
Smart Fitness System: Training
Programming

PEDRO NUNO TEIXEIRA LOPES REIS GONÇALVES
Outubro de 2019

Smart Fitness System

Training Programming

Pedro Nuno Teixeira Lopes dos Reis Gonçalves

Dissertation for obtaining a Master’s Degree in Informatics Engineering,
Area of Specialization in Software Engineering

Supervisor: Luiz Felipe Rocha de Faria

Co-supervisor: António Constantino Lopes Martins

Júri:

Vogais:

Porto, October 2019

ii

iii

iv

v

Resumo
Sistemas de recomendação no geral estão a ser cada vez mais usados por empresas que
procuram oferecer uma experiência de utilização mais individual e personalizada aos seus
clientes. Obter feedback em transações de negócio online nunca foi tão fácil e acessível, o que
apenas ajuda a catalisar a evolução dos sistemas de recomendação.

Adicionalmente, o uso de dispositivos tecnológicos como smartphones e computadores,
juntamente com a conexão à internet, estão também a crescer a um ritmo acelerado sem sinal
de paragem em vista. Juntando-se a este grupo de indústrias em crescimento está a indústria
fitness, que está a ficar cada vez mais popular. Com isto, mais e mais pessoas estão a começar
a usar os dispositivos mencionados anteriormente em combinação com as suas atividades
fitness, para aumentar o seu desempenho, monitorizar progresso, definir objetivos, entre
outros. Consequentemente, o mercado para sistemas fitness (p.e. aplicações fitness) está a
aumentar e já é bastante denso. No entanto, a qualidade associada com tais sistemas fica um
pouco aquém tanto em termos de inovação como de funcionalidades essenciais.

Como resultado disto, este projeto propôs uma solução – um sistema fitness sob a forma de
uma aplicação móvel aliada a um poderoso sistema de recomendação. Este sistema é
pretendido que providencie uma experiência mais individual e personalizada para qualquer tipo
de utilizador fitness através da oferta de funcionalidades essenciais como registo e
monitorização de informação, análise de progresso, e também através de funcionalidades
inovadoras como a implementação de um sistema de recomendação capaz de sugerir tópicos
relacionados com fitness (p.e. regimes de treino ou exercícios específicos) baseado em
múltiplos fatores como os objetivos, características individuais e historial de cada utilizador.
Além do mais, deve também oferecer um assistente pessoal virtual, onde os utilizadores podem
expressar as suas questões e dúvidas, e tê-las respondidas instantaneamente por um chatbot.

Durante o desenvolvimento foi decidido que um segundo sistema de recomendação seria
necessário para melhorar o sistema no geral. Este, o sistema, depois de implementado, foi
avaliado e pode ser concluído que o resultado foi um sucesso, tendo passado em todas as
métricas definidas, exceto uma, com classificações médias nos questionários de satisfação
acima de 4/5. O feedback obtido por um especialista no sistema de recomendação foi
altamente vantajoso e no geral decentemente positivo, apenas com algumas questões que
necessitam de melhoramento. Embora o sistema de recomendação inteligente não tenha
conseguido ser testado com informação aplicável, a investigação e trabalho feito constituem
uma mais valia caso mais tarde exista a possibilidade de aplicar dados reais.

Palavras-chave: Fitness, Sistemas de recomendação, Aplicação móvel, Chatbot

vi

vii

Abstract
Recommender systems in general are increasingly becoming more exploited by companies who
seek to provide a more individual and personalized user-experience to their customers. The fact
that providing feedback on online business transactions is also becoming ever so easier only
helps to catalyze the evolution of recommender systems.

Moreover, the use of technological devices such as smartphones and computers, in conjunction
with an internet connection, are also continuing to grow at a fast pace, with no slowing down
in sight. Joining on this group of growing industries is the fitness sector, which is becoming
increasingly popular. With this, more and more people are starting to use the aforementioned
devices in combination with their fitness activities, to boost performance, monitor progress,
define goals, among other things. Consequently, the market for fitness systems (i.e. fitness
applications) is expanding and is already very dense. However, the associated quality with such
systems falls short both in terms of innovation and even crucial features.

As a result, this dissertation proposes a solution - an innovative fitness system in the form of a
mobile application allied with a powerful recommender system. The system is intended to
provide a more individual and personalized experience to any type of fitness user through the
offering of crucial features including the log and monitor of information, progress analysis, and
also through innovative features such as the implementation of a recommender system capable
of making fitness-related suggestions (i.e. training regimens or specific exercises) based on
multiple factors like the user’s individual goals, characteristics, and history. Additionally, it
should also provide a personal virtual assistant, where users can express their questions and
doubts and have them answered instantly by a chatbot.

During development, it was decided that a second recommender system was required to
improve the system as a whole. This, the system, after being implemented, was evaluated and
it can be concluded that the result was a success, having passed in all the defined metrics,
except one, with average classifications of 4/5 on the satisfaction inquiries. The feedback
obtained from the expert on the recommender system was highly useful and, in general,
decently positive, having only a few questions that need improvement. Even though the
intelligent recommender system couldn’t be tested with applicable data, the investigation and
work done constitute a great asset in case there’s the opportunity to employ real data.

Keywords: Fitness, Recommender systems, Mobile app, Chatbot

viii

ix

x

xi

Index
1 Introduction ... 1

1.1 Context ..1

1.2 Problem ..1

1.3 Goals ...2

1.4 Motivation ...3

1.5 Methodology ..3

1.6 Report Structure ...4

2 Value Analysis ... 7

2.1 Context ..7
2.1.1 Fitness ...8
2.1.2 Fitness and Technology ..9
2.1.3 Training Programming ... 12
2.1.4 Concepts ... 14

2.2 New Concept Development Model ... 15
2.2.1 Opportunity Identification .. 16
2.2.2 Opportunity Analysis ... 17
2.2.3 Ideas Generation and Development ... 17
2.2.4 Ideas Selection.. 17
2.2.5 Concept Definition ... 18

2.3 Value, Perceived Value and Value to the Client ... 18
2.3.1 Value ... 18
2.3.2 Perceived Value .. 18
2.3.3 Value to the Client ... 19

2.4 Value Proposition... 19

2.5 Canvas ... 19

3 State-of-the-art ... 21

3.1 Recommendation Techniques .. 22
3.1.1 Collaborative Recommendation .. 22
3.1.2 Content-based Recommendation .. 23
3.1.3 Knowledge-based Recommendation ... 24
3.1.4 Hybrid-approach Recommendation .. 25
3.1.5 Matrix Factorization ... 25

3.2 Issues and Challenges .. 28
3.2.1 Cold Start Problem .. 28
3.2.2 Synonymy .. 28
3.2.3 Gray Sheep .. 29
3.2.4 Shilling Attacks ... 29
3.2.5 Privacy ... 30

xii

3.2.6 Sparsity .. 30
3.2.7 Scalability ... 30

3.3 Conclusion ... 30

4 Existing Solutions Analysis .. 33

4.1 App Types Definition .. 33
4.1.1 Gym Only .. 34
4.1.2 PowerBuilding .. 35
4.1.3 Athletic .. 35
4.1.4 General Lifting ... 36

4.2 App Selection Criterion ... 36

4.3 App Evaluation Criterion .. 38

4.4 Gym Only .. 40
4.4.1 AmazinGym ... 40
4.4.2 Tripla Forma .. 42

4.5 PowerBuilding .. 45
4.5.1 Intensity ... 45
4.5.2 Strong .. 48

4.6 Athletic .. 52
4.6.1 Nike Training Club ... 52
4.6.2 Freeletics .. 54

4.7 General Lifting ... 58
4.7.1 Jefit .. 58
4.7.2 Fitbod .. 62

4.8 Conclusion ... 65

5 Design ... 71

5.1 Requirements Engineering .. 71
5.1.1 Stakeholders .. 71
5.1.2 Interveners .. 72
5.1.3 Functional Requirements (Use Cases) ... 72
5.1.4 Non-Functional Requirements (FURPS+) .. 76

5.2 Architecture .. 78
5.2.1 Domain Model ... 78
5.2.2 Proposed Architectures .. 81
5.2.3 Implemented Architecture .. 85
5.2.4 Detailed Implemented Architecture ... 86

6 Implementation ... 91

6.1 Recommender System ... 91
6.1.1 Intelligent Recommender ... 91
6.1.2 Conditional Recommender ... 114

6.2 Mobile Application .. 120
6.2.1 System’s Characteristics ... 121

xiii

6.2.2 Libraries .. 128
6.2.3 User Interface ... 129

6.3 Server Application... 132
6.3.1 Authentication & Authorization ... 132
6.3.2 Encryption .. 133
6.3.3 Multi-language ... 133
6.3.4 Migrations .. 134
6.3.5 Flow ... 135

6.4 Personal Virtual Assistant .. 136

6.5 Use Cases ... 141
6.5.1 US02: View training Plan/Program templates 142
6.5.2 US03: Manage training Plan/Program .. 145
6.5.3 US04: Manage Body Measurements ... 147
6.5.4 US08: View training Logs ... 151
6.5.5 US10: View Statistics ... 152
6.5.6 US15: Change Language .. 154
6.5.7 US16: Change Unit System ... 155
6.5.8 US17: Manage Available Equipment .. 157

6.6 Non-Functional Requirements ... 159

6.7 Tests .. 160
6.7.1 Unit Tests... 160
6.7.2 Integration Tests .. 161
6.7.3 System Tests ... 162
6.7.4 Acceptance Tests .. 162

7 Evaluation .. 163

7.1 Metrics .. 163

7.2 Hypotheses ... 164

7.3 Methodology ... 165

7.4 Results Analysis .. 167
7.4.1 Mobile Application & Personal Virtual Assistant 167
7.4.2 Conditional Recommender ... 169
7.4.3 Intelligent Recommender .. 171

7.5 Experimental Analysis .. 174
7.5.1 Intelligent Recommender .. 174
7.5.2 Conditional Recommender ... 179

8 Conclusion .. 183

8.1 Accomplished Goals ... 184

8.2 Limitations and Future Work .. 187

8.3 Final Appreciation ... 189

xiv

Figures Index
Figure 1 – Trello board ... 4
Figure 2 - Global mobile data traffic from 2017 to 2022 (in exabytes per month) 10
Figure 3 - Worldwide mobile app revenues in 2015, 2016 and 2020 (in billion U.S. dollars) 10
Figure 4 – Mobile Health & Fitness app sessions grow 9% year-over-year 11
Figure 5 – Health & Fitness app usage by category ... 12
Figure 6 – Workout Definition ... 13
Figure 7 – Training Plan Definition ... 13
Figure 8 – Training Program Definition .. 14
Figure 9 – NCD (New Concept development) model ... 16
Figure 10 – Canvas Business Model ... 20
Figure 11 – Matrix Factorization example ... 27
Figure 12 – Factorization of a Single Rating ... 27
Figure 13 – AmazinGym’s exercise statistics .. 41
Figure 14 – Tripla Forma Virtual Gym Physical Evaluation .. 43
Figure 15 – Tripla Forma Virtual Gym Physical Evaluation progress graphs 44
Figure 16 – Intensity’s overview of a Set and Stats ... 46
Figure 17 – Strong’s Plate calculator .. 49
Figure 18 – Strong’s Apple Watch integration ... 49
Figure 19 – Strong’s quick filter option for exercises ... 50
Figure 20 – Nike Training Club’s workouts ... 53
Figure 21 – Freeletics Training Journey ... 56
Figure 22 – Freeletics workouts ... 56
Figure 23 – Jefit’s exercises .. 59
Figure 24 – Jefit’s calendar ... 60
Figure 25 – Fitbod’s Available Equipment Selection .. 62
Figure 26 – Fitbod’s Muscle Recovery ... 63
Figure 27 – Use Case Diagram .. 73
Figure 28 – Domain model ... 79
Figure 29 – Logical View of the first proposed architecture .. 82
Figure 30 – Logical View of the second proposed architecture ... 82
Figure 31 – Logical View of the third proposed architecture... 84
Figure 32 – API’s Logical View .. 86
Figure 33 – Mobile App’s Logical View... 87
Figure 34 – Recommender System’s Logical View ... 88
Figure 35 – FitnessBackOffice & FitnessWebApp’s Logical View ... 89
Figure 36 – System’s Deployment View ... 90
Figure 37 – Load Users and Items method .. 93
Figure 38 – DatasetModel class ... 94
Figure 39 – Class Diagram from the Intelligent Recommender ... 95
Figure 40 – Rating Matrix builder method .. 96

xvi

Figure 41 – Rating Matrix ... 97
Figure 42 – UserItemRatings class .. 97
Figure 43 – Iterative learning algorithm from Matrix Factorization .. 99
Figure 44 – Gradient Descent visualization .. 100
Figure 45 – Overfitting illustration ... 102
Figure 46 – MSE evolution by iteration .. 103
Figure 47 – Pearson’s Correlation implementation.. 104
Figure 48 – Cosine Similarity implementation ... 105
Figure 49 – Co-rated Cosine Similarity implementation... 105
Figure 50 – Root of Mean Squared Error implementation ... 106
Figure 51 – GetRating parent method for UBCF .. 106
Figure 52 – GetNearestNeighbors method .. 107
Figure 53 – GetRating child method for UBCF ... 107
Figure 54 – GetSuggestions method for UBSCF ... 108
Figure 55 – Transposed Ratings Matrix with appended tags ... 110
Figure 56 – GetRating method for IBCF ... 110
Figure 57 – GetHighestRatedItemsForUser method .. 111
Figure 58 – GetRating method for Hybrid filtering .. 111
Figure 59 – GetSuggestions method for Hybrid filtering .. 112
Figure 60 – GetCommonSuggestions method for Hybrid filtering ... 112
Figure 61 – Activity Diagram for the Intelligent Recommender System 113
Figure 62 – Sequence Diagram for the Intelligent Recommender System 113
Figure 63 – Hubble’s Constant, expressed through the slope of a Linear Regression graph ... 116
Figure 64 – Sequence Diagram: Conditional Recommendation .. 117
Figure 65 – Method to get the unused goals ... 117
Figure 66 – Strategy Pattern: IEvaluate ... 118
Figure 67 – Method to filter the workout list by their goals .. 119
Figure 68 – Line of Best Fit equation implementation ... 120
Figure 69 – Redux action example ... 122
Figure 70 – Redux reducer function example ... 122
Figure 71 – Redux connect example .. 123
Figure 72 – AsyncStorage persisting data example .. 123
Figure 73 – AsyncStorage fetching data example .. 124
Figure 74 – Mobile App’s navigators and respective screens .. 126
Figure 75 – LanguageList file example ... 127
Figure 76 – LanguageFile example ... 128
Figure 77 – Mobile App UI: Initial Flow .. 130
Figure 78 – Mobile App UI: Training Lists ... 130
Figure 79 – Mobile App UI: Create, Start and Check Workouts ... 131
Figure 80 – Mobile App UI: Configurations .. 131
Figure 81 – ASP.NET Identity generated entities.. 132
Figure 82 – Authorize attribute in the server’s Controller ... 132
Figure 83 – Multi-language architecture solutions .. 134

xvii

Figure 84 – Project’s Migrations .. 135
Figure 85 – Server’s GET request flow ... 135
Figure 86 – PVA components communication ... 137
Figure 87 – Stages to build a LUIS model ... 138
Figure 88 – Example of extracting intent and entities from utterances 138
Figure 89 – Movement-tips utterances examples ... 139
Figure 90 – Mobile application Direct Line usage .. 140
Figure 91 – PVA interaction ... 141
Figure 92 – Discover screen ... 142
Figure 93 – Program list validation .. 143
Figure 94 – getPrograms action ... 144
Figure 95 – GetPrograms server method ... 144
Figure 96 – Create Program screen flow .. 145
Figure 97 – Configure Program Details .. 146
Figure 98 – PostProgram method .. 146
Figure 99 – SetSupersetsInExercises method ... 147
Figure 100 – Program model creator method ... 147
Figure 101 – Configure Body Measurements .. 148
Figure 102 – Save selected Body Measurements method ... 148
Figure 103 – PutBodyMeasurements method ... 149
Figure 104 – Manage Body Measurement Logs... 150
Figure 105 – Log screen ... 151
Figure 106 – GetUserLogsByDate method ... 152
Figure 107 – log objects’ builder .. 152
Figure 108 – Profile screen statistics .. 153
Figure 109 – componentDidMount method from Profile screen ... 153
Figure 110 – Change system’s language .. 154
Figure 111 – change language function to redux action .. 154
Figure 112 – PutUserLanguage method .. 155
Figure 113 – Change unit system ... 156
Figure 114 – Unit system change handler .. 156
Figure 115 – storeUnits action ... 157
Figure 116 – Open Available Equipment screen .. 157
Figure 117 – Get available equipment list snippet .. 158
Figure 118 – Filtering and Adding equipment.. 158
Figure 119 – Save available equipment method .. 159
Figure 120 – Unit Test for the GetSlope method ... 160
Figure 121 – Integration Test for the GetPrograms method ... 161
Figure 122 – Graph of the training and testing variation with the number of latent features 176
Figure 123 – Graph of the training error variation with the number of epochs 177
Figure 124 – Graph of the error variation with the number of neighbors 179

xviii

Tables Index
Table 1 – App’s Ratings .. 37
Table 2 – App type targets ... 39
Table 3 – Summary of the strengths and weaknesses of the app types.................................... 65
Table 4 – Apps’ features summary ... 67
Table 5 – Use Cases Priority ... 73
Table 6 – Proposed Architectures Evaluation .. 85
Table 7 – Library list ... 128
Table 8 – System test nº1... 162
Table 9 – Acceptance Test for Use Case 2 (US02) .. 162
Table 10 – Evaluation Methodologies .. 165
Table 11 – Satisfaction Inquiry Scale’s Description .. 166
Table 12 – Response percentage for each question from the Mobile Application’s inquiry .. 167
Table 13 - Response percentage for each question from the PVA’s inquiry 168
Table 14 – Expert’s satisfaction inquiry results .. 170
Table 15 – Error Analyzed Techniques ... 171
Table 16 – Recommender technique’s error ... 172
Table 17 – Training and Testing error variation with the number of latent features 176
Table 18 - Error variation with the number of neighbors .. 178
Table 19 – Accomplished Goals ... 185
Table 20 – Accomplished Use Cases .. 186
Table 21 – Project’s Future Work... 188

xx

Acronyms

AI Artificial Intelligence

PVA Personal Virtual Assistant

RPE Rated Perceived Exertion

1RM 1-Rep Max

MF Matrix Factorization

CF Collaborative Filtering

UB-CF User-Based Collaborative Filtering

IB-CF Item-Based Collaborative Filtering

SVD Singular Value Decomposition

HIIT High Intensity Interval Training

DTO Data Transfer Object

LINQ Language Integrated Query

UI User Interface

LUIS Language Understanding Intelligent Service

xxii

1

1 Introduction

This chapter is dedicated to the presentation and introduction of the present project. Firstly, by
contextualizing it, establishing the problem associated with it, the goals set to achieve, the
motivation behind it and also the methodology employed. Lastly, the document’s structure is
defined and explained in order to provide a more pleasing experience to the reader.

1.1 Context

The fitness industry is experiencing a continuous growth both in terms of adherents and total
revenue. The reasons behind such growth can have multiple answers, but one of them, and
likely one of the most relevant ones is its coupling with technology. More specifically, wearables,
make it very convenient for people to monitor their digital health feedback, allowing them to
pay more attention and make more healthy decisions.

Being healthy and fit obviously carries tremendous advantages for people, both physically and
mentally. This, allied to the fact that the whole fitness and mobile industry are growing, now
more than ever, only makes it desirable to combine them in a distinctive manner, through a
fitness mobile application.

Given that the project is being developed in conjunction with another author, this report will
be directed towards the documentation and implementation of the training Programs aspect
of the system. There are numerous concepts and predefinitions that need to be exposed, in
order to clearly contextualize the present project. This, and more information relative to the
contextualization of the said project can be found in a later Context section.

1.2 Problem

According to AGAP (Barómetro da Associação dos Ginásios de Portugal) [1], in 2015, the
Portuguese fitness market grew 13%, totaling approximately 730 thousand people, or 7.1% of
the population [2]. Additionally, researches focused on other countries (i.e. Chile, Germany and
France), concluded the same, the fitness industry suffered a huge growth. [3] [4] It is obvious,
then, that the fitness culture is “trending” and nearly every prediction indicates that. [4]

2

Given that it is crucial to maintain some sort of structured training Program in order to evolve
and have positive changes [5], and because this is usually done by personal trainers, it is also
important that the users themselves conduct some sort of monitoring. In many cases, in more
recreative individuals, this monitoring is deficient or non-existent, directly affecting their results
[6], leading to demotivation or even waiver. On the other hand, in more advanced users that
possess well-structured and monitored training Programs, there are other kinds of issues,
suchlike the difficulty and complexity of the monitorization and the need to extract useful,
relevant and personalized information out of the results. [7] In both cases, the unavailability of
personal trainers doesn’t allow for an effective monitoring of all practitioners, leading to
inadequate and inefficient practices to each one’s needs. [8]

1.3 Goals

The main goal of the present dissertation is to develop an individualized and personalized
monitoring and planning fitness system, allied with a recommender system adapted to each
user’s profile and specific needs that assists them in their fitness journey. This system is desired
to be composed by two applications – a mobile application for users to access all the
implemented features, and a web application, for administrators to manage the overall system.

Given that the project’s is being developed in conjunction with another author, the idea is to
offer features related to training Programs, suchlike monitoring through individual performance
feedback, customization, assistance, as well as recommendations based on personal
characteristics. Even though the training Program aspect is exclusive to this dissertation, there
are common components that were prosecuted with the other author, and some others that
do not fall in this category but are required for the good functioning of the system.

The recommender system would then be able to manage and control the user’s data, with the
main goal of capturing their evolution and assisting them. It is desired, then, for such system to
have an intelligent component, making recommendations through AI (Artificial Intelligence)
techniques.

The registry of Program-related data should be user-friendly and intuitive, offering a
personalized management of training Programs regimens to all types of individuals, allowing
for them to consult training and evolution-related information, as well as access to that
information by, possibly but not exclusively, a personal trainer or coach, empowering the user’s
results.

The main goals described will be achieved through the pursuing of the following specific goals:

 Investigation and analysis of the different state-of-the-art recommender techniques, to
decide which one will be the most adequate for the current project.

 Investigation and analysis of different fitness applications to discover what is already
being offered in the market and find what degree of differentiation is being offered.

 Development of a mobile application that allows users to perform Program-related
tasks.

3

 Development of a recommender system capable of making intelligent
recommendations.

 Development of an intelligent Personal Virtual Assistant (PVA) capable of
communicating with the user in real time to answer their questions.

 Elaboration a study that evidences the utility of the development system followed by
the results analysis.

 Fulfillment of the software development cycle.

1.4 Motivation

From a personal perspective, the motivation for this project rose from the necessity of having
a featureful fitness app to use in the gym. Even though the market is fairly large and the offer
vast, there was no specific one that catered to all the desired expectations.

The interest in the fitness and health industry, combined with the personal need of having a
system with the most essential features and even innovative ones led to the selection of the
present project which includes the creation of a system designed for people, who use the gym,
with different goals, expectations and necessities, adapting itself to them in an automated way,
providing numerous features for every type of user and assisting them in their activities, which
will hopefully motivate them to continue pursuing fitness as a healthy life-style choice.

Some of the innovative features that were the motivation base for this project include the
implementation of a recommender system, helping people achieving their goals through
intelligent recommendation techniques, in an original way, since there’s nothing of sorts well
implemented in the market, as it will be discussed in further chapters.

1.5 Methodology

The current project was developed in conjunction with another author, which resulted in two
different reports. Even though there are common components between both projects there’s
a clear separation at the domain level. That is, the present project is directed towards the
“training programming” domain, and the other to the “exercises” one, each one with their
respective features.

4

Figure 1 – Trello board

To ensure good collaboration and connection between both authors, some collaborative tools
were used, including Trello, and Bitbucket, the first being illustrated in Figure 1.

1.6 Report Structure

In this section, the structure of the overall document will be exposed, briefly describing each
chapter with relevant information, providing an introduction to the reader of the matters that
will be discussed in each one.

The Value Analysis chapter, as the name suggests, will be dedicated to the presentation of the
analysis relative to the value of the system. It’s also in this chapter were the context of the
project is presented at its entirety.

In the State-of-the-art chapter, the most developed piece of knowledge regarding
recommender systems will be presented and discussed. Given that the project’s distinctiveness
and innovation in comparison with other similar projects comes from the introduction of a
recommendation system, it becomes clear that the state-of-the-art should focus on these
systems and in their impact, as well as debate which one is better for which context and why,
and also dive deeper in recommender systems as a whole – exactly what is being presented in
the this chapter.

In the Existing Solutions Analysis, the systems that have the most similarities with the one being
developed will be addressed. After building and applying a selection criterion on a big group of
systems, the resultant ones will be presented and analyzed thoroughly. At the end, based on
the defined evaluation criterion, they will be compared and evaluated, attempting to conclude
what could the new system bring to the market and how it could stand out.

As a little side note, the reason why the previous two chapters where not compiled in a single
“State-of-the-art” chapter was due to several reasons: First, considering that for organization
issues there are several levels of sub-sections, joining the two chapters would do more harm

5

than good by increasing even more the said levels, resulting in a poorer reading experience;
Second, it makes the most sense to separate recommender systems and the systems discussed
in the “Existing Solutions Analysis” chapter because they debate two very different concerns.

The Design chapter contains information relative to specific aspects of the system. In this
chapter, the engineering of the crucial requirements will be presented, followed by the
exposition of architecture-related information. It is in this chapter that the first decisions
relative to the outcome of the system are made.

In the Implementation chapter what was effectively implemented in the system is documented,
explaining the whole implementation process with the use of code snippets and other tools for
better understanding. Also, it is also presented information regarding how the system managed
to fulfill the projected non-functional requirements. Finally, a section with the tests that were
conducted is also presented.

The Evaluation chapter, all the different crucial information necessary to the evaluation of the
new system is defined and described. This information is composed by the definition of metrics,
the formulation of hypotheses and the to-be applied methodologies. The results are then
analyzed, through result and experimental analysis.

In the final chapter Conclusion, a summary of the overall project is presented through the
enumeration of accomplished goals. The limitations and possible future work are also
addressed, followed by a final appreciation.

Moreover, there’s also additional information attached in the end of the document.
Information that is not crucial but complementary for the understanding of the project.

6

7

2 Value Analysis

This chapter will be dedicated to the value analysis of the system. According to the Business
Dictionary, the value analysis “identifies and selects the best value alternatives for designs,
materials, processes, and systems.” [9] In the current context, the main goal of the value
analysis is maximizing the value of the system, at the smallest possible cost.

First, the context of the project will be thoroughly presented, within its entire scope. Then,
Koen’s innovation process – New Concept Development Model – will be presented, followed by
the overall value of the system, the value proposition and the Canvas model.

2.1 Context

In this section, the context of the project will be presented, divided in the relevant distinct
categories that make up the end product. Given that it’s a mobile application directed towards
fitness-related use, it seems only logical to put to context what exactly does fitness mean, why
it is productive to explore this area and how is it connected with another ever-growing industry
that is the mobile one.

Also, there is one important matter that needs to be addressed – even though this project is
directed towards the development of a fitness app, this report will only contain the
programming of trainings aspect of it (in broad terms). Given that the project is being developed
in conjunction with another author, concerns had to be separated and so, this report will
contain the mentioned aspects, and the other author’s will contain workout and exercise’s.

In this way, there will also be a section dedicated to the contextualization of training
programming and a final one with the exposition and definition of different relevant concepts.

8

2.1.1 Fitness

2.1.1.1 What is Fitness?

What is fitness? Well, that’s a simple question with complex and rather diverse answers
depending on who’s being asked. A good rule of thumb is by starting at the definition from
Oxford Dictionaries that states fitness is “[t]he condition of being physically fit and healthy.” [10]
With this definition, it can be presumed fitness is the ability to perform physical tasks whilst
maintaining a healthy condition which can be both physical and mental.

It is now established what fitness means, but what does it mean to be fit? According to the
Academy of Nutrition and Dietetics' Complete Food and Nutrition Guide [11], when you’re fit
you have: energy to do what’s important and to be more productive; stamina and a positive
outlook to handle mental challenges; reduced risk of many health problems such as heart
disease, cancer, type 2 diabetes, and osteoporosis; the physical strength and endurance to
protect themselves and a better chance for higher quality of life and a longer one too.

With this being said, being physically fit is important to handle physical challenges in the
everyday life such as walking, playing with friends or training for the sake of improving one’s
fitness level, which simply means to be better fit to perform specific tasks. This can come in the
form of sports or simply from a health improvement perspective. Examples of this kind of
physical activity are playing football, going to the gym, competing in the Olympic games, etc.
Obviously, being fit in these types of activities can also improve the fitness level of everyday life
tasks (i.e. someone who competes in football won’t have much trouble climbing some stairs).
Even though the connection between them depends on the specificity of the task being
performed, in a general point of view, according to an article published in the Medicine &
Science in Sports & Exercise it is suggested that “cognitive skills trained in sport[s] may transfer
to performance on everyday fast-paced multitasking abilities.” [12]

The aforementioned type of physical activity (training for improving one’s fitness level) is the
one that is concerned in the context of this project, which will be further explored next.

2.1.1.2 Effects of being fit

As it was already stated, being fit brings major health benefits, and a great part of that comes
from physical activity, but what are the implications of being physically fit? According to the
Centers for Disease Control and Prevention (CDC) [13], only half of adults engage in the physical
activity they need to help reduce and prevent chronic diseases, which may be tied up to fact
that the same ratio of adults live with chronic diseases. Moreover, about $117 billion are spent
annually in health care costs that are allegedly associated with inadequate physical activity. 1
in 10 premature deaths could be prevented by getting enough physical activity, which is the
reason why Dr. Ruth Petersen, Director of CDC’s Division of Nutrition, Phyical Activity, and
Obesity states that “[i]f you could package physical activity into a pill, it would be the most
effective drug on the market.” [13]

It is clear and time-tested that physical activity is directly connected with improved health and
numerous articles and studies corroborate this statement, which is why Healthy People 2010
[14] indicates that physical activity is the leading health indicator on a given population. [15]

9

2.1.1.3 Evolution and growth of the Fitness industry

According to the IHRSA’s (International Health, Racquet & Sportsclub Association) 2017 global
annual report [16], in 2016, the “global health club industry revenue totaled $83.1 billion” and
in the 2018 global annual report [17], in 2017 the revenue peaked at $87.2 billion, almost 5%
more than the previous year, with an increase from 162 to 174 million consumers worldwide,
which estimates a near 7.5% increase in the same time interval.

In the UK, Allegra, a leading-edge research and strategy consulting firm based in London, with
the scope of producing a report regarding UK’s Fitness Club Market, estimates that the said
market is at “£5.1 billion with [an] annual growth of 7.1%” [18] that will still be positive over
the next 5 years. Also, in China, according to the IBISWorld Gym, Health & Fitness Clubs [19]
[20], over the past five years (from 2013 to 2018) the annualized growth has been of 10.4% with
a $7 billion revenue in total for the year of 2018. In the US, this growth has been smaller, at
2.6%, but with a staggering $33 billion total revenue for the year of 2018. The US is still
considerably very much ahead, with 11.5 times more number of business than China (112
thousand and 9 thousand) and 3.2 times more employment in the industry (800 thousand and
246 thousand), but according to Theo Hendriks, CEO of Sports and Leisure Group, “China could
become the biggest fitness market in the world within the next 20 years. If only 4 percent of
Chinese people join gyms, the country will need to build 30,000 new clubs over the next two
decades.” [21]

In Portugal, according to AGAP (Associação de Empresas de Ginásios e Academias em Portugal)
[22] in 2017 the total revenue reached 220€ million with more than half a million members (535
thousand) throughout the country. Portugal is still far from coming close to the top markets
across the globe in terms of both total revenue and memberships, since the leader is the U.S.
with a revenue of $30 billion, followed by Germany and the United Kingdom, both closing in on
the $5.5 billion mark [17].

2.1.2 Fitness and Technology

Unquestionably, the fitness industry is on the rise, and that is due to many factors, but the most
relevant to the context at hands is the conjugation with technological devices such as
smartphones. In fact, according to a Forbes article [23], the introduction of many wearables is
one of the reasons why the fitness industry is growing. According to the article, once people
start paying attention to digital feedback relative to their health (i.e. blood pressure and heart
rate), “they start making more healthy decisions” [23]. As also stated, “[the] trend toward
incorporating health data into [people’s] daily lives isn’t going away anytime soon” [23].

Almost 68% of the world population possesses some kind of mobile presence, that is a fact that
can’t be overlooked when trying to produce something for user consumption. There is no
question that mobile-related technology will continue to grow exponentially, and to prove this
point, some statistics will be presented, all taken from Statista.

10

Figure 2 - Global mobile data traffic from 2017 to 2022 (in exabytes per month)1

In Figure 2, it is observable that projections indicate that between 2018 and 2022, the mobile
data traffic will more than quadruple.

Figure 3 - Worldwide mobile app revenues in 2015, 2016 and 2020 (in billion U.S. dollars)2

In Figure 3, the projection indicates that between 2016 and 2020, the revenue from mobile apps
will increase to more than double, reaching almost $189 billion.

There are countless more statistics and projections that can be found, and probably 100% of
them indicate a growth in the mobile sector. A compilation of these can be found at
https://clevertap.com/blog/mobile-growth-statistics/.

1 Image from https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/
2 Image from https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/

11

According to Flurry Analytics [24] from 2014 to 2017, the health & fitness app usage grew by
over a staggering 330%, which is something that can be overlooked. However, the growth is
slowing down, which can be explained by subcategorizing health & fitness apps into four
different categories: workout & weight loss; general health; nutrition; studios & fitness content.
[24]

Figure 4 – Mobile Health & Fitness app sessions grow 9% year-over-year3

As Figure 4 depicts, even though general fitness content-like apps are still having a 49% year-
over-year growth, that is held back by the slower growth of workout & weight loss apps, which
have still a 11% growth and general health ones that stagnated, but more importantly by
nutrition apps, that declined and are experiencing a decline of 26%. As stated by a Flurry
Analytics report “[t]he negative trend of nutrition apps is likely influenced by studio & fitness
content apps that are offering nutrition content in addition to their core focus.” [24] This
doesn’t necessarily means that nutrition type apps are not needed, it simply means that more
and more fitness content apps are incorporating nutritional content, and specific nutrition apps
are becoming futile.

Moreover, workout & weight loss apps accounted for 73% of all health and fitness apps,
followed by 21% on general health, as depicted in Figure 5. [24] This means that working out
and tracking weight loss are key features for health & fitness app users, and as it was already
discussed, a key driver for this growth is the rising of wearables which according to Kantar
Worldpanel, as of December 2016, 15.6% of U.S. consumers owned a smartwatch of fitness
band, which continue to outsell more advanced smartwatches. [25]

3 Image from https://flurrymobile.tumblr.com/post/165079311062/health-fitness-app-users-are-going-
the-distance

12

Figure 5 – Health & Fitness app usage by category4

In conclusion, fitness is a growing market, and so is the mobile one. Combining these two areas
in a distinctive manner seems to be the logical course of action, through a mobile fitness app.
Plus, according to Flurry Analytics “[h]ealth & fitness app users are the most loyal users in the
app industry, with high retention rates, engagement, and frequency of usage” [24] and also,
because all data indicates the continuous growth of wearables, seeking to penetrate the health
& fitness app market seems like a great opportunity, now more than ever.

2.1.3 Training Programming

As previously established, the present project focuses on the training programming aspect of
the system and as so, it’s required to contextualize all the specific information regarding it.

Firstly, there’s the need to define some key concepts:

 Reps: Number of repetitions a specific exercise is to be performed for.

 Sets: Series of reps of an exercise done sequentially (usually with rest between sets).

 Exercise: Combination of the number of sets and reps for a specific exercise)

 Workout: Combination of different exercises for a single repeatable session.

 Training Plan: Combination of different workouts for a single repeatable week.

 Training Program: Combination of different organized and customizable training plans,
usually programming between 4 to 16 weeks. It can be seen as a series of repeatable

4 Image from https://flurrymobile.tumblr.com/post/165079311062/health-fitness-app-users-are-going-
the-distance

13

training plans, but the plans don’t have necessarily to be same. The training program
can be repeatable as well.

To better understand the described concepts, a full-scale training program will be built next.

Figure 6 – Workout Definition

Figure 6 depicts the rough outline of a workout, composed by different exercises, each one with
a list of sets and reps. Reading the workout, it tells that first, exercise A is to be executed,
performing 5 repetitions on the first set, and 4 on the second. Following, there’s exercise B,
with the same logic – performing 12 repetitions of the first set and 10 on the second.

Figure 7 – Training Plan Definition

If two or more different workouts are combined, a training plan arises, as showcased in Figure
7. The plan is intended to be repeated usually weekly, so, in every week, workout A and B are
performed (the days in which they are performed can be also specified).

14

Figure 8 – Training Program Definition

Lastly, to build a full-scale training program, it’s required to combine series of workouts (usually
4 to 16, but it might vary). As seen in Figure 8, the plans that compose the training program
don’t have to be necessarily the same.

2.1.4 Concepts

This section will be dedicated to the exposition and definition of some minor concepts that are,
nevertheless, relevant to the project and need to be addressed.

2.1.4.1 RPE

RPE [26] stands for “Rated Perceived Exertion” and is a scale that ranges from one to ten that
is used by athletes or coaches in order to “self-regulate their training intensity.” [26] There are
various ways to describe how the scale works, but a general rule of thumb is saying that an RPE

15

of 10 means that no more reps or weight could be performed/added. An RPE of 9 means that 1
more repetition could be performed with the same weight, and so on. There are also
intermediate values like 8.5 or 9.5. The difference between 8.5 and 8 is the fact that even
though with an RPE of 8, 2 more repetitions could be performed, with 8.5 the 2 repetitions are
not a certainty.

2.1.4.2 1RM

1RM [27] stands for “1 Rep Max” and for some people is the ultimate end-goal. The 1RM is the
most amount of weight an exercise can be performed for a single repetition. This value can be
calculated by literally performing the exercise and testing it or by using a calculator that projects
that value based on the most amount of weight lifted for more than 1 repetition. For example,
using Strength Level’s calculator5, if someone lifts 100kg for 5 repetitions, their projected 1RPM
is around 112.5kg which means that, in theory, the same person could lift that weight for a
single repetition.

Regardless, there are several calculators based on different and more parameters, in order to
give a more accurate value.

Even though this is a projected, and therefore theoretical value, using 1RPM is extremely
important specifically for strength straining. A study conducted for the Journal of Sports Science
& Medicine concludes – “[…] a standardized 1RM testing protocol […] is a reliable measurement
to assess muscle strength changes regardless of muscle group location or gender.” [28]

2.1.4.3 Real-Time Training

For the purpose of this project, the concept of “real-time training” refers to the ability to follow
a workout in real time. For example, being able to time the rest between sets, or to log
information about the exercises as they’re being performed is considered real-time training. An
example of something that does not follow this definition, is logging information about a
workout after it was performed and not during it.

Being able to end a set of an exercise, start the rest timer and log information about it during
workouts is very helpful, because, among other things, allows users to log more coherent
information. Obviously, describing something right after it was performed is much easier than
after a long period of time where other similar things were also done.

2.2 New Concept Development Model

According to Peter A. Koen [29], the innovation process can be divided into three areas: the
fuzzy front end (FFE), the new product development (NPD) process, and commercialization. FFE
is usually considered one of the greatest opportunities for improvement of the overall
innovation process. The fact that there’s no common language and vocabulary to create new

5 Data from https://strengthlevel.com/one-rep-max-calculator

16

knowledge and make distinctions between different parts of the process creates a shortcoming
that was addressed with the development of a theoretical construct – the NCD model.

Figure 9 – NCD (New Concept development) model6

Figure 9 depicts the aforementioned model, and it consists in three key parts:

 The engine, which represents leadership, culture, and business strategy of the
organization that drives the five key elements controllable by the corporation.

 The inner areas define the five activity elements of the FFE – opportunity, identification,
opportunity analysis, idea generation and enrichment, idea selection, and concept
definition.

 The influencing factors consist of organizational capabilities, the outside world, and the
enabling sciences that may be involved. These factors affect the entire innovation
process through to commercialization and are relatively uncontrollable by the
corporation.

2.2.1 Opportunity Identification

It is in this section that the opportunities that might want to be pursued are identified. [29]

The opportunity for the project at hands rose from the perceived growth in the fitness industry.
This is a trend that doesn’t seem to stop anytime soon and capitalizing on the opportunity to
provide a product or a service to a growing market is always a good thing.

Furthermore, another thing that strikes as an opportunity and also one of the reasons why the
fitness industry is growing, is the introduction of many “wearables” like the Apple Watch and
Fitbit, which is a huge opportunity for this project, that seeks to explore this trend.

6 Image from “Fuzzy Front End: Effective Methods, Tools, and Techniques”

17

Moreover, as it will be analyzed in further chapters, the offer in terms of mobile applications
specifically does not seem to satisfy the need at hands. However, the recognition of the
different competitors will allow to pinpoint their weak aspects, in order to improve them, and
the strong ones, to reproduce.

2.2.2 Opportunity Analysis

In this section, an opportunity is assessed to confirm that it is worth pursuing. [29]

As already exposed in the Context section, according to the IHRSA’s 2017 global annual report
[16], in 2016, the “global health club industry revenue totaled $83.1 billion” and in the 2018
global annual report [17], in 2017 the revenue peaked at $87.2 billion, almost 5% more than
the previous year, with an increase from 162 to 174 million consumers worldwide, which
estimates a near 7.5% increase in the same time interval.

Additionally, as it was already showcased also, according to a Forbes article [23], once people
start paying attention to digital feedback relative to their health “they start making more
healthy decisions” [23], which is one of the reasons why the fitness industry is growing. Plus, as
also stated, “[the] trend toward incorporating health data into [people’s] daily lives isn’t going
away anytime soon” [23].

2.2.3 Ideas Generation and Development

It is this section that concerns the birth, development, and maturation of a concrete idea. [29]

In order to present various problem solving ideas, together with the different project
interveners, a brainstorming was conducted and the collected ideas can be presented as such:
implementation of a mobile/web app; implementation of a progress monitoring system;
implementation of smart, AI based, techniques to generate different types of calculated
recommendations; implementation of an in-depth profiling of users, to better adapt
recommendations and others; implementation of machine learning techniques to improve the
recommendations based on numerous variables; implementation of a personal virtual assistant,
to help users in real time; synchronization with different wearables (i.e. smart watches) and
other devices (i.e. scales); development of an image recognition system that detects movement
and suggests improvements.

