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Abstract 

Background: Breaking up periods of prolonged sitting can negate harmful metabolic effects but the 

influence on appetite and gut hormones is not understood and is investigated in this study. 

Methods: Thirteen sedentary (7 female) participants undertook three, 5 h trials in random order: 1) 

uninterrupted sitting (SIT), 2) seated with 2 min bouts of light-intensity walking every 20 min 

(SIT+LA), and 3) seated with 2 min bouts of moderate-intensity walking every 20 min (SIT+MA). A 

standardised test drink was provided at the start and an ad libitum pasta test meal provided at the 

end of each trial. Subjective appetite ratings and plasma acylated ghrelin, peptide YY, insulin, and 

glucose were measured at regular intervals. Area under the curve (AUC) was calculated for each 

variable. Results: AUC values for appetite and gut hormone concentrations were unaffected in the 

activity breaks conditions compared to uninterrupted sitting (linear mixed modelling: p>0.05). 

Glucose AUC was lower in SIT+MA than SIT+LA (p=0.004) and SIT (p=0.055). There was no difference 

in absolute ad libitum energy intake between conditions (p>0.05), however, relative energy intake 

was lower in SIT+LA (39%; p=0.011) and SIT+MA (120%; p<0.001) than SIT. Conclusion: Breaking up 

prolonged sitting does not alter appetite and gut hormone responses to a meal over a 5 h period. 

Increased energy expenditure from activity breaks could promote an energy deficit that is not 

compensated for in a subsequent meal. 
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Introduction 

In recent years it has emerged that engaging in prolonged periods of uninterrupted sitting increases 

risk of obesity, morbidity, and mortality (Biswas et al. 2015; Hamilton et al. 2007). This behaviour 

reduces daily energy expenditure but this is not accompanied by compensatory reductions in 

appetite or energy intake and may thus contribute to weight gain (Stubbs et al. 2004). Energy 

expended through acute bouts of structured exercise (36-81%  ̇      for 30-120 min) has a trivial 

effect on absolute energy intake but does create a large energy deficit in the immediate hours post-

exercise (Schubert et al. 2013). This may thus have potential for causing negative energy balances 

over time.  

A shift away from emphasis on continuous exercise bouts is now emerging with research 

highlighting the importance of regularly interrupting prolonged periods of sitting with brief activity 

bouts as this improves chronic disease risk independent of time spent in moderate-to-vigorous 

physical activity (Dempsey et al. 2014). Experimental evidence shows that interrupting sitting with 2 

min bouts of light- or moderate-intensity walking every 20 min suppresses postprandial glycaemia 

and insulinaemia in overweight and non-overweight individuals (Bailey and Locke 2015; Dunstan et 

al. 2012). Such findings has led to the publication of an Expert Statement providing guidelines on 

avoiding prolonged periods of sedentary work that recommend initially accumulating at least 2 h of 

standing and light activity (light walking) per working day (Buckley et al. 2015). To our knowledge, 

only one study has examined appetite and appetite-regulating hormone responses to breaking up 

prolonged sitting reporting that hourly 5 min bouts of moderate-intensity cycling led to suppressions 

in appetite compared to an energy-matched continuous bout of exercise performed in the morning 

or 12 h of uninterrupted sitting (Holmstrup et al. 2013). This may support the use of activity breaks 

to interrupt sitting time since this is likely to be a more achievable movement strategy at work and in 

leisure time. However, these observations require further support and appetite responses to 

different protocols for breaking up prolonged sitting need to be examined. 
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Regulation of appetite and food intake is complex and influenced by a range of 

neuroendocrine and psychological factors (Hussain and Bloom 2013). Several secreted peptide 

hormones such as acylated ghrelin and peptide YY (PYY) communicate with the central nervous 

system to control energy intake and respond to changes in energy status and structured exercise 

(Stensel 2010).  On a meal-to-meal basis, episodic peptide hormones secreted from the gut act to 

control energy intake (Neary and Batterham 2009). Ghrelin is secreted from the stomach and is the 

only gut hormone known to stimulate appetite (Kojima et al. 1999). The post-translationally 

modified form of this hormone, acylated ghrelin, is the form of ghrelin solely responsible for 

appetite stimulation (Delhanty et al. 2012). The other episodic gut hormones act as satiety signals to 

inhibit food intake and highly prominent of these is PYY, which is secreted chiefly from the distal 

intestine and colon in direct proportion to the energy content of an ingested meal (le Roux et al. 

