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Resumo 
Sistemas de recomendação no geral estão a ser cada vez mais usados por empresas que 
procuram oferecer uma experiência de utilização mais individual e personalizada aos seus 
clientes. Obter feedback em transações de negócio online nunca foi tão fácil e acessível, o que 
apenas ajuda a catalisar a evolução dos sistemas de recomendação. 

Adicionalmente, o uso de dispositivos tecnológicos como smartphones e computadores, 
juntamente com a conexão à internet, estão também a crescer a um ritmo acelerado sem sinal 
de paragem em vista. Juntando-se a este grupo de indústrias em crescimento está a indústria 
fitness, que está a ficar cada vez mais popular. Com isto, mais e mais pessoas estão a começar 
a usar os dispositivos mencionados anteriormente em combinação com as suas atividades 
fitness, para aumentar o seu desempenho, monitorizar progresso, definir objetivos, entre 
outros. Consequentemente, o mercado para sistemas fitness (p.e. aplicações fitness) está a 
aumentar e já é bastante denso. No entanto, a qualidade associada com tais sistemas fica um 
pouco aquém tanto em termos de inovação como de funcionalidades essenciais. 

Como resultado disto, este projeto propôs uma solução – um sistema fitness sob a forma de 
uma aplicação móvel aliada a um poderoso sistema de recomendação. Este sistema é 
pretendido que providencie uma experiência mais individual e personalizada para qualquer tipo 
de utilizador fitness através da oferta de funcionalidades essenciais como registo e 
monitorização de informação, análise de progresso, e também através de funcionalidades 
inovadoras como a implementação de um sistema de recomendação capaz de sugerir tópicos 
relacionados com fitness (p.e. regimes de treino ou exercícios específicos) baseado em 
múltiplos fatores como os objetivos, características individuais e historial de cada utilizador. 
Além do mais, deve também oferecer um assistente pessoal virtual, onde os utilizadores podem 
expressar as suas questões e dúvidas, e tê-las respondidas instantaneamente por um chatbot.  

Durante o desenvolvimento foi decidido que um segundo sistema de recomendação seria 
necessário para melhorar o sistema no geral. Este, o sistema, depois de implementado, foi 
avaliado e pode ser concluído que o resultado foi um sucesso, tendo passado em todas as 
métricas definidas, exceto uma, com classificações médias nos questionários de satisfação 
acima de 4/5. O feedback obtido por um especialista no sistema de recomendação foi 
altamente vantajoso e no geral decentemente positivo, apenas com algumas questões que 
necessitam de melhoramento. Embora o sistema de recomendação inteligente não tenha 
conseguido ser testado com informação aplicável, a investigação e trabalho feito constituem 
uma mais valia caso mais tarde exista a possibilidade de aplicar dados reais. 
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Abstract 
Recommender systems in general are increasingly becoming more exploited by companies who 
seek to provide a more individual and personalized user-experience to their customers. The fact 
that providing feedback on online business transactions is also becoming ever so easier only 
helps to catalyze the evolution of recommender systems. 

Moreover, the use of technological devices such as smartphones and computers, in conjunction 
with an internet connection, are also continuing to grow at a fast pace, with no slowing down 
in sight. Joining on this group of growing industries is the fitness sector, which is becoming 
increasingly popular. With this, more and more people are starting to use the aforementioned 
devices in combination with their fitness activities, to boost performance, monitor progress, 
define goals, among other things. Consequently, the market for fitness systems (i.e. fitness 
applications) is expanding and is already very dense. However, the associated quality with such 
systems falls short both in terms of innovation and even crucial features. 

As a result, this dissertation proposes a solution - an innovative fitness system in the form of a 
mobile application allied with a powerful recommender system. The system is intended to 
provide a more individual and personalized experience to any type of fitness user through the 
offering of crucial features including the log and monitor of information, progress analysis, and 
also through innovative features such as the implementation of a recommender system capable 
of making fitness-related suggestions (i.e. training regimens or specific exercises) based on 
multiple factors like the user’s individual goals, characteristics, and history. Additionally, it 
should also provide a personal virtual assistant, where users can express their questions and 
doubts and have them answered instantly by a chatbot. 

During development, it was decided that a second recommender system was required to 
improve the system as a whole. This, the system, after being implemented, was evaluated and 
it can be concluded that the result was a success, having passed in all the defined metrics, 
except one, with average classifications of 4/5 on the satisfaction inquiries. The feedback 
obtained from the expert on the recommender system was highly useful and, in general, 
decently positive, having only a few questions that need improvement. Even though the 
intelligent recommender system couldn’t be tested with applicable data, the investigation and 
work done constitute a great asset in case there’s the opportunity to employ real data. 
 
 

Keywords: Fitness, Recommender systems, Mobile app, Chatbot  
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1 Introduction 

This chapter is dedicated to the presentation and introduction of the present project. Firstly, by 
contextualizing it, establishing the problem associated with it, the goals set to achieve, the 
motivation behind it and also the methodology employed. Lastly, the document’s structure is 
defined and explained in order to provide a more pleasing experience to the reader. 

1.1 Context 

The fitness industry is experiencing a continuous growth both in terms of adherents and total 
revenue. The reasons behind such growth can have multiple answers, but one of them, and 
likely one of the most relevant ones is its coupling with technology. More specifically, wearables, 
make it very convenient for people to monitor their digital health feedback, allowing them to 
pay more attention and make more healthy decisions. 

Being healthy and fit obviously carries tremendous advantages for people, both physically and 
mentally. This, allied to the fact that the whole fitness and mobile industry are growing, now 
more than ever, only makes it desirable to combine them in a distinctive manner, through a 
fitness mobile application. 

Given that the project is being developed in conjunction with another author, this report will 
be directed towards the documentation and implementation of the training Programs aspect 
of the system. There are numerous concepts and predefinitions that need to be exposed, in 
order to clearly contextualize the present project. This, and more information relative to the 
contextualization of the said project can be found in a later Context section. 

1.2 Problem 

According to AGAP (Barómetro da Associação dos Ginásios de Portugal) [1], in 2015, the 
Portuguese fitness market grew 13%, totaling approximately 730 thousand people, or 7.1% of 
the population [2]. Additionally, researches focused on other countries (i.e. Chile, Germany and 
France), concluded the same, the fitness industry suffered a huge growth. [3] [4] It is obvious, 
then, that the fitness culture is “trending” and nearly every prediction indicates that. [4]  
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Given that it is crucial to maintain some sort of structured training Program in order to evolve 
and have positive changes [5], and because this is usually done by personal trainers, it is also 
important that the users themselves conduct some sort of monitoring. In many cases, in more 
recreative individuals, this monitoring is deficient or non-existent, directly affecting their results 
[6], leading to demotivation or even waiver. On the other hand, in more advanced users that 
possess well-structured and monitored training Programs, there are other kinds of issues, 
suchlike the difficulty and complexity of the monitorization and the need to extract useful, 
relevant and personalized information out of the results. [7] In both cases, the unavailability of 
personal trainers doesn’t allow for an effective monitoring of all practitioners, leading to 
inadequate and inefficient practices to each one’s needs. [8] 

1.3 Goals 

The main goal of the present dissertation is to develop an individualized and personalized 
monitoring and planning fitness system, allied with a recommender system adapted to each 
user’s profile and specific needs that assists them in their fitness journey. This system is desired 
to be composed by two applications – a mobile application for users to access all the 
implemented features, and a web application, for administrators to manage the overall system. 

Given that the project’s is being developed in conjunction with another author, the idea is to 
offer features related to training Programs, suchlike monitoring through individual performance 
feedback, customization, assistance, as well as recommendations based on personal 
characteristics. Even though the training Program aspect is exclusive to this dissertation, there 
are common components that were prosecuted with the other author, and some others that 
do not fall in this category but are required for the good functioning of the system. 

The recommender system would then be able to manage and control the user’s data, with the 
main goal of capturing their evolution and assisting them. It is desired, then, for such system to 
have an intelligent component, making recommendations through AI (Artificial Intelligence) 
techniques. 

The registry of Program-related data should be user-friendly and intuitive, offering a 
personalized management of training Programs regimens to all types of individuals, allowing 
for them to consult training and evolution-related information, as well as access to that 
information by, possibly but not exclusively, a personal trainer or coach, empowering the user’s 
results. 

The main goals described will be achieved through the pursuing of the following specific goals: 

 Investigation and analysis of the different state-of-the-art recommender techniques, to 
decide which one will be the most adequate for the current project. 

 Investigation and analysis of different fitness applications to discover what is already 
being offered in the market and find what degree of differentiation is being offered. 

 Development of a mobile application that allows users to perform Program-related 
tasks. 
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 Development of a recommender system capable of making intelligent 
recommendations. 

 Development of an intelligent Personal Virtual Assistant (PVA) capable of 
communicating with the user in real time to answer their questions. 

 Elaboration a study that evidences the utility of the development system followed by 
the results analysis. 

 Fulfillment of the software development cycle. 

1.4 Motivation 

From a personal perspective, the motivation for this project rose from the necessity of having 
a featureful fitness app to use in the gym. Even though the market is fairly large and the offer 
vast, there was no specific one that catered to all the desired expectations.  

The interest in the fitness and health industry, combined with the personal need of having a 
system with the most essential features and even innovative ones led to the selection of the 
present project which includes the creation of a system designed for people, who use the gym, 
with different goals, expectations and necessities, adapting itself to them in an automated way, 
providing numerous features for every type of user and assisting them in their activities, which 
will hopefully motivate them to continue pursuing fitness as a healthy life-style choice.  

Some of the innovative features that were the motivation base for this project include the 
implementation of a recommender system, helping people achieving their goals through 
intelligent recommendation techniques, in an original way, since there’s nothing of sorts well 
implemented in the market, as it will be discussed in further chapters. 

1.5 Methodology 

The current project was developed in conjunction with another author, which resulted in two 
different reports. Even though there are common components between both projects there’s 
a clear separation at the domain level. That is, the present project is directed towards the 
“training programming” domain, and the other to the “exercises” one, each one with their 
respective features. 
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Figure 1 – Trello board 

To ensure good collaboration and connection between both authors, some collaborative tools 
were used, including Trello, and Bitbucket, the first being illustrated in Figure 1. 

1.6 Report Structure 

In this section, the structure of the overall document will be exposed, briefly describing each 
chapter with relevant information, providing an introduction to the reader of the matters that 
will be discussed in each one. 

The Value Analysis chapter, as the name suggests, will be dedicated to the presentation of the 
analysis relative to the value of the system. It’s also in this chapter were the context of the 
project is presented at its entirety.  

In the State-of-the-art chapter, the most developed piece of knowledge regarding 
recommender systems will be presented and discussed. Given that the project’s distinctiveness 
and innovation in comparison with other similar projects comes from the introduction of a 
recommendation system, it becomes clear that the state-of-the-art should focus on these 
systems and in their impact, as well as debate which one is better for which context and why, 
and also dive deeper in recommender systems as a whole – exactly what is being presented in 
the this chapter. 

In the Existing Solutions Analysis, the systems that have the most similarities with the one being 
developed will be addressed. After building and applying a selection criterion on a big group of 
systems, the resultant ones will be presented and analyzed thoroughly. At the end, based on 
the defined evaluation criterion, they will be compared and evaluated, attempting to conclude 
what could the new system bring to the market and how it could stand out. 

As a little side note, the reason why the previous two chapters where not compiled in a single 
“State-of-the-art” chapter was due to several reasons: First, considering that for organization 
issues there are several levels of sub-sections, joining the two chapters would do more harm 
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than good by increasing even more the said levels, resulting in a poorer reading experience; 
Second, it makes the most sense to separate recommender systems and the systems discussed 
in the “Existing Solutions Analysis” chapter because they debate two very different concerns. 

The Design chapter contains information relative to specific aspects of the system. In this 
chapter, the engineering of the crucial requirements will be presented, followed by the 
exposition of architecture-related information. It is in this chapter that the first decisions 
relative to the outcome of the system are made. 

In the Implementation chapter what was effectively implemented in the system is documented, 
explaining the whole implementation process with the use of code snippets and other tools for 
better understanding. Also, it is also presented information regarding how the system managed 
to fulfill the projected non-functional requirements. Finally, a section with the tests that were 
conducted is also presented. 

The Evaluation chapter, all the different crucial information necessary to the evaluation of the 
new system is defined and described. This information is composed by the definition of metrics, 
the formulation of hypotheses and the to-be applied methodologies. The results are then 
analyzed, through result and experimental analysis. 

In the final chapter Conclusion, a summary of the overall project is presented through the 
enumeration of accomplished goals. The limitations and possible future work are also 
addressed, followed by a final appreciation. 

Moreover, there’s also additional information attached in the end of the document. 
Information that is not crucial but complementary for the understanding of the project. 
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2 Value Analysis 

This chapter will be dedicated to the value analysis of the system. According to the Business 
Dictionary, the value analysis “identifies and selects the best value alternatives for designs, 
materials, processes, and systems.” [9] In the current context, the main goal of the value 
analysis is maximizing the value of the system, at the smallest possible cost. 

First, the context of the project will be thoroughly presented, within its entire scope. Then, 
Koen’s innovation process – New Concept Development Model – will be presented, followed by 
the overall value of the system, the value proposition and the Canvas model. 

2.1 Context 

In this section, the context of the project will be presented, divided in the relevant distinct 
categories that make up the end product. Given that it’s a mobile application directed towards 
fitness-related use, it seems only logical to put to context what exactly does fitness mean, why 
it is productive to explore this area and how is it connected with another ever-growing industry 
that is the mobile one. 

Also, there is one important matter that needs to be addressed – even though this project is 
directed towards the development of a fitness app, this report will only contain the 
programming of trainings aspect of it (in broad terms). Given that the project is being developed 
in conjunction with another author, concerns had to be separated and so, this report will 
contain the mentioned aspects, and the other author’s will contain workout and exercise’s. 

In this way, there will also be a section dedicated to the contextualization of training 
programming and a final one with the exposition and definition of different relevant concepts. 
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2.1.1 Fitness 

2.1.1.1 What is Fitness? 

What is fitness? Well, that’s a simple question with complex and rather diverse answers 
depending on who’s being asked. A good rule of thumb is by starting at the definition from 
Oxford Dictionaries that states fitness is “[t]he condition of being physically fit and healthy.” [10] 
With this definition, it can be presumed fitness is the ability to perform physical tasks whilst 
maintaining a healthy condition which can be both physical and mental. 

It is now established what fitness means, but what does it mean to be fit? According to the 
Academy of Nutrition and Dietetics' Complete Food and Nutrition Guide [11], when you’re fit 
you have: energy to do what’s important and to be more productive; stamina and a positive 
outlook to handle mental challenges; reduced risk of many health problems such as heart 
disease, cancer, type 2 diabetes, and osteoporosis; the physical strength and endurance to 
protect themselves and a better chance for higher quality of life and a longer one too. 

With this being said, being physically fit is important to handle physical challenges in the 
everyday life such as walking, playing with friends or training for the sake of improving one’s 
fitness level, which simply means to be better fit to perform specific tasks. This can come in the 
form of sports or simply from a health improvement perspective. Examples of this kind of 
physical activity are playing football, going to the gym, competing in the Olympic games, etc. 
Obviously, being fit in these types of activities can also improve the fitness level of everyday life 
tasks (i.e. someone who competes in football won’t have much trouble climbing some stairs). 
Even though the connection between them depends on the specificity of the task being 
performed, in a general point of view, according to an article published in the Medicine & 
Science in Sports & Exercise it is suggested that “cognitive skills trained in sport[s] may transfer 
to performance on everyday fast-paced multitasking abilities.” [12] 

The aforementioned type of physical activity (training for improving one’s fitness level) is the 
one that is concerned in the context of this project, which will be further explored next. 

 
2.1.1.2 Effects of being fit 

As it was already stated, being fit brings major health benefits, and a great part of that comes 
from physical activity, but what are the implications of being physically fit? According to the 
Centers for Disease Control and Prevention (CDC) [13], only half of adults engage in the physical 
activity they need to help reduce and prevent chronic diseases, which may be tied up to fact 
that the same ratio of adults live with chronic diseases. Moreover, about $117 billion are spent 
annually in health care costs that are allegedly associated with inadequate physical activity. 1 
in 10 premature deaths could be prevented by getting enough physical activity, which is the 
reason why Dr. Ruth Petersen, Director of CDC’s Division of Nutrition, Phyical Activity, and 
Obesity states that “[i]f you could package physical activity into a pill, it would be the most 
effective drug on the market.” [13]  

It is clear and time-tested that physical activity is directly connected with improved health and 
numerous articles and studies corroborate this statement, which is why Healthy People 2010 
[14] indicates that physical activity is the leading health indicator on a given population. [15] 
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2.1.1.3 Evolution and growth of the Fitness industry 

According to the IHRSA’s (International Health, Racquet & Sportsclub Association) 2017 global 
annual report [16], in 2016, the “global health club industry revenue totaled $83.1 billion” and 
in the 2018 global annual report [17], in 2017 the revenue peaked at $87.2 billion, almost 5% 
more than the previous year, with an increase from 162 to 174 million consumers worldwide, 
which estimates a near 7.5% increase in the same time interval. 

In the UK, Allegra, a leading-edge research and strategy consulting firm based in London, with 
the scope of producing a report regarding UK’s Fitness Club Market, estimates that the said 
market is at “£5.1 billion with [an] annual growth of 7.1%” [18] that will still be positive over 
the next 5 years. Also, in China, according to the IBISWorld Gym, Health & Fitness Clubs [19] 
[20], over the past five years (from 2013 to 2018) the annualized growth has been of 10.4% with 
a $7 billion revenue in total for the year of 2018. In the US, this growth has been smaller, at 
2.6%, but with a staggering $33 billion total revenue for the year of 2018. The US is still 
considerably very much ahead, with 11.5 times more number of business than China (112 
thousand and 9 thousand) and 3.2 times more employment in the industry (800 thousand and 
246 thousand), but according to Theo Hendriks, CEO of Sports and Leisure Group, “China could 
become the biggest fitness market in the world within the next 20 years. If only 4 percent of 
Chinese people join gyms, the country will need to build 30,000 new clubs over the next two 
decades.” [21] 

In Portugal, according to AGAP (Associação de Empresas de Ginásios e Academias em Portugal) 
[22] in 2017 the total revenue reached 220€ million with more than half a million members (535 
thousand) throughout the country. Portugal is still far from coming close to the top markets 
across the globe in terms of both total revenue and memberships, since the leader is the U.S. 
with a revenue of $30 billion, followed by Germany and the United Kingdom, both closing in on 
the $5.5 billion mark [17].  

2.1.2 Fitness and Technology 

Unquestionably, the fitness industry is on the rise, and that is due to many factors, but the most 
relevant to the context at hands is the conjugation with technological devices such as 
smartphones. In fact, according to a Forbes article [23], the introduction of many wearables is 
one of the reasons why the fitness industry is growing. According to the article, once people 
start paying attention to digital feedback relative to their health (i.e. blood pressure and heart 
rate), “they start making more healthy decisions” [23]. As also stated, “[the] trend toward 
incorporating health data into [people’s] daily lives isn’t going away anytime soon” [23]. 

Almost 68% of the world population possesses some kind of mobile presence, that is a fact that 
can’t be overlooked when trying to produce something for user consumption. There is no 
question that mobile-related technology will continue to grow exponentially, and to prove this 
point, some statistics will be presented, all taken from Statista. 
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Figure 2 - Global mobile data traffic from 2017 to 2022 (in exabytes per month)1 

In Figure 2, it is observable that projections indicate that between 2018 and 2022, the mobile 
data traffic will more than quadruple. 

 

Figure 3 - Worldwide mobile app revenues in 2015, 2016 and 2020 (in billion U.S. dollars)2 

In Figure 3, the projection indicates that between 2016 and 2020, the revenue from mobile apps 
will increase to more than double, reaching almost $189 billion. 

There are countless more statistics and projections that can be found, and probably 100% of 
them indicate a growth in the mobile sector. A compilation of these can be found at 
https://clevertap.com/blog/mobile-growth-statistics/. 

 
1 Image from https://www.statista.com/statistics/271405/global-mobile-data-traffic-forecast/ 
2 Image from https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/ 
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According to Flurry Analytics [24] from 2014 to 2017, the health & fitness app usage grew by 
over a staggering 330%, which is something that can be overlooked. However, the growth is 
slowing down, which can be explained by subcategorizing health & fitness apps into four 
different categories: workout & weight loss; general health; nutrition; studios & fitness content. 
[24] 

 

Figure 4 – Mobile Health & Fitness app sessions grow 9% year-over-year3 

As Figure 4 depicts, even though general fitness content-like apps are still having a 49% year-
over-year growth, that is held back by the slower growth of workout & weight loss apps, which 
have still a 11% growth and general health ones that stagnated, but more importantly by 
nutrition apps, that declined and are experiencing a decline of 26%. As stated by a Flurry 
Analytics report “[t]he negative trend of nutrition apps is likely influenced by studio & fitness 
content apps that are offering nutrition content in addition to their core focus.” [24] This 
doesn’t necessarily means that nutrition type apps are not needed, it simply means that more 
and more fitness content apps are incorporating nutritional content, and specific nutrition apps 
are becoming futile. 

Moreover, workout & weight loss apps accounted for 73% of all health and fitness apps, 
followed by 21% on general health, as depicted in Figure 5. [24] This means that working out 
and tracking weight loss are key features for health & fitness app users, and as it was already 
discussed, a key driver for this growth is the rising of wearables which according to Kantar 
Worldpanel, as of December 2016, 15.6% of  U.S. consumers owned a smartwatch of fitness 
band, which continue to outsell more advanced smartwatches. [25] 

 
3 Image from https://flurrymobile.tumblr.com/post/165079311062/health-fitness-app-users-are-going-
the-distance 
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Figure 5 – Health & Fitness app usage by category4 

In conclusion, fitness is a growing market, and so is the mobile one. Combining these two areas 
in a distinctive manner seems to be the logical course of action, through a mobile fitness app. 
Plus, according to Flurry Analytics “[h]ealth & fitness app users are the most loyal users in the 
app industry, with high retention rates, engagement, and frequency of usage” [24] and also, 
because all data indicates the continuous growth of wearables, seeking to penetrate the health 
& fitness app market seems like a great opportunity, now more than ever. 

2.1.3 Training Programming 

As previously established, the present project focuses on the training programming aspect of 
the system and as so, it’s required to contextualize all the specific information regarding it. 

Firstly, there’s the need to define some key concepts: 

 Reps: Number of repetitions a specific exercise is to be performed for. 

 Sets: Series of reps of an exercise done sequentially (usually with rest between sets).   

 Exercise: Combination of the number of sets and reps for a specific exercise) 

 Workout: Combination of different exercises for a single repeatable session. 

 Training Plan: Combination of different workouts for a single repeatable week. 

 Training Program: Combination of different organized and customizable training plans, 
usually programming between 4 to 16 weeks. It can be seen as a series of repeatable 

 
4 Image from https://flurrymobile.tumblr.com/post/165079311062/health-fitness-app-users-are-going-
the-distance 
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training plans, but the plans don’t have necessarily to be same. The training program 
can be repeatable as well. 

To better understand the described concepts, a full-scale training program will be built next. 

 

Figure 6 – Workout Definition 

Figure 6 depicts the rough outline of a workout, composed by different exercises, each one with 
a list of sets and reps. Reading the workout, it tells that first, exercise A is to be executed, 
performing 5 repetitions on the first set, and 4 on the second. Following, there’s exercise B, 
with the same logic – performing 12 repetitions of the first set and 10 on the second. 

 

Figure 7 – Training Plan Definition 

If two or more different workouts are combined, a training plan arises, as showcased in Figure 
7. The plan is intended to be repeated usually weekly, so, in every week, workout A and B are 
performed (the days in which they are performed can be also specified). 
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Figure 8 – Training Program Definition 

Lastly, to build a full-scale training program, it’s required to combine series of workouts (usually 
4 to 16, but it might vary). As seen in Figure 8, the plans that compose the training program 
don’t have to be necessarily the same. 

2.1.4 Concepts 

This section will be dedicated to the exposition and definition of some minor concepts that are, 
nevertheless, relevant to the project and need to be addressed.  

 
2.1.4.1 RPE 

RPE [26] stands for “Rated Perceived Exertion” and is a scale that ranges from one to ten that 
is used by athletes or coaches in order to “self-regulate their training intensity.” [26] There are 
various ways to describe how the scale works, but a general rule of thumb is saying that an RPE 
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of 10 means that no more reps or weight could be performed/added. An RPE of 9 means that 1 
more repetition could be performed with the same weight, and so on. There are also 
intermediate values like 8.5 or 9.5. The difference between 8.5 and 8 is the fact that even 
though with an RPE of 8, 2 more repetitions could be performed, with 8.5 the 2 repetitions are 
not a certainty. 

 
2.1.4.2 1RM 

1RM [27] stands for “1 Rep Max” and for some people is the ultimate end-goal. The 1RM is the 
most amount of weight an exercise can be performed for a single repetition. This value can be 
calculated by literally performing the exercise and testing it or by using a calculator that projects 
that value based on the most amount of weight lifted for more than 1 repetition. For example, 
using Strength Level’s calculator5, if someone lifts 100kg for 5 repetitions, their projected 1RPM 
is around 112.5kg which means that, in theory, the same person could lift that weight for a 
single repetition. 

