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Abstract 

This article describes the first systematic investigation of how the efficiency roll-off in 

organic light-emitting diodes (OLEDs) is influenced by the position and orientation of the 

emitter molecules within the OLED cavity. The efficiency roll-off is investigated for two 

OLED stacks containing either the phosphorescent emitter Ir(MDQ)2(acac) or Ir(ppy)3 by 

varying the distance between emitter and metal cathode; a strong influence of emitter position 

and orientation on roll-off is observed. The measurements are modeled by triplet-triplet-

annihilation (TTA) theory yielding the critical current density and the TTA rate constant. We 

find that Ir(MDQ)2(acac) shows the lowest roll-off when the emitter is located in the first 

optical maximum of the electromagnetic field, whereas the roll-off of the Ir(ppy)3 stack is 

lowest when the emitter is positioned closer to the metal cathode. Measurement and modeling 

of time-resolved electroluminescence show that the different roll-off behavior is due to the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/30319327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  Submitted to  

2 

 

different orientation and the corresponding change of the decay rate of the emissive dipoles of 

Ir(MDQ)2(acac) and Ir(ppy)3. Finally, we develop design principles for optimal high-

brightness performance by modeling the roll-off as a function of emitter-cathode distance, 

emissive dipole orientation, and radiative efficiency. 

 

1. Introduction 

Organic light-emitting diodes (OLEDs) are a novel type of light source that provides 

homogeneous and glare-free illumination over an extended area using thin films of 

luminescent organic molecules. In conventional OLEDs, the emitter molecules are fluorescent, 

i.e., they only emit from their singlet state and thus typically reach internal quantum 

efficiencies below 25%.[1] By instead using phosphorescent materials, which emit from the 

triplet state, internal quantum efficiencies close to 100% can be reached. Based on this 

concept, devices efficiencies that are comparable with fluorescent tubes have already been 

demonstrated, at least at moderate brightness levels.[2,3]  

However, the efficiency of OLEDs typically decreases when operated at high brightness, 

an effect known as efficiency roll-off. As future applications of the OLED technology in 

general illumination will require operation at high brightness levels, understanding and 

reducing this roll-off is of major importance. The efficiency roll-off results from quenching of 

excitons by other excitons, polarons, or the electric field, or can be due to a change in charge 

carrier balance.[4–7] Among these mechanisms, triplet-triplet-annihilation (TTA) was found to 

be particularly important for devices based on phosphorescent emitter molecules.[5,7] In the 

TTA process, the annihilation of two triplet excitons, T1, can be described as  

ଵܶ ൅ ଵܶ
௞TT
ሱሮ nܶ ൅ ܵ଴ → ଵܶ ൅ ܵ଴     (1) 
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where kTT is the TTA rate constant and Tn and S0 refer to a higher excited triplet state and the 

singlet ground state of the molecules, respectively. The TTA process thus yields one excited 

triplet and one ground state molecule. The number of TTA events depends not only on kTT, 

but also on the triplet density within the emissive region of the device and on the excited state 

lifetime of the emitter (triplet lifetime). Strategies to reduce the roll-off and thus increase the 

high-brightness performance of OLEDs include reducing the triplet density and/or the triplet 

lifetime of the emitter molecules. The triplet density correlates with the width of the triplet 

exciton formation zone, i.e., the region of the device in which excitons are created by 

recombination of electrons and holes, and mainly depends on the charge transport 

characteristics of the emission layer (EML). Very broad exciton formation zones have 

recently been demonstrated using graded EML structures, where a preferentially electron 

transporting matrix material is doped into a hole transporting material at a concentration that 

changes continuously across the thickness of the EML.[8] 

The other critical parameter, the triplet lifetime, is in the range of 1 µs for state-of-the-

art phosphorescent emitters. In these emitters, the introduction of heavy metal atoms such as 

iridium allows efficient intersystem crossing from the singlet to the triplet state and thus 

enables high rates of radiative phosphorescence.[9–11] However, even for these phosphorescent 

emitters the triplet lifetime is still approximately three orders of magnitude higher than the 

fluorescence decay time of conventional singlet emitters, which results in a rather high 

efficiency roll-off of phosphorescent OLEDs. To further decrease the triplet lifetime, several 

strategies were proposed: For instance, changing the molecular design by using active 

hydrogen in a phosphorescent Ir-complex resulted in a very low triplet lifetime of only 

