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esponsibility of Chi
Abstract Reducing the dimensions of electrode materials from the micron to the nanoscale can have a
profound influence on their properties and hence on the performance of electrochemical devices, e.g. Li-ion
batteries, that employ such electrodes. TiO2(B) has received growing interest as a possible anode for Li-ion
batteries in recent years. It offers the possibility of higher energy storage compared with the commercialized
Li4Ti5O12. Bulk, nanowire, nanotube, and nanoparticle morphologies have been prepared and studied.
However, to date these materials have not be compared in one article. In the current review we first
summarize the different synthesis methods for the preparation of nanostructured TiO2(B); then present the
effects of size and shape on the electrochemical properties. Finally TiO2(B) with nanometer dimensions
exhibit a higher capacity to store Li, regardless of rate, due to structural distortions inherent at the nanoscale.

& 2013 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

TiO2(B), although less well known than rutile, anatase, or
brookite, is a better host for lithium intercalation than the other
three (Fig. 1). “B” stands for bronze, by analogy with the tungsten
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bronze compounds. These four phases plus the other known TiO2

polymorphs are listed in Table 1.
Titanates are being intensively investigated as anode materials

for lithium-ion batteries due to their superior safety compared with
graphite, Si, Sn or other low voltage anodes. Such safety arises in
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Fig. 1 The structure of (a) anatase, (b) brookite, (c) rutile, and (d) TiO2(B); (e) the images of the TiO2(B) structure before and after
Li-intercalation, showing the preferred Li+ diffusion path [12]. Reproduced with permission of the Royal Society of Chemistry from Ref. [12].
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part from the high voltage of the titanates (1.5–1.7 V) compared with
∼0 V for graphite, although, unless the high voltage anode is
compensated by a high voltage cathode, the overall cell voltage will
be reduced. One advantage of anodes operating at higher potential than
graphite is that the cells can be charged at high rates with good safety.
In order to achieve this high rate performance in the titanates it requires
the use of nanostructured materials. Therefore much of the focus on
titanate anodes has been on nanomaterials [1–13]. Li4Ti5O12 spinel is
now used as the anode in commercial lithium-ion batteries [14–17].
TiO2 possesses twice the theoretical specific capacity (335 mAh/g)
compared with Li4Ti5O12 (175 mAh/g), i.e., has a specific capacity
comparable to that of graphite, and as oxides have twice the density of
graphite, they have twice the theoretical volumetric energy density
(although nanostructuring can compromise this to an extent). These
potential advantages render TiO2 attractive as an anode for Li-ion
batteries [2–8,10,12,13,18,19].

Some of the earliest work on titanate nanotubes/nanowires
claimed the synthesis of TiO2-anatase [20,21]. However, subse-
quent studies showed that the nanotubes/nanowires were com-
posed of the layered titanate H2Ti3O7 and the “scroll” mechanism
of tube formation was proposed [22].

The titanate nanotubes/nanowires were generally prepared
by the hydrothermal reaction between NaOH and anatase. We
found that the composition and structure of both the tubes
and wires are more complex than had been recognized previou-
sly [23,24]. The as-synthesized nanotubes and nanowires are sodium
hydrogen titanates of general formula NayH2-yTinO2n+1 � xH2O.Acid
washing of such materials results in ion exchange to produce the
layered hydrogen titanates H2TinO2n+1 � xH2O, which exhibit features
similar to H2Ti3O7, H2Ti4O9 �H2O, and other members of the
hydrogen titanate family. After controlled thermal treatment, the
nanotubes transform into TiO2(B) nanotubes [25].

In the following sections we will describe the synthesis of
TiO2(B) nanotubes, nanowires and the smallest nanoparticles of
any titanate, their morpohology, mitigation of the first cycle irre-
versible capacity (a major problem and common feature of
many nanostrucured electrodes), and the remarkable ability of
nanostrucurred matetials to accommodate more Li than their bulk
conternparts, regardless of rate.
2. Synthesis of different TiO2(B) morphologies

2.1. Bulk TiO2(B)

Bulk TiO2(B) was first prepared by Marchand et al. in 1980 [29].
Synthesis involves high temperature solid state reaction between
K2CO3 and TiO2 to form K2Ti4O9, ion exchange of K+ with H+ to
form a hydrated hydrogen titanate, heating to 500 1C, thus
inducing transformation into TiO2(B). The resulting morphology



Table 1 Structure information of TiO2 polymorphs.

