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esṕırito de grupo, sem o qual a discussão e questionamento cient́ıfico simplesmente
não existem.

Em primeiro lugar desejo exprimir ao Professor Doutor Renato Manuel Natal
Jorge, meu orientador, os meus mais sinceros agradecimentos pelo empenho, amizade
e acompanhamento constante e incondicional proporcionado durante todo o Doutora-
mento. A sua disponibilidade incondicional e esforço para proporcionar as melhores
condições de trabalho, bem como o alento e motivação nos momentos mais dif́ıceis,
foram decisivos para a qualidade do trabalho final.

Quero também expressar os meus agradecimentos aos meus co-orientadores, o
Professor Doutor João Martins e Professora Doutora Teresa Mascarenhas, pelas suas
valorosas contribuições durante diferentes fases deste trabalho.

Ao Instituto de Engenharia Mecânica (IDMEC, Unidade de Concepção e Vali-
dação Experimental), na pessoa do Professor Doutor António Augusto Fernandes,
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Abstract

Pelvic floor dysfunctions represent an extensive problem with a magnitude unknown
to many. A study conducted by Olsen et al., based on a population under one health
care system, showed that 11% of women had surgery for urinary incontinence or
pelvic organ prolapse during their lifetime. Furthermore, statistics show that 30
to 40% of women will suffer from some degree of incontinence in their lifetime.
Other study, conducted by Rortveit et al showed that the prevalence of this problem
among nulliparous women ranged from 8% to 32%, increasing with age. They also
showed that parity was associated with incontinence, the first delivery being the
most significant.

Several studies have shown that pelvic floor injuries during a vaginal delivery can
be considered a significant factor in the development of urinary incontinence, fecal
incontinence and pelvic organ prolapse. During delivery, the pelvic floor experiences
several changes, which cannot be measured in vivo due to clinical, technical and
ethical reasons.

This work presents a biomechanical method of modeling a biologic process, the
delivery in this case, in order to estimate biomechanical changes (stretch, strain,
stresses, etc.) on tissues. Knowledge of these biomechanical changes might help to
explain known phenomena associated with delivery and pregnancy, like damage to
the pelvic floor tissues, including the levator ani muscle. The purpose of the vaginal
childbirth simulation presented is to determine the stretches and stresses induced
in the pelvic floor muscles by the passage of a fetus.

The purpose of the presented vaginal childbirth simulation is to contribute to
the clarification of the mechanisms behind pelvic floor disorders related to a vaginal
delivery. For this purpose a numerical simulation based on the Finite Element
Method was carried out. The Finite Element Model aims at representing the effects
that the passage of a fetal head can induce on the muscles of the pelvic floor,
from a mechanical point of view. The model used for the simulation represents the
pelvic bones, with the attached pelvic floor muscles and the fetus. In this work, the
movements of the fetus during birth, in vertex position are simulated. The different
simulations conducted are divided into two groups, in the first group of simulations
the fetus presents in occipito-anterior position and in the second group the fetus
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presents in occipito-posterior position.
As investigation progresses, clinicians will eventually shift from a condition-based

approach to an injury-based approach, radically transforming both clinical research
and patient care. An enhanced precision in defining pelvic floor disorders will revo-
lutionize the ability to define and implement appropriate treatment, as well as to
conduct focused clinical research.

The computer model presented in this work is a first step in understanding
how obstetrical factors and interventions might influence the risk for levator ani
injury, because experimental measurements of the elevator muscle stretch in laboring
women are not currently feasible for many clinical, technical and ethical reasons.
The use of precise numerical models of the female pelvic cavity will, in the future,
provide the tools to simulate, in a realistic manner, the pelvic floor function and
the effects of its dysfunctions. And, in this manner, provide tools that will allow
surgeons to plan the surgery and perform it in a more controlled and reliable way.



Résumé

Les dysfonctions du plancher pelvien représentent un grave problème avec une am-
pleur méconnu de beaucoup. Une étude réalisée par Olsen et al., basée sur une
population déterminée d’un système de santé, a démontré qu’environ 11% de la
population féminine, pendant leur vie, a été soumise a des chirurgies pour résoudre
des problèmes d’incontinence urinaire ou prolapsus des organes de la cavité pelvi-
enne. Par ailleurs, les statistiques montrent que 30 a 40% des femmes vont souffrir
d’un type de dysfonction du plancher pelvien pendant leur vie. Une autre étude
réalisée par Rortveit et al. a démontré que la prévalence de ce problème parmi
les femmes nullipares varie entre 8 et 32%, et que ce nombre augmente avec l’âge.
Cette étude a aussi démontré que la parité était associée avec l’incontinence, étant
le premier accouchement le plus significatif.

Plusieurs études ont montrés que les dommages du plancher pelvien pendant un
accouchement peuvent être considérés un facteur important pour le développement
d’incontinence urinaire, incontinence fécale ou prolapsus des organes de la cavité
pelvienne. Pendant l’accouchement, le plancher pelvien est soumis à plusieurs
altérations qui ne sont pas mesurées in vivo pour des raisons cliniques, techniques e
éthiques.

Ce travail présente une méthode biomécanique de modélisation d’un proces-
sus biologique, l’accouchement, de manière à prévoir les altérations biomécaniques
(allongement, déformation, contrainte, etc.) des tissus du plancher pelvien. La con-
naissance de ces altérations biomécaniques pourra aider à expliquer des phénomènes
connus associés avec l’accouchement et à la grossesse, comme les dommages des tis-
sus du plancher pelvien, y compris le muscle élévateur de l’anus. L’objectif de la
simulation de l’accouchement vaginal présenté dans ce travail est de déterminer les
allongements et les contraintes induits sur le plancher pelvien par le passage du
foetus.

L’objectif de ce travail est de contribuer à la clarification des mécanismes qui
justifient l’apparition de dysfonctions du plancher pelvien liés à un accouchement
vaginal. Dans ce but, des simulations numériques ont été effectuées basées sur la
Méthode des Éléments Finis. La méthode des éléments finis permet de représenter
les effets mécaniques du passage du foetus sur les muscles du plancher pelvien. Le
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modèle des éléments finis utilisé dans les simulations représente le foetus, les os
pelviens et les muscles du plancher pelvien fixés aux os. Les mouvements du foetus
pendant l’accouchement en présentation céphalique ont été simulés. Les différentes
simulations réalisées ont été divisées en deux groupes. Dans le premier groupe de
simulations, le foetus se trouve avec une présentation occipito-antérieur et dans le
deuxième groupe en position occipito-postérieur.

Au fur et à mesure que la recherche progresse, les médecins iront éventuellement
passer d’une évaluation du patient, basée sur ses symptômes, à une évaluation basée
sur les dommages que le plancher pelvien d’une femme présente, transformant rad-
icalement non seulement l’investigation clinique comme les soins médicaux. Une
plus grande précision dans la définition des dysfonctions du plancher pelvien iront
révolutionner la capacité de définir et d’introduire un traitement approprié, ainsi
que de réaliser une investigation clinique ciblée sur le problème.

Le modèle computationnel présenté dans ce travail est un premier pas pour com-
prendre la façon dont les facteurs obstétriques peuvent influencer le risque de dom-
mage du muscle élévateur de l’anus, dans la mesure ou des mesures expérimentales
de l’allongement du muscle élévateur pendant l’accouchement ne sont pas possi-
bles actuellement du a des raisons cliniques, techniques et éthiques. L’utilisation
de modèles numériques précis de la cavité pelvienne de la femme ira dans le fu-
tur fournir des outils pour simuler d’une façon réaliste la cavité pelvienne et l’effet
de ses dysfonctions. De cette manière, il sera possible de produire des outils qui
permettront aux chirurgiens de planifier la chirurgie et de la réaliser de façon plus
contrôlée et avec plus de confiance dans le résultat final.



Resumo

As disfunções do pavimento pélvico representam um problema vasto, com uma am-
plitude desconhecida por muitos. Um estudo realizado por Olsen et al., baseado
na população de um determinado sistema de saúde, demonstrou que cerca de 11%
da população feminina, durante a sua vida, foram sujeitas a cirurgias para resolver
problemas de incontinência urinária ou prolapso dos órgãos da cavidade pélvica.
Além disso, as estat́ısticas mostram que 30 a 40% das mulheres vão sofrer de algum
tipo de disfunção do pavimento pélvico durante a sua vida. Um outro estudo, reali-
zado por Rortveit et al., demonstrou que a prevalência deste problema em mulheres
nuĺıparas, variava entre 8 e 32%, aumentando com a idade. Esse estudo também
demonstrou que a paridade estava associada com a incontinência, sendo o primeiro
parto o mais significativo.

Vários estudos têm mostrado que os danos no pavimento pélvico durante um
parto vaginal podem ser considerados um factor importante para o desenvolvimento
de incontinência urinária, incontinência fecal ou prolapso dos órgãos da cavidade
pélvica. Durante o parto, o pavimento pélvico sofre várias alterações, que não
podem ser medidas in vivo por motivos cĺınicos, técnicos e éticos.

Este trabalho apresenta um método biomecânico de modelação de um processo
biológico, o parto, de forma a estimar as alterações biomecânicas (alongamento, de-
formação, tensão, etc.) nos tecidos do pavimento pélvico. O conhecimento destas
alterações biomecânicas poderá ajudar a explicar fenómenos conhecidos associados
com o parto e gravidez, tais como os danos nos tecidos do pavimento pélvico, in-
cluindo o músculo elevador do ânus. O objectivo da simulação de um parto vaginal,
apresentada neste trabalho, é determinar os alongamentos e as tensões induzidas no
pavimento pélvico, pela passagem do feto.

O objectivo do presente trabalho é contribuir para a clarificação dos mecanismos
que justificam o aparecimento de disfunções do pavimento pélvico, relacionadas com
um parto vaginal. Com esse fim efectuaram-se simulações numéricas baseadas no
Método dos Elementos Finitos. O método dos elementos finitos pretende representar
os efeitos mecânicos da passagem do feto nos músculos do pavimento pélvico. O
modelo de elementos finitos utilizado nas simulações representa o feto, os ossos
pélvicos e os músculos do pavimento pélvico, fixados aos ossos. Neste trabalho
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foram simulados os movimentos do feto durante o parto, em apresentação cefálica.
As diferentes simulações realizadas foram divididas em dois grupos, no primeiro
grupo de simulações, o feto encontra-se com uma apresentação occipito-anterior e
no segundo grupo com uma apresentação occipito-posterior.

À medida que a investigação progredir, os cĺınicos irão eventualmente passar de
uma avaliação do paciente, baseada nos seus sintomas, para uma avaliação baseada
nos danos que o pavimento pélvico dessa pessoa apresenta, transformando radical-
mente não só a investigação cĺınica como os cuidados médicos. Uma maior precisão
na definição das disfunções do pavimento pélvico irá revolucionar a capacidade de
definir e implementar um tratamento apropriado, assim como realizar investigação
cĺınica de uma forma focalizada no problema.

O modelo computacional apresentado neste trabalho é um primeiro passo para
se compreender a forma como os factores obstétricos podem influenciar o risco de
dano para o músculo elevador do ânus, uma vez que medições experimentais do
alongamento do musculo elevador, durante o parto, presentemente não são posśıveis,
devido a motivos cĺınicos, técnicos e éticos. A utilização de modelos numéricos
precisos da cavidade pélvica da mulher irá, no futuro, fornecer ferramentas para
simular, de uma forma realista, a cavidade pélvica e o efeito das suas disfunções.
Desta forma será posśıvel produzir ferramentas que irão permitir aos cirurgiões
planear a cirurgia e realizá-la de uma forma mais controlada e com mais confiança
nos resultados finais.
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Ḟ Time derivative of the deformation gradient.
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Chapter 1

Introduction

1.1 Introduction

Pelvic floor dysfunction represents an extensive problem with unknown dimensions.
The term pelvic floor dysfunction refers to a group of clinical conditions that include
problems like urinary incontinence, fecal incontinence, pelvic organ prolapse and any
other sensory and emptying abnormalities of the lower urinary and gastrointestinal
tracts [Weber et al., 2004]. The three most common and clinically definable con-
ditions encountered are urinary incontinence, anal incontinence and pelvic organ
prolapse [Davila et al., 2006].

It is estimated that one or more of these conditions affects up to one-third of
adult women. A study conducted by Olsen et al., based on a population under one
health care system, showed that 11% of women had surgery for urinary incontinence
or pelvic organ prolapse during their lifetime [Olsen et al., 1997]. Furthermore,
statistics show that 30 to 40% of women suffer from some degree of incontinence in
their lifetime [Lien et al., 2005; Kenton and Mueller, 2006].

A real understanding of the pathophysiology of pelvic floor disorders is still
nonexistent. Development of a clinical condition is the result of the combination of
multiple factors. One can easily presume a genetic predisposition overlaid by critical
life events (acquired risk factors, such as childbirth, hormonal changes, and aging)
although strong evidence does not yet exist for these hypotheses [Weber et al., 2004].

The pelvic organ support system comprises muscles, ligaments, and nerves ar-
ranged in a complex tension-based apparatus. Therefore, understanding function
of this apparatus must include biomechanical analysis of the overall support mech-
anisms, targeting research into the biology of muscle, ligament, nerve components,
and their complex interactions in women with normal pelvic floor function and in
symptomatic patients.

It remains unclear whether muscle damage or neuropathy is the primary mech-
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anism for the development of pelvic floor disorders, but some authors believe that
the dysfunctions are largely caused by damage of connective tissues (ligaments
and fascia) and muscles of the pelvic floor [Papa Petros, 2004]. Pregnancy and
childbirth are considered particularly traumatic events leading to mechanical injury
of the anal sphincter and levator ani muscles and to neuropathy of the pudendal
nerves[Gregory and Nygaard, 2004]. The combined action of ligaments, fascia, and
muscles keeps in place and strengthens the pelvic organs, and the urethra, vagina,
and rectum [Papa Petros, 2004]. The normal function of the pelvic organs is thus de-
pendent on the integrity of the pelvic floor structure. Modern reconstructive pelvic
floor surgery uses polymeric or biologic tapes or meshes to reconstruct damaged
suspensor ligaments or reinforce fascia tissue [Leval, 2003; Delome, 2001].

Clinical aspects of pelvic floor disorders have been extensively studied, in par-
ticular the effect of pregnancy and childbirth, as shown for example in the follow-
ing studies [Dimpfl et al., 1998; Gregory and Nygaard, 2004]. However, it is widely
recognized that the understanding of the mechanism of damage to the pelvic floor
components (muscles, nerves, fascia) is still very limited. In particular, a global per-
spective of the function of the pelvic floor and its anomalies is completely lacking
[Gregory and Nygaard, 2004].

This work presents a biomechanical method of modeling a biologic process, the
delivery in this case, in order to estimate biomechanical changes (stretch, strain,
stresses, etc.) on tissues. Knowledge of these biomechanical changes might help
to explain known phenomena associated with delivery and pregnancy, like damage
to the pelvic floor tissues, including the elevator ani muscle. The purpose of the
presented vaginal childbirth simulation is to determine the stretches and stresses
induced in the pelvic floor muscles by the passage of a fetus.

The objective of the present work is to contribute to the clarification of the
mechanisms behind pelvic floor disorders related to a vaginal delivery. For this
purpose a numerical simulation based on the Finite Element Method was carried
out. The Finite Element Model aims at representing the effects that the passage
of a fetal head can induce on the muscles of the pelvic floor, from a mechanical
point of view. The model used for the simulation represents the pelvic bones, with
the attached pelvic floor muscles and the fetus. In this work, the movements of
the fetus during birth, in vertex position were simulated. The different simulations
conducted here are divided into two groups, in the first group of simulations the fetus
presents in occipito-anterior position and in the second group the fetus presents in
occipito-posterior position.

To achieve these goals it is necessary to have a good geometrical description of
the anatomy of the pelvic region, as well as good models of the complex mechanical
behavior of the muscles and supporting structures in presence. These topics will be
addressed in the following Chapters.

This study improves previous work in this area [Lien et al., 2004; Lien et al., 2005]
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by using a realistic model of the fetus body to better simulate vaginal childbirth
and thus obtain the stretches induced in the pelvic floor muscles.

The use of precise numerical models of the female pelvic cavity will, in the future,
provide the tools to simulate, in a realistic manner, the pelvic floor function and
the effects of its dysfunctions. And, in this manner, provide tools that will allow
surgeons to plan the surgery and perform it in a more controlled and reliable way.





Chapter 2

Anatomy of the Female Pelvis and
Perineum

2.1 Introduction

This chapter first make a presentation of the organization of the human body,
its main structures and functions. After this first presentation, the main objec-
tive of this chapter will be treated, the study of the structures and processes in-
volved in the anatomy of the female pelvic floor. The anatomy of the female
pelvis and perineum described on this chapter is already very well established
on the literature, and is presented here only briefly. This Chapter is based on
the following works of [Moore and Dalley, 2006], [DeCherney and Nathan, 2003],
[Seeley et al., 2004], [Mader, 2004], [Kent, 2001], [Standring, 2004], [Netter, 2006],
[Scanlon and Sanders, 2007], [Ellis, 2006] and [Sobotta et al., 2001], which should
be consulted for more details on this subject.

The human body is complex, like a highly technical and sophisticated machine.
It operates as a single entity, but is made up of a number of operational parts
that work interdependently. Each part is associated with a specific, and sometimes
related, function that is essential for the well-being of the individual. The component
parts do not operate independently, but rather in conjunction with all the others.
Should one part fail, the consequences are likely to extend to other parts, and may
reduce the ability of the body to function normally. Integrated working of the body
parts ensures the ability of the individual to survive. The human body is therefore
complex in both its structure and function.
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6 Anatomy of the Female Pelvis and Perineum

2.2 The Human Body

Anatomy and physiology is the study of the human body. Anatomy is the study
of the structure of the body and the physical relationships involved between body
parts. Although historically and strictly speaking the primary concern of anatomy
is structure, true understanding results when structure and function are considered
together. Physiology is the study of how the parts of the body work, and the ways
in which they cooperate together to maintain the life and health of the individual.
Anatomy and physiology are closely connected in that the structure of an organ suits
its function. For example, the stomach’s pouch like shape and ability to expand are
suitable to its function of storing food. In addition, the microscopic structure of the
stomach wall is suitable to its secretion of digestive juices. Pathology is the study
of abnormalities and how they affect body functions, often causing illness.

2.2.1 Organization of body parts

The human body is organized into structural and functional levels of increasing
complexity. Each higher level incorporates the structures and functions of the pre-
vious level. Conceptually, the body has six structural levels: the chemical, cell,
tissue, organ, organ system, and complete organism. All the levels of organization
are depicted in Figure 2.1.

2.2.1.1 Cellular Level

The cell is the basic structural and functional component of life. Humans are multi-
cellular organisms composed of nearly 60 to 100 trillion cells. It is at the microscopic
cellular level that the vital functions of life such as metabolism, growth, irritability
(responsiveness to stimuli), repair, and replication are carried on.

All substances, including body parts, are composed of chemicals made up of
submicroscopic particles, atoms (Figure 2.1). Atoms join to form molecules, which
can in turn join to form macromolecules. For example, molecules called amino
acids join to form a macromolecule called protein, which makes up the bulk of our
muscles. Macromolecules are found in all cells, the basic units of all living things.
Within cells are organelles, small functional structures called that perform cellular
functions. For example, the organelle called the nucleus is especially concerned with
cell reproduction, another organelle, called the mitochondrion, supplies the cell with
energy.

2.2.1.2 Tissue Level

Tissues are the next level of organization. Tissues are layers or groups of similar
cells that perform a common function. The entire body is composed of four kinds
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of tissues: epithelial, connective, muscular, and nervous tissue. The muscle within
the heart is an example of a tissue, whose function it is to pump the blood through
the body. The outer layer of skin (epidermis) is a tissue because it is composed
of similar cells that together serve as a protective shield for the body. The science
concerned with the microscopic study of tissues is named histology.

2.2.1.3 Organ Level

An organ is composed of several types of tissues that performs a particular func-
tion within an organ system. Organs vary greatly in size and function and occur
throughout the body. Each organ usually has one or more primary tissues and sev-
eral secondary tissues. In the stomach, for example, the inside epithelial lining is
considered the primary tissue because the basic functions of secretion and absorp-
tion occur within this layer. Secondary tissues of the stomach are the connective,
nervous, and muscle tissues.

Atom

Molecule

Macromolecule

Organelle

Cell

Tissue

Organ

System

Organism

Figure 2.1: Levels of structural organization of the human body, depicted from the
simplest (chemical) to the most complex (organism) (adapted from [Mader, 2004]).



8 Anatomy of the Female Pelvis and Perineum

2.2.1.4 System Level

The different systems of the body constitute the next level of structural organiza-
tion. A body system consists of various organs that have similar or related functions.
Certain organs may serve two systems. For example, the pancreas functions with
both the endocrine and digestive systems and the pharynx serves both the respi-
ratory and digestive systems. In the Human body, all the systems are interrelated
and function together, making up the organism.

A systematic approach to study anatomy emphasizes the purposes of the various
organs within a system. For example, the functional role of the digestive system
can be best understood if the different organs of that system are studied together.
In a regional approach, all of the organs and structures in one particular region
are examined at the same time. The regional approach has merit in graduate pro-
fessional schools because the structural relationships of portions of several systems
can be observed simultaneously. Dissections of cadavers are usually conducted on
a regional basis. Trauma or injury usually affects a region of the body, whereas a
disease that affects a region may also involve an entire system.

All of the body systems together make up the organism, a human being for
example. Human beings are complex animals, but this complexity can be broken
down and studied at simpler levels.

2.2.2 Anatomical terms

The terminology presented here will allow to describe the location of body parts,
regions of the body, and imaginary planes by which the body can be sectioned. This
knowledge is essential to enable an effective communication.

2.2.2.1 Anatomical Position

Anatomical terms are useful only if everyone has in mind the same position of the
body and is using the same reference points. Therefore, it is assumed that the body
is in the anatomical position.

This position provides a precise and standard frame of reference for anatomical
description and dissection. The anatomic position refers to a person standing erect
with the face directed forward, the upper limbs hanging to the sides, and the palms
of the hands facing forward (Figure 2.2). Without such a frame of reference, to say
that a structure such as the sternum, thymus, or aorta is ”above the heart” would
be vague, since it would depend on whether the subject was standing, lying face
down, or lying face up.

By using this position and appropriate terminology, any part of the body can
be related precisely to any other part. Although gravity causes a downward shift
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of internal organs when the upright position is assumed, it is often necessary to
describe the position of organs in the supine position (lying down, face upward) or
prone position (lying down, face downward) because this is the posture in which
people are typically examined. In the anatomic position, the elbow is above the
hand, but in the supine or prone position, the elbow and hand are at the same
level. To avoid confusion, relational descriptions are always based on the anatomic
position, no matter the actual position of the body. Thus, the elbow is always
described as being above the wrist, whether the person is lying down or is even
upside down. Therefore, unless stated otherwise, it is assumed that all anatomical
descriptions refer to the anatomical position.

It is important to bear in mind that when a subject in anatomical position is
facing the observer, the subject’s left will be on the observer’s right and vice versa.
In most anatomical illustrations, for example, the left atrium of the heart appears
toward the right side of the page, and while the appendix is located in the right
lower quadrant of the abdomen, it appears on the left side of most illustrations.

2.2.2.2 Planes and Sections of the Body

In order to visualize and study the structural arrangements of various organs, it
is customary to use imaginary ”slices” called sections or planes. ”Section” implies
an actual cut or slice to reveal the internal anatomy, whereas ”plane” implies an
imaginary flat surface passing through the body. The three major anatomical planes
are the sagittal, frontal, and transverse plane (Figure 2.2).

The sagittal plane extends vertically through the body or an organ and divides
it into right and left portions. A midsagittal (median) plane is a sagittal plane that
passes lengthwise through the midplane of the body, dividing it equally into right
and left halves. The head and pelvic organs are commonly illustrated on the median
plane.

The frontal (coronal) plane also extends vertically, but it is perpendicular to
the sagittal plane and divides the body into anterior (front) and posterior (back)
portions. A frontal section of the head, for example, would divide it into one portion
bearing the face and another bearing the back of the head. Contents of the thoracic
and abdominal cavities are most commonly shown in frontal sections.

A transverse (horizontal) plane is perpendicular to the body’s long axis and
therefore divides the body horizontally to produce a cross section. A transverse
cut divides the body or an organ into superior and inferior portions. The terms
longitudinal section and cross section are often applied to body parts that have
been removed and cut either lengthwise or straight across, respectively. Typically,
CT scans are transverse sections.
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(a) Sagittal plane (b) Frontal plane (c) Transverse plane

Figure 2.2: Anatomical Planes of Reference (adapted from [Mader, 2004]).

2.2.2.3 Directional terms

Directional terms are used to describe the location of one body part in relation to
another. Important directional terms are illustrated in Figure 2.3 and summarized
in Table 2.1.

Right and left are retained as directional terms in anatomic terminology. Up is
replaced by superior, down by inferior, front by anterior, and back by posterior.

In humans, superior is synonymous with cephalic, which means toward the head,
because in the anatomic position, the head is the highest point. In humans, the
term inferior is synonymous with caudal, which means toward the tail, represented
in humans by the coccyx, the small bone at the inferior (caudal) end of the vertebral
column.

The word anterior, denotes the region of the body that leads the way in normal
locomotion, for a human, it is the area of the chest and abdomen. The anterior
surface of the human body is therefore the ventral surface, or belly, because the
belly ”goes first” when walking. The word posterior means that which follows and
dorsal means back. The posterior surface of the body is the dorsal surface, or back,
which follows when walking.

Proximal means nearest, whereas distal means distant. These terms are used to
refer to linear structures, such as the limbs, in which one end is near some other
structure and the other end is farther away. Each limb is attached at its proximal
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Figure 2.3: Directional terms used to describe the position of one structure relative
to another, with the body in the anatomical position (adapted from [Mader, 2004])

Term Definition Example

Right Toward the right side of the body The right ear.
Left Toward the left side of the body The left eye.
Superior A structure above another The heart is superior to the diaphragm.
Inferior A structure below another The liver is inferior to the diaphragm.
Cephalic Closer to the head The chin is cephalic to the navel.
Caudal Closer to the tail The navel is caudal to the chin.
Anterior Toward the ventral side The sternum is anterior to the heart.
Posterior Toward the dorsal side The esophagus is posterior to the trachea.
Ventral Toward the front or belly The navel is ventral to the spine.
Dorsal Toward the back or spine The spine is dorsal to the breastbone.
Proximal Closer to the point of origin The elbow is proximal to the wrist.
Distal Farther from the point of origin The hand is distal to the elbow.
Lateral Away from the median plane The eyes are lateral to the nose.
Medial Toward the median plane The heart is medial to the lungs.
Superficial Closer to the body surface The skin is superficial to the muscles.
Deep Farther from the body surface The bones are deep to the muscles.

Table 2.1: Directional Terms for the Human Body
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end to the body, and the distal end, such as the hand, is farther away.
Medial means toward the midline, and lateral means away from the midline. The

nose is located in a medial position in the face, and the eyes are lateral to the nose.
The term superficial refers to a structure close to the surface of the body, and deep
is toward the interior of the body. The skin is superficial to the muscles and bones.

2.2.2.4 Body Parts and Regions

Knowledge of the external anatomy and landmarks of the body is important in
performing a physical examination and many other clinical procedures. The hu-
man body can be divided into two major regions called the axial and appendicular
regions. Smaller areas within the major regions are described in the following para-
graphs and illustrated in Figure 2.4. The labels in Figure 2.4 do not include the
word ”region”. The scientific name for each region is followed by the common name
for that region. For example, the cephalic region is commonly called the head.

The axial region consists of the head, neck (cervical region), and trunk. The
trunk can be divided into the thorax, abdomen, and pelvis. The pelvis is that part
of the trunk associated with the hips.

One way of referring to the locations of abdominal structures is to divide the
region into quadrants. Two perpendicular lines intersecting at the umbilicus (navel)
divide the abdomen into a right upper quadrant, right lower quadrant, left upper
quadrant, and left lower quadrant (Figure 2.5a). The quadrant scheme is often
used to describe the site of an abdominal pain or abnormality. In addition to these
quadrants, the abdomen is sometimes subdivided into nine regions by four imaginary
lines: two horizontal and two vertical, resulting in nine regions: epigastric, right and
left hypochondriac, umbilical, right and left lumbar, hypogastric, and right and left
iliac (Figure 2.5b). Clinicians use the quadrants or regions as reference points for
locating underlying organs.

The appendicular region of the body consists of the appendages (also called limbs
or extremities): the upper limbs and the lower limbs. The upper limb includes the
brachium (arm), antebrachium (forearm), carpus (wrist), manus (hand), and digits
(fingers). The arm extends from the shoulder to the elbow, and the forearm extends
from the elbow to the wrist. The lower limb includes the thigh, crus (leg), tarsus
(ankle), pes (foot), and digits (toes). The thigh extends from the hip to the knee,
and the leg extends from the knee to the ankle. Note that the terms ”arm” and
”leg” refer to only a part of the respective limb.

2.2.3 Body Cavities and Membranes

The body contains many cavities, among which are the nasal, cranial, and abdominal
cavities. Some of these open to the outside of the body, and some do not. Internally,
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Figure 2.4: Terms for body parts and areas.
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the body is divided into two major body cavities, dorsal and ventral (Figure 2.6).
The organs within them are called the viscera. Various membranes line the cavities,
cover the viscera, and hold the viscera in place (Table 2.2).

2.2.3.1 Posterior Body Cavity

The posterior body cavity has two subdivisions: the cranial cavity, which is enclosed
by the bony cranium (braincase) and contains the brain, and the vertebral canal,
which is enclosed by the vertebral column (backbone) and contains the spinal cord.
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quadrant

Left
lower
quadrant

(a) Abdominal quadrants consist of
four subdivisions.

Epigastric
region

Umbilical
region

Hypogastric
(pubic)
region

Right
hypochondriac

region

Right
lumbar
region

Right
iliac

region

Left
hypochondriac
region

Left
lumbar
region

Left
iliac
region

(b) Abdominal regions consist of nine subdivi-
sions.

Figure 2.5: Subdivisions of the Abdomen.

The posterior body cavity is lined by three membranous layers, called the meninges.
Among other functions, the meninges protect the delicate nervous tissue from the
hard protective bone that encloses it. The most inner of the meninges is tightly
bound to the surface of the brain and the spinal cord. The space between this layer
and the next layer is filled with cerebrospinal fluid. Spinal meningitis, a serious
condition, is an inflammation of the meninges usually caused by an infection.

2.2.3.2 Anterior Body Cavity

The large anterior body cavity is subdivided into the thoracic, abdominal, and pelvic
cavities (Figure 2.6). The rib cage surrounds the thoracic cavity, and a muscular
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partition, called the diaphragm separates it from the abdominal cavity.

Abdominal muscles primarily enclose the abdominal cavity and the pelvic bones
encase the small space known as the pelvic cavity. The abdominal and pelvic cavities
are not physically separated and sometimes are called the abdominopelvic cavity.
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Figure 2.6: The two major body cavities and their subdivisions (adapted from
[Mader, 2004]).

The membranes that cover the organs of the trunk cavities and line the trunk
cavities are called serous membranes. They are named this way because they secrete
a fluid that has just about the same composition as serum. The serous fluid between
the smooth serous membranes reduces friction as the viscera rub against each other
or against the body wall. To understand the relationship between serous membranes
and an organ, imagine an inflated balloon into which a fist has been pushed (Figure
2.7). The fist represents an organ, the inner balloon wall in contact with the fist
represents the visceral serous membrane covering the organ, and the outer part
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of the balloon wall represents the parietal serous membrane. The cavity or space
between the visceral and parietal serous membranes is normally filled with a thin,
lubricating film of serous fluid produced by the membranes. As organs rub against
the body wall or against another organ, the combination of serous fluid and smooth
serous membranes reduces friction.

Outer balloon wall

Inner balloon wall

Cavity

Fist

Outer balloon wall
(parietal serous
membrane)

Inner balloon wall
(visceral serous
membrane)

Cavity

Fist

Figure 2.7: Relationship between serous membranes and an organ (adapted from
[Seeley et al., 2004]).

The thoracic cavity – The thoracic cavity is enclosed by the rib cage and con-
tains three serous membrane-lined cavities: a pericardial cavity and two pleural
cavities. It is divided into right, left, and medial portions by a partition called
the mediastinum. The right and left sides contain the lungs. and are lined by a
two-layered membrane called the pleura. The outer layer, or parietal pleura, lines
the inner surface of the thoracic wall against the inside of the rib cage, the lateral
surfaces of the mediastinum, and the superior surface of the diaphragm; the inner
layer, or visceral pleura, forms the external surface of the lung. The narrow, moist
space between the visceral and parietal pleurae is called the pleural cavity. It is
lubricated by the pleural fluid.

The medial portion, or mediastinum, is occupied by the esophagus and trachea, a
gland called the thymus, the heart and the major blood vessels connected to it. The
heart is enclosed by a two-layered membrane called the pericardium. The visceral
pericardium forms the heart surface, while the parietal pericardium is separated from
it by a space called the pericardial cavity. This space is lubricated by pericardial
fluid.
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Figure 2.8: Location of Serous Membranes (adapted from [Seeley et al., 2004]).
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The Abdominopelvic Cavity – The abdominopelvic cavity consists of the ab-
dominal cavity above the brim of the pelvis and the pelvic cavity below the brim.
Abdominal muscles primarily enclose the abdominal cavity, which contains the stom-
ach, intestines, liver, spleen, pancreas, and kidneys. Pelvic bones encase the small
space known as the pelvic cavity, where the urinary bladder, part of the large intes-
tine, and the internal reproductive organs are housed. The abdominal and pelvic
cavities are not physically separated and are called the abdominopelvic cavity.

The abdominopelvic cavity contains a moist serous membrane called the peri-
toneum. The parietal peritoneum lines the wall of the abdominopelvic cavity and
the inferior surface of the diaphragm, while the visceral peritoneum covers the ex-
ternal surfaces of most digestive organs. The peritoneal cavity is the space between
the parietal and visceral layers. It is lubricated by peritoneal fluid.

Some organs of the abdominal cavity lie between the peritoneum and dorsal body
wall (outside of the peritoneal cavity), so they are said to have a retroperitoneal
position. These include the kidneys, ureters, adrenal glands, most of the pancreas,
and abdominal portions of two major blood vessels, the aorta and inferior vena cava.

Mesenteries, which consist of two layers of peritoneum fused together, connect
the visceral peritoneum of some abdominopelvic organs to the parietal peritoneum
on the body wall or to the visceral peritoneum of other abdominopelvic organs
(Figure 2.9). The mesenteries anchor the organs to the body wall and provide a
pathway for nerves and blood vessels to reach the organs. Other abdominopelvic
organs are more closely attached to the body wall and do not have mesenteries.

The mesentery gives support to the intestines from the dorsal abdominal wall.
The membrane then wraps around the intestines and some other viscera, forming
a moist membrane called the serosa on their outer surfaces. The mesentery of the
large intestine is called the mesocolon. The visceral peritoneum consists of the
mesenteries and serosae.

A fatty membrane called the greater omentum hangs like an apron from the
inferolateral margin of the stomach and overlies the intestines. It is unattached
at its inferior border and can be lifted to reveal the intestines. A smaller lesser
omentum extends from the superomedial border of the stomach to the liver.

The table 2.2 summarizes the presentation of the body cavities and membranes.

2.2.4 Organ Systems

The organs of the body work together in systems. The human body has 11 organ
systems and an immune system, which is better described as a population of cells
than as an organ system. These systems are classified in the following list by their
principal functions.
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Figure 2.9: Sagittal section through the abdominopelvic cavity showing the parietal
peritoneum (blue), visceral peritoneum (red), peritoneal cavity, mesenteries (pur-
ple), and retroperitoneal organs (adapted from [Seeley et al., 2004]).



20 Anatomy of the Female Pelvis and Perineum

Name of Cavity Associated Viscera Membranous Lining
Dorsal Body Cavity

Cranial cavity Brain Meninges
Vertebral canal Spinal coord Meninges

Ventral Body Cavity

Thoracic Cavity

Pleural cavaties (2) Lungs Pleurae
Pericardial cavity Heart Pericarduim

Abdominopelvic Cavity

Abdominal cavity Digestive organs, Peritoneum
spleen, kidneys

Pelvic cavity Bladder, rectum, Peritoneum
reproductive organs

Table 2.2: Body Cavities and Membranes

2.2.4.1 Support, Movement, and Protection

Integumentary system The integumentary system, includes the skin and acces-
sory organs, such as the hair, nails, sweat glands, and sebaceous glands. The
skin protects underlying tissues, contains sense organs, helps regulate body
temperature and even synthesizes certain chemicals that affect the rest of the
body.

Skeletal system The skeletal system and the muscular system give the body sup-
port and are involved in the ability of the body and its parts to move. The
skeletal system, consists of the bones of the skeleton and associated cartilage,
as well as the ligaments that bind these structures together. The skeleton
protects body parts. For example, the skull forms a protective encasement for
the brain, as does the rib cage for the heart and lungs. Some bones produce
blood cells, and all bones are a storage area for calcium and phosphorus salts.
The skeleton as a whole serves as a place of attachment for the muscles.

Muscular system Contraction of skeletal muscles, accounts for the ability of the
body to move voluntarily and to respond to outside stimuli. These muscles
also maintain posture and are responsible for the production of body heat.
Cardiac muscle and smooth muscle are called involuntary muscles because
they contract automatically. Cardiac muscle makes up the heart, and smooth
muscle is found within the walls of internal organs.
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2.2.4.2 Integration and Coordination

Nervous system The nervous system, consists of the brain, spinal cord, and asso-
ciated nerves. The nerves conduct nerve impulses from the sense organs to the
brain and spinal cord. They also conduct nerve impulses from the brain and
spinal cord to the muscles and glands. The sense organs provide us with in-
formation about the outside environment. This information is then processed
by the brain and spinal cord.

Endocrine system The endocrine system, consists of the hormonal glands that
secrete chemicals that serve as messengers between body parts. Both the
nervous and endocrine systems help maintain a relatively constant internal
environment by coordinating and regulating the functions of the body’s other
systems. The nervous system acts quickly but has a short-lived effect; the
endocrine system acts more slowly but has a more sustained effect on body
parts. The endocrine system also helps maintain the proper functioning of the
reproductive organs.

2.2.4.3 Maintenance of the Body

The internal environment of the body is maintained by the blood within the blood
vessels and the tissue fluid that surrounds the cells. Five systems add substances
to and/or remove substances from the blood: the cardiovascular, lymphatic, respi-
ratory, digestive, and urinary systems.

Cardiovascular system The cardiovascular system, consists of the heart and the
blood vessels that carry blood through the body. Blood transports nutrients
and oxygen to the cells, and removes waste molecules to be excreted from the
body. Blood also contains cells produced by the lymphatic system.

Lymphatic system The lymphatic system protects the body from disease.

Respiratory system The respiratory system, consists of the lungs and the tubes
that take air to and from the lungs. The respiratory system brings oxygen
into the lungs and takes carbon dioxide out of the lungs.

Digestive system The digestive system, consists of the mouth, esophagus, stom-
ach, small intestine, and large intestine (colon), along with the accessory or-
gans: teeth, tongue, salivary glands, liver, gallbladder, and pancreas.

Urinary system The urinary system, contains the kidneys and the urinary blad-
der. This system eliminates the nitrogenous wastes and helps regulate the
fluid level and chemical content of the blood.
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2.2.4.4 Reproduction and Development

The male and female reproductive systems, contain different organs.

Reproductive system The male reproductive system consists of the testes, other
glands, and various ducts that conduct semen to and through the penis.
The female reproductive system consists of the ovaries, uterine tubes, uterus,
vagina, and external genitalia.

2.3 The Female Pelvis and Perineum

2.3.1 Introduction to the Pelvis and Perineum

The term pelvis is used to denote a variety of structures: a region, the pelvic girdle,
and the pelvic cavity.

In common usage, the pelvis is the part of the trunk inferoposterior to the ab-
domen and is the area of transition between the trunk and the lower limbs. Anatom-
ically, the pelvis is the space or compartment surrounded by the pelvic girdle (bony
pelvis), part of the appendicular skeleton of the lower limb.

The pelvis is subdivided into greater and lesser pelves. The greater pelvis consists
primarily of the space superior to the iliopectineal line, including the two iliac fossae
and the region between them. The lesser pelvis, located below the iliopectineal line,
is bounded anteriorly by the pubic bones, posteriorly by the sacrum and coccyx,
and laterally by the ischium and a small segment of the ilium.

The greater pelvis affords protection to inferior abdominal viscera similar to
the way the inferior thoracic cage protects superior abdominal viscera. The lesser
pelvis provides the skeletal framework for both the pelvic cavity and the perineum
compartments of the trunk separated by the musculofascial pelvic diaphragm.

Externally, the pelvis is covered or overlapped by the inferior anterolateral ab-
dominal wall anteriorly, the gluteal region of the lower limb posterolaterally, and
the perineum inferiorly.

The perineum refers both to the area of the surface of the trunk between the
thighs and the buttocks, extending from the coccyx to the pubis, and to the shallow
compartment lying deep to this area and inferior to the pelvic diaphragm. The
perineum includes the anus and external genitalia.

2.3.2 The Pelvic Girdle

The pelvic girdle (Figure 2.11) is a basin-shaped ring of bones that marks the distal
margin of the trunk and connects the vertebral column to the two femurs. The pelvis
rests upon the lower extremities and supports the spinal column. It is composed of
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Figure 2.10: Pelvis and perineum (adapted from [Moore and Dalley, 2006])

two innominate bones (coxal bones, hipbones), one on each side, joined anteriorly
and articulated with the sacrum posteriorly. The bones of the pelvic girdle are
firmly attached to one another and bear the weight of the body.