3.7 ns.[12]  
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Another strategy is to modify the triplet lifetime by changing the optical environment of 

the emissive molecule.[13] By placing the emitter within a strong microcavity or in close 

proximity to metal surfaces, one can considerably reduce the effective triplet lifetime. While 

the intrinsic triplet lifetime is a material parameter and denotes the lifetime the emitter 

molecule would have in free space, the effective lifetime takes the influence of the optical 

environment into account.[14–16] For instance, improved roll-off has been demonstrated for 

top-emitting OLEDs, where the presence of a stronger microcavity than in conventional 

bottom-emitting structures shortens the emitter lifetime.[17] Song et al. have found some 

evidence that the roll-off also correlates with the distance between the emitter and the 

reflecting metal cathode.[18] However, the effect has not been analyzed quantitatively and we 

suspect that in the study by Song et al. additional quenching mechanisms overlapped with 

TTA because the efficiency roll-off observed for large distances between the emitter and the 

cathode was higher than expected under the TTA model. 

In this article, we systematically vary the distance of the emitter molecules from the 

reflecting metal cathode in OLEDs based on two different Ir-complexes in order to investigate 

the influence of the optical environment on the efficiency roll-off. We compare our results to 

direct measurements and optical simulations of the effective triplet lifetime. In contrast to 

previous reports,[18] which claimed that TTA is generally reduced by close proximity of the 

emitter molecules to a metal electrode, our analysis reveals that the TTA behavior and, thus, 

the efficiency roll-off depend on emitter orientation. The TTA rate constant kTT of the 

different emitter materials is determined by combining the measurements of efficiency roll-off 

with time-resolved measurements. Finally, we model the efficiency roll-off as a function of 

the emitter-cathode distance for different emitter orientations and different intrinsic radiative 

efficiencies to establish design principles for OLEDs with optimized roll-off characteristics. 
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2. Results and Discussion 

Schematics of the OLED layer stacks investigated in this study are shown in Figure 1a 

and b. Stack A contains the red-emitting Ir(MDQ)2(acac) in an NPB matrix while Stack B is 

based on the green-emitting Ir(ppy)3 in a double-EML consisting of the hole-transporting 

TCTA and the electron-transporting TPBi. The distance of the EML to the metal cathode is 

varied by changing the thickness of the electron transport layer (ETL) over a broad range 

(Stack A from 25 to 265 nm and Stack B from 30 to 255 nm). We employ electrically doped 

transport layers to ensure that all samples have similar electrical performance despite their 

significantly different overall thickness.[19] In fact, up to a current density of 3 mA cm-2, 

identical current-voltage characteristics are observed for all ETL thicknesses (cf. Figure 1c). 

At higher current densities, a slight decrease of the current density with increasing ETL 

thickness is observed. 

 

2.1 Dependence of efficiency roll-off on emitter-cathode distance 

Figure 2a shows the measured external quantum efficiency (EQE) for all samples as a 

function of the ETL thickness. The EQE values were taken at a current density of 0.5 mA cm-

2, where TTA rates are negligible. The outcoupling efficiency varies depending on the 

position of the emitter with respect to the electromagnetic field supported by the OLED stack, 

which leads to pronounced EQE maxima and minima for certain ETL thickness.[20] The 

devices at the two EQE maxima are referred to in the following as first maximum device (for 

the lower ETL thickness) and second maximum device (for the thicker ETL). The highest 

EQE values are achieved at an ETL thickness of 265 nm for Ir(MDQ)2(acac) and at 205 nm 

for Ir(ppy)3, which corresponds to the second maximum in both cases. The fact that the EQE 
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of the second maximum device is higher than of the first maximum device is a result of the 

high radiative efficiency of Ir(MDQ)2(acac) and Ir(ppy)3.
[20] 

