (J;).
There are eight conjugacy classes of .#1-subgroups of Q1,(11) isomorphic to
J1, with trivial class stabiliser in Out(O7,(11)).

Proof. Let G = J;. Then computer calculations (file jld14comp) show that
G < Qp4(11). Since the outer automorphism group of G is trivial, every

conjugacy class has trivial stabiliser. There are 8 conjugacy classes of G in
07,(11) by Lemma 4.3.3. O

Proposition 6.4.14 (J; in characteristic # 2,3, 5).

(i) If p = 1,49 (mod 60) then there are eight conjugacy classes of /-
subgroups of Qﬂ(p) isomorphic to Jo, with trivial class stabiliser in
Out(O4(p))-

(i) If p = 19,31 (mod 60) then there are four conjugacy classes of 7 -
subgroups of Q7,(p) isomorphic to Jo, with trivial class stabiliser in
Out(O4(p)).

(iii) If p = 7,13,37,43 (mod 60) then there are eight conjugacy classes of
S -subgroups of Q,(p?) isomorphic to Jo, with class stabiliser {¢) in
Out (074 (p?)).

(iv) If p=17,23,47,53 (mod 60) then there are eight conjugacy classes of
S -subgroups of Qf,(p?) isomorphic to Jo, with class stabiliser {¢y)
in Out(07,(4?)).

(v) If p = 11,59 (mod 60) then there are eight conjugacy classes of #1-
subgroups of Qy4(p) isomorphic to Jo, with trivial class stabiliser in

Out(O14(p))-

(vi) If p = 29,41 (mod 60) then there are four conjugacy classes of #1-
subgroups of Q,(p) isomorphic to Jo, with trivial class stabiliser in

Out(O14(p))-

Proof. Let G = Jo which implies that Out(G) = 2. By Table 6.1.1 the
14-dimensional absolutely irreducible representations p of G have character
ring Z[bs] and Schur indicator + from which it follows by Table 2.2.1 that
G < Qf(p) if p=1,4 (mod 5) and G < QF,(p?) if p = 2,3 (mod 5).
Furthermore, the discriminant of the form matrix B preserved by Gp
is square if and only if 3 is square in F, (file j2d14comp). Hence if G <
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Q1i4 (p, B) then G preserves an orthogonal form of plus-type if p = 1, 19, 31, 49
(mod 60) by Table 6.4.1 and Lemma 3.1.13. If G € Q7F,(p, B) then p* = 1
(mod 4) and the discriminant of the form matrix is always square. Hence,
G preserves an orthogonal form of plus-type in this case.

By [12, 24] the outer automorphism of G can only be induced by an
element that does not sit inside C' = CGO7,(pt, B), t € {1,2} since it fuses
the representations. Therefore there are either 4 or 8 conjugacy classes of
G in Qf,(p', B) by Lemma 4.3.3.

If G < Qf(p, B) then Qf;(p) does not have any non-trivial field auto-
morphism. It follows that the stabiliser of these conjugacy classes of G in
Qf,(p, B) is trivial.

If p = 7,13,17,23,37,43,47,53 (mod 60), i.e. if G < Qf,(p?, B), then
there are eight Q7 (p?, B)-conjugacy classes of G' by Lemma 4.3.3. Further-
more, using Lemma 4.3.8, we can show that ®p is equivalent to p?, where
« is the outer automorphism of order 2 of G. To find the stabiliser of these
conjugacy classes, we work in characteristic 0 first.

Let p be an absolutely irreducible 14-dimensional representation of G.
Then computer calculations in Magma (file j2d14comp) show that Gp pre-
serves a bilinear form B with det(B) = 3!3. Hence Gp < Q14(K, B) for some
characteristic 0 field K. Here K < Q(w), where w* + w3 + w? + w +1 = 0,
from which it follows that w is a fifth root of unity. Furthermore, all ele-
ments of K are of the form a + b(w? + w?), a,b e Q. Let ¢ : w — w?. Then
(a4 b(w? + w?))d = (a —b) — b(w? + w?) and it is straightforward to check
that d; is a field automorphism of K. A

Computationally we can also find #; € GL14(K) such that 27 (gp)?2; =
g®p for all g € G. Furthermore, if we let & = 21/(w? +w?), then 2B2T = B?
with det(2) = 1. Let F' = antidiag(1,...,1). We also know that there exists
A € GL14(C) such that AFAT = B and (Gp)* < Qf,(C,F) by Lemma
4.8.8. From this it follows that det(A)? = — det(B) = —3'2.

Since we want to use Lemma 4.8.7, we need to consider the p-modular
reductions of fl, E, F and 2. Note that this is straightforward for B , F and
Z as these matrices can easily be calculated. We do not know A explicitly
though and hence we do not know whether we can actually reduce A modulo
p for all the prime numbers p we are interested in.

Let B, F, x and p denote the p-modular reductions of B , F, Z and p re-
spectively where B is the form matrix of a bilinear form of plus-type. There-
fore we know that there exists some A’ € GL14(p?) such that A’/FA™" = B
by Lemma 4.8.1. Furthermore, det(A’)? is equal to the p-modular reduction
of —313.
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Note that in characteristic 0, we defined ¢? on K by sending w to w?.
However, we could have defined ¢ by sending w to w? as well as this induces
the same field automorphism on K since

[a + b(w? + w?)]d = a + b(w?)? + (w?)?)
= a+ b(w* + w)
=a+b(w?)? + (w?)?).

In characteristic p, a field automorphism ¢ sends w to wP, where p = 2,3
(mod 5) in this case. Therefore, without loss of generality, we can define
the p-modular reduction ¢ of ¢ by sending w to w? if p = 2 (mod 5) and
by sending w to w3 if p = 3 (mod 5). Hence considering the p-modular
reduction of B?® we find that zBzT = B?. Also note that det(z) = 1 and
7 Y(gp)?x = g%p for all g € G.

Note as well that projectively (G.2)p\Gp contains involutions. Hence, if
det(A’)'=¢ = 1 then an Qj,(p®)-conjugacy class of (Gp)? is stabilised by
¢ in Out(92],(p?)) by Lemma 4.8.7. Taking the square root, we find that
det(A’) is a p-modular reduction of € - (1/3) - 3%, where € € {+1}. Therefore,
we need to calculate the p-modular reduction of ((v/3) - 3¢)17P . il=P since
P =1.

First of all note that i*~7 = 1 if and only if 1 —p = 0 (mod 4). This is the
case if and only if p = 1 (mod 4). Furthermore, ((v/3) - 3%)'~P = +1 if and
only if ((+/3)-3%)P~1 = £1 and ((+/3)-3%)P~1 = 1 if and only if (v/3)-3° € F,.
This is the case if and only if v/3 € F,. By Table 2.2.1, V3e IF, if and only if
p=1,11 (mod 12). Hence, det(A~P) = 1 if and only if p = 1,7 (mod 12).

Therefore a conjugacy class of Gp is stabilised by ¢ if p = 7,13,37,43
(mod 60) and by ¢~ if p = 17,23, 47,53 (mod 60). O

Proposition 6.4.15 (J, in characteristic 2).
There are two conjugacy classes of 1 -subgroups of Qf,(4) isomorphic to
Ja, with class stabiliser (¢ry) in Out(Of,(4)).

Proof. Let G = Jy. Using Magma (see file j2ch2d14comp) we can find a
14-dimensional absolutely irreducible representation of Jo that preserves our
standard quadratic form matrix antidiag(1,...,1,0,...,0) (see Table 3.1.1).
Hence Jo < Qf;(4) and there are two Q,(4)-conjugacy classes of G' by
Lemma 4.3.3.

Let a be the automorphism of order 2 of Jo. Then the matrix 2 € GL14(4)
that conjugates g®p to (gp)? for all g € G has quasideterminant -1. Hence,
by Lemma 4.8.11, an Qf4(22)—conjugacy class of Jo has stabiliser ¢r. ]
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Proposition 6.4.16 (J, in characteristic 5).
There are four conjugacy classes of #1-subgroups of Q1,(5) isomorphic to
J2.2, with trivial class stabiliser in Out(O74(5)).

Proof. Let G = J. Then Out(G) = 2 and Jp < Qf;(5) since the 14-
dimensional absolutely irreducible representation of GG in characteristic 5
has character ring Z by Table 6.1.1. Furthermore computer calculations (file
j2ch5d14comp) show that in fact Jo.2 < Q7,(5). By Lemma 4.3.3 there are 4
conjugacy classes of Jo.2 in Q7,(5). Since J2.2 does not afford any non-trivial
outer automorphism the stabiliser of these classes has to be trivial. ]

Maximality
Finally, we want to show which of these groups are .#j-maximal in

Q1i4(Q)-

Proposition 6.4.17.

In Case OF let d := 1 if q even or if g = 3 (mod 4) and d := 2 if g =1
(mod 4). In Case O~ let d:=1 if q even or if g=1(mod 4) and d := 2 if
g =3(mod 4).

(i) If p # 2,3,5 then NQI{;(P) (A7) is S1-mazimal in Q7 (p).

(ii) No extension of d x Ay, is S1-maximal in any extension of 5, (p).
(1ii) The group A7.2 is A1 -mazimal in Q,(2).
(iv) No extension of d x Ag is /1 -mazimal in any extension of Q& (p).

(v) Ifp #2,3,5 then NQi(P) (A13) is S1-mazimal in Q7 (p). No extension

of A1s is S1-mazimal in any extension of Qf,(2).
(vi) The group Ay is #1-mazimal in Q74(2).
(vii) If p # 2,3,13 then Not ) (L2(13)1) is L1 -mazimal in QF,(p).
(viti) If p # 2,3,13 then NQI’Q(P) (L2(13)2) is .71 -mazimal in Q7,(p).
(iz) The group 1o(13) is /1 -mazimal in QF,(2).
(z) The group S¢(2) is #1-mazimal in QF,(3).
(xi) No extension of d x U3(3).2 is ever /1 -mazximal in any extension of

Qliél (p)-
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(zii) If p # 3 then NQﬁ(p)(Gg(i%)) 18 S -mazimal in Q1i4(p).

(ziii) The group 2 x Jy is 1-mazimal in Q7,(11).

(ziv) If there exists an .#1-subgroup G = d x Jo in Qf,(q) then G is .-

mazximal.

Proof. (i) We find that A7 could be a subgroup of Ag, Aj; and Jo by

(iii)

(iv)

Lagrange’s theorem. It is clear that A7 < Ag and A7y < A5 but
A7 £ Jy using Magma (file sldiml4cont). Furthermore, note that
A7, is not an .#j-subgroup of Ag as A7, has character value 2 for all
elements of order 6 whereas the 14-dimensional absolutely irreducible
representation of Ag has character values —1 or 0 for all elements of
order 6 ([12, 24]). Now we consider a possible containment of Az,
in Ajs. We can show that A5 has 4 conjugacy classes of subgroups
isomorphic to A7, two of which are conjugate in S5 (file sldim14cont).
Hence these 4 conjugacy classes correspond to 3 non-equivalent 14-
dimensional representations of A7. By looking at the traces of elements
of order 6 of groups contained in these conjugacy classes, we find that
A7, € Ay5 in dimension 14.

It is clear that A7 is a subgroup of Ag in an abstract way. Furthermore,
the character values of A7, correspond to the character values of the
14-dimensional absolutely irreducible representation p of Ag and there
are no reducible representations of Ay that afford the same character
values as p by [14, 24]. Furthermore, A7 and Ag preserve the same
orthogonal form in dimension 14, Sy < Sg and both A; and Ag are
stabilised by v in Out(OF,(p)).

By looking at the respective character tables ([14, 24]) it straightfor-
ward to see that in even characteristic A7 can only be an .#}-subgroup
of A15 or Aig in dimension 14. However Aq5 and Aqg preserve an or-
thogonal form of plus-type whereas A7 preserves an orthogonal form
of minus-type.

It is clear that Ag < Aj5 in an abstract way and so we need to check
whether Ag is also on .#;-subgroup of A5 in dimension 14. Note that
A1s has 3 conjugacy classes of subgroups isomorphic to Ag, two of
which are conjugate in Si5 (file sldiml4cont). Since S15 < GL14(p)
by Proposition 6.4.5, we can deduce that these two conjugacy classes
correspond to equivalent representations of Ag. Looking at the traces
of elements of groups contained in these conjugacy classes we see that
Ag is an ¥ -subgroup of Ajs. Furthermore, Sg < S15 and Ag and A5
have the same class stabiliser in Out(OF,(p)).
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(v)

(vi)
(vii)

(viii)

(ix)

(x)
(xi)

(xii)
(xiii)

(xiv)

The only group that could contain A5 is A1 but Ajg only has a 14-
dimensional absolutely irreducible representation in characteristic 2.
Hence dx Aq5 is .#)-maximal in odd characteristic. If the characteristic
is 2 then we can show using Magma (file sldiml4cont) that A5 is an
S1-subgroup of Ajg. Furthermore, S15 < S16 and both A5 and Agg
have class stabiliser {v).

By Lagrange’s theorem Ajg has to be .#]-maximal.

By [12], Ly(13) is a subgroup of both A5 and G2(3) and there are no
other possible containments by Lagrange’s theorem. Looking at the
character tables of these three groups ([12, 24, 14]), it is clear that
L2(13); can only be an .#j-subgroup of Aj5. Using Magma we see
that Ais has exactly one conjugacy class A of subgroups isomorphic
to La(13) (file sldiml4cont). By looking at the traces of elements of A
we see that this conjugacy class does not correspond to an absolutely
irreducible 14-dimensional representation of L(13). Hence d x La(13)
is not an .#;-subgroup of d x A5 and hence has to be .#;-maximal.
Looking at the character tables [12, 24, 14], we can see that La(13)2
could only be an .#7-subgroup of G2(3). We can easily check that Ga(3)
has exactly one conjugacy class of subgroups isomorphic to La(13) (file
sldiml4cont). Looking at elements of order 3 it follows that Ga(3) has
no conjugacy class of subgroups corresponding to La(13)s.

Computer calculations show that neither A5, Ajg nor Go(3) have any
absolutely irreducible subgroups isomorphic to Ly (13) in characteristic
2 (see file sldim14cont). Hence Lg(13) is .#;-maximal in Q7,(2).

In characteristic 3 there are no 14-dimensional .#;-subgroups of Q7 (3)
that could contain S¢(3) by Lagrange’s theorem.

By [12], U3(3).2 is a subgroup of Ga(3). Furthermore the character
values of the two 14-dimensional absolutely irreducible representations
of Us(3) and G2(3) coincide and there are no reducible representations
of Us(3) with character values corresponding to the 14-dimensional
absolutely irreducible representation of Go(3). Finally, Out(Us(3)) =
2 and hence no extension of d x Us(3) is .#}-maximal.

The only possible containment is Go(3) < Ajs, A6 but the smallest
permutation representation of Gg(3) acts on 351 points by [17].

By Lagrange’s theorem 2 x J; can not be contained in any of the other
1-subgroups and hence has to be maximal.

Note that Ais and Aqg are the only .#-subgroups that could contain
Jo by Lagrange’s theorem. It is straightforward to check using Magma
(file sldim14cont) that Jo is not a subgroup of Ajs and hence not a
subgroup of Ajs. ]
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7 Maximal .#}-Subgroups in Dimension 15

To determine the .#;-maximal subgroups of classical groups in dimension 15
we will again use the theory developed in Chapter 4. This chapter has the
same structure as the previous two chapters, Chapter 5 and Chapter 6.

7.1 #-Subgroups in Dimension 15

The following table, Table 7.1.1, contains information about the potential
15-dimensional .#;-maximal subgroups. It was put together using the paper
by Hifl and Malle ([18]), the ATLAS ([12]), the Brauer character tables
([24]), and GAP ([14]). For a description on how to read this table please
see Section 5.1.

Note that 3.A7 and U4(2) have two 15-dimensional absolutely irreducible
representations that are not weakly equivalent and we denote the images of
these representations by the subscripts ; and ».

The following lemma gives the number of weakly equivalent representa-
tions of La(16).

Lemma 7.1.1. Let G = Ly(16). If p=1,2,4,8,9,13,15,16 (mod 17) then
G has (up to equivalence) two sets of four weakly equivalent 15-dimensional
representations, whereas if p = 3,5,6,7,10,11,12,14 (mod 17) then there
are (up to equivalence) eight weakly equivalent representations of G.

Proof. Let p; be one of the 15-dimensional representations with characters
X2, X3, X4 or x5 and let p; denote one of the 15-dimensional representations
with characters xg, X7, X8 Or X9 as given in [12, 24].

To show that p; and p; are weakly equivalent we need to show that
there exists a € Out(G) or ¢ € Out(Of5(g)) such that gp; and (g%p;)® are
equivalent for all g € G by Definition 4.3.2 and Table 7.1.1. Using [12, 24], it
is straightforward to show that the outer automorphism a € Out(G) of order
4 fuses the four representations p; and it also fuses the four representations
Pj-

Furthermore, ¢ is non-trivial if and only if the smallest e such that
Gpi < Qf5(p°) is strictly greater than 1. By Table 7.1.1 and Table 2.2.1 we
find that e = 2 when p = 4,13 (mod 17), e = 4 when p = 2,8,9, 15 (mod 17)
and e = 8 when p = 3,5,6,7,10,11,12,14 (mod 17).

We can show that if e < 4, then ¢ permutes the representations of the
form p; among each other and similarly for p;. When e = 8 however, then
for all i we can find a j such that gp; = (gp;)? for all g € G. O
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Table 7.1.1: Potential .#1-maximal subgroups in dimension 15

Gp Order Ind #p Stab Charc ChR Out
3.A¢ 23.33.5 o 2 23 0,5 (# 2,3) Z[zs] 22
3.A7, 23.3%3.5.7 o 2 1 0,5,7(# 2,3) Z[z3] 2
3.A7, 23.33.5.7 o 2 1 0,5(#2,3,7) Z[zs] 2
3.A7 23.3%3.5.7 o 2 1 2 Z[zs3] 2
L2(31) 25-3-5-31 o 2 1 0,2,3,5(# 31) Z[bs1] 2
3.L3(4) 26.3%3.5.7 o 6 27 0,5,7(# 2,3) Z[z3] 2 x S3
31.U4(3) 27-37.5.7 o 2 29 0,2,5,7(+# 3) Z[zs3] 22b
M2 26.33.5.11 o 2 1 3 Z[b11] 2
3.Mg 27.3%3.5.7.11 o 2 1 2 Z[b11,23] 2
Ay 23.32.5.7 + 1 2 0,3,5(#2,7) 7 2
Alg 214.36.53.72 4 1 2 0,3,5,7,11,13 (¢ 2) Z 2
11-13
Aq7 214.36.5%.72 1 2 17 y/ 2
11-13-17

Lo(16) 2%.3.5.17 + 4,40r 81 0,3,5(# 2,17) Z[y17] 4
Lo(16) 2%*-3-5-17 + 1 4 17 7 4
L2(29) 22-3-5-7-29 + 2 1 0,3,5,7(+# 2,29) Z[bg] 2
Ls(4) 26.32.5.7 + 3 22 3 Z 2 x S3
S6(2) 29.3%.5.7 + 1 1 0,5,7(# 2,3) Z 1
Ug(2)1 26-3%-5 + 1 2 0,5 (# 2,3) Z 2
Uys(2)2 26-3%.5 + 1 2 0,5 (# 2,3) Z 2

alfp=1,2,4,8,9,13,15,16 (mod 17) then there are (up to equivalence) two sets of four
weakly equivalent representations, whereas if p = 3,5,6,7,10,11,12,14 (mod 17) then
(up to equivalence) all eight 15-dimensional representations are weakly equivalent.

b Note that Out(U4(3)) = Dg but Out(31.U4(3)) = 22 by [12, p.xx and p.52].

Information regarding the algebraic irrationalities that appear in dimen-
sion 15 can be found in Table 2.2.1 on p.19.

Theorem 7.1.2. Let G be an .#1-subgroup of Q € {SLiz(q), 255(¢q)}. Then
G is contained in Table 7.1.1.

Proof. See the tables in [18]. O

7.2 Schur Indicator o

In this section we will look at the groups 3.Ag, 3.A7, ,, 3.A7, La(31), 3.L3(4),
31.U4(3), M12 and 3.Mags as they have Schur indicator o by Table 7.1.1.

Proposition 7.2.1 (3.Ag).

(i) If p = 1 (mod 3) then SLi5(p) has (p — 1,15) conjugacy classes of
S -subgroups isomorphic to 3.A¢.23 which have class stabiliser () in
Out(Li5(p))-
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(7i) If p =2 (mod 3), p # 2, then there exist (p + 1,15) conjugacy classes
of S1-subgroups of SU15(p) isomorphic to 3.A¢.23, with class stabiliser
() in Out(Us5(p)).

Proof. Let G = 3.Ag. Then Out(G) = 22 and the character ring of a 15-
dimensional absolutely irreducible representation p of G is Z[z3] by Table
7.1.1. Hence, it follows from Lemma 4.2.1 and Table 2.2.1 that G < SLj5(p)
if p=1(mod 3) and G < SU35(p) if p =2 (mod 3) (p # 2).

Furthermore, p splits into p; and py and (G.23)p; has Schur indicator
o and character ring Z[z3]. Hence (G.23)p; preserves only the zero form if
p = 1 (mod 3) and a unitary form otherwise. Note that (G.23)p; = (G, g)
where g is some element of order 4 in G.23\G with g2 € G. Here Trace(gps) =
Trace(g%p) = —1. A straightforward calculation shows that G.23 < SLi;(p).

Since Out(G) = 22 and both the 2; and the 25 outer automorphisms of
G fuse the two weakly-equivalent representations of G we find that there is
one conjugacy class of G.23 in the respective conformal group C by Lemma
4.3.3. Then C splits into (pF1,15) classes in SLI—F5 (p) respectively by Lemma
4.3.3.

If p =1 (mod 3) then it is straightforward to show using Lemma 4.4.1
and Lemma 4.4.2 that v stabilises one of these conjugacy classes. If p = 2
(mod 3) then this follows from Lemma 4.4.1 and Lemma 4.5.1. O

Proposition 7.2.2 (3.A7,).
Let 3.A7, be the image of a 15-dimensional absolutely irreducible represen-
tation p of 3.A7 which has character value —1 for all involutions.

(i) If p = 1 (mod 3), then there are (p — 1,15) conjugacy classes of .71~
subgroups of SLi5(p) weakly equivalent to 3.A7,, with class stabiliser
(y) in Out(Li5(p))-

(i) If p=2 (mod 3), p # 2, then SU15(p) has (p+1,15) conjugacy classes
of S1-subgroups weakly equivalent to 3.A7,, with class stabiliser () in
Out(Uss(p))-

Proof. Let G = 3.A7,. Then Out(G) = 2 and the character ring of p is
Z|z3] by Table 7.1.1. Hence it follows from Lemma 4.2.1 and Table 2.2.1
that G < SLi5(p) if p = 1 (mod 3) and G < SUys(p) if p = 2 (mod 3)
(p # 2). By Lemma 4.3.3 there are (15,p F 1) conjugacy classes of G in
SLli5 (p) since two weakly equivalent representations of G are fused by the
outer automorphism « of order 2 of G. By Lemma 4.4.1, ®p is equivalent
to p?. Hence, by Lemma 4.4.2 and Lemma 4.5.1, one of these conjugacy
classes is stabilised by ~. O
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Proposition 7.2.3 (3.A7,).
Let 3.A7, correspond to the image of a 15-dimensional absolutely irreducible
representation of 3.Ar which has character value 3 for all involutions.

(i) If p =1 (mod 3), then there are (p — 1,15) conjugacy classes of -
subgroups of SLi5(p) weakly equivalent to 3.Az,, with class stabiliser
(v in Out(Lis(p))-

(i) If p = 2 (mod 3), p # 2, then there are (p + 1,15) conjugacy classes
of S1-subgroups of SU15(p) weakly equivalent to 3.Az,, with class sta-
biliser {yy in Out(Uys(p)).

Proof. Similar to Proposition 7.2.3. O

Proposition 7.2.4 (3.A7 in characteristic 2).
There are three conjugacy classes of .1 -subgroups of SU15(2) isomorphic to
3.A7, with class stabiliser {y) in Out(Uy5(2)).

Proof. Let G = 3.A7 with Out(G) = 2. Since the character ring of a 15-
dimensional absolutely irreducible representation p of G is Z[z3] by Table
7.1.1, G is a subgroup of SU15(2) by Lemma 4.2.1 and Table 2.2.1. Further-
more, the two weakly equivalent representations of G are fused by an outer
automorphism « of order 2 of G. Hence there are (3,15) = 3 conjugacy
classes of G in SU;5(2) by Lemma 4.3.3. Using Lemma 4.4.1 it is straight-
forward to show that “p is equivalent to p”. Hence, by Lemma 4.5.1, the
class stabiliser is (). O

Proposition 7.2.5 (L2(31)).

(i) If p = 1,2,4,5,7,8,9,10, 14, 16, 18, 19, 20, 25, 28 (mod 31), then there
are (p—1,15) conjugacy classes of .71 -subgroups of SLi5(p) isomorphic
to La(31), with class stabiliser () in Out(Li5(p)).

(ii) If p = 3,6,11,12,13,15,17, 21,22, 23, 24, 26,27, 29, 30 (mod 31), then
there are (p+1,15) conjugacy classes of .71 -subgroups of SU15(p) iso-
morphic to La(31), with class stabiliser {y) in Out(U15(q)).

Proof. Let G = Lg(31). Then Out(G) = 2 and the character ring of the 15-
dimensional absolutely irreducible representations of G is Z[bs;]| by Table
7.1.1. From Table 2.2.1 and Lemma 4.2.1 it follows therefore that G <
SL15(p) when b3y € F;, and G < SUj5(p) when b3y € Fj2\F,. Since the two
weakly equivalent representations of G are fused by the non-trivial outer
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automorphism of G, there are (p F 1,15) conjugacy classes of G in SLli5 (p)
by Lemma 4.3.3.

Now note that b = 3117 zgfz which is the complex conjugate of bs;.
Hence the character values of two weakly equivalent representations are
complex conjugates of each other by [12, 24] and therefore at least one of
the conjugacy classes of G in SLli5(p) is stabilised by v by Lemma 4.4.1,
Lemma 4.4.2 and Lemma 4.5.1. O

Proposition 7.2.6 (3.L3(4)).

(i) If p =1 (mod 3), then SLi5(p) has (p—1,15) conjugacy classes of .-
subgroups isomorphic to 3.L3(4).27 =~ SL3(4).21, with class stabiliser
() in Out(Li5(q)).

(i) If p= 2 (mod 3), p # 2, then SU15(p) has (p+1,15) conjugacy classes
of S1-subgroups isomorphic to 3.13(4).21 = SL3(4).21, with class sta-
biliser {yy in Out(Uy5(q)).

Proof. Let G = 3.L3(4). Then Out(G) = 2 x S3 and there are (up to
equivalence) 6 weakly equivalent 15-dimensional absolutely irreducible rep-
resentations of G with character ring Z[zs] by [12, 24]. Hence, by Lemma
4.2.1 and Table 2.2.1, G < SLy5(p) if and only if p = 1 (mod 3). Further-
more, by [12, 24] and Lemma 4.2.4 we find that G.2; < SLj5(p) when p =1
(mod 3) and G.27 < SUy5(p) when p = 2 (mod 3) (p # 2).

Let z be the central element of 2 x S3. Then z corresponds to the 2
automorphism in [12, 24]. Let b be an element of order 2 of S3. Without
loss of generality we can let b and zb correspond to the 25 and the 235 auto-
morphism of G respectively. Then ¢', b” and bz’, bz" are conjugates of b and
z respectively under automorphisms of S3. Hence over G.21, b and bz (and
any images under automorphisms of them) are induced by v € Out(Li3(q))
by Lemma 4.4.1. The number of conjugacy classes follows from Lemma 4.3.3
and the stabiliser of the conjugacy classes follows now from Lemma 4.4.2
and 4.5.1. O

Proposition 7.2.7 (31.U4(3) in characteristic not 2).

(i) If p = 1 (mod 3) then SLi5(p) has (p — 1,15) conjugacy classes of
S1-subgroups isomorphic to 31.U4(3).22, with class stabiliser () in
Out(Li5(p)).

(i) If p = 2 (mod 3) then SUjs(p) has (p + 1,15) conjugacy classes of
F1-subgroups isomorphic to 31.U4(3).22, with class stabiliser {y) in
Out(Uss(p)).
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Proof. Let G = 31.U4(3). Then Out(G) = 22 and the character ring of
the absolutely irreducible 15-dimensional representations of G is Z|[z3] by
Table 7.1.1. Hence G < SLi5(p) when p = 1 (mod 3) and G < SUj5(p)
when p = 2 (mod 3) by Lemma 4.2.1 and Table 2.2.1. Since the two non-
equivalent representations are fused by the 2; automorphism of G there is
one conjugacy class of G in the respective conformal group which splits into
(p F 15) classes in SLf;(p) respectively by Lemma 4.3.3. Furthermore it
follows from [12, 24], Lemma 4.2.4 and Lemma 4.2.1 that G.22 < SLj5(p)
when p = 1 (mod 3) and G.23 < SUj5(p) when p = 2 (mod 3). Finally, by
Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.5.1, at least one of these conjugacy
classes is stabilised by ~. O

Proposition 7.2.8 (M2 in characteristic 3).
There is one conjugacy class of %1 -subgroups of SLi5(3) isomorphic to Mya,
with class stabiliser {y) in Out(Li5(3)).

Proof. Let G = Mja, so Out(G) = 2. Then the character ring of the 15-
dimensional absolutely irreducible representations of G is Z[bi1] by Table
7.1.1. From Lemma 4.2.1 and Table 2.2.1 it follows therefore that G <
SL15(3). Since the non-trivial outer automorphism of G fuses the two 15-
dimensional absolutely irreducible weakly equivalent representations of G
it follows that there is (3 — 1,15) = 1 conjugacy class of G in SLi5(3) by
Lemma 4.3.3. Furthermore, the class stabiliser is (7) by Lemma 4.4.1 and
Lemma 4.4.2. U

Proposition 7.2.9 (3.Mag).
There are three conjugacy classes of .71 -subgroups of SU15(2) isomorphic to
3.Maa, with class stabiliser {~y) in Out(Uy5(2)).