The primary functions of the pelvic girdle is to bear the weight of the upper
body when sitting and standing and transfer that weight from the axial to the
lower appendicular skeleton. The pelvic girdle also provides attachment for the
powerful muscles of locomotion and posture, as well as those of the abdominal wall,
withstanding the forces generated by their actions. Consequently, the pelvic girdle
is quite strong and rigid, especially compared to the pectoral (shoulder) girdle.

The pelvic girdle, contains and protect the pelvic viscera (inferior parts of the
urinary tracts and the internal reproductive organs) especially but also the inferior
abdominal viscera (intestines), while permitting passage of their terminal parts via
the perineum. In the females the pelvic girdle also as to allow for the passage
of a full-term fetus (see Chapter 4). The pelvic girdle provides support for the
abdominopelvic viscera and gravid (pregnant) uterus and provides attachment for
the muscles and membranes that assist in these functions by forming the pelvic floor
and filling gaps that exist in or around it.

2.3.2.1 Bones and Features of the Pelvic Girdle

In a mature individual, the pelvic girdle is formed by three bones, the two hip bones
bones (coxal bones, pelvic bones) and the sacrum, bound to each other by dense
ligaments.
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Figure 2.11: Anterior view of the pelvic girdle (adapted from [Seeley et al., 2004])

The hip bone In infants and children, the hip bones consist of three separate
bones that are united by a triradiate cartilage at the acetabulum (Figure 2.12), the
cup-like depression in the lateral surface of the hip bone, which articulates with the
head of the femur. After puberty, the ilium, ischium, and pubis fuse to form the hip
bone. The two hip bones are joined anteriorly at the pubic symphysis and articulate
posteriorly with the sacrum at the sacroiliac joints to form the pelvic girdle. The
internal (medial or pelvic) aspects of the hip bones bound the pelvis, forming its
lateral walls. Their external aspects is primarily involved in providing attachment
for the lower limb muscles.

The ilium is formed by a fan-shaped upper part or ala (wing) and a thicker,
lower part called the body. The body participates in formation of the upper portion
of the acetabulum and unites with the bodies of the ischium and pubis. The medial
surface of the ilium presents as a large concave area: the anterior portion is the
iliac fossa; the smaller posterior portion is composed of a rough upper part, the
iliac tuberosity; and the lower part contains a large surface for articulation with the
sacrum. At the inferior medial margin of the iliac fossa, a rounded ridge, the arcuate
line, ends anteriorly in the iliopectineal eminence. Posteriorly, the arcuate line is
continuous with the anterior margin of the ala of the sacrum across the anterior
aspect of the sacroiliac joint. Anteriorly, it is continuous with the ridge or pecten
on the superior ramus of the pubis. The lateral surface or dorsum of the ilium
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Figure 2.12: Lateral view of the right hip bone (adapted from [Seeley et al., 2004]).

is traversed by three ridges, the posterior, anterior, and the inferior gluteal lines.
The superior border is called the crest, and at its extremities are the anterior and
posterior superior iliac spines. The principal feature of the anterior border of the
ilium is the heavy anterior inferior iliac spine. Important aspects of the posterior
border are the posterior superior and the inferior iliac spines and, below the latter,
the greater sciatic notch, the inferior part of which is bounded by the ischium.

The ischium is composed of a body, superior and inferior rami, and a tuberosity.
The body is the heaviest part of the bone and joins with the ilium and pubis to form
the acetabulum. The ischium presents three surfaces, a smooth internal surface,
continuous above with the body of the ilium and below with the inner surface of
the superior ramus of the ischium, forming the posterior portion of the lateral wall
of the lesser pelvis. The external surface of the ischium is the portion that enters
into the formation of the acetabulum and the posterior surface is the area between
the acetabular rim and the posterior border. The posterior border, with the ilium,
forms the bony margin of the greater sciatic notch. The superior ramus of the
ischium descends from the body of the bone to join the inferior ramus at an angle of
approximately 90 degrees. The large ischial tuberosity and its inferior portion are
situated on the convexity of this angle. The inferior portion of the tuberosity forms
the point of support in the sitting position. The posterior surface is divided into
two areas by an oblique line. The lesser sciatic notch occupies the posterior border
of the superior ramus between the spine and the tuberosity. The inferior ramus, as
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Figure 2.13: Medial view of the right hip bone (adapted from [Seeley et al., 2004]).

it is traced forward, joins the inferior ramus of the pubis to form the arcus pubis
(ischiopubic arch).

The pubis is composed of a body and two rami, superior and inferior. The
body contributes to the formation of the acetabulum, joining with the body of the
ilium at the iliopectineal eminence and with the body of the ischium in the region
of the acetabular notch. The superior ramus passes medially and forward from
the body to meet the corresponding ramus of the opposite side at the symphysis
pubica. The medial or fore portion of the superior ramus is broad and flattened
anteroposteriorly and presents an outer and an inner surface, the symphyseal area,
and an upper border or ”crest”. Approximately two cm from the medial edge of
the ramus and in line with the upper border is the prominent pubic tubercle, an
important landmark.

Below the crest is the anterior surface and the posterior or deep surface. The
medial portion of the superior ramus is continuous below with the inferior ramus,
and the lateral part presents a wide, smooth area anterosuperiorly, behind which is
an irregular ridge, the pecten ossis pubis. The pecten pubis forms the anterior part
of the linea terminalis. In front of and below the pectineal area is the obturator
crest, passing from the tubercle to the acetabular notch. On the inferior aspect of
the superior ramus is the obturator sulcus. The inferior ramus is continuous with
the superior ramus and passes downward and backward to join the inferior ramus
of the ischium, forming the ”ischiopubic arch”.
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The sacrum The sacrum is formed in the adult by the union of 5 or 6 sacral
vertebrae. Occasionally, the fifth lumbar vertebra is partly fused with it. The
process of union is known as ”sacralization” in the vertebral column. The sacrum
constitutes the base of the vertebral column. As a single bone, it is considered to
have a base, an apex, two surfaces (pelvic and dorsal), and two lateral portions.
The base faces upward and is composed principally of a central part, formed by the
upper surface of the body of the first sacral vertebra, and 2 lateral areas of alae.
The body articulates by means of a fibrocartilage disk with the body of the fifth
lumbar vertebra. The alae represents the heavy transverse processes of the first
sacral vertebra that articulate with the two iliac bones. The anterior margin of
the body is called the promontory and forms the sacrovertebral angle with the fifth
lumbar vertebra. The rounded anterior margin of each ala constitutes the posterior
part of the linea terminalis. The pelvic surface of the sacrum is rough and convex.
In the midline is the median sacral crest (fused spinal processes), and on either side
is a flattened area formed by the fused laminae of the sacral vertebrae.
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Figure 2.14: Sacrum, anterior view (adapted from [Seeley et al., 2004]).

The laminae of the fifth vertebra and, in many cases, those of the fourth and
occasionally of the third are incomplete (the spines also are absent), thus leaving
a wide opening to the dorsal wall of the sacral canal known as the sacral hiatus.
Lateral to the laminae are the articular crests (right and left), which are in line with
the paired superior articular processes above. The lateral processes articulate with
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the inferior articular processes of the fifth lumbar vertebra. The inferior extensions
of the articular crests form the sacral cornua that bind the sacral hiatus laterally
and are attached to the cornua of the coccyx. The cornua can be palpated in life
and are important landmarks indicating the inferior opening of the sacral canal (for
sacral-caudal anesthesia). The lateral portions of the sacrum are formed by the
fusion of the transverse processes of the sacral vertebrae. They form dorsally a line
of elevations called the lateral sacral crests. The parts corresponding to the first
three vertebrae are particularly massive and present a large area facing laterally
called the articular surface, which articulates with the sacrum. Posterior to the
articular area, the rough bone is called the sacral tuberosity. It faces the tuberosity
of the ilium. The apex is the small area formed by the lower surface of the body of
the fifth part of the sacrum.
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Figure 2.15: Sacrum, posterior view (adapted from [Seeley et al., 2004]).

The coccyx is formed by 4 (occasionally 3 or 5) caudal or coccygeal vertebrae.
The second, third, and fourth parts are frequently fused into a single bone that
articulates with the first by means of a fibrocartilage. The entire coccyx may become
ossified and fused with the sacrum.

2.3.2.2 Joints and Ligaments of the Pelvic Girdle

The sacroiliac joints and the pubic symphysis are the primary joints of the pelvic
girdle (Fig 2.16). The sacroiliac joints link the axial skeleton (the skeleton of the
trunk, composed of the vertebral column at this level) and the inferior appendicular
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skeleton (skeleton of the lower limb). The lumbosacral and sacrococcygeal joints,
although joints of the axial skeleton, are directly related to the pelvic girdle. Strong
ligaments support and strengthen these joints.

Sacroiliac Joints The sacroiliac joints are strong, weight-bearing compound joints,
consisting of an anterior synovial joint (between the ear-shaped auricular surfaces of
the sacrum and ilium, covered with articular cartilage) and a posterior syndesmosis
(between the tuberosities of the same bones). The articular (auricular) surfaces of
the synovial joint have irregular but congruent elevations and depressions that inter-
lock. The sacroiliac joints differ from most synovial joints in that limited mobility is
allowed, a consequence of their role in transmitting the weight of most of the body
to the hip bones. Weight is transferred from the axial skeleton to the ilia and then
to the femurs during standing and to the ischial tuberosities during sitting. As long
as tight apposition is maintained between the articular surfaces, the sacroiliac joints
remain stable.

The sacrum is suspended between the iliac bones and is firmly attached to them
by posterior and interosseous sacroiliac ligaments. The thin anterior sacroiliac lig-
aments are merely the anterior part of the fibrous capsule of the synovial part of
the joint. The abundant interosseous sacroiliac ligaments (lying deep between the
tuberosities of the sacrum and ilium and occupying an area of approximately 10
cm2) are the primary structures involved in transferring the weight of the upper
body from the axial skeleton to the two ilia of the appendicular skeleton. The
posterior sacroiliac ligaments are the posterior external continuation of the same
mass of fibrous tissue. Because the fibers of the interosseous and posterior sacroil-
iac ligaments run obliquely upward and outward from the sacrum, the axial weight
pushing down on the sacrum actually pulls the ilia inward (medially) so that they
compress the sacrum between them, locking the irregular but congruent surfaces of
the sacroiliac joints together. The iliolumbar ligaments are accessory ligaments to
this mechanism.

Inferiorly, the posterior sacroiliac ligaments are joined by fibers extending from
the posterior margin of the ilium (between the posterior superior and posterior
inferior iliac spines) and the base of the coccyx to form the sacrotuberous ligament.
This massive ligament passes from the posterior ilium and lateral sacrum and coccyx
to the ischial tuberosity, transforming the sciatic notch of the hip bone into a large
sciatic foramen. The sacrospinous ligament, passing from lateral sacrum and coccyx
to the ischial spine, further subdivides this foramen into greater and lesser sciatic
foramina.

Pubic Symphysis The pubic symphysis joint consists of a fibrocartilaginous in-
terpubic disc and surrounding ligaments uniting the bodies of the pubic bones in
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Figure 2.16: Anterior view of the pelvic girdle joins (adapted from the reference
[Moore and Dalley, 2006])

the median plane (Figures 2.16 and 2.17). The interpubic fibrocartilage is generally
wider in women and is thicker in front than behind, projecting beyond the edges
of the bones, especially on the posterior aspect, blending intimately with the liga-
ments at its margins. Sometimes it is woven throughout, but often the interpubic
fibrocartilage presents an elongated, narrow fissure with fluid in the interspace, par-
tially dividing the cartilage into two plates. The interpubic cartilage is intimately
adherent to the layer of hyaline cartilage that covers the symphyseal surface of each
pubic bone.

The ligaments joining the bones are thickened at the superior and inferior mar-
gins of the symphysis, forming the superior and inferior pubic ligaments. The supe-
rior pubic ligament connects the superior aspects of the pubic bodies and interpubic
disc, extending as far laterally as the pubic tubercles. The inferior (arcuate) pubic
ligament is a thick band of closely connected fibers that fills the angle between the
pubic rami to form a smooth, rounded top to the pubic arch (Figure 2.11). On the
anterior and posterior aspects of the joint, the ligament gives off decussating fibers
that, interlacing with one another, strengthen the joint.

Lumbosacral Joints In the lumbosacral joint, the L5 and S1 vertebrae articu-
late at the anterior intervertebral joint formed by the intervertebral disc between
their bodies (Figure 2.16) and at two posterior zygapophysial joints (facet joints)
between the articular processes of these vertebrae. The facets on the S1 vertebra
face posteromedially, interlocking with the anterolaterally facing inferior articular
facets of the L5 vertebra, preventing the lumbar vertebra from sliding anteriorly
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Figure 2.17: Articulations of the pelvic girdle and the lumbosacral joint (adapted
from the reference [Sobotta et al., 2001]).
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down the incline of the sacrum. These joints are further strengthened by fan-like
iliolumbar ligaments radiating from the transverse processes of the L5 vertebra to
the ilia.

Sacrococcygeal Joint The sacrococcygeal joint is a secondary cartilaginous joint
with an intervertebral disc (Figure 2.16). The apex of the sacrum is joined to the
base of the coccyx by fibrocartilage and ligaments. The anterior and posterior
sacrococcygeal ligaments are long strands that reinforce the joint, much like the
anterior and posterior longitudinal ligaments do for the superior vertebrae.

2.3.3 Pelvic Cavity

The abdominopelvic cavity extends inferiorly into the pelvis and superiorly into the
thoracic cage, so that its inferior and superior parts are relatively protected (Figure
2.10). A perforating wound in either the thorax or the pelvis could therefore involve
the abdominopelvic cavity and its contents. The space bounded peripherally by the
bony, ligamentous, muscular pelvic walls and floor is the inferoposterior part of the
abdominopelvic cavity, continuous with the abdominal cavity at the pelvic inlet but
angulated posteriorly from it (Figure 2.10). The abdominal and pelvic cavities are
described separately, although continuous, for descriptive purposes, facilitating the
regional approach.

The pelvic cavity contains the terminal parts of the ureters and the urinary
bladder, rectum, pelvic genital organs, blood vessels, lymphatics, and nerves. In
addition to these distinctly pelvic viscera, it also contains what might be consid-
ered an overflow of abdominal viscera: loops of small intestine (mainly ileum) and,
frequently, large intestine (appendix and transverse and/or sigmoid colon). The
pelvic cavity is limited inferiorly by the musculofascial pelvic diaphragm, which is
suspended above the pelvic outlet, forming a bowl-like pelvic floor.

The pelvic cavity is bounded posteriorly by the coccyx and inferiormost sacrum,
with the superior part of the sacrum forming a roof over the posterior half of the
cavity (Figure 2.10). The bodies of the pubic bones and the pubic symphysis uniting
them form an anteroinferior wall that is much shallower than the posterosuperior
wall and ceiling formed by sacrum and coccyx. Consequently, the axis of the pelvis
is curved, pivoting around the pubic symphysis. The curving form of the axis and
the disparity in depth between the anterior and the posterior walls of the cavity are
important factors in the mechanism of fetal passage through the pelvic canal.

2.3.3.1 Walls and Floor of the Pelvic Cavity

The pelvic cavity has two lateral walls, a posterior wall, an anteroinferior wall and
a floor (Figures 2.18 to 2.20).
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Anteroinferior Pelvic Wall The anteroinferior pelvic wall (more of a weight-
bearing floor than an anterior wall in the anatomical position) is formed primarily
by the bodies and rami of the pubic bones and the pubic symphysis (Figure 2.16).
It participates in bearing the weight of the urinary bladder.
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Figure 2.18: Medial view of the Pelvic floor diaphragm (adapted from the reference
[Netter, 2006]).

Lateral Pelvic Walls The lateral pelvic walls are formed by the right and left hip
bones, each of which includes an obturator foramen closed by an obturator mem-
brane (Figure 2.17). The fleshy attachments of the obturator internus muscles cover
most of the lateral pelvic walls (Figure 2.18). The fleshy fibers of each obturator
internus converge posteriorly, become tendinous, and turn sharply laterally to pass
from the lesser pelvis through the lesser sciatic foramen to attach to the greater
trochanter of the femur. The medial surfaces of these muscles are covered by ob-
turator fascia, thickened centrally as a tendinous arch that provides attachment for
the pelvic diaphragm (Figure 2.18). The pelvic diaphragm is the boundary between
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the pelvis and the perineum, forming the floor of the pelvic cavity and the roof
of the perineum (Figure 2.20), this attachment divides the muscle into a superior
pelvic portion and an inferior perineal portion. Medial to the pelvic portions of
these muscles are the obturator nerves, vessels and other branches of the internal
iliac vessels.
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Figure 2.19: Pelvic floor diaphragm viewed from above (adapted from the reference
[Netter, 2006]).

Posterior Wall (Posterolateral Wall and Roof) When in the anatomical
position, the posterior pelvic wall consists of a bony wall and roof in the midline
(formed by the sacrum and coccyx) and musculoligamentous posterolateral walls,
formed by the ligaments associated with the sacroiliac joints and piriformis muscles
(Figure 2.19). The different ligaments include the anterior sacroiliac, sacrospinous,
and sacrotuberous ligaments. The piriformis muscles arise from the superior sacrum,
lateral to its pelvic foramina. These muscles pass laterally, leaving the lesser pelvis
through the greater sciatic foramen to attach to the superior border of the greater
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trochanter of the femur. Much of the greater sciatic foramen is occupied by these
muscles, forming the posterolateral walls of the pelvic cavity (Figure 2.18). The
nerves of the sacral plexus are immediately deep (anteromedial) to these muscles
(often embedded in the fleshy fibers). A gap at the inferior border of the piriformis
allows for the passage of neurovascular structures between the pelvis and the lower
limbs.

Pelvic Floor The pelvic floor is formed by the bowl or funnel-shaped pelvic
diaphragm, which consists of the coccygeus and levator ani muscles and the fascias
covering the superior and inferior aspects of these muscles (Figure 2.18 and 2.19).
The pelvic diaphragm separates the pelvic cavity from the perineum within the
lesser pelvis.
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Figure 2.20: Pelvic floor diaphragm viewed from bellow (adapted from the reference
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The coccygeus muscles departs from the lateral aspects of the inferior sacrum
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and coccyx, with their fleshy fibers underlying the deep surface of the sacrospinous
ligament (Figure 2.17). The levator ani is the larger and more important part of the
pelvic floor. It is attached to the bodies of the pubic bones anteriorly, to the ischial
spines posteriorly, and to a thickening in the obturator fascia (the tendinous arch
of the levator ani) between the two bony sites on each side. The pelvic diaphragm
thus stretches between the anterior, the lateral, and the posterior walls of the lesser
pelvis, giving it the appearance of a hammock suspended from these attachments,
closing much of the ring of the pelvic girdle. An anterior gap between the medial
borders of the levator ani muscles of each side the urogenital hiatus gives passage
to the urethra and the vagina.

The levator ani muscle is formed by three parts, designated according the at-
tachment and course of its fibers (Figures 2.18 to 2.20):

• Puborectalis. The puborectalis is the thicker, narrower, medial part of the
levator ani, consisting of muscle fibers that are continuous between the poste-
rior aspects of the right and left pubic bodies. It forms a U-shaped muscular
sling (puborectal sling) that passes posterior to the anorectal junction (Fig-
ure 2.20), bounding the urogenital hiatus. This part plays a major role in
maintaining fecal continence.

• Pubococcygeus. The pubococcygeus is the wider but thinner intermediate
part of the levator ani, which arises lateral to the puborectalis from the pos-
terior aspect of the body of the pubis and anterior tendinous arch. It passes
posteriorly in a nearly horizontal plane. The pubococcygeus lateral fibers at-
tach to the coccyx and its medial fibers merge with those of the contralateral
muscle to form a fibrous raphe or tendinous plate, part of the anococcygeal
body or ligament between the anus and the coccyx.

• Iliococcygeus. The iliococcygeus is the posterolateral part of the levator ani,
which arises from the posterior tendinous arch and ischial spine. It is thin and
often poorly developed and also blends with the anococcygeal body posteriorly.

The levator ani acts as a dynamic floor, supporting the abdominopelvic viscera.
Most of the time it is tonically contracted to support the abdominopelvic viscera and
to assist in maintaining urinary and fecal continence. It is actively contracted during
activities such as forced expiration, coughing, sneezing, vomiting, and fixation of the
trunk during strong movements of the upper limbs (when lifting heavy objects for
example), primarily to increase support of the viscera during periods of increased
intra-abdominal pressure (resisting forces that would push it through the pelvic
outlet).

Active contraction of the (voluntary) puborectalis portion is important in main-
taining fecal continence immediately after rectal filling or during peristalsis when the
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rectum is full and the involuntary sphincter muscle is relaxed. The levator ani must
relax in order to allow urination and defecation. The increased intra-abdominal
pressure for defecation is provided by contraction of the (thoracic) diaphragm and
muscles of the anterolateral abdominal wall. The ability of the musculofascial pelvic
floor to relax and distend is critical to the functions of defecation and parturition.

2.3.3.2 Peritoneum and Peritoneal Cavity of the Pelvis

The parietal peritoneum lining the abdominal cavity continues inferiorly into the
pelvic cavity. The pelvic viscera (onto which it is reflected) and the pelvic fascia in
which the viscera are embedded, separates the parietal peritoneum from the pelvic
floor (Table 2.3). Except for the ovaries and uterine tubes, the pelvic viscera are
not completely ensheathed by the peritoneum, mainly lying inferior to it. Only
the uterine tubes (except for their ostia, which are open) are intraperitoneal and
suspended by a mesentery. The ovaries, although suspended in the peritoneal cavity
by a mesentery, are covered with a special, relatively-dull epithelium of cuboidal
cells.

The existence of a loose areolar layer between the transversalis fascia and the
parietal peritoneum of the inferior part of the anterior abdominal wall allows the
bladder to expand between these layers as it becomes distended with urine. The
region superior to the bladder (1 in Table 2.3) is the only site where the parietal
peritoneum is not firmly bound to the underlying structures. Consequently, the level
at which the peritoneum reflects onto the superior surface of the bladder, creating
the supravesical fossa (2 in Table 2.3) is variable, depending on the fullness of the
bladder. When the peritoneum reflects from the abdominopelvic wall onto the pelvic
viscera and fascia, a series of folds and fossae are created (2 to 7 in Table 2.3).

The inferior third of the rectum is subperitoneal, because it is below the inferior
limits of the peritoneum. The middle third is covered with peritoneum only on its
anterior surface, and the superior third is covered on both its anterior and its lateral
surfaces. The rectosigmoid junction, near the pelvic brim, is intraperitoneal.

2.3.3.3 Pelvic Fascia

The space between the membranous peritoneum and the muscular pelvic walls and
floor not occupied by the pelvic viscera is occupied by a connective tissue, the pelvic
fascia. This ”layer” is a continuation of the comparatively thin endoabdominal fascia
that lies between the muscular abdominal walls and the peritoneum superiorly.
Traditionally, the pelvic fascia has been described as having parietal and visceral
components (Figure 2.21).
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Table 2.3: Peritoneal reflections in the pelvis (from [Moore and Dalley, 2006]).
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Figure 2.21: Pelvic fascia, endopelvic fascia and fascial ligaments (adapted from
[Moore and Dalley, 2006]).
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Membranous Pelvic Fascia: Parietal and Visceral The parietal pelvic fascia
is a membranous layer of variable thickness that lines the inner aspect of the muscles
forming the walls and floor of the pelvis (Figure 2.21). The parietal pelvic fascia
covers the pelvic surfaces of the obturator internus, piriformis, coccygeus, levator
ani, and part of the urethral sphincter muscles. Specific parts of the parietal fascia
are named for the muscle they cover.

The visceral pelvic fascia includes the membranous fascia that directly ensheathes
the pelvic organs. The membranous parietal and visceral layers become continuous
where the organs penetrate the pelvic floor (Figure 2.21a). The tendinous arch of
pelvic fascia, a thickening of the parietal fascia, forms a continuous bilateral band
running from the pubis to the sacrum along the pelvic floor adjacent to the viscera
(Figure 2.21b). The anteriormost part of this tendinous arch, the pubovesical liga-
ment, connects the fundus of the bladder to the pubis. The posteriormost part of
the band runs as the sacrogenital ligaments from the sacrum around the side of the
rectum to attach to the vagina.

Endopelvic Fascia: Loose and Condensed The abundant connective tissue
remaining between the parietal and the visceral membranous layers is usually con-
sidered part of the visceral fascia, but various authors label parts of it as parietal. It
is probably more realistic to consider this remaining fascia simply as extraperitoneal
or subperitoneal endopelvic fascia (Figure 2.21a), which is continuous with both the
parietal and the visceral membranous fascias [Moore and Dalley, 2006]. This fascia
forms a connective tissue matrix or packing material for the pelvic viscera (Fig-
ure 2.21). It varies markedly in density and content. Part of it is extremely loose
areolar (fatty) tissue, relatively devoid of all but minor lymphatics and nutrient
vessels.

Although these types of endopelvic fascia do not differ much in their gross ap-
pearance, other parts of the endopelvic fascia have a much more fibrous consistency,
containing an abundance of collagen and elastic fibers and, according to some au-
thors, a scattering of smooth muscle fibers. These parts are often described as
”fascial condensations” or ”pelvic ligaments”. This fascial condensation gives pas-
sage to essentially all the vessels and nerves passing from the lateral wall of the
pelvis to the pelvic viscera, along with the ureters. The hypogastric sheath divides
into three laminae (leaflets or wings) that pass to or between the pelvic organs, as it
extends medially from the lateral wall, conveying neurovascular structures and pro-
viding support. They are also referred to as ligaments because of the latter function.
The anteriormost lamina, the lateral ligament of the bladder, passes to the bladder,
conveying the superior vesical arteries and veins. The posteriormost lamina passes
to the rectum, conveying the middle rectal artery and vein.

The middle lamina is more substantial than the other two lamina, passing medi-
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ally to the uterine cervix and vagina as the transverse cervical ligament, also known
clinically as the lateral cervical or Mackenrodt ligament (Figure 2.21). At the base
of the peritoneal broad ligament, the uterine artery runs transversely toward the
cervix while the ureters pass immediately inferior to them as they pass on each side
of the cervix heading anteriorly toward the bladder. The main passive support for
the uterus is provided by the transverse cervical ligament and the way in which the
uterus normally ”rests” on top of the bladder. The perineal muscles provide dynamic
support for the uterus by contracting during moments of increased intra-abdominal
pressure (sneezing, coughing, etc.). Passive and dynamic supports together resist
the tendency for the uterus to fall or be pushed through the hollow tube formed by
the vagina (uterine prolapse).

2.3.4 Neurovascular Structures of the Pelvis

The major neurovascular structures of the pelvis lie extraperitoneally against the
posterolateral walls. The nerves lie most external or superficial (adjacent to the
walls), with the vascular structures internal or deep (medial) to them. Generally,
the veins are external (lateral) to the arteries.

2.3.4.1 Pelvic Nerves

The pelvis is innervated mainly by the sacral and coccygeal spinal nerves and the
pelvic part of the autonomic nervous system. The piriformis and coccygeus muscles
form a bed for the sacral and coccygeal nerve plexuses. The anterior rami of the S2
and S3 nerves emerge between the digitations of these muscles. At or immediately
superior to the pelvic brim, the descending part of the L4 nerve unites with the
anterior ramus of the L5 nerve to form the thick, cord-like lumbosacral trunk. The
trunk passes inferiorly, on the anterior surface of the ala of the sacrum, and joins
the sacral plexus (Figure 2.22).

2.3.4.2 Pelvic Arteries

The pelvis is richly supplied with arteries, among which multiple anastomoses occur,
providing an extensive collateral circulation. Six main arteries enter the lesser pelvis
of females, the internal iliac and ovarian arteries are paired, and the median sacral
and superior rectal arteries are unpaired.

A collateral circulatory system is formed by multiple anastomosing arteries, pro-
viding an adequate blood supply to the greater and lesser pelves. Most arterial blood
is delivered to the lesser pelvis by the internal iliac arteries, which commonly bifur-
cate into an anterior division (providing all the visceral branches) and a posterior
division (usually exclusively parietal).
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2.3.4.3 Pelvic Veins

The pelvic venous plexuses are formed by the interjoining veins surrounding the
pelvic viscera (Figure 2.22). The various plexuses within the lesser pelvis (rectal,
vesical, prostatic, uterine, and vaginal) unite and are drained mainly by the internal
iliac veins, but some of them drain through the superior rectal vein into the inferior
mesenteric vein or through lateral sacral veins into the internal vertebral venous
plexus. Additional paths of venous drainage from the lesser pelvis include the
parietal median sacral vein, the superior rectal vein and the ovarian veins.

The internal iliac veins merge with the external iliac veins to form the common
iliac veins, which unite at the level of vertebra L4 or L5 to form the inferior vena
cava (Figure 2.22).
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Figure 2.22: Neurovascular structures of the pelvis ([Sobotta et al., 2001]).
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2.3.4.4 Lymph Nodes of the Pelvis

The lymph nodes receiving lymph drainage from pelvic organs are variable in num-
ber, size, and location and division into definite groups is often somewhat arbitrary.
Four primary groups of nodes are located in or adjacent to the pelvis, named for
the blood vessels with which they are associated:

External iliac lymph nodes These nodes lie above the pelvic brim, along the
external iliac vessels. They receive lymph mainly from the inguinal lymph
nodes and from the pelvic viscera, especially the superior parts of the middle
to anterior pelvic organs.

Internal iliac lymph nodes These nodes are clustered around the anterior and
posterior divisions of the internal iliac artery and the origins of the gluteal
arteries. They receive drainage from the inferior pelvic viscera, deep perineum,
and gluteal region and drain into the common iliac nodes.

Sacral lymph nodes These nodes lie in the concavity of the sacrum, adjacent
to the median sacral vessels. They receive lymph from posteroinferior pelvic
viscera and drain either to internal or common iliac nodes.

Common iliac lymph nodes These nodes lie superior to the pelvis and receive
drainage from the three main groups listed above, beginning a common route
for drainage from the pelvis that passes next to the lumbar nodes.

Additional minor groups of nodes occupy the connective tissue along the branches
of the internal iliac vessels. In females, lymphatic drainage from the ovaries and
uterine tubes follows the ovarian veins to the lumbar nodes.

2.3.5 Pelvic Viscera

The pelvic viscera include the urinary bladder and parts of the ureters, the repro-
ductive system, and the rectum, the distal part of the alimentary tract. Although
the sigmoid colon and parts of the small bowel extend into the pelvic cavity, they
are abdominal rather than pelvic viscera. The sigmoid colon is continuous with the
rectum anterior to S3 vertebra.

2.3.5.1 Urinary Organs

The pelvic urinary organs (Figure 2.23) are: Ureters, which carry urine from the
kidneys, Urinary bladder, which temporarily stores urine and the Urethra, which
conducts urine from the bladder to the exterior.
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Ureters The ureters are muscular tubes, 25 to 30 cm long, that connect the
kidneys to the urinary bladder (Figure 2.23). The ureters are retroperitoneal and
their superior halves are in the abdomen and their inferior halves lie in the pelvis.
As the ureters cross the bifurcation of the common iliac artery or the beginning of
the external iliac artery they pass over the pelvic brim, thus leaving the abdomen
and entering the lesser pelvis. In females, the ureter passes medial to the origin of
the uterine artery and continues to the level of the ischial spine, where it is crossed
superiorly by the uterine artery. It then passes close to the lateral part of the fornix
of the vagina and enters the posterosuperior angle of the bladder.
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Figure 2.23: Urogenital viscera, the broken lines represent the position of the organs
before descending, the bladder has been pulled to the left, ventral view (adapted
from [Sobotta et al., 2001]).
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Urinary Bladder The urinary bladder is a hollow viscus with strong muscular
walls, characterized by its distensibility (Figure 2.24). The urinary bladder is a
temporary reservoir for urine and varies in size, shape, position, and relationships
according to its content and the state of the neighboring viscera. When empty,
the adult urinary bladder is located in the lesser pelvis, lying partially superior to
and partially posterior to the pubic bones. It is separated from these bones by the
potential retropubic space and lies mostly inferior to the peritoneum, resting on the
pubic bones and pubic symphysis anteriorly and the pelvic floor posteriorly. The
bladder is relatively free within the extraperitoneal subcutaneous fatty tissue, except
for its neck, which is held firmly by the lateral ligaments of bladder and the tendinous
arch of the pelvic fascia, especially its anterior components, the pubovesical ligament
(Figure 2.21b).

Urethra The female urethra (approximately 4 cm long and 6 mm in diameter)
passes anteroinferiorly from the internal urethral orifice of the urinary bladder (Fig-
ure 2.23), posterior and then inferior to the pubic symphysis, to the external ure-
thral orifice. The musculature surrounding the internal urethral orifice of the female
bladder is not organized into an internal sphincter. In females, the external urethral
orifice is located in the vestibule, directly anterior to the vaginal orifice. The ure-
thra lies anterior to the vagina (forming an elevation in the anterior vaginal wall)
(Figure 2.24). The axis of the urethra is parallel to that of the vagina. The urethra
passes with the vagina through the pelvic diaphragm, external urethral sphincter,
and perineal membrane.

2.3.5.2 Internal Genital Organs

The female internal genital organs include the vagina, uterus, uterine tubes, and
ovaries.

Vagina The vagina is a musculomembranous tube (7 to 9 cm long), extending
from the cervix of the uterus to the vestibule, the cleft between the labia minora.
It contains the vaginal and external urethral orifices and the openings of the two
greater vestibular glands (Figure 2.24). The superior end of the vagina surrounds
the cervix.

The vagina has the following functions in the body:

• Serves as a canal for menstrual fluid.

• Forms the inferior part of the pelvic (birth) canal.

• Receives the penis and ejaculate during sexual intercourse.

• Communicates superiorly with the cervical canal and inferiorly with the vestibule.
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The vagina is usually collapsed (H-shaped in cross section) so that its anterior
and posterior walls are in contact, except at its superior end where the cervix holds
them apart. The vagina lies posterior to the urethra, which projects into its infe-
rior anterior wall, and urinary bladder, and it lies anterior to the rectum, passing
between the medial margins of the levator ani muscles. The vaginal fornix, the
recess around the cervix, has anterior, posterior, and lateral parts. The posterior
vaginal fornix is the deepest part and is closely related to the rectouterine pouch.
Four muscles compress the vagina and act as sphincters: pubovaginalis, external
urethral sphincter, urethrovaginal sphincter, and bulbospongiosus. The relations of
the vagina are the following:
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Figure 2.24: Female genital viscera (adapted from [Sobotta et al., 2001])

• Anteriorly: the fundus of the urinary bladder and urethra.

• Laterally: the levator ani, visceral pelvic fascia, and ureters.
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• Posteriorly (inferior to superior): the anal canal, rectum, and rectouterine
pouch.

Uterus The uterus is a pear-shaped, thick-walled, hollow muscular organ. Its
muscular walls adapt to the growth of the fetus and then provide the power for its
expulsion during childbirth. The non-gravid (non-pregnant) uterus usually lies in
the lesser pelvis, with its body lying on the urinary bladder and its cervix between
the urinary bladder and the rectum. The position of the uterus varies with the
degree of fullness of the bladder and rectum. Although its size changes considerably,
the uterus is approximately 7.5 cm long, 5 cm wide, and 2 cm thick and weighs
approximately 90g. The uterus is divisible into two main parts: the body and
cervix.

The body of the uterus forms the superior two thirds of the organ and includes
the fundus of the uterus, the rounded part that lies superior to the orifices of the
uterine tubes. The body lies between the layers of the broad ligament and is freely
movable. It has two surfaces: vesical (related to the bladder) and intestinal. The
body is demarcated from the cervix by the isthmus of the uterus, a relatively con-
stricted segment, approximately 1 cm long.

The cervix of the uterus is the cylindrical, relatively narrow inferior third of the
uterus, approximately 2.5 cm long in an adult non-pregnant woman. The rounded
vaginal part surrounds the external os of the uterus and is surrounded in turn by
a narrow space, the vaginal fornix. The supra-vaginal part is separated from the
bladder anteriorly by loose connective tissue and from the rectum posteriorly by the
rectouterine pouch.

The wall of the body of the uterus consists of three coats, or layers:

• Perimetrium. The perimetrium is the serosa or outer serous coat, consisting
of peritoneum supported by a thin layer of connective tissue.

• Myometrium. The myometrium is the middle coat of smooth muscle. This
layer becomes greatly distended during pregnancy. The main branches of the
blood vessels and nerves of the uterus are located in this coat. During child-
birth, contraction of the myometrium is hormonally stimulated at intervals of
decreasing length to dilate the cervical os and expel the fetus and placenta.

• Endometrium. The endometrium is the inner mucous coat and is firmly ad-
hered to the underlying myometrium. The endometrium is actively involved
in the menstrual cycle, differing in structure with each stage of the cycle.

The cervix is mostly fibrous and is composed mainly of collagen with a small
amount of smooth muscle and elastin. The amount of muscular tissue in the cervix
is markedly less than in the body of the uterus.
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Uterine Tubes The uterine tubes conduct the oocyte (ovum), discharged monthly
from an ovary during child-bearing years, from the periovarian peritoneal cavity to
the uterine cavity. They also provide the usual site of fertilization. They extend lat-
erally from the uterine horns and open into the peritoneal cavity near the ovaries.
The uterine tubes (approximately 10 cm long) lie in the mesosalpinx in the free
edges of the broad ligaments.

Ovaries The ovaries are almond-shaped and -sized female gonads in which the ova
develop. They are also endocrine glands that produce reproductive hormones. The
ovaries are typically located near the attachment of the broad ligament to the lateral
pelvic walls, suspended from both by peritoneal folds: from the posterosuperior
aspect of the broad ligament by the mesovarium and from the lateral pelvic walls
by the suspensory ligaments of the ovaries (Figure 2.24).

2.3.5.3 Rectum

The main function of the rectum is to accumulate and temporarily stores feces. It be-
gins at the rectosigmoid junction as the teniae of the sigmoid colon spread and unite
into a continuous longitudinal layer of smooth muscle and the omental appendices
cease. It ends with the anorectal flexure as the gut penetrates the pelvic diaphragm,
becoming the anal canal. The rectum is concave anteriorly as the sacral flexure and
has three lateral flexures formed in relation to the internal transverse rectal folds.
The rectum enlarges into the rectal ampulla directly above the pelvic floor. Its su-
perior, middle, and inferior parts are, respectively, intraperitoneal, retroperitoneal,
and subperitoneal.

2.3.6 Perineum

The perineum includes the external genitalia, perineal muscles, and anal canal. The
perineum refers to both an external surface area and a shallow compartment of
the body. The perineum is bounded by the pelvic outlet and is separated from
the pelvic cavity by the pelvic diaphragm, which is formed by the levator ani and
coccygeus muscles. In the anatomical position, the surface of the perineum is the
narrow region between the proximal parts of the thighs. When the lower limbs are
abducted, it is a diamond-shaped area extending from the mons pubis anteriorly,
the medial surfaces of the thighs laterally, and the gluteal folds and superior end of
the intergluteal cleft posteriorly (Figure 2.25).

The osseofibrous structures marking the boundaries of the perineum (perineal
compartment) are the following:

• Pubic symphysis, anteriorly.
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• Inferior pubic rami and ischial rami, anterolaterally.

• Ischial tuberosities, laterally.

• Sacrotuberous ligaments, posterolaterally.

• Inferiormost sacrum and coccyx, posteriorly.

An imaginary transverse line joining the anterior ends of the ischial tuberosities
divides the diamond-shaped perineum into two triangles, the oblique planes of which
intersect at the transverse line (Figure 2.25). The anal triangle lies posterior to
this line. The anal canal and its orifice, the anus, constitute the major deep and
superficial features of the triangle, lying centrally surrounded by ischioanal fat. The
urogenital triangle is anterior to this line. In contrast to the open anal triangle,
the urogenital triangle is closed by a thin sheet of tough, deep fascia, the perineal
membrane, which stretches between the two sides of the pubic arch, covering the
anterior part of the pelvic outlet (Figure 2.26). The perineal membrane fills the
anterior gap in the pelvic diaphragm but is perforated by the urethra and by the
vagina. The membrane and the ischiopubic rami to which it attaches provide a
foundation for the vulva, which is the superficial feature of the triangle (Figure
2.27).

Urogenital
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Figure 2.25: Boundaries of the perineum (adapted from [Gabbe et al., 2007]).

The midpoint of the line joining the ischial tuberosities gives the central point
of the perineum (Figure 2.26). This is the location of the perineal body, which is
an irregular mass, variable in size and consistency and containing collagenous and
elastic fibers and both skeletal and smooth muscle (Figure 2.27). The perineal body
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lies deep to the skin, with relatively little overlying subcutaneous tissue, posterior
to the vestibule and anterior to the anus and anal canal. The perineal body is the
site of convergence and interlacing of fibers of several muscles, including the:

• Bulbospongiosus.

• External anal sphincter.

• Superficial and deep transverse perineal muscles.

• Smooth and voluntary slips of muscle from the external urethral sphincter,
levator ani, and muscular coats of the rectum.

Superiorly, the perineal body blends with the rectovesical or rectovaginal septum
and anteriorly, with the posterior border of the perineal membrane (Figure 2.27).
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Figure 2.26: The perineum, pelvic diaphragm, and external female genital organs,
viewed from below (adapted from [Sobotta et al., 2001]).
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2.3.6.1 Fasciae and Pouches of the Urogenital Triangle

Perineal Fasciae The perineal fascia consists of superficial and deep layers. The
subcutaneous tissue of the perineum, or superficial perineal fascia, consists of a
superficial fatty layer and a deep membranous layer. The fatty layer makes up
the substance of the labia majora and mons pubis and is continuous anteriorly
and superiorly with the fatty layer of subcutaneous tissue of the abdomen. The
fatty layer of subcutaneous tissue of the perineum is continuous posteriorly with
the ischioanal fat pad in the anal region.

