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Abstract 11 

The collection, visualization, and analysis of movement data is at the forefront of 12 

geographic information science research. Movement data are generally collected by 13 

recording an object’s spatial location (e.g., XY coordinates) at discrete time intervals. 14 

Methods for extracting useful information, for example space-time patterns, from these 15 

increasingly large and detailed datasets have lagged behind the technology for generating 16 

them. In this article we review existing quantitative methods for analyzing movement 17 

data. The objective of this article is to provide a synthesis of the existing literature on 18 

quantitative analysis of movement data while identifying those techniques that have merit 19 

with novel datasets. Seven classes of methods are identified: 1) time geography, 2) path 20 

descriptors, 3) similarity indices, 4) pattern and cluster methods, 5) individual-group 21 

dynamics, 6) spatial field methods, and 7) spatial range methods. Challenges routinely 22 

faced in quantitative analysis of movement data include difficulties with handling space 23 

and time attributes together, representing time in GIS, and using classic statistical testing 24 

procedures with space-time movement data. Areas for future research include: 25 

investigating equivalent distance comparisons in space and time, measuring interactions 26 

between moving objects, development of predictive frameworks for movement data, 27 

integrating movement data with existing geographic layers, and incorporating theory 28 

from time geography into movement models.  In conclusion, quantitative analysis of 29 

movement data is an active research area with tremendous opportunity for new 30 

developments and methods.31 
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1 – Introduction 32 

The study of movement in geographic information science (GISci) has followed a 33 

similar trajectory to the discipline of geography, whereby early work relied heavily on 34 

qualitative methods. In the 1960’s and 70’s the discipline of geography experienced a 35 

quantitative revolution whereby theory and methods were developed for explaining how 36 

place and space could be modeled as quantitative entities. The quantitative revolution 37 

produced developments in statistical methods designed specifically for spatial data, for 38 

instance spatial autocorrelation measures (Cliff and Ord 1973). Only later in the 39 

quantitative revolution did theoretical frameworks for quantitative analysis of movement 40 

emerge; most notably Hägerstrand’s (1970) time geography. As the quantitative 41 

revolution in geography sputtered in the late 1970’s (Johnston 1997) Hägerstrand’s ideas 42 

were primarily used as context for examining human behavior (e.g., Parkes and Thrift 43 

1975, Pred 1981), rather than as an analytical toolkit for quantitative research. An 44 

exception is the work of Lenntorp (1976) and Burns (1979), which represent seminal 45 

pieces using time geography in quantitative analysis.  46 

In the 1990’s, triggered by the development of geographic information systems 47 

(GIS), quantitative analysis again moved to the forefront of the geographic literature 48 

(Sheppard 2001). The term geographic information science (GISci) was coined to refer 49 

collectively to the science behind the collection, storage, representation, and analysis of 50 

geographic datasets (Goodchild 1992). The term amalgamated those interested in the 51 

study of geographic information including geographers, computer scientists, and 52 

statisticians. As technologies for recording the paths of moving objects have evolved 53 

(e.g., video, cell-phone, and GPS tracking) contemporary GIScientists have found new 54 
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opportunities for quantitative analysis using time geography with GISci (e.g., Miller 55 

1991, Kwan 1998). Other quantitative methods for analyzing movement have stemmed 56 

from geography’s strong legacy in spatial point pattern analysis (e.g., Gao et al. 2010), as 57 

movement data are commonly represented by a sequence of points. Computational 58 

geometry has played a leading role in recent advances in analyzing movement data (e.g., 59 

Laube et al. 2005). As well, methods for representing movement data using areal data 60 

formats, for example polygons (Downs and Horner 2009) or fields (Downs 2010), remain 61 

ongoing research areas. The study of movement is of interest in many applications 62 

outside of GISci, for example wildlife ecology (Nathan et al. 2008), urban planning 63 

(Drewe 2005), and military applications (Wells 1981). Further, the study of movement 64 

has a long history in physics. Even Hägerstrand’s time geography was strongly 65 

influenced by the ideas of physicists from the early 20
th

 century (Rose 1977, Hallin 66 

1991). For example, the diagram of the space-time cone from time geography can be 67 

clearly related to the past and future light-cones used in Einstein’s relativity.  68 

Movement is a complex process that operates through both space and time. 69 

Representing the temporal dimension in geographic studies has presented a challenge for 70 

GISci to move beyond static (map-based) representations of space (Chrisman 1998, 71 

Laube et al. 2007). Despite notable advances at incorporating temporal dynamics in 72 

GISci (e.g., Pultar et al. 2010), integrating the study of space and time remains at the 73 

forefront of GISci research, as evidenced by the special symposium on space-time 74 

integration in GISci at the 2011 annual meeting of the Association of American 75 

Geographers. How to effectively integrate time into the quantitative analysis of 76 

movement, specifically movement data stored in a GIS, is at the core of this review.  77 
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The growth of spatial methods for quantitative analysis of movement data has 78 

been facilitated by developments in movement databases that now provide efficient 79 

methods for storing, indexing, and querying movement data (Güting and Schneider 80 

2005). Despite the large body of existing literature on the topic of moving object 81 

databases, it remains an active area of research as new tools (e.g., Güting et al. 2010a) 82 

and applications (e.g., Jensen et al. 2010) continue to develop. Data visualization 83 

methods have developed alongside these readily available movement databases; in GISci 84 

this practice is termed geovisualization (Dykes et al. 2005). Given the sheer volume of 85 

data often contained in movement databases, geovisualization can be a powerful tool for 86 

identifying patterns in movement databases – a process referred to as visual analytics 87 

(Thomas and Cook 2005).  A complete treatment of either of these topics is beyond the 88 

scope of this review, and we restrict the contents of this review to, as the title suggests, 89 

those methods for analyzing movement data that are quantitative in nature. We would 90 

point those interested in more information on movement databases to the comprehensive 91 

book by Güting and Schneider (2005) and a recent special issue on data management for 92 

mobile services (VLDB Journal, 20(5), Güting and Mamoulis 2011).  For those interested 93 

in more information on visual analytics for movement data we refer readers to Andrienko 94 

and Andrienko (2007), and to the special issue from IJGIS entitled geospatial visual 95 

analytics: focus on time (IJGIS, 24(10), Andrienko et al. 2010).   96 

The objective of this review is to provide an unbiased evaluation of the usefulness 97 

and shortcomings of existing quantitative methods for movement data, while highlighting 98 

techniques that have particular merit with emerging movement datasets. Challenges to the 99 

development and application of quantitative methods with movement data are identified 100 
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in an attempt to locate avenues for future research. An outline of this article is as follows; 101 

section 2 contains a brief introduction to the properties of movement data, and how 102 

movement data is typically represented in a GIS. In section 3 we review the existing 103 

literature on quantitative analysis of movement data separated into seven classes of 104 

methods: 1) time geography, 2) path descriptors, 3) similarity indices, 4) pattern and 105 

cluster methods, 5) individual-group dynamics, 6) spatial field methods, and 7) spatial 106 

range methods. With section 4 we provide a discussion of the challenges routinely faced 107 

in GISci when analyzing movement data and, what we feel are, some future directions for 108 

quantitative movement analysis. Lastly, we close with some conclusions. 109 

2 – Movement Data 110 

Movement is a continuous process that operates in both the spatial and temporal 111 

domains. Movement data are used to represent the continuous process of movement for 112 

geographical analysis. Due to existing geospatial data collection and storage techniques, 113 

movement data are most commonly represented as a collection of spatial point objects 114 

with time stored as an attribute. A more formal definition of movement data is the 115 

collection {Mt} of t = 1…n ordered records each comprised of the triple <ID, S, T>, 116 

where ID is a unique object identifier, S are spatial coordinates, and T a sequential (non-117 

duplicated) time-stamp (Hornsby and Egenhofer 2002). A number of terms are used 118 

synonymously for movement data (see Table 1); here we use the term path to represent 119 

the ordered sequence of records portraying individual/object movement, the term fix 120 

when discussing a single record from a path, and the term movement database to describe 121 

a collection of paths. The term movement data is used in broader contexts when 122 
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discussing the study of movement, to refer generally to fixes, paths, and movement 123 

databases.  124 

<approximate location Table 1> 125 

While movement data have historically been collected using a variety of 126 

techniques, most current acquisition schemes use some form of wireless sensor (e.g., 127 