Proof. Let G = 3.Mas. Then Out(G) = 2 and the character ring of the
absolutely irreducible 15-dimensional representations of G is Z[bi1,23] by
Table 7.1.1. Therefore, G < SUy5(2) by Table 2.2.1 and Lemma 4.2.1.
Furthermore, the non-trivial outer automorphism of G fuses the two weakly
equivalent representations and hence there are (2 + 1,15) = 3 conjugacy
classes by Lemma 4.3.3. Finally, one can show that the character values of
the two non-equivalent 15-dimensional absolutely irreducible representations
of G are complex conjugates of each other and hence, by Lemma 4.4.1 and
Lemma 4.5.1, the class stabiliser is (7). O
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Maximality
Finally we will show which of these groups are .#j-maximal in SLIL5 (q).

Proposition 7.2.10.
Let d := (p — 1,15) in Case L and let d := (p + 1,15) in Case U.

(i) No extension of d o 3.A¢ is S1-mazximal in any extension of SLIL5 (p).

(i) Ifp # 2,3 then do3.A7, is not /1 -mazimal in SLix(p) but do3.Az7, .{y)
is /1 -mazimal in SLz (p).(7).

(iii) If p # 2,3,7 then d o 3.A7, is 1-mazximal in SLI%(p).

(iv) The group 3.A7 is not A1 -mazximal in SU15(2) but 3.A7.{y) is -
mazimal in SU15(2).(y).

(v) If p # 31 then d x Ly(31) is 1 -mazimal in SLE(p).

(vi) If p # 2,3 then d o 3.13(4).21 is .1-mazimal in SLi(p).
(vii) If p # 3 then d o 31.U4(3).25 is %1 -mazimal in SLE(p).
(viti) The group Mg is % -mazimal in SL15(3).

(iz) The group 3.May is .1-mazimal in SU15(2).

Proof. (i) By Lagrange’s theorem 3.Ag can be a subgroup of 3.A7, 3.L3(4)
or of 31.U4(3). By [12], 3.A¢.23 is a subgroup of 3.L3(4).2;. Let p be an
absolutely irreducible 15-dimensional representation of 3.L3(4). Look-
ing at the character values of the subgroups of 3.L3(4)p isomorphic to
3.Ag, we see that 3.Ag is indeed an absolutely irreducible subgroup of
3.L3(4)p (see file s1dim15cont). Furthermore, Ag.22 < L3(4).22 by [12]
and hence no extension of 3.Ag is .#1-maximal.

(ii) By Lagrange’s theorem 3.A; can be a subgroup of 3.L3(4) and of
31.U4(3) in odd characteristic. By Magma (file sldim15cont) 3.A7 <
31.U4(3). Let p be an absolutely irreducible 15-dimensional represen-
tation of 31.U4(3). We can show using [12, 24], that 3.A7p = 3.A7,.
By [12] S7 < Uy(3).22 but 3.A7,.2 € SLiz(p) whereas 31.U4(3).22 <
SLix(p). Hence d o 3.A7,.(v) is .#3-maximal in SL{;(p).(7).

(iii) Using [12, 24], 3.A7, is not an .#j-subgroup of 3.L3(4) and by (ii),
3.A7, is not an .#j-subgroup of 3;1.U4(3) either. There are no other
possible containments by Lagrange’s theorem.
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(iv) In characteristic 2 we can use Magma (see file sldim15cont) to show
that 3.A7 is an absolutely irreducible subgroup of the .#j-subgroup
3.Mag in dimension 15. However S7 § Ms3.2 by [12] and hence do3.A7
extends to a novelty under (y). If 3.A7 < 31.U4(3) then 3.A7 would
also extend to a novelty by (ii).

(v) By Lagrange’s theorem, L(31) cannot be contained in any of the other
15-dimensional .#;-subgroups of SLi;(p).

(vi) By [12], L3(4) is a subgroup of U4(3) but Lg(4).2; is not a subgroup
of Uy(3).25. Hence 3.L3(4).2; cannot be a subgroup of 3;.Uy(3).25.
Furthermore, note that 3.L3(4) cannot be an .#;-subgroup of 3.Mgs as
the .#1-subgroup 3.Mas only exists in characteristic 2. There are no
other containments possible by Lagrange’s theorem.

(vii) By Lagrange’s theorem, NSLlis(p)(?’l'U‘l(?’)) has to be .#}-maximal.

(viii) By Lagrange’s theorem, M2 could be a subgroup of 3.Mas. However
in dimension 15, Mio is an .#j-subgroup in characteristic 3, whereas
the .#;-subgroup 3.Masy only exists in characteristic 2.

(ix) The .#j-subgroup 3.Msgs cannot be a subgroup of any of the other

15-dimensional .#-subgroups of SLiz(¢) by Lagrange’s theorem. [

7.3 Schur Indicator +

Here we will determine the behaviour of the groups A7, A, A7, La2(16),
L2(29), L3(4), 86(2) and U4(2)172.

Proposition 7.3.1 (A7).
If p # 2,7 then Q5(p) has 2 conjugacy classes of .1 -subgroups isomorphic
to A7.2 with trivial stabiliser in Out(O%5(p)).

Proof. Let G = A7 with Out(G) = 2. By Table 7.1.1, G < Q55(p) when
p # 2,7. Furthermore, computer calculations (file a7d15comp) show that
in fact A7.2 < Q95(p) for all p # 2,7. There is up to equivalence one
absolutely irreducible 15-dimensional representation of G and hence there
are 2 conjugacy classes of G in Qf5(p) by Lemma 4.3.3. Since G.2 does not
afford any non-trivial outer automorphism, the stabiliser of the conjugacy
classes has to be trivial. O
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Proposition 7.3.2 (Ajg).

(i) If p=1,7 (mod 8), then there are 2 conjugacy classes of ./, -subgroups
of Q%5(p) isomorphic to A1.2, with trivial stabiliser in Out(O75(p)).

(ii) If p = 3,5 (mod 8) then there exists a single conjugacy class of .71-
subgroups of Qi5(p) isomorphic to Ais, with class stabiliser {(§) in
Out(O75(p))-

Proof. Let G = Ajg. Then Out(G) = 2 and by Table 7.1.1 it is clear that
G < Qi5(p). Computer calculations (file al6d15comp) and Table 2.2.1 show
that G.2 < Qf5(p) if and only if p = 1,7 (mod 8). Otherwise the element
inducing the non-trivial outer automorphism of G sits inside SO75(p)\Q75(p)

and hence is induced by §. The number of conjugacy classes follows from
Table 7.1.1 and Lemma 4.3.3. O

Proposition 7.3.3 (A7 in characteristic 17).
There exist two conjugacy classes of #1-subgroups of 255(17) isomorphic to
A17.2, with trivial stabiliser in Out(O75(17)).

Proof. Let G = Aj7. Then Out(G) = 2 and computer calculations (file
al7d15comp) show that S17 < Q75(17). Hence there are 2 conjugacy classes
of G in QF5(17) by Table 7.1.1 and Lemma 4.3.3. O

Proposition 7.3.4 (L2(16) in characteristic not 17).

(i) If p = 1,16 (mod 17), then there exist 4 conjugacy classes of /-
subgroups of Q75(p) isomorphic to La(16), which have trivial stabiliser

in Out(Of5(p)). Furthermore, there exist two Aut(Of5(p))-classes of
L2(16).

(i) If p = 4,13 (mod 17), then there exist 4 conjugacy classes of .7 -
subgroups of Q35(p?) isomorphic to La(16), which have class stabiliser
(¢) in Out(O55(p?)). Furthermore, there are two Aut(O35(p?))-classes
Of L2(16)

(iii) If p=2,8,9,15 (mod 17), p # 2, then Q5(p*) has 4 conjugacy classes
of S1-subgroups isomorphic to La(16) which have class stabiliser {¢)

in Out(O55(p*)). Furthermore, there exist two Aut(O5(p*))-classes
of La(16).

(iv) If p = 3,5,6,7,10,11,12,14 (mod 17), then Q55(p®) has 4 conjugacy
classes of .1 -subgroups isomorphic to Lo(16), with class stabiliser {¢*)
in Out(05(p®))-
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Proof. Let G = Lg(16), so Out(G) = 4. In dimension 15 there are (up to
equivalence) either two sets of four weakly equivalent absolutely irreducible
representations or 8 weakly equivalent absolutely irreducible representations
p of G with character ring Z[yi7] by Table 7.1.1 and Lemma 7.1.1. Hence
G < Q55(p°), where e follows from Table 2.2.1. Furthermore, there are either
1 or 2 conjugacy classes of G in CO{5(p°®) by Lemma 4.3.3 depending on e.
If e = 8, then there exist 2 classes and otherwise there exists 1 conjugacy
class by Lemma 4.3.3. By Lemma 4.3.3 each of these conjugacy classes splits
into 2 classes in 295(p°®). Note that there are two Aut(Of5(p®))-conjugacy
classes of G when e < 8.

If p=1,16 (mod 17) then 255 (p) has no non-trivial outer automorphism
that could induce any non-trivial outer automorphism of G and hence the
stabiliser of the conjugacy classes is trivial.

If p = 4,13 (mod 17) then it follows by Lemma 4.7.2 that the Q%5 (p?)-
conjugacy classes of G are stabilised by ¢ in Out(O$5(p?)) since G.2\G
contains involutions.

If p=2,8,9,15 (mod 17) then “p is equivalent to p® using Lemma 4.3.8,
where « is the outer automorphism of order 4 of G. Furthermore, we can find
a matrix x € GLy5(p?) with 271 (gp)®z = ¢g%p for all g € G and zFzT = F,
where F' is our standard form matrix preserved by Gp (see file 1216d15comp).
Hence, by Lemma 4.7.3, if sp(x) = 1 then all conjugacy classes of Gp are
stabilised by ¢. Using Magma it is straightforward to show that the spinor
norm of x is indeed 1 in all relevant characteristics.

If p=3,5,6,7,10,11,12,14 (mod 17) then %*p is equivalent to qu2 using
Lemma 4.3.8 again. Furthermore, when p # 3,5, then there exists a matrix
x € GL15(p®) of spinor norm 1 such that x_l(gp)¢2x = g% for all g € G
and zF2T = F. Hence, by Lemma 4.7.3, a conjugacy class is stabilised
by (¢?) in Out(O%5(p?)). If p = 3,5, then our computer calculations show
that there exists a matrix x € SO (p®) such that 2 Y gp)? 'z = g°p for all
g € G. Using a similar approach as in Lemma 4.7.3, we can show that Gp is
stabilised by ¢? since z has spinor norm 1. ]

Proposition 7.3.5 (L2(16) in characteristic 17).
There ezist two conjugacy classes of #1-subgroups of Q95(17) isomorphic to
Ly(16).4, with trivial stabiliser in Out(O5(17)).

Proof. Let G = Ly(16). Then Out(G) = 4 and from Table 7.1.1 it follows
that G < Q5(17). Computer calculations (1216ch17d15comp) show that
L2(16).4 < Q5(17). The number of conjugacy classes now follows from
Table 7.1.1 and Lemma 4.3.3. O
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Proposition 7.3.6 (L2(29)).

(i) If p = 1,4,5,6,7,9,13,16,20,22,23,24,25,28 (mod 29) then Qf5(p)
has 2 conjugacy classes of #1-subgroups isomorphic to 1L2(29), with
trivial stabiliser in Out(O%5(p))-

(ic) If p = 2,3,8,10,11,12,14,15,17,18,19,21, 26,27 (mod 29), p # 2,
then Q55(p?) has 2 conjugacy classes of .#1-subgroups isomorphic to
Lo(29), with class stabiliser {¢) in Out(O55(p?)).

Proof. Let G = L2(29). Then Out(G) = 2 and the character ring of an
absolutely irreducible 15-dimensional representation p of G is Z[bag] by Ta-
ble 7.1.1. Hence it follows from Table 2.2.1 that G < Qf5(p) if and only if
bag € F,. Otherwise G' < Q95(p?). Furthermore, the outer automorphism «
of order 2 of G fuses two weakly equivalent 15-dimensional absolutely irre-
ducible representations of G. Hence the number of conjugacy classes follows
from Lemma 4.3.3.

If bog € I, then the stabiliser of these conjugacy classes is trivial. Now
suppose that bag € )2 \F,. To show that “p is equivalent to p? it is sufficient
to show that b5y = b}y by Lemma 4.3.8 and [12, 24]. This is indeed the case.
Since G.2\G contains involutions it follows from Lemma 4.7.2 that the class
stabiliser is ¢. O

Proposition 7.3.7 (L3(4) in characteristic 3).
There is a single conjugacy class of #1-subgroups of Q5(3) isomorphic to
L3(4).29, with class stabiliser (0) in Out(O75(3)).

Proof. Let G = L3(4). Then Out(G) = 2 x S3. Since the 15-dimensional
absolutely irreducible representations of G have Schur indicator 4+ and char-
acter ring Z, it follows that G' < Q5(3). Furthermore, G.22 has an abso-
lutely irreducible 15-dimensional representation with character ring Z and
Schur indicator +. Computer calculations (file 134d15comp) show that only
G .29 < Q75(3). The other two outer automorphisms 2; and 29 are induced
by elements in SO75(3)\295(3). Note that the 2; outer automorphism is in-
duced by the central element z of 2 x S3. Let b be an element of Sg of order
2. Without loss of generality we can assume that b induces the 25 outer au-
tomorphism and bz the 23 outer automorphism of G. Hence over G.29, the
27 and the 23 automorphism are induced by § € Out(O95(3)). Finally, there
is one conjugacy class in the conformal group as the three weakly equivalent
representation are fused by outer automorphisms of G. Hence there is one
conjugacy class of G in Q75(3) by Lemma 4.3.3. O
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Proposition 7.3.8 (Ss(2)).
If p # 2,3 then Q5(p) has 2 conjugacy classes of .1 -subgroups isomorphic
to Se(2), with trivial stabiliser in Out(O%5(p)).

Proof. Since Out(Sg(2)) = 1 the result follows immediately from Table 7.1.1
and Lemma 4.3.3. O

Proposition 7.3.9 (U4(2);).
Let Uy(2)1 be the image of a 15 dimensional absolutely irreducible represen-
tation of Uy(2) with character value —1 for all involutions.

Ifp # 2,3 then there are two conjugacy classes of .71 -subgroups of 295 (p)
weakly equivalent to Uy(2)1.2, with trivial stabiliser in Out(O55(p)).

Proof. Since Out(Uy(2)) = 2 this follows from Table 7.1.1, computer calcu-
lations (file u421d15comp) and Lemma 4.3.3. O

Proposition 7.3.10 (U4(2)2).
Let Uy(2)2 be to the image of a 15-dimensional absolutely irreducible repre-
sentation of Us(2) whose involutions have character values 7 or 3.

If p # 2,3 then there are two conjugacy classes of 71 -subgroups of Q5(p)
weakly equivalent to Ug(2)2.2, with trivial stabiliser in Out(O5(p)).

Proof. Let G = Uy(2)2. Then Out(G) = 2 and the result follows from
computer calculations (file u422d15comp), Table 7.1.1 and Lemma 4.3.3. [

Maximality
Here we will determine which of these groups are indeed .#-maximal in
any extension by outer automorphisms of Q(q).

Proposition 7.3.11.

(i) If p # 2,7 then A7.2 is %1 -mazximal in Q55(p).

(it) If p # 2,17 then Noo_(;)(A16) s 1-mazimal in Q5(p). No extension
of Aig is 1-mazimal in any extension of Q75(17).

(iii) The group A17.2 is #1-maximal in Q55(17).

(iv) If there exists an .#1-subgroup G = La(16) of Q95(q), ¢ # 17, then G
s S1-maximal.

(v) No extension of La(16) is .1 -mazximal in any extension of Q75(17).
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(vi) If there exists an #1-subgroup G = L2(29) of Q95(q) then G is S-
maximal.

(vii) The group L3(4).29 is .1-maximal in Q55(3).
(viii) If p # 2,3 then S¢(2) is 1-mazimal in Q35(p).
(ix) If p # 2,3 then Uy(2)1.2 is %1 -mazimal in Q5(p).
(z) No extension of Uy(2)2.2 is .#1-mazimal in any extension of Q55(p).

Proof. (i) By Lagrange’s theorem, A7 could be a subgroup of Ajg, Aj7,
L3(4) or Se(2). Using Magma (file sldim15cont) we can show that Ay
is not a subgroup of L3(4). Since Sg is a subgroup of Sg(2) ([12]),
A7.2 is a subgroup of Sg(2). Using Magma again we can show that
the 15-dimensional absolutely irreducible representations of Sg(2) in-
duce reducible representations of A7. We can also show that the 15-
dimensional absolutely irreducible representations of Ajg and A7 in-
duce reducible representations of Az.

(ii) It is clear that Ajg < Ay7 and that this is the only possible contain-
ment. However, A;7 is only an .#;-subgroup of €295(¢) in characteristic
17 and hence Ajg is .#1-maximal in the other characteristics. Compar-
ing the Brauer character tables ([14]) of Aj7 and A6 and using Lemma
4.9.2 it follows that Aig is indeed an .#-subgroup of A7 in charac-
teristic 17. Furthermore, S14 < S17 and both have trivial stabiliser in
Out(055(17).

(iii) There are no containments possible by Lagrange’s theorem.

(iv) The only other .#j-subgroup that could contain L2(16) is Aj7. But
A7 is only an .#j-subgroup of €295(q) in characteristic 17.

(v) Using Magma (file sldim15cont), we find that A7 has (up to conju-
gacy) two subgroups isomorphic to Ly(16).4 in dimension 15 and both
of these subgroups are absolutely irreducible. Furthermore, L(16).4
has trivial stabiliser.

(vi) By Lagrange’s theorem, L2(29) cannot be an .#;-subgroup of any of
the other .#;-subgroups of 95(q).

(vii) The possible groups that could contain Lg(4) by Lagrange’s theorem
are Ajg, Aj7 and Sg(2). However, the smallest permutation represen-
tation of L3(4) has degree 21 ([17]) and S¢(2) is not an .#;-subgroup
of Q95(3).

(viii) Since the smallest permutation representation of Sg(2) has degree 28
by [17], S¢(2) cannot be a subgroup of Ajg or Aj7 which are the only
possible containments by Lagrange’s theorem.
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(ix)

The group Uy(2);.2 can be a subgroup of A, A7 and Sg(2) by La-
grange’s theorem. However, the smallest permutation representation
of Uy(2) acts on 27 points by [17]. Hence Uy4(2) is not a subgroup
of either Ajg or Aj7. Even though Uyg(2).2 is a subgroup of Sg(2)
the character values of the respective 15-dimensional absolutely irre-
ducible representations do not match by [12, 24]. Hence U4(2);.2 is
S1-maximal.

By [12], U4(2).2 is a subgroup of Sg(2). Furthermore the respective
character values match and there is no combination of irreducible rep-
resentations of Uy(2) of dimension smaller than 15 that could have
been induced by the absolutely irreducible 15-dimensional representa-
tions of Sg(2). Hence Uy(2)2.2 is a subgroup of S¢(2) in dimension 15
by Lemma 4.9.2. O
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8 .Y-Maximal Subgroups - The Defining Charac-
teristic Case

In this chapter we will develop the theory necessary to calculate the maximal
S5-subgroups. Recall from Definition 3.5.3 that .#%-subgroups are groups
of Lie type in characteristic p. Since their representations arise from those
of their associated algebraic groups, we will give a very short introduction
to the theory behind algebraic groups. For a more thorough introduction
see e.g. [15]. The book by Malle and Testerman [30] also gives an exposition
of algebraic groups and gives more details regarding their representations.
Another standard textbook covering this topic is by Carter [11].

We will briefly discuss representations of .#5-subgroups and their as-
sociated weights in Section 8.1. Most of these representations arise as
symmetric or exterior powers (Section 8.2) or as adjoint modules (Section
8.4). In Section 8.3 we then consider the representations of SLa(g) and in
Section 8.5 we will consider the behaviour of the outer automorphisms of
Qe {SL(q),Sp,(q), Q2 (q)} acting on the .#2-subgroups.

8.1 Algebraic Groups and Highest Weight Theory

In this section we will briefly discuss the theory behind the highest weight
of an algebraic group. This is a vector associated with each representation
of an algebraic group. Note that the theory behind this is fairly complex
and therefore we will only concentrate on the groups that are needed for
this thesis. The following is based on [30].

We will first define an algebraic group. To do so we will need to set up
some notation first.

Definition 8.1.1. Let K be an algebraically closed field. Let
X(J)={(z1,...,xn) € K" | f(z1,...,2,) =0 for all fe J},

where J < K[Th,...,T,] is an ideal. Then X (J) is called an algebraic set.
These algebraic sets in K™ form the closed sets of a topology on K", called
the Zariski topology (see [15, Section 1.1, p.1]). An affine variety is an
algebraic set together with the induced Zariski topology.

Definition 8.1.2. Let X,Y be two affine varieties. Then amap p: X — Y
which can be defined by polynomial functions in the coordinates is said to
be a morphism.
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Now we have the necessary setup to give a definition of an algebraic
group.

Definition 8.1.3. Let X be an affine variety and let X be equipped with
a group structure such that multiplication and inversion are morphisms of
varieties. Then X is a linear algebraic group. Note that any linear
algebraic group can be embedded as a subgroup of GL,(K) for some n and
some algebraically closed field K by [30, Thm 1.7, p.5].

Definition 8.1.4. A morphism of algebraic groups is a group homo-
morphism that is also a morphism of varieties.

From now on let K be an algebraically closed field and let A be a linear
algebraic group. Note that we will often just say that A is an algebraic
group.

Definition 8.1.5. A subgroup 7" of an algebraic group A is called a torus if
it is isomorphic to D,, for some m, where D,, is the group generated by the
diagonal matrices of GL,,(K). A torus is a maximal torus if it is maximal
among the tori of A with respect to inclusion.

Definition 8.1.6. A character of an algebraic group A is a morphism from
A into K*. The set of characters is denoted by X (A). A cocharacter of
A is a morphism p : K* — A. The set of cocharacters is denoted by Y (A).

Characters and cocharacters will play an important part in finding the
highest weight of a group, partly due to the following lemma.

Lemma 8.1.7 ([30, Prop 3.6, p.23]). Let T be a torus of an algebraic group
A with character set X(T') and cocharacter set Y (T). Let {,) be a map
X(T)x Y (T) — Z such that x(u(t)) = tX for all x € X(T), pe Y (T) and
te K*. Then any homomorphism X (T') — Z is of the form x — {x,7) for
somey € Y(T') and any homomorphism Y (T) — 7Z is of the form v — {x,7)
for some x € X(T).

We will now consider a special subset of the set of characters.

Definition 8.1.8. Let T be a maximal torus of an algebraic group A and
let x € X(T). Let g be the Lie algebra of A (see [30, Section 7, p.44]) and
let g, = {veg|t-tot = x(t)vforallt € T}. Then the set ®(A) := {y €
X(T)|x #0,gy # 0} is the set of roots of A.

A subset A € @ is a base of ® if for any 5 € ® we can find an integral
linear combination such that 8 = > A cacr with either all ¢, < 0 or all
Ca =0, cq € 7.
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By [30, Lemma 8.15 and Lemma 8.19, p.60] for each root «; there exists
a unique coroot ¢; such that {«;, ;) = 2, using the map X (T)xY(T) —» Z
as in Lemma 8.1.7.

We say that A € X(7T') is dominant if (A, &) > 0 for all a € A.

Example 8.1.9. Let H = SL3(K), where K is an algebraically closed field.
Then a maximal torus T of H is given by T := (diag(ca, 3,0 1871 |a, B €
K*). Furthermore,

O(H) = {xi |1 <i,j <3,i # j},

where x;;(t) = titj_1 for all t = diag(t1,te,t3) € T. Then A(H) = {x12, x23}
with x12(t) = B! and xa23(t) = aB? by [30, Example 8.2(2), p.51 and
Example 9.8, p.67].

From now on we will only consider the groups that are actually needed
in this thesis. Let K = F, and let P € {SL}(K),Sp,(K), 2 (K), G2(K)}.
Then P is a linear algebraic group by [30].

We now have the necessary setup to consider representations of P.

Definition 8.1.10. Let p : P — GL(V) be a representation such that V' is
a finite dimensional vector space over K and p is a morphism of algebraic
groups. Then p is a rational representation. Let T < P be a maximal
torus, let x € X(T) and let

Vy ={veV]|u(tp) = x(t)v for all t e T'}.
If V,, # 0 then x is a weight of V.

We also need to define a very important subgroup of an algebraic group
called a Borel subgroup. For a more general definition see [30, Def 6.3, p.37].

*

* *
lower triangular matrices of GL,(K). Then B = U, n P is a Borel sub-

group of P.

0
Definition 8.1.11. Let U, := {< > € GLn(K)} be the group of all

Definition 8.1.12. Let B < P be as in Definition 8.1.11 and let p : P —
GL(V) be a rational representation. Then there exists v € V\{0} such that
(v is invariant under Bp (see [30, Thm 4.1, p.26]). Then v* is a maximal
vector of V with respect to B.

Note that (v™) is stabilised by every maximal torus Tp of Bp and hence
vty e V) for some \ € X(T).
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Lemma 8.1.13 ([30, Thm 15.9, p.125]). Let p: P — GL(V) be a rational
representation and let vt be a maximal vector of V' (with respect to B). Let
A be the weight associated with v*. Then X is dominant.

Now we can finally define the highest weight of P with respect to a
rational representation p.

Definition 8.1.14. Let p: P — GL(V') be a rational representation, where
V = {((Pp)v™) for some maximal vector v* € V (with respect to a fixed
Borel subgroup B). If (v") < V) then ) is the highest weight of p. We
denote an irreducible K P-module with highest weight A by L(X).

Definition 8.1.15. Let A = {aq,...,qq} be a base of the root system ®
of P with respect to a maximal torus 7. Let A = {é1,...,q} be the
unique set of coroots of A. In particular that implies that {«;, ;) = 2 for
all i. Furthermore, let R = {\1,...,\;} be a set of characters such that
(Xi, &) = 0i;. Then the \; are fundamental dominant weights. Note
that this implies that a weight is dominant if it is a non-negative linear
combination of the fundamental dominant weights.

Remark 8.1.16. The highest weight A of a representation can be written
as A = Y a;\;, where a; € NO. In the tables of [29] the highest weight of a
rational representation p is denoted by (a;,a;—1,...,a1), where (0,...,0,1)
is the highest weight of the natural representation of P.

Example 8.1.17. Let H = SL3(K). Recall from Example 8.1.9 that every
element ¢ of a maximal torus 7 of H is of the form ¢ = diag(a, 3, 1871),
where o, 8 € K* and A(H) = {x12, x23}, where x12(t) = a8~ ! and x23(t) =
afB? for all t € T. Then A = {X12, X3}, where Y12(a) = diag(a,a™*,1) and
x23(a) = diag(1,a,a™!) for all @ € K*. To find the fundamental dominant
weight A; recall from Definition 8.1.15 that (A1, X12) = 1 and (A1, X23) = 0.
Hence a*X12) = \i(x12(a)) = Ai(diag(a,a™!,1)) = a! and aMX2s) —
A (Xe3(a)) = Mi(diag(1,a,a™1)) = a® from which it follows that A\;(t) = «
for all t € T. We can show similarly that A\o(t) = a5 for all te T.

The following lemmas will be useful when it comes to determining irre-
ducibility of representations and later for maximality calculations.

Lemma 8.1.18 ([30, Thm 15.17, p.128]).
(i) Two irreducible rational representations p1 and ps of P of highest
weights py and po are equivalent if and only if u1 = po.
(ii) If X is a dominant weight of a rational representation p of P then there
exists an irreducible rational representation of P with highest weight

A
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Lemma 8.1.19 ([30, Prop 14.12, p.127]). Suppose that My and My are
two irreducible modules with highest weights p1 and pe respectively. Then
the tensor product M ® My contains an irreducible subquotient (quotient of
submodule) with highest weight py + pa.

Definition 8.1.20. Let A\ = > a;\; be a dominant weight of P. Then X is
m-restricted if 0 < a; < m — 1 for some m € N\{0}.

Theorem 8.1.21 (Steinberg’s Tensor Product Thm, [35]). Let ¢ be a field
automorphism of K =¥, raising elements to their p-power. Furthermore,

let Ao, A1, ..., A\p be p-restricted weights associated with a K P-module. Then
as K P-modules,

LOo+pA+ ... 49" \) =2 L) @ L) ®...Q% L(\,).

Note that so far we have only considered representations of P defined
over F,. However we are interested in finding the representations of the finite
group P(q) € {SLE(q),Sp,(q), Q5 (q), Ga(q)}. Here the P(q) consists of the
fixed points of P under the map sending matrix entries to their ¢**-powers.
We have to find a way to restrict our representations of P to representations
of P(q).

Theorem 8.1.22 ([35]). Any module in characteristic p for P(q) is isomor-
phic to the restriction of L(X) to the module of P(q), where X is a g-restricted
weight of P.

Lemma 8.1.23. Letn € {13,14,15}. Let P(q) have an absolutely irreducible
representation p : P(q) — Q € {SL(¢"),Sp,(¢"), Q5 (¢")} that is absolutely
tensor indecomposable. Let C' be the conformal group associated with Q.
Then P(q)p is conjugate in C to a representation listed in [29].

Proof. This follows from the proof of [8, Cor 5.1.10, p.272]. O
We will also need the following.

Definition 8.1.24. A group G < GL,(q) is self-dual if there exists h €
GLy(q) such that h='g~Th = g for all g € G.