2006). Single bouts of exercise can have a marked impact on these hormones with changes evident 

soon after initiation of exercise (Bailey et al. 2015; Broom et al. 2009; Stensel 2010; Ueda et al. 

2009b). However, these perturbations are short-lived and customary circulating levels are restored 

soon after exercise (King et al. 2013; Ueda et al. 2009b). A consistent finding is that a single bout of 

exercise does not cause compensatory changes in appetite-regulating hormones in the direction that 

would lead to increased appetite and food intake (Schubert et al. 2014). The response of these 

hormones to short regular activity bouts has been reported in only one study that did not observe 

any change in total PYY in individuals performing hourly 5 min moderate-intensity cycling bouts 

(Holmstrup et al. 2013). Further research investigating a wider array of appetite-regulating 

hormones is warranted to clarify their response to energy expended through regular activity breaks 

that are now being widely prescribed. 

The primary objective of this study was to investigate the effects of breaking up prolonged 

sitting with frequent bouts of light- or moderate-intensity walking on subjective appetite, energy 

intake, and circulating concentrations of acylated ghrelin and total PYY in sedentary, inactive adults. 
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Secondary objectives were to investigate the effects of this activity regimen on postprandial glucose 

and insulin concentrations. 
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Materials and Methods 

Participants and enrolment process 

This randomised three-way crossover study was approved by the University of Bedfordshire Ethics 

Review Committee and was in accordance with the principles set out in the Declaration of Helsinki. 

Thirteen sedentary (7 females), inactive but otherwise healthy participants (mean ± SD; age, 26.6 ± 

8.5 years; body fat, 24.4 ± 8.2%) gave written informed consent to participate in the study following 

a verbal and written explanation of the nature and risks involved. Exclusion criteria included any 

known blood borne disease, pregnancy, clinically diagnosed diabetes, taking glucose-lowering 

and/or lipid-lowering medication, employment in a non-sedentary occupation, currently watching <2 

h of television/day, regularly engaged in moderate-intensity physical activity (150 min/week) for at 

least 3 months, and known physical activity contraindications, major illness/injury, or other health 

issues that may limit the ability to perform the necessary activity bouts. 

 Participants attended a familiarisation session where they had their body fat percentage 

measured using the Tanita BC-418 Body Composition Analyzer (Tanita Corporation, Tokyo, Japan) 

and familiarised with use of the Borg Rating of Perceived Exertion (RPE) scale (Borg 1982). In line 

with previous research (Bailey and Locke 2015; Dunstan et al. 2012), participants then became 

accustomed to the light-intensity treadmill walking speed (3.2 km/h; Woodway PPS55 Med-i, GmbH, 

Germany) during which RPE was recorded to ensure walking speed was equivalent to light-intensity 

activity for each participant (RPE of 6-9). During the moderate-intensity walking familiarisation, the 

treadmill speed that yielded an RPE rating between 12 and 14 for each participant was recorded and 

used during that experimental condition (Dunstan et al. 2012). 

 

Study protocol 

Each trial was separated by ≥7 days. In line with previous research, participants were asked to 

refrain from exercise, alcohol, and caffeine in the 48 h before each main trial (Dunstan et al. 2012). 

During this 48 h time period, physical activity levels were objectively measured with an Actigraph 
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GT3X accelerometer (Actigraph, Pensacola, FL., USA) worn around the hip during waking hours. 

Participants were required to have a daily wear time of ≥ 10 h and data were recorded in 5 s epochs 

with previously validated accelerometer counts applied (Freedson et al. 1998). Physical activity levels 

did not differ significantly between trials (p>0.05; data not shown). 

 Participants reported to the laboratory in the morning (~08:30) following an overnight fast 

and were asked to minimise their activity prior to attending e.g. travel in by car. Each participant was 

required to arrive at the same time of day for each of their trials. Participants weighed (Salter Disc 

Electronic Kitchen Scale, HoMedics Group Ltd, UK) and recorded food intake for 24 h before the first 

main trial and were asked to replicate the quantity and timings of eating prior to each subsequent 

testing day (Bailey et al. 2015; Deighton et al. 2013). After fasting blood collection (-1 h), participants 

remained seated for 1 h before consuming a standardised test drink (consumed within 5 min). The 

drink contained 75 g carbohydrate (100% dextrose monohydrate powder; Thornton & Ross Ltd, UK) 

in 100 mL water combined with 50 g fat (Calogen; Nutricia, UK). The specific nutritional components 

were energy, 3,211 kJ; fat, 50.0 g; saturated fat, 5.3 g; carbohydrate, 79.3 g; sugars, 4.0 g; protein, 

nil; fibre, nil; and sodium, 7.0 mg. Following consumption, participants were guided through the 5 h 

trial and supervised at all times by a member of the research team to ensure full compliance with 

the protocols. Hourly blood samples were taken prior to the activity bouts (trial conditions 2 and 3 

below). 