The membranous layer of subcutaneous tissue of the perineum does not extend
into the anal triangle, being attached posteriorly to the posterior margin of the
perineal membrane and the perineal body. Laterally it is attached to the fascia
lata of the superiormost medial aspect of the thigh. The membranous layer passes
superior to the fatty layer forming the labia majora and becomes continuous with
the membranous layer of subcutaneous tissue of the abdomen.

The perineal fascia intimately invests the ischiocavernosus, bulbospongiosus, and
superficial transverse perineal muscles (Figure 2.27). It is also attached laterally to
the ischiopubic rami. The perineal fascia is fused with the suspensory ligament of
the clitoris and with the deep fascia of the abdomen.

Superficial Perineal Pouch The superficial perineal pouch is a potential space
between the membranous layer of subcutaneous tissue and the perineal membrane.
It is bounded laterally by the ischiopubic rami (Figure 2.26).

The superficial perineal pouch contains the:

• Clitoris and associated muscles (ischiocavernosus).

• Bulbs of the vestibule and surrounding muscle (bulbospongiosus).

• Greater vestibular glands.

• Superficial transverse perineal muscles.

• Related vessels and nerves (deep perineal branches of the internal pudendal
vessels and pudendal nerves).

Deep Perineal Pouch The deep perineal pouch is bounded inferiorly by the
perineal membrane, superiorly by the inferior fascia of the pelvic diaphragm, and
laterally by the inferior portion of the obturator fascia (Figure 2.21a). It includes
the fat-filled anterior recesses of the ischioanal fossa. The superior boundary in the
region of the urogenital hiatus is indistinct.

The deep perineal pouch contains the following:

• Part of the urethra, centrally.
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• The inferior part of the external urethral sphincter muscle, above the center
of the perineal membrane, surrounding the urethra.

• Anterior extensions of the ischioanal fat pads.

• Proximal part of the urethra.

• A mass of smooth muscle in the place of deep transverse perineal muscles
on the posterior edge of the perineal membrane, associated with the perineal
body.

• Dorsal neurovasculature of the clitoris.
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Figure 2.27: The external genital organs of the female and parts of the
urogenital diaphragm, ventral view from below (adapted from the reference
[Sobotta et al., 2001]).

2.3.6.2 Features of the Anal Triangle

Ischioanal Fossae The ischioanal fossae on each side of the anal canal are large
fascia-lined, wedge-shaped spaces between the skin of the anal region and the pelvic
diaphragm. The apex of each fossa lies superiorly where the levator ani muscle
arises from the obturator fascia. The ischioanal fossae, wide inferiorly and narrow
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superiorly, are filled with fat and loose connective tissue. The two ischioanal fossae
communicate by means of the deep postanal space over the anococcygeal ligament
(body), a fibrous mass located between the anal canal and the tip of the coccyx
(Figure 2.26).

Each ischioanal fossa is bounded by the following:

• Laterally by the ischium and overlapping inferior part of the obturator inter-
nus, covered with obturator fascia.

• Medially by the external anal sphincter, with a sloping superior medial wall
or roof formed by the levator ani as it descends to blend with the sphincter.

• Posteriorly by the sacrotuberous ligament and gluteus maximus.

• Anteriorly by the bodies of the pubic bones, inferior to the origin of the pub-
orectalis.

Each ischioanal fossa is filled with a fat body of the ischioanal fossa. These
fat bodies support the anal canal but they are readily displaced to permit descent
and expansion of the anal canal during the passage of feces. The fat bodies are
traversed by tough, fibrous bands, as well as by several neurovascular structures,
including the inferior anal/rectal vessels and nerves and two other cutaneous nerves,
the perforating branch of S2 and S3 and the perineal branch of S4 nerve.

Pudendal Canal The pudendal canal is an essentially horizontal passageway
within the obturator fascia that covers the medial aspect of the obturator inter-
nus and lines the lateral wall of the ischioanal fossa.

Anal Canal The anal canal is the terminal part of both the large intestine and the
alimentary tract, the anus being the external outlet. Fecal continence is maintained
by the coordinated action of the involuntary internal and voluntary external anal
sphincters. The sympathetically stimulated tonus of the internal sphincter maintains
closure, except during filling of the rectal ampulla and when inhibited during a
parasympathetically stimulated peristaltic contraction of the rectum. During these
moments, closure is maintained by voluntary contraction of the puborectalis and
external anal sphincter.

2.3.6.3 External Genitalia

The external genitalia (Figure 2.28) include the mons pubis and labia majora, labia
minora, clitoris, bulbs of the vestibule, and greater and lesser vestibular glands. The
synonymous terms vulva and pudendum include all these parts. The vulva has the
following functions:
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• Serves as sensory and erectile tissue for sexual arousal and intercourse.

• Directs the flow of urine.

• Prevents entry of foreign material into the urogenital tract.

Mons Pubis The mons pubis is the rounded, fatty eminence anterior to the pubic
symphysis, pubic tubercles, and superior pubic rami (Figure 2.28). The eminence
is formed by a mass of fatty subcutaneous tissue. The amount of fat increases at
puberty and decreases after menopause. The surface of the mons is continuous with
the anterior abdominal wall. After puberty, the mons pubis is covered with coarse
pubic hairs.
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Figure 2.28: Female external genitalia. The labia majora and minora are separated
to show the vestibule, into which the external urethral orifice and the vaginal orifice
open (adapted from [Sobotta et al., 2001]).
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Labia Majora The labia majora are prominent folds of skin that indirectly pro-
vide protection for the urethral and vaginal orifices. The labia majora lie on the
sides of a central depression, the pudendal cleft, within which are the labia minora
and vestibule (Figure 2.28).

Labia Minora The labia minora are rounded folds of fat-free, hairless skin. They
are enclosed in the pudendal cleft and immediately surround the vestibule into
which both the external urethral and the vaginal orifices open. They have a core
of spongy connective tissue containing erectile tissue at their base and many small
blood vessels. Anteriorly, the labia minora form two laminae. The medial laminae
of each side unite as the frenulum of the clitoris. The lateral laminae unite anterior
to the glans of the clitoris, forming the prepuce of the clitoris.

Clitoris The clitoris is an erectile organ located where the labia minora meet
anteriorly. The clitoris consists of a root and a body. Together, the body and glans
of the clitoris are approximately 2 cm in length and < 1 cm in diameter. In contrast
to the penis, the clitoris is not functionally related to the urethra or to urination.
It functions solely as an organ of sexual arousal. The clitoris is highly sensitive
and enlarges on tactile stimulation. The glans of the clitoris is the most highly
innervated part of the clitoris and is densely supplied with sensory endings.

Vestibule The vestibule is the space surrounded by the labia minora into which
the orifices of the urethra and vagina and the ducts of the greater and lesser vestibu-
lar glands open (Figures 2.26 and 2.28). The external urethral orifice is located 2
to 3 cm posteroinferior to the glans of the clitoris and anterior to the vaginal orifice
(Figures 2.26 and 2.28).

Bulbs of the Vestibule The bulbs of the vestibule are paired masses of elongated
erectile tissue, approximately 3 cm in length (Figure 2.27). The bulbs lie along
the sides of the vaginal orifice, superior or deep to the labia minora, immediately
inferior to the perineal membrane. They are covered inferiorly and laterally by the
bulbospongiosus muscles extending along their length.

Vestibular Glands Located on each side of the vestibule, posterolateral to the
vaginal orifice and inferior to the perineal membrane, the greater vestibular glands,
approximately 0.5 cm in diameter, are found. The greater vestibular glands are
round or oval and are partly overlapped posteriorly by the bulbs of the vestibule,
and like the bulbs, are partially surrounded by the bulbospongiosus muscles. These
glands secrete mucus into the vestibule during sexual arousal.





Chapter 3

Pelvic Floor Dysfunctions

3.1 Introduction

Female pelvic floor dysfunctions form an extensive, if well hidden problem. Urinary
incontinence is perhaps the best known of these dysfunctions but prolapses, faecal in-
continence and pelvic pain affect a significant number of women [Papa Petros, 2004].

With the life expectancy continuously increasing on developed countries, the
expectations for a high quality of life, has led to a greater public awareness and
helpseeking behavior regarding symptomatic dysfunction of the organs found within
the pelvic cavity in women. Women are increasingly less willing to simply accept
incontinence or prolapse as a normal part of the aging process. New technologies and
a greater understanding of the pathophysiology underlying these dysfunctions have
provided clinicians with a number of effective tools for treatment of these patients.
Unfortunately, the traditional fragmentation of health care duties among specialists
has led to significant gaps in the treatment of pelvic floor dysfunctions. The concept
of the female pelvic cavity and its contents, as a single functional unit has not yet
gained wide acceptance [Davila et al., 2006].

It is estimated that one or more of these conditions affects up to one-third of adult
women. On recent studies, based on a population under one health care system, 11%
of women had surgery for urinary incontinence or pelvic organ prolapse during their
lifetime [Olsen et al., 1997]. Although the magnitude of this public health problem
is unknown to many, gynecologists know that 1 in every 10 women will have a pelvic
floor dysfunction so severe that it will require surgery [Olsen et al., 1997].

It is estimated that at least one-third of adult women are affected by at least one
of these conditions. Furthermore, statistics show that 30 to 40% of women suffer
from some degree of incontinence in their lifetime, and that almost 10% of women
will undergo surgery for urinary incontinence or pelvic organ prolapse.

In the United States, pelvic floor dysfunction affects each year between 300,000
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to 400,000 women so severely that they require surgery [Lien et al., 2005]. The
American population is experiencing a steady increase of older women, which is
the fastest growing segment of the population, therefore, the national cost burden
related to pelvic floor disorders is huge in terms of direct health care costs, lost
productivity, and decreased quality of life [Weber et al., 2004].

A real understanding of the pathophysiology of pelvic floor disorders is still
inexistent. Developing a clinical condition is the result of the combination of multiple
factors. One can easily presuppose a genetic predisposition overlaid by critical
life events (acquired risk factors, such as childbirth, hormonal changes, and aging)
although strong evidence does not yet exist for these hypotheses [Weber et al., 2004].

Without a real understanding of the true causes of pelvic floor disorders, ef-
forts at prevention are fruitless and therapy can only be empiric, rather than di-
rected at specific injuries or deficits in function. Surgery for pelvic floor disorders
often fails and unfortunately, 30% of women undergoing surgery for prolapse or
urinary incontinence have had one or more previous procedures [Olsen et al., 1997;
Weber et al., 2004].

Efforts at prevention and treatment improvement will only be possible if research
clarifies causative mechanisms and scientifically valid studies discover why opera-
tions fail. Specific events or behaviors in a woman’s life that lead to these problems
and that are subjectable to preventive strategies must be discovered. In addition,
the specific biologic and behavioral factors that explain why certain women have
recurrence after surgery must be defined.

The pelvic organ support system is comprised of muscles, ligaments, and nerves
arranged in a complex tension-based apparatus, therefore, the basic nature of this
work must include biomechanical analysis of the overall mechanism and targeted
research into the biology of muscle, ligament, nerve, and their complex interactions
in normal pelvic floor function and in symptomatic patient. A joint effort of scien-
tists in this different areas, that are becoming well developed, will result in a move
forward that will bring predictably important results.

3.2 Concept of the Pelvic Cavity and its contents

as a Unit

Disorders of urinary and fecal continence, as well as genital and rectal support, are
common in adult women. Clinicians who address these problems include urologists,
gynecologists, and colorectal surgeons. There has been little overlap in the verti-
calized spectrum of care provided by urologists (kidneys, ureters, bladder, urethra),
gynecologists (uterus, vagina, perineum), and colorectal surgeons (colon, rectum,
anus). Coexistence of dysfunction of urinary and bowel control is high and is al-
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ready well established [Swash et al., 1985].

Clinicians who address pelvic floor dysfunction syndromes have been slow to
adapt their practice styles to address all pelvic floor dysfunctions in one setting
[Davila et al., 2006]. The concept used by clinician of an horizontal integration
of pelvic floor dysfunction evaluation and management is already well established
[Davila and Ghoniem, 2003]. This concept is expanding as clinicians realize the im-
portance of a team approach to evaluation and treatment of pelvic floor dysfunction.

The dysfunction of the pelvic floor muscles can result from stretch or tear in-
juries to the pelvic floor muscles. However, the most common etiology for muscular
dysfunction is a denervation injury from childbirth or lower back trauma. A den-
ervation injury will result in partial paralysis of the supplied muscle groups. As a
consequence, any lower back injury can result in weakness of pelvic floor support.
This is especially true for the lower components of the pelvic floor. Injury to the
pudendal nerve can result in dysfunction of the urethral sphincter, anal sphincter,
and motor or sensory dysfunction of the perineum. Significant injury to the puden-
dal innervation will typically result in multisystem dysfunction, such as urinary and
fecal incontinence.

The organ systems of the pelvic cavity are enveloped in moderately thick layers of
connective neuromuscular tissue, the endopelvic fascia (see Figure 2.21). This neu-
romuscular tissue provides circumferential support to the three cavities that cross
the pelvic floor muscles. The lack of integrity of the fibromuscular layer between
two organ systems will result in the herniation of one organ system into another.
The resultant cystocele, enterocele, or rectocele (Figure 3.1) may then result in dys-
function of the underlying visceral organ including disorders of urinary continence
and storage, or dysfunction of fecal continence or storage. Frequently, multiple sites
of fibromuscular layer damage are found. This is represented by the frequent co-
existence of prolapse of the anterior and posterior vaginal walls requiring repair of
both [Davila et al., 2006].

3.3 Epidemiology and Prevalence of the different

Pelvic Floor Dysfunctions

The term pelvic floor dysfunction refers to a group of clinical conditions that includes
problems like urinary incontinence, fecal incontinence, pelvic organ prolapse and any
other sensory and emptying abnormalities of the lower urinary and gastrointestinal
tracts. The three most common and definable conditions encountered clinically are
urinary incontinence, anal incontinence and pelvic organ prolapse.
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3.3.1 Obstetric Factors

Many pelvic floor dysfunction symptoms have a common denominator, a vaginal
birth process. The understanding of the neuromuscular damage, which occurs dur-
ing a vaginal birth process, has been enhanced with the use of procedures like neu-
rophysiologic testing and endoanal ultrasound. Endoanal ultrasound is an essential
investigation tool in the management of faecal incontinence, consisting of a probe,
typically, with a diameter of 1.7 cm, that can be moved freely within the anal canal,
causing minimal discomfort or image distortion [Wright, 2005].

Rectocele

Cystocele

Enterocele

Figure 3.1: Pelvic floor dysfunctions (adapted from [Moore and Dalley, 2006]).

A vaginal birth results not only in significant stretching of the levator mus-
culatures in a vertical direction, but, more importantly, in stretching of the pu-
dendal nerves in the vertical direction. Any stretch of a somatic nerve of more
than 12% has been reported to lead to a degree of permanent injury to that nerve
[Davila et al., 2006]. During the vaginal birth process, perineal descent stretches the
pudendal nerve to such a degree that permanent injury can result. Beyond direct
injury to muscles and nerves of the pelvic floor, the vaginal birth process also results
in significant symptomatic as well as occult injury to the anal sphincteric mecha-
nism. Many anal sphincter tears are symptomatic. However, it is unknown whether
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occult anal tears will result in subsequent fecal incontinence a few years postpar-
tum [Sultan et al., 1993]. It is thus not surprising that there is a high incidence of
postpartum gas and fecal incontinence.

The increased understanding of the neuromuscular consequences of the vagi-
nal delivery process has been the subject of much debate, especially as relating to
the acceptance of elective, on-demand cesarean delivery [Davila et al., 2006]. As
the clinicians increase their understanding of the neuromuscular consequences of
a vaginal delivery process, much debate among obstetricians and gynecologists as
taken place in relation to the acceptance of elective, on-demand cesarean delivery.
Many cultures around the world have already debated and accepted this concept
for various reasons, including resultant pelvic floor dysfunction. The urogynecologic
position on this subject has been one of providing patients information regarding
potential consequences of pelvic floor dysfunction and allowing patients to make a
decision whether they wish to undergo an elective cesarean delivery [Davila, 2001].

According to a survey conducted to pregnant women, it seems that providing
women with information regarding potential pelvic floor consequences of a vaginal
delivery does not alter their decision-making process significantly. Nevertheless, pro-
viding patients information regarding the risks and benefits of the vaginal delivery
process, as in informed-consent processes for other invasive procedures, will likely
become a part of antepartum obstetric care [Pollak et al., 2003].

3.3.2 Coexistence of Pelvic Floor Dysfunction Symptoms

Different studies have been conducted in order to obtain a better understanding
of the coexistence of symptoms of urinary, genital, and fecal dysfunction. The
common conclusion is that there is a high incidence of coexistence of incontinence
and support defects. It has been reported that in patients with fecal incontinence,
24% to 53% also complained of urinary incontinence, and 7% to 22% complained
of genital prolapse. From the patients who presented with rectal prolapse, 66%
also complained of urinary incontinence and 34% complained of genital prolapse
[Gonzalez-Argente et al., 2001; Khullar et al., 1998; Meschia et al., 2002].

The coexistence of symptoms of urinary and colorectal dysfunction, verified fre-
quently, provides further emphasis on the need for a team approach to the evaluation
and management of women with any of these conditions. Additionally, the fact that
rectal prolapse patients have a higher incidence of urinary incontinence and geni-
tal prolapse suggests that rectal prolapse may represent a more advanced degree of
pelvic floor dysfunction [Davila et al., 2006].
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3.3.3 Urinary Dysfunction

Bladder dysfunction is a problem that affects millions of people, particularly women
and the elderly. Although most studies have mainly focused on incontinence, more
recently, attention has also included overactive bladder. Therefore, this Section will
be focused on urinary incontinence and overactive bladder, because both of them
constitute the most common causes of urinary dysfunction.

Urinary incontinence was defined in 1988 by the International Continence Society
defined as the involuntary loss of urine that is objectively demonstrable and is a
social or hygienic problem. Recently, the urinary incontinence has been redefined
as the complaint of any involuntary leakage of urine [Abrams et al., 2002]. This
new definition results in more cases of urinary incontinence being discovered and
hopefully treated.

3.3.3.1 Urinary Incontinence

Urinary incontinence symptoms are mainly stress urinary incontinence, which is
leakage with physical exertion, urge urinary incontinence, which is leakage with a
strong desire to void, and mixed, which is a combination of both. When stress
urinary incontinence is urodynamically proven, it is also called genuine stress in-
continence. Urinary urgency and frequency with urge incontinence has recently
been defined as overactive bladder with incontinence. There are other types of in-
continence, although less frequent, including overflow incontinence, functional, and
extra-urethral incontinence.

Different epidemiologic studies conducted in various populations revealed that a
number of variables are related to the development of urinary incontinence including
several possible risk factors:

Age It is a common result between the different studies that the prevalence of uri-
nary incontinence tends to increase with advancing age as shown in the follow-
ing references [Chiarelli et al., 1999; Nygaard and Lemke, 1996]. Institution-
alized adults also show higher prevalence, because residents in institutions tend
to be older and more impaired. According to a survey conducted to young and
middle-aged women, it is suggested that pure stress incontinence predominates
in that age group [Davila et al., 2006]. Other studies by [Diokno et al., 1986],
[Peet and Castleden, 1995] and [Cheater and Castleden, 2000] suggested that
urge and mixed incontinence predominate in older women.

Race There are several studies showing that ethnicity may be associated with uri-
nary incontinence. There are several studies of non-Caucasians showing a wide
variation in prevalence. In these studies different methods and definitions have
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been used, therefore, a comparison between the results is difficult to obtain
[Lara and Nacey, 1994; Brieger et al., 1997; Nakanishi et al., 1997].

Another study, conducted on more than 4000 women 70 years of age and older
showed that the prevalence of involuntary urine loss was significantly higher in
white women (23%) than in black women (16%) [Fultz et al., 1999]. There are
reports stating that black South Africans rarely develop stress incontinence,
and they develop the related disorder of genital prolapse at a rate 80 times
lower than whites. The rarity of stress incontinence among blacks was ex-
plained by the authors as a function of differing urethral pressures and length
as well as pubococcygeal muscle strength [Davila et al., 2006].

Sex The prevalence rates of urinary incontinence are higher in women than in men.
The prevalence range for urinary incontinence is 4.5% to 53% in women and
1.6% to 24% in men, according to [Davila and Neimark, 2002].

The effects of pregnancy and childbirth are often assumed to be the main
cause of urinary incontinence in women. The literature shows that urinary
incontinence is a more common occurrence among pregnant women compared
with other groups of women [Burgio et al., 1996; D’Alfonso et al., 2006].

During pregnancy, urinary incontinence is a self-limited condition. In a study
by Viktrup [Viktrup et al., 1992] a prevalence rate of stress urinary inconti-
nence during pregnancy of 28% was found, with 16% becoming free of symp-
toms in the puerperium. It is still questionable whether pregnancy itself is a
risk factor for urinary incontinence in later life or if it is the vaginal delivery
that is the main risk factor. The authors also compared continent women
having delivered vaginally with women who underwent a cesarean delivery
and found a difference in favor of cesarean delivery. However, 3 months after
delivery, the difference became statistically insignificant.

Several explanations have been offered to explain the link existing between
urinary incontinence and parity. Childbirth may result in pelvic floor laxity as
a consequence of weakening and stretching of the muscles and connective tissue
during delivery. Damage may occur as a result of spontaneous lacerations and
episiotomies during delivery. Both may result in impairment of the position
and support of the pelvic organs. The stretching of the pelvic tissues during
vaginal delivery may damage the pudendal and pelvic nerves, as well as the
muscles and connective tissue of the pelvic floor [Foldspang et al., 1992].

Menopause Studies have shown that postmenopausal women are more likely to
have urinary incontinence than premenopausal women. The evidence that at-
rophy of the urogenital mucosa can be reversed with estrogen suggests that
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estrogen loss contributes to the problem. However, the literature is incon-
sistent in describing the role of menopause and estrogen loss as significant
contributors.

In a study comparing postmenopausal women with premenopausal women
found that the differences between the prevalence of urinary incontinence be-
tween the two groups were not significant [Rekers et al., 1992].

In another study it was found that women who experienced surgical menopause
had a higher rate of urinary incontinence (36%) compared with those who
experienced natural menopause (22%) [Milsom et al., 1993].

Hysterectomy Some studies have shown significant association between urinary
incontinence and hysterectomy, as well as oophorectomy, nevertheless, the
role of hysterectomy is controversial. This association is due to the fact that
hysterectomy may disturb the musculofascial attachments of the bladder to
the surrounding pelvic wall, and oophorectomy results in surgical menopause
[Brown et al., 2000].

Obesity Studies have shown that obesity and increased body mass index is fre-
quently associated with urinary incontinence. Obesity may cause stretching
and weakening of the muscles, nerves, and other structures of the pelvic floor.
There is clear epidemiologic support for the role of obesity in urinary inconti-
nence [Mommsen and Foldspang, 1994].

Many other risk factors may contribute to the development of urinary inconti-
nence. Patients with dementia, Parkinson’s disease, multiple sclerosis, and stroke
are at a higher risk of manifesting bladder dysfunction during the course of their
disease. Patients lacking mental orientation have a greater risk of being incontinent
than those with normal mental status. Studies conducted in nursing homes have sug-
gested a link between dementia and urinary incontinence [Aggazzotti et al., 2000].

There are other factors correlated with the urinary dysfunction problem, includ-
ing chronic obstructive lung diseases, smoking, diabetes, constipation, fecal inconti-
nence, impaired function of levator muscles, genital prolapse, previous gynecologic
surgery, perineal suturing, and history of childhood enuresis [Davila et al., 2006].

3.3.3.2 Overactive Bladder

Overactive bladder is defined by the International Continence Society as a medi-
cal condition referring to the urinary symptoms of frequency and urgency, with or
without urge incontinence, when appearing in the absence of local pathologic factors
[Abrams et al., 2002].
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Patients with overactive bladder experience a wide range of symptoms, includ-
ing frequency, both daytime and nighttime (nocturia), as well as urgency. A con-
tinuum of symptomatology is necessary to accurately describe overactive bladder.
Approximately one-third of patients with overactive bladder have urge incontinence
[Stewart et al., 2001].

A study conducted on the United States found that overactive bladder without
incontinence was more prevalent in men, whereas overactive bladder with inconti-
nence was more prevalent in women. Thirty-seven percent of people with overactive
bladder have overactive bladder with incontinence; the remaining 63% have over-
active bladder without incontinence. The same study assessed the prevalence of
the individual bothersome symptoms that characterize overactive bladder. The
prevalence of urge incontinence was 6%, frequency was 15%, urgency was 22%, and
nocturia was 29% [Stewart et al., 2001].

The total economic costs of overactive bladder in the United States in the year
2000 were 18.2 million dollars [Stewart et al., 2001]. This estimate includes direct
and indirect costs at the community and institutional levels but does not consider
intangible costs; therefore, although this current cost of overactive bladder is higher
than the cost of disease states such as osteoporosis and Parkinson’s disease, the
economic burden of overactive bladder in the United States may be underestimated.

3.3.4 Bowel Dysfunction

Pelvic floor disorders involving bowel dysfunction include several different clinical
problems such as constipation, prolapse of the rectum and fecal incontinence. These
disorders are often complex, involving the functions of smooth and skeletal muscles,
their nerves, and connective tissues. Etiologies of these disorders are either posttrau-
matic (such as from vaginal birth or prior anorectal surgery) or acquired, developing
from chronic evacuation problems or with age. In some cases, the cause is idiopathic.
Management strategies for the treatment of these disorders have evolved and con-
tinue to evolve as the clinicians better understand the nature of these problems.

3.3.4.1 Evacuation Disorders

Constipation is one of the most common complaints of patients seeing colorectal
surgeons. The prevalence of chronic constipation in the United States varies from
2% to 34% [Talley et al., 1993]. Constipation is caused by several etiologies. Pelvic
outlet obstruction is a common cause of constipation and is attributed to muscular
dysfunction of the pelvic floor. Population studies have demonstrated the preva-
lence of pelvic outlet obstruction in the elderly (age 65 years and older) as 20%
[Talley et al., 1996]. In a population study performed by Talley [Talley et al., 1993],
the prevalence of pelvic outlet obstruction was 16.5% in females and 5.2% in males.
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In another study that compared age-related prevalence in the same community of pa-
tients, aged less than 60 to more than 65 years, there was an increasing prevalence of
pelvic outlet obstruction with increasing age [Talley et al., 1993; Talley et al., 1996].

From the multiple risk factors suspected to be associated with pelvic outlet ob-
struction, gender is one such risk factor. Constipation in young and middle-aged
adults is approximately three times more prevalent in women, and the prevalence in-
creases in both genders with age [Johnson et al., 1989]. Nonsteroidal antiinflamma-
tory drug usage has also been shown to be associated with pelvic outlet obstruction
in some studies but not in others[Talley et al., 1993; Talley et al., 1996].

Among patients with pelvic outlet obstruction, there are several neuromuscular-
associated or etiologic syndromes, including:

• Nonrelaxing puborectalis syndrome

• Rectocele

• Descending perineum syndrome

Nonrelaxing puborectalis syndrome occurs when there is failure of relaxation or
paradoxical contraction of the puborectalis muscle at the time of the defecatory
effort. The nonrelaxation of the puborectalis muscle is the cause in 31% to 42% of
patients with pelvic outlet obstruction constipation [Glia et al., 1998]. As a result of
the chronic straining associated with this syndrome, many other associated disorders
may develop including rectal prolapse and rectocele.

The descending perineum syndrome occurs as a result of either injury of the
sacral or pudendal nerves or damage to the pelvic floor muscles. Most often, this
injury occurs secondary to childbirth or chronic straining at stool. The descending
perineum syndrome is frequently associated with constipation and, later, develop-
ment of fecal incontinence. Its incidence increases with age and it is more common
in women than men [Bannister et al., 1997].

A rectocele is defined as a herniation or protrusion of the anterior rectal wall
into the vagina and is associated with pelvic laxity. In patients presenting to spe-
cialists with complaints of chronic constipation, rectoceles are found in 1% of them
[Surrenti et al., 1995]. Rectoceles are very common and not often symptomatic, and
so they stay vastly underreported. Many rectoceles will remain asymptomatic un-
til the fourth or fifth decade of life [Davila et al., 2006]. The majority of patients
with rectoceles are multiparous and/or have chronic constipation with a history of
straining. The damage to the rectovaginal septum, pelvic floor muscles, and the
pudendal nerves, during vaginal delivery or chronic straining can be related to rec-
tocele development. The association of rectoceles with hysterectomies has also been
verified [Felt-Bersma and Cuesta, 2001].
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3.3.4.2 Prolapse Syndromes

Rectal prolapse occurs when the full thickness of the rectal wall protrudes through
the anus. Rectal prolapse is the most common type of distal digestive tract pro-
lapse. In mucosal prolapse, only the mucosa of the rectal wall protrudes through
the anus. In contrast, internal intussusception, where a part of the small intestine
has invaginated into another section of intestine, can occur in full or partial thick-
ness but the prolapse does not pass beyond the anus. Intussusception is common in
normal, healthy volunteers (up to 50%) and may be normal. It rarely leads to full
prolapse [Felt-Bersma and Cuesta, 2001].

The true incidence of rectal prolapse (mucosal or complete) is unknown mostly
because of underreporting. It is associated with long-standing constipation, chronic
straining, pregnancy, prior surgery, female gender, aging, neurologic disease, mental
illness (up to 53% in a study by Vongsangnak), and other pelvic floor disorders
[Vongsangnak et al., 1985].

It is in the fourth and seventh decades of life that the peak incidence of prolapse
is seen, and women are affected more often, outnumbering men in a relation of 10
to 1 [Davila et al., 2006]. In fact, the incidence increases with age in women, but
not in men. Approximately two-thirds of women with rectal prolapse have neu-
rogenic weakness of the pelvic floor, which is usually a consequence of childbirth
[Neil et al., 1981]. However. In nulliparous women, the incidence of prolapse does
not seem to be lower, although they are less likely to have associated fecal incon-
tinence [Neil et al., 1981]. Other associated conditions with rectal prolapse include
rectosigmoid cancer, systemic sclerosis, laxative abuse, malnutrition, and increased
intraabdominal pressure. Up to 40% of patients with rectal prolapse have fecal
incontinence, and up to 60% have constipation [Rashid and Basson, 1996].

3.3.4.3 Continence Abnormalities

Fecal incontinence, similar to other pelvic floor disorders, is vastly underreported by
patients, and thus the true prevalence is unknown. In a study, based on a telephone
survey, 2.2% of the population reported incontinence, half of whom were inconti-
nent to solid or liquid stool [Nelson et al., 1995]. The studies conducted by using
anonymous questionnaires have shown higher rates, with 4.8% having incontinence
to solid stool and 6.7% with incontinence to liquid stool. Women are 50% more
likely to report incontinence than men [Giebel et al., 1998].

The most important etiologic factor in the pathogenesis of fecal incontinence in
women is the obstetric trauma. There is evidence that hormonal changes during
pregnancy lead to smooth muscle relaxation attributed to progesterone. The con-
nective tissue remodeling in the pelvic floor is due to relaxin, an ovarian hormone
that peaks late during pregnancy [Lepert, 1995]. With parturition, there is stretch-
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ing of the levators, stretching and tearing of the rectovaginal septum, stretching of
the vaginal wall, and compression of the pudendal nerves against the pelvic side
wall. All these factors may contribute to fecal incontinence.

In a study published by Sultan [Sultan et al., 1993] a percentage of 30% to 40%
was obtained for anal sphincter defects in asymptomatic postpartum females. How-
ever, these patients may become symptomatic later in life or with subsequent vaginal
deliveries. In addition, pudendal nerve injury documented by electromyography has
been demonstrated in 42% of postpartum females [Snooks et al., 1990]. In these pa-
tients, 60% recovered nerve function 2 months after delivery, but 40% did not. From
a group of 906 postpartum women in a study by MacArthur [MacArthur et al., 1997],
4% reported new symptoms of incontinence after childbirth. A study conducted by
Sultan [Sultan et al., 1993] showed 1% incidence of frank fecal incontinence and 25%
incidence of decreased flatal control, 9 months after vaginal delivery.

The incidence of sphincter injury is higher in patients with perineal tears. In
a study conducted by Wood [Wood et al., 1998], up to 25% of patients developed
fecal incontinence symptoms after a third degree perineal tear. Third degree tears,
involving the sphincter muscle, occur in approximately 0.6% of all vaginal deliveries
[Sultan et al., 1994].

Episiotomies, similar to tears, are associated with incontinence. Episiotomy has
been found to be associated with an increased risk of sphincter injury. A three-
fold increase in fecal incontinence after midline episiotomy as been verified, when
compared with spontaneous laceration; therefore, a mediolateral episiotomy is rec-
ommended [Davila et al., 2006].

Regardless of the etiology, the prevalence of bowel dysfunction in pelvic floor
disorders can be significant. For many of these problems, treatment is available but
not always satisfactory. As the understanding of these disorders improves, more
successful and more durable treatments will likely develop. Patient and physician
education, as well as early intervention, can often make a sizable difference in out-
come resulting in a true understanding of the incidence of these problems as well as
improved results of therapy.

3.3.5 Genital Prolapse, Sexual Dysfunction and Urogenital
Atrophy

This section presents the epidemiology, incidence, prevalence, and risk factors in-
volved with genital prolapse. The urogenital atrophy and sexual dysfunction related
to prolapse and its incidence after pelvic reconstructive are also discussed.
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3.3.5.1 Genital Prolapse

Genital prolapse is a general term for the weakening or loss of support to the pelvic
organs (bladder, vagina,uterus,and rectum) that results in a herniation of those
pelvic organs. It is a common condition that can affect women of all ages. Mul-
tiple risk factors have been identified and studied that are thought to contribute
to the development of genital prolapse, including age, parity, menopausal status,
body mass index (>30kg/m2), race, genetics, connective tissue disease, tobacco
use, chronic lung disease, chronic constipation, occupational straining, and previous
surgery. The different types of genital prolapse include:

Vaginal vault prolapse A vaginal vault prolapse is a herniation of the vaginal
vault caused by loss of support or weakening of the uterosacral ligaments,
cardinal ligaments, and loss of attachment of the endopelvic fascia to the
white line at the level of the sacrospinous ligament, or a combination of the
above mentioned.

Uterine prolapse A uterine prolapse is a herniation of the uterus caused by the
loss of support from the uterosacral and/or cardinal ligaments.

Cystocele A cystocele is a herniation of the anterior vaginal wall and bladder
caused by tearing, stretching, or a combination of the two, of the anterior
wall endopelvic fascia. The insult may either be midline, resulting in a central
cystocele, or a lateral insult resulting in a paravaginal defect.

Enterocele A enterocele is a herniation of the superior portion of the posterior
vaginal wall caused by tearing, stretching, or a combination of the two, of the
posterior vaginal wall endopelvic fascia.

Rectocele A rectocele is a herniation of the inferior portion of the posterior vaginal
wall and rectum caused by tearing, stretching, or a combination of the two, of
the posterior vaginal wall endopelvic fascia.

Epidemiology The incidence of genital prolapse is largely underestimated be-
cause of limited patient access to medical care, limited number of clinicians trained
to recognize prolapse, mild cases of prolapse that may be asymptomatic and there-
fore unknown to the patient and ignored by the physician, as well as the patient’s
desire to not disclose her problem to the clinician. Typically, patients with genital
prolapse have more than one area of weakness, with more severe prolapse in some
areas, depending on the initial damage to the pelvic floor as well as the length of
time the prolapse has gone untreated.
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Surgery for Prolapse Pelvic organ prolapse is one of the most common indi-
cations for gynecologic surgery and despite this fact, there is little epidemiologic
information regarding surgical procedures for prolapse. In the United States, ap-
proximately 226 000 women underwent surgery for pelvic organ prolapse during
1997, according to a survey conducted, making prolapse one of the most common
indications for gynecologic surgery [Brown et al., 2002]. The average age of women
undergoing prolapse surgery was 55 years. The overall rate of pelvic organ prolapse
surgery was 22.7 per 10 000 women in the United States. The rate of pelvic organ
prolapse surgery increased with age, arising to a peak rate of 42.1 per 10 000 women
aged 60 to 69 years. Vaginal hysterectomy with rectocele and cystocele repair was
the most common surgery performed.

Age and Menopause The incidence of prolapse increases with age, as does the
rate of surgery for prolapse. It has been demonstrated that the rate of pelvic organ
prolapse surgery increases with age, peaking in the sixth decade. The lifetime risk
of undergoing a single operation for pelvic organ prolapse by the age of 80 is 11.1%.
This incidence will be influenced by variables including access to a health care
provider trained to treat these problems, financial concerns, and overall medical
care access. Surgically managed patients represent only a small fraction of those
affected, because many women, especially the elderly, are managed conservatively
or never present for evaluation [Olsen et al., 1997].

Because age has been shown to be a strong risk factor in the development of
prolapse, it can be assumed that estrogen deficiency, which will occur in all women
in the menopausal years, may contribute to weakening of the supports (epithe-
lium, connective tissue, muscle) [Davila et al., 2006]. This may be a key factor in
the development and progression of prolapse, explaining the increased incidence
of prolapse in the postmenopausal years. Estrogen receptors have been identified
throughout the nuclei of the connective tissue and smooth muscle cells of the bladder
trigone, urethra, vaginal mucosa, levator ani muscle stroma, arcus tendineus, and
the uterosacral ligaments. The collagen content of the pelvic floor is also estrogen
dependent. In biochemical analysis of pelvic floor tissue, when the estrogen con-
centrations decrease it has been demonstrated that there is a reduction in the total
collagen content. In addition, there is a reduction in collagen content in genitouri-
nary tissue of patients with genital prolapse when compared with patients without
prolapse, regardless of the menopausal states [Jackson et al., 1996].

Previous Surgery Reoperation rates for recurrent prolapse have been estimated
to be approximately 30%. The time interval between repeat procedures for recurrent
prolapse has been shown to decrease with each successive repair [Olsen et al., 1997].
Theoretically, previous surgical treatment will cause further damage to the nerves
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and surrounding support systems and is thus increasing potential risks for recurrent
prolapse. For example, after an abdominal or vaginal hysterectomy, a vaginal vault
prolapse is a late and common complication, with a reported incidence as high as
43% [Virtanen and Makinen, 1993].

Development of prolapse after retropubic urethropexy has been described in the
literature with a reported occurrence rate of anywhere from 4% to 26%, depend-
ing on the surgical technique used, severity of prolapse and duration of follow-up
[Langer et al., 2003]. The risk of development of a cystocele after a sacrospinous
ligament fixation is up to 20% [Smilen et al., 1998; Meschia et al., 1999].

Obstetric Factors Obstetric injury is thought to be a principal factor contribut-
ing to the development of pelvic floor dysfunction (prolapse, urinary and fecal in-
continence). This is attributed to direct muscular and connective tissue injury or to
denervation injury to the pudendal nerve. There is question as to whether the mode
of obstetric delivery, or just the event of being pregnant, has a role in developing
prolapse.

In a case-control study, patients who delivered their first child before the age of
25 years had an almost fourfold increase of developing prolapse [Moalli et al., 2003].
Up to 50% of all parous women have some degree of prolapse, with 10% to 20%
being symptomatic [Bidmead and Cardozo, 1998]. Elective cesarean delivery in a
nonlabored patient has been speculated to protect the pelvic floor from damage
leading to prolapse; however, to date there are no prospective randomized studies
to support this theory [Davila et al., 2006]. It has been well established that vaginal
parity, notably the first, is an independent risk factor for the future development of
genital prolapse. It was demonstrated that the odds ratio was 3.0 for women who
had one vaginal delivery and 4.5 for women with a history of two or more vaginal
deliveries [Chiaffarino et al., 1999]. In a study by Mant [Mant et al., 1997], the risk
factors for genital prolapse in 17 032 women were analyzed. In those patients who
were diagnosed with prolapse, parity was shown to have the strongest relationship
to the development of prolapse.

Race and Genetics Different studies have shown that prolapse is more common
in whites, less common in Asians, and uncommon in blacks. Differences in the
incidence of prolapse between racial groups suggest congenital and cultural factors.
Genetics may also have a role in those women who have collagen or connective tissue
diseases contributing to the development of prolapse.

3.3.5.2 Female Sexual Dysfunction

Female sexual dysfunction is a generalized term for abnormalities in the normal
female sexual cycle. It is a highly prevalent problem affecting anywhere from 30%
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to 50% of women in all age groups. Only recently have the problems involved with
female sexuality gained recognition by clinicians. There are risk factors associated
with female sexual dysfunction including age, menopause, previous surgery, mental
and physical health, and availability of a partner.

Sexual Function after Pelvic Surgery Pelvic surgery to correct prolapse may
affect sexual function for a number of reasons including narrowed vaginal canal,
poor lubrication, and fear of urinary incontinence. Some studies suggest that sexual
dysfunction can occur up to 20% of the time after surgery for prolapse or inconti-
nence. It is thought that the vaginal dissection may lead to pelvic floor neuropathy
affecting the pudendal nerve, which subsequently affects vaginal sensation and or-
gasm. Hysterectomy has been associated with sexual dysfunction. It is thought
that removal of the cervix alters the upper portion of the vaginal canal and causes
a neuropathy, which is the source for dyspareunia (painful sexual intercourse), as
well as anorgasmia. However, studies in the literature are conflicting as to the exact
cause of sexual dysfunction after hysterectomy [Rhodes et al., 1999].

Prolapse Problems with sexual function have been reported to occur in women
with urinary incontinence and uterovaginal prolapse. However, the precise relation-
ship between prolapse and sexual function has not been well documented. In a study
that compared sexual dysfunction in women with and without uterovaginal prolapse,
the authors found that overall sexual dysfunction in women without prolapse did
not differ from women who had prolapse. In addition, the degree of prolapse did
not have a role in whether sexual dysfunction occurred among those with prolapse.
Psychological and relationship conflicts tended to have a greater impact on sexual
function for both groups of women [Weber et al., 1995].