GPS, cellular phone records, radio telemetry). Calenge et al. (2009) identify two types of 128 

sampling commonly employed in the collection of movement data – regular and 129 

irregular. Regular paths are those where fixes are acquired at an even temporal interval, 130 

for example recording one fix per minute. Irregular paths are those where fixes are 131 

acquired at unequal temporal intervals, for example paths collected from cell phone call 132 

records. The term granularity is used to refer to the resolution of a path (Hornsby and 133 

Egenhofer 2002). Finer granularities are associated with frequent sampling intervals, and 134 

provide a detailed representation of movement. Conversely, coarser granularities 135 

correspond to sparse sampling and less-detailed representation of movement. 136 

Technological developments now facilitate finer sampling intervals in movement paths 137 

(e.g., 1 fix / second), and movement data can be used to represent a (near) continuous 138 

movement path (Laube et al. 2007). However, these sensor-specific sampling designs 139 

may not be suitable for all analysis questions, requiring the use of re-sampling (up- or 140 

down-sampling) to fit a given research need (see Turchin 1998, and Hornsby and 141 

Egenhofer 2002 for a more thorough discussion of changing granularity).  142 

Spaccapietra et al. (2008) present an alternative view of movement data 143 

granularity, defining a path as consisting of stops and moves separating a path into 144 

periods of movement and stationary behavior. This conforms with the event-based model 145 
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for movement data outlined by Stewart Hornsby and Cole (2007) which contrasts with 146 

the coordinate-based representation of movement typically employed. An event based 147 

model for movement data still allows for the detection of movement patterns, but with 148 

focus placed on combinations or sequences of events that identify a specific behavior, 149 

such as an exodus of objects out of a zone or region (Stewart Hornsby and Cole 2007). 150 

Further, event based models allow for enriching movement data with the geographic 151 

information associated with events, for instance if events are related to spatial regions the 152 

attributes of each region. 153 

 154 

3 – Review of Methods 155 

 This section contains a review of quantitative analysis methods that exist within 156 

seven areas of movement research; 1) time geography, 2) path descriptors, 3) path 157 

similarity indices, 4) pattern and cluster methods, 5) individual-group dynamics, 6) 158 

spatial field methods, and 7) spatial range methods. We emphasize techniques we feel 159 

have particular merit for analysis with novel and emerging movement datasets.  160 

3.1 – Time Geography 161 

 The concept of time geography was first presented in the 1960’s and 1970’s by 162 

Torsten Hägerstrand at the Research Group for Process and System Analysis in Human 163 

Geography at the University of Lund, Sweden (Lenntorp 1999). Time geography 164 

(Hägerstrand 1970) represents a framework for investigating the constraints, such as an 165 

object’s maximum travel speed, on movement in both the spatial and temporal 166 

dimensions. Hägerstrand expanded on the purely physical limitations of movement, 167 

identifying three other types of constraints: capability, coupling, and authority 168 
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constraints. Capability constraints limit the activities of the individual because of their 169 

biological construction and abilities, for example the necessity to eat and sleep. Coupling 170 

constraints represent specific locations in space-time an individual must visit that limit 171 

movement possibilities. Authority constraints are opposite of coupling constraints, 172 

locations in space time an individual cannot visit, for example a mall after it has closed. 173 

Contemporaries expanded on Hägerstand’s work providing both theoretical (Parkes and 174 

Thrift 1975, Pred 1981) and applied (Lenntorp 1976, Burns 1979) extensions. Originally, 175 

time geography was used solely to investigate the movement of humans, but has since 176 

been reformulated for use with transportation networks (Miller 1991) and wildlife 177 

ecology (Baer and Butler 2000).  178 

Time geography uses volumes (Figure 1) capable of capturing the movement 179 

limits of an object. A 3-D space (often termed cube, Kraak 2003, or aquarium, Kwan 180 

2004), with two spatial axes representing geographic space and a third orthogonal axis for 181 

time, is used to develop time geography volumes. The space-time cone (Figure 1a) 182 

identifies the future movement possibilities of an object. A space-time prism (Figure 1b) 183 

is used to quantify movement possibilities between known start and end locations. The 184 

potential path area is the projection of the space-time prism onto geographic space 185 

(Figure 1c), and is a purely spatial measurement of movement capability. A path is used 186 

to portray the trajectory of movement through space-time. Bundling (Figure 1d) occurs 187 

when multiple paths coincide in space and time, for example taking the same bus to 188 

work. Typically, time geography is discussed qualitatively in terms of the aforementioned 189 

volumes, but Miller (2005) has provided mathematical definitions for time geography 190 

concepts that can be used in more rigorous quantitative analyses. 191 
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<approximate location Figure 1> 192 

Recently, with advances in GISc and movement data, time geography is 193 

experiencing a resurgence (Miller 2003). Lenntorp (1999) explains how time geography 194 

has reached ‘the end of it’s beginning’, suggesting that current and future research using 195 

GIS and novel movement datasets will present new and exciting developments in time 196 

geography. Examples include using time geography to investigate mobility data on a 197 

network (Miller and Wu 2000), factoring in uncertainty (Neutens et al. 2007), field-based 198 

time geography (Miller and Bridwell 2009, further discussed in S3.6), and the 199 

development of a probabilistic time geography (Winter 2009, further discussed in S3.6).  200 

Time geography represents a useful tool for quantitative analysis of movement as 201 

it contains a framework for measuring space-time bounds on movement. Movement 202 

models that fail to consider the constraints provided by space and time often result in 203 

misleading conclusions (Long and Nelson 2012). Methods that explicitly consider time 204 

geography principles, even unknowingly (e.g., Yu and Kim 2006), avoid such deceptions. 205 

3.2 – Path Descriptors 206 

 Path descriptors are measurements of path characteristics, for example velocity, 207 

acceleration, and turning azimuth. Typically path descriptors may be calculated at each 208 

point in a movement dataset, and can be scaled appropriately to represent interval or 209 

global averages. Dodge et al. (2008) categorize a number of path descriptors as primitive 210 

parameters, primary derivatives, or secondary derivatives based on simple measurements 211 

in space, time, and space-time (see Table 2). Ecologists routinely use simple path 212 

descriptors in the study of wildlife movement (Turchin 1998). Measures of movement 213 

tortuosity have also been developed for the study of wildlife, for example path entropy 214 
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(Claussen et al. 1997), sinuosity (Benhamou 2004), and fractal dimension (Dicke and 215 

Burrough 1988). Related to these are stochastic movement models (i.e., models where 216 

fixes are obtained via random draws from distributions for movement displacement and 217 

turning angle) such as Lévy flights (Viswanathan et al. 1996) and correlated random 218 

walks (Kareiva and Shigesada 1983). When movement data are statistically fit to such 219 

models, interpretation of model parameters can provide useful quantitative inference. 220 

<approximate location Table 2> 221 

3.3 – Path Similarity Indices 222 

 Path similarity indices are routinely used to quantify the level of similarity 223 

between two movement trajectories. It is desirable for similarity indices to take the form 224 

of a metric distance function, as metric functions are able to distinguish objects on an 225 

interval scale of measurement (Sinha and Mark 2005). A metric distance function (d) is 226 

one that computes a generalized scalar distance between two objects while satisfying the 227 

following four properties (Duda et al. 2001): 228 

(i) Non-negativity: d(x, y) ≥ 0; 229 

(ii) Reflexivity (uniqueness): d(x, y) = 0, iff x = y; 230 

(iii) Symmetry: d(x, y) = d(y, x); 231 

(iv) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) 232 

 233 

 The simplest similarity metric is a Euclidean measurement. Sinha & Mark (2005) 234 

implement a time-weighted distance metric where spatial proximity (Euclidean) is 235 

weighted by its temporal duration. Sinha & Mark (2005) also present a modified version 236 

of the time-weighted distance metric for the situation where the two objects move over 237 

different time intervals. Because the time-weighting is based on the duration an object 238 

spends at a given spatial location, this index works best with movement data defined as a 239 

series of stops and moves such as suggested by Spaccapietra et al. (2008). Yanagisawa et 240 
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al. (2003) present an alternative Euclidean-based similarity index that focuses on the 241 

shape of the movement path by normalizing the spatial coordinates of a path to a 242 

common plane. Euclidean measurements in the normalized spatial plane are used to 243 

identify similarly shaped movement paths. Euclidean distance is appropriate for 244 

comparisons in the spatial or temporal domains. However, Euclidean measurements are 245 

limited when data are represented with different scales (spatial and temporal). That is, 246 

what is the temporal equivalent to a 1 km distance in space? Despite these limitations, 247 