Crystal form Space group Density Synthesis method Lithiation
amout at bulk

Lithiation amout
at nano

Anatase[26–28] Tetragonal,
I41/amd

3.79 – 0.5 1.0

Rutile[26–28] Tetragonal,
P42/mnm

4.13 – 0.1 0.85

Brookite[26,28] Orthorhombic,
Pbca

3.99 – – 1.0

TiO2(B), bronze[26,28,29] Monoclinic,
C2/m

3.64 Hydrolysis of K2Ti4O9 followed by
heating

0.71 1.0

TiO2(H), hollandite-like form
[26,28,30]

Tetragonal, I4/
m

3.46 Oxidation of the related potassium
titanate bronze, K0.25TiO2

– –

TiO2(R), ramsdellite-like form[28,31] Orthorhombic,
Pbnm

3.87 Oxidation of the related lithium titanate
bronze Li0.5TiO2

– –

TiO2(II)-(α-PbO2-like form)
[26,28,32]

Orthorhombic,
Pbcn

4.33 High pressure – –

TiO2(III) (baddeleyite-like form, 7
coordinated Ti) [28,33]

Monoclinic – High pressure – –

TiO2-OI [34] Orthorhombic – High pressure – –

Cubic Cubic – P440 GPa, T41600 1C – –

TiO2 –OII (PbCl2-like, 9 coordinated
Ti) [35]

Orthorhombic – P440 GPa, T4700 1C – –

Fig. 2 SEM image of bulk TiO2(B) (a) [36], TEM image of TiO2(B) nanowires (b) [23], nanotubes (c) [24], and nanoparticles (d) [37].
Reproduced with permission of Elsevier from Ref. [36] (a), Wiley from Ref. [23] (b) and [37] (d), Royal Society of Chemistry from Ref. [24] (c).
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is shown in Fig. 2a. The crystal are needle like and elongated
along the b axis. They are typically several microns long and
0.2–0.8 μm wide.
Fig. 3 The first cycle load curves of nanoparticle and nanotube
TiO2(B) at 10 mA/g.

Fig. 4 (a) and (b) FTIR spectra collected on the TiO2(B) electrodes at var
nanotubes with or without surface treatment. Dashed rectangles highlight t
are observed [49]. Reproduced with permission of Wiley from Ref. [49].
2.2. Nanowire

Armstrong et al. first prepared TiO2(B) nanowires [23,38]. The
synthesis involved first adding the anatase TiO2 into a 15 mol/
L NaOH solution and hydrothermal treatment at 170 1C for
72 h. Then the product was acid wash with 0.05 mol/L HCl
solution and finally calcined at 400 1C for 4 h in air. The
nanowires are typically 20–40 nm in diameter and up to
several microns long.
2.3. Nanotube [24,39]

The synthesis conditions for TiO2(B) nanotubes are similar to those
used for TiO2(B) nanowire. TiO2(B) nanotubes were synthesized by
adding anatase into a solution of 15 mol/L NaOH followed by
hydrothermal treatment at 150 1C for 72 h. Then the product of the
hydrothermal reaction was washed with 0.05 mol/L of HCl, dried in
air then heated to 400 1C for 5 h. The synthesis difference between
the nanowires and nanotubes are the hydrothermal temperature and
NaOH/TiO2 ratio. The nanotubes are composed of walls of 2.5 nm
thickness, with outer tube diameter 10 nm and up to several
microns long.
ious states of discharge then charge. (c) FTIR of the different TiO2(B)
he spectral regions within which particular functional group vibrations
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2.4. Nanoparticles[37]