Menopause Several menopause-related changes in sexual function are well de-
scribed in the literature: diminished sexual responsiveness, dyspareunia, decreased
sexual activity, decrease in sexual desire, and a dysfunctional male partner. In a
study by Sarrel [Sarrel, 1990], it is described that the underlying cause of biological
changes that occurred with sexual dysfunction is the estrogen deficiency. The post-
menopausal ovary has been shown to be responsible for up to 50% of the testosterone
believed to be associated with libido. Many clinicians believe that a combination of
both estrogen and testosterone is required to improve female sexual function.

The effect of menopause on vaginal physiology has been described. There is
a pronounced decrease in pelvic blood flow. This in turn results in a thinning of
the vaginal mucosa and loss of the normal microbial environment. With the loss of
estrogen, there is change in the integrity of the vaginal tube, making it less compliant
for coitus. Lubrication is also compromised because of loss of estrogen.
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3.3.5.3 Atrophy

As modern medicine continues to improve, life expectancy will continue to increase.
It has been estimated that, in the United States there are currently more than 25
million women who will live 30 years beyond menopause. Menopause by definition is
an estrogen-deficient state resulting in physiological changes to many female organs.
The urogenital organs, including the urethra, bladder, vagina, and vulva, are highly
estrogen dependent. Blood flow to the pelvis is also estrogen dependent. Without
an appropriate estrogen level, urogenital atrophy will develop. This means that
100% of women who enter into the menopausal state will develop atrophy of the
urogenital system [Davila et al., 2006].

3.3.6 Current Needs and Future Perspectives

A very strong case can be made for a multidisciplinary approach to treatment of
pelvic floor dysfunction. Certainly, the concept of serial surgeries in a patient with
pelvic floor dysfunction cannot be beneficial to the patient. Therefore, correction of
all pelvic floor defects at one setting and postoperative physiotherapeutic pelvic floor
rehabilitation may represent the most desirable means of treating asymptomatic pa-
tients. Less-severe degrees of pelvic floor dysfunction and syndromes not associated
with anatomic alterations are amenable to pelvic floor rehabilitative interventions.
An emphasis must be made on the fact that pelvic floor physiotherapy will benefit
both urinary and fecal continence disorders. In fact, patients with urinary and fecal
incontinence, especially associated with urgency symptoms, are optimal candidates
for pelvic floor physiotherapy/rehabilitation. Physiotherapy must be considered an
integral part of the treatment plan for many patients with pelvic floor dysfunction
[Davila et al., 2006].





Chapter 4

The Course and Conduct of Labor
and Delivery

4.1 Normal Labor and Delivery

4.1.1 Introduction

Labor is a sequence of uterine contractions that results in effacement and dilatation
of the cervix and voluntary bearing-down efforts leading to the expulsion per vagina
of the products of conception. Delivery is the mode of expulsion of the fetus and
placenta. Labor and delivery is a normal physiologic process that most women
experience without complications. The goal of the management of this process is to
foster a safe birth for mothers and their newborns [DeCherney and Nathan, 2003].

This chapter briefly introduces the course and conduct of labor and delivery.
This subject is already very well established on the literature, and is presented here
only briefly. This Chapter is based on the works of [DeCherney and Nathan, 2003],
[Gabbe et al., 2007], [Cunningham et al., 2005] and [Hanretty, 2003], which should
be consulted, among many others, for more details on this subject.

4.1.2 Physiologic preparation for labor

Prior to the onset of true labor, several preparatory physiologic changes commonly
occur. The settling of the fetal head into the brim of the pelvis, known as lightening,
usually occurs 2 or more weeks before labor in first pregnancies. In women who have
had a previous delivery, lightening often does not occur until early labor. Clinically,
the mother may notice a flattening of the upper abdomen and increased pressure
in the pelvis. This descent of the fetus is often accompanied by a decrease in
discomfort associated with crowding of the abdominal organs under the diaphragm,
while increasing pelvic discomfort and frequency of urination.

75
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During the last 4-8 weeks of pregnancy irregular, generally painless uterine con-
tractions occur with slowly increasing frequency. These contractions, known as
Braxton Hicks contractions, may occur more frequently, sometimes every 10-20 min-
utes, and with greater intensity during the last weeks of pregnancy. When these
contractions occur early in the third trimester, they must be distinguished from
true preterm labor. Later, they are a common cause of ”false labor,” which is
distinguished by the lack of cervical change in response to the contractions.

During the course of several days to several weeks before the onset of true labor,
the cervix begins to soften, efface, and dilate. In many cases, when labor starts, the
cervix is already dilated 1-3 cm in diameter. This is usually more pronounced in the
multiparous patient, the cervix being relatively more firm and closed in nulliparous
women. With cervical effacement, the mucus plug within the cervical canal may be
released. When this occurs, the onset of labor is sometimes marked by the passage
of a small amount of blood-tinged mucus from the vagina.

In true labor, the woman is usually aware of her contractions during the first
stage. The intensity of pain depends on the fetopelvic relationships, the quality
and strength of uterine contractions, and the emotional and physical status of the
patient. Very few women experience no discomfort during the first stage of labor.
With the beginning of true normal labor, some women describe slight low back pain
that radiates around to the lower abdomen. Each contraction starts with a gradual
build-up of intensity, and dissipation of discomfort promptly follows the climax.
Normally, the contraction will be at its height well before discomfort is reported.
Dilatation of the lower birth canal and distention of the perineum during the second
stage of labor will almost always cause discomfort.

4.1.3 Characteristics of normal labor

Normal labor is a continuous process which has been divided into three stages, with
the first stage further subdivided into two phases. The first stage of labor is the
interval between the onset of labor and full cervical dilatation. The second stage
is the interval between full cervical dilatation and delivery of the infant. The third
stage of labor is the period between the delivery of the infant and the delivery of
the placenta.

In his classic studies of labor in 1967, Friedman presented data describing the
process of spontaneous labor over time [Friedman, 1967]. The duration of the first
stage of labor in primipara patients is noted to range from 6-18 hours, while in
multiparous patients the range is reported to be 2-10 hours. The lower limit of
normal for the rate of cervical dilatation during the active phase is 1.2 cm per hour
in first pregnancies and 1.5 cm per hour in subsequent pregnancies. The duration
of the second stage in the primipara is 30 minutes to 3 hours, and is 5-30 minutes
for multiparas. For both, the duration of the third stage was reported to be 0-30
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minutes for all pregnancies.

4.1.3.1 Evaluation of Labor Progress

The first stage of labor is evaluated by the rate of change of cervical effacement,
cervical dilatation, and descent of the fetal head. The frequency and duration
of uterine contractions alone is not an adequate measure of labor progress. The
second stage of labor begins after full cervical dilatation. The progress of this stage
is measure by the descent, flexion, and rotation of the presenting part.

4.1.4 Clinical management of normal labor

Women most likely to have a normal labor and delivery have had adequate prenatal
care without significant maternal or fetal complications and are at 36 weeks’ gesta-
tion or beyond. If no complications are detected during the initial assessment and
the patient is found to be in prodromal labor, admission for labor and delivery may
be deferred.

4.1.4.1 The First Stage of Labor

During the first stage, the progress of labor is monitored by examination of the
cervix. During the latent phase, especially when the membranes are ruptured,
vaginal examinations should be done sparingly to decrease the risk of an intrauterine
infection. In the active phase the cervix should be assessed approximately every 2
hours. The cervical effacement and dilatation, and the station and position of the
fetal head should be recorded (Figure 4.1). Additional examinations to determine
if full dilation has occurred may be required if the patient reports the urge to push,
or to search for prolapse of the umbilical cord or perform fetal scalp stimulation if
a significant fetal heart rate deceleration is detected.

4.1.4.2 Second Stage of Labor

At the beginning of the second stage of labor the mother usually feels a desire to
bear down with each contraction. This abdominal pressure, together with the force
of the uterine contractions, expels the fetus. During the second stage of labor the
descent of the fetal head is measured to assess the progress of labor. The descent
of the fetus is evaluated by measuring the relationship of the bony portion of the
fetal head to the level of the maternal ischial spines (station) (Figure 4.1). When
the bony portion of the fetal head is at the level of the ischial spines, the station is
”0”.

The second stage generally takes from 30 minutes to 3 hours in primigravid
women and from 5-30 minutes in multigravid women. The median duration is 50
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Figure 4.1: Stations of the fetal head ([DeCherney and Nathan, 2003]).

minutes in a primipara and 20 minutes in a multipara. These times may vary de-
pending on the pushing efforts of the mother, the quality of the uterine contractions,
and the type of analgesia.

4.1.4.3 Third Stage of Labor

Immediately after the baby is delivered, the cervix and vagina should be thoroughly
inspected for lacerations and surgical repair should be performed as needed. Repair
of vaginal lacerations should be performed using absorbable suture material. The
inspection and repair of the cervix, vagina, and perineum is often easier prior to the
separation of the placenta before uterine bleeding obscures visualization.

Separation of the placenta generally occurs within 2-10 minutes of the end of
the second stage, but it may take 30 minutes or more to spontaneously separate.

After the delivery of the placenta, attention is turned to prevention of excessive
postpartum bleeding. Uterine contractions which reduce this bleeding may be en-
hanced with uterine massage and/or the infusion of a dilute solution of oxytocin.
The placenta should be examined to ensure complete removal and to detect placental
abnormalities.
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4.1.4.4 Puerperium

The puerperium consists of the period following the delivery of the baby and pla-
centa to approximately 6 weeks postpartum. The immediate postpartum period
(within the first hour of delivery) is a critical time for both maternal and neona-
tal physiologic and emotional adjustment. During that hour, the maternal blood
pressure, pulse rate, and uterine blood loss must be monitored closely. It is during
this time that most postpartum hemorrhage usually occurs, largely due to uterine
relaxation, retained placental fragments, or unrepaired lacerations. Occult bleeding
may manifest as increasing pelvic pain.

4.1.5 Mechanics Of Labor

Labor and delivery are not passive processes in which uterine contractions push a
rigid object through a fixed aperture. The ability of the fetus to successfully nego-
tiate the pelvis during labor and delivery is dependent on the complex interaction
of three variables: uterine activity, the fetus, and the maternal pelvis.

4.1.5.1 Uterine Activity

Uterine activity is characterized by the frequency, amplitude (intensity), and dura-
tion of contractions. Assessment of uterine activity may include simple observation,
manual palpation, external objective assessment techniques (such as external toco-
dynamometry), and direct measurement via an internal uterine pressure catheter.
External tocodynamometry measures the change in shape of the abdominal wall as a
function of uterine contractions and, as such, is qualitative rather than quantitative.
Although it permits graphic display of uterine activity and allows for accurate corre-
lation of fetal heart rate patterns with uterine activity, external tocodynamometry
does not allow measurement of contraction intensity or basal intrauterine tone. The
most precise method for determination of uterine activity is the direct measurement
of intrauterine pressure. However, this procedure should not be performed unless
indicated given the small but finite associated risks of uterine perforation, placental
disruption and intrauterine infection.

Despite technologic improvements, the definition of ”adequate” uterine activity
during labor remains unclear. Classically, three to five contractions per 10 min-
utes has been used to define adequate labor; this pattern has been observed in
approximately 95 percent of women in spontaneous labor. In labor, patients usually
contract every 2 to 5 minutes, with contractions becoming as frequent as every 2 to 3
minutes in late active labor and during the second stage. Abnormal uterine activity
can also be observed either spontaneously or resulting from iatrogenic interventions
[Howarth and Botha, 2005]
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Although it is generally believed that optimal uterine contractions are associated
with an increased likelihood of vaginal delivery, there are limited data to support this
assumption. If uterine contractions are ”adequate” to effect vaginal delivery, one of
two things will happen: either the cervix will efface and dilate, and the fetal head will
descend, or there will be worsening caput succedaneum (scalp edema) and molding
of the fetal head (overlapping of the skull bones) without cervical effacement and
dilatation. The latter situation suggests the presence of cephalopelvic disproportion,
which can be either absolute (in which a given fetus is simply too large to negotiate
a given pelvis) or relative (in which delivery of a given fetus through a given pelvis
would be possible under optimal conditions but is precluded by malposition or
abnormal attitude of the fetal head).

4.1.5.2 The Fetus

There are several fetal variables that influence the course of labor and delivery
[Gabbe et al., 2007]. These are summarized below.

Fetal size The fetus size can be estimated clinically by abdominal palpation or
with ultrasound, but both are subject to a large degree of error. Fetal macrosomia is
associated with an increased likelihood of failed trial of labor [Spellacy et al., 1985].

Lie The position of the longitudinal axis of the fetus relative to the longitudinal
axis of the uterus is known as lie. Fetal lie can be either longitudinal, transverse,
or oblique (Figure 4.2). In a singleton pregnancy, only fetuses in a longitudinal lie
can be safely delivered vaginally.

Presentation Presentation refers to the fetal part that directly overlies the pelvic
inlet. In a fetus presenting in the longitudinal lie, the presentation can be cephalic
(vertex) or breech. Compound presentation refers to the presence of more than one
fetal part overlying the pelvic inlet. Funic presentation refers to presentation of the
umbilical cord and is rare at term. In a cephalic fetus, the presentation is classified
according to the leading bony landmark of the skull, which can be either the occiput
(vertex), the chin (mentum), or the brow (Figure 4.3). Malpresentation, referring
to any presentation other than vertex, is seen in approximately 5 percent of all term
labors.

Attitude Attitude refers to the position of the head with regard to the fetal spine
(the degree of flexion and/or extension of the fetal head). Flexion of the head is
important to facilitate engagement of the head in the maternal pelvis. When the
fetal chin is optimally flexed onto the chest, the suboccipitobregmatic diameter (9.5
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Figure 4.2: Examples of different fetal lie (adapted from [Gabbe et al., 2007]).

cm) presents at the pelvic inlet (Figure 4.4). This is the smallest possible presenting
diameter in the cephalic presentation. As the head deflexes (extends), the diameter
presenting to the pelvic inlet progressively increases even before the malpresenta-
tions of brow and face are encountered (see Figure 4.4), and may contribute to
failure to progress in labor. The architecture of the pelvic floor along with increased
uterine activity may correct deflexion in the early stages of labor.

Position Position of the fetus refers to the relationship of the fetal presenting part
to the maternal pelvis, and it can be assessed most accurately on vaginal examina-
tion. For cephalic presentations, the fetal occiput is the reference. If the occiput is
directly anterior, the position is occiput anterior. If the occiput is turned toward
the mother’s right side, the position is right occiput anterior. In the breech presen-
tation, the sacrum is the reference (right sacrum anterior). The various positions
of a cephalic presentation are illustrated in Figure 4.5. In a vertex presentation,
position can be determined by palpation of the fetal sutures. The sagittal suture is
the easiest to palpate. Palpation of the distinctive lamdoid sutures should identify
the position of the fetal occiput. The frontal suture can also be used to determine
the position of the front of the vertex. Most commonly, the fetal head enters the
pelvis in a transverse position and, then as a normal part of labor, rotates to an
occiput anterior position. Most fetuses deliver in the occiput anterior, left occiput
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Figure 4.3: Landmarks of fetal skull for determination of fetal position (adapted
from [Gabbe et al., 2007]).

Figure 4.4: Presenting diameters of the average term fetal skull (adapted from
[Gabbe et al., 2007]).
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anterior, or right occiput anterior position. In the past, less than 10 percent of pre-
sentations were occiput posterior at delivery [Gabbe et al., 2007]. However epidural
analgesia is associated with an increased risk of occiput posterior presentation (ob-
served in 12.9 percent of women with epidural analgesia) [Lieberman et al., 2005].
Asynclitism occurs when the sagittal suture is not directly central relative to the
maternal pelvis. If the fetal head is turned such that more parietal bone is present
posteriorly, the sagittal suture is more anterior and this is referred to as posterior
asynclitism. Anterior asynclitism occurs when there is more parietal bone presenting
anteriorly. The occiput transverse and occiput posterior positions are less common
at delivery and more difficult to deliver. Malposition refers to any position in labor
that is not right occiput anterior, occiput anterior, or left occiput anterior.

(a) Left occiput ante-
rior.

(b) Left occiput trans-
verse.

(c) Left occiput pos-
terior.

(d) Right occiput
anterior.

(e) Right occiput
transverse.

(f) right occiput pos-
terior.

Figure 4.5: Fetal presentations and positions in labor ([Gabbe et al., 2007]).
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Station Station is a measure of descent of the bony presenting part of the fetus
through the birth canal (Figure 4.1). The current standard classification is based on
a quantitative measure in centimeters of the distance of the leading bony edge from
the ischial spines. The midpoint (0 station) is defined as the plane of the maternal
ischial spines. The ischial spines can be palpated on vaginal examination. For the
right-handed person, they are most easily felt on the maternal right.

An abnormality in any of the above-mentioned fetal variables may affect both
the course of and the likelihood of vaginal delivery. Failure to progress in labor
should prompt a careful reevaluation of the above-mentioned fetal parameters to
exclude absolute or relative cephalopelvic disproportion.

4.1.5.3 The Maternal Pelvis

The birth canal consists of the bony pelvis (composed of the sacrum, ilium, ischium,
and pubis) and the resistance provided by the soft tissues. The bony pelvis is
divided into the false (greater) and true (lesser) pelvis by the pelvic brim, which is
demarcated by the sacral promontory, the anterior ala of the sacrum, the arcuate
line of the ilium, the pectineal line of the pubis, and the pubic crest culminating
in the symphysis (Figure 2.11). Measurements of the various parameters of the
bony female pelvis have been made with great precision, directly in cadavers and
using radiographic imaging in living women. Such measurements have divided the
true pelvis into a series of planes that must be negotiated by the fetus during
passage through the birth canal, which can be broadly classified into the pelvic
inlet, midpelvis and pelvic outlet.

Clinical pelvimetry is currently the only method of assessing the shape and
dimensions of the bony pelvis in labor. The inlet of the true pelvis is largest in its
transverse diameter (usually >12.0 cm). The diagonal conjugate (the distance from
the sacral promontory to the inferior margin of the symphysis pubis as assessed on
vaginal examination) (Figure 4.6) is a clinical representation of the anteroposterior
diameter of the pelvic inlet. The true conjugate (or obstetric conjugate) of the
pelvic inlet is the distance from the sacral promontory to the superior aspect of the
symphysis pubis (Figure 4.7). This measurement cannot be made clinically but can
be estimated by subtracting 1.5 to 2.0 cm from the diagonal conjugate . This is the
smallest diameter of the inlet, and it usually measures approximately 10 to 11 cm.
The limiting factor in the midpelvis is the interspinous diameter (the measurement
between the ischial spines), which is usually the smallest diameter of the pelvis but
should be greater than 10 cm. The pelvic outlet is rarely of clinical significance. The
anteroposterior diameter from the coccyx to the symphysis pubis is approximately
13 cm in most cases, and the transverse diameter between the ischial tuberosities is
approximately 8 cm.

The shape of the female bony pelvis can be classified into four broad categories:
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Figure 4.6: Diagonal conjugate (P = sacral promontory; S = symphysis pubis)
(adapted from [Cunningham et al., 2005]).

Anatomical
conjugate

True (obstetric)
conjugate

Plane of least
pelvic dimension

Figure 4.7: Pelvic Diameters (Conjugates) (adapted from [Hanretty, 2003]).
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gynecoid, anthropoid, android, and platypelloid (Figure 4.8). This classification,
based on the radiographic studies of Caldwell and Moloy, separates those with fa-
vorable characteristics (gynecoid, anthropoid) from those that are less favorable
for vaginal delivery (android, platypelloid) [Caldwell and Moloy, 1933]. In reality,
however, many women fall into intermediate classes, and the distinctions become
arbitrary. The gynecoid pelvis is the classic female shape with an oval-shaped inlet,
diverging midpelvic sidewalls, and far-spaced ischial spines. The anthropoid pelvis
has an exaggerated oval shape to the inlet, with the largest diameter being antero-
posterior, and with limited anterior capacity to the pelvis. Such pelves are more
often associated with delivery in the occiput posterior position. The android pelvis is
male in pattern, with a heart-shaped inlet, prominent sacral promontory and ischial
spines, shallow sacrum, and converging midpelvic sidewalls theoretically increas-
ing the risk of cephalopelvic disproportion. The platypelloid pelvis is a broad, flat
pelvis with an exaggerated oval-shaped inlet, but with the largest diameter being
the transverse diameter theoretically predisposing to transverse arrest. Although
the assessment of fetal size along with pelvic shape and capacity is still of clinical
utility, it is a very inexact science. An adequate trial of labor is the only definitive
method to determine whether a given fetus will be able to safely negotiate a given
pelvis.

Pelvic soft tissues may provide resistance in both the first and second stages
of labor. In the first stage, resistance is offered primarily by the cervix; whereas
in the second stage, it is by the muscles of the pelvic floor. It has been proposed
that rapid labors result from low pelvic resistance rather than from high myometrial
activity [Crawford, 1975]. In the second stage of labor, the resistance of the pelvic
musculature is believed to play an important role in the rotation and movement of
the presenting part through the pelvis.

4.1.5.4 Cardinal Movements in Labor

The mechanisms of labor in the vertex position, also known as the cardinal move-
ments, refer to the changes in position of fetal head during its passage through
the birth canal. Because of the asymmetry of the shape of both the fetal head
and the maternal bony pelvis, such rotations are required for the fetus to success-
fully negotiate the birth canal. Although labor and birth is a continuous process,
seven discrete cardinal movements of the fetus are described: engagement, descent,
flexion, internal rotation, extension, external rotation or restitution, and expulsion
(Figure 4.10).

The progress of labor is dictated by the pelvic dimensions and configuration,
the size of the fetus, and the strength of the contractions. In essence, delivery
proceeds along the line of least resistance, ie, by adaptation of the smallest achievable
diameters of the presenting part to the most favorable dimensions and contours of
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Figure 4.8: Types of pelves. The white lines in the diagrams at right
show the greatest diameters of the pelves at left (adapted from the reference
[DeCherney and Nathan, 2003]).
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the birth canal. The sequence of events in vertex presentation is as follows:

Engagement Engagement refers to passage of the widest diameter of the present-
ing part to a level below the plane of the pelvic inlet (Figure 4.9). In the
cephalic presentation with a well-flexed head, the largest transverse diameter
of the fetal head is the biparietal diameter (9.5 cm). In the breech, the widest
diameter is the bitrochanteric diameter. Clinically, engagement can be con-
firmed by palpation of the presenting part both abdominally and vaginally.
With a cephalic presentation, engagement is achieved when the presenting
part is at 0 station (at the level of the maternal ischial spines) on vaginal
examination. Engagement is considered an important clinical prognostic sign
because it demonstrates that, at least at the level of the pelvic inlet, the ma-
ternal bony pelvis is sufficiently large to allow descent of the fetal head. In
70% of women with a gynecoid pelvis (Figure 4.8), the head enters the su-
perior strait in the occiput transverse position. In nulliparas, engagement of
the fetal head usually occurs by 36 weeks’ gestation. In multiparas, however,
engagement can occur later in gestation or even during the course of labor.

Figure 4.9: Engagement of the fetal head (adapted from [Gabbe et al., 2007]).

Descent Descent refers to the downward passage of the presenting part through
the pelvis. Descent of the fetus is not continuous; the greatest rates of descent
occur during the deceleration phase of the first stage of labor and during the
second stage of labor.
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(a) Before engagement. (b) Engagement, flexion, descent.

(c) Descent, rotation. (d) Complete rotation, early exten-
sion.

(e) Complete extension. (f) Restitution.

(g) Anterior shoulder delivery. (h) Posterior shoulder delivery.

Figure 4.10: Cardinal movements during labor (adapted from [Gabbe et al., 2007]).
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Flexion Flexion of the fetal head occurs passively as the head descends owing to
the shape of the bony pelvis and the resistance offered by the soft tissues of
the pelvic floor. Although flexion of the fetal head onto the chest is present
to some degree in most fetuses before labor, complete flexion usually occurs
only during the course of labor. The result of complete flexion is to present
the smallest diameter of the fetal head (the suboccipitobregmatic diameter)
for optimal passage through the pelvis.

Internal Rotation Internal rotation refers to rotation of the presenting part from
its original position as it enters the pelvic inlet (usually occiput transverse) to
the anteroposterior position as it passes through the pelvis. As with flexion,
internal rotation is a passive movement resulting from the shape of the pelvis
and the pelvic floor musculature. The pelvic floor musculature, including
the coccygeus and ileococcygeus muscles, forms a V-shaped hammock that
diverges anteriorly. As the head descends, the occiput of the fetus rotates
towards the symphysis pubis (or, less commonly, towards the hollow of the
sacrum), thereby allowing the widest portion of the fetus to negotiate the
pelvis at its widest dimension. Owing to the angle of inclination between the
maternal lumbar spine and pelvic inlet, the fetal head engages in an asynclitic
fashion (i.e., with one parietal eminence lower than the other). With uterine
contractions, the leading parietal eminence descends and is first to engage the
pelvic floor. As the uterus relaxes, the pelvic floor musculature causes the
fetal head to rotate until it is no longer asynclitic.

Extension Because the vaginal outlet is directed upward and forward, extension
must occur before the head can pass through it. As the head continues its
descent, there is a bulging of the perineum followed by crowning. Crowning
occurs when the largest diameter of the fetal head is encircled by the vulvar
ring. At this time spontaneous delivery is imminent and careful management
by the practitioner with controlled efforts of the mother will minimize per-
ineal trauma. Routine episiotomy is not necessary, and has been conclusively
associated with increased maternal blood loss, increased risk of disruption of
the anal sphincter (third-degree extension) and rectal mucosa (fourth-degree
extension), as well as delay in the patient’s resumption of sexual activity. Fur-
ther extension follows extrusion of the head beyond the introitus. Once the
head is delivered, the airway is cleared of blood and amniotic fluid using a
bulb suction device. The oral cavity is cleared initially, followed by clearing
of the nares.

External Rotation External rotation, also known as restitution, follows delivery
of the head when it rotates to the position it occupied at engagement. Follow-
ing this, the shoulders descend in a path similar to that traced by the head.
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The anterior shoulder rotates internally about 45 degrees to come under the
pubic arch for delivery. As this occurs, the head swings back to its position at
birth. Delivery of the anterior shoulder is aided by gentle downward traction
on the externally rotated head. The posterior shoulder is then delivered by
gentle upward traction on the head. The brachial plexus may be injured if
excessive force is used. Following these maneuvers, the body, legs, and feet are
delivered with gentle traction on the shoulders. After the airway is cleared,
an index finger is used to check whether the umbilical cord encircles the neck.
If so, the cord can usually be slipped over the infant’s head. If the cord is too
tight, it can be cut between two clamps.

Expulsion Expulsion refers to delivery of the rest of the fetus. After delivery of the
head and external rotation, further descent brings the anterior shoulder to the
level of the symphysis pubis. The anterior shoulder is delivered in much the
same manner as the head, with rotation of the shoulder under the symphysis
pubis. After the shoulder, the rest of the body is usually delivered without
difficulty.

After delivery, blood will be infused from the placenta into the newborn if the
baby is held below the mother’s introitus. Delayed cord clamping can result in
neonatal hyperbilirubinemia as additional blood is transferred to the newborn infant.

4.1.6 Episiotomy, perineal injury, and perineal repair

Following delivery of the placenta, the cervix, vagina, and perineum should be care-
fully examined for evidence of injury. If a laceration is seen, its length and position
should be noted and repair initiated. Adequate analgesia (either regional or local)
is essential for repair. Special attention should be paid to repair of the perineal
body, the external anal sphincter, and the rectal mucosa. Failure to recognize and
repair rectal injury can lead to serious long-term morbidity, most notably fecal in-
continence.

Perineal injuries, either spontaneous or with episiotomy, are the most common
complications of spontaneous or operative vaginal deliveries. A first-degree tear is
defined as a superficial tear confined to the epithelial layer. Second-degree tears ex-
tend into the perineal body but not into the external anal sphincter. Third-degree
tears involve superficial or deep injury to the external anal sphincter, whereas a
fourth-degree tear extends completely through the rectal mucosa. Significant mor-
bidity is associated with third and fourth-degree tears, including risk of flatus and
stool incontinence, rectal vaginal fistula, infection, and pain. Primary approximation
of perineal laceration affords the best opportunity for functional repair, especially
if there is evidence of rectal sphincter injury. The external anal sphincter should be
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repaired by direct apposition or overlapping the cut ends and securing them using
interrupted sutures.

Episiotomy is an incision into the perineal body made during the second stage
of labor to facilitate delivery. It is by definition a second-degree tear. Because such
incisions appear to be moderately protective against severe perineal trauma, they
are the procedure of choice for women with inflammatory bowel disease because of
the critical need to prevent rectal injury.



Chapter 5

Computational Solid Mechanics

5.1 Introduction

In this chapter, the fundamentals of the finite element method are presented. This
chapter presents the finite element concept, the approximations involved, the con-
struction of the finite element equations and the use of an incremental approach to
solve nonlinear problems.

The finite element method is one of the most important developments in nu-
merical analysis. The method was developed in the 1950’s by engineers for sys-
tematically analyzing complex structures containing a large number of components
[Argyris and Kelsey, 1960]. Over the years, the finite element method has spread to
applications in all fields of engineering and science.

5.2 Kinematics of Deformation and Motion

Kinematics is the study of motion and deformation without reference to the cause.
The deformation of solids is generally described by the kinematic relations, the
equations of balance and the constitutive equations. This section summarizes the
main equations which govern the deformation of solids. For a detailed treatment of
this subject, the books of Eringen [Eringen, 1962], Malvern [Malvern, 1969], Ogden
[Ogden, 1984] or Chadwick [Chadwick, 1999], for example, should be consulted. As
shown in the following pages, consideration of finite deformation enables alterna-
tive coordinate systems to be employed, namely, material and spatial descriptions
associated with the names of Lagrange and Euler respectively, see [Wriggers, 2006],
[Bonet and Wood, 1997], [Belytschko et al., 2000] or [Doghri, 2000], for example.

Although inertial effects are not of primary concern, time derivatives of various
kinematic quantities enrich our understanding and also provide the basis for the
formulation of the virtual power expression of equilibrium, which uses the notion of
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virtual velocity and associated kinematic quantities. Therefor, the time derivatives
of the different kinematic quantities are presented on the following sections.

The different nonlinear kinematic quantities are linearized in preparation for
inclusion in the linearized equilibrium equations that form the basis of the Newton-
Raphson solution to the finite element equilibrium equations.

5.2.1 The Motion

Figure 5.1 shows the general motion of a deformable body. A given body B can
be described by a set of points which are in a region of the Euclidean space IE3.
A configuration of the body B is then a one-to-one mapping ϕ : B → IE3, which
places all the particles of B in IE3. The position of a particle X of B in the deformed
configuration ϕ is defined by x = ϕ (X). The placement of the body B is described
by ϕ (B) = {ϕ (X) |X ∈ B} and in the following sections is denoted as configuration
ϕ (B) of body B.

time = 0

time = t

P

Q

p

q

O

o

B

ϕ (B)

e1

e2

e3

x1

x2
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X2

X3

ϕ

Figure 5.1: General motion of a deformable body, showing the trajectory of two
points P and Q.

The motion of a body B is then a temporally parametric series of configurations
ϕt : B → IE3. For the position of a given particle X at time t ∈ R+ the following is
obtained

x = ϕt (X) = ϕ (X, t) . (5.1)
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In (5.1) ϕ is a vector field that defines the new location x of a particle X for a
fixed t and is called the motion of the body B. The motion ϕ is suitably regular
and carries points X belonging to the body B to the current configuration ϕ (B).
It is assumed that ϕ possesses continuous derivatives with respect to position and
time. The parametric equation (5.1) defines successive positions x of a particle X in
space. All successive points together form a curve in the Euclidian space IE3 which
is called the path line (or trajectory) of the particle X, as shown in Figure 5.1, with
points P and Q.

The motion ϕ is assumed to be uniquely invertible. Consider that a given particle
occupies the position (x, t), in a given time instance. The position of the particle X,
which is associated with the place x at time t is given uniquely by Equation (5.1)
as

X = ϕ−1 (x) . (5.2)

In (5.2) ϕ−1 is the inverse motion of the mapping ϕ, as defined in (5.1). The position
of this particle on the reference configuration of the body B is given by X = ϕ0 (X),
where X is the position of a particle X in this configuration. Using Equation (5.1),
it is possible to obtain

x = ϕ
(
ϕ−1

0 (X) , t
)
. (5.3)

For practical applications there is no need to differentiate between X and X. This
simplifies the notation, and Equation (5.3) can be written as

x = ϕ (X, t) , (5.4)

where X depicts the position of particle X in the reference configuration B. With
this, the positions x and X are described as vectors in IE3 with respect to the origin
O. The point X is denoted in the reference configuration by the position vector
X = XAEA. Here EA defines a Cartesian basis in the reference configuration with
origin O. Therefore (5.4) can be written in components:

xi = ϕi (XA, t) . (5.5)

In the following, when the indices are in capital letters they will denote components
of vectors and tensors refering to the basis EA of the reference configuration. XA are
the Lagrange coordinates of the particle X. Lower case letters are used for indices
which refer to the basis ei of the spatial or current configuration. The quantities
xi denote the spatial coordinates of X. To simplify notation, a Cartesian basis
is employed. This coincides with the finite element method, since isoparametric
interpolations are always defined in a Cartesian basis. The change to arbitrary
curvilinear coordinates is a purely technical matter.
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5.2.2 Material and Spatial Descriptions

In finite deformation analysis a careful distinction has to be made between the co-
ordinate systems that can be chosen to describe the behavior of the body whose
motion is under consideration. The so-called material description is a characteriza-
tion of the motion (or any other quantity) with respect to the material coordinates
(X1, X2, X3) and time t, given by (5.2). In the material description, attention is paid
to a particle, and what appends to the particle as it moves is observed. Traditionally
the material description is often referred to as the Lagrangian description.

The so-called Eulerian (or spatial) description is a characterization of the motion
(or any other quantity) with respect to the spatial coordinates (x1, x2, x3) and time
t, given by (5.4). In the spatial description attention is paid to a point in space,
and what appends to that point as time changes is studied.

Fluid mechanicians almost exclusively work in terms of a spatial description
because it is not appropriate to describe the behavior of a material particle in, for
example, a steady-state flow situation.

In solid mechanics, material descriptions are most popular. Their attractiveness
stems from the ease with which they handle complicated boundaries and their abil-
ity to follow material points, so that history dependent materials can be treated
accurately. In the development of Lagrangian finite elements, two approaches are
commonly taken:

• formulations in terms of the Lagrangian measures of stress and strain in which
derivatives and integrals are taken with respect to the Lagrangian (material)
coordinates X, called total Lagrangian formulations.

• formulations expressed in terms of Eulerian measures of stress and strain in
which derivatives and integrals are taken with respect to the Eulerian (spatial)
coordinates x, often called updated Lagrangian formulations.

Although the total and updated Lagrangian formulations are superficially quite
different, it will be shown that the underlying mechanics of the two formulations
is identical; furthermore, expressions in the total Lagrangian formulation can be
transformed to updated Lagrangian expressions and vice versa. The major differ-
ence between the two formulations is in the point of view: the total Lagrangian
formulation refers quantities to the original configuration, the updated Lagrangian
formulation to the current configuration, often called the deformed configuration.
There are also differences in the stress and deformation measures which are typically
used in these two formulations. For example, the total Lagrangian formulation cus-
tomarily uses a total measure of strain, whereas the updated Lagrangian formulation
often uses a rate measure of strain. However these are not inherent characteristics
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of the formulations, for it is possible to use total measures of strain in updated
Lagrangian formulations, and rate measures in total Lagrangian formulation.

From the theoretical standpoint, there is no difference whether the equations
refer to the current or the reference configuration of the body. When formulating
numerical methods for continua, considerable differences in efficiency can occur when
the equations are related to either the spatial or the reference configuration. Thus,
strain measures with respect to both configurations will defined. On the following
presentation, small letters will denote tensors which refer to the current configu-
ration ϕ (B), and capital letters will denote tensors which refer to the reference
configuration B.

5.2.3 Deformation Gradient

The deformation gradient F is a key quantity in finite deformation analysis. It is
involved in all equations relating quantities before deformation to corresponding
quantities after (or during) deformation. The deformation gradient tensor allows to
describe the relative spatial position of two neighboring particles after deformation
in terms of their relative material position before deformation. The deformation
gradient is central to the description of deformation and and therefor central to the
description of strain [Lai et al., 1993].

The deformation gradient F maps elemental vectors of the reference configura-
tion to elemental vectors in the spatial configuration. It is a tensor which associates
to a material line element dX in B the spatial line element dx in ϕ (B):

dx = F dX. (5.6)

The different components of the deformation gradient follow from the direct notation
F = ∂x/∂X as partial derivatives ∂xi/∂XA = xi,A. Using (5.4) and (5.5) it is
possible to obtain

F = Gradϕ (X, t) = FiA ei ⊗ EA =
∂xi

∂XA

ei ⊗ EA. (5.7)

Since the gradient (5.7) is a linear operator, the local transformation (5.6) is also
linear. To preserve the continuous structure in B during the deformation, the map-
ping (5.6) has to be one-to-one, which is equivalent to say that F cannot be singular.
This is equivalent to the condition

J = detF 6= 0, (5.8)

where J defines the Jacobian determinant. In order to exclude self-penetration of
the body, and the disappearing of mass, J has to be greater than 0. If F cannot be
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singular, it means its inverse exists, which is denoted by F−1. With this it is now
possible to invert equation (5.6):

dX = F−1dx. (5.9)

The inverse of the deformation gradient has the following form:

F−1 = (FiA)−1 EA ⊗ ei with (FiA)−1 =

(
∂xi

∂XA

)−1

=
∂XA

∂xi

, (5.10)

were X = ϕ−1 (x).
Once the deformation gradient F is known, transformations of area and volume

elements between B and ϕ (B) can be obtained. The transformation of area elements
between B and ϕ (B) is given by [Ogden, 1984]:

da = n da = J F−T NdA = J F−TdA. (5.11)

In this equation n is the normal to the surface of ϕ (B) and N denotes the normal

ϕ

nN

dA da

dV
dv

B ϕ (B)

Figure 5.2: Transformation between area and volume elements.

to the surface of B (see Figure 5.2). J is the Jacobi determinant defined in (5.8),
dA is the surface element in the reference configuration and da the surface element
in the spatial configuration. For the transformation of volume elements from the
reference to the spatial configuration, it is possible to obtain

dv = JdV. (5.12)

With the introduction of a displacement vector u (X, t) as the difference in po-
sition vectors of a point in the reference and current configurations,

u (X, t) = ϕ (X, t) −X (5.13)

it is possible to write the deformation gradient (5.7) as

F = Grad [X + u (X, t)] = 1 + Gradu = 1 + H, (5.14)

where H = Gradu is the displacement gradient with respect to X.
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5.2.4 Strain measures

Section 5.2.3 presents the deformation gradient as the fundamental kinematic (second-
order) tensor in finite deformation kinematics that characterizes changes of material
elements during motion. The aim of this section is to determine these changes in
the form of (second-order) strain tensors related either to the reference or current
configuration.

In this section the most common definitions of strain tensors established in non-
linear continuum mechanics are presented.

As a general measure of deformation, consider the change in the scalar product of
two elemental vectors dX1 and dX2 as they deform to dx1 and dx2. This change will
involve both the stretching (that is, change in length) and changes in the enclosed
angle between the two vectors. Recalling (5.6), the spatial scalar product dx1 · dx2

can be found in terms of the material vectors dX1 and dX2 as,

dx1 · dx2 = dX1 · C dX2 (5.15)

where C is the right Cauchy-Green deformation tensor, which is given in terms of
the deformation gradient as F as,

C = FT F (5.16)

Note that in (5.15) the tensor C operates on the material vectors dX1 and dX2

and consequently C is called a material tensor quantity. Also note that this strain
measure is not zero at the initial state, were F = 1 ⇒ C = 1 is obtained.

Alternatively the initial material scalar product dX1 · dX2 can be obtained in
terms of the spatial vectors dx1 and dx2 via the left Cauchy-Green or Finger defor-
mation tensor b as,

dX1 · dX2 = dx1 · b−1dx2 (5.17)

where b is,

b = FFT (5.18)

Observe that in (5.17) the tensor b−1 operates on the spatial vectors dx1 and dx2,
and consequently b−1, or indeed b itself, is a spatial tensor quantity.

The change in scalar product can now be found in terms of the material vectors
dX1 and dX2 as

1

2
(dx1 · dx2 − dX1 · dX2) = dX1 · E dX2 (5.19)

where the material tensor E is the Green-Lagrange strain tensor,

E =
1

2

(
FTF − 1

)
=

1

2
(C − 1) , EAB =

1

2
(FiAFiB − δAB) . (5.20)
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Note that contrary to the Cauchy-Green deformation tensor, the Green-Lagrange
deformation tensor is zero for the initial, undeformed configuration.

The same change in the scalar product can be expressed with reference to the
spatial elemental vectors dX1 and dX2 and the Eulerian or Almansi strain tensor e
as,

1

2
(dx1 · dx2 − dX1 · dX2) = dx1 · e dx2 (5.21)

where the spatial tensor e is,

e =
1

2

(
1 − b−1

)
. (5.22)

The Almansi strain tensor is connected to the Green-Lagrange strain tensor via the
following transformation:

E = FTeF, (5.23)

which can easily be verified with (5.22).

5.2.5 Transformation of vectors and tensors

Once the transformation between differential elements in the reference and current
configuration is known, it is now possible to transform vectors or tensors from the
reference to the current configuration, and vice versa. This stems from the fact that
the base vectors can be viewed as differential line elements.

If a quantity from the current configuration is transformed to the initial con-
figuration, this transformation is called a pull back operation, see for example
[Marsden and Hughes, 1983]. A transformation in the other direction is considered
as a push forward operation.