Lemma 8.1.25 ([31, Thm 8.11, p.106]). Let p : SL,(K) — GL(V) be
an irreducible representation of SL, (K) with highest weight A = 22:1 i
Here l = n—1 is the Lie rank of SL,(K) and the \; are uniquely determined
by the roots o; = Xiiy1 which form a basis of the root system of SLy(K).
Then SLy,(K)p is self-dual if and only if a; = aj+1—; for all i.
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Lemma 8.1.26 ([3, Thm 8.11, p.106]). If a group G < GL,(q) is self-
dual and q is odd, then G preserves a non-degenerate symmetric bilinear or
antisymmetric bilinear form.

Lemma 8.1.27 ([8, Prop 5.1.12, p.273]). Over K = F, all representations
of Sp,,(K) and Q5 (K) are self-dual.

8.2 Exterior and Symmetric Powers

In many instances the representations of algebraic groups arise as symmetric
or exterior powers of their natural modules. In this section we will define
exterior and symmetric powers and state some useful results. For a more
in-depth introduction see [8, Section 5.2.1, p.276].

Let G be a group, K a field and let V. be a KG-module. Suppose that V.
has K-basis (e1,...,e,). We will define the symmetric and exterior powers
as submodules of the tensor power module V,@k =V, ®...0V, with k
factors.

Definition 8.2.1. Let €(m) be the sign of the permutation 7 € S; and let
(U1 ® ... Qup)T = Uy ® ... R ugy for all u; € V,.. The k''-exterior power
of V,. is

NI =) elm(m @ue® ... @ ug)m | ui € Vi

ﬂESk

We denote the image of u1 @ua®. . .Quy, in Ak(W) by uy Aug A ... Aug. Then
the standard basis of AF(V}.) is (€5, A€y A ... A€ |1 <idp < ... <ip <7)
ordered lexicographically.

Now let char(K) > k or let char(K) = 0. The k'"-symmetric power
of V. is

S*(V;) :=<Z (U QU ® ... Quk)T|u; € Vik.
TES)

We denote the image of u; @ us ® ... ® ug in S¥(V,.) by wyug...u,. The
standard basis of S¥(V) is (ej€iy ... €5, |1 < i1 < ... < i < 7) ordered
lexicographically.

Lemma 8.2.2. The dimension of the symmetric power module SF(V;.) is
+k—1

("% )

Proof. The symmetric power S¥(V}.) has basis (e;, e;, - e |1 < <dg <

. < i < r) ordered lexicographically. It follows that to find the dimension
of S¥(V,.) we have to count the number of multisets of size k with entries
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from [1,...,r]. Here a multiset is an extension of the concept of a set in the
sense that a multiset may contain multiple occurences of the same element.
By [13, p.39] this number is given by (r+§_1). O

Lemma 8.2.3. The dimension of the exterior power module AF(V,) is (}).

Proof. The exterior power A¥(V,) has basis (e;, A ... A€, |1 <ip <...<
ir < r). Hence any such basis element can be constructed by choosing k
basis elements of V,. and then rearranging them such that the subscripts
appear in ascending order. It follows that dim(A*(V;)) = (}). O

Lemma 8.2.4 ([8, Prop 5.2.4, p.277]). Suppose that G preserves the form
B which is either o-Hermitian, alternating or symmetric. Then on A%(Vy)
or S2(V}) G preserves the forms

,6’2_(ei Aej e Aep) = Bles,er)B(ej,er) — Bles, er)B(ej, ex)

and
B (eiej, ener) = Blei, ex)Blej, e1) + Bles, e1)Bej, ex)

respectively. Furthermore, if 5 is symmetric or alternating then both 3%~
and %t are symmetric, whereas if 5 is o-Hermitian then so are >~ and

52+ .

Lemma 8.2.5 ([8, Prop 5.2.5, p.278]). Let G be a group in odd characteristic
and let x be a complex or Brauer character of G. Then for all g € G
(x(9)? + x(g%))/2 and (x(9)?> — x(¢?))/2 are the character values on g of the
symmetric and exterior squares of the CG-modules corresponding to x.

We will conclude this section by calculating the fundamental dominant
weights of SLy(K) on S™(Vz2) and Go(K) on A%(V7), where K = F,,.

Lemma 8.2.6.
Let K =TF,.

(i) Let ® be a root system of SLa(K) with respect to a maximal torus
T = (diag(a,a ) |a e K*). Then A = {x12}, X12(a) = diag(a,a™!)
forallae K* and M\ (t) = « for allt e T.

(i) Let K have characteristic = m + 1. The highest weight of the rational
representation p of SLa(K) on S™(Va) is (m).

Proof. (i) It is clear that a maximal torus of SLy(K) is given by T =
(diag(er, ™) [ € K*) and that B = {(¢9_,) | a,b € K) is a Borel subgroup

of SLy(K). Furthermore, ® = {x12, x21} and A = {x12}, where x12(t) = a?

121



for all t € T. Then Y12(a) = diag(a,a™!) for all @ € K*. Furthermore,
aPX12) — A (Y12(a)) = A1(diag(a,a™1)) = a' which implies that \;(t) =
forall teT.

(ii) By [8, Lemma 5.3.1, p.280], the representation p of SLy(K) acting
on S™(Va) is absolutely irreducible and has dimension m + 1. Let T be a
maximal torus and B be a Borel subgroup of SLy(K). It is straightforward
to show that

Tp = (diag(a™,a™2,...,a"™) |ae K*)

and that we can choose B such that Bp consists of lower triangular matrices.
Then Bp stabilises the subspace (v*) = {(1,0,...,0)). We know that v* €
Vy = we V]u(tp) = x(t)v for all t € T) for some non-zero weight x. Here
v (tp) = a™v™ for all t € T. Hence the weight connected to v™ is x where
x(t) = o™ for all t € T'. This weight is dominant by Lemma 8.1.13 and since
p is irreducible, (m) is the highest weight of p by Lemma 8.1.18. O

Lemma 8.2.7. (i) A mazimal torus T of the group Gg is of the form
T = {diag(a®b,ab,a,1,a " ,a" b1, a"2b71) |a,b € K*), where K is
an algebraically closed field.

(i) Let ® be the root system of Go with respect to T and let A be a base
of ®. Then A = {xi2,x23}, where x12(t) = a and x23(t) = b for
all t € T. Furthermore, we find that A = {X12, X23} with x12(a) =
diag(a,a=',a%,1,a72,a,a” ') and X23(a) = diag(l,a,a"*,1,a,a7,1)
for all a € K*. We also have that R = {\1, Ao} with A\1(t) = a®b and
Xo(t) = a3b? for allt e T.

Proof. (i) Note that a maximal torus 7" of Gy has two generators. We
will first work over Fy. If Ga(q) is defined over Fy then T is isomorphic
to Cy—1 x Cy—1. We also know that T" has to preserve a non-degenerate
symmetric bilinear form B since Ga(q) < SO7(q, B) by [8, Prop 5.7.2, p.305].
Let B = antidiag(1,—1,1, %, 1,—1,1) since this is the form preserved by
the generators of Ga(g) given in [22].

The first generator of T is t; = diag(w,w ™!, w?, 1,w™ 2, w,w™ ) of order
q — 1 where w is a primitive element of F,* as given in [22]. Let g2 be the

second generator of Ga(q) given in [22]. Then [ := tgqﬁl)p gy ! -tgqﬁl)/Q “go =

diag(1,—1,—1,1,—1,—1,1). Hence we can take the second generator of T’
tobety =1t = diag(w,w(q_g)/Q,w(’“?’)/Q, 1,w(_q_?’)/Q,w(g_‘I)/Q,w_l).

Now let ¢t = diag(«, 8,7,90,¢,(,n) be an arbitrary element of 7. Since
tBtT = Bit follows that « = 7!, = (7', v = ¢ ! and 62 = 1. Furthermore
det(t) = 1 and hence § = 1. Adding to this, by looking at ¢; and ¢t we can

1
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deduce that a = By. Hence t = diag(pv, 3,7,1,7v 5 871, 871y~ 1) is an
arbitrary element of 7. Now let § = ab and let v = a. Note that this
convention is purely to get the same results as in [30]. It follows that ¢ =
diag(a®b,ab,a,1,a7*,a~'b~1,a=2b71) is an arbitrary element of 7' < Ga(q).
We can restrict the natural module of Go(K) to Ga(g) by considering the
fixed points of Go(K) under a map sending the matrix entries to their ¢*®
power. Hence we know that any torus element of T' < Go(K) has to satisfy
the same rules as over F,. It follows that over K an arbitrary element of 7'
is of the form t = diag(a?b,ab,a,1,a”',a" b~ a=2b~"1), where a,b e K*.
(ii) Let t = diag(tl,tg,t3,t4,t5,t6,t7), t; € K* and let Xij(t) = titj_l.
Since Go = Ga(K) is a subgroup of SL7(K), its root system is a subsystem
of the root system of SL7(K) which is {x;;|1 < i,j < 7,i # j} by [30,
Example 8.2(2), p.51]. To determine the root system of Go we need to
find the elements of the Lie Algebra so(7, K, J) of SO7(K,J), where J is
a non-degenerate symmetric bilinear form matrix. By [16, Section 1.2.2,
p.14], A = (a;) € 50(7,K,J) if and only if ATJ = —JA. If we let J =
antidiag(1, —1,1, 4,1, —1,1) for some p € K* then ar; = aga = as3 = aqq =
azs = a6 = a7 = 0. Let § = {(1, 7), (7, 1), (2,6), (6, 2), (3, 5), (5, 3), (4, 4)}
It is clear that x;; is not a root of Gy when (,7) € S. Furthermore, by [30,
Example 9.5(4), p.65] Go has exactly 12 roots and we can show that

is a root system of Go, where each of these 12 roots appears multiple times.

The base of this root system is given by A = {x12, x23}, where x12(t) = a
and x23(t) = b for all t € T = (diag(a®b,ab,a,1,a7 1, a7 b~ a 207 ) |a,be
K*).

Now we also have to find xi12 such that (xi2,X12) = 2 and, by [30, Ex-
ample 15.21(1)], (3x12 + 2x23, X12) = 0. The first condition {xi2,X12) = 2
implies that y12(X12()) = o2 for all @ € K*. Furthermore, Y12(a) =
diag(a®,a?,a7,1,a77% a7, a~%) for some i and j. Hence yi2(¥12(ct)) =
a'=7 = a?. Therefore, x12(a) = diag(a?B,a?B,a?,1,a72,a 287, a~*p71)
for some ( yet to be determined. For the second condition to be satis-
fied we additionally need (x12(X12()))?(x23(X12(0)))? = a®. We find that
(a*Ba2871)3(a?Ba"2) = o if and only if 3 = a=3. Hence xi2(a) =
diag(a,a',a%,1,a72,a,a7 ") for all a € K*.

Similarly, we want to find Xa3 such that {(x23,X23) = 2 and {(3x12 +
2x23, X23) = 1 by [30, Example 15.21(1), p.129]. It is straightforward to
show that Yo3(a) = diag(1,a,a7!,1,a,a1,1) for all a € K*.

Finally, we need to find the fundamental dominant weights \; and A
of G2 such that <)\1,)V<12> = <)\2,)V(23> =1 and <)\2,)v(12> = <)\1,)V(23> =0. A
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straightforward calculation shows that A1(t) = a?b and A\a(t) = a3b?. (This
also agrees with the results in [30, Example 15.21(1), p.129].) O

8.3 SL3(q) = Sp2(q)

In this section we will consider the 13-, 14- and 15-dimensional .#5-subgroups
isomorphic to SLa(¢) and La(g). For a more detailed version of the following
see [8, Section 5.3, p.80]. Note that since SLa(2) and SL2(3) are soluble, we
will assume throughout that ¢ > 4. For m > 1, let V;,,41 be the (m + 1)-
dimensional module S™(V3).

Since SLa(q) = Spy(q), it follows that SLa(q) preserves a bilinear form
B. Furthermore, a representation of SLy(q) on S™(V5) preserves the form

ﬁm(eileh e €y €j16j2 e ejm)

= 2 B(eil ) ejlﬂ')/B(eZQ? ejgﬂ') cee 5(€im7 €jmﬂ—).

TESm

By Lemma 8.1.27, V,;, 41 is self-dual.

Let Vi be the trivial module of SLa(g). Let me Nwith 0 <m < ¢—1
and let ag,a,...,as € {0,...,p — 1} such that m = ap + a1p + ... + asp®
with as # 0. Then let

M(m) := Vap+1 ® Va(zi-&-l ®...® Va‘ill
with dimension (ap + 1)(a1 +1)...(as +1) <m+ 1.

Theorem 8.3.1 ([5, p.588]). If 0 < m < g — 1 then each M(m) is an abso-
lutely irreducible module for SLa(q) and furthermore M (i) is not isomorphic
to M(j) for any 0 < i < j < q— 1. Conwversely, for each absolutely irre-
ducible module for SLo(q) there exists some 0 < m < q — 1 such that the
module is isomorphic to M(m).

First we will consider the p-restricted modules with p = n = dim(M (m)).
We then get the following.

Lemma 8.3.2 ([8, Prop 5.3.6, p.283]).
Let g and ¢y denote the generating diagonal and field automorphism of a
group H respectively.

(i) If n > 2 is even and p = n, then there exists a single conjugacy class
of So-subgroups of Sp,,(q) isomorphic to SLa(q). This conjugacy class
is stabilised by dsp, (q) and ¢sp (q) which induce dsr,q) and ¢sr,(g)
respectively.
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(7i) If n = £3 (mod 8) and p = n then there exists a single conjugacy class
of So-subgroups of 5 (q) isomorphic to La(q). The automorphisms
0o (q) and dgs (q) induce dsr,,(q) and ¢sr,(q) respectively and stabilise
the con]ugacy class.

(7ii) If n = £1 (mod 8) and p = n then there exist two conjugacy classes
of So-subgroups of Q2 (q) isomorphic to Lia(q).2 = PGLa(q). Further-
more, ¢go (q) stabilises the conjugacy classes and induces ¢y, (q) whereas
dqo (q) interchanges the conjugacy classes.

For the p-unrestricted modules we will need the following corollary.

Corollary 8.3.3 ([8, Cor 5.3.3, p.281]). Let g = p© and let m = ag + a1p +
o d e1p® Y, where 0 < a; < p — 1 for alli. Then the minimal field over

which M(m) = Vay41 ®. ® V 1+1 can be realised is F,; if and only if
(i) fle

(i1) f is minimal such that a; = aj whenever i = j (mod f).

Finally, we can show that there are in fact no maximal absolutely irre-
ducible p-unrestricted representations of SLa(g) or La(g) in dimensions 13,
14 or 15. Note that there might be .#-maximal subgroups isomorphic to
SLa(q) or La(g) but since they cannot be maximal we will not consider them
any further.

Lemma 8.3.4. Let ¢ = p®. There are no p-unrestricted representations of
SLa(q) or La(q) that induce maximal subgroups in dimensions 13, 14 and
15.

Proof. The proof follows the same outline as the proof of [8, Thm 5.3.9,

p.287]. Let M(m) = Vo411 ® ... ® V 1+1 with 0 < a; < p—1and m =
ap + a1p + ... + ae_1p° L. By Lemma 8.3.1 we need to consider all such
M (m) with dimension (ag + 1)(a; +1)...(as + 1) € {13,14,15}.

Note that each p-unrestricted module M (m) with only one non-trivial
tensor factor is an algebraic conjugate of a p-restricted module and hence
gives a subgroup that is conjugate to one of the groups considered in Lemma
8.3.2 using a similar argument as in Lemma 8.1.23. Hence we assume that M
has at least 2 non-trivial tensor factors which is only possible in dimensions
14 and 15. In dimension 14 we have ag = 1, a1 = 6 and M(m) = V2 ® V7¢.
In dimension 15 we get ap = 2, a1 = 4 and M(m) = V3 ® V5¢. (Note that
ap and a; could be interchanged in both cases.) By [8, Prop 5.1.14, p.274],
either M (m) can be written over a proper subfield F,; for some ¢ > 1 or
M preserves a form other then the induced symplectic or symmetric form.
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To show that M (m) cannot be written over a proper subfield we can use
Corollary 8.3.3. In dimension 14 we have m = 13 = 1+6p (orm = 13 = 6+p)
and e = 2 which implies that f has to equal 1. Therefore, for Corollary 8.3.3
to hold, we would require ag to equal a; which is not the case. Similarly in
dimension 15. Hence we can assume that M (m) cannot be written over a
proper subfield.

Now suppose that M (m) preserves either a unitary form or, when p = 2,
a quadratic form. By [8, Lemma 1.8.8, p.40] a representation of SLa(q)
can only preserve a unitary and a bilinear form at the same time if the
representation can be written over a proper subfield of I, - a contradiction.
When p = 2, then a; € {0,1} and hence M (m) has dimension a power of 2.
Again this does not occur in dimensions 13, 14 or 15. O

8.4 Adjoint Module

In this section we will briefly introduce the concept of adjoint modules. For
a more detailed discussion see [8, Section 5.4.1, p.293].

Definition 8.4.1. Let p be a representation of some group and let V be
the module of p. Then V* is the dual module acted on by p~ 7.

Let G = GL{(¢q) and let g € G. Let V be the natural module of G over
F,. and let V* be the dual module of V. Define a representation p : G —
VRV*by gp=9g®g L. Let M be the F,GL:(q)-module M;x+(F,) or let
M be the F;GUy(g)-module M = {A € My, ;(Fpz2)| AT = A?} corresponding

to Gp. Here o sends the entries a;; of A to agj.

Definition 8.4.2. Let M be as above. Let U be the submodule of M
consisting of all matrices of trace 0 and let U’ be the submodule of M
consisting of all scalar matrices. Then the adjoint module W is

W =U/(UnU).

Lemma 8.4.3 ([8, Lemma 5.4.10, p.294]). Let G = GL;(q) and let W be
as in Definition 8.4.2. If p | t then W has dimension t> — 2. Otherwise

W has dimension t> — 1. Furthermore, W is absolutely irreducible as an
F,SL{ (q)-module.

By [8, p.294] we can define a quadratic form @ on M by

QUA) = D (aijaji — azaj)).

1<i<j<n
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Throughout the reminder of this section let B be the form matrix of the
polar form 3 of (). Let F be the subset of M containing the matrices with

all diagonal entries equal to 0 and let D be the set of diagonal matrices of
M.

Lemma 8.4.4 ([8, Lemma 5.4.11, p.295]).
Let G = GLF(q) and let M, U, U', W, E, D and (3 be as defined above.
Then:

(i) W=~FE1(DnU)/U;

(ii) E is a non-degenerate space of plus-type if G = GL¢(q) and a non-

t

degenerate space of type (—1)(2) if G = GUy(q);
(iii) If p |t then B is degenerate.

Hence we have to determine the type of orthogonal form of the non-

degenerate space (D n U)/U’. We will only have to consider the case when
p=2andt=4.

Lemma 8.4.5. Let G = GLF(q) and let M, U, U’ and D be as above. If
p=2andt =4, then (D nU)/U" is a non-degenerate space of minus-type

in any odd extension of Fo and an orthogonal space of plus-type in any even
extension of .

Proof. By the proof of [8, Lemma 5.4.11(iv), p.295], D n U = {dy, ds,d3),
where dj = E;;j — Eq4 for all 1 < j < 3 and E;; = () is a matrix with
ae = 1if I =4, k = j and aj;, = 0 otherwise. Furthermore, the form matrix
with respect to this basis {dj, da, ds} is

011
5= (1h0)
and Q(d;) =1 for all j.
Let U' = {d), where d = diag(1,1,1,1) = dy + da + d3. It is clear that
(DnU)/U ={dy +U',dy + U"y. We now have to find the quadratic form
Q' with polar form 8’ on (D n U)/U’. We have

Q(d; + ad) = Q(dj) + Q(ad) + B(d;, ad)
=1+ a?Q(d) + a(B(d;, d1) + B(d;, d2) + B(d;,d3))
=1+6a%+ 2

=1 for all a € Fyi.

If k # j then B'(d; + U',dy, + U’') = B(dj,d;) = 1 by Lemma 3.3.3. Hence,
the matrix of @' is (§ 1) which is of minus-type if and only if 22 + 2 + 1 is
irreducible in Fo: by [8, Prop 1.5.42(iii), p.24].
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It is clear that ? + x + 1 is irreducible in Fy and from [28, Cor 3.47,
p.100] it follows that 22 + 41 is irreducible in any odd extension of Fy and
reducible otherwise. O

Corollary 8.4.6. Let G = SL}(Q") and let U, U', W, E and D be as above.
Then the adjoint module W of G preserves an orthogonal form of plus-type
if and only if i is even and an orthogonal form of minus-type otherwise.

Proof. By Lemma 8.4.4, W ~ E 1 (D nU)/U’" and FE is a space of type
k1 = 4. Let ko be the type of the space (D nU)/U’. By [8, Prop 1.5.42(iv),
p.24], W has type kiko. The result follows from Lemma 8.4.5. O

Lemma 8.4.7 ([8, Lemma 5.4.13, p.297]). Let p be the adjoint representa-
tion of SLE(q) and let d generate the diagonal automorphisms of SLE(q).
Then dp € SOS,(q, B). Furthermore, dp € Q,(q, B) if and only if t is odd or
q 1s even.

Lemma 8.4.8 ([8, Lemma 5.4.14, p.297]). Suppose that G = SLi (q) has an
adjoint representation p of dimension n. Then v € Out(Li(q)) is induced
by an element g € GO, (¢,B). If (;) is even or if qn is odd then g €
Q6 (q,B) or —g € Q5(q,B). If (;) and q are odd and n is even then g €
GOs, (¢, B)\SO¢,(q, B). If (;) is odd and q is even then we can show that
9 € SO;(¢, B)\2;,(q, B).

8.5 Owuter Automorphisms

Let Q € {SL¥(q),Sp,(q), Q5 (q)}, where € € {0, +,—}, and let p: G — Q be
an absolutely irreducible representation of a quasisimple group G such that
Gp is an S-subgroup of ). In this section we will consider how the outer
automorphisms of 2 act on Gp. To avoid confusion we will denote an outer
automorphism 3 € Out(H) for some group H by Sp.

Lemma 8.5.1 ([8, Prop 5.1.9, p.272]). Let G be quasisimple and let Q €
{SLF(q),Sp,(q), % (q)}, where e € {o,+,—}. Let p: G — Q be a represen-
tation such that Gp is an Sa-subgroup of €.

(i) Let 6 € Out(G). Then (G.{0))p < C, the conformal group of 2.

(ii) Let ¢ € Out(G) and let po € Out(Q). Then S p is equivalent to p»=.
(iii) Let G = SLi(q) and let Q@ = SL,,(q). Then G p is equivalent to p2.

We will need to consider the Cases L , U and O separately.
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Cases L and U
We will consider the unitary and linear cases first. The following lemma
is an adaptation of [8, Lemma 5.9.1, p.310].

Lemma 8.5.2. Let G = SLF(q) and let p : G — SLE(q) be a representation
of G with module U € {S*(V;),S*(V3), A2(V4)}. Let n = dim(U) and let A
denote an n x t" matriz, m € {2,4}, whose rows form the basis vectors for
U as a subspace of VE™.
(i) If AATD = I,,, then D € My, xn(p).
(ii) For g e SLE(q) the action matriz M(g) of g on U is Ag®™ATD.
(iii) If G = SLif (q) and n is odd, then Grt(y I contained in the stabiliser
of Gp in Out(LE(q)). Furthermore, d’fn(q) induces ¢¢-.
(iv) If G = SLi(q) and n is odd, then 7y, (g is contained in the stabiliser
of Gp in Out(Ly(q)). Furthermore, 71, (q) induces yg-

Proof. (i)-(iii) It is straightforward to see that the proof of [8, Lemma 5.9.1,
p.310] extends to all our cases.

(iv) By the proof of [8, Lemma 5.9.1(iv), p.310] we know that M (¢7¢) =
D=1 M(g)"n@ D. The result follows now from Lemma 4.4.2. O

Case O"

In Case O" we have the added difficulty that there are up to 2 isomor-
phism classes of groups (2} (p/, B), #) when f is even by [7]. However if f
is odd then there is only one isomorphism class.

Lemma 8.5.3. Let G be a quasisimple group. Let p be an absolutely irre-
ducible representation of G such that Gp is an Sa-subgroup of Qf{(pf,B),
where f is even and B is a non-degenerate symmetric bilinear form ma-
triz (or quadratic form matriz if p is even) of plus-type. Assume that
B € Myxn(p). Let F be our standard symmetric or quadratic form ma-
triz of plus-type. Then:

(i) There exists x € GLy(p/) such that (Gp)* < Qf (p/, F);

(ii) If p is odd then {(Gp)*,d) and {(Gp,p) lie in the same isomorphism
class if and only if det(B)-det(F) is a square in ¥ . If det(B)-det(F)
is not square and (Gp)* is stabilised by ¢ then Gp is stabilised by ¢ry;

(7ii) If p is even then {(Gp)*,¢) and {Gp, $) lie in the same isomorphism
class if and only if (x=1)%x has quasideterminant 1. If the quaside-
terminant is —1 and (Gp)® is stabilised by ¢ then Gp is stabilised by

¢-
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Proof. (i) This follows by Lemma 4.8.1 for odd p and it is clear that Lemma
4.8.1 also holds for even p.
(ii) and (iii) follow from [7, Prop 12]. O

Note that in our final results we will always give the stabiliser of (Gp)®.

8.6 Maximality

The following lemma is useful when we want to determine containments
between the various .#-subgroups.

Lemma 8.6.1. Let L (¢)p, be a reducible subgroup of LE(q) where 2 <t <
n. Furthermore let p be a representation of LE(q) such that L (q)p acts on
S2(Vy,) or A%(Vy,). Then (L (q)pn)p is reducible.

Proof. Let {e1,...,e,) be an n-dimensional vector space acted on by L (q).
Without loss of generality we can assume that LZL (q)pn fixes the subspace
{e1,...,em), where t < r < n — 1 since LF(q) is irreducible but LF(¢)p, is
not. Let {¢; ®e; —ej®e¢;|1 < i < j < n} be a basis of A%(V,,) and let
{ei®ei|1<i<n}u{ei®ej+ej®ei|1<i<j<n}bea basis for S3(V;,).
Then it follows that (L (¢)pn)p fixes the subspace (¢; ®@e; —e;®e; |1 < i <
j < r) in the exterior square case. In the symmetric square case (L (q)pn)p
fixes the subspace ((e;®e; |1 <i<7),(e;®ej+e;Qe |1 <i<ji<r)). O
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9 Maximal .¥-Subgroups in Dimension 13, 14 and
15

In this chapter we will determine the maximal .#-subgroups of the classical
groups in dimension 13, 14 and 15. We will start by finding the potential
So-candidates. Rather than looking at the dimensions individually as we
did for the .#j-candidates, we will group the representations according to
their behaviour as in Chapter 8.

We will start by determining the representations of SLa(g). This is fol-
lowed by finding the .#-subgroups that act on exterior or symmetric power
modules. We will then discuss adjoint modules before determining the max-
imal .#-subgroups.

9.1 .%-candidates

The following table, Table 9.1.1, gives the potential .#5-maximal subgroups
G taken from [29] with the exception of La(g) whose information was taken
from Section 8.3.

The first column gives the dimension in which such a group G has an
absolutely irreducible representation in defining characteristic. This is fol-
lowed by its Lie name as it appear in the tables of [29]. The corresponding
classical group name is then given which is also the name which we will use
throughout this chapter. The ‘Weight’ column shows the highest weight of
G in the respective dimensions (see Definition 8.1.14). The final column
then gives the characteristics in which these groups appear. The results in
the final column were partially taken from [29] and partially determined by
inspection of the highest weights.

Note that Spg(g) has two absolutely irreducible representations with dis-
tinct weights in dimension 14. We will denote the images of these represen-
tations by Spg(g)1 and Spg(q)2. Similarly, we will denote the images of the
two 15-dimensional absolutely irreducible representations of SL%(q) with
distinct weights by SL3 (¢); and SL3 (¢)a.

Let E;; = (ax) be a square matrix with a; = 1if I = ¢, k = j and
ajr, = 0 otherwise.

Theorem 9.1.1. Let G be an .S2-subgroup of Q € {SLE(q), Sp14(q), 25(q)},
n € {13,14,15} that is potentially maximal. Then G is contained in Table
9.1.1.

Proof. This follows from the tables in [29] and Section 8.3. O
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Table 9.1.1: .#-Subgroups in Dimension 13, 14 and 15

Dim | Lie Name Weight Char

13 Ay La(q) (12) > 13
B, O5(q) (0,2) 5
Cs Se(q) (0,1,0)

14 Ay La(q) (13) > 17
A L4(q) (1,0,1) 2
2A5 Ua(q) (1,0,1) 2
B, 02(q) (0,2) #2,5
Cs, Se(q) (0,1,0) #3
Cs, Se(q) (1,0,0) # 2
Gy G2(q) (1,0) #3

15 Ay Lg(q) (14) > 17
Ag, Ls(q)1 (0,4) #23
2Ag, Us(g)1 (0,4) #2,3
Ao, Ls(q)2 (1,2) # 2
2As, Us(q)2 (1,2) # 2
As La(q) (1,0,1) # 2
2A3 Ua(q) (1,0,1) # 2
Ay Ls(q) (0,0,0,2) # 2
2A4 Us(q) (0,0,0,2) # 2
As Le(g)  (0,0,0,1,0)  all
2A5 Us(q)  (0,0,0,1,0)  all

9.2 SL3(q) = Sp2(q)

The results in this section follow directly from Lemma 8.3.2 and Lemma
8.3.4.

Proposition 9.2.1 (SLa(q)).

(i) If p = 13 then there is one conjugacy class of .Sa-subgroups of Q95(q)
isomorphic to La(q), with class stabiliser {0, ¢) in Out(095(q)).