Regardless, there are several calculators based on different and more parameters, in order to 
give a more accurate value. 

Even though this is a projected, and therefore theoretical value, using 1RPM is extremely 
important specifically for strength straining. A study conducted for the Journal of Sports Science 
& Medicine concludes – “[…] a standardized 1RM testing protocol […] is a reliable measurement 
to assess muscle strength changes regardless of muscle group location or gender.” [28] 

 
2.1.4.3 Real-Time Training 

For the purpose of this project, the concept of “real-time training” refers to the ability to follow 
a workout in real time. For example, being able to time the rest between sets, or to log 
information about the exercises as they’re being performed is considered real-time training. An 
example of something that does not follow this definition, is logging information about a 
workout after it was performed and not during it. 

Being able to end a set of an exercise, start the rest timer and log information about it during 
workouts is very helpful, because, among other things, allows users to log more coherent 
information. Obviously, describing something right after it was performed is much easier than 
after a long period of time where other similar things were also done. 

2.2 New Concept Development Model 

According to Peter A. Koen [29], the innovation process can be divided into three areas: the 
fuzzy front end (FFE), the new product development (NPD) process, and commercialization. FFE 
is usually considered one of the greatest opportunities for improvement of the overall 
innovation process. The fact that there’s no common language and vocabulary to create new 

 
5 Data from https://strengthlevel.com/one-rep-max-calculator 
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knowledge and make distinctions between different parts of the process creates a shortcoming 
that was addressed with the development of a theoretical construct – the NCD model. 

 

Figure 9 – NCD (New Concept development) model6 

Figure 9 depicts the aforementioned model, and it consists in three key parts: 

 The engine, which represents leadership, culture, and business strategy of the 
organization that drives the five key elements controllable by the corporation. 

 The inner areas define the five activity elements of the FFE – opportunity, identification, 
opportunity analysis, idea generation and enrichment, idea selection, and concept 
definition. 

 The influencing factors consist of organizational capabilities, the outside world, and the 
enabling sciences that may be involved. These factors affect the entire innovation 
process through to commercialization and are relatively uncontrollable by the 
corporation. 

2.2.1 Opportunity Identification 

It is in this section that the opportunities that might want to be pursued are identified. [29] 

The opportunity for the project at hands rose from the perceived growth in the fitness industry. 
This is a trend that doesn’t seem to stop anytime soon and capitalizing on the opportunity to 
provide a product or a service to a growing market is always a good thing. 

Furthermore, another thing that strikes as an opportunity and also one of the reasons why the 
fitness industry is growing, is the introduction of many “wearables” like the Apple Watch and 
Fitbit, which is a huge opportunity for this project, that seeks to explore this trend. 

 
6 Image from “Fuzzy Front End: Effective Methods, Tools, and Techniques” 
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Moreover, as it will be analyzed in further chapters, the offer in terms of mobile applications 
specifically does not seem to satisfy the need at hands. However, the recognition of the 
different competitors will allow to pinpoint their weak aspects, in order to improve them, and 
the strong ones, to reproduce. 

2.2.2 Opportunity Analysis 

In this section, an opportunity is assessed to confirm that it is worth pursuing. [29] 

As already exposed in the Context section, according to the IHRSA’s 2017 global annual report 
[16], in 2016, the “global health club industry revenue totaled $83.1 billion” and in the 2018 
global annual report [17], in 2017 the revenue peaked at $87.2 billion, almost 5% more than 
the previous year, with an increase from 162 to 174 million consumers worldwide, which 
estimates a near 7.5% increase in the same time interval. 

Additionally, as it was already showcased also, according to a Forbes article [23], once people 
start paying attention to digital feedback relative to their health “they start making more 
healthy decisions” [23], which is one of the reasons why the fitness industry is growing. Plus, as 
also stated, “[the] trend toward incorporating health data into [people’s] daily lives isn’t going 
away anytime soon” [23]. 

2.2.3 Ideas Generation and Development 

It is this section that concerns the birth, development, and maturation of a concrete idea. [29] 

In order to present various problem solving ideas, together with the different project 
interveners, a brainstorming was conducted and the collected ideas can be presented as such: 
implementation of a mobile/web app; implementation of a progress monitoring system; 
implementation of smart, AI based, techniques to generate different types of calculated 
recommendations; implementation of an in-depth profiling of users, to better adapt 
recommendations and others; implementation of machine learning techniques to improve the 
recommendations based on numerous variables; implementation of a personal virtual assistant, 
to help users in real time; synchronization with different wearables (i.e. smart watches) and 
other devices (i.e. scales); development of an image recognition system that detects movement 
and suggests improvements. 

2.2.4 Ideas Selection 

In most cases, the issue is not coming up with new ideas, but rather selecting the right ones to 
pursue in order to achieve the most business value [29], which is what this section is about. 

From the identified ideas, the ones that fitted the solution better whilst simultaneously impose 
fewer limitations in terms of complexity were selected and can be summed as: 

 Mobile/Webb app. 

 Monitoring system. 
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 AI-based recommendations. 

 Profiling. 

 Personal Virtual Assistant. 

 Synchronization with devices. 

2.2.5 Concept Definition 

This is the final element of the NCD and provides the only exit to the NPD or technology stage 
gate. In order to pass through, a compelling case for investment bust be made, described next. 
[29] 

The project at hands has a clearly defined end concept, which is a mobile and web application 
with an individual user-tailored experience, automatization, recommendation and 
monitorization of fitness-related activities, more specifically gym ones. 

2.3 Value, Perceived Value and Value to the Client 

2.3.1 Value 

There are two major types of clients/consumers of the product – gyms and regular gymgoers. 
The value brought to each is different and can be described as such: Gyms will have an added 
value to their business that can be translated in the retention of members, through the 
improvement on the direct connection between them and the staff, and through the offer of a 
superior monitoring and tracking system. Regular individual users will have all gym-related tasks 
such as information logging and progress tracking expedited, through the offer of the same 
system, unifying and computerizing all the specific individual needs. 

2.3.2 Perceived Value 

The perceived value will vary depending on the user, due to two reasons – opinion and profiling. 
First, obviously two distinct people can assign a different value to a same service/product, and 
second, the system is supposed to adapt itself to the individual needs of each user, so it’s 
expected that the perceived value depends also on the profile defined. 

Regardless, it’s intended that users perceive value in the system based on the innovation it will 
bring in terms of the smart recommendation techniques, numerous integrations and unification 
of the most essential features, all in one intuitive and adaptive platform. 

In terms of gyms, the perceived value comes in the form of member retention, based on the 
reasons described prior. 



 

19 
 

 

2.3.3 Value to the Client 

The value to the client can be seen as the balance between the benefits they get and the 
sacrifices they need to concede in order to acquire such benefits. As so, it is expected that the 
project at hands creates a group of benefits that will counterbalance the sacrifices, that in this 
case come in the form of a paid subscription and ads. The benefits can be presented as follows: 
ease of use through an intuitive interface; innovation in multiple areas such as smart 
recommendations, personal virtual assistant and number of packed features; profiling that 
leads to a unique, customizable and adaptive experience; included support. 

2.4 Value Proposition 

The value proposition consists in the offering of a system based in a web/mobile application 
with the end goal of helping clients during their fitness journey. This will be achieved by 
providing numerous features such as: grouping of the most crucial functionalities; introduction 
of innovative features like AI-based recommendations, in-depth profiling and integrations; 
Expedite and improve the connection between a user and their PT/coach; Efficient progress 
monitoring; Reduced wasted time in planning and monitoring. 

The presented features will be directed to any user, however, there is value added also to gyms 
themselves in the form of member retention, due to the offering of the said features to them. 

Given that it is not the only system of sorts in the market, it’s intended for it to emphasize on 
process automatization and computerization, accessibility of information and offering of a 
unique, individual and customizable experience. 

2.5 Canvas 

Essentially, the Canvas [30] model is a business model designed to allow all the business-related 
information to be presented on a single page, or in Figure 10 in this case. 
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Figure 10 – Canvas Business Model 

  



 

21 
 

 

 

3 State-of-the-art 

The state-of-the-art document is meant to evaluate the most developed piece of knowledge 
with regards to a specific topic, that in this case, refers to recommender systems. Considering 
that developing a recommender system is a major portion of the whole project it becomes 
evident that thoroughly researching the topic is of greatest importance. 

According to the “Recommender Systems” [31], a driving force behind the development of 
these systems is the increasing importance of the web for electronic and business transactions. 
In this regard, the ease with which users are enabled to provide feedback about their 
preferences is an important catalyst. The most typical kind of feedback comes in the form of 
ratings, in which a user is prompted to associate numerical values relative to their likings on 
items – a notorious example of this is the five-star rating system. [31] 

There are also other forms of feedback that are effortless to the consumer and even easier to 
be collect by businesses. An example of them is the simple act of purchasing or browsing items, 
which can be perceived as a manifestation of interest by the consumer. In this way, the main 
idea behind recommender systems is using the gathered data to deduce customers interests. 
That is because usually, past interests are often good indicators of future choices, and even 
though there are exceptions, most recommender systems are based on this relation between a 
user and an item - which refer to the entity to which the recommendation is being provided and 
the product (or service) being recommended, respectively. [31] 

With this is mind, it becomes clear that the underlying principle behind recommender 
algorithms is that “significant dependencies exist between user- and item-centric activity.” [31] 
This means that someone manifesting interest in, for example, a genre of books, is more prone 
to be interested in other books of the same genre rather than of different ones. Regardless, 
there may also exist correlations between various categories of items, which can be “learned” 
and applied to make more robust recommendations. As a general rule of thumb, the more data 
an algorithm has, the more coherent and robust will the predictions it makes be. 

So far, the described recommendations can be seen as personalized recommendations, since 
they’re molded to a single user’s profile, which is built based on their past interactions with 
products (i.e. browsing or purchasing). But, there’s also other types of recommendations – non-
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personalized recommendations – which are much easier to implement, since they attempt to 
suit multiple users and not specific ones. These types of recommendations, even though 
effective in certain aspects, are not the focus of the study and will not be addressed any further. 
[32] 

The following sections will unveil specific aspects of recommender systems including the 
different types there are and the issues and challenges associated with the employment of each 
one. Finally, in a conclusion section, the gathered information will be summarized and future 
prospects relative to the specific context of the project will be made.  

3.1 Recommendation Techniques 

In order for a recommender system to make a prediction, it first has to assess the usefulness of 
items relative to a certain user, to know exactly what is worth recommending. With this, the 
system must be able to determine an item’s utility, or at least compare it to other items and 
base the prediction on the said comparison. This comparison is useful because 
recommendations “are offered as ranked list of items. In performing this ranking, recommender 
systems try to predict what the most suitable products or services are, based on the user’s 
preferences […].” [32] 

Considering that, there are multiple ways to make recommendations, in terms of the addressed 
domain, the knowledge and also the algorithm used – how the previously mentioned prediction 
of an item’s utility is made. [32] The following sub-sections will be dedicated to the exposition 
of different types of recommendations and associated with each one, there will be some 
questions left unanswered, that will need to be addressed in further chapters, if the respective 
technique is chosen to be employed. 

3.1.1 Collaborative Recommendation 

This type of recommendation is based on collaborative-filtering (CF) which in its simplest and 
original implementation, recommends to a user what other users with similar profiles liked, or 
showed interest in the past. [33] For example, if two users have a purchase history that overlaps 
strongly and then one of them purchases a certain item that the other does not yet possess, 
then, the basic rationale is to propose it to that user, since it will mostly likely be of interest. 
“Because this selection of hopefully interesting [items] involves filtering the most promising 
ones from a large set and because the users implicitly collaborate with one another, this 
technique is called collaborative filtering (CF).” [34] 

The standard method of application of the CF is known as the Nearest Neighborhood [35] 
algorithm which, simply put, aims “to calculate the similarities between [a] target user […] and 
all other users” with the goal to find the most similar ones, through different kind of processes. 

The advantage of such technique is that the recommender system does not need to know 
specific data about an item (i.e. genre of a book and author), which means that it doesn’t have 
to entered in the system. Regardless, using specific data to propose similar items ones might be 
more effective, since it’s more robust. 
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Regardless, there are two different methods that are usually applied when dealing with this 
kind of filtering: 

 User-Based Collaborative Filtering (UB-CF): Given a certain user 𝑥 , the algorithm 
calculates the similarity of 𝑥  with other users, based in the Nearest Neighborhood 
technique, finding the most similar ones, predict ratings for items 𝑥 has not yet rated 
based on the ratings of similar users and recommend the top ones. [36] [37] 

 Item-Based Collaborative Filtering (IB-CF): Similar to UB-CF, it calculates the similarity 
between any two items, predict ratings for the items the target user 𝑥 has yet to rate, 
and recommend the top ones. [36] [37] 

Anyhow, there are some questions that usually emerge when dealing with these types of 
approaches, and the most significant ones are as follows [34]:  

 How to find users with similar profiles to the user for whom the recommendation is 
needed? 

 How to measure similarity? 

 How to deal with new users, with no defined profile yet (i.e. no history of purchases)? 

 How to deal with new items, that no one has showed interest in yet? 

3.1.2 Content-based Recommendation 

One of the questions of the previously described recommender system - collaborative – is 
answered by this one. The question regarding what to do with new items that have yet to be 
purchased, for example, can be answered with content-based recommender systems. These 
systems base their recommendations on the characteristics of the items. If a user has showed 
positive interest in a certain genre of books, the algorithm is more likely to suggest books of the 
same genre. As described by “Introduction to Recommender Systems”, “the similarity of items 
is calculated based on the features associated with the compared items.” [32] 

The advantage these systems bring in terms of new items, to answer the mentioned question, 
is due to the fact that the history of purchases (or any history associated with interests) is not 
needed, since when a new item is introduced, there can already exist others with similar 
characteristics, making it viable for recommendation without any history associated 
whatsoever. 

There are also some questions that appear when working with content-based recommender 
systems [31] [32]: 

 How can systems automatically acquire and continuously improve user profiles? 

 How to determine similarity in terms of characteristics compatibility? 

 What techniques can be used to automatically extract items characteristics? 
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 How to prevent “obvious” recommendations based on keywords that sometimes lead 
to the impossibility of an item being recommended due to the particular keywords it 
has? 

 How to deal with new users, since a history of their interests is needed? 

Even though content-based has some advantages comparing to collaborative such as the non-
necessity to possess large user groups to achieve a reasonably accurate recommendation, and 
also the fact that it answers to the “new item problem” where an item couldn’t be 
recommended if it had no history associated, there are still some tradeoffs that come with it. 
Even though using the characteristics of items does seem like a more accurate way of identifying 
possible recommendations, acquiring such data automatically is an arduous process, “meaning 
that such information must be manually entered […] in a potentially expensive and error-prone 
process.” [34] 

3.1.3 Knowledge-based Recommendation 

In the specific context where purchases are not made very often, and there are many one-time 
buyers, knowledge-based recommendations are particularly useful. The fact that these kinds of 
purchases exist, means that the system cannot rely on history of purchases, which is a 
prerequisite for collaborative and content-based recommendations. Also, in these kinds of 
markets, such as the automotive one, the products evolve significantly over the years, making 
the preferences also show a corresponding evolution. Moreover, these products often have 
many different properties, and users might be interest in items with very specific ones which 
makes it hard to capture user interest. [31] 

In such cases, knowledge-based recommender systems are very useful, where the ratings (or 
interest shown) in items are not used, but rather the “similarities between customer 
requirements and item descriptions, or the use of constraints specifying user requirements.” 
[31] An example of this are constraint-based systems, where explicit constraints regarding an 
item’s details such as color, model, price, etc. can be used to deduct interest. Moreover, these 
constraints may also be used to “describe the context in which certain features are relevant for 
the costumer” [31] such as, for example, that a car of smaller portions is advantageous if the 
customer is interested in parking in busy cities. As explained by “Recommender Systems: An 
Introduction”, applying explicit constraints to deduce relevant features is of great value.  
“Simply presenting products that fulfil a given set of requested features is not enough, as the 
aspect of personalization is missing, and every user (with the same set of requested features) 
will get the same set of recommendations.” [31] 

Other relevant aspect of these types of systems is the “user interaction”. There’s a need to 
extract specific information about a user’s interest, and a fair approach would be to directly ask 
the user about their requirements. However, such an approach, “not only requires detailed 
technical understanding of the item’s features but also generates additional cognitive load in 
scenarios with large number of item features.” [31] More elaborate approaches try to 
incrementally ascertain preferences through an interactive and personalized dialog between 
the system and the customer. 

There are some questions that beg to be addressed when dealing with knowledge-based 
recommender systems [31]: 
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 How to rank items based on the user’s characteristics? 

 How to acquire the user profile in a context in which no purchase history is available? 

 How to take customer’s explicit preferences into account? 

 Which interaction patterns can be used in interactive approaches? 

 How can the dialog be personalized to maximize precision of the preferences? 

3.1.4 Hybrid-approach Recommendation 

As the name suggests, taking a hybrid approach to recommender systems simply means to 
combine different techniques, like the ones mentioned previously. By doing so, one can “fix” 
the disadvantages of a certain system with the advantages of another. [34] 

When combining different types of recommendations to adopt a hybrid approach, there are 
some questions that have to be answered [31]: 

 Which techniques can be combined and what are, if any, the prerequisites to do so? 

 Should proposals be calculated for two or more systems, or do other hybridization 
designs exist? 

 How should the results of different techniques be evaluated, and can they be 
determined dynamically? 

3.1.5 Matrix Factorization 

One of the main problems with commercial recommender techniques, especially collaborative-
filtering, refers to sparsity and scalability. In other words, these recommenders do not deal very 
well with the lack of data nor with the increased growth of users and items. As reported in a 
“Knowledge and Information Systems” article named “Scalability and sparsity issues in 
recommender datasets: a survey”, even though nearest neighbor computation constitutes a 
typical approach for CF techniques, due to its high accuracy, “its performance on scalability is 
still poor given a huge user and item base and availability of only few ratings (i.e. data sparsity) 
[…]” [35] 

There are numerous and very diverse proposed approaches to alleviate the data sparsity 
problem, including a Multidimensional model [36], demographic filtering [37], content-boosted 
CF [38], and the most notorious and the one that will be explored in the context of this project, 
Singular Value Decomposition (SVD) [39]. 

SVD is the main technique used in an advanced method of recommendation, that “decompose[s] 
the original [user-item] sparse matrix to low-dimensional matrices with latent factors/features 
and less sparsity.” [40] This advanced method is called Matrix Factorization. 
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Representing users’ preferences with low-dimensional matrices offers great advantages in 
terms of latent features. In other words, if a user gave high ratings to a set of History movies, 
then there’s a high probability that the same user might enjoy other History movies in the future. 
Latent features are expressed by higher-level attributes, which in this case refers to the History 
genre. As it was excellently put by an article on “Towards Data Science”, “what matrix 
factorization eventually gives us, is how much a user is aligned with a set of latent features, and 
how much an [item] fits into this set of latent features.” [40] This offers an advantage over other 
methods because even though two users haven’t rated the same items, there’s still a way to 
calculate the similarity between them by finding underlying tastes, expressed by latent features. 
[40] 

Returning to SVD, since it’s the main technique used, it’s the most crucial piece of knowledge 
required to understand the workings of. Based on Linear Algebra, the theoretical background 
according to Golub and Reinsch [41], states that: 

 

This means that any matrix 𝐴 can be decomposed into 3 matrices, 𝑈, ∑ and 𝑉. With an initial 
matrix 𝐴 with 𝑟 rows, 𝑐 columns and rank 𝑚, where the columns of 𝑈 and 𝑉 are orthonormal 
vectors defining the left and right singular vectors of 𝐴, and ∑ is a diagonal matrix containing 
corresponding singular values “representing how important a specific feature is to predict user 
preference.” [40] It can be said that 𝐴 is a 𝑚 × 𝑛 ratings matrix, 𝑈 is a user-latent feature 𝑚 × 𝑐 
matrix, and 𝑉  is an item-latent feature r × 𝑚 matrix, and the singular values correspond to 
columns and rows of the original matrix respectively. [39] 

For the sake of simplicity, the ∑ matrix will be removed from the equation [42] [43], since it 
simply acts as a scaler. Hence, it can be assumed that it was already merged into one of the 
other two matrices. Then, the final equation becomes: 

 

What this equation (2) ultimately means is that we can have a user-item matrix, 𝐴 , and 
decompose it into two matrices that when calculated their dot product results in the original 
matrix. Why is this useful? Because of the simple fact that matrix 𝐴  won’t be nowhere to 
completely filled with data (or we wouldn’t need recommendations), and by decomposing it, 
applying some math to it and recomposing it, we can obtain the original matrix with the 
previously empty spaces filled with predictions of ratings, as depicted in Figure 11. 

Let A be a real m x n matrix with m ≥ n. It is well known (cf.  [98]) that 

𝐴 = 𝑈∑𝑉் (1) 

where 

𝑈்𝑈 =  𝑉்𝑉 = 𝑉𝑉் =  𝐼௡  𝑎𝑛𝑑 ∑  = 𝑑𝑖𝑎𝑔(𝜎ଵ, … , 𝜎௡) 

𝐴 = 𝑈𝑉் (2) 
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Figure 11 – Matrix Factorization example7 

The aforementioned “applying some math” refers to the factorization of individual values. The 
rating of a user 𝑢 for the item 𝑖, that will be denoted as 𝑟௨௜: 

 

Figure 12 – Factorization of a Single Rating8 

The previous Figure 12 represents the dot product of two vectors, 𝑝௨ which is a row of the 𝑈 
matrix specific to user 𝑢, and 𝑞௜  which is a column of the 𝑉் specific to item 𝑖. [43] This can be 
summed as: 

 

Applying the previous formula (3), all the empty values from the original matrix can be filled, 
producing ratings that when analyzed and ordered, produce recommendations. 

The only problem with this method is that we cannot use pure math form of matrix factorization 
to predict values because then we will learn to predict zeros for missing data when 
decomposing the matrix into the other two. Thus, there’s the need to find a different way to 
obtain the correct matrices to obtain the missing data based only on the non-zero values. The 
final question then becomes: How does one obtain the correct values for the orthogonal 𝑈 and 
𝑉் matrices? This has multiple answers and therefore multiple ways to achieve the same result. 
Regardless, these techniques are called optimizers and depending on the context, different 

 
7 Adapted from https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-
the-movielens-dataset-using-pyspark-9b7e3f567536 
8 Image from http://nicolas-hug.com/blog/matrix_facto_2 

𝑟௨௜ =  𝑝௨ ∙  𝑞௜  (3) 

where “∙” stands for the dot product 
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ones can be employed which can be detailed and explored in further sections providing that 
Matrix Factorization is a chosen recommendations technique for the system. 

3.2 Issues and Challenges 

Regardless of its usefulness, recommender systems also have their issues and challenges that 
need to be surpassed, if a precise, error-free system is what it’s desired. The next sub-sections 
will be dedicated to exploring some of the most relevant issues and challenges associated with 
recommender systems. 

3.2.1 Cold Start Problem 

As it was already discussed when presenting collaborative and content-based recommendation 
techniques, when a new user or item enters the system, there’s always an issue to be dealt with, 
due to the fact that there’s no history associated with any whatsoever. This obviously means 
that predicting the user’s interest will be less accurate and rating the items troublesome 
because they can’t be recommended to anyone. There are some ways to solve this issue, 
according to “Collaborative Filtering Recommender Systems” [35]: 

 Having the user rate some items initially before using the service, to set a ground base. 

 Displaying non-personalized recommendations until the user has rated enough. 

 Asking the user to describe their taste in aggregate (i.e. “I like science fiction movies”). 

 Asking the user for demographic information. 

 Using ratings of users with similar demographics as recommendations. 

Moreover, there are also some domains where there may be many “sleepers” – items that are 
very good but still unrated – and several techniques to recommend them include [35]: 

 Recommending items using non-CF techniques, such as content analysis or metadata. 

 Randomly recommending items with few or no ratings and asking users to rate them. 

3.2.2 Synonymy 

According to “A survey of Collaborative Filtering Techniques” [36] definition, a synonym “refers 
to the tendency of a number of the same or very similar items to have different name or entries.” 
[36] For instance, an item labeled as “horror movie” and “horror film” are actually the same 
item, but memory-based CF systems would find no match between them. The degree of 
variability in descriptive term usage is greater than commonly suspected, which decreases the 
performance of CF systems. [36] 

Some attempts to solve this problem were made, with “Singular Value Decomposition” 
techniques, particularly using the “Latent Semantic Indexing”. This method is capable of dealing 
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with the synonym problem to some extent, but it only gives a partial solution to the polysemy 
problem, which refers to the fact that most words have more than one distinct meaning. [36] 
[37] 

3.2.3 Gray Sheep 

According to “Combining Content-Based and Collaborative Filters in an Online Newspaper” 
definition, a “gray sheep” refers to “individuals [in a community of users] who would not benefit 
from pure CF systems because their opinions do not consistently agree or disagree with any 
group of people.” [38] Even after the first startup phase, these individuals will rarely, if ever, 
receive accurate recommendations based on CF. 