2.2.4 Ideas Selection

In most cases, the issue is not coming up with new ideas, but rather selecting the right ones to
pursue in order to achieve the most business value [29], which is what this section is about.

From the identified ideas, the ones that fitted the solution better whilst simultaneously impose
fewer limitations in terms of complexity were selected and can be summed as:

 Mobile/Webb app.

 Monitoring system.

18

 AI-based recommendations.

 Profiling.

 Personal Virtual Assistant.

 Synchronization with devices.

2.2.5 Concept Definition

This is the final element of the NCD and provides the only exit to the NPD or technology stage
gate. In order to pass through, a compelling case for investment bust be made, described next.
[29]

The project at hands has a clearly defined end concept, which is a mobile and web application
with an individual user-tailored experience, automatization, recommendation and
monitorization of fitness-related activities, more specifically gym ones.

2.3 Value, Perceived Value and Value to the Client

2.3.1 Value

There are two major types of clients/consumers of the product – gyms and regular gymgoers.
The value brought to each is different and can be described as such: Gyms will have an added
value to their business that can be translated in the retention of members, through the
improvement on the direct connection between them and the staff, and through the offer of a
superior monitoring and tracking system. Regular individual users will have all gym-related tasks
such as information logging and progress tracking expedited, through the offer of the same
system, unifying and computerizing all the specific individual needs.

2.3.2 Perceived Value

The perceived value will vary depending on the user, due to two reasons – opinion and profiling.
First, obviously two distinct people can assign a different value to a same service/product, and
second, the system is supposed to adapt itself to the individual needs of each user, so it’s
expected that the perceived value depends also on the profile defined.

Regardless, it’s intended that users perceive value in the system based on the innovation it will
bring in terms of the smart recommendation techniques, numerous integrations and unification
of the most essential features, all in one intuitive and adaptive platform.

In terms of gyms, the perceived value comes in the form of member retention, based on the
reasons described prior.

19

2.3.3 Value to the Client

The value to the client can be seen as the balance between the benefits they get and the
sacrifices they need to concede in order to acquire such benefits. As so, it is expected that the
project at hands creates a group of benefits that will counterbalance the sacrifices, that in this
case come in the form of a paid subscription and ads. The benefits can be presented as follows:
ease of use through an intuitive interface; innovation in multiple areas such as smart
recommendations, personal virtual assistant and number of packed features; profiling that
leads to a unique, customizable and adaptive experience; included support.

2.4 Value Proposition

The value proposition consists in the offering of a system based in a web/mobile application
with the end goal of helping clients during their fitness journey. This will be achieved by
providing numerous features such as: grouping of the most crucial functionalities; introduction
of innovative features like AI-based recommendations, in-depth profiling and integrations;
Expedite and improve the connection between a user and their PT/coach; Efficient progress
monitoring; Reduced wasted time in planning and monitoring.

The presented features will be directed to any user, however, there is value added also to gyms
themselves in the form of member retention, due to the offering of the said features to them.

Given that it is not the only system of sorts in the market, it’s intended for it to emphasize on
process automatization and computerization, accessibility of information and offering of a
unique, individual and customizable experience.

2.5 Canvas

Essentially, the Canvas [30] model is a business model designed to allow all the business-related
information to be presented on a single page, or in Figure 10 in this case.

20

Figure 10 – Canvas Business Model

21

3 State-of-the-art

The state-of-the-art document is meant to evaluate the most developed piece of knowledge
with regards to a specific topic, that in this case, refers to recommender systems. Considering
that developing a recommender system is a major portion of the whole project it becomes
evident that thoroughly researching the topic is of greatest importance.

According to the “Recommender Systems” [31], a driving force behind the development of
these systems is the increasing importance of the web for electronic and business transactions.
In this regard, the ease with which users are enabled to provide feedback about their
preferences is an important catalyst. The most typical kind of feedback comes in the form of
ratings, in which a user is prompted to associate numerical values relative to their likings on
items – a notorious example of this is the five-star rating system. [31]

There are also other forms of feedback that are effortless to the consumer and even easier to
be collect by businesses. An example of them is the simple act of purchasing or browsing items,
which can be perceived as a manifestation of interest by the consumer. In this way, the main
idea behind recommender systems is using the gathered data to deduce customers interests.
That is because usually, past interests are often good indicators of future choices, and even
though there are exceptions, most recommender systems are based on this relation between a
user and an item - which refer to the entity to which the recommendation is being provided and
the product (or service) being recommended, respectively. [31]

With this is mind, it becomes clear that the underlying principle behind recommender
algorithms is that “significant dependencies exist between user- and item-centric activity.” [31]
This means that someone manifesting interest in, for example, a genre of books, is more prone
to be interested in other books of the same genre rather than of different ones. Regardless,
there may also exist correlations between various categories of items, which can be “learned”
and applied to make more robust recommendations. As a general rule of thumb, the more data
an algorithm has, the more coherent and robust will the predictions it makes be.

So far, the described recommendations can be seen as personalized recommendations, since
they’re molded to a single user’s profile, which is built based on their past interactions with
products (i.e. browsing or purchasing). But, there’s also other types of recommendations – non-

22

personalized recommendations – which are much easier to implement, since they attempt to
suit multiple users and not specific ones. These types of recommendations, even though
effective in certain aspects, are not the focus of the study and will not be addressed any further.
[32]

The following sections will unveil specific aspects of recommender systems including the
different types there are and the issues and challenges associated with the employment of each
one. Finally, in a conclusion section, the gathered information will be summarized and future
prospects relative to the specific context of the project will be made.

3.1 Recommendation Techniques

In order for a recommender system to make a prediction, it first has to assess the usefulness of
items relative to a certain user, to know exactly what is worth recommending. With this, the
system must be able to determine an item’s utility, or at least compare it to other items and
base the prediction on the said comparison. This comparison is useful because
recommendations “are offered as ranked list of items. In performing this ranking, recommender
systems try to predict what the most suitable products or services are, based on the user’s
preferences […].” [32]

Considering that, there are multiple ways to make recommendations, in terms of the addressed
domain, the knowledge and also the algorithm used – how the previously mentioned prediction
of an item’s utility is made. [32] The following sub-sections will be dedicated to the exposition
of different types of recommendations and associated with each one, there will be some
questions left unanswered, that will need to be addressed in further chapters, if the respective
technique is chosen to be employed.

3.1.1 Collaborative Recommendation

This type of recommendation is based on collaborative-filtering (CF) which in its simplest and
original implementation, recommends to a user what other users with similar profiles liked, or
showed interest in the past. [33] For example, if two users have a purchase history that overlaps
strongly and then one of them purchases a certain item that the other does not yet possess,
then, the basic rationale is to propose it to that user, since it will mostly likely be of interest.
“Because this selection of hopefully interesting [items] involves filtering the most promising
ones from a large set and because the users implicitly collaborate with one another, this
technique is called collaborative filtering (CF).” [34]

The standard method of application of the CF is known as the Nearest Neighborhood [35]
algorithm which, simply put, aims “to calculate the similarities between [a] target user […] and
all other users” with the goal to find the most similar ones, through different kind of processes.

The advantage of such technique is that the recommender system does not need to know
specific data about an item (i.e. genre of a book and author), which means that it doesn’t have
to entered in the system. Regardless, using specific data to propose similar items ones might be
more effective, since it’s more robust.

23

Regardless, there are two different methods that are usually applied when dealing with this
kind of filtering:

 User-Based Collaborative Filtering (UB-CF): Given a certain user 𝑥 , the algorithm
calculates the similarity of 𝑥 with other users, based in the Nearest Neighborhood
technique, finding the most similar ones, predict ratings for items 𝑥 has not yet rated
based on the ratings of similar users and recommend the top ones. [36] [37]

 Item-Based Collaborative Filtering (IB-CF): Similar to UB-CF, it calculates the similarity
between any two items, predict ratings for the items the target user 𝑥 has yet to rate,
and recommend the top ones. [36] [37]

Anyhow, there are some questions that usually emerge when dealing with these types of
approaches, and the most significant ones are as follows [34]:

 How to find users with similar profiles to the user for whom the recommendation is
needed?

 How to measure similarity?

 How to deal with new users, with no defined profile yet (i.e. no history of purchases)?

 How to deal with new items, that no one has showed interest in yet?

3.1.2 Content-based Recommendation

One of the questions of the previously described recommender system - collaborative – is
answered by this one. The question regarding what to do with new items that have yet to be
purchased, for example, can be answered with content-based recommender systems. These
systems base their recommendations on the characteristics of the items. If a user has showed
positive interest in a certain genre of books, the algorithm is more likely to suggest books of the
same genre. As described by “Introduction to Recommender Systems”, “the similarity of items
is calculated based on the features associated with the compared items.” [32]

The advantage these systems bring in terms of new items, to answer the mentioned question,
is due to the fact that the history of purchases (or any history associated with interests) is not
needed, since when a new item is introduced, there can already exist others with similar
characteristics, making it viable for recommendation without any history associated
whatsoever.

There are also some questions that appear when working with content-based recommender
systems [31] [32]:

 How can systems automatically acquire and continuously improve user profiles?

 How to determine similarity in terms of characteristics compatibility?

 What techniques can be used to automatically extract items characteristics?

24

 How to prevent “obvious” recommendations based on keywords that sometimes lead
to the impossibility of an item being recommended due to the particular keywords it
has?

 How to deal with new users, since a history of their interests is needed?

Even though content-based has some advantages comparing to collaborative such as the non-
necessity to possess large user groups to achieve a reasonably accurate recommendation, and
also the fact that it answers to the “new item problem” where an item couldn’t be
recommended if it had no history associated, there are still some tradeoffs that come with it.
Even though using the characteristics of items does seem like a more accurate way of identifying
possible recommendations, acquiring such data automatically is an arduous process, “meaning
that such information must be manually entered […] in a potentially expensive and error-prone
process.” [34]

3.1.3 Knowledge-based Recommendation

In the specific context where purchases are not made very often, and there are many one-time
buyers, knowledge-based recommendations are particularly useful. The fact that these kinds of
purchases exist, means that the system cannot rely on history of purchases, which is a
prerequisite for collaborative and content-based recommendations. Also, in these kinds of
markets, such as the automotive one, the products evolve significantly over the years, making
the preferences also show a corresponding evolution. Moreover, these products often have
many different properties, and users might be interest in items with very specific ones which
makes it hard to capture user interest. [31]

In such cases, knowledge-based recommender systems are very useful, where the ratings (or
interest shown) in items are not used, but rather the “similarities between customer
requirements and item descriptions, or the use of constraints specifying user requirements.”
[31] An example of this are constraint-based systems, where explicit constraints regarding an
item’s details such as color, model, price, etc. can be used to deduct interest. Moreover, these
constraints may also be used to “describe the context in which certain features are relevant for
the costumer” [31] such as, for example, that a car of smaller portions is advantageous if the
customer is interested in parking in busy cities. As explained by “Recommender Systems: An
Introduction”, applying explicit constraints to deduce relevant features is of great value.
“Simply presenting products that fulfil a given set of requested features is not enough, as the
aspect of personalization is missing, and every user (with the same set of requested features)
will get the same set of recommendations.” [31]

Other relevant aspect of these types of systems is the “user interaction”. There’s a need to
extract specific information about a user’s interest, and a fair approach would be to directly ask
the user about their requirements. However, such an approach, “not only requires detailed
technical understanding of the item’s features but also generates additional cognitive load in
scenarios with large number of item features.” [31] More elaborate approaches try to
incrementally ascertain preferences through an interactive and personalized dialog between
the system and the customer.

There are some questions that beg to be addressed when dealing with knowledge-based
recommender systems [31]:

25

 How to rank items based on the user’s characteristics?

 How to acquire the user profile in a context in which no purchase history is available?

 How to take customer’s explicit preferences into account?

 Which interaction patterns can be used in interactive approaches?

 How can the dialog be personalized to maximize precision of the preferences?

3.1.4 Hybrid-approach Recommendation

As the name suggests, taking a hybrid approach to recommender systems simply means to
combine different techniques, like the ones mentioned previously. By doing so, one can “fix”
the disadvantages of a certain system with the advantages of another. [34]

When combining different types of recommendations to adopt a hybrid approach, there are
some questions that have to be answered [31]:

 Which techniques can be combined and what are, if any, the prerequisites to do so?

 Should proposals be calculated for two or more systems, or do other hybridization
designs exist?

 How should the results of different techniques be evaluated, and can they be
determined dynamically?

3.1.5 Matrix Factorization

One of the main problems with commercial recommender techniques, especially collaborative-
filtering, refers to sparsity and scalability. In other words, these recommenders do not deal very
well with the lack of data nor with the increased growth of users and items. As reported in a
“Knowledge and Information Systems” article named “Scalability and sparsity issues in
recommender datasets: a survey”, even though nearest neighbor computation constitutes a
typical approach for CF techniques, due to its high accuracy, “its performance on scalability is
still poor given a huge user and item base and availability of only few ratings (i.e. data sparsity)
[…]” [35]

There are numerous and very diverse proposed approaches to alleviate the data sparsity
problem, including a Multidimensional model [36], demographic filtering [37], content-boosted
CF [38], and the most notorious and the one that will be explored in the context of this project,
Singular Value Decomposition (SVD) [39].

SVD is the main technique used in an advanced method of recommendation, that “decompose[s]
the original [user-item] sparse matrix to low-dimensional matrices with latent factors/features
and less sparsity.” [40] This advanced method is called Matrix Factorization.

26

Representing users’ preferences with low-dimensional matrices offers great advantages in
terms of latent features. In other words, if a user gave high ratings to a set of History movies,
then there’s a high probability that the same user might enjoy other History movies in the future.
Latent features are expressed by higher-level attributes, which in this case refers to the History
genre. As it was excellently put by an article on “Towards Data Science”, “what matrix
factorization eventually gives us, is how much a user is aligned with a set of latent features, and
how much an [item] fits into this set of latent features.” [40] This offers an advantage over other
methods because even though two users haven’t rated the same items, there’s still a way to
calculate the similarity between them by finding underlying tastes, expressed by latent features.
[40]

Returning to SVD, since it’s the main technique used, it’s the most crucial piece of knowledge
required to understand the workings of. Based on Linear Algebra, the theoretical background
according to Golub and Reinsch [41], states that:

This means that any matrix 𝐴 can be decomposed into 3 matrices, 𝑈, ∑ and 𝑉. With an initial
matrix 𝐴 with 𝑟 rows, 𝑐 columns and rank 𝑚, where the columns of 𝑈 and 𝑉 are orthonormal
vectors defining the left and right singular vectors of 𝐴, and ∑ is a diagonal matrix containing
corresponding singular values “representing how important a specific feature is to predict user
preference.” [40] It can be said that 𝐴 is a 𝑚 × 𝑛 ratings matrix, 𝑈 is a user-latent feature 𝑚 × 𝑐
matrix, and 𝑉 is an item-latent feature r × 𝑚 matrix, and the singular values correspond to
columns and rows of the original matrix respectively. [39]

For the sake of simplicity, the ∑ matrix will be removed from the equation [42] [43], since it
simply acts as a scaler. Hence, it can be assumed that it was already merged into one of the
other two matrices. Then, the final equation becomes:

What this equation (2) ultimately means is that we can have a user-item matrix, 𝐴 , and
decompose it into two matrices that when calculated their dot product results in the original
matrix. Why is this useful? Because of the simple fact that matrix 𝐴 won’t be nowhere to
completely filled with data (or we wouldn’t need recommendations), and by decomposing it,
applying some math to it and recomposing it, we can obtain the original matrix with the
previously empty spaces filled with predictions of ratings, as depicted in Figure 11.

Let A be a real m x n matrix with m ≥ n. It is well known (cf. [98]) that

𝐴 = 𝑈∑𝑉 (1)

where

𝑈 𝑈 = 𝑉 𝑉 = 𝑉𝑉 = 𝐼 𝑎𝑛𝑑 ∑ = 𝑑𝑖𝑎𝑔(𝜎 , … , 𝜎)

𝐴 = 𝑈𝑉 (2)

27

Figure 11 – Matrix Factorization example7

The aforementioned “applying some math” refers to the factorization of individual values. The
rating of a user 𝑢 for the item 𝑖, that will be denoted as 𝑟 :

Figure 12 – Factorization of a Single Rating8

The previous Figure 12 represents the dot product of two vectors, 𝑝 which is a row of the 𝑈
matrix specific to user 𝑢, and 𝑞 which is a column of the 𝑉 specific to item 𝑖. [43] This can be
summed as:

Applying the previous formula (3), all the empty values from the original matrix can be filled,
producing ratings that when analyzed and ordered, produce recommendations.

The only problem with this method is that we cannot use pure math form of matrix factorization
to predict values because then we will learn to predict zeros for missing data when
decomposing the matrix into the other two. Thus, there’s the need to find a different way to
obtain the correct matrices to obtain the missing data based only on the non-zero values. The
final question then becomes: How does one obtain the correct values for the orthogonal 𝑈 and
𝑉 matrices? This has multiple answers and therefore multiple ways to achieve the same result.
Regardless, these techniques are called optimizers and depending on the context, different

7 Adapted from https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-
the-movielens-dataset-using-pyspark-9b7e3f567536
8 Image from http://nicolas-hug.com/blog/matrix_facto_2

𝑟 = 𝑝 ∙ 𝑞 (3)

where “∙” stands for the dot product

28

ones can be employed which can be detailed and explored in further sections providing that
Matrix Factorization is a chosen recommendations technique for the system.

3.2 Issues and Challenges

Regardless of its usefulness, recommender systems also have their issues and challenges that
need to be surpassed, if a precise, error-free system is what it’s desired. The next sub-sections
will be dedicated to exploring some of the most relevant issues and challenges associated with
recommender systems.

3.2.1 Cold Start Problem

As it was already discussed when presenting collaborative and content-based recommendation
techniques, when a new user or item enters the system, there’s always an issue to be dealt with,
due to the fact that there’s no history associated with any whatsoever. This obviously means
that predicting the user’s interest will be less accurate and rating the items troublesome
because they can’t be recommended to anyone. There are some ways to solve this issue,
according to “Collaborative Filtering Recommender Systems” [35]:

 Having the user rate some items initially before using the service, to set a ground base.

 Displaying non-personalized recommendations until the user has rated enough.

 Asking the user to describe their taste in aggregate (i.e. “I like science fiction movies”).

 Asking the user for demographic information.

 Using ratings of users with similar demographics as recommendations.

Moreover, there are also some domains where there may be many “sleepers” – items that are
very good but still unrated – and several techniques to recommend them include [35]:

 Recommending items using non-CF techniques, such as content analysis or metadata.

 Randomly recommending items with few or no ratings and asking users to rate them.

3.2.2 Synonymy

According to “A survey of Collaborative Filtering Techniques” [36] definition, a synonym “refers
to the tendency of a number of the same or very similar items to have different name or entries.”
[36] For instance, an item labeled as “horror movie” and “horror film” are actually the same
item, but memory-based CF systems would find no match between them. The degree of
variability in descriptive term usage is greater than commonly suspected, which decreases the
performance of CF systems. [36]

Some attempts to solve this problem were made, with “Singular Value Decomposition”
techniques, particularly using the “Latent Semantic Indexing”. This method is capable of dealing

29

with the synonym problem to some extent, but it only gives a partial solution to the polysemy
problem, which refers to the fact that most words have more than one distinct meaning. [36]
[37]

3.2.3 Gray Sheep

According to “Combining Content-Based and Collaborative Filters in an Online Newspaper”
definition, a “gray sheep” refers to “individuals [in a community of users] who would not benefit
from pure CF systems because their opinions do not consistently agree or disagree with any
group of people.” [38] Even after the first startup phase, these individuals will rarely, if ever,
receive accurate recommendations based on CF.

A hybrid approach was offered by the aforementioned reference, in which CF recommendations
were combined with content-based ones, basing the prediction on the weighted average
between the predictions of both. “Moreover, the weights [of both predictions] are determined
on a per-user basis, allowing the system to determine the optimum mix of content-based and
collaborative recommendation for each user, helping to solve the gray sheep problem.” [38]

3.2.4 Shilling Attacks

“Shilling Attacks” happen when someone give tons of positive reviews for their own product
and/or negative ones for their competitors. It is, obviously, desirable to discourage this type of
behavior through the introductions of precaution measures in CF systems. [36]

The effectiveness of these kinds of attacks has been already studied, and “Shilling
Recommender Systems for Fun and Profit” found out that item-based CF algorithms were much
less affected by the attacks than a user-based one. It is also suggested that new ways need to
be used to evaluate and detect shilling attacks on recommender systems. [39]

There were numerous attempts to solve the issue with shilling attacks. In “Effective Attack
Models for Shilling Item-Based Collaborative Filtering Systems”, a partial solution to the bias
injection problem was given, through the use of hybrid and model-based collaborative filtering
systems. [40] Also, in “Collaborative recommendation: A robustness analysis” a contribute was
made to solve the attack problem by analyzing robustness, a recommender system’s resilience
to potentially malicious perturbations in the user-item rating matrix. [41]

Moreover, Bell and Koren, in “Improved Neighborhood-based Collaborative Filtering” [42] used
a comprehensive approach to the attacks, by removing global effects in the data normalization
stage, and working with residual of global effects to select neighbors. [36] In 2009, they were
awarded by Netflix on their Netflix Prize9 initiative in which they substantially improved Netflix’s
prediction accuracy with their algorithm - BellKor’s Pragmatic Chaos10.

9 https://www.netflixprize.com/
10 https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf

30

3.2.5 Privacy

To have better recommender systems, with improved accuracy, feeding personal information
is usually the best choice, but that may lead to privacy and security issues. Consequently,
recommender systems should build trust amongst their users, however, CF recommenders are
more prone to those types of issues. [36]

In CF systems, the user data is stored in a centralized repository, which can be compromised,
resulting in data misuse. [43] Some techniques used to solve this issue include using randomized
perturbation techniques, as proposed in “Privacy-Preserving Collaborative Filtering” [44], which
allows users to publish their private data without exposing their identities, and also using
Semantic Web technologies in combination with Neuro Linguistic Programming 11 (NLP)
techniques, proposed in “Ontology-Enabled Access Control and Privacy Recommendations” [45]
to mitigate the unwanted exposure of information. [36]

3.2.6 Sparsity

With the increase of users and items, the respective user-item matrix used to make predictions
with collaborative filtering will become extremely sparse, leading to ever so less accurate
recommendations. [36] [43] CF algorithms use the nearest neighbors’ approach, and with the
lack of data, computing neighbors becomes a very hard and challenging task.

This challenge can appear in different situations such as the already described cold start
problem, where there’s not enough information to compute neighbors of new users. This is
especially difficult because new items cannot be recommended until some users rate them, and
new users cannot be given good recommendations due to their lack of rating history. [36]

3.2.7 Scalability

The rate growth of algorithms used by typical recommender systems show a linear relation with
the number of items and users, which makes it difficult for them to process such large-scale
data. [43] To better handle this magnitude of data, several techniques have been proposed,
including clustering, that searches in small clusters instead of the entire database [36], reducing
dimensionality of data using Singular Value Decomposition (SVD) [46], and Bayesian Network.
[47]

3.3 Conclusion

Having presented several techniques used to implement a recommender system and discussing
the issues and challenges that emerge with them, it’s now essential to draw conclusions from
the gathered information.

There are numerous techniques that can be used to implement recommendations in a system
and each one has their strengths and weaknesses. The most notorious ones were the ones

11 https://www.nlp-techniques.org/

31

described in the previous sections and will be the ones that will most likely be selected when
deciding a technique for the project. Choosing a technique to employ when trying to
incorporate a recommender system will depend on multiple factors related to the context in
which the system is intended to be integrated in. For this reason, in further chapters, a more
thorough analysis will have to be conducted, with the purpose of gathering specific
requirements for the recommender system, which will be the base of decision for choosing a
recommendation technique.

32

33

4 Existing Solutions Analysis

The purpose of this chapter is to analyze modern solutions to the problem at hand – building a
fitness app – with the intent of gathering information about what is currently being
implemented and debating on what still needs to improve. To do so, four major types of fitness
apps were considered, with the thought process behind their creation described thoroughly,
and for each one two apps that fall into that category were selected. The selection and
evaluation of the apps were based on rigorous criteria, described in the following sections.

Furthermore, the analysis of each app followed a set of common topics – the first one is just an
introduction to the app, based on its own self-description, followed by its free and premium
main features which, this time, are based on a direct usage of the apps by the author. Then, the
strengths and weaknesses of the app are discussed through the eyes of the author, in what
constitutes strong characteristics to replicate, and identify non-contemplated features from the
existent solutions. Finally, for the applicable ones, the price plan is presented, and then some
final thoughts summing the analysis is bestowed.

After all the relevant apps are discussed, a final chapter will collect the most pertinent
information and compare them between each other, and also between the envisioned system
to develop, in order to further inspect where exactly is the value and betterment.

4.1 App Types Definition

There is an absurd amount of fitness apps already clogging the market, and there is also a great
deal of differences between them, which makes an arduous process to select and evaluate them.
Since it is desired to gather relevant and representative information about the fitness market,
having relevant and representative apps should be the number one priority. To help with this,
four major types of apps were defined, making it easier to categorize every app in either group
and subsequently discuss them amongst their peers, producing representative conclusions
within that context (type) and generalizing the information with the purpose of comparing with
other app types.

34

By analyzing different apps, two categories almost instantly created themselves, which make
up a great percentage of the market: apps designed for gyms and apps for quick athletic
workouts. The first category is self-explanatory, it refers to apps that are designed, usually, for
gym chains that allows them to have their own system, calibrated to their needs and context.
The second one is the one that appears more often in any fitness-workout related search, which
describes apps arranged for people looking for small, quick, predefined workouts, that require
little to no interaction from the user.

Even though these categories compose a great deal of the market, there were still “outsiders”
that needed categorization. In sight of this, two more not so obvious types were defined:
general apps and specific, customizable and flexible apps. The first one completes the market’s
percentage almost fully (after the first two categories being considered), and it comprises apps
that are designed for people seeking more general goals, like muscle or strength building, that
wish to maintain some sort of record of their activity. The second category is the “last 1%” of
the market, which contains super specific, flexible, and therefore complex apps. It aims to help
people with very well-defined goals that embrace the complexity of recording their activity as
a trade-off for specificity and flexibility. These apps will be henceforth be called PowerBuilding
apps, for reasons described next.

Briefly, the four categories can be defined as the following app types:

 Gym Only: Apps designed for gym chains for their own specific needs.

 PowerBuilding: Apps designed for super specific, flexible and complex goals.

 Athletic: Apps designed for small, quick workouts.

 General Lifting: Apps designed for general lifters.

In the next sub-sections, these types will be described more thoroughly, for the sake of
consolidating their definitions and purpose.

4.1.1 Gym Only

As previously mentioned, these type’s apps are part of the set that are limited to a specific gym
and are adapted to that context. These provide the benefit of having a better, in theory,
connection between its user and their gym from the perspective of scheduling classes and
physical assessments, communicating with the gym specialists, for example, Personal Trainers
and Nutritionists, and other perks that can be granted to the members that use the gym app
like discount codes for products distributed by the gym.

For the average gymgoer it is undeniable the advantages that using their gym app offers, even
from a comfort standpoint, considering that they are not required to search for an app that
caters to their needs. Not to mention that usually, in most cases, the app is free for members,
which can also be a deciding factor.

35

4.1.2 PowerBuilding

The PowerBuilding term comes from the junction between Powerlifting [48] which is a strength-
based sport in which the contestants have three attempts at maximal weight on three different
lifts, similar to Olympic weightlifting [49], where there are only 2 different lifts, and
Bodybuilding [50], which is a sport that consists in the development of one’s musculature and
symmetry through the use of resistance exercises. The two sports come together as one when
one’s goal is to develop specific strength on the “three main lifts” and develop simultaneously
a good physique. This is possible due to the fact that the resistance exercises are the same in
both sports (in most cases), the only difference is in the way they’re done,

The two sports included in the term PowerBuilding require the person practicing them to plan,
program, and even log their activity. They’re sports based in a great deal of variables that need
to be kept in check [51] [52], like consistency, specificity, fatigue management, amongst others,
which can only be achieved through intelligent programming and logging. This can be a highly
complex and tiresome task to perform, creating a niche for that specific need.

As a result, this section was created with the intent of grouping apps that provide a more
methodical and flexible approach to programming for bodybuilding and strength training. Even
if some of them claim they’re specifically designed for one of the sports, they’re usually easily
adaptable to the other, given their similarities.

As mentioned above, the great benefit of these apps is their methodical, flexible and
customizable approach to programming. However, all this flexibility and customization comes
with a cost – complexity. Even though most apps will claim they can pack advanced
programming techniques and ease of use all in the same system, it’s safe to assume that’s not
the case more often than not. Robustness comes with the cost of augmented complexity, and
that’s a cost that some are willing to concede. Some people, regardless of their end goal, want
to maintain and follow a specific program, based in all kinds of variables like percentages, RPE,
etc. and that’s far from being completely straightforward, which is acceptable for them –
they’re not looking for easy, they’re looking for results.

4.1.3 Athletic

By definition, an athletic person is someone who’s “physically strong, fit, and active” [63] and
that’s exactly what the set of apps from the Athletic type are trying to portray they can offer –
a means for anyone to be more athletic, in general, or towards a specific sport. The differences
between these apps and the Powerbuilding ones, for example, range from the specificity of
training to the exercise selection itself. Even though both can be adjusted for any needs, a
Powerlifter would have a hard time using an athletic app for their programming, since yoga
exercises and running are not exactly what they’re looking for.

Nevertheless, athletic apps have their use and the majority of the population who works out
will most likely adopt these apps to their training, since they provide a wide-range of exercises,
stretches, running, etc. which, for most people, is what they’re looking for anyway. Most people
don’t want to compete in Powerlifting or Bodybuilding, most people that go to the gym just
want a healthier lifestyle, incorporating athletic exercises in their lives, and, for that, these apps
are the best suited for them.

36

Even an athlete who competes in any kind of movement-based sport (e.g. Soccer, American
Football, Basketball, etc.) will benefit greatly from using athletic apps, since, most times, they’re
looking to incorporate athletic movements in the gym to improve their sport specific
performance.

4.1.4 General Lifting

If the goal is not to program and follow specific training regimens based on countless variables
like it is on Powerlifting, nor to effectively increase the musculature development through
intelligent hypertrophy programming as it is on Bodybuilding, and not even to improve sport-
specific performance or overall athleticism, there’s a chance the goal falls in the last category
of fitness apps – General Lifting. General Lifting apps are designed to provide almost like the
best of all worlds. They’re not as specific as those of the other categories, but they provide more
features and overall more flexibility.

People who use these apps, “general lifters”, can be considered, generally speaking, as people
that are not preparing themselves for anything specific like a sport, but instead are just looking
to work out and better themselves and want to keep some kind of record of their activity and
performance. It can be inferred, due to the lack of specificity on these apps, that these people
are not very serious about lifting weights in the sense that they have no ambition past the goal
of getting leaner, or stronger, or whatever their personal goal may be.

The difference between a “general lifter” and, for example, a Powerlifter, is that the Powerlifter
has the goal of lifting the most amount of weight on specific exercises, in a specific manner, and
wants to maximize the results through the use of intelligent programming and proper feedback,
and the “general lifter” just wants to improve themselves and do what they like (in terms of
exercises, for example). This does not go to say that one is better than the other in any way,
people have different goals. Regardless, it’s important to distinguish these types of lifters
because even though they have similar interests in terms of documenting their activity (through
the use of fitness apps), the way that activity is documented is very different and needs to be
taken into account.

These apps can be easily confused for any of the previous ones due to their flexibility and wide
range of features. As such, the biggest difference between them and the other apps is the lack
of specificity. Even though you can program an athletic workout, you won’t have as much
specific features as you would have if you’ve used a specific athletic app.

4.2 App Selection Criterion

The apps, in order to be selected for analysis, have to meet certain criteria. This section will
unveil the defined criteria as well as a justification for them.

The selection followed two different phases – firstly, many apps were gathered; secondly, the
criteria was applied to them in order to diminish the total number of apps to a reasonable one.

37

The first phase consisted in the almost random selection of Health and Fitness apps from both
the Google Play 12and Apple store13. The apps were ordered by their rating, number of ratings,
overall downloads, and other filters until a decent number of apps were gathered for each app
type (Gym Only, PowerBuilding, etc.) with the exception of the Gym Only type, for reasons
described below. With that, the fact that the apps were also selected to fit any of the app type
can also be seen as a third criterion.

Then, in the second phase, the criteria of selection were outlined – the app had to have an
average rating (between Google Play and App Store) above 4.5/5 with more than 30 thousand
ratings in sum. Then, the criteria were applied to each app, and the ones that did not meet any
of the criterion were discarded.

Table 1 contains the apps that resulted from applying the criteria “filter”. All the listed apps
have above a 4.5/5 rating with more than 30 thousand ratings through both store platforms.
Some of the apps, like Nike Training Club even have a 4.7/5 rating with more than 369 thousand
ratings, so it’s safe to say that, in broad terms, the best apps were selected.

However, there is an app that doesn’t meet any of the defined criterion and that is Intensity,
with a 4.3/5 average rating and with only 271 ratings. The reason for adding this app to the
selected ones that did met the criteria is because Intensity provides a unique aspect of
specificity that none of the others did. Intensity fit the PowerBuilding type quite well, and given
the fact that none other app did so, an exception was made.

Table 1 – App’s Ratings14

Apps Google Play Rating
(number of ratings)

Apple Store Rating
(number of ratings

Average Rating (total
number of ratings)

Intensity 4.5 (244 ratings) 4.1 (27 ratings) 4.3 (271 ratings)

Strong 4.8 (~8300 ratings) 4.8 (~24200 ratings) 4.8 (~32500 ratings)

Nike Training
Club

4.6 (~256600 ratings) 4.8 (~112600 ratings) 4.7 (~369200 ratings)

Freeletics 4.5 (~144500 ratings) 4.6 (~9800 ratings) 4.6 (~154300 ratings)

Jefit 4.5 (~63100 ratings) 4.8 (~12700 ratings) 4.7 (~75800 ratings)

Fitbod Non-applicable 4.8 (~34400 ratings) 4.8 (~34400 ratings)

Finally, there’s also two more apps that were not applied the criteria “filter” and those are the
ones included in the Gym Only app type. These apps were specifically selected with one
criterion only and that is – the ability to use them. Gym Only apps are exclusive to their

12 https://play.google.com/store/apps/category/HEALTH_AND_FITNESS
13 https://itunes.apple.com/us/genre/ios-health-fitness/id6013?mt=8
14 Data from February 1st, 2019

38

respective members, so, being able to access them is quite hard. The only ones that were
accessible were the ones selected.

4.3 App Evaluation Criterion

After selecting and analyzing the apps, there’s a final section dedicated to their evaluation. That
is important because even though the apps were individually scrutinized, there’s always a need
to sum the gathered information and present it properly in order to construct a conclusion.

To do so, the set of the most important functionalities were adopted to judge each app’s
capability of delivering the features that hold the most perceivable value all around. These
features, as said, try to encompass all the features that are perceived to hold the most value in
a desirable system, and will be applied to each app, to evaluate them and face them with the
system that is meant to be designed. This will both assess the current offer in the market and
the potential value the envisioned system could introduce to it.

The aforementioned features, used to evaluate the apps, can be described as such: profiling
different users; create a single workout; start and/or register a workout; perform a workout in
real time; log the workouts performed; workout statistics; info about each exercise; create a
new exercise; create a training plan; create a full-sized training program; log personal body
measurements; body measurements statistics; import progress photos and/or videos; directly
communicate with a personal trainer or coach through the app; support multiple languages for
the interface; have a social aspect (i.e. sharing workouts); useful calculators (i.e. calculators to
quickly show how much weight should one put on each side of the bar); any type of integrations
(i.e. Google Fit); ability to import and/or export information to the app; web/desktop
application; any type of recommendations based on artificial intelligence techniques.

Also, it is necessary to evaluate the created app types. Each app type has a purpose, and it
wouldn’t make much sense to analyze them with no separation whatsoever. To do so, each app
type will be evaluated by a set of specific features, usability and overall functionality. To sum
the information, a table will be built with the strengths and weaknesses of each one, based on
the criteria defined for them.

First, it is important to define the target “audience” for each app type, in order to better decide
what would constitute value to them. That information is presented in the following Table 2.

39

Table 2 – App type targets

App Type Target

Gym Only Gym members.

PowerBuilding Strength sport athletes, people seeking for
strength training.

Athletic Sports athletes, people seeking for an
athletic lifestyle.

General Lifting Average gym goers.

With that in mind, the criteria defined for each app type can be presented as such:

 Gym Only: Intuitive interface, given that most gym users would be beginners; ease of
connection between the user and their respective personal coach and nutritionist;
ability to schedule group classes; ability to schedule physical evaluations.

 PowerBuilding: Program full-sized training programs; useful calculators; progress-
oriented charts and statistics; multiple ways to program (i.e. percentages, RPE); well-
implemented timers.

 Athletic: Fast usability, given that most users will be looking for a quick workout;
progress-oriented charts and statistics; customization, to create different
workouts/exercises.

 General Lifting: Versatility, given that it will be available for different kind of users;
profiling of the different types of users in order to be more adaptive; multiple types of
workouts, exercises, and others, to provide variety.

With the different evaluation criteria already defined and established, the next sections will be
dedicated to the presentation of each app type and the analysis of each app, with the end goal
being to sum the information and evaluate them accordingly. It is also important to mention
that the evaluation criteria defined for each app type will serve as a guideline in the individual
analysis of each app, more specifically in the strengths and weaknesses part. But, the said
analysis, will not be restricted to those criteria and will be also based on specific characteristics
each app might possess that are worth mentioning.

40

4.4 Gym Only

As it was already established, Gym Only apps offer distinctive features, but they also have their
downsides. In the next sub-sections, some apps will be presented and discussed.

4.4.1 AmazinGym

AmazinGym [51] [52] [53] is a Portuguese gym app, designed for the gym members to have a
platform in which they can perform multiple gym-related tasks directly from their device, as
well as track workouts, log information and measure progress. It is certain that the ease of
communication with the gym is the main reason why members use it.

4.4.1.1 Free Main Features

The fact that the app is meant to be used by the member and their respective personal trainer,
the features vary from one another. The key features for the members are undoubtedly the
gym related ones – ability to check the working hours of the gym and of all group classes and
monitor daily physical activities and body measurements. Group classes, physical evaluations,
and personal trainer meetings can be scheduled and cancelled.

Moreover, other features the members have access to are such as being able to check individual
profile information (different logs, followers, etc.), monitor body measurement progress
through statistics, as depicted on the leftmost screenshot of Figure 13, a calendar with the
different logs of activities and sharing workouts. The member can also check their training plan
with in-depth information regarding the exercises, the equipment needed, and others. Each
exercise has a small video demonstrating how it should be performed, individual statistics for
it, as depicted in the rightmost screenshot of Figure 13, muscles targeted and also a written
description of it.

41

Figure 13 – AmazinGym’s exercise statistics15

Additionally, the workouts can be started and performed in real time, logging the information
about each exercise (i.e. number of repetitions) for posterior analysis of the personal trainer.

At the same time, the personal trainer is allowed to create and customize the training plans of
each of its members and monitor their progress through statistics.

Finally, there’s also multiple integrations with devices that allow to monitor the heart rate in
real time, and with specific scales, to automatically import information relative to the member’s
weight, bodyfat percentage, among others, directly to the app. Plus, there are also some
customizations that can be made, as far as units of measure and notifications go.

4.4.1.2 Premium Main Features

There are no premium features to mention, all of the features are free for members.

4.4.1.3 Strengths

With regards to the app’s strengths, the ability to schedule group classes, physical evaluations
and meetings with the personal trainer is definitely valuable. Plus, the available integrations
with heart rate monitor devices and scales also adds huge value to the app.

15 Images from
https://play.google.com/store/apps/details?id=digifit.android.virtuagym.pro.amazingymmatosinhos&hl
=pt_PT

42

4.4.1.4 Weaknesses

There are also some characteristics of the app that do strike as a weakness, and those are: non-
intuitive interface, due to the fact of being arduous to find some of the features (i.e. scheduling
group classes) and also due to the fact of the exaggerated number of different filters for
exercises, which is confusing and sometimes not important at all; non-ability to schedule
nutritionist consultations.

4.4.1.5 Price Plan

As mentioned previously, all of the features are free, and so, there is no price and subscription
plan.

4.4.1.6 Final Notes

AmazinGym’s app is undoubtedly an added value to their members, by offering features that
bring them together, like scheduling classes or physical evaluations, but, the fact that some of
those features are not easily accessible due to the non-intuitive interface is obviously
problematic, especially for beginners.

4.4.2 Tripla Forma

Tripla Forma [54] Virtual Gym [55] is also a Portuguese gym app, designed for prescribing and
monitoring training programs for Tripla Forma’s members. It allows for the users to access their
programs, prescribed by the respective personal trainers, and to register the training results for
posterior analysis.

The direct communication with the personal trainer is the key aspect of the app and the reason
the gym members use it.

4.4.2.1 Free Main Features

Considering that the app is designed to be used by the personal trainer, the nutritionist and the
member in conjunction, the functionalities differ from one another. The features accessible by
the member are pretty straight forward – one can consult their different workouts (there can
be more than one), and also register results for each one. For each exercise, the member can
send a message to their trainer, and can also see their progress in the form of a simple chart.

Furthermore, the member can also see the history of workouts, the goals established, in terms
of nutrition, physical evaluation, etc. and, regarding the same physical evaluation, they can
check the progress of the conducted evaluations, as depicted on Figure 14, where the different
information like bodyweight, bodyfat, water percentage, etc. are presented and compared to
another evaluation, measuring progress in the form of percentage.

43

Figure 14 – Tripla Forma Virtual Gym Physical Evaluation

Furthermore, the member can also consult their nutritional plan and customize certain aspects
of the app such as the notifications and personal data.

On the other hand, from the personal trainer perspective, the features are the opposite of the
members. The trainer can define and customize the different routines for each member they
train, monitor their progress through their results and also answer the messages they send.

Finally, the nutritionist can define and customize each member nutritional plan, define goals
and enter information regarding the physical evaluations performed by them.

4.4.2.2 Premium Main Features

There are no subscription plans, and so, no premium features to mention.