(ii) If p = 14 then there is one conjugacy class of #-subgroups of Sp14(q)
isomorphic to SLa(q), with class stabiliser {3, ¢) in Out(S14(q))-

(i) If p = 15 then there are two conjugacy classes of Fa-subgroups of
Q55(q) isomorphic to La(q).2, with class stabiliser {¢) in Out(O5(q)).

Proof. This follows from Lemma 8.3.2. O
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9.3 Exterior and Symmetric Powers

Let G be one of the groups appearing in Table 9.1.1 and let p; be an arbitrary
representation of G of dimension i. Let Gp, < Q € {SLZ(q), Sp,,(¢), 2(q)},
where n € {13,14,15}, and suppose that the module associated with p,
is a subquotient of a symmetric or exterior power module. (Note that we
will often just say that p, acts on a subquotient of a symmetric or exterior
power.) Let Gp; be generated by g; and h;, let b; denote the preserved
form matrix and let d; be an automorphism of G that lies in the conformal
group of 2. Here g stands for any generating diagonal automorphism of €2,
whereas d; may or may not denote a diagonal automorphism g of G.

9.3.1 Dimension 13

Proposition 9.3.1 (Spy(3?)).
There is a single conjugacy class of S2-subgroups of Q55(3%) isomorphic to
S6(3%), with class stabiliser (5, ¢y in Out(O0F3(3%)).

Proof. Let G = Spg(3%). By [26, Table 5.4.A, p.199] there exists a 15-
dimensional representation pi5 of G that acts on AQ(VG), a 14-dimensional
representation of G acting on a submodule of A?(Vg) and a 13-dimensional
representation acting on a subquotient of A?(Vj).

We will first find by = 872 (see Lemma 8.2.4), g15 = gep15, h1s and dis
before calculating the matrices for the 14-dimensional representation (see
file s2sp61lcomp for the explicit matrices). By Lemma 8.2.4 the matrix of
b15 is given by b5 = ¢ + CT, where ¢ = %(E575 + Eg,s + E10710) — (E1715 +
Es14+ Eg13) + E312 + Eq9 + E711. For a basis of A%(Vg) we choose the set
{ei nej|1 <i < j <6} ordered lexicographically. Then we can show that
b15, 915, h1s and di5 preserve the 14-dimensional subspace

W ={e1 A €eg,€1 A €3,€1 A €4,€1 A €5,€1 A €6 — €3 A €4,€2 A €3,€2 A €4,

€3 N €5 — €3 N €4,€2 N €6,€3 N\ €5,€3 N\ €6,€4 N\ €5,€4 N\ €6,€E5 N €6>.

Therefore we can calculate the respective 14-dimensional matrices g4, hi4
and dy4 induced by dg using this basis of W. We can also find b14 = a + a’l,
where a = E55 + Egg + 311 + Ey9 + E58 + E710 — (E1,14 + E2,13 + Eg12),
which is an orthogonal form matrix with det(bi4) = 3. It follows that over
F3: the form is not non-degenerate.

It is straightforward to show that when v = (00001001000000) then
vbiaw™ = 0 for all w e Féﬁl Hence b14 induces a non-degenerate form on the
quotient module F1!/(v) by Lemma 3.3.3. From this it follows that Sps(3¢)
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preserves a 13-dimensional orthogonal form by Lemma 3.3.3. Furthermore,
we can find a di3 induced by §¢ with determinant 1 and spinor norm -1.
Finally, —Igp13 = I13 which implies that the kernel of the representation
is (1) and therefore the image of the representation pi3 is isomorphic to
S6(3%). Since there is only one conjugacy class of Gpiz in Q95(3%, b13) by
Lemma 8.1.23 and Lemma 4.3.3, it follows that this class is stabilised by

P0g,(31)- O

Proposition 9.3.2 (Qg(5%)).
There is a unique conjugacy class of S-subgroups of Q75(5°) isomorphic to
Q2(5%), with class stabiliser {5, ) in Out(055(5)).

Proof. Let G = Qg(5"). Tt is straightforward to check that G has a 14-
dimensional representation pi4 acting on a submodule of S?(Vs) (see file
s205comp). We find that G p14 preserves the bilinear form byy = c+c', where
¢=3(Es5+ Esg) +2(B114+ Ess + Eg12) + Ea 13 + Eag + 5(E311 + E710)
with determinant 5. Hence b4 is degenerate in characteristic 5. We can
show that b14 induces a non-degenerate form on the 13-dimensional quotient
space F1!/((00001001000000)) from which it follows that Gpis preserves
an orthogonal form by Lemma 3.3.3. Furthermore, we can show that di3
induced by ds has determinant 1 and spinor norm -1 by Lemma 3.1.19.
Finally, there is a single conjugacy class of G in Q94(5,b13) by Lemma
8.1.23 and Lemma 4.3.3 and hence this conjugacy class has to be stabilised
by éqs. (51)-

Finally, we have to show that pi3 is indeed absolutely irreducible. By
[29], there exists a 13-dimensional absolutely irreducible representation 7 of
Q2(5) with weight (0,2) which implies that GT acts absolutely irreducible
on a subquotient of Vs®Vs. Since p13 acts on a subquotient of Vs®Vs as well,
we know that pi3 is equivalent to 7 and hence absolutely irreducible. O

9.3.2 Dimension 14

Proposition 9.3.3 (Spg(g)1 in characteristic p # 2, 3).
Let p1a be a representation of G = Spg(q) with highest weight (0,1,0) and
let Gpia = Se(q):1-

(i) Ifp =1 (mod 12) then Qf,(p') has 4 conjugacy classes of S»-subgroups
ot type S¢(p')1, with class stabiliser (5, ¢) in Out(O74(p?)).

(ii) If p = 7 (mod 12) and i is odd, then Qf,(p') has 4 conjugacy classes
of S5-subgroups of type PCSpg(p')1, which have class stabiliser (¢ in
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Out(O7,(p%)). Ifi is even, then Qf,(p®) has 4 conjugacy classes of Fs-
subgroups of type S¢(p')1, with class stabiliser (5, ¢y in Out(O7,(p?)).

(i4) If p = 5 (mod 12) and i is odd, then Q,(p') has 4 conjugacy classes
of S»-subgroups of type PCSpg(p')1, which have class stabiliser {¢p) in
Out(O1,(pY)). Ifi is even, then Qf,(p®) has 4 conjugacy classes of Fs-
subgroups of type S¢(p')1, with class stabiliser (5, ¢y) in Out(O7,(p?)).

(iv) If p =11 (mod 12) and i is odd, then Qi,(p') has 4 conjugacy classes
of So-subgroups of type Se(p')1, which have class stabiliser (&', ¢) in
Out(Q,(p)). Ifi is even, then Qf,(p') has 4 conjugacy classes of Fs-
subgroups of type S¢(p')1, with class stabiliser (5, ¢y) in Out(O7,(p?)).

Proof. Let Q = Q7F,(q). By Table 9.1.1, Sps(q); is only defined for charac-
teristic > 5 since we treat the characteristic 2 case separately. By [26, Table
5.4.A, p.199] there exists a 14-dimensional irreducible representation pi4 of
G acting on a submodule of A?(V;). By Proposition 9.3.1 the form matrix
preserved by Gpiy is b1y = ¢ + ¢, where ¢ = Ess+ Egg + E311 + Ea9 +
Esg + E710 — (E1,14 + E213 + Eg12). This is an orthogonal form matrix
with det(b14) = 3. Hence, by Lemma 3.1.13, Spg(g)1 preserves a form of
plus-type if and only if ¢ = 1,7 (mod 12).

We can also show that —Igp15 = I15 corresponds to 14 € Qﬁ(q) in
dimension 14. This implies that the kernel of p14 consists of the elements
+1Ig and hence Gpi4 is isomorphic to Sg(q);.

Calculations show that det(di4) = wt for some primitive element w €
F;. Hence %d14 has determinant 1 and preserves by4. Using Lemma 3.1.19
we find that %dm has spinor norm 1 if and only if (w™! — 1)%w is square in
7 (see file s2s61comp). Since this is never the case in odd characteristic,
the spinor norm of 1dy4 is always —1. Hence (S¢(q), Ldi4) < SO7,(q, b14).

If det(b14) = 3 is square in F,, then %d14 is induced by d¢, by the def-
inition of ¢’. If 3 is not a square in F, then —%dM has spinor norm 1 by
Lemma 3.1.21. Therefore —%dm € Qﬁ(q, b14) in this case. Note however
that —%dm ¢ Qﬁ(p%, b14) for any ¢ = 1. The number of conjugacy classes
follows from Lemma 8.1.23 and Lemma 4.3.3.

Let K = Qﬁ(pi,bm). It is straightforward to show that b‘ff = by,
hOK = hyy and gP = ¢,. Hence Gpi4 < K is stabilised by ¢x. By Lemma
4.8.1, there exists z € GL4(p’) such that (Gp14)® < QF,(p') preserves our
respective standard form matrices. It follows from Lemma 8.5.3(ii) that
(Gp14)® is stabilised by (¢)q if and only if 7 is even and —3 is not a square
in F) and by ¢ otherwise. By Table 2.2.1, —3 is not a square if and only
if p = 5,11 (mod 12). O
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Proposition 9.3.4 (Spg(2?); in characteristic 2).
Let p14 be a representation of G = Spg(2?) with highest weight (0,1,0) and
let Gp1s = Spg(29)1.

If © is odd then there exist two conjugacy classes of S-subgroups of
Q14 (p%) of type Spg(2°)1, with class stabiliser () in Out(O1,(2%)). If i is
even then there exist two conjugacy classes of .71-subgroups of Q,(2%) of
type Spg(29)1, with class stabiliser {¢y) in Out(0,(2)).

Proof. Let Q = Q7;(2"). Using a similar method as for Spg(¢)1, p # 2,3,
we can show that Spg(2¢); acts on a submodule of A?(Vg) and preserves
the symmetric bilinear form matrix by := ¢+ ¢, where ¢ = Er114+ Eo 13 +
E3 11+ E49+ Es 8+ Eg 12+ E7 10 (see file s2sp61ch2comp). This form implies
that our 14-dimensional vector space V can be written as an orthogonal sum
([36, p.56]) as follows:

V:i=(e1 A ea,e5 A egyller nes,eq negyller Aey,es A eg)
1{ey A es,ea A egyllea nes eq nesylles neq ez A es)

1le1 Aeg+e3 A eq e Aes+eg A ey,

where {€; A ej|1 <i < j <6} is a basis of A?(Vg) ordered lexicographically.

To find the sign of the orthogonal form, we have to determine the number
of hyperbolic lines. Note that there are at least 6 hyperbolic lines. Let @
be the quadratic form associated with b4 and let {a,b) be any summand of
the orthogonal sum above. If Q(a + ab) = 0 for some « € Fyi then, by [36,
Thm 7.3, p.56], {a,b) forms a hyperbolic line. However, using Magma we
can show that Spg(2) preserves an orthogonal form of minus-type. Hence,
there exists a summand (a, by which does not contain any singular vectors
in Fo. Without loss of generality we can then assume that Q(a) = Q(b) =1
which holds in all field extensions of Fy. Since b14(a,b) = 1, we can use [8,
Prop 1.5.42(iii), p.24] to show that the quadratic form on this 2-dimensional
subspace is of minus-type if and only if 2 + = + 1 is irreducible in the
respective field.

By [28, Cor 3.47, p.100], we find that an irreducible polynomial of degree
n over a field F; remains irreducible over any extension F« of Fy if and only
if k and n are coprime. From this it follows that 2% + = + 1 is irreducible in
Foi for all odd i. Hence Spg(2?) preserves an orthogonal form of plus-type
in dimension 14 if and only if ¢ is even.

Let K = QF,(2),Q). It is clear that ¢x stabilises Spg(2%); since b7K =
b4, hff = hi14 and gff = ¢?,. However, by4 is not our standard form. We
can find x € GL14(4) such that (Spg(4)p14)* preserves our standard form

136



(see file s2sp61ch2comp). We can show that (z~!)?z has quasideterminant
—1 and hence it follows from Lemma 8.5.3 that Spg(4); is stabilised by
(Y¢)a. Since Spg(2?); contains Spg(4); as a subgroup when i is even it
follows that Spg(2?); is stabilised by (¢7v)q for all even i. If i is odd then
Spe(2%)1 is stabilised by ¢q since there is only one isomorphism class of
groups (27,(2%, B), ) by [7], where B is a non-degenerate quadratic form.

O

Proposition 9.3.5 (Spg(q)2).
Let p14 be a representation of G = Spg(q) with highest weight (1,0,0) and
let Spg(q)2 = Gp1a.

For p odd there exists one conjugacy class of #-subgroups of Spy4(q) of
type Spg(q)2 which has class stabiliser (6, ¢) in Out(S14(q)).

Proof. There exists a 20-dimensional representation of G that acts on A3(Vg)
and, by [26, Table 5.4.A, p.199], there also exists a 14-dimensional irreducible
representation that acts on a submodule of A3(V). Using a similar method
as for Spg(q)1 we can show (see file s2sp62comp) that Spg(q)2 preserves the
symplectic form by = ¢ — ¢’ where ¢ = Es13 + Es11 — (B4 + E710) +
2(E312 + Ei9 + Esg). Furthermore, the diagonal automorphism dg of G
induces dy4 = diag(w?, w?,w?, w?, w? W, w,w, w,w? w,w,w, 1) with determi-
nant w?', where w is a primitive element of Fy. From this it follows that
projectively di4 has determinant w” and preserves bi4 up to multiplication
by w. Furthermore, the number of 2 = Spy,(¢g) conjugacy classes can be
determined using Lemma 8.1.23 and Lemma 4.3.3. We can show that there
is only one conjugacy class which has to be stabilised by ¢q. Finally, since
—Igp1a = —I14, the kernel of py4 is trivial and hence Spg(g)2 < Spiu(q). O

Proposition 9.3.6 (Q:(q)).

(i) If p=1,9 (mod 20) then there are 4 conjugacy classes of .#5-subgroups
of Qf, (") isomorphic to Q2(p'), which have class stabiliser {§', ¢ in
Out(O13(p"))-

(ii) Let p = 3,7 (mod 20). Ifi is odd then there are 4 conjugacy classes
of So-subgroups of Qf,(p') isomorphic to SO (p?), with class stabiliser
(¢) in Out(Of,(p")). If i is even then there are 4 conjugacy classes
of S5-subgroups of Qf,(p') isomorphic to Q2(p'), with class stabiliser
&6 in Out(OF,(p'))-

(iii) Let p = 13,17 (mod 20). Ifi is odd then there are 4 conjugacy classes
of So-subgroups of Q1,(p') isomorphic to SOL(p?), with class stabiliser
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(¢) in Out(Oy,(p?)). If i is even then there are 4 conjugacy classes
of S5-subgroups of Qf,(p') isomorphic to QE(p'), with class stabiliser
(&, ¢y in Out(Of4(p")).

(iv) Let p=11,19 (mod 20). If i is odd then there are 4 conjugacy classes
of Sa-subgroups of Q,(p') isomorphic to Q2(p'), with class stabiliser
(8, ¢y in Out(Op,(p?)). If i is even then there are 4 conjugacy classes
of Sa-subgroups of Qf,(p') isomorphic to Q2(p'), with class stabiliser
@67 in Out(OF,(p")).

Proof. Let G = Qg(q), where p # 2,5 and let Q = Q7;(q). Tt is straight-
forward to show that G has a 14-dimensional representation pi4 acting on
a submodule of S?(V5) (see file s205comp). We need to show that pi4 is
irreducible though. Since G has weight (0,2) in dimension 14 we know, by
Lemma 8.1.19, that G acts irreducibly on a subquotient of V5 ® V5. Since
S%(Vs) is a submodule of V5 ® Vs, we know that the 14-dimensional repre-
sentation we have found must be absolutely irreducible.

We can show that Gpi4 preserves the bilinear form b4 with determinant
5 as in Proposition 9.3.2. Hence the type of the preserved orthogonal form
follows from Lemma 3.1.13 and Table 2.2.1.

Furthermore, we know that (G, dg)p14 < Qﬁ(q, b14) if and only if diy =
diag(w, 1,1,1,w™ 1) p14 is an element of Qﬁ(q), where w is a primitive element
of Fj. A straightforward calculation shows that

dyy = diag(w®, w,w,w,1,1,1, Lo 1w Lw ! w?)

with det(d14) = 1 and that dy4 preserves biy. Furthermore, using Lemma
3.1.19, dy4 has spinor norm 1 if and only if w®(1 —w™2)?(1 —w™!)% is square
in JF; which can never be the case.

By the definition of &}, d14 is induced by 05, € Out(O7;(q)) if 5 is a square
in F'. When 5 is not square, we can show using Lemma 3.1.21 that —dj4 €
Q7. (q,b14), where ¢ = p* with i odd. Hence (Gp14, —d14) < QF,(p%,b14) in
this case.

It is straightforward to show that qﬁﬂi( ab1a) stabilises Gp14. Let H =~
Gp14 preserve our standard form matrices. We can use Lemma 8.5.3 to show
when H is stabilised by ¢q or by (¢7)aq. O
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Proposition 9.3.7 (Ga(q)).
(i) No extension of Ga(2°) is Sa-mazximal in any extension of Q7 (2°).

(i) If p =1 (mod 12) then there are 8 conjugacy classes of Sa-subgroups of
QF,(p%) dsomorphic to Go(p?), with class stabiliser (¢) in Out(O7,(p?)).

(iii) If p="7 (mod 12) and i is odd, then there exist 4 conjugacy classes of
Fo-subgroups of O, (p?) isomorphic to Ga(p?), with class stabiliser {¢)
in Out(O,(p")). If i is even then there exist 8 such conjugacy classes,
with class stabiliser {¢) in Out(O,(p)).

(iv) If p = 5 (mod 12) and i is odd, then there exist 4 conjugacy classes
of Sa-subgroups of Qy,(p') isomorphic to Go(p'), with class stabiliser
(¢) in Out(O,(p")). Ifi is even then there exist 8 conjugacy classes
of Sa-subgroups of Qf,(p') isomorphic to Go(p'), with class stabiliser
{#y) in Out(Of,(p"))-

(v) If p = 11 (mod 12) and i is odd, then there exist 8 conjugacy classes
of Sa-subgroups of Qy,(p") isomorphic to Go(p'), with class stabiliser
(¢) in Out(O,(p')). If i is even then there exist 8 conjugacy classes
of Sa-subgroups of Qf,(p") isomorphic to Ga(p'), with class stabiliser

{¢7) in Out(Og(p"))-

Proof. We will first consider the even characteristic case. By [8, Prop 5.7.1,
p.305], Go(2%) is an .#-subgroup of Spg(2?). Furthermore, there exists a 14-
dimensional absolutely irreducible representation p of Spg(2¢) acting on a
submodule of A%(Vg) by Proposition 9.3.4. Using Magma, we can show that
the 14-dimensional representation of G2(2) acting on a submodule of A?(V;)
is absolutely irreducible. Hence the image of the 14-dimensional represen-
tation of Go(2¢) is absolutely irreducible for all i and therefore is an .%%-
subgroup of Spg(2')p. Furthermore, G2(2').{¢gp,(2:)) < Spg(2'){Pspg(2:))
and SP6(2i)-<¢Sp6(2i)> < 9%4(21)<5>7 where 3 € {¢Q%‘4(Qi)7(¢7)91—‘4(2i)} by

Proposition 9.3.4. It follows that no extension of Ga(2%)p is .%5-maximal.

Now let G = Ga(q), where p # 2,3 and let Q = Qf;(¢q). Then there
exists a 7-dimensional representation of G which is absolutely irreducible by
[22] and there exists a 21-dimensional representation of G acting on A%(V7).
Furthermore, we can find a 14-dimensional representation p14 of G acting
on a submodule of A%(V7) (see s2g2comp). To show that pi4 is absolutely
irreducible we will determine its highest weight. Note that the results in
Lemma 8.2.7 also apply to the finite group G by Theorem 8.1.22.
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Let B be a Borel subgroup of the natural representation of Gy (K) over
an algebraically closed field K and let

T = (diag(a®b,ab,a,1,a a7 a2 1) |a,be K*)

be a maximal torus of Go(K) as given in Lemma 8.2.7. Then we can choose
B such that Bpi4 consists of lower triangular matrices and stabilises the
subspace (v*) = ((1,0,...,0)). Furthermore,

Tp14 = {diag(a®v?,ab, a®b,ab,a,1,b,1,a b7 a7 1,

a? a3 a3 2).
Hence the weight associated with v is a3b? which is dominant by Lemma
8.1.13. Furthermore there exists an absolutely irreducible representation
of Go(K) with ab? as its highest weight by Lemma 8.1.18. Note that
a’b? = Xy, where )y is one of the fundamental dominant weights of Ga(K) by
Lemma 8.2.7. By [29] the irreducible representation of Go(K) with highest
weight (1,0) has dimension 14 and hence Ga(q)p14 is absolutely irreducible
using Lemma 8.1.22.

We find that Gpi4 preserves the orthogonal form by = ¢ + ¢!, where
¢=FEi14+ Er10— (E2,13+ Eg6 + Fos + Ess) + 3(Es9 — Eq11) + 2F312. It
follows that det(b14) = 27437 and hence G preserves an orthogonal form of
plus-type if either p = 1,7 (mod 12) or (p = 5,11 (mod 12) and ¢ = p*) and
a form of minus-type otherwise by Lemma 3.1.13. The number of conjugacy
classes follows from Lemma 8.1.23 and Lemma 4.3.3. It is straightforward
to show that ¢Qi (gb1a) stabilises Gp14. Let H =~ Gp14 preserve our standard
form matrices. We can use Lemma 8.5.3 to show whether H is stabilised by

bq or (¢7)a- O

9.3.3 Dimension 15

Proposition 9.3.8 (SL3 (¢)1)-
Let p15 be an absolutely irreducible representation of G = SL:;—r (q) with high-
est weight (0,4) and let Gpis = SL3 (¢)1.

(i) If p = 5, then there are exactly t = (5,q — 1) conjugacy classes of
Fo-subgroups of SLis(q) of type SL3(q)1, with class stabiliser (5, ~, ¢)
in Out(Li5(q))-

(ii) If p = 5, then there are exactly t = (5,q + 1) conjugacy classes of
Sy-subgroups of SU1s(q) of type SU3z(q)1, with class stabiliser (§t, ¢)
in Out(U15(q)).
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Proof. Let Q = SLix(g). We can find a 15-dimensional representation p of G
such that Gp acts on the symmetric power module S*(V3) (see file s2s131comp
in the linear and file s2su31comp in the unitary case). We need to show that
p is absolutely irreducible and hence equivalent to p;5. Note that Gp acting
on S*(V3) has weight (0,4) since it is a submodule of V3 @ V3 ® V3 ® V5.
Furthermore, p;5 has weight (0,4). Hence the representation p we have
found is indeed equivalent to p15. It follows that p > 5 and that the module
is not self-dual. In particular that implies that Gp;5 preserves either only
the zero or an Hermitian form.

If G = SL3(q) and ¢ = p® with e odd, then Gpi5 preserves only the

zero form. So suppose now that e is even and let 7 = gb?{Z. We want to
show that 7 # o and hence that SL3(p®) never preserves a unitary form in

dimension 15 when e is even. By [8, Prop 5.1.9, p.272], gb?{Q sends (0,4) to
(0, 4p%/?), whereas v sends (0,4) to (4,0). Hence SL3(q)p15 preserves only
the zero form.

If G = SU3(q) then we can show using Magma that Gpi5 preserves a
unitary form (see file s2su3lcomp). Note that the G we have chosen for our
computer calculations preserves the unitary form antidiag(1l,1,1) as given
in Magma. Since all isometry groups of non-degenerate unitary forms are
conjugate it does not matter which unitary form G preserves.

Now consider the kernel of p15 and let A3 € Z(G). Then Al3p;5 =
MIp5. Since det(M\3) = 1 it follows that \ € {1,23,251} and so the only
possibility for A* to equal 1 is when A = 1. Hence ker(pis) = 1 and pi5
is a faithful representation of G. Let d3 = diag(w,1,1) in Case L and let
ds = diag(w™!,1,w?) in Case U induce the diagonal automorphism of G,
where w is a primitive element of F; or IFqXQ respectively. Then di5 has

determinant w2 or w24~ and projectively di5 has determinant w® or

w®@=1_ We want to show that projectively dis never has determinant 1
for any 1 < i < (¢ £ 1,3) = |dg/, i.e. we will show that w™'d}; never has
determinant 1.

We will consider Case L first. Suppose that p(w™!di;) has determinant
1 for some 7 and some scalar ;1 € F*. Then p'Bw% = 1 and hence (u°)3 =
w™ w2, From this it follows that w? is a cube which is a contradiction
unless i is a multiple of 3 or 31 ¢— 1. However i < (¢—1,3) < 3 by definition
and if 31 ¢ — 1 then |dgr,,(g)| = 1.

Similarly in Case U this implies that w24~V is a cube which only holds
if 3 divides ¢ — 1, i.e. 31 g+ 1, since i < (¢ +1,3) < 3. If 3 divides
q — 1 however then (¢ + 1,3) = 1 and the diagonal automorphism of SU3(q)
is trivial. Therefore, no non-trivial diagonal automorphism of SL%(q)l is
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induced by an element of SLi(q).

Finally, using Lemma 4.3.3 and Lemma 8.1.23, there are (5,¢ F 1) con-
jugacy classes of GG in SLI—%(q) respectively. Hence, &%, stabilises Gp15. By
Lemma 8.5.2, SL:;—r (¢)1 is stabilised by ¢q and 7q. O

Proposition 9.3.9 (SL3(¢)2)-

Let p15 be an absolutely irreducible representation of G = SL;L (q) with high-
est weight (1,2) and let Gpis = SL3 (q)2. Lett = (5,q—1) in the linear case
and let t = (5,q + 1) in the unitary case.

(i) If p = 3, then there are exactly t conjugacy classes of .S-subgroups of
SL15(q) of type SL3(q)2, with class stabiliser (5,7, ) in Out(Li5(q))-

(ii) If p = 3, then there are exactly t conjugacy classes of So-subgroups of
SU15(q) of type SU3(q)2, with class stabiliser (§', ¢ in Out(Ui5(q)).

Proof. Let Q = SLi;(q). It follows from Lemma 8.1.19 that SL¥ (¢)2 acts on
a subquotient of the 18-dimensional module V3 ® S?(V3), where V5 denotes
the dual module of V3. Let p1g be a representation of SL%(q) such that pig
acts on V3 ® S2(V3).

Since the module of SLE{(q)g is not self-dual it carries only the zero
or a unitary form. If SL3(q)2 preserves a unitary form then (SL3(g)2)?® =
((SLg(q)g)‘z’gQ, where ¢ = p°. But 7q sends the weight (1,2) to (2, 1) whereas
6% sends (1,2) to (p2,2p%/2) by [8, Prop 5.1.9, p.272]. It follows that
SL(q)2 always preserves no other than the zero form, whereas computer
calculations (see file s2su32comp) show that SU3(q)2 preserves a unitary
form.

Now let A3 € G. It is straightforward to show that Al3pi5 = Al15 and
hence ker(p15) = I3 which implies that p;5 is a faithful representation of G.

Note that dy5 induced by 6 has determinant w® or w3(1=9) in the linear or
unitary case respectively. Using the same argument as in Proposition 9.3.8,
we can show that di; never has determinant 1 for any 1 < i < (¢F1,3) = |d3].
Furthermore, the number of conjugacy classes follows from Lemma 8.1.23,
Lemma 4.3.3 and the fact that 6}, stabilises the representation.

Let Q = LI—}) (q). As our final step we have to consider the action of v, ()

and ¢q in Out(Q) on SLF (¢)2. By Lemma 4.4.2 and Lemma 8.5.1 it is clear

that ~r,,,(q stabilises SL3(g)2. Furthermore, by Lemma 8.5.1, p(f;”)@ is

equivalent to ?Us@ p;5 and hence it follows from Lemma 4.5.1, that ®U15(q)
stabilises SU3(g)2. Hence it remains to consider the action of ¢, (q)-
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We can show that SL3(q)p1s preserves the 15-dimensional subspace

W ={f1 — 2f15, fo — fir, f3 + 55> fis, fas f5s foo f10 5 — fi5s fo, fr0 — 217,
fir + G fis, fi2, fis, fias fre),

where the f; are the 18-dimensional standard basis vectors of FéS. Now let
A denote the 15 x 18 matrix whose rows are the basis vectors of W as a
subspace of V3 ®S?(V3) (see file s2s132comp). Then A has entries in F, and
hence AATD = I5 for some D implies that D € Mi5x15(p). Furthermore,
using a similar approach as in Lemma 8.5.2 we can show that g € SL3(q) acts
on the 15-dimensional subspace as A(g* ® g2)AT D, where gy is the action
matrix of g on S?(V3). Hence

(A(g* ® g2)ATD)?Lis) = A((g%s@)* ® g3") AT D,

where R = SLg(q). By [8, Lemma 5.9.1, p.310], the automorphism ¢g
induces @g;(q)-
Hence SL;,—r (q)2 is stabilised by 7o and ¢q. O

Proposition 9.3.10 (SL¥(¢)).

(i) For odd q, there are t = (3,q — 1) conjugacy classes of Sa-subgroups
G of SLi5(q) isomorphic to SLs(q), with class stabiliser (5,7, ®) in
Out(L15(q))-

(i) For odd q, there are t = (3,q + 1) conjugacy classes of .S-subgroups
G of SUis(q) isomorphic to SUs(q), with class stabiliser (5,¢) in
Out(U15(q)).

Proof. Let Q = SLiz(¢q). By [26, Table 5.4.A, p.199] there exists a 15-
dimensional representation pi5 of SLi(q) such that SLZ(g)p15 acts irre-
ducibly on S?(V3). Furthermore, by Table 9.1.1 this representation has
weight (0,0,0,2) and is not self-dual by Lemma 8.1.25. Hence the image of
p15 preserves either only the zero or a unitary form. In the case G = SU5(q),
Gp15 preserves a unitary form by Lemma 8.2.4. If G = SL5(p®) then it is
clear that if e is odd, Gp15 cannot preserve a unitary form. Hence assume
that e is even. Then it follows from [8, Prop 5.1.9, p.272] that qbg/Q # Y0
and hence SL5(q)p15 never preserves a unitary form.