Euclidean distance similarity indices are frequently implemented by fixing either space or 248 

time and considering Euclidean distance in the other dimension, such as the above 249 

examples. 250 

Other distance metrics may be more appropriate for assessing path similarities.  251 

The Hausdorff distance is a shape comparison metric commonly used to evaluate the 252 

similarity of two point sets (Huttenlocher et al. 1993), which has also been used to 253 

measure the similarity of movement paths. Given two movement paths M
a
 and M

b
, the 254 

Hausdorff distance is defined as: 255 

      abbaba
M,Mh,M,MhmaxM,MH    [1] 256 

with    











b

s

a

t
SsTt

ba
MMdminmaxM,Mh   [2] 257 

where t and s are used to index fixes from M
a
 and M

b
 respectively, and d is a distance 258 

operator (e.g., Euclidean). Not originally designed for movement data, the Hausdorff 259 

distance performs poorly when analyzing movement paths as it fails to consider the 260 

ordering of points (Zhang et al. 2006), and is sensitive to outliers and data noise (Shao et 261 

al. 2010). As such, modified versions of the Hausdorff distance metric have been 262 
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designed specifically for use with movement paths (e.g., Atev et al. 2006, Shao et al. 263 

2010).   264 

The Fréchet distance metric may be more appropriate as a path similarity index as 265 

it was initially designed for comparing polygonal curves. Formally the Fréchet distance 266 

for two movement paths M
a
 and M

b
 is defined as: 267 

 
 

      sM,tMdmaxinfM,M
ba

,t
,

ba

F


 10

   [3] 268 

Where α (resp. β) is an arbitrary continuous non-decreasing function from [0,1] onto 269 

[t1…tn,] (resp. [s1…sn’]) and d is a distance operator (Alt and Godau 1995). In simple 270 

terms, the Fréchet distance measures the maximum distance apart of two coinciding 271 

movement paths. The Fréchet distance, is best conceptualized using the analogy of a 272 

person walking their dog, where no backwards movement is allowed. In the dog walking 273 

example, the Fréchet distance is the minimum length of the dog’s leash. The discretized 274 

form of the Fréchet distance metric (Eiter and Mannila 1994) is useful for its computation 275 

with movement data collected by discrete fixes, as described in section 2. In applications 276 

involving objects that move with the same temporal granularity this calculation is simply 277 

the maximum distance in space between any pair of fixes taken at the same time. 278 

However, when object movement is recorded at differing temporal granularities or 279 

extents, the value of the Fréchet distance metric is through the use of the scaling 280 

functions (α, β) to measure similarity. 281 

Vlachos et al. (2002) use longest common subsequences (LCSS), a method taken 282 

from time-series analysis, to identify similar movement paths. The LCSS is defined as the 283 

number of consecutive fixes from two (or more) paths (M
a
, M

b
,…) that are within d 284 

spatial and τ temporal units of each other. This method can be extended to paths that 285 
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move at a distance, using mapping function f(M) to translate M
b
 onto a space equivalent 286 

to M
a
. LCSS is advantageous as it is able to address issues relating movement paths taken 287 

at different temporal granularities and/or extents. LCSS is efficient even with paths that 288 

contain a significant amount of data noise. When outlying fixes are likely to influence the 289 

calculation of other similarity indices LCSS is advantageous as it is insensitive to 290 

extreme outliers. The disadvantage of the LCSS method is that it relies on the subjective 291 

definition of thresholds – d and τ, and it fails the triangle inequality test (iv. above), and is 292 

therefore not a metric distance function.  293 

Similarity indices have also been extended to objects moving along a network. 294 

For example,  Hwang et al. (2005) calculate similarity using points-of-interest, such as 295 

major intersections. Movement paths are considered similar if they pass through the same 296 

points-of-interest in the same order. This index is not a metric distance function, but 297 

moves away from Euclidean based measurements which are inappropriate in a network 298 

scenario. 299 

 Recently, a new similarity method has been proposed by Dodge et al. (2012). 300 

Here, a movement path is separated into segments where specific movement parameter 301 

patterns (and derivatives of) are observed. In their example, velocity is the parameter of 302 

interest, and the metrics deviation from the mean and sinuosity are used to define 303 

movement parameter classes. For example, the letters A-D could be used to denote 4 304 

unique movement parameter classes, and a path could then be represented as the 305 

sequence [ACBCACBDBDA].  To assess the similarity of two paths, a modified version 306 

of the edit distance (a string matching algorithm) is computed on the movement 307 

parameter class sequences. This method measures similarity in the selected movement 308 
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parameters, rather than in the space-time geometry of the movement paths. As such, it 309 

may be more appropriate when similarity in various parameters, rather than space-time 310 

geometry is specifically of interest, for instance, in the study of hurricane path dynamics, 311 

as demonstrated by Dodge et al. (2012). 312 

When objects interactively move with each other at a distance, they often exhibit 313 

correlated movement. Typically, similarity indices may identify such correlated 314 

movements by mapping the spatial coordinates of one path onto the spatial plane 315 

equivalent to the other. Alternatively, Shirabe (2006) presents a method for computing 316 

the correlation coefficient between two movement paths, each represented as a vector 317 

time-series. Consider a path M with t = 1…n fixes, then for t = 2…n, V = [Mt – Mt-1] = 318 

[vt], is a vector time series of M. Given two two movement paths (M
v
, M

w
) represented as 319 

vector time-series V and W, the correlation coefficient is defined as: 320 
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Where 





1

11

1
n

t

t

n
vv  (resp. w ) are mean coordinate vectors of (V, W). Note that a 322 

movement path of n fixes is comprised of n-1 movement vectors, this distinction we keep 323 

for consistency with other methods. The numerator in [4] is the covariance, which 324 

indicates how the two motions deviate together from their respective means (Shirabe 325 

2006). Geometrically, the dot product in the numerator is the product of vector lengths 326 

multiplied by the cosine of the angle between them, which can be interpreted as the 327 

similarity. The correlation index ranges from -1 to 1, identifying both negatively and 328 

positively correlated movements. Important to note is that this correlation coefficient 329 
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relies on each movement’s deviation from the respective mean, not the raw values of 330 

each observed movement. Relating correlations to a global mean can be advantageous in 331 

cases where two movements are correlated, but do not move in the same direction. The 332 

first drawback of the formulation in [4] is that we are unable to disentangle the effects of 333 

correlation in azimuth vs. magnitude of movements. A metric decomposed into each of 334 

these components would be advantageous in situations where such distinctions are 335 

necessary. A second drawback of equation [4] is that it requires that the fixes from each 336 

movement path be taken simultaneously in order to be valid, which is not always 337 

realistic. However, Shirabe (2006) does present an extension for modifying [4] to 338 

measure movement path correlations at a temporal lag. 339 

3.4 – Pattern and Cluster Methods 340 

 Many applications are interested in identifying broad spatial-temporal patterns 341 

from large movement databases (Benkert et al. 2007, Palma et al. 2008, Verhein and 342 