4.4.2.3 Strengths

Regarding the strengths of the app, there’s only one thing that pops up, and that is the ability
to have the data from bioimpedance scales [56], which measures the body composition, in
bodyfat percentage, water, muscle, etc. on the app, and being able to compare it with previous
evaluations, in order to measure progress. It can also generate graphs to better analyze the said
progress, as depicted on Figure 15, where the graph for the bodyweight and bodyfat progress
is displayed on the leftmost and rightmost screenshot respectively.

44

Figure 15 – Tripla Forma Virtual Gym Physical Evaluation progress graphs

4.4.2.4 Weaknesses

As far as weaknesses are concerned, the app is filled with them. For starters, the interface is
not very aesthetically pleasing. Plus, the logging of information regarding exercises doesn’t
make much sense, since one can log the weight or the repetitions but not both. Also, there’s no
training program, only individual daily workouts that can be performed whenever the member
sees fit. Given the fact the whole app revolves around workouts, one could assume the related
features would be well implemented, but the fact that a member can log the same workout an
infinite number of times on the same day tells otherwise.

4.4.2.5 Price Plan

As previously mentioned, there is no subscription plan to be mentioned.

4.4.2.6 Final Notes

There’s no doubt Tripla Forma’s Virtual Gym is useful for its members to monitor their physical
evaluations progress, but besides that, the only ones that benefit from the features the app
offers are beginners or people that are only looking to consult the random isolated workouts
the personal trainers create for them. For people that do care about progressing in the gym, an
app like this will take them no further than a sheet of paper with the list of exercises to perform.

45

4.5 PowerBuilding

This section will be dedicated to the presentation, analysis and discussion of apps that fall into
the PowerBuilding category.

4.5.1 Intensity

Intensity [57] [58] [59] might very well take the number one spot when it comes to apps
designed for strength straining. Specifically targeting Powerlifters, whose main goal is getting
better on very specific movements, it’s optimized for tracking progression with the use of their
“progress-oriented interface” [57].

It’s relevant to point out that Intensity also has a desktop version of the app, with the same
features as the app.

4.5.1.1 Free Main Features

There are a number of features that do make this app shine from a free-user perspective, and
one of them is the ability to access countless popular strength training programs already built
for use. If that’s not the intent, one can build day-to-day workouts or even customize the
workouts of already built programs. However, one cannot customize or create full-scale
programs, as that is a premium feature. It’s also of great value to access in-depth statistics, in
the form of graphs, about personal records, overall progression and others.

Other features, with substantial increased value are a timer and a stopwatch, a bodyweight
tracker, numerous calculators and, to some extent, flexible customization, in terms of units of
measurement (weight and distance), and not very much else.

Some features that are not required but are a “good-to-have” are such as messaging between
friends and leaderboards with other users. These only add to the social aspect of the app, which
is arguably necessary.

4.5.1.2 Premium Main Features

With this being said, there are also a big number of features that can only be unlocked via
premium subscription. Only with it can one create their own custom program with their
workouts and exercises. The free subscription only allows the customization of daily workouts,
not the creation of an entire program. As it was already established, a workout consists in a set
of exercises for a given non-repeatable day, and, a program is a set of planned workouts, usually
outlining 4-16 weeks. In sum, if one’s using a free subscription, they can only follow already
built programs and customize daily workouts. If it’s desired to customize an existing program,
it’s also required to possess a premium subscription.

Moreover, some other features that can only be accessed using a premium subscription are as
follows: theming (changing themes within the app); upload videos of specific sets; sharing
customized programs; generate programs automatically; priority support and feature requests.

46

4.5.1.3 Strengths

Intensity, no doubt, has numerous features, but the strengths that really highlight its potential
range from the simplicity of the design to the intricacy of the statistics it offers.

Figure 16 – Intensity’s overview of a Set and Stats 16

As observable in the Figure 16, the simplicity of the design is noticeable on both screenshots.
On the rightmost screenshot, the said intricacy of stats is also visible, with statistics relative to
strength progression, bodyweight progression, exercise and muscle group distribution, and
others. Without going too much in-depth on very specific points, other strengths are the instant
access to multiple popular programs and the ability to use them on the app instantly without
any customization. The capacity to make numerous calculations within the app is also very
useful, in order to calculate how much weight should be on both sides of the bar right away, or
to time the rest interval, among others. Also, the relatively easy input of information is
something that adds a lot.

4.5.1.4 Weaknesses

Because there’s no good without the bad, Intensity also has some major weaknesses. By far,
the greatest weakness is the need to have a premium subscription to access most of the
essential features. With no ability to create custom programs or to customize existing ones, or
to add videos to workouts, or even to change the theme of the app without a premium
subscription, the use of this app becomes a fitting concern.

Regardless, looking at the app as a whole, some weaknesses that emerge are such as the
inability to reset the current in-use program or even swap it with another one. When a program
is selected, its workouts are automatically added to the correct day, regardless if there’s an
already planned workout for that day. If one selects a program and then selects another one, it

16 Images from https://www.intensityapp.com/

47

overlaps the workouts with no way to completely remove one of the programs. Removing the
workouts one by one seems like the only solution, which is a major weakness.

Moreover, even though the app provides a timer and a stopwatch, the concept of “real-time
training” is nowhere to be found, since the two are completely disconnected from any workout
set. To be blunt, using the mobile phone’s timer and/or stopwatch serves the same purpose,
which makes it a weakness, comparing to other apps that do have this concept well
implemented.

Other weakness is the fact that it doesn’t support multiple languages, only English, which makes
it hard for non-fluent users, and also the inadequacy of good filter options. When searching for
an exercise, one can only filter by its name and not by its muscle group, type of exercise, or
others, which makes it really hard to build a decent workout without remembering the names
of the exercises. Also, when adding a new exercise, for example, it’s required to enter its muscle
groups and exercise types but there are no pre-existent options, one has to type them in,
making it impossible to group exercises by their attributes. All-around, the creation and filter
mechanics are very defective.

4.5.1.5 Price Plan17

As covered above, most of the essential features are under the premium subscription plan,
which raises a question regarding its price. The premium feature costs 4,39€ per month, but it
also has a lifetime purchase of 17,99€.

4.5.1.6 Final Notes

In conclusion, viewing Intensity as a whole, it has to be said that it comes a bit short on
expectations. Marketing itself as a system with great flexibility, numerous tools and “built for
speed” [57], the usage of the app revealed to contradict almost every claim the brand formed.
As said previously, the inability to create simple programs without having to pay for premium
really makes the app nearly unusable without it, and even so, it’s not possible to remove a
program or swap it with another, or even filter exercises by any attribute. Even though it has a
timer, there’s no link between it and the exercises themselves and the statistics are not the
most pertinent overall.

On another note, it’s not all bad, as there are some ideas that can be taken from analyzing
Intensity. The most important ones are the simplicity of the design whilst packing a somewhat
featureful system and the relevant calculators, more specifically the plate calculator, which is
very useful.

All in all, it would be a below average app without any paid features, but the fact that one has
to pay to do most of the important stuff makes it not worth at all.

17 Data from February 20th, 2019

48

4.5.2 Strong

Strong [60] [61] [62] was built to pack the most amount of features in the “simplest and most
intuitive” [60] way. Designed to be adaptable to almost any workout and experience level, it’s
safe to say that it will suit almost every need. Regardless of its simplicity and flexibility, it’s also
very robust, as it provides tons of information about exercises and valuable insights regarding
progress.

4.5.2.1 Free Main Features

There are tons of free features and the most important of them is the ability to start a workout
very easily. The main screen of the app is a “Start workout” screen, that allows the user to start
a routine from the ones already built or create custom ones with the desired exercises. It also
allows the “quick start” of a workout, with the ability to add exercises in real time.

After starting a routine, whenever a set of an exercise is pressed, a timer automatically opens
to count the rest time until the following set. This value can be customized in the exercise info,
to specify a particular one, or to turn off the feature altogether.

Not only that, the exercises themselves have a few features associated such as a brief
description and a small demonstrative video, a history of the sets performed and personal
records with the number of repetitions executed, the max reps on a set, and others. The
exercises can be easily filtered by their name, by the body part they work or their category and
can be created as easily, providing the said filterable information. Additionally, there’s a quick
filter option to select the most performed exercises.

When executing a workout there are other features like classifying the set, adding notes to the
exercises, and also an indication of how much was previously lifted if the user wants to improve
their record.

On another note, there’s a feature on the “Profile” screen that allows the user to see several
stats related to their progress, like the workouts per week, and, if connected to Google Fit (or
Apple Health in case of iOS), the calories per week, and daily macros.

Other small features consist on the changing the preferred units (weight, distance and size), a
bodyweight measure tracker, a calendar with the history of past workouts and, for iOS users,
the ability to associate a spoken word to a workout and then, using Siri, launch that routine
verbally from outside the app.

4.5.2.2 Premium Main Features

Furthermore, Strong also has a premium subscription that offers a few more features suchlike
the ability to store unlimited routines, charts with information about progress of specific
exercises, a plate calculator that given a weight automatically calculates how much should be
on both sides of the bar, such as the one depicted on Figure 17, a warm-up calculator that can
be customizable to define how much warm-up sets should be performed and the percentage
of weight they should be performed with. It also has a body measurements tracker, similar to

49

the bodyweight one but specific to individual body parts like the biceps, chest, etc. with charts
displaying progression.

Figure 17 – Strong’s Plate calculator

Apart from the presented premium features, there is one that substantially increases the value
of the subscription, which is the integration with the Apple Watch through a fully-featured app
that allows the user to log workouts and measure heart rate without having to access the
phone, as depicted in Figure 18.

Figure 18 – Strong’s Apple Watch integration18

4.5.2.3 Strengths

When it comes to strengths, Strong really does a good job with its workout-oriented system.
There’s virtually nothing that could be added to this methodology, with comprehensive
descriptions of exercises, charts, records, real-time workouts, advanced plate calculators and

18 Pictures from https://itunes.apple.com/app/apple-store/id464254577#?platform=appleWatch

50

numerous stats and insights relative to body measurements. The quick filter option for exercises
really adds a lot to the interface, as it allows to immediately access the most performed
exercises, also known as “favorites”. As depicted in Figure 19, the leftmost screenshot contains
the list of all exercises, that can be filtered by 3 categories, as mentioned previously, but if
desired, as shown on the rightmost one, the most performed exercises can be presented in
order of usage.

Figure 19 – Strong’s quick filter option for exercises

Even though the previously mentioned strengths are very useful, the one that really sets Strong
apart is the integration with the Apple Watch. Notwithstanding that a premium subscription is
needed, the fact that it’s possible to log the workouts through the Watch instead of the phone
really puts Strong a step forward in usefulness. This integration is arguably the best feature in
the entire app.

4.5.2.4 Weaknesses

On the other hand, there are also major weaknesses that might be determinant, especially for
more experienced lifters, when it comes to choosing a fitness app. In all likelihood, a more
experienced lifter will want to plan ahead a full-sized program, and that is simply not possible
with Strong. Being a workout-oriented app, there’s no room for program planning, only for
routine selection on the spot which is fairly unorganized. This is undoubtedly the most
significant weakness since it questions the whole “strength training” aspect of the app.
Additionally, there’s no way to relate sets with anything. An advanced lifter will want to base
the set’s weight to a percentage, or even an RPE, but all that can be done is to establish a
seemingly fixed weight.

Also, even though there are some already built routines, one can only store up to three custom
ones with the free subscription, which is senseless because once again, for more experienced

51

lifters, there are countless different routines on a single training cycle (4-16 weeks), and the
only way to save them is to either get a premium subscription, or delete and create routines
every day.

Furthermore, there’s also other weakening parts, such as the timers. Even though they do what
they should, their only purpose is to count the rest time and overall workout duration. That
data isn’t analyzed anywhere, there are no statistics or graphs to transform the data into useful
information. For example, it would be of value to know the progress of the rest time for a given
exercise, or even the average duration of the workouts. Plus, the rest-timer is not very flexible
or well-integrated. A rest-time is supposed to count the time between one set and the next, but
Strong allows to perform all sets whilst still on the rest time of the first, due to the fact that
there’s no association between it and the individual sets. Plus, one can only set a default value
for an entire exercise, not to specific sets, and even though that’s not critical, it would be a
good-to-have.

4.5.2.5 Price Plan19

The free version of Strong packs almost all the essential features and the premium subscription
provides a complement to those. The price plan starts at 4.99€ per month, 30.99€ per year or
74.99€ as a onetime payment.

4.5.2.6 Final Notes

All things considered, Strong is a fairly decent app because its usable right away. One can
immediately create custom routines (up to three), customize workouts and even create
exercises which is more than enough for the average gym goer. The issue is that Strong markets
itself even to experienced lifters, which is pretty absurd given the fact that it doesn’t offer
arguably the most important thing for them – the ability to set up a full-scale program. There’s
absolutely no credible powerlifter that would use an app that even paying 5€ a month wouldn’t
allow them to create a program. The closest thing to that would be to create all the different
routines and try to remember on the day which one is supposed to be performed, and
regardless of the fact that even for that a premium subscription is required, there would be
absolutely no connection between routines, only a clutter of individual workouts, which is
extremely chaotic. And only to add insult to injury, the sets have no relation with anything
whatsoever. One can only define the weight and the reps of a set, which is sure more than
enough for the average gym goer, but for an experienced lifter, there’s a plethora of ways to
program a set, based on RPE, percentages, and others.

To conclude, there’s a lot of things that do make this app great for an average lifter, and even
for an experience lifter some features are very useful such as the Apple Watch integration, but
as a whole, there’s unequivocally no way a decently experienced powerlifter would use it. Plus,
for a serious lifter, the benefit that comes with a 75€ app is questionable at least.

19 Data from February 20th, 2019

52

4.6 Athletic

As previously discussed, Athletic apps do seem like the most popular, but even though it may
look like they pack the most advantages in terms of availability for the general public, since they
do not tunnel vision on small niches (like apps designed solely for Powerlifting, for example),
they still have their issues regarding overall specificity and flexibility, which will all be discussed
in the next sub-sections, as the apps are presented.

4.6.1 Nike Training Club

Arguably the most popular fitness app, with over 10 million downloads on Google Play and
being obviously very credible for the brand behind it, Nike Training Club [64] [65] [66] is the
leading health and fitness app in the market.

With over 185 free workouts, ranging from boxing, endurance and mobility, to strength training
and body-part focused workouts, there’s no doubt this is an app of choice for sports athletes or
general users seeking for a more athletic lifestyle. It also offers personalized workout
recommendations, guidance and even workouts inspired on famous Nike athletes like Cristiano
Ronaldo and Michal B. Jordan.

4.6.1.1 Free Main Features

Surprisingly, Nike Training Club doesn’t have that many features, there’s pretty much nothing
besides performing a workout and adding other physical activities to the history.

On the first log of the app, a personal profile of the user is outlined, through the response of
two questions regarding the sex and the frequency of physical activity per week. After that, the
app recommends some plans adapted to the user’s experience level.

The workouts are the main component of the app, as seen in Figure 20, the main screen is a list
of top workouts selected based on the user’s profile, new workouts, and others. There’s also a
possibility to browse all the routines by muscle groups, workout type, no-equipment workouts,
etc. Plus, there’s a tab, depicted on the rightmost screenshot of Figure 20, where one can access
specialized guides with information about them, and the workouts to follow.

53

Figure 20 – Nike Training Club’s workouts

A workout, more in depth, is characterized by its average duration, intensity and expertise level.
To perform a workout, one has to first download it, then, after starting, it automatically shows
a video of the first exercise with a timer, and, after that ends, the next exercise starts. The
workout can be paused and finished at any time and, after completion, the user is asked how
much effort was put in, and where the workout took place. It is also possible to follow a workout
with an Apple Watch, removing the need to always be looking at the phone for instructions.

Furthermore, one can add a physical activity such as Running, playing Football or any other
sports, Yoga, etc. The same questions as for the workouts are asked – effort and place. The
Activity screen is composed by the history of activities and workouts performed.

Additional features can be summarized as: a news feed, an inbox for messages, a Nike event
finder, some customization regarding the measurement units, and integrations with Google Fit,
Apple Health and Nike Run Club, to automatically record all runs in the activity history.

4.6.1.2 Premium Main Features

All the features bestowed by Nike Training Club are free, as there is no premium subscription.

4.6.1.3 Strengths

There’s no question the simplicity and overall look of Nike Training Club’s interface is its major
strength. It’s very easy to start any workout and there are more than a few to choose from. The
integration with the Apple Watch also makes the workout experience a bit easier, since it
minimizes the interaction with the phone.

54

4.6.1.4 Weaknesses

Even though Nike Training Club is very solidly built, there are some weaknesses that can’t be
overlooked. The most essential one is the fact that there’s no way to create workouts or even
customize existing ones. There’s absolutely no customization that can be made to the offered
routines which makes it a bit unpleasant because one must follow workouts entirely built by
other people and that’s not very individual. Plus, as described previously, there’s a section for
“programs” that can reach up to 6 weeks. These can be mistaken by real programs but all they
are is a few paragraphs describing the guide and then a bunch of workouts that the person has
to choose from at random.

Additionally, another thing that falls short is the lack of progress-related statistics. All that is
accessible is the history of workouts and activities, there’s no real way to measure progress
through indicators like the duration time, effort needed to complete, estimated burnt calories,
heart rate variances, etc.

4.6.1.5 Price Plan

As previously mentioned, there’s no premium subscription to be found, so, there’s also no price
plan.

4.6.1.6 Final Notes

In Summary, Nike Training Club is an app designed for people who’re looking for quick athletic
workouts and no commitment to a serious training regimen. Even though the app is very
appealing, its content value is questionable, since it doesn’t provide a platform for people to
create their workouts, or to measure progress, it is merely a workout database.

Regardless, assuming that that’s the intent, even the profiling made in the first log of the app is
underwhelmingly feeble. There are tons of variables that can be used to profile different
athletes, but picking from just sex and frequency of physical exercise is unfortunately lazy and
generic.

Nike Training Club is an example of a superbly simple and good-looking interface, but it falls
short on many levels. Given the size of the company behind it, it would be expected a bit more
effort on questions like profiling, exercise customization and progress-oriented stats.

4.6.2 Freeletics

Freeletics [67] [68] [69] is a set of fitness apps, each with their own objective. The one being
analyzed is the Bodyweight one, since it’s the most popular and the most “Athletic” one. For
the sake of simplicity, from now on, Freeletics Bodyweight will be addressed as only Freeletics.

Freeletics takes advantage of the “High Intensity Interval Training” workout methodology, or
HIIT for short, which is essentially alternating between very intense anaerobic exercises and

55

short recovery periods. The app guides the user through these workouts, that range from 10 to
30 minutes.

Whether the goal is to “[l]ose weight, gain muscle or simply get in better shape” [68], Freeletics
is the app to take.

4.6.2.1 Free Main Features

Freeletics is designed to be used as a premium subscription app, since its main feature is paid,
but looking only at the free ones, one can assert that it is a workout database, just like Nike
Training Club, the only difference being that it allows for a user to select and perform a single
exercise, and not a full workout.

A workout can be selected from the workout list, where it can be filtered by its expertise level
(beginner to advanced), duration (short to long), the body part it works, and others. Each one
is composed by the equipment needed to perform it, explanatory videos, the summary of the
included exercises and its duration and difficulty. When a workout is started, a timer begins,
counting the duration of the first exercise. When the user finishes that exercise, they tap the
timer and next one starts, and so on. On the end, it is required for the user to give feedback on
the workout, providing information regarding the quality of the used technique. Similarly, one
can also perform just one exercise, for a desired number of repetitions.

Furthermore, one can find training spots on the area and log runs, with the Freeletics Run app
integration. The workouts and runs are logged to the user’s profile and they can also be seen
on the feed, where news and workouts from friends are posted. Besides that, and some small
customizations regarding weight training units and personal information, there’s not much
more free features.

4.6.2.2 Premium Main Features

The thing that does really make this app shine is its virtual Coach [70], which is a “personalized
training plan that uses a state-of-the-art artificial intelligence” [70]. The Coach adjusts itself to
the user’s fitness level, and based on the feedback given after each workout, it learns the
individual strengths and weaknesses.

The way the individualization of the coach works is by knowing the user’s personal information,
recommending a Journey (which is a training program), like the one depicted on Figure 21, and
then learning from the user’s choices on number of training days, available equipment,
limitations, among other. Based on the user’s preferences, the Coach will suggest weekly
training programs and at the end of those it will optimize it for the following week. At the end
of the Journey, the user can change to another or try again the same one.

56

Figure 21 – Freeletics Training Journey

Even though the Coach is the main premium feature, and the reason that the premium
subscription exists, there are also other perks from having it, suchlike accessing even more
workouts, as seen on Figure 22, where some free exercises (“Krios”) and also premium ones
(i.e. “Aias” and “Elektra”) are presented.

Figure 22 – Freeletics workouts

57

4.6.2.3 Strengths

There is no doubt the biggest strength of Freeletics is its virtual Coach, that makes the overall
workout experience much more pleasant and individual. From a user perspective, being able to
hand out the task of building custom individualized workouts to an automatic system is very
helpful and valuable.

Also, the general appearance of the interface is quite appealing, and the usability is intuitive.

4.6.2.4 Weaknesses

Although the Coach offers a great deal of automatic customization, apart from that there’s
nothing to do besides selecting and performing a workout. There’s no way to create a workout
based on specific exercises or to monitor progression with relevant statistics. Once again, it is
more like a workout database, where you have to pay to even access most of the exercises.

Without the Coach, there’s not much value on the app, and even that has its flaws. The main
issue is the progression system – it only involves adding repetitions to exercises, which
ultimately is not that great because eventually there’ll be an overwhelming number of them.
Instead, it should progress to harder variations of the exercises when certain criteria are met,
for example.

4.6.2.5 Price Plan20

The price plan for the Coach and the premium subscription varies depending on the frequency
of payment and it can be synthesized as so:

 Annually: approximately 42€/per year

 Biannually: approximately 62€/per year

 Quarterly: approximately 70€/per year

4.6.2.6 Final Notes

All things considered, there’s no doubt Freeletics, in order to be worth using, has to be with a
premium subscription. The Coach is a definite differentiation from the competition. Regardless
of its quality from a more technological point-of-view, the idea of individualization is very
enticing, especially for beginners, sports athletes, or general users looking for a more unique
athletic workout experience.

Lastly, something that can’t be left unmentioned is the quality of the adaptiveness the Coach
offers. As it was already said, the progression system revolves around only increasing the
number of repetitions based on the performance of the user, and as far it is known, the Journey

20 Data from February 20th, 2019

58

recommendations can be based on static features like the muscle groups, difficulty, duration,
etc., and to do that, there’s no need for “artificial intelligence”.

Furthermore, the fact that one has to pay a minimum of 3 months to use the Coach without
trying it first is a bit upsetting.

To conclude, even though the Freeletics app is very well designed, it lacks a great number of
free features, and even for the Coach subscribers there are still some concerns to be pondered.

4.7 General Lifting

General lifting apps can be thought as the “jack of all traits” because they try to provide a range
of different types of features. It is known that the expression doesn’t end there and usually a
“jack of all trades [is a] master of none”, which means that they do not specialize in any of the
features they pack. Furthermore, it is also known that a “jack of all trades, master of none, [is]
often times better than master of one”, which is what will be discussed in the next sub-sections,
if the improved flexibility in these apps accounts for their lack of specificity.

4.7.1 Jefit

As far as having a big social community, with millions of members to share progress with, whilst
maintaining a huge database of exercises and routines, Jefit [71] [72] [73] undoubtedly
differentiates itself from the competition. Reportedly having more than 1300 exercises and
1100 HD training demonstrative videos, it would be very unlikely for someone to not find what
they were looking for.

Even though it was an enormous database, Jefit is more than that, since it also allows to track
workouts, create custom routines, consult body and lifting progress through the use of statistics
and connect with other users, in order to share and compare progress.

4.7.1.1 Free Main Features

With regards to free features, Jefit offers a great number of them. The main part of the app is
the workout/exercise section, where a user can view the workout and exercise list, select a
workout as the active one, create a workout, filter exercises, among others.

Probably the most relevant feature is the ability to create a workout with any of the exercises
and define characteristics such as the number of days per week it will have, its difficulty level,
among others. Then, for each of the days, specify the exercises to perform, and also the number
of repetitions, weight used, etc. It is possible to perform an individual exercise outside the
workouts.

59

Figure 23 – Jefit’s exercises

As depicted on Figure 23, the list of quick filters by muscle group, the exercise list, and
information about a single exercise, can be seen, from the left to rightmost screenshot
respectively. For each exercise, one can set a goal, add notes, set as favorite, watch the
demonstrative video and also view the descriptive information. There’s also the possibility to
create exercises and filter them by other characteristics such as equipment, popular exercises,
recent, etc.

Furthermore, there’s an incorporated calendar, Figure 24, where one can see the logs of the
past workouts, progress photos, notes, and body stat updates.

60

Figure 24 – Jefit’s calendar

As a free feature, one can also check stats on training progress, send and receive messages,
comment on other people’s workouts (every workout is published to the feed) and customize
certain characteristics of the app like disabling notifications, language, unit system, connect
body measurements with Google Fit, among others.

4.7.1.2 Premium Main Features

Jefit is completely usable without a premium subscription, but if desired, with one, there are
some complementary features offered. Amongst them is the accessibility to all premium
workout plans and to the previously mentioned more than 1100 HD instructional videos of
exercises.

Furthermore, there’s also another feature only available with premium, which is the ability to
swap an exercise automatically for another one. This is especially useful because sometimes a
piece of equipment is being used or maybe the user doesn’t feel like performing a particular
exercise, and with this feature, they can simply swap it with another one, chosen by an
algorithm.

Lastly, other premium features are such as: weekly progress reports, access to the web
platform (with the same features of the app), unlimited cloud storage capacity, no adds,
unlimited favorite exercises and routines and duplicating workouts and exercises.

4.7.1.3 Strengths

Undoubtedly, the biggest strength of Jefit is its calendar. Being able to pinpoint the exact dates
on the calendar where things like progress photos or workout logs took place is very

61

advantageous and unique. Also, the filter options for the exercises are somewhat acceptable,
given the fact that the app has more than 1300 exercises.

4.7.1.4 Weaknesses

Jefit also has its weaknesses, and one of them is the workout plan. The plan is simply a collection
of up to seven isolated workouts that are meant to be repeated each week, there is no
connection between weekly plans or even between its workouts. Even though it has more than
some of the apps of the competition, it still falls short from a programming perspective.

Moreover, something that at first sight is not perceived as a weakness is the overwhelming
number of exercises. Even with the maximum number of filters (muscle group and equipment
needed), in most cases, there are still too many exercises, which for someone trying to find
something can be problematic.

Also, at the first log in the app, an in-depth profile is outlined with the user’s sex, age, preferred
unit of measurement, training location, experience level, fitness goals, height and weight, and
even though some of the information is required for default values, such as the units of
measurement, age and sex, the others serve no apparent purpose. One might argue that for
example the training location and the experience level would serve for the app to recommend
workout plans but there’s no recommendations whatsoever. For someone that defined that
they workout on a gym there will still be home workouts to pick from, which can be great
because it adds more versatility, but without a recommendation system, the profile outlined is
just useless.

4.7.1.5 Price Plan21

In order to subscribe to premium [74], one has two options: to pay $6.99/month, or
$3.33/month if a full year subscription is bought.

4.7.1.6 Final Notes

As a whole, Jefit is a decent app for not so serious lifters, since it provides a wide range of
exercises and the ability to create simple weekly plans to follow. It also has useful features like
the integrated calendar and the body measurements tracker, but unfortunately there’s nothing
that makes Jefit unique, in broad terms, it’s just another exercise database with the ability to
create and follow weekly exercise routines. The fact that a supposedly individual profile is
outlined without any purpose at all makes the whole system a bit questionable. Furthermore,
the number of exercises does seem a bit overwhelming – more is not always good.

Regardless, as already stated, for people that are just looking to workout at home or in the gym
with no intent to carefully plan their routines or to measure progress, Jefit is an acceptable app.

21 Values in dollars to avoid conversion. Data from February 20th, 2019

62

4.7.2 Fitbod

Fitbod [75] is everything an app should be – simple, attractive and useful. It’s easy at first glance
to mistake it for an underfeatured app, but that is not the case at all. Designed to automatically
build daily workouts, based on individual preferences that can be easily customizable. Removing
the strain of having to put together day-to-day workouts, Fitbod has the right algorithm for
every type of goal, experience level, and even available equipment.

4.7.2.1 Free Main Features

As it was already stated, Fitbod is everything but underfeatured, and, most of its features are
free. The main one is the ability to generate automatically a daily workout, based on a number
of parameters, that can be, for the most part, customizable. On the first log of the app, the user
enters information that will help the app’s algorithm to suggest the most fit workouts. These
are the aforementioned parameters, and can be listed as such: experience level, fitness goal,
available equipment, last worked-out muscle groups and workout frequency.

These parameters work as a filter for the algorithm that builds the daily workouts. For example,
as depicted on Figure 25, the user can select the list of equipment they have available, and the
algorithm will only suggest exercises accordingly. Also, the user can select the group of muscles
they want to focus on, and the algorithm will be applicable the same way it did with the
equipment, only selecting exercises that work those specific muscles.

Figure 25 – Fitbod’s Available Equipment Selection

Also, there’s another variable to be considered by the algorithm when generating a workout,
and that is the level of muscle tiredness. As depicted on Figure 26, the app has a dedicated
screen to show the muscle recovery, that is used by the algorithm, and can be used even by the
user, in order to decide which muscles are in need to rest and which ones can be trained. The

63

muscle recovery percentage is calculated automatically with the workouts performed, but can
also be customized, as seen on the rightmost screenshot of the said figure.

Figure 26 – Fitbod’s Muscle Recovery

Moreover, still regarding the workouts, the user can create new workouts with one of a few
options: generate a new workout with the app’s algorithm, generate a workout that targets
specific muscle groups, create a workout from scratch by selecting the desired exercises, or
selecting basic workout splits, that emphasize different muscles/movements.

In addition, a user can also start a workout, in which they can enter the weight/repetitions
performed and wait until the rest timer is over to start the next exercise/set. After the workout
is finished, a summary is shown, with the amount of volume, calories burnt, and records
achieved. The calculation for the calories burnt can be tuned in the settings, by connecting to
Apple Health for personal body data.

Further free features can be listed as such: integration with Apple Watch, calendar logging past
workouts, and informative videos and descriptions on exercises.

4.7.2.2 Premium Main Features

Even though most features are usable for free, there are still some that can only be acquired
with a premium subscription. The main one is the ability to generate and perform a workout
every day. This is because the free subscription only allows for three workouts for free. Also, a
premium subscription will give access to more exercises and demonstrative videos and the
ability to monitor their progress with stats.

64

4.7.2.3 Strengths

The main strength of Fitbod is most definitely its interface. Simple, intuitive and very well
designed, it’s built to catch the attention of the user and display its functionalities at their
fullest. Furthermore, the ability to see body fatigue in the form of a heat map is very useful
when deciding workouts.

4.7.2.4 Weaknesses

Even though Fitbod really looks like an app to take an example from, it still has some
weaknesses. The most apparent one is the exercise selection from the algorithm. Even though
they match up with the parameters selected by the user (muscle groups, equipment, etc.), it
really does seem like the exercises are just picked at random from the list of exercises that
match all the filters. Plus, the workout logs are somewhat incomplete, since one can only see
the past workouts of the current week. If a user desired to consult the workout they did the
previous month, they wouldn’t been able to, which makes the calendar a bit pointless.

Furthermore, another thing that is undoubtedly a weakness is the inability to perform more
than three workouts without a premium subscription. Even if the app wanted to be only usable
by premium, it could give more than three workouts as a trial.

4.7.2.5 Price Plan22

The price plan for Fitbod has two different offers: either 61.99€ billed yearly, or 10.49€ billed
every month.

4.7.2.6 Final Notes

There is no question whatsoever that Fitbod is a great app for people that want to work out on
the go without having to worry about planning routines. Plus, the app’s algorithm ability to filter
out exercises that would hit still recovering muscle groups or exercises that would require
equipment or experience that the user currently doesn’t possess is very useful. That, allied to
its great interface, makes it undoubtedly a great app to use for working out.

Nevertheless, the app’s algorithm can’t be called anything more than a filter, for reasons stated
above. In such a simple system, it would be of great interest to have a true recommendation
system, based on multiple factors such as previous exercise selections, previous feedback on
routines, etc. Also, having to pay 10.49€ for a month is a bit over the top, for someone that can
only perform three workouts as a trial.

All things considered, the success of the app shouldn’t be overlooked, having a 4.8 rating on the
Apple Store with almost 40.000 reviews 23, that is a clear sign that people are interested not
only in useful but, more than anything, in an enjoyable experience of use.

22 Data from February 20th, 2019
23 Data from February 1st, 2019

65

4.8 Conclusion

As expected, the final section will be dedicated to summing the gathered information in a
concluding manner. The evaluation of the app types and their apps will be presented, with the
defined criteria for each in mind. Also, the envisioned system will be put to the test, facing the
analyzed apps to assess the potential value it could introduce.

Table 3 – Summary of the strengths and weaknesses of the app types

App Type Strengths Weaknesses Target

Gym Only Direct connection
with the personal
trainer, nutritionist,
and ability to
schedule classes and
physical evaluations.

Poor interface, few
features overall.

Gym members.

PowerBuilding Numerous tools for
strength training
(calculators, charts,
stats), and multiple
ways to program.

Poorly implemented
timers.

Strength sport
athletes, people
seeking for strength
training.

Athletic Simplicity of use for
athletic people.

Inexistence of a real
progress-oriented
tracking mechanism,
and no
customization.

Sports Athletes,
people seeking for an
athletic lifestyle.

General Lifting Very versatile and
diverse for most
types of users.

Poor or inexistent
profiling of users.

Average gym goers.

Table 3 consists in the summary of the information gathered throughout the analysis of the
different types of apps. Each type, targeted at a specific type of active people, have their
strengths and weaknesses and the ability to identify them will allow to build a system, ideally,
suited for different types of users accordingly. It’s relevant to mention that the strengths and
weaknesses are judged in terms of the context of the app type, not in comparison to others.
For example, even though besides the PowerBuilding app type, none of the others offer the
ability to program a full-sized program, that can’t be a weakness for them because it’s a feature
that mostly only people interested in strength training are looking for, and that is not their
target.

In specific, one could say that the Gym Only apps’ strengths lie on the ability to have a direct
connection between the user and the gym they attend, by being able to schedule group classes,
communicate with the personal trainer, nutritionist, among others. In contrast, since most gym

66

apps are not designed specifically for a gym but are sold to many, the general usability is feeble
and the features insufficient.

Moreover, the weakness of PowerBuilding apps is on the poor implementation of timers. Timers
are hugely important for people trying to maximize and perfect their strength/muscle-gain, and
the fact that the apps designed for such goals do not focus on a good implementation of them
is worrying. But, on the other hand, PowerBuilding apps have numerous useful tools for their
target, ranging from plate calculators, to in-depth progress-oriented statistics.

Also, when it comes to Athletic apps, one of the things that really arises is the simplicity of use.
The ability to start a workout and be done in 10 minutes with minimal interaction with a phone
is definitely something that adds tremendous value to their target. However, that simplicity
makes it so that there’s virtually no useful progress-tracking mechanism to measure progress,
and no ability to customize exercises or workouts, which is unfortunate.

Lastly, when it comes to General Lifting apps, their main issue is the fact that they try to suit
everyone but either don’t try to adapt the experience for different people through profiling, or
they do it poorly. For example, it would be pretty unproductive to give a plate calculator for
someone that is only looking to do bodyweight exercises. Plus, trying to suit everyone comes
with another fault – overwhelming number of information (exercises, programs, etc.).
Regardless, versatility, if well-executed, can be a great strength.

67

Table 4 – Apps’ features summary

 AmazinGym Tripla Forma Intensity Strong Nike Training Club Freeletics Jefit Fitbod

Profiling No. No. No. No. Yes. Yes.~ Yes. Yes.

Create Workout Yes. Yes. Yes.* Yes.~ No. No. Yes.~ Yes.*

Start/Register Workout Yes. Yes. Yes. Yes. Yes. Yes.~ Yes. Yes.*

Real-time Workout Yes. No. No. Yes. Yes. Yes. Yes. Yes.*

Workout Log Yes. Yes. Yes. Yes. Yes. Yes. Yes.~ Yes.*

Workout Statistics Yes. No. Yes. Yes.* No. No. Yes.* Yes.~

Exercise Info Yes. Yes. No. Yes. Yes. Yes.~ Yes.~ Yes.~

Create Exercise No. No. Yes. Yes. No. No. Yes. No.

Create Training Plan Yes. Yes. No. No. No. No. Yes.~ No.

Create Training Program No. No. Yes.* No. No. No. No. No.

Body Measurements Log Yes. Yes. No. Yes.~ No. No. Yes.~ No.

Body Measurements Statistics No. Yes. No. Yes.~ No. No. No. No.

Progress Photos/Videos No. No. Yes.* No. No. No. Yes. No.

68

PT/Coach Communication Yes. Yes. No. No. No. No. No. No.

Multilanguage No. No. No. No. No. No. Yes. No.

Social Yes. Yes. Yes.* No. Yes. Yes. Yes. Yes.

Calculators No. No. Yes. Yes.* No. No. No. No.

Integrations Yes. No. No. Yes. Yes. Yes. Yes. Yes.

Export/Import Data No. No. Yes. Yes. No. No. No. Yes.

Web/Desktop Application Yes. No. Yes. No. No. No. Yes.* No.

AI-based Recommendations No. No. No. No. No. Yes.~ No. No.

Number of Features 12/21 9/21 11/21 12/21 7/21 8/21 15/21 11/21

69

Table 4 showcases the information gathered throughout the individual analysis of each app,
evaluating them based on the previously defined criteria. The number of features each app
possesses from the ones presented is also discriminated, in order to objectively evaluate them.
Even though this method could misjudge the app’s intent, since obviously not all apps would
want all the features presented, it’s the most effective one to strongly position the envisioned
system because the goal is to contain all of them (the features) in the most adaptive way,
offering value to any type of user. Furthermore, the features marked with a “*” refer to features
only accessible through a premium subscription and the ones with a “~” refer to
poorly/questionably implemented features.

Moreover, one could say all apps fell a bit short on the evaluation, given that the one with the
most features only had 15 and the one with fewer had 7, both out of 21 in total. This could
obviously mean that the apps were, in general, designed to serve a specific purpose and not to
“have it all”, but, even though this may be true in some cases, in most, it is just reflection of an
under-featured app. For example, Nike Training Club is an app designed for quick athletic
workouts, so, being able to program a full-sized program probably wouldn’t offer much value
to its users, but the fact that it doesn’t offer things like multilanguage, customization, progress-
oriented features, and so on, it is just considered to be under-featured.

Specifically, there are a few features that deserve to be pointed out, and the first one is the
profiling one. The only apps that had some sort of profiling were both the Athletic type ones,
and General Lifting, which makes sense because for quick workouts, there are tons of
possibilities and the ability to profile users and adapt itself accordingly is very important, and
also, for General Lifting apps, designed to suit the necessities of various types of users, profiling
is essential. The effectiveness of the said profiling was already described thoroughly, but on a
final note, it felt a bit short. This profiling is the backbone of “intelligent” or “smart”
recommendations, but only one app had AI-based recommendations, and even that was
questionable, as was also covered before.

Additionally, in terms of workouts and workout planning, only the Athletic apps didn’t allow for
the creation of a workout, which is unfortunate. Plus, only Gym Only apps and Jefit allowed for
the creation of a training plan, and just one of the PowerBuilding apps, Intensity, offered the
ability to program a full-sized program, which justifies why the app was chosen in spite of not
meeting any of the selection criteria. The fact that an app, such as Strong, has a rating 0.5/5
bigger than Intensity, with almost 120 times more the number of ratings but doesn’t offer such
a specific and needed feature is questionable at best 24.

In conclusion, the whole process of this chapter was crucial to the development of the further
ones, since it allowed to grasp what constituted value in the context of the investigation. The
establishment of selection and evaluation criteria made the analysis of the apps and their types
much more objective and rigorous. Plus, understanding the strengths and weaknesses of each
will be useful when deciding what to replicate and what to improve.

24 Data from February 1st, 2019

70

71

5 Design

This chapter will be dedicated to the exposition of two big sections – requirements engineering
and the system’s architecture.

The first section, Requirements Engineering, consists in the design of software requirements, in
the form of functional and non-functional requirements and of the different stakeholders and
interveners that are related to them. The second one, Architecture, is composed by the
presentation and description of the different proposed architectures to answer the designed
requirements, and also by a comparison between them in order to pick the best one in the
present context.

5.1 Requirements Engineering

This section will be dedicated to the “process of conforming engineering designs to a set of core
software requirements”, also known as Requirements Engineering. In the next sub-sections, the
study and documentation of the said process will be presented. It’s also important to mention
that the requirements were, in part, based off of information gathered through the execution
of a “Usage Analysis of Gym/Fitness Apps”, in which nearly 90 different users offered their
opinion in regards to their personal experience with fitness mobile applications and what they
deemed valuable. This inquiry and further information can be found in the APPENDIX A.

5.1.1 Stakeholders

A stakeholder, according to the Business Dictionary [76] can be defined as an entity (person,
group or organization) that has interest in an organization. It can directly or indirectly affect or
be affected by the organization’s objectives, policies and overall actions. Because of this, it
becomes important to define the stakeholders of this project, given that they will be affected
with the outcome of it.

The stakeholders of this project and their interests are as follows:

72

 Gyms: Interest in offering a suitable platform to their members.

 Gymgoer (fitness practitioner): Interest in using the platform for all the offered
features.

 Personal Trainer/Coach: Interest in having a suitable platform to monitor their trainees’
progress.

 Nutritionist: Interest in using the platform for monitor their clients’ progress.

 System Administrator: Interest in managing the system.

5.1.2 Interveners

The intervener is a role played by an entity, usually a person, that interacts with the system and
exploits its functionalities. Commonly, the interveners are the stakeholders, since most of them
will directly use the system, but it’s not rare to have some stakeholders that are not interveners.
In any case, they’re presented next:

 Non-registered user: This is a person who’s not yet registered in the system and needs
to do so in order to access any other features.

 User (gymgoer): This is the person that can use the system and access most of its
features, depending on some factors.

 Personal trainer/Coach: This is the person responsible for the features related with
trainee monitoring.