Note that if A5 € SLi(q) then > = 1 whereas (Al5)p15 = MIi5 €
ker(pis) if and only if A = +1. Hence pi5 is a faithful representation of
SLE(q).
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Now consider the case G = SL5(¢) and let d5 generate the diagonal auto-
morphisms of G. Then di5 = diag(w?,w,w,w,w,1,...,1) with determinant
wY, where w is primitive in ;. Suppose that projectively dis € SL15( ) for
some ¢. This holds if we can ﬁnd plis € SLys such that det(udis) = 1 for
some p € Fy'. Then ' = w % and (?)° = w W™ which implies that we
require w’ to be a fifth power. This holds either if 5 | 7 or if 54 ¢ — 1. Since
10c| = (5,9 — 1) it follows that ¢ < 4. Furthermore, if 51 ¢ — 1 then d¢ is
trivial. Hence diy ¢ SLi5(q) for any 1 < i < 4. Since det(di5) = w®, the
diagonal automorphism of G is induced by 5315( g € Out(Li5(q)).

If G = SUs(q), then di5 = diag (w01 a1 a=1 w1 et 1 1).
If projectively di; € SU15( ) for some 1 < ¢ < 4, then there exists p € IFqXQ
such that det(udis) = p'®wf =D = 1. Similarly to the linear case this
holds if and only if w1 is a fifth power. Again i < 4 and w = A® for
some \ € IE‘;Z if and only if d¢ is trivial. So assume that 5 | (¢ — 1) but then
51 (¢ + 1) and hence d¢ is trivial again. It follows that dg is induced by
(5%15((1) € Out(U;5(q)).

Finally, there is one conjugacy class of SL;)L (q) in the respective conformal
group C of SLI—%(q) by Lemma 8.1.23 and each such class splits into ¢t =
|C': N (SLE (q)p15)| classes in SLiz(g) by Lemma 4.3.3. In the linear case
t=(3,¢—1) since [(0F )| = (6(,%55?(:{)) — ((13515:11)), Similarly we can show
that in the unitary case t = (3,q¢ + 1).

The action of 7o and ¢q follows from Lemma 8.5.2. L]

Proposition 9.3.11 (SLE (¢))-
Let t; = (5,q — 1) and let t, = (5,q + 1).

(i) If p = 3 then there are tl conjugacy classes of Sa-subgroups G of
SLi5(q) isomorphic to (q :5) Le(q).2, with class stabiliser (5,7, ¢} in
Out(L15(q))-

(i) If p = 3 then there are t, conjugacy classes of Fa-subgroups G of
SU15(3") isomorphic to (q+ 6) Us(q).2, with class stabiliser (', $) in
Out(U15( ))

(iii) If p = 2 then there are t; conjugacy classes of .#»-subgroups of SLi5(2°)
isomorphic to SLg(2¢), with class stabiliser (5, v, ¢) in Out(L15(2%)).
There are also t, conjugacy classes of .%2-subgroups of SU15(2%) iso-
morphic to SUg(2"), with class stabiliser (5, ¢y in Out(U5(2%)).

Proof. Let Q = SLiz(¢q). By [26, Table 5.4.A, p.199] there exists a 15-
dimensional absolutely irreducible representation p5 of SLg(q) such that
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SLZ (q)p15 acts on the exterior power A%(Vg) and by Table 9.1.1 has weight
(0,0,0,1,0). Hence the weight is not self-dual by Lemma 8.1.25 and the
image of pi5 preserves either only the zero or a unitary form. It follows by
[8, Prop 5.1.9, p.272] and Lemma 8.2.4 that SUg(q)p15 preserves a unitary
form whereas SLg(q)p15 preserves no non-zero form.

To find ker(p15), let Mg € SLa (), i.e. A€ {£1,2z31,23'}. Then Mgp15 =
A2I5 from which it follows that Alg € ker(pis) if and only if A = £1.
Therefore, YEL9) [£(g) < SLi(q) if ¢ is odd and SLE(q) < SLi(q) if ¢ is

2
everl.

We will first assume that ¢ is odd. We want to determine whether
dip1s < SLE(q) for any i. First let G = SLg(q). Then 4% is induced by
t = diag(w’,1,1,1,1,1), where w is a primitive element of IE‘qX. Furthermore,
dis = diag(w’,w’,w’, W’ w' 1,...,1) with determinant w*. Now suppose
that there exists pl15 € GL15(g) such that det(udis) = 1. Then p'®w® =1
and so (1°)? = w™3w=%. This implies that w? needs to be a cube which
holds if and only if 3 | 4 or 3 { ¢ — 1. We will first consider the case
when 3 1 ¢ — 1. Then |[dg| = (6,¢ — 1) = 2 and di; € SLi5(q) for all i.
Hence Lg(q).{dg) < SL15(g) in this case. If 3 | ¢ — 1 then 1 < i < |dg| =
(6,g — 1) = 6. It follows that the cubes of the diagonal automorphisms
of Lg(g) are induced by elements of SLi5(g) and 3.Lg(q).(68) < SLi5(q).
Furthermore, since det(di5) = w® the class stabiliser of Gp15 is induced by
51545@) € GLi5(¢). The number of conjugacy classes follows from Lemma
8.1.23 and Lemma 4.3.3.

Now consider the case G = SUg(q). Then d¢ is induced by dg =
diag(w?™1,1,...,1), where w is a primitive element of IF;Q, and it follows that
dis = diag(w? ! wit wi=t Wit Wi~ 1 ... 1) with determinant wila=1),
Similarly to the linear case we find that if 3 ¢+ 1 then Ug(q).(0¢) < SU15(q)
and if 3 | ¢ + 1 then 3.Ug(q).(63) < SUi5(g). Furthermore, since det(dy5) =
w®@=1 the class stabiliser is generated by 5%15((]) € CGUjy5(q). The number
of conjugacy classes follows from Lemma 4.3.3 and Lemma 8.1.23.

Now let p = 2. To consider the diagonal automorphisms, let G =
SLg(27). Assume that there exists plis € GL15(27) such that det(udis) =
w3 = 1. Again this implies that we require w?’ to be a cube. First note

that i < 3 since |dg| = (6,27 — 1) = (3,27 — 1). Suppose that there exists
X € Fy; such that A3 = w?. Since all elements are square in characteristic 2,
this implies in particular that there exists some v € Fy; such that v? = \.
Hence we want to find v such that v® = w. This is possible if and only if
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(3,27 — 1) = 1 but then |6g| = 1. Therefore no diagonal automorphism of
G is induced by an element of SL15(27). Let t = (2/ — 1,5). Then there are
t conjugacy classes of G in GL15(27). The normaliser of G in GLj5(27) is
generated by G itself, 5{15 (@ and scalars.

If G = SUg(2/) then a diagonal automorphism of G is induced by an
element of SUj5(27) if and only if we can find p € Fy; such that pu'® =
W@ =1 for some i. Again i < 3. If 3 ¥ 29 — 1 then we can show using a
similar argument as in the linear case that it is possible to find v € Fy2; such
that v3 = w if and only if (3,27 + 1) = 1. Hence no automorphism of G is
induced by an element of SU15(27) in this case. If 3|2/ — 1 then 312/ + 1
and hence the diagonal automorphism of G has order 1 in this case giving
the same result as before. Again d¢ is induced by 5%15 (@)
Finally, by Lemma 8.5.2 we know that ¢q and g stabilise SLF (q)p15. O

9.4 Adjoint Modules

In this section we will consider the representations that act on adjoint mod-
ules. The theory behind this was given in Section 8.4.

9.4.1 Dimension 14
Proposition 9.4.1 (L} (2%)).

(i) If i is odd there are two conjugacy classes of S5-subgroups of Q7,(2°)
isomorphic to SLy(2Y).2, with class stabiliser {¢) in Out(O,(29)). Ifi
is even then there are two conjugacy classes of S»-subgroups of Qf,(2%)
isomorphic to SLy(2).2, with class stabiliser (¢ in Out(O07,(2%)).

(ii) If i is odd there are two conjugacy classes of .#5-subgroups of Q7,(2°)
isomorphic to SU4(2%).2, with class stabiliser (¢ in Out(0O,(2)). If
i is even there are two conjugacy classes of Sa-subgroups of Q1,(2%)
isomorphic to SU4(2%).2, with class stabiliser (¢) in Out(Of,(2%)).

Proof. Let G = SLT(2Y), let Q = Q7(2%, B) for some non-degenerate sym-
metric bilinear form B and let p14 be the adjoint representation of G. The
type of orthogonal form preserved by Gpi14 follows from Corollary 8.4.6. By
Lemma 8.4.8, the automorphism v € Out(L} (2%)) is induced by an element
of Q. By Lemma 8.5.1, ¢q induces either ¢ or (¢v)g. Since v stabilises
Gp14 it follows that Gpy4 is always stabilised by ¢q. ]
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9.4.2 Dimension 15

Proposition 9.4.2 (L} (¢) in odd characteristic).

(i) If p = 3 then Qi5(q) has a single conjugacy class of Sa-subgroups
isomorphic to Ly(q).2, with class stabiliser {3, ¢y in Out(O75(q)).

(it) If p = 3 then Q5(q) has a single conjugacy classes of Sa-subgroups
isomorphic to Us(q).2, with class stabiliser {5, ¢y in Out(O5(q)).

Proof. Let Q = Q9:(q). By [8, Lemma 5.4.10, p.294] there exists a 15-
dimensional adjoint representation pi5 of SLf (¢) in odd characteristic. Then
SL} (q)p15 preserves an orthogonal form. By Lemma 8.4.7 the diagonal
automorphism of SLT(¢)p1s = Li(q) sits inside SOJ5(¢)\Q and hence is
induced by dq.

Furthermore, it follows from Lemma 8.4.8 that the duality automorphism
of SL¥(¢)p is induced by an element of Q. By Lemma 8.5.1, no element of
CGO95(q) induces the field automorphism of SLT(¢)p15. By Lemma 4.3.3
and Lemma 8.1.23 there is one conjugacy class of SLf(q)pm in  and this
class is therefore stabilised by ¢gq. O
9.5 “>-Maximality

In this section we will determine which of the .#-subgroups in Table 9.1.1
are .%»>-maximal in dimension 13, 14 and 15.

Proposition 9.5.1 (.%3-maximal subgroups in dimension 13).
(i) The group Sg(3%) is So-mazimal in Q745(3%).
(i) The group Q2(5') is So-maximal in Q94(5°).
(777) In characteristic > 13 the group La(q) is S2-mazximal in Q93(q).

Proof. All the 13-dimensional .#5-subgroups occur in different characteris-
tics. O

Proposition 9.5.2 (%3-maximal subgroups in dimension 14).

(i) In characteristic = 17 the group SLa(q) is S-mazimal in Sp4(q).
(i) In odd characteristic Spg(q)2 is S2-maximal in Spi4(q).

(iii) The groups SLF (2°).2 are Sa-mazimal in Q55(2%).
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() If p # 3 then NQI¢4(q)(SG(q)1) is Sy-mazimal in QF,(q).
(v) If p# 2,5 then NQﬁ(Q) (Q2(q)) is So-mazimal in Q5 (q).

(vi) If p # 2,3 then N91i4(q)(G2(Q)) is .S5-mazimal in Qf,(q). No extension

of Go(2') is .S-maximal in any extension of Q;(2%).

Proof. (i) The only (up to equivalence) .5-subgroup that can contain
SLa(q) is Spg(q)2. By [8, Section 8.2, p.377] Sps(q) has only one ab-
solutely irreducible subgroup H isomorphic to SLa(q). Let p14 be the
absolutely irreducible representation of Spg(q). We are going to cal-
culate the highest weight of Hpi4 (see Section 8.1). Note that we can
work over F, by Lemma 8.1.22.

It is straightforward to calculate the maximal torus T of H and its
Borel group B using Lemma 8.2.6. Then

T = (diag(a®, 03, a,a o 3,a7%) |ae Fo)

and we can let B consist of lower triangular matrices. It can be shown
that

Tp1s = (diag(a®,a”,a’, 0,0, a,a,a a3 a a3 a0 ", a?))
and that Bpi4 consists of lower triangular matrices. Hence Bpi4 sta-
bilises the subspace {(1,0,...,0)) with weight x(t) = o’ for all t € T..
By Table 9.1.1 the 14-dimensional absolutely irreducible representa-
tion p of SLa(g) has highest weight (13). Hence Hpi4 is not equivalent
to SLa(q)p. It follows that SLa(q)p is #2-maximal.

(ii) By Lagrange’s theorem Spg(q)2 has to be #5-maximal.

(iii) By [8, Section 8.2, p.377], SL;(2") is not a subgroup of Go(2%) or
Spg(2°).

(iv) By Lagrange’s theorem Spg(g) is not a subgroup of Ga(q).

(v) By [8, Section 8.2, p.377], £22(q) is not a subgroup of Ga(q) or Spg(q).

(vi) Since the natural representation of Go(¢) has dimension 7 in odd char-
acteristic, it can not be a subgroup of any of the other .#-subgroups
in dimension 14. In even characteristic the result follows from Propo-
sition 9.3.7. O

Proposition 9.5.3 (.“3-maximal subgroups in dimension 15).

(i) No extension of Ng; + (q)(SL%(q)g) is So-maximal in any extension of
15
SLis ().
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(it) If p # 2,3 then NSLliS(q)(SLBi(q)l) is So-mazimal in SLiz(q).
(iii) If p # 2 then NSLI;B(q)(SL;—F(q)) is Sy-mazimal in SL(q).
(v) If p = 3 then NSLI—“S(q)((37 qF 1).LE(q)) is F2-mazimal in SLi(q).
Furthermore, NSLILS(zi)(SLé—F(Qi)) is Sa-mazimal in SL(27).
(v) If p = 17 then Noo_()(L2(q)) is F2-mazimal in Q75(q).

(vi) If p =3 then Ngs_(y) (LF(q)) is Sa-mazimal in Q55(q).

Proof. (i) By [8, Table 8.25, p.389 and Table 8.27, p.391], SLé—r(q) has

an irreducible subgroup H isomorphic to SL{{(q). Let p15 be a 15-
dimensional absolutely irreducible representation of SLé—r (q). We are
going to to show that Hpi5 is of type SL%(Q)Q. To do so we will find
the highest weight of Hpi5. By Lemma 8.1.18 if the highest weight of
Hpss is (1,2) then SL3 (¢)2 is an .%-subgroup of SLZ (¢) equivalent to
Hpis and hence can never be maximal.
We will first consider SL3(g). Note that we can use our result of
SL3(F,) in Section 8.1 since by Theorem 8.1.22 we get equivalent re-
sults for SL3(¢). By Example 8.1.9 the maximal torus of SL3(q) is
given by T' = (diag(a, 8,a 187 1)) for o, B € Fx. Furthermore, by Ex-
ample 8.1.17, A\ (t) = @ and A2(f) = af and the Borel subgroup can be
chosen to consist of lower triangular matrices. Then there exists a 6-
dimensional representation pg of SL3(q) acting on S?(V3) which is irre-
ducible by [8, Prop 5.4.5, p.291] and therefore, without loss of general-
ity, H — SLy(q)ps. Then Tps — (diag(a?, af, 51, 82,01, a~23-2))
is the maximal torus of H. Furthermore, Bpg consists of lower trian-
gular matrices. Since SLg(q)p15 acts on A?(Vg) we will now determine
(T'ps)p15 and (Bpg)p1s. A straightforward calculation shows that

(Tpﬁ)PlE) = <diag(a3ﬁ, O‘25_17 a2/827 «, 5_27 «, O‘537 57 a_lﬁ_lv ﬁa

-1 -1 —2p-3 _—1p2 -2 3,2
ﬁ « ,Oé 5 3,0[ ﬂ ,Oé 7O[ 3ﬂ )>

and (Bpg)p1s is again generated by lower triangular matrices. Hence
(Bpg)p1s stabilises the 1-dimensional subspace (v*) = {(1,0,...,0)).
By Definition 8.1.10, the weight related to v is A = x((tps)p15) =
o3B for all t € T which is dominant by Lemma 8.1.13. Hence, by
Lemma 8.1.18 there exists up to isomorphism a unique irreducible
representation of H with highest weight A = 2X\; + Ao. Since there
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(iii)

(iv)
(v)

(vi)

exists a 15-dimensional representation p of SL3(q) with highest weight
(1,2), p15 has to be equivalent to p and hence SL3(q)2 is not .-
maximal.

Let © = SL15(q). Recall from Proposition 9.3.11 that (¢—1, 3).Le(q).2
is stabilised by (0%, v, ¢q) in odd characteristic, where ¢t = (¢ — 1, 5).
Let K = SLg(q). Then G = SL3(g) has stabiliser (6%, ¢, vx) in
Out(Lg(q)) if ¢ = £1 (mod 8) and stabiliser (6%, ¢x, (Y0)k) if ¢ =
+3 (mod 8) by [8, Section 8.2, p.377]. We are going to show that
(¢ — 1,3).Le(q).Out(Le(q)) is contained in SLi5(q).(64,vq, ¢oy. In
particular this implies that SL3(q)2 never extends to a novelty. Let
r = (3,¢g —1). Then |dq| = (5,q — 1)r and |dx| = 2r from which
it follows that |Out(Lg)| = |{dk, @K,k )| = 2r - e - 2. Furthermore,
[<64, va, pay| = 7-2-e. We also know that (¢ —1,3).Ls(2).2 < SL15(q)
which proves our claim.

We can similarly show that SU3(q)2 is not #5-maximal. The maximal
torus of SU3(q) is T = {diag(a, B, 187 |aa® = BB° = 1,a,8 €
IF;;). As in the linear case no extension of SU3(q)2 is ever .#5-maximal
in any extension of SUj5(q).

By [8, Section 8.2, p.377], SLé—r(q) has only one (up to equivalence)
irreducible subgroup H isomorphic to SL:;—r (q). Let p15 be an absolutely
irreducible 15-dimensional representation of SLF (¢). By (i) Hps is of
type SLg—r(q)g. Furthermore, again by [8, Section 8.2, p.377], SL%(q)
has no irreducible subgroups isomorphic to SLE;|r (¢). By Lemma 8.6.1
any reducible subgroup of either SLg(¢q) or SLs(¢) remains reducible
in their respective 15-dimensional representations.

By [8, Section 8.2, p.377] there are no irreducible subgroups of SLg(q)
isomorphic to SL;L (¢). Hence by Lemma 8.6.1 the 15-dimensional ab-
solutely irreducible representation of SL (¢) acting on A?(Vs) has no
irreducible subgroups isomorphic to SL;L (q).

The group SLé—r(q) is the largest .#-subgroup of SLI—})(q).

The only other .%-subgroup of Qs(q) is SLT(¢).2. By [8, Section
8.2, p.377] the only subgroups of SL (¢) that could contain an .%-
subgroup isomorphic to La(g) are the classical groups Q7 (¢), Sp4(q)
and SUy(q). However by looking at the respective tables of €, (¢),
Spa(q) and SUy(q) in [8, Section 8.2, p.377] we see that there is no
containment. Furthermore, O} (q) = SL2(g) o SLa(g) does not contain
Lo(q) either.

The group SLT(q) is the largest .#-subgroup of Q5 (q). O
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10 Containments

In this chapter we will find all maximal subgroups of the quasisimple classi-
cal groups, and their extensions by outer automorphisms, in dimension 13,
14 and 15. We will first determine the .#-subgroups that are potentially
maximal before identifying containments between the maximal geometric
subgroups and these .#-subgroups.

Definition 10.0.1. An .%-subgroup G is potentially maximal in some
extension of Q € {SL¥(q),Sp,(q), 25 (¢q)} if G is .#-maximal but G is not
the image of a p-unrestricted representation of some cover of La(g) which
might be #-maximal but is not maximal overall.

10.1 .¥-Maximals

We will look at each dimens ion individually. The 13, 14 and 15-dimensional
S1-subgroups are considered in Chapter 5, Chapter 6 and Chapter 7 respec-
tively. The potentially maximal .#-subgroups are given in Chapter 9.

Definition 10.1.1. A group G is an .#3-novelty if G is an .#;-subgroup of
Qe {SLZ(q),Sp,(¢), 9 (q)} and if G is a novelty among the .#j-subgroups.

A subgroup is .-maximal if it is either .7}~ or potentially .#-maximal
and maximal among the union of the .#1- and .#-subgroups.

We will also need the following lemma.

Lemma 10.1.2. Let A € {A%(Vg), A2(V7), A3(Vg), S2(Vs), S*(V3), S'2(1%),
S13(Va), S (Va), Vi ® S2(V3), Vi @ Vi) be a module, where t is the dimen-
sion of the underlying vector space V;. Let H be the quasisimple preim-
age of one of the defining characteristic representations p given in Ta-
ble 9.1.1 with natural representation T of dimension t. Then Hp < ) €
{SLE(q),Sp, (), (q)}, n € {13,14,15}, and Hp acts on a subquotient of
A. Let G be a quasisimple subgroup of Hp. If G < Hp and G is an S -
subgroup of Q then G117 = (Gp~1)T is absolutely irreducible as a subgroup of
Hr.

Proof. Let p’ be a representation of H such that Hp' acts on A and assume
that G717 is reducible. We are going to show that G is reducible in this case.

We will first consider the case A = A?(V;). Let {e1,...,eq} be a basis
of V. Then {¢; ®e; —e; ®e;|1 <i < j <6} is a basis of A%(V). Without
loss of generality suppose that (G17) fixes the subspace {ei,... e}, r <5.
Then (G17)p’ fixes the subspace (¢; ®e; —e; ®e; |1 < i < j < r), which
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has dimension at most (g) = 10. Hence (G17)p fixes a subspace of at most
dimension 10 which implies that G is reducible.

Now let A~ = A*¥(V;_y) if A = A¥(V}). Similarly, let A~ = S¥(V;_1),
V5'®8S2(V2) or V5F®@V3. 1t is straightforward to show that (G17)p stabilises a
subspace of at most dim(A ™) if G17 is reducible. The following table shows
that unless A = A%(V7), G is reducible if G;7 is reducible.

A dim(A) dim(A7) dim(p)
A2(Vg) 6) =15 ()=10 | 13,14,15
A%(V7) (5) =21 ) =15 14
A3(Vg) () =20 (G)=10 |14
S%(V5) €) =15 () =10 |13, 14,15
sv) Q=1 | (=5 |15
S12(13) 13 1 13
S13(14) 14 1 14
SH(V3) 15 1 15
Vi®S2(V3) [ 3x (3) =18 [2x (5) =6 15
Vi@V, 4x4=16 [3x3=9 |14,15

Now let H = Ga(q), p = 5, and let A = A?(V7). Then p has dimension 14
and Hp < Qf;(q). Furthermore, dim(A?(Vz)) = 21, dim(A%(Vs)) = 15 and
dim(A2(V5)) = 10. Hence we have to show that G cannot be not absolutely
irreducible if G17 stabilises a 6-dimensional subspace.

Let m be an absolutely irreducible 6-dimensional representation of some
cover G7 of a group isomorphic to G. By Proposition 6.4.17 and [8, Thm
4.3.3, p.162], we can deduce that the only possibilities for G < Qﬂ(q)
and G7 with absolutely irreducible 6-dimensional representation are G €
{A7, L2(13)172} and GT € {A7, 3.A7, 6.A7, 2.L2(13)}.

By looking at the maximal subgroups of Ga(q) ([8, Table 8.41, p.397])
we see that G needs to be isomorphic to a subgroup of GL2(q), PGL2(q),
SLi (q), 23.L3(2) or J; if G < Hp. By [6], G cannot be isomorphic to
a subgroup of J; or 23.L3(2). Furthermore, by looking at the tables in
[8, Section 8.2, p.377], we see that in fact the only possible containment
is (3.A7)7 < Gg(5). Computer calculations (file slins2cont) show that
(3.A77)p is reducible.

Finally, we will assume that G17 is irreducible but not absolutely irre-
ducible. Then there exists some s > 1 such that G;7 is reducible in GL(q¢®)
and hence (G17)p is reducible over Fys. In particular this implies that G is
not absolutely irreducible, which proves our claim. ]
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10.1.1 .¥-Maximals in Dimension 13

The following table, Table 10.1.1 gives all 13-dimensional .- and .%%-
maximal subgroups G that are potentially maximal. The groups are taken
from Theorem 5.1.1, Proposition 5.2.4, Proposition 5.3.10 and Proposition
9.5.1.

The table shows whether G is .¥- or .Y5-maximal, it gives the Schur
indicator of G, G®, the order of G® and the characteristics in which G
occurs. If the column ‘PermRep’ is non-empty then some extension of G*
is .-maximal. This column gives the degree of the smallest permutation
representation of H, where H = G*/Z(G*). This is mostly useful for
determining whether an .#-maximal subgroup is contained in a geometric
subgroup. If there is an * next to a group name, then G is an .#1-novelty.

The degrees of the smallest permutation representations were taken from
[6] and [17]. The remaining information comes from Table 5.1.1 and Table
9.1.1 with the exception of the group orders of the .-subgroups which
comes from [17].

Table 10.1.1: Potential .’-maximal subgroups in dimension 13

< Ind Gp Order Charc PermRep
A o Se(3) 22.39.5.7.13 #3 364
A o Us(4) 26.3.52.13 #2,5 65
A+ 5 26.32.5.7 3 8
A+ Ay 210.35.52.72.11.13 #£2,3,5,7 14
A+ A 210.36.53.72.11.13 3,5 15
A+ Lp(25) 23-3.5%2.13 =2,3 (mod 5),# 2 26
S+ La(3) 24-.3%.13 #2,3 13
A+ Sa(p)  26.32.5%.13 #25 156
S+ s 27.3%.52.7 3 —
S+ La(g sq(q* = 1) =13 > 14
S+ Se(3) 33U, (3% - 1) 3 > 364
S+ BB (5% - 1) 5 > 156

Theorem 10.1.3. Let G be an - or potentially S-maximal subgroup
of any extension of Q € {SLiz(q),255(q)}. Then G® is contained in Table
10.1.1.

Proof. This can be seen using Theorem 5.1.1, Proposition 5.2.4, Proposition
5.3.10, Theorem 9.1.1 and Proposition 9.5.1. O
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Proposition 10.1.4 (.¥-maximal subgroups in dimension 13).

No eztension of Jo is . -mazximal in any extension of Q75(9) and no exten-
sion of the S-subgroup La(13) is .-maximal in any extension of Q75(13).
There are no other containments between the /1 -mazximal subgroups and the
So-maximal subgroups considered in Theorem 10.1.3.

Proof. First we will consider possible containments of .#-subgroups in .%;-
subgroups. By looking at Table 10.1.1, using Lagrange’s theorem and by
considering the characteristics in which the respective representations occur,
it is clear that Lo(13) < Ajx < Qf5(13) is the only possible containment.
Using Magma (file s2inslcont), we can show that the image of an absolutely
irreducible 13-dimensional representation of A4 in characteristic 13 has an
absolutely irreducible subgroup isomorphic to La(13). Both A4 and Lo (13)
are stabilised by ¢ € Out(O75(13)) and L2(13).2 < Si4 by [6]. Hence, no
extension of Lg(13) is maximal in any extension of 295(13).

Now we will consider potential containments of .#;-subgroups in .%-
subgroups. The 13-dimensional .#-subgroups in Table 10.1.1 preserve an
orthogonal form and a cover of each one can be realised in dimension < 6.
Let G be an .#j-subgroup in Table 10.1.1. If G is contained in one of the
SH-subgroups in Table 10.1.1 then G needs to have Schur indicator + in di-
mension 13 and there needs to exist an absolutely irreducible 2-dimensional
representation of G, or an absolutely irreducible 5-dimensional represen-
tation of G preserving an orthogonal form or an absolutely irreducible 6-
dimensional representation of GG preserving a symplectic form by Lemma
10.1.2. By looking at [8, Thm 4.3.3, p.162]|, we see that the only possible
containment is Jo < Sg(9) < 975(9).

By Table [8, Table 8.29, p.392], there exists an .#}-subgroup H of Spg(9)
isomorphic to 2.J2 with class stabiliser {(¢gp, (9))- Let p13 be a 13-dimensional
absolutely irreducible representation of Spg(9) acting on a subquotient of
A?(Vg) as in Proposition 9.3.1. Computer calculations (file slins2cont) show
that Hpi3 = Jo is absolutely irreducible. By Proposition 5.3.9 an absolutely
irreducible subgroup of Q = 075(9) isomorphic to Jo has stabiliser {(¢q).
By Proposition 9.3.1, (Spg(9)-{dspg(9), Psp,(9))) P13 < 2.{0q, pq) since dg in-
duces dgp, (9) and ¢q induces either ¢g, (9) or (¢d)gp, (9)- It follows that no
extension of Jo is ever .#-maximal in any extension of (2. O

10.1.2 .¥-Maximals in Dimension 14

In dimension 14 we will consider the .’-maximal subgroups depending on the
type of form they preserve. Note that there are no ./2-maximal subgroups
of SLE (q).
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The following table, Table 10.1.2 contains the .#1- and potentially .-

maximal subgroups.

Apart from whether G is .#1- or #-maximal, the

Schur indicator of G, G®, the order of G® and the characteristics in which
G exists, the table also give the smallest permutation representation of H,
where G® = Z(H).H. If the degree is not given then no extension of G* is
#-maximal in any characteristic. The information in the table comes from
[6], [17], Table 6.1.1 and Table 9.1.1.