The trial conditions were based upon previous research that demonstrated suppressed 

postprandial glucose and insulin concentrations (Bailey and Locke 2015; Dunstan et al. 2012) and 

were as follows: 

1. Uninterrupted sitting (SIT): participants remained seated throughout the experimental 

period and were instructed to minimise excessive movement. 

2. Sitting + light-intensity activity breaks (SIT+LA): participants rose from the seated position 

every 20 min and completed 2 min bouts of light-intensity walking on a motorised treadmill 
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with a level surface at 3.2 km/h, providing a total of 28 min activity. They then returned to 

the seated position. 

3. Sitting + moderate-intensity activity breaks (SIT+MA): identical procedure to the sitting + 

light-intensity activity breaks condition, but participants completed 2 min bouts of 

moderate-intensity walking on the treadmill at between 5.8 and 7.9 km/h every 20 min, 

providing a total of 28 min moderate-intensity activity. 

 

Energy expenditure of the activity bouts was estimated using the ACSM Metabolic Equations for 

walking (ACSM 2014). Estimated activity energy expenditure during SIT+LA was 458 ± 96 kJ and 

SIT+MA was 921 ± 226 kJ. Participants watched television or DVDs; read books, magazines, or 

newspapers; talked; or worked on a laptop computer throughout the trials but were devoid of food 

cues at all times. Participants were permitted to rise from a seated position to void as necessary.  

At the end of each trial, an ad libitum test meal (instant pasta: 74.5% carbohydrate, 21% 

protein, and 4.5% fat; Tesco, UK) was provided and participants were instructed to “eat as much as 

they like until satisfied”. The meal was consumed in isolation so that social influence did not affect 

food selection and participants were not made aware that their food intake was being measured. In 

line with previous research (Ueda et al. 2009a; Ueda et al. 2009b), a small bowl was filled with the 

test pasta (~200 g) and repeatedly filled before the participant had emptied it to ensure blindness to 

the amount of food eaten. No time limit was set for eating. During all trials, the participants and 

experimenters were instructed to abstain from talking about the meal. After consumption of the test 

meal, any remaining food was weighed (Salter Disc Electronic Kitchen Scale) and the amount 

determined subtracted from the pre-meal value to obtain the total amount of food ingested. Then, 

absolute energy intakes from the test meal in each session were calculated from the amount of food 

eaten and nutritional information provided on the food label (5.3 kJ/g). 

 

Ratings of perceived appetite 
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During each trial subjective feelings of hunger (“How hungry do you feel?”), satisfaction (“How 

satisfied do you feel?”), fullness (“How full do you feel?”), and prospective food consumption (PFC; 

“How much do you think you can eat?”) were reported on paper using a validated 100 mm Visual 

Analogue Scale (VAS) (Flint et al. 2000). Appetite perceptions were measured fasted (-1 h) and every 

30 min during the 5 h trial period. An overall appetite rating was calculated as the mean value of the 

four appetite perceptions after inverting the values for satisfaction and fullness (Stubbs et al. 2000). 

 

Blood sampling 

During each main trial, venous blood was collected via a cannula (Vasofix®, B. Braun Medical Ltd, 

Sheffield, UK), which was inserted into an antecubital vein. A fasting sample was taken upon arrival 

at the laboratory (-1 h) and then every hour after commencement of each trial while seated. 

Samples were collected into two 4.9 mL EDTA vacuettes (VACUETTE®, Greiner Bio-One, Austria). 

One vacuette was immediately centrifuged at 1,500 x g for 10 min at a temperature of 4oC (Heraeus 

Multifuge X3R, Thermo Scientific, Loughborough, UK). The plasma supernatant was then dispensed 

into separate 2 mL cryovials, flash frozen in liquid nitrogen, and stored at -80°C until later analysis of 

insulin and total PYY concentrations. From each sample, 50 L blood samples were collected into a 

microvette and analysed immediately to determine glucose concentrations using the YSI 2300 STAT 

plus glucose and lactate analyser (YSI Inc., Yellow Springs, Ohio, USA). The YSI uses a steady state 

measurement methodology, where membrane based glucose oxidase catalyses the oxidation of 

glucose to gluconic acid and hydrogen peroxide. The difference between the sample generated 

plateau current and the initial baseline current is proportional to the glucose concentration. The YSI 

was calibrated at the start of every day and every 45 min thereafter. 