 Nutritionist: This is the person responsible for all the nutrition-related features (i.e.
monitoring clients).

 System Administrator: This is the person responsible for the system as a whole,
introducing new data (i.e. scientific articles) and maintaining it to assure it’s running
smoothly.

5.1.3 Functional Requirements (Use Cases)

This section will contain information regarding the functional requirements of the system, in
the form of use cases. According to Agile Modeling [77], a use case diagram “overview[s] the
usage requirements for a system. They are useful for presentations to management and/or
project stakeholders […]” [77]. They depict the use cases of the system, which are “a sequence
of actions that provide something of measurable value to an actor […]” [77], and the
associations between them and the said actors, which can be viewed as something or someone
that play a role in the system.

73

Figure 27 – Use Case Diagram

In Figure 27, the use case diagram of the system is depicted, and in the following Table 5 the
priority distribution associated with each one is presented, so that during implementation some
can be prioritized over others, if due to time restrictions not everyone can be implemented.

Table 5 – Use Cases Priority

Priority Use Cases

High US02; US03; US04; US06; US07; US08; US10;
US13; US15.

Medium US01; US11; US16; US17; PT01;

Low US05; US09; US12; US14; NT01; AD01; AD02.

In the following sub-sections will unveil specific details about each use case in it. It is also
important to mention that some use cases are too broad and can possibly be divided into sub-
use cases in further iterations.

5.1.3.1 US01: View current training Plan/Program

The user requests the system to view the current training plan/program they are following. The
system presents the requested information.

74

5.1.3.2 US02: View training Plan/Program templates

The user requests the system to present the list of template training plans/programs. The
system presents the requested list. The user can then select an individual training plan/program
and the system presents the specific information about it.

5.1.3.3 US03: Manage training Plan/Program

The user requests the system to create a new training plan/workout or edit an existing one. The
system provides the user with a suitable interface to create/edit a training plan/program and
then, if changes were made, the system requests confirmation and saves the information.

5.1.3.4 US04: Manage Body Measurements

The user requests the system to configure their personal body measurements, to create a new
entry or to edit an existing one. The system provides the user with a suitable interface to
perform the desired task and then requests confirmation and saves the information.

5.1.3.5 US05: Add favorite training Plan/Program

The user requests the system to set a training Plan/Program as favorite. The system sets the
selected information as favorite and saves the information.

5.1.3.6 US06: Recommend training Plan

The user requests the system to recommend a training Plan. Based on the user’s profile,
acquired data, and other variables, the system offers a suitable training plan recommendation.

5.1.3.7 US07: Recommend Workout

The user requests the system to recommend a Workout. Based on the user’s profile, acquired
data, and other variables, the system offers a suitable workout recommendation.

5.1.3.8 US08: View training Logs

The user requests the system to present a calendar with information regarding their training
logs. The system presents the requested information.

5.1.3.9 US09: Share training Plan/Program

The user requests the system to share a training Plan/Program via social networks. The system
shares the selected information in the preferred social network/s.

75

5.1.3.10 US10: View Statistics

The user requests the system to present statistics regarding multiple variables like training
progress, body measurements, and others. The system presents the user with the requested
statistics.

5.1.3.11 US11: Monitor progress

The user requests the system to present information regarding progress statistical analysis. The
system presents the requested analysis in order to be monitored by the user.

5.1.3.12 US12: Interact with PT/Coach

The user requests the system to interact with their personal trainer/coach via direct messaging.
The system facilitates the interaction offering the user with a suitable interface for
communicating.

5.1.3.13 US13: Interact with PVA (Personal Virtual Assistant)

The user requests the system to interact with the Personal Virtual Assistant via chat bot. The
system facilitates the interaction offering the user with a suitable interface for communicating.

5.1.3.14 US14: Check social feed

The user requests the system to present the social feed. The system presents the user with the
requested information.

5.1.3.15 US15: Change Language

The user requests the system to change the system’s language. The system requests
information regarding the new language to be changed to. The user enters the desired language.
The system updates and saves the information.

5.1.3.16 US16: Change Unit System

The user requests the system to change the preferred unit system. The system requests
information regarding the new unit system. The user enters the new desired system. The
system updates and saves the information.

76

5.1.3.17 US17: Manage Available Equipment

The user requests the system to change the available equipment list. The system presents the
user with the desired list. The user makes the desired changes and requests the new
information to be saved. The system confirms the changes and saves them.

5.1.3.18 PT01: Monitor trainees

The personal trainer requests the system to present the list of current trainees. The system
presents the requested list. The personal trainer selects an individual trainee and requests
specific information regarding them. The system presents the personal trainer with the
requested information.

5.1.3.19 NT01: Monitor clients

The nutritionist requests the system to present the list of their clients. The system presents the
requested list. The nutritionist selects and individual trainee and requests specific information
regarding them. The system presents the nutritionist with the requested information.

5.1.3.20 AD01: Manage predefined training Plan/Program

The administrator requests the system to manage the predefined training Plans/Programs. The
system presents the administrator with the current predefined training Plans/Programs. The
administrator can then create a new training Plan/Program or edit existing ones. If changes
were made, the system requests confirmation and saves the information.

5.1.3.21 AD02: Manage scientific articles

The administrator requests the system to manage scientific articles. The system presents the
administrator with the current scientific articles. The administrator can then add a new
scientific article or edit existing ones. If changes were made, the system requests confirmation
and saves the information.

5.1.4 Non-Functional Requirements (FURPS+)

After presenting the functional requirements, that simply describe what the system should do,
there’s the need to also showcase the non-functional requirements, that describe how the
system works [78], and, one might say, they describe the system’s attributes. To present and
classify these attributes, the FURPS+ was used. FURPS+ [79] is a system to classify requirements
and is represented by the categories presented next.

77

5.1.4.1 Functionalities

 Authentication: The use of the system requires a pre-authentication by the user.

 Security: To any system, security is a crucial aspect, and as such, there are two major
characteristics that need to be in place:

o Authenticity: Ensure the entities are who they claim to be, to separate different
access roles.

o Confidentiality: Ensure data is confidential, through encryption methods.

5.1.4.2 Usability

 User Interaction: The interaction with the user must be simple, intuitive, and
completely adapted to the respective environment (i.e. used device).

 Help: The system must provide suitable and contextualized help to the task the user is
performing.

 Interface: It’s desirable for the interface to be appealing and clear.

 Error Prevention: The system must be “forgiving” in the sense that should prevent user
mistakes and treat them accordingly.

5.1.4.3 Reliability

 Predictability: The system should be reliable, that is, it should be free of technical errors.

 Fault Tolerance: The system should be error-tolerant to protect the user from
unintentional errors.

5.1.4.4 Performance

 Response Time: The system’s response time should be fast, to provide quick access to
data.

 Availability: The system should have a very high availability rate.

 Memory Usage: The CPU and memory usage should be fairly low during usage.

 Capacity Load: The system’s capacity load should be very high because there’s a great
quantity of data being handled.

78

5.1.4.5 Supportability

 Portability: The system should be available for Android and iOS operating systems.

 Testability: The system should be easily testable in order to provide high confidence
about correctness.

 Maintainability: The system should have high maintainability, in order to allow future
requirements and/or repairs.

 Localizability: The system should support multiple languages.

5.2 Architecture

This section is dedicated to the presentation of the different proposed architectures, as well as
showcasing the chosen one, properly justified and detailed.

5.2.1 Domain Model

A domain model is a conceptual model, organized and structured around the knowledge of a
problem. It “[…] should represent the vocabulary and key concepts of the problem domain and
it should identify the relationships among all entities [within its scope].” [82] One of the
breakdowns that projects usually suffer are due to misconceptions or misunderstandings of
concepts, so, the domain model and its key concepts and definitions should be understandable
by everyone involved (programmers, team leaders, clients, etc.).

With that, for a better understanding of the proposed solution and to respond to the specified
requirements, a domain model was designed, depicted in the next Figure 28.

79

Figure 28 – Domain model

In the designed model, there are a great deal of involved entities, so, to sum up, the most
important and crucial ones will be briefly detailed:

 User: Entity that benefits from the use of the functionalities granted by the system.
They can have their own Programs and Single Workouts or manipulate already existing
ones offered by the system. They also own a Profile in which their setup information
lies (i.e. language, units of measure, etc.), among other things like their Body
Measurements and Training Maxes.

 Program: A single Program can have multiple Plans. This entity is characterized with
different other entities, such as a list of associated Goals, a State, a list of Muscle Groups,
among others. A Program can be seen as an aggregate of different training weeks.

80

 Plan: A Plan can have multiple Workouts and it is characterized by the Body Areas it
focuses on, Training Types and others. It can exist as part of a Program or as a
standalone Plan. A Plan can be seen as a training week, with different training days.

 Workout: A Workout might be regarded as a training day, also characterized with
different entities.

 Single Workout: The difference between a Workout and a Single Workout is that the
latter exists in itself without being part of any Plan. This is beneficial for many reasons,
such as allowing a User to perform a Workout without the need to “subscribe” to a full-
sized training Plan/Program.

 Exercise: This entity depicts a fitness is characterized by having a Movement and a list
of Sets. It can also be a Super Set which simply means it can be seen not as a single
exercise but an aggregate of multiple ones, executed in sequence.

 Movement: A Movement is one of the most complex entities in terms of association
with other ones. It is defined by multiple characteristics like its details (Movement
Details), its Movement Mechanic and the list of necessary Equipment to conduct the
said Movement. It is also characterized by multiple other entities such as a list of Muscle
Groups, Training Types, Body Areas, and others.

 Set: This entity represents a Set of an Exercise, which is the number of cycles of
repetitions for a given Exercise and can be represented by any of the four types:

o Weight and Reps: Defined by a given weight and the number of associated
repetitions. It can also have an Intensity attribute, which can be in the form of
RPE or a Percentage.

o Reps Only: Defined only by the number of repetitions needed.

o Cardio: Defined by the duration and average speed (for cardiovascular
exercises such as running or biking).

o Time Only: Defined only by the duration.

 Set Log: This entity is very crucial in the log of information. Every Set has an associated
Set Log and they both possess the same already-described attributes. One might see
the Set as a prediction of what it is supposed to be done, and the Set Log as a record of
what was effectively performed (for example, in terms of repetitions).

81

5.2.2 Proposed Architectures

In order to find a suitable architecture, there were designed three different ones, each with its
own characteristics. They will be presented next, through the use of a Logical View, as well as a
brief explanation of the said characteristics they possess. The Logical View consists in a
“conceptual organization of the software elements in terms of the most important layers,
subsystems, packages, [etc.].” [80] It’s logical because there’s no relationship with the
deployment by operative systems, processes or physical nodes (computers). [81]

It’s also important to mention that all the propositions have some common characteristics, and
only the differences between them will be discussed in the next sections. All the solutions have
four major common components:

 FitnessBackOffice: This is the back office of the system, which comprises the software
used to administer operations that are not related to any direct customer interface. [82]

 FitnessWebAPP: In contrast to the back office, this is one of the front offices, which is
an application that directly interacts with the customer. [83] This specific one refers to
the web application.

 FitnessMobileAPP: This is also a front office, as described in the prior component, the
difference is that this one refers to the mobile application.

 FitnessRecommenderSystem: This component is responsible for the manipulation of
user data in order to produce recommendations.

 ChatBot: This is the component responsible for handling the Personal Virtual Assistant’s
business logic.

 LUIS API: Machine-learning-based service responsible to handle communication with
the ChatBot.

82

5.2.2.1 Alternative 1

Figure 29 – Logical View of the first proposed architecture

The first proposed architecture, depicted in Figure 29, is characterized by the existence of an
API (FitnessAPI) that handles all the operations between the other components and the
database. It provides an interface that all the other components use in order to communicate
with the database and with each other. Plus, there’s a single database that is accessed by the
API and the API only. This allows for multiple advantages like efficiency due to the easiness of
publishing, integration, personalization, adaptation, and others. [84] Also, the fact that only one
component is responsible for the orchestration of operations between the database and the
others is a major advantage.

5.2.2.2 Alternative 2

Figure 30 – Logical View of the second proposed architecture

83

The second proposed architecture, depicted in Figure 30, is characterized by the
implementation of a microservices architectural pattern [85]. This pattern “structures the
application as a set of loosely coupled, collaborating services […]” [85] which has multiple
benefits such as better testability, because the services are smaller and faster to test, better
deployability, because services can be deployed independently, improved fault isolation, and
because each microservice is relatively small, it’s easier for developers to understand, the IDE
is faster and the application starts faster, which improves productivity. Also, it “[e]liminates any
long-term commitment to a technology […]. When developing a new service, you can pick a
new technology […].” [85]

As so, there’s a new component named FitnessGateway that handles the communication
between the other components and all the microservices. The created microservices can be
seen in the image, and all encapsulate different responsibilities. Also, each one has their own
database, in order for them to be completely isolated from each other. The created
microservices and their responsibilities can be presented as:

 ExercisesService: responsible for all the exercise-related business logic (i.e. add a new
exercise and check information of a specific exercise).

 ProgramsService: responsible for all the program-related business logic (i.e. create a
new training plan/program).

 RecommendationsService: responsible for all the recommendation-related business
logic (i.e. recommend a workout).

 StatisticsService: responsible for all the statistic-related business logic (i.e. generate
body measurements statistics).

 UsersService: responsible for all the user-related business logic (i.e. logging of a user).

It is important to mention that not all the needed microservices to make the system work are
represented, only the most important ones are depicted, for organization purposes. In case this
is the selected architecture, a new, more in-depth solution needs to be formulated.

84

5.2.2.3 Alternative 3

Figure 31 – Logical View of the third proposed architecture

The third proposed architecture, depicted in Figure 31, is the simplest of them all in terms of
number of used components. The difference from this architecture and the other ones is the
inexistence of an API or some sort of operation redirector (i.e. Gateway). In this solution, the
business logic is encapsulated throughout the existing components, and they all communicate
directly with the database. This is undoubtedly an easier solution to implement, dude to the
reduced number of components and connections.

85

5.2.3 Implemented Architecture

Having described all the different proposed solutions, it’s now time to evaluate each one’s
strengths and weaknesses and pick the one with the greatest added value. In order to do so, a
table was built, as follows.

Table 6 – Proposed Architectures Evaluation

Alternative Strengths Weaknesses

Alternative 1 Automation, flexibility of
delivery, efficiency,
personalization, adaptation,
and others. [84] Reduced
complexity of development.

Low maintainability on high
scale. Hard to distribute work
across development team.

Alternative 2 Better testability,
deployability, and overall
development. Improved
fault isolation. [85]

Development and
deployment increased
complexity. Increased
memory consumption. [85]

Alternative 3 Easy to implement due to
reduced number of
components.

Deficient distribution of
responsibilities. Low
maintainability.

Table 6 summarizes the information gathered in the previous section regarding the strengths
and weaknesses of the different proposed architectures. This information will serve as
justification to choose a preferred one to implement. From the information gathered,
alternative number 3 can be ruled out – the ease of implementation doesn’t overweight the
deficiency of responsibility distribution and the very low maintainability. Also, the fact that
there’s no gateway to handle communication with the database is a severe disadvantage for
almost any system, due to, among other things, data concurrency.

Thus, the final decision comes from picking the best suited architecture out of alternative 1 and
2. Simply put, alternative number 2 brings the best advantages, in the form of improved
testability, development, and overall scalability. The issue with this alternative is that it’s
extremely complex for the project at hands. This alternative is indicated to large development
teams, where developers can work on different services without conflicting with each other,
and where the system is supposed to scale significantly. Because of that, this is not the best
alternative, since the development team is small (2 developers) and the added complexity does
not overweight the benefits it brings. Plus, the increased memory consumption and the
deployment increased difficulty is enough reasons not to pick this alternative in the current
context.

As such, alternative number 1, by process of elimination, is the best one. Simple enough to not
cause any development and deployment trouble and robust enough to meet the needed
demands for the desired system. The only disadvantages of this alternative are not really an

86

issue for this context because the team is not large enough to be hard to distribute work, and
the scale won’t be big enough to have maintainability problems.

5.2.4 Detailed Implemented Architecture

Having decided an architecture to implement, it is now time to detail with more thoroughly,
more specifically in terms of its individual components and also determine how the overall
system will be deployed, through the use of a Deployment View.

Accordingly, in the next sub-sections, the different architecture’s components and the
deployment of the system will be detailed.

5.2.4.1 FitnessAPI

Figure 32 – API’s Logical View

The previous Figure 32 depicts the logical view of the API with all its inner layers. The interface
to which the other components access, is provided by the Controllers, where all the calls from
outside go through before reaching the other layers. This layer is responsible for controlling the
flow of the execution. It generates and manipulates data through actions that are then returned
as results to the respective requests. The other layers’ responsibilities can be described as
follows:

 Models: This layer is where all the different models of the system lie, which are
responsible for handling business logic.

 DTOs: Data transfer object, it carries encapsulated data between subsystems.

 Communication: Responsible to handle all communication with external services.

 Repositories: Responsible for abstracting the persistence of objects. It contains all logic
related to persistence, as well as mapping between tables and objects.

87

 Helpers: Layer responsible for bestowing classes that allow for a good working flow of
the system, for example, conversions between units of measure, dictionary functions,
etc.

 TypeAdapters: Layer responsible for the conversion between DTOs and Models and
vice versa.

5.2.4.2 FitnessMobileAPP

Figure 33 – Mobile App’s Logical View

Figure 33 portrays the inner layers of the Mobile App component, and they can be presented
as follows:

 Store: Responsible for communicating with the server and managing the application’s
state.

 Screens: This layer contains all the screens that are presented to the user. The logic
behind the construction of the user interface lies in this component.

 Navigation: Responsible for declaring the screens and controlling de flow between
them.

 Components: It is in this layer where all the reusable UI components reside.

 Utility: Responsible for containing different functions and constants that support the
good flow of the application.

 Language: This layer contains the language component of the mobile app. Responsible
for controlling the information’s language that’s being displayed to the user, depending
on their preferences.

88

5.2.4.3 FitnessRecommenderSystem

Figure 34 – Recommender System’s Logical View

The Recommender System’s component is being detailed in Figure 34. This component only
communicates with the API, and all the logic is processed within itself. The Controller receives
the requests from the API and then delegates the rest of the process to other layers with
different responsibilities, presented next:

 Recommender: This layer is where the different recommender algorithms are. These
are the ones responsible to handle all the received information and produce
recommendations accordingly.

 Parsers: The Parsers consist in blocks of code (within their respective classes) that
handle the parsing of information (i.e. importing and mapping of datasets).

 Models: This layer is where all the different models of the system lie.

 Mathematics: In this component, different mathematic-related tasks are conducted,
such as the calculation of the dot product or SVD.

 Comparers: Regarding the computation of recommendations, there’s always a need to
compare users in order to obtain the similarity between them, and it is in the Comparers
layer where all these different techniques lie.

 Datasets: There’s no recommendation without training Datasets, which is the
responsibility of this layer – to hold different Datasets.

89

5.2.4.4 FitnessBackOffice & FitnessWebAPP

Figure 35 – FitnessBackOffice & FitnessWebApp’s Logical View

The system’s web application and back office is depicted in Figure 35, and its components can
be described as such:

 Communication: Responsible to handle all communication with external services.

 Controllers: Responsible for controlling the flow of the application and generating and
manipulating data through actions that are then returned as results to specific requests.

 Models: This layer is where all the different models of the system lie, which are
responsible for handling business logic.

 Views: Layer where all the views presented to the user reside.

5.2.4.5 System’s Deployment

A deployment view [89] is an UML diagram used to view and describe the topology of the
physical components of a system. In other others, “where the software components are
deployed.” [89] This view is very useful and important because it takes into account primarily
the non-functional requirements of the system such as performance, scalability, availability and
reliability. [90]

90

Figure 36 – System’s Deployment View

The artifact produced, correspondent to the deployment view is depicted in Figure 36. All the
back-end components are deployed into Microsoft Azure’s cloud, providing availability, security
and also disaster recovery, given that everything is safely stored on Azure’s servers.
Furthermore, from the components that are not on the cloud, two can be named -
FitnessMobileApp and WebBrowser. These refer to the mobile app and the web version
respectively. Additionally, the WebBrowser contains the already presented FitnessWebApp and
FitnessBackOffice, for users and system administrators respectively.

As a side note, it is important to mention that the LuisAPI component, depicted in Figure 29 is
not included in the deployment view due to the fact that it is a Microsoft service, having no
deployment needs.

91

6 Implementation

In this chapter, all the implementation details will be presented, from the development of the
Recommender System, to the Mobile Application, Personal Virtual Assistant, the Server
Application and the Personal Virtual Assistant. Furthermore, the specific implemented uses
cases will also be presented and detailed, as well as the Non-Functional Requirements. To
conclude, the tests to which the system was subject are bestowed.

6.1 Recommender System

This section is dedicated to the detailing of the implementation of the Recommender System,
which initially was predicted to be just an intelligent one, but through the course of its
implementation, another one had to be devised, as it will be explored next.

6.1.1 Intelligent Recommender

A system is deemed intelligent if it has the capacity to learn from experience and the ability to
adapt according to the available data. [99] Specifically, regarding recommender systems, if it
can make recommendations based on some learning-process and accommodate itself to the
data that is being fed, then it can be considered a smart or intelligent recommender.

The idea to implement such system came from the notion that many users of the currently
being developed system will need some sort of help and assistance in their training. Having in
place a system that supports them in their fitness life by making smart recommendations, based
on their profile, on the environment (other users) and their overall history is highly desirable.

To implement such system, the Matrix Factorization technique was selected. From the
presented techniques, it is the only one that is based on self-improvement and learning, since
it adjusts its model to the data and to the calculated error, as it will be furtherly detailed in the
next sub-sections.

92

Furthermore, in order to add some sort of personalization and differentiation it is also desirable
to complement the intelligent recommendations provided by Matrix Factorization with of other
techniques’. These will be User-Based Collaborative Filtering and Item-Based Collaborative
Filtering, already described in the State-of-the-art chapter. To do so, another already covered
technique will need to be employed, the Hybrid-approach, because it offers the mechanism to
use multiple recommendation techniques at the same time.

The next sub-sections will be dedicated to exploring and detailing the implementation of the
intelligent recommender system, with all its intricacies. It is also important to mention that the
foundation for the present system’s implementation is based in an article named “Building a
Recommendation Engine in C#” [102], by Scott Clayton, which won the second prize in the Best
C# Article of March 2018 and the first prize in The Machine Learning and Artificial Intelligence
Challenge.

6.1.1.1 Data Importation and Modeling

In this section, the process of importing and modeling data will be detailed. As a first note, it is
important to mention that the data fed to the system is not context accurate. Meaning that,
the information modeled and used to make recommendations is not workout-related and,
therefore, not useful in practical terms. The reason for this is due to the fact that, for an
intelligent recommender to work and be decently accurate at all, it needs a great amount of
initial information, and the unfortunate reality of this project’s situation is that there’s not
feasible way to gather sufficient and meaningful context accurate information with the time
restrictions in place.

Consequently, a way to circumvent this hindrance had to be devised. The solution then became
to use similar data structure-wise, to still maintain a system able to support context accurate
information at any point in time that’s available and still be able to test the implemented
algorithm with data that is not fabricated. This can also be seen as an advantage because it is
easier to test the results of the system by using real, verifiable data. This way, the system’s
recommendations can be put to test and the respective algorithm validated.

Keeping this in mind, it is of high importance to use a reliable dataset – if the information cannot
be contextually true, at least it should be trustworthy in its own context to make valid
conclusions on the system’s integrity.

The selected dataset is provided by GroupLens Research25, that gathered rating datasets from
the MovieLens26 website and made them available, especially for research and investigation
purposes. Literature [103] supports that this dataset is used widely across education, research
and industry. With hundreds of thousands of downloads each year, “reflecting [its] use in
popular press programming books, traditional and online courses, and software.” [103] It is
heavily referenced in literature, with several hundreds of publications27 and more than 16.000
results on Google Scholar28.

25 https://grouplens.org/datasets/movielens/
26 https://movielens.org/
27 https://grouplens.org/publications/
28 https://scholar.google.com/

93

The structure of the dataset aligns almost perfectly with the desired one’s, only requiring a few
adjustments. For this reason, and because it is very extensive and trustworthy [103], it makes
for an excellent choice.

Regarding the specific importation and modeling of the information, first, the relevant entities
are imported – users, items, ratings, tags.

The users and ratings are imported simultaneously, given that they can be found in the same
file. The said file, is structured such that each line constitutes a rating a user has given to a
certain item and follows this configuration:

𝑢𝑠𝑒𝑟𝐼𝐷, 𝑖𝑡𝑒𝑚𝐼𝐷, 𝑟𝑎𝑡𝑖𝑛𝑔, 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝

This way, the algorithm just needs to iterate each line and create the respective objects, as the
code in Figure 37 depicts.

Figure 37 – Load Users and Items method

After, the tags relative to the items are extracted from the respective file, which contains the
following configuration:

𝑡𝑎𝑔𝐼𝐷, 𝑛𝑎𝑚𝑒

The algorithm only has to iterate each line and create the respective Tag object.

94

Finally, the items are also loaded using a similar approach. In the file where the items are, each
line represents an item and follows the configuration presented next:

𝑖𝑡𝑒𝑚𝐼𝐷, 𝑡𝑖𝑡𝑙𝑒, 𝑡𝑎𝑔𝑠

The algorithm responsible for extracting the information relative to the items iterates each line
and creates an Item object for each one, fetching the tags from the already created Tag object
list.

Figure 38 – DatasetModel class

When all the information is extracted from the respective files, the final dataset model can be
created, using the DatasetModel class, depicted in Figure 38, and with that, the importation
and modelling of the data is completed.

95

6.1.1.2 Class Diagram

Figure 39 – Class Diagram from the Intelligent Recommender

The previous Figure 39 depicts the class diagram for the system and exhibits its overall structure.
The section with the Dataset and its dependencies was already covered in the previous section,
where the importation and modeling of the data was discussed.

In the next sub-sections, the remaining entities of the class diagram will be explored and
furtherly detailed. As an introduction, there are two more “sections” in the diagram, aside from
the Dataset one, and they are the different recommendation algorithms, all usable through the
IRecommender interface, and the different implementations for comparers, usable through the
IComparer interface. These interfaces represent the Strategy pattern, which allows for there to
be different implementations for the same task and an easy way to make them interchangeable.

6.1.1.3 Matrix Factorization

The core of the devised intelligent recommender can be found on the MatrixFactorization class,
where this technique is employed. In the State-of-the-art chapter, its theoretical base was
described to some extent. Now, in this section, the more intrinsic details will be thoroughly
addressed, as well as its full implementation and how it all ties together in the system.

Firstly, the class MatrixFactorizationRecommender is instantiated and it can receive as an
argument the number of features (latent features) that are desired to be used during the
learning process. This number of features is simply the size of the user and item features vectors.
If no argument is provided, then the default value of 20 is assumed.

The number of latent features varies depending on the recommendation model and is mostly
defined by trial and error, because if there are too few, then the model won’t be able to learn

96

from the data, and if there are too many, then the model might overfit, which is equally bad.
The overfit problem will be explored later in this section, in a different context.

Regarding the latent features number problem, there is some literature that helps to
mathematically find the most optimal values, such as using Cross-Validation [102] [103]. These
techniques won’t be investigated in the context of this project, due to time restrictions and
intent in building a not over-complicated system in such an early stage. Regardless, it is very
much worth exploring as future work.

After that, the model is ready to be trained. The Train method receives the previously created
DatasetModel as input and before anything else, it transforms it into a user-item ratings table,
or Rating Matrix (see Figure 41).

Figure 40 – Rating Matrix builder method

In Figure 40, the previously mentioned method responsible for transforming the dataset model
is depicted. Firstly, the table object is instantiated – UserItemRatingsTable – which initializes its
Users attribute, that represents a list of UserItemRatings (see Figure 42). Each element contains
the ID of the user, the list of their ratings and a Score attribute, which will not be necessary for
this technique specifically. The UserItemRatingsTable class also has two more attributes, used
to easily convert IDs to Indexes, for users and items.

97

Figure 41 – Rating Matrix29

After initializing the table, the next step is to populate it. First, the Users attribute, containing
the list of UserItemRating objects is filled, as depicted in the first foreach statement of Figure
40. Each element is initialized with the ID of the current user and the number of existent items,
which will be the same for all users. The latter will be used to initialize the array of ratings
(ItemRatings variable) with the proper size, as shown in the next Figure 42.

Figure 42 – UserItemRatings class

After filling the table with users and items, the table’s cells need to be populated with the
respective ratings, which is what the LINQ and the last foreach statement are doing –
respectively, creating an object with the ID of the user, the ID of the item and the corresponding
rating, and iterating each object, adding the rating to the correct cell. To clarify, the correct cell
is given by the Index of the user and the Index of the item, which are the row and column of the
table respectively, as illustrated by Figure 41.

29 Adapted from https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-
the-movielens-dataset-using-pyspark-9b7e3f567536

98

Having the Ratings Matrix created, it is now time to apply the SVD technique. To do so, the
SingularValueDecomposition class is initialized, receiving as arguments the previously referred
number of features and the number of learning iterations, or epochs. The latter refers to the
iterations that the algorithm will cycle through in order to improve its predicting model. The
epochs can be seen as a stop rule – at the end of 𝑥, the model stops training. There are different
rules that can be applied, such as stopping whenever the error is lower than a specific threshold
[104], but using learning iterations is the simplest and easiest way.

When a machine learning model tries to make a prediction there’s always an error associated,
and the ultimate goal is to minimize it as much as possible, through an iterative learning process.
The error of a prediction can be easily obtained by computing the difference between the
prediction and the real value. This is obviously only applied in training, where the real values
exist and can be checked. It is, therefore, a pseudo-prediction, because the goal is not to make
a real prediction for someone, but to test the overall model, so that going forward one can be
confident it will make accurate real predictions.

The idea of evaluating the performance of the machine learning model relates to Loss Function
and Cost Function. According to a Towards Data Science article, “[t]he Loss Function computes
the error for a single training example while the Cost Function is the average of the Loss
Functions for all the training examples.” [102] For a set of 𝑁 data points, each one having a
predicted value 𝑃′ and a real value 𝑃, the most simple and common Cost Function, also known
as Mean Squared Error (MSE) can be computed as such:

𝐶𝑜𝑠𝑡 =
1

𝑁
(𝑃 − 𝑃)

(4)

The goal is to, then, minimize the cost function, because the lower the error, the better the
algorithm has done in learning and building a suitable model. And this is where it all ties
together with what was described in the State-of-the-art chapter, regarding on how to obtain
the correct decomposed matrices to make accurate predictions by recomposing them.

To find the optimal feature matrices, there will have to be some sort of optimization process,
to make the associated Cost Function as low as possible. To do so, the initial values of these
matrices will be completely random. Since there is no real way to obtain their values based
solely on non-zero values (as explained in the Matrix Factorization section), the easiest way to
have a starting point is to randomize the matrices and go from there. After that, the matrices
will be composed, using the dot product of the matrices vectors (user and item features vectors)
to compute a prediction and comparing it with the real value, making adjustments depending
on the error, and repeating the process for the number of defined learning iterations. These
adjustments, or optimizations are done by an algorithm called Gradient Descent. There are
different variants of this algorithm, as it will be covered later in this section.

As such, after the SingularValueDecomposition class is instantiated, the FactorizeMatrix
method is invoked, receiving as its only parameter the Ratings Matrix. This method is where
the complete construction of the recommender model will take place, from the randomized
initialization of the feature matrices, to the computing of Loss and Cost Functions for adjusting
the matrices to finally obtaining the built model and the associated error.

99

First, the feature matrices are initialized, with random values, to obtain a starting point, as it
was previously described. In the Initialize method, the biases are also initialized. Those refer to
literal biases that users and items might have underlying and that are captured by the model.

Some users might be more inclined to rate items with high ratings, and others might do the
opposite, meaning that two users can have the same appreciation for an item and still rate them
different – user bias. Similarly, different items might have some characteristic that makes users
inclined to rate them higher or lower than other ones – item bias. Realizing that a specific
classification can mean different things is the notion that leads to the inclusion of biases in
recommender systems, both of users and items. Including biases for Matrix Factorization
improves the model and the adjacent recommendations, which makes it very useful. [103] [104]
The way these biases work will be detailed later in this section.

After initializing all these variables, the next step in the FactorizeMatrix method is to get the
average global rating, which will be useful later, and start the iterative learning process. The full
algorithm for this can be found in the next Figure 43.

Figure 43 – Iterative learning algorithm from Matrix Factorization

As a step-by-step explanation of the previous algorithm, the first for loop goes over the number
of learning iterations, each iteration having an associated error and an adjustment of the
learning rate for the next iterations at the end. The learning rate is a variable used to adjust the
values in the user and item features matrices, to approximate their values to the real ones. This
is a part of the aforementioned Gradient Descent optimization algorithm, that seeks to find the
minimum value for a given function, in this case, the error function.

100

Figure 44 – Gradient Descent visualization30

Using an example found in a Towards Data Science article [105], let’s consider one is walking
along the path defined by the graph in Figure 44 and is currently at the Starting Point. If the
goal is to get as close to the Final Value as possible, then the only possible course of action
would be to go up or down the graph and after taking a step, measure how much far from the
goal this new position is and decide again where to go. After taking a step down the graph, the
error – difference between the position of the current point and final one – would diminish,
validating that one is on the right path. The question now becomes: “how fast must one go?”
or “how steep of a step must one take?”. If one takes very small steps, then it would take too
much iterations to reach the goal (converge), but if the step is too big, then the model might
miss the desired minimum. [105] This is where the learning rate comes in – as a way to regulate
the step that each iteration should take, in order to guarantee convergence. As also illustrated
by Figure 44, the step of each iteration is getting smaller and smaller, the closer it gets to the
final value, in order to prevent overreaching.

In the devised algorithm, this is evident in the end of each iteration, where the learning rate is
reduced by 1% each iteration.

Nonetheless, in each iteration, a second for loop goes over all the users (rows) and then a third
chained for loop over all the items (columns). Then, it is checked if the current cell’s value –
given by the current row and column – is different than zero, because if it is not, then the model
can’t learn from it, as it was already mentioned several times, and so, it just skips it. If, on the
other hand, the cell has a value – if the current user rated the current item – then, the first thing
that is computed is the predicted rating, given by the sum of the average global rating, the
respective user and item biases, and the dot product between the vectors of the features’
matrices. In short, the predicted rating can be given by the dot product only, but the other
elements add nuances that improve the computed prediction. For example, if the user tends to
rate items very highly, then the predicted rating will be higher too, or if the item tends to be

30 Image from https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-
41a5d11f5220

101

rated very low, then the predicted rating will be lower, or even if the average global rating is
high or low, then the predicted rating will be affected accordingly as well. These called nuances
make the prediction model more flexible because it takes into account different underlying
variables that undeniably play an important role.

After having the predicted rating, then the error can be computed, by calculating the difference
between the predicted and the real rating. This error is then squared, to calculate the MSE
afterwards.

With the error measured, it is now possible to make adjustments and take a “step” in some
direction, optimizing all the variables that are necessary for making predictions – user an item
features, average global rating and user and item biases.

These adjustments, or optimizations, are conducted by a Gradient Descent algorithm. The
variant used for this project is called Stochastic Gradient Descent [110] which simply means that
the optimization is done individually on each value (cell) at a time, instead of on all the values
simultaneously, like some other variants such as the Batch Gradient Descent or even Mini-batch
Gradient Descent. [111]

To update the user and item features, another for loop is used, that iterates all the features
corresponding to the users’ and items’ vectors and updates them. According to the literature
regarding Stochastic Gradient Descent and Regularization [110] and also a University of
Minnesota course on “Matrix Factorization and Advanced Techniques” [108], the formulas to
update the step of the user and item features vectors are as such:

∆𝑞 = 𝜆 𝜖𝑝 − 𝛾𝑞 , ∆𝑝 = 𝜆 𝜖𝑞 − 𝛾𝑝 (5)

Where ∆𝑞 and ∆𝑝 are the changes of the values for the item and user features vectors, 𝜆 is
the learning rate, 𝜖 is the error associated with the current value prediction, and 𝛾 is the
regularization term, which has a static value. The reason why this regularization term is being
multiplied to the respective feature value and subtracted to the other term is to discourage
large user/item features values. This makes it so that there has to be great evidence to support
large values. [108] Large values need to be regulated because if they’re not, then the learning
model might overfit, which is less than desirable. Overfit defeats the entire idea of
recommender models, which is to be able to generalize. An example to illustrate what
overfitting is can be seen in the next Figure 45.

Supposing we have a dataset, represented by graph number 1 (Figure 45), if we want to build a
recommendation model out of the data, and be able to generalize for future instances, then
using Linear Regression we would get something similar to the graph number 2. If we, on the
other hand, try to fit all the data in the model, we might end up with a model similar to graph
number 3. This is not a reliable model because it does not capture the dominant trend in the
data – which is that is growing – but instead all trends, which makes it near impossible to make
predictions on where the next “dot” would be. [109]

102

Figure 45 – Overfitting illustration31

This is why regularization is important, to prevent large values, outsiders, to impact the model
negatively by overfitting it. This is supported by literature [107] [110], which offers different
types of regularization such as L1, or Lasso Regression, and L2, or Ridge Regression. These will
not be furtherly explored to avoid over-complicating the system at such an early stage but are
definitely worth looking into for future work.

Having updated the user and item features vectors for the specific current value, it’s still
required to update the values of the other variables that impact the prediction formula –
average global rating and user and item biases. They all follow the same formula, similar to the
ones presented before, regarding the user/item features vectors, with a small adjustment of
removing the error multiplier (𝑝 and 𝑞), where ∆𝑣 is the changes in the values for the
average global rating and user and item biases.

∆𝑣 = 𝜆(𝜖 − 𝛾𝑣) (6)

All these formulas can be found programmatically implemented in the code from Figure 43.

This process is repeated for all the values in the Ratings Matrix and at the end of each iteration,
the MSE is calculated by dividing the sum of the squared errors for each prediction and dividing
for the number of total predictions (number of ratings different than zero). The MSE is then
associated to the specific iteration by getting added to a global list. This will be useful to analyze
the evolution of the error on each iteration, by drawing a graph that should look like the one in
Figure 46.

31 Adapted from https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-
learning-a96b30864690

103

Figure 46 – MSE evolution by iteration

To complete the factorization process, the SvdResult object is instantiated and returned, so that
suggestions and specific recommendations can be made. This object contains the already
named variables needed to make predictions.

Having the prediction model built, SvdResult, it is now possible to make recommendations and
there are two different types available, that each class under the IRecommender interface must
implement: get the rating for a specific item by a specific user, GetRating method, and get a list
of top suggestions for a given user, GetSuggestions method.

The GetRating method receives the ID of a user and of an item, and using the previously built
model, it computes a prediction for how that user would rate that item. That is achieved using
the same formula used by Matrix Factorization when computing the predicted rating – sum of
the dot product of the user and item features vectors, the user and item biases, and the average
global rating.

The GetSuggestions method is very similar, the only difference being that it applies the
GetRating method to all the user’s unrated items, then sorts them in a descending fashion by
their predicted rating and returns the first 𝑥 items. 𝑥 being the number of desired suggestions.

6.1.1.4 Comparers

Before presenting and detailing further recommender techniques, it is essential to describe an
important method that is on the core of these algorithms. The group of these techniques
constitute the Comparers. As the name suggests, they make different comparisons and they do
it between users and items.

In the State-of-the-art chapter, when discussing Collaborative Filtering techniques, a concept
that emerged as the main method of application of CF algorithms was the Nearest
Neighborhood algorithm. This algorithm aims to find the nearest neighbors for a specific

104

user/item, and to do that, it needs a comparing rule. A user can be similar to another one based
on different characteristics, and those different implementations can be found under the
IComparer interface. There can be, then, multiple implementations for comparers, but the ones
included in this project are as follows:

 Pearson’s Correlation [114]: By Kent State University’s definition, the Pearson
Correlation produces a correlation coefficient, “which measures the strength and
direction of linear relationships between pairs of continuous variables.” [114] The
correlation can take on any value in the [-1,1] range. The sign of the value indicates the
direction of the relationship, while the magnitude indicates the strength of the said
relationship. Being that -1 is a perfectly negative linear relationship, 0 is no relationship
and +1 is perfectly positive linear relationship. [114] Its formula can be expressed as
follows [115]:

(7)

 The implementation of said formula is displayed in the next Figure 47.

Figure 47 – Pearson’s Correlation implementation

 Cosine Similarity [115]: Simply put, It is a very popular collaborative filtering technique
that “measures the cosine angle formed by two rating vectors:” [115]

(8)

105

The implementation for this formula can be found in the next Figure 48.

Figure 48 – Cosine Similarity implementation

 Co-Rated Cosine Similarity [116]: This is a variation of the Cosine Similarity, with the
same formula. The difference being that only the co-rated items – items rated by both
users – are considered and entered in the formula. The code for that is depicted in
Figure 49.

Figure 49 – Co-rated Cosine Similarity implementation

 Root of Mean Squared Error [115]: Scoring rule that measures the average magnitude
of the error. This is a technique which gives high weight to large errors, making it very
suitable to apply when large errors are particularly undesirable. The formula for that is
as follows. [115] [117]

(9)

 The programmatic implementation for this technique can be observed in Figure 50.

106

Figure 50 – Root of Mean Squared Error implementation

6.1.1.5 User-Based Collaborative Filtering

The UBCF [118] is a collaborative filtering approach that takes into consideration the users and
the relationships that might exist between them. These relationships can be calculated using a
plethora of techniques, like the ones presented in the previous Comparers section and they can
represent different characteristics, such as profiles, purchase patterns or rating patterns, that
are inherent to each user.

When initializing this technique’s class, two arguments are sent as arguments – the number of
neighbors to be used in the Nearest Neighborhood technique, and the desired comparing
algorithm.

Following its initialization, the way this technique’s training is implemented is very simple -
Firstly, it is important to mention that it is not an intelligent training, and the term is only used
because all recommenders under the IRecommender interface must implement the Train
method. All this method does is get the Ratings Matrix (see Figure 40), exactly as in the start of
the method for the Matrix Factorization technique. After that, the model has everything needed
to make suggestions and calculate ratings, there’s no need for training of any sort.

The GetRating method, presented in Figure 51, receives the ID of the user to which the
recommendation is aimed, and the ID of the item to which the model will predict the rating for.
Firstly, it finds the user, and their ratings, in the Ratings Matrix.