TiO2(B) nanoparticles were prepared using a hydrothermal method
modified from a previously reported procedure [40]. Metallic Ti was
dissolved in a mixed solution of H2O2 and NH3 �H2O solution under
ice/water bath; after addition of glycolate acid and adjustment of pH
value by concentrated H2SO4, the solution was hydrothermally
treated at 160 1C for 30 min. Finally, the solid was recovered at
60 1C over night and calcined at 300 1C for 1 h in dry air with a
ramping rate of 1 1C/min. The obtained nanoparticles are all
agglomerates, with primary particle size of 2.5� 4.3 nm (from
HRTEM analysis on 100 particles), and secondary particle size of
0.3–3 μm. Approximately half the primary particle surface area is in
contact with other particles, based on BET surface area measurements
[37].
Fig. 5 Variation of voltage with state-of-charge for discharge then
charge of bulk TiO2(B), TiO2(B) nanowires, nanotubes, and nanopar-
ticles on the second cycle (a) and corresponding differential capacity
plots (b). Rate 50 mAg−1.
3. Origin and mitigation of irreversible capacity

Although nanomaterials are receiving more and more interest as
electrode materials for lithium-ion batteries, they generally suffer
from large irreversible capacity loss on the first cycle (Fig. 3). This
is a major issue that also affects nanosized titanates anode
materials [41,42]. Such loss of capacity for intercalation electrodes
in general has been attributed to the non-reversible Li intercalation
on the first cycle [8,43–46] or the reaction between the electrolyte
and the titanate surface [47,48]. The latter is believed more
important for the nanosized titanate.

Using X-ray photoelectron spectroscopy (XPS) to follow the bulk
composition and Fourier transform infra-red spectroscopy (FTIR) to
follow the surface, during the first cycle, it has been shown that the
irreversible capacity of TiO2(B) nanotubes is indeed associated with
the formation of a surface layer (Solid Electrolyte Interface) due to
reaction between the TiO2(B) surface and the electrolyte, Fig. 4.[49]
The FTIR data collected from nanotubes on the first discharge
(intercalation) and charge (deintercalation) shows that peaks grow that
could be associated with Li2CO3 and ROCO2Li originating from
solvent decomposition, (RO,F)3P¼O and LixPFy from LiPF6 hydro-
lysis, similar to the SEI layer product of on carbon, Li metal,
Li4Ti5O12, or an oxides anode via conversion reaction [48,50–52]. It
has also supplied strong evidence of the reduction of electrolyte on
TiO2(B) nanotube above 1–1.5 V, even above 2 V. After charge to
3 V, the intensity of the peaks decreases but they do not totally
disappear (Fig. 4b).

In order to mitigate the irreversible capacity loss in the first cycle
various surface chemical treatments of the TiO2(B) nanotubes were
investigated: treatment with the butyllithium, the CH3CH2OLi
treatment, both before electrode preparation, and nano Li powder
incorporation in the electrode formulation (nanoparticles of Li metal
supplied by FMC corporation).
Table 2 Surface treatment effect on the electrochemistry of the TiO
permission of Wiley from Ref. [49].

Structure First discharge/charge capacity First

Nanotube 330/246 74
Nanotube+10 mol% BuLi 212/206 97
Nanotube+100 mol% CH3CH2OLi 237/220 93
Nanotube+20 mol% nanoLi 205/193 94
Using n-butyllithium or nanoparticle lithium powder, the high
Coulombic efficiency of 97% and 94% can be obtained for TiO2(B)
nanotube on first cycle (Table 2). However, the reversible capacity is
also decreased to 212 and 205 mAh/g, for n-butyllithium and
nanoparticle lithium treated TiO2(B) nanotubes, respectively, because
of the chemical intercalation of Li reducing the remaining capacity for
electrochemical lithium insertion on discharge. So there is a
compromise between the low first cycle irreversible capacity and
high reversible capacity for TiO2(B) nanotubes. Using the lithium
ethoxide treatment, the first discharge capacity is 237 mAh/g with an
acceptable Coulombic efficiency of 93% (Table 2).

Since the surface of TiO2(B) is covered with adsorbed H2O and
Ti–OH group (Fig. 4c), the reaction of hydroxyl with lithium ethoxide
result in the reaction as follows: Ti–O–H+C2H5OLi¼Ti–O–Li
2(B) nanotubes (i¼C/20¼17 mA/g).[49]. [49]. Reproduced with

cycle coulombic efficiency (%) Capacity retention at cycle 20 (%)

71
90
90
86
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+C2H5OH, as derived from the decreased concentration of O–H
group after surface treatment (Fig. 4c). This can help the mitigation of
LiPF6 hydrolysis, and the precipitation of LiF and organic phosphates.
In summary, the surface treatments can greatly mitigate one of the
major issues of nanosized electrode materials (e.g. titanates)-large first
cycle irreversible capacity.
4. The influence of size on intercalation capacity

Once the surface layer has formed, the subsequent load curves
correspond almost exclusively to lithium intercalation. As a result
the comparison of electrochemical performance comparison
among different nanostructured TiO2(B) were carried on the
second cycle at 50 mA/g.