Table 10.1.2: Potential .’-maximal subgroups in dimension 14

< Ind Gp Order Charc  PermRep
A o 28¢(3) 219.39.5.7.13 #2,3 364
S o Sz(8) 26.5.7.13 # 2 65

A = 2.A 24.32.5.7 #2,3 7

A - 21p(13); 23-3-7-13 #2,13 14
A~ 21,(13)y 22-3.7-13 #2,3,13 14
A = La(29) 22.3.5-7-29 2 30
S = 219(29) 22.3.5.7-29 #2,29 30
A - 2]y 28.33.52.7 # 2 100
S —  SLy(q) qlg> - 1) =17 > 18
S = Spele) T 1) #2 > 364
A+ Ag 23.32.5.7 #2,35 7
A+ A 23.32.5.7 2 7
A+ A 210.36.5%.72.11-13  #2,3,5 15
A+ A 214.36.5%.72.11.13 2 16
A+ Le(13); 22.3.7-13 #2313 14
S+ Lo(13)y  22.3.7-13 #2,3,13 14
S+ La(13) 22.3-7-13 2 14
S+ Se(2) 29.34.5.7 3 28
A+ Ga3) 26.36.7.13 #3 351
S+ N 23.3.5-7-11-19 11 —
A+ T 27.3%.52.7 #3 —
S+ Ly(2Y) 20 [ p(29 — 1) 2 >8
S+ Uy(2) 20 [15_,(29 — (—=1)7) 2 > 27
S+ 03(q) 30 [T5o1(a¥ = 1) #2,5 > 27
S+ Selq) a1l (@¥ —1) #3 > 28
S+ Galq) A —-1)(¢% -1) #2,3 > 3906
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Theorem 10.1.5. Let G be .1 -maximal or potentially S-maximal in any
extension of Q € {SLi;(q),Sp14(q), Q4 (q)}. Then G* is contained in Table
10.1.2.

Proof. This follows from Theorem 6.1.1, Proposition 6.2.4, Proposition 6.3.7,
Proposition 6.4.17, Theorem 9.1.1 and Proposition 9.5.1. O

Proposition 10.1.6 (.¥-maximal subgroups in dimension 14 - Case L/U).
All A1 -mazimal subgroups in Proposition 6.2.4 are . -maximal.

Proof. All .#1-maximal subgroups are .¥-maximal since there are no .-
subgroups of SL{;(¢) by Proposition 9.5.2. O

Proposition 10.1.7 (.-maximal subgroups in dimension 14 - Case S).
All S -subgroups and all .-%s-maximal subgroups in Theorem 10.1.5 preserv-
ing a symplectic form are . -maximal with the following exceptions:

(i) If p = £3,+27,£29, 435, £43, 51 (mod 104) then 2.L2(13); is not
-mazximal in Spy4(p) but extends to a novelty under {(J).

(ii) If p = 11,19,21,29 (mod 40) then 2.J2 is not .¥-maximal in Spi4(p)
but extends to a novelty under {(§). Furthermore, no extension of 2.J,
is . -maximal in any extension of Spi4(5).

Proof. We will first determine whether any of the .#-maximal subgroups
SLa(q), p = 17, or Spg(q)2 are not .#-maximal. First note that the only
S1-subgroups with order divisible by a prime > 17 are Ly(29) and 2.1L2(29)
which have order divisible by 29. However neither of these groups is isomor-
phic to an .#;-subgroup in characteristic 29. Hence SLa(q) is .#-maximal.
Furthermore, Spg(q)2 has order divisible by ¢” and none of the .#;-subgroups
in Table 10.1.2 with Schur indicator — has order divisible by ¢”. It follows
that Spg(q)2 is .#-maximal as well.

Now we will show which of the .7j-subgroups are .-maximal. By
Lemma 10.1.2, we only have to consider .#;-subgroups with an absolutely
irreducible 2 or 6 dimensional representation. These groups in the relevant
characteristics are

(i) 2.La(13) < Spg(p) < Spya(p) and
(i) 2.J2 < Spg(p) < Sp14(p)
by [8, Thm 4.3.3, p.162].

From now on let p14 be an absolutely irreducible 14-dimensional rep-
resentation of Spg(g) acting on a submodule of A3(Vg) as in Proposition
9.3.5.
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We will first consider 2.L3(13). There exists an irreducible subgroup H
of Spg(g) isomorphic to 2.L5(13) by Table [8, Table 8.29, p.392]. Further-
more, H < Spg(p) if and only if p = +1, 43, +4 (mod 13) and has trivial
class stabiliser. Otherwise H < Spg(p?).

Computer calculations (file slins2cont) show that Hpi4 is equivalent to
2.L5(13) using [12]. By Proposition 6.3.2, 2.L3(13)1.2 < Spy4(p) with trivial
class stabiliser if p = 1,7 (mod 8). It follows that 2.L2(13);.2 is .-maximal
in this case. If p = 3,5 (mod 8) then 2.15(13); < Spy4(p) and has class
stabiliser (dgp, ,(p))- Hence, if p = £1,£3, +4 (mod 13) and p = 3,5 (mod 8)
then 2.Ly(13); is not .#-maximal in Spy4(p) but extends to a novelty under
<6SP14(P)>‘

Finally we will consider 2.J2. By [8, Table 8.29, p.392], Sps(¢) has an
absolutely irreducible subgroup H isomorphic to 2.Jo. Here H < Spg(p)
with trivial stabiliser if p = 1,4 (mod 5), H < Spg(5) with class stabiliser
(Ospg(q)) and H < Spg(p?) otherwise. By Proposition 6.3.6, there exists an
F1-subgroup G of Spy4(p) isomorphic to 2.J2. Here G.2 < Spy,(p) ifp=1,7
(mod 8) and G' < Spy4(p) with class stabiliser {(0g}, ,(p)) if p = 3,5 (mod 8).
It follows that Ng, () (G) is /-maximal if p = 1,7 (mod 8) or if (p = 3,5
(mod 8) and p = 2,3 (mod 5)).

Hence assume from now on that (p = 3,5 (mod 8) and p = 1,4 (mod 5))
or p = 5. We can show using Magma (file slins2cont) and [12] that 2.J2p14
is equivalent to G. If (p = 3,5 (mod 8) and p = 1,4 (mod 5)) then 2.J has
class stabiliser (dsp, ,(¢)) in Out(S14(g)) but trivial stabiliser in Out(Se(q))-
Hence G extends to a novelty in this case. If p = 5 then we know that
2.J2.2 < Spg(q)-(Ispg(q))- Furthermore, it follows from Proposition 9.3.5 that

SP6(9)-{I8ps(q)> PSps(a)) < SP14(2)-{I8p,,(q)» PSp,4(q))- Lherefore no extension
of G is ever .-maximal in characteristic 5. O

Proposition 10.1.8 (.#-maximal subgroups in dimension 14 - Case O%).
All 1 -mazximal subgroups and all S-maximal subgroups considered in The-
orem 10.1.9 that preserve an orthogonal form are .&-mazimal with the ex-
ception of the following groups:

(i) No extension of Q2(3).2 is .-mazimal in any extension of Qf,(3).
(ii) No extension of Az, is 7-mazximal in any extension of Qf,(7).
(iii) No extension of Jq is .7-maximal in any extension of Qy,4(11).

(iv) If p = 1,3,4,9,10,12 (mod 13) then La(13); is not .#-mazximal in
QF,(p) but extends to a novelty under ().
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(v) If p = 1,3,4,9,10,12 (mod 13) then La(13)2 is not .-mazximal in
QF,(p) but La(13)9.(y) and La(13)2.{~6) are . -mazimal in Qi (p).(v)
and Q3 (p).(y0) respectively.

(vi) If p # 3,5 then no extension of Jo is #-maximal in any extension of
Qﬂ(Q)'

Proof. We will first consider possible containments of .%-subgroups in .%;-
subgroups. The .%-subgroups to consider are SLF (2%).2, Sg(¢)1, Q2(¢) and
Ga(q).

By Lagrange’s theorem L;f(2).2 could be a subgroup of Ajs or Aqg.
However we know that L} (2).2 < Qp,(2), whereas A5, Ajg < Q7,(2). There
are no other containments possible by Lagrange’s theorem which implies
that L} (2).2 is .-maximal.

Similarly, S¢(2) could be a subgroup of Ajs or Ajs. Again we find that
S6(2) < 074(2), whereas As, A1g < Q7,(2). Since ¢° | [Se(q)| there does not
exist any other .;-subgroup that could contain Sg(q)1.

The 14-dimensional .5-subgroup 2 (p*) does not exist in characteristic
2 or 5. In characteristic 3 computer calculations (file s2inslcont) show that
02(3).2 < Sp(2) < OF,(3) and that Q2(3) is absolutely irreducible. Fur-
thermore, Qg(3).2 has trivial stabiliser and hence no extension of Qg(3) is
#-maximal. None of the other .#;-subgroups has order divisible by p* for
p = 3 with the exception of Go(3) which has order divisible by 3*. However,
G2(3) has no cross characteristic representation in characteristic 3. Hence,
any extension of Q2(q), ¢ # 3, is .-maximal.

Finally, since none of the relevant .#;-maximal subgroups has order di-
visible by ¢5, when p > 5, it follows that Gz(q) is always .#-maximal in

Qf4(q)-

Next we will consider the potential containments of .#j-subgroups in
S-subgroups. Let G be an .#-subgroup with Schur indicator + in Table
10.1.2 and let K be an .#%-subgroup with Schur indicator 4+ in Table 10.1.2
such that K has a natural representation p in dimension ¢. If G < K then
there has to exist an absolutely irreducible ¢-dimensional representation 7
of some cover of G such that G < Kp by Lemma 10.1.2.

The only possible containments by [8, Thm 4.3.3, p.162] are

(i) A < SL4(2).2 < Qf4(2)7

(ii) A71,2'2 < 93(7)'2 < QT4(7>>
(iii) J1 < Gz(ll) < 91_4(11),
(iv) L2(13)1.2 < Se(p)1 < Qfy(p),
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(v) J2 < Ss(@)1 < Qi5(q) and

(vi) La(13)12 < Ga(p) < ().
Note that Lg(13) is not an irreducible subgroup of S¢(2); in dimension 14
since Lo (13) < Q7,(2) whereas Sg(2)1 < Q,4(2).

Computer calculations (file slins2cont) show that Ay is not an irre-
ducible subgroup of SL4(2) < Q7,(2). However, we can show using Magma
that A7,.2 is an absolutely irreducible subgroup of Q2(7).2 < Qf,(7) (file
slins2cont). Since A7, .2 has trivial stabiliser it follows that no extension of
A7, is ever .-maximal in characteristic 7.

Further calculations in Magma (file slins2cont) show that J; is an ab-
solutely irreducible subgroup of Go(11) < 07,(11) with trivial stabiliser.
Hence no extension of J; is .#-maximal in any extension of {27,(11).

From now on let p14 be a 14-dimensional absolutely irreducible repre-
sentation of Spg(g) acting on a submodule of A%(Vg) (see Proposition 9.3.3
and Proposition 9.3.4).

By [8, Table 8.29, p.392] there exists an .#;-subgroup H of Spg(q)
isomorphic to 2.L2(13). Here ¢ = p if p = 1,3,4,9,10,12 (mod 13) in
which case H has trivial stabiliser and ¢ = p® otherwise. Computations
in Magma (file slins2cont) show that Hpi4 is equivalent to L(13);. By
Proposition 6.4.7, Ly(13); < Q = Qf;(p) and has stabiliser (yq). It fol-
lows that if p = 2,5,6,7,8,11 (mod 13) then Ly(13); is .-maximal. If
p=1,3,4,9,10,12 (mod 13) then Spg(q)p14 and La(13); preserve the same
orthogonal form. It follows that Lg(13); is not .’-maximal in this case but
extends to a novelty under {yq).

We will now consider Jo2. By [8, Table 8.29 and Table 8.30, p.392] there
exists an .#;-subgroup H of Spg(gq) isomorphic to 2.Jo (J2 in characteristic
2). Here ¢ = p and H has trivial stabiliser if p = 1,4 (mod 5), ¢ = p? and
H has stabiliser {¢gp, (g)) if p = 2,3 (mod 5) and ¢ = p and H has stabiliser
(Op4(q), if p = 5. Since J.2 < Qp4(5) by Proposition 6.4.16, it follows that
J9.2 is .#-maximal in characteristic 5. Hence assume now that p # 3, 5.

Let G be an .¥-subgroup of Qﬁ(q) isomorphic to Jo. Computer calcu-
lations (file slins2cont) show that Hp14 is equivalent to G by looking at the
character values ([12]). Furthermore, G and Spg(q)p14 preserve the same
orthogonal form. By Propositions 6.4.14 and 6.4.15, G’ < Q3,(p) if and only
if p=1,4 (mod 5) and G < Qf,(p?) otherwise. Hence G is not .¥-maximal
in 274(q)-

If p=1,4 (mod 5) then G has trivial stabiliser and if p = 2,3 (mod 5)
then G and Spg(p?)p14 are both stabilised by <¢91+4(P2)> if p=17,13,37,43

(mod 60) and by <(¢7)Ql+4(p2)> if p = 17,23,47,53 (mod 60) or if p = 2.
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/
. . . 01, (0?)
induces dg, (2) and that ¢Qf4(p2) and (QSV)QE(I)Q) induce either ¢g, (,2) or

(¢0)sp,(p2)- Hence, Sg(p?).Out(Se(p?)) < Qf4(p2).<5;]1+4(p2),u>, where p €
{ngIr (p2)> (¢7)Qj4(p2)}' It follows that no extension of G is .”-maximal if
p# 3,5.

There also exists an absolutely irreducible subgroup H of Ga(p) iso-
morphic to L2(13) if p = 1,3,4,9,10,12 (mod 13), p # 3, by [8, Table
8.41, p.397]. Computer calculations (file slins2cont) show that H acts on
a 14-dimensional submodule of A?(V7). Let p}, denote this 14-dimensional
representation of H. Looking at the character values of Hp), we find that
Hpl, is equivalent to La(13)2. Furthermore, H has trivial stabiliser in di-
mension 7 whereas Lg(13)2 has stabiliser <79I£4(P)> or <(’y§)ﬂi(p)>. Hence

L2(13)4 extends to a novelty. O

Furthermore, Spg(p?)p14 is stabilised by <5;21+4 (p2)>. It is clear that 0

10.1.3 .¥-Maximals in Dimension 15

Let G be one of the .#1-maximal subgroups in Proposition 7.2.10 or Proposi-
tion 7.3.11 or let G be an #-maximal subgroup in Proposition 9.5.3. Then
G together with its Schur indicator, group order and the characteristics
in which G exists is given in Table 10.1.3. The column ‘PermRep’ gives
the degree of the smallest permutation representation of H = G*/Z(G*)
if some extension of G* is “-maximal. Otherwise the entry is left empty.
The * next to a group name signifies that G is an .#7-novelty.

The content of the table was taken from Table 7.1.1, Table 9.1.1, [6] and
[17].

Theorem 10.1.9. Let G be an %1 - or S-maximal subgroup of any exten-
sion of Q € {SL%(Q), 75(q)} and suppose that G is potentially mazimal.
Then G* is contained in Table 10.1.3.

Proof. This follows from Theorem 7.1.2, Proposition 7.2.10, Proposition
7.3.11, Theorem 9.1.1 and Proposition 9.5.1. 0
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Table 10.1.3: Potential .’-maximal subgroups in dimension 15

<% Ind Gp Order Charc PermRep
S o 3.A% 28.3%.5.7 #2,3 —
S o 3.Ay 23.3%.5.7 #2,3,7 7

A o 3.A%x 23.3%.5.7 2 —
S o Ly(31) 25.3.5-31 # 31 32
A o 3134 26.33.5.7 #2,3 —
A o 31.U4(3) 27.37.5.7 # 3 —
A o My 20.3%.5.11 3 —
S o 3My 27.3%.5.7-11 2 —
S o SLs(q) Pl — 1) =5 > 31
S o SUs(g) Ty — (—1)7) >5 > 50
S o SLs(q) ¢TI (@ = 1) # 2 > 121
S o SUs(g) 70T (¢’ — (—1)7) # 2 > 2440
S o Ba—1DLe(e) 3¢°[[_(d —1) all > 63
S o (3.q—-1)Us(q) 3¢°TI5oa(e? — (1)) all > 672
A + A, 23.32.5.7 # 2.7 —
A+ A 214.36.53.72.11-13 #2117 16
S+ Ay 214.36.5%. 72111317 17 17
S+ La(16) 24.3.5-17 #2,17 17
S+ La(29) 22.3.5.7-29 #2,29 30
S+ Ls(4) 20.3%2.5.7 3 21
S+ Se(2) 29.34.5.7 #2,3 28
A+ Us(2) 26.3%.5 #2,3  —
S+ La(g) 2q(q* — 1) > 17 > 18
S+ Lalg) @ [Tj—o(d = 1) # 2 > 40
S+ Ualg) e (@ = (-1)7) #2 > 112

Before considering containments we will first prove the following lemma
as it will be very useful later on.

Lemma 10.1.10. Let p be a 15-dimensional absolutely irreducible repre-
sentation of SLE (p) acting on the exterior square A*(Vi) as in Proposition
9.3.11.  Then (SLg (p).Out(LE (p)))p < SLli5(p)‘<5§Lli5(p)"YSLli5(p)>’ where

t=(p,5F1).

Proof. By Proposition 9.3.11, SLE(2)p = SLF(2) and SLE¥(p)p = (p F
1,3).L¢ (p) in odd characteristic.
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Suppose first that p is odd and let r = (3,p F 1). Then (r.Lg (p)).2)p <
SLix(p) and (r.LE(p).2)p is stabilised by <5éL%5 () VSLE, (p))- Furthermore,

\OutJr(Léi (p))] =+ 2r - 2 and |<6SL%—5(p)’fYSL%i(p)>‘ =t r - 2. It follows that
(r.Lg (p).Out(Lg (p)))p is a subgroup of SL1_5(q)'<5SL%—5(p)7’YSLli5(P)>'

In even characteristic we can similarly show that SLZ (2).Out(Lg (2))
SL:SL(Q)'<5SL§(2)7’YSL§(2)> is a subgroup of SLIL5(2).<6SLI£5(2), VSLI;E(Q))

1R

Proposition 10.1.11 (.%-maximal subgroups in dimension 15 - L/U).
Lett = (p —1,5) in Case L and let t = (p+ 1,5) in Case U. All S-
mazimal subgroups considered in Theorem 10.1.9 that preserve only the zero
or a unitary form are .-mazximal in dimension 15.
(i) No extensions of 3.Mag or 3.A7 are -maximal in any extension of
SU15(2).
(ii) No extension of My is .¥-mazximal in any extension of SLi5(3).
(iii) No extension of 3.Av, is .7-maximal in any extension of SUi5(5).
(iv) No extension of t x 3.Aq, is .#-mazimal in any extension of SLx(p).
If p=1,7,17,23 (mod 24), p # 7, then t x 3.A7, is not /-maximal
in SLi5(p) but extends to a novelty under ().
(v) No extension of t x 3.L3(4).21 is #-mazximal in any extension of
SL%(P)-
(vi) No extension of t x 31.U4(3).29 is .#-maximal in any extension of
SLI_%(P)-
All other ) -maximal subgroups with Schur indicator o considered in The-
orem 10.1.9 are . -mazimal.

Proof. To begin with we will prove that all .#5-maximal subgroups given
in Theorem 10.1.9 that preserve either only the zero or a unitary form are
#-maximal. The only .#-subgroup in even characteristic is SLg—r(q) and
¢"° | |SLE(g)|. However none of the .#j-subgroups with Schur indicator
o in Theorem 10.1.9 has order divisible by ¢'°. In characteristic > 3, we
need to show that none of the .#j-subgroups has order divisible by ¢'° since
¢* | |SLE(g)| and in characteristic > 5 we have to show that none of the
#1-subgroups has order divisible by ¢ since ¢° | \SL;{ (¢)]. By looking at
Table 10.1.3 it is straightforward to see that the maximal .#-subgroups in
Theorem 10.1.9 are all .’-maximal in Cases L and U.

We will now consider containments of .#- in .#-subgroups. By Lemma

10.1.2, Theorem 10.1.9, Table 10.1.3 and [8, Thm 4.3.3, p.162] we have the
following potential containments:
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(i) 3.A7 < SU3(5) < SU5(3),
(i) 3.Ma2 < SUg(2) < SU15(2),
(iii) Mo < L6(3) < SL15(3),
(iv) 3.A7 < (p 7 1,3).Lg (p) < SLiz(p),
v) 3.L3(4) < (p F1,3).LE(p) < SLix(p) and
(vi) 31.Us(3) < (pF 1,3).L§ (p) < SLE(p).

By [8, Table 8.6, p.379], SU3(5) has (up to equivalence) one .#;-subgroup
H isomorphic to 3.A7. Computer calculations (file slins2cont) show that
there exists an absolutely irreducible 15-dimensional representation p of H
on S*(V3). Furthermore, by [24], Hp is equivalent to 3.A7,. By [8, Table 8.6,
p.379], H has stabiliser (ygu,(5)) and 3.A7, has stabiliser (ysy, ;(5), by Propo-
sition 7.2.3. By Proposition 9.3.9, SU3(5)2 has stabiliser (0gu,;(5); Ysu,5(5))-
Since Ysu,5(5) induces Ysy,(5) by Lemma 8.5.2 it follows that no extension
of 3.A7, is ever .-maximal in characteristic 5.

Computer calculations (file slins2cont) show that there exists 3.Mag <
SUg(2) < SUj5(2) which is absolutely irreducible in dimension 15 and
is stabilised by (ysy42)) in Out(Ug(2)) and by (ysy,52), in Out(Ui5(2)).
By Lemma 10.1.10, (SUg(2).0ut(Ug(2)))p15 < SU15(2)-<6SU15(2)a’YSU15(2)>
which implies that 3.Mys is never .¥-maximal.

Throughout the remainder of this proof let pi5 be a 15-dimensional abso-
lutely irreducible representation of SLZ (¢) acting on A%(V;) as in Proposition
9.3.11.

By [8, Table 8.25, p.389] there exists an .#;-subgroup H of SLg(3) isomor-
phic to 2.M12 which has stabiliser {(7d)sr,¢(3)). Computer calculations (file
slins2cont) show that Hpis is absolutely irreducible and that Hpqs =~ M;is.
Furthermore, the image G of a 15-dimensional absolutely irreducible repre-
sentation of Myz has stabiliser (st ;3)) by Proposition 7.2.8. By Lemma
10.1.10, G{ys1,5(3)) < (SLg(3)-Out(Le(3)))p15 < SL15(3)-{Y8L15(3)> O5L15(3))-
It follows that no extension of G is .#-maximal.

Now we will consider 3.A7 < SLZ(p). Let H be an .#;-subgroup of
SL# (p) isomorphic to 3.A7. Using Lemma 8.2.5 and [12, 24], we can show
that Hpi5 is absolutely irreducible in odd characteristic and computer cal-
culations (file slins2cont) show that Hpjs is also absolutely irreducible in
even characteristic. In odd characteristic we can furthermore show that
Hps is equivalent to 3.A7,. By [8, Prop 4.7.10, p.206], H is either sta-
bilised by <(’Y5)Lg (p)> or by <7L6¢(p)>. Furthermore, 3.A7, has stabiliser

<7L;_r5 (p)> and in even characteristic an .#;-subgroup G of SU15(2) isomorphic

to 3.A7 has stabiliser (yy,,(2)). By Lemma 10.1.10, r.Lg (p).Out(Lg (p)) <
SLII5 (p).((SSLI£5 () VSLE, (p)>, where r = (3, F1). This implies that no extension

163



of 3.A7, or of G is .-maximal.

Continuing with 3.A7, let H be an .#j-subgroup of SL% (p) isomorphic
to 6.A7. By [8, Table 8.25, p.389 and Table 8.27, p.391], we find that
H < SLé—r (p) if and only if p = 1,7,17,23 (mod 24). Using Magma (see file
slins2cont) we can show that Hpi5 is equivalent to 3.A7,. However, 3.A7, <
SLi(p) for all p # 2,3,7. Hence, t x 3.A7, is .-maximal if p = 5,11, 13,19
(mod 24). Furthermore, H has trivial stabiliser whereas 3.A7, is stabilised
by <7SL1i5(p)>' It follows that 3.A7, extends to a novelty if p = 1,7,17,23
(mod 24), p # 7.

The next group to consider is 3.Lg(4). By [8, Table 8.25, p.389 and Table
8.27, p.391] there exists an .;-subgroup H of SLE (p) isomorphic to 6.L3(4).
Here H < SLg(p) if p=1 (mod 3) and H < SUg(p) if p = 2 (mod 3), p # 2.
We also find that H.2; < SLE(p) if p = 1,5,19,23 (mod 24) with stabiliser
<’YSL§(p)>' Otherwise H < SLg (p) with stabiliser <5ng(p),fySLg(p)>, where

3
%S o)
exists an absolutely irreducible subgroup G of SLf; (p) isomorphic to 3.L3(4).

Here G.21 < SLi5(p) if p=1 (mod 3) and G.2; < SUj5(p) if p = 2 (mod 3).
In both cases G.2; is stabilised by <'VSLI—“5(p)>' Computer calculations (file

induces the 27 outer automorphism of H. By Proposition 7.2.6 there

slins2cont) show that Hpjs is equivalent to G.

Let H2; = (H,A). Then H.2] = (H,iA) by [12, p.xxiii]. Further-
more, (i4)p15 = i2(Ap15) = —Ap1s. Since ker(pis) = +1 it follows that
(H.27 )p15 = 3.L3(4).2;. Hence, if H.2] < SLg(p) then G is not ./-maximal.
Now suppose that H < SLé—r (p) but H.2] « SLg(p). By Proposition 9.3.11,
(SLg(p).@ig(p)})pm < SLi;(p) in the cases we are interested in. Since

51?:55 (p)
have G.2; < (SLg (P)-<5ii(p)>)f)15 < SLix(p). Hence G.2; is not .#-maximal.
By Lemma 10.1.10, no e;j(tension of t x 3.L3(4).2 is ever .-maximal.

Our final group to consider is 31.U4(3). We will first assume that p
is odd. Then the proof works similarly to the proof of 3.L3(4). By [8,
Table 8.25, p.389 and Table 8.27, p.391] there exists an .#;-subgroup H of
SL& (p) isomorphic to 61.U4(3). Here either H.2; < SLE(p) with stabiliser
<’ySL;£(p)> or H < SLZ(p) with stabiliser <5ng(p)’fYSL6i(p)>’ where 6ng(p)
induces the 2o outer automorphism of H. By Proposition 7.2.7 there exists
an .#j-subgroup G of SLiz(p) isomorphic to 3;.Us(3) and G.2» < SLi5(p)
with stabiliser <'ySLI_r5 (p)>. Computer calculations (file slins2cont) show that

induces the 2; outer automorphism of H, it follows that we always

Hp;s is equivalent to G. As for 3.L3(4) we can similarly show that G.29 <
(3.L¢ (p)-<5it(p)>)Pl5 < SLi(p). By Lemma 10.1.10, no extension of ¢ x
6
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31.U4(3).22 is ever .-maximal in SLI—F5 (p) in odd characteristic.

In even characteristic there is an .#}-subgroup H in SUg(2) isomorphic
to 31.U4(3) by [8, Table 8.27, p.391]. In fact we have H.29 < SUg(2) which
has stabiliser (ygu,(2)). Computations in Magma (file slins2cont) show that
H p15 is absolutely irreducible and hence Hp15.22 has stabiliser (ygy,;(2))- It
follows from Lemma 10.1.10 that no extension of 3;.U4(3).22 is .#-maximal
in any extension of SU15(2). O

Proposition 10.1.12 (-maximal subgroups in dimension 15 - Case O°).
All S-mazimal subgroups in Theorem 10.1.9 that preserve an orthogonal
form are S -mazximal.

(i) No extension of A7.2 is . -mazimal in any extension of Q55(p).

(i) No extension of Us(2)1.2 is .#-mazimal in any extension of Q55(p).
All other .#1-maximal subgroups with Schur indicator + in Theorem 10.1.9
are . -maximal.

Proof. We will first consider potential containments of .#5- in .#]-subgroups.
Here we have to consider La(q), p = 17, and L} (¢). By Lagrange’s theorem
L2(q) could be a subgroup of Aj7; < Q5(17), but La(g) acts on ¢ +1 > 17
points and hence there is no containment. There are no other relevant .-
subgroups containing La(q).

By Lagrange’s theorem L7 (3).2 could be a subgroup of Ajs. But look-
ing at the degree of the smallest permutation representations of Ljf (3) in
Table 10.1.3, we see that there is no containment. There are no further con-
tainments since ¢% | |LE (q).2|, ¢ odd, and none of the other .#;-subgroups
has order divisible by ¢® = p% and a cross characteristic 15-dimensional
absolutely irreducible representation in characteristic p.

Now we will consider potential containments of .%j-maximal in .%-
maximal subgroups. By Lemma 10.1.2, Theorem 10.1.9, Table 10.1.3 and
[8, Thm 4.3.3, p.162], we have the following potential containments:

() L3(4) < Ua(3) < Q35(3),

(i) Ar < LE(p) < 95 (p) and

(it}) Us(2) < LE(p) < Qs(p).
From now on let p15 be an absolutely irreducible adjoint representation of
SL{ () in odd characteristic as in Proposition 9.4.2.

We will first consider Lg(4). By [8, Table 8.11, p.382] there exists
an .#;-subgroup H of SU4(3) isomorphic to 45.L3(4) which has stabiliser
<(5§U4(3), (70)su,(3))- Here 5§U4(3) induces the 29 outer automorphism of H.
By Proposition 7.3.7 there exists an .#}-subgroup G of €275(3) isomorphic to
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L3(4), where G.2; < Q75(3) and has stabiliser (Jg;_(3)). Computer calcula-

tions (file slins2cont) show that 49.13(4)p15 is equivalent to G. By Proposi-

tion 9.4.2, (SU4(3).(yu,3)))p15 < Q295(3) but (SU4(3)-<5{2J4(3)>)P15 £ Q35(3).