A hybrid approach was offered by the aforementioned reference, in which CF recommendations 
were combined with content-based ones, basing the prediction on the weighted average 
between the predictions of both. “Moreover, the weights [of both predictions] are determined 
on a per-user basis, allowing the system to determine the optimum mix of content-based and 
collaborative recommendation for each user, helping to solve the gray sheep problem.” [38] 

3.2.4 Shilling Attacks 

“Shilling Attacks” happen when someone give tons of positive reviews for their own product 
and/or negative ones for their competitors. It is, obviously, desirable to discourage this type of 
behavior through the introductions of precaution measures in CF systems. [36] 

The effectiveness of these kinds of attacks has been already studied, and “Shilling 
Recommender Systems for Fun and Profit” found out that item-based CF algorithms were much 
less affected by the attacks than a user-based one. It is also suggested that new ways need to 
be used to evaluate and detect shilling attacks on recommender systems. [39] 

There were numerous attempts to solve the issue with shilling attacks. In “Effective Attack 
Models for Shilling Item-Based Collaborative Filtering Systems”, a partial solution to the bias 
injection problem was given, through the use of hybrid and model-based collaborative filtering 
systems. [40] Also, in “Collaborative recommendation: A robustness analysis” a contribute was 
made to solve the attack problem by analyzing robustness, a recommender system’s resilience 
to potentially malicious perturbations in the user-item rating matrix. [41] 

Moreover, Bell and Koren, in “Improved Neighborhood-based Collaborative Filtering” [42] used 
a comprehensive approach to the attacks, by removing global effects in the data normalization 
stage, and working with residual of global effects to select neighbors. [36] In 2009, they were 
awarded by Netflix on their Netflix Prize9 initiative in which they substantially improved Netflix’s 
prediction accuracy with their algorithm - BellKor’s Pragmatic Chaos10. 

 
9 https://www.netflixprize.com/ 
10 https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf 
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3.2.5 Privacy 

To have better recommender systems, with improved accuracy, feeding personal information 
is usually the best choice, but that may lead to privacy and security issues. Consequently, 
recommender systems should build trust amongst their users, however, CF recommenders are 
more prone to those types of issues. [36] 

In CF systems, the user data is stored in a centralized repository, which can be compromised, 
resulting in data misuse. [43] Some techniques used to solve this issue include using randomized 
perturbation techniques, as proposed in “Privacy-Preserving Collaborative Filtering” [44], which 
allows users to publish their private data without exposing their identities, and also using 
Semantic Web technologies in combination with Neuro Linguistic Programming 11 (NLP) 
techniques, proposed in “Ontology-Enabled Access Control and Privacy Recommendations” [45] 
to mitigate the unwanted exposure of information. [36] 

3.2.6 Sparsity 

With the increase of users and items, the respective user-item matrix used to make predictions 
with collaborative filtering will become extremely sparse, leading to ever so less accurate 
recommendations. [36] [43] CF algorithms use the nearest neighbors’ approach, and with the 
lack of data, computing neighbors becomes a very hard and challenging task. 

This challenge can appear in different situations such as the already described cold start 
problem, where there’s not enough information to compute neighbors of new users. This is 
especially difficult because new items cannot be recommended until some users rate them, and 
new users cannot be given good recommendations due to their lack of rating history. [36] 

3.2.7 Scalability 

The rate growth of algorithms used by typical recommender systems show a linear relation with 
the number of items and users, which makes it difficult for them to process such large-scale 
data. [43] To better handle this magnitude of data, several techniques have been proposed, 
including clustering, that searches in small clusters instead of the entire database [36], reducing 
dimensionality of data using Singular Value Decomposition (SVD) [46], and Bayesian Network. 
[47] 

3.3 Conclusion 

Having presented several techniques used to implement a recommender system and discussing 
the issues and challenges that emerge with them, it’s now essential to draw conclusions from 
the gathered information.  

There are numerous techniques that can be used to implement recommendations in a system 
and each one has their strengths and weaknesses. The most notorious ones were the ones 

 
11 https://www.nlp-techniques.org/ 
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described in the previous sections and will be the ones that will most likely be selected when 
deciding a technique for the project. Choosing a technique to employ when trying to 
incorporate a recommender system will depend on multiple factors related to the context in 
which the system is intended to be integrated in. For this reason, in further chapters, a more 
thorough analysis will have to be conducted, with the purpose of gathering specific 
requirements for the recommender system, which will be the base of decision for choosing a 
recommendation technique.   
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4 Existing Solutions Analysis 

The purpose of this chapter is to analyze modern solutions to the problem at hand – building a 
fitness app – with the intent of gathering information about what is currently being 
implemented and debating on what still needs to improve. To do so, four major types of fitness 
apps were considered, with the thought process behind their creation described thoroughly, 
and for each one two apps that fall into that category were selected. The selection and 
evaluation of the apps were based on rigorous criteria, described in the following sections.  

Furthermore, the analysis of each app followed a set of common topics – the first one is just an 
introduction to the app, based on its own self-description, followed by its free and premium 
main features which, this time, are based on a direct usage of the apps by the author. Then, the 
strengths and weaknesses of the app are discussed through the eyes of the author, in what 
constitutes strong characteristics to replicate, and identify non-contemplated features from the 
existent solutions. Finally, for the applicable ones, the price plan is presented, and then some 
final thoughts summing the analysis is bestowed. 

After all the relevant apps are discussed, a final chapter will collect the most pertinent 
information and compare them between each other, and also between the envisioned system 
to develop, in order to further inspect where exactly is the value and betterment. 

4.1 App Types Definition 

There is an absurd amount of fitness apps already clogging the market, and there is also a great 
deal of differences between them, which makes an arduous process to select and evaluate them. 
Since it is desired to gather relevant and representative information about the fitness market, 
having relevant and representative apps should be the number one priority. To help with this, 
four major types of apps were defined, making it easier to categorize every app in either group 
and subsequently discuss them amongst their peers, producing representative conclusions 
within that context (type) and generalizing the information with the purpose of comparing with 
other app types. 
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By analyzing different apps, two categories almost instantly created themselves, which make 
up a great percentage of the market: apps designed for gyms and apps for quick athletic 
workouts. The first category is self-explanatory, it refers to apps that are designed, usually, for 
gym chains that allows them to have their own system, calibrated to their needs and context. 
The second one is the one that appears more often in any fitness-workout related search, which 
describes apps arranged for people looking for small, quick, predefined workouts, that require 
little to no interaction from the user. 

Even though these categories compose a great deal of the market, there were still “outsiders” 
that needed categorization. In sight of this, two more not so obvious types were defined: 
general apps and specific, customizable and flexible apps. The first one completes the market’s 
percentage almost fully (after the first two categories being considered), and it comprises apps 
that are designed for people seeking more general goals, like muscle or strength building, that 
wish to maintain some sort of record of their activity. The second category is the “last 1%” of 
the market, which contains super specific, flexible, and therefore complex apps. It aims to help 
people with very well-defined goals that embrace the complexity of recording their activity as 
a trade-off for specificity and flexibility. These apps will be henceforth be called PowerBuilding 
apps, for reasons described next. 

Briefly, the four categories can be defined as the following app types: 

 Gym Only: Apps designed for gym chains for their own specific needs. 

 PowerBuilding: Apps designed for super specific, flexible and complex goals. 

 Athletic: Apps designed for small, quick workouts. 

 General Lifting: Apps designed for general lifters. 

In the next sub-sections, these types will be described more thoroughly, for the sake of 
consolidating their definitions and purpose. 

4.1.1 Gym Only 

As previously mentioned, these type’s apps are part of the set that are limited to a specific gym 
and are adapted to that context. These provide the benefit of having a better, in theory, 
connection between its user and their gym from the perspective of scheduling classes and 
physical assessments, communicating with the gym specialists, for example, Personal Trainers 
and Nutritionists, and other perks that can be granted to the members that use the gym app 
like discount codes for products distributed by the gym. 

For the average gymgoer it is undeniable the advantages that using their gym app offers, even 
from a comfort standpoint, considering that they are not required to search for an app that 
caters to their needs. Not to mention that usually, in most cases, the app is free for members, 
which can also be a deciding factor.  
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4.1.2 PowerBuilding 

The PowerBuilding term comes from the junction between Powerlifting [48] which is a strength-
based sport in which the contestants have three attempts at maximal weight on three different 
lifts, similar to Olympic weightlifting [49], where there are only 2 different lifts, and 
Bodybuilding [50], which is a sport that consists in the development of one’s musculature and 
symmetry through the use of resistance exercises. The two sports come together as one when 
one’s goal is to develop specific strength on the “three main lifts” and develop simultaneously 
a good physique. This is possible due to the fact that the resistance exercises are the same in 
both sports (in most cases), the only difference is in the way they’re done, 

The two sports included in the term PowerBuilding require the person practicing them to plan, 
program, and even log their activity. They’re sports based in a great deal of variables that need 
to be kept in check [51] [52], like consistency, specificity, fatigue management, amongst others, 
which can only be achieved through intelligent programming and logging. This can be a highly 
complex and tiresome task to perform, creating a niche for that specific need. 

As a result, this section was created with the intent of grouping apps that provide a more 
methodical and flexible approach to programming for bodybuilding and strength training. Even 
if some of them claim they’re specifically designed for one of the sports, they’re usually easily 
adaptable to the other, given their similarities. 

As mentioned above, the great benefit of these apps is their methodical, flexible and 
customizable approach to programming. However, all this flexibility and customization comes 
with a cost – complexity. Even though most apps will claim they can pack advanced 
programming techniques and ease of use all in the same system, it’s safe to assume that’s not 
the case more often than not. Robustness comes with the cost of augmented complexity, and 
that’s a cost that some are willing to concede. Some people, regardless of their end goal, want 
to maintain and follow a specific program, based in all kinds of variables like percentages, RPE, 
etc. and that’s far from being completely straightforward, which is acceptable for them – 
they’re not looking for easy, they’re looking for results. 

4.1.3 Athletic 

By definition, an athletic person is someone who’s “physically strong, fit, and active” [63] and 
that’s exactly what the set of apps from the Athletic type are trying to portray they can offer – 
a means for anyone to be more athletic, in general, or towards a specific sport. The differences 
between these apps and the Powerbuilding ones, for example, range from the specificity of 
training to the exercise selection itself. Even though both can be adjusted for any needs, a 
Powerlifter would have a hard time using an athletic app for their programming, since yoga 
exercises and running are not exactly what they’re looking for. 

Nevertheless, athletic apps have their use and the majority of the population who works out 
will most likely adopt these apps to their training, since they provide a wide-range of exercises, 
stretches, running, etc. which, for most people, is what they’re looking for anyway. Most people 
don’t want to compete in Powerlifting or Bodybuilding, most people that go to the gym just 
want a healthier lifestyle, incorporating athletic exercises in their lives, and, for that, these apps 
are the best suited for them.  
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Even an athlete who competes in any kind of movement-based sport (e.g. Soccer, American 
Football, Basketball, etc.) will benefit greatly from using athletic apps, since, most times, they’re 
looking to incorporate athletic movements in the gym to improve their sport specific 
performance.  

4.1.4 General Lifting 

If the goal is not to program and follow specific training regimens based on countless variables 
like it is on Powerlifting, nor to effectively increase the musculature development through 
intelligent hypertrophy programming as it is on Bodybuilding, and not even to improve sport-
specific performance or overall athleticism, there’s a chance the goal falls in the last category 
of fitness apps – General Lifting. General Lifting apps are designed to provide almost like the 
best of all worlds. They’re not as specific as those of the other categories, but they provide more 
features and overall more flexibility. 

People who use these apps, “general lifters”, can be considered, generally speaking, as people 
that are not preparing themselves for anything specific like a sport, but instead are just looking 
to work out and better themselves and want to keep some kind of record of their activity and 
performance. It can be inferred, due to the lack of specificity on these apps, that these people 
are not very serious about lifting weights in the sense that they have no ambition past the goal 
of getting leaner, or stronger, or whatever their personal goal may be.  

The difference between a “general lifter” and, for example, a Powerlifter, is that the Powerlifter 
has the goal of lifting the most amount of weight on specific exercises, in a specific manner, and 
wants to maximize the results through the use of intelligent programming and proper feedback, 
and the “general lifter” just wants to improve themselves and do what they like (in terms of 
exercises, for example). This does not go to say that one is better than the other in any way, 
people have different goals. Regardless, it’s important to distinguish these types of lifters 
because even though they have similar interests in terms of documenting their activity (through 
the use of fitness apps), the way that activity is documented is very different and needs to be 
taken into account. 

These apps can be easily confused for any of the previous ones due to their flexibility and wide 
range of features. As such, the biggest difference between them and the other apps is the lack 
of specificity. Even though you can program an athletic workout, you won’t have as much 
specific features as you would have if you’ve used a specific athletic app.  

4.2 App Selection Criterion 

The apps, in order to be selected for analysis, have to meet certain criteria. This section will 
unveil the defined criteria as well as a justification for them. 

The selection followed two different phases – firstly, many apps were gathered; secondly, the 
criteria was applied to them in order to diminish the total number of apps to a reasonable one. 
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The first phase consisted in the almost random selection of Health and Fitness apps from both 
the Google Play 12and Apple store13. The apps were ordered by their rating, number of ratings, 
overall downloads, and other filters until a decent number of apps were gathered for each app 
type (Gym Only, PowerBuilding, etc.) with the exception of the Gym Only type, for reasons 
described below. With that, the fact that the apps were also selected to fit any of the app type 
can also be seen as a third criterion. 

Then, in the second phase, the criteria of selection were outlined – the app had to have an 
average rating (between Google Play and App Store) above 4.5/5 with more than 30 thousand 
ratings in sum. Then, the criteria were applied to each app, and the ones that did not meet any 
of the criterion were discarded.  

Table 1 contains the apps that resulted from applying the criteria “filter”. All the listed apps 
have above a 4.5/5 rating with more than 30 thousand ratings through both store platforms. 
Some of the apps, like Nike Training Club even have a 4.7/5 rating with more than 369 thousand 
ratings, so it’s safe to say that, in broad terms, the best apps were selected.  

However, there is an app that doesn’t meet any of the defined criterion and that is Intensity, 
with a 4.3/5 average rating and with only 271 ratings. The reason for adding this app to the 
selected ones that did met the criteria is because Intensity provides a unique aspect of 
specificity that none of the others did. Intensity fit the PowerBuilding type quite well, and given 
the fact that none other app did so, an exception was made. 

Table 1 – App’s Ratings14 

Apps Google Play Rating 
(number of ratings) 

Apple Store Rating 
(number of ratings 

Average Rating (total 
number of ratings) 

Intensity 4.5 (244 ratings) 4.1 (27 ratings) 4.3 (271 ratings) 

Strong 4.8 (~8300 ratings) 4.8 (~24200 ratings) 4.8 (~32500 ratings) 

Nike Training 
Club 

4.6 (~256600 ratings) 4.8 (~112600 ratings) 4.7 (~369200 ratings) 

Freeletics 4.5 (~144500 ratings) 4.6 (~9800 ratings) 4.6 (~154300 ratings) 

Jefit 4.5 (~63100 ratings) 4.8 (~12700 ratings) 4.7 (~75800 ratings) 

Fitbod Non-applicable 4.8 (~34400 ratings) 4.8 (~34400 ratings) 

 

Finally, there’s also two more apps that were not applied the criteria “filter” and those are the 
ones included in the Gym Only app type. These apps were specifically selected with one 
criterion only and that is – the ability to use them. Gym Only apps are exclusive to their 

 
12 https://play.google.com/store/apps/category/HEALTH_AND_FITNESS 
13 https://itunes.apple.com/us/genre/ios-health-fitness/id6013?mt=8 
14 Data from February 1st, 2019 
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respective members, so, being able to access them is quite hard. The only ones that were 
accessible were the ones selected. 

4.3 App Evaluation Criterion 

After selecting and analyzing the apps, there’s a final section dedicated to their evaluation. That 
is important because even though the apps were individually scrutinized, there’s always a need 
to sum the gathered information and present it properly in order to construct a conclusion. 

To do so, the set of the most important functionalities were adopted to judge each app’s 
capability of delivering the features that hold the most perceivable value all around. These 
features, as said, try to encompass all the features that are perceived to hold the most value in 
a desirable system, and will be applied to each app, to evaluate them and face them with the 
system that is meant to be designed. This will both assess the current offer in the market and 
the potential value the envisioned system could introduce to it. 

The aforementioned features, used to evaluate the apps, can be described as such: profiling 
different users; create a single workout; start and/or register a workout; perform a workout in 
real time; log the workouts performed; workout statistics; info about each exercise; create a 
new exercise; create a training plan; create a full-sized training program; log personal body 
measurements; body measurements statistics; import progress photos and/or videos; directly 
communicate with a personal trainer or coach through the app; support multiple languages for 
the interface; have a social aspect (i.e. sharing workouts); useful calculators (i.e. calculators to 
quickly show how much weight should one put on each side of the bar); any type of integrations 
(i.e. Google Fit); ability to import and/or export information to the app; web/desktop 
application; any type of recommendations based on artificial intelligence techniques. 

Also, it is necessary to evaluate the created app types. Each app type has a purpose, and it 
wouldn’t make much sense to analyze them with no separation whatsoever. To do so, each app 
type will be evaluated by a set of specific features, usability and overall functionality. To sum 
the information, a table will be built with the strengths and weaknesses of each one, based on 
the criteria defined for them. 

First, it is important to define the target “audience” for each app type, in order to better decide 
what would constitute value to them. That information is presented in the following Table 2. 
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Table 2 – App type targets 

App Type Target 

Gym Only Gym members. 

PowerBuilding Strength sport athletes, people seeking for 
strength training. 

Athletic Sports athletes, people seeking for an 
athletic lifestyle. 

General Lifting Average gym goers. 

 

With that in mind, the criteria defined for each app type can be presented as such: 

 Gym Only: Intuitive interface, given that most gym users would be beginners; ease of 
connection between the user and their respective personal coach and nutritionist; 
ability to schedule group classes; ability to schedule physical evaluations. 

 PowerBuilding: Program full-sized training programs; useful calculators; progress-
oriented charts and statistics; multiple ways to program (i.e. percentages, RPE); well-
implemented timers. 

 Athletic: Fast usability, given that most users will be looking for a quick workout; 
progress-oriented charts and statistics; customization, to create different 
workouts/exercises. 

 General Lifting: Versatility, given that it will be available for different kind of users; 
profiling of the different types of users in order to be more adaptive; multiple types of 
workouts, exercises, and others, to provide variety. 

With the different evaluation criteria already defined and established, the next sections will be 
dedicated to the presentation of each app type and the analysis of each app, with the end goal 
being to sum the information and evaluate them accordingly. It is also important to mention 
that the evaluation criteria defined for each app type will serve as a guideline in the individual 
analysis of each app, more specifically in the strengths and weaknesses part. But, the said 
analysis, will not be restricted to those criteria and will be also based on specific characteristics 
each app might possess that are worth mentioning. 
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4.4 Gym Only 

As it was already established, Gym Only apps offer distinctive features, but they also have their 
downsides. In the next sub-sections, some apps will be presented and discussed. 

4.4.1 AmazinGym 

AmazinGym [51] [52] [53] is a Portuguese gym app, designed for the gym members to have a 
platform in which they can perform multiple gym-related tasks directly from their device, as 
well as track workouts, log information and measure progress. It is certain that the ease of 
communication with the gym is the main reason why members use it. 

 
4.4.1.1 Free Main Features 

The fact that the app is meant to be used by the member and their respective personal trainer, 
the features vary from one another. The key features for the members are undoubtedly the 
gym related ones – ability to check the working hours of the gym and of all group classes and 
monitor daily physical activities and body measurements. Group classes, physical evaluations, 
and personal trainer meetings can be scheduled and cancelled. 

Moreover, other features the members have access to are such as being able to check individual 
profile information (different logs, followers, etc.), monitor body measurement progress 
through statistics, as depicted on the leftmost screenshot of Figure 13, a calendar with the 
different logs of activities and sharing workouts. The member can also check their training plan 
with in-depth information regarding the exercises, the equipment needed, and others. Each 
exercise has a small video demonstrating how it should be performed, individual statistics for 
it, as depicted in the rightmost screenshot of Figure 13, muscles targeted and also a written 
description of it. 
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Figure 13 – AmazinGym’s exercise statistics15 

Additionally, the workouts can be started and performed in real time, logging the information 
about each exercise (i.e. number of repetitions) for posterior analysis of the personal trainer.  

At the same time, the personal trainer is allowed to create and customize the training plans of 
each of its members and monitor their progress through statistics.  

Finally, there’s also multiple integrations with devices that allow to monitor the heart rate in 
real time, and with specific scales, to automatically import information relative to the member’s 
weight, bodyfat percentage, among others, directly to the app. Plus, there are also some 
customizations that can be made, as far as units of measure and notifications go. 

 
4.4.1.2 Premium Main Features 

There are no premium features to mention, all of the features are free for members. 

 
4.4.1.3 Strengths 

With regards to the app’s strengths, the ability to schedule group classes, physical evaluations 
and meetings with the personal trainer is definitely valuable. Plus, the available integrations 
with heart rate monitor devices and scales also adds huge value to the app. 

 
15 Images from 
https://play.google.com/store/apps/details?id=digifit.android.virtuagym.pro.amazingymmatosinhos&hl
=pt_PT 
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4.4.1.4 Weaknesses 

There are also some characteristics of the app that do strike as a weakness, and those are: non-
intuitive interface, due to the fact of being arduous to find some of the features (i.e. scheduling 
group classes) and also due to the fact of the exaggerated number of different filters for 
exercises, which is confusing and sometimes not important at all; non-ability to schedule 
nutritionist consultations. 

 
4.4.1.5 Price Plan 

As mentioned previously, all of the features are free, and so, there is no price and subscription 
plan. 

 
4.4.1.6 Final Notes 

AmazinGym’s app is undoubtedly an added value to their members, by offering features that 
bring them together, like scheduling classes or physical evaluations, but, the fact that some of 
those features are not easily accessible due to the non-intuitive interface is obviously 
problematic, especially for beginners. 

4.4.2 Tripla Forma 

Tripla Forma [54] Virtual Gym [55] is also a Portuguese gym app, designed for prescribing and 
monitoring training programs for Tripla Forma’s members. It allows for the users to access their 
programs, prescribed by the respective personal trainers, and to register the training results for 
posterior analysis. 

The direct communication with the personal trainer is the key aspect of the app and the reason 
the gym members use it. 

 
4.4.2.1 Free Main Features 

Considering that the app is designed to be used by the personal trainer, the nutritionist and the 
member in conjunction, the functionalities differ from one another. The features accessible by 
the member are pretty straight forward – one can consult their different workouts (there can 
be more than one), and also register results for each one. For each exercise, the member can 
send a message to their trainer, and can also see their progress in the form of a simple chart.  

Furthermore, the member can also see the history of workouts, the goals established, in terms 
of nutrition, physical evaluation, etc. and, regarding the same physical evaluation, they can 
check the progress of the conducted evaluations, as depicted on Figure 14, where the different 
information like bodyweight, bodyfat, water percentage, etc. are presented and compared to 
another evaluation, measuring progress in the form of percentage. 
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Figure 14 – Tripla Forma Virtual Gym Physical Evaluation 

Furthermore, the member can also consult their nutritional plan and customize certain aspects 
of the app such as the notifications and personal data. 

On the other hand, from the personal trainer perspective, the features are the opposite of the 
members. The trainer can define and customize the different routines for each member they 
train, monitor their progress through their results and also answer the messages they send. 

Finally, the nutritionist can define and customize each member nutritional plan, define goals 
and enter information regarding the physical evaluations performed by them. 

 
4.4.2.2 Premium Main Features 

There are no subscription plans, and so, no premium features to mention. 

 
4.4.2.3 Strengths 

Regarding the strengths of the app, there’s only one thing that pops up, and that is the ability 
to have the data from bioimpedance scales [56], which measures the body composition, in 
bodyfat percentage, water, muscle, etc. on the app, and being able to compare it with previous 
evaluations, in order to measure progress. It can also generate graphs to better analyze the said 
progress, as depicted on Figure 15, where the graph for the bodyweight and bodyfat progress 
is displayed on the leftmost and rightmost screenshot respectively. 
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Figure 15 – Tripla Forma Virtual Gym Physical Evaluation progress graphs 

 

4.4.2.4 Weaknesses 

As far as weaknesses are concerned, the app is filled with them. For starters, the interface is 
not very aesthetically pleasing. Plus, the logging of information regarding exercises doesn’t 
make much sense, since one can log the weight or the repetitions but not both. Also, there’s no 
training program, only individual daily workouts that can be performed whenever the member 
sees fit. Given the fact the whole app revolves around workouts, one could assume the related 
features would be well implemented, but the fact that a member can log the same workout an 
infinite number of times on the same day tells otherwise. 

 
4.4.2.5 Price Plan 

As previously mentioned, there is no subscription plan to be mentioned. 

 
4.4.2.6 Final Notes 

There’s no doubt Tripla Forma’s Virtual Gym is useful for its members to monitor their physical 
evaluations progress, but besides that, the only ones that benefit from the features the app 
offers are beginners or people that are only looking to consult the random isolated workouts 
the personal trainers create for them. For people that do care about progressing in the gym, an 
app like this will take them no further than a sheet of paper with the list of exercises to perform.  
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4.5 PowerBuilding 

This section will be dedicated to the presentation, analysis and discussion of apps that fall into 
the PowerBuilding category. 