To prevent the degradation of acylated ghrelin, a 50 L solution containing potassium 

phosphate buffer, p-hydroxymercuribenzoic acid, and sodium hydroxide was added to one 4.9 mL 

EDTA vacuette, which was then centrifuged at 1,500 x g for 10 min at 4oC. The plasma supernatant 

was then dispensed into a storage tube and 100 L of 1 M hydrochloric acid was added per mL of 
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plasma to preserve acylated ghrelin (Hosoda et al. 2004). Thereafter, samples were spun at 1500 x g 

for 5 min at 4oC prior to being flash frozen in liquid nitrogen and stored in 2 mL cryovials at -80oC 

until later analysis. 

 

Blood biochemistry 

Commercially available enzyme immunoassays were used to determine plasma concentrations of 

acylated ghrelin (SPI BIO, Montigny le Bretonneux, France), total PYY (Millipore, Watford, UK), and 

insulin (Mercodia, Uppsala, Sweden). To eliminate interassay variation, samples from each 

participant were analysed in the same run. The intraassay coefficients of variation were below 15% 

for each variable, which is comparable to previous work in this field (Bailey et al. 2015; Ueda et al. 

2009a). 

 

Statistical analysis 

Analyses were completed using the statistical software package IBM SPSS Statistics version 21.0 

(SPSS Inc., Chicago, IL, USA) and GraphPad Prism version 4.03 (GraphPad Software Inc., La Jolla, CA, 

USA). Prior to any inferential statistical analyses, descriptive statistics tables were generated to 

check the central tendency (mean, median), and dispersion (standard deviation, minimum, 

maximum) of the data. Second, quantile-quantile       plots were used to check the normality 

assumption of the results obtained for each of the conditions across all time points. Standard 

graphical methods were preferred over null hypothesis significance testing to check statistical 

assumptions (Grafen and Hails 2002). The two-tailed alpha level for significance testing was set as 

p<0.05. 

Linear mixed models were chosen to determine if there were any differences in the 

dependent variables between the conditions across time. This type of analysis was preferred as it 

can accurately model different covariate structures for repeated measures data and model between-

subject variability (Vandenbogaerde and Hopkins 2010; West et al. 2006). Total area under the curve 
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(tAUC) was calculated for all blood metabolite and appetite variables using the trapezoidal method 

for the total trial period. Positive incremental area under the curve (iAUC) was also calculated for 

glucose and insulin based on suggestions that this method for estimating AUC more accurately 

describes glycaemic responses to food (Le Floch et al. 1990) and to permit comparisons with 

previous research (Dunstan et al. 2012). Fixed and random factors for the linear mixed model were 

fit for each AUC variable. The main effect for condition was analysed by plotting the mean values. 

Although the number of males (n=7) and females (n=6) studied was low, the main effect of sex and 

condition x sex interaction effects were tested to generate preliminary data on potential sex 

differences in the response to breaking up prolonged sitting. Data for condition x sex interaction 

effects are presented only where significant findings have been observed. No significant main effects 

for sex were observed for any variable and this data is thus not presented; all p>0.234. Step down 

Hommel (Hommel 1988) adjusted post-hoc pair wise comparisons were calculated if a significant 

main and/or interaction effect was present. The most appropriate model was chosen using the 

smallest Hurvich and Tsai’s criterion (AICC) in accordance with the principal of parsimony. Normality 

and homogeneity of variance of the residuals for all variables were checked using      plots and 

scatter plots, respectively. Acylated ghrelin and insulin tAUC in addition to absolute energy intake 

and relative energy intake were non-normally distributed and log transformed prior to analysis. Back 

transformation of these variables to natural units was applied to allow for meaningful presentation 

in text and tables. Data are presented as mean ± SD in the text and mean ± SE in the figures. 

Based on previous data (Deighton et al. 2013), a sample size of 12 participants was 

determined as sufficient to detect a 10% difference in appetite perceptions during a post-exercise 

period. This was the variable expected to have the smallest worthwhile change with the largest 

amount of variability. This calculation was performed using G*power with an alpha value of 5% and 

a power of 80% (Faul et al. 2007). 
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Results 

Appetite perceptions 

There were no significant differences in baseline appetite perception between trials (all p>0.244). 