Figure 2b shows the EQE as a function of the current density J for four Ir(MDQ)2(acac) 

devices with different ETL thickness. All four datasets are normalized to the efficiency at low 

current density where TTA is negligible. The roll-off (i.e., the relative decrease in EQE at 

high current densities) indeed shows a pronounced variation between devices, but no direct 

proportionality between roll-off and ETL thickness can be seen, contrary to previous 

reports.[18] A good measure for the roll-off is the critical current density J0, i.e., the current 

density at which the EQE has decreased to half of its initial value.[4] However, a direct 

measurement of J0 is usually not possible or not meaningful because very high current 

densities would have to be applied, which would lead to device degradation.[21] (In this 

context, we note that the roll-off shown in Figure 2b was reversible, i.e., the original EQE was 

fully recovered when going back to low current densities.) We therefore fitted the normalized 

experimental EQE vs. J data with the expected behavior and extrapolated the fit up to the 

critical current density as described in the following: Under electrical excitation, the triplet 

exciton density n(t) in OLEDs is described by the following rate equation, assuming TTA is 

the only relevant quenching process:[4,5] 

݀
ݐ݀
݊ሺݐሻ ൌ െ

݊ሺݐሻ
߬∗

െ
1
2
݇TT݊ሺݐሻଶ ൅

ܬ
ݓݍ

.    (2) 

Here, τ* is the effective emitter lifetime, q is the elementary charge, and w is the width of the 

exciton formation zone. Solving this equation yields the normalized EQE 

EQE
EQE଴

ൌ
଴ܬ
ܬ4
ቌඨ1 ൅ 8

ܬ
଴ܬ
െ 1ቍ, with   (3) 
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଴ܬ ൌ
ݓݍ4

݇TT߬∗
ଶ .     (4) 

Here, EQE0 is the EQE at low current density, where no TTA occurs. According to Eq. (4), 

the critical current density J0 depends on the width of the exciton formation zone w, the TTA 

rate constant kTT, and the effective triplet lifetime τ*. Here, the triplet lifetime has the 

strongest influence due to the 1/߬∗ଶ dependence.  

Next, the measured EQE data are fitted by Eq. (3), yielding J0 as a measure of roll-off. 

Figure 3 summarizes the extracted J0 values for both samples as a function of ETL thickness. 

For the Ir(MDQ)2(acac) based device, the highest critical current density and, thus, the lowest 

roll-off is observed for ETL thicknesses close to the first EQE maximum (cf. Figure 2a), i.e., 

for ETL thicknesses of 50–100 nm. The lowest J0 value is obtained at 160 nm, close to the 

optical minimum. The behavior is different for the Ir(ppy)3 based devices: Here, the highest J0 

(lowest roll-off) is obtained when the emitter molecules are in close proximity to the metal 

cathode (thin ETL), while J0 stays relatively constant for ETL thicknesses above 100 nm. For 

both emitters, critical current densities between 150 and 350 mA cm-2 are achieved, which are 

typical values for state-of-the-art OLEDs.[7] 

 

2.2 Optical simulation of the emitter lifetime 

To establish why the Ir(MDQ)2(acac) based OLEDs behave differently than the Ir(ppy)3 

devices, we consider the effective triplet decay rate Γ* of the emitters, which is the inverse of 

the effective triplet lifetime τ*. An excited emitter molecule either decays radiatively into a 

photon or into non-radiative modes, e.g., phonons. Γ* represents the sum of the effective 

radiative decay rate ߁r∗ = F Γr and the intrinsic non-radiative decay rate Γnr: 
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∗߁ ൌ
1
߬∗
ൌ r߁ܨ ൅  nr .       (5)߁

Here, F is the Purcell factor, i.e., the ratio between the total power radiated by the molecule 

within a specific optical environment (e.g., close to the metal contact of an OLED) and the 

power the molecule would emit in free space. We calculate F for the given layer structure by 

approximating the emitter molecules as oscillating dipoles and using a transfer-matrix-

approach.[20] As F depends on the orientation of the dipole, the average F for an ensemble of 

dipoles is given by the weighted average of the Purcell factors for the three principal 

transition dipole orientations of the emitter molecules. The orientations are typically 

distinguished by their polarization (transverse magnetic (TM) or transverse electric (TE)) and 

by their orientation with respect to the plane of the device (horizontal (h) or vertical (v)): 

F = a FTM,v + (1 – a) × (FTM,h + FTE,h) .             (6) 

To reflect the average orientation of the transition dipoles, the vertical and horizontal 

components are weighted by the anisotropy factor, a. For an isotropic orientation of transition 

dipoles a = 1/3; a takes values smaller (larger) than 1/3 if the dipoles are mainly horizontally 

(vertically) oriented.  