Figure 51 – GetRating parent method for UBCF

Afterwards, the closest neighbors of the said user are computed, using the
GetNearestNeighbors method, Figure 52 , which receives the user and the number of desired
resultant neighbors. What this method does is iterate all the users in the Ratings Matrix,
compare them individually to the user to which the recommendation is aimed towards, using
the specific comparer algorithm sent as an argument in the instantiation of the class, and storing
the calculated degree of similarity in a Score attribute. At the end, the compared users are
ordered in a descending fashion by their Score value, and the first 𝑥 ones will be returned. 𝑥
being the number of desired resultant neighbors.

107

Figure 52 – GetNearestNeighbors method

The result from this method, as well as the user and the ID of the item, are sent as an argument
to the GetRating child method (see Figure 53), which will compute and return the predicted
rating for that user and item.

Figure 53 – GetRating child method for UBCF

This method iterates the closest neighbors and for each one it calculates the average rating for
all their items. If they rated the intended item, the score variable, representing the predicted
rating, is updated, adding to it the difference between the rating the current neighbor gave to
the desired item and their average rating on all items. This helps to regulate and normalize the
predicted rating by taking into account the different rating patterns different users might
possess. If a neighbor rated the item very highly that will severely increase the predicted rating,
but if the same neighbor tends to rate items highly on average, then maybe the predicted rating
should not suffer such a sudden increase.

108

The next formula (10) is the one used to calculate the predicted rating, where
𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) is the rating the current neighbor gave to the desired item,
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) is the average rating of the current neighbor, 𝑛 is the number of
neighbors that rated the desired item and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑢𝑠𝑒𝑟) is the average rating of the user.

𝑟𝑎𝑡𝑖𝑛𝑔 =
∑ (𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟))

𝑛
+ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑢𝑠𝑒𝑟)

(10)

After iterating all the neighbors, the sum is divided by the number of neighbors that also rated
the intended item, and before returning the final prediction, the average rating of the user is
added to the value.

Figure 54 – GetSuggestions method for UBSCF

The GetSuggestions method is very similar (see Figure 54). Firstly, it computes the nearest
neighbors, in the same fashion as GetRating – by invoking the GetNearestNeighbors method,
Figure 52. It then iterates each item and if the user hasn’t rated that them, it will try to compute
a prediction for it. The way that is done is by iterating each neighbor, and if they rated the
current item, the weighted score for it is calculated and added to the average for that specific
item. When all the neighbors are iterated and the next item is ready to be looped, the
suggestion for the current item is added to a global list, with its respective score (divided by the
number of neighbors). The weighted score is calculated based on the rating the current
neighbor gave to the item and also based on a regularization term. This term is a very simple
way of saying the further the neighbors list is iterated, the less weight their ratings will have on
the final score. Since GetNearestNeighbors returns an ordered list of closest neighbors, the first
ones will be the most similar, and as such, they should have the biggest weight. The formula for
obtaining the score/rating of a specific item is presented next, where 𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) is the
rating the current neighbor gave to the current item, 𝑛 is the number of neighbors that rated

109

the said item, and is the regularization term, which takes a bigger part off of the neighbor’s
rating the bigger the index of the neighbor is, so that the first neighbor’s rating has a much
bigger weight than the last’s.

𝑟𝑎𝑡𝑖𝑛𝑔 =
∑ (𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) −

𝑖 + 1
100)

𝑛

(11)

After all items are iterated, the suggestions’ list is order in a descending fashion, based on the
score/rating that it was calculated for each one, and then, the first 𝑥 suggestions are returned.
𝑥 being the number of desired suggestions.

6.1.1.6 Item-Based Collaborative Filtering

Another very well-known collaborative filtering approach is the IB-CF [118]. This technique,
according to a paper published on Research Gate “first analyze[s] the user-item matrix to
identify relationships between different items, and then use[s] these relationships to indirectly
compute recommendations for users”. [119] One of the findings suggested by this paper is that
“item-based algorithms provide dramatically better performance than user-based algorithms,
while at the same time providing better quality than the best available user-based algorithms.”
[119]

This better performance might have to do with the fact that the calculations associated with
user-based approaches take longer to compute, because ideally there are a lot more users than
items and items change less frequently than users. [118]

Regardless, the IB-CF works very similarly to the UB-CF, in terms of implementation that is. The
only difference being that instead of users, we’re comparing the relationships between items.
The class is instantiated in the same fashion – providing a comparing algorithm and the number
of desired neighbors. Then, the Ratings Matrix is fetched, using the method already described
and depicted in Figure 40. Afterwards, the matrix is transposed, so that the rows are now the
items and the columns the users.

Furthermore, another difference with the UB-CF technique, is the addition of tags to the Ratings
Matrix which will help to compare items. A Tag is a characteristic that each time can possess.
In terms of movies, a tag can be its genre, and a specific movie can have multiple genres.
Identifying and using tags as means of comparison, aside from the ratings, can be very useful.

110

Figure 55 – Transposed Ratings Matrix with appended tags32

In Figure 55, it is evident the transposed Rating Matrix with the appended tags, so that there
are more ways to compare items. For example, if we’re comparing item 2 and 5, normally we
would find the users who have rated both those items (user 1 and 4), but now, with the addition
of tags, we can also search for items that share the same tags. In the figure’s example, both
items 2 and 5 share the same A and B tags, which makes them closely related in terms of
similarity.

The model is now ready to make recommendations. As such, the GetRating method calculates
the desired user’s and item’s average rating and returns the average of both, as in Figure 56.

Figure 56 – GetRating method for IBCF

The GetSuggestions method, on the other hand, uses a different approach. First, it retrieves the
user’s top-rated items, using the method in Figure 57. It then iterates this list, and for each one,
it finds their nearest neighbors, using the GetNearestNeighbors method, almost identical to the
one used in the UBCF - Figure 52. Afterwards, it iterates the retrieved list of closest neighbors
and computes the average rating of all the users that rated the current item. In the end, returns
the first 𝑥 items with the highest average rating. 𝑥 being the desired number of suggestions.

32 Image from https://www.codeproject.com/Articles/1232150/Building-a-Recommendation-Engine-in-
Csharp

111

Figure 57 – GetHighestRatedItemsForUser method

6.1.1.7 Hybrid-approach

As literature suggests [120], and as it was already explored in the State-of-the-art chapter,
hybrid recommendation systems have been proposed as a way to improve performance by
combining different recommendation approaches. The combination applied in the context of
this project is based in the Matrix Factorization with different collaborative filtering techniques
such as user-based and item-based.

To initialize the Hybrid class, the list of desired recommender algorithms to be used is sent and
added to the internal list attribute. The training method for this technique is simply iterating
the different recommenders training methods. The way recommendations are made, on the
other hand, is a bit different.

The GetRating method simply invokes each and every GetRating method from the used
recommenders and averages their results, as in Figure 58.

Figure 58 – GetRating method for Hybrid filtering

To get suggestions, there are two different alternatives: GetSuggestions or
GetCommonSuggestions.

The GetSuggestions method, depicted in Figure 59 first divides the number of desired
suggestions equally through all the entered recommender algorithms, so that each one
presents its own suggestions. It then invokes each and every GetSuggestions method of the
recommenders, sorts the results by their rating and returns them.

112

Figure 59 – GetSuggestions method for Hybrid filtering

The GetCommonSuggestions method (see Figure 60), on the other hand, as the name suggests,
returns the suggestions that are common across all the entered recommender algorithms, as a
way of validating their relevance. First, it adds 100 suggestions of each recommender to a list.
Then it iterates the said list, creating another list of objects containing the suggestions and the
number of their occurrences across the recommenders. In the end, sorts this list by the number
of occurrences, to find the most common ones, and then by their ratings. Before returning, it
takes the first 𝑥 suggestions. 𝑥 being the number of desired final suggestions.

Figure 60 – GetCommonSuggestions method for Hybrid filtering

113

6.1.1.8 Flow

With all the different techniques covered and detailed, it is now important to describe the
system’s overall flow.

Figure 61 – Activity Diagram for the Intelligent Recommender System

The previous Figure 61 depicts the activity diagram for the Intelligent Recommender System,
where after importing the dataset, the model is trained (depending on the technique) and then
one can request suggestions for specific users or a predicted rating that a certain user would
give to a particular item.

Figure 62 exhibits a more detailed description of the flow of the system, where firstly the
desired recommendation technique is chosen. It usually is Matrix Factorization or a Hybrid
combination with other one(s). After that, it is verified if there is already a model for the
selected recommendation technique. If there is, then it’s ready to make recommendations. If
there is not, then the model is created, using the steps already covered in the previous sections.
This model is then stored for future use.

Figure 62 – Sequence Diagram for the Intelligent Recommender System

114

6.1.2 Conditional Recommender

Having implemented an intelligent recommender based on machine learning and iterative
improvement processes, there was still the need to possess a smaller, faster, and more direct
recommender system. Even though smart recommendations are better in most cases, they
require a very specific set of conditions to work properly. The first and most important one
being the great amount of initial testing data.

Unless there’s already a considerable volume of information ready to feed the system to build
the recommendation model, then the recommendations will be far from accurate and probably
more on the random side. This is exactly the situation with this project’s system – even though
the algorithm was properly built to support the envisioned model and will be trained and tested
with similar data (in terms of structure, not context), it ultimately cannot provide context-true
results until applicable data is gathered.

For this reason, an additional recommender will be implemented, to offer fast and simple
recommendations in the absence of more robust ones calculated from the intelligent
recommender. The end recommendation object is in the form of training Workouts. It won’t
recommend training Plans or Programs because even though they have the same logic, due to
time restrictions only one could be selected.

6.1.2.1 Theoretical Base

Even though the envisioned algorithm is desired to be fast and simple, it still has some
intricacies on its workings that deserve to be presented.

Firstly, the algorithm will not work so much as a “workout builder” but more as a “workout
filter”. That is to say that it won’t build workouts from zero and recommend them - this would
be highly difficult because it would require a more scientific and research-based knowledge in
workout programming and defeat the whole simple-and-fast purpose. Instead, it will use the
already existing workout database, and by filtering process, select the most appropriate ones,
depending on the context (inputs).

To do so, it will receive the as input the following parameters:

 Workout Database: The workout list that will be filtered.

 User History: User’s workout history, to find tendencies, lacking areas, etc.

 User Preferences: Preferences of the user, established during the setup – available
equipment, muscle groups, training types, body areas, goals and level of experience.

To sum up, the inputs comprise the workout database, which is the list of existing workouts in
the system’s database, the user’s workout history, which will help to find what the particular
user values most, find tendencies in their training, areas that need more work, etc. It also
comprises the user preferences, which were defined during the setup, and include the
equipment the user has access to, muscle groups that the they want to work, the training types
they want to practice, the body areas they want to hit, their training goals and their level of
experience.

115

Regarding the filtering technique more specifically, the idea is to divide it in 6 stages – filters
refinement, volume and intensity evaluation, filtering, volume and intensity prediction, final
selection.

The first stage, filters refinement, is the simplest one. Its main purpose is to take the user
preferences and cross-reference them with the user’s history to refine them. For example, if
the user’s training types were already all included in their previous workouts but one, then it
makes the most sense to recommend a workout of that specific training type. And so, the list
of training types would be reduced to just the one.

The second stage, volume and intensity evaluation, has to do with assessing the volume and
intensity the user has been subjected to in their previous workouts, to later decide what would
constitute the most adequate volume and intensity for the next workout and find one that is
the most alike.

The third stage, filtering, is the phase where the refined parameters of the first stage will be
applied in the workout list, reducing the number of workouts to ones that theoretically will be
of most interest to the user. First, the workouts that are above the user’s experience level will
be removed from the list. Then, only the workouts whose goals, training types and muscle
groups align with the previously refined goals, training types and muscle groups respectively
will be kept. Also, the workouts which use exercises that require equipment the user has no
access to are to be removed as well.

The fourth stage, volume and intensity prediction, takes into consideration the evaluation
conducted in stage two, and tries to make a prediction on what would be most suitable to the
user in terms of volume and intensity. From this point forward is where the results can achieve
a greater degree of differentiation, depending on what is fed to the stage’s algorithms. This is
because there are numerous ways to predict volume and intensity and to make a final selection.

Even though the other stages can achieve a certain degree of differentiation, for example, there
are several ways to evaluate volume and intensity, they won’t achieve the same degree that
the fourth and fifth stage will.

The implemented prediction of volume an intensity is based on the assumption that the
detected tendency of past workouts will remain. To calculate this tendency, Linear Regression
will be used. This technique is one of the most important ones in Regression Analysis, and its
main purpose is to establish a relationship between a dependent variable and one or more
independent variables using a line, also known as Line of Best Fit, or Regression Line. [99]

116

Figure 63 – Hubble’s Constant, expressed through the slope of a Linear Regression graph33

In the previous Figure 63, the depiction of a standard Linear Regression graph is evident. Even
though the data in the independent variable (Y-axis) is scattered, there’s a tendency upwards,
more clearly noticeable through the use of the line – Line of Best Fit. This line indicates that,
regardless of outliers, there’s an unmistakable growth, represented by the slope of the line.
With this, one might predict what the velocity (Y-axis) might be for a specific unmeasured
distance (X-axis).

Accordingly, applying the same technique to the volume and intensity of the user’s past
workouts will result in a line that may represent a tendency that the user subconsciously wants
to maintain, and with such line, a prediction can be easily made.

Still, there are some important points that need to be established. Firstly, it is assumed that
there’s a linear relationship between the variables [99]. In other words, it is assumed that the
user’s volume an intensity evolution is related to the evolution from workout to workout, which
may not be true for some cases. Secondly, this technique is very sensitive to outliers, especially
when data is scarce. This must be payed attention to, with the consequence of making
unrealistic predictions.

In the fifth and final stage, final selection, the predicted values for the volume and intensity are
used to filter the list of workouts and obtain the ones that best fit the predictions, depending
on how many are expected to be returned.

33 Image from https://astro.unl.edu/naap/distance/hubbles_law.html

117

6.1.2.2 Flow

Figure 64 – Sequence Diagram: Conditional Recommendation

In the previous Figure 64 the sequence diagram relative to the conditional recommender
process’ flow is presented. The process involves three entities: Mobile APP, API and
Recommender System.

The first entity, represented by the FitnessMobileApp component, gets the input from the user
that a recommendation is requested. Then, the server, FitnessAPI, is communicated with, that
in its stead communicates with the recommender system, FitnessRecommenderSystem,
sending the user’s info, and other inputs, already presented in the previous section. Finally, the
recommender processes the gathered information and returns it back in the form of workout
recommendations. This process was also already described in the previous section.

6.1.2.3 Implementation

This final section will be dedicated to detailing and describing the specific implementation of
the recommender system’s filtering process, which was already fully described previously.

Figure 65 – Method to get the unused goals

As it was already discussed, in the filters refinement stage, the user’s preferences are cross-
referenced with their history to find “lacking areas”. This is exactly what is being portrayed in
Figure 65, where the user’s goals are being refined. More specifically, the method is searching
for goals not present in the workout history and returning them, completing the refinement
process for that preference. Each workout has a set of goals, and the algorithm is simply trying

118

to find the ones that were not “fulfilled” in the user’s history (list of workouts), which would
make workouts that have those goals suitable candidates to recommend. The other preferences
follow the same method of refinement.

Regarding the volume and intensity evaluation stage, the Strategy [100] pattern was employed,
so that the code would be reusable, and to allow different evaluation algorithms to be selected,
independently of who, or what, is using them, as shown in Figure 66, where RepsEvaluate and
PercentageRpeEvaluate implement their respective interface. The idea here is that other
classes, with different approaches, can implement the same interface, reusing the code.

Figure 66 – Strategy Pattern: IEvaluate

To accomplish what was set on this stage, two classes were created – RepsEvaluate and
PercentageRpeEvaluate. The first implements the evaluateVolume method that calculates the
volume of workouts, which is based on the number of repetitions for each one, returning a list
of integers, each representing the volume of a workout. The former implements the
evaluateIntensity method, that calculates the intensity of each workout using a different
approach.

As it was described in previous chapters, specifically in the Domain Model, each workout
contains a list of exercises, each exercise contains a list of sets, and each one has an attribute
referring to its intensity. The main idea behind the algorithm from PercentageRpeEvaluate is to
associate each exercise with an intensity, calculating the average between its sets, and then
averaging the exercises’ intensity to obtain the intensity of the workout, as the following
formulas (12) portray, from left to right respectively.

𝐼 =
𝐼 + 𝐼 + ⋯ + 𝐼

𝑛
, 𝐼 =

𝐼 + 𝐼 + ⋯ + 𝐼

𝑛
 (12)

In the filtering stage, the refined parameters from the first stage are used to filter the list of
workouts, as shown in Figure 67.

119

Figure 67 – Method to filter the workout list by their goals

The previous method receives as arguments the list of current recommendations (workout list)
to filter it, the unusedGoals, which is the refined goals from the first stage, and the un-refined
goals list. The reason for the latter is to have a “backup” in case the refined goals list is empty.
If it is, then the refined list becomes the original one. After that validation, the workout list is
filtered, to find which ones contain at least one goal from the said list. If the resultant list is
empty, then the “pre-filtered” one is returned.

The previous algorithm is the same one applied to all the other preferences. Also, the workouts
which have exercises that require equipment not included in the user’s available equipment list,
are filtered out.

The volume and intensity prediction stage uses, once again, the Strategy pattern, to allow for
there to be different implementations for the prediction of volume and intensity. The
implemented one though, is based on the already thoroughly described technique – Linear
Regression.

With this technique, the Line of Best Fit can be calculated, and in order to produce predictions,
it needs to be translated into an equation, the straight-line equation, in the “slope-intercept”
form [101]:

To obtain this equation, three steps need to be taken. First, the average of the 𝑥 (workout index)
and 𝑦 (volume/intensity) is calculated, �̅� and 𝑦 respectively. Then, the slope, 𝑚, is obtained
through the following formula (13).

𝑚 =

∑ 𝑥 𝑦
𝑛 − �̅�𝑦

∑ 𝑥
𝑛 − �̅��̅�

(13)

𝑦 = 𝑚𝑥 + 𝑏

where 𝑚 is the slope and 𝑏 gives the 𝑦-intercept

120

Finally, the 𝑦-intercept value, 𝑏, is calculated, using the formula presented next.

𝑏 = 𝑚�̅� − 𝑦

These steps are programmatically implemented in the code shown in Figure 68.

Figure 68 – Line of Best Fit equation implementation

With this equation already available, predicting values for volume and intensity becomes very
easy. It is only needed to replace 𝑥 with the index of the next workout, and return the respective
𝑦 value, that represents the said prediction.

The last stage, final selection, the predictions gathered previously will be used to make a final
filtering on the workout list, that selects the first 𝑛 workouts that best approximate the
predictions made for the volume and intensity. Given that 𝑛 is the number of recommendations
that will be presented to the user, which can be changed. After the final workout list is returned,
the conditional recommender process is finished.

6.2 Mobile Application

This section will be dedicated to the presentation of the developed mobile application. First and
foremost, it can be said that it was built using React Native34 as its main framework, Expo35 as a
tool for building, deploying and iterating the app, and Visual Studio Code36 as the code editor.

React Native is a JavaScript37 framework, used to build native mobile applications for both iOS
and Android. Based on the Facebook’s JavaScript library – React38 – but instead of the web and
browser, it targets mobile platforms. [125] There are numerous advantages to using React
Native, the first and most important is the fact that it supports different mobile platforms
natively, removing the need to develop for both – the code will work for both. Also, it uses a
very-well known programming language, JavaScript, which makes familiarization with the
technology an incredibly easy process.

34 https://facebook.github.io/react-native/
35 https://expo.io/
36 https://code.visualstudio.com/
37 https://www.javascript.com/
38 https://reactjs.org/

121

This framework is being used by thousands of applications, the most well-known being
Facebook, Instagram, Pinterest, Skype, Tesla, Uber, and many more mobile based
applications.39

The other technology used, Expo, is so notorious and relevant that it is even referenced in the
“Getting Started” 40 page of the React Native docs. It is said that the easiest way to get started
is with Expo CLI41, which is a command line app that serves as the main interface between a
developer and other Expo tools. As such, Expo can be seen as an aggregate of different tools
aimed towards the expedition of mobile apps with the less amount of effort. It’s very useful
because it can be tested on an iOS device without paying the annual Apple Developer Account
fee of $9942. This is attainable through the Expo app, both in the Google Play and App Store,
which emulates the app that is being developed in the desired device. Furthermore, Expo
handles tons of configurations instead of the developer and even has an SDK that allows the
app to use the device’s camera, maps, location, etc. [126] Another tool from the Expo package
is the Snack43 which is a handy online editor, that allows to run the application on an online
emulator or even on the developer’s own device.

The last used technology to build the mobile application was Visual Studio Code, which is a
“lightweight but powerful source code editor […]. It comes with built-in support for JavaScript,
[…] and has a rich ecosystem of extensions for other languages […].” [127]

The next sub-sections will unveil specific details regarding the developed system’s
characteristics, such as the used patterns and supported features, the libraries used, and at the,
end the most important flows of execution of the User Interface will be presented and detailed.

6.2.1 System’s Characteristics

The developed mobile application exhibits a plethora of characteristics that are worth noting
and documenting. These constitute decisions made in terms of used patterns, available features
and even simply overall characteristics with a certain degree of importance to the proper
functioning of the system.

6.2.1.1 Redux

Simply put, Redux [128] is a state container for JavaScript apps. It helps to build applications
that are predictable, centralized, debuggable and flexible.

Predictable because they behave consistently, run in different environments and are easily
testable. Centralized because the application’s state and logic is centralized, enabling different
state handling capabilities. Debuggable because using it makes it easy to trace the application’s
state. And flexible because it works with any UI layer and has a large ecosystem of addons.

39 Data from https://facebook.github.io/react-native/showcase.html
40 https://facebook.github.io/react-native/docs/getting-started.html
41 https://docs.expo.io/versions/latest/workflow/expo-cli/
42 Data from https://developer.apple.com/support/compare-memberships/
43 https://snack.expo.io/

122

Even though it is mostly used with React, it can be used with any other JavaScript framework or
library. [129]

The reason why state management is important is because in a mobile application, data is
usually shared among different components, and there has to be some sort of control over the
data’s state that is being shared, to avoid any mistakes. [129]

It is now important to understand how Redux works in terms of implementation [129]. It’s not
very complicated and rather straight-forward. Firstly, there are three important parts in any
Redux system: actions, store, reducers.

The actions [130] are events, they’re the way one can send information from the application to
the Redux store, described later. These actions are sent using a store.dispatch() method and
they must possess a type property indicating the type of action that is going to be carried out
and a payload, which is the information that is desired to be stored, as in Figure 69.

Figure 69 – Redux action example

The store [131] simply put, holds the application’s state and the only way to change it is to
dispatch an action on it. The store is not a class, but rather an object holding multiple methods,
such as getState(), which returns the current state of the application and dispatch(action),
which dispatches a specific action to trigger a state change. There are others, but the ones used
in the project, and the most important ones are the ones described.

The reducers [131] are functions that take the current state of the application, perform some
action and return a new state, as in Figure 70. They “specify how the application’s state changes
in response to actions sent to the store.” [131]

Figure 70 – Redux reducer function example

To connect a specific screen with the Redux store, the connect() method [133] is used. This
function connects a React component to the Redux store, and it receives two useful arguments
– mapStateToProps() and mapDispatchToProps(). The first serves almost as a subscriber to the
Redux’s store, where any change to it will trigger this function and be updated. If there’s no

123

need to subscribe to any specific variable in the store, the null value can be passed. The latter,
on the other hand, is used to create functions that dispatch actions, receiving objects that the
screen can use. [133] All of this can be seen in Figure 71.

Figure 71 – Redux connect example

6.2.1.2 Async Storage

The AsyncStorage [133] “is a simple, unencrypted, asynchronous, persistent, key-value storage
system that is global to the app.” [133] In the system, is very useful because, unlike Redux, if
the application is closed, the data will still be accessible, due to being stored in a sort of local
“cache” on the device. On the other hand, Redux’s data is initialized whenever the app is re-
opened. An example of how AsyncStorage works can be found on Figure 72, where an example
of storing data is illustrated.

Figure 72 – AsyncStorage persisting data example44

44 Adapted from https://facebook.github.io/react-native/docs/asyncstorage

124

Contrarily, an example of fetching the same data can be seen in Figure 73.

Figure 73 – AsyncStorage fetching data example45

For the context of this specific project, there are three important AsyncStorage variables that
are worth mentioning. These are the language, height unit and weight unit. These are useful to
be saved in this manner because the fact that the app can be closed and re-opened and the
variables will still hold their value, which means that there’s no need to fetch these
configurations again from the server.

Regardless, there are various other variables, that will not be discussed further, due to the fact
that are not relevant for this project, but for the other author’s (see Methodology).

6.2.1.3 Components

React allows for the definition of different components as function components or even class
components. This way, these components can receive different arguments, accessible to the
props property and they return either a function or an entire class. The latter refers to UI classes,
with their own render method.

This encourages component reutilization, given that it only has to be defined once, and then it
can be customized by the entity invoking it. For example, if a text class component is defined,
which renders a text object and receives props such as its style, then, different invokers can
specify different styles for the same text component, reusing it.

The project employed this technique, seen as a good design pattern, as a means to reduce the
sheer amount of existent code. The fact that if some changes on a specific component are
desired, they can be applied to the reusable component, and all its instances would be changed
as well constitutes a huge advantage in terms of maintainability.

45 Adapted from https://facebook.github.io/react-native/docs/asyncstorage

125

6.2.1.4 Navigation

Mobile apps are usually characterized by possessing multiple screens, and as such, there has to
be some sort of manager that handles the presentation, transition and declaration of those
screens. That manager is called a navigator. [134]

In the context of this project, that manager is React Navigation, which “provides an easy to use
navigation solution, with the ability to present common stack navigation and tabbed navigation
patterns on both iOS and Android.” [134]

There are different types of navigators, the used ones are as follows:

 Tab Navigator [135]: Bottom or top tab that allows for easy swap of screens.

 Drawer Navigator [136]: Lateral drawer menu.

 Stack Navigator [137]: Provides a way to transition between screens where each one
is placed on top of a stack.

 Switch Navigator [138]: Its purpose is to only ever show one screen at a time.

These described navigators can all be found in the following Figure 74, where the relationship
between them and their respective screens is illustrated.

126

Figure 74 – Mobile App’s navigators and respective screens

6.2.1.5 Authentication

One of the defined Non-Functional Requirements had to do with security through
Authentication. To achieve this, it was implemented an authentication system on the mobile
application where it’s demanded for a registered account to be able to access its features. If the
user doesn’t have an account, they can create one. They can also use the “forget password”
feature, where they receive an e-mail confirming its identity and then a new password is
generated.

127

6.2.1.6 Multi-language

One of the most fundamental aspects of the mobile application is the fact that supports multiple
languages and offers the addition of new languages with minimal effort, by the way it was
implemented. The used process is named Internationalization, or I18N for short, and by
definition “is the process of planning and implementing products and services so that they can
easily be adapted to specific local languages […].” [134]

To implement this said process, the i18n-js 46 library was used, which offers a simple way of
implementing internationalization in JavaScript apps. To use it, 3 elements were created: index,
language list, language file.

The index is where some configurations are made, regarding the importation of language files,
default language, fallbacks (for example if one wants “en-US” and “en-GB” to fallback to “en”),
among others.

The language list is the file containing the different available languages, and their locale key, as
shown in the code snippet from Figure 75.

Figure 75 – LanguageList file example

The language file is the file where all the translations for the different variables are. There are
as many language files as there are available languages. In Figure 76, an example of how a
language file would look is depicted.

46 http://i18njs.com/

128

Figure 76 – LanguageFile example

The usage of this library is very straight-forward – it’s just needed to invoke the i18n.t() method,
passing as parameter the key of the language file’s desired variable. For instance, in the Figure
76 example, if it is desired to get the translation for the “cancel” variable, the method would
look like i18n.t(values.Cancel), which would return the respective translation.

6.2.2 Libraries

Many functionalities regarding UI elements were achieved using already built libraries, available
on GitHub47. The next table Table 7 depicts all the used libraries, as well as the number of Stars
they have on GitHub. These refer to their popularity on the site.

Table 7 – Library list

Library Name Description Stars48

react-native-animatable [135] Animates different components. 7103

react-native-app-intro-slider [136] Sliders/Swipers. 800

react-native-calendars [137] Calendars. 1319

react-native-collapsible [135] Animated collapsible component. 1572

react-native-dialog [139] Native dialog/alert. 209

react-native-elements [140] UI Toolkit. 17135

react-native-gifted-chat [141] Chat UI. 7981

react-native-loading-spinner-overlay [142] Spinner UI overlay. 1146

react-native-material-menu [143] Material menu component. 223

react-native-material-textfield [144] Material textfield. 630

47 https://github.com/
48 All data from 25/9/19

129

react-native-modal [145] Modal UI component. 2846

react-native-paper [146] UI Toolkit. 4208

react-native-parallax-scroll-view [147] Animated parallax header. 1814

react-native-picker [148] Native wheel picker. 1519

react-native-picker-select [148] Native picker. 575

react-native-progress [149] Progress indicators and spinners. 2514

react-native-pure-chart [150] Chart library components. 198

react-native-really-awesome-button [151] Buttons toolkit. 791

react-native-search-box [152] Animated search bar. 370

react-native-sectioned-multi-select [153] Multi-selectable modal. 347

react-native-snap-carousel [154] Swiper component. 5954

react-native-sortable-listview [155] Drag and drop list. 839

react-native-stopwatch-timer [156] Stopwatch and timer component. 45

react-native-swipeable [157] Swipeable list item. 842

6.2.3 User Interface

Having presented the mobile application’s characteristics, design patterns, used libraries and
even the employed technologies, it is now important to detail the main execution flows in terms
of user interface. These will serve as an introduction to the more specific detailing of screens
and interfaces in the next Server Application section.

The first screen a new user would encounter would be one depicted in Figure 77. There, the
user is firstly faced with an introductory screen with the main features of the app such as the
recommendations it provides, the personal virtual assistant, and others. After that, the login
screen is shown, where the user can login, create a new account, or reset their password. After
login in for the first time, the setup screens appear, in order to define the user’s profile,
collecting information regarding their age, goals, workout frequency, and others. Finally, the
user is finally inside the app itself, displaying the discover screen, where the user can perform
a plethora of actions.

130

Figure 77 – Mobile App UI: Initial Flow

One of the few actions that can be performed from the discover screen is the visualization of
training programs, plans and workouts. From a different tab other than the “discover” one it’s
also possible to view the exercises. The actions can all be found in Figure 78.

Figure 78 – Mobile App UI: Training Lists

The user might also want to create and run their own training workouts, which is what is being
displayed in Figure 79, where firstly a workout is being created and then it’s being started and
ran in real time. Finally, the user might also desire to consult their logs, referring to past or
future programmed workouts.

131

Figure 79 – Mobile App UI: Create, Start and Check Workouts

Another very important flow that new users might find helpful is the configuration of the app
to their personal taste. To do that, there’s a side drawer menu where different screens can be
accessed. One of those screens is the settings one, where the user can change things like the
default units of measure, system’s language and the equipment they have access to. In the
profile screen, they can also configure the body measurements they desire to keep record of.
All this can be found in Figure 80.

Figure 80 – Mobile App UI: Configurations

Even though the main flows of action were presented, there are still many more interesting and
important screens, and also noteworthy intricacies regarding the development and
implementation of the mobile application, which will all be addressed in the next section.

132

6.3 Server Application

In order to maintain a certain level of abstraction between the client’s (mobile application) and
the database, to serve as a middle man between them and other services and components, and
also to compute complex operations that aren’t recommended to be conducted in a client
platform, a server application had to be devised.

The implementation of the server application was conducted using Visual Studio as the main
IDE, and C# as the programming language, identical to what was used in the Recommender
System.

The following sub-sections will be dedicated to the presentation of the intricacies and important
characteristics and implementation decisions that were taken during the development of the
server.

6.3.1 Authentication & Authorization

Authentication and Authorization are very important features to have, and ones predicted in
the Non-Functional Requirements. To achieve this, the ASP.NET Identity [165] was used, which
is a Microsoft tool that allows for an improved management mechanism for users and
passwords, offering built-in classes that allow for the creation of both users and roles, as in
Figure 81.

Figure 81 – ASP.NET Identity generated entities

It also offers templates “to add functionality to register, sing in and sign out a user.” [165] Plus,
to assure Authorization in the server – to only allow certain user’s roles to access certain
features (methods) – the Authorize attribute was used, as illustrated in Figure 82, which verifies
in all Controller methods if the requests sent to the server are authorized to access the feature.

Figure 82 – Authorize attribute in the server’s Controller

133

6.3.2 Encryption

Maintaining and securing sensitive data is a very important feature on a system that deals with
such information. As such, an in order to answer some Non-Functional Requirements, an
encryption tool was used to secure personal data such as the user’s e-mail, body measurements
and others.

Consequently, a class containing methods to encrypt and decrypt strings was devised. The
methods were based on a built-in cryptography class named RijndaelManaged.Rijndael [165]
which was selected by the National Institute of Standards and Technology as the candidate for
the Advanced Encryption Standard, which is a “symmetric [method of encrypting text] chosen
by the U.S. government to protect classified information and is implemented […] throughout
the world to encrypt sensitive data.” [166] It’s safe to assume, then, that the algorithms used
are “best practice”.

Using the RijndaelManaged class to perform the encryption, allied with the Rfc2898DeriveBytes
[165] function of the Cryptography built-in library (namespace System.Security.Cryptography
[168]) which generates an encryption key using a key derivation function, PBKDF2 [169], it’s
simple to encrypt a given string-based text with a string-based cypher key, which is an arbitrary
string used to encrypt and decrypt, basically, a key.

6.3.3 Multi-language

Even though the multi-language was already assured and described in the mobile application,
it is still required to address the database’s multi-language. The database is supposed and
prepared to hold huge amounts of information regarding training Programs, Plans, Workouts,
Exercises and others, and having translations for all that data is a decision that has to be
discussed thoroughly to make a good architectural decision so that performance is not
compromised.

Usually, a certain domain class, i.e. Program, possesses their own attributes such as name,
description, etc. But to support multiple languages, this approach cannot be taken. The class
cannot, as well, be duplicated for every supported language because that would imply lots of
redundant information.

As a solution, all the class’s attributes that are desired to be translated were exported to a new
class, containing those attributes and an attribute referring to the corresponding language. As
such, there are multiple instances of this new class, one for each existent language, as illustrated
by Figure 83, example (ii).

134

Figure 83 – Multi-language architecture solutions

In the previous figure, the first example (i) the Movement class contains two attributes that are
desired to be translated in multiple languages – Name and Description – but with that
implementation, the only way to achieve multi-language is to duplicate the class for each
language. That is not a good solution, because if the class contains 10 more attributes that are
not supposed to be translated, then that information will be duplicated in all instances of that
class.

Since redundancy is not desired, a new solution was devised (ii). In this solution, the Movement
class contains multiple instances of MovementTranslations, one for each supported language.
Each instance contains the relevant attributes in a specific Language. That way, it’s very easy to
add new languages – add a new instance of MovementTranslations – and to retrieve
information regarding a specific language - fetch the MovementTranslation instance where that
Language is present.

This solution eliminates all redundancy, because only the attributes that are desired to be
translated are “exported” from the main class, but the ones that are not stay there, only
appearing once in the database.

6.3.4 Migrations

Migrations [171] “is the recommended way to evolve [an] application’s database schema […]”
[171] An evolving project usually implies changes in the database and model schema. With that,
new classes, relationships, attributes, and other possible changes are always a possibility, and
that means the database schema needs to be updated every time a small change occurs.

This is not very productive, and so, Migrations are used, as “a way to incrementally update the
database schema to keep it in sync with the application's data model while preserving existing
data in the database.” [172] As such, Figure 84, contains the migrations used in the context of
this project.

135

Figure 84 – Project’s Migrations

6.3.5 Flow

Having presented all the server’s characteristics and intricacies, it is now important to establish
and present how it behaves when a request is received, as a way to better understand how it
works as a whole. The flow of information, when a GET request is received, is illustrated by
Figure 85.

Figure 85 – Server’s GET request flow

After the respective Controller receives the request, the currently logged user’s ID is fetched,
through ASP.NET Identity, which offers methods to easily retrieve these kinds of information.
With the ID fetched, the user’s language is obtained, by invoking the getUserSettings method,
from UserRepository.

With all this information fetched, the server is now ready to process the specific information
requested by the user, sending the user’s language as argument to any Repository method,
which then returns the desired information in the correct language.

136

6.4 Personal Virtual Assistant

One of the established ideas with value for the system was the implementation of a Personal
Virtual Assistant (PVA), which was also designed as a functional requirement. This PVA besides
offering an obvious innovative feature in the mobile fitness app market, it most importantly
offers a way for users to communicate intelligently and have their issues and doubts answered
from the comfort of their mobile devices.

For such a system to work, four components had to be involved which were the mobile
application, where the user communicates and interacts with the PVA, the ChatBot’s API, to
where all the message requests are redirected to formulate a response, the server application
which returns database data, and also another API, from a Microsoft service called LUIS [173].

LUIS stands for Language Understanding Intelligent Service and is according to Microsoft “a
cloud-based API service that applies custom machine-learning intelligence to a user’s
conversational, natural language text to predict overall meaning, and pull out relevant, detailed
information.” [174] Basically, it’s a machine-learning service that translates natural language
into apps, chat bots and IoT (Internet of Things) devices. This will help to build a ChatBot, the
PVA, with intelligence to understand a respond to user requests.

An example on how all these components interact with each other can be viewed in Figure 86.

137

Figure 86 – PVA components communication

As the previous figure suggests, after receiving a message, the LUIS’s API first tries to recognize
the intent of it. For example, a “hello” is intended to be a greeting, but for obvious reasons, a
“give me a list of all exercises” has a different intent, and firstly it is important to recognize it.
Deciphering a message’s intent is not a very straightforward process because there can be
multiple ways to greet someone – “hello” and “hi” have the same intent, which is to greet – and
the service needs to understand and recognize intent as well as learn for future instances.

After understanding the intent of the message, the service can then decide which course of
action to take. In the example of Figure 86, if the intent is “Greetings”, the assistant will return
a random greeting message, but if the intent is “Movements-List”, the response should be the
list of movements.

A bigger question now emerges which is “how to possess a model able to recognize custom
intent?”. The answer is that the model should be custom created with the desired intents to be
recognized and then trained for it to be accurate and proficient in recognizing them. To do so,

138

LUIS offers a dedicated graphic interface (LUIS portal) to create the machine learning model. It
is possible to start with a prebuilt model, build one from scratch or a combination of both by
blending prebuilt pieces with custom information. [174] Regardless, after having the model, it
is possible to easily created intents [175] and entities [176] which are a word or phrase to be
extracted from the input message, or utterance [177] (view Figure 88), and then train the built
model by manually reviewing utterances that LUIS had trouble deciphering the intent of and
assigning them to the correct intents, which furtherly improves LUIS’s prediction capabilities.

Figure 87 – Stages to build a LUIS model

In the previous Figure 87, the abovementioned stages for building a capable model are
presented. Firstly, the intents where created, and for the context of this project, only six were
chosen: greeting, farewell, exercise list and exercise’s common errors, tips and instructions.

Afterwards, the examples of utterances need to be provided, so that the model has a baseline
for recognizing intent from messages, as illustrated by Figure 88. Each intent needs multiple
utterance examples. [174]

Figure 88 – Example of extracting intent and entities from utterances49

As an example, the utterances used to train the model into recognizing the intent of
“Movement-Tips” which is to return a specific movement’s tips can be found in Figure 89, where
the first part of the utterance is used to interpret intent and the last part – movementName –
is the extracted entity. As also illustrated, “quero as dicas” has no recognized entity, and this
will return a response from the PVA asking for the user to enter the desired entity.

49 Adapted from xhttps://docs.microsoft.com/bs-latn-ba/azure/cognitive-services/luis/what-is-luis

139

Figure 89 – Movement-tips utterances examples

After having their intents and entities defined, and some utterances examples for the model to
have a base, it is now ready to be trained. This process is an automatic process conducted by
LUIS which will try to create a model to fit the entered information previously described.

After the training phase ends, the model is then ready to be tested. For that, some utterances
are fed to the model in order to test if it can accurately recognize the intents. If, at some point,
for a given utterance, the model cannot decipher the intent correctly, the phase for inputting
utterances as baseline for each intent can be repeated, adding as many new utterances as
desirable. Then the model is trained again and tested. These phases can be cycled as many
times as desired until the model is satisfactory.

In the last stage, the trained and tested model is deployed, allowing now for the ChatBot’s API
to communicate with LUIS’s API to interpret user messages.

When a message is sent from the PVA to the ChatBot’s API, the first step is to invoke LUIS’s API
to recognize the user’s intent with the greatest score. The response of this request is a list of all
existent intents, ordered by their score which is the likeliness of that being the user’s intent.

Depending on the intent, the system can take different courses of action, as it was described
previously. To organize that, an IIntentHandler interface was created, containing a method
HandleIntent which all the instances of the interface should implement. Each intent has their
own class, and therefore, each one implements the HandleIntent method. The behavior for
each intent can be summed as follows:

140

 Greeting and Farewell: Randomly selects a greeting or farewell message from existing
ones.

 Exercise List: Requests from the FitnessAPI the list of exercises.

 Exercise’s Tips, Common Errors and Instructions: After extracting the correct entity
from the utterance, it invokes the FitnessAPI to return the tips, common errors or
instructions for the given exercise.

After receiving the response, it is returned to the mobile application, where a chat built with
the gifted-chat library was implemented, using the Direct Line [178] channel as a way to
facilitate communication of the mobile application with the ChatBot’s API. This communication
is what enables the user’s utterance to reach the created model from LUIS’s API and receive a
response afterwards, from the ChatBot’s API. This flow of information is illustrated in Figure 86.

Figure 90 – Mobile application Direct Line usage

In the previous Figure 90, the communication with the Direct Line channel, from the mobile
application, can be seen. Furthermore, an example interaction of the user with the PVA is
illustrated by Figure 91.

141

Figure 91 – PVA interaction

6.5 Use Cases

In this section, the uses cases will be presented, in a way that allows for a better understanding
on how the specified and designed requirements were implemented.

This is achieved through first describing the actions that must be performed by the user in order
to utilize the respective functionality, with prints of the mobile app illustrating the process. Then,
on a more detailed level, the implementation of the use case is described, with snippets of code
from both the mobile app and the server, as well as a comprehensive written explanation of
how everything ties together.