The load curves on the second cycle and the corresponding
differential capacity plots (dQ/dV) for all the TiO2(B) materials are
presented in Fig. 5. Some features of the electrochemistry for all four
polymorphs are similar. All show a pair of plateaus in the load curves
in the range 1.45–1.65 V. This is most clearly seen in the differential
capacity plots (Fig. 5b), where peaks correspond to plateaus in the load
curves. Such plateaus indicate to the presence of two 2-phase
intercalation processes. In the cases of the bulk and nanowire TiO2(B)
materials, diffraction data of sufficient quality to apply established
methods of structure elucidation (Rietveld refinement) can be obtained
and have been used previously to assign the 2 phase processes to
intercalation into the A1 and A2 sites of the TiO2(B) crystal structure
[53,54]. Intercalation into the same sets of sites may be occurring in the
Fig. 6 (a) X-ray diffraction patterns of TiO2(B) nanotubes: dots, observed
the ideal TiO2(B) structure along a into a tube; red line, simulated pattern ba
tube; (b) lines, simulated pattern based on folding the ab plane of the ideal
around the circumference of the outer wall of the nanotube. Each segmen
patterns of TiO2(B) nanotubes: dots, observed pattern; black line, simulate
red line, simulated pattern of an ideal TiO2(B) crystal structure (i.e., not dis
[25]. Reproduced with permission of the American Chemical Society from
nanotubes and nanoparticles but here the diffraction peaks are too
broad to be analyzed by Rietveld refinement, rendering it difficult to
determine definitively the Li site occupancies by neutron diffraction.
The peaks in the differential capacity plots broaden and lower in inten-
sity as the dimensions of the TiO2(B) particles are reduced, indicative
of a transformation from 2-phase reactions, with constant chemical
potential, towards a system that exhibits a Li chemical potential which
varies with overall Li content. This is commensurate with previous
observations of intercalation compounds that exhibit a two-phase
intercalation process for large (bulk) particles but increasingly sloping
load curves on reducing the particle dimensions [4,55–58].

Focusing on the effect of size on intercalation capacity, the
dimensions of the nanoparticles (2.5� 4.3 nm) and the wall thickness
of the nanotubes (2.5 nm) are similar, whereas the nanowires
(35 nm� 2 μm) are much closer to the dimensions of the bulk parti-
cles (200 nm� 2 μm). The nanoparticles and nanotubes can acco-
mmodate more Li and hence store more charge (∼20–30%) than the
bulk or nanowire morphologies (Fig. 5a). The additional capacity
appears mainly below 1.4 V and may be seen in the difference
between the areas under the differential capacity plots in Fig. 5b.
The increased Li storage in ultrafine TiO2(B) morphology (nanopar-
ticle and nanotubes) compared with TiO2(B) bulk and nanowires
appears to be a general phenomenon due to the reduced dimensions. It
is present at low rates and is not a kinetic phenomenon, the capacity
increases on reducing the dimensions of crystalline materials to the
nanoscale. In doing so, a greater proportion of the material will be in
the near surface region where it is subjected to different forces than in
the bulk, resulting in structural distortions. Such distortions have been
pattern; black line, simulated pattern based on folding the ab plane of
sed on folding the bc plane of the ideal TiO2(B) structure along c into a
TiO2(B) structure along a into segments of the tube of different length
t consists of four layers in the radial direction.; (c) X-ray diffraction
d pattern of a 3.2 nm tube segment corrected for preferred orientation;
torted to form the tube) with the same number of atoms as the segment
Ref. [25].
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related to increased Li storage in TiO2(B) nanotubes [25]. Establishing
the structure (atomic arrangement) of nanomaterials is challenging
because as the dimensions approach 1–2 nm long range translational
symmetry is lost so is the ability to use crystallographic methods such
as Rietveld refinement. An approach which provided the crucial
structural data for TiO2(B) nanotubes, without recourse the symmetry
is described in the next section. Similar structural distortions are
anticipated in the nanoparticles. A very small peak is evident at around
1.20–1.35 V on oxidation in the case of the nanotubes and nanopar-
ticles that does not appear in the TiO2(B) materials of larger
dimension, understanding its origin also requires a detailed knowledge
of the structural distortions.
Fig. 7 (a) Gravimetric (Cgra) and (b) relative volumetric capacity (RCvol)
retention of TiO2(B) nanoparticles compared with other titanate materials
as a function of rate. The volumetric capacities are expressed relative to the
highest value for the anatase nanotubes (synthesized from H2Ti2O5 �H2O).
For each electrode, the ratio of active material:carbon:binder and composite
electrode density is given in brackets. Mesoporous anatase (black, 70:
15:15) [43], 6 nm anatase nanoparticles (red, 50:45:5), nanocrystalline
Li4Ti5O12 (green, 85:15:5) [66], 94%anatase-6%C microspheres (cyan,
80:10:10) [67], 87%TiO2(B)-13%anatase microspheres (mangenta,
70:15:15) [68], TiO2(B) nanotubes (purple, 75:18:7) [39], TiO2 nanotubes
(anatase, from H2Ti2O5 �H2O, dark yellow, 75:15:10, 1.3 g/cm3) [62],
porous brookite (navy, 80:10:10 1.05 g/cm3) [69], anatase nanowire
(olive, 90:10:10, 1.3 g/cm3) [70], and 3 nm TiO2(B) nanoparticle (blue,
70:20:10, 1.05 g/cm3). Only those materials for which electrode densities
are available are presented in (b) Reproduced with permission of Wiley
from Ref. [37].
5. Structure simulation of the TiO2(B) nanotube [25]