Finally, the intrinsic radiative efficiency ηr describes how efficient an excited molecule 

relaxes into a photon: 

rߟ ൌ
r߁

r߁ ൅ nr߁
 .      (7) 

To illustrate the influence of F, a, and ηr on Γ*, Figure 4 shows the normalized decay 

rate  

∗߁

߁
ൌ
∗r߁ ൅ nr߁
r߁ ൅ nr߁

       (8) 
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as a function of the ETL thickness for (a) different a at ηr = 0.8 and (b) different ηr at a = 1/3, 

assuming the layer structure given in Figure 1a. Variations of the dipole orientation a show a 

pronounced influence on the evolution of the normalized decay rate, especially for small ETL 

thicknesses. This is a result of the strong coupling between vertically oriented dipoles and 

surface plasmon polaritons at the interface between the organic layers and the metal 

cathode.[22] Instead, the intrinsic radiative efficiency ηr mainly influences the amplitude, i.e., 

the maximum and minimum of the normalized decay rate. In conclusion, this type of optical 

modeling should enable us to fit measured triplet decay rates and extract both the anisotropy 

factor a and radiative efficiency ηr. 

 

2.3 Measurement of the emitter lifetime and modeling of the orientation 

To measure the change in triplet lifetime with ETL thickness, we performed transient 

electroluminescence measurements. The devices were electrically excited with 50 µs long 

rectangular voltage pulses (rise/fall time < 10 ns) and the decay in luminance after the end of 

the pulses was recorded. The current density was kept below 3 mA cm-2 to ensure comparable 

electrical behavior for all ETL thicknesses (cf. Figure 1c) and to avoid TTA. Figure 5 shows 

two typical transients for the red-emitting OLEDs with ETLs of different thicknesses. All 

devices showed a mono-exponential decay; non-exponential processes such as TTA[4], triplet-

polaron-annihilation[5], or delayed exciton generation[23] are not observed. The triplet lifetime 

of the device was extracted by fitting a mono-exponential decay function. The measured 

decay rates of all Ir(MDQ)2(acac)- and Ir(ppy)3-based samples are summarized in Figure 6 

(open symbols).  

The measured triplet decay rates versus ETL thickness data were then fitted with 

Eq.  (5), performing a least-square optimization of Γr, Γnr, and a (Figure 6, solid lines). For 
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Ir(ppy)3-based OLEDs, the fit reveals an isotropic dipole orientation of a = 0.33 ± 0.03. By 

contrast, the transition dipoles of the Ir(MDQ)2(acac) molecules in the red-emitting OLEDs 

clearly show a preferential horizontal orientation  (a = 0.21 ± 0.03); assuming an isotropic 

orientation for these devices leads to significant deviations between model and experiment for 

thin ETLs (cf. the dashed line in Figure 6a).  

All fit parameters are summarized in Table 1. According to our fits, both emitters 

exhibit comparable intrinsic radiative efficiencies of ηr ≈ 0.7. Emitter orientation and radiative 

efficiency are consistent with the values obtained in previous measurements.[14–16,20,24,25] 

However, in the past, time-resolved measurements of transition dipole orientations have been 

limited to optical excitation,[14,16] under which location and width of the emission zone are 

different than under electrical excitation. Measuring orientation under electrical excitation 

more closely resembles the situation in the real device and ensures that one obtains the 

average orientation of exactly those emitter molecules that contribute to the 

electroluminescence generated by the device. 