4.5.1 Intensity 

Intensity [57] [58] [59] might very well take the number one spot when it comes to apps 
designed for strength straining. Specifically targeting Powerlifters, whose main goal is getting 
better on very specific movements, it’s optimized for tracking progression with the use of their 
“progress-oriented interface” [57]. 

It’s relevant to point out that Intensity also has a desktop version of the app, with the same 
features as the app.  

 
4.5.1.1 Free Main Features 

There are a number of features that do make this app shine from a free-user perspective, and 
one of them is the ability to access countless popular strength training programs already built 
for use. If that’s not the intent, one can build day-to-day workouts or even customize the 
workouts of already built programs. However, one cannot customize or create full-scale 
programs, as that is a premium feature. It’s also of great value to access in-depth statistics, in 
the form of graphs, about personal records, overall progression and others. 

Other features, with substantial increased value are a timer and a stopwatch, a bodyweight 
tracker, numerous calculators and, to some extent, flexible customization, in terms of units of 
measurement (weight and distance), and not very much else. 

Some features that are not required but are a “good-to-have” are such as messaging between 
friends and leaderboards with other users. These only add to the social aspect of the app, which 
is arguably necessary. 

 
4.5.1.2 Premium Main Features 

With this being said, there are also a big number of features that can only be unlocked via 
premium subscription. Only with it can one create their own custom program with their 
workouts and exercises. The free subscription only allows the customization of daily workouts, 
not the creation of an entire program. As it was already established, a workout consists in a set 
of exercises for a given non-repeatable day, and, a program is a set of planned workouts, usually 
outlining 4-16 weeks. In sum, if one’s using a free subscription, they can only follow already 
built programs and customize daily workouts. If it’s desired to customize an existing program, 
it’s also required to possess a premium subscription. 

Moreover, some other features that can only be accessed using a premium subscription are as 
follows: theming (changing themes within the app); upload videos of specific sets; sharing 
customized programs; generate programs automatically; priority support and feature requests.  
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4.5.1.3 Strengths 

Intensity, no doubt, has numerous features, but the strengths that really highlight its potential 
range from the simplicity of the design to the intricacy of the statistics it offers. 

   

Figure 16 – Intensity’s overview of a Set and Stats 16 

As observable in the Figure 16, the simplicity of the design is noticeable on both screenshots. 
On the rightmost screenshot, the said intricacy of stats is also visible, with statistics relative to 
strength progression, bodyweight progression, exercise and muscle group distribution, and 
others. Without going too much in-depth on very specific points, other strengths are the instant 
access to multiple popular programs and the ability to use them on the app instantly without 
any customization. The capacity to make numerous calculations within the app is also very 
useful, in order to calculate how much weight should be on both sides of the bar right away, or 
to time the rest interval, among others. Also, the relatively easy input of information is 
something that adds a lot.    

 
4.5.1.4 Weaknesses 

Because there’s no good without the bad, Intensity also has some major weaknesses. By far, 
the greatest weakness is the need to have a premium subscription to access most of the 
essential features. With no ability to create custom programs or to customize existing ones, or 
to add videos to workouts, or even to change the theme of the app without a premium 
subscription, the use of this app becomes a fitting concern.  

Regardless, looking at the app as a whole, some weaknesses that emerge are such as the 
inability to reset the current in-use program or even swap it with another one. When a program 
is selected, its workouts are automatically added to the correct day, regardless if there’s an 
already planned workout for that day. If one selects a program and then selects another one, it 

 
16 Images from https://www.intensityapp.com/ 
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overlaps the workouts with no way to completely remove one of the programs. Removing the 
workouts one by one seems like the only solution, which is a major weakness. 

Moreover, even though the app provides a timer and a stopwatch, the concept of “real-time 
training” is nowhere to be found, since the two are completely disconnected from any workout 
set. To be blunt, using the mobile phone’s timer and/or stopwatch serves the same purpose, 
which makes it a weakness, comparing to other apps that do have this concept well 
implemented. 

Other weakness is the fact that it doesn’t support multiple languages, only English, which makes 
it hard for non-fluent users, and also the inadequacy of good filter options. When searching for 
an exercise, one can only filter by its name and not by its muscle group, type of exercise, or 
others, which makes it really hard to build a decent workout without remembering the names 
of the exercises. Also, when adding a new exercise, for example, it’s required to enter its muscle 
groups and exercise types but there are no pre-existent options, one has to type them in, 
making it impossible to group exercises by their attributes. All-around, the creation and filter 
mechanics are very defective. 

 
4.5.1.5 Price Plan17 

As covered above, most of the essential features are under the premium subscription plan, 
which raises a question regarding its price. The premium feature costs 4,39€ per month, but it 
also has a lifetime purchase of 17,99€. 

 
4.5.1.6 Final Notes 

In conclusion, viewing Intensity as a whole, it has to be said that it comes a bit short on 
expectations. Marketing itself as a system with great flexibility, numerous tools and “built for 
speed” [57], the usage of the app revealed to contradict almost every claim the brand formed. 
As said previously, the inability to create simple programs without having to pay for premium 
really makes the app nearly unusable without it, and even so, it’s not possible to remove a 
program or swap it with another, or even filter exercises by any attribute. Even though it has a 
timer, there’s no link between it and the exercises themselves and the statistics are not the 
most pertinent overall. 

On another note, it’s not all bad, as there are some ideas that can be taken from analyzing 
Intensity. The most important ones are the simplicity of the design whilst packing a somewhat 
featureful system and the relevant calculators, more specifically the plate calculator, which is 
very useful. 

All in all, it would be a below average app without any paid features, but the fact that one has 
to pay to do most of the important stuff makes it not worth at all.  

 
17 Data from February 20th, 2019 
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4.5.2 Strong 

Strong [60] [61] [62] was built to pack the most amount of features in the “simplest and most 
intuitive” [60] way. Designed to be adaptable to almost any workout and experience level, it’s 
safe to say that it will suit almost every need. Regardless of its simplicity and flexibility, it’s also 
very robust, as it provides tons of information about exercises and valuable insights regarding 
progress. 

 
4.5.2.1 Free Main Features 

There are tons of free features and the most important of them is the ability to start a workout 
very easily. The main screen of the app is a “Start workout” screen, that allows the user to start 
a routine from the ones already built or create custom ones with the desired exercises. It also 
allows the “quick start” of a workout, with the ability to add exercises in real time.  

After starting a routine, whenever a set of an exercise is pressed, a timer automatically opens 
to count the rest time until the following set. This value can be customized in the exercise info, 
to specify a particular one, or to turn off the feature altogether. 

Not only that, the exercises themselves have a few features associated such as a brief 
description and a small demonstrative video, a history of the sets performed and personal 
records with the number of repetitions executed, the max reps on a set, and others. The 
exercises can be easily filtered by their name, by the body part they work or their category and 
can be created as easily, providing the said filterable information. Additionally, there’s a quick 
filter option to select the most performed exercises. 

When executing a workout there are other features like classifying the set, adding notes to the 
exercises, and also an indication of how much was previously lifted if the user wants to improve 
their record. 

On another note, there’s a feature on the “Profile” screen that allows the user to see several 
stats related to their progress, like the workouts per week, and, if connected to Google Fit (or 
Apple Health in case of iOS), the calories per week, and daily macros. 

Other small features consist on the changing the preferred units (weight, distance and size), a 
bodyweight measure tracker, a calendar with the history of past workouts and, for iOS users, 
the ability to associate a spoken word to a workout and then, using Siri, launch that routine 
verbally from outside the app. 

 
4.5.2.2 Premium Main Features 

Furthermore, Strong also has a premium subscription that offers a few more features suchlike 
the ability to store unlimited routines, charts with information about progress of specific 
exercises, a plate calculator that given a weight automatically calculates how much should be 
on both sides of the bar, such as the one depicted on Figure 17, a warm-up calculator that can 
be customizable to define how much warm-up sets should be performed and the percentage 
of weight they should be performed with. It also has a body measurements tracker, similar to 
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the bodyweight one but specific to individual body parts like the biceps, chest, etc. with charts 
displaying progression. 

 

Figure 17 – Strong’s Plate calculator 

Apart from the presented premium features, there is one that substantially increases the value 
of the subscription, which is the integration with the Apple Watch through a fully-featured app 
that allows the user to log workouts and measure heart rate without having to access the 
phone, as depicted in Figure 18. 

       

Figure 18 – Strong’s Apple Watch integration18    
  

4.5.2.3 Strengths 

When it comes to strengths, Strong really does a good job with its workout-oriented system. 
There’s virtually nothing that could be added to this methodology, with comprehensive 
descriptions of exercises, charts, records, real-time workouts, advanced plate calculators and 

 
18 Pictures from https://itunes.apple.com/app/apple-store/id464254577#?platform=appleWatch 
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numerous stats and insights relative to body measurements. The quick filter option for exercises 
really adds a lot to the interface, as it allows to immediately access the most performed 
exercises, also known as “favorites”. As depicted in Figure 19, the leftmost screenshot contains 
the list of all exercises, that can be filtered by 3 categories, as mentioned previously, but if 
desired, as shown on the rightmost one, the most performed exercises can be presented in 
order of usage. 

   

Figure 19 – Strong’s quick filter option for exercises 

Even though the previously mentioned strengths are very useful, the one that really sets Strong 
apart is the integration with the Apple Watch. Notwithstanding that a premium subscription is 
needed, the fact that it’s possible to log the workouts through the Watch instead of the phone 
really puts Strong a step forward in usefulness. This integration is arguably the best feature in 
the entire app. 

 
4.5.2.4 Weaknesses 

On the other hand, there are also major weaknesses that might be determinant, especially for 
more experienced lifters, when it comes to choosing a fitness app. In all likelihood, a more 
experienced lifter will want to plan ahead a full-sized program, and that is simply not possible 
with Strong. Being a workout-oriented app, there’s no room for program planning, only for 
routine selection on the spot which is fairly unorganized. This is undoubtedly the most 
significant weakness since it questions the whole “strength training” aspect of the app. 
Additionally, there’s no way to relate sets with anything. An advanced lifter will want to base 
the set’s weight to a percentage, or even an RPE, but all that can be done is to establish a 
seemingly fixed weight. 

Also, even though there are some already built routines, one can only store up to three custom 
ones with the free subscription, which is senseless because once again, for more experienced 
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lifters, there are countless different routines on a single training cycle (4-16 weeks), and the 
only way to save them is to either get a premium subscription, or delete and create routines 
every day. 

Furthermore, there’s also other weakening parts, such as the timers. Even though they do what 
they should, their only purpose is to count the rest time and overall workout duration. That 
data isn’t analyzed anywhere, there are no statistics or graphs to transform the data into useful 
information. For example, it would be of value to know the progress of the rest time for a given 
exercise, or even the average duration of the workouts. Plus, the rest-timer is not very flexible 
or well-integrated. A rest-time is supposed to count the time between one set and the next, but 
Strong allows to perform all sets whilst still on the rest time of the first, due to the fact that 
there’s no association between it and the individual sets. Plus, one can only set a default value 
for an entire exercise, not to specific sets, and even though that’s not critical, it would be a 
good-to-have. 

 
4.5.2.5 Price Plan19 

The free version of Strong packs almost all the essential features and the premium subscription 
provides a complement to those. The price plan starts at 4.99€ per month, 30.99€ per year or 
74.99€ as a onetime payment. 

 
4.5.2.6 Final Notes 

All things considered, Strong is a fairly decent app because its usable right away. One can 
immediately create custom routines (up to three), customize workouts and even create 
exercises which is more than enough for the average gym goer. The issue is that Strong markets 
itself even to experienced lifters, which is pretty absurd given the fact that it doesn’t offer 
arguably the most important thing for them – the ability to set up a full-scale program. There’s 
absolutely no credible powerlifter that would use an app that even paying 5€ a month wouldn’t 
allow them to create a program. The closest thing to that would be to create all the different 
routines and try to remember on the day which one is supposed to be performed, and 
regardless of the fact that even for that a premium subscription is required, there would be 
absolutely no connection between routines, only a clutter of individual workouts, which is 
extremely chaotic. And only to add insult to injury, the sets have no relation with anything 
whatsoever. One can only define the weight and the reps of a set, which is sure more than 
enough for the average gym goer, but for an experienced lifter, there’s a plethora of ways to 
program a set, based on RPE, percentages, and others. 

To conclude, there’s a lot of things that do make this app great for an average lifter, and even 
for an experience lifter some features are very useful such as the Apple Watch integration, but 
as a whole, there’s unequivocally no way a decently experienced powerlifter would use it. Plus, 
for a serious lifter, the benefit that comes with a 75€ app is questionable at least. 

 
19 Data from February 20th, 2019 
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4.6 Athletic 

As previously discussed, Athletic apps do seem like the most popular, but even though it may 
look like they pack the most advantages in terms of availability for the general public, since they 
do not tunnel vision on small niches (like apps designed solely for Powerlifting, for example), 
they still have their issues regarding overall specificity and flexibility, which will all be discussed 
in the next sub-sections, as the apps are presented. 

4.6.1 Nike Training Club 

Arguably the most popular fitness app, with over 10 million downloads on Google Play and 
being obviously very credible for the brand behind it, Nike Training Club [64] [65] [66] is the 
leading health and fitness app in the market. 

With over 185 free workouts, ranging from boxing, endurance and mobility, to strength training 
and body-part focused workouts, there’s no doubt this is an app of choice for sports athletes or 
general users seeking for a more athletic lifestyle. It also offers personalized workout 
recommendations, guidance and even workouts inspired on famous Nike athletes like Cristiano 
Ronaldo and Michal B. Jordan. 

 
4.6.1.1 Free Main Features 

Surprisingly, Nike Training Club doesn’t have that many features, there’s pretty much nothing 
besides performing a workout and adding other physical activities to the history. 

On the first log of the app, a personal profile of the user is outlined, through the response of 
two questions regarding the sex and the frequency of physical activity per week. After that, the 
app recommends some plans adapted to the user’s experience level. 

The workouts are the main component of the app, as seen in Figure 20, the main screen is a list 
of top workouts selected based on the user’s profile, new workouts, and others. There’s also a 
possibility to browse all the routines by muscle groups, workout type, no-equipment workouts, 
etc. Plus, there’s a tab, depicted on the rightmost screenshot of Figure 20, where one can access 
specialized guides with information about them, and the workouts to follow. 
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Figure 20 – Nike Training Club’s workouts 

A workout, more in depth, is characterized by its average duration, intensity and expertise level. 
To perform a workout, one has to first download it, then, after starting, it automatically shows 
a video of the first exercise with a timer, and, after that ends, the next exercise starts. The 
workout can be paused and finished at any time and, after completion, the user is asked how 
much effort was put in, and where the workout took place. It is also possible to follow a workout 
with an Apple Watch, removing the need to always be looking at the phone for instructions. 

Furthermore, one can add a physical activity such as Running, playing Football or any other 
sports, Yoga, etc. The same questions as for the workouts are asked – effort and place. The 
Activity screen is composed by the history of activities and workouts performed. 

Additional features can be summarized as: a news feed, an inbox for messages, a Nike event 
finder, some customization regarding the measurement units, and integrations with Google Fit, 
Apple Health and Nike Run Club, to automatically record all runs in the activity history. 

 
4.6.1.2 Premium Main Features 

All the features bestowed by Nike Training Club are free, as there is no premium subscription. 

 
4.6.1.3 Strengths 

There’s no question the simplicity and overall look of Nike Training Club’s interface is its major 
strength. It’s very easy to start any workout and there are more than a few to choose from. The 
integration with the Apple Watch also makes the workout experience a bit easier, since it 
minimizes the interaction with the phone. 
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4.6.1.4 Weaknesses 

Even though Nike Training Club is very solidly built, there are some weaknesses that can’t be 
overlooked. The most essential one is the fact that there’s no way to create workouts or even 
customize existing ones. There’s absolutely no customization that can be made to the offered 
routines which makes it a bit unpleasant because one must follow workouts entirely built by 
other people and that’s not very individual. Plus, as described previously, there’s a section for 
“programs” that can reach up to 6 weeks. These can be mistaken by real programs but all they 
are is a few paragraphs describing the guide and then a bunch of workouts that the person has 
to choose from at random. 

Additionally, another thing that falls short is the lack of progress-related statistics. All that is 
accessible is the history of workouts and activities, there’s no real way to measure progress 
through indicators like the duration time, effort needed to complete, estimated burnt calories, 
heart rate variances, etc. 

 
4.6.1.5 Price Plan 

As previously mentioned, there’s no premium subscription to be found, so, there’s also no price 
plan. 

 
4.6.1.6 Final Notes 

In Summary, Nike Training Club is an app designed for people who’re looking for quick athletic 
workouts and no commitment to a serious training regimen. Even though the app is very 
appealing, its content value is questionable, since it doesn’t provide a platform for people to 
create their workouts, or to measure progress, it is merely a workout database. 

Regardless, assuming that that’s the intent, even the profiling made in the first log of the app is 
underwhelmingly feeble. There are tons of variables that can be used to profile different 
athletes, but picking from just sex and frequency of physical exercise is unfortunately lazy and 
generic. 

Nike Training Club is an example of a superbly simple and good-looking interface, but it falls 
short on many levels. Given the size of the company behind it, it would be expected a bit more 
effort on questions like profiling, exercise customization and progress-oriented stats. 

4.6.2 Freeletics 

Freeletics [67] [68] [69] is a set of fitness apps, each with their own objective. The one being 
analyzed is the Bodyweight one, since it’s the most popular and the most “Athletic” one. For 
the sake of simplicity, from now on, Freeletics Bodyweight will be addressed as only Freeletics. 

Freeletics takes advantage of the “High Intensity Interval Training” workout methodology, or 
HIIT for short, which is essentially alternating between very intense anaerobic exercises and 
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short recovery periods. The app guides the user through these workouts, that range from 10 to 
30 minutes. 

Whether the goal is to “[l]ose weight, gain muscle or simply get in better shape” [68], Freeletics 
is the app to take. 

 
4.6.2.1 Free Main Features 

Freeletics is designed to be used as a premium subscription app, since its main feature is paid, 
but looking only at the free ones, one can assert that it is a workout database, just like Nike 
Training Club, the only difference being that it allows for a user to select and perform a single 
exercise, and not a full workout. 

A workout can be selected from the workout list, where it can be filtered by its expertise level 
(beginner to advanced), duration (short to long), the body part it works, and others. Each one 
is composed by the equipment needed to perform it, explanatory videos, the summary of the 
included exercises and its duration and difficulty. When a workout is started, a timer begins, 
counting the duration of the first exercise. When the user finishes that exercise, they tap the 
timer and next one starts, and so on. On the end, it is required for the user to give feedback on 
the workout, providing information regarding the quality of the used technique. Similarly, one 
can also perform just one exercise, for a desired number of repetitions. 

Furthermore, one can find training spots on the area and log runs, with the Freeletics Run app 
integration. The workouts and runs are logged to the user’s profile and they can also be seen 
on the feed, where news and workouts from friends are posted. Besides that, and some small 
customizations regarding weight training units and personal information, there’s not much 
more free features. 

 
4.6.2.2 Premium Main Features 

The thing that does really make this app shine is its virtual Coach [70], which is a “personalized 
training plan that uses a state-of-the-art artificial intelligence” [70]. The Coach adjusts itself to 
the user’s fitness level, and based on the feedback given after each workout, it learns the 
individual strengths and weaknesses. 

The way the individualization of the coach works is by knowing the user’s personal information, 
recommending a Journey (which is a training program), like the one depicted on Figure 21, and 
then learning from the user’s choices on number of training days, available equipment, 
limitations, among other. Based on the user’s preferences, the Coach will suggest weekly 
training programs and at the end of those it will optimize it for the following week. At the end 
of the Journey, the user can change to another or try again the same one. 
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Figure 21 – Freeletics Training Journey 

Even though the Coach is the main premium feature, and the reason that the premium 
subscription exists, there are also other perks from having it, suchlike accessing even more 
workouts, as seen on Figure 22, where some free exercises (“Krios”) and also premium ones 
(i.e. “Aias” and “Elektra”) are presented.  

 

Figure 22 – Freeletics workouts 
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4.6.2.3 Strengths 

There is no doubt the biggest strength of Freeletics is its virtual Coach, that makes the overall 
workout experience much more pleasant and individual. From a user perspective, being able to 
hand out the task of building custom individualized workouts to an automatic system is very 
helpful and valuable. 

Also, the general appearance of the interface is quite appealing, and the usability is intuitive. 

 
4.6.2.4 Weaknesses 

Although the Coach offers a great deal of automatic customization, apart from that there’s 
nothing to do besides selecting and performing a workout. There’s no way to create a workout 
based on specific exercises or to monitor progression with relevant statistics. Once again, it is 
more like a workout database, where you have to pay to even access most of the exercises. 

Without the Coach, there’s not much value on the app, and even that has its flaws. The main 
issue is the progression system – it only involves adding repetitions to exercises, which 
ultimately is not that great because eventually there’ll be an overwhelming number of them. 
Instead, it should progress to harder variations of the exercises when certain criteria are met, 
for example. 

 
4.6.2.5 Price Plan20 

The price plan for the Coach and the premium subscription varies depending on the frequency 
of payment and it can be synthesized as so: 

 Annually: approximately 42€/per year 

 Biannually: approximately 62€/per year 

 Quarterly: approximately 70€/per year 
 

4.6.2.6 Final Notes 

All things considered, there’s no doubt Freeletics, in order to be worth using, has to be with a 
premium subscription. The Coach is a definite differentiation from the competition. Regardless 
of its quality from a more technological point-of-view, the idea of individualization is very 
enticing, especially for beginners, sports athletes, or general users looking for a more unique 
athletic workout experience. 

Lastly, something that can’t be left unmentioned is the quality of the adaptiveness the Coach 
offers. As it was already said, the progression system revolves around only increasing the 
number of repetitions based on the performance of the user, and as far it is known, the Journey 

 
20 Data from February 20th, 2019 
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recommendations can be based on static features like the muscle groups, difficulty, duration, 
etc., and to do that, there’s no need for “artificial intelligence”. 

Furthermore, the fact that one has to pay a minimum of 3 months to use the Coach without 
trying it first is a bit upsetting. 

To conclude, even though the Freeletics app is very well designed, it lacks a great number of 
free features, and even for the Coach subscribers there are still some concerns to be pondered. 

4.7 General Lifting 

General lifting apps can be thought as the “jack of all traits” because they try to provide a range 
of different types of features. It is known that the expression doesn’t end there and usually a 
“jack of all trades [is a] master of none”, which means that they do not specialize in any of the 
features they pack. Furthermore, it is also known that a “jack of all trades, master of none, [is] 
often times better than master of one”, which is what will be discussed in the next sub-sections, 
if the improved flexibility in these apps accounts for their lack of specificity. 

4.7.1 Jefit 

As far as having a big social community, with millions of members to share progress with, whilst 
maintaining a huge database of exercises and routines, Jefit [71] [72] [73] undoubtedly 
differentiates itself from the competition. Reportedly having more than 1300 exercises and 
1100 HD training demonstrative videos, it would be very unlikely for someone to not find what 
they were looking for.  

Even though it was an enormous database, Jefit is more than that, since it also allows to track 
workouts, create custom routines, consult body and lifting progress through the use of statistics 
and connect with other users, in order to share and compare progress. 

 
4.7.1.1 Free Main Features 

With regards to free features, Jefit offers a great number of them. The main part of the app is 
the workout/exercise section, where a user can view the workout and exercise list, select a 
workout as the active one, create a workout, filter exercises, among others. 

Probably the most relevant feature is the ability to create a workout with any of the exercises 
and define characteristics such as the number of days per week it will have, its difficulty level, 
among others. Then, for each of the days, specify the exercises to perform, and also the number 
of repetitions, weight used, etc. It is possible to perform an individual exercise outside the 
workouts. 
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Figure 23 – Jefit’s exercises 

As depicted on Figure 23, the list of quick filters by muscle group, the exercise list, and 
information about a single exercise, can be seen, from the left to rightmost screenshot 
respectively. For each exercise, one can set a goal, add notes, set as favorite, watch the 
demonstrative video and also view the descriptive information. There’s also the possibility to 
create exercises and filter them by other characteristics such as equipment, popular exercises, 
recent, etc. 

Furthermore, there’s an incorporated calendar, Figure 24, where one can see the logs of the 
past workouts, progress photos, notes, and body stat updates. 
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Figure 24 – Jefit’s calendar  

As a free feature, one can also check stats on training progress, send and receive messages, 
comment on other people’s workouts (every workout is published to the feed) and customize 
certain characteristics of the app like disabling notifications, language, unit system, connect 
body measurements with Google Fit, among others. 

 
4.7.1.2 Premium Main Features 

Jefit is completely usable without a premium subscription, but if desired, with one, there are 
some complementary features offered. Amongst them is the accessibility to all premium 
workout plans and to the previously mentioned more than 1100 HD instructional videos of 
exercises. 

Furthermore, there’s also another feature only available with premium, which is the ability to 
swap an exercise automatically for another one. This is especially useful because sometimes a 
piece of equipment is being used or maybe the user doesn’t feel like performing a particular 
exercise, and with this feature, they can simply swap it with another one, chosen by an 
algorithm. 