142

As a small side note, it was defined that the use cases involving “managing” can be divided into
three action categories: create, edit, delete. Due to time restrictions, not all actions can be
implemented for all use cases, which means that some should be prioritized. For proper
functioning, the only fundamental one is the create action, and as such, it will be the one
prioritized. The others, even though they were designed, won’t be addressed in this section for
the mentioned reasons.

6.5.1 US02: View training Plan/Program templates

From the Discover screen, depicted in Figure 92, the user can decide to view the template list
of Plans and Programs. When selecting the “See all” option, all the Plans/Programs are shown,
in their respective screen. At the same time, the user can also select a specific program directly
from the Discover screen’s interface.

Figure 92 – Discover screen

When the “See all” option is selected, the user is redirected to the respective Plan or Program
list screen. There, before rendering the screen, it is verified if the list is already loaded in the
system, because if it is not, the information needs to be fetched from the server.

143

Figure 93 – Program list validation

The said validation is depicted in Figure 93, where it is firstly verified if the Redux’s variable for
the list of Programs is empty. If it is not, then, the screen’s state variable is updated with that
information, which means that no connection with the server is required. On the other hand, if
the list is empty, before requesting the server, it is verified if Redux also has information
regarding the equipment and muscle groups. This information is required in the context of the
Programs screen for filtering purposes – one has to have information regarding muscle groups
to be able to filter Programs with it. Depending on the result of this verification, one of two
methods is called – onGetProgramsAndFilters and onGetPrograms. The difference between
them is that the latter only retrieves the list of Programs, and the first also returns the list of
filters (equipment and muscle groups).

144

Figure 94 – getPrograms action

Each of these methods dispatch a different action, and the one that fetches only the list of
programs from the server can be found in Figure 94, where the API’s GET method for the
Programs Controller is called, which returns the desired Program list. This method can be found
in Figure 95, where the GetPrograms method in the Program Repository class is invoked,
passing as arguments the ID of the current user, and their preferred language, in order to return
the list in the correct language.

Figure 95 – GetPrograms server method

After receiving the result, the Redux action sets the state of the store by dispatching another
action – setPrograms – which can then be accessed by the screen. While waiting, the user is
presented with a loading screen. The resultant screen can be found in the first two images from
Figure 78.

145

6.5.2 US03: Manage training Plan/Program

Managing a training Plan or Program can imply one of three actions – create, delete, or edit. As
described previously, the create action was the priority, and due to time restrictions, it was the
only one implemented.

To create a Plan or a Program, the process is relatively similar and by explaining the creation of
a Program, the Plan’s will also be addressed indirectly, which is the reason for combining the
two in a single use case.

In the Domain Model section, it was described how a Program is characterized by a name,
description, list of plans, and other variables such as its goals, level, etc. The Plan, on its turn, is
characterized by a list of workouts, a name, a description, and other variables too. Each
Workout has its name and the exercise list that composes it. And each exercise has the number
of sets that define it, each one with the reps, weight, intensity and rest time, depending on the
type of exercise. This can be seen in the next Figure 96.

Figure 96 – Create Program screen flow

When in the Create Program screen, the user is prompted to enter the required information
and to configure the list of Plans that make up the desired Program. To configure each Plan, the
user is redirected to the Create Plan screen, which is also the same one used for creating single
Plans, without any Program associated. The same happens when configuring each Workout, the
user is redirected to the Create Workout screen, which is also the same one used for creating
Single Workouts. There, the user selects the desired exercises, and for each one, it can configure
the number of sets, the reps, the intensity, rest time, etc.

To enter the Program’s goals and training types, and the Plan’s training types the user is
presented with an interface that allows them to enter the desired ones, as in Figure 97.

146

Figure 97 – Configure Program Details

After all the information is entered, from the Program’s name to each of the Exercise’s sets, a
JSON object, containing all this information, is built and sent as an argument to a function that
dispatches the createProgram action. This action calls the Programs Controller through a POST
request, sending the JSON object as argument.

Figure 98 – PostProgram method

The previously mentioned function is depicted in Figure 98. Firstly, the user settings are fetched
from the User Repository, which will be helpful when returning the list of programs in the

147

correct language. The foreach block of code is very important because it deals with the
existence of Supersets. These are very special and require a particular type of attention. Each
Plan and each Workout is iterated, and for everyone, the GetExercisesSuperSets method is
invoked, which it iterates their exercises in order to obtain a list of integers correspondent to
the IDs of the Supersets created in the app. Then, if the method in Figure 99 is executed, which
replaces the attribute SuperSetId of every exercise that is grouped to a superset, with the one
returned from the database.

Figure 99 – SetSupersetsInExercises method

Then, the model of the Program needs to be created to be sent to the CreateProgramAsync
function from the Program Repository which will add it to the database. This model is created
using a type adapter.

Figure 100 – Program model creator method

The PostProgram function, in the end, returns the complete list of Programs, to be received by
the mobile app, which will update its Redux’s store variable relative to the program list, so that
the information is consistent. This update is conducted though the dispatchment of an action
called setPrograms, already described previously.

As a final note, it is important to note that, by the way things are implemented and defined, a
Plan, in terms of database modeling, is always part of a Program. That way, there’s only one
method to save Plans and Programs. The distinction comes from the fact that a Program with
only one Plan is what constitutes, in terms of domain logic, a Plan.

6.5.3 US04: Manage Body Measurements

In the user’s profile, the user can access the Body Measurements screen, which when it’s being
opened by the first time, will present not the main screen but the Configure Measurements one.
As it is the user’s first time accessing their body measurements, they have yet to be configured.
This configuration refers to the selection of body measurements that the user desires to keep
track of. If they don’t want to log information regarding, for instance, their body fat, then there’s

148

no point in showing it at all. As such, the user selects the desired body measurements, from the
list presented, as shown in Figure 101, where the Height, Calves, Chest, and Shoulders are
already selected. In this screen, the user can also define a goal to associate with the respective
body measurement, illustrated by the “green flag” present in the Height and Chest
measurements.

Figure 101 – Configure Body Measurements

After selecting the desired measurements and saving, the method in Figure 102 is invoked. Here,
the function onPutSelectBodyMeasurements is called, receiving as argument the object
containing the selected body measurements objects. This function, on its turn, dispatches a
Redux action named putSelectedBodyMeasurements which also receives the list of body
measurements as argument. In this action, a PUT request is sent to the BodyMeasurements
Controller in the server.

Figure 102 – Save selected Body Measurements method

The method which receives the request is partially shown in Figure 103. The full code is not
present in the figure because it was too extensive. As such, it only represents the main flow
behind the actual method.

Regardless, firstly the current user is fetched from the respective repository, which then allows
to retrieve their body measurements information. The received by argument list of body
measurements is then iterated in a foreach loop and for each one it is verified if there is already
a measurement in the user’s list with the same type. There can only be one type of

149

measurements per user – if the user’s list already contains a Chest type measurement, it cannot
contain another. And so, if there is no object of the current measurement’s type then it is
created using the CreateBodyMeasurement function from the Body Measurements Repository,
which simply adds it to the database.

If, on the other hand, the current body measurement already exists in the user’s list, then it is
verified if they possess the same ID. This is to confirm that they represent the same object,
because if they don’t have the same ID, it means that in the mobile app, the user removed the
body measurement and then added it again, which resets its ID and loses all its logs as well.

Consequently, if they don’t possess the same ID, the one sent from the mobile app is added to
the database and the one that was in the user’s list is removed also from the database,
maintaining the consistency of only existing a maximum of one measurement type per user.
The used method to do so is named CreateAndDeleteBodyMeasurements and receives both
measurements as argument.

At the same time, if they do in fact possess the same ID, it means they are the same object, and
there’s no need to add nor delete a measurement to or from the database, respectively. All
there remains is to handle the measurement’s logs. If it’s the first “save” of body measurements
configurations, there are no logs yet, and so, the method ends here. This happens because the
method is used for configuring body measurements as well for adding logs to them, as it will be
described next.

Figure 103 – PutBodyMeasurements method

150

After the information is saved, the user is redirected to the main Body Measurements screen,
which will contain the list of the selected body measurements, with the defined goals and with
logs yet to be entered. The user can then select the option to add logs, which will redirect them
to the first screen in Figure 104. This screen contains solely the list of the user’s selected body
measurements, and for each one, the option to enter a value to be logged. Some measurements,
as the Calves one, are special because they can have not one, but two entry logs. In real world
context, they refer to bilateral body parts, for example the arms, which can have a measure for
the right and left side. After the user enters the desired information and saves it, the body
measurements list, with its respective logs, is sent as argument to the already described
putSelectedBodyMeasurements action.

As it was previously mentioned, the method of Figure 103 is used to configure and to add new
body measurements entries. And so, after saving the logs, the same method is invoked, and
when it reaches the part where it stopped before - after validating that the currently being
iterated body measurement and the one fetched from the user’s list are the same - the logs are
iterated, and for each one it is verified if they already exist. If they do, nothing happens, but if
they don’t, a new BodyMeasurementLog object is created with the correct information and
added to the respective log list, which will then be updated in the database through the
UpdateBodyMeasurement method.

Figure 104 – Manage Body Measurement Logs

After adding logs, the user is redirected to the main screen again, where it would show
something like the second screen in Figure 104, where a progress circle indicates how far from
the goal the last entry log of that specific body measurement is. If any body measurement is
selected, a dialog appears, showing the list of logs, with the respective values and associated
date. The date is added when creating the BodyMeasurementLog object in the server with the
current date and time (see Figure 103).

151

Finally, the user, if desired, can re-configure the list of body measurements by selecting the icon
on the right of the screen’s header (“white flag” icon), which will redirect them to the
configuration screen, with the existent configurations being shown.

6.5.4 US08: View training Logs

In the bottom tab, the user can quickly access their log history. This screen, present in Figure
105, contains the Agenda of the user, with an interactive horizontal top calendar, centered in
the current day and showing an entire week, and a bottom scrollable calendar, with the details
for each day presented. The top calendar can be expanded to visualize entire months’ worth of
days, as illustrated by the second image in Figure 105. The blue dots in each day represent a
Workout conducted on that specific day. For example, in the 13th day, the Volume Day workout
was conducted, which is part of the Hypertrophy Block Plan and the Off-Season Progressive
Overload Program. It’s also noticeable the volume of that workout, 1854kg, and the duration,
1h35m20s.

Figure 105 – Log screen

The information regarding workout logs is only imported to the app if the screen is requested
to be opened. This is to avoid overcharging the app with too much unnecessary information
when it is first starts. That way, the user doesn’t have to wait long before being able to use the
app.

Regardless, when the screen indeed is opened, a Redux action is dispatched, fetching from the
server the list of workout logs, using the method of Figure 106, which is in the Logs Controller.
There, the user’s logs are fetched from the Logs Repository, through the GetLogsByDay method,
which returns them by their date.

152

Figure 106 – GetUserLogsByDate method

The list is then received by the mobile app, which updates its Redux store variable by
dispatching a setLogs action. In the screen, this information is accessed and the objects to be
fed to the calendar library are built, as illustrated by Figure 107, and finally, the calendar is
shown to the user.

Figure 107 – Log objects’ builder

6.5.5 US10: View Statistics

It was desired to provide the user with statistics related to training progress, body
measurements, and others, but due to time restrictions it was only implemented statistics
referring to body measurements, more specifically bodyweight. These statistics would be all
very similar in terms of structure, so by fully implementing one of them the system is then ready
to support other types’ as well.

When accessing their Profile, the user can promptly view a graph representing the
evolution/progress of their bodyweight, as illustrated by Figure 108. If the “white arrow” on the
right side of the graph is pressed, the user is redirected to their body measurements screen, as
described in the US04: Manage Body Measurements section.

153

Figure 108 – Profile screen statistics

To construct such graph, when the user Profile is loaded, their body measurements should be
loaded too, if they weren’t already. In Figure 109, the method responsible for loading that
information is observable. This method first verifies if the body measurements list on the
Redux’s store is empty, and if it is, the onGetSelectedBodyMeasurements method is invoked,
which dispatches the getSelectedBodyMeasurements action, retrieving the list of body
measurements. If this list is empty, it means that the user has yet to configure their body
measurements, which will be important for when they try to open the Body Measurements
screen.

Figure 109 – componentDidMount method from Profile screen

The graph itself was built using the information regarding the logs of bodyweight (it can be of
other types), which have a value, the Y-axis, and a date, X-axis.

As a final note, it is important to notice that the used library to build the graph (react-native-
pure-chart) wasn’t ready to be used from the start and had to be deeply modified. A GitHub

154

issue post50 was created, explaining those changes. These include the addition of customizing
the Y-axis values to start and end near the bottom and top limits of the logs’ values. All the code
and written explanation can be found on the opened issue.

6.5.6 US15: Change Language

Multi-language is supported by the system, and as such, a user can decide to change their
preferred language. To do so, the Language Screen can be accessed through the Settings. After
that, the user is presented with the list of available languages to change to, and after selecting
one, it is asked to confirm the decision before saving the information, as illustrated by Figure
110. This is to prevent changing the entire app’s language by accident.

Figure 110 – Change system’s language

Additionally, it is worth noting that the user’s language not only affects the mobile app’s
language, but it also of all the retrieved information from the database – for instance, when
retrieving the list of programs, or the list of training types, if the user’s language is Portuguese,
then the information will be retrieved in Portuguese, as it was described in the Server
Application section.

Furthermore, after confirming to change the system’s language, the onChangedLanguage
function is invoked, which on its turn dispatches the updateLanguage Redux action, as depicted
in Figure 111.

Figure 111 – change language function to redux action

50 https://github.com/oksktank/react-native-pure-chart/issues/82

155

The action, then, calls the server through SetupsController and invokes the method shown in
Figure 112, where the new language is received as argument. The method, firstly, fetches the
current user’s object, edits it with the new language and saves the changes through the EditUser
method from the User Repository.

Figure 112 – PutUserLanguage method

After the action receiving the return answer from the server, it dispatches two new actions –
setLanguage, which sets the Redux’s store language variable to the new one, in order for other
screens to be able to correctly access it, and clearInformation, which clears the Redux’s
variables for the available equipment, programs, training types, and others. For instance, if the
available equipment is in English and the user just changed the language to Portuguese, the list
is inconsistent, and as such, it is cleared so that when it is reloaded it can be fetched with the
correct language.

6.5.7 US16: Change Unit System

Depending on the user’s preference and their localization, they might favor a certain unit
system over others. For example, someone in the USA, Burma or Liberia, the imperial system is
the adopted one, which according to the Central Intelligence Agency’s “The World FactBook”
[165], are the only countries in the world that still aren’t using the metric system.

Furthermore, if the user prefers the metric system, but the gym he trains only has pound plates,
they might want to change their preferred weight unit of measure to lbs. instead of kgs.

156

Figure 113 – Change unit system

In the previous Figure 113, it is observable the full action of changing between unit systems. By
default, the metric system is adopted, but just bey pressing the desired unit – weight or height
– the user can configure their preferences. Every time a user changes a unit, the method in
Figure 114 is invoked, calling a onSetUnit function that dispatches the Redux’s action
responsible for updating the user’s units in the server, calling it through the Setups Controller’s
updateUnits method, which receives the unit type and its new value as arguments and updates
the user’s object in the database with the new information.

Figure 114 – Unit system change handler

After receiving confirmation of the success of the operation, the Redux action dispatches a
storeUnits action which will update the Redux’s store variables and also the AsyncStorage, as
illustrated by Figure 115, where the setBothUnits action is dispatched, updating the height and
weight Redux’s variables, and invoking the setAsyncProperty for both the height and weight
units, updating also the AsyncStorage.

157

Figure 115 – storeUnits action

6.5.8 US17: Manage Available Equipment

Each user might have access to different equipment, and that should impact things like their
exercise selection and also recommendations – if a user doesn’t have access to a specific
specialized barbell, there shouldn’t be any exercises recommended to them that require that
piece of equipment, and the user should be able to filter the exercise list for ones that they are
able to perform.

To configure the available equipment list, the user can access the dedicated screen under the
Settings Screen. This is illustrated by Figure 116, where after loading the available equipment
list, the user is presented with a screen with the list divided by equipment types, such as Barbells,
Machines, Benches, and other types, to facilitate searching. It is also possible to view the
equipment details, such as an expanded view of its image, by clicking on it.

Figure 116 – Open Available Equipment screen

When the screen is opened, the snippet in Figure 117 is executed, which firstly verifies if the
Redux’s store variable for the available equipment list already contains information. If it does,
then the screen’s state is updated, and if not, the onGetEquipmentByCategory method is

158

invoked, which dispatches getEquipmentsByCategory action. This action makes a server call
through the EquipmentCategory Controller, which returns a list of EquipmentCategory. This
object is characterized by an attribute identifying the category and the list of equipment of that
category. That way, the information is returned organized by category, making it easier to
separate in the aforementioned tabs. If the result is successful, the screen’s state is also
updated.

Figure 117 – Get available equipment list snippet

After the information is loaded, the user can then decide to select some equipment to add to
their personal list. As illustrated by Figure 118, the user can search for equipment in the search
bar, which also shows the number of found results. After searching, they can select as many as
desired and by saving, the list is automatically updated, both in the app and the server.

Figure 118 – Filtering and Adding equipment

To accomplish this, every time an equipment is selected, it is added to a temporary list that if
the user decides to save it is sent as argument to the onSetUserAvailableEquipment method

159

(see Figure 119), which dispatches the setUserAvailableEquipments action. This action calls the
server through the already mentioned EquipmentCategory Controller, which saves the received
information in the database and returns if the action was successful or not. If it was, the Redux’s
variable for the list of equipment is updated (still in the action), and finally, in the method of
Figure 119, it clears the changed equipment list, given that all changes were already saved.

Figure 119 – Save available equipment method

Because the information is saved in the Redux store, if the user quits the screen and opens it
again, the information won’t be fetched from the server again, eliminating the need for the user
to wait again and have instant access to the information.

6.6 Non-Functional Requirements

The entire system was devised and implemented in order to answer the designed requirements,
both the functional and non-functional. Given that the first were already described, through
the use cases, the latter need to be addressed as well, which is what this section is dedicated
to – summing the information that was already presented in previous sections in a way that is
easier to understand how that would answer the designed non-functional requirements.

Next, the most important non-functional requirements will be discussed in the perspective of
how they were taken into account when implementing the system.

 Authentication: To secure the system, an authentication system was implemented in
the mobile application, so that only register users can access both the mobile app and
the server.

 Authenticity: Achieved by the server’s employment of authenticity techniques,
confirming that the received requests is cleared to access the desired functionalities.

 Confidentiality: To secure critical user data, an encryption system was implemented in
the server, so that the said information is encrypted before being stored in the database.

 Usability: The mobile application was designed having in mind the usability
requirements, by implementing an appealing, clear and intuitive interface for the user.

 Reliability: To make a reliable, error-tolerant system, the Redux technology was used,
so that the mobile app’s state information stays consistent and thus, error-free.

160

 Performance: By employing Redux and AsyncStorage in the mobile app, the system’s
performance improves, due to having less need of making server calls as frequently and
keep the user waiting.

 Portability: By developing the mobile app using Expo React Native, the system was
automatically available for Android and iOS.

 Testability: In order to test the devised system, an entire chapter, Evaluation, will be
dedicated to that.

 Maintainability: The system overall presents a great degree of maintainability,
expressed by the language support technique, which allows for an easy introduction of
new languages and also migrations which ease the process of modifying the data
schema.

 Localizability: The system was designed, both in the mobile app and the server, to
support multiple languages and making it easy to add other ones on demand.

6.7 Tests

This section is dedicated to the testing and validation of the developed software. It’s a very
important phase in the software development life cycle since it makes sure that the software
fulfills the established requirements.

6.7.1 Unit Tests

Unit testing is where small parts of an application, units, are tested, in order to reassure that
the functions work as expected. The goal here is to find unspotted implementation flaws inside
each individual unit.

Figure 120 – Unit Test for the GetSlope method

161

Figure 120 depicts a unit test done to one of the methods of the class responsible for calculating
the line of best fit. Specifically, the represented method calculates its slope.

In the Appendix I the rest of the unit tests are presented.

6.7.2 Integration Tests

With the purpose of extending the unit tests, integration tests were built. In these tests, two
already tested components are put together and tested as a whole. This helps to find bugs that
couldn’t be covered within unit tests (e.g. an instance of a class receiving a null instance of
another one).

Figure 121 depicts the integration test relative to the method responsible for fetching
information from the database relative to the list of Programs.

Figure 121 – Integration Test for the GetPrograms method

In the Appendix J the rest of the integration tests are presented.

162

6.7.3 System Tests

System tests are a core part of the testing phase because they constitute the process of testing
the whole integrated system to see if it meets the specified criteria. The system tests were done
by combining multiple use cases and/or functionalities, executing them, and verify if they meet
the criteria they were supposed to. Table 8 depicts the system test for a normal flow when
creating a new Program and then searching for its details.

Table 8 – System test nº1

Description The user creates a Program, opens the Programs list and views its
details.

Result Success.

In the Appendix K the rest of the system tests are presented.

6.7.4 Acceptance Tests

Acceptance tests are conducted to determine if the requirements of a specific functionality (use
case) are being met or not. Acceptance tests are black box system tests. Each acceptance test
represents some expected result from the system. The end user is the responsible for verifying
if a use case is working properly.

Like so, the acceptance tests were built with the goal to ensure every requirement, translated
in use cases, is met. Table 9 depicts the acceptance test made to the use case relative to viewing
the templates for Plans/Programs.

Table 9 – Acceptance Test for Use Case 2 (US02)

Tested Use Case US02: View training Plan/Program templates

Expected Result The correct Plan/Program template list is shown.

Result Success.

In the Appendix L the rest of the acceptance tests are presented.

163

7 Evaluation

The Evaluation chapter will be dedicated to the exposition of crucial information used to
evaluate the designed solution. First, the metrics that will be used to evaluate are presented
and described, then, the different hypotheses are formulated and bestowed, and finally, the
evaluation methodology is presented. After, the results and experimental analysis are
bestowed, which offer different analysis on the results.

7.1 Metrics

Metrics are very important because they “help capture a business goal into a quantitative target
[…] .” [86] This means that first, the business goal needs to be defined in order to capture
metrics to evaluate it. In order to do so, the system was divided into three different sections –
front end, back end and personal virtual assistant.

The back end is the part of the system responsible for handling the business logic and the most
important part to evaluate is the one that includes the recommender systems. There are two
different recommenders – intelligent and conditional. They are different in terms of
implementation, algorithms used, and also in the way they are evaluated. Since the Conditional
Recommender is based on traceable and understandable conditional decisions (if statements),
the way to best evaluate it would be by its execution time and inquiry of satisfaction relative to
the recommendations’ quality. As such, its metrics are:

 Execution time of recommendations.

 Satisfaction relative to the recommendation’s precision.

However, because the Intelligent Recommender is based on numerous and hard to trace
variables, its evaluation should be more objective, in terms of numbers, and not susceptible to
subjective opinions. Also, given that, as it was already disclosed, the context of the information
used in the said system does align with the project’s, it would be erroneous to try and get
satisfaction inquiries on things that are not contextualized. As such, the used metrics are:

164

 Individual technique’s recommendation error.

The aforementioned metric refers to the error that is associated with each one of the used
recommendation techniques.

On the other hand, the front end can be quantitively evaluated through the inquiry of
satisfaction from the interface’s intuitiveness. The front end, composed by the mobile
application, serves as a link between the back end and the user, presenting and receiving
information in, hopefully, the most intuitive and pleasant manner, and as such, it should be
evaluated on that. Thus, its metric is as follows:

 Satisfaction relative to the overall use of the application.

Lastly, the personal virtual assistance job is to aid and assist the users and so, it should be
quantitively evaluated through the inquiry of its helpfulness. Thus, its metric is the following:

 Satisfaction relative to the helpfulness of the information.

7.2 Hypotheses

Having all the different metrics formulated, it’s now required to produce the hypotheses that
will be used to evaluate them.

For simplification and organization purposes, all the satisfaction inquiries were coupled into a
single hypothesis and so, two were built. The first one is relative to the user’s satisfaction
(Conditional Recommender’s precision, overall use of the mobile app and helpfulness of the
PVA’s information), presented next.

H0: User satisfaction

H1: Satisfaction inquiries possess a satisfaction rate above or equal to 4

H2: Satisfaction inquiries do not possess a satisfaction rate above or equal to 4

The second hypothesis is relative to the execution time of the conditional recommender’s
algorithm, presented after.

H0: Execution time

H1: The system takes less than 2 seconds to compute recommendations

H2: The system does not take less than 2 seconds to compute recommendations

The defined threshold for the execution time metric is based on the assumption that that is the
maximum acceptable amount of time to wait for the type of request.

165

The third hypothesis refers to the error associated with the recommendations of each one of
the used techniques in the intelligent recommender system.

H0: Error

H1: Each technique has an error inferior than 1.5

H2: Each technique has an error that is not inferior than 1.5

The defined threshold for the error metric is based on the assumption that that is the maximum
acceptable value of a deviation error for a given recommender model.

7.3 Methodology

With the metrics and hypotheses already defined, it is now crucial to present the different
chosen evaluation methodologies.

Table 10 – Evaluation Methodologies

Metric Methodology

User satisfaction Inquiry of satisfaction and group testing

Execution time Unit testing

Error Unit testing

Table 10 contains the summarized information relative to the definition of methodologies for
each established metric. For the satisfaction-related metrics, it’s important to evaluate the
satisfaction of users on the different covered topics (recommendations’ precision, overall use
of the applications and helpfulness of the PVA’s information), so a satisfaction inquiry is
required. Plus, it is also important to evaluate the quality of the acquired knowledge and to do
so, the group testing methodology is chosen.

Moreover, the inquiry to evaluate user satisfaction will be conducted using, for each question,
the classification depicted in the following Table 11.

166

Table 11 – Satisfaction Inquiry Scale’s Description

Scale Description

1 Completely disagree

2 Disagree

3 Neutral

4 Agree

5 Completely agree

In addition, it is important to mention that, to acquire a useful and educated satisfaction inquiry
response, an expert in the fitness field will be used. Instead of asking different people to use
the Conditional Recommender system and then answer a satisfaction inquiry, an expert shall
be used, so that a more educated evaluation of the system can be conducted, with their
credentials as substantiation.

To do so, the expert’s own data will be used as input to the Conditional Recommender –
preferences and history. Then, a recommendation will be computed and offered to them. Both
the recommendation and the whole recommender process will be provided to the expert,
giving them enough data to answer the satisfaction inquiry.

Regarding the execution time metric, since it refers to duration of algorithm completion, the
used methodology will be unit tests. The tests will time the durations for several generated
recommendations and then take the average of them all. The resulting value will be used to
evaluate the execution time of the recommendation system, as desired.

Finally, the error metric will be evaluated through unit testing, where the different techniques’
error is to be calculated, using the MAE and RMSE which are two of the most common metrics
used to measure accuracy. Given that there’s no consensus on which one is the best, both were
employed, and their results will be presented individually.

The RMSE was already discussed in earlier sections, and the MAE [181] as the name says, Mean
Absolute Error, it is the average of all the absolute errors. The absolute error is simply the
difference between the actual value and the predicted one. As such, the formula for this metric
is as follows [181].

𝑚𝑎𝑒 =
∑ 𝑎𝑏𝑠(𝑦 − 𝜆(𝑥))

𝑛

(14)

Also, it is important to mention that, to test the techniques, only 90% of the input data will be
used, and the remaining 10% will be dedicated only for testing purposes. This is because it is
not recommended to use data which was used for training the model to also test it.

167

7.4 Results Analysis

Following the establishment of the metrics, hypotheses, and methodologies, in this section, the
acquired results will be analyzed. The section is divided by the analyzed entities: Mobile
Application, Personal Virtual Assistant and Conditional and Intelligent Recommender.

7.4.1 Mobile Application & Personal Virtual Assistant

As predicted, a satisfaction inquiry for the Mobile Application and the Personal Virtual Assistant
was needed, and, for simplicity terms, both were joined in a single one. That way, the people
who used the Mobile Application also used the PVA and then evaluated both at the same time.

The devised inquiry contained 12 questions for the Mobile Application and 4 for the Personal
Virtual Assistant, all to be answered with the classification scale on Table 11. The inquiry was
given to 50 different people, with only 20 received answers, 40% of initial population and it can
be found in APPENDIX B.

In the following Table 12 the acquired data for the Mobile Application satisfaction inquiry is
summarized, in the form of response percentage for each question, helping to visualize the
distribution of responses.

Table 12 – Response percentage for each question from the Mobile Application’s inquiry

 1 2 3 4 5 Average

Q1 0% 0% 0% 25% 75% 4.75

Q2 0% 0% 0% 40% 60% 4.6

Q3 0% 0% 10% 55% 35% 4.25

Q4 0% 0% 15% 65% 20% 4.05

Q5 0% 0% 0% 15% 85% 4.85

Q6 0% 0% 5% 55% 40% 4.35

Q7 0% 0% 10% 75% 15% 4.05

Q8 0% 0% 0% 40% 60% 4.6

Q9 0% 0% 10% 50% 40% 4.3

Q10 0% 0% 0% 45% 55% 4.55

Q11 0% 0% 5% 65% 30% 4.25

Q12 0% 0% 0% 45% 55% 4.55

168

Over 95% of the distribution of responses is between 4/5 and 5/5, which is very positive. Also,
the worse classification for any response was a 3/5, with the worse occurrence being of 15%, in
question 4. Plus, the average classification for all the questions is approximately 4.4/5, which
passes the defined hypothesis of being higher or equal than 4/5. This is a clear indication that
the application was very well received by the testing users.

The question with the most percentage of perfect classification is the fifth one which is relative
to the registry and login process speed, with 85% of people rating it as a 5/5, with the remaining
15% rating with a 4/5, having an average rating of 4.85/5, followed by question number one,
relative to the application’s overall design and interface, with 75% perfect ratings and the
remainder 25% being a 4/5 and an average rating of 4.75/5.

The question with the most amount of 3 out of 5 ratings was question number 4, with 15% of
answers, followed by questions 3, 7 and 9, with 10% of answers. It’s not very relevant to analyze
and scrutinize these answers for being the worse from the entire inquiry because they’re not
badly rated whatsoever, given that they still average 4/5, for the questions 4 and 7, and 4.3/5,
for questions 3 and 9, which is obviously still very good.

The remainder questions sit in the middle of the pack in terms of average ratings, having an
average rating between 4.3/5 and 4.6/5, which is still excellent.

Relative to the Personal Virtual Assistant’s satisfaction inquiry, the next Table 13 contains the
summarization of the acquired data, in the form of response percentage for each question.

Table 13 - Response percentage for each question from the PVA’s inquiry

 1 2 3 4 5 Average

Q1 0% 0% 0% 20% 80% 4.8

Q2 0% 0% 10% 55% 35% 4.25

Q3 0% 0% 0% 80% 20% 4.2

Q4 0% 0% 0% 5% 95% 4.95

From the results of the PVA’s satisfaction inquiry, it can be said that 97.5% of the responses are
between 4/5 and 5/5 with the average rating for all questions being approximately 4.4/5, which
is the same as the Mobile Application’s, which passes its defined hypothesis of being above or
equal to 4/5. The only response with a rating of 3/5 is the second one, still having a 4.25/5
average rating.

The questions with the most perfect classifications and also the highest average rating are
questions 4 and 1, with 4.95/5 and 4.8/5 average rating, respectively. The fourth question,
which has an almost perfect rating, is the one where users were questioned if the PVA was a
great asset to the Mobile Application, which is an excellent feedback to receive from end-users.

169

Even the lowest average rating questions still have an approximate 4.2/5 rating, which is still
very good. Regardless, since these refer to the PVA’s ability to understand and interpret what
was said, it wouldn’t hurt to try and improve the prediction system so that the answers would
be even more adequate.

7.4.2 Conditional Recommender

As it was established, the Conditional Recommender is to be evaluated based on two metrics –
its execution time, and a satisfaction inquiry from an expert on the field.

Firstly, for the measurement and evaluation of the Conditional Recommender’s execution time,
the entire algorithm was executed whilst recording the time it took to finish. Using the
StopWatch [182] class, from Microsoft, the timer was started before the execution of the
algorithm, stopped at the end and then the result was written to a csv file. In order to eliminate
anomalies and normalize the data, this was tested a total of 30 times.

To test the algorithm and simulate it with an enormous amount of data, 250 thousand training
Workouts samples were fed to the algorithm simulating the database’s Workouts, joined with
200 training Workouts simulating the user’s history.

As a small recap, the Conditional Recommender algorithm receives as input the list of Workouts
that can be recommended to the user, which is the list of Workouts existent in the database,
the user’s history, which is the list of the user’s past Workouts, and the user’s preferences such
as their experience level, preferred training types, and other preferences whose scale is
negligible comparing with the potential magnitude that the database workouts and the user’s
history have in the execution time.

Even though the volume of input data was very extensive, the algorithms simplicity allowed for
it to be swift, with an average execution time of about 870 milliseconds, which is less than 90%
of a second. Needlessly to say that it is incredibly fast to compute a response, even with extreme
conditions in terms of data size, which is good news for the Performance aspect of the Non-
Functional Requirements.

In terms of the defined hypothesis of having an execution time lower than 2 seconds, it can be
said that the algorithm was a success, given that the real value was approximately 57% lower
than the defined threshold.

As a final note, regarding the evaluation of the execution time, the acquired data in the form of
a csv file can be found in the APPENDIX E.

Secondly, for the evaluation of the Conditional Recommender through a satisfaction inquiry of
a field expert, a formal request was made to the said expert, seeking for their personal
information to be fed into the system as an official test to its quality.

As such, the information regarding the expert’s recent training history and personal preferences
(i.e. experience level, training types, goals, etc.) was sent as input to the algorithm. Then, the
whole recommender process, already described in its respective section, was documented and
thoroughly described in a formal document, following the modus operandi of the algorithm up
until the very last selection. In other words, the whole process of filtering the initial list of

170

Workouts to find a final adequate recommendation was detailed, specifically detailing what is
being done, how is it being done and what is the produced answer of each phase.

The produced document was then presented to the expert and can be found int APPENDIX C,
who then reviewed it and based on not only the final recommendation but also on the whole
process, answered a satisfaction inquiry, which can be found in APPENDIX D.

This inquiry’s results are exhibited in the following Table 14, where it can be immediately
observed that one question was poorly rated. This question refers to the efficiency of the
evaluation of the volume and intensity and it is considered to be the number priority when
discussing improvements in the respective system. Moreover, another question that had a
rather low classification was the last one, referent to the application of the filtering variables.
Because the adequacy of the said variables is confirmed by the classification with the maximum
rating, in the fifth question, it can be assumed that the issue lies in the application of the already
obtained variables and not so much on their definition.

All other questions were classified with a 4/5 rating, which results in a 3.7/5 average rating. This
final rating means that the defined hypothesis was not fulfilled, since it was required to possess
a rating higher than 4/5. This is a clear indication that there’s an evident flaw in the devised
system that should be addressed.

Table 14 – Expert’s satisfaction inquiry results

Question Classification [1-5]

Q1: The recommendations are great. 4

Q2: The recommendations are adjusted to my profile. 4

Q3: The volume and intensity evaluation is efficient. 2

Q4: The volume and intensity prediction is efficient. 4

Q5: The variables used for filtering are adequate. 5

Q6: The filtering of the variables is efficient. 3

Having presented all the results analysis referent to the Conditional Recommender, in a
following section, named Experimental Analysis, the exploration of the algorithm’s flaws, its
intricacies and improvement suggestions will take place.

171

7.4.3 Intelligent Recommender

The final analysis has to do with the most complex and difficult to evaluate component – the
Intelligent Recommender. Its analysis, as it was already defined, will focus on the error of the
produced recommendations, for each one of the used techniques, using two different error
metrics – MAE and RMSE.

Firstly, the to be tested techniques were established, given that there are three major
techniques implemented: Matrix Factorization (MF), User-Based Collaborative Filtering (UB)
and Item-Based Collaborative Filtering (IB).

Even though only three techniques were implemented, in order to add some customization,
some variations of them were also devised. Firstly, a combination of all these techniques, using
a Hybrid approach was taken. Then, in terms of the UB, 4 variations were also added, one for
each of the Comparers. As such, the techniques used for testing were as depicted in Table 15.

Table 15 – Error Analyzed Techniques

ID Technique Composition

1 MF

2 UB with Pearson’s Correlation (PC)

3 UB with Cosine Similarity (CS)

4 UB with Co-rated Cosine Similarity (CR-CS)

5 UB with Root Mean Squared Error (RMSE)

6 IB

7 MF + UB with CR-CS

8 MF + IB

9 MF + UB with CR-CS + IB

10 UB with CR-CS + IB

With all the to be used techniques defined, a recommender model was created for each one,
using the Train method, which was already described. Afterwards, the model’s error was
calculated using a specific class, RecommenderMeasures, containing two methods, for
computing the MAE and RMSE errors of a given recommender model. These methods receive
as argument the recommender model, and the data used for testing (10% of the original
dataset), then they produce recommendations using the model’s getRating method, and
compare the result with the actual rating value (from the original Ratings Matrix). Each of the
methods, for MAE and RMSE will then produce an error associated with the built model.

172

These errors were calculated a total of 30 times for each technique and the average of the
results for each one can be found in the next Table 16, where the average and the difference
between the two error metrics can also be found. The full results can be found in APPENDIX F.

Table 16 – Recommender technique’s error

ID MAE RMSE Difference Average

1 0.77 1.01 0.24 0.89

2 3.10 3.39 0.29 3.24

3 2.04 2.33 0.29 2.18

4 1.80 2.15 0.35 1.98

5 3.16 3.37 0.21 3.26

6 0.91 1.11 0.20 1.01

7 1.56 1.78 0.23 1.67

8 0.78 0.98 0.20 0.88

9 1.45 1.61 0.16 1.53

10 1.79 1.95 0.16 1.87

Before delving the technique’s intricacies, it is important to notice that the RMSE is always
larger than the MAE, and the difference between the two is relatively speaking very consistent,
with an average of 0.23. This difference can be explained by a paper by T. Chai and R. R. Draxler
[183] which states that by definition, the RMSE can never be as small as the MAE, due to the
RMSE allowing for a complete reconstruction of the error set, given enough data, and the MAE
only accurately recreating 80% of it. This might be why most cost functions used in machine
learning systems avoid using MAE and rather use RMSE or variations. [184] Also, RMSE tends to
disproportionately penalize large errors since the error is then squared, which directly affects
the produced error. On the other hand, MAE does not have any bias towards extreme values,
which makes it more prone to being lower in value. [184]

Regardless, by quick reading the previous table, it is evident that the lowest average error is
from technique 1 and 8 which are the MF and MF + IB techniques. This suggests that using MF
as a standalone technique is the most beneficial course of action, only being surpassed by
combining it with IB, even though the errors are pretty much identical statically speaking.

The two worse performing techniques are the technique 2 and 5 which unironically are two
variations of the UB technique, using the Pearson’s Correlation and RMSE comparers,
respectively. This might suggest that these are not good comparing techniques. There are other
two variations, using the Cosine Similarity and the Co-rated Cosine Similarity, technique 3 and

173

4 respectively. The difference between these two and the two best ones is of over 55%, which
indicates that using the Cosine or Co-rated Cosine is far superior. Regardless, comparing it with
the best performing techniques there’s still a 236% difference, which is huge and also suggests
that using UB, even with the best comparers is very inferior to using MF or even MF with IB.

Moreover, given that the UB with the Co-rated Cosine Similarity is the variation of the UB with
the lowest error, it was the one used in all other hybrid approaches.

Another technique which appeared to possess a small error, only 14% bigger than of the
smallest ones, is the technique 6, IB, which makes sense, given that when combined with MF it
also produces an even smaller error. It is curious that even though the IB technique’s error is
14% larger than the MF’s, when combining the two, the MF’s error is maintained, which might
suggest that the two work well together, for the given dataset.

The remainder techniques, 7,9 and 10, sit in the middle of the pack in terms of their error. These
are all hybrid variations containing the worse performing technique, UB, which might be the
reason why they sit in the middle of the list - because they’re coupled with the best performing
techniques, they increase their otherwise low error.

From the analyzed data, for the given dataset and context, the following conclusions can be
made:

 The MF technique is the best performing one, individually speaking.

 The IB technique performs very well, taking into account that it is not an intelligent
technique, when faced against an intelligent and superior one, MF.

 Coupling MF with IB maintains the low MF error and might be productive.

 UB is a low performing technique and unlike IB, coupling with other better performing
techniques will just increase their error.

As a final statement, it is important to mention that only three techniques passed the devised
hypothesis of the error being lower than 1.5, which are the techniques number 1, 6 and 8, which
are MF, IB and a combination of both, respectively. Two more techniques, 7 and 9, were very
close to passing the hypothesis but fortunately they did not, given that they were just weaker
variations of the ones that passed, as it was already explained.

174

7.5 Experimental Analysis

Even though a result analysis was already conducted, there are still some investigation that can
be conducted, in order to find different deviations of results by gradually changing certain
variables and observe how the object being analyzed behaves under those circumstances,
which constitutes an experimental analysis. This analysis can be viewed as investigation for
future work.

For example, it would be very interesting to find how the Intelligent Recommender’s error
would change by raising variables such as the number of iterations or number of used features,
so that the system can be better understood and improved.

Moreover, regarding the Conditional Recommender, since the error is not a metric being
evaluated and analyzed, one can investigate through a different route, such as trying to gather
the comprehensive feedback of the expert as a way of understanding more concisely where the
algorithm needs improvement and where it is needs not.

Consequently, the next sub-sections will be dedicated to the exploring of these topics, that can
be summed as such:

 Intelligent Recommender:

o Error variation with the increase of latent features for the Matrix Factorization
technique.

o Error variation with the increase of iterations (epochs) for the Matrix
Factorization technique.

o Error variation with the increase of closest neighbors for the Pearson’s
Correlation in the User-Based Collaborative Filtering technique.

 Conditional Recommender:

o Expert’s feedback on the algorithms overall flow.

o Expert’s feedback on the individual filtering phases.

7.5.1 Intelligent Recommender

As it was explained in previous sections, the Matrix Factorization technique uses latent features
to find underlying attributes that are expressed through user tastes and item’s preferability. As
such, the number of features is a debatable and honestly subjective topic of discussion. It
depends not only on the data’s context, but also on its magnitude. If there’s too little data,
having a certain number of features that are above the number of necessary ones to fit the
model perfectly, might cause the it to overfit, which is not desirable at all.