For the gradient of a scalar field G (X) = g (x) = g [ϕ (X)], the following is
obtained

GradG = FT grad g ⇐⇒ ∂G

∂XA

=
∂g

∂xi

∂xi

∂XA

, (5.24)

grad g = F−T GradG. (5.25)

In a similar way, for the gradient of a vector field W (X) = w (x) = w [ϕ (X)] the
following is obtained

GradW = gradwF ⇐⇒ gradw = GradWF−1. (5.26)

Applying these results to the computation of the deformation gradient in terms
of the displacement field u [ϕ (X)] and using (5.14) and (5.26), it is possible to
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obtain

F = 1 + Gradu,

1 = F−1 + GraduF−1,

=⇒ F−1 = 1 − gradu. (5.27)

Thus the inverse of the deformation gradient can be computed from the displace-
ments that refers to the current configuration.

5.2.6 Distortional Component of the Deformation Gradient

When dealing with incompressible and nearly incompressible materials it is neces-
sary to separate the volumetric from the distortional (or isochoric) components of
the deformation. Such a separation must ensure that the distortional component,
namely F̄, does not imply any change in volume. Noting that the determinant of the
deformation gradient gives the volume ratio, the determinant of F̄ must therefore
satisfy [Bonet and Wood, 1997],

det F̄ = 1 (5.28)

This condition can be achieved by choosing F̄ as

F̄ = J− 1

3 F (5.29)

The deformation gradient F can now be expressed in terms of the volumetric and
distortional components, J and , F̄ respectively, as,

F = J
1

3 F̄ (5.30)

Similar decompositions can be obtained for other strain-based tensors such as the
right Cauchy-Green deformation tensor C by defining its distortional component C̄
as,

C̄ = F̄T F̄ (5.31)

Substituting for F̄ from Equation (5.29) gives an alternative expression for C̄ as,

C̄ = (detC)−
1

3 C; detC = J2 (5.32)

5.2.7 Time derivatives

Many nonlinear processes are time-dependent and as a consequence it is necessary
to consider velocity and material time derivatives of various quantities. However,
even if the process is not rate-dependant it is nevertheless convenient to establish
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the equilibrium equations in terms of virtual velocities and associated virtual time-
dependant quantities.

The time derivative of the deformation gradient F, is defined as

Ḟ = Grad ϕ̇ (X, t) = Gradv = grad v̂ F. (5.33)

The spatial velocity gradient (grad v̂) in (5.33) is often described by l. With (5.33)
it is possible to define the spatial velocity gradient as:

l = Ḟ F−1 (5.34)

Using Equation (5.33) to compute the time derivative of the Green-Lagrangian strain
tensor (5.20) yields:

Ė =
1

2

(
ḞT F + FT Ḟ

)
. (5.35)

The time derivative of E can be rewritten with the last relation in (5.33):

Ė =
1

2
FT

(
l + lT

)
F = FTdF. (5.36)

This equation has a structure similar to (5.23), and hence it denotes a pull back of
the symmetrical spatial velocity gradient

d =
1

2

(
l + lT

)
(5.37)

to the initial configuration.

5.3 Balance Principles

This section summarizes the partial differential equations which represent the lo-
cal balance laws of continuum mechanics. More detail about the derivation of
these equations can be consulted for example on the references [Malvern, 1969] or
[Marsden and Hughes, 1983].

5.3.1 Balance of mass

The balance of mass m of a body B is given by the following relation

m =

∫

B

ρ0 dV =

∫

ϕ(B)

ρ dv = const. , (5.38)

where ρ0 is the density in the initial configuration and ρ the density in the current
configuration. Within the Lagrange description of motion, it can be concluded,
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assuming sufficient smoothness, that ρ0 = Jρ. This equation yields a relation
between the volume element in the initial and current configuration

dv =
ρ0

ρ
dV = J dV. (5.39)

5.3.2 Balance of momentum

Equation (5.40) defines the local balance of momentum with respect to a volume
element in the current configuration ϕ (B),

div σ + ρ b̄ = ρ v̇, σik,i + ρ b̄k = ρ v̇k. (5.40)

In this equation σ denotes the Cauchy stress tensor. In (5.40) ρ b̄ defines the volume
or body force (e.g. due to gravitation) and ρ v̇ is the inertia force term, which can
be neglected in the case of a static analysis. Furthermore, the Cauchy theorem,
which relates the stress vector t to the surface normal vector n is defined as

t = σT n, ti = σikni,






t1
t2
t3




 =




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33










n1

n2

n3




 . (5.41)

Equation (5.41) is stated here in direct notation, index and matrix notation.
The local balance of angular of momentum in the absence of micropolar stresses,

which is usually the case in non-magnetic materials [Truesdell and Toupin, 1960],
yields the following important result

σ = σT , σik = σki, (5.42)

which dictates the symmetry of the Cauchy stress tensor.

5.3.3 Transformation to the initial configuration, different
stress tensors

The equations for the local balance of moment (5.40) and (5.42) refer to the current
configuration. When a formulation of these equations related to the initial config-
uration B is needed, it is necessary to apply a pull back transformation. For this
transformation, more stress tensors are defined, which follow from the equivalence
of a force which is defined in B and ϕ (B):

∫

ϕ(∂B)

σ n da =

∫

∂B

σ J F−TN dA =

∫

∂B

PN dA. (5.43)
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Equation (5.43) defines the first Piola-Kirchhoff stress tensor P. The transformation
between the Cauchy stress tensor and the first Piola-Kirchhoff stress tensor P is
defined as

P = J σ F−T PAk = J σik (FiA)−1 . (5.44)

The first Piola-Kirchhoff stresses are the actual stresses in terms of the area of
the initial configuration. Since in equation (5.44) the spatial quantity σ is only
multiplied on one side by F, P it is a so-called two field tensor where one base
vector lies in B and the other in ϕ (B). After some manipulation, it is possible to
transform the local balance of momentum (5.40) to the reference configuration

Div P + ρ0 b̄ = ρ0 v̇ (5.45)

However, when using (5.44) in the balance of angular of momentum (5.42), it can
be seen that the Piola-Kirchhoff stress tensor in general is a nonsymmetric tensor:
PFT = FPT .

Another stress tensor, defined in relation to the reference configuration is the
second Piola-Kirchhoff stress tensor, a symmetric stress tensor, which follows from
the complete pull back of the Cauchy stress tensor to the reference configuration B,
as shown in the following equation:

S = F−1P = J F−1σ F−T ,

SAB = (FAi)
−1 PBi = J (FAi)

−1 σik (FkB)−1 .
(5.46)

The second Piola-Kirchhoff stress tensor S does not represent an experimentally
measurable stress. However, it is an essential stress measure that plays a prominent
role in the constitutive theory. It is ”work conjugated” (duality paired) with the
Green-Lagrangian strain tensor (5.20).

On the current configuration, besides the Cauchy stress tensor σ, the Kirchhoff
stress tensor τ is often employed, which is defined as the push forward of the second
Piola-Kirchhoff stress tensor S to the current configuration

τ = FSFT , τ = J σ. (5.47)

5.4 Weak Form of Balance of Momentum, Varia-

tional Principles

This section presents the variational formulation used for solving the boundary value
problems stemming from the continuum mechanics. Numerical methods, based on
variational formulations are used to obtain the solution to the problems.
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5.4.1 Weak form of balance of momentum in the initial con-
figuration

The principle of virtual work, also called the weak form of equilibrium, due to its
reduced regularity requirements, is an equivalent formulation of the balance of mo-
mentum, presented on (5.40) in the current configuration and on (5.45) on the refer-
ence configuration. Since no constitutive equations enter a priori on the expression
for the weak form, it is valid for all problem classes, including plasticity, hyperelas-
ticity or non-conservative loading. The derivation of the weak form starts from the
local equilibrium equation

(
Div P + ρ0 b̄ = ρ0 v̇

)
, written on the reference configu-

ration, which is then multiplied by a vector valued function η = {η |η = 0 on ∂Bu},
also called a virtual displacement or test function. Integrating over the volume of
the body under consideration yields the following result

∫

B

Div P · η dV +

∫

B

ρ0

(
b̄ − v̇

)
· η dV = 0. (5.48)

Using a partial integration scheme on the first term of (5.48) and using the divergence
theorem leads, with the boundary conditions, to the following weak form

G (ϕ,η) =

∫

B

P · Gradη dV −
∫

B

ρ0

(
b̄− v̇

)
· η dV −

∫

∂Bσ

t̄ · η dA = 0. (5.49)

In the previous expression, the gradient of η can also be viewed as a virtual variation
δF of the deformation gradient

δF =
∂

∂ǫ
[F (x + ǫη)]

∣∣∣∣
ǫ=0

. (5.50)

In (5.49) it is possible to exchange the first Piola-Kirchhoff stress tensor P with the
second Piola-Kirchhoff stress tensor S, by using the following modification

P · Gradη = S · FT Gradη = S · 1

2

(
FT Gradη + GradT η F

)
= S · δE, (5.51)

where the variation of the Green-Lagrangian strain tensor, computed according
to (5.35), has been used. Note that δE = 1

2
δC. In (5.51) one makes use of the

symmetry of S so that the antisymmetric part of FT Grad η disappears in the scalar
product. Using the modification presented in (5.51) it is possible to rewrite (5.49)
as

G (ϕ,η) =

∫

B

S · δE dV −
∫

B

ρ0

(
b̄− v̇

)
· η dV −

∫

∂Bσ

t̄ · η dA = 0. (5.52)
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In Equation (5.52), the first term denotes the virtual internal work or the stress
divergence, and the last two terms contain the virtual work of the external forces.
This equation can be written in index notation as follows:

G (ϕ,η) =

∫

B

SAB δEAB dV −
∫

B

ρ0

(
b̄A − v̇A

)
ηA dV −

∫

∂Bσ

t̄A ηA dA = 0. (5.53)

Providing that the solution is smooth enough, the strong form, described by
(5.45), and the weak form, descrybed by (5.52), are equivalent.

5.4.2 Spatial form of the weak formulation

Previous section presented the weak form of equilibrium (5.49) written on the refer-
ence, or material configuration. The transformation of the weak form to the current
configuration is achieved by using only pure geometrical operations. In order to
write the weak form of equilibrium in the current configuration ϕ (B), it is nec-
essary to transform the associated tensors by push forward operations. With the
transformation of the first Piola-Kirchhoff stress tensor to the Cauchy stress tensor,
as shown in (5.44), σ = 1

J
PFT , and by using (5.26) it is possible to derive

P · Gradη = J σ F−T · Gradη = J σ · Gradη F−1 = J σ · gradη. (5.54)

Furthermore, as dv = J dV and therefor ρ = ρ0 J is valid, it is possible to transform
the weak form (5.49) into the current configuration:

g (ϕ,η) =

∫

ϕ(B)

σ · gradη dv −
∫

ϕ(B)

ρ
(
b̄ − v̇

)
· η dv −

∫

ϕ(∂Bσ)

t̄ · η da = 0. (5.55)

In this equation, the result from (5.43) which shows the equivalence of a force
defined in B and ϕ (B) is used to transform the stress vector t̄ into ϕ (B). Using
the symmetry of the Cauchy stress tensor enables to replace the spatial gradient of
η by its symmetric part. Hence, with the definition

∇Sη =
1

2

(
gradη + gradT η

)
, (5.56)

it follows that

g (ϕ,η) =

∫

ϕ(B)

σ · ∇Sη dv −
∫

ϕ(B)

ρ
(
b̄− v̇

)
· η dv −

∫

ϕ(∂Bσ)

t̄ · η da = 0. (5.57)

The expression for the weak form of equilibrium in the spatial configuration (5.57)
has exactly the same structure as the principle of virtual work in the geometrically
linear theory. The difference, however, is that all integrals, stresses and gradients
have to be computed with respect to the current coordinates, which reflects the
nonlinearity of (5.57) [Wriggers, 2006].
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5.4.3 Minimum of total potential energy

When dealing with hyperelastic materials, a strain energy function W (see Sec-
tion 5.5.1) describes the elastic energy stored in a body B. Based on this function,
the classical minimum principle of the total elastic potential can be formulated.
For this the potential energy of the forces applied also have to be considered. As-
suming that these forces are conservative (meaning they are path-independent) and
neglecting dynamical effects, the following expression is obtained

Π (ϕ) =

∫

B

[
W (C) − ρ0 b̄ · ϕ

]
dV −

∫

∂Bσ

t̄ · ϕ dA =⇒ MIN. (5.58)

From all the possible deformation states ϕ the one that minimizes Π is the solution
for the problem. The minimum can be computed by a variation of (5.58). It is
related to the weak form (5.52) which can be shown by applying the directional
derivative, leading to the first variation of Π :

δΠ = DΠ (ϕ) · η

=
d

dα
Π (ϕ + αη)

∣∣∣∣
α=0

. (5.59)

Writing the first variation of Π in explicit form one obtains

DΠ (ϕ) · η =

∫

B

[
∂W

∂C
· δC − ρ0b̄ · η

]
dV −

∫

∂Bσ

t̄ · η dA = G (ϕ,η) = 0. (5.60)

The variation of the right Cauchy-Green tensor δC can easily be expressed in terms
of the Green-Lagrange strain tensor: 2 δC = δE. The partial derivative of W with
respect to C leads, with 2 ∂W / ∂C = S, to the second Piola-Kirchhoff stress tensor,
see Equation (5.61) in Section 5.5.1. Hence (5.60) is equivalent to the weak form
presented in (5.52).

Studding the construction of a minimal principle is important in several aspects,
since it enables investigations regarding the existence and uniqueness of solutions.
Additionally, special solution methods can be developed on the basis of a minimal
principle which are efficient and reliable.

5.5 Constitutive Equations

The constitutive laws that describe the material behavior for the body in study can
be arbitrary, and that does not affect the main formulation of the problem. However
it is clear that the physical properties of the bodies are influenced by the general
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constitutive behavior. Thus, to include a nonlinear constitutive equation valid for
large deformations, finite elasticity is discuss here. Of course, it is possible to con-
sider more complicated constitutive relations which can also be of inelastic nature,
but this is not the aim of this work. The works of [Desai and Siriwardane, 1984],
[Lubliner, 1990], [Khan and Huang, 1995], or [Simo and Hughes, 1998] should be
consulted for example for more complex constitutive behaviors.

5.5.1 Hyperelastic Materials

This section briefly presents the hyperelastic constitutive behavior, for more detailed
information, for example [Ogden, 1984] should be consulted. These can be applied
to describe the constitutive behavior of rubber, foam, or any other kind of soft tissues
such as muscles tissues, as shown on Chapter 6. In the case of small deformations,
these constitutive equations reduce to the classical Hooke’s law of linear elasticity.

For a hyperelastic material, the elastic energy stored in a body B is characterized
by a strain energy function W . For this type of materials, the constitutive equation
or response function for the second Piola-Kirchhoff stress is given by the partial
derivative of the strain energy W function with respect to the right Cauchy-Green
tensor, for example see [Ogden, 1984] or [Holzapfel, 2000].

S = 2
∂W (C,X)

∂C
, SAB = 2

∂W (C,X)

∂CAB

(5.61)

This response function is objective because (5.61) represents a constitutive relation
which fulfils the requirements of frame indifference [Wriggers, 2006]. In the case of a
homogeneous material, the strain energy W does not depend upon X. This section
only deals with homogeneous isotropic materials. Chapter 6 presents an nonisotropic
hyperelastic material behavior. The hyperelastic strain energy function W can be
represented by the following isotropic tensor function

W (C) = W (IC , IIC , IIIC) , (5.62)

where IC , IIC and IIIC are the invariants of the right Cauchy-Green train tensor.
Using the chain rule and (5.62), the second Piola-Kirchhoff stresses (5.61) is obtained
as

S = 2

[(
∂W

∂IC
+ IC

∂W

∂IIC

)
1 − ∂W

∂IIC
C + IIIC

∂W

∂IIIC
C−1

]
. (5.63)

where 1 is the second order identity tensor. In deriving (5.63), the following results
for the derivative of invariants with respect to tensors have been used:

∂IC
∂C

= 1,
∂IIC
∂C

= IC 1 − C,
∂IIIC
∂C

= IIIC C−1. (5.64)
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Considering a compressible Neo-Hookean material, which is characterized by one
of the simplest possible hyperelastic response function, the strain energy function
W , is defined as

W (IC , J) = g (J) +
1

2
µ (IC − 3) . (5.65)

when dealing with compressible materials, the function g (J) in (5.65) has to be
convex and the following growth conditions must hold:

lim
J→+∞

g (J) = lim
J→0+

g (J) = +∞ (5.66)

These conditions pose energy barriers (penalties) to the unbounded growth and
to the vanishing of the volume of the deformed body; in the first case the hydrostatic
pressure would grow to +∞ infinite and in the second case it would grow to −∞.
These growth conditions are satisfied when the compressible part g (J) is chosen,
for example as [Ciarlet, 1988]:

g (J) = c
(
J2 − 1

)
− (d+ µ) lnJ with c > 0, d > 0. (5.67)

The second Piola-Kirchhoff stress tensor for the Neo-Hookian material (5.65) is now
obtained using (5.63), and yields

S =
Λ

2

(
J2 − 1

)
C−1 + µ

(
1 −C−1

)
,

SAB =
Λ

2

(
J2 − 1

)
(CAB)−1 + µ

[
δAB − (CAB)−1] ,

(5.68)

where the constants c and d have been chosen as c = Λ / 4 and d = Λ / 2. The
material constants Λ and µ are the Lamé constants, which have to be determined
by experiments.

Using the definition (5.47) and (5.61), the Kirchhoff stress can be written in
terms of quantities defined in the initial configuration:

τ = 2F
∂W (C)

∂C
FT , τik = 2FiA

∂W (C)

∂CAB

FkB. (5.69)

Using definition (5.63), the Kirchhoff stress is obtained by the following expression

τ = 2

[(
∂W

∂IC
+ IC

∂W

∂IIC

)
FFT − ∂W

∂IIC
FCFT + IIIC

∂W

∂IIIC
FC−1FT

]
. (5.70)

Taking into consideration that the invariants of C and b are equal and using
FC−1FT = 1 it is possible to simplify (5.70), obtaining

τ = 2

[(
∂W

∂Ib
+ Ib

∂W

∂IIb

)
b− ∂W

∂IIb
b2 + IIIb

∂W

∂IIIb
1

]
. (5.71)
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Comparing the expression (5.71) with (5.63) it is easy to conclude that the Kirchhoff
stresses can also be derived directly in term of spatial quantities, using the following
expression:

τ = 2b
∂ψ (b)

∂b
. (5.72)

Equation (5.68) can also be transformed directly into the current configuration
by the standard push forward operations. Noting that the Cauchy stress tensor is
related to the second Piola-Kirchhoff stress tensor via the relation σ = J−1FSFT ,
see (5.46), it is possible to obtain, after some manipulation:

σ =
Λ

2J

(
J2 − 1

)
1 +

µ

J
(b − 1) , (5.73)

σik =
Λ

2J

(
J2 − 1

)
δik +

µ

J
(bik − δik) . (5.74)

5.5.2 Incremental constitutive tensor

In order to derive the incremental constitutive tensor it is necessary to compute the
rate of the response function (5.61). Differentiating the response function (5.61)
with respect to time, one obtains the following

Ṡ = 2
∂2W

∂C ∂C

[
Ċ

]
, (5.75)

Equation (5.75) represents an incremental relation between the rate of the second
Piola-Kirchhoff stress tensor S and the right Cauchy-Green tensor C. Defining a
fourth order incremental constitutive tensor in the following manner

C = 4
∂2W

∂C ∂C
, CABCD = 4

∂2W

∂CAB ∂CCD

, (5.76)

it is possible to rewrite (5.75) in order to obtain

Ṡ =
1

2
C

[
Ċ

]
, ṠAB =

1

2
CABCD ĊCD. (5.77)

The push forward of equation (5.77) to the current configuration is obtained
with the Lie-derivative of the Kirchhoff stress tensor, obtaining

(Lv τ )ik = FiA ṠAB FkB, (5.78)

Taking into account that the time derivative of the right Cauchy-Green tensors, see
(5.20) and (5.36), is

ĊCD = 2FlC dlm FmD (5.79)
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the relation (5.78) can be rewritten in the following form

(Lv τ )ik = FiA FlC FmD FkB CABCD dlm. (5.80)

where d is the symmetrical spatial velocity gradient, see (5.37). Equation (5.80)
represents a push forward of C because each base vector of the incremental con-
stitutive tensor C is transformed by F, therefor it is possible to define a spatial
incremental constitutive tensor cc as

cciklm = FiA FlC FmD FkB CABCD. (5.81)

Using (5.81) it is possible to write (5.80) in the following compact form

(Lv τ )ik = cciklm dlm, Lv τ = cc [d ] . (5.82)

With (5.82), the incremental constitutive tensor for the constitutive equations
(5.68), in the current configuration is obtained, by a push forward from the reference
configuration. For the Neo-Hookean material (5.65), the response function (5.68)
depends upon the deformation via the inverse of the right Cauchy-Green tensor and
its determinant: J =

√
IIIC . In order to obtain the computation of C using (5.76),

the derivatives of J and C−1 with respect to C have to be computed.
Taking into account (5.64), the derivative of the Jacobian is

∂J

∂C
=

1

2
J C−1 (5.83)

The derivative of C−1 is obtained taking into account that ∂
∂CCD

[
CAM C−1

MB

]
= 0,

as
C−1

AB

∂CCD

= −C−1
AC C

−1
BD. (5.84)

Since C is a symmetric tensor, it is only necessary to consider the symmetrical part
of (5.84), and introduce the fourth order tensor IC−1 which has the index notation

IC−1ABCD =
1

2

(
C−1

AC C
−1
BD + C−1

AD C
−1
BC

)
. (5.85)

Taking into account the definitions introduced, the constitutive tensor can now be
derived. After some algebraic manipulations, it is possible to obtain

C = Λ J2 C−1 ⊗C−1 +
[
2µ− Λ

(
J2 − 1

)]
IC−1 ,

CABCD = Λ J2C−1
AB C

−1
CD +

[
2µ− Λ

(
J2 − 1

)]
IC−1ABCD.

(5.86)

Making a push forward of the incremental constitutive tensor C to the current
configuration, by using (5.81) and taking into account the following simplification

C−1
AC C

−1
BD = F−1

pA F−1
pC F−1

qB F−1
qD FiA FlC FmD FkB = δpi δpl δqk δqm = δil δkm,
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the incremental constitutive tensor in the current configuration ϕ (B) is then ob-
tained as:

cc = Λ J2 1 ⊗ 1 +
[
2µ− Λ

(
J2 − 1

)]
I,

cciklm = Λ J2 δik δlm +
[
2µ− Λ

(
J2 − 1

)]
Iiklm,

(5.87)

where 1 is the second order unit tensor and I is a fourth order unit tensor. Both
tensors are related to the current configuration. In index notation the tensor I has
the following form

Iiklm =
1

2
(δil δkm + δim δkl) . (5.88)

A matrix representation of the incremental constitutive tensor in the current
configuration (5.82) is preferred for a numerical treatment within the method of fi-
nite elements. For this purpose the components of the Lie derivative of the Kirchhoff
stresses and the symmetrical spatial velocity gradient d are represented in vector
form. The incremental constitutive tensor (5.87) is then a matrix which can be used
to compute the incremental Kirchhoff stresses once d is known,

Lv τ = D d. (5.89)

For the case of the Neo-Hookean material, (5.89) can be explicitly writhen in the
following form






Lvτ11
Lvτ22
Lvτ33
Lvτ12
Lvτ23
Lvτ31






=





2µ+ Λ ΛJ2 ΛJ2 0 0 0
ΛJ2 2µ+ Λ ΛJ2 0 0 0
ΛJ2 ΛJ2 2µ+ Λ 0 0 0
0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α










d11

d22

d33

2d12

2d23

2d31






. (5.90)

with α = µ− 1

2
Λ

(
J2 − 1

)
.

For the implementation of the numerical procedures it is necessary to evaluate
the incremental constitutive tensor in (5.86) in the undeformed state in the initial
configuration. In the undeformed initial configuration, the deformation gradient F is
equal to 1 and therefor, also C−1 = 1 and J = 1. When the incremental constitutive
tensor in (5.86) is evaluated at the undeformed state in the initial configuration, it
is possible to obtain

C0 = Λ1 ⊗ 1 + 2µ I. (5.91)

This equation also follows directly from (5.87) since for F = 1 the initial and current
configuration coincide. The constitutive tensor C0 is identical to the elasticity tensor
of the geometrical linear theory of elasticity. Its matrix form is

σ = D0 ǫ. (5.92)
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For the case of the Neo-Hookean material, (5.92) can be explicitly writhen in the
following form






σ11

σ22

σ33

σ12

σ23

σ31






=





2µ+ Λ Λ Λ 0 0 0
Λ 2µ+ Λ Λ 0 0 0
Λ Λ 2µ+ Λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ










ǫ11
ǫ22
ǫ33
2ǫ12
2ǫ23
2ǫ31






. (5.93)

5.6 Linearization of the Equilibrium Equations

Nonlinearities on continuum mechanics can originate from a variety of phenomena.
There are geometrical nonlinearities, nonlinearities stemming from the constitutive
equations, or nonlinearities due to nonlinear boundary conditions, as in contact. In
order to solve initial or boundary value problems, the The linearization of the as-
sociated mathematical models is necessary. The solution of the linearized problem
is then obtained with a numerical method, like the Newton’s method, a very effi-
cient solution algorithm for nonlinear continuum problems, especially for numerical
methods like the finite element method.

This section presents a mathematical tool which allows to obtain the lineariza-
tions of nonlinear continuum problems. These tools are applied to the kinematical
relations, constitutive equations and to the weak forms. Mathematical details are
omitted, but they can be found on the literature, see [Marsden and Hughes, 1983]
for example.

In order to present the linearization process of the nonlinear continuum problems,
the linearization of a simple example is presented. Consider a scalar valued function
f which is continuous and has continuous first derivatives (C1-continuity). Under
this assumptions it is possible to express the function f in the neighborhood of x̄
using a Taylor series expansion at x̄:

f (x̄+ u) = f̄ + D̄f · u+R. (5.94)

In equation (5.94) the following notation has been used: f̄ = f (x̄) and D̄f = Df (x̄).
The operator D denotes the derivative of f with respect to x and ”.” is in this
case just a simple multiplication. In (5.94) u is an increment and the residual
term R = R (u) has the following property limu→0

R
|u|

→ 0. Figure 5.3 depicts the

geometrical interpretation of equation (5.94). With x̄ being a fixed coordinate in
(5.94), it becomes clear that (5.94) is a linear function in u, being u the independent
variable and D̄f , the tangent to the curve described by f at x̄, which touches the
curve in

(
x̄, f̄

)
.

f (u) = f̄ + D̄f · u (5.95)
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The linear part of f (x) for x = x̄, as given by (5.95), defines the linearization

L [f ]x=x̄ ≡ f (u) . (5.96)

The result presented for the one-dimensional case now be extended to scalar
valued functions in three dimensions. For the three dimensional case, f is now a
function of (x) and the Taylor series expansion is

f (x̄ + u) = f̄ + D̄f · u +R. (5.97)

where x̄ represents a point in the three-dimensional space, u a vector with its origin
in x̄ and the following definitions have been used:

f̄ = f (x̄) and D̄f = Df (x̄) =
∂f (x)

∂x

∣∣∣∣
x=x̄

, (5.98)

where D̄f denotes the gradient vector of f at x̄. Equation (5.97) can now be
rewritten as

f (x̄ + u) = f̄ + Grad f (x̄) · u +R. (5.99)

In Equation (5.99), the product ”·” is now a scalar product between two vectors.

x̄ x̄+ u x

f (x̄)

f (x)
Df (x̄) · uL [f ]x=x̄

Figure 5.3: Linearization of a function f (x) at x̄.

In three dimensions, the directional derivative of f is computed at x̄ in the direction
of u. The directional derivative is defined by

∂

∂ǫ
[f (x̄ + ǫu)]

∣∣∣∣
ǫ=0

, (5.100)

where ǫ is a scalar parameter. Here x̄ + ǫu is a line in the three-dimensional space,
and the directional derivative measures the increment of f in the direction of this
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line in x̄. The computation of the directional derivative follows with the chain rule
as

∂

∂ǫ
[f (x̄ + ǫu)]

∣∣∣∣
ǫ=0

=

[
∂f (x̄ + ǫu)

∂x
· ∂f (x̄ + ǫu)

∂ǫ

]

ǫ=0

=
∂f (x)

∂x
· u. (5.101)

which is equivalent to the tangent to f in x̄

∂

∂ǫ
[f (x̄ + ǫu)]

∣∣∣∣
ǫ=0

= D̄f · u (5.102)

The linearization of f at x̄ is then given by the value of f and the directional
derivative at x̄. The directional derivative is a linear operator, hence rules for
standard derivatives like the product rule apply.

The definition of the directional derivative for functions in higher dimensional
spaces is a straitforward application of the results presented. Considering the fol-
lowing C1-mapping, G : E → F , where x̄ and u are points in the associated space:

G (x̄ + u) = Ḡ + D̄G · u + R. (5.103)

Here now the ”·” is the inner product of the elements characterizing the associated
space. The directional derivative is now defined as

d

dǫ
[G (x̄ + ǫu)]

∣∣∣∣
ǫ=0

= D̄G · u. (5.104)

The linear part of the mapping (5.103) at x̄ is then

L [G]x=x̄ = Ḡ + D̄G · u. (5.105)

The elements that describe the space under consideration can be scalars, vectors
or tensors.

In order to simplify notation, the directional derivative D̄G · u will also be
written as ∆Ḡ, were the bar denotes the evaluation of G at point x̄.

Tensors which refer to the current configuration are linearized by first performing
a pull back transformation, to the reference configuration. There the linearization
is computed according to the rules presented before, and then the result is trans-
formed back to the reference configuration (push forward operation). Note that
the pull back and push forward operations depend upon the description of the ten-
sors, e.g. a covariant tensor has a different pull back than a contravariant tensor
[Wriggers, 2006]. Thus for tensors τ which refer to a covariant base (e.g. stress
tensors), the directional derivative has the form

D τ · u = F
{
D

[
F−1τ F−T

]
· u

}
FT . (5.106)

In an analogous way, a tensor which refers to a contravariant base like a strain tensor
has the directional derivative

D e · u = F−T
{
D

[
FTeF

]
· u

}
F−1. (5.107)
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5.6.1 Linearization of the kinematical quantities

This section presents the linearization of the strain measures introduced previously,
referring to the initial and the current configuration.

The first strain measure to be linearized is the Green-Lagrangian strain tensor
(5.20), which refers to the initial configuration. Using the definition presented on
(5.105), the linear part is obtained as

L [E ]ϕ=ϕ̄ = Ē + D̄E · u
= Ē + ∆ Ē, (5.108)

where the directional derivative D̄E · u has to be computed according to (5.104)

D̄E · u =
1

2

d

dǫ

[
FT (ϕ̄ + ǫu)F (ϕ̄ + ǫu) − 1

]∣∣∣∣
ǫ=0

∆Ē =
1

2

[
F̄T Gradu + GradTu F̄

]
. (5.109)

This result is linear in u and depends upon the deformation at ϕ̄, which is repre-
sented by F̄. When computing (5.109) at ϕ = X the following linear strain tensor
is obtained

L [E ]ϕ=X = 0 +
1

2

[
Gradu + GradTu

]
. (5.110)

For the linearization of a strain measure refereing to the current configuration,
the Almansi strain tensor, e = 1

2
(1 − b−1), is used. In order to obtain the lineariza-

tion it is necessary to compute in the first place the pull back of e using (5.23),
and then apply the directional derivative. This result is then pushed forward to the
current configuration

D e · u = F̄−T {DE · u} F̄−1

=
1

2

(
Gradu F̄−1 + F̄−T GradTu

)

=
1

2

(
gradu + grad

T
u
)

= ∇̄S∆u. (5.111)

The comparison of the obtained result with (5.109) shows that

∆Ē = F̄T ∇̄S∆u F̄. (5.112)

and therefor the linearization of the Almansi strain tensor leads to the same structure
as shown in equation (5.36) for the time derivative of the Green-Lagrangian strain
tensor.
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5.6.2 Linearization of the constitutive equations

When dealing with inelastic constitutive equations, the linearization depends upon
the algorithm which is used to integrate the evolution equations, and thus the lin-
earization can only be computed once the integration algorithm is known. The lin-
earization of the constitutive equations can be computed for hyperelastic response
functions in an analogous way as that for the time derivatives. This section only
presents the linearization of hyperelastic constitutive equations.

The response function for the second Piola-Kirchhoff stress tensor depending on
the right Cauchy-Green tensor, for a hyperelastic constitutive equation is described
by Equation (5.61). According to (5.105) its linearization yields

L [S ]ϕ=ϕ̄ = S̄ + D̄ S · u
= S̄ + ∆ S̄

= S̄ +
∂S

∂C

∣∣∣∣
ϕ=ϕ̄

[
D̄C · u

]
. (5.113)

This result can be reformulated with (5.76) and (5.109) as

L [S ]ϕ=ϕ̄ = S̄ + C̄
[
∆Ē

]
. (5.114)

Comparing this result with (5.113) yields

∆S̄ = C̄
[
∆Ē

]
. (5.115)

The relation (5.115) has the same structure as the incremental constitutive equation
(5.77). Only the time derivatives have to be replaced by the directional derivatives.

5.6.3 Linearization of the weak form

The utilization of approximate methods is in general the only way to obtain the
solution of nonlinear boundary value problems. Many of these methods, like the
finite element method, are based on the variational formulation of the field equations,
given for instance by the weak form or principle of virtual work. The equations for
the weak form of balance presented in (5.49) or (5.52) provide the starting point for
a numerical method. In order to obtain the solution of these nonlinear equations an
iterative scheme has to be used, since the discretization of the weak form results in
a nonlinear system of algebraic equations.

The utilization of Newton’s method, among many different iterative algorithms,
has been proven to often be the most efficient scheme, since it exhibits quadratic
convergence near the solution point. In order to apply Newton’s method to obtain
the solution of the problem, it is necessary to apply a Taylor series expansion of
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the nonlinear equation set at a point where the approximated solution is already
known. The necessary linearization can be computed with the aid of the directional
derivative.

The linearization of the weak form of equilibrium, based on equation (5.49), is
first derived with respect to the initial configuration. It is assumed that the lineariza-
tion is computed at a deformation state ϕ̄ at which the body under investigation is
in equilibrium.

The linear part of the weak form of equilibrium is given by the following expres-
sion

L [G ]ϕ=ϕ̄ = G (ϕ̄,η) +DG (ϕ̄,η) · ∆u. (5.116)

were G (ϕ̄,η) is equal to (5.49) and ϕ is exchanged by the state ϕ̄. The directional
derivative of G, needed to compute the linearization, is applied only to the first term
in (5.49) were the assumption of conservative loading is made

DG (ϕ̄,η) · ∆u =

∫

B

[DP (ϕ̄) · ∆u] · Gradη dV ; (5.117)

all other terms do not depend upon the deformation. The linearization of the first
Piola-Kirchhoff stress tensor allows to obtain, with P = FS,

DG (ϕ̄,η) · ∆u =

∫

B

{
Grad∆u S̄ + F̄ [DS (ϕ̄) · ∆u]

}
· Grad η dV. (5.118)

The quantities labelled with a bar have to be evaluated at ϕ̄. For the linearization
of the second Piola-Kirchhoff stresses, equation (5.115) can be used, which leads to

DS (ϕ̄) · ∆u = C̄
[
∆Ē

]
, (5.119)

where the last term is the linearization of the Green-Lagrangian strain tensor E at
ϕ̄, see (5.109). The incremental elasticity tensor C̄ is evaluated with respect to the
reference configuration using (5.76):

C̄ = 4
∂2W

∂C ∂C

∣∣∣∣
ϕ=ϕ̄

(5.120)

computed at ϕ = ϕ̄.
Introducing equation (5.120) into (5.118) allows to completes the linearization

and to obtain the following expression:

DG (ϕ̄,η) · ∆u =

∫

B

{
Grad∆u S̄ + F̄ C̄

[
∆Ē

]}
· Gradη dV. (5.121)
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By using of the trace operation and by considering the symmetry of C̄, the following
compact form of (5.121) can be obtained:

DG (ϕ̄,η) · ∆u =

∫

B

{
Grad∆u S̄ · Gradη + δĒ · C̄

[
∆Ē

]}
dV. (5.122)

It is important to note that symmetry exists for linearization with respect to η

and ∆u. In Equation (5.122), the first term is the so-called geometrical matrix or
initial stress matrix. The second term contains the initial deformations occurring
in the incremental constitutive tensor C̄, the variation of the Green-Lagrangian
strains defined as δĒ = 1

2

(
F̄T Gradη + GradT η F̄

)
and its linearization, defined as

∆Ē = 1
2

(
F̄T Grad∆u + GradT∆u F̄

)
. In index notation, equation (5.122) can be

written as

DG (ϕ̄,η)A ∆uA =

∫

B

{
∆uA,B S̄BC ηA,C + δĒAB C̄ABCD ∆ĒCD

}
dV. (5.123)

With Equation (5.122), all relations with respect to the initial configuration, are
known, and a iterative solution procedure like Newton’s method can now be ap-
plied. The basis for the discretization using the finite element method for nonlinear
problems in solid mechanics is now known. Equation (5.122) in the literature is also
known as the total Lagrange formulation [Belytschko et al., 2000].

The linearization of the weak form, defined in quantities in the current config-
uration is obtained by a push forward of the linearization (5.122) to the already
obtained deformations state ϕ̄. With the push forward of the Green-Lagrangian
strain tensor, the second term in (5.122) can be re-written as

∫

B

∇̄Sη · c̄c
[
∇̄S∆u

]
dV, (5.124)

where the fourth order tensor c̄c follows from C̄ by the transformation (5.81).
The first term in (5.122) can be transformed directly with τ̄ = F̄ S̄ F̄T , and

expressed in terms of the Kirchhoff stresses:

Grad∆u S̄ · Gradη = F̄ Grad∆u F̄−1τ̄ F̄−1 ·Gradη = grad∆u τ̄ · gradη. (5.125)

Using these transformations, the linearization in terms of quantities at the current
configuration state ϕ̄ is obtained as

Dg (ϕ̄,η) · ∆u =

∫

B

{
grad∆u τ̄ · gradη + ∇̄Sη · c̄c

[
∇̄S∆u

]}
dV. (5.126)
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By making the the transformation dv̄ = J̄ dV , the integral (5.126) can be trans-
formed into the current configuration ϕ̄. The Cauchy stress tensor σ̄ = 1

J
τ̄ is now

used, and the incremental constitutive tensor is defined as

¯̂cc =
1

J̄
c̄c (5.127)

such that the final result is obtained

Dg (ϕ̄,η) · ∆u =

∫

ϕ̄(B)

{
grad∆u σ̄ · gradη + ∇̄Sη · ¯̂cc

[
∇̄S∆u

]}
dv (5.128)

Equation (5.128) in the literature is also known as the updated Lagrange formulation
[Bathe et al., 1975], since the deformation state ϕ̄ is always updated during the
nonlinear incremental solution procedure.

With Equation (5.128), all relations with respect to the current configuration
are known. These can now be applied within an iterative solution procedure, such
as the Newton’s method. The basis for the discretization using the finite element
method for nonlinear problems in solid mechanics is now known.

5.6.4 Linearization of a deformation dependent load

The description of a pressure load leads to a surface load that depends upon the
current deformation state. The stress vector t is then given in terms of the pressure
p and the surface normal n by t̄ = pn. This leads to the necessity to add to the
weak form (5.57), written in the current configuration, the following additional term

g (ϕ,η) + gp (ϕ,η) = g (ϕ,η) +

∫

ϕ(∂BP )

pn · η da. (5.129)

To compute the linearization of this extra term, it is preferable to perform a pull
back operation and transform (5.129) to the initial configuration. Two methods are
possible. The first relies on the transformation of the surface normal using (5.11).
This allows to obtain the expression

∫
∂BP

p J F−TN · η dA where linearization is
complicated. In the second method, a simpler procedure is used, in which the
normal vector n is expressed by the cross product of the tangent vectors which are
tangent to the convective coordinates of the surface of the body, see Figure 5.4.

The normal unit vector follows with the tangent vectors, as defined in Figure 5.4,
gα (α = 1, 2) as

n =
g1 × g2

‖g1 × g2 ‖
. (5.130)

The tangent vectors can be computed from the deformation state using the equation
gα = ϕ,α and the area element da can be expressed by da =‖ g1 × g2 ‖ dθ1dθ2 in
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terms of the tangent vectors with respect to the convective coordinates. Based on
these relations, the virtual work for pressure loading is

gp (ϕ,η) =

∫

θ1

∫

θ2

p
(
ϕ,1 × ϕ,2

)
· η dθ1dθ2. (5.131)

With the introduction of the displacement field, the tangent vectors have the form
ϕ,α = (X + u),α. Hence the linearization of (5.131) yields

Dgp (ϕ,η) · ∆u =

∫

θ1

∫

θ2

p
(
∆u,1 × ϕ,2 + ϕ,1 × ∆u,2

)
· η dθ1dθ2. (5.132)

when p itself is independent of the deformation state. The linearization refers to
the convected coordinates. It can be pushed forward to the current configuration,
leading to

Dgp (ϕ,η) · ∆u =

∫

ϕ(∂Bp)

p
∆u,1 × ϕ,2 + ϕ,1 × ∆u,2

‖ ϕ,1 × ϕ,2 ‖
· η da. (5.133)

With this the linearization of a deformation-dependent pressure load, see (5.131),
has been derived. More theoretical considerations with regard to the noncon-
servative nature of deformation dependent loads can be found in [Sewell, 1967],
[Bufler, 1984], [Ogden, 1984] or [Simo et al., 1991].

n

θ1

θ2

g1

g2
da

ϕ (∂Bp)

Figure 5.4: Linearization of a pressure dependent surface load.