Chawla 2008). For example, in the study of tourist behavior, often the goal is to identify 343 

places of interest that are frequently visited (e.g., Ahas et al. 2007). Alternatively, 344 

studying commuter patterns typically involves the identification of intersections and 345 

routes being used by multiple individuals (Verhein and Chawla 2006). In these situations, 346 

pattern and cluster methods are employed to identify similar movement behaviors or 347 

places of interest.  348 

Early work on indexing and querying movement databases coming from the 349 

computer and database science literature (e.g., Güting et al. 2000, Pfoser et al. 2000) has 350 

been essential to the development of pattern and cluster methods. For instance, many 351 

methods for identifying patterns and clusters in large movement databases implement a 352 
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simple spatial or temporal query (Erwig et al. 1999). Alternatively, pattern or cluster 353 

methods may implement one of the aforementioned path similarity indices and perform 354 

pair-wise similarity computations over all permutations of stored movement paths. Paths 355 

identified as similar based on a query or similarity index may convey some movement 356 

pattern, or belong to the same cluster. The use of the term ‘cluster’ comes from methods 357 

for statistical analysis of spatial point patterns (Diggle 2003), as many approaches used in 358 

point pattern analysis have been adopted for movement data. For example, both Gao et al. 359 

(2010) and Güting et al. (2010b) describe methods for performing k-nearest neighbor 360 

queries in movement databases.  361 

 For the most part, the identification of patterns and clusters in large movement 362 

databases focus on one of space, time, or space-time. Methods that identify spatial 363 

clusters look at space first and time second, if at all (e.g., Benkert et al. 2007). The 364 

simplest methods for detecting spatial clusters in movement databases generally require 365 

that fixes from individual paths be represented as spatial points. Other spatial methods 366 

look to define regions of interest (static or dynamic) and identify times at which 367 

movement fixes are clustered in these spaces (Giannotti et al. 2007). Alternatively, 368 

temporal clusters look at time first and space second, (e.g., D'Auria et al. 2005, Nanni and 369 

Pedreschi 2006). Temporal clustering is enhanced (Palma et al. 2008) when movement 370 

paths are represented by a sequence of stops (representing activities) and moves 371 

(Spaccapietra et al. 2008).  372 

Space-time approaches to identifying patterns and clusters strive to consider space 373 

and time simultaneously. This is difficult, as previously mentioned, due to scaling 374 

differences between space and time. Most space-time approaches fail to properly scale 375 
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space and time and degenerate to spatial clustering methods linked through time (e.g., 376 

Kalnis et al. 2005). Such methods routinely consider the following problem: given p 377 

mobile objects, M
i
, i = 1 … p. Each M

i
 consists of n fixes taken at coinciding times t = (1, 378 

… n). A set of α (1 ≤ α ≤ p) spatial clusters are identified at each time t (for example with 379 

multivariate clustering) using the spatial (x, y) coordinates of M
i
(t). In one example, 380 

Shoshany et al. (2007) link clusters through time using linear programming. In their 381 

example, moving objects M
i
 can switch between clusters, but all M

i
 must belong to a 382 

cluster, as well clusters can emerge or disappear over time. The appeal of this approach is 383 

that linear programming, frequently used in optimization research, can identify flows and 384 

trends in movement data clusters.  385 

Spatial-temporal association rules (STAR) learning represents an algorithm-based 386 

method for discovering spatial-temporal patterns in movement databases (Verhein and 387 

Chawla 2006, 2008). The patterns found by STAR methods are able to identify sources, 388 

sinks, and thoroughfares in large mobility databases. Verhein and Chawla (2008) 389 

demonstrate a STAR-miner software that implements their algorithm, and apply it to a 390 

caribou dataset. STAR patterns rely on pre-determined spatial units (termed regions) over 391 

which the algorithm is run. Unfortunately, the use of explicit spatial regions in their 392 

derivation means that STAR are especially sensitive to changes in the definition of 393 

regions (known as the modifiable areal unit problem - Openshaw 1984). 394 

Pattern and cluster methods for movement data have also drawn on existing 395 

methods from other applications. Shoval and Isaacson (2007) propose sequence 396 

alignment methods, originally used to analyze DNA, as a way to identify patterns in 397 

human travel behavior. With movement data, sequence alignment methods are able to 398 
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identify groups of objects that follow a similar sequence of events (e.g., using an event 399 

based movement data representation, as in Stewart Hornsby and Cole 2007). Shoval and 400 

Isaacson (2007) apply sequence alignment methods to tourist movement data and 401 

conclude that sequence alignment methods have potential for identifying patterns of 402 

spatial behavior in large movement databases. In another example, Eagle and Pentland 403 

(2009) introduce a method for discovering eigenbehaviors in movement databases. 404 

Eigenbehaviors represent trends or routines in individual movement data. Principle 405 

component analysis is used to identify the eigenbehaviors of each person in their dataset. 406 

In their example using the movements of people’s daily routines, three trends emerge: 407 

workday, weekend, and other behaviors. Increasingly complex questions could be 408 

addressed using the eigenbehavior method. 409 

3.5 – Individual-Group Dynamics 410 

 The term individual-group dynamics is used to classify a suite of methods that 411 

focus on individual object movement within the context of a larger group. This differs 412 

fundamentally from methods for identifying patterns and clusters in movement databases. 413 

Most current methods for investigating individual-group dynamics rely on computational 414 

algorithms capable of searching movement databases for specific, pre-defined patterns. 415 

These algorithms are often computationally demanding and inefficient (Gudmundsson et 416 

al. 2007), and thus primarily used only in small, case-study examples.  417 

 Laube et al. (2004, 2005) provide the most comprehensive examination of 418 

individual group-dynamics. Their concept of relative motion (REMO) can be used to 419 

detect specific patterns (constancy, concurrence, and trend-setters) in groups of moving 420 

objects. Constancy represents when an object moves in the same direction for a number 421 
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of consecutive fixes. An episode of concurrence occurs when multiple moving objects 422 

move in the same direction at the same time. Trend-setters are objects that move in a 423 

given direction ahead of a concurrence episode by a group of objects. Trend-setting is 424 

identified as the most interesting property, and examined in more detail using the sport of 425 

soccer as an example. Players that exhibit trend-setting behavior are able to better 426 

anticipate the movement of play. Their concept of trend-setting has been further 427 

developed for identifying leaders and followers in groups of moving objects, which is 428 

potentially useful for the analysis of wildlife movement data (Andersson et al. 2008). 429 

Laube et al. (2005)’s REMO method uses only movement azimuths to determine relative 430 

motion. All other movement attributes, such as speed or distance, are ignored in their 431 

derivation. Thus, REMO is useful only in situations where a group of objects move with 432 

similar speeds and are contained in a relatable geographic space, such as the soccer 433 

example. Another disadvantage is that the REMO method relies on the definition of 434 

azimuthal breakpoints to define when objects are moving in a similar direction (e.g., East 435 

is between 45° and 135°).  Due to their discreteness, these breakpoints can lead to 436 

misleading interpretations, for example when objects move in similar directions on either 437 

side of a breakpoint. Alternatively, Noyon et al. (2007) evaluate the relative movement of 438 

objects from the point-of-view of an observer within the system. Using changes in 439 

relative inter-object distance and velocity, Noyon et al. (2007) identify relative behavior, 440 

for example collision avoidance. Furthermore, Noyon et al. (2007) suggest that such 441 

relative movement behavior also include other regions-of-interest such as lines and 442 

polygons, which they include in their derivation. 443 
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 Another problem routinely encountered in the study of movement is the detection 444 

of flocks and convoys (e.g., groups of individuals that move as a cohesive unit). A flock 445 

(see Figure 2a) is defined as a group of at least m moving objects (M) contained within a 446 

circle of radius r over a minimum time interval - τ (Gudmundsson and van Kreveld 2006, 447 

Benkert et al. 2008). Alternatively, a convoy (see Figure 2b) is defined as a group of at 448 

least m moving objects (M) that are density connected at a distance d over a minimum 449 

time interval - τ (Jeung et al. 2008). Density connected implies that there exists a 450 

sequence of segments connecting all points in the convoy, each segment with length ≤ d. 451 