To find if a model is overfit, one must measure the training error – error associated with the
training phase, as the one presented in the Result Analysis section – and compare it with the

175

measured testing error – error associated with the testing phase, where the model is already
trained. Then, four different possibilities can occur:

1. Training and testing error are high.

2. Training error is low, testing error is high.

3. Training error is low, testing error is slightly higher.

4. Training error is high, testing error is low.

From an intuitive perspective, these possibilities reflect on the model’s fit. If the training error
is high, it means that the model wasn’t well trained, and therefore, if the testing error, for the
same model, is also high – possibility 1 – it makes sense to infer that the model is underfit. If,
on the other hand, the testing error is low – possibility 4 – the model is impossible to evaluate,
because there’s no reason for an undertrained model to make good predictions (low error).

Moreover, if the training error is low, the model can either be well fit or overfit. If, for this model
(low training error), the testing error is high, it means that the model is overfit – possibility 2.
This is why it is important to measure both the training and testing error, so that one is not
misguided to think the model is well trained just because it had a low error during training, as
that can be due to it being overfit to the data, which will then result in a high error with
untrained, and therefore unfit, data, since it is not fit to generalize and make good predictions.
What is considered to be a good fit model is when besides having a low training error, the
testing error is also low, though usually a bit higher than the training one – possibility 3. That
intuitively tells us that after producing a low training error, the model’s validity can be verified
by having an also low testing error which means that the said training error was low enough to
make the model well fit, but not too low to overfit it.

With all these assumptions in mind, the model was trained using an increasingly higher number
of latent features and the training and testing error was measured, to find what the most
optimal range of features would be for the given dataset. The used error metric was the RMSE.
The results can be summed up in the following Table 17 and can be viewed in their entirety in
APPENDIX G.

176

Table 17 – Training and Testing error variation with the number of latent features

Features Training Error Testing Error Difference

1 0.76 0.95 0.19

5 0.70 0.98 0.28

10 0.63 0.99 0.36

15 0.58 1.00 0.42

20 0.54 1.01 0.47

30 0.48 1.03 0.55

40 0.43 1.05 0.61

As observable in the previous table, the predicted conclusion is easily verifiable: with the
increase of latent features comes an increase of the difference between the training and testing
errors, justified by the lowering of the training error and increasing of the testing error, which
unequivocally confirms the overfitting of the model, which can also be observed in Figure 122.
The lowest difference occurs with only one feature, where the testing error is slightly higher
than the training error, which might suggest one of two things: either one feature is the most
optimal number for the given dataset, or the dataset is so small, relatively speaking, that it’s
not possible to create a good accurate model. This impossibility is due to the fact that the model
cannot have more than one feature without running into overfitting issues, and one feature is
not nearly enough to make a good fit model.

Figure 122 – Graph of the training and testing variation with the number of latent features

177

To further investigate how the model behaves and how to manipulate the error in a different
way rather than changing the number of features, as defined previously, the variation of the
training error will be analyzed through measuring it whilst increasing the number of iterations,
or epochs, that the model will go through before finish training. This investigation can be found
in APPENDIX H.

Figure 123 – Graph of the training error variation with the number of epochs

By observing Figure 123 it becomes evident that the graph follows an exponential-like curvature,
rapidly decreasing in the first iterations and then varying less and less the more epochs pass
through. This is because it is in the first iterations where the model suffers the most extreme
changes. These changes refer to the model’s learning process, as described previously, where
the model tries to approximate the most optimal value for a given cost function. In this case,
the model uses iterations as a “stop term”, and suchlike the latent features, if there are too
many iterations, the model might suffer from overfitting. As such, it should stop after the most
aggressive changes were made, so that it has a low error and is well-fit, but before the error
reaches a plateau, to prevent overfit.

In the Figure 123’s graph, it is evident that stopping the algorithm at 50 epochs would not be
appropriate because the model will still significantly decrease its error. At 200 epochs the error
reaches a value that is close to its lowest and at 300 it finally plateaus, so there’s no more reason
to keep iterating and forcing the model to learn and risk overfitting it. Specifically, any value
between 200-300 epochs would be debatably optimal for this particular case.

Finally, another important variation to be tested refers to the number of neighbors used in the
User-Based Collaborative Filtering technique, and more specifically, in the used neighbor-
comparing methodology which is the Person’s Correlation. The reason for using this comparer
and not any other was completely random. The idea is not to evaluate the technique in itself,
but the changes that varying the number of neighbors produces. If there’s the need to further
investigate for each one, this exploration serves as guideline.

Either way, this was tested by measuring the MAE and RMSE error associated with a UB-CF with
Person’s Correlation model, with an increasing number of neighbors, and then analyzing the
subjacent impact.

178

Table 18 - Error variation with the number of neighbors

Neighbors MAE RMSE

1 3.50 3.66

5 3.35 3.59

10 3.21 3.46

15 3.15 3.42

20 3.10 3.39

30 2.84 3.24

40 2.78 3.16

In the previous Table 18, the MAE and RMSE error for each number of neighbors is depicted.
Here, it is evident that with the increase of neighbors, the error diminishes, which makes sense,
given that searching for a broader number of users will increase the odds of finding more
adequate ones.

The graph from Figure 124 helps to illustrate the decrease in the error with the increase of
neighbors. It is also evident that the RMSE error is always considerably higher than the MAE’s.
The reason why was already covered before, but a more curious finding has to do with the fact
that, with the increase of neighbors, the difference between the two errors also increases
slightly. This variance could be overlooked, but it does seem to be significant, and the reason
for it may be explained because, as stated before, the RMSE is more susceptible to large errors,
and with an increasingly number of neighbors, even though the likeliness of finding a more
adequate near neighbor increases, the probability of finding bigger deviations from the
acquired neighbors also increases.

179

Figure 124 – Graph of the error variation with the number of neighbors

Even though the overall conclusion is that the error continuously decreases with the number
of neighbors, the unpredicted finding relative to the increase in the difference between the
two types of errors was captivating and rather insightful.

7.5.2 Conditional Recommender

Having presented the satisfaction inquiry results in the previous Results Analysis section, there’s
still crucial and noteworthy information acquired from the interaction with the expert. A more
in-depth feedback was received, and this section will be dedicated to its exposition with the
purpose of attaining new knowledge so that improvements on the Conditional Recommender
can be pursued in the most pivotal areas, as future work.

As defined, the acquired feedback can be divided in two sections: overall flow of the algorithm
and individual critique for each filtering phase.

The overall flow of the algorithm, in the expert’s opinion, makes perfect sense and it is a good
approach to find adequate workouts to recommend. The fact that the recommendations are
based on existing workouts adds credibility to the recommendations, since there’s no need to
invent and create workouts from scratch, which could lead to more debatable and complex
decisions regarding the recommendations.

The stage where the algorithm really shines is in the prediction of the intensity and volume
values. Here, by analyzing previous instances, patterns are found and identified so that an
accurate educated guess on the predicted value for the intensity/volume can be made. Even
though some patterns cannot be captured using the line of best fit, it is most definitely
applicable to most cases where there aren’t extreme variations in an almost random fashion.

As such, the overall flow can be considered a success and part of the reason why the algorithm
works rather accurately.

180

In terms of critiquing individual sections of the algorithm, the one that demanded the most
attention and analysis was the volume and intensity evaluation phase. In this phase, the volume
and intensity of each training workout is evaluated and given a number correspondent to the
number of repetitions and its intensity value (represented by a number on a scale of 0 to 3),
respectively.

This phase, in the expert’s opinion was the one that had the most deficiencies, having an
imprecise and vague concept of evaluating volume and even more so on the intensity aspect.
Specifically, the volume can be evaluated through the number of repetitions for a given training
session, but a workout with more repetitions than other might not necessarily imply it has
higher volume, because there are other ways of measuring volume, suchlike the duration. This
becomes especially imprecise when dealing with both repetition and duration-based exercises
in the same session, which makes it harder to level the two a find a way to compare them.

In terms of the intensity evaluation flaws, similar to the volume’s, there are many ways to
evaluate intensity such as RPE and percentage, as it was used in the algorithm and covered
before, but also through the lifted weight, heart rate, and other metrics. This imposes a
difficulty when dealing with more than one metric, for the same reason covered in the volume
– because it becomes hard to compare different measures, especially if they have a high
appearance variance. This predicament is notably troublesome when dealing with intensity
because there are more possible metrics and also because they’re particularly arduous to make
comparisons between.

Another issue in this volume and intensity evaluation phase is the fact that they, the volume
and intensity, are being generalized for the entire workout which can lead to increased
imprecision, because the intensity and volume of that session is basically being averaged by all
the exercises and that may not be representative. As such, a suggested approach would be to
evaluate each exercise individually and make assumptions on the weight it should have on the
session’s overall value, based on aspects such as its difficulty, and also its duration, number of
sets and reps, and intensity’s ratio in the entire workout – an exercise that takes up most of the
workout to complete should have a bigger weight on its evaluation.

Even though the previously described filtering phase was the one with the most flaws, there
were also other small aspects in different ones that are noteworthy and should be documented
for the sake of future work improvements.

Firstly, it was described that when a given filter returns no elements, for example when trying
to find the untrained muscle groups and all the muscle groups were already trained, the
algorithm simply resets the specific filter. In the given example’s case, all the muscle groups
from the user’s preferences would be considered for filtering. This is a decent approach, but
not an exceptional one.

From debating with the expert, it became clear that when encountering a case like the one
described, the best course of action should not be to simply reset the preference, but to
thoroughly evaluate past occurrences. As an example, if the user preferences indicate they want
to train chest and arms and both of these muscle groups are included at least once in their past
workouts, the proportion for each one should then be examined. Even though both were
trained, if the chest appears in 90% of the workouts and arms in only 25%, then, a training
workout containing arms might be of the user’s best interest to be recommended.

181

Obviously, this is a very unsophisticated description of a possible improved procedure, but it
just goes to show that the algorithm can be greatly improved by implementing more refined
and individual approaches to each one of its stages.

182

183

8 Conclusion

The main goal procured from the elaboration of this dissertation was to develop a personalized
monitoring and planning fitness system, in conjunction with a fully capable recommender,
adapted to the individual users’ profile and needs. The key aspect with the envisioned system
lies in the individuality that it must offer, allowing users to manage, monitor and acquire data.

Due to its extent and level of complexity, the project’s load was divided by two authors, with
clearly defined and separate responsibilities, having of course, various elements in common.
This dissertation focuses specifically in the training programming aspect of the system and all
its subtleties such as modeling, creating and managing training programs.

After introducing the problem, goals, motivation and used methodology, the value analysis was
produced, thoroughly contextualizing the project in its scope, presenting the model responsible
for identifying opportunities and selecting new ideas, and exhibiting a value proposition. This
helped to determine and analyze the value that the project might offer, which was concluded
to be very high, due to the pursuing of a system that treats users individually and makes
adequate, intelligent recommendations depending on numerous factors which are specific to
each one.

In order to find what was already being offered in the market, and what solutions there were
to implement a system capable of making recommendations, the applications with the most
resemblance to this project, and the most common recommendation methodologies were
selected and thoroughly analyzed. It was then concluded that even the most popular
applications in the market have lacking areas that can be fulfilled by the current project, and
that there’s a market hole for what this dissertation is trying to achieve, in terms of
individualization and intelligent recommendation. Moreover, the pros and cons of each
recommendation technique were laid out, so that later an informed decision can be made
regarding which ones to use for the given context.

During the design process, the requirements were engineered, so that the system could hold
the desired and envisioned functionalities, through the definition of specific use cases and the
establishment of a set of non-functional requirements that should be respected in order to
maintain a high level of inherent quality. Moreover, the architecture to be used was

184

investigated, by designing different ones that responded better in certain situations and worse
in others. These were weighed and a final decision of an architecture fully capable of sustaining
the engineered requirements was made. The chosen alternative is characterized by having a
medium, or middleman, between any components and the database and recommender system,
encapsulating the responsibilities to a single component, reducing the risk of inconsistency. For
the context of the project, it was a far from robust alternative, but one that was fully adapted
to everything set forth.

After designing the desired requirements and defining the most adequate architecture, the
specific functionalities were implemented. After implementing the use cases, the intelligent
recommender was also developed. It was during this implementation that it was decided that
a second recommender, a non-intelligent one, was necessary. This need emerged because it
was discovered that it would be impossible, in the timeframe of this dissertation, to acquire and
test the intelligent recommender with contextually true information.

In other words, due to the impossibility of obtaining a large enough dataset to feed the
intelligent recommender to make it viable, as it was required, with information regarding the
scope of this project, a new dataset had to be selected, so that the recommender’s algorithm
integrity could still be tested on the absence of the ability to test it with real applicable data.
Regardless, the selected dataset was exquisite and widely used for testing terms across multiple
fields of investigation.

It was then decided that a second recommender system, that could apply the project’s data,
had to be devised. This recommender was based on conditional statements, that found the
most adequate recommendation by process of elimination, filtering unsuitable
recommendations based on a plethora of variables, individual to each user.

After implementing, the devised system was also tested using unit, integration, system and
acceptance tests.

The system was then subjected to a comprehensive evaluation, defining metrics and
hypotheses and applying them using predefined methodologies. The results were then analyzed
and discussed. In the end, an extra experimental analysis was conducted, discussing aspects
that were not covered in the previous one.

A fitness expert was used in the evaluation of the Conditional Recommender, so that its quality
could be validated and made credible.

8.1 Accomplished Goals

From the defined goals, it can be said the main one, relative to the implementation of a working
system, capable of personalized monitoring and planning allied with a smart recommender
system was achieved. Regardless, there were still some lacking areas, all of which can be
observed in the next Table 19.

185

Table 19 – Accomplished Goals

Goal Degree of Accomplishment

Investigation and analysis of different
recommendation techniques.

Fully Accomplished.

Investigation and analysis of different fitness
mobile applications.

Fully Accomplished.

Develop a mobile application. Fully Accomplished.

Develop a web application. Not Accomplished.

Implement Program-related monitoring and
management.

Fully Accomplished.

Integrate a Personal Trainer or Coach in the
system.

Not Accomplished.

Develop an Intelligent Recommender. Accomplished to some extent.

Develop a Personal Virtual Assistant Fully Accomplished.

Elaborate a study evidencing the utility of the
developed system followed by the analysis of
its results.

Fully Accomplished.

Fulfill the software development cycle. Fully Accomplished.

In the previous table, the proposed objectives and their degree of accomplishment are
presented. It is important to mention that the only not accomplished goals are the ones referent
to the web application and the integration of the Personal Trainer/Coach in the system. These
were not considered to be of high priority and due to time restrictions, were left behind. The
fact that the web application was not implemented, is the reason why the back office planned
during design was also not implemented.

Another important note refers to the development of the Intelligent Recommender. As it was
described through the document, due to time restrictions it was impossible to build an
intelligent system with applicable data, so data with not contextually relevant had to be used,
which is the reason for it to not be considered fully accomplished. Regardless, to compensate,
another recommender was implemented, as described previously also.

In sum, it can be concluded that the main goals were implemented with a high degree of success.

In terms of specific functionalities, the next Table 20 illustrates the degree of accomplishment
of the individual designed use cases, ordered by their priority.

186

Table 20 – Accomplished Use Cases

Use Case Priority Degree of Accomplishment

US02: View training Plan/Program templates High Fully Accomplished.

US03: Manage training Plan/Program High Fully Accomplished.

US04: Manage Body Measurements High Fully Accomplished.

US06: Recommend training Plan High Not Accomplished.

US07: Recommend Workout High Fully Accomplished.

US08: View training Logs High Fully Accomplished.

US10: View Statistics High Fully Accomplished.

US13: Interact with PVA High Fully Accomplished.

US15: Change Language High Fully Accomplished.

US01: View current training Plan/Program Medium Not Accomplished.

US11: Monitor progress Medium Not Accomplished.

US16: Change Unit System Medium Fully Accomplished.

US17: Manage Available Equipment Medium Fully Accomplished.

PT01: Monitor trainees Medium Not Accomplished.

US05: Add favorite training Plan/Program Low Not Accomplished.

US09: Share training Plan/Program Low Not Accomplished.

US12: Interact with PT/Coach Low Not Accomplished.

US14: Check social feed Low Not Accomplished.

NT01: Monitor clients Low Not Accomplished.

AD01: Add predefined training Plan/Program Low Not Accomplished.

AD02: Manage scientific articles Low Not Accomplished.

187

As it was presented from the start, not all use cases possessed the same priority, and due to
time restrictions, some would have to be prioritized. In the previous table, the implemented
and not implemented use cases are depicted, and there it can be seen that the only high priority
use case not implemented refers to the recommendation of training Plans. This is because
recommendations were only possible by using the Conditional Recommender, and that is only
fit to deal with training Workouts.

The use cases with medium priority which were not implemented refer to the viewing of the
current training Plan/Program, monitor progress, and monitor trainees. From their priority
group, these can be considered the lowest ranked of them, since they’re not required to have
a working system, they’re complementary.

Also, none of the low priority ones were implemented, which makes sense, because if there
was no time to implement all of the high nor medium priority use cases, it shouldn’t also be
enough for the low ones. Regardless, these do not constitute important and critical use cases
whatsoever, just good-to-have ones.

8.2 Limitations and Future Work

The current project had, as any, its flaws. Whether due to time restrictions or limitation on the
used technologies, it’s no lie that the project could be improved in some areas.

Regardless of the fact that the main goal set was accomplished with a relatively high degree of
success, there are some limitations that even though do not constitute major flaws in the
system, could be amended. These limitations are expressed through future work in the
following Table 21, separated by their respective component.

188

Table 21 – Project’s Future Work

Component Future Work

Mobile APP & API Implementation of the remainder use cases.

 Improve the Mobile App’s interface, speed and overall
functioning based on the received feedback.

Personal Virtual
Assistant

 Add new intents.

 Improve the intent prediction system.

Intelligent
Recommender System

 Find or build an adequate, applicable dataset.

 Investigate and apply Cross-validation.

 Investigate and apply Regularizations.

 Investigate new recommendation techniques.

 Investigate new comparing techniques.

 Investigate the “latent features issue”

Conditional
Recommender System

 Add additional inputs.

 Improve the model based on the expert’s feedback:

o Improve the volume/intensity prediction
algorithm.

o Improve filtering technique.

 Explain recommendation’s reasoning.

The project’s limitations are expressed in the form of future work, but in all truthfulness, the
only real limitation of the project is the fact that the Intelligent Recommender didn’t use a
dataset adapted to the its context. The other points illustrated in the previous table can be just
viewed as future work and not so much as limiting factors suffered by the project.

Regardless, some future work points that deserve to be addressed are the ones presented from
the Intelligent Recommender System standpoint. There, apart from the dataset issue, it can be
found future work regarding Cross-validation and Regularization. These were already properly
described and justified in the respective sections, but briefly they refer to improvements that
the intelligent algorithm can apply in order to improve its recommendations and error
prevention. Also, new recommendation and comparing techniques can be also investigated as
a way to add variability and improvement on the overall predicting system.

189

Moreover, an issue that struck the project when evaluating the intelligent system is relative to
the fact that it was found that using just one latent feature was the most adequate solution for
producing recommendations when using the Matrix Factorization technique. Since across
literature it is pretty common to use multiple, even dozens latent features, it should be
investigated the reason for this particularity.

Another noteworthy future work point refers to the addition of further inputs to the Conditional
Recommender System’s algorithm. These can be helpful when trying to find adequate
recommendations suchlike providing predetermined filtering options which reduces the
number of required filters and adapts better to the user’s taste. For instance, the user should
be able to input what type of Workout they want, specifically, which will be a filtering stage in
itself, limiting the results in their favor. If the user wants a Workout for Legs, it shouldn’t matter
which muscle groups they still have untrained, so that filtering stage is bypassed and only Leg
Workouts will be recommended, which is obviously more in line with what the user desires.

Finally, still in the Conditional Recommender System component, explaining to the user the
reasoning behind the choosing of the offered recommendations can be a relevant piece of
information to provide, which will strengthen the user’s confidence in the algorithm. Saying
that a given Workout was recommended because the user hasn’t been focusing on specific
characteristics such as muscle groups or training types that they defined as desired and that the
recommended Workout offers is a very meaningful information.

8.3 Final Appreciation

It was understood from the start that this dissertation would be a challenge. Given that it was
extensive enough to support two authors to completely build it, it had to be perfect to work as
intended. The fact that a Mobile Application, using never used technology had to be
implemented from the ground was also very challenging, since the it took a toll on the planning
to learn the new technology, and the same goes for the Intelligent Recommender System.
Machine Learning and AI were topics only until then read on articles and big company’s
headlines. Building and exploring a true intelligent system was a remarkable feat and one that
personally opened my eyes to what was truly possible with “simple” algorithms.

From a professional standpoint, dealing with schedules, milestones and collaboration with
another author was very rewarding, since it allowed for the development of crucial skills to be
used in the future such as time, people, and resource management.

In a more personal level, the dissertation exceeded my expectations, both in the end product
as well as in the benefits that will forever translate into my professional career such as
teamwork and also general adaptiveness towards the achievement of common goals outside
my comfort zone.

To summarize, this project global appreciation is very positive and regardless of its limitations,
I personally believe it was very successful and there’s a great sentiment of satisfaction in the
produced result, both in the full documentation aspect of it and also in the more tangible parts
such as the devised Mobile Application and built Recommender Systems.

190

191

Bibliography
[1] AGAP, "Missão," [Online]. Available: http://www.portugalactivo.pt/missao. [Accessed

15 2 2019].

[2] Meios e Publicidade, "É este o retrato do sector de ginásios em Portugal," 6 7 2016.
[Online]. Available: http://www.meiosepublicidade.pt/2016/06/e-este-o-retrato-do-
sector-de-ginasios-em-portugal/. [Accessed 15 2 2019].

[3] A. S. Rojas, "Sport ScienceReview," I’m super-setting my life! An ethnographic
comparative analysis of the growth of the gym market, pp. 276-299, 20 1 2017.

[4] Deloitte, "European Health & Fitness MarketRepor t 2018," 2018.

[5] "Why is following a workout program so Important?," 1 4 2016. [Online]. Available:
https://beethewellness.com/2016/04/01/why-is-following-a-workout-program-so-
impotant/. [Accessed 15 2 2019].

[6] C. Cardoso, "Want better results at the gym? A structured program could be the
answer," [Online]. Available: https://www.copemanhealthcare.com/resources/want-
better-results-gym-structured-program-answer. [Accessed 15 2 2019].

[7] Realbuzz, " How To Monitor Your Fitness Progress At The Gym," [Online]. Available:
https://www.realbuzz.com/articles-interests/fitness/article/how-to-monitor-your-
fitness-progress-at-the-gym/. [Accessed 15 2 2019].

[8] J. Thomas, "Proven Methods for Prospects Follow-Up in your Gym," 19 9 2016.
[Online]. Available: https://www.linkedin.com/pulse/proven-methods-prospects-
follow-up-your-gym-jim-thomas. [Accessed 15 2 2019].

[9] Business Dictionary, "value analysis," [Online]. Available:
http://www.businessdictionary.com/definition/value-analysis.html. [Accessed 17 2
2019].

[10] Oxford Dictionaries, "Definition of fitness in English," [Online]. Available:
https://en.oxforddictionaries.com/definition/fitness. [Accessed 11 2 2019].

[11] R. L. Duyff, Academy of Nutrition and Dietetics Complete Food and Nutrition Guide
(5th ed.), Boston: houghton mifflin harcourt, 2017.

[12] L. Chaddock, M. B. Neider, M. W. Voss, J. G. Gaspar and A. F. Kramer, "Do Athletes
Excel at Everyday Tasks?," in Medicine & Science in Sports & Exercise, 2011, pp. 1920-
1926.

192

[13] centers for disease control and prevention, "About Physical Activity," [Online].
Available: https://www.cdc.gov/physicalactivity/about-physical-activity/index.html.
[Accessed 11 2 2019].

[14] U.S. Department of Health and Human Services, Healthy People 2010: Understanding
and Improving Health (2nd ed.), Washington: U.S. Government Printing Office, 2000.

[15] Transportation Research Board, Institute of Medicine of the National Academies, Does
the Built Environment Influence Physical Activity?, Washington, D.C., 2005.

[16] IHRSA , "The 2017 IHRSA Global Report," 2017. [Online]. Available:
https://www.ihrsa.org/publications/the-2017-ihrsa-global-report/. [Accessed 6 2
2019].

[17] IHRSA , "The 2018 IHRSA Global Report," 2018. [Online]. Available:
https://www.ihrsa.org/publications/the-2018-ihrsa-global-report/. [Accessed 6 2
2019].

[18] Allegra, "UK Fitness Club Market – Strategic Analysis, Sample Extract, April 2018,"
2018.

[19] IBISWorld, "Gym, Health & Fitness Clubs Industry in China," 11 2018. [Online].
Available: https://www.ibisworld.com/industry-trends/international/china-market-
research-reports/culture-sports-entertainment/gym-health-fitness-clubs.html.
[Accessed 11 2 2019].

[20] IBISWorld, "Gym, Health & Fitness Clubs Industry in the US," 12 2018. [Online].
Available: https://www.ibisworld.com/industry-trends/market-research-reports/arts-
entertainment-recreation/gym-health-fitness-clubs.html. [Accessed 11 2 2019].

[21] MarketingToChina, "Fitness industry in China generate 10.3% of annual growth," 17 10
2018. [Online]. Available: https://www.marketingtochina.com/gym-health-fitness-
china/. [Accessed 11 2 2019].

[22] AGAP, "Barómetro2017," 2018.

[23] B. Midgley, "The Six Reasons The Fitness Industry Is Booming," 26 9 2018. [Online].
Available: https://www.forbes.com/sites/benmidgley/2018/09/26/the-six-reasons-
the-fitness-industry-is-booming/#e6b3f1a506db. [Accessed 6 2 2019].

[24] L. Kesiraju and T. Vogels, "Health & Fitness App Users Are Going the Distance with
Record-High Engagement," 7 9 2017. [Online]. Available:
https://flurrymobile.tumblr.com/post/165079311062/health-fitness-app-users-are-
going-the-distance. [Accessed 12 2 2019].

193

[25] Kantar Worlpanel, "Nearly 16% of US consumers now own wearables," 25 1 2017.
[Online]. Available: https://www.kantarworldpanel.com/global/News/Nearly-16-of-
US-Consumers-and-9-in-EU4-Now-Own-Wearables. [Accessed 12 2 2019].

[26] J. Boly, "How To Use The RPE Scale For Strength Training (Plus What The Research
Suggests)," 28 12 2018. [Online]. Available: https://barbend.com/how-to-use-rpe-
scale-strength-training/. [Accessed 15 2 2019].

[27] J. Boly, "3 Ways to Find Your 1-Rep Max (Beginner, Intermediate, and Advanced)," 10
1 2017. [Online]. Available: https://barbend.com/3-ways-to-find-your-1-rep-max-
beginner-intermediate-and-advanced/. [Accessed 15 2 2019].

[28] Journal of Sports Science & Medice, "Journal of Sports Science & Medice," Reliability
of the One-Repetition Maximum Test Based on Muscle Group and Gender, pp. 221-
225, 1 6 2012.

[29] P. A. Koen, "Fuzzy Front End: Effective Methods, Tools, and Techniques," [Online].

[30] D. Pereira, "O que é o Business Model Canvas," 8 7 2016. [Online]. Available:
https://analistamodelosdenegocios.com.br/o-que-e-o-business-model-canvas/.
[Accessed 11 2 2019].

[31] C. C. Aggarwal, Recommender Systems, NY, USA: Springer, 2016.

[32] F. Ricci, L. Rokach and B. Shapira, Introduction to Recommender SystemsHandbook,
Springer, 2011.

[33] B. Schafer, D. Frankowski, J. Herlocker and S. Shilad , Collaborative Filtering
Recommender Systems, Berlin: Springer, 2007.

[34] D. Jannach, M. Zanker, A. Felfernig and G. Friedrich, Recommender Systems: An
Introduction, Cambridge, 2011.

[35] S. Luo, "Introduction to Recommender System," 10 12 2018. [Online]. Available:
https://towardsdatascience.com/intro-to-recommender-system-collaborative-
filtering-64a238194a26. [Accessed 12 9 2019].

[36] C. C. Aggarwal, "An Introduction to Recommender Systems," Recommender Systems:
The Textbook, pp. 1-28, 2016.

[37] 王斌, "Comparison of User-Based and Item-Based Collaborative Filtering," 9 3 2018.
[Online]. Available: https://medium.com/@wwwbbb8510/comparison-of-user-based-
and-item-based-collaborative-filtering-f58a1c8a3f1d. [Accessed 19 9 2019].

194

[38] M. Singh, "Scalability and sparsity issues in recommender datasets: a survey," in
Knowledge and Information Systems, 2018.

[39] G. Adomavicius , R. Sankaranarayanan , S. Sen and A. Tuzhilin , Incorporating
Contextual Information in Recommender Systems Using a Multidimensional
Approach.

[40] G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of
RecommenderSystems: A Survey of the State-of-the-Art andPossible Extensions," IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERIN, vol. 17, no. 6, pp. 734-749,
2005.

[41] P. Melville, R. J. Mooney and R. Nagarajan, "Content-Boosted Collaborative Filtering
for Improved Recommendations," Proceedings of the Eighteenth National Conference
on Artificial Intelligence(AAAI-2002), pp. 187-192, 7 2002.

[42] D. Billsus and M. J. Pazzani, Learning Collaborative Information Filters, Irvine.

[43] G. H. Golub and C. Reinsch, "Singular Value Decomposition and Least Squares
Solutions," in Linear Algebra, pp. 134-151.

[44] J. Brownlee, "A Gentle Introduction fo Matrix Factorization for Machine Learning," 9 8
2019. [Online]. Available: https://machinelearningmastery.com/introduction-to-
matrix-decompositions-for-machine-learning/. [Accessed 13 9 2019].

[45] N. Hug, "Understanding matrix factorization for recommendation (part 2) - the model
behind SVD," 15 6 2017. [Online]. Available: http://nicolas-
hug.com/blog/matrix_facto_2. [Accessed 13 9 2019].

[46] B. Schafer and D. Frankowski, Collaborative Filtering Recommender Systems, 2007.

[47] S. Xiaoyuan, A Survey of Collaborative Filtering Techniques, 2009.

[48] S. Deerwester, G. Furnas, S. Dumais, Landauer and Thomas, Indexing By Latent
Semantic Analysis, 1990.

[49] M. Claypool, T. Mir, A. Gokhale and P. Murnikov, Combining Content-Based and
Collaborative Filters in an Online Newspaper, 1999.

[50] S. Lam and J. Riedl, Shilling Recommender Systems for Fun and Profit, Minneapolis.

[51] B. Mobasher, R. Burke, R. Bhaumik and C. Williams,
EffectiveAttackModelsforShillingItem-BasedCollaborativeFilteringSystems, Chicago.

195

[52] M. O’Mahony, N. Hurley, N. Kushmerick and G. Silvestre, Collaborative
recommendation:A robustness analysis, Ireland.

[53] R. M. Bell and Y. Koren, Improved Neighborhood-based Collaborative Filtering.

[54] S. Khusro, Z. Ali and I. Ullah, Recommender Systems: Issues, Challenges, and Research
Opportunities, Singapore: Springer, 2016.

[55] H. Polat and W. Du , Privacy-Preserving Collaborative Filtering, 2005.

[56] M. Heupel, M. Bourimi, L. Fischer and S. Scerri, Ontology-Enabled Access Control and
Privacy Recommendations, Springer, 2014.

[57] C. Shahabi and Y.-S. Chen, Web Information Personalization: Challenges and
Approaches, Los Angeles: Springer, 2003.

[58] Oxford dictionaries, "powerlifting," [Online]. Available:
https://en.oxforddictionaries.com/definition/powerlifting. [Accessed 1 2 2019].

[59] Oxford dictionaries, "Olympic Weightlifting," [Online]. Available:
https://en.oxforddictionaries.com/definition/olympic_weightlifting. [Accessed 1 2
2019].

[60] M. Emery, "Men's Bodybuilding: A Short History," 1 2003. [Online]. Available:
http://www.bodybuildingreviews.net/Bodybuilding.html. [Accessed 1 2 2019].

[61] "Scientific Principles of Strength Training," 25 1 2018. [Online]. Available:
https://www.jtsstrength.com/scientific-principles-strength-training/. [Accessed 6 9
2019].

[62] "Arnold Schwarzenegger's 8 Best Training Principles," 7 8 2018. [Online]. Available:
https://www.bodybuilding.com/content/arnold-schwarzenegger-8-best-training-
principles.html. [Accessed 6 9 2019].

[63] Oxford dictionaries, "Athletic," [Online]. Available:
https://en.oxforddictionaries.com/definition/athletic. [Accessed 1 2 2019].

[64] AmazinGym, "AmazinGym," [Online]. Available: https://amazingym.pt/. [Accessed 1 2
2019].

[65] AmazinGym, "AmazinGym," [Online]. Available:
https://play.google.com/store/apps/details?id=digifit.android.virtuagym.pro.amazing
ymmatosinhos&hl=en_US. [Accessed 1 2 2019].

196

[66] AmazinGym, "AmazinGym," [Online]. Available:
https://itunes.apple.com/us/app/amazingym/id1283090572?mt=8. [Accessed 1 2
2019].

[67] Tripla Forma, "Tripla Forma," [Online]. Available: http://www.triplaforma.com/.
[Accessed 1 2 2019].

[68] Tripla Forma, "Tripla Forma," [Online]. Available:
https://play.google.com/store/apps/details?id=com.onvirtualgym.tripla_Forma&hl=e
n_US. [Accessed 1 2 2019].

[69] tanita, "How BIA works," [Online]. Available:
https://www.tanita.com/en/howbiaworks/. [Accessed 1 2 2019].

[70] Intensity, "Intensity," 2019. [Online]. Available: https://www.intensityapp.com/.
[Accessed 1 2 2019].

[71] Intensity, "Intensity - Powerlifting Workout Tracker & Gym Log," [Online]. Available:
https://play.google.com/store/apps/details?id=com.taylorhamling.intensity&hl=en_U
S. [Accessed 1 2 2019].

[72] Intensity, "Intensity - Workout Journal," [Online]. Available:
https://itunes.apple.com/us/app/intensity-workout-journal/id1047407323. [Accessed
1 2 2019].

[73] Strong, "Strong," 2018. [Online]. Available: https://www.strong.app/. [Accessed 1 2
2019].

[74] Strong, "Strong: Exercise Gym Log, 5x5," [Online]. Available:
https://play.google.com/store/apps/details?id=io.strongapp.strong&referrer=utm_so
urce%3Dwebsite. [Accessed 1 2 2019].

[75] Strong, "Strong Workout Tracker Gym Log," [Online]. Available:
https://itunes.apple.com/app/apple-store/id464254577?mt=8. [Accessed 1 2 2019].

[76] Nike, "Nike Training Club App," [Online]. Available:
https://www.nike.com/us/en_us/c/nike-plus/training-app. [Accessed 1 2 2019].

[77] Nike, "Nike Training Club - Workouts & Fitness Guidance," [Online]. Available:
https://play.google.com/store/apps/details?id=com.nike.ntc&hl=en_US. [Accessed 1 2
2019].

[78] Nike, "Nike Training Club," [Online]. Available: https://itunes.apple.com/app/nike+-
training-club-workouts/id301521403. [Accessed 1 2 2019].

197

[79] Freeletics, "Freeletics," [Online]. Available: https://www.freeletics.com/en/. [Accessed
1 2 2019].

[80] Freeletics, "Freeletics: Personal Fitness Coach & Body Workouts," [Online]. Available:
https://play.google.com/store/apps/details?id=com.freeletics.lite&hl=en_US.
[Accessed 1 2 2019].

[81] Freeletics, " Freeletics: Workout & Fitness," [Online]. Available:
https://itunes.apple.com/app/freeletics-functional-high/id654810212?ls=1&mt=8.
[Accessed 1 2 2019].

[82] Freeletics, "Freeletics Coach Explained," [Online]. Available:
https://help.freeletics.com/hc/en-us/articles/360001805259-Freeletics-Coach-
Explained. [Accessed 1 2 2019].

[83] Jefit, "Jefit," [Online]. Available: https://www.jefit.com/. [Accessed 1 2 2019].

[84] Jefit, "JEFIT Workout Tracker, Weight Lifting, Gym Log App," [Online]. Available:
https://play.google.com/store/apps/details?id=je.fit&hl=en_US. [Accessed 1 2 2019].

[85] Jefit, "JEFIT Workout Planner Gym Log," [Online]. Available:
https://itunes.apple.com/app/apple-store/id449810000?mt=8. [Accessed 1 2 2019].

[86] Jefit, "Jefit Elite," [Online]. Available: https://www.jefit.com/elite/. [Accessed 1 2
2019].

[87] Fitbod, "Fitbod," [Online]. Available: https://www.fitbod.me/. [Accessed 1 2 2019].

[88] Business Dictionary, "stakeholder," [Online]. Available:
http://www.businessdictionary.com/definition/stakeholder.html. [Accessed 13 2
2019].

[89] Agile Modeling, "UML 2 Use Case Diagrams: An Agile Introduction," [Online].
Available: http://agilemodeling.com/artifacts/useCaseDiagram.htm. [Accessed 12 2
2019].

[90] U. Eriksson, "Functional vs Non Functional Requirements," 5 4 2012. [Online].
Available: https://reqtest.com/requirements-blog/functional-vs-non-functional-
requirements/. [Accessed 13 2 2019].

[91] IBM, "What, no supplementary specification?," 1 7 2004. [Online]. Available:
https://www.ibm.com/developerworks/rational/library/3975.html. [Accessed 13 2
2019].

198

[92] P. Brown, "What is the Domain Model in Domain Driven Design?," 12 9 2014. [Online].
Available: https://culttt.com/2014/11/12/domain-model-domain-driven-design/.
[Accessed 10 9 2019].

[93] ISEP, "Documentação Arquitetural," 2016. [Online]. [Accessed 13 2 2019].

[94] ISEP, "Software Architecture Document," 2016. [Online]. [Accessed 13 2 2019].

[95] Technopedia, "Back Office Application," [Online]. Available:
https://www.techopedia.com/definition/1406/back-office-application. [Accessed 13 2
2019].

[96] Techopedia, "Front Office Application," [Online]. Available:
https://www.techopedia.com/definition/28460/front-office-application. [Accessed 13
2 2019].

[97] BBVA, "8 advantages of APIs for developers," [Online]. Available:
https://bbvaopen4u.com/en/actualidad/8-advantages-apis-developers. [Accessed 13
2 2019].

[98] C. Richardson, "Pattern: Microservice Architecture," [Online]. Available:
https://microservices.io/patterns/microservices.html. [Accessed 13 2 2019].

[99] Tutorials Point, "UML - Deployment Diagrams," [Online]. Available:
https://www.tutorialspoint.com/uml/uml_deployment_diagram.htm. [Accessed 12 9
2019].

[100] P. Kruchten, The “4+1” View Model of Software Architecture, 1995.

[101] M. Rouse, "intelligent system," [Online]. Available:
https://whatis.techtarget.com/definition/intelligent-system. [Accessed 19 9 2019].

[102] S. Clayton, "Building a Recommedantion Engine in C#," 22 3 2018. [Online]. Available:
https://www.codeproject.com/Articles/1232150/Building-a-Recommendation-Engine-
in-Csharp. [Accessed 23 9 2019].

[103] F. M. Harper and J. A. Konstan, "The MovieLens Datasets: History and Context," p. 20,
2015.

[104] A. Williams, "How to cross-validate PCA, clustering, and matrix decomposition
models," 26 2 2018. [Online]. Available:
http://alexhwilliams.info/itsneuronalblog/2018/02/26/crossval/. [Accessed 22 9
2019].

199

[105] S. M, "Why and how to Cross Validate a Model?," 13 9 2018. [Online]. Available:
https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-
d6424b45261f. [Accessed 22 9 2019].

[106] M. D. Ekstrand and J. A. Konstan, "Matrix Factorization and Advanced Techniques,"
[Online]. Available: https://www.coursera.org/learn/matrix-factorization. [Accessed
22 9 2019].

[107] P. Pandey, "Understanding the Mathematics behind Gradient Descent.," 18 3 2019.
[Online]. Available: https://towardsdatascience.com/understanding-the-mathematics-
behind-gradient-descent-dde5dc9be06e. [Accessed 21 9 2019].

[108] W. Kirwin, "Implicit Recommender Systems: Biased Matrix Factorization¶," 11 1 2016.
[Online]. Available: http://activisiongamescience.github.io/2016/01/11/Implicit-
Recommender-Systems-Biased-Matrix-Factorization/. [Accessed 21 9 2019].

[109] A. A. Yeung, "Matrix Factorization: A Simple Tutorial and Implementation in Python,"
23 4 2017. [Online]. Available: http://www.albertauyeung.com/post/python-matrix-
factorization/. [Accessed 21 9 2019].

[110] C. McDonald, "Machine learning fundamentals (I): Cost functions and gradient
descent," 27 9 2017. [Online]. Available: https://towardsdatascience.com/machine-
learning-fundamentals-via-linear-regression-41a5d11f5220. [Accessed 21 9 2019].

[111] T. Roughgarden and G. Valiant, CS168: The Modern Algorithmic ToolboxLecture #6:
Stochastic Gradient Descent andRegularization, 2016.

[112] I. Dabbura, "Gradient Descent Algorithm and Its Variants," 21 12 2017. [Online].
Available: https://towardsdatascience.com/gradient-descent-algorithm-and-its-
variants-10f652806a3. [Accessed 22 9 2019].

[113] A. Al-Masri, "What Are Overfitting and Underfitting in Machine Learning?," 21 6 2019.
[Online]. Available: https://towardsdatascience.com/what-are-overfitting-and-
underfitting-in-machine-learning-a96b30864690. [Accessed 22 9 2019].

[114] V. Chekka, "Regularization in Machine Learning: Connect the dots," 30 8 2018.
[Online]. Available: https://towardsdatascience.com/regularization-in-machine-
learning-connecting-the-dots-c6e030bfaddd. [Accessed 22 9 2019].

[115] Kent State University Libraries, "PSS Tutorials: Pearson Correlation," 12 8 2019.
[Online]. Available: https://libguides.library.kent.edu/SPSS/PearsonCorr. [Accessed 22
9 2019].

200

[116] A. Gunawardana and G. Shani, "A Survey of Accuracy Evaluation Metrics of
Recommendation Tasks," Journal of Machine Learning Research, no. 10, pp. 2935-
2962, 2009.