5.7 Discretization of the Continuum

This section presents the discretization of continua undergoing large strains using
isoparametric elements. This topic is discussed here only briefly. For a detailed
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treatment with respect to the finite element implementations of boundary-value
problems regarding large deformations, the references [Oden, 1972], [Crisfield, 1991],
[Bathe, 1996], [Crisfield, 1997] or [Zienkiewicz and Taylor, 2005] and the references
therein should be consulted.

Different approximations exist within the finite element method. These are ge-
ometrical approximations of the domain B on which the boundary value problem
is defined. The associated fields, deformations or stresses also have to be approx-
imated. Furthermore, the integrals are not evaluated exactly, since, as they are
evaluated for the weak form, they have to be computed via numerical integration
procedures. Collectively, these approximations are sources for errors inherent to the
finite element method.

The description of the interpolations, which are the basis for a treatment using
isoparametric elements, is presented here briefly. Within this framework, it is as-
sumed that the domain B is discretized by ne finite elements, which leads to the
geometrical approximation Bh:

B ≈ Bh =
ne⋃

e=1

Ωe. (5.134)

Figure 5.5 shows the configuration of one element Ωe ⊂ Bh, for a two-dimensional
case. In Figure 5.5, ∂Bh denotes the boundary of the discretization Bh, which is in
general also an approximation of the function describing the real boundary ∂B.

Ωe

∂Ωe

B

∂B∂Bh

Figure 5.5: Finite element discretization of a two-dimensional body B.
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5.7.1 Isoparametric Concept

The finite element method requires the field variables to be approximated by a finite
element Ωe. The displacement field u (X) is then written as

uexact (X) ≈ uh (X) =
N∑

I=1

NI (X)uI , (5.135)

where X is the position vector for a point inside Ωe, the interpolation or basis
functions which are defined on Ωe are represented by NI (X), and uI denotes the
unknown nodal variables for the finite element Ωe, which has N nodes. In the
present case, uI = {u1, u2, u3}T

I are the nodal variables of the displacement field.
During the development of the finite element method, many possibilities for the

interpolation of the unknown functions within an element can be used. Due to its
general applicability, especially when arbitrary geometries have to be discretized,
the isoparametric concept is widely used. On the isoparametric approach, the ge-
ometry and field variables are approximated by the same interpolation functions,
see Figure 5.6:

Xh
e =

n∑

I=1

NI (ξ)X I , and uh
e =

n∑

I=1

NI (ξ)uI . (5.136)

Equations (5.136) show that the interpolation functions NI (X) for an element Ωe

in Bh have been replaced by interpolation functions NI (ξ) defined on the reference
element Ω�, see Figure 5.6. Therefor, for each element Ωe, a transformation

X1

X2

ξ

ξ
η

η

Ω�

Ωe or ϕ (Ωe)

Figure 5.6: Isoparametric mapping between Ωe and Ω�.
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exists (5.136) which relates the coordinates Xe = Xe (ξ) to the coordinates ξ of the
reference element Ω�. Therefor, all computations are performed with respect to the
reference configuration. Only in few cases do the initial and current configurations
of a finite element coincide. This transformation is numerically easy to handle, and
allows the transformation of arbitrary geometries into the reference element. This
feature leads to the fact that, during the implementation of the method, there is
almost no difference in the formulation of finite elements with respect to the current
or initial configurations.

Figure 5.7 shows two different possibilities to describe deformation in continuum
mechanics using the isoparametric concept. It is easy to observe that Figure 5.7
is a discrete version of Figure 5.1, where the reference configuration Ω� has been
introduced. The kinematical relations within one element are obtained as follows

Fe = je J
−1
e and Je = detFe =

det je

detJe

, (5.137)

which show that the deformation gradient is uniquely defined by the isoparametric

jeJe

ϕ, Fe

ξ

ξ

ξ

η
η

η

Ω�

Ωe ϕ (Ωe)

Figure 5.7: Isoparametric description of deformations.

mapping of Ω� onto Ωe in the initial configuration, or onto ϕ (Ωe) in the current
configuration. In these equations, the gradients je and Je are defined as follows:

je = Gradξ x =
∂x

∂ξ
=

n∑

I=1

NI,ξ (ξ)xI ⊗ Eξ,

Je = Gradξ X =
∂X

∂ξ
=

n∑

I=1

NI,ξ (ξ)X I ⊗ Eξ.

(5.138)
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Since the derivatives NI,ξ are scalar quantities, they can be moved to the front of
the base vectors Eξ. This yields the following result

je =

n∑

I=1

xI ⊗NI,ξ (ξ)Eξ =

n∑

I=1

xI ⊗∇ξNI ,

Je =

n∑

I=1

X I ⊗NI,ξ (ξ)Eξ =

n∑

I=1

X I ⊗∇ξNI ,

(5.139)

where ∇ξNI is the gradient of the scalar function NI with respect to the coordinates
ξ. With this, it is simple to compute gradients with respect to the initial or current
configurations. For a vector field this reads as uh,

Graduh =
n∑

I=1

uI ⊗∇XNI ,

graduh =
n∑

I=1

uI ⊗∇xNI .

(5.140)

Analogous to the transformation of the derivatives between different configurations,
see (5.25), it is possible to obtain

∇ξNI = JT
e ∇XNI and ∇ξNI = jT

e ∇xNI , (5.141)

or the inverse relations

∇NNI = J−T
e ∇ξNI and ∇xNI = j−T

e ∇ξNI , (5.142)

such that the gradient in (5.140) is completely defined in quantities which are defined
in the reference configuration Ω� as

Graduh =
n∑

I=1

uI ⊗ J−T
e ∇ξNI ,

graduh =
n∑

I=1

uI ⊗ j−T
e ∇ξNI .

(5.143)

The only difference in the formulation of both gradients in (5.143) lies in the ex-
change of the gradients je and Je. This approach is advantageous, especially for
large deformation finite element formulations.
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5.7.1.1 Isoparametric interpolation functions

There exists a number of different possibilities to construct interpolation functions
for isoparametric elements. The concept of the Lagrange interpolation, e.g. see
[Zienkiewicz and Taylor, 2005] is used here. For a Lagrange polynomial of power
n− 1, for the one-dimensional case one obtains

NI (ξ) =
n∏

J=1
J 6=1

(ξJ − ξ)

(ξJ − ξI)
. (5.144)

For two-dimensional interpolations, the following product formulation is chosen

NJ (ξ, η) = NI (ξ)NK (η) , (5.145)

and for the three-dimensional interpolations,

NJ (ξ, η, ζ) = NI (ξ)NK (η)NL (ζ) , (5.146)

is chosen. In these definitions, J = 1, . . . ndim and I,K, L = 1, . . . n (where dim
is the spatial dimension of the problem). The interpolation or shape functions are
defined in the local coordinate system ξ = {ξ, η, ζ}.

Specific isoparametric shape functions for one, two and three-dimensional prob-
lems can be found in [Zienkiewicz and Taylor, 2005] or [Dhatt and Touzot, 1985],
for example.

The derivatives of the different shape functions with respect to the coordi-
nates of the initial or current configuration can be computed using (5.141). For
the derivatives with respect to the coordinates of the initial configuration, for the
three-dimensional case, the following is obtained

∇XNI =






NI,1

NI,2

NI,3




 = J−T
e






NI,ξ

NI,η

NI,ζ




 . (5.147)

The Jacobi matrix Je of the element Ωe, which is needed in this derivation, is
obtained from (5.139) giving:

Je =
n∑

I=1

X I ⊗∇ξNI =




X1,ξ X1,η X1,ζ

X2,ξ X2,η X2,ζ

X3,ξ X3,η X3,ζ



 . (5.148)

Within this formula, the components of Je are computed from

Xm,k =
n∑

I=1

NI,k Xm,I , (5.149)

where the partial derivative with respect to k stands for a derivative with respect
to ξ, η or ζ .
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5.7.2 Finite Element Discretization of the Weak Forms

It is possible to apply the one, two or three-dimensional shape functions to describe
the interpolation for the geometry and the field variables within the weak forms, in
a general way. The present section deals with this subject in a brief manner, using
equations (5.52) and (5.57). The linearizations of the weak forms are also considered
on this section. Following Figure 5.5, a domain is subdivided into ne finite elements.
This discretization leads to an approximation of the geometry, which affects the
representation of the boundary of the domain under consideration.

An interpolation as described in (5.136) is chosen for each finite element Ωe,
which approximates the displacement field u and the geometry. The integrals of the
weak form can then be written with the isoparametric interpolation as

∫

B

(. . .) dV ≈
∫

Bh

(. . .) dV =
ne⋃

e=1

∫

Ωe

(. . .) dΩ =
ne⋃

e=1

∫

Ω�

(. . .) d�. (5.150)

In (5.150) the operator
⋃

is introduced instead of a sum sign to denote the assembly
process which has to be performed in order to obtain the set of nonlinear algebraic
equations following from (5.150). The polynomial shape functions of the isopara-
metric interpolation ensures fulfillment of the inter-element continuity conditions, as
well as fulfillment of the boundary conditions within the global system of equations.
Since the assembly process is standard and well known, it is not described in detail
here. The references [Bathe, 1982], or [Zienkiewicz and Taylor, 2005], for example,
should be consulted for more details on this topic.

5.7.2.1 Total Lagrangian weak form

In order to obtain the approximation of the weak form (5.52), it is necessary to
obtain the discretization of the virtual internal work

∫
B
S · δE dV , the inertia terms∫

B
ρ0 v̇ · η dV the volume loads

∫
B
ρ0 b̄ · η dV and the surface loads

∫
Γ
t̄ · η dV .

For the virtual internal work, it is necessary to obtain the variation of the Green-
Lagrangian strain tensors within the element Ωe, see (5.150). Using (5.51) and
(5.140), it is possible to obtain

δEh =
1

2

n∑

I=1

[
FT

e (ηI ⊗∇XNI) + (∇XNI ⊗ ηI)Fe

]
, (5.151)

where the same interpolation was used for the deformation ϕ and the variation η.
In Equation (5.151), a finite element approximation of the deformation gradient
(5.7) has to be applied, which can be written with (5.140) within the element Ωe as

Fe =
n∑

K=1

(xK ⊗∇XNK) . (5.152)
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For the derivation of the matrix formulation needed within the computer implemen-
tation of finite elements, index notation is necessary. For (5.151) the following is
obtained

δEh
AB =

1

2

n∑

I=1

[FkANI,B +NI,AFkB] ηkI , (5.153)

where the different components of the deformation gradient are defined as follows
FkB =

∑n
J=1 xkJ NJ,B.

Within the matrix formulation, the symmetry of the Green-Lagrangian strain
tensor and its variation, can be considered. Therefor, it is possible to introduce
only six components instead of the nine components of the three-dimensional strain
tensor

δE =






δE11

δE22

δE33

2 δE12

2 δE23

2 δE13






=

n∑

I=1

BLI ηI , (5.154)

which can be approximated as a sum over the element nodes I with the matrices

BLI =





F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12 NI,1 F21NI,2 + F22 NI,1 F31NI,2 + F32 NI,1

F12NI,3 + F13 NI,2 F22NI,3 + F23 NI,2 F32NI,3 + F33 NI,2

F11NI,3 + F13 NI,1 F21NI,3 + F23 NI,1 F31NI,3 + F33 NI,1




. (5.155)

In Equation (5.154), the index L means that the matrix BLI is linear in the dis-
placements, since Fh = 1 + Graduh.

The stresses follow from the constitutive equation, which will be specified in the
associated sections. It is important to note that the stresses have to be computed
pointwise within the element, and result for instance in finite elasticity from a pure
evaluation of the response function. Since also the second Piola-Kirchhoff stress
tensor is symmetric, only six independent components are needed, which yields the
vector S = {S11, S22, S33, S12, S23, S13}T . Taking these preliminaries into account,
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the virtual internal work can be written as

∫

B

δEh · ShdV =

ne⋃

e=1

∫

Ωe

δETS dΩ

=

ne⋃

e=1

n∑

I=1

ηT
I

∫

Ωe

BT
LIS dΩ

=
ne⋃

e=1

n∑

I=1

ηT
I

∫

Ω�

BT
LI S detJe d�.

(5.156)

The last term in (5.156) already reflects the evaluation of the integrals with respect
to the configuration of the isoparametric reference element. To shorten the notation,
the following vector is introduced

RI (ue) =

∫

Ωe

BT
LI S dΩ , (5.157)

The virtual internal work can now be reformulated as

∫

B

δEh · Sh dV =
ne⋃

e=1

n∑

I=1

ηT
I RI (ue)

= ηTR (u) . (5.158)

In this equation η is the test function or virtual displacement and R (u) is the
stress divergence term, also known as the residual force vector, which results from
the assembly process of all the finite elements elements. In 5.158, δEh is linear with
respect to the displacement field, whereas the stress tensor Sh can still depend in
an arbitrary nonlinear form upon the displacements.

In the weak form (5.52), the inertia term, defined by
∫
B
ρ0v̇ · η dV , is computed

with interpolation of the velocity, using standard shape functions NK for the spatial
discretization,

v (X, t) =
n∑

K=1

NK (ξ)vK (t) . (5.159)

The acceleration is given by derivation of the nodal values vK(t), since the shape
functions NK depend only upon the spatial coordinates,

v̇ (X, t) =
n∑

K=1

NK (ξ) v̇K . (5.160)
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Inserting this result in the associated inertia term in (5.52), and applying the same
discretization as in (5.151) for the variations η, leads to

∫

B

ρ0 η · v̇ dV =

ne⋃

e=1

∫

Ωe

ρ0 ηT v̇ dV

=
ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I

∫

Ωe

NI ρ0NK dΩ v̇K .

(5.161)

By introducing the unit matrix I and applying to the nodal velocities v̇K = Iv̇K ,
the following mass matrix for a nodal pair I and K of an element Ωe is obtained

M IK =

∫

Ωe

NI ρ0 NK dΩ I , (5.162)

The inertia term for the global system is obtained as

∫

B

ρ0 η · v̇ dV =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I M IK v̇K

= ηTMv̇ , (5.163)

where M is the mass matrix and v̇ the acceleration vector after assembly of the
global structure.

The loading terms are determined in an analogous way. After inserting the finite
element approximations for the test function η, the following is obtained

∫

B

ρ0 η · b̄ dV +

∫

Γσ

η · t̄ dA =

ne⋃

e=1

n∑

I=1

ηT
I

∫

Ωe

ρ0 b̄NI dΩ +

+

nr⋃

r=1

m∑

I=1

ηT
I

∫

Γr

NI t̄ dΓ,

(5.164)

where nr are the number of loaded element boundaries and Γl is the element surface
of an element which is subjected to a surface load defined by the stress vector
t̄, as shown on Figure 5.8. For the interpolation function of the surface loads, a
function which is reduced by one dimension can used. Therefor, the surface loads in
Figure 5.8, which depicts a two-dimensional body, need as an approximation for the
test function along the boundary a one-dimensional function, defined by m surface
nodes (in Figure 5.8, m = 2 nodes). Some simplification can also be obtained here
considering
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t̄t̄

x1

x2

Ωe

ξ

ξ

Γr

Figure 5.8: Discretization of surface loads.

PI =

∫

Ωe

ρ b̄NI dΩ and Pσ
I =

∫

Γr

NI t̄ dΓ . (5.165)

The following load vectors are obtained

∫

B

ρη · b̄ dV +

∫

σ

η · t̄ dA =

ne⋃

e=1

n∑

I=1

ηT
I PI +

nr⋃

r=1

n∑

I=1

ηT
I Pσ

I

= ηTP, (5.166)

where the vector P contains all the information with regard to the loads acting on
the structure.

The matrix notation in (5.158), (5.163) and (5.166) yields, for the weak form
(5.52),

ηT [Mv̇ + R (u) − P] = 0. (5.167)

Due to the fact that the test function η is arbitrary, this leads to a nonlinear system
of ordinary differential equations:

Mv̇ + R (u) − P = 0. ∀u ∈ R
N . (5.168)

In (5.168) all quantities are evaluated with respect to the initial configuration and N
is the total number of degrees of freedoms contained in the unknown displacement
vector u. The acceleration vector is v̇ and M denotes the mass matrix.

In case that the inertia forces are zero (Mv̇ = 0), from the system of ordinary
differential equations a nonlinear algebraic system of equations which have to be
solved by an iterative procedure are obtained. In general the Newton’s method is
applied, and hence the linearization of (5.168) is needed, which is discussed in the
next section.
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5.7.2.2 Linearization of the Total Lagrangian weak form

For an efficient solution of the nonlinear algebraic equation systems (5.168), New-
ton’s method is applied which requires the linearization of (5.168). The linearization
is obtained assuming that the inertia terms can be neglected. The linearization can
be obtained by a direct discretization of the continuous formulation (5.122), pre-
sented here again:

DG (ϕ̄,η) · ∆u =

∫

B

{
Grad∆u S̄ · Gradη + δĒ · C̄

[
∆Ē

]}
dV.

For the first term with

Grad∆uh =
n∑

K=1

∆uK ⊗∇XNK ,

Gradη =
n∑

I=1

ηI ⊗∇XNI

(5.169)

the following discretization is obtained directly

∫

B

Grad∆u S̄ · Gradη dV =

ne⋃

e=1

n∑

I=1

n∑

K=1

∫

Ωe

(∆uK ⊗∇XNK) S̄ · (ηI ⊗∇XNI) dΩ,

(5.170)
which yields, with the rules for the dyadic and scalar products and with the following
definition ∆uK · ηI = ηT

I ∆uK = ηT
I I ∆uK ,

∫

B

Grad∆u S̄ · Gradη dV =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I

∫

Ωe

ḠIK I dΩ ∆uK , (5.171)

where the abbreviation
ḠIK = (∆XNI)

T
S̄ ∇XNK (5.172)

has been used. The matrix form of the scalar product (5.172) can be derived if the
gradients are described as vectors. This leads to

ḠIK =
[
NI,1 NI,2 NI,3

]



S̄11 S̄12 S̄13

S̄21 S̄22 S̄23

S̄31 S̄32 S̄33










NK,1

NK,2

NK,3




 . (5.173)

Relation (5.171) is independent from the constitutive equation, since only the stress
at configuration ϕ̄ have to be considered. Therefor, the matrix which defined by
(5.171) is often called the Initial Stress Matrix.
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The second term in (5.122)
∫

B

δĒ · C̄
[
∆Ē

]
dV

depends upon the incremental constitutive tensor C̄ which has to be evaluated at
configuration ϕ̄, and thus is directly connected to the constitutive equation. For
elastic materials this tensor has been given in Section 5.5.2 (e.g. see (5.86)). For
elasto-plastic or other constitutive equations, the associated matrix formulation can
be found in (5.89). Since ∆Ē has the same structure as δĒ, with (5.151) it is possible
to write

∆Eh =
1

2

n∑

I=1

[
FT

e (∆uI ⊗∇XNI) + (∇XNI ⊗ ∆uI)Fe

]
. (5.174)

From this relation, the matrix formulation follows with (5.155)

∆E =

n∑

I=1

BLI ∆uI . (5.175)

Introduction of this relation, together with the incremental constitutive tensor D̄,
allows to write

∫

B

δĒ · C̄
[
∆Ē

]
dV =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I

∫

Ωe

B̄
T

LI D̄ B̄LK dΩ ∆uk. (5.176)

Summarizing, the following discretization can be obtained
∫

B

{
Grad∆u S̄ · Gradη + δĒ · C̄

[
∆Ē

]}
dV =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I K̄TIK

∆uk. (5.177)

Here the matrix K̄TIK
denotes the ”tangent matrix” because it represents the tan-

gent to the deformation at ϕ̄:

K̄TIK
=

∫

Ωe

[
(∇XNI)

T
S̄∇XNK + B̄

T

LID̄ B̄LK

]
dΩ . (5.178)

It is stated for the nodal combination I, K within a finite element Ω . In this notation
the submatrix K̄TIK

has the size ndof ×ndof , where ndof is the number of degrees
of freedom for one node within the finite element (in three-dimensional problems
in continuum mechanics each point has three degrees of freedom, hence ndof = 3).
Indices I and K are nodes of an element, and thus directly associated with the
discretization. For example, for a ten node tetrahedron, n = 10, and therefor the
total size of the tangent matrix K̄Te

for one element is (n · ndof )×(n · ndof ) = 30×30.
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5.7.2.3 Updated Lagrangian weak form

The derivation of the matrix formulation for the weak form with respect to the
current configuration follows analogous to the derivation of equation (5.52), but
equation (5.55) is used as a basic equation. Within the integrals, the push forward
of the variation of the Green-Lagrangian strain tensor δE = ∇Sη is needed, see
(5.56). Hence (5.56) has to be approximated. With equations (5.140), this leads to

∇Sηh =
1

2

n∑

I=1

[(ηI ⊗∇xNI) + (∇xNI ⊗ ηI)] . (5.179)

As in the last section, it is advantageous to switch to index notation to derive the
matrix formulation. The following is obtained

(
∇Sη

)h

im
=

1

2

n∑

I=1

[ηiI NI,k +NI,i ηkI ] . (5.180)

On (5.180), NI,m = ∂NI/∂xm is the partial derivative of the shape functions with
respect to the spatial coordinates xm. These derivatives can be computed using
(5.142)

NI,k =
{
j−1
e

}
1k
NI,ξ +

{
j−1
e

}
2k
NI,η +

{
j−1
e

}
3k
NI,ζ, (5.181)

where {j−1
e }ik are the associated components of the inverse of the Jacobi matrix je.

Equation (5.180) yields the components of ∇Sηh. Due to symmetry, the vector(
∇Sηh

)T
= [η1,1, η2,2, η3,3, (η1,2 + η2,1) , (η2,3 + η3,2, ) , (η1,3 + η3,1)], which contains

the components of ∇Sηh, can be introduced. With this the approximation of the
spatial gradient is given by

∇Sηh =

n∑

I=1





NI,1 0 0
0 NI,2 0
0 0 NI,3

NI,2 NI,1 0
0 NI,3 NI,2

NI,3 0 NI,1










η1

η2

η3





I

=

n∑

I=1

B0I ηI . (5.182)

Note that matrix B0I does not contain any displacements, which is indicated by the
index ”0”.

With these preliminary remarks and the introduction of a vector σ, defined as
σ = {σ11, σ22, σ33, σ12, σ23, σ13}T , which contains the independent components of the
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Cauchy stress tensor, the internal virtual work in (5.55) can be written as
∫

ϕ(B)

∇Sηh · σh dv =
ne⋃

e=1

∫

ϕ(Ωe)

(
∇Sηh

)T
σh dω

=
ne⋃

e=1

n∑

I=1

ηT
I

∫

ϕ(Ωe)

BT
0I σ dω

=

ne⋃

e=1

n∑

I=1

ηT
I

∫

Ω�

BT
0I σ detje d�.

(5.183)

The last form in (5.183) already contains the reference to the isoparametric base
element Ω�. A comparison with the associated relation in (5.156) shows that both
formulations distinguish each other by the B-Matrix, the determinant of the isopara-
metric mapping (5.138) and, of course, the stress tensor. By introducing

rI (ue) =

∫

ϕ(Ωe)

BT
0I σ dω, (5.184)

the notation can be simplified, and for the virtual internal work one obtains
∫

ϕ(B)

∇Sηh · σh dv =

ne⋃

e=1

n∑

I=1

ηT
I rI (ue)

= ηTr (u) . (5.185)

With the transformation for the volume elements dv = J dV and the relation be-
tween the Cauchy stress tensor and the Kirchhoff stress tensor, see (5.47), which
yields τ = Jσ, the integral representing the virtual internal work in (5.183) can can
be transformed to the reference configuration:

∫

ϕ(B)

∇Sηh · σhdv =

∫

B

∇Sηh · τ hdV. (5.186)

Discretization with finite elements leads to
∫

B

∇Sηh · τ hdV =
ne⋃

e=1

∫

Ωe

(
∇Sηh

)T
τ h dΩ

=

ne⋃

e=1

n∑

I=1

ηT
I

∫

Ωe

BT
0I τ dΩ

=

ne⋃

e=1

n∑

I=1

ηT
I

∫

Ω�

BT
0I τ detJe d�.

(5.187)
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The residual vector denoting the stress divergence term is the defined by

rI (ue) =

∫

Ω�

BT
0I τ d�. (5.188)

The total internal work follows from (5.185).

The approximation of the inertia terms is performed according to (5.163). In
the same way, (5.166), the load terms are formulated. Therefor the finite element
discretization of the weak form with respect to the current configuration (5.55) can
be summarized:

ηT [Mv̇ + r (u) − P] = 0. (5.189)

which for arbitrary values of the test function η yields the nonlinear ordinary dif-
ferential system

Mv̇ + r (u) −P = 0. (5.190)

For static problems this system reduces to a nonlinear algebraic system of equations
for the unknown nodal displacements u:

g (u) = r (u) −P = 0 (5.191)

The vector representing the stress divergence term r (u) can be computed in equa-
tions (5.190) or (5.191) either by (5.184) or (5.188). Both formulations are equiva-
lent. Note that the relation (5.185) looks like the formulation in the linear theory,
only the quantities δe and σ are evaluated with respect to the current configuration.

5.7.2.4 Linearization of the Updated Lagrangian weak form

The derivation of two weak forms, equations (5.185) and (5.188), which differ only
in the region of integration, ϕ

(
Bh

)
or Bh where presented on the previous section.

The linearization of these forms is described in Section 5.6.3, thus is is only necessary
to apply the discretization to these results.

Linearization of the weak form (5.185) follows from equation (5.128), which is
given here again

Dg (ϕ̄,η) · ∆u =

∫

ϕ̄(B)

{
grad∆u σ̄ · gradη + ∇̄Sη · ¯̂cc

[
∇S∆u

]}
dv.

The first term has exactly the same form as the associated term in the formula-
tion with respect to the initial configuration. Hence the discretization is the same,
and can be directly adopted from the discretization in the initial configuration, see
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(5.171). Only the derivatives are now with respect to the coordinates x̄i of the
current configuration ϕ̄ (B). With the discretization of the gradient

grad∆uh =
n∑

K=1

∆uK ⊗ ∇̄xNK ,

grad ηh =
n∑

I=1

ηI ⊗ ∇̄xNI ,

(5.192)

the first part of the integrals is obtained
∫

ϕ̄(B)

grad∆u σ̄ · gradη dv =
ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I

∫

ϕ̄(Ωe)

ḡIK I dΩ ∆uk. (5.193)

Within this term, the abbreviation

ḡIK =
(
∇̄xNI

)T
σ̄ ∇̄xNK (5.194)

has been used. The matrix form of the scalar product follows, as in (5.173), as

ḡIK =
[
N̄I,1 N̄I,2 N̄I,3

]



σ̄11 σ̄12 σ̄13

σ̄21 σ̄22 σ̄23

σ̄31 σ̄32 σ̄33










N̄K,1

N̄K,2

N̄K,3




 . (5.195)

This equation is independent from the constitutive equation, as is (5.171), since
only the stresses of the configuration ϕ̄. enter the integral.

The second term in (5.128)
∫

ϕ̄(B)

∇̄Sη · ¯̂cc
[
∇̄S∆u

]
dv

depends upon the incremental constitutive tensor ĉc, evaluated at the current con-
figuration ϕ̄, and thus directly from the constitutive equation (e.g. see Section 5.5.2,
equation (5.87)). Using the same arguments as for linearization with respect to the
initial configuration and (5.182), it is possible to obtain

∫

ϕ̄(B)

∇̄Sη · ¯̂cc
[
∇̄S∆u

]
dv =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I

∫

ϕ̄(Ωe)

B̄
T

0I D̄
M

B̄0K dΩ ∆uK , (5.196)

where all quantities in the integrals have to be evaluated at ϕ̄. In summary, the
following discretization is obtained

∫

ϕ̄(B)

{
grad∆u σ̄ · gradη + ∇̄Sη · ¯̂cc

[
∇S∆u

]}
dv =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I K̄

M

TIK
∆uK ,

(5.197)
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where matrix K̄
M

TIK
is the tangent matrix with respect to the current configuration,

K̄
M

TIK
=

∫

ϕ̄(Ωe)

[(
∇̄xNI

)T
σ̄ ∇̄xNK + B̄

T

0I D̄
M

B̄0K

]
dω. (5.198)

It is defined for the combination of nodes I, K within the element Ωe, see also Sec-
tion 5.7.2.2. The discretization of the weak form (5.188) in the current configuration
follows in an analogous way. Only the final result is presented here:

∫

ϕ̄(B)

{
grad∆u τ̄ · grad η + ∇̄Sη · c̄c

[
∇S∆u

]}
dv =

ne⋃

e=1

n∑

I=1

n∑

K=1

ηT
I K̄

MR

TIK
∆uK ,

(5.199)

where matrix K̄
MR

TIK
is the tangent matrix with respect to the current configuration:

K̄
MR

TIK
=

∫

Ωe

[(
∇̄xNI

)T
τ̄ ∇̄xNK + B̄

T

0I D̄
MR

B̄0K

]
dΩ . (5.200)

The matrix form D̄
MR

of the incremental constitutive tensor c̄c can be found for a
Neo-Hookean material, e.g. in (5.89). The associated form for D̄

M
results from the

transformation with the Jacobi determinant J , as given in (5.127).



Chapter 6

A constitutive model for the
behavior of the human pelvic floor
muscles

6.1 Introduction

The soft tissues of the human body have a highly nonlinear mechanical behavior
and their passive properties can frequently be described by nonlinear hyperelastic or
viscoelastic constitutive relations [Fung, 1993]. Due to their structure, namely the
orientation of the muscle fibers, the skeletal muscles have, definitely, a nonisotropic
behavior. In addition, skeletal muscles are distinct from other soft biological tis-
sues because of their capability of active contraction: they have the possibility of
generating tension forces (stresses) when their length decreases. The justification
for this can be found at the microscopic level (see Section 6.2.2): some filaments
in the muscles fibers can slide with respect to each other and chemical connections
can be established between such filaments at varying locations along their lengths
as a result of an activation process triggered by neural electrical stimulation. This
means that a part of the muscle strain in the direction of the fibers, the muscle
contractile strain, is the result of a complex electro-chemical activation process. In
this work this activation process will not be modelled as such in the finite element
deformation analysis.

In this work, for the 3-D constitutive behavior of the pelvic floor muscles a
modified form of the constitutive equation proposed earlier by Humphrey and Yin
[Humphrey and Yin, 1987] for the passive deformation of cardiac muscle tissues is
adopted, as presented by Martins in [Martins et al., 1998]. The non-isotropy of the
the pelvic floor muscles results from the existence of muscle fibers, the direction of
which is taken into account in Humphrey’s model. Humphrey’s model follows the
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guidelines of the work of Spencer [Spencer, 1984] on fiber-reinforced incompressible
hyperelastic composites, the strain energy density function in Humphrey’s model is
the sum of a fiber term and a term related to the embedding matrix, the latter being
assumed to be isotropic. The modifications in Humphrey’s model considered in this
work have the objective of making it qualitatively and quantitatively compatible
with the passive and active longitudinal behavior of the pelvic floor muscles. The
resulting 3-D model is consistent with the 1-D models proposed by Hill [Hill, 1938]
and Zajac [Zajac, 1989].

6.2 Constitutive equations

As mentioned before, the constitutive equation adopted in this work for the 3-D
passive and active behavior of skeletal muscles is a modified form of the incom-
pressible transversely isotropic hyperelastic model proposed by Humphrey and Yin
[Humphrey and Yin, 1987] for passive cardiac tissues. A quasi-incompressible ver-
sion of the latter model is described in Section 6.2.1. In Section 6.2.2, the microscopic
structure and the operating principles of the skeletal muscles are summarized as a
basis for the presentation of the 1-D models proposed by Hill [Hill, 1938] and Zajac
[Zajac, 1989] for those muscles. Finally, in Section 6.2.3, the model presented in
Section 6.2.1 is modified to make it compatible with the requirements and models
described in Section 6.2.2.

6.2.1 Quasi-incompressible version of Humphrey’s constitu-
tive model

In this section, a quasi-incompressible version of Humphrey’s constitutive model
is presented. For a quasi-incompressible material, the strain energy function, per
unit volume of the reference configuration, adopted by Humphrey and Yin can be
written in the following form [Humphrey and Yin, 1987]:

U = UI

(
ĪC
1

)
+ Uf

(
λ̄f

)
+ UJ (J) . (6.1)

The strain energy density function (6.1) is the sum of a term related to the embed-
ding matrix, assumed isotropic, a fiber term and a term associated with the volume
change. On (6.1) UI is the strain energy stored in the isotropic matrix embedding
the muscle fibers, defined as:

UI = c
{
exp

[
b
(
ĪC
1 − 3

)]
− 1

}
, (6.2)

where ĪC
1 is the first invariant of the right Cauchy-Green strain tensor with the

volume change eliminated:

ĪC
1 = tr C̄ = tr

(
F̄T F̄

)
= J− 2

3 trC, (6.3)
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F̄ being the deformation gradient with the volume change eliminated:

F̄ = J− 1

3F, (6.4)

and J the volume change:
J = detF. (6.5)

On (6.1) the strain energy stored in the various muscle fibers families is given by Uf

and is defined as:
Uf = A

{
exp

[
a

(
λ̄f − 1

)2
]
− 1

}
, (6.6)

where λ̄f represents the fiber stretch ratio in the direction N of the undeformed
fiber:

λ̄f =
√

NT C̄N =
√

C̄ : (N ⊗ N), (6.7)

and ⊗ represents the tensor product. On (6.1) the portion of the strain energy
associated with the volume change is given by UJ :

UJ =
1

D
(J − 1)2 . (6.8)

In these definitions presented here, c, b, A, a and D are constants which are defined
in Section 6.2.4. As a remark, in the incompressible case J = 1, C = C̄ and λf = λ̄f

and the Humphrey’s strain energy is recovered. The strain energy density defined
in (6.1) is now used to obtain the 2nd Piola-Kirchhoff stress tensor S:

S =
∂U

∂E
=
∂UI

∂E
+
∂Uf

∂E
+
∂UJ

∂E
= SI + Sf + SJ , (6.9)

were E is the Green-Lagrange strain tensor, as defined in the previous chapter, in
equation 5.20.

To obtain an expression for S it is necessary to apply the chain rule to (6.2-6.8),
obtaining the following expressions:

∂UI

∂E
=
∂UI

∂ĪC
1

∂ĪC
1

∂E
, (6.10)

∂Uf

∂E
=
∂Uf

∂λ̄f

∂λ̄f

∂E
, (6.11)

∂UJ

∂E
=
∂UJ

∂J

∂J

∂E
. (6.12)

In the expressions (6.10)-(6.12), the derivatives ∂UI/∂Ī
C
1 , ∂Uf/∂λ̄f and ∂UJ/∂J are

obtained as follows:

U
′

I =
∂UI

∂ĪC
1

= bc exp
[
b
(
ĪC
1 − 3

)]
(6.13)
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U
′

f =
∂Uf

∂λ̄f

= 2a
(
λ̄f − 1

)
A exp

[
a

(
λ̄f − 1

)2
]
, (6.14)

U
′

J =
∂UJ

∂J
=

2

D
(J − 1) , (6.15)

and the derivatives ∂ĪC
1 /∂E, ∂λ̄f/∂E and ∂J/∂E necessary to define (6.10)-(6.12)

are obtained by the following expressions:

∂ĪC
1

∂E
= 2J− 2

3 1 − 2

3

1

J
ĪC
1

∂J

∂E
, (6.16)

∂λ̄f

∂E
= J− 2

3 λ̄−1
f (N⊗ N) − 1

3

λ̄f

J

∂J

∂E
, (6.17)

∂J

∂E
= J C−1, (6.18)

where 1 is the unit 2nd order tensor. With these definitions it is now possible to
obtain S by the following expression:

S = U
′

I

(
2J− 2

3 1 − 2

3
ĪC
1 C−1

)
+

+ U
′

f

(
J− 2

3 λ̄−1
f (N⊗ N) − 1

3
λ̄fC

−1

)
+ JU

′

JC
−1. (6.19)

This expression can be rewritten in a form similar to the one provided by Simo
[Simo, 1987]:

S = J− 2

3 DEV

[
∂

∂Ē
(UI + Uf )

]
+ J

∂UJ

∂J
C−1, (6.20)

where DEV is the deviator operator in the reference configuration with the right
Cauchy-Green strain tensor C operating as metric tensor. The definition of the
DEV operator is the following:

DEV [ · ] = ( · ) − 1

3
[C : ( · ) ]C−1. (6.21)

On expression 6.20, Ē is the Green-Lagrange strain tensor with the volume change
eliminated:

Ē =
1

2

(
C̄ − 1

)
. (6.22)

The expression for the 2nd Piola-Kirchhoff stress tensor S (6.20), using the oper-
ator DEV (6.21) can easily be demonstrated, using (6.3) and the following expres-
sions:

∂UI

∂Ē
=
∂UI

∂ĪC
1

∂ĪC
1

∂Ē
, (6.23)
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∂ĪC
1

∂Ē
= 21, (6.24)

∂Uf

∂Ē
=
∂Uf

∂λ̄f

∂λ̄f

∂Ē
, (6.25)

∂λ̄f

∂Ē
=

1

λ̄f

(N ⊗ N) . (6.26)

The first term in the second member of (6.19) is obtained by applying the DEV
operator to the term ∂ŪI/∂Ē, obtaining the following result:

J− 2

3 DEV

(
∂ŪI

∂Ē

)
= 2J− 2

3U
′

I1 − 2

3
J− 2

3

[
C : U

′

I1
]
C−1

= Ū
′

I

(
2J− 2

31 − 2

3
J− 2

3 IC
1 C−1

)

= Ū
′

I

(
2J− 2

31 − 2

3
ĪC
1 C−1

)
.

The second term in the second member of (6.19) is obtained by applying the DEV
operator to the term ∂Uf/∂Ē, obtaining the following result:

J− 2

3 DEV

(
∂Uf

∂Ē

)
= J− 2

3U
′

f λ̄
−1
f (N⊗ N) − 1

3

1

λ̄f

U
′

f

[
C̄ : (N ⊗ N)

]
C−1

= U
′

f

(
J− 2

3 λ̄−1
f (N ⊗ N) − 1

3
λ̄fC

−1

)
.

Using these definitions, expression (6.20) can be rewritten in the following way:

S = J− 2

3 DEV
[
2U

′

I1 + U
′

f λ̄
−1
f (N⊗ N)

]
+ JU

′

JC
−1. (6.27)

The definition of the Cauchy stress tensor is an important step for the implemen-
tation of the constitutive model. Making use of (5.45), the following expression for
the Cauchy stress tensor σ can be obtained:

σ =
1

J

{
U

′

I

[
2J− 2

3 FFT − 2

3
ĪC
1 FC−1FT

]
+

+ U
′

f

[
J− 2

3 λ̄−1
f F (N ⊗N)FT − 1

3
λ̄fFC−1FT

]
+

+ JU
′

JFC−1FT

}

. (6.28)
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The expression for the Cauchy stress tensor (6.28) can be simplified, by taking in
consideration that:

B̄ = J− 2

3 FFT (6.29)

and that the following products result in the second order identity tensor 1:

FC−1FT = FF−1F−TFT = 1. (6.30)

Taking also in account that the current muscle fiber direction n is given by the
following expression:

n = J− 1

3

FN

λ̄f

, (6.31)

equation (6.28) for the Cauchy stress tensor can now be rewritten in the following
form:

σ =
1

J

[
U

′

I

(
2B̄− 2

3
ĪC
1 1

)
+ U

′

f

(
λ̄f n⊗ n− 1

3
λ̄f1

)]
+ U

′

J1. (6.32)

In view of (5.45) it is possible to conclude that, in the spatial description, (6.20)
may be recast in the following equivalent form:

σ =
1

J
dev

{
F̄

[
∂

∂Ē
(UI + Uf )

]
F̄T

}
+ U

′

J1, (6.33)

were ”dev” is now the operator deviator in the spatial configuration of the indicated
argument,

dev [ · ] = ( · ) − 1

3
tr ( · )1. (6.34)

Using expression (6.23) to (6.26), is possible to rewrite equation (6.33),obtaining
the following expression:

σ = J−1 dev
[
2U

′

IB̄ + λ̄fU
′

f (n ⊗ n)
]

+ U
′

J1. (6.35)

The material version of the tangent operator, which is necessary for the imple-
mentation of the constitutive model in ABAQUS (see Section 6.3), is defined as
follows:

H =
∂2U

∂E∂E
=
∂S

∂E
. (6.36)

For the definition of the material tangent operator it is necessary to obtain the
differentiation of each of the three terms present in (6.9). The differentiation of the



Constitutive equations 145

first term yields the following result:

∂SI

∂E
=

∂

∂E

(
U

′

I

∂ĪC
1

∂E

)

= U
′′

I

[
4J− 4

31 ⊗ 1 − 4

3
J− 2

3 ĪC
1

(
1 ⊗C−1 + C−1 ⊗ 1

)
+

+
4

9

(
ĪC
1

)2
C−1 ⊗ C−1

]
−

−U ′

I

[
4

3
J− 2

3

(
1 ⊗ C−1 + C−1 ⊗ 1

)
+

+
2

3
ĪC
1

∂C−1

∂E
− 4

9
ĪC
1 C−1 ⊗ C−1

]
. (6.37)

The differentiation of the second term yields the following result:

∂Sf

∂E
=

∂

∂E

(
U

′

f

∂λ̄f

∂E

)

= U
′′

f

[
J− 4

3 λ̄−2
f (N ⊗ N⊗ N ⊗N)−

−1

3
J− 2

3

(
N⊗ N ⊗ C−1 + C−1 ⊗ N ⊗N

)
+

1

9
λ̄2

fC
−1 ⊗ C−1

]
−

−U ′

f

[
J− 4

3 λ̄−3
f (N ⊗N ⊗ N⊗ N)+

+
1

3
J− 2

3 λ̄−1
f

(
N ⊗ N ⊗C−1 + C−1 ⊗ N⊗ N

)
−

−1

9
λ̄fC

−1 ⊗C−1 +
1

3
λ̄f

∂C−1

∂E

]
. (6.38)

The differentiation of the third term yields the following result:

∂SJ

∂E
= J

(
U

′

J + JU
′′

J

) (
C−1 ⊗C−1

)
+ JU

′

J

∂C−1

∂E
. (6.39)

In (6.37) to (6.39), U
′′

I , U
′′

f and U
′′

J are the second derivatives of U
′

I , U
′

f and U
′

J

respectively, and are defined as follows:

U
′′

I =
∂U

′

I

∂ĪC
1

= b2c exp
[
b
(
ĪC
1 − 3

)]
, (6.40)

U
′′

f =
∂U

′

f

∂λ̄f

= 2aA exp
[
a

(
λ̄f − 1

)2
] {

1 + 2a
(
λ̄f − 1

)2
}

(6.41)
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U
′′

J =
∂U

′

J

∂J
=

2

D
. (6.42)

In the expressions (6.37) to (6.39), it is necessary to define the derivative ∂C−1/∂E,
which is obtained by the following expression:

(
∂C−1

∂E

)

ijkl

=
∂C−1

ij

∂Ekl

= −
(
C−1

ik C
−1
jl + C−1

il C
−1
jk

)
. (6.43)

Collecting and rearranging terms, the following final form for the material tangent
operator can be obtained:

H= 4J− 4

3U
′′

I (1 ⊗ 1) −

−4

3
J− 2

3

(
U

′

I + ĪC
I U

′′

I

) (
1 ⊗ C−1 + C−1 ⊗ 1

)
+

+

[
4

9
IC
1

(
U

′

I + ĪC
1 U

′′

I

)
+

1

9
λ̄f

(
U

′

f + λ̄fU
′′

f

)
+ J

(
U

′

J + JU
′′

J

)] (
C−1 ⊗ C−1

)
+

+J− 4

3 λ̄−2
f

(
U

′′

f + λ̄−1
f U

′

f

)
(N ⊗N ⊗ N ⊗N) −

−1

3
J− 2

3

(
U

′′

f + λ̄−1
f U

′

f

) (
N ⊗N ⊗ C−1 + C−1 ⊗ N ⊗N

)
−

−
(

2

3
ĪC
1 U

′

I +
1

3
λ̄fU

′

f − JU
′

J

)
∂C−1

∂E
. (6.44)

The spatial tangent operator h can now be obtained through a push-forward oper-
ation:

hijkl =
1

J
FimFjnFkpFlpHmnpq. (6.45)

Inserting (6.44) into (6.45) it is now possible to obtain the final expression for the
spatial tangent operator:

h=
4

J
U

′′

I

(
B̄ ⊗ B̄

)
− 4

3
J−1

(
U

′

I + ĪC
I U

′′

I

) (
B̄⊗ 1 + 1 ⊗ B̄

)
+

+
1

J

[
4

9
IC
1

(
U

′

I + ĪC
1 U

′′

I

)
+

1

9
λ̄f

(
U

′

f + λ̄fU
′′

f

)
+ J

(
U

′

J + JU
′′

J

)]
(1 ⊗ 1) +

+
λ̄2

f

J

(
U

′′

f − λ̄−1
f U

′

f

)
(n⊗ n⊗ n⊗ n) −

−1

3

λ̄2

J

(
U

′′

f + λ̄−1
f U

′

f

)
(n ⊗ n⊗ 1 + 1 ⊗ n⊗ n) +

+
2

J

(
2

3
ĪC
1 U

′

I +
1

3
λ̄fU

′

f − JU
′

J

)
I, (6.46)

where I is the 4th order unit tensor.
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6.2.2 Structure, operating principles and 1-D mechanical
models of the pelvic floor muscles

The muscle tissue is a complex structure with a well defined hierarchy which can be
distinguished when observed at various levels of magnification [Seeley et al., 2004].