Lastly, other premium features are such as:  weekly progress reports, access to the web 
platform (with the same features of the app), unlimited cloud storage capacity, no adds, 
unlimited favorite exercises and routines and duplicating workouts and exercises. 

 
4.7.1.3 Strengths 

Undoubtedly, the biggest strength of Jefit is its calendar. Being able to pinpoint the exact dates 
on the calendar where things like progress photos or workout logs took place is very 
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advantageous and unique. Also, the filter options for the exercises are somewhat acceptable, 
given the fact that the app has more than 1300 exercises. 

 
4.7.1.4 Weaknesses 

Jefit also has its weaknesses, and one of them is the workout plan. The plan is simply a collection 
of up to seven isolated workouts that are meant to be repeated each week, there is no 
connection between weekly plans or even between its workouts. Even though it has more than 
some of the apps of the competition, it still falls short from a programming perspective. 

Moreover, something that at first sight is not perceived as a weakness is the overwhelming 
number of exercises. Even with the maximum number of filters (muscle group and equipment 
needed), in most cases, there are still too many exercises, which for someone trying to find 
something can be problematic. 

Also, at the first log in the app, an in-depth profile is outlined with the user’s sex, age, preferred 
unit of measurement, training location, experience level, fitness goals, height and weight, and 
even though some of the information is required for default values, such as the units of 
measurement, age and sex, the others serve no apparent purpose. One might argue that for 
example the training location and the experience level would serve for the app to recommend 
workout plans but there’s no recommendations whatsoever. For someone that defined that 
they workout on a gym there will still be home workouts to pick from, which can be great 
because it adds more versatility, but without a recommendation system, the profile outlined is 
just useless. 

 
4.7.1.5 Price Plan21 

In order to subscribe to premium [74], one has two options: to pay $6.99/month, or 
$3.33/month if a full year subscription is bought.  

 
4.7.1.6 Final Notes 

As a whole, Jefit is a decent app for not so serious lifters, since it provides a wide range of 
exercises and the ability to create simple weekly plans to follow. It also has useful features like 
the integrated calendar and the body measurements tracker, but unfortunately there’s nothing 
that makes Jefit unique, in broad terms, it’s just another exercise database with the ability to 
create and follow weekly exercise routines. The fact that a supposedly individual profile is 
outlined without any purpose at all makes the whole system a bit questionable. Furthermore, 
the number of exercises does seem a bit overwhelming – more is not always good. 

Regardless, as already stated, for people that are just looking to workout at home or in the gym 
with no intent to carefully plan their routines or to measure progress, Jefit is an acceptable app. 

 
21 Values in dollars to avoid conversion. Data from February 20th, 2019 
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4.7.2 Fitbod 

Fitbod [75] is everything an app should be – simple, attractive and useful. It’s easy at first glance 
to mistake it for an underfeatured app, but that is not the case at all. Designed to automatically 
build daily workouts, based on individual preferences that can be easily customizable. Removing 
the strain of having to put together day-to-day workouts, Fitbod has the right algorithm for 
every type of goal, experience level, and even available equipment. 

 
4.7.2.1 Free Main Features 

As it was already stated, Fitbod is everything but underfeatured, and, most of its features are 
free. The main one is the ability to generate automatically a daily workout, based on a number 
of parameters, that can be, for the most part, customizable. On the first log of the app, the user 
enters information that will help the app’s algorithm to suggest the most fit workouts. These 
are the aforementioned parameters, and can be listed as such: experience level, fitness goal, 
available equipment, last worked-out muscle groups and workout frequency. 

These parameters work as a filter for the algorithm that builds the daily workouts. For example, 
as depicted on Figure 25, the user can select the list of equipment they have available, and the 
algorithm will only suggest exercises accordingly. Also, the user can select the group of muscles 
they want to focus on, and the algorithm will be applicable the same way it did with the 
equipment, only selecting exercises that work those specific muscles. 

 

Figure 25 – Fitbod’s Available Equipment Selection 

Also, there’s another variable to be considered by the algorithm when generating a workout, 
and that is the level of muscle tiredness. As depicted on Figure 26, the app has a dedicated 
screen to show the muscle recovery, that is used by the algorithm, and can be used even by the 
user, in order to decide which muscles are in need to rest and which ones can be trained. The 
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muscle recovery percentage is calculated automatically with the workouts performed, but can 
also be customized, as seen on the rightmost screenshot of the said figure. 

     

Figure 26 – Fitbod’s Muscle Recovery 

Moreover, still regarding the workouts, the user can create new workouts with one of a few 
options: generate a new workout with the app’s algorithm, generate a workout that targets 
specific muscle groups, create a workout from scratch by selecting the desired exercises, or 
selecting basic workout splits, that emphasize different muscles/movements.  

In addition, a user can also start a workout, in which they can enter the weight/repetitions 
performed and wait until the rest timer is over to start the next exercise/set. After the workout 
is finished, a summary is shown, with the amount of volume, calories burnt, and records 
achieved. The calculation for the calories burnt can be tuned in the settings, by connecting to 
Apple Health for personal body data. 

Further free features can be listed as such: integration with Apple Watch, calendar logging past 
workouts, and informative videos and descriptions on exercises. 

 
4.7.2.2 Premium Main Features 

Even though most features are usable for free, there are still some that can only be acquired 
with a premium subscription. The main one is the ability to generate and perform a workout 
every day. This is because the free subscription only allows for three workouts for free. Also, a 
premium subscription will give access to more exercises and demonstrative videos and the 
ability to monitor their progress with stats. 
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4.7.2.3 Strengths 

The main strength of Fitbod is most definitely its interface. Simple, intuitive and very well 
designed, it’s built to catch the attention of the user and display its functionalities at their 
fullest. Furthermore, the ability to see body fatigue in the form of a heat map is very useful 
when deciding workouts. 

 
4.7.2.4 Weaknesses 

Even though Fitbod really looks like an app to take an example from, it still has some 
weaknesses. The most apparent one is the exercise selection from the algorithm. Even though 
they match up with the parameters selected by the user (muscle groups, equipment, etc.), it 
really does seem like the exercises are just picked at random from the list of exercises that 
match all the filters. Plus, the workout logs are somewhat incomplete, since one can only see 
the past workouts of the current week. If a user desired to consult the workout they did the 
previous month, they wouldn’t been able to, which makes the calendar a bit pointless. 

Furthermore, another thing that is undoubtedly a weakness is the inability to perform more 
than three workouts without a premium subscription. Even if the app wanted to be only usable 
by premium, it could give more than three workouts as a trial. 

 
4.7.2.5 Price Plan22 

The price plan for Fitbod has two different offers: either 61.99€ billed yearly, or 10.49€ billed 
every month. 

 
4.7.2.6 Final Notes 

There is no question whatsoever that Fitbod is a great app for people that want to work out on 
the go without having to worry about planning routines. Plus, the app’s algorithm ability to filter 
out exercises that would hit still recovering muscle groups or exercises that would require 
equipment or experience that the user currently doesn’t possess is very useful. That, allied to 
its great interface, makes it undoubtedly a great app to use for working out. 

Nevertheless, the app’s algorithm can’t be called anything more than a filter, for reasons stated 
above. In such a simple system, it would be of great interest to have a true recommendation 
system, based on multiple factors such as previous exercise selections, previous feedback on 
routines, etc. Also, having to pay 10.49€ for a month is a bit over the top, for someone that can 
only perform three workouts as a trial. 

All things considered, the success of the app shouldn’t be overlooked, having a 4.8 rating on the 
Apple Store with almost 40.000 reviews 23, that is a clear sign that people are interested not 
only in useful but, more than anything, in an enjoyable experience of use. 

 
22 Data from February 20th, 2019 
23 Data from February 1st, 2019 
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4.8 Conclusion 

As expected, the final section will be dedicated to summing the gathered information in a 
concluding manner. The evaluation of the app types and their apps will be presented, with the 
defined criteria for each in mind. Also, the envisioned system will be put to the test, facing the 
analyzed apps to assess the potential value it could introduce. 

Table 3 – Summary of the strengths and weaknesses of the app types 

App Type Strengths Weaknesses Target 

Gym Only Direct connection 
with the personal 
trainer, nutritionist, 
and ability to 
schedule classes and 
physical evaluations. 

Poor interface, few 
features overall. 

Gym members. 

PowerBuilding Numerous tools for 
strength training 
(calculators, charts, 
stats), and multiple 
ways to program. 

Poorly implemented 
timers. 

Strength sport 
athletes, people 
seeking for strength 
training. 

Athletic Simplicity of use for 
athletic people. 

Inexistence of a real 
progress-oriented 
tracking mechanism, 
and no 
customization. 

Sports Athletes, 
people seeking for an 
athletic lifestyle. 

General Lifting Very versatile and 
diverse for most 
types of users. 

Poor or inexistent 
profiling of users. 

Average gym goers. 

 

Table 3 consists in the summary of the information gathered throughout the analysis of the 
different types of apps. Each type, targeted at a specific type of active people, have their 
strengths and weaknesses and the ability to identify them will allow to build a system, ideally, 
suited for different types of users accordingly. It’s relevant to mention that the strengths and 
weaknesses are judged in terms of the context of the app type, not in comparison to others. 
For example, even though besides the PowerBuilding app type, none of the others offer the 
ability to program a full-sized program, that can’t be a weakness for them because it’s a feature 
that mostly only people interested in strength training are looking for, and that is not their 
target. 

In specific, one could say that the Gym Only apps’ strengths lie on the ability to have a direct 
connection between the user and the gym they attend, by being able to schedule group classes, 
communicate with the personal trainer, nutritionist, among others. In contrast, since most gym 
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apps are not designed specifically for a gym but are sold to many, the general usability is feeble 
and the features insufficient.  

Moreover, the weakness of PowerBuilding apps is on the poor implementation of timers. Timers 
are hugely important for people trying to maximize and perfect their strength/muscle-gain, and 
the fact that the apps designed for such goals do not focus on a good implementation of them 
is worrying. But, on the other hand, PowerBuilding apps have numerous useful tools for their 
target, ranging from plate calculators, to in-depth progress-oriented statistics.  

Also, when it comes to Athletic apps, one of the things that really arises is the simplicity of use. 
The ability to start a workout and be done in 10 minutes with minimal interaction with a phone 
is definitely something that adds tremendous value to their target. However, that simplicity 
makes it so that there’s virtually no useful progress-tracking mechanism to measure progress, 
and no ability to customize exercises or workouts, which is unfortunate.  

Lastly, when it comes to General Lifting apps, their main issue is the fact that they try to suit 
everyone but either don’t try to adapt the experience for different people through profiling, or 
they do it poorly. For example, it would be pretty unproductive to give a plate calculator for 
someone that is only looking to do bodyweight exercises. Plus, trying to suit everyone comes 
with another fault – overwhelming number of information (exercises, programs, etc.). 
Regardless, versatility, if well-executed, can be a great strength. 
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Table 4 – Apps’ features summary 

 AmazinGym Tripla Forma Intensity Strong Nike Training Club Freeletics Jefit Fitbod 

Profiling No. No. No. No. Yes. Yes.~ Yes. Yes. 

Create Workout Yes. Yes. Yes.* Yes.~ No. No. Yes.~ Yes.* 

Start/Register Workout Yes. Yes. Yes. Yes. Yes. Yes.~ Yes. Yes.* 

Real-time Workout Yes. No. No. Yes. Yes. Yes. Yes. Yes.* 

Workout Log Yes. Yes. Yes. Yes. Yes. Yes. Yes.~ Yes.* 

Workout Statistics Yes. No. Yes. Yes.* No. No. Yes.* Yes.~ 

Exercise Info Yes. Yes. No. Yes. Yes. Yes.~ Yes.~ Yes.~ 

Create Exercise No. No. Yes. Yes. No. No. Yes. No. 

Create Training Plan Yes. Yes. No. No. No. No. Yes.~ No. 

Create Training Program No. No. Yes.* No. No. No. No. No. 

Body Measurements Log Yes. Yes. No. Yes.~ No. No. Yes.~ No. 

Body Measurements Statistics No. Yes. No. Yes.~ No. No. No. No. 

Progress Photos/Videos No. No. Yes.* No. No. No. Yes. No. 
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PT/Coach Communication Yes. Yes. No. No. No. No. No. No. 

Multilanguage No. No. No. No. No. No. Yes. No. 

Social Yes. Yes. Yes.* No. Yes. Yes. Yes. Yes. 

Calculators No. No. Yes. Yes.* No. No. No. No. 

Integrations Yes. No. No. Yes. Yes. Yes. Yes. Yes. 

Export/Import Data No. No. Yes. Yes. No. No. No. Yes. 

Web/Desktop Application Yes. No. Yes. No. No. No. Yes.* No. 

AI-based Recommendations No. No. No. No. No. Yes.~ No. No. 

Number of Features 12/21 9/21 11/21 12/21 7/21 8/21 15/21 11/21 
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Table 4 showcases the information gathered throughout the individual analysis of each app, 
evaluating them based on the previously defined criteria. The number of features each app 
possesses from the ones presented is also discriminated, in order to objectively evaluate them. 
Even though this method could misjudge the app’s intent, since obviously not all apps would 
want all the features presented, it’s the most effective one to strongly position the envisioned 
system because the goal is to contain all of them (the features) in the most adaptive way, 
offering value to any type of user. Furthermore, the features marked with a “*” refer to features 
only accessible through a premium subscription and the ones with a “~” refer to 
poorly/questionably implemented features. 

Moreover, one could say all apps fell a bit short on the evaluation, given that the one with the 
most features only had 15 and the one with fewer had 7, both out of 21 in total. This could 
obviously mean that the apps were, in general, designed to serve a specific purpose and not to 
“have it all”, but, even though this may be true in some cases, in most, it is just reflection of an 
under-featured app. For example, Nike Training Club is an app designed for quick athletic 
workouts, so, being able to program a full-sized program probably wouldn’t offer much value 
to its users, but the fact that it doesn’t offer things like multilanguage, customization, progress-
oriented features, and so on, it is just considered to be under-featured. 

Specifically, there are a few features that deserve to be pointed out, and the first one is the 
profiling one. The only apps that had some sort of profiling were both the Athletic type ones, 
and General Lifting, which makes sense because for quick workouts, there are tons of 
possibilities and the ability to profile users and adapt itself accordingly is very important, and 
also, for General Lifting apps, designed to suit the necessities of various types of users, profiling 
is essential. The effectiveness of the said profiling was already described thoroughly, but on a 
final note, it felt a bit short. This profiling is the backbone of “intelligent” or “smart” 
recommendations, but only one app had AI-based recommendations, and even that was 
questionable, as was also covered before. 

Additionally, in terms of workouts and workout planning, only the Athletic apps didn’t allow for 
the creation of a workout, which is unfortunate. Plus, only Gym Only apps and Jefit allowed for 
the creation of a training plan, and just one of the PowerBuilding apps, Intensity, offered the 
ability to program a full-sized program, which justifies why the app was chosen in spite of not 
meeting any of the selection criteria. The fact that an app, such as Strong, has a rating 0.5/5 
bigger than Intensity, with almost 120 times more the number of ratings but doesn’t offer such 
a specific and needed feature is questionable at best 24. 

In conclusion, the whole process of this chapter was crucial to the development of the further 
ones, since it allowed to grasp what constituted value in the context of the investigation. The 
establishment of selection and evaluation criteria made the analysis of the apps and their types 
much more objective and rigorous. Plus, understanding the strengths and weaknesses of each 
will be useful when deciding what to replicate and what to improve.  
  

 
24 Data from February 1st, 2019 
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5 Design 

This chapter will be dedicated to the exposition of two big sections – requirements engineering 
and the system’s architecture. 

The first section, Requirements Engineering, consists in the design of software requirements, in 
the form of functional and non-functional requirements and of the different stakeholders and 
interveners that are related to them. The second one, Architecture, is composed by the 
presentation and description of the different proposed architectures to answer the designed 
requirements, and also by a comparison between them in order to pick the best one in the 
present context. 

5.1 Requirements Engineering 

This section will be dedicated to the “process of conforming engineering designs to a set of core 
software requirements”, also known as Requirements Engineering. In the next sub-sections, the 
study and documentation of the said process will be presented. It’s also important to mention 
that the requirements were, in part, based off of information gathered through the execution 
of a “Usage Analysis of Gym/Fitness Apps”, in which nearly 90 different users offered their 
opinion in regards to their personal experience with fitness mobile applications and what they 
deemed valuable. This inquiry and further information can be found in the APPENDIX A. 

5.1.1 Stakeholders 

A stakeholder, according to the Business Dictionary [76] can be defined as an entity (person, 
group or organization) that has interest in an organization. It can directly or indirectly affect or 
be affected by the organization’s objectives, policies and overall actions. Because of this, it 
becomes important to define the stakeholders of this project, given that they will be affected 
with the outcome of it. 

The stakeholders of this project and their interests are as follows: 
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 Gyms: Interest in offering a suitable platform to their members. 

 Gymgoer (fitness practitioner): Interest in using the platform for all the offered 
features. 

 Personal Trainer/Coach: Interest in having a suitable platform to monitor their trainees’ 
progress. 

 Nutritionist: Interest in using the platform for monitor their clients’ progress. 

 System Administrator: Interest in managing the system. 

5.1.2 Interveners 

The intervener is a role played by an entity, usually a person, that interacts with the system and 
exploits its functionalities. Commonly, the interveners are the stakeholders, since most of them 
will directly use the system, but it’s not rare to have some stakeholders that are not interveners. 
In any case, they’re presented next: 

 Non-registered user: This is a person who’s not yet registered in the system and needs 
to do so in order to access any other features. 

 User (gymgoer): This is the person that can use the system and access most of its 
features, depending on some factors. 

 Personal trainer/Coach: This is the person responsible for the features related with 
trainee monitoring. 

 Nutritionist: This is the person responsible for all the nutrition-related features (i.e. 
monitoring clients). 

 System Administrator: This is the person responsible for the system as a whole, 
introducing new data (i.e. scientific articles) and maintaining it to assure it’s running 
smoothly. 

5.1.3 Functional Requirements (Use Cases) 

This section will contain information regarding the functional requirements of the system, in 
the form of use cases. According to Agile Modeling [77], a use case diagram “overview[s] the 
usage requirements for a system. They are useful for presentations to management and/or 
project stakeholders […]” [77]. They depict the use cases of the system, which are “a sequence 
of actions that provide something of measurable value to an actor […]” [77], and the 
associations between them and the said actors, which can be viewed as something or someone 
that play a role in the system. 
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Figure 27 – Use Case Diagram 

In Figure 27, the use case diagram of the system is depicted, and in the following Table 5 the 
priority distribution associated with each one is presented, so that during implementation some 
can be prioritized over others, if due to time restrictions not everyone can be implemented. 

Table 5 – Use Cases Priority 

Priority Use Cases 

High  US02; US03; US04; US06; US07; US08; US10; 
US13; US15. 

Medium US01; US11; US16; US17; PT01;  

Low US05; US09; US12; US14; NT01; AD01; AD02. 

 

In the following sub-sections will unveil specific details about each use case in it. It is also 
important to mention that some use cases are too broad and can possibly be divided into sub-
use cases in further iterations. 

 
5.1.3.1 US01: View current training Plan/Program 

The user requests the system to view the current training plan/program they are following. The 
system presents the requested information. 
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5.1.3.2 US02: View training Plan/Program templates 

The user requests the system to present the list of template training plans/programs. The 
system presents the requested list. The user can then select an individual training plan/program 
and the system presents the specific information about it. 

 
5.1.3.3 US03: Manage training Plan/Program 

The user requests the system to create a new training plan/workout or edit an existing one. The 
system provides the user with a suitable interface to create/edit a training plan/program and 
then, if changes were made, the system requests confirmation and saves the information. 

 
5.1.3.4 US04: Manage Body Measurements 

The user requests the system to configure their personal body measurements, to create a new 
entry or to edit an existing one. The system provides the user with a suitable interface to 
perform the desired task and then requests confirmation and saves the information. 

 
5.1.3.5 US05: Add favorite training Plan/Program 

The user requests the system to set a training Plan/Program as favorite. The system sets the 
selected information as favorite and saves the information. 

 
5.1.3.6 US06: Recommend training Plan 

The user requests the system to recommend a training Plan. Based on the user’s profile, 
acquired data, and other variables, the system offers a suitable training plan recommendation. 

 
5.1.3.7 US07: Recommend Workout 

The user requests the system to recommend a Workout. Based on the user’s profile, acquired 
data, and other variables, the system offers a suitable workout recommendation. 

 
5.1.3.8 US08: View training Logs 

The user requests the system to present a calendar with information regarding their training 
logs. The system presents the requested information. 

 
5.1.3.9 US09: Share training Plan/Program 

The user requests the system to share a training Plan/Program via social networks. The system 
shares the selected information in the preferred social network/s. 
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5.1.3.10 US10: View Statistics 

The user requests the system to present statistics regarding multiple variables like training 
progress, body measurements, and others. The system presents the user with the requested 
statistics. 

 
5.1.3.11 US11: Monitor progress 

The user requests the system to present information regarding progress statistical analysis. The 
system presents the requested analysis in order to be monitored by the user. 

 
5.1.3.12 US12: Interact with PT/Coach 

The user requests the system to interact with their personal trainer/coach via direct messaging. 
The system facilitates the interaction offering the user with a suitable interface for 
communicating. 

 
5.1.3.13 US13: Interact with PVA (Personal Virtual Assistant) 

The user requests the system to interact with the Personal Virtual Assistant via chat bot. The 
system facilitates the interaction offering the user with a suitable interface for communicating. 

 
5.1.3.14 US14: Check social feed 

The user requests the system to present the social feed. The system presents the user with the 
requested information. 

 
5.1.3.15 US15: Change Language 

The user requests the system to change the system’s language. The system requests 
information regarding the new language to be changed to. The user enters the desired language. 
The system updates and saves the information. 

 
5.1.3.16 US16: Change Unit System 

The user requests the system to change the preferred unit system. The system requests 
information regarding the new unit system. The user enters the new desired system. The 
system updates and saves the information. 
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5.1.3.17 US17: Manage Available Equipment 

The user requests the system to change the available equipment list. The system presents the 
user with the desired list. The user makes the desired changes and requests the new 
information to be saved. The system confirms the changes and saves them. 

 
5.1.3.18 PT01: Monitor trainees 

The personal trainer requests the system to present the list of current trainees. The system 
presents the requested list. The personal trainer selects an individual trainee and requests 
specific information regarding them. The system presents the personal trainer with the 
requested information. 

 
5.1.3.19 NT01: Monitor clients 

The nutritionist requests the system to present the list of their clients. The system presents the 
requested list. The nutritionist selects and individual trainee and requests specific information 
regarding them. The system presents the nutritionist with the requested information. 
 

5.1.3.20 AD01: Manage predefined training Plan/Program 

The administrator requests the system to manage the predefined training Plans/Programs. The 
system presents the administrator with the current predefined training Plans/Programs. The 
administrator can then create a new training Plan/Program or edit existing ones. If changes 
were made, the system requests confirmation and saves the information. 

 
5.1.3.21 AD02: Manage scientific articles 

The administrator requests the system to manage scientific articles. The system presents the 
administrator with the current scientific articles. The administrator can then add a new 
scientific article or edit existing ones. If changes were made, the system requests confirmation 
and saves the information. 

5.1.4 Non-Functional Requirements (FURPS+) 

After presenting the functional requirements, that simply describe what the system should do, 
there’s the need to also showcase the non-functional requirements, that describe how the 
system works [78], and, one might say, they describe the system’s attributes. To present and 
classify these attributes, the FURPS+ was used. FURPS+ [79] is a system to classify requirements 
and is represented by the categories presented next. 
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5.1.4.1 Functionalities 

 Authentication: The use of the system requires a pre-authentication by the user. 

 Security: To any system, security is a crucial aspect, and as such, there are two major 
characteristics that need to be in place: 

o Authenticity: Ensure the entities are who they claim to be, to separate different 
access roles. 

o Confidentiality: Ensure data is confidential, through encryption methods. 

 
5.1.4.2 Usability 

 User Interaction: The interaction with the user must be simple, intuitive, and 
completely adapted to the respective environment (i.e. used device). 

 Help: The system must provide suitable and contextualized help to the task the user is 
performing. 

 Interface: It’s desirable for the interface to be appealing and clear. 

 Error Prevention: The system must be “forgiving” in the sense that should prevent user 
mistakes and treat them accordingly. 

 
5.1.4.3 Reliability 

 Predictability: The system should be reliable, that is, it should be free of technical errors. 

 Fault Tolerance: The system should be error-tolerant to protect the user from 
unintentional errors. 

 
5.1.4.4 Performance 

 Response Time: The system’s response time should be fast, to provide quick access to 
data. 

 Availability: The system should have a very high availability rate. 

 Memory Usage: The CPU and memory usage should be fairly low during usage. 

 Capacity Load: The system’s capacity load should be very high because there’s a great 
quantity of data being handled. 
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5.1.4.5 Supportability 

 Portability: The system should be available for Android and iOS operating systems. 

 Testability: The system should be easily testable in order to provide high confidence 
about correctness. 

 Maintainability: The system should have high maintainability, in order to allow future 
requirements and/or repairs. 

 Localizability: The system should support multiple languages. 