This definition of convoy relaxes the circular requirement of flocks affording flexibility 452 

in the shape and extent of convoys that can be identified, for example Canada geese 453 

forming their characteristic V-shape. Methods that look at flock/convoy behavior have 454 

obvious usefulness in the study of wildlife herds, but also in monitoring crowd dynamics 455 

at large events (Benkert et al. 2008). Like space-time clustering, methods describing 456 

flocks or convoys build upon Hägerstrand’s concept of bundling, identifying areas where 457 

objects move coincidentally in space-time. The fundamental difference between the 458 

identification of flocks or convoys and space-time cluster methods is that the definition of 459 

a flock or convoy explicitly considers the individual in relation to the group in its 460 

definition. That is, focus is placed on membership to a given group, with explicit 461 

consideration of minimum requirements for flock or convoy behavior (e.g., the 462 

parameters m and τ). Space-time cluster methods focus more on identifying broader 463 

patterns, typically from large movement databases, and generally rely on pair-wise 464 

comparisons of individual movement paths.   465 

<approximate location Figure 2> 466 
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 Recently, free space diagrams have been proposed for identifying single-file 467 

motion in movement databases (Buchin et al. 2010). To conceptualize a free space 468 

diagram consider two movement paths (M
a
 and M

b
), over the time intervals m and n 469 

respectively, where the trajectory between fixes is given by some linear or other model 470 

(e.g., Tremblay et al. 2006). The functions φa and φb give the position of the objects a and 471 

b at time t. The free space diagram for a and b (following Buchin et al. 2010) is given by: 472 

            



b

b

a

a

baba
t,t:m,n,t,tM,MF 11      [5] 473 

which defines the set of all points in φa and φb that have a Euclidean distance below some 474 

threshold – δ. The map of Fδ describes a two dimensional space where the axes 475 

correspond to the two paths, and the free space is defined as anywhere along the paths 476 

where the distance between the two paths is below the threshold δ. Buchin et al. (2010) 477 

demonstrate a method for interpreting free-space diagrams capable of identifying single-478 

file movement patterns in groups of moving objects. A criticism of this method is that it 479 

relies on a subjectively defined threshold – δ, to constrain the single-file movement 480 

process. Single-file motion has intuitive meaning, but is especially difficult to 481 

conceptualize geometrically. Methods that use Euclidean geometry to measure the spatial 482 

separation between leaders and followers (e.g., Andersson et al. 2008) are inadequate for 483 

identifying single-file movement warranting the free-space diagram approach.  484 

3.6 – Spatial Field Methods 485 

Often it is of interest to represent a movement path (or many movement paths) as 486 

a spatial field in order to identify areas in space (or space-time) that are more or less 487 

frequently visited. Field based representations are especially useful for visualizing large 488 

quantities of movement data when maps become cluttered. As many other spatial datasets 489 
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are stored as raster fields, a field-based representation of movement allows quantitative 490 

map comparisons to be performed in a GIS.  491 

Most methods for representing movement data as spatial fields have evolved from 492 

those used to analyze spatial point patterns. When spatial point pattern methods are 493 

employed the temporal component of movement fixes is ignored. Spatial point pattern 494 

methods can be separated into quadrat or density based methods (Diggle 2003). The 495 

simplest quadrat methods involve subdividing a study area into a regular grid and 496 

determining point densities within each cell (e.g., Dykes and Mountain 2003, 497 

Hadjieleftheriou et al. 2003). Cells with high point densities indicate spatial locations of 498 

high use. Hengl (2008) proposes a quadrat based space-time density measure based on 499 

distance and velocity within each cell [6]. 500 
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      [6] 501 

Here Dxyt(j) is the space-time density at cell j, 
j

d̂  is the length of the movement path 502 

within cell j, and 
j

v̂  is the average velocity of movement within cell j. For a single 503 

moving object the space-time density is simply interpreted as the duration of time the 504 

object spends within each cell. If calculated for a movement database of many objects, 505 

areas with higher space-time densities represent those where more objects spend more 506 

time, the opposite with low values (Hengl et al. 2008). This approach has been extended 507 

for three-dimensional visualization, where density is related to the lengths of multiple 508 

paths in 3-D voxels defined by two spatial dimensions and a temporal dimension 509 

(Demšar and Virrantaus 2010). Voxel densities are visualized in a space-time cube 510 

(aquarium), and can be used for exploratory analysis of large movement databases. 511 



  - 24 - 

   

Density based methods in spatial point pattern analysis stem from bivariate 512 

probability models, where movement fixes represent sampled locations from a two-513 

dimensional probability density function (Silverman 1986). In the analysis of wildlife, 514 

density based models are frequently used to generate estimates of animal space use (also 515 

discussed in S3.7). Worton (1989) first applied kernel density estimation (KDE) to 516 

wildlife movement data to derive such a surface, termed a utilization distribution 517 

(Jennrich and Turner 1969). In movement applications, KDE can be interpreted as the 518 

intensity of space use based upon a collection of fixes. Calculation of KDE requires 519 

selection of a kernel shape and bandwidth parameter, with no consensus on the best way 520 

to do so (Hemson et al. 2005, Kie et al. 2010). Alternatively, Downs (2010) has proposed 521 

time geography’s potential path area (see Figure 1) to replace the kernel shape and 522 

bandwidth parameter, representing a novel approach for integrating temporal constraints 523 

into KDE analysis. Downs (2010) replaces the traditional kernel function with one based 524 

on the potential path area (termed geo-ellipse – G) from time geography [7]. 525 
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The numerator in this function sums the distance between a given point x and the object’s 527 

locations (M) at times i and j. The denominator is the maximum distance the object could 528 

have travelled in that time interval given its maximum velocity – v. Others have seen the 529 

need to move away from continuous representations of space, and have developed KDE 530 

for networks (Borruso 2008, Okabe et al. 2009). Such analysis is more appropriate for 531 

depicting the movement of urban travelers as their movement is restricted to travel 532 

networks of roads, paths, and sidewalks. 533 
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Random walks and diffusion theory have also been used to model movement as a 534 

continuous spatial field. Horne et al. (2007) use Brownian bridges to model wildlife 535 

movement as a continuous probability surface. Between two consecutive mobility points 536 

the probability an object is at a given location at time t is defined using a bivariate normal 537 

probability density function. More recently, probabilistic time geography has been 538 

proposed (Winter 2009), where a similar probability surface is based on discrete random 539 

walks in a cellular automata environment. Winter & Yin (2010) extend on the ideas of 540 

Winter (2009) to include directed movements. Random walks are used to derive a 541 

probability surface which explicitly considers the time geographic constraints on object 542 

movement, using a similarly defined bivariate normal probability surface. Both Winter & 543 

Yin (2010) and Horne et al. (2007) discuss the fact that determining movement 544 

probabilities based on random walks is limited when objects do not move randomly. 545 

Future work looking at probabilistic movement using other movement models (e.g., 546 

correlated random walks or on a network) is thus warranted for moving objects that can 547 

be modeled this way. Alternatively, Miller & Bridwell (2009) propose a field-based time 548 

geography. Field-based time geography uses movement cost surfaces in the calculation of 549 

time geography volumes. Movement possibilities are evaluated in a similar manner to 550 

Winter and Yin (2010) but based on an underlying movement cost surface (e.g., as in 551 

least-cost path analysis in GIS, Douglas 1994). This approach is advantageous in that it 552 

directly considers underlying variables impacting movement, however is limited in that 553 

an accurate cost surface must be derived. 554 

Brillinger et al. (2001, 2004) provide a unique approach for discovering patterns 555 

in movement data. Stochastic differential equations are used to model movement as a 556 
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Markov process. The drift term in the stochastic movement model can be interpreted as a 557 

spatial velocity field and used for exploratory analysis. The spatial velocity field 558 

represents a potential function, whereby points of attraction and repulsion can be 559 

identified. Methods for statistical inference (e.g., jackknifing) can be used to identify 560 

statistically significant movement patterns within this velocity field (Brillinger et al. 561 

2002). Brillinger (2007) further applies this approach for analyzing the flow of play in 562 

soccer, where the spatial velocity field for ball movement is used to investigate a team’s 563 

attack formation. 564 

3.7– Spatial Range Methods 565 

 Spatial range can be broadly defined as the area (generally represented as a 566 

polygon) containing an object’s movement. Measures of spatial range can be useful for 567 

examining object mobility and space use. Aspatial metrics, such as net displacement 568 