 

2.4 Correlation of measured efficiency roll-off and emitter orientation 

Using the obtained fits, we are now able to properly describe and explain the measured 

critical current densities from Sec. 2.1. These J0 values are scaled according to Eq. (4) to 

obtain the effective decay rates Γ* (	ඥܬ଴ ∝  A clear correlation .(Figure 6, solid symbols) (∗߁

between roll-off and triplet lifetime is observed for both emitters, i.e., the data extracted from 

J0 is in good agreement with the fits obtained from transient electroluminescence 

measurements. Moreover, with knowledge of the emitter orientation (Sec. 2.3), the observed 

differences in roll-off behavior between the two emitters can be explained: Due to their 
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isotropic orientation, the decay rate of Ir(ppy)3 molecules is considerably accelerated when 

these are in close proximity to the metal cathode. Therefore, the roll-off in Ir(ppy)3 based 

devices decreases as the distance between emitter and electrode becomes smaller, in 

agreement with previous observations.[18] For Ir(MDQ)2(acac), however, the preferential 

horizontal transition dipole orientation leads to a minimal roll-off at an ETL thickness in the 

range of 50–100 nm. 

The decay rates estimated from J0 values mostly agree with the direct measurements 

within their experimental uncertainty. Remaining deviations are probably caused by the 

presence of other quenching mechanisms that we have not taken into account here but that 

may also influence the efficiency roll-off. Especially for thin ETLs, quenching is higher than 

expected. As shown in Figure 1c, at high voltage the current-voltage characteristics slightly 

differ for devices with different ETL thickness, which can lead to reduced charge balance at 

high voltages for certain devices.  

 

2.5 Calculation of the TTA rate constant kTT 

In the following, Eq. (4) is used to extract the TTA rate constant kTT from the measured 

critical current densities and the effective decay rates. The width of the exciton formation 

zone is assumed to be w = 10 nm for both device structures as this value has been previously 

measured for similar OLED stacks based on EMLs of TCTA:Ir(ppy)3.
[5] This yields 

kTT = (1.9 ± 0.2) × 10−12 cm3 s-1 for Ir(MDQ)2(acac) and kTT = (6.0 ± 1.2) × 10−12 cm3 s-1 for 

Ir(ppy)3. For the latter, a value of kTT =  (3 ± 2) × 10−12 cm3 s-1 has previously been obtained 

for a similar OLED stack using transient decay measurements at high excitation densities[5]. 

This agrees with our value within the range of errors. Compared to Ir(MDQ)2(acac), Ir(ppy)3 

shows a higher TTA rate, which is probably due to its stronger tendency to form 
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aggregates.[26] We note that measurements of kTT usually require time-resolved measurements 

at high excitation densities which can introduce device degradation. The method suggested 

here is instead based on a combination of decay time measurements at low excitation densities 

with measurements of the efficiency roll-off. 

 

2.6 Simulation of efficiency roll-off  

Optical simulations are frequently used to optimize light extraction (outcoupling) from 

OLEDs, but up to now they do not take efficiency roll-off into account. Instead, the thickness 

of all layers in the device is usually only optimized for low brightness levels. However, the 

optimum thickness may change at high brightness because the decay rate and thus the fraction 

of excitons lost to TTA generally depend on layer thickness. In the following, we combine 

optical simulations of EQE and decay rate (both as a function of ETL thickness) with 

calculations of the efficiency roll-off, using the Ir(MDQ)2(acac) based OLEDs (Stack A) as an 

example. 

According to Figure 2a and to simulations performed in Ref. [20], Stack A reaches the 

highest EQE at low brightness for second maximum devices. Whether the second or the first 

maximum is more suitable, depends on the radiative efficiency and the orientation of the 

emitter molecules, as well as on other factors including the electroluminescence spectrum and 

the reflectivity of the cathode. As shown in Sec. 2.1, the efficiency roll-off depends on the 

position of the emitter within the OLED microcavity because different positions lead to 

different Purcell factors and thus different decay rates. Therefore, a first maximum OLED 

shows a different roll-off behavior than a second maximum device. 