5.2 Architecture 

This section is dedicated to the presentation of the different proposed architectures, as well as 
showcasing the chosen one, properly justified and detailed. 

5.2.1  Domain Model 

A domain model is a conceptual model, organized and structured around the knowledge of a 
problem. It “[…] should represent the vocabulary and key concepts of the problem domain and 
it should identify the relationships among all entities [within its scope].” [82] One of the 
breakdowns that projects usually suffer are due to misconceptions or misunderstandings of 
concepts, so, the domain model and its key concepts and definitions should be understandable 
by everyone involved (programmers, team leaders, clients, etc.). 

With that, for a better understanding of the proposed solution and to respond to the specified 
requirements, a domain model was designed, depicted in the next Figure 28. 
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Figure 28 – Domain model 

In the designed model, there are a great deal of involved entities, so, to sum up, the most 
important and crucial ones will be briefly detailed: 

 User: Entity that benefits from the use of the functionalities granted by the system. 
They can have their own Programs and Single Workouts or manipulate already existing 
ones offered by the system. They also own a Profile in which their setup information 
lies (i.e. language, units of measure, etc.), among other things like their Body 
Measurements and Training Maxes.  

 Program: A single Program can have multiple Plans. This entity is characterized with 
different other entities, such as a list of associated Goals, a State, a list of Muscle Groups, 
among others. A Program can be seen as an aggregate of different training weeks. 
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 Plan: A Plan can have multiple Workouts and it is characterized by the Body Areas it 
focuses on, Training Types and others. It can exist as part of a Program or as a 
standalone Plan. A Plan can be seen as a training week, with different training days. 

 Workout: A Workout might be regarded as a training day, also characterized with 
different entities. 

 Single Workout: The difference between a Workout and a Single Workout is that the 
latter exists in itself without being part of any Plan. This is beneficial for many reasons, 
such as allowing a User to perform a Workout without the need to “subscribe” to a full-
sized training Plan/Program. 

 Exercise: This entity depicts a fitness is characterized by having a Movement and a list 
of Sets. It can also be a Super Set which simply means it can be seen not as a single 
exercise but an aggregate of multiple ones, executed in sequence. 

 Movement: A Movement is one of the most complex entities in terms of association 
with other ones. It is defined by multiple characteristics like its details (Movement 
Details), its Movement Mechanic and the list of necessary Equipment to conduct the 
said Movement. It is also characterized by multiple other entities such as a list of Muscle 
Groups, Training Types, Body Areas, and others. 

 Set: This entity represents a Set of an Exercise, which is the number of cycles of 
repetitions for a given Exercise and can be represented by any of the four types: 

o Weight and Reps: Defined by a given weight and the number of associated 
repetitions. It can also have an Intensity attribute, which can be in the form of 
RPE or a Percentage. 

o Reps Only: Defined only by the number of repetitions needed. 

o Cardio: Defined by the duration and average speed (for cardiovascular 
exercises such as running or biking). 

o Time Only: Defined only by the duration. 

 Set Log: This entity is very crucial in the log of information. Every Set has an associated 
Set Log and they both possess the same already-described attributes. One might see 
the Set as a prediction of what it is supposed to be done, and the Set Log as a record of 
what was effectively performed (for example, in terms of repetitions). 
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5.2.2 Proposed Architectures 

In order to find a suitable architecture, there were designed three different ones, each with its 
own characteristics. They will be presented next, through the use of a Logical View, as well as a 
brief explanation of the said characteristics they possess. The Logical View consists in a 
“conceptual organization of the software elements in terms of the most important layers, 
subsystems, packages, [etc.].” [80] It’s logical because there’s no relationship with the 
deployment by operative systems, processes or physical nodes (computers). [81] 

It’s also important to mention that all the propositions have some common characteristics, and 
only the differences between them will be discussed in the next sections. All the solutions have 
four major common components: 

 FitnessBackOffice: This is the back office of the system, which comprises the software 
used to administer operations that are not related to any direct customer interface. [82] 

 FitnessWebAPP: In contrast to the back office, this is one of the front offices, which is 
an application that directly interacts with the customer. [83] This specific one refers to 
the web application. 

 FitnessMobileAPP: This is also a front office, as described in the prior component, the 
difference is that this one refers to the mobile application. 

 FitnessRecommenderSystem: This component is responsible for the manipulation of 
user data in order to produce recommendations. 

 ChatBot: This is the component responsible for handling the Personal Virtual Assistant’s 
business logic. 

 LUIS API: Machine-learning-based service responsible to handle communication with 
the ChatBot. 
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5.2.2.1 Alternative 1 

 

Figure 29 – Logical View of the first proposed architecture 

The first proposed architecture, depicted in Figure 29, is characterized by the existence of an 
API (FitnessAPI) that handles all the operations between the other components and the 
database. It provides an interface that all the other components use in order to communicate 
with the database and with each other. Plus, there’s a single database that is accessed by the 
API and the API only. This allows for multiple advantages like efficiency due to the easiness of 
publishing, integration, personalization, adaptation, and others. [84] Also, the fact that only one 
component is responsible for the orchestration of operations between the database and the 
others is a major advantage. 

 
5.2.2.2 Alternative 2 

 

Figure 30 – Logical View of the second proposed architecture 



 

83 
 

 

The second proposed architecture, depicted in Figure 30, is characterized by the 
implementation of a microservices architectural pattern [85]. This pattern “structures the 
application as a set of loosely coupled, collaborating services […]” [85] which has multiple 
benefits such as better testability, because the services are smaller and faster to test, better 
deployability, because services can be deployed independently, improved fault isolation, and 
because each microservice is relatively small, it’s easier for developers to understand, the IDE 
is faster and the application starts faster, which improves productivity. Also, it “[e]liminates any 
long-term commitment to a technology […]. When developing a new service, you can pick a 
new technology […].” [85] 

As so, there’s a new component named FitnessGateway that handles the communication 
between the other components and all the microservices. The created microservices can be 
seen in the image, and all encapsulate different responsibilities. Also, each one has their own 
database, in order for them to be completely isolated from each other. The created 
microservices and their responsibilities can be presented as: 

 ExercisesService: responsible for all the exercise-related business logic (i.e. add a new 
exercise and check information of a specific exercise). 

 ProgramsService: responsible for all the program-related business logic (i.e. create a 
new training plan/program). 

 RecommendationsService: responsible for all the recommendation-related business 
logic (i.e. recommend a workout). 

 StatisticsService: responsible for all the statistic-related business logic (i.e. generate 
body measurements statistics). 

 UsersService: responsible for all the user-related business logic (i.e. logging of a user). 

It is important to mention that not all the needed microservices to make the system work are 
represented, only the most important ones are depicted, for organization purposes. In case this 
is the selected architecture, a new, more in-depth solution needs to be formulated. 
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5.2.2.3 Alternative 3 

 

Figure 31 – Logical View of the third proposed architecture 

The third proposed architecture, depicted in Figure 31, is the simplest of them all in terms of 
number of used components. The difference from this architecture and the other ones is the 
inexistence of an API or some sort of operation redirector (i.e. Gateway). In this solution, the 
business logic is encapsulated throughout the existing components, and they all communicate 
directly with the database. This is undoubtedly an easier solution to implement, dude to the 
reduced number of components and connections. 

 

 

 

 

 

 

 

 

 

 

 



 

85 
 

 

5.2.3 Implemented Architecture 

Having described all the different proposed solutions, it’s now time to evaluate each one’s 
strengths and weaknesses and pick the one with the greatest added value. In order to do so, a 
table was built, as follows. 

Table 6 – Proposed Architectures Evaluation 

Alternative Strengths Weaknesses 

Alternative 1 Automation, flexibility of 
delivery, efficiency, 
personalization, adaptation, 
and others. [84] Reduced 
complexity of development. 

Low maintainability on high 
scale. Hard to distribute work 
across development team.    

Alternative 2 Better testability, 
deployability, and overall 
development. Improved 
fault isolation. [85] 

Development and 
deployment increased 
complexity. Increased 
memory consumption. [85] 

Alternative 3 Easy to implement due to 
reduced number of 
components. 

Deficient distribution of 
responsibilities. Low 
maintainability. 

 

Table 6 summarizes the information gathered in the previous section regarding the strengths 
and weaknesses of the different proposed architectures. This information will serve as 
justification to choose a preferred one to implement. From the information gathered, 
alternative number 3 can be ruled out – the ease of implementation doesn’t overweight the 
deficiency of responsibility distribution and the very low maintainability. Also, the fact that 
there’s no gateway to handle communication with the database is a severe disadvantage for 
almost any system, due to, among other things, data concurrency. 

Thus, the final decision comes from picking the best suited architecture out of alternative 1 and 
2. Simply put, alternative number 2 brings the best advantages, in the form of improved 
testability, development, and overall scalability. The issue with this alternative is that it’s 
extremely complex for the project at hands. This alternative is indicated to large development 
teams, where developers can work on different services without conflicting with each other, 
and where the system is supposed to scale significantly. Because of that, this is not the best 
alternative, since the development team is small (2 developers) and the added complexity does 
not overweight the benefits it brings. Plus, the increased memory consumption and the 
deployment increased difficulty is enough reasons not to pick this alternative in the current 
context. 

As such, alternative number 1, by process of elimination, is the best one. Simple enough to not 
cause any development and deployment trouble and robust enough to meet the needed 
demands for the desired system. The only disadvantages of this alternative are not really an 
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issue for this context because the team is not large enough to be hard to distribute work, and 
the scale won’t be big enough to have maintainability problems. 

5.2.4 Detailed Implemented Architecture 

Having decided an architecture to implement, it is now time to detail with more thoroughly, 
more specifically in terms of its individual components and also determine how the overall 
system will be deployed, through the use of a Deployment View. 

Accordingly, in the next sub-sections, the different architecture’s components and the 
deployment of the system will be detailed. 

 
5.2.4.1 FitnessAPI 

 

Figure 32 – API’s Logical View 

The previous Figure 32 depicts the logical view of the API with all its inner layers. The interface 
to which the other components access, is provided by the Controllers, where all the calls from 
outside go through before reaching the other layers. This layer is responsible for controlling the 
flow of the execution. It generates and manipulates data through actions that are then returned 
as results to the respective requests. The other layers’ responsibilities can be described as 
follows: 

 Models: This layer is where all the different models of the system lie, which are 
responsible for handling business logic. 

 DTOs: Data transfer object, it carries encapsulated data between subsystems. 

 Communication: Responsible to handle all communication with external services. 

 Repositories: Responsible for abstracting the persistence of objects. It contains all logic 
related to persistence, as well as mapping between tables and objects. 
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 Helpers: Layer responsible for bestowing classes that allow for a good working flow of 
the system, for example, conversions between units of measure, dictionary functions, 
etc. 

 TypeAdapters: Layer responsible for the conversion between DTOs and Models and 
vice versa. 

 
5.2.4.2 FitnessMobileAPP 

 

Figure 33 – Mobile App’s Logical View 

Figure 33 portrays the inner layers of the Mobile App component, and they can be presented 
as follows: 

 Store: Responsible for communicating with the server and managing the application’s 
state. 

 Screens: This layer contains all the screens that are presented to the user. The logic 
behind the construction of the user interface lies in this component. 

 Navigation: Responsible for declaring the screens and controlling de flow between 
them. 

 Components: It is in this layer where all the reusable UI components reside. 

 Utility: Responsible for containing different functions and constants that support the 
good flow of the application. 

 Language: This layer contains the language component of the mobile app. Responsible 
for controlling the information’s language that’s being displayed to the user, depending 
on their preferences. 
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5.2.4.3 FitnessRecommenderSystem 

 

Figure 34 – Recommender System’s Logical View 

The Recommender System’s component is being detailed in Figure 34. This component only 
communicates with the API, and all the logic is processed within itself. The Controller receives 
the requests from the API and then delegates the rest of the process to other layers with 
different responsibilities, presented next: 

 Recommender: This layer is where the different recommender algorithms are. These 
are the ones responsible to handle all the received information and produce 
recommendations accordingly. 

 Parsers: The Parsers consist in blocks of code (within their respective classes) that 
handle the parsing of information (i.e. importing and mapping of datasets). 

 Models: This layer is where all the different models of the system lie. 

 Mathematics: In this component, different mathematic-related tasks are conducted, 
such as the calculation of the dot product or SVD. 

 Comparers: Regarding the computation of recommendations, there’s always a need to 
compare users in order to obtain the similarity between them, and it is in the Comparers 
layer where all these different techniques lie. 

 Datasets: There’s no recommendation without training Datasets, which is the 
responsibility of this layer – to hold different Datasets. 
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5.2.4.4 FitnessBackOffice & FitnessWebAPP 

 

Figure 35 – FitnessBackOffice & FitnessWebApp’s Logical View 

The system’s web application and back office is depicted in Figure 35, and its components can 
be described as such: 

 Communication: Responsible to handle all communication with external services. 

 Controllers: Responsible for controlling the flow of the application and generating and 
manipulating data through actions that are then returned as results to specific requests. 

 Models: This layer is where all the different models of the system lie, which are 
responsible for handling business logic. 

 Views: Layer where all the views presented to the user reside. 

 
5.2.4.5 System’s Deployment 

A deployment view [89] is an UML diagram used to view and describe the topology of the 
physical components of a system. In other others, “where the software components are 
deployed.” [89] This view is very useful and important because it takes into account primarily 
the non-functional requirements of the system such as performance, scalability, availability and 
reliability. [90] 
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Figure 36 – System’s Deployment View 

The artifact produced, correspondent to the deployment view is depicted in Figure 36. All the 
back-end components are deployed into Microsoft Azure’s cloud, providing availability, security 
and also disaster recovery, given that everything is safely stored on Azure’s servers. 
Furthermore, from the components that are not on the cloud, two can be named - 
FitnessMobileApp and WebBrowser. These refer to the mobile app and the web version 
respectively. Additionally, the WebBrowser contains the already presented FitnessWebApp and 
FitnessBackOffice, for users and system administrators respectively. 

As a side note, it is important to mention that the LuisAPI component, depicted in Figure 29 is 
not included in the deployment view due to the fact that it is a Microsoft service, having no 
deployment needs. 
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6 Implementation 

In this chapter, all the implementation details will be presented, from the development of the 
Recommender System, to the Mobile Application, Personal Virtual Assistant, the Server 
Application and the Personal Virtual Assistant. Furthermore, the specific implemented uses 
cases will also be presented and detailed, as well as the Non-Functional Requirements. To 
conclude, the tests to which the system was subject are bestowed. 

6.1 Recommender System 

This section is dedicated to the detailing of the implementation of the Recommender System, 
which initially was predicted to be just an intelligent one, but through the course of its 
implementation, another one had to be devised, as it will be explored next. 

6.1.1 Intelligent Recommender 

A system is deemed intelligent if it has the capacity to learn from experience and the ability to 
adapt according to the available data. [99] Specifically, regarding recommender systems, if it 
can make recommendations based on some learning-process and accommodate itself to the 
data that is being fed, then it can be considered a smart or intelligent recommender. 

The idea to implement such system came from the notion that many users of the currently 
being developed system will need some sort of help and assistance in their training. Having in 
place a system that supports them in their fitness life by making smart recommendations, based 
on their profile, on the environment (other users) and their overall history is highly desirable. 

To implement such system, the Matrix Factorization technique was selected. From the 
presented techniques, it is the only one that is based on self-improvement and learning, since 
it adjusts its model to the data and to the calculated error, as it will be furtherly detailed in the 
next sub-sections. 



 

92 
 

Furthermore, in order to add some sort of personalization and differentiation it is also desirable 
to complement the intelligent recommendations provided by Matrix Factorization with of other 
techniques’. These will be User-Based Collaborative Filtering and Item-Based Collaborative 
Filtering, already described in the State-of-the-art chapter. To do so, another already covered 
technique will need to be employed, the Hybrid-approach, because it offers the mechanism to 
use multiple recommendation techniques at the same time. 

The next sub-sections will be dedicated to exploring and detailing the implementation of the 
intelligent recommender system, with all its intricacies. It is also important to mention that the 
foundation for the present system’s implementation is based in an article named “Building a 
Recommendation Engine in C#” [102], by Scott Clayton, which won the second prize in the Best 
C# Article of March 2018 and the first prize in The Machine Learning and Artificial Intelligence 
Challenge. 

 
6.1.1.1 Data Importation and Modeling 

In this section, the process of importing and modeling data will be detailed. As a first note, it is 
important to mention that the data fed to the system is not context accurate. Meaning that, 
the information modeled and used to make recommendations is not workout-related and, 
therefore, not useful in practical terms. The reason for this is due to the fact that, for an 
intelligent recommender to work and be decently accurate at all, it needs a great amount of 
initial information, and the unfortunate reality of this project’s situation is that there’s not 
feasible way to gather sufficient and meaningful context accurate information with the time 
restrictions in place. 

Consequently, a way to circumvent this hindrance had to be devised. The solution then became 
to use similar data structure-wise, to still maintain a system able to support context accurate 
information at any point in time that’s available and still be able to test the implemented 
algorithm with data that is not fabricated. This can also be seen as an advantage because it is 
easier to test the results of the system by using real, verifiable data. This way, the system’s 
recommendations can be put to test and the respective algorithm validated. 

Keeping this in mind, it is of high importance to use a reliable dataset – if the information cannot 
be contextually true, at least it should be trustworthy in its own context to make valid 
conclusions on the system’s integrity.  

The selected dataset is provided by GroupLens Research25, that gathered rating datasets from 
the MovieLens26 website and made them available, especially for research and investigation 
purposes. Literature [103] supports that this dataset is used widely across education, research 
and industry. With hundreds of thousands of downloads each year, “reflecting [its] use in 
popular press programming books, traditional and online courses, and software.” [103] It is 
heavily referenced in literature, with several hundreds of publications27 and more than 16.000 
results on Google Scholar28. 

 
25 https://grouplens.org/datasets/movielens/ 
26 https://movielens.org/ 
27 https://grouplens.org/publications/ 
28 https://scholar.google.com/ 
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The structure of the dataset aligns almost perfectly with the desired one’s, only requiring a few 
adjustments. For this reason, and because it is very extensive and trustworthy [103], it makes 
for an excellent choice. 

Regarding the specific importation and modeling of the information, first, the relevant entities 
are imported – users, items, ratings, tags.  

The users and ratings are imported simultaneously, given that they can be found in the same 
file. The said file, is structured such that each line constitutes a rating a user has given to a 
certain item and follows this configuration: 

𝑢𝑠𝑒𝑟𝐼𝐷, 𝑖𝑡𝑒𝑚𝐼𝐷, 𝑟𝑎𝑡𝑖𝑛𝑔, 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝 

This way, the algorithm just needs to iterate each line and create the respective objects, as the 
code in Figure 37 depicts. 

 

Figure 37 – Load Users and Items method 

After, the tags relative to the items are extracted from the respective file, which contains the 
following configuration: 

𝑡𝑎𝑔𝐼𝐷, 𝑛𝑎𝑚𝑒 

The algorithm only has to iterate each line and create the respective Tag object. 
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Finally, the items are also loaded using a similar approach. In the file where the items are, each 
line represents an item and follows the configuration presented next: 

𝑖𝑡𝑒𝑚𝐼𝐷, 𝑡𝑖𝑡𝑙𝑒, 𝑡𝑎𝑔𝑠 

The algorithm responsible for extracting the information relative to the items iterates each line 
and creates an Item object for each one, fetching the tags from the already created Tag object 
list. 

 

Figure 38 – DatasetModel class 

When all the information is extracted from the respective files, the final dataset model can be 
created, using the DatasetModel class, depicted in Figure 38, and with that, the importation 
and modelling of the data is completed. 
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6.1.1.2 Class Diagram 

 

Figure 39 – Class Diagram from the Intelligent Recommender 

The previous Figure 39 depicts the class diagram for the system and exhibits its overall structure. 
The section with the Dataset and its dependencies was already covered in the previous section, 
where the importation and modeling of the data was discussed. 

In the next sub-sections, the remaining entities of the class diagram will be explored and 
furtherly detailed. As an introduction, there are two more “sections” in the diagram, aside from 
the Dataset one, and they are the different recommendation algorithms, all usable through the 
IRecommender interface, and the different implementations for comparers, usable through the 
IComparer interface. These interfaces represent the Strategy pattern, which allows for there to 
be different implementations for the same task and an easy way to make them interchangeable.  

 
6.1.1.3 Matrix Factorization 

The core of the devised intelligent recommender can be found on the MatrixFactorization class, 
where this technique is employed. In the State-of-the-art chapter, its theoretical base was 
described to some extent. Now, in this section, the more intrinsic details will be thoroughly 
addressed, as well as its full implementation and how it all ties together in the system.  

Firstly, the class MatrixFactorizationRecommender is instantiated and it can receive as an 
argument the number of features (latent features) that are desired to be used during the 
learning process. This number of features is simply the size of the user and item features vectors. 
If no argument is provided, then the default value of 20 is assumed.  

The number of latent features varies depending on the recommendation model and is mostly 
defined by trial and error, because if there are too few, then the model won’t be able to learn 
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from the data, and if there are too many, then the model might overfit, which is equally bad. 
The overfit problem will be explored later in this section, in a different context.  

Regarding the latent features number problem, there is some literature that helps to 
mathematically find the most optimal values, such as using Cross-Validation [102] [103]. These 
techniques won’t be investigated in the context of this project, due to time restrictions and 
intent in building a not over-complicated system in such an early stage. Regardless, it is very 
much worth exploring as future work. 

After that, the model is ready to be trained. The Train method receives the previously created 
DatasetModel as input and before anything else, it transforms it into a user-item ratings table, 
or Rating Matrix (see Figure 41). 

 

Figure 40 – Rating Matrix builder method 

In Figure 40, the previously mentioned method responsible for transforming the dataset model 
is depicted. Firstly, the table object is instantiated – UserItemRatingsTable – which initializes its 
Users attribute, that represents a list of UserItemRatings (see Figure 42). Each element contains 
the ID of the user, the list of their ratings and a Score attribute, which will not be necessary for 
this technique specifically. The UserItemRatingsTable class also has two more attributes, used 
to easily convert IDs to Indexes, for users and items. 
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Figure 41 – Rating Matrix29 

After initializing the table, the next step is to populate it. First, the Users attribute, containing 
the list of UserItemRating objects is filled, as depicted in the first foreach statement of Figure 
40. Each element is initialized with the ID of the current user and the number of existent items, 
which will be the same for all users. The latter will be used to initialize the array of ratings 
(ItemRatings variable) with the proper size, as shown in the next Figure 42. 

 

Figure 42 – UserItemRatings class 

After filling the table with users and items, the table’s cells need to be populated with the 
respective ratings, which is what the LINQ and the last foreach statement are doing – 
respectively, creating an object with the ID of the user, the ID of the item and the corresponding 
rating, and iterating each object, adding the rating to the correct cell. To clarify, the correct cell 
is given by the Index of the user and the Index of the item, which are the row and column of the 
table respectively, as illustrated by Figure 41. 

 
29 Adapted from https://medium.com/@connectwithghosh/simple-matrix-factorization-example-on-
the-movielens-dataset-using-pyspark-9b7e3f567536 
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Having the Ratings Matrix created, it is now time to apply the SVD technique. To do so, the 
SingularValueDecomposition class is initialized, receiving as arguments the previously referred 
number of features and the number of learning iterations, or epochs. The latter refers to the 
iterations that the algorithm will cycle through in order to improve its predicting model. The 
epochs can be seen as a stop rule – at the end of 𝑥, the model stops training. There are different 
rules that can be applied, such as stopping whenever the error is lower than a specific threshold 
[104], but using learning iterations is the simplest and easiest way. 

When a machine learning model tries to make a prediction there’s always an error associated, 
and the ultimate goal is to minimize it as much as possible, through an iterative learning process. 
The error of a prediction can be easily obtained by computing the difference between the 
prediction and the real value. This is obviously only applied in training, where the real values 
exist and can be checked. It is, therefore, a pseudo-prediction, because the goal is not to make 
a real prediction for someone, but to test the overall model, so that going forward one can be 
confident it will make accurate real predictions. 

The idea of evaluating the performance of the machine learning model relates to Loss Function 
and Cost Function. According to a Towards Data Science article, “[t]he Loss Function computes 
the error for a single training example while the Cost Function is the average of the Loss 
Functions for all the training examples.” [102] For a set of 𝑁 data points, each one having a 
predicted value 𝑃′ and a real value 𝑃, the most simple and common Cost Function, also known 
as Mean Squared Error (MSE) can be computed as such: 

𝐶𝑜𝑠𝑡 =  
1

𝑁
෍(𝑃ᇱ − 𝑃)ଶ

ே

௜ୀଵ

 
(4) 

The goal is to, then, minimize the cost function, because the lower the error, the better the 
algorithm has done in learning and building a suitable model. And this is where it all ties 
together with what was described in the State-of-the-art chapter, regarding on how to obtain 
the correct decomposed matrices to make accurate predictions by recomposing them.  