(Turchin 1998), provide no information on the spatial distribution of movement, simply 569 

measuring distance, thus spatial measurements are warranted. Furthermore, researchers 570 

are often interested in intersections and/or differences in movement ranges (e.g., Righton 571 

and Mills 2006). In such cases it is advantageous to represent point/line movement data 572 

in an areal format (e.g., as a polygon).  573 

 The practice of representing movement data using spatial polygons has been 574 

developed primarily by wildlife ecologists for studying wildlife home ranges (Burt 1943), 575 

however, the concept of home range has also been applied to other subjects (e.g., 576 

children, Andrews 1973). Spatial range methods typically rely on the geometric 577 

properties of movement data, for example the calculation of the minimum convex 578 

polygon, a common measure of wildlife home range (Laver and Kelly 2008). Other 579 
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geometric methods include harmonic mean (Dixon and Chapman 1980), Voronoi 580 

polygons (Casaer et al. 1999), and characteristic hull (Downs and Horner 2009). It is also 581 

common to extract spatial range polygons from spatial field representations of movement 582 

(e.g., those from S3.6) by extracting polygon contours based on density. For example, 583 

with KDE a 95% volume contour is frequently used to delineate wildlife home range, 584 

while a 50% volume contour is used to delineate core habitat areas (Laver and Kelly 585 

2008). These spatial range methods ignore temporal information stored in movement data 586 

and are likely to contain areas never visited by the object (commission error), and miss 587 

actually visited locations (omission error) (Sanderson 1966).  588 

Time geography volumes may also be used for generating spatial range estimates. 589 

Long & Nelson (2012) propose a spatial range method for wildlife movement data based 590 

on time geography’s potential path area (Figure 1c). This method is capable of 591 

identifying omission and commission errors in other spatial range methods (Long and 592 

Nelson 2012). Such time geographic analysis is commonly used to study accessibility in 593 

the context of human movement (Kwan 1998). The value of the potential path area as a 594 

spatial range method is that it explicitly considers the temporal sequencing of movement 595 

data in a time geography context. Spatial range methods that consider the temporal 596 

component of movement data are advantageous over purely spatial methods (such as 597 

convex polygons) as they consider movement data as a sequence of spatial points taken 598 

through time, rather than as an arbitrary collection of spatial points. 599 

 600 

4 – Discussion 601 

4.1 - Time 602 
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 The first and foremost challenge to the quantitative analysis of movement data is 603 

how to effectively characterize time. Despite having well-developed theory and tools for 604 

analyzing space, geographers and the GISci community have historically struggled with 605 

the temporal dimension (Peuquet 1994). Time is a single, continuous dimension that can 606 

be portrayed as either monotonically linear or cyclical (Frank 1998). If time is portrayed 607 

as linear, objects are not capable of re-visiting instances in time. If time is portrayed as 608 

cyclical, the beginning of a new cycle infers that time is reset to some initial state, thus 609 

revisiting is facilitated. For example, consider research on human daily routines; within 610 

each day time is treated linearly, but is reset at the beginning of each day signifying the 611 

start of a new cycle. Movement data collected over long periods may contain both linear 612 

and cyclical temporal patterns, confounding representation and analysis. 613 

Theoretical constructs for including time in GIS have long been discussed 614 

(Langran and Chrisman 1988, Peuquet 1994) but remain challenging. Some spatial 615 

datasets are easily represented at discrete time intervals in a GIS as different layers, for 616 

example land cover data in different years. This representation allows for vertical 617 

analysis through time using relatively simple map algebra (Mennis et al. 2005). Vertical 618 

analysis through time is not straightforward with movement data, as objects move in both 619 

space and time and cannot be explicitly linked through the spatial dimension. Others have 620 

suggested the notion that geography’s fetish for the static (Raper 2002) may lie at the root 621 

of the time problem. In practice, researchers have begun to use a 3-D aquarium (drawing 622 

on Hägerstrand’s ideas) for representing time in GIS, however this is principally a 623 

visualization tool (e.g., Kraak 2003, Andrienko and Andrienko 2007, Shaw et al. 2008). 624 

Dynamic views (i.e., animations) may overcome the drawbacks of static portrayals of 625 
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movement, allowing more fluid representations of velocity and acceleration properties 626 

(Andrienko et al. 2005). However, dynamic views are also visual-based, and lack 627 

potential for developing quantitative analyses.  628 

 The challenge has been finding appropriate ways to simultaneously represent the 629 

different scales of measurement for temporal and spatial attributes associated with 630 

movement. Consider that it is common to use measurements of time and space 631 

interchangeably in queries associated with movement from everyday life, for example if 632 

you were asked the question: how far is it from here to the grocery store?  You might 633 

answer with “about 2 kilometers” or alternatively with “about a 5 minute drive”. Here, a 634 

question of spatial distance associated with movement can be equivalently answered 635 

using a spatial measurement (2 km) or temporal measurement (5 minutes). This has led to 636 

alternative conceptualizations of movement where space and time can be represented 637 

using relationships that can scale from spatial to temporal measurements, and vice-versa 638 

(Parkes and Thrift 1975). For example, travel can be considered as the consumption of 639 

physical distance through time (Forer 1998). However in the previous scenario, you may 640 

have also answered with “about a 5 minute drive, depending on traffic”. Alternatively, 641 

one might add that it depends on mode of transport (e.g., whether you walk or drive). 642 

This alternative view demonstrates the non-linear and dynamic relationship that exists 643 

between space and time which confounds the direct exchange of measurements of space 644 

and time (Forer 1998). With movement data, time is often stored alongside spatial 645 

attributes (e.g., <x, y, t>), which naturally lends itself to Euclidean-type measurements in 646 

the space-time aquarium. However, as demonstrated, time is poorly represented by such 647 

direct physical measurements, because time cannot be represented as a linear function of 648 



  - 30 - 

   

space.   As there is still no consensus on the best way to represent time with movement 649 

data, research on how to effectively characterize space and time in movement data 650 

continues to require development.  651 

 Distance in space is easily computed using Euclidean (or other, such as network) 652 

measurements. Differences in time are generally measured using clock times. The 653 

conceptualization of a single space-time proximity measure remains one of the biggest 654 

hurdles with quantitative analysis of movement data. Moving forward it is imperative to 655 

go beyond simple Euclidean based measures, as time and space do not operate on equal 656 

scales (Peuquet 2002). The Fréchet distance (Alt and Godau 1995) is an example of a 657 

novel method for comparing the similarity of two movement paths that may prove useful 658 

in future analyses. Nearest neighbor computations (e.g., Gao et al. 2010), most useful 659 

with movement data stored as points, may also provide avenues for exploration. 660 

Normalizing different data scales, common to other branches of quantitative analysis 661 

such as multivariate cluster analysis (Duda et al. 2001), may be useful for comparing 662 

movement processes across scales and relates to work using fractals for describing 663 

movement datasets (Dicke and Burrough 1988). Normalization, however, may mask 664 

scale specific patterns, and should be done with caution only when scale specific 665 

behavior is less-important. Fundamentally, space and time have different dimensions and 666 

require special consideration when analyzed together. 667 

 668 

4.2 – Scale 669 

With any spatial analysis the selection of analysis level (scale) will influence the 670 

outcome of quantitative measures and the resulting inferences and conclusions (Dungan 671 
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et al. 2002). The study of scale and its impacts in spatial analysis remains a key topic in 672 

geographic studies. In the analysis of movement data Laube et al. (2007) identify four 673 

levels of analysis: instantaneous, interval, episodal, and global (Figure 3). The 674 

instantaneous (“local”) level represents measures computed at any point along a 675 

movement path. Interval (“focal”) level analysis takes the form of a moving temporal 676 

window, but may also use a moving spatial window. Episodal (“zonal”) level analysis 677 

looks at specific partitions of movement data, often related to some known event. Most 678 

common is global level analysis, where a movement dataset is represented as a complete 679 

path, from beginning to end, as a single entity. While some methods are specifically 680 

designed for a given level of analysis others can be applied to various levels. Methods 681 

that can be applied at different analysis levels may not scale from one level to the next, 682 

meaning results at a lower level may not sum to the global result, as is the case with some 683 

spatially local statistics (termed LISA - Anselin 1995).  684 

<approximate location Figure 3> 685 

Quantitative methods are also sensitive to changes in the temporal granularity at 686 

which movement data is represented (Laube and Purves 2011). Methods for changing 687 

granularity can be used when process scale is explicitly known, however this is rarely the 688 

case. When movement data are over-sampled (i.e., too fine a granularity) data noise can 689 

mask broader-scale process signals. When movement data are under-sampled (i.e., too 690 

coarse a granularity) important movement events are missed, leading to incorrect 691 

parameter estimates. Some ecologists have suggested that movement data should not be 692 

sampled at even time intervals, but rather as a sequence of moves or steps relating to 693 

individual behavior (Wiens et al. 1993, Turchin 1998). This aligns with the view of 694 
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Spaccapietra et al. (2008) that human movement data are best represented as a series of 695 

stops (representing activities, as in the event-based model of Stewart Hornsby and Cole 696 