The structures of nanosized TiO2(B) can differ significantly from
their bulk counterparts. However, determining the atomic struct-
ure of nanosized TiO2(B) is difficult because the traditional
crystallographic techniques rely on long-range ordered symmetry.
For materials with particle sizes of only a few nanometers, their
powder diffraction peaks become severely, and sometimes aniso-
tropically, broadened, rendering the application of established
crystallographic methods difficult or impossible.

Problems of structure elucidation apply to all nanomaterials,
but the situation is particularly difficult for nanotubes of
TiO2(B). Not only their powder pattern is severely, and
anisotropically, broadened due to the shape of nanometer
dimensions (see Fig. 6), but, in addition, the ideal crystal
structure is expected to distort as it curves to form the
nanotube, introducing further violation of translational sym-
metry and, as a result, further peak broadening.

Use of the Debye equation, which requires no assumption of
translational symmetry, permits not only to overcome the problems
encountered by traditional powder diffraction techniques asso-
ciated with anisotropic peak broadening but to use the latter in
order to extract a more detailed structural information. Simply by
applying this equation to a structural model of TiO2(B) nanotubes,
in the form of coordinates of all atoms within a tube, it is possible
to simulate the complete powder diffraction profile and hence
elucidate the deformed crystal structure.

A nanotube can be formed, for example, by folding the ab
planes of the ideal TiO2(B) structure along the a axis, with the b
and c axes placed along the axial and radial directions of the tube,
respectively (Fig. 6a).

A nanotube can be formed, for example, by folding the ab
planes of the ideal TiO2(B) structure along the a axis, with the b
and c axes placed along the axial and radial directions of the tube,
respectively (Fig. 6a).

Powders composed of particles with extreme aspect ratios often
exhibit preferred orientation. Such an effect has been taken into
account when calculating powder diffraction patterns from models of
the TiO2(B) nanotubes to further improve the fit to the experimental
data. Various degrees of preferred orientation were examined, and the
best description of the observed powder diffraction data was obtained
for a preferred orientation parameter of 0.8 (see Fig. 6c). In excess of
90% of the TiO2(B) powder is composed of nanotubes; however
other morphologies may affect the diffraction profile, precluding
refinement of the structure, hence, a precise representation of the
observed powder pattern cannot be expected. Yet the simulation
reproduces well the main features of the powder diffraction pattern, in
particular the severe hkl-dependent broadening.
6. The rate capability of nanosized TiO2(B)