Table 1 shows appetite perception tAUC values for each trial condition. There were no significant 

differences between trials for hunger, satisfaction, fullness, PFC, and overall appetite tAUC (all 

p>0.468). The analysis of serial measurements confirmed the findings of the AUC analysis by 

demonstrating no significant differences between trials (all p>0.586). There were also no significant 

condition x time interaction effects observed for any appetite variable (all p>0.486). Overall appetite 

responses over time for each trial are shown in Fig. 1. 

 

Figure 1 about here 

 

Absolute energy intake 

Energy intake during the ad libitum pasta meal was 1,846 ± 1,239 kJ in SIT, 1,670 ± 1,038 kJ in 

SIT+LA, and 1,360 ± 510 kJ in SIT+MA. These values did not differ significantly between trials 

(p=0.422). 

 

Estimated relative energy intake (REI) 

A significant main effect of condition for REI (energy intake during experimental trials minus the net 

energy expenditure of the activity bouts) was observed (p<0.001). As shown in Fig. 2, REI was 

significantly lower in both the SIT+LA and SIT+MA trials (by 39% p=0.011 and 120% p<0.001, 

respectively) than in SIT (SIT = 1,846 ± 1,239 kJ; SIT+LA = 1,247 ± 1,063 kJ; SIT+MA = 464 ± 632 kJ). 

REI between SIT+LA and SIT+MA did not differ significantly (p=0.138). Closer inspection of the data 

revealed that 11 out of the 13 participants had a lower REI in SIT+LA than in SIT and all 13 

participants had a lower REI in SIT+MA than in SIT. There was a significant condition x sex interaction 

effect (p=0.047) with males having a significantly reduced REI in the SIT+MA (p<0.001) trial 
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compared with SIT and significantly reduced REI in SIT+MA than SIT+LA (p=0.029). The lower REI in 

SIT+LA than SIT in males was approaching significance (p=0.112). Mean REI for males was 2336 ± 

1796 kJ in SIT, 1503 ± 1377 kJ in SIT+LA, and 75 ± 519 kJ in SIT+MA. In females, REI was significantly 

lower in SIT+MA than SIT (p=0.001) and the lower REI in SIT+LA than SIT in females was approaching 

significance (p=0.101). Mean REI for females was 1495 ± 569 kJ in SIT, 1067 ± 846 kJ in SIT+LA, and 

687 ± 611 kJ in SIT+MA. 

 

Figure 2 about here 

 

Gut hormone concentrations 

Gut hormone concentrations did not differ significantly at baseline (both p>0.384). Table 2 shows 

tAUC values for plasma acylated ghrelin and total PYY for each trial condition. Acylated ghrelin and 

PYY concentrations did not differ significantly between trials (both p>0.785). The analysis of serial 

measurements confirmed the findings of the AUC analysis by demonstrating no significant 

differences between trials (both p>0.769). There were also no significant condition x time interaction 

effects observed for acylated ghrelin or PYY (both p>0.258). Gut hormone concentrations over time 

for each trial are shown in Fig. 3. 

 

Figure 3 about here 

 

Glucose and insulin concentrations 

Plasma glucose and insulin AUC values for each trial can be seen in Table 2. Fasting plasma glucose 

concentrations differed significantly between trials at baseline with higher concentrations in SIT+MA 

(4.3 ± 0.4 mmol/L) than SIT (4.0 ± 0.3 mmol/L; p = 0.017). Fasting plasma insulin concentrations did 

not differ at baseline between trials (p=0.226). There was a main effect of condition for glucose iAUC 

(p=0.004) with significantly lower concentrations during SIT+MA than SIT+LA (p=0.004). Glucose 
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iAUC was also lower in SIT+MA than SIT and this was approaching significance (p=0.055). The 

condition x sex interaction effect for glucose iAUC was approaching significance (p=0.113) with post-

hoc comparisons revealing lower glucose iAUC in males (1.9 ± 1.6 mmol/L/6 h) compared with 

females during SIT (3.8 ± 1.3 mmol/L/6 h; p=0.048). Furthermore, glucose iAUC was lower in SIT+MA 

(1.1 ± 1.6 mmol/L/6 h) than SIT+LA (3.7 ± 2.2 mmol/L/6 h; p=0.018) in males and lower in SIT+MA 

(1.9 ± 1.4 mmol/L/6 h) than SIT (3.8 ± 1.3 mmol/L/6 h; p=0.009) in females. Insulin iAUC did not 

differ significantly between trials (p=0.308) and there was also no significant difference in glucose 

tAUC (p=0.993) or insulin tAUC (p=0.638) between trials. The analysis of serial measurements 

demonstrated no significant differences between trials for glucose or insulin (both p>0.866). There 

were also no significant condition x time interaction effects observed for either of these variables 

(both p>0.804). Plasma glucose and insulin concentrations over time for each trial are shown in Fig. 