2007) and moves. However, many developed methods tend to perform better when 697 

implemented with regularly sampled movement data (e.g., Downs et al. 2012). As the 698 

toolbox of methods for the quantitative of analysis of movement grows, it will be 699 

important to identify at what analysis level(s) and over which temporal granularities 700 

various methods are appropriate.   701 

As previously identified, and following from Laube et al. (2007) and Laube and 702 

Purves (2011), there are two fundamental issues of scale associated with movement 703 

analysis, that is, analysis level and temporal granularity. Laube and Purves (2011) 704 

suggest a third issue of scale may also exist, in that many approaches for movement 705 

analysis are tested only on small, idealized datasets, and do not perform as expected when 706 

carried out on larger, real-life datasets. As a result, many existing methods cannot be 707 

readily implemented in practical scenarios with large volumes of movement data.  We 708 

take an alternative view on this issue. Testing of methods with smaller, idealized datasets 709 

limits the scope of movement analysis to realistic and manageable problem sets, which 710 

are in turn appropriate with subsets of a larger movement database. For example, the 711 

detection of trend-setters (Laube et al. 2005) is only useful if there is some expectation 712 

about where, if observed, this pattern is meaningful. In applied research, one should be 713 

able to identify specific scenarios, within a larger movement database, where a given 714 

technique is appropriate. Once these specific scenarios are identified, for example using 715 

spatial-temporal queries, apply the technique of interest on this subset of the movement 716 

database. The result is a multi-tiered analysis, where a specified technique is only 717 
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performed on smaller, appropriate subsets of the data. The goal being to break down 718 

larger movement datasets into pieces resembling the idealized scenarios upon which 719 

various techniques are useful.    720 

4.3 – Statistical Significance 721 

 Often, it is desirable to examine quantitative problems using a statistical lens, that 722 

is, to determine if some pattern is different than an expectation. For those less familiar 723 

with statistical inference in GISci, we point the reader to the text by O’Sullivan and 724 

Unwin (2010), which provides an introduction to these concepts. Spatial statistics often 725 

rely on the concept of complete spatial randomness (CSR) as an a priori assumption for 726 

assessing the statistical significance of observed spatial patterns (Cressie 1993). With 727 

some types of spatial statistics (e.g., join counts, Cliff and Ord 1981) the distributions for 728 

computing statistical tests are analytically derived. With other statistics, specifically most 729 

spatially local measures, simulation procedures are used to generate test distributions, 730 

making these statistics primarily exploratory (Boots 2002).  731 

Random walks have been suggested as being to movement data what CSR is to 732 

spatial data (Winter and Yin 2010). Two key methodological developments have 733 

included random movement in their derivation: Brownian bridge home ranges (Horne et 734 

al. 2007) and probabilistic time geography (Winter and Yin 2010). However, these two 735 

examples represent essentially the same problem: defining a probability surface for 736 

movement between two known locations in space-time. Authors of both methods concede 737 

that random movement is inappropriate for modeling objects that move non-randomly, 738 

but contend that it represents a necessary starting point.  739 
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 The development of space-time statistics for movement is still in its infancy and 740 

lacks clear direction for future research. Some have taken alternative views on this 741 

problem, for example treating movement data as a bivariate time series using spatial 742 

coordinates as dependent variables (e.g., Jonsen et al. 2003). Others have looked at 743 

geographic space first, often ignoring the temporal component altogether (e.g., Casaer et 744 

al. 1999). Both approaches are limited as they do not consider movement as a dynamic 745 

process that is a function of both space and time. To adequately address the process of 746 

movement, novel statistical techniques must consider space and time simultaneously in 747 

their derivation. This will be challenging however, as inferential statistics are ill-suited to 748 

the multidimensional complexity of movement (Holly 1978). 749 

 750 

4.4 – Emerging Trends in Quantitative Movement Analysis 751 

 Technological advances now facilitate real-time capture and analysis of 752 

movement data on both wildlife and humans. In wildlife applications, real-time data 753 

acquisition is providing opportunities for conservation and wildlife management. Dettki 754 

et al. (2004) implemented a real-time tracking system for moose in Sweden, where data 755 

on moose movements could be used to initiate the start-up and shut-down of forestry 756 

operations in seasonal moose ranges. This idea relates directly to recent work identifying 757 

the importance of timing in time geographic measures of space-time accessibility 758 

(Neutens et al. 2010, Delafontaine et al. 2011a). As the interface between wildlife and 759 

humans narrows, other potential applications exist for real-time tracking. Consider a 760 

problematic large carnivore (e.g., lion or bear) residing in a national park. Rather than 761 

relocating or exterminating this animal, a real-time tracking system could be used to 762 
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monitor the animal’s movements. Park managers could use this information to improve 763 

park safety and minimize human-animal conflicts through trail/site closures and 764 

surveillance efforts. 765 

 Further developments with real-time movement data will involve the creation of 766 

increasingly sophisticated models for predicting future movement locations. The space-767 

time cone from time geography (see Figure 1a) provides only the boundary for future 768 

movement possibilities (e.g., O’Sullivan et al. 2000), factoring in the uneven distribution 769 

of future movement possibilities (e.g., Winter 2009) provides more useful information for 770 

prediction. Future movement possibilities can be linked to contextual factors such as 771 

obstacles (Prager 2007), underlying movement cost surfaces (Miller and Bridwell 2009), 772 

and object kinetics (Kuijpers et al. 2011). Further developments towards probabilistically 773 

predicting future movements based on contextual factors will provide researchers and 774 

analysts with powerful tools for linking real-time movement data with other data sources. 775 

 With human movement data a new field that is gaining momentum focuses on 776 

leveraging real-time location data in everyday applications: location based services 777 

(Raper et al. 2007). Location based services have developed coincidentally with the 778 

availability of location-aware devices (e.g., GPS enabled cell-phones and handheld 779 

devices), which are now integral to people’s daily routines (Kumar and Stokkeland 780 

2003). However, given the revealing nature of personal movement data, concerns over 781 

the privacy and ownership rights of personal movement information continue to surface 782 

(e.g., Dobson and Fischer 2003). With location based services, the fundamental goal is to 783 

tailor individual applications, services, and marketing to a user’s real-time location 784 

(Raper et al. 2007). For example, methods for predicting future movements based on 785 
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contextual factors, when applied in a real-time application, could provide increased 786 

functionality and improve user experiences with location based services. As methods for 787 

analyzing real-time movement data emerge, their development in conjunction with 788 

applications from location based services should be conducted in order to facilitate their 789 

adoption in this field. 790 

 With the development of technologies for acquiring movement data, the ability to 791 

capture finely grained movement data has increased substantially. Opportunities exist for 792 

investigating properties of movement previously not feasible with coarser grained 793 

movement data. For example, investigating velocities, accelerations, and the role of 794 

momentum in moving objects is an area of opportunity. Current research is developing 795 

methods for incorporating physical kinetics (based on object velocity and acceleration) 796 

into the calculation of time geography volumes, such as those from Figure 1 (Kuijpers et 797 

al. 2011). Another avenue for future work is the development of a probabilistic time 798 

geographic framework, such as by Winter (2009), that considers the influence of kinetics 799 

into the calculation of future movement probabilities.   800 

 Methods for investigating interactions between individuals in groups of moving 801 

objects continue to develop, but remain limited in overall scope and sophistication. Laube 802 

et al. (2005)’s relative motion concept can identify trendsetters, but uses only movement 803 

azimuth in its derivation. Others have developed other ways to identify specific types of 804 

interactions between moving individuals (e.g., Andersson et al. 2008; Buchin et al. 2010). 805 