To find the optimal feature matrices, there will have to be some sort of optimization process, 
to make the associated Cost Function as low as possible. To do so, the initial values of these 
matrices will be completely random. Since there is no real way to obtain their values based 
solely on non-zero values (as explained in the Matrix Factorization section), the easiest way to 
have a starting point is to randomize the matrices and go from there. After that, the matrices 
will be composed, using the dot product of the matrices vectors (user and item features vectors) 
to compute a prediction and comparing it with the real value, making adjustments depending 
on the error, and repeating the process for the number of defined learning iterations. These 
adjustments, or optimizations are done by an algorithm called Gradient Descent. There are 
different variants of this algorithm, as it will be covered later in this section. 

As such, after the SingularValueDecomposition class is instantiated, the FactorizeMatrix 
method is invoked, receiving as its only parameter the Ratings Matrix. This method is where 
the complete construction of the recommender model will take place, from the randomized 
initialization of the feature matrices, to the computing of Loss and Cost Functions for adjusting 
the matrices to finally obtaining the built model and the associated error. 



 

99 
 

 

First, the feature matrices are initialized, with random values, to obtain a starting point, as it 
was previously described. In the Initialize method, the biases are also initialized. Those refer to 
literal biases that users and items might have underlying and that are captured by the model. 

Some users might be more inclined to rate items with high ratings, and others might do the 
opposite, meaning that two users can have the same appreciation for an item and still rate them 
different – user bias. Similarly, different items might have some characteristic that makes users 
inclined to rate them higher or lower than other ones – item bias. Realizing that a specific 
classification can mean different things is the notion that leads to the inclusion of biases in 
recommender systems, both of users and items. Including biases for Matrix Factorization 
improves the model and the adjacent recommendations, which makes it very useful. [103] [104] 
The way these biases work will be detailed later in this section. 

After initializing all these variables, the next step in the FactorizeMatrix method is to get the 
average global rating, which will be useful later, and start the iterative learning process. The full 
algorithm for this can be found in the next Figure 43. 

 

Figure 43 – Iterative learning algorithm from Matrix Factorization 

As a step-by-step explanation of the previous algorithm, the first for loop goes over the number 
of learning iterations, each iteration having an associated error and an adjustment of the 
learning rate for the next iterations at the end. The learning rate is a variable used to adjust the 
values in the user and item features matrices, to approximate their values to the real ones. This 
is a part of the aforementioned Gradient Descent optimization algorithm, that seeks to find the 
minimum value for a given function, in this case, the error function. 
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Figure 44 – Gradient Descent visualization30 

Using an example found in a Towards Data Science article [105], let’s consider one is walking 
along the path defined by the graph in Figure 44 and is currently at the Starting Point. If the 
goal is to get as close to the Final Value as possible, then the only possible course of action 
would be to go up or down the graph and after taking a step, measure how much far from the 
goal this new position is and decide again where to go. After taking a step down the graph, the 
error – difference between the position of the current point and final one – would diminish, 
validating that one is on the right path. The question now becomes: “how fast must one go?” 
or “how steep of a step must one take?”. If one takes very small steps, then it would take too 
much iterations to reach the goal (converge), but if the step is too big, then the model might 
miss the desired minimum. [105] This is where the learning rate comes in – as a way to regulate 
the step that each iteration should take, in order to guarantee convergence. As also illustrated 
by Figure 44, the step of each iteration is getting smaller and smaller, the closer it gets to the 
final value, in order to prevent overreaching. 

In the devised algorithm, this is evident in the end of each iteration, where the learning rate is 
reduced by 1% each iteration. 

Nonetheless, in each iteration, a second for loop goes over all the users (rows) and then a third 
chained for loop over all the items (columns). Then, it is checked if the current cell’s value – 
given by the current row and column – is different than zero, because if it is not, then the model 
can’t learn from it, as it was already mentioned several times, and so, it just skips it. If, on the 
other hand, the cell has a value – if the current user rated the current item – then, the first thing 
that is computed is the predicted rating, given by the sum of the average global rating, the 
respective user and item biases, and the dot product between the vectors of the features’ 
matrices. In short, the predicted rating can be given by the dot product only, but the other 
elements add nuances that improve the computed prediction. For example, if the user tends to 
rate items very highly, then the predicted rating will be higher too, or if the item tends to be 

 
30 Image from https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-
41a5d11f5220 
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rated very low, then the predicted rating will be lower, or even if the average global rating is 
high or low, then the predicted rating will be affected accordingly as well. These called nuances 
make the prediction model more flexible because it takes into account different underlying 
variables that undeniably play an important role. 

After having the predicted rating, then the error can be computed, by calculating the difference 
between the predicted and the real rating. This error is then squared, to calculate the MSE 
afterwards. 

With the error measured, it is now possible to make adjustments and take a “step” in some 
direction, optimizing all the variables that are necessary for making predictions – user an item 
features, average global rating and user and item biases. 

These adjustments, or optimizations, are conducted by a Gradient Descent algorithm. The 
variant used for this project is called Stochastic Gradient Descent [110] which simply means that 
the optimization is done individually on each value (cell) at a time, instead of on all the values 
simultaneously, like some other variants such as the Batch Gradient Descent or even Mini-batch 
Gradient Descent. [111] 

To update the user and item features, another for loop is used, that iterates all the features 
corresponding to the users’ and items’ vectors and updates them. According to the literature 
regarding Stochastic Gradient Descent and Regularization [110] and also a University of 
Minnesota course on “Matrix Factorization and Advanced Techniques” [108], the formulas to 
update the step of the user and item features vectors are as such: 

∆𝑞௜௙ =  𝜆൫𝜖𝑝௨௙ −  𝛾𝑞௜௙൯, ∆𝑝௨௙ =  𝜆൫𝜖𝑞௜௙ −  𝛾𝑝௨௙൯ (5) 

Where ∆𝑞௜௙ and ∆𝑝௨௙ are the changes of the values for the item and user features vectors, 𝜆 is 
the learning rate, 𝜖  is the error associated with the current value prediction, and 𝛾  is the 
regularization term, which has a static value. The reason why this regularization term is being 
multiplied to the respective feature value and subtracted to the other term is to discourage 
large user/item features values. This makes it so that there has to be great evidence to support 
large values. [108] Large values need to be regulated because if they’re not, then the learning 
model might overfit, which is less than desirable. Overfit defeats the entire idea of 
recommender models, which is to be able to generalize. An example to illustrate what 
overfitting is can be seen in the next Figure 45.  

Supposing we have a dataset, represented by graph number 1 (Figure 45), if we want to build a 
recommendation model out of the data, and be able to generalize for future instances, then 
using Linear Regression we would get something similar to the graph number 2. If we, on the 
other hand, try to fit all the data in the model, we might end up with a model similar to graph 
number 3. This is not a reliable model because it does not capture the dominant trend in the 
data – which is that is growing – but instead all trends, which makes it near impossible to make 
predictions on where the next “dot” would be. [109] 
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Figure 45 – Overfitting illustration31 

This is why regularization is important, to prevent large values, outsiders, to impact the model 
negatively by overfitting it. This is supported by literature [107] [110], which offers different 
types of regularization such as L1, or Lasso Regression, and L2, or Ridge Regression. These will 
not be furtherly explored to avoid over-complicating the system at such an early stage but are 
definitely worth looking into for future work. 

Having updated the user and item features vectors for the specific current value, it’s still 
required to update the values of the other variables that impact the prediction formula – 
average global rating and user and item biases. They all follow the same formula, similar to the 
ones presented before, regarding the user/item features vectors, with a small adjustment of 
removing the error multiplier (𝑝௨௙  and 𝑞௜௙ ), where ∆𝑣  is the changes in the values for the 
average global rating and user and item biases. 

∆𝑣 =  𝜆(𝜖 −  𝛾𝑣) (6) 

All these formulas can be found programmatically implemented in the code from Figure 43. 

This process is repeated for all the values in the Ratings Matrix and at the end of each iteration, 
the MSE is calculated by dividing the sum of the squared errors for each prediction and dividing 
for the number of total predictions (number of ratings different than zero). The MSE is then 
associated to the specific iteration by getting added to a global list. This will be useful to analyze 
the evolution of the error on each iteration, by drawing a graph that should look like the one in 
Figure 46. 

 
31 Adapted from https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-
learning-a96b30864690 
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Figure 46 – MSE evolution by iteration 

To complete the factorization process, the SvdResult object is instantiated and returned, so that 
suggestions and specific recommendations can be made. This object contains the already 
named variables needed to make predictions. 

Having the prediction model built, SvdResult, it is now possible to make recommendations and 
there are two different types available, that each class under the IRecommender interface must 
implement: get the rating for a specific item by a specific user, GetRating method, and get a list 
of top suggestions for a given user, GetSuggestions method. 

The GetRating method receives the ID of a user and of an item, and using the previously built 
model, it computes a prediction for how that user would rate that item. That is achieved using 
the same formula used by Matrix Factorization when computing the predicted rating – sum of 
the dot product of the user and item features vectors, the user and item biases, and the average 
global rating. 

The GetSuggestions method is very similar, the only difference being that it applies the 
GetRating method to all the user’s unrated items, then sorts them in a descending fashion by 
their predicted rating and returns the first 𝑥 items. 𝑥 being the number of desired suggestions. 

 
6.1.1.4 Comparers 

Before presenting and detailing further recommender techniques, it is essential to describe an 
important method that is on the core of these algorithms. The group of these techniques 
constitute the Comparers. As the name suggests, they make different comparisons and they do 
it between users and items.  

In the State-of-the-art chapter, when discussing Collaborative Filtering techniques, a concept 
that emerged as the main method of application of CF algorithms was the Nearest 
Neighborhood algorithm. This algorithm aims to find the nearest neighbors for a specific 
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user/item, and to do that, it needs a comparing rule. A user can be similar to another one based 
on different characteristics, and those different implementations can be found under the 
IComparer interface. There can be, then, multiple implementations for comparers, but the ones 
included in this project are as follows: 

 Pearson’s Correlation [114]: By Kent State University’s definition, the Pearson 
Correlation produces a correlation coefficient, “which measures the strength and 
direction of linear relationships between pairs of continuous variables.” [114] The 
correlation can take on any value in the [-1,1] range. The sign of the value indicates the 
direction of the relationship, while the magnitude indicates the strength of the said 
relationship. Being that -1 is a perfectly negative linear relationship, 0 is no relationship 
and +1 is perfectly positive linear relationship. [114] Its formula can be expressed as 
follows [115]: 

 

(7) 

 The implementation of said formula is displayed in the next Figure 47. 

 

Figure 47 – Pearson’s Correlation implementation 

 Cosine Similarity [115]: Simply put, It is a very popular collaborative filtering technique 
that “measures the cosine angle formed by two rating vectors:” [115]  

 

(8) 
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The implementation for this formula can be found in the next Figure 48. 

 

Figure 48 – Cosine Similarity implementation 

 Co-Rated Cosine Similarity [116]: This is a variation of the Cosine Similarity, with the 
same formula. The difference being that only the co-rated items – items rated by both 
users – are considered and entered in the formula. The code for that is depicted in 
Figure 49. 

 

Figure 49 – Co-rated Cosine Similarity implementation 

 Root of Mean Squared Error [115]: Scoring rule that measures the average magnitude 
of the error. This is a technique which gives high weight to large errors, making it very 
suitable to apply when large errors are particularly undesirable. The formula for that is 
as follows. [115] [117] 

 

(9) 

 The programmatic implementation for this technique can be observed in Figure 50. 
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Figure 50 – Root of Mean Squared Error implementation 

 
6.1.1.5 User-Based Collaborative Filtering 

The UBCF [118] is a collaborative filtering approach that takes into consideration the users and 
the relationships that might exist between them. These relationships can be calculated using a 
plethora of techniques, like the ones presented in the previous Comparers section and they can 
represent different characteristics, such as profiles, purchase patterns or rating patterns, that 
are inherent to each user. 

When initializing this technique’s class, two arguments are sent as arguments – the number of 
neighbors to be used in the Nearest Neighborhood technique, and the desired comparing 
algorithm. 

Following its initialization, the way this technique’s training is implemented is very simple - 
Firstly, it is important to mention that it is not an intelligent training, and the term is only used 
because all recommenders under the IRecommender interface must implement the Train 
method. All this method does is get the Ratings Matrix (see Figure 40), exactly as in the start of 
the method for the Matrix Factorization technique. After that, the model has everything needed 
to make suggestions and calculate ratings, there’s no need for training of any sort. 

The GetRating method, presented in Figure 51, receives the ID of the user to which the 
recommendation is aimed, and the ID of the item to which the model will predict the rating for. 
Firstly, it finds the user, and their ratings, in the Ratings Matrix.  

 

Figure 51 – GetRating parent method for UBCF 

Afterwards, the closest neighbors of the said user are computed, using the 
GetNearestNeighbors method, Figure 52 , which receives the user and the number of desired 
resultant neighbors. What this method does is iterate all the users in the Ratings Matrix, 
compare them individually to the user to which the recommendation is aimed towards, using 
the specific comparer algorithm sent as an argument in the instantiation of the class, and storing 
the calculated degree of similarity in a Score attribute. At the end, the compared users are 
ordered in a descending fashion by their Score value, and the first 𝑥 ones will be returned. 𝑥 
being the number of desired resultant neighbors. 
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Figure 52 – GetNearestNeighbors method 

The result from this method, as well as the user and the ID of the item, are sent as an argument 
to the GetRating child method (see Figure 53), which will compute and return the predicted 
rating for that user and item. 

 

Figure 53 – GetRating child method for UBCF 

This method iterates the closest neighbors and for each one it calculates the average rating for 
all their items. If they rated the intended item, the score variable, representing the predicted 
rating, is updated, adding to it the difference between the rating the current neighbor gave to 
the desired item and their average rating on all items. This helps to regulate and normalize the 
predicted rating by taking into account the different rating patterns different users might 
possess. If a neighbor rated the item very highly that will severely increase the predicted rating, 
but if the same neighbor tends to rate items highly on average, then maybe the predicted rating 
should not suffer such a sudden increase.  
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The next formula (10) is the one used to calculate the predicted rating, where 
𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜)  is the rating the current neighbor gave to the desired item, 
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜)  is the average rating of the current neighbor, 𝑛  is the number of 
neighbors that rated the desired item and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑢𝑠𝑒𝑟) is the average rating of the user. 

𝑟𝑎𝑡𝑖𝑛𝑔 =  
∑ (𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜) −  𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜))௡

௜ୀ଴

𝑛
+ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑢𝑠𝑒𝑟) 

(10) 

After iterating all the neighbors, the sum is divided by the number of neighbors that also rated 
the intended item, and before returning the final prediction, the average rating of the user is 
added to the value. 

 

Figure 54 – GetSuggestions method for UBSCF 

The GetSuggestions method is very similar (see Figure 54). Firstly, it computes the nearest 
neighbors, in the same fashion as GetRating – by invoking the GetNearestNeighbors method, 
Figure 52. It then iterates each item and if the user hasn’t rated that them, it will try to compute 
a prediction for it. The way that is done is by iterating each neighbor, and if they rated the 
current item, the weighted score for it is calculated and added to the average for that specific 
item. When all the neighbors are iterated and the next item is ready to be looped, the 
suggestion for the current item is added to a global list, with its respective score (divided by the 
number of neighbors). The weighted score is calculated based on the rating the current 
neighbor gave to the item and also based on a regularization term. This term is a very simple 
way of saying the further the neighbors list is iterated, the less weight their ratings will have on 
the final score. Since GetNearestNeighbors returns an ordered list of closest neighbors, the first 
ones will be the most similar, and as such, they should have the biggest weight. The formula for 
obtaining the score/rating of a specific item is presented next, where 𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜) is the 
rating the current neighbor gave to the current item, 𝑛 is the number of neighbors that rated 
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the said item, and ௜ାଵ

ଵ଴଴
 is the regularization term, which takes a bigger part off of the neighbor’s 

rating the bigger the index of the neighbor is, so that the first neighbor’s rating has a much 
bigger weight than the last’s. 

𝑟𝑎𝑡𝑖𝑛𝑔 =  
∑ (𝑟𝑎𝑡𝑖𝑛𝑔(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟௜)  −

𝑖 + 1
100 )௡

௜ୀ଴

𝑛
 

(11) 

After all items are iterated, the suggestions’ list is order in a descending fashion, based on the 
score/rating that it was calculated for each one, and then, the first 𝑥 suggestions are returned. 
𝑥 being the number of desired suggestions. 

 
6.1.1.6 Item-Based Collaborative Filtering 

Another very well-known collaborative filtering approach is the IB-CF [118]. This technique, 
according to a paper published on Research Gate “first analyze[s] the user-item matrix to 
identify relationships between different items, and then use[s] these relationships to indirectly 
compute recommendations for users”. [119] One of the findings suggested by this paper is that 
“item-based algorithms provide dramatically better performance than user-based algorithms, 
while at the same time providing better quality than the best available user-based algorithms.” 
[119]  

This better performance might have to do with the fact that the calculations associated with 
user-based approaches take longer to compute, because ideally there are a lot more users than 
items and items change less frequently than users. [118] 

Regardless, the IB-CF works very similarly to the UB-CF, in terms of implementation that is. The 
only difference being that instead of users, we’re comparing the relationships between items. 
The class is instantiated in the same fashion – providing a comparing algorithm and the number 
of desired neighbors. Then, the Ratings Matrix is fetched, using the method already described 
and depicted in Figure 40. Afterwards, the matrix is transposed, so that the rows are now the 
items and the columns the users. 

Furthermore, another difference with the UB-CF technique, is the addition of tags to the Ratings 
Matrix which will help to compare items. A Tag is a characteristic that each time can possess. 
In terms of movies, a tag can be its genre, and a specific movie can have multiple genres. 
Identifying and using tags as means of comparison, aside from the ratings, can be very useful. 
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Figure 55 – Transposed Ratings Matrix with appended tags32 

In Figure 55, it is evident the transposed Rating Matrix with the appended tags, so that there 
are more ways to compare items. For example, if we’re comparing item 2 and 5, normally we 
would find the users who have rated both those items (user 1 and 4), but now, with the addition 
of tags, we can also search for items that share the same tags. In the figure’s example, both 
items 2 and 5 share the same A and B tags, which makes them closely related in terms of 
similarity.  

The model is now ready to make recommendations. As such, the GetRating method calculates 
the desired user’s and item’s average rating and returns the average of both, as in Figure 56. 

 

Figure 56 – GetRating method for IBCF 

The GetSuggestions method, on the other hand, uses a different approach. First, it retrieves the 
user’s top-rated items, using the method in Figure 57. It then iterates this list, and for each one, 
it finds their nearest neighbors, using the GetNearestNeighbors method, almost identical to the 
one used in the UBCF - Figure 52. Afterwards, it iterates the retrieved list of closest neighbors 
and computes the average rating of all the users that rated the current item. In the end, returns 
the first 𝑥 items with the highest average rating. 𝑥 being the desired number of suggestions. 

 
32 Image from https://www.codeproject.com/Articles/1232150/Building-a-Recommendation-Engine-in-
Csharp 
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Figure 57 – GetHighestRatedItemsForUser method 

 
6.1.1.7 Hybrid-approach 

As literature suggests [120], and as it was already explored in the State-of-the-art chapter, 
hybrid recommendation systems have been proposed as a way to improve performance by 
combining different recommendation approaches. The combination applied in the context of 
this project is based in the Matrix Factorization with different collaborative filtering techniques 
such as user-based and item-based. 

To initialize the Hybrid class, the list of desired recommender algorithms to be used is sent and 
added to the internal list attribute. The training method for this technique is simply iterating 
the different recommenders training methods. The way recommendations are made, on the 
other hand, is a bit different. 

The GetRating method simply invokes each and every GetRating method from the used 
recommenders and averages their results, as in Figure 58. 

 

Figure 58 – GetRating method for Hybrid filtering 

To get suggestions, there are two different alternatives: GetSuggestions or 
GetCommonSuggestions. 

The GetSuggestions method, depicted in Figure 59 first divides the number of desired 
suggestions equally through all the entered recommender algorithms, so that each one 
presents its own suggestions. It then invokes each and every GetSuggestions method of the 
recommenders, sorts the results by their rating and returns them. 
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Figure 59 – GetSuggestions method for Hybrid filtering 

The GetCommonSuggestions method (see Figure 60), on the other hand, as the name suggests, 
returns the suggestions that are common across all the entered recommender algorithms, as a 
way of validating their relevance. First, it adds 100 suggestions of each recommender to a list. 
Then it iterates the said list, creating another list of objects containing the suggestions and the 
number of their occurrences across the recommenders. In the end, sorts this list by the number 
of occurrences, to find the most common ones, and then by their ratings. Before returning, it 
takes the first 𝑥 suggestions. 𝑥 being the number of desired final suggestions. 

 

Figure 60 – GetCommonSuggestions method for Hybrid filtering 
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6.1.1.8 Flow 

With all the different techniques covered and detailed, it is now important to describe the 
system’s overall flow. 

 

Figure 61 – Activity Diagram for the Intelligent Recommender System 

The previous Figure 61 depicts the activity diagram for the Intelligent Recommender System, 
where after importing the dataset, the model is trained (depending on the technique) and then 
one can request suggestions for specific users or a predicted rating that a certain user would 
give to a particular item. 

Figure 62 exhibits a more detailed description of the flow of the system, where firstly the 
desired recommendation technique is chosen. It usually is Matrix Factorization or a Hybrid 
combination with other one(s). After that, it is verified if there is already a model for the 
selected recommendation technique. If there is, then it’s ready to make recommendations. If 
there is not, then the model is created, using the steps already covered in the previous sections. 
This model is then stored for future use.  

 

Figure 62 – Sequence Diagram for the Intelligent Recommender System 
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6.1.2 Conditional Recommender 

Having implemented an intelligent recommender based on machine learning and iterative 
improvement processes, there was still the need to possess a smaller, faster, and more direct 
recommender system. Even though smart recommendations are better in most cases, they 
require a very specific set of conditions to work properly. The first and most important one 
being the great amount of initial testing data.  

Unless there’s already a considerable volume of information ready to feed the system to build 
the recommendation model, then the recommendations will be far from accurate and probably 
more on the random side. This is exactly the situation with this project’s system – even though 
the algorithm was properly built to support the envisioned model and will be trained and tested 
with similar data (in terms of structure, not context), it ultimately cannot provide context-true 
results until applicable data is gathered. 

For this reason, an additional recommender will be implemented, to offer fast and simple 
recommendations in the absence of more robust ones calculated from the intelligent 
recommender. The end recommendation object is in the form of training Workouts. It won’t 
recommend training Plans or Programs because even though they have the same logic, due to 
time restrictions only one could be selected. 

 
6.1.2.1 Theoretical Base  

Even though the envisioned algorithm is desired to be fast and simple, it still has some 
intricacies on its workings that deserve to be presented. 

Firstly, the algorithm will not work so much as a “workout builder” but more as a “workout 
filter”. That is to say that it won’t build workouts from zero and recommend them - this would 
be highly difficult because it would require a more scientific and research-based knowledge in 
workout programming and defeat the whole simple-and-fast purpose. Instead, it will use the 
already existing workout database, and by filtering process, select the most appropriate ones, 
depending on the context (inputs). 

To do so, it will receive the as input the following parameters: 

 Workout Database: The workout list that will be filtered. 

 User History: User’s workout history, to find tendencies, lacking areas, etc. 

 User Preferences: Preferences of the user, established during the setup – available 
equipment, muscle groups, training types, body areas, goals and level of experience. 

To sum up, the inputs comprise the workout database, which is the list of existing workouts in 
the system’s database, the user’s workout history, which will help to find what the particular 
user values most, find tendencies in their training, areas that need more work, etc. It also 
comprises the user preferences, which were defined during the setup, and include the 
equipment the user has access to, muscle groups that the they want to work, the training types 
they want to practice, the body areas they want to hit, their training goals and their level of 
experience. 
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Regarding the filtering technique more specifically, the idea is to divide it in 6 stages – filters 
refinement, volume and intensity evaluation, filtering, volume and intensity prediction, final 
selection. 

The first stage, filters refinement, is the simplest one. Its main purpose is to take the user 
preferences and cross-reference them with the user’s history to refine them. For example, if 
the user’s training types were already all included in their previous workouts but one, then it 
makes the most sense to recommend a workout of that specific training type. And so, the list 
of training types would be reduced to just the one. 

The second stage, volume and intensity evaluation, has to do with assessing the volume and 
intensity the user has been subjected to in their previous workouts, to later decide what would 
constitute the most adequate volume and intensity for the next workout and find one that is 
the most alike. 

The third stage, filtering, is the phase where the refined parameters of the first stage will be 
applied in the workout list, reducing the number of workouts to ones that theoretically will be 
of most interest to the user. First, the workouts that are above the user’s experience level will 
be removed from the list. Then, only the workouts whose goals, training types and muscle 
groups align with the previously refined goals, training types and muscle groups respectively 
will be kept. Also, the workouts which use exercises that require equipment the user has no 
access to are to be removed as well. 

The fourth stage, volume and intensity prediction, takes into consideration the evaluation 
conducted in stage two, and tries to make a prediction on what would be most suitable to the 
user in terms of volume and intensity. From this point forward is where the results can achieve 
a greater degree of differentiation, depending on what is fed to the stage’s algorithms. This is 
because there are numerous ways to predict volume and intensity and to make a final selection. 

Even though the other stages can achieve a certain degree of differentiation, for example, there 
are several ways to evaluate volume and intensity, they won’t achieve the same degree that 
the fourth and fifth stage will. 