At the lowest level of magnification, it is observed that muscles are surrounded
by a fibrous connective tissue, the epimysium, and composed of many bundles, or
fascicles, which are in turn encased in a dense connective tissue, the perimysium
(Fig. 6.1a).

Using a higher level of magnification (Fig. 6.1b), it is possible to observe the fas-
cicles, composed of long cylindrical cells with many hundreds of nuclei, the muscle
fibers, which in turn are surrounded by a loose connective tissue, the endomysium.
Between the muscle fibers it is possible to find blood vessels and beneath the en-
domysium, the loose connective tissue that surrounds each muscle fiber, a thin
elastic sheath with infoldings is found, the sarcolemma. The muscle fibers are the
structural units of the muscle tissue and they range in thickness from about 10 to
100 µm and in length from about 1 to 30 cm.

Increasing the level of magnification even higher (Fig. 6.1c), it can be seen that
the muscle fibers are formed by a large number of strands, the myofibrils, along
the length of which a repeating structure is found, the sarcomeres, which are the
functional units of the contractile system.

At the highest level of magnification (Fig. 6.1d), each sarcomere is found to be
composed of thick and thin myofilaments, made of the proteins myosin and actin,
respectively. The actin filaments are attached at one end but are free along their
length to slide with respect to the myosin filaments and to make and brake chemical
connections at different locations with the heads, cross-bridges, of the molecules
of myosin. This is the process that is responsible for active contraction and force
generation in the muscles (Fig. 6.1e).

This process is regulated by two additional proteins in the actin filament, the
tropomyosin and the troponin and a key role on turning on and off the contractile
activity is played by the calcium ion, the concentration of which, in the neighborhood
of the cross-bridges, is changed as a result of electric stimuli from the neurons.

The smallest part of a muscle that can contract independently, a motor unit,
is composed of a neuron and the muscle fibers stimulated by it. In large muscles
each motor unit may have 1000 to 2000 muscle fibers. The degree of activation of
a muscle is a result of the number of activated (recruited) motor units. Note that
the fibers of each motor unit are not contiguous but are dispersed throughout the
muscle; thus, even if a single motor unit were stimulated, a large portion of the
muscle would appear to contract.

The longitudinal and transversal repetitive structure of the muscle and the dis-
persion of the motor units throughout the muscle suggest that the muscle behavior
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Figure 6.1: Structure of a skeletal muscle (adapted from [Seeley et al., 2004]).
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is a scaled up version of the behavior of the muscle fibers which is in turn a scaled
up version of the behavior of the sarcomeres.

The models proposed in the literature for the global mechanical behavior of
each skeletal muscle reflect the structure and operating principles described above.
A simple mechanical model was proposed by Hill in 1938 [Hill, 1938] and is still the
basis for most of the currently used models. It is composed of three elements, as
depicted in Fig. 6.2:

• A contractile element (CE), which models the active part of the muscle, freely
extensible when unactivated, but capable of shortening when activated;

• A series element (SE), a nonlinear spring arranged in series with the contrac-
tile element, which allows a rapid change of the muscle state from inactive to
active and provides an energy storing mechanism;

• A parallel element (PE), a nonlinear spring arranged in parallel with the two
previous elements, which is responsible for the passive behavior of the muscle
when it is stretched, even when the contractile element is not activated.

FM

FM

LM

Contractile
Element (CE)

Series
Element (SE)

Passive
Element (PE)

Figure 6.2: Hill’s three element muscle model.

Although these interpretations are not unanimously accepted, the contractile
element is generally identified with the sliding actin and myosin filaments, and the
active force generated in this element is a result of the number of active cross-
bridges between them. The series element is commonly associated with the intrinsic
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elasticity of these myofilaments and cross-bridges and the parallel element may
be related to the elasticity of the connective tissues (epimysium, perimysium and
endomysium) and the sarcolemma.

From Figure 6.2 it is clear that the muscle force FM , the forces in the contractile
element, in the series element and in the parallel element, FCE, F SE and F PE,
respectively, satisfy the equilibrium equation:

FM = F PE + F SE (6.47)

FCE = F SE (6.48)

On the other hand, the muscle length LM and the lengths LCE , LSE and LPE

of those elements satisfy
LM = LPE (6.49)

LM = LSE + LCE (6.50)

Denoting by LM
0 the rest length of the muscle. When fully activated at the

constant length LM
0 the muscle develops a force FM

0 known as the peak isometric
muscle force, i.e. the maximum steady-state tension force that a muscle can develop
under isometric conditions; the length LM

0 is thus also known as the optimal muscle
length. Gordon et al [Gordon and Huxley, 1966] tested this with a single skeletal
fiber of a frog’s skeletal muscle and concluded that if LM/LM

0 was too small or too
large, the tension would drop to zero. The maximum tension was produced when
LM/LM

0 = 1.
When non-activated

(
FCE = F SE = 0

)
, the muscle develops a force in the pas-

sive element (F PE) that is positive for LM/LM
0 > 1 (when the muscle is stretched)

and that is essentially null for LM/LM
0 ≤ 1 (when the muscle is compressed). The

evolution of F PE is given by the following expression:

F PE = FM
0 fPE

(
λM

)
(6.51)

where λM = LM/LM
0 is the muscle stretch and fPE is an expression, function of λM .

When activated the muscle develops a force in the contractile element that is
positive for 0.5 < λM < 1.5 and that is essentially null for other values of λM :

F SE = FM
0 fSE

(
λM , α

)
(6.52)

where α is the activation level ranging from 0 to 1. In what concerns the series
elastic element, experimental evidence characterizes it as a nonlinear spring, the
stiffness of which is a function of the force F SE in the same element [Zajac, 1989].

When activated, the muscle force developed in the contractile element depends
on the muscle length (the muscle stretch λM), on the velocity of deformation of the
contractile element (not considered on this work) and on the activation level.
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Dividing the expressions (6.51) and (6.52) by the muscle physiological cross sec-
tion area A0, the nonlinear elastic relations for the longitudinal first Piola-Kirchhoff
stresses in the parallel element and in the series element becomes:

T PE = TM
0 fPE

(
λM

)
(6.53)

T SE = TM
0 fSE

(
λM , α

)
(6.54)

where TM
0 = FM

0 /A0, is the muscle peak stress; this quantity may vary from
muscle to muscle, particularly between ”fast” and ”slow” muscles and between
young and old subjects [Zajac, 1989; Martins et al., 1998]: values ranging from 0.16
MPa to 1 MPa have been quoted in the literature [Crowningsfield and Brand, 1981;
Zajac, 1989].

6.2.3 Constitutive model for the passive and active behavior

of the human pelvic floor muscles

The model adopted for the 3-D passive and active behavior of the pelvic floor muscles
is a generalization of the 3-D transversely isotropic hyperelastic model of Humphrey
and Yin [Humphrey and Yin, 1987] presented in Section 6.2.1. This generalization
is done in such a way that the muscle fiber term (6.6) already present in Humphrey’s
model is now modified to make it qualitatively and quantitatively compatible with
the 1-D (longitudinal) constitutive equations (6.53) and (6.54) for the parallel and
series elastic elements of the pelvic floor muscles. On the other hand, the additional
(passive) elasticity given by the 3-D isotropic hyperelastic term (6.2) in Humphrey’s
model is tentatively kept with the same form, but with different parameter values.

The strain energy density per unit volume of the reference configuration is now
given by the following expression:

U = UI

(
ĪC
1

)
+ Uf

(
λ̄f , α

)
+ UJ (J) , (6.55)

where UI , and UJ , are defined in (6.2) and (6.8), respectively, and Uf is the strain
energy stored in the muscle fibers which can be divided into a passive elastic part
(UPE) and an active part (USE) due to the contraction.

Uf

(
λ̄f , α

)
= UPE

(
λ̄f

)
+ USE

(
λ̄f , α

)
. (6.56)

For the passive strain energy, UPE , it was used the expression defined in (6.6) and
for the strain energy due to the contraction, the following expression, as presented
in [Aulignac et al., 2004] was assumed :

USE

(
λ̄f , α

)
= TM

0

∫ λ̄f

1

fSE

(
λM , α

)
dλM . (6.57)
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where for the function fSE

(
λM , α

)
the following expression was used:

fSE

(
λM , α

)
= α

{
1 − 4

(
λM − 1

)2
, for 0.5 < λM < 1.5

0 otherwise
(6.58)

which means that for values of λm > 1.5 or λm < 0.5 the muscle produces no energy.
With these definitions, the second Piola-Kirchhoff stresses and the Cauchy stresses

are again given by expressions (6.19) and (6.32), respectively. On these expressions
U

′

f , given by (6.14), is now defined as:

U
′

f = U
′

PE + U
′

SE. (6.59)

The expression for U
′

PE is given in (6.14) and U
′

SE is defined as:

U
′

SE

(
λ̄f , α

)
= TM

0 fSE

(
λ̄f , α

)
. (6.60)

In what concerns the Jacobian of the constitutive model, it is again given by
expression (6.44) or (6.46). The definition of U

′′

f given by (6.41), is now defined as:

U
′′

f = U
′′

PE + U
′′

SE, (6.61)

where U
′′

PE is defined in (6.41) and U
′′

SE is defined as:

U
′′

SE

(
λ̄f , α

)
= TM

0 f
′

SE

(
λ̄f , α

)
, (6.62)

and the derivative f
′

SE is defined as:

f
′

SE

(
λ̄f , α

)
= αTM

0

{
−8

(
λ̄f − 1

)
, for 0.5 < λ̄f < 1.5

0 otherwise.
(6.63)

6.2.4 Material parameters for the constitutive model imple-
mented

The parameters for the material model implemented were obtained from the data
produced by Janda [Janda, 2006]. In his work, Janda performed tests on three
female pelvic floor fresh cadaver specimens (82, 66 and 38 years old). For the
obtention of the parameters, a iterative process was used, by varying the constants
b, c, A and a and running a small simulation (Figure 6.3) in accordance with the
details of the tests performed by Janda. The procedure was repeated until a good
fitting between the results from the FEM simulations and the results obtained by
Janda was obtained. Figure 6.4 shows the experimental data obtained by Janda
and the curve obtained by the finite element simulation.
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(a) Initial model (b) Deformed model, deformation aplied in
the fiber direction.

Figure 6.3: Finite element model used to obtain the material constants.

The parameters obtained that resulted in a good agreement with the experimental
data are the following: c = 1.85 × 10−2N/mm2, b = 1.173, A = 2.80 × 10−2N/mm2

and a = 0.6215.

For the parameter D, related with the penalty condition (6.8) that ensures the
incompressibility condition the value D = 1 × 10−4mm2/N was used.

The parameter TM
0 for the maximum tension produced by the muscle at resting

length was considered to be TM
0 = 0.682Pa, in accordance with values proposed in

the literature [Aulignac et al., 2004].

Figure 6.4 shows the stress/stretch relation obtained when stretching the model
in the fiber direction.

6.3 Implementation in Abaqus

A standard general purpose finite element code such as ABAQUS is used to conduct
the finite element simulations. The ABAQUS library of material models, although
presenting a wide variety of materials, is not useful in what concerns the mechanical
modeling of soft human tissues, with the possible exemption of some particular sim-
pler cases. Nevertheless ABAQUS contains a user subroutine (UMAT) in which the
user may code his own model, allowing ABAQUS to conduct simulations with com-
plex constitutive equations, as the non-isotropic hyperelastic constitutive equation
proposed in this work.

In the UMAT, given de deformation gradient, the user has to define the Cauchy
stress tensor σ and the Jacobian matrix of the constitutive model, d∆σ/d∆ǫ, were
∆σ are the stress increments and ∆ǫ are the strain increments. Since ABAQUS /
Standard is most commonly used with implicit time integration, the exact definition
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of the consistent Jacobian should be used to ensure rapid convergence, this is par-
ticulary important if the material model allows large volume changes and geometric
nonlinearity is considered.
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Figure 6.4: Test for the passive stretch of a cube in the in the direction of the
fibers using the obtained parameters and experimental data obtained by Janda
[Janda, 2006].



Chapter 7

Finite Element Simulations

7.1 Introduction

Pelvic floor dysfunctions represent an extensive problem with unknown dimensions.
A study conducted by Olsen et al., based on a population under one health care
system, showed that 11% of women had surgery for urinary incontinence or pelvic or-
gan prolapse during their lifetime [Olsen et al., 1997]. Furthermore, statistics show
that 30 to 40% of women suffer from some degree of incontinence in their lifetime
[Kenton and Mueller, 2006]. Other study, conducted by Rortveit et al showed that
the prevalence of this problem among nulliparous women ranged from 8% to 32%,
increasing with age. They also showed that parity was associated with incontinence,
the first delivery being the most significant [Rortveit et al., 2001].

It is still unclear whether muscle damage or neuropathy is the primary mech-
anism for the development of pelvic floor disorders, but some authors believe that
the dysfunctions are largely caused by damage of connective tissues (ligaments and
fascia) and muscles of the pelvic floor [Papa Petros, 2004]. Pregnancy and child-
birth are considered particularly traumatic events leading to mechanical injury of
the anal sphincter and levator ani muscles and to neuropathy of the pudendal nerves
[Gregory and Nygaard, 2004]. The combined action of ligaments, fascia and muscles
keeps in place and strengthens the pelvic organs, and the urethra, vagina and rectum
[Papa Petros, 2004]. The normal function of the pelvic organs is thus dependent on
the integrity of the pelvic floor structure. The repair of damaged ligaments/muscles
should allow the cure of many of these conditions. Modern reconstructive pelvic
floor surgery [Papa Petros, 2004], [Leval, 2003], [Delorme, 2001], uses polymeric or
biologic tapes or meshes to reconstruct damaged suspensor ligaments or reinforce
fascia tissue. The use of precise numerical models of the female pelvic cavity will,
in the future, provide the tools to simulate, in a realistic manner, the pelvic floor
function and the effects of its dysfunctions. And, in this manner, provide tools that
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will allow surgeons to plan the surgery and perform it in a more controlled and
reliable way.

During delivery, the pelvic floor experiences several changes, which cannot be
measured in vivo due to clinical, technical and ethical reasons. Therefore, with
this work, a biomechanical method of modeling a biologic process, in this case
delivery, in order to estimate biomechanical changes (stretch, strain, etc) on tissues
is presented. Knowledge of these biomechanical changes might help to explain known
phenomena associated with delivery and pregnancy, like damage to the pelvic floor
tissues, including the levator ani muscle. The purpose of the vaginal childbirth
simulation presented is to determine the stretches and stresses induced in the pelvic
floor muscles by the passage of a fetus.

To achieve these goals it is necessary to have a good geometrical description of
the anatomy of the pelvic region, as well as good models of the complex mechanical
behavior of the muscles and supporting structures in presence. These topics will be
addressed in the following sections.

7.2 Geometrical and Finite Element Models

The construction of a 3D geometric model (such as the pelvic cavity) that can be
manipulated, by numerical methods, to simulate the living human is still a chal-
lenge, namely due to the high complexity of human anatomy as recognized by
several authors [DeLancey, 1999; Papa Petros, 2004]. There is also great lack of
understanding of continuum biomechanics of soft biological tissues, as recognized
by Humphrey [Humphrey, 2003].

One of the first attempts to model a human body was carried out in the USA,
by slicing a frozen cadaver [Heinrichs, 1996] taking pictures of each slice. Although
this project didn’t produce any geometries, the data produced allowed many in-
vestigators to postprocess the data in order to obtain different geometrical models
of the human body. The construction of a model (such as the pelvic cavity) that
can be manipulated, by numerical methods, to simulate for a living human dif-
ferent boundary conditions is still a challenge that will probably take more than a
decade to materialize, due to the high complexity of the anatomy of the human body
as recognized by several authors [DeLancey, 1999; Papa Petros, 2004] and also the
Open Problems regarding the Continuum biomechanics of soft biological tissues, as
recognized by Humphrey [Humphrey, 2003].

Recently there have been some attempts to obtain a model for the human body
[DeLancey, 1999], the pelvic floor cavity [Janda et al., 2003; Aulignac et al., 2005]
and its contents [Hoyte et al., 2004; Boukerrou et al., 2004]. However at present
there is not enough knowledge about the structural relationships identified by MRI
imaging [Hoyte et al., 2004], to allow a precise numerical modelling to be developed
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[Lien et al., 2004; Lien et al., 2005] .
In this work the Finite Element Method is used to conduct a biomechanical study

of the pelvic floor muscles [Fung and Tong, 2001; Zienkiewicz and Taylor, 2005].
Using a finite element model which simulates the pelvic bones, pelvic floor mus-
cles and fetus, the stretches and the deformations on the pelvic floor induced by the
passage of the fetus, during a vaginal delivery, were measured.

A similar method as been used before to obtain the levator ani stretch during a
vaginal delivery [Lien et al., 2004; Lien et al., 2005], but to our knowledge the work
presented here is the first made using realistic models for the fetus and pelvic floor.

Simulation of the dynamic biomechanics of the body structures, its organs and
interactions requires not only to know the physical properties of muscles, connective
tissues and bone structures but also the activation mechanisms of the nervous sys-
tem. Although hyperelastic constitutive models, with incorporated fiber activation,
have been proposed in the past [Zahalak, 1981], reliable material coefficients and val-
idated constitutive expressions to incorporate in the analysis are still lacking. Clin-
ical aspects of pelvic floor disorders have been extensively studied in particular the
effect of pregnancy and childbirth [Dimpfl et al., 1998; Gregory and Nygaard, 2004],
however it is widely recognized that the understanding of pelvic floor components
(muscles, nervous, fascia) damage and its interaction is still very limited; in par-
ticular a global perspective of the function of the pelvic floor and its anomalies is
completely lacking [Gregory and Nygaard, 2004].

7.2.1 Pelvic floor Finite Element Model

The pelvic floor is composed of a group of muscles, which spreads across the inferior
or the underlying surface of the pelvis. As a group, these muscles originate at the
pubis, which is located anteriorly, at the frontal portion of the pelvis, just above the
genitals, and extend back to the coccyx. These muscles have the form of a thick
sheath, hence the name, ”pelvic floor” muscles (see Chapter 2 for more details). To
visualize the location and shape of these muscles see the finite element models of
Figures 7.1-7.2.

Although standard 2-dimensional MRI and more recently, 3-dimensional MRI
have been used to assess the anatomy of the female pelvic floor in cadavers and
living women [Hoyte et al., 2004], the quality of the obtained geometric models is
still reduced and therefore an alternative approach to the construction of the finite
element model was used.

The finite element model of the pelvic floor used in this work was constructed
using a geometrical data point-set obtained from cadaver measurements by Janda et
al (Figure 7.1a). All the measurements were performed on one embalmed 72 years
old female cadaver obtained for scientific research with no known pathologies of the
pelvic floor [Janda et al., 2003]. The specimen was selected for having no pathology
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(a) Points

(b) Surfaces generated

(c) Finite element mesh.

Figure 7.1: Points, surfaces and finite element mesh.
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to the pelvic floor. The cause of death was unknown and presumably not affecting
the pelvic floor musculature. The result was a 3D point-set of the pelvic floor.

In Figure 7.1 the process used for the creation of the model is shown. Using the
available points, lines were created, which allowed the definition of surfaces (Figure
7.1b) that were then used for the creation of the finite element mesh (Figure 7.1c).
Initially a 3D model made with 4-node shell elements was obtained, which was then
extruded to obtain the final 3D mesh, using 8-node hexahedral elements (volumetric
elements). For the pelvic floor muscles it was assumed a constant thickness of 2mm
[Aulignac et al., 2004; Aulignac et al., 2005].

In all the finite element simulations conducted, the nodes connected to the pelvic
bone, ligament, and coccyx were fixed and all the others were left free.

For the childbirth simulations the finite element model of the pelvic floor was
connected to a model of the pelvic skeletal structure (Figure 7.3 and Figure 7.4).
To join the two models, some improvements to the initial model of the pelvic floor
were made.

On Figure 7.2 the principal dimensions of the pelvic floor model are shown. These
dimensions are in accordance with other models in the literature [Lien et al., 2004].

7.2.2 Pelvic girdle Finite Element Model

The pelvic girdle is the basin-shaped complex of bones that connects the trunk and
legs, supports and balances the trunk, and contains and supports the intestines, uri-
nary bladder, and internal sex organs. The pelvic girdle consists of paired hipbones,
connected in front at the pubic symphysis and behind by the sacrum (see Chapter 2
for more details).

For the finite element simulations conducted in this work, the finite element
model of the pelvic floor was connected to a model of the pelvic skeletal structure
(Figure 7.3-7.4).

In order to join the two models, some improvements to the initial model of the
pelvic floor had to be made: the Meshes 1 and 2 were added, as seen on Figure
7.5. The Mesh 1 represents the different connections between muscles of the pelvic
floor and the coccyx, while the Mesh 2 represents the Arcus Tendineus, Obturator
fascia and the Obturator Internus, which have a very important role in supporting
the pelvic floor muscles.

The pelvic floor model attached to the pelvic girdle model is presented on Figure
7.6. The presence of the pelvic girdle finite element model has two main reasons,
it helps to understand which nodes of the pelvic floor mesh will be restrained and
which ones will be left free. As shown in the following sections, the pelvic floor
girdle is also necessary in order to define the movements of the fetus, where the
fetus cannot occupy the position of the pelvic girdle bones. After the boundary
conditions are imposed and the movement of the fetus established, the pelvic girdle
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(a) Points
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(b) Surfaces generated

Figure 7.2: Pelvic floor dimensions.
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(a) Points (b) Surfaces generated

Figure 7.3: Pelvic girdle dimensions.
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Figure 7.4: 3D view of the Finite Element model for the bones.
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Mesh 2

Mesh 1

Pelvic Floor Mesh

(a) Meshes added for support

(b) Modified pelvic floor

Figure 7.5: Pelvic floor model and meshes added for support.
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model is removed, because its presence is no longer necessary and the computation
time is faster.

Figure 7.6: The two models joined together.

7.2.3 Fetus Finite Element Model

A fetus finite element model is necessary for the simulation of a childbirth, as pre-
sented in the following Sections. Figures 7.7 and 7.10 show the finite element model
used is this work. The dimensions of the fetus model were adjusted in order for the
principal obstetric dimensions for the head to be in accordance with the literature
for a full-term fetus.
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For the simulations of a vaginal delivery, the fetus shown in Figure 7.7 is not
on a correct position. The first step applied to the fetus model was to reposition
its arms and legs into a position appropriated for delivery. After a succession of
simulations, using only the fetus mesh, and applying displacements to its arms and
legs, the final mesh for the fetus, with the arms and legs repositioned is shown in
Figure 7.8.

As the fetus head dimensions of the fetus are of major importance for the simula-
tions conducted on the following sections, the scale of the fetus was adjusted in order
to set this dimensions in accordance with the literature [Llewellyn-Jones, 2004]. Fig-
ure 7.9 shows the details of the fetus head and the principal obstetric dimensions.

Figure 7.7: Fetus finite element model used.

The principal obstetric dimensions for the head are the following: Suboccipito-
bregmatic diameter, 10 cm, Suboccipito-frontal diameter, 10.5 cm, Occipito-frontal
diameter, 12.0 cm, Mento-vertical diameter, 13.0 cm and Submento-bregmatic di-
ameter, 11.5 cm. These dimensions, shown in Figure 7.9 are in accordance with the
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(a) Right view (b) Front view (c) Left view

Figure 7.8: Details of the fetus finite element model.

Biparietal
diameter 9.0 cm

Bitemporal
diameter 7.5 cm

Occipito-frontal
diameter 12.0 cm

1

4

2

3

5

Diameter Length Presentation
1 Suboccipito-bregmatic 9.5 cm Flexed vertex
2 Suboccipito-frontal 10.5 cm Partially deflexed vertex
3 Occipito-frontal 11.5 cm Deflexed vertex
4 Mento-vertical 13.0 cm Brow
5 Submento-bregmatic 9.5 cm Face

Figure 7.9: Dimension of the fetus head.



Geometrical and Finite Element Models 167

literature [Llewellyn-Jones, 2004].
In the simulations presented in the next sections, the simulations terminate after

the fetus head passes the pelvic floor, therefore, the fetus head dimensions have
major importance in the problem simulated.

P1

P2

P3

P4

Figure 7.10: Fetus model and points used to control its movements.

The fetus finite element mesh is formed by tetrahedral elements. To control
the movements of the fetus mesh the following approach was used: inside the fetus
mesh, 4 groups of elements were given the properties of rigid elements and to each
of these groups a reference node was assigned. Figure 7.10 shows the location of the
different reference points. Therefore, by controlling the displacements and rotations
of the reference nodes, the movements of the fetus are defined.

The material properties given to the remaining fetus mesh correspond to those
of a material with a high stiffness, such that the fetus can be considerer rigid when
compared with the pelvic floor. As the main purpose of this work is to study the
behavior of the pelvic floor muscles during a vaginal delivery, using this approach
will reduce the fetus deformations and facilitate the convergence of the simulation.
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7.3 Numerical simulations of a childbirth delivery

in vertex position

Labor is a sequence of uterine contractions that results in effacement and dilatation
of the cervix and voluntary bearing-down efforts leading to the expulsion of the fetus
through the vagina. Delivery is the mode of expulsion of the fetus and placenta.
Labor and delivery is a normal physiologic process that most women experience
without complications [DeCherney and Nathan, 2003].

Taking into account the irregular form of the birth canal and the relatively large
dimensions of a grown up fetal head, it becomes evident that some of the diameters
of the fetal head cannot pass trough the pelvis. Therefore, for the birth to take place,
a process of adaptation and accommodation of the different dimensions of the fetal
head to the different dimensions of the birth canal has to occur. The modifications
in the position of the presenting part during labor are known as the mechanism of
labor (see Chapter4).

The pelvic dimensions and configuration, the size of the fetus, and the strength
of the contractions dictate the progress of labor. In essence, delivery proceeds along
the line of least resistance, i.e., by adaptation of the smallest achievable diameters
of the presenting part to the most favorable dimensions and contours of the birth
canal.

The vertex position is when the baby’s head is positioned to come out first, before
the rest of the body, at birth. During normal labor the baby’s head rotates so that
the baby’s face is toward the mother’s back and the top of the baby’s head is facing
up (Figures 7.11-7.12). When this does not occur it is referred to as malposition
and it may lead to difficult labor [DeCherney and Nathan, 2003]. Abnormalities of
the fetal position, presentation, attitude or lie are known as malpresentations and
they constitute collectively the most common cause of fetal dystocia, occurring in
approximately 5% of all labors [DeCherney and Nathan, 2003].

The pelvic floor was modeled using hexahedral, eight-node elements (Abaqus
C3D8H elements) and the muscle constitutive bahaviour was defined by imple-
menting a UMAT subroutine in FORTRAN language [Hibbitt and Sorensen, 2007].
More details in the implementation can be consulted on Section 6.3. The con-
stitutive model adopted in this work [Martins et al., 1998] for the 3D behavior
of the pelvic floor muscles is a modified form of the incompressible transversely
isotropic hyperelastic model proposed for passive cardiac tissues by Humphrey and
Yin [Humphrey and Yin, 1987]. Mesh 1 and Mesh 2 were modeled using C3D8H el-
ements (Figure 7.5) and the Neo-Hookean constitutive model, used in several other
biomechanical studies [Peña et al., 2006] was used.

The fetus was modeled using tetrahedral elements and was considered as a de-
formable body, but with a very high stiffness. The movement of the fetus was
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imposed by controlling the movement of several points belonging to the fetus model
(Figure 7.10). All the finite element simulations were made with a non-linear anal-
ysis using the implicit version of the ABAQUS software.

The different finite element simulations presented on the following sections were
made by imposing a predefined movement to the fetus, in order to obtain the stresses
and strains on the pelvic floor. This methodology allows to apply different move-
ments of the fetus during birth and to study the influence of those movements on
the pelvic floor.

This problem is being intensely studied, and therefore it is possible to find in
the literature some works that deals with it [Hoyte et al., 2004], [Lien et al., 2004],
but to our knowledge, the simulation presented here is the first one using realistic
models for the fetus body.

In this work, a vaginal delivery is shown in which different simulations were
conducted. On Section 7.3.1 is shown a vaginal delivery where the fetus presents in
occipito anterior position. On Section 7.3.1.1 the influence of the muscle activation
on the pelvic floor, during a vaginal delivery with the fetus in occipito anterior
presentation is shown. Section 7.3.1.2 shows the effect of the variation of the material
parameters of the constitutive equation for the pelvic floor muscles on the results
obtained. Using fetus movements that are not optimized, Section 7.3.1.3 shows the
influence of the variation of the degree of rotation of the fetus head on the process
of delivery.

In order to study the influence of a malposition of the fetus in the progress of
delivery, a simulation of a childbirth delivery in occipito-posterior presentation is
presented in Section 7.3.2. In Section 7.3.2.1 the influence of the muscle activation
on the pelvic floor, during a vaginal delivery with the fetus in occipito posterior
presentation is shown. Section 7.3.2.2 shows the effect of the variation of the material
parameters of the constitutive equation for the pelvic floor muscles for a delivery in
occipito-posterior presentation

7.3.1 Numerical modelling of childbirth delivery in occipito-

anterior presentation

The mechanism of labor in vertex position consists of the following cardinal move-
ments: engagement of the presenting part, descent of biparietal diameter of fetal
head below the pelvic inlet, descent of the presenting part through the birth canal,
flexion of the fetal head to present the smallest diameter of the fetal head to the
maternal pelvis, internal rotation that facilitates the presentation of the optimal
diameters of the fetal head to the bony pelvis, extension of the fetal head as it
reach the vaginal introitus, external rotation of the fetal head after delivery to ”face
forward” relative to his shoulders, and finally, expulsion.
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(a) Initial position (b) Vertical displacement of 15 mm.

(c) Vertical displacement of 30 mm. (d) Vertical displacement of 45 mm.

Figure 7.11: Fetus movements.
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(a) Vertical displacement of 60 mm. (b) Vertical displacement of 75 mm.

(c) Vertical displacement of 90 mm. (d) Vertical displacement of 110 mm.

Figure 7.12: Fetus movements (continuation).
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The cardinal movements refer to the movements made by the fetus during the
first and second stage of labor. As the force of the uterine contractions stimulates
effacement and dilatation of the cervix, the fetus moves toward the cervix. When the
presenting part reaches the pelvic bones, it must make adjustments to pass through
the pelvis and down the birth canal. The movements of the fetus during birth were
simulated, which corresponds to the following cardinal movements: engagement
of the presenting part, descent of biparietal diameter of fetal head below the pelvic
inlet, descent of the presenting part through the birth canal, flexion of the fetal head
to present the smallest diameter of the fetal head to the maternal pelvis, internal
rotation that facilitates the presentation of the optimal diameters of the fetal head
to the bony pelvis and extension of the fetal head as it reaches the vaginal introitus.
The external rotation of the fetal head and expulsion were not simulated on this
work. The simulation was performed using a non-linear analysis with the implicit
version of the ABAQUS software.

The final step before the realization of the different simulations is the definition
of the movements of the fetus. The movements of the fetus, in occipito-anterior pre-
sentation, were defined in order to present to the birth canal the smallest diameters
of the fetal head at all times during birth. By using this optimization procedure,
the movements of the fetus head obtained will correspond to the normal cardinal
movements of the fetus, because nature in itself is an optimization process and the
normal movements of the fetus are perfectly optimized.

Figures 7.11-7.12 show the sequence of movements of the fetus during birth,
for different vertical displacements of the fetus head. The vertical displacement
refers to the vertical displacement of the control point P1 (see Figure 7.10) which
is placed inside the fetus head. Figure 7.11a shows the initial position for the fetus
that corresponds to the engagement of the presenting part. Figure 7.12a shows the
position of the fetus after the internal rotation, and the position of the fetus after
the extension is shown in Figure 7.12d.

Controlling the fetus movements using the points presented in Figure 7.10 has
proven to be a very versatile procedure, allowing to test movements of the fetus that
are not optimized, as shown in the following Sections 7.3.1.3 and 7.3.2.

To process the stresses and strains obtained on the different simulations, several
levels along the pelvic floor muscles were defined, as shown in Figure 7.13.

By introducing the different levels along the pelvic floor, it is now possible to
present another measure of deformation, the stretch ratio. The stretch ratio is
defined as the ratio between the current tissue length to the original tissue length.
Measuring the length of the levels during the simulation and knowing their initial
value allow us to determine the evolution of the stretch values for each path. The
initial lengths for the different levels are also shown on Figure 7.13.

The definition of the different levels was made taking in attention the position
of the known muscles of the pelvic floor. Levels 1 to 4 were defined on top of
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the levator ani muscle and the pubococcygeal muscle. Levels 5 to 6 were defined
on top of the iliococcygeal muscles. Level 7 was defined on top of the coccygeus
muscles. Therefore, the results obtained for the different levels can be translated to
the different muscles.

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Normalized length = 1

Normalized length = 1

Normalized length = 1

Normalized length = 1

Normalized length = 1

Normalized length = 1

Normalized length = 1

Normalized length = 0

Normalized length = 0

Normalized length = 0

Normalized length = 0

Normalized length = 0

Normalized length = 0

Normalized length = 0

Levels Initial Length at
Lenght 60 mm descent

Level 1 18.1 cm 22.1 cm
Level 2 19.2 cm 23.9 cm
Level 3 20.6 cm 25.1 cm
Level 4 22.1 cm 25.8 cm
Level 5 13.6 cm 16.2 cm
Level 6 13.9 cm 15.7 cm
Level 7 14.5 cm 15.8 cm

Figure 7.13: Levels used to evaluate the results.

Figure 7.14 shows the evolution of the stretch values obtained for the pelvic
floor on the referenced levels, during during fetal descent. The stretch values were
obtained by dividing the current length of the different levels by their original length
(Figure 7.13).

The maximum value obtained for the stretch was approximately 1.63, obtained
on level 1, for a vertical displacement of the fetal head of approximately 60 mm. This
maximum stretch value occurs during the extension of the fetal head. The elevator
ani muscle and the pubococcygeal muscle, which correspond to the levels 1 to 4
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are the muscles that are subjected to the higher values of stretch. The iliococcygeal
muscles (Level 5 to 6) and the coccygeus muscles (Level 7) are the muscles subjected
to the lower values of stretch.
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Figure 7.14: Stretch values obtained during the simulation.

Figure 7.15 shows the deformation field of the pelvic floor for a vertical displace-
ment of the fetus head of 45, 60, 75 and 90mm. These figures clearly show the
high deformations that the pelvic floor has to undergo in order to the progression
of delivery to occur.

The distribution of the maximum principal stresses is shown in Figure 7.15. In
the distribution of the maximum principal stresses, it can be observed that the
maximum values appear on the most posterior area of the elevator ani muscle and
the pubococcygeal muscle. The maximum value for the maximum principal stress,
detected on the pelvic floor muscles was 1.48 MPa.

The following Figures 7.16 and 7.17 present the results obtained for the maximum
principal stresses (S1) and for the logarithmic maximum principal strain (E1) along
the different levels. The maximum principal strain - E1 can be defined as the ratio
between the variation in length and the original tissue length. To the obtained
results, the logarithmic function is applied. These results were evaluated for a fetal
head descent of 30, 45, 60, 75, 90 and 105 mm. The stress and strain values are
calculated for each finite element cell, along the different levels.
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(a) Vertical displacement of 45 mm. (b) Vertical displacement of 60 mm.

(c) Vertical displacement of 75 mm. (d) Vertical displacement of 90 mm.

0.000 0.114 0.238 0.363 0.487 0.611 0.735 0.859 0.983 1.107 1.232 1.356 1.480

Figure 7.15: Distribution of the Maximum Principal Stresses [MPa].
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(a) Vertical displacement of 30 mm.
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(b) Vertical displacement of 45 mm.
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(c) Vertical displacement of 60 mm.
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(d) Vertical displacement of 75 mm.
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(e) Vertical displacement of 90 mm.
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(f) Vertical displacement of 105 mm.
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Figure 7.16: Logarithmic Maximum Principal Strain along the different levels.
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(a) Vertical displacement of 30 mm.
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(b) Vertical displacement of 45 mm.
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(c) Vertical displacement of 60 mm.
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(d) Vertical displacement of 75 mm.
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(e) Vertical displacement of 90 mm.
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Figure 7.17: Maximum Principal Stresses along the different levels.
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By presenting the different results along the different levels, the evolution of the
different values can be clearly observed and also the place were the higher values
are obtained.

In order to present a better comparison of the obtained results, for the differ-
ent levels of Figure 7.13, only one scale varying between 0 and 1 was considered,
called normalized length. For example, 0 represents one of the extremities, 0.5 rep-
resents the middle position and 1 represents the position in the opposite extremity
(Figure 7.13).

Observing Figure 7.16, for the different vertical displacements of the fetal head,
the maximum value of strain was obtained for a vertical displacement of 60 mm. As
it is possible to observe on Figure 7.16c, a maximum value of 0.67 for the strain E1
on level 1 is obtained, for a vertical displacement of 60 mm. A close observation of
the evolution of the strains along level 1 shows that high values of strain are obtained
on the edges of level 1 which correspond to the points of attachment of levator ani
muscle and the pubococcygeal muscle to the pelvic bones. The maximum values for
the strain appear in an area that corresponds to the middle length of the levator
ani muscle and the pubococcygeal muscle. By using this procedure to present the
different results, it is possible to evaluate at each point of the different levels the
values of strain. The stretch values presented in Figure 7.14 are more conservative,
because it assumes that the deformation is equal along the different levels.

Figure 7.17 shows the evolution of the maximum principal stresses along the
different levels for different vertical displacements of the fetal head. As one would
expect, the evolution of the strains is closely related with the evolution of the strains
(Figure 7.16), therefore the maximum value for the stress appear for roughly the
same vertical displacement of the fetus head of 60 mm (Figure 7.17c). The maximum
value obtained for the maximum principal stress was 1.26 MPa, on level 1. The
maximum value for the stress appear on the middle length of the levator ani muscle
and the pubococcygeal muscle. The extremities of level 1 also present high values
of stress.