It follows that G.23 € U4(3).2 < Q75(3). Hence L3(4).22 is .-maximal in
i5(3).

The next group to consider is A7. By [8, Table 8.9, p.381 and Ta-
ble 8.11, p.382], there exists an .#;-subgroup H of SLf (p) isomorphic to
2.A7 with stabiliser <'ySL} (p)>. Furthermore, there exists an .#}-subgroup
G of Qi5(p) isomorphic to A7 and G.2 < Qf5(p) by Proposition 7.3.1.
Computer calculations (file slins2cont) show that Hpy5 is equivalent to G.
Since (SLf(p)-@SLf(p)»PIS < Q95(p) by Proposition 9.4.2 it follows that
G.2 < (SLf (p).<’ySL;_r(p)>)p15 < Qf5(p). Hence no extension of A7.2 is .-
maximal in any extension of Qf5(p).

Finally we will consider Uy(2). By [8, Table 8.9, p.381 and Table 8.11,
p.382], there exists an .#;-subgroup H of SL7 (p) isomorphic to 2.Uy(2) with
stabiliser <’YSL;—F (p)>. Computations in Magma (file slins2cont) and [12] show
that Hpis is equivalent to Us(2);. By Proposition 7.3.9, U4(2)1.2 < Q55(p)-
From Proposition 9.4.2 it follows that Uy(2);.2 < (SLF (p)-<'YSL}(p)>)'015 <

Q95(p). Hence no extension of Uy(2);.2 is .-maximal. O

10.2 G-Subgroups

In this section we will give a short discussion of the tables in [26] which
state the maximal subgroups of geometric type of the almost simple clas-
sical groups in dimension > 12. In particular, we will consider the novelty
subgroups given in these tables. For the tables containing the maximal
subgroups of geometric type in dimension 13, 14 and 15 see Chapter 11.

Let © € {SLZ(q),Sp,(q), Q2 (q)} unless otherwise stated and let T =
T/Z(T) for any group T'. Recall that for orthogonal groups in odd dimension
we only consider the case when ¢ is odd.

Definition 10.2.1. Let H be a subgroup of a classical group 7', such that
Q< T < Aut(2). If H lies in one of the Aschbacher classes C; to Cs, then
H is a G-subgroup of T

Roughly speaking (see e.g. [8, Table 2.1, p.55]) the geometric classes can
be described as follows:

e (; : stabilisers of totally singular or non-singular subspaces,

o Cy : stabilisers of decompositions V = @!_,V;, dim(V;) = n/t,

» (3 : stabilisers of extension fields of Fyu of prime index dividing n,
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e (4 : stabilisers of tensor product decompositions V = V; ® Vs,

» (s : stabilisers of subfields of Fyu of prime index,

e (g : normalisers of symplectic type or extraspecial groups in absolutely
irreducible representations,

o C7: stabilisers of decompositions V = ®!_,V;, dim(V;) = a, n = d,

e (g : groups of similarities of non-degenerate classical forms.

Note that some of the outer automorphisms of classical groups are de-
noted slightly differently in [26] than in this thesis as defined in Section 3.2.
For a more detailed discussion of the following see [8, p.57-58]. The main
things to note are as follows.

In Case L, the graph automorphism v € Out(L,,(¢)) is denoted by  in [26].
Nothing changes in Cases U and S.

In Case O°, the outer automorphism 77y defined in [26] stands for the
diagonal automorphism ¢ € Out(Oy, (q)).

In Case O%, we find that 7 corresponds to v € Out(O;! (¢)) and in dimen-
sion 14, when ¢ = 1 (mod 4) then igiy = ¢’ € Out(O;f (¢)). Hence we can
deduce that #gd corresponds to ¥63. Furthermore, in dimension 14,

(p) if ¢ is even
kerp(¥) = { (6,9 if ¢ = 3 (mod 4)
6,8, ¢)y if g=1(mod 4)

by [26, Prop 2.7.4, p.38]. Now let I'(V,F,, Q) denote the group of semi-
similarities of a vector space V' with underlying field F; and non-degenerate
quadratic form Q. To determine kery(7) when ¢ is odd, note that by [26,
Lemma 2.1.2, p.12}, 7 is a map from I'(V,Fy, @) to Fy given by 7(g) = A
for all such g € I'(V,F,, Q). Here X is uniquely determined for any g by
Qvg) = AQ(v)?, o € Aut(F,), for all v € V. Hence in dimension 14 it is
clear that projectively kerp(7) equals

kery(7) = @",7,¢) ifg=1(mod 4)
' 9 if ¢ = 3 (mod 4).

Finally, for Case O~ note that 7o = v € Out(O,, (¢)) and that in dimen-

sion 14, igfg = ¢ when ¢ = 3 (mod 4) and ¢ = ¢ when ¢ = 1 (mod 4).
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Furthermore we find that, in dimension 14,

kera(7) = 4 0¥ ifg=1(mod 4)
' (@,7,¢) if g=3(mod 4).

Let H be a representative of a conjugacy class of a G-subgroup. The
following table lists all the geometric subgroups in dimension 13, 14 and 15
where Hg = H ~Q is not maximal in Q but H extends to a novelty in some
extension by outer automorphisms. It gives the groups H and K with their
respective stabilisers such that Hg < Kg < Q. Note that there are always
two distinct Kg containing Hg that are not conjugate in Q.

Table 10.2.1: Geometric Novelty Groups

a=k(n—k),b=k(2n—3k),d=(¢—1,2)

Case | Type of H Stab Type of K Stab
of H of K
L (SLik(q) x SLy—k(q)) : (¢ —1) (8,7, 8y | BY: (SLi(q) x SLn—k(q)) : (g—1) | {5, ¢)
Ej : (SLi(q)® X SLn-2t(9))-(¢ = 1)* | <6,7,¢) | Eg : (SLr(q) x SLu-t(a)) : (¢ —1) | &, ¢)
OF | EJ": (5GLs(g) x Q4 (9))d @,7.6) | Ei': 3GLr(q) {8, ¢
(23 (3) x Q5(3)).2% (6,7, 0y | Q13(3).2 07, ¢
Q3 (5)7.2"2.57 Gy | 2% A0 CRRA
SLr(q). U5 @7 | By : §GLa(q) )
O™ | (25(3) x ,(3)).2° 6,7,9) | Q23(3).2 (&7, 8
0y (3)7.2"2.87 Gy, 8y | 2. A0 07, 8

Let Hg < Kq < Q< T < Aut(f2). The following lemma shows when
N7(Hg)2 =T but Np(Kg)Q2 # T, i.e. when Hg extends to a novelty.

Lemma 10.2.2. Let H and K be as given in Table 10.2.1. Suppose that
Kq has stabiliser R < Out(S2) and Hg has stabiliser (R, k) < Out(Q2) where
k¢ R and |k| = 2. Then Hg.R' is never mazimal in QLR for any subgroup

R' < R. However Hg.(k, Ry is mazimal in Q.(x, R') for any R’ < R.

Proof. Note that there exists one Q-class of H q but two Q-conjugacy classes
of Kg. Denote the Q-conjugacy class of Hg by [Hg] = {HS |z € Q} and let
[K1] and [K32] denote the two distinct conjugacy classes of Kg. Without
loss of generality let K; and Ky be the two representatives of [K;] and
[K2] respectively that contain Hg. Then they are the unique members of
their respective conjugacy classes that contain Hg. Let T = Q.R'. Then
R’ fixes one and hence all the Q-conjugacy classes. Since Hg = Ng(Hg)
by [26, Lemma 3.2.1, p.63] it follows that Hy.R' = Np(Hg). Therefore
Nr(Hg) fixes the class [K;]| for all i € {1,2}. Furthermore since Hg is
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normalised by N7 (Hg), K; has to be normalised by Ny (Hg) since K is the
unique member of its respective conjugacy class such that Hg < K;. Hence
Nr(Hg) < Np(K;) and Hg.R' is never maximal in Q.R'.

If T = Qr, R then Np(Hg) = Hg.(r,R'). Since [K1]* = [K3] it
follows that N7 (Hg) € Nr(K;). By [26, p.68] all Q.(k, R’) novelties that
occur in dimensions 13, 14 and 15 are maximal in Q.(k, R"). O

10.3 G and .¥ Containments

We will first develop some theory that will be useful when it comes to deter-
mining the maximal subgroups of the quasisimple classical groups and their
extensions by outer automorphisms. Let Q € {SLE(q),Sp,,(q), Q25 (¢q)} with
n € {13,14, 15}.

Lemma 10.3.1. Let G = Z(G).S be quasisimple, where S is non-abelian
simple, and let G < H. Then K.S embeds in N;/N;11 for some i, where
H=Ny> Ni>...> Ny =1 is a composition series of H and K < Z(G).

Proof. Consider the chain G = NgnG=2N1nG>=...=2 N,nG=1. Let
aeN;nG,be N;_1 nG. Then b=tabe N; n G as N; < N;_; and a,b e G.
Hence we have the following chain G = Ngn G N1 nG>...N;nG = 1.
Since we have a chain of normal subgroups and all normal subgroups of
G are contained in Z(G) there exists some i such that N; n G = G and
Niz1nG < Z(G). Hence (N;nG)/(Niy1nG) = K.S, where K < Z(G) and
K.S is quasisimple. Then G < N; and N;11 n (K.S) = 1. It follows that
GN;t1/Nit1 < N;/N;41. Furthermore,

GNit1/Niv1 = (K.S)Nip1/Nit1
~ K.S/((K.S) n Ni;+1) (2nd Isomorphism Thm)
= K.S.

Hence K.S embeds in N;/N; . O

Lemma 10.3.2. Let H = (GL1(q) ! Sp) N Q be a Co-subgroup of Q in di-
mension n. Let S < A, be non-abelian simple and assume that S is an
S -subgroup of 2. Then S is not a subgroup of H.

Proof. Assume that S < H. Since S is non-abelian simple, S is a subgroup
of the non-abelian composition factor A, of H by Lemma 10.3.1. However,
A,, is reducible in dimension n and hence cannot contain an irreducible
subgroup which leads to a contradiction. O
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Lemma 10.3.3 ([8, Prop 5.3.10, p.287]). Let K = S™(Va) ® S™(Va) for
n = m > 1, where S¥(V3) is a symmetric power of a 2-dimensional vector
space as in Section 8.3. Then K is reducible.

We will also need to introduce the concept of an induced representation.
These will be useful when we want to show whether a group G is a subgroup
of group H € Cs.

Definition 10.3.4. Let X be a finite group and let ¥ < X. Let 7 be a
representation of Y with character x. Then for all ¢ € X, the induced
character y*~ is given by

|1 Z (xgz™),
zeX

where

oy ) xly) ifyeY
X“(y) = .
0 otherwise.

The representation corresponding to X is the induced representation
X
of X.

Theorem 10.3.5 ([23, Thm 5.8, p.65]). Let p : X — GL(V) be an irre-
ducible characteristic 0 representation with character . Let V. =Wy +...+
Wi be an imprimitive decomposition of V. Let Y < X and suppose that Y p
is the stabiliser of W; for some i. Let x be the character of Y acting on W;.
Then p = x~X

Theorem 10.3.6 ([23, Thm 5.9, p.65]). Let Y < X, where X is a finite
group and let 7: Y — GL(W). Then X7X is an imprimitive matriz group
acting on V.= Wi+...+ Wy, where W; = W and k = |X : Y|. Furthermore,
Y1 stabilises one of these subspaces W;.

Lemma 10.3.7 ([23, p.64]). Let Y < X and let 7 = 71 + 72 be a reducible
representation of Y. Then the induced representation 75 = (11 + )% =

T 4+ 75% is reducible.

We will now determine the maximal subgroups of T, where Q < T <
Aut(Q) in dimension 13, 14 and 15. Let X < T and let Xg = X n Q.
We will consider each dimension separately. By [26] all maximal geometric
subgroups of T" in dimension 13, 14 and 15 are maximal. Hence we only
have to consider potential containments of .’-subgroups in G-subgroups.
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10.3.1 Maximal Subgroups in Dimension 13

We will start by determining the maximal subgroups of classical groups
in dimension 13. We can show that there are no containments of .¥- in
G-maximal subgroups.

Proposition 10.3.8. All .-mazimal subgroups in Proposition 10.1.4 are
mazximal in their respective quasisimple classical groups.

Proof. For an .-subgroup Gg, to sit inside a G-subgroup Hgq, the group Hg
must lie in Class Co, C4, Cg or C7. This implies that we only have to consider
groups Hgq in Classes Co and Cg in Cases L and U and groups in Class Cs in
Case O° by the tables in [26]. It is clear that there are no containments when
Hg, lies in Class Cg as no cover of either of Sg(3) or Us(4) has a 2-dimensional
absolutely irreducible representation.

We will now consider the possible containments when Hgq lies in Class C,.
Then Hq = (¢F1)'2.S13 in Cases L and U respectively or Hg = 2!2.A13(.2)
in Case O°. Let S be the simple part of Gq = Z(Gq).S. Then K.S has to
be a subgroup of A;3 for some K < Z(Gq) by Lemma 10.3.1. By Lagrange’s
theorem and considering the smallest permutation representations of S (Ta-
ble 10.1.1), the only possible containments are G = Ag in Hg = 212. A3
in characteristic 3 or G = L3(3) in Hg = 2'2.A13(.2), both in Case O°.
However none of these containments are possible by Lemma 10.3.2. O

10.3.2 Maximal Subgroups in Dimension 14

In the following lemmas we will consider the potential containments of .#-
subgroups in G-subgroups. We will then prove in Proposition 10.3.12 that
the “-maximal subgroups in Proposition 10.1.6, Proposition 10.1.7 and
Proposition 10.1.8 are in fact maximal.

Lemma 10.3.9. Let Gg = SLa(q), p = 17, be an -mazximal subgroup of
Spi4(q). Let Hq = GL7(q).2 < Spy4(q) lie in Class Co. Then Ggq is not a
subgroup of Hq.

Proof. If Gq < Hq then (Gq)* < (Hq)®. But (Gq)* = SLa(q) is irre-
ducible whereas (Hq)® = SLz(q) x SL7(q) is reducible, a contradiction. [J

Lemma 10.3.10. Let G be an . -subgroup of a 14-dimensional quasisimple
classical group Q and let H be a Ca-subgroup of Q. If Go/Z(Gq) = Ay, then
Gq € Hg.
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Proof. Suppose that Gq is imprimitive and preserves a decomposition into
seven 2-dimensional subspaces. Since Gg = (2.)A7 by Table 6.1.1, the only
subgroups of Gg of index 7 are K = (2.)Ag by [12]. By [12, 24], K only
has an absolutely irreducible 2-dimensional representation in characteristic
3 but Gq does not exist in characteristic 3 by Table 6.1.1. Hence in all
our cases, K only has reducible 2-dimensional representations. Therefore, if
G is an induced representation, then Ggq is reducible by Lemma 10.3.7, a
contradiction. O

Lemma 10.3.11. Let Gg be an .#-maximal subgroup of Qi,(q) and let
Hq < QF,(q) lie in Class Ca. If
(i) Go = La(13) or G = Ga(q), Ho = SO5(p )2,

(i) Gq = La(13) or Gq = Ga(q), Ho = Q5(q)?.22.S,,

(iii) Gq = La(13) or G = Ga(g ) Hq = SL7(q). (((1 1%) in Case O,
(iv) Go = Sg(2), Ho = SO3(3)2,

(v) Gq = Se(2), Hg = SL7(3)

then G € Hq.

Proof. Since G is non-abelian simple it has to be a subgroup of either
Q2(q)? or SL7(q). By [21], ©2(¢q)? and SL7(q) are reducible and hence cannot
contain Ggq. L]

Proposition 10.3.12. All 14-dimensional . -mazimal subgroups in Propo-
sition 10.1.6, Proposition 10.1.7 and Proposition 10.1.8 are mazimal in their
respective classical groups.

Proof. Note that we only have to consider possible containments of .#-
subgroups Gg in Gg-subgroups Hg when Hg lies in Class Cy or Cy4 by [26].

Suppose first that Hq lies in Class C4. Then Hg does not preserve an
orthogonal form by [26]. In Cases L, U and S none of the .#;-subgroups has
a 2-dimensional absolutely irreducible representation in cross characteristic
by [8, Thm 4.3.3, p.162]. The only .#5-subgroup with a 2-dimensional abso-
lutely irreducible representation is SLa(q). Hence G = SLa(q) is a potential
subgroup of Hg = Sp,y(q) o GO7(q). By Section 8.3, SLa(gq) acts on the mod-
ules S"~1(V3) and therefore, Gg acts on S13(V3). If G < Hq then Gq acts
on St (V2)®S® (V) as well. This implies that S*(V2)®S°(V2) =~ S'3(V2). How-
ever, S13(13) is irreducible whereas S!(V2) ® S6(V42) is reducible by Lemma
10.3.3, a contradiction.

Now suppose that Hq lies in Class Cy. In Cases L and U there are no
Z-subgroups acting on 14 or less points by Table 10.1.2. There are also
no groups with a 7-dimensional absolutely irreducible representation in the
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appropriate characteristics by [8, Thm 4.3.3, p.162]. Hence all .-maximal
subgroups preserving a unitary or zero form are maximal.

In Case S there are two potential containments of .#-subgroups in sub-
groups of type Co by Lagrange’s theorem and [29], namely SLa(¢) in GL7(q).2
and 2.A7 in Spy(q)” : S7. However it follows from Lemma 10.3.9 and Lemma
10.3.10 that these containments are not possible.

Finally, in Case O¥ it follows from Lemma 10.3.2 that the images of ab-
solutely irreducible 14-dimensional representations of Lo(13) and A7, are not
subgroups of Ho = 23.A14(.2) < Qi,(p). All other potential containments
are considered in Lemma 10.3.10 and Lemma 10.3.11. O

10.3.3 Maximal Subgroups in Dimension 15

We will first consider a possible containment of an .#-subgroup in a G-
subgroup and then show that this is in fact the only containment.

Proposition 10.3.13. In Cases L and U the .7 -subgroup Go = 3.A7, is a
subgroup of the Co-subgroup Hq = (p F 1)'4.S15 in dimension 15. Further-
more, no extension of Gq is mazimal.

Proof. By [12] the only subgroup (up to conjugacy in 3.S7) of 3.A7 of index
15 is K = 3 x Ly(7). We want to show that Gq is the image of the induced
representation 7¢2, where 7 is a 1-dimensional representation of K. Using
Magma (file sgcont) we can determine the character values of 7.

Let R1, Re and Rj3 be the conjugacy classes of K denoted by Class 3,
4 and 5 in the character tables of K (see file sgcont). Then elements of
R1, Ry and R3 contain elements of order 3 with character values 1, z3 and
zgl with respect to 7. We can show that the only conjugacy classes of K
that are conjugate in 3.A7 are Ry, Ry and R3. Let g € P, where P is the
single conjugacy class of 3.A7, containing the R;,, and let x be the character
associated with 7. Let

o v ) xlg) ifgeK
xX°(g9) = .
0 otherwise

as in Definition 10.3.4. Then >} o X°(zgr™) = (1l + 23 + 23 ) for some
a € N\{0}. Note that P has 840 elements and |R;| = 56. Hence a =

3-56 G 1 o - G o
Galsio = | 5Q| and XGQ(Q) = merGQX (xgr~1) = —E‘ﬁ" -0 = 0 which is
the indeed the character value of elements of P. Using similar calculations we
can determine x“2. We can show that Gq is indeed the image of 7¢2. Hence

G is an imprimitive matrix group acting on 15 1-dimensional subspaces.
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Looking at [12], we can see that 3.S7 has no index 15 subgroup. In fact,
A7 has two conjugacy classes of subgroups isomorphic to Lo(7) which are
fused under S;. Hence 3.S7, € Hq. Let t € 3.57\3.A7. Then

G 0
3.872 = << OQ th>’ (]?5 1(1)5)>7

since the outer automorphism of order 2 of G is induced by . Furthermore,
~ interchanges G and Gq' which implies that Gq! = Go~T. Since

Ho 0
Ho.(my = ("0 0 ) (478 )
it follows that Go.(y) < Hq.(v). O

Proposition 10.3.14. In dimension 15 no extension of 3.A7, is mazimal
in any extension of SLli5(p). All other .#-mazximal subgroups are mazximal
in dimension 15.

Proof. Note that we only have to consider possible containments of .7-
subgroups Gq in Hg when Hg lies in Class Cy or Cy by [26].

First suppose that Hq lies in Class C4. In Cases L and U this implies
that Hg = SLT oSLZ (). However there is no .-subgroup Gy, that has both
an absolutely irreducible representation in dimension 3 and 5 by [8, Thm
4.3.3, p.162] and [29]. In Case O°, Gq = La(q).2 is a potential subgroup of
Hq = (25(q) x Q2(q)).2. By Section 8.3, Gq acts on S (V3). If G < Hg
then Ggq also has to act on the module S?(V32) ® S*(V3). By Lemma 10.3.3,
S%(Va) ® S%(V3) is reducible whereas S'4(V5) is not. Hence there are no
containments of .#-subgroups in Hp when Hg lies in Class Cy.

If Hg lies in Class Co then Hgq has shape M 'S, for some ¢ by [8, Table
2.5, p.63], where M € {GLZ (¢q),GOS,(q)}. Hence K.S < Ggq, where K <
Z(Ggq) and S = Gq/Z(Gq), has to be a subgroup of A;. By looking at the
smallest permutation representations of the .#-subgroups (Table 10.1.3) and
using Lagrange’s theorem, we can see that the only possible containments
is Go = 3.A7 in Hg = (p F 1)'*.S15 in Cases L and U, which is considered
in Lemma 10.3.13. O

174



11 Final Tables

Let © € {SL,(q),SUn(q),Sp,,(q), 2, (q)}, where n € {13,14,15}, and let
Q<T<Aasin (3.1.1) (p.26). Let K = K/Z(K) be the projective version
of any group K. Then A = Aut(Q). Furthermore, let ¢ = p’ for some
prime p and some 7 > 1 and let C' denote the respective conformal group
of €. Recall that the outer automorphisms of €2 where defined in Section
3.2. The tables in this chapter contain the maximal subgroups of T' but it
is straightforward to deduce the maximal subgroups of the almost simple
classical groups T.

The tables are ordered by dimension and within each dimension we will
first give the tables in Case L, followed by Case U, Case S and Case O. In
dimension 14 we will first state the results for Case O and then for Case
O~. For each family of classical group there are two tables, the first one will
give the maximal subgroups of T that are of geometric type and the second
one the maximal subgroups that lie in class .. These two types of tables
have very similar but not identical structure.

In general each row in a table denotes an Aut(Q2)-class of a maximal
subgroup K of Q. Note that unless K is a novelty, K.R is a maximal
subgroup of Q.R for all R < Out(Q) if R stabilises K.

The G-subgroup tables

Let H be a representative of a conjugacy class of maximal geometric
subgroups. The first column of the tables states the Aschbacher class in
which H lies followed by the structure of H. In the ‘Notes’ column we
give restrictions on ¢ and p and state whether H is a novelty which we will
denote by Nu, where v € N. The column labelled ‘¢’ then gives the number
of conjugacy classes a single C-conjugacy class of H splits into in 2. The
stabiliser of H in Out(Q) is given in the final column. If the information
regarding the stabiliser of a group is too long to be conveniently included in
a table, we will denote this by Su, for some u € N. Information regarding
novelty subgroups and stabilisers can be found in an auxiliary table directly
following the respective table.

The ¥-subgroup tables

The first column of the tables gives the maximal subgroups G of type
. We will use the notation in the ATLAS [12] to denote these groups. This
is followed by restrictions on ¢ and p. If any of these groups G extends to a
novelty subgroup then the table includes a column ‘Notes’ Otherwise this
column is omitted. Again we have a column giving the number of conjugacy
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classes a single C-conjugacy class of G splits into in  and a column giving
the stabiliser of G' in Out(£2). Further information about novelty subgroups
and stabilisers can again be found in an auxiliary table directly following

the respective table.
Table 11.0.1: Maximal subgroups of SLi3(q) of geometric type

d:=|Z(SL13(q))| = (¢ — 1,13), |0] = d, [¢| = e, |7] = 2, ¢ = p°.

Ci  Subgroup Notes c Stab

Cy Eéz : GL12(q) 2 (8, ¢

Ci EZ?:(SLa(q) x SLui(q)) : (¢ — 1) 2 (8, )

Ci E}:(SLs(q) x SLio(q)) : (¢ — 1) 2 (8, ¢)

Ci E}:(SLa(q) x SLo(q)) : (¢ — 1) 2 8, ¢

Ci E®:(SLs(q) x SLs(q)) : (¢ —1) 2 6,9y

Ci Eg®:(SLe(q) x SL7(q)) : (¢—1) 2 6,9y

C1 GL12(q) N1 1 <5,’y,¢>
C1 (SL2(q) x SL11(q)) : (¢ — 1) N1 1 (8,7, )
€1 (SLs(q) x SLio(q)) : (g —1) N1 1 (8,7, 6
Ci (SLa(q) x SLo(q)) : (¢ — 1) N1 1 (8,7, 9
Ci (SLs(q) x SLs(q)) : (¢ —1) N1 1 (8,7, )
€1 (SLe(q) x SLz(q)) : (¢ — 1) N1 1 (8, by
Ci EP:(GLu(g) x (¢— 1)) N1 1 Sy, b
Ci E7:(SL2(g)® x SLe(g)) : (g—1)* NI 1 6,7, )
Ci EJ':(SLa(g)® x SLz(g)) : (g—1)*> NI 1 (6,7, 9
€1 E®:(SLa(g)* x SLs(g)): (¢ —1)*> NI 1 (8,7, )
€1 EZ°:(SLs(g)? x SLs(g)) : (¢ —1)* N1 1 6,7, 8
€1 E®:GLs(g)? N1 1 (8,7, )
CQ (({37 1)12.813 q =5 1 <57’y7¢>
Cy LSH13 1 (8,7, by
Cs  SLus(a0)-[(275,13)] q = g¢b,  prime (5,13) %7, ¢
Cs  ((g—1,13)013%).Sp,(13) q¢=p=1(mod 13) or (¢ —1,13) (8,7, 9

(¢ = p*&p=3,9 (mod 13))

Cs  SOi%3(q)-(¢ —1,13) g odd (g—1,13) 8%, )
Cs SU13(111/2).(q1/2 —1,13) q square (ql/2 —1,13) (6%, 9)

’ N1 Maximal under subgroups not contained in {4, ¢) ‘

Table 11.0.2: Maximal subgroups of SLi3(g) in Class ./

In all examples ¢ = p. So d := |Z(SL1s(p))| = (p — 1,13), |6| =4, |¢| =1, || = 2.
Subgroup Conditions onq c¢ Stab
d x Sg(3) g=p=1(mod3) d (v
d x Us(4) g=p=1(mod5) d (v
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Table 11.0.3: Maximal subgroups of SU13(q) of geometric type

=12(SUss()| = (¢ +1,13), [0] = d, |¢| = 2¢, ¢ = p°.

Ci  Subgroup Notes c Stab
Ci EF:SUu(g)(¢" - 1) 1 (6,8
Ci Eg”: (SL2(¢®) x SUs(q))-(¢* = 1) 1 {6,y
C1 E7':(SLs(¢®) x SU7(q))-(¢* — 1) 1 {6,y
G E?,G : (SLa(¢?) x SUs(q))-(¢* — 1) 1 0,9y
Ci E’:(SLs(¢®) x SUs(q))-(¢* — 1) 1 0,9y
G EP:GLs(¢?) 1 G, ¢
C1 GUiz(q) 1 8, ¢y
C1 (SUa(g) x SU11(g))-(¢ + 1) 1 0,9y
Ci (SUs(g) x SU1o(q))-(¢ +1) 1 {6, 9)
Cr (SUa(q) x SUs(q))-(q + 1) 1 {6, 9)
€1 (SUs(q) x SUs(q))-(¢ + 1) 1 {6,y
€1 (SUs(g) x SU7(q))-(g + 1) 1 {6,y
C: (qg+ 1) 1 0,9y
¢ Ll 1 @,
Cs  SUi3(qo)-[( q‘i;_ll ,13)] q = qp, 7 odd prime (q“;tll, 13) (6% ¢y
Cs  SO%5(q)-[(q +1,13)] q odd (a+1,13) (0%
Cs  ((g+1,13)013%).Sp,(13) (¢ =p*&p=5,8(mod 13)) or (g+1,13) (8% ¢)

(g =p"&p=2,6,7,11 (mod 13))

Table 11.0.4: Maximal subgroups of SU;3(¢) in Class .7

d:=|Z(SUis(q))| = (¢ + 1,13), [6| = d, [¢] = 2¢, ¢ = p%, ¢° = 7.
Subgroup Conditions on ¢q c Stab

d x Sg(3) q=p=2(mod 3) d ()
d x Us(4) q=p=4(mod 5) d ()
q:p27p52,3(m0d5),p¢2 d <¢>
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Table 11.0.5: Maximal subgroups of Q{5(¢) of geometric type

d:=[Z(Qis(9)) = 1, [8] = 2, [¢] =€, ¢ = p° odd.

Ci  Subgroup Notes c Stab
Ci B (5 x Q%(g))2 1 69
Ci By : (3GLa(q) x Q25(q))-2 16,9
€1 EF':(3GLs(q) x 957(q))-2 1 {5,9)
Ci B’ :(3GLa(q) x Q3(q)).2 1 {6,0)
Ci EZ:(3GLs(q) x Q3(q))-2 1 {6, ¢)
C1 Egl : %GLS((]) 1 {5,0)
Ci (q)-2 L 6,
i Qp5(g)2 L 69
Ci (925 (q) x 251(9))-2 q#3 1 {6,0)
Cr (95 (q) x 211(g))-2 1,9
Ci (25(9) x Qp(9))-2 L 6,
Ci (Q5(q) x Q(q))-22 15,9
Ci (4 (q) x 5(q))-2° 1 69
Ci (Q5(q) x 25(q)).22 1 (5,9
Ci (Q5(a) x Q3 (9))-22 1 {6, ¢)
Ci (Q5(a) x Q5 (q))-22 L (6,
Ci (9 () x 25(q))-2° L 6,
Ci (9% (q) x Q3(q))-2° 1 {6, ¢)
Co 2'%.Aq; g=p=43(mod8) 1 (5,¢)
Cy 2'2.8i3 g=p==11(mod 8) 2 (@)

Cs  9%3(qo0) q = qp, r odd prime 1 {4,¢)
Cs  SO%3(qo) q=4q 2 Ly
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Table 11.0.6: Maximal subgroups of Q{5(g) in Class .7

d:=|Z(Q13(q9))| = 1, |8] = 2, [¢] = e, ¢ = p® odd.