Figure 7a shows the ratio of the calculated EQE of the first maximum devices over the 

EQE of the second maximum device as a function of current density. The simulation is 
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performed for hypothetical phosphorescent emitters with different anisotropy factors 

(0 ≤ a ≤ 0.33) and radiative efficiencies (0.4 ≤ ηr ≤ 1). The EQE roll-off is calculated 

according to Eq. (3) using the values of kTT and w as determined in Sec. 2.5. For the actual 

material parameters of Ir(MDQ)2(acac) (a = 0.21, ηr = 0.71), the second maximum device is 

more efficient up to a current density of 5 mA cm-2, which corresponds to a brightness of 

approximately 1300 cd m-2. At higher brightness levels, the first maximum device performs 

better. Furthermore, Figure 7a illustrates the influence of the anisotropy factor and the 

radiative efficiency: The EQE of the first maximum device would increase if the emitters 

were oriented more horizontally because losses from coupling of vertically oriented dipoles to 

the metal electrode are reduced. For emitters with high radiative efficiency, however, second 

maximum devices would become more efficient. In this case, the second maximum device 

can be the most efficient even for rather high brightness levels (e.g., up to 56 mA cm-2 for an 

emitter with a = 0.33, ηr = 1). 

To systematically evaluate how the emitter orientation and radiative efficiency influence 

the roll-off, we calculated the critical current density J0 for the first maximum devices of 

Stack A as a function of emitter orientation and radiative efficiency (Figure 7b). For a given 

emitter orientation, the critical current density is highest for the highest radiative efficiency. 

This is related to the increase in decay rate at small ETL thickness (Figure 4b): If the radiative 

efficiency is high, the total decay rate of the emitter is dominated by the effective radiative 

decay rate, which in turn strongly increases in close proximity to the metal contact, thus 

reducing the roll-off. The influence of orientation, however, is less obvious: J0 remains 

relatively constant for different values of a if ηr is low, while for ηr = 1 a clear maximum of J0 

is obtained at an intermediate value of a ≈ 0.22. The different behavior for low and high ηr is 

caused by the strong shift in the ETL thickness required to position the emitter molecules at 
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the first maximum of the field. For instance, when changing a from 0 to 0.33 (at ηr = 1), the 

ETL thickness changes by 18 nm. Considering the properties of the actual Ir(MDQ)2(acac), 

the average orientation of the transition dipoles in the material is close to the optimum with 

regard to the roll-off. However, the roll-off performance could be improved further if an 

emitter with higher radiative efficiency became available, which would of course also 

increase the absolute EQE. 

A similar behavior was also found for Stack B containing Ir(ppy)3 as emitter. However, 

at this stage, the dependence of EQE and roll-off on a and ηr cannot be generalized because 

especially the reflectivity of the metal electrode has a pronounced influence on the EQE and 

the decay rates. Efficient device design therefore always requires optical simulation of the 

particular OLED stack.  

 

 

3. Conclusions 

In conclusion, we have shown that the efficiency roll-off is strongly influenced by the 

position and orientation of the emitter molecules within the OLED microcavity. The relation 

between efficiency roll-off and distance between emitter molecules and metal cathode was 

investigated in detail for OLEDs based either on Ir(MDQ)2(acac) or on Ir(ppy)3. A distinctly 

different behavior was observed for the two types of emitter molecules. By performing time-

resolved electroluminescence measurements and detailed optical modeling on the same set of 

OLEDs, we were able to correlate these differences to the different orientation of the emissive 

dipoles for the two types of emitters. OLEDs based on Ir(ppy)3, which is oriented 

isotropically, show the lowest roll-off if the emitter is positioned close to the metal cathode. 

Ir(MDQ)2(acac), instead, is preferentially horizontally oriented. As a result, lowest roll-off is 
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observed when the emitter is located close to the first optical maximum of the electromagnetic 

field. Due to the clear relation between roll-off and emitter orientation, the roll-off analysis 

introduced here can in principle be used to perform an independent in-situ measurement of 

emitter orientation. However, this requires that the contribution of roll-off mechanisms other 

than TTA can be neglected. 