3. 
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Discussion 

The main finding of this study was that regularly breaking up prolonged sitting with short bouts of 

light- or moderate-intensity walking does not affect appetite, energy intake or circulating gut 

hormone concentrations. This leads to an acute energy deficit that is not compensated for in a 

subsequent meal. 

This study observed no change in appetite (hunger, satisfaction, fullness, PFC, and overall 

appetite) in the activity breaks conditions compared with uninterrupted prolonged sitting. Previous 

research supports these findings with no alterations in appetite (the desire for food and drink) 

reported following an acute bout of low- to moderate-intensity exercise (<60%  ̇     ) (Schubert et 

al. 2013). Transient reductions in appetite, sometimes referred to as “exercise-induced anorexia”, 

have only been reported to occur following continuous exercise bouts exceeding 60%  ̇ 2max (Bilski et 

al. 2009). In a study of similar design to the current research, Holmstrup et al. (2013) observed no 

difference in 12 h AUC hunger and satiety in male obese participants who completed hourly 5 min 

walking bouts compared with uninterrupted sitting and continuous exercise performed in the 

morning. Holmstrup et al. (2013) required participants to consume a 1046 kJ high carbohydrate meal 

every 2 h and reduced hunger and increased satiety were reported in discrete 2 h time periods later 

in the day. As the current study examined responses to a single meal it is difficult to make direct 

comparisons between these studies. Holmstrup et al. (2013) also did not assess subsequent energy 

intake so it is unknown whether any changes in appetite would result in altered energy intake 

following regular activity breaks in that study. 

In unison with the finding that participants maintained their appetite across all conditions in 

the current study, absolute energy intake (ad libitum consumption of a pasta meal) also did not 

differ in the activity breaks conditions compared to uninterrupted sitting. The majority of studies 

that have predominantly utilised ad libitum buffet meals to examine post-exercise energy intake 

have reported that an acute exercise bout does not alter post-exercise energy intake (Martins et al. 

2008). However, when completing research of this nature it is important to consider REI (energy 
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intake minus the net energy expenditure of activity) (Imbeault et al. 1997; King et al. 2010). 

Estimated REI was lower in both of the activity breaks conditions in the current study compared with 

uninterrupted sitting for the male and female participants combined. To emphasise the importance 

of this finding, the majority of participants had a reduced REI in the activity breaks conditions 

compared with uninterrupted sitting: 11 out of 13 in SIT+LA and 13 out of 13 in SIT+MA. When 

analysed separately by sex, moderate-intensity activity breaks significantly reduced REI compared 

with uninterrupted sitting in males and females. However, in males, moderate-intensity activity 

breaks also lowered REI more than light-intensity activity breaks, but this was not observed in 

females. This may highlight sex as a potential mediating factor in the response of REI to breaking up 

prolonged sitting with different intensity activity breaks. However, the number of males and females 

examined in this study is low and larger sample sizes with greater statistical power are required to 

further confirm this concept. Nevertheless, the current study’s findings suggest that completing 2 

min bouts of low- or moderate-intensity walking every 20 min over a 5 h period does not lead to a 

compensatory increase in energy intake to account for the elevation of energy expenditure induced 

by the activity bouts. This type of low demanding movement strategy should therefore be further 

explored to determine its potential role in body weight control. 

The current study found no change in circulating acylated ghrelin or total PYY concentrations 

in response to regular activity breaks compared to uninterrupted sitting. The majority of research 

examining the acute response of acylated ghrelin and PYY to exercise has focused on moderate-high 

intensity continuous exercise (~60-70%  ̇ 2max) (Stensel 2010). This work has widely reported acute 

exercise induced suppression of acylated ghrelin and elevation of PYY concentrations in lean healthy 

males. These responses are short-lived and generally last for no more than 1 h post-exercise (Stensel 

2010). The exercise intensity and duration completed in the current study was lower and shorter 

than the studies noted above, which may explain the lack of influence on gut hormone 

concentrations. To the authors’ knowledge, this is the first study to examine the response of 

circulating acylated ghrelin concentrations to regular breaks in sitting time. King et al. (2010) 
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reported no alteration in acylated ghrelin concentrations over 8 h following a 60 min treadmill walk 

compared to a resting control trial. The brisk treadmill walking used by King et al. (2010) was ~7 

km/h (0% incline), which was a similar pace to the SIT+MA condition in the current study. Energy 

deficits caused by light- or moderate-intensity walking performed in frequent short bouts or in one 

continuous bout therefore do not result in compensatory increases in circulating acylated ghrelin. 