7.3.1.1 The influence of muscle activation on delivery in occipito-anterior
presentation

Labor is a sequence of uterine contractions that results in effacement and dilata-
tion of the cervix and voluntary bearing-down efforts leading to the expulsion per
vagina of the products of conception. Muscle contraction plays an important role
during labor [DeCherney and Nathan, 2003]. In true labor, the woman is usually
aware of her contractions during the first stage. The intensity of pain depends on
the fetopelvic relationships, the quality and strength of uterine contractions, and
the emotional and physical status of the patient. Very few women experience no
discomfort during the first stage of labor.
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Contractions are often described as a cramping or tightening sensation that
starts in the back and moves around to the front in a wave-like manner. Others say
the contraction feels like pressure in the back. During a contraction, the abdomen
becomes hard to the touch. In the childbirth process, the work of labor is done
through a series of contractions. These contractions cause the upper part of the
uterus (fundus) to tighten and thicken while the cervix and lower portion of the
uterus stretch and relax, helping the baby pass from inside the uterus and into the
birth canal for delivery [DeCherney and Nathan, 2003].

The work presented doesn’t include the uterus, the largest muscle in a woman’s
body and the main muscle involved in the labor contractions, nevertheless it is
possible to study the influence of the pelvic floor muscle activation during delivery.
Although common sense dictates that the pelvic floor muscles should be relaxed
during delivery, this study intends to verify the effects in the strains and stresses
of an abnormal activation of the pelvic floor muscles during delivery. In order to
study the effect of pelvic floor muscle activation during delivery, three simulations
were conducted with different values of muscle activation α (Equation 6.52). The
simulations were run with α = 0.05, α = 0.10 and α = 0.15, where α is the activation
level ranging from 0 to 1.

Figure 7.18a shows the results obtained for the logarithmic maximum principal
strain E1 along level 1, for a fetus head descent of 60 mm and for the different muscle
activations. The results obtained without activation (α = 0) are also displayed on
the same figures for comparison. In order to simplify the comparison of the results,
only the results along level 1 are presented on Figure 7.18a and Figure 7.18b.

Observing the results obtained for the strains, it is visible that the higher values
of strain follow the same evolution for the different activations. A maximum value
of 0.67 for the strain E1 on level 1 is obtained, for the different activations, for
a vertical displacement of 60 mm. This is the expected result because the higher
strain values depend mostly of the dimensions of the fetus head. As the geometry
of the fetus head has not changed, the results for the strains are very similar.

Figure 7.18b shows the results obtained for the maximum principal stress along
level 1, for a fetus head descent of 60 mm, along level 1. For a muscle activation of
α = 0.15 a maximum principal stress of 1.36 MPa was obtained, which represents
an increase of 8% in relation to the non-activated simulation α = 0.00. For a muscle
activation of α = 0.10, a maximum value of 1.32 MPa was obtained. For α = 0.05,
a maximum value of 1.28 MPa was obtained. It can be stated that the maximum
values for the maximum principal stresses are strongly dependent on the degree of
muscle activation. When the muscle activation increases, the muscle becomes stiffer
and therefore the value for the maximum principal tensions also increases.

If a relation between maximum principal stresses and stress induced muscle
injury can be formulated, then it can be concluded that as the muscle activation
increases, also the risk for injury increases.
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(a) Logarithmic maximum principal Strain E1.
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Figure 7.18: Logarithmic maximum principal strain and maximum principal stresses
for a fetus presenting in occipito-anterior presentation, for a fetus head descent of
60 mm, along level 1.
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7.3.1.2 The influence of different material parameters on delivery in
occipito-anterior presentation

Currently there is a common agreement that pregnancy, vaginal delivery, and aging
are the main causes of damage to the pelvic floor, thereby initiating the develop-
ment of incontinence and prolapse immediately or later in life [Snooks et al., 1984;
Dimpfl et al., 1998]. Although the damage caused by vaginal delivery may lead to
relaxation of the pelvic floor in most and/or weakening of contractile forces in some
women [Peschers et al., 1996], it is still unclear whether this damage is of direct
myogenic, neurogenic, or connective tissue origin.

From a mechanical point of view, age and parity alters the behavior of the pelvic
floor muscles, and therefore, between different subjects, substantial differences in
the mechanical behavior can be expected, as observed in [Janda, 2006]. In order to
study the effect of the possible variability of the mechanical behavior of the pelvic
floor muscles, and its influence on the obtained results, two new sets of constitutive
parameters were introduced (Figure 7.19).

The procedure used to obtain the material parameters used on the simula-
tions is described on Section 6.2.4. Figure 7.19 shows the data obtained by Janda
[Janda, 2006]. All measurements were performed on three female pelvic floor fresh
cadaver specimens (82, 66 and 38 years old). It can be observed that a great vari-
ability exists on the results obtained, between the different specimens and even for
the same specimen. Figure 7.19 also clearly shows the nonlinear and elastic behavior
of the pelvic floor muscles.

In order to verify the influence of the utilization of different material behaviors
on the obtained results, two new simulations of a fetus delivery, in occipito-anterior
presentation, with two new sets of material properties were conducted. To the initial
material parameters, obtained on Section 6.2.4, two new sets of material parameters
were introduced. The first set shows a response that is stiffer than that of the original
constants used. The stress/strain behavior for the pelvic floor muscles with this set
of parameters is shown in Figure 7.19 with curve Abq. Mat 2. Figure 7.19 also
shows the pelvic floor behavior with the initial set of parameters (Abq. Mat. 1).
The behavior of the second new set of parameters, a softer behavior, is shown in
the same Figure, with curve Abq. Mat. 3.

The constitutive parameters for Abaqus Material 1 are c = 1.85 × 10−2N/mm2,
b = 1.173, A = 2.80 × 10−2N/mm2 and a = 0.6215, for Abaqus Material 2 c =
2.00 × 10−2N/mm2, b = 1.75, A = 4.20 × 10−2N/mm2 and a = 0.6215, and for
Abaqus Material 3 c = 1.30 × 10−2N/mm2, b = 1.173, A = 1.96 × 10−2N/mm2 and
a = 0.6215.

For all the different materials used, for the parameter D the value D = 1 ×
10−4mm2/N was used and for the parameter TM

0 for the maximum tension produced
by the muscle at resting length was considered to be TM

0 = 0.682Pa, in accordance
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with values proposed in the literature [Aulignac et al., 2004].
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Figure 7.19: Uniaxial stress-strain response for passive material properties of the
pelvic floor muscles.

Figure 7.20 shows the evolution of the logarithmic maximum principal strain
obtained during the new simulations, with the different material parameters. In
Figure 7.20it can be observed that of the logarithmic maximum principal strain
along level 1 is approximately the same for the three different pelvic floor muscle
behaviors. As discussed on the previous section, this is the expected result because
the higher strain values depend mostly of the dimensions of the fetus head. As the
geometry of the fetus head has not changed, the results for the strains are very sim-
ilar. The small differences verified for the different vertical displacements between
the Abaqus Material 1 and the remaining materials sets, are due to different relative
displacements between the pelvic floor muscles and the fetus head. During the finite
element simulation, when the fetus head passes trough the pelvic floor, the pelvic
floor finite element mesh tends to slip on the fetus head. With different material
parameters, this occurs for different fetus head vertical displacements. Nevertheless
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the obtained results are very close between them. The maximum values obtained
for E1 (logarithmic maximum principal strain) was 0.67 for The Abaqus Material 1
and 3, for the Abaqus Material 2, the maximum value was 0.64.
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(a) Vertical displacement of 45 mm.
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(b) Vertical displacement of 60 mm.
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(c) Vertical displacement of 75 mm.

Normalized path lenght.

0.0 0.2 0.4 0.6 0.8 1.0

E
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Vertical displacement of 90 mm.
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Figure 7.20: Logarithmic Maximum Principal Strain along level 1, for the different
material parameters and for different fetus head displacements.

Figure 7.21 shows the evolution of the maximum principal stress along level 1
for a vertical displacement of the fetus head of 45, 60, 75 and 90 mm. Contrary to
the strain values obtained, which are very close together, the stress values obtained
present considerable differences between the different parameter sets. The maximum
values for the maximum principal stress were obtained for a vertical displacement
of 60 mm. Using the first set of material parameters (Abq. Material 1) a maximum
value of 1.26 MPa was obtained, using the second set of parameters (Abq. Material
2) a value of 3.50 MPa was obtained and for the third parameter set (Abq. Material
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3), a value of 0.89 MPa was obtained. A difference of almost 300% exists between
the maximum values obtained with the different materials. This differences on the
obtained results occur due to the exponential behavior of the constitutive model
used. For larger strains, a small increment in the strains will translate in a large
increment in the stresses.
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(a) 45 mm descent.
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(b) 60 mm descent.
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(c) 75 mm descent.
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(d) 90 mm descent.
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Figure 7.21: Maximum Principal Stress along level 1, for the different material
parameters and for different fetus head displacements.

The finite element simulations presented on this section clearly show that the
utilization of a representative set of parameters for a given subject is essential in
order to obtain correct results. As shown, due to the exponential behavior of the
constitutive model used, although the results for the strains are very similar, the
stresses obtained are substantially different.



Numerical simulations of a childbirth delivery in vertex position 185

7.3.1.3 The influence of the variation of the fetus head flexion on deliv-
ery in occipito-anterior presentation

Malpositions are abnormal positions of the vertex of the fetal head (with the occiput
as the reference point) relative to the maternal pelvis. Malpresentations are all
presentations of the fetus other than vertex. Abnormal presentation and position are
encountered infrequently during labor. Breech and transverse presentations should
be converted to cephalic presentations by external cephalic version or delivered by
cesarean section. Face, brow, and compound presentations are usually managed
expectantly. Persistent occiput transverse positions are managed by rotation to
anterior positions and delivered as such. Occiput posterior positions can be delivered
as such or rotated to occiput anterior positions. As with any position or presentation,
an obstetrician should not hesitate to abandon any rotational or operative vaginal
procedure and proceed to cesarean delivery if rotation or descent does not occur
with relative ease [Stitely and Gherman, 2005].

The descent of the fetus through the pelvis is a prerequisite for vaginal delivery.
The fetus has to undergo a series of important manoeuvres to negotiate its journey
through the maternal pelvis. The pelvis has three important diameters. The pelvic
inlet has a wide transverse diameter of approximately 13 cm. The mid-cavity of the
pelvis is round, and contraction of the mid-pelvis is suspected if the ischial spines
are prominent or the pubic arch is narrow. The pelvic outlet has a wide anterior-
posterior diameter. The fetal manoeuvres that occur during the mechanism of
labour to allow the fetus to traverse the pelvic diameters in the optimal position
are described below. Not all fetuses follow this pattern, as it is dependant on the
presenting part. The commonest situation is with the fetus in a longitudinal lie
with a cephalic presentation and a well-flexed attitude. In these circumstances, the
vertex (the area bounded by the anterior edge of the posterior fontanelle, the two
parietal eminences and the posterior edge of the anterior fontanelle) hits the pelvic
floor first and rotates anteriorly, resulting in an occipito-anterior position with the
occiput as the denominator.

Engagement of the fetal head occurs in the weeks before the onset of labour in
nulliparous women, but often not until the onset of labour in multiparous women. It
occurs secondary to the descent of the presenting part. The head is engaged when
the widest diameter of the presenting part (the biparietal diameter in a cephalic
presentation) has passed the pelvic brim or inlet. Once engaged, the head is fixed
in the pelvis and is no more than two to three-fifths palpable per abdomen.

Descent of the fetal head occurs progressively during labour secondary to con-
traction and retraction of the myometrium.

Flexion of the fetal neck ensures that smaller diameters of the fetal head present
that can negotiate the pelvis more easily. With moderate flexion, the suboccip-
itofrontal diameter leads (approximately 10 cm), but with good flexion this converts
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to the suboccipitobregmatic diameter (9.5 cm).
Internal rotation of the fetal head occurs during descent, when the vertex is

pushed down onto the anterior slope of the pelvic floor by the uterine contractions.
With a well-flexed vertex presentation, the leading part of the fetal head (the oc-
ciput) rotates anteriorly from a transverse position (appropriate for the pelvic inlet)
into an anteroposterior position, to pass the ischial spines (appropriate for the pelvic
outlet). The fetal shoulders remain in the transverse diameter at this point so they
can enter the pelvis through the widest pelvic diameter, resulting in a degree of
rotation of the fetal neck. The occiput passes under the subpubic arch and distends
the perineum.

The degree of flexion of the fetus body parts (body, head, and extremities) to
each other is known as attitude. It is the resistance to the descent of the fetus down
the birth canal, which causes the head to flex or bend so that the chin approaches
the chest. The most common attitude in vertex presentation is a complete flexion.
In vertex presentation, there is complete flexion of the fetus head when the fetus
”chin is on his chest.” This allows the smallest cephalic diameter to enter the pelvis,
which gives the fewest mechanical problems with descent and delivery.

A moderate flexion or military attitude in vertex presentation is when the fetus
head is only partially flexed or not flexed. It gives the appearance of a military
person at attention. A larger diameter of the head would be coming through the
passageway.

In vertex presentation, When the fetus head is extended or bent backwards, it is
called a poor flexion or marked extension. This would be called a brow presentation.
It is difficult to deliver because the widest diameter of the head enters the pelvis first.
This type of cephalic presentation may require a cesarian delivery if the attitude
cannot be changed.

In vertex position, when the fetus head is extended all the way back, allowing
the face or chin to present first in the pelvis, this is known as hyperextended. If
there is adequate room in the pelvis, the fetus may be delivered vaginally.

In order to study the influence of the fetal head flexion on the evolution of the
delivery, a series of simulations, varying the degree of flexion of the fetal head were
conducted. Figure 7.22a shows the definition of the angle β, used to define the
amount of flexion of the fetus head. The angle β was defined as the angle between
a vertical line an a line passing trough the fetus eyes and upper portion of the fetus
ear, as shown in Figure 7.22a. Figure 7.22b shows the fetus head extended by the
maximum degree used in the simulations, with β = 54.4o. Figure 7.22c shows the
fetus head at the most flexed position, with β = 14.3o.

The maximum and minimum values of β were obtained by varying the rotation
of the fetus head, maintaining the vertical displacement at 30 mm. By verifying
the appearance of interference between the fetus head and the pelvic girdle bones
and the fetus chin and chest, the maximum and minimum values were defined. The
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β

(a) Definition of β. (b) β = 54.4o.

(c) β = 14.3o.

Figure 7.22: Variation of the fetus fetus head flexion at 30 mm of vertical displace-
ment.
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remaining of the fetus movements were obtained as described in Section 7.3.1.
Figure 7.23 shows the stretch values obtained during the simulation, calculated

using level 1, for different fetus head rotations. It is clearly visible on Figure 7.23
that when the flexion of the fetus head is reduced (increasing β), the maximum value
for the stretch is higher. The smaller values for the maximum stretch, calculated
using level 1, are obtained when the fetus presents with its head at the most flexed
position. When the fetus head is in complete flexion (β = 14.3o), the maximum
stretch obtained during delivery, for level 1 was 1.58. When the fetus head presents
in extension (β = 54.4o), the maximum stretch values obtained was 1.65, which
represents an increase of approximately 5%. Observing the stretch values obtained
when varying the fetus head flexion, it becomes clear that the fetus movements
presented on Section 7.3.1 are not the most optimized ones (maximum stretch value
of 1.63 obtained).
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Figure 7.23: Stretch values obtained during the simulation, calculated using level 1,
for different fetus head rotations.

Figure 7.24 shows the evolution of the maximum principal stresses along level 1,
for a vertical fetus head displacement of 60 mm. Figure Figure 7.24 is in accordance
with Figure 7.23. It is possible to observe that when the fetus presents in complete
flexion (β = 14.3o), the evolution of the maximum principal stresses will be the most
favorable. The maximum value for the maximum principal stresses along level 1 was
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1.52 MPa, obtained when the fetus presents with the head extended (β = 54.4o).
When the fetus presents with its head in complete flexion (β = 14.3o) the maximum
value for the maximum principal stress is 0.98 MPa. Once again, the most situation
is when the fetus head is in complete flexion, with is chin touching his chest.
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Figure 7.24: Maximum Principal Stresses along level 1, at 60 mm of vertical dis-
placement, for different fetus head rotations.

The finite element simulation presented in this section serves two purposes. It
shows that the complete flexion of the fetus head is the most favorable position
during birth. The stretches and stresses obtained were smaller when the fetus head
is well flected, as shown in Figure 7.22c. This section also shows some of the ca-
pabilities of the presented model in simulating deliveries in non-optimum positions.
With future developments, the proposed model could become a valuable tool, aiding
the obstetrician in the delivery room.

Next section continues to shows some more capabilities of the presented model,
where the commonest malposition during delivery is simulated, the occipito-posterior
presentation.
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7.3.2 Numerical modelling of childbirth delivery in occipito-
posterior presentation

Labor and delivery is a normal physiologic process that the majority of women expe-
rience without complications, nevertheless, complications can occur during delivery.
Malpositions are abnormal positions of the vertex of the fetal head (with the occiput
as the reference point) relative to the maternal pelvis, being the occipito-posterior
presentation the commonest malposition. Malpresentations are all presentations of
the fetus other than vertex [DeCherney and Nathan, 2003].

In the vast majority of deliveries near term the fetus presents by the head,
with the best fit into the lower pelvis in the occipito-anterior position. The fetal
head engages in the left (less commonly, right) occipito-anterior position and then
undergoes a short rotation to be directly occipitoanterior in the midcavity. Some-
times, although the head is presenting, it may be not in an occipito-anterior but
in an occipito-posterior or transverse position. In a few cases the head is greatly
extended so that the brow or even the face can present.

In the occipito-posterior presentation, the head engages in the left or right
occipito-transverse position, and the occiput rotates posteriorly, rather than into
the more favorable occipito-anterior position. The reasons for the malrotation are
often unclear. A flat sacrum or a head that is poorly flexed may be responsible;
alternatively, poor uterine contractions may not push the head down into the pelvis
strongly enough to produce correct rotation; epidural analgesia might sometimes re-
lax the pelvic floor to an extent that the fetal occiput sinks into it rather than being
pushed to rotate in an anterior direction. The diagnosis is determined clinically by
vaginal examination.

The best management is to await events, preparing the woman and staff for a
long labor. Progress should be monitored by abdominal and vaginal assessment,
and the mother’s condition should be watched closely. Good pain relief with an
epidural and adequate hydration are required.

The mother may have an urge to push before full dilation, but the midwife
should discourage this. If the occiput comes directly into the posterior position
(face to pubis) a vaginal delivery is possible if the pelvic diameters are reasonable
[Chamberlain and Steer, 1999].

The current Section 7.3.2 presents a delivery of a fetus that presents in occipito-
posterior presentation. The first step to conduct the finite element simulation is to
define the fetus movements. Figures 7.25 and 7.26 show the sequence of movements
of the fetus during birth in occipito-posterior presentation, for different vertical
displacements of the fetus head. The vertical displacement refers to the vertical
displacement of the control point P1 (see Figure 7.10) which is placed inside the
fetus head.

Figure 7.25a shows the initial position for the fetus that corresponds to the
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engagement of the presenting part. The process to obtain the movements of the
fetus in occipito-posterior presentation is similar to the one used for the occipito-
anterior presentation (Section 7.3.1). The definition of the fetus movements is an
optimization process, where one is trying to minimize the diameter of the fetus
head that is presented to the birth canal. It is clearly visible on Figures 7.25 and
7.26 that the process of optimization is harder for an occipito-posterior presentation.
The fetus head has reduced freedom of movements, because the rotation of the fetus
head is limited by the fetus chin touching the fetus chest. Once the movements of
the fetus are defined, the finite element simulations including the pelvic floor can
be conducted.

The levels introduced on Figure 7.13 are used again in order to study the results
obtained. Levels 1 to 4 were defined on top of the elevator ani muscle and the
pubococcygeal muscle, levels 5 to 6 were defined on top of the iliococcygeal muscles
and level 7 was defined on top of the coccygeus muscles. Therefore, the results
obtained for the different levels can be translated to the different muscles.

Figure 7.27 shows the evolution of the stretch values obtained for the pelvic
floor on the referenced levels, during during fetal descent. The stretch values were
obtained by dividing the current length of the different levels by their original length
(Figure 7.13). The maximum value obtained for the stretch was approximately 1.73,
obtained on level 1, for a vertical displacement of the fetal head of approximately 60
mm. The elevator ani muscle and the pubococcygeal muscle, which correspond to
the levels 1 to 4 are the muscles that are subjected to the higher values of stretch.
The iliococcygeal muscles (Level 5 to 6) and the coccygeus muscles (Level 7) are the
muscles subjected to the lower values of stretch. The stretch value obtained for an
occipito-posterior presentation represents an increase of approximately 6.1% when
compared to the occipito-anterior presentation.

Figure 7.28 shows the deformation field of the pelvic floor for a vertical displace-
ment of the fetus head of 45, 60, 75 and 90mm. These figures clearly show the
high deformations that the pelvic floor has to undergo in order to the progression of
delivery to occur. The distribution of the maximum principal stresses is also shown
in Figure 7.28. In the distribution of the maximum principal stresses, it can be ob-
served that the maximum values appear on the most posterior area of the elevator
ani muscle and the pubococcygeal muscle. The maximum value for the maximum
principal stress, detected on the pelvic floor muscles was 3.06 MPa, wish represents
an increase of almost 110% when compared with the delivery in occipito-anterior
presentation.

Figure 7.29 shows the evolution of the logarithmic maximum principal strain
along the different levels, for different vertical displacements of the fetal head. As
it is possible to observe on Figure 7.29c, a maximum value of 0.74 for the strain E1
on level 1 was obtained, for a vertical displacement of 60 mm, which represents an
increase of approximately 10% when compared with the delivery in occipito-anterior
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(a) Initial position (b) Vertical displacement of 15 mm.

(c) Vertical displacement of 30 mm. (d) Vertical displacement of 45 mm.

Figure 7.25: Fetus movements in occipito-posterior presentation.
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(a) Vertical displacement of 60 mm. (b) Vertical displacement of 75 mm.

(c) Vertical displacement of 90 mm. (d) Vertical displacement of 110 mm.

Figure 7.26: Fetus movements in occipito-posterior presentation (continuation).
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presentation. A close observation of the evolution of the strains along level 1 shows
that the higher values of strain appear on the middle of level 1, which corresponds
to the middle length of the levator ani muscle and the pubococcygeal muscle. It can
be observed that the extremities of level 1 also present high values of strain, which
correspond to the points of attachment of levator ani muscle and the pubococcygeal
muscle to the pelvic bones. By using this procedure to present the different results,
it is possible to evaluate at each point of the different levels the values of strain. The
stretch values presented in Figure 7.27 are more conservative, because it assumes
that the deformation is equal along the different levels.
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Figure 7.27: Stretch values obtained during the simulation with the fetus in occipito-
posterior presentation.

Figure 7.30 shows the evolution of the maximum principal stresses along the
different levels for different vertical displacements of the fetal head. As one would
expect, the evolution of the strains is closely related with the evolution of the strains
(Figure 7.29), therefore the maximum value for the stress appear for roughly the
same vertical displacement of the fetus head of 60 mm (Figure 7.30c). The maximum
value obtained for the maximum principal stress was 1.69 MPa, on level 1. The
maximum value for the stress appear on the middle length of the levator ani muscle
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(a) Vertical displacement of 45 mm. (b) Vertical displacement of 60 mm.

(c) Vertical displacement of 75 mm. (d) Vertical displacement of 90 mm.

0.000 0.246 0.502 0.758 1.014 1.270 1.526 1.781 2.037 2.293 2.549 2.805 3.061

Figure 7.28: Distribution of the Maximum Principal Stresses [MPa].
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(a) Vertical displacement of 30 mm.

Normalized path lenght.

0.0 0.2 0.4 0.6 0.8 1.0

E
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Vertical displacement of 45 mm.
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(c) Vertical displacement of 60 mm.
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(d) Vertical displacement of 75 mm.
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(e) Vertical displacement of 90 mm.
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(f) Vertical displacement of 105 mm.
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Figure 7.29: Logarithmic Maximum Principal Strain along the different levels for a
fetus in occipito-posterior presentation.
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(a) Vertical displacement of 30 mm.
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(b) Vertical displacement of 45 mm.
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(c) Vertical displacement of 60 mm.
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(d) Vertical displacement of 75 mm.
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(e) Vertical displacement of 90 mm.
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(f) Vertical displacement of 105 mm.
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Figure 7.30: Maximum Principal Stresses along the different levels for a fetus in
occipito-posterior presentation.
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and the pubococcygeal muscle. The extremities of level 1 also present high values of
stress. The maximum value for the maximum principal stress, in occipito-posterior
presentation represents an increase of approximately 34% when compared to the
occiput-anterior presentation (1.26 MPa).

The finite element simulation of a fetus delivery in occipito-posterior presenta-
tion clearly shows that this is not the optimum position for delivery. The stretches,
strains and stresses obtained clearly show that a delivery in occipito-posterior pre-
sentation increases the risk for stress related injuries to the pelvic floor muscles.

7.3.2.1 The influence of muscle activation on delivery in occipito-posterior
presentation

In order to study the influence of muscle activation on the strains and stresses that
appear on the pelvic floor muscles, when the fetus presents in occipito-posterior
presentation, the finite element simulation presented in the previous Section 7.3.2
was rerun again, using the muscle activation parameter α with the values α = 0.05,
α = 0.10 and α = 0.15.

Figure 7.31a shows the results obtained for the logarithmic maximum principal
strain E1 along level 1, for a fetus head descent of 60 mm and for the different muscle
activations. The results obtained without activation (α = 0) are also displayed on
the same figures for comparison. In order to simplify the comparison of the results,
only the results along level 1 are presented on Figure 7.31a and Figure 7.31b.

Observing the results obtained for the strains, it can be observed than once
again, for the different activations, the strain values follow approximately the same
evolution along level 1. This coincidence is almost identical for the higher values of
strain (Figure 7.31a), existing only small differences on the extremities of level 1.
A maximum value of 0.74 for the strain E1 on level 1 is obtained, for the different
activations, for a vertical displacement of 60 mm. Once again this is the expected
result because the higher strain values depend mostly of the dimensions of the fetus
head. As the geometry of the fetus head has not changed, the results for the strains
are very similar.

Figure 7.31b shows the results obtained for the maximum principal stress along
level 1, for a fetus head descent of 60 mm, along level 1. For a muscle activation of
α = 0.15 a maximum principal stress of 2.80 MPa was obtained, which represents
an increase of 4% in relation to the non-activated simulation α = 0.00 (2.69 MPa).
The maximum values for the maximum principal stresses increases when the degree
of muscle activation is increased. When the muscle activation increases, the muscle
becomes stiffer and therefore the value for the maximum principal tensions also in-
creases. It is interesting to note that when the fetus presents in occipito-posterior
presentation, the difference between the different maximum values for the stresses
is about 4%. When the fetus is on occipito-anterior presentation, the variation
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(a) Logarithmic maximum principal Strain E1.
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Figure 7.31: Logarithmic maximum principal strain and maximum principal stresses
for a fetus presenting in occipito-posterior presentation, for a fetus head descent of
60 mm, along level 1.
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is approximately 8%. Nevertheless, the values obtained for an occipito-posterior
presentation are greatly higher then the ones obtained for a occipito-anterior pre-
sentation.

If a relation between maximum principal stresses and stress induced muscle
injury can be formulated, then it can be concluded that as the muscle activation
increases, also the risk for injury increases.

7.3.2.2 The influence of different material parameters on delivery in
occipito-posterior presentation

In order to verify the influence of the utilization of different material behaviors on
the obtained results, two new simulations of a fetus delivery, in occipito-posterior
presentation, with two new sets of material properties were conducted. The material
parameters used on the new simulations are described on Section 7.3.1.2. The pro-
cedure used to obtain the material parameters used on the simulations is described
on Section 6.2.4.

To the initial material parameters, obtained on Section 6.2.4, two new sets of
material parameters were introduced. The first set shows a stiffer response that the
original constants used. The stress/strain behavior for the pelvic floor muscles with
this set of parameters is shown in Figure 7.19 with curve Abq. Mat 2. Figure 7.19
also shows the pelvic floor behavior with the initial set of parameters (Abq. Mat.
1). The behavior of the second new set of parameters, a softer behavior, is shown
in the same Figure, with curve Abq. Mat. 3.

The constitutive parameters for Abaqus Material 1 are c = 1.85 × 10−2N/mm2,
b = 1.173, A = 2.80 × 10−2N/mm2 and a = 0.6215, for Abaqus Material 2 c =
2.00 × 10−2N/mm2, b = 1.75, A = 4.20 × 10−2N/mm2 and a = 0.6215, and for
Abaqus Material 3 c = 1.30 × 10−2N/mm2, b = 1.173, A = 1.96 × 10−2N/mm2 and
a = 0.6215.

For all the different materials used, for the parameter D the value D = 1 ×
10−4mm2/N was used and for the parameter TM

0 for the maximum tension produced
by the muscle at resting length was considered to be TM

0 = 0.682Pa, in accordance
with values proposed in the literature [Aulignac et al., 2004].

Figure 7.32 shows the evolution of the logarithmic maximum principal strain
obtained during the new simulations, with the different material parameters. In
Figure 7.32 it can be observed that the logarithmic maximum principal strain fol-
lows approximately the same evolution along level 1, for the three different pelvic
floor muscle behaviors. The simulation using Abaqus Material 2 (stiffer behavior)
produces slight smaller strains along level 1, for the different vertical displacements
presented. This observation doesn’t necessarily means that the simulation made
using Abaqus Material 2 produced smaller strains during the entire simulation, but
instead, the higher values of strain for this simulation doesn’t appear for the same
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vertical displacement of the fetus head. In order to simplify the presentation of the
results, only the results for 45, 60, 75 and 90 mm are presented. The maximum
values obtained for E1 (logarithmic maximum principal strain) was 0.74 for The
Abaqus Material 1 and 3, for the Abaqus Material 2, the maximum value was 0.70.
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(a) Vertical displacement of 45 mm.
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(b) Vertical displacement of 60 mm.
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(c) Vertical displacement of 75 mm.
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(d) Vertical displacement of 90 mm.
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Figure 7.32: Logarithmic Maximum Principal Strain along level 1, using different
material parameters and for a fetus on occipito-posterior presentation.

Figure 7.33 shows the evolution of the maximum principal stress along level 1
for a vertical displacement of the fetus head of 45, 60, 75 and 90 mm. Contrary to
the strain values obtained, which are very close together, the stress values obtained
present considerable differences between the different parameter sets. The maximum
values for the maximum principal stress were obtained for a vertical displacement
of 60 mm. Using the first set of material parameters (Abq. Material 1) a maximum
value of 2.69 MPa was obtained, using the second set of parameters (Abq. Material
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2) a value of 8.16 MPa was obtained and for the third parameter set (Abq. Material
3), a value of 1.95 MPa was obtained. A difference of almost 320% exists between
the maximum values obtained with the different materials. This differences on the
obtained results occur due to the exponential behavior of the constitutive model
used. For larger strains, a small increment in the strains will translate in a large
increment in the stresses.
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(a) Vertical displacement of 45 mm.
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(b) Vertical displacement of 60 mm.
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(c) Vertical displacement of 75 mm.
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(d) Vertical displacement of 90 mm.
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Figure 7.33: Maximum Principal Stress along level 1, using different material pa-
rameters and for a fetus in occipito-posterior presentation.

The finite element simulations presented on this section clearly show that the
utilization of a representative set of parameters for a given subject is essential in
order to obtain correct results. As shown, due to the exponential behavior of the
constitutive model used, although the results for the strains are very similar, the
stresses obtained are substantially different. The high values of maximum principal
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stress obtained with Abaqus Material 2 (8.16 MPa) also mean that the inclusion of a
damage model on the constitutive behavior of the pelvic floor muscles is important
as a future development of the presented work.

7.4 Discussion of the results

Chapter 7 presents the different simulations conducted in this work. All simulations
presented were for vaginal deliveries in vertex position.

Section 7.3.1 shows a vaginal delivery were the fetus presents in occipito-anterior
position. A maximum stretch of 1.63 was obtained using level 1. Using the different
levels to evaluate the evolution of the logarithmic maximum principal strain and
maximum principal stress, a maximum of 0.67 was obtained for the strains and
1.26 MPa for the stresses, both maxima were obtained along level 1. The influence
of muscle activation on delivery in a occipito-anterior presentation is studied on
Section 7.3.1.1. The different simulations with muscle activation showed that the
evolution of the logarithmic maximum principal strain is approximately the same
along the different levels and for the different activations. The simulations with
muscle activation also showed that the maximum values for the maximum principal
stresses are strongly dependent on the degree of muscle activation. For a muscle
activation of α = 0.15 a maximum principal stress of 1.36 MPa along level 1 was
obtained, which represents an increase of 8% in relation to the non-activated sim-
ulation α = 0.00. The effect of the variation of the material parameters of the
constitutive equation for a delivery in occipito-anterior presentation is studied on
Section 7.3.1.2. Two new sets of parameters were introduced and the simulations re-
peated. The obtained results show that the logarithmic maximum principal strains
are again very similar, varying between 0.67 and 0.64. The opposite is verified in
relation to the maximum principal strains obtained, where values between 3.50 and
0.89 MPa were obtained, which represents a variation of 300% on the results. The
final study conducted with the fetus in occipito-anterior presentation is presented
on Section 7.3.1.3. This study shows the influence of the variation of the degree
of rotation of the fetus head on the process of delivery. It is shown that the most
favorable position is when the fetus is at the most flexed position and that when the
flexion of the fetus head is reduced, the maximum value for the stretch is higher.
A variation between 1.58 and 1.65 for the stretches was obtained, when varying the
fetus head flexion, which represents a variation of approximately 5%. A variation
between 0.98 and 1.52 MPa was obtained for the maximum principal stresses, which
represent a variation of approximately 55%.

Section 7.3.1 shows a vaginal delivery were the fetus presents in occipito-posterior
position. A maximum stretch of 1.73 was obtained using level 1, which represents
an increase of approximately 6.1% when compared to the occipito-anterior presenta-
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tion. Using the different levels to evaluate the evolution of the logarithmic maximum
principal strain and maximum principal stress, a maximum of 0.74 was obtained for
the strains and 1.69 MPa for the stresses, both maximums were obtained along
level 1. These values represent an increase of 10% and 34% when compared to the
occipito-anterior presentation. The influence of muscle activation on delivery in a
occipito-anterior presentation is studied on Section 7.3.2.1. The different simulations
with muscle activation showed once again the evolution of the logarithmic maximum
principal strain is approximately the same along the different levels and for the dif-
ferent activations. The simulations with muscle activation also showed that the
maximum values for the maximum principal stresses are strongly dependent on the
degree of muscle activation. For a muscle activation of α = 0.15 a maximum prin-
cipal stress of 2.80 MPa along level 1 was obtained, which represents an increase of
4% in relation to the non-activated simulation α = 0.00. This value also represents
an increase of approximately 105% when compared to the occipito-anterior presen-
tation (1.36 MPa), with the same activation α = 0.15. The final study conducted
with the fetus in occipito-posterior presentation is presented on Section 7.3.2.2. The
effect of the variation of the material parameters of the constitutive equation for a
delivery in occipito-posterior presentation is studied on this section. Using the two
new sets of parameters previously introduced, the simulations were repeated. The
obtained results show that the logarithmic maximum principal strains are again very
similar, varying between 0.70 and 0.74. The opposite is verified in relation to the
maximum principal strains obtained, were values between 1.95 and 8.16 MPa were
obtained, which represent a variation of approximately 320% on the results. The
maximum values obtained also represent an increase of approximately 130%, when
compared to the occipito-anterior presentation, with the same material parameters.

The different simulations conducted show that the pelvic floor muscles have to
undergo large strains and stresses in order to delivery to occur. The different re-
sults clearly show that the occipito-anterior presentation is more favorable, resulting
in lower stresses and strains. Simulations also show that the when the attitude, in
vertex presentation is a complete flexion, when the fetus chin is on his chest, the me-
chanical problems with descent and delivery are reduced. Simulations also showed
that a correct characterization of the properties of the pelvic floor muscles is es-
sential. The utilization of parameters that do not correctly characterize a given
individual tissues can produce wrong results. The utilization of constitutive models
that correctly characterize the pelvic floor muscles, subjected to large strains is also
important, and therefor the future inclusion of a damage model on the constitutive
model is an important development. The conducted simulations also show that the
consideration of the muscle activation during delivery is an important aspect that
must be taken into account, as the results show.

Chapter 7 presented a finite element model capable of simulating a vaginal de-
livery, with the fetus in vertex presentation. This chapter shows only some of the
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capabilities of the presented model, which with future developments, could become
a valuable tool, aiding the obstetrician in the delivery room.





Chapter 8

Conclusions

8.1 Conclusions

In Chapter 7 the different simulations conducted in this work were presented. All
simulations presented were for vaginal deliveries in vertex position.

Initial investigations on the mechanisms responsible for contraction-induced in-
jury, using nongravid, passive striated appendicular muscles, obtained a stretch
value of 1.5 for the maximum non-injurious stretch as presented in the following ref-
erences [Brooks et al., 1995; Lien et al., 2004]. The maximum stretch ratio of 1.63
found in this study for the occipito-anterior position, and the stretch ratio of 1.73,
for the occipito-posterior position, both exceeds this largest non-injurious stretch
(1.5 stretch ratio). If injury can be caused by fiber stretch exceeding a maximum
permissible value, it may be concluded that a risk exists for injury of the muscles of
the pelvic floor during the second stage of labor.

The stretch values obtained in this work are lower than the ones obtained in
a similar work by Lien et al [Lien et al., 2004; Lien et al., 2005]. The maximum
stretch value obtained by Lien et al in their work was 2.73 for the iliococcygeal
muscle and 2.50 for the pubococcygeal muscle. On their work, Lien et al also
considered a medial pubococcygeal muscle, passing between the vagina and anus,
for which the stretch value obtained was 3.26. The presence of this muscle was
not obtained in Janda’s cadaver measurements [Janda, 2006], and therefore was
also not considered in this work. The differences obtained for the stretch values on
the iliococcygeal muscle and pubococcygeal muscle could be explained by the fact
that in the work by Lien et al, a sphere was used to represent the fetus head, which
could have induced higher stretches on the pelvic floor. The difference verified in the
present work, between the maximum stretch value for the occipito-anterior position
and the occipito-posterior positions, clearly shows the importance in considering a
realistic geometry for the fetus head.
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The problem studied here is very complex, and any methodology used will be
prone to have limitations and to criticism. In order to properly interpret our findings,
it is necessary to consider the limitations involved in this work [Parente et al., 2008].

In relation with the data (namely geometry and mechanical properties) of the
pelvic floor used, some doubts can be formulated, as the absence of information
about any vaginal delivery.

It was assumed that the stretch was uniform along the levels considered, which
is not true because it can vary locally along and across a muscle band, especially
if thickness varies, leading to a conservative estimate of muscles strains. Time-
dependent material property effects on tissue stretch were not considered. Although
these may affect the tissue stresses [Lien et al., 2004], they will not affect our esti-
mates of the maximum average tissue stretch because they do not affect the inherent
geometric difference between the sizes of the prelabor urogenital hiatus and fetal
head.

During the last weeks of pregnancy, the pelvic floor experiences several changes
in order to facilitate the delivery, which might lessen the maximal stretches. These
modifications were not considered on this study [DeCherney and Nathan, 2003].

During delivery, the fetal head configuration changes, in order to reduce the
volume of the skull [Llewellyn-Jones, 2004] and facilitate its passage through the
birth canal. The occipital bone is displaced under the two parietal bones during
childbirth, reducing the size of the posterior fontanelle, which is called moulding.
During moulding, the parietal bones may also slip under each other. This effect was
not considered on this study.

A multitude of variables such as variations in maternal pelvic shape, fetal head
shape, the degree of moulding during delivery, symphyseal diastasis, types of epi-
siotomies, and presenting orientation may affect the maximum muscle stretch ratios,
thus affecting the final results.

The present numerical simulation shows that the muscles of the pelvic floor are
submitted to high deformations during the passage of the fetus head.

During a vaginal delivery, the elevator ani muscle and the pubococcygeus muscle
are the muscles that are subjected to the largest values of stretch and strain. These
muscles are the ones at greater risk for a stretch related injury.

The present work showed a non-invasive procedure which can be used in the
future to estimate the damage that a vaginal delivery can induce on a specific pelvic
floor.

8.2 Future Work

In Chapter 7 a finite element model capable of simulating a vaginal delivery, with
the fetus in vertex presentation. This thesis shows only some of the capabilities
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of the presented model, which with future developments, could become a valuable
tool, aiding the obstetrician in the delivery room.

The future development of the present work should address some of the limita-
tions presented on the previous section. The different improvements that are needed
to the present model should enable it to become a tool that could be adjusted to a
specific women/fetus that presents to the clinician.

The first and one of the hardest complexities where improvements are needed
is on the production of the geometrical models necessary to perform the numerical
simulations. In order that the work presented here becomes a valuable tool for the
clinician, the results produced by it should be available in useful time. Therefore, the
creation of the geometries should be an optimized process, based on the information
obtained by Magnetic Resonance Imaging (MRI), for example.

The characterization of the mechanical properties of the tissues of the pelvic
cavity, in a labouring woman, is in itself an enormous challenge, that needs to be
addressed.

In the work presented on this thesis, the fetus was considered deformable, but
with a very high stiffness. In is necessary to characterize the mechanical properties
of the fetus and take them into account in the simulation. Other variables, like the
moulding of the fetus head, and the symphyseal diastasis are also variables that
need to be taken into account.

A multitude of variables such as variations in maternal pelvic shape, fetal head
shape, the degree of moulding during delivery, types of episiotomies, and presenting
orientation may affect the maximum muscle stretch ratios, thus affecting the final
results.

The utilization of constitutive models that correctly characterize the pelvic floor
tissues, subjected to large strains, in a labouring woman, is also important, and
therefore the future inclusion of a damage model on the constitutive model is an
important development.

In the future, with some improvements, this model could provide the tools to
simulate, in a realistic manner, the pelvic floor function and the effects of its dys-
functions, as well as the effects of a vaginal delivery on the tissues of the pelvic
cavity, and in this manner, become a valuable tool in a hospital.
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