[117] A. Agarwal and M. Chauhan, "Similarity Measuresused in Recommender Systems: A
Study," International Journal of EngineeringTechnology Science and Research, vol. 4,
no. 6, p. 2394–3386, 2017.

[118] J. Wesner, "MAE and RMSE — Which Metric is Better?," 23 3 2016. [Online]. Available:
https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-
better-e60ac3bde13d. [Accessed 23 9 2019].

[119] A. Bari, M. Chaouchi and T. Jung, Predictive Analytics For Dummies, 2014.

[120] B. Sarwar, G. Karypis, G. Cybenko and J. Tsibouklis, "Item-based collaborative filtering
recommendation algorithms," 1 2001.

[121] R. Burke, "Hybrid Recommender Systems: Survey and Experiments," User Modeling
and User-Adapted Interaction, 11 2002.

[122] R. Sunil, "7 Regression Techniques you should know!," 14 8 2015. [Online]. Available:
https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/.
[Accessed 16 9 2019].

[123] E. Gamma, Padrões de Projeto: Soluções reutilizáveis de software orientado a
objetos., Bookman, 2000.

[124] Purple Math, "Straight-Line Equations: Slope-Intercept Form," [Online]. Available:
https://www.purplemath.com/modules/strtlneq.htm. [Accessed 17 9 2019].

[125] B. Eisenman, "Chapter 1. What Is React Native?," [Online]. Available:
https://www.oreilly.com/library/view/learning-react-
native/9781491929049/ch01.html. [Accessed 24 9 2019].

[126] M. Newton, "Understanding Expo for React Native," [Online]. Available:
https://hackernoon.com/understanding-expo-for-react-native-7bf23054bbcd.
[Accessed 24 9 2019].

[127] Visual Studio Code, "Getting Started," [Online]. Available:
https://code.visualstudio.com/docs. [Accessed 24 9 2019].

[128] Redux, "Getting Started with Redux," [Online]. Available:
https://redux.js.org/introduction/getting-started. [Accessed 24 9 2019].

201

[129] Log Rocket, "Why use Redux? Reasons with clear examples," 31 8 2018. [Online].
Available: https://blog.logrocket.com/why-use-redux-reasons-with-clear-examples-
d21bffd5835/. [Accessed 24 9 2019].

[130] Redux, "Actions," [Online]. Available: https://redux.js.org/basics/actions. [Accessed 24
9 2019].

[131] Redux, "Store," [Online]. Available: https://redux.js.org/api/store. [Accessed 24 9
2019].

[132] Redux, "Reducers," [Online]. Available: https://redux.js.org/basics/reducers.
[Accessed 24 9 2019].

[133] React Redux, "connect()," [Online]. Available: https://react-redux.js.org/api/connect.
[Accessed 26 9 2019].

[134] React Native, "AsyncStorage," [Online]. Available: https://facebook.github.io/react-
native/docs/asyncstorage. [Accessed 24 9 2019].

[135] React Native, "Navigating Between Screens," [Online]. Available:
https://facebook.github.io/react-native/docs/navigation. [Accessed 25 9 2019].

[136] React Native, "Tab navigation," [Online]. Available:
https://reactnavigation.org/docs/en/tab-based-navigation.html. [Accessed 25 9
2019].

[137] React Navigation, "Drawer navigation," [Online]. Available:
https://reactnavigation.org/docs/en/drawer-based-navigation.html. [Accessed 25 9
2019].

[138] React Native, "createStackNavigator," [Online]. Available:
https://reactnavigation.org/docs/en/stack-navigator.html. [Accessed 25 9 201].

[139] React Native, "createSwitchNavigator," [Online]. Available:
https://reactnavigation.org/docs/en/switch-navigator.html. [Accessed 25 9 2019].

[140] WhatIs, "internationalization (I18N)," [Online]. Available:
https://whatis.techtarget.com/definition/internationalization-I18N. [Accessed 24 9
2019].

[141] J. Arvidsson, "react-native-animatable," [Online]. Available:
https://github.com/oblador/react-native-animatable. [Accessed 25 9 2019].

202

[142] J. Lauritzen, "react-native-app-intro-slider," [Online]. Available:
https://github.com/Jacse/react-native-app-intro-slider. [Accessed 25 9 2019].

[143] T. Mecinskas, "react-native-calendars," [Online]. Available:
https://github.com/wix/react-native-calendars. [Accessed 25 9 2019].

[144] J. Arvidsson, "react-native-collapsible," [Online]. Available:
https://github.com/oblador/react-native-collapsible. [Accessed 25 9 2019].

[145] M. Mazzarolo, "react-native-dialog," [Online]. Available:
https://github.com/mmazzarolo/react-native-dialog. [Accessed 25 9 2019].

[146] React Native Elements , "react-native-elements," [Online]. Available:
https://github.com/react-native-training/react-native-elements. [Accessed 25 9 2019].

[147] F. Safi, "react-native-gifted-chat," [Online]. Available:
https://github.com/FaridSafi/react-native-gifted-chat. [Accessed 25 9 2019].

[148] N. Baugh, "react-native-loading-spinner-overlay," [Online]. Available:
https://github.com/joinspontaneous/react-native-loading-spinner-overlay. [Accessed
25 9 2019].

[149] M. Milyutin, "react-native-material-menu," [Online]. Available:
https://github.com/mxck/react-native-material-menu. [Accessed 25 9 2019].

[150] A. Nazarov, "react-native-material-textfield," [Online]. Available:
https://github.com/n4kz/react-native-material-textfield. [Accessed 25 9 2019].

[151] M. Mazzarolo, "react-native-modal," [Online]. Available: https://github.com/react-
native-community/react-native-modal. [Accessed 25 9 2019].

[152] D. Urbaniak, "react-native-paper," [Online]. Available:
https://github.com/callstack/react-native-paper. [Accessed 25 9 2019].

[153] A. Vitanov, "react-native-parallax-scroll-view," [Online]. Available:
https://github.com/i6mi6/react-native-parallax-scroll-view. [Accessed 25 9 2019].

[154] zooble, "react-native-picker," [Online]. Available: https://github.com/beefe/react-
native-picker. [Accessed 25 9 2019].

[155] LawnStarter, "react-native-picker," [Online]. Available:
https://github.com/lawnstarter/react-native-picker-select. [Accessed 25 9 2019].

203

[156] J. Arvidsson, "react-native-progress," [Online]. Available:
https://github.com/oblador/react-native-progress. [Accessed 25 9 2019].

[157] H. lee, "react-native-pure-chart," [Online]. Available:
https://github.com/oksktank/react-native-pure-chart. [Accessed 25 9 2019].

[158] R. Caferati, "react-native-really-awesome-button," [Online]. Available:
https://github.com/rcaferati/react-native-really-awesome-button. [Accessed 25 9
2019].

[159] Agiletech, "react-native-search-box," [Online]. Available: https://github.com/react-
native-vietnam/react-native-search-box. [Accessed 25 9 2019].

[160] Ren, "react-native-sectioned-multi-select," [Online]. Available:
https://github.com/renrizzolo/react-native-sectioned-multi-select. [Accessed 25 9
2019].

[161] B. Delmaire, "react-native-snap-carousel," [Online]. Available:
https://github.com/archriss/react-native-snap-carousel. [Accessed 25 9 2019].

[162] C. Wood, "react-native-sortable-listview," [Online]. Available:
https://github.com/deanmcpherson/react-native-sortable-listview. [Accessed 25 9
2019].

[163] M. Stevens, "react-native-stopwatch-timer," [Online]. Available:
https://github.com/michaeljstevens/react-native-stopwatch-timer. [Accessed 25 9
2019].

[164] J. Hanson, "react-native-swipeable," [Online]. Available:
https://github.com/jshanson7/react-native-swipeable. [Accessed 25 9 2019].

[165] Microsoft, "Introduction to ASP.NET Identity," 22 1 2019. [Online]. Available:
https://docs.microsoft.com/en-us/aspnet/identity/overview/getting-
started/introduction-to-aspnet-identity. [Accessed 30 9 2019].

[166] Microsoft, " Rijndael Class," [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography.rijndael?view=netframework-4.8.

[167] TechTarget, "Advanced Encryption Standard (AES)," [Online]. Available:
https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard.
[Accessed 29 9 2019].

[168] Microsoft, " Rfc2898DeriveBytes Class," [Online]. Available:
https://docs.microsoft.com/en-

204

us/dotnet/api/system.security.cryptography.rfc2898derivebytes?view=netframework-
4.8.

[169] Microsoft, " System.Security.Cryptography Namespace," [Online]. Available:
https://docs.microsoft.com/en-
us/dotnet/api/system.security.cryptography?view=netframework-4.8. [Accessed 29 9
2019].

[170] S. Verma, S. K. Pal and S. K. Muttoo, "A new tool for lightweight encryption on
android," IEEE, Gurgaon, India, 2014.

[171] Microsoft, "Code First Migrations," 23 10 2016. [Online]. Available:
https://docs.microsoft.com/en-us/ef/ef6/modeling/code-first/migrations/. [Accessed
30 9 2019].

[172] Microsoft, "Migrations," 10 5 2018. [Online]. Available:
https://docs.microsoft.com/en-us/ef/core/managing-schemas/migrations/. [Accessed
30 9 2019].

[173] Microsoft, "Language Understanding (LUIS)," [Online]. Available:
https://www.luis.ai/home. [Accessed 1 10 2019].

[174] Microsoft, "What is Language Understanding (LUIS)?," 11 6 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/what-is-luis.
[Accessed 1 10 2019].

[175] Microsoft, "Concepts about intents in your LUIS app," 29 7 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-intent.
[Accessed 1 10 2019].

[176] Microsoft, "Entity types and their purposes in LUIS," 24 7 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-entity-
types. [Accessed 1 10 2019].

[177] Microsoft, "Understand what good utterances are for your LUIS app," 5 7 2019.
[Online]. Available: https://docs.microsoft.com/en-us/azure/cognitive-
services/luis/luis-concept-utterance. [Accessed 1 10 2019].

[178] Microsoft, "Key concepts in Direct Line API 3.0," 6 1 2019. [Online]. Available:
https://docs.microsoft.com/en-us/azure/bot-service/rest-api/bot-framework-rest-
direct-line-3-0-concepts?view=azure-bot-service-4.0. [Accessed 1 10 2019].

[179] Central Intelligence Agency, The World Factbook, 2006.

205

[180] Stanford, "Evaluation Metrics," [Online]. Available:
http://cs229.stanford.edu/section/evaluation_metrics.pdf. [Accessed 16 2 2019].

[181] Medium, "Mean Absolute Error ~ MAE [Machine Learning(ML)]," [Online]. Available:
https://medium.com/@ewuramaminka/mean-absolute-error-mae-machine-learning-
ml-b9b4afc63077. [Accessed 4 10 2019].

[182] Microsoft, " Stopwatch Class," [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/api/system.diagnostics.stopwatch?view=netframework-4.8. [Accessed 5 10
2019].

[183] T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean absolute error
(MAE)? –Arguments against avoiding RMSE in the literature," 2014.

[184] T. Rackaitis, "Evaluating Recommender Systems: Root Means Squared Error or Mean
Absolute Error?," [Online]. Available: https://towardsdatascience.com/evaluating-
recommender-systems-root-means-squared-error-or-mean-absolute-error-
1744abc2beac. [Accessed 7 10 2019].

[185] G. E. Forsythe and C. B. Moler, Computer solution of linear algebraic systems,
Englewood Cliffs, New Jersey: Prentice-Hall, 1967.

[186] G. Drakos, "How to select the Right Evaluation Metric for Machine Learning Models:
Part 1 Regression Metrics," 26 8 2018. [Online]. Available:
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-
machine-learning-models-part-1-regrression-metrics-3606e25beae0. [Accessed 22 9
2019].

207

Appendix A

208

209

210

211

212

Appendix B

213

214

Appendix C

215

216

217

218

Appendix D

219

Appendix E

ID Execution Time
1 953
2 887
3 849
4 849
5 856
6 869
7 896
8 887
9 873

10 866
11 872
12 853
13 857
14 858
15 878
16 893
17 887
18 865
19 865
20 858
21 872
22 903
23 859
24 882
25 890
26 880
27 861
28 848
29 877
30 859

220

Appendix F

MF (MAE) MF (RMSE) MF + UB (CC) (MAE) MF + UB (CC) (RMSE) MF + IB (MAE) MF + IB (RMSE) MF + UB + IB (MAE) MF + UB + IB (RMSE)
0.780741337 1.020981976 1.544661649 1.778041811 0.776793576 0.978792897 1.3016349 1.543623
0.773678045 1.009705026 1.540897323 1.791600701 0.77670431 0.978295258 1.457158 1.466774
0.771248465 1.009431649 1.556980875 1.772536403 0.777882338 0.980018474 1.3854201 1.647687
0.773458628 1.010285927 1.540348599 1.788668079 0.778357426 0.981806943 1.5183734 1.513453
0.77253258 1.008379117 1.540547783 1.779759583 0.7775417 0.978533108 1.3679033 1.34467
0.777445994 1.013401576 1.544101545 1.784917521 0.774071039 0.973035406 1.3325993 1.679842
0.780634448 1.01848434 1.540551252 1.786001884 0.778093017 0.980253022 1.3015361 1.6453677
0.77409969 1.009143472 1.554931369 1.790697273 0.777994909 0.979216783 1.3864883 1.5675343
0.768428916 1.006784921 1.552707956 1.771527105 0.776057609 0.976731799 1.3280456 1.2356778
0.773762957 1.008885634 1.540518593 1.78018635 0.781457111 0.982319407 1.4517297 1.752372

0.774318279 1.013125248 1.544556291 1.787400763 0.777762771 0.979624833 1.469889 1.467832

0.775188441 1.012791834 1.551600196 1.792311101 0.780915133 0.983225495 1.4501857 1.584485
0.773376016 1.010853236 1.557600646 1.789161361 0.78100988 0.983115516 1.5723531 1.6988452
0.775024576 1.013839445 1.541110083 1.78662915 0.776534005 0.976245014 1.3434897 1.785162
0.776068194 1.015591295 1.551961751 1.778176009 0.778993117 0.980042137 1.3053905 1.782166
0.772797527 1.01091993 1.557188849 1.778479992 0.775079187 0.977167858 1.3559547 1.3614564
0.772310806 1.010548633 1.553033659 1.77333607 0.778720309 0.977399832 1.4307969 1.7548132
0.776740226 1.01661032 1.559333951 1.789102188 0.776492227 0.977337846 1.5593589 1.6515621
0.77662687 1.016914014 1.548349213 1.775831831 0.778684343 0.980221778 1.4450246 1.2325154
0.769370415 1.006815734 1.561049981 1.790941984 0.776288623 0.979081319 1.329739 1.5618456
0.775822298 1.012851253 1.548143423 1.779388579 0.77482572 0.975281767 1.5380591 1.4516515
0.772858831 1.012412051 1.562113436 1.77146569 0.780044065 0.98116758 1.5124173 1.7981512

0.775619304 1.015798338 1.546018884 1.77402286 0.777365829 0.980496679 1.3833593 1.6211454

0.770441523 1.010192947 1.54351397 1.78283881 0.777430801 0.980406109 1.4234124 1.611551
0.777423958 1.016942331 1.564757137 1.783454795 0.774533068 0.975698974 1.5219934 1.621854
0.767840614 1.004311801 1.5541732 1.781932085 0.776491581 0.977195824 1.4311004 1.65156
0.775743616 1.010901972 1.557993333 1.792319217 0.776858354 0.97713926 1.4225993 1.74164
0.771313941 1.008865803 1.558095772 1.776831276 0.777952702 0.980675164 1.4128309 1.75445
0.776263467 1.011504582 1.562568573 1.788955659 0.778291803 0.979612319 1.4481453 1.56145
0.777653532 1.014749656 1.549606908 1.775385618 0.780927807 0.982530945 1.4176105 1.62153

221

Appendix G

index mae rmse-train rmse-test
1 0.750165 0.762879114 0.954326243
2 0.749693 0.765482202 0.954673693
3 0.74695 0.765157726 0.952371983
4 0.744701 0.762217278 0.948882303
5 0.747244 0.768700446 0.952244622
6 0.747807 0.76395971 0.952046804
7 0.746408 0.765634166 0.950407901
8 0.749038 0.766317371 0.953193774
9 0.747735 0.764530994 0.952844736

10 0.747003 0.76208004 0.951372334
11 0.745344 0.767600543 0.950269103
12 0.746462 0.766813439 0.950907719
13 0.746792 0.76208116 0.951377378
14 0.748624 0.761029749 0.952295019
15 0.74542 0.7666325 0.951515329
16 0.749471 0.765442438 0.953897784
17 0.747897 0.763790818 0.953469492
18 0.748589 0.766884632 0.954862028
19 0.748234 0.764855902 0.953759671
20 0.751002 0.765618626 0.954999359
21 0.75051 0.76522037 0.955484947
22 0.753945 0.764960919 0.960586608
23 0.74437 0.7631352 0.950129836
24 0.745832 0.763116541 0.950271788
25 0.746747 0.764549733 0.951877201
26 0.748574 0.762850685 0.954024364
27 0.747876 0.766195142 0.953152859
28 0.745529 0.763068964 0.951157497
29 0.741617 0.763956186 0.946899284
30 0.747126 0.764867112 0.953984222

1 Feature

222

index mae rmse-train rmse-test
1 0.760787 0.699145289 0.981585728
2 0.754733 0.700899211 0.975488764
3 0.751727 0.696325938 0.971280885
4 0.757874 0.691051773 0.977797572
5 0.753749 0.69805633 0.973677327
6 0.759216 0.696480676 0.980500187
7 0.760722 0.692258761 0.978128883
8 0.756195 0.695434093 0.977268316
9 0.755345 0.693847098 0.97658

10 0.761216 0.701404991 0.980739144
11 0.760363 0.692553285 0.979602888
12 0.761355 0.694729865 0.981048384
13 0.761783 0.694173062 0.982148163
14 0.756818 0.695296546 0.976946158
15 0.758724 0.69951807 0.976021535
16 0.760208 0.694889154 0.980032306
17 0.755763 0.688446509 0.975944952
18 0.76415 0.696926359 0.984389326
19 0.761369 0.694855834 0.979344345
20 0.759554 0.696201132 0.980422146

5 Features

223

index mae rmse-train rmse-test
1 0.768285 0.637304538 0.993332111
2 0.765672 0.631057573 0.994742016
3 0.765506 0.629606884 0.994582775
4 0.764452 0.63201591 0.991155135
5 0.760206 0.631624451 0.985824697
6 0.762496 0.631384116 0.994444988
7 0.757605 0.6305009 0.985399841
8 0.768512 0.630216199 0.996909786
9 0.768105 0.633495588 0.998165715

10 0.764364 0.6310457 0.991753339
11 0.763924 0.630453977 0.990018536
12 0.763103 0.629434886 0.989694157
13 0.768598 0.63037778 0.994123674
14 0.762803 0.631273018 0.992151027
15 0.758983 0.629416398 0.988772424
16 0.765277 0.63069136 0.992945785
17 0.760337 0.634105868 0.989144976
18 0.761114 0.629584391 0.98959046
19 0.761894 0.63284486 0.986070182
20 0.76578 0.631239902 0.995625766

10 Features

224

index mae rmse-train rmse-test
1 0.774883 0.582070176 1.007298999
2 0.773233 0.580093127 1.005963491
3 0.766795 0.580145135 0.999518528
4 0.765689 0.585325592 0.999885576
5 0.76821 0.582404268 1.000685243
6 0.768964 0.580333615 1.001157603
7 0.766298 0.587288711 1.000308138
8 0.76744 0.579577887 1.002727153
9 0.76821 0.590149239 0.999892386

10 0.768741 0.583477961 1.002308924
11 0.771296 0.578480056 1.004606356
12 0.766752 0.587245255 1.001672822
13 0.768328 0.582545163 1.003727172
14 0.769611 0.584138094 1.002958338
15 0.770415 0.579680993 1.003628157
16 0.766085 0.580493853 0.996413503
17 0.766667 0.583683091 1.000186771
18 0.761795 0.584067583 0.991062431
19 0.773115 0.579494893 1.00116571
20 0.773318 0.583502163 1.002967618

15 Features

225

index mae rmse-train rmse-test
1 0.773186 0.542282532 1.00932217
2 0.77976 0.539893327 1.019631397
3 0.768136 0.543611632 1.007131837
4 0.773256 0.540887765 1.009535347
5 0.777131 0.541283856 1.014239767
6 0.775926 0.542832951 1.012373581
7 0.773792 0.542977436 1.008158556
8 0.772637 0.541530932 1.010516938
9 0.774803 0.543180406 1.011176251

10 0.772957 0.542569727 1.010096698
11 0.775719 0.543486289 1.014203739
12 0.766959 0.543691226 1.006985801
13 0.771727 0.54404263 1.008237321
14 0.777807 0.538044945 1.017973624
15 0.777692 0.544579528 1.014299397
16 0.7695 0.543669814 1.006431742
17 0.77725 0.539979091 1.016695442
18 0.773338 0.546628947 1.010057407
19 0.771416 0.540555349 1.006319172
20 0.772455 0.542091644 1.006673833

20 Features

226

index mae rmse-train rmse-test
1 0.779641 0.479504279 1.024967357
2 0.783938 0.476512723 1.028693887
3 0.782461 0.480236516 1.021809102
4 0.782068 0.478547723 1.025949765
5 0.785714 0.479071656 1.025679165
6 0.786488 0.479085066 1.032418921
7 0.786198 0.479700663 1.02877403
8 0.782111 0.480737893 1.026801769
9 0.783676 0.480907393 1.027707268

10 0.784809 0.48039103 1.024515302
11 0.782041 0.479685843 1.027212708
12 0.788356 0.479020992 1.03011039
13 0.785927 0.480065317 1.029198017
14 0.78405 0.47838539 1.028321161
15 0.787317 0.476733314 1.028399962
16 0.792986 0.480252575 1.035103571
17 0.7849 0.480577543 1.02710611
18 0.790202 0.477236971 1.032636885
19 0.780893 0.478854355 1.02201556
20 0.78582 0.480871574 1.029956428

30 Features

227

index mae rmse-train rmse-test
1 0.801925 0.433386568 1.048006626
2 0.797409 0.434929885 1.044466521
3 0.800989 0.432282718 1.047077179
4 0.796813 0.431930096 1.047167695
5 0.800235 0.432658675 1.049476713
6 0.794691 0.43488617 1.041953125
7 0.801822 0.431908107 1.051323253
8 0.796764 0.432247026 1.043416391
9 0.792445 0.434020879 1.041077727

10 0.797181 0.429494488 1.050698491
11 0.795311 0.431482381 1.042356689
12 0.807389 0.431199078 1.056242523
13 0.801676 0.43234743 1.052606403
14 0.80114 0.431221333 1.04983089
15 0.796123 0.432633272 1.042330705
16 0.798955 0.430992525 1.047791627
17 0.798166 0.433949036 1.043113813
18 0.801044 0.42978128 1.050207826
19 0.792775 0.431544242 1.041649561
20 0.797007 0.429671257 1.044077824

40 Features

228

Appendix H

Matrix Factorization (500 epochs)

Epoch Error (RMSE)

1 1.086042326

2 0.93899721

3 0.89294286

4 0.867278025

5 0.849487461

6 0.835851189

7 0.824751972

8 0.815336417

9 0.807095066

10 0.799700409

11 0.792931768

12 0.786635276

13 0.780700603

14 0.77504676

15 0.76961319

16 0.764354071

17 0.75923456

18 0.754228242

19 0.749315309

20 0.744481212

229

21 0.739715609

22 0.735011527

23 0.730364669

24 0.725772836

25 0.721235434

26 0.716753062

27 0.712327158

28 0.707959704

29 0.703652989

30 0.699409414

31 0.695231338

32 0.691120973

33 0.687080296

34 0.683111005

35 0.679214485

36 0.675391801

37 0.671643697

38 0.667970609

39 0.664372691

40 0.660849831

41 0.65740168

42 0.654027684

43 0.650727103

44 0.647499043

45 0.644342476

230

46 0.641256265

47 0.638239181

48 0.635289927

49 0.632407146

50 0.62958944

51 0.626835383

52 0.624143529

53 0.621512421

54 0.618940601

55 0.616426615

56 0.613969019

57 0.611566385

58 0.609217301

59 0.60692038

60 0.604674256

61 0.602477591

62 0.600329075

63 0.598227425

64 0.596171392

65 0.594159753

66 0.59219132

67 0.590264932

68 0.588379462

69 0.586533814

70 0.584726921

231

71 0.582957747

72 0.581225286

73 0.579528562

74 0.577866627

75 0.57623856

76 0.574643471

77 0.573080493

78 0.571548787

79 0.570047541

80 0.568575965

81 0.567133295

82 0.565718789

83 0.564331729

84 0.562971419

85 0.561637183

86 0.560328367

87 0.559044337

88 0.557784477

89 0.556548192

90 0.555334902

91 0.554144048

92 0.552975085

93 0.551827486

94 0.55070074

95 0.54959435

232

96 0.548507835

97 0.547440728

98 0.546392576

99 0.545362937

100 0.544351386

101 0.543357507

102 0.542380898

103 0.541421168

104 0.540477936

105 0.539550834

106 0.538639503

107 0.537743594

108 0.536862769

109 0.535996699

110 0.535145064

111 0.534307552

112 0.53348386

113 0.532673695

114 0.531876769

115 0.531092804

116 0.530321529

117 0.52956268

118 0.528815999

119 0.528081237

120 0.527358149

233

121 0.526646498

122 0.525946054

123 0.52525659

124 0.524577888

125 0.523909732

126 0.523251916

127 0.522604235

128 0.521966491

129 0.521338491

130 0.520720047

131 0.520110974

132 0.519511093

133 0.518920229

134 0.518338211

135 0.517764873

136 0.517200051

137 0.516643586

138 0.516095324

139 0.515555113

140 0.515022805

141 0.514498254

142 0.513981321

143 0.513471866

144 0.512969755

145 0.512474856

234

146 0.511987041

147 0.511506182

148 0.511032157

149 0.510564846

150 0.510104129

151 0.509649894

152 0.509202025

153 0.508760414

154 0.508324952

155 0.507895534

156 0.507472056

157 0.507054417

158 0.506642518

159 0.506236262

160 0.505835554

161 0.505440301

162 0.505050413

163 0.504665799

164 0.504286372

165 0.503912048

166 0.503542742

167 0.503178371

168 0.502818856

169 0.502464118

170 0.502114078

235

171 0.501768662

172 0.501427796

173 0.501091405

174 0.500759419

175 0.500431769

176 0.500108384

177 0.499789198

178 0.499474145

179 0.49916316

180 0.498856179

181 0.49855314

182 0.498253982

183 0.497958645

184 0.49766707

185 0.497379199

186 0.497094976

187 0.496814344

188 0.49653725

189 0.496263639

190 0.495993458

191 0.495726657

192 0.495463185

193 0.495202991

194 0.494946026

195 0.494692244

236

196 0.494441595

197 0.494194035

198 0.493949518

199 0.493707998

200 0.493469433

201 0.493233778

202 0.493000992

203 0.492771033

204 0.492543859

205 0.492319432

206 0.492097711

207 0.491878658

208 0.491662234

209 0.491448402

210 0.491237126

211 0.491028369

212 0.490822095

213 0.49061827

214 0.490416859

215 0.490217828

216 0.490021145

217 0.489826777

218 0.489634691

219 0.489444856

220 0.489257241

237

221 0.489071816

222 0.48888855

223 0.488707415

224 0.48852838

225 0.488351419

226 0.488176502

227 0.488003602

228 0.487832691

229 0.487663744

230 0.487496734

231 0.487331636

232 0.487168423

233 0.487007071

234 0.486847555

235 0.486689851

236 0.486533935

237 0.486379785

238 0.486227376

239 0.486076686

240 0.485927694

241 0.485780376

242 0.485634712

243 0.485490679

244 0.485348258

245 0.485207427

238

246 0.485068167

247 0.484930457

248 0.484794278

249 0.484659609

250 0.484526434

251 0.484394731

252 0.484264484

253 0.484135674

254 0.484008282

255 0.483882292

256 0.483757686

257 0.483634447

258 0.483512558

259 0.483392002

260 0.483272763

261 0.483154826

262 0.483038173

263 0.48292279

264 0.48280866

265 0.48269577

266 0.482584104

267 0.482473647

268 0.482364384

269 0.482256302

270 0.482149386

239

271 0.482043623

272 0.481938998

273 0.481835499

274 0.481733111

275 0.481631822

276 0.481531619

277 0.481432489

278 0.481334419

279 0.481237397

280 0.481141411

281 0.481046449

282 0.480952499

283 0.480859549

284 0.480767588

285 0.480676603

286 0.480586585

287 0.480497521

288 0.480409402

289 0.480322215

290 0.480235951

291 0.480150598

292 0.480066147

293 0.479982588

294 0.479899909

295 0.479818102

240

296 0.479737156

297 0.479657062

298 0.479577809

299 0.47949939

300 0.479421793

301 0.479345011

302 0.479269034

303 0.479193852

304 0.479119458

305 0.479045842

306 0.478972996

307 0.478900911

308 0.478829579

309 0.478758991

310 0.47868914

311 0.478620016

312 0.478551613

313 0.478483922

314 0.478416936

315 0.478350646

316 0.478285045

317 0.478220126

318 0.478155881

319 0.478092302

320 0.478029383

241

321 0.477967117

322 0.477905496

323 0.477844513

324 0.477784162

325 0.477724435

326 0.477665326

327 0.477606828

328 0.477548935

329 0.477491639

330 0.477434936

331 0.477378818

332 0.477323278

333 0.477268312

334 0.477213912

335 0.477160073

336 0.477106788

337 0.477054052

338 0.477001859

339 0.476950204

340 0.476899079

341 0.47684848

342 0.476798402

343 0.476748837

344 0.476699783

345 0.476651231

242

346 0.476603179

347 0.476555619

348 0.476508547

349 0.476461959

350 0.476415847

351 0.476370209

352 0.476325038

353 0.47628033

354 0.47623608

355 0.476192283

356 0.476148934

357 0.476106028

358 0.476063562

359 0.47602153

360 0.475979928

361 0.475938751

362 0.475897995

363 0.475857655

364 0.475817728

365 0.475778208

366 0.475739091

367 0.475700374

368 0.475662052

369 0.475624121

370 0.475586577

243

371 0.475549416

372 0.475512634

373 0.475476227

374 0.475440191

375 0.475404522

376 0.475369216

377 0.47533427

378 0.47529968

379 0.475265442

380 0.475231553

381 0.475198009

382 0.475164806

383 0.47513194

384 0.475099409

385 0.475067209

386 0.475035337

387 0.475003788

388 0.47497256

389 0.47494165

390 0.474911054

391 0.474880768

392 0.47485079

393 0.474821117

394 0.474791745

395 0.474762671

244

396 0.474733892

397 0.474705406

398 0.474677208

399 0.474649297

400 0.474621669

401 0.474594321

402 0.474567251

403 0.474540455

404 0.474513931

405 0.474487675

406 0.474461686

407 0.47443596

408 0.474410495

409 0.474385288

410 0.474360337

411 0.474335638

412 0.474311189

413 0.474286988

414 0.474263032

415 0.474239319

416 0.474215845

417 0.47419261

418 0.474169609

419 0.474146841

420 0.474124304

245

421 0.474101995

422 0.474079911

423 0.474058051

424 0.474036411

425 0.474014991

426 0.473993787

427 0.473972798

428 0.473952021

429 0.473931454

430 0.473911094

431 0.473890941

432 0.473870991

433 0.473851243

434 0.473831694

435 0.473812343

436 0.473793187

437 0.473774225

438 0.473755454

439 0.473736873

440 0.47371848

441 0.473700272

442 0.473682248

443 0.473664406

444 0.473646744

445 0.47362926

246

446 0.473611953

447 0.47359482

448 0.47357786

449 0.473561072

450 0.473544452

451 0.473528001

452 0.473511715

453 0.473495594

454 0.473479635

455 0.473463837

456 0.473448198

457 0.473432717

458 0.473417392

459 0.473402222

460 0.473387205

461 0.473372339

462 0.473357622

463 0.473343054

464 0.473328633

465 0.473314357

466 0.473300225

467 0.473286236

468 0.473272387

469 0.473258678

470 0.473245107

247

471 0.473231673

472 0.473218373

473 0.473205208

474 0.473192176

475 0.473179274

476 0.473166503

477 0.47315386

478 0.473141344

479 0.473128955

480 0.47311669

481 0.473104548

482 0.473092529

483 0.473080631

484 0.473068852

485 0.473057192

486 0.47304565

487 0.473034223

488 0.473022911

489 0.473011714

490 0.473000629

491 0.472989655

492 0.472978792

493 0.472968038

494 0.472957392

495 0.472946853

248

496 0.47293642

497 0.472926092

498 0.472915868

499 0.472905747

500 0.472895728

249

Appendix I

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo)

Method Location Fitness Intelligent Recommender - CoRatedCosineUserComparer class

Method
Description

Compares two user feature vectors and returns the degree of
similarity.

Tests Send valid vectors

 Send invalid null vectors

Result Every test passed.

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo)

Method Location Fitness Intelligent Recommender - CorrelationUserComparer class

Method
Description

Compares two user feature vectors and returns the degree of
similarity.

Tests Send valid vectors

 Send invalid null vectors

Result Every test passed.

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo)

Method Location Fitness Intelligent Recommender - CosineUserComparer class

Method
Description

Compares two user feature vectors and returns the degree of
similarity.

Tests Send valid vectors

 Send invalid null vectors

Result Every test passed.

250

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo)

Method Location Fitness Intelligent Recommender - RootMeanSquareComparer class

Method
Description

Compares two user feature vectors and returns the degree of
similarity.

Tests Send valid vectors

 Send invalid null vectors

Result Every test passed.

Tested Method GenerateLinearBestFit(points)

Method Location Fitness Intelligent Recommender - LinearBestFit class

Method Description Calcualtes the line of best fit based on a set of points.

Tests Send valid points

 Send invalid null vectors

Result Every test passed.

Tested Method GetSlope(points)

Method Location Fitness Intelligent Recommender - LinearBestFit class

Method Description Calculates the slope of a line based on its points.

Tests Send valid points

 Send invalid null vectors

Result Every test passed.

Tested Method GetPredictedValueForX(points, slope, x)

Method Location Fitness Intelligent Recommender - LinearBestFit class

Method
Description

Calculates the intersection in the Y-axis of the line of best fit, based on
the X-value.

251

Tests Send valid points and slope

 Send valid points and invalid slope

 Send invalid points and slope

 Send valid x

 Send invalid x

Result Every test passed.

Tested Method GetDotProduct(vectorone, vectortwo)

Method Location Fitness Intelligent Recommender - Matrix class

Method Description Calculates dot products between two vectors.

Tests Send valid vectors

 Send invalid vectors

Result Every test passed.

Tested Method FactorizeMatrix(matrix)

Method Location Fitness Intelligent Recommender - SingularValueDecomposition class

Method Description Calculates the svd for a matrix.

Tests Send valid matrix

 Send invalid matrix

Result Every test passed.

Tested Method LoadData()

Method Location Fitness Intelligent Recommender - ImportData class

Method Description Imports the dataset.

Tests Use valid dataset

252

 Use invalid dataset

Result Every test passed.

Tested Method Train(datasetmodel)

Method Location Fitness Intelligent Recommender -
ItemCollaborativeFilterRecommender class

Method Description Trains the model.

Tests Send a valid model

 Send an invalid model

Result Every test passed.

Tested Method GetRating(userID, itemID)

Method Location itness Intelligent Recommender -
ItemCollaborativeFilterRecommender class

Method Description Gets the rating of a given user for a given item.

Tests Use valid user and item

 Use valid user and invalid item

 Use invalid user and valid item

 Use invalid user and invalid item

Result Every test passed.

Tested Method GetSuggestions(userID, numberOfSuggestions)

Method Location itness Intelligent Recommender -
ItemCollaborativeFilterRecommender class

Method Description Gets suggestions for a given user.

Tests Use valid user and number of suggestions

 Use valid user and invalid number of suggestions

253

 Use invalid user and valid number of suggestions

 Use invalid user and invalid number of suggestions

Result Every test passed.

Tested Method Train(datasetmodel)

Method Location Fitness Intelligent Recommender -
MatrixFactorizationRecommender class

Method Description Trains the model.

Tests Send a valid model

 Send an invalid model

Result Every test passed.

Tested Method GetRating(userID, itemID)

Method Location itness Intelligent Recommender -
MatrixFactorizationRecommender class

Method Description Gets the rating of a given user for a given item.

Tests Use valid user and item

 Use valid user and invalid item

 Use invalid user and valid item

 Use invalid user and invalid item

Result Every test passed.

Tested Method GetSuggestions(userID, numberOfSuggestions)

Method Location itness Intelligent Recommender -
MatrixFactorizationRecommender class

Method Description Gets suggestions for a given user.

Tests Use valid user and number of suggestions

254

 Use valid user and invalid number of suggestions

 Use invalid user and valid number of suggestions

 Use invalid user and invalid number of suggestions

Result Every test passed.

Tested Method Train(datasetmodel)

Method Location Fitness Intelligent Recommender -
UserCollaborativeFilterRecommender class

Method Description Trains the model.

Tests Send a valid model

 Send an invalid model

Result Every test passed.

Tested Method GetRating(userID, itemID)

Method Location itness Intelligent Recommender -
UserCollaborativeFilterRecommender class

Method Description Gets the rating of a given user for a given item.

Tests Use valid user and item

 Use valid user and invalid item

 Use invalid user and valid item

 Use invalid user and invalid item

Result Every test passed.

Tested Method GetSuggestions(userID, numberOfSuggestions)

Method Location itness Intelligent Recommender -
UserCollaborativeFilterRecommender class

Method Description Gets suggestions for a given user.

255

Tests Use valid user and number of suggestions

 Use valid user and invalid number of suggestions

 Use invalid user and valid number of suggestions

 Use invalid user and invalid number of suggestions

Result Every test passed.

Tested Method filterVolumeAndIntensity(recommendations, predictedvolume,
predicted intensity)

Method Location Fitness Conditional Recommender

Method
Description

Filters the tecommendation list based on the predicted volume and
intensity.

Tests Send valid predicted values

 Send invalid predicted values

Result Every test passed.

Tested Method predictIntensity(intensityListy)

Method Location Fitness Conditional Recommender

Method Description Predicts the intensity based on the previous intensity list.

Tests Send valid intensity list

 Send invalid intensity list

Result Every test passed.

Tested Method predictVolume (volumeList)

Method Location Fitness Conditional Recommender

Method Description Predicts the volume based on the previous volume list.

Tests Send valid volume list

256

 Send invalid volume list

Result Every test passed.

257

Appendix J
The tests here presented are being generalized to all the tests under that specific type. For
example "Gets" includes all GET requests. These include the requests from the following entities:
Body Measurements, Equipment, Equipment Categories, Programs, Plans.

Tested Method Get()

Involved Components FitnessMobileAPP, FitnessAPI, Database

Description The mobile app asks the API to retrieve some entity/entity list. The
API asks the Database for the desired information.

Expected Result The Database returns the desired entity/entity list.

Result Success.

Tested Method Post()

Involved Components FitnessMobileAPP, FitnessAPI, Database

Description The mobile app asks the API to save new data. The API requests the
Database to register the new data.

Expected Result The Database saves the information and returns the operation's
success.

Result Success.

Tested Method Put()

Involved Components FitnessMobileAPP, FitnessAPI, Database

Description The mobile app asks the API to edit data. The API requests the
Database to change the data.

Expected Result The Database saves the information and returns the operation's
success.

Result Success.

258

The following tests are relative to the chat bot aspect of the system.

Tested Method GetIntentScore()

Involved Components ChatBotAPI, LUISAPI

Description The ChatBotAPI requests the LUISAPI to retrieve the score
associated with a specific intent.

Expected Result The LUISAPI returns the correct score.

Result Success.

Tested Method Get()

Involved Components ChatBotAPI, FitnessAPI, Database

Description The FitnessAPI obtains the exercise data from the Database and
returns it to the ChatBotAPI

Expected Result The Database returns the exercise list and the ChatBotAPI receives
it correctly.

Result Success.

Tested Method GetResponse()

Involved Components FitnessMobileAPP, FitnessAPI, ChatBotAPI, LUISAPI, Database

Description The FitnessMobileAPP receives a message from the user, sends it to
the FitnessAPI which redirects it to the ChatBotAPI which gets its
intent from the LUISAPI. The Database is used by the FitnessAPI if
necessary. The response is then retrieved to the mobile app.

Expected Result The response is correctly formulated.

Result Success.

259

Appendix K

Description The user creates a Program, opens the Programs list and views its
details.

Result Success.

Description The user creates a Plan, opens the Programs list and views its
details.

Result Success.

Description The user configures their body measurements, adds specific goals,
adds logs and views the progress monitoring.

Result Success.

Description The user edits their preferred body measurements.

Result Success.

Description The user changes the system’s language and views.

Result Success.

Description The user opens the calendar and selects the desired day to view its
logs.

Result Success.

Description The user changes the available equipment and refreshes the screen
to see the updates.

Result Success.

260

Appendix L

Tested Use Case US02: View training Plan/Program templates

Expected Result The correct Plan/Program template list is shown.

Result Success.

Tested Use Case US03: Manage training Plan/Program

Expected Result The new Plan/Program is created and correctly added to both the
mobile app and the database.

Result Success.

Tested Use Case US04: Manage Body Measurements

Expected Result The configured body measurements are correctly shown.

Result Success.

Tested Use Case US04: Manage Body Measurements

Expected Result The added logs are correctly shown in their respective body
measurements.

Result Success.

Tested Use Case US04: Manage Body Measurements

Expected Result The corrected re-configured body measurements are correctly
shown.

Result Success.

Tested Use Case US08: View training Logs

Expected Result The correct logs are shown.

261

Result Success.

Tested Use Case US010: View Statistics

Expected Result The correct statistics are shown.

Result Success.

Tested Use Case US015: Change Language

Expected Result The new language is saved, and the app is updated.

Result Success.

Tested Use Case US016: Change Unit System

Expected Result The new unit system is saved, and the app updated.

Result Success.

Tested Use Case US017: Manage Available Equipment

Expected Result The configured available equipment are correctly shown.

Result Success.

Tested Use Case US017: Manage Available Equipment

Expected Result The re-configured available equipment are correctly shown.

Result Success.