Our findings are important to guide the optimization of OLEDs towards even higher 

efficiency at high brightness: First, the good agreement between the decay rates estimated 

from measured critical current densities and the decay rates measured directly indicates that 

TTA is indeed the dominant mechanism for efficiency roll-off in our OLEDs. Other possible 

roll-off mechanisms show a different dependence on decay rate and, hence, their presence 

would cause strong deviations between the two sets of decay rates. Second, the distance of the 

emitter molecules from the metal contact of the OLED should be selected according to the 

emitter orientation, the radiative efficiency, and the current regime in which the OLED is 

operated. For OLEDs based on horizontally oriented emitters with lower radiative efficiency, 

the first optical maximum is typically more efficient for all brightness levels. Stacks based on 

isotropic emitters with high radiative efficiency show higher EQE for second maximum 

devices at low currents, where no roll-off is observed. When going to high-brightness 

applications, however, most emitters perform best in first maximum devices, as the decay rate 

for these is often higher than in second maximum devices. 

 

4. Experimental Section 

Device fabrication: Organic materials are evaporated in a UHV-chamber (Kurt J. Lesker 

Co.) at a base pressure of 10−8 mbar onto glass substrates containing a 90 nm thick pre-coated 

indium tin oxide anode. The ETL thickness is varied using shadow masks allowing 
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fabrication of all samples within one run to ensure high comparability. The thickness is 

measured in-situ using quartz crystal monitors. All samples are encapsulated under nitrogen 

atmosphere using glass lids and epoxy resin directly after fabrication. Each sample contains 

four OLEDs with an active area of 6.62 mm2 each. 

Materials: The OLEDs consist of an 2,2’,7,7’-tetrakis(N,N’-di-p- methylphenylamino)-

9,9’-spirobifluorene (Spiro-TTB) hole transport layer, doped with 4 wt.% 2,2’-

(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ), a 2,2’,7,7’-tetrakis- (N,N-

diphenylamino)-9,9’-spirobifluoren (Spiro-TAD) electron blocking layer, a bis-(2-methyl-8-

chinolinolato)-(4-phenyl-phenolato)-aluminium(III) (BAlq2) hole blocking layer, a Cs-doped 

4,7-diphenyl-1,10- phenanthroline (BPhen) ETL, and an Ag cathode. The EML consists of an 

N,N’-di(naphtalene-1-yl)-N,N’-diphenylbenzidine (NPB) matrix doped with 10 wt.% 

iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) (Ir(MDQ)2(acac)) 

(Stack A) or a double emission layer of hole-transporting 4,4’,4’’-tris(N-carbazolyl)-

triphenylamine (TCTA) and electron-transporting 2,2’,2’’-(1,3,5-benzinetriyl)tris(1-phenyl-1-

H-benzimidazole) (TPBi), each doped with 8 wt.% fac-tris(2-phenylpyridine) iridium 

(Ir(ppy)3) (Stack B). All materials were purchased from commercial suppliers and purified 

further by vacuum gradient sublimation prior to use. 

Sample characterization: Current density-voltage-luminance characteristics and spectral 

radiance of all samples are measured with an automated system containing a source-measure 

unit (Keithley SM2400), a calibrated spectrometer (Instrument Systems GmbH CAS140CT), 

and a silicon photodiode. The EQE is calculated after measuring angular dependent spectra 

using a goniometer, which contains a calibrated spectrometer (Ocean Optics USB4000). 

Time-resolved triplet lifetime measurements of the OLEDs are performed under electrical 

excitation (applying 50 µs long voltage pulses with a pulse generator, Hewlett Packard 
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8114A) using a streak camera (Hamamatsu C5680). The current density is detected 

simultaneously via an oscilloscope (Hewlett Packard Infinium 54815A). 
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Figure 1. Structure of (a) the red-emitting Ir(MDQ)2(acac) based OLEDs (Stack A) and (b) 

the green-emitting Ir(ppy)3 based OLEDs (Stack B) investigated in this study. Molecular 

structures of the phosphorescent emitter molecules Ir(MDQ)2(acac) and Ir(ppy)3 are also 

shown. The thickness of the BPhen:Cs electron transport layer (ETL) was varied over a broad 

range as indicated. (c) Current density-voltage characteristics of the two Ir(MDQ)2(acac) 

based OLEDs with thinnest/thickest BPhen:Cs layer.  
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Figure 2. (a) External quantum efficiency as a function of ETL thickness for the red and 

green emitting OLEDs shown in Figure 1 at an applied current density of 0.5 mA cm-2. Lines 

are guides to the eye. (b) Normalized EQE versus current density for several red-emitting 