Due to the poor electronic conductivity of the pure TiO2(B)
materials, large amount of carbon is generally needed to obtain
good rate capability [38,39,59,60], which will reduce the
volumetric energy density of TiO2(B) materials. In the litera-
tures, different components, e.g. metallic Au and Ag [61], Sn
[62], carbon [63], graphene [64], CNT [65], even N etc., have
been introduced into the TiO2 to improve their conductivity



Fig. 8 (a) Variation of charge and discharge capacities versus cycle number for the TiO2(B)–GPE–LiNi0.5Mn1.5O4 battery cycled between 2 and
3.5 V at room temperature and at a rate of C/2; (b) Variation of discharge capacity as a function of rate, cycled between 2 and 3.5 V, expressed in
terms of percentage of the maximum capacity obtained at low rate for the TiO2(B)–GPE–LiNi0.5Mn1.5O4 battery at room temperature [71].
Reproduced with permission of Wiley from Ref. [71].
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and the rate capability. Due to the low thermal stability, the
TiO2(B) cannot be treated under temperature above 400 1C to
obtain a highly conductive carbon coating as in the case of
LiFePO4. Interestingly, during tests on the electrochemical
performance of nanoparticulate TiO2(B), it is found that after
mild thermal treatment of TiO2(B) nanoparticles under dry air
at 300 1C for 1 h, the material demonstrates extremely high
power (rate capability), which is the best for all the reported
titanate at rate41000 mA/g [37].

The variation of gravimetric capacity with different charge/discharge
rates is shown in Fig. 7a, where the data of nanoparticulate TiO2(B) are
compared with several other titanate materials including nanoparticulate
anatase (6 nm diameter), which corresponds to the best previously
reported rate capability of any titanate [8,43]. The gravimetric capacity
for the TiO2(B) nanoparticles at all rates up to 18,000 mA/g is almost
identical to the 6 nm anatase particles, which have a much higher
proportion of carbon (45 wt%, significantly more than the TiO2(B)
nanoparticles and corresponding to a mass loading of only 1.5 mg/cm2)
in their composite electrodes.

The effect of diluting the active material by a large amount of
carbon (as in the case of the 6 nm anatase nanoparticles) is evident on
examining the volumetric capacity (based on the total volume of the
composite electrode) as a function of rate (Fig. 7b). Nanoparticulate
TiO2(B) exhibits superior volumetric capacity at all rates compared
with the 6 nm anatase material and the previously reported best high
rate (41000 mA/g) volumetric capacity, namely mesoporous anatase.
The relatively high volumetric capacity of the TiO2(B) nanoparticles is
in part due to the agglomerates formed by the primary nanoparticles,
which helps to ensure a higher density of particles. The understanding
of the cause of the high rate capability of TiO2(B) nanoparticles will
help the realization of high power of other TiO2(B) anode materials in
Li-ion batteries.
7. The incorporation of TiO2(B) nanomaterials anodes into a
full battery

Armstrong et al. incorporated the nanowire TiO2(B) anode into a gel
polymer electrolyte (GPE) based full battery [71]. Average cell
potentials of approximately 2 and 3 V were obtained by using
LiFePO4 or LiNi0.5Mn1.5O4 as the cathode, respectively. Cycling
stability is very good as is rate capability, with 80% of the low-rate
capacity being retained at 5C (Fig. 8). Anode-limited cells serve to
demonstrate the superior capacity of these cells compared to similar
batteries constructed using Li4Ti5O12 instead of TiO2(B) (225 mAh g

–1

compared to 150 mAh g−1 at C/5). Combined with their superior
safety and inherent overcharge protection compared to a graphite
anode, and given the intense interest in developing lithium-ion cells
with Li4Ti5O12 anodes, the present results demonstrate the potential
of TiO2(B) as an anode in future lithium-ion batteries [71].
8. Conclusion

In this review, we have summarized the different synthesis methods
for the nanostructured TiO2(B); then we introduced the origin and
mitigation of the first cycle irreversible capacity. The size effect on the
electrochemistry properties, the nanostructure simulation and conduc-
tivity issues have also been discussed. The utilization of nanosized
TiO2(B) anode material in Li-ion batteries has to resolve the following
hurdles: the irreversible capacity, the rate capability, and the volu-
metric energy density, which is of vital importance for the EV.
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