Subgroup Conditions on g Notes ¢ Stab
As =3 N1 1 &)
S14 g=p==+1,43,4£9 (mod 28), p # 3 2

Ay g=p==£5,+11,£13 (mod 28), p # 5 1 )
S1s qg=3 2

Ais qg=>5 1 )
L2(25) g=p=2,3(mod5), p#2 1 <6
L3(3).2 qg=p=1,11 (mod 12) 2

L3(3) g=p=5,7(mod 12) 1 )
S4(5) g=p=1,4(mod 5) 2

S4(5) g=7p> p=2,3(mod 5), p#2 2 Loy
Se(q) p=3 1 {6, ¢)
Q5(q) p=>5 L ,9)
La(q) p>13,q+13 1 $6,0)

N1 Maximal under () ‘
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Table 11.0.7: Maximal subgroups of SL14(q) of geometric type

= [Z(SLua(9)| = (¢ = 1,14), |6| = d, |¢] = €, y| = 2, ¢ = p°

Subgroup Notes Stab
E;® : GLua(q) (6, )
E3*: (SL2(g) x SLi2(q)) : (¢ — 1) (6, 6)
Ej : (SLa(g) x SL11(q)) : (¢ — 1) (6, 9)
E3” : (SLa(g) x SLio(q)) : (¢ — 1) (6,0)
E3” : (SLs(g) x SLo(q)) : (¢ — 1) (6, ¢)
Eg® : (SLe(g) x SLs(q)) : (¢ — 1) (8, ¢)
By’ : (SL7(g) x SL7(q)) : (¢ — 1) 6,7, )
GL13(q) N1 O, )
(SL2(q) x SLi2(q)) : (¢ — 1) N1 6,7, )
(SLs(g) x SL11(q)) : (¢ — 1) N1 6,9
(SLa(q) x SL1o(q)) : (g —1) N1 6,7, by
(SLs(g) x SLo(q)) : (g —1) N1 6,7, )
(SLe(g) x SLs(g)) : (g — 1) N1 v, )
E3° : (GLi2(q) x (¢ — 1)) N1 6,7, ¢
E3* : (SL2(g)® x SLio(q)) : (¢ — 1)* N1 6,7, )
E37 : (SLs(g)® x SLs(q)) : (¢ — 1) N1 8,7, 6)
ES* : (SLa(q)® x SLe(q)) : (¢ — 1)° N1 6,7, ¢
ES : (SLs(g)? x SLa(q)) : (g — 1)? N1 6,7, ¢
B3’ : (SLe(q)* x SLa(q)) : (¢ — 1)° N1 7,9
(g—1)*.Su qg=5 0,7, 9
SLa2(q)".(¢q —1)°.87 q+2 6,7, 8
SL7(q)*.(¢ — 1).S2 G, ¢
(=20 6 81,(¢7)) 7 6.7,6)
((g=1,7)(g + 1) 0 SLz(¢*))-(q + 1,7).2 (8,7, ¢
SLa(q) o SL7(q) q#2 8,7, )
SL1a(q0)-[(;2=5,14)] q = g§, v prime 67, 6)
(¢ —1,14) S14(q) q odd {8%,5, ¢
(¢ —1,14)PCSp,,(q) q even 6%, 9)
SO4(q)-(g — 1,14) q odd (67, 6
SO14(q).(¢ — 1,14) q odd S1
SU14(q"?).(¢"% — 1,14) q square (6%, ¢

N1
S1

Maximal under subgroups not contained in (4, ¢)

(6%, 7, ¢ if ¢ =3 (mod 4)

(6°,¢p6P~V/2 ~671Y if g =1 (mod 4)
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Table 11.0.8: Maximal subgroups of SL14(q) in Class .

In all examples g = p. So d := |Z(SL14a(p))| = (p — 1,14), |6| =4, |¢| =1, |y| = 2.
Subgroup Conditions on g c Stab
do02.S6(3) ¢g=p=1,7(mod 24) d (v
g=p=13,19(mod 24) d (vd)
dxSz(8).3 g=p=1(mod 4) 2d

Table 11.0.9: Maximal subgroups of SU14(q) of geometric type

d:=12(SU14(q))| = (g +1,14), [6| = d, |¢| = 2¢, ¢ = p°.
Ci  Subgroup Notes c Stab

C1 E35 : SU12(q .(q2 — 1) 1 <(57 ¢>
C1 E34 : (SLz(qz) X SU1o(q)).(q2 -1) 1 (6, Py
Ci EY:(SLs(¢?) x SUs(q)).(¢> — 1) 1 (5,6
Ci ES*:(SLa(g?) x SUs(q)).(¢> — 1) 1 (5,6
Ci EQ”:(SLs(¢?) x SUa(q))-(¢* = 1) 1 0, ¢y
Ci EY:(SLe(q%) x SUa(q)).(¢* — 1) 1 (6, 6)
Ci E:SLi(¢%).(¢—1) 1 (6, 6)
Ci  GUis(q) 1 (6, d)
C1 (SUa(q) x SU12(q)).(¢ + 1) 1 (6, ¢)
C1 (SUs(q) x SU11(q)).(¢ + 1) 1 (6, ¢)
C1 (SUa(q) x SUio(q)).(g + 1) 1 0, ¢y
Ci (SUs(q) x SUo(q)).(q + 1) 1 (8, ¢y
C1 (SUs(q) x SUs(q)).(¢ + 1) 1 8, ¢y
Co (qg+ 1)13.314 1 (6, by
C2 SUz(q)".(¢ +1)°.87 q+#2 1 6, 6)
C> SUz(q)%.(¢ +1).S2 1 (6, b
Ca  SL7(¢%).(¢—1).2 1 (8, ¢
€y (WHDET (g, (7)) 7 1 0, ¢
Cs  SUaz(g) o SU7(q) q#2 1 (8, )
Cs  SUi14(qo)-[( q%ill ,14)] q = ¢4, r odd prime (qqul ,14) 6%, ¢
Cs SO, (q).[(g+1,14)] q odd (¢g+1,7) S1

Cs  SO(q).[(g+1,14)] q odd (g+1,7) 82

Cs  Spiu(9)-ll¢+1,7)] (g+1,7) (%9
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S1 (6% ¢y if ¢ =1 (mod 4)
(8¢, p6®=1/2y if ¢ = 3 (mod 4)
S2  (6°,¢5P~V/2) if g = 1 (mod 4)
(8¢, ¢y if ¢ = 3 (mod 4)

Table 11.0.10: Maximal subgroups of SUj4(¢q) in Class .

In all examples ¢ = p. So d := |Z(SUwa(p))| = (p + 1,14), 0] = d, |¢p| =2, ¢ = 7.
Subgroup Conditions on g c Stab
d02.S6(3) ¢q=p=17,23(mod 24) d (v)
g=p=5,11(mod 24) d (vd)
d x Sz(8).3 ¢=p=3(mod 4) 2d

Table 11.0.11: Maximal subgroups of Spy4(q) of geometric type

d:=1Z(Sp1s(9)| = (¢ —1,2), |0 = d, |¢] = e, ¢ = p°.

Ci  Subgroup Notes c Stab
Ci By :((g—1) x Spiy(q)) 1 (5,9
Ci EF : (GLz2(q) x Spio(q)) 1 O,6)
Ci E¥:(GLs(q) x Sps(q)) 1 {5, ¢)
Ci EX:(GLa(q) x Spe(a)) 1 {5,¢)
Ci E¥ :(GLs(q) x Spy(q)) 1,6
Ci B} : (GLs(q) x Sp,y(q)) 1 (5,9
€1 E2®:GLs(q) 1 {59
C1 Spy(q) x Spiy(q) 1 {6, ¢)
C1 Spa(q) x Spyo(a) L {49
Ci Spe(q) x Spg(q) 1,6
Co Spy(q)”: Sy q+2 16,8
Co GL7(q).2 q odd 1 (0, ¢)
Cs  Spy(q").7 L 6,6
C: GUr(q).2 q odd 1 {5,6)
Ca  Spy(q) 0 GO37(q) q odd L 69
Cs  Spi4(qo)-2 q=q3 odd 2 AP

Cs Spy4(qo) q=qp, rodd prime 1 {(§,¢)

or q even
Cs GOﬂ(q) q even 1 ¢
Cs  GOy(q) q even 1L &
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Table 11.0.12: Maximal subgroups of Spy4(¢q) in Class .

d:=|Z(Spy4(q))| = (¢ —1,2), |6| = d, |¢| =€, ¢ = p°.

Subgroup Conditions on ¢ Notes ¢ Stab
2.A7 g=p=1,7(mod 8) 2

qg=p* p=3,5(mod 8),p#3 2 ¢y
2.L2(13).2 ¢=p=1,7(mod 8) 2
2.L(13) q=p=+5 +11,+19,+21, +37, +45 (mod 104) 16
2.L»(13) q=p= 13,427,429, +35 +43, +51 (mod 104) N1 1
2.12(13).2 g=p=1,23 (mod 24) 2

qg=p=1,23(mod 24) 2

q:pz,pz5,7(m0d 12) 4
215(13)  g=p=11,13 (mod 24), p # 13 1 ()

g=p=11,13 (mod 24), p # 13 1 )
L29) -4 1
2.L2(29) q=p=+1,+4,45+46,+7,£9, +13 (mod 29) 2

q=p? p=+2 +3,+8 410, +11, 412, +14 (mod 29), p # 2 2 (¢
2.J2.2 g=p=1,7(mod 8) 2
2.Js q=p=3,13,27,37 (mod 40) 1 G
2.1 ¢ =p=11,19,21,29 (mod 40) N1 166
SL2(q) p=17 L 69
Spe(a) p=3 IRCE

N1 Maximal under {§) ‘
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Table 11.0.13: Maximal subgroups of Q7,(q) of geometric type

q=2°:|Z(Q1 (@) =1, 18] =1, 4| =2, 18| = 1, ¢ = e.
q=p°= l(mod 4) |2 (@) =2, [0 =4, |7 = 2,6 =&, o] = e
q=p°=3(mod4):| Nl =1,101=2 =2 [0=1,1[¢] =e.
t:=(¢g—1,2)

Ci  Subgroup Notes c Stab

Ci Eg®: (5 x Qf(q))t L 60
G EF: ($GLa(g) x (). 1 &)
C1 EZ:(+GLs(q) x Q4 (q)). L 6,7, 9)
G EP: ($GLa(g) x Q7 (9)) 1 6,7, ¢)
Cy Ego : (%GLs(q X Q+(q) 1 (6,7, 9)
G E7 :(;GLe(g) x Q3 ().t N1 1 6,7, )
C1 EX:1GLs(q) 2 {5, ¢)

G Qi3(q).2 q odd 2 9
Ci (QF(3) x Qf,(3)).22 g =3, N2 1 {8,v,¢)
Ci (93 (g9) x 3(9))-2° qg=4 L 6,76
Ci (95 (g) x Q12(g))-2° L 69
G (Q3(q) x Q91(q))-2° q odd 2 &9
G (7 (@) x Qip(a)-2 1 6,7,
Cr (4 (9) x Q1p(9) -2 L 6,9
G (95(g) x Q5(q))-22 q odd 2 &9
i (94 (g) x Q5 (9))-2 L 60
i (95 (9) x Q5(9))-2 L 6
Ci Spis(q) q even I
Co 23S g=p=1(mod 8) 4 (v, ¢
Co 2B A g =p=>5(mod 8) 2 {8y, 9
C: QFf(5)7.2".8; q=5, N2 1 48,7, ¢)
C: Qf(¢)".2"2.8; q=T 1 (6,7, ¢)
Co Q5(q)%.2%.S, g =1 (mod 4) 2 {8y,
Co  SLs(q).l 7Y N1 1 {5,7,6)
C2  SO%(q)? g = 3 (mod 4) 1 4,7,
Cs 2xQ5(q%).2 g =1 (mod 4) 2 S1

Cs Q?(q2).2 g = 3 (mod 4) 1 (6,7,9)
Cs  Qf,(q0) q=qb, r odd prime or g even 1 (4,7, )
Cs SO07,(q0) q=q5, o =1 (mod 4) 2 8y, 9)
Cs SO{4(q)-2 q=q5, qo =3 (mod 4) 4 {v,9)
Cs  Qy4(qo0) q = q even 1 (e
Cs  SO14(qo)-2 q=q5, g =1 (mod 4) 4 (v,9)
Cs  SO14(q) q= g5, qo = 3 (mod 4) 2 (v,
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N1
N2
S1

Maximal under subgroups not contained in {4, ¢)

Maximal under subgroups not contained in (&', , ¢»

(y6,76%,¢) if p =1 (mod 4)
(78,703, v if p =3 (mod 4), ¢ = 1 (mod 4)

Table 11.0.14: Maximal subgroups of 2],(q) in Class .%

q=2 =
g =p°=1(mod 4) : |Z(Q,(q))|
q

< 12(Qu@)] =1

d7 |5| = 17 |’Y‘ = 27 |5l‘ = 17 |¢| = €.
:2:d7 |6|:47 "Y|:2762:6/5 |¢‘:€.
g=p°=3(mod 4): |Z(Q () =1=4d, 0| =2, |7|=2,|8| =1, || =e.

Subgroup Conditions on g Notes ¢ Stab
(d x A7).2 q=p=1,7,19,31,43,49 (mod 60), p # 7 4d
2 x Az g =p = 13,37 (mod 60) 4
dx Ars q=p=1,17,19,23,31,47,49, 53 (mod 60) 2d ()
Ase q=2 L Ly
d x Ly(13) q=p=5,11,41,47,59,71,83,89, 119, 2 ()
125,137,149 (mod 156)
d x Lo(13) q=p=1,2543,49,55,61,79,103,121, N1 2d  (v)
127,133,139 (mod 156)
Lo(13) q=p=11,47,59,71,83,119 (mod 156) 2
2 x Ly(13) q=p=1,2549,61,121,133 (mod 156) N1 4 (D
2 x Ly(13) q=p=5,41,89,125,137, 149 (mod 156) 4 (46
La(13) q = p=43,55,79,103,127,139 (mod 156) N2 2 (46
L2(13) q=2 Ly
Se(2) q=3 4
(2 xG2(3)).2 g=p=1(mod 24) 8
2 x G2(3) g =p =13 (mod 24) 4
G2(3) qg=p="7,19 (mod 24) 2 {0)
SLa(q).2 q =2 ieven 2 ¢y
SU4(q).2 q =2 ieven 2 ¢
2 x Se(q) g =1 (mod 12) 4 S1
Se(g).2 g =7 (mod 12) 4 (¢
Se(q) q=2',ieven 2 (o)
2 x Q:(q) g=1,9 (mod 20) 4 82
Q2(q).2 q = 3,7 (mod 20), g # 3 4 {p)
d x Ga(q) ¢g=1,7 (mod 12) 4d  S3
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S1

S2

S3

N1
N2

(8, ¢) if p=1,7 (mod 12)

(8, ¢y if p=5,11 (mod 12)

(8,65 if p=1,3,7,9 (mod 20)

(&, vy if p=11,13,17,19 (mod 20)
(¢) if p=1,7 (mod 12)

{(¢ry) if p=5,11 (mod 12)

Maximal under ()

Maximal under {(yd)
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q

Table 11.0.15: Maximal subgroups of Q7,(¢) of geometric type

q=2°:12(Qu(@) =1, 10| =1, 4| =2, ['| = 1, [¢] = e.
=p°=1(mod4): IZ( 2@ =1,101=2,[7[ =218 =1, || = 2e, p° =1.
q=p°=3(mod4): IZ(QI4( NI=28l=4,|y=2,8=0|¢|=e
t:=(¢g—1,2)
Ci Subgroup Notes c Stab
¢ EP: (q% x Q15(q)).t 1 S1
Ci EJ': (§GLa2(q) x Qip(q))-t 1 S1
C1 E27 ($GLs(q) x Q5 (q))-t 1 s1
Cr E3° (LGL4(q) x Q5 (9))-t 1 S1
Ci EY:(+GLs(q) x Q5 ()t 1 S1
Ci EZ:(3GLe(q) x Q25 (q))-t 1 S1
Ci Q53(q).2 q odd 2 S2
G (27 (3) x Q5,(3)).2° q=3, N1 1 s1
Ci (93 () x 215(9))-2 q>3 1 S1
¢ (95 () x y(q):2" 1 st
a1 (925(q) x 2(e)2 g odd 2 $2
Ci (95 (q) x Q(g))-2° 1 81
¢ (95 (@) x Q)2 st
Ci (Q5(q) x 25(q)).22 g odd 2 S2
¢ (9 (@) x 9% ()2 1 s1
G (9% (@) x 9 ()2 1 s1
Ci  Spi»(Q) q even 1 (v,
Co 2%.814 g =p=7(mod 8) 4 (v
Ca 28.Ay g =p=3(mod 8) 2 {8y, )
C: Q5(q)".2"2.8; q=3,N1 1 (5,8,v,¢)
C: Q5 (¢q)7.25.8; q+#3 1 S1
Co 2(q)?.2%.S, q =3 (mod 4) 2 {8y, )
C>  S0%(q)? g =1 (mod 4) 1 b,7,¢)
Cs ((le) o SU7(q)).(¢ + 1,7) 1 S1
Cs Q3(¢%).2 g =1 (mod 4) 1 67,9
Cs 2x0%(q%).2 q =3 (mod 4) 2 (8,89
Cs  Q7,(q0) q=qp, rodd prime 1 S1

N1 Maximal under subgroups not contained in {&’,, ¢)
S1 <77 QO> if ¢ even

(8,7, ¢ if ¢ =1 (mod 4)

(8,0',7,9) if ¢ = 3 (mod 4)
82 {7,y if ¢=1(mod 4)

(8',v,¢) if ¢ = 3 (mod 4)
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Table 11.0.16: Maximal subgroups of Q7,(¢) in Class .7

q=2":2(Q(9)l =1=d, |0| =1, 7] =2, |¢'| = 1,,|¢| =e.
q=p°=1(mod 4):|Z(Q,(q))| =1 =d, |6| =2, 7| =2, |52| =1, o] = e.
q=p°=3(mod 4):|Z(Qy(q)| =2=4d [0 =4, 7| =2,6" =70, |¢] =e.

Subgroup Conditions on ¢ Notes ¢ Stab

(dx A7).2 qg=p=11,17,29,41,53,59 (mod 60) 4d

2 x Ay q = p = 23,47 (mod 60) 4

Ar.2 qg=2 2

dx Aus q=p=7,11,13,29,37,41,43,59 (mod 60) 2d (%)

d x La(13) q=p=71,19,31,37,67,73,85,97, 109, 2d (%)
115,145,151 (mod 156)

d x Ly(13) q=p=17,23,29,35,53,77,95,101,107, N1 2d (%)
113,131,155 (mod 156)

L2(13) q = p=237,73,85,97,109, 145 (mod 156) 2 (D

2 x Ly(13) q = p=23,35,95,107,131, 155 (mod 156) N1 4 (D

2 x Ly(13) q=p=7,19,31,67,115,151 (mod 156) 4 (o)

L»(13) q=p=17,29,53,77,101,113 (mod 156) N2 2 (o)

(2x G2(3)).2 ¢g=p=23(mod 24) 8

2 x G2(3) g =p =11 (mod 24) 4

G2(3) g =p=>5,17 (mod 24) 2 o

G2(3).2 q=2 2

Ja2.2 q=>5 4

SLa(q).2 g =2 1io0dd 2 ()

SU4(q).2 q=2%1iodd 2 (P

2 x Se(q) q =11 (mod 12) 4 (9

Se(q).2 g =5 (mod 12) 4 (P

Se(q) g =2 io0dd 2 )

03(q)-2 g = 13,17 (mod 20) 4 (¢

2 x Q35(q) ¢ = 11,19 (mod 20) 4 (&9

d x Ga(q) g =5,11 (mod 12) ad  {¢)

N1 Maximal under ()
N2 Maximal under {yd)
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Table 11.0.17: Maximal subgroups of SLj5(q) of geometric type

d:= ‘Z(SL15((]))| = (q_ 1,15)7 |5| = d7 |¢| =e h/l =2,q= pe.

Ci  Subgroup Notes c Stab
Cl E;L B GL14(Q) 2 <(57 ¢>
Ci EZ°:(SLa(q) x SLis(q)) : (¢ —1) 2 (8, ¢y
Ci Ej°:(SLa(q) x SLi2(g)) : (g —1) 2 G
C1 E34 : (SLa(q) x SL11(q)) : (¢ — 1) 2 (6, ¢)
C1 E2°:(SLs(g) x SL1o(q)) : (g — 1) 2 (5, ¢)
Ci EJ':(SLe(q) x SLo(q)): (g —1) 2 (8,6
€1 E3:(SLr(q) x SLs(q)) : (¢ — 1) 2 (6, )
C1 GLu4(q) N1 1 6,7, )
C1 (SLz2(q) x SL1s(q)) : (¢ —1) N1 1 6,7, )
C1 (SLs(q) x SL12(q)) : (¢ — 1) N1 1 6,7, )
€1 (SLa(q) x SL11(g)) : (¢ — 1) N1 1 8,7, 9)
C1 (SLs(q) x SL1o(q)) : (¢ —1) N1 1 6,7, )
C1 (SLe(q) x SLo(q)) : (g —1) N1 1 6,7, )
Ci (SLz(q) x SLs(q)) : (¢ — 1) N1 1 (8,7, 9)
€1 EZ":(GLis(q) x (¢ —1)) N1 1 (8,7, ¢)
G E:(SLa(g)® x SLu(g)) : (¢ —1)* NI 1 6,7, )
¢ E$ :(SLs(q)® x SLo(q)) : (¢—1)> N1 1 6,7, 6)
€1 EJ?:(SLa(q)® x SLe(g)) : (g—1)> NI 1 (8,7, 9
€1 EP:(SLs(g)® x SLs(g)) : (¢ —1)> N1 1 6,7, )
¢ EP:(SLe(g)® x SLs(q)) : (¢ —1)> N1 1 G, ¢
C1  ES:GL7(g)? N1 1 (8,7, ¢)
Cs (g—1)".S15 q=5 1 O, 8
Co  SLs(g)°.(¢—1)".Ss 1 0,7, 8
Cs  SLs(q)®.(q—1)%.Ss 1 6,7, 9)
Co (R 081y (¢)). 55 5 1 @
Cs (U 08Ls(g"). G 8 1 @7
Cs SL3s(q) oSLs(q) 1 (8,7, d)
Cs  SLis(qo)-[(Z=,15)] q=gb, rprime (£, 15) 0%, )
Cs  SO%5(¢)-(¢ —1,15) q odd (¢—1,15) Ay
Cs SU15(qI/2).(qI/2 —1,15) q square (ql/2 —1,15) (8%, ¢)

N1 Maximal under subgroups not contained in {4, ¢) ‘
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Table 11.0.18: Maximal subgroups of SLi5(q) in Class .

d:=|Z(SLi15(q))| = (¢ — 1,15), [6| = d, [¢] = e, |7| = 2, ¢ = p°,
t:=(5,q—1),7:=(3,q—1).

Subgroup Conditions on q c Stab

d x L2(31) qg=p=1,2,4,5,7,8,9,10,14,16, d <{v)
18,19, 20, 25, 28 (mod 31)

t x SL3(q) p#2,3 t {85y, ¢)

r x SLs(q) p#2 r 0%,

(t xrLe(q).2 p#2 t )

t x SLg(q) p=2 t e

Table 11.0.19: Maximal subgroups of SU15(q) of geometric type

d:=12(SU1s(q))| = (g +1,15), [6| = d, |¢| = 2e, ¢ = p°.

Ci  Subgroup Stab
G EF :SUis(q).(¢* - 1) (8, )
C1 E?IS : (SLz(qQ) X SU11(q)).(q2 -1) (6, Py
Ci E§:(SLs(¢*) x SUs(q)).(¢° — 1) (6, ¢y
Ci EI?:(SLa(¢?) x SU7(q)).(¢° — 1) 6, ¢
Ci EP:(SLs(¢%) x SUs(q)).(¢* — 1) (6, 6)
C1 EZ2 : (SLG(q2) X SUg(q)).(q2 -1) (6, Py
C1 E23 : GL?(qQ) <(5, ¢>
C1 GUi(q) (0, ¢y
C1 (SU2(g) x SUis(g)).(¢ + 1) 6,9
C1 (SUs(q) x SU1a(q)).(¢ + 1) (8, ¢)
Ci (SU4(q) x SU11(q)).(¢ + 1) (8, ¢y
C1 (SUs(q) x SU10(q))-(¢ + 1) (8, )
€1 (SUs(q) x SUs(q)).(g + 1) (0, )
Ci (SUz(q) x SUs(q)).(¢ + 1) (8, ¢y
Co (q + 1)14.815 <5, qz5>
Co SUg(q)S.(q + 1)4.S5 6, Py
Co SUs(9)*.(q+1)*Ss (6,9
Cs (LA gy (g%)). (AL 5 (8,6)
Cs  (ERAGED o5Us () (8 3 @,
Cs  SUs(q) o SUs(q) (6, P
Cs  SUis(qo)-[( quTl ,15)] q = q¢, r odd prime quTl ,15) (6% ¢
Cs  SOi5(9)-[(g +1,15)] q+1,15) (8% ¢)




Table 11.0.20: Maximal subgroups of SU;5(¢q) in Class .

d:= |Z(SU15(Q))| = (q +1, 15)7 |5‘ =d, ‘¢| = 2e, (be =7 49= pe7
t:=(5,q+1),r:=(3,g+1).

Subgroup Conditions on g c Stab

d x L2(31) q=p=3,6,11,12,13,15,17,21,22, d ()
23,24, 26,27,29,30 (mod 31)

t x SUs(q) p#2,3 t (o)

r x SUs(q p#2 r (07, ¢)

(t xrUs(q)2 p#2 t (e

t x SUs(q) p=2 t o)
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Table 11.0.21: Maximal subgroups of Q75(q) of geometric type

1Z(Qi5(0)| = 1, 6] = 2, |¢| = e, ¢ = p° odd.

Ci  Subgroup Notes c Stab
G B (15H X 35(g)).2 1 5,6
Ci EP:(3GLa(g) x Q%1(q))-2 1 6,6
Ci EJ°: (5GLs(q) x Q5(q))-2 L 46,9
Ci Ej': (5GLa(g) x Q7(9))-2 L {69
Ci E¥:(3GLs(q) x Q3(g))-2 L (6,9
Ci EY:(3GLe(q) x Q3(q))-2 L 6,6
C1 Egg : %GL7(q) 1 6, ¢)
G Qf'4(q).2 1 6,9
Ci Qp(g)2 L 469
Ci (925 (q) x 21s(9))-2° q#3 1 6,
Ci (5 (g) x Q13(q)).2 1 6,
Ci (95(9) x Qi3(g)) 2 L (6,4
Ci o (95(9) x Q12(9)) -2 1 {6,0)
Ci (Q(9) x Q11(9))-2 1 6,0
Ci (5 (q) x Q%1(q)).22 1 (5,9
G (95(9) x Qiy(9)) 22 L {6 ¢p
Ci o (95(9) x Qip(9)) -2 L (6,4
Ci (24 (q) x 25(q)).2? 1 (6,0
Ci (9 (9) x 25(q9))-2 L 46 ¢p
Ci o (9%(9) x Q4 ()22 L 46 ¢p
G (97(9) x Q5 (g)).22 1 46 ¢
Co 2M.As; g=p=+£3(mod8) 1 (5,¢)
Ca 2S5 g=p=+£1(mod8) 2 (¢

Co 95(q)°.28.S5 q#3 1 {6, 9)
C: Q2(q)%.2%.Ss 1 5,9
Cs  Q3(¢°).5 1 6,9
Cs  Q3(¢%).3 L &,
Ca  (Q3(q) x 25(q))-2 q#3 L,
Cs  Q%5(q0) q = qp, r odd prime 1 {4,¢)
Cs  S0%5(qo) q=q 2
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Table 11.0.22: Maximal subgroups of Q75(¢) in Class .

1Z(Q5(q))| = 1, 8] = 2, |¢] = e, ¢ = p° odd.

Subgroup Conditions on ¢ ¢ Stab
Ai6.2 ¢=p=1,7(mod 8), p # 17 5
Ate q=p=3,5(mod 8) L6
Ai17.2 q=17 9
L2(16) q=p=+1(mod 17) 9
g=p=+1(mod 17) 9
q=p* p=+4(mod 17) 2 (&
q=1p? p=+4 (mod 17) 2 (b
q¢=p' p=+2 +8 (mod 17), p # 2 2 (&
q=p p=+2 48 (mod 17), p # 2 2 (&
q=p% p=+3,45 46,47 (mod 17) FRPAN
L2(29) q=p=+1,+4,+5 +6,+7,+9,+13 (mod 29) 2
g=7p% p=+2,43,+8 +10,+11,+12,+14 (mod 29), p# 2 2 {(¢)
L3(4).22 q=13 L6
S6(2) q=p+#23 )
La(q).2 p=17 2 (B
La(q).2 p # 2 1 G
Ua(q).2 p# 2 1 G
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unitary form, 23

weakly equivalent, 44
weight, 117

Zariski topology, 115

198