OLEDs with different ETL thickness. Experimental data (points) and fits according to Eq. (3) 

(lines). 
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Figure 3. Critical current density J0 as a function of ETL thickness, obtained from fits of the 

EQE vs. current density using Eq. (3). Data is shown for OLEDs based on (a) Ir(MDQ)2(acac) 

and (b) Ir(ppy)3. Error bars represent uncertainty of fit to EQE vs. current density data.  

 

 
Figure 4. Normalized triplet decay rate as a function of the ETL thickness of Ir(MDQ)2(acac) 

based OLEDs (Stack A). Data obtained using optical modeling. (a) For different average 

emissive dipole orientations a of the Ir(MDQ)2(acac) molecules in the device (assuming 

ηr = 0.8), where a = (0, 1/3, 1) stands for (horizontal, isotropic, vertical) orientation. (b) For 

different intrinsic radiative efficiencies ηr of the Ir(MDQ)2(acac) molecules (assuming 

a = 1/3).  
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Figure 5. Transient electroluminescent intensity data for two typical samples based on 

Ir(MDQ)2(acac) after excitation with a 50 µs long voltage pulse of 2.5 V (points). The data is 

fitted with a mono-exponential decay function to extract the triplet lifetime τ* (lines). 
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Figure 6. Directly measured decay rates Γ* (open symbols, error bars represent uncertainty of 

fit to time-resolved intensity data) and decay rates extracted from fitted J0 values (closed 

symbols, errors bars according to Fig. 3) for OLEDs based on (a) Ir(MDQ)2(acac) and (b) 

Ir(ppy)3. The directly measured decay rates are fitted according the model described in the 

text (Eq. 5; solid lines; crossed symbols represent data that was excluded from the fitting 

routine). For Ir(MDQ)2(acac) an anisotropy factor of a = 0.21 is obtained while Ir(ppy)3 

dipoles are isotropically oriented (a = 0.33). For comparison, the dashed line in (a) shows the 

expected behavior if the emissive dipoles of Ir(MDQ)2(acac) were oriented isotropically. 
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Figure 7. Optical simulation of efficiency roll-off for OLEDs based on Stack A for varying 

anisotropy factor a and radiative efficiency ηr assuming a constant intrinsic decay rate of 

Γ = 0.816 µs-1 and the emission spectrum of Ir(MDQ)2(acac). (a) Ratio of EQE for first 

maximum devices over EQE of second maximum devices as function of the current density J. 

Values above 1 indicate that the first maximum device is more efficient. (b) Critical current 

density J0 of devices with emitters located in first EQE maximum (z-scale) as a function of ηr 

and a. 

 

Table 1. Extracted fit parameters for OLEDs containing Ir(MDQ)2(acac) or Ir(ppy)3: 

anisotropy factor a, radiative decay rate Γr, non-radiative decay rate Γnr, radiative efficiency ηr, 

and TTA rate constant kTT. 

 a Γr [µs-1] Γnr [µs-1] ηr kTT [cm3 s-1] 

Ir(MDQ)2(acac) 0.21 ± 0.03 0.58 ± 0.03 0.24 ± 0.03 0.71 ± 0.06 (1.9 ± 0.2) × 10−12 

Ir(ppy)3 0.33 ± 0.03 0.92 ± 0.04 0.36 ± 0.04 0.72 ± 0.03 (6.0 ± 1.2) × 10−12 
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The efficiency roll-off of organic light-emitting diodes is studied by varying the distance 

between emitter and metal cathode. Roll-off is found to depend on the orientation of the 

emitter molecules, which can be explained by measurements and modeling of the triplet decay 

rate. Simulations of the roll-off behavior give further insight into the principles of efficient 

stack design. 