In comparison to research investigating the response to a single moderate-intensity exercise 

bout eliciting similar exercise-induced energy expenditure values to the moderate-intensity activity 

breaks used in the current study (914  226 kJ in SIT+MA), a decrease in acylated ghrelin and 

increase in circulating total PYY concentrations has been reported (Kawano et al. 2013). However, 

different modes of exercise (cycling and rope skipping) were used compared to walking in the 

current study, which may explain disparate findings and it is possible that a continuous bout of 

exercise is necessary to affect appetite hormones. Holmstrup et al. (2013) reported no difference in 

total PYY concentrations over 12 h when comparing hourly 5 min moderate-intensity walking bouts 

to a duration- and intensity-matched continuous exercise bout performed in the morning; total PYY 

concentrations in each of these conditions also did not differ compared with uninterrupted sitting. 

These findings  suggest that hourly acylated ghrelin and total PYY concentrations are not sensitive to 

regular activity breaks comprising of low-moderate intensities and are in conjunction with the 

current findings that appetite and absolute energy intake did not differ in the activity breaks 

conditions compared to uninterrupted sitting. 

The activity bouts in the current study led to an estimated total activity induced energy 

expenditure of 458  96 kJ in SIT+LA and 914  226 kJ in SIT+MA. Estimated energy expenditure loss 

per day at work has been 732 kJ (150 kcal) since 1960 and this accounts for a significant portion of 

the increase in body weight over the past five decades (Church et al. 2011). The reduction in 

occupational energy expenditure can be explained by increased amounts of seated technical work or 

desk-based office work with office workers spending up to 75% of their working hours seated (Thorp 

et al. 2012). As more than 50% of this time is accumulated in prolonged periods of sustained sitting 
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(Thorp et al. 2012), incorporating regular activity breaks into the working day, such as those used in 

the current study, could be an attractive strategy to increase daily energy expenditure and reduce 

periods of prolonged sitting. In respect of current experimental and observational evidence, this 

could potentially aid in body weight control and reduce chronic disease risk in the long term (Buckley 

et al. 2015; Eriksen et al. 2015), although intervention studies are required to establish this. 

In this study, postprandial plasma glucose iAUC was lower in the moderate-intensity activity 

breaks condition compared with light-intensity activity breaks and uninterrupted sitting. Conversely, 

postprandial insulin iAUC did not differ between conditions. Acute suppressions in postprandial 

glucose and insulin concentrations have been reported in a number of studies where sitting time has 

been regularly interrupted with short activity breaks (Benatti and Ried-Larsen 2015). In overweight 

and obese older adults, light- and moderate-intensity activity breaks (2 min walking every 20 min) 

caused similar suppressions in postprandial glucose and insulin iAUC compared to uninterrupted 

sitting (Dunstan et al. 2012). In our laboratory, we also observed lower postprandial glucose 

concentrations when sitting time was interrupted with 2 min light-intensity walking breaks every 20 

min in non-overweight participants (Bailey and Locke 2015). The reason light-intensity activity 

breaks did not suppress glucose concentrations in the present study is not clear. The low glucose 

levels observed in males during the uninterrupted sitting condition will have reduced the potential 

for the light-intensity activity breaks to suppress glucose. However, glucose iAUC between the 

uninterrupted sitting and light-intensity activity breaks conditions was similar in females. Further 

research is thus required to explore potential sex differences in the response of postprandial glucose 

to light-intensity activity breaks. 

The main strength of this study is the crossover design and the measurement of an array of 

appetite-related variables. This is one of the first studies to examine appetite and gut hormone 

responses to regular activity used to break up prolonged sitting, which is now being widely 

prescribed (Buckley et al. 2015). A limitation of this study is that total PYY was measured rather than 

PYY3-36, which is the form of PYY that is more potent in suppressing hunger (Chelikani et al. 2004). 
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However, total PYY and PYY3-36 are highly correlated (Tsilchorozidou et al. 2008) and changes in total 

PYY are thus likely to reflect changes in PYY3-36. Another potential limitation is that fasting plasma 

glucose concentrations differed at baseline between trials (higher in SIT+MA than SIT). However, this 

difference was minimal (4.30 ± 0.36 vs. 4.05 ± 0.34 mmol/L for SIT+MA and SIT, respectively) and we 

calculated positive incremental AUC for glucose and insulin concentrations and this method is free of 

influence from baseline values (Le Floch et al. 1990). Males and females were investigated in this 

study and some data suggests there are physiological differences between sexes in appetite, energy 

intake, and hormonal responses to short-term exercise (Hagobian et al. 2009). However, more 

recent evidence has reported no apparent sex differences in hormonal and appetite responses to 

exercise (Alajmi et al. 2015; Hagobian et al. 2013). Preliminary data from this study suggests that 

there may be sex differences in the REI and postprandial glucose response to breaking up prolonged 

sitting and additional studies with larger samples are thus required to further explore this concept. 