As our ability to characterize these patterns grows, it may be more useful to investigate 806 

methods for quantifying the strength of interactions that occur in movement databases. 807 

That is, can we measure how interactive are the movements of two individuals. The work 808 
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of Shirabe (2006) provides a necessary starting point for this research which could be 809 

further investigated in light of this problem. Further, it may be necessary to examine 810 

outside factors influencing the levels of interaction between individuals (e.g., barriers and 811 

obstacles represented as lines/polygons, Noyon et al. 2007). Subsequently, how to 812 

accommodate other data sources into models for measuring individual level interactions 813 

in movement data remains an open research problem. 814 

 With time geography, Hägerstrand provided a theoretical context for looking at 815 

the constraints of object movement. Contemporary geographers continue to expand on 816 

time geographic concepts incorporating a range of ideas into time geographic theory 817 

(e.g., Winter 2009, Miller and Bridwell 2009, Delafontaine et al. 2011b). As discussed by 818 

Lenntorp (1999), Hägerstrand’s time geography represents a set of conceptual and 819 

methodological building blocks for use in analyzing and understanding movement as a 820 

process. As the quantitative toolkit for analyzing movement continues to grow and 821 

develop, those methods including theory and ideas from time geography in their 822 

derivation will have increased value in a broader range of applications. 823 

 Other theoretical frameworks have also been successfully implemented in 824 

movement research. For example, the idea that movement is motivated by an underlying 825 

field (e.g., Brillinger et al. 2001) suggests that forces of attraction and repulsion may 826 

influence movements. Such points of attraction, for example in wildlife, may  be used to 827 

investigate central place foraging theory (Orians and Pearson 1979). Markovian models 828 

have also been used to demonstrate how movement operates as a diffusion process (e.g., 829 

Skellum 1951). Diffusion, originally used to describe random dispersal of organisms, can 830 

also be related to crowd dynamics in humans (Batty et al. 2003). The use of theoretical 831 
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constructs in quantitative methods, such as the aforementioned examples, demonstrates 832 

thoughtful development of ideas that in the end are easier to interpret for both the reader 833 

and analyst.   834 

 It has been suggested that movement methods must consider the “geography 835 

behind trajectories” (Bogorny et al. 2009) in order to understand the geographic 836 

processes affecting observed movement patterns. Movement analysis is no longer limited 837 

by available data, but rather by the tools required to manage and analyze movement 838 

databases in more efficient and sophisticated ways (Miller 2010). Thus, the continued 839 

development of methods capable of integrating increasingly large and complex 840 

movement databases with available spatial and temporal layers is warranted. With such 841 

analysis, the goal is to identify relationships between movement patterns and underlying 842 

spatial and/or temporal variables. Data mining work is beginning to enrich movement 843 

data with underlying geographic datasets (Alvares et al. 2007, Bogorny et al. 2009). 844 

Quantitative methods for movement data must be further developed to consider 845 

underlying geographic variables in order for movement to be understood as a function of 846 

the environment. Similarly, novel movement datasets are emerging where attribute data 847 

are recorded along with spatial and temporal records (e.g., <ID, S, T, A>, where A 848 

represents some attribute data). For example, wildlife tracking systems are being 849 

equipped with devices, such as cameras (Hunter et al. 2005), that simultaneously record 850 

information alongside movement fixes. The inclusion of attributes with movement fixes 851 

can be termed marked movement data, comparable to the term marked point pattern in 852 

the spatial statistics literature (Cressie 1993). Inclusion of attributes (numerical or 853 

categorical) alongside spatial locations in movement data represents an area of 854 



  - 39 - 

   

opportunity for advanced analysis in the movement-attribute space, as existing methods 855 

are not designed for marked movement data.   856 

  857 

6 – Conclusions 858 

 Novel movement datasets are not only becoming readily available they are 859 

changing how data on movement processes are captured. Traditionally, movement data 860 

have been collected as samples taken at coarse temporal granularities. Coarsely collected 861 

movement data represents movement discretely and with considerable uncertainty 862 

between sampled points. More recently, movement data are being collected at extremely 863 

fine temporal granularities, such as 5 fixes/second with athletes. Finely grained 864 

movement data represents a (near) continuous form of movement data which contains 865 

minimal uncertainty in space-time location. Not only are existing methods ill-suited for 866 

finely grained movement data, but the types of questions being asked must also be 867 

revisited to consider that uncertainty between consecutive fixes is negligible.  868 

 Within GIS data formats, there is a clear lack of appropriate structures for 869 

handling movement data. Those interested in purely visualizing movement data have 870 

circumvented these problems by generating independent platforms for visualizations 871 

(Andrienko et al. 2005). However, the development of quantitative methods is still 872 

hindered by difficulties representing the temporal domain within GIS. The development 873 

of geospatial data formats exclusively for movement data will invigorate future research 874 

into quantitative methods for movement. 875 

 There is a clear need for novel quantitative methods for extracting information 876 

and generating knowledge from ever-expanding movement datasets (Wolfer et al. 2001, 877 
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Laube et al. 2007). Most existing methods can be classified as data mining algorithms, 878 

which are used to identify and categorize trends in movement databases, based on some a 879 

priori notion about movement. Emerging problems investigate more complex patterns 880 

and relationships contained in movement datasets, such as the identification of flocking 881 

behavior (Benkert et al. 2008). Methods that are able to quantify interactions between 882 

individuals (Laube et al. 2005), and with environmental variables (Patterson et al. 2009) 883 

in movement databases will be increasingly relevant in more sophisticated movement 884 

analyses. Movement models capable of quantifying relationships between moving objects 885 

and dynamic features in the environment (e.g., traffic conditions) are justified in order to 886 

measure the significance of events or changes on object movement.    887 
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Table 1: Terms used synonymously for describing movement data. 

Description Term Synonymous terms (with selected references) 

A single record of object movement (of 

the form <ID, S, T>). 

Movement Fix 

(Mt) 

point, observation, relocation 

A sequence of ordered records in time 

depicting the movement of a single 

object. 

Movement 

Path (M
a
) 

space-time path (Hägerstrand 1970), trip-chain 

(Kondo and Kitamura 1987), geospatial lifeline 

(Mark 1998), trajectory, trace, track  

A collection of records depicting the 

movements of many objects or the same 

object at different occasions, potentially 

including attribute information. 

Movement 

Database 

moving objects database (Güting and Schneider 

2005) 
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Table 2: Parameters extractable from movement data sorted by dimension. After Table 1 

from Dodge et al. (2008).   

  Primitive Primary Derivatives Secondary Derivatives 

Spatial 

(x, y) 
Position 

Distance Spatial distribution 

Direction Change of direction 

Spatial extent Sinuosity 

Temporal 

(t) 

Instance Duration Temporal distribution 

Interval Travel time Change of duration 

Spatio-

temporal 

(x, y, t) 

── 
Speed Acceleration 

Velocity Approaching rate 
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Figure Captions 

 

 

Figure 1: Volumes used in Hägerstrand’s time geography: a) space-time cone, b) space-

time prism, c) potential path area, and d) path bundling.  

 

 



  - 53 - 

   

Figure 2: Comparison between definitions of a) flocks, and b) convoys. A flock requires 

objects be contained in a circle of radius – r, while a convoy is defined as those objects 

that are density connected at distance – d.  Both methods require that objects be included 

in the group over a minimum time interval – τ.  
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Figure 3: Four analysis levels for movement data: instantaneous, interval, episodal, and 

global. After Figure 2 from Laube et al. (2007). 

 