Previous studies have documented increased energy intake following cognitive effort with 

computer-based tasks (Chaput and Tremblay 2007). The participants in the current study were 

permitted to engage in a variety of seated activities during the trials and cognitive effort was thus 

not standardised, which may have had an impact on the energy intake responses observed. Lastly, 

this study compared the effects of breaking up prolonged sitting with regular activity over a period 

of 5 h following a single meal. Responses to this type of activity engagement following multiple 

meals across the course of the day thus cannot be inferred, nor can the long-term chronic responses 

to breaking up prolonged sitting. 

In conclusion, appetite and gut hormone responses to a meal are not altered over a 5 h 

period when prolonged sitting is interrupted with frequent short bouts of light- or moderate-

intensity activity. The increased energy expenditure from regular activity breaks could promote an 

energy deficit that is not compensated for in a subsequent meal. Future research should examine 

whether breaking up prolonged sitting will lead to repeated energy deficits over the long term and 

assist with weight management in obesity. 
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Table 1: Total area under the curve values for appetite perceptions 

  Sitting + activity breaks 

 Uninterrupted sitting Light-intensity Moderate-intensity 

Hunger (mm/6 h) 349 ± 112 357 ± 92 353 ± 117 

Satisfaction (mm/6 h) 166 ± 67 167 ± 83 193 ± 102 

Fullness (mm/6 h) 171 ± 92 171 ± 92 189 ± 87 

PFC (mm/6 h) 412 ± 74 405 ± 88 395 ± 89 

Overall appetite (mm/6 h) 430 ± 76 431 ± 76 417 ± 90 

Values are means ± SD. No significant between-trial differences were observed (p>0.05). PFC, prospective food consumption. 
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Table 2: Area under the curve values for gut hormone, glucose, and insulin concentrations 

  Sitting + activity breaks 

 Uninterrupted sitting Light-intensity Moderate-intensity 

Acylated ghrelin tAUC (pg/mL/6 h) 485 ± 302 503 ± 305 476 ± 296 

Peptide YY tAUC (pg/mL/6 h) 959 ± 222 989 ± 257 920 ± 213 

Insulin tAUC (μU/mL/6 h) 159 ± 69 162 ± 64 153 ± 78 

Glucose tAUC (mmol/L/6 h) 23.3 ± 2.7 23.4 ± 2.8 23.5 ± 2.3 

Insulin iAUC (μU/mL/6 h) 115 ± 69 95 ± 63 87 ± 84 

Glucose iAUC (mmol/L/6 h) 2.9 ± 1.7 3.5 ± 2.2 1.5 ± 1.5* 

Values are means ± SD. *significant difference between light-intensity and moderate-intensity activity breaks conditions (p=0.004). tAUC, total area under 

the curve; iAUC, positive incremental area under the curve 
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Fig. 1. Changes in overall appetite during uninterrupted sitting (SIT), sitting + light-intensity activity 

breaks (SIT+LA), and sitting + moderate-intensity activity breaks (SIT+MA). Values are means ± SE; n 

= 13. Solid arrow indicates standardised test drink, broken arrow indicates ad libitum pasta meal. 
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Fig. 2. Relative energy intake in the uninterrupted sitting (SIT), sitting + light-intensity activity breaks 

(SIT+LA), and sitting + moderate-intensity activity breaks (SIT+MA) conditions. Values are means ± 

SE; n = 13. *significantly higher than SIT+LA (p=0.011) and SIT+MA (p<0.001). 
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Fig. 3. Changes in plasma concentrations of (A) acylated ghrelin, (B) peptide YY, (C) glucose, and (D) 

insulin during uninterrupted sitting (SIT), sitting + light-intensity activity breaks (SIT+LA), and sitting + 

moderate-intensity activity breaks (SIT+MA) conditions. Values are mean ± SE; n = 13. Some error 

bars have been omitted for clarity. Solid arrow indicates standardised test drink, broken arrow 

indicates ad libitum pasta meal. 

 