The implemented prediction of volume an intensity is based on the assumption that the 
detected tendency of past workouts will remain. To calculate this tendency, Linear Regression 
will be used. This technique is one of the most important ones in Regression Analysis, and its 
main purpose is to establish a relationship between a dependent variable and one or more 
independent variables using a line, also known as Line of Best Fit, or Regression Line. [99] 
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Figure 63 – Hubble’s Constant, expressed through the slope of a Linear Regression graph33 

In the previous Figure 63, the depiction of a standard Linear Regression graph is evident. Even 
though the data in the independent variable (Y-axis) is scattered, there’s a tendency upwards, 
more clearly noticeable through the use of the line – Line of Best Fit. This line indicates that, 
regardless of outliers, there’s an unmistakable growth, represented by the slope of the line. 
With this, one might predict what the velocity (Y-axis) might be for a specific unmeasured 
distance (X-axis). 

Accordingly, applying the same technique to the volume and intensity of the user’s past 
workouts will result in a line that may represent a tendency that the user subconsciously wants 
to maintain, and with such line, a prediction can be easily made.  

Still, there are some important points that need to be established. Firstly, it is assumed that 
there’s a linear relationship between the variables [99]. In other words, it is assumed that the 
user’s volume an intensity evolution is related to the evolution from workout to workout, which 
may not be true for some cases. Secondly, this technique is very sensitive to outliers, especially 
when data is scarce. This must be payed attention to, with the consequence of making 
unrealistic predictions. 

In the fifth and final stage, final selection, the predicted values for the volume and intensity are 
used to filter the list of workouts and obtain the ones that best fit the predictions, depending 
on how many are expected to be returned. 

 

 
33 Image from https://astro.unl.edu/naap/distance/hubbles_law.html 
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6.1.2.2 Flow 

 

Figure 64 – Sequence Diagram: Conditional Recommendation 

In the previous Figure 64 the sequence diagram relative to the conditional recommender 
process’ flow is presented. The process involves three entities: Mobile APP, API and 
Recommender System. 

The first entity, represented by the FitnessMobileApp component, gets the input from the user 
that a recommendation is requested. Then, the server, FitnessAPI, is communicated with, that 
in its stead communicates with the recommender system, FitnessRecommenderSystem, 
sending the user’s info, and other inputs, already presented in the previous section. Finally, the 
recommender processes the gathered information and returns it back in the form of workout 
recommendations. This process was also already described in the previous section. 

 
6.1.2.3 Implementation 

This final section will be dedicated to detailing and describing the specific implementation of 
the recommender system’s filtering process, which was already fully described previously. 

 

Figure 65 – Method to get the unused goals 

As it was already discussed, in the filters refinement stage, the user’s preferences are cross-
referenced with their history to find “lacking areas”. This is exactly what is being portrayed in  
Figure 65, where the user’s goals are being refined. More specifically, the method is searching 
for goals not present in the workout history and returning them, completing the refinement 
process for that preference. Each workout has a set of goals, and the algorithm is simply trying 
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to find the ones that were not “fulfilled” in the user’s history (list of workouts), which would 
make workouts that have those goals suitable candidates to recommend. The other preferences 
follow the same method of refinement. 

Regarding the volume and intensity evaluation stage, the Strategy [100] pattern was employed, 
so that the code would be reusable, and to allow different evaluation algorithms to be selected, 
independently of who, or what, is using them, as shown in Figure 66, where RepsEvaluate and 
PercentageRpeEvaluate implement their respective interface. The idea here is that other 
classes, with different approaches, can implement the same interface, reusing the code. 

 

Figure 66 – Strategy Pattern: IEvaluate 

To accomplish what was set on this stage, two classes were created – RepsEvaluate and 
PercentageRpeEvaluate. The first implements the evaluateVolume method that calculates the 
volume of workouts, which is based on the number of repetitions for each one, returning a list 
of integers, each representing the volume of a workout. The former implements the 
evaluateIntensity method, that calculates the intensity of each workout using a different 
approach. 

As it was described in previous chapters, specifically in the Domain Model, each workout 
contains a list of exercises, each exercise contains a list of sets, and each one has an attribute 
referring to its intensity. The main idea behind the algorithm from PercentageRpeEvaluate is to 
associate each exercise with an intensity, calculating the average between its sets, and then 
averaging the exercises’ intensity to obtain the intensity of the workout, as the following 
formulas (12) portray, from left to right respectively. 

𝐼௘௫௘௥௖௜௦௘ =
𝐼௦௘௧భ

+ 𝐼௦௘௧మ
+ ⋯ + 𝐼௦௘௧೙

𝑛
, 𝐼௪௢௥௞௢௨௧ =

𝐼௘௫௘௥௖௜௦௘భ
+ 𝐼௘௫௘௥௖௜௦௘మ

+ ⋯ + 𝐼௘௫௘௥௖௜௦௘೙

𝑛
 (12) 

In the filtering stage, the refined parameters from the first stage are used to filter the list of 
workouts, as shown in Figure 67. 
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Figure 67 – Method to filter the workout list by their goals 

The previous method receives as arguments the list of current recommendations (workout list) 
to filter it, the unusedGoals, which is the refined goals from the first stage, and the un-refined 
goals list. The reason for the latter is to have a “backup” in case the refined goals list is empty. 
If it is, then the refined list becomes the original one. After that validation, the workout list is 
filtered, to find which ones contain at least one goal from the said list. If the resultant list is 
empty, then the “pre-filtered” one is returned. 

The previous algorithm is the same one applied to all the other preferences. Also, the workouts 
which have exercises that require equipment not included in the user’s available equipment list, 
are filtered out. 

The volume and intensity prediction stage uses, once again, the Strategy pattern, to allow for 
there to be different implementations for the prediction of volume and intensity. The 
implemented one though, is based on the already thoroughly described technique – Linear 
Regression. 

With this technique, the Line of Best Fit can be calculated, and in order to produce predictions, 
it needs to be translated into an equation, the straight-line equation, in the “slope-intercept” 
form [101]: 

 

To obtain this equation, three steps need to be taken. First, the average of the 𝑥 (workout index) 
and 𝑦 (volume/intensity) is calculated, 𝑥̅  and 𝑦ത  respectively. Then, the slope, 𝑚, is obtained 
through the following formula (13). 

𝑚 =  

∑ 𝑥௜𝑦௜
௡
௜ୀଵ

𝑛 −  𝑥̅𝑦ത

∑ 𝑥௜
ଶ௡

௜ୀଵ
𝑛 −  𝑥̅𝑥̅

 

(13) 

 

𝑦 = 𝑚𝑥 + 𝑏 

where 𝑚 is the slope and 𝑏 gives the 𝑦-intercept 
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Finally, the 𝑦-intercept value, 𝑏, is calculated, using the formula presented next. 

𝑏 = 𝑚𝑥̅ −  𝑦ത 

These steps are programmatically implemented in the code shown in Figure 68. 

 

Figure 68 – Line of Best Fit equation implementation 

With this equation already available, predicting values for volume and intensity becomes very 
easy. It is only needed to replace 𝑥 with the index of the next workout, and return the respective 
𝑦 value, that represents the said prediction. 

The last stage, final selection, the predictions gathered previously will be used to make a final 
filtering on the workout list, that selects the first 𝑛  workouts that best approximate the 
predictions made for the volume and intensity. Given that 𝑛 is the number of recommendations 
that will be presented to the user, which can be changed. After the final workout list is returned, 
the conditional recommender process is finished. 

6.2 Mobile Application 

This section will be dedicated to the presentation of the developed mobile application. First and 
foremost, it can be said that it was built using React Native34 as its main framework, Expo35 as a 
tool for building, deploying and iterating the app, and Visual Studio Code36 as the code editor. 

React Native is a JavaScript37 framework, used to build native mobile applications for both iOS 
and Android. Based on the Facebook’s JavaScript library – React38 – but instead of the web and 
browser, it targets mobile platforms. [125] There are numerous advantages to using React 
Native, the first and most important is the fact that it supports different mobile platforms 
natively, removing the need to develop for both – the code will work for both. Also, it uses a 
very-well known programming language, JavaScript, which makes familiarization with the 
technology an incredibly easy process. 

 
34 https://facebook.github.io/react-native/ 
35 https://expo.io/ 
36 https://code.visualstudio.com/ 
37 https://www.javascript.com/ 
38 https://reactjs.org/ 
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This framework is being used by thousands of applications, the most well-known being 
Facebook, Instagram, Pinterest, Skype, Tesla, Uber, and many more mobile based 
applications.39 

The other technology used, Expo, is so notorious and relevant that it is even referenced in the 
“Getting Started” 40 page of the React Native docs. It is said that the easiest way to get started 
is with Expo CLI41, which is a command line app that serves as the main interface between a 
developer and other Expo tools. As such, Expo can be seen as an aggregate of different tools 
aimed towards the expedition of mobile apps with the less amount of effort. It’s very useful 
because it can be tested on an iOS device without paying the annual Apple Developer Account 
fee of $9942. This is attainable through the Expo app, both in the Google Play and App Store, 
which emulates the app that is being developed in the desired device. Furthermore, Expo 
handles tons of configurations instead of the developer and even has an SDK that allows the 
app to use the device’s camera, maps, location, etc. [126] Another tool from the Expo package 
is the Snack43 which is a handy online editor, that allows to run the application on an online 
emulator or even on the developer’s own device. 

The last used technology to build the mobile application was Visual Studio Code, which is a 
“lightweight but powerful source code editor […]. It comes with built-in support for JavaScript, 
[…] and has a rich ecosystem of extensions for other languages […].” [127] 

The next sub-sections will unveil specific details regarding the developed system’s 
characteristics, such as the used patterns and supported features, the libraries used, and at the, 
end the most important flows of execution of the User Interface will be presented and detailed. 

6.2.1 System’s Characteristics 

The developed mobile application exhibits a plethora of characteristics that are worth noting 
and documenting. These constitute decisions made in terms of used patterns, available features 
and even simply overall characteristics with a certain degree of importance to the proper 
functioning of the system.  

 
6.2.1.1 Redux 

Simply put, Redux [128] is a state container for JavaScript apps. It helps to build applications 
that are predictable, centralized, debuggable and flexible. 

Predictable because they behave consistently, run in different environments and are easily 
testable. Centralized because the application’s state and logic is centralized, enabling different 
state handling capabilities. Debuggable because using it makes it easy to trace the application’s 
state. And flexible because it works with any UI layer and has a large ecosystem of addons. 

 
39 Data from https://facebook.github.io/react-native/showcase.html 
40 https://facebook.github.io/react-native/docs/getting-started.html 
41 https://docs.expo.io/versions/latest/workflow/expo-cli/ 
42 Data from https://developer.apple.com/support/compare-memberships/ 
43 https://snack.expo.io/ 
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Even though it is mostly used with React, it can be used with any other JavaScript framework or 
library. [129] 

The reason why state management is important is because in a mobile application, data is 
usually shared among different components, and there has to be some sort of control over the 
data’s state that is being shared, to avoid any mistakes. [129]  

It is now important to understand how Redux works in terms of implementation [129]. It’s not 
very complicated and rather straight-forward. Firstly, there are three important parts in any 
Redux system: actions, store, reducers. 

The actions [130] are events, they’re the way one can send information from the application to 
the Redux store, described later. These actions are sent using a store.dispatch() method and 
they must possess a type property indicating the type of action that is going to be carried out 
and a payload, which is the information that is desired to be stored, as in Figure 69. 

 

Figure 69 – Redux action example 

The store [131] simply put, holds the application’s state and the only way to change it is to 
dispatch an action on it. The store is not a class, but rather an object holding multiple methods, 
such as getState(), which returns the current state of the application and dispatch(action), 
which dispatches a specific action to trigger a state change. There are others, but the ones used 
in the project, and the most important ones are the ones described. 

The reducers [131] are functions that take the current state of the application, perform some 
action and return a new state, as in Figure 70. They “specify how the application’s state changes 
in response to actions sent to the store.” [131] 

 

Figure 70 – Redux reducer function example 

To connect a specific screen with the Redux store, the connect() method [133] is used. This 
function connects a React component to the Redux store, and it receives two useful arguments 
– mapStateToProps() and mapDispatchToProps(). The first serves almost as a subscriber to the 
Redux’s store, where any change to it will trigger this function and be updated. If there’s no 
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need to subscribe to any specific variable in the store, the null value can be passed. The latter, 
on the other hand, is used to create functions that dispatch actions, receiving objects that the 
screen can use. [133] All of this can be seen in Figure 71. 

 

Figure 71 – Redux connect example 

 

6.2.1.2 Async Storage 

The AsyncStorage [133] “is a simple, unencrypted, asynchronous, persistent, key-value storage 
system that is global to the app.” [133] In the system, is very useful because, unlike Redux, if 
the application is closed, the data will still be accessible, due to being stored in a sort of local 
“cache” on the device. On the other hand, Redux’s data is initialized whenever the app is re-
opened. An example of how AsyncStorage works can be found on Figure 72, where an example 
of storing data is illustrated. 

 

Figure 72 – AsyncStorage persisting data example44 

 

 

 

 
 

44 Adapted from https://facebook.github.io/react-native/docs/asyncstorage 
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Contrarily, an example of fetching the same data can be seen in Figure 73. 

 

Figure 73 – AsyncStorage fetching data example45 

For the context of this specific project, there are three important AsyncStorage variables that 
are worth mentioning. These are the language, height unit and weight unit. These are useful to 
be saved in this manner because the fact that the app can be closed and re-opened and the 
variables will still hold their value, which means that there’s no need to fetch these 
configurations again from the server. 

Regardless, there are various other variables, that will not be discussed further, due to the fact 
that are not relevant for this project, but for the other author’s (see Methodology). 

 
6.2.1.3 Components 

React allows for the definition of different components as function components or even class 
components. This way, these components can receive different arguments, accessible to the 
props property and they return either a function or an entire class. The latter refers to UI classes, 
with their own render method. 

This encourages component reutilization, given that it only has to be defined once, and then it 
can be customized by the entity invoking it. For example, if a text class component is defined, 
which renders a text object and receives props such as its style, then, different invokers can 
specify different styles for the same text component, reusing it.  

The project employed this technique, seen as a good design pattern, as a means to reduce the 
sheer amount of existent code. The fact that if some changes on a specific component are 
desired, they can be applied to the reusable component, and all its instances would be changed 
as well constitutes a huge advantage in terms of maintainability. 

 

 
45 Adapted from https://facebook.github.io/react-native/docs/asyncstorage 
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6.2.1.4 Navigation 

Mobile apps are usually characterized by possessing multiple screens, and as such, there has to 
be some sort of manager that handles the presentation, transition and declaration of those 
screens. That manager is called a navigator. [134] 

In the context of this project, that manager is React Navigation, which “provides an easy to use 
navigation solution, with the ability to present common stack navigation and tabbed navigation 
patterns on both iOS and Android.” [134] 

There are different types of navigators, the used ones are as follows:  

 Tab Navigator [135]: Bottom or top tab that allows for easy swap of screens.  

 Drawer Navigator [136]: Lateral drawer menu. 

 Stack Navigator [137]: Provides a way to transition between screens where each one 
is placed on top of a stack. 

 Switch Navigator [138]: Its purpose is to only ever show one screen at a time. 

These described navigators can all be found in the following Figure 74, where the relationship 
between them and their respective screens is illustrated. 
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Figure 74 – Mobile App’s navigators and respective screens 

 
6.2.1.5 Authentication 

One of the defined Non-Functional Requirements had to do with security through 
Authentication. To achieve this, it was implemented an authentication system on the mobile 
application where it’s demanded for a registered account to be able to access its features. If the 
user doesn’t have an account, they can create one. They can also use the “forget password” 
feature, where they receive an e-mail confirming its identity and then a new password is 
generated. 
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6.2.1.6 Multi-language 

One of the most fundamental aspects of the mobile application is the fact that supports multiple 
languages and offers the addition of new languages with minimal effort, by the way it was 
implemented. The used process is named Internationalization, or I18N for short, and by 
definition “is the process of planning and implementing products and services so that they can 
easily be adapted to specific local languages […].” [134] 

To implement this said process, the i18n-js 46 library was used, which offers a simple way of 
implementing internationalization in JavaScript apps. To use it, 3 elements were created: index, 
language list, language file. 

The index is where some configurations are made, regarding the importation of language files, 
default language, fallbacks (for example if one wants “en-US” and “en-GB” to fallback to “en”), 
among others. 

The language list is the file containing the different available languages, and their locale key, as 
shown in the code snippet from Figure 75. 

 

Figure 75 – LanguageList file example 

The language file is the file where all the translations for the different variables are. There are 
as many language files as there are available languages. In Figure 76, an example of how a 
language file would look is depicted.  

 

 
46 http://i18njs.com/ 
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Figure 76 – LanguageFile example 

The usage of this library is very straight-forward – it’s just needed to invoke the i18n.t() method, 
passing as parameter the key of the language file’s desired variable. For instance, in the Figure 
76 example, if it is desired to get the translation for the “cancel” variable, the method would 
look like i18n.t(values.Cancel), which would return the respective translation. 

6.2.2 Libraries 

Many functionalities regarding UI elements were achieved using already built libraries, available 
on GitHub47. The next table Table 7 depicts all the used libraries, as well as the number of Stars 
they have on GitHub. These refer to their popularity on the site. 

Table 7 – Library list 

Library Name Description Stars48 

react-native-animatable [135] Animates different components. 7103 

react-native-app-intro-slider [136] Sliders/Swipers. 800 

react-native-calendars [137] Calendars. 1319 

react-native-collapsible [135] Animated collapsible component. 1572 

react-native-dialog [139] Native dialog/alert. 209 

react-native-elements [140] UI Toolkit. 17135 

react-native-gifted-chat [141] Chat UI. 7981 

react-native-loading-spinner-overlay [142] Spinner UI overlay. 1146 

react-native-material-menu [143] Material menu component. 223 

react-native-material-textfield [144] Material textfield. 630 

 
47 https://github.com/ 
48 All data from 25/9/19 
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react-native-modal [145] Modal UI component. 2846 

react-native-paper [146] UI Toolkit. 4208 

react-native-parallax-scroll-view [147] Animated parallax header. 1814 

react-native-picker [148] Native wheel picker. 1519 

react-native-picker-select [148] Native picker. 575 

react-native-progress [149] Progress indicators and spinners. 2514 

react-native-pure-chart [150] Chart library components. 198 

react-native-really-awesome-button [151] Buttons toolkit. 791 

react-native-search-box [152] Animated search bar. 370 

react-native-sectioned-multi-select [153] Multi-selectable modal. 347 

react-native-snap-carousel [154] Swiper component. 5954 

react-native-sortable-listview [155] Drag and drop list. 839 

react-native-stopwatch-timer [156] Stopwatch and timer component. 45 

react-native-swipeable [157] Swipeable list item. 842 

 

6.2.3 User Interface  

Having presented the mobile application’s characteristics, design patterns, used libraries and 
even the employed technologies, it is now important to detail the main execution flows in terms 
of user interface. These will serve as an introduction to the more specific detailing of screens 
and interfaces in the next Server Application section. 

The first screen a new user would encounter would be one depicted in Figure 77. There, the 
user is firstly faced with an introductory screen with the main features of the app such as the 
recommendations it provides, the personal virtual assistant, and others. After that, the login 
screen is shown, where the user can login, create a new account, or reset their password. After 
login in for the first time, the setup screens appear, in order to define the user’s profile, 
collecting information regarding their age, goals, workout frequency, and others. Finally, the 
user is finally inside the app itself, displaying the discover screen, where the user can perform 
a plethora of actions. 
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Figure 77 – Mobile App UI: Initial Flow 

One of the few actions that can be performed from the discover screen is the visualization of 
training programs, plans and workouts. From a different tab other than the “discover” one it’s 
also possible to view the exercises. The actions can all be found in Figure 78. 

 

Figure 78 – Mobile App UI: Training Lists 

The user might also want to create and run their own training workouts, which is what is being 
displayed in Figure 79, where firstly a workout is being created and then it’s being started and 
ran in real time. Finally, the user might also desire to consult their logs, referring to past or 
future programmed workouts. 
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Figure 79 – Mobile App UI: Create, Start and Check Workouts 

Another very important flow that new users might find helpful is the configuration of the app 
to their personal taste. To do that, there’s a side drawer menu where different screens can be 
accessed. One of those screens is the settings one, where the user can change things like the 
default units of measure, system’s language and the equipment they have access to. In the 
profile screen, they can also configure the body measurements they desire to keep record of. 
All this can be found in Figure 80. 

 

Figure 80 – Mobile App UI: Configurations 

Even though the main flows of action were presented, there are still many more interesting and 
important screens, and also noteworthy intricacies regarding the development and 
implementation of the mobile application, which will all be addressed in the next section. 
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6.3 Server Application 

In order to maintain a certain level of abstraction between the client’s (mobile application) and 
the database, to serve as a middle man between them and other services and components, and 
also to compute complex operations that aren’t recommended to be conducted in a client 
platform, a server application had to be devised.  

The implementation of the server application was conducted using Visual Studio as the main 
IDE, and C# as the programming language, identical to what was used in the Recommender 
System. 

The following sub-sections will be dedicated to the presentation of the intricacies and important 
characteristics and implementation decisions that were taken during the development of the 
server. 

6.3.1 Authentication & Authorization 

Authentication and Authorization are very important features to have, and ones predicted in 
the Non-Functional Requirements. To achieve this, the ASP.NET Identity [165] was used, which 
is a Microsoft tool that allows for an improved management mechanism for users and 
passwords, offering built-in classes that allow for the creation of both users and roles, as in 
Figure 81. 

 

Figure 81 – ASP.NET Identity generated entities 

It also offers templates “to add functionality to register, sing in and sign out a user.” [165] Plus, 
to assure Authorization in the server – to only allow certain user’s roles to access certain 
features (methods) – the Authorize attribute was used, as illustrated in Figure 82, which verifies 
in all Controller methods if the requests sent to the server are authorized to access the feature. 

 

Figure 82 – Authorize attribute in the server’s Controller 
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6.3.2 Encryption 

Maintaining and securing sensitive data is a very important feature on a system that deals with 
such information. As such, an in order to answer some Non-Functional Requirements, an 
encryption tool was used to secure personal data such as the user’s e-mail, body measurements 
and others. 

Consequently, a class containing methods to encrypt and decrypt strings was devised. The 
methods were based on a built-in cryptography class named RijndaelManaged.Rijndael [165] 
which was selected by the National Institute of Standards and Technology as the candidate for 
the Advanced Encryption Standard, which is a “symmetric [method of encrypting text] chosen 
by the U.S. government to protect classified information and is implemented […] throughout 
the world to encrypt sensitive data.” [166] It’s safe to assume, then, that the algorithms used 
are “best practice”. 

Using the RijndaelManaged class to perform the encryption, allied with the Rfc2898DeriveBytes 
[165] function of the Cryptography built-in library (namespace System.Security.Cryptography 
[168]) which generates an encryption key using a key derivation function, PBKDF2 [169], it’s 
simple to encrypt a given string-based text with a string-based cypher key, which is an arbitrary 
string used to encrypt and decrypt, basically, a key. 

6.3.3 Multi-language 

Even though the multi-language was already assured and described in the mobile application, 
it is still required to address the database’s multi-language. The database is supposed and 
prepared to hold huge amounts of information regarding training Programs, Plans, Workouts, 
Exercises and others, and having translations for all that data is a decision that has to be 
discussed thoroughly to make a good architectural decision so that performance is not 
compromised.  

Usually, a certain domain class, i.e. Program, possesses their own attributes such as name, 
description, etc. But to support multiple languages, this approach cannot be taken. The class 
cannot, as well, be duplicated for every supported language because that would imply lots of 
redundant information. 

As a solution, all the class’s attributes that are desired to be translated were exported to a new 
class, containing those attributes and an attribute referring to the corresponding language. As 
such, there are multiple instances of this new class, one for each existent language, as illustrated 
by Figure 83, example (ii). 
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Figure 83 – Multi-language architecture solutions 

In the previous figure, the first example (i) the Movement class contains two attributes that are 
desired to be translated in multiple languages – Name and Description – but with that 
implementation, the only way to achieve multi-language is to duplicate the class for each 
language. That is not a good solution, because if the class contains 10 more attributes that are 
not supposed to be translated, then that information will be duplicated in all instances of that 
class.  

Since redundancy is not desired, a new solution was devised (ii). In this solution, the Movement 
class contains multiple instances of MovementTranslations, one for each supported language. 
Each instance contains the relevant attributes in a specific Language. That way, it’s very easy to 
add new languages – add a new instance of MovementTranslations – and to retrieve 
information regarding a specific language - fetch the MovementTranslation instance where that 
Language is present.  

This solution eliminates all redundancy, because only the attributes that are desired to be 
translated are “exported” from the main class, but the ones that are not stay there, only 
appearing once in the database. 

6.3.4 Migrations 

Migrations [171] “is the recommended way to evolve [an] application’s database schema […]” 
[171] An evolving project usually implies changes in the database and model schema. With that, 
new classes, relationships, attributes, and other possible changes are always a possibility, and 
that means the database schema needs to be updated every time a small change occurs.  

This is not very productive, and so, Migrations are used, as “a way to incrementally update the 
database schema to keep it in sync with the application's data model while preserving existing 
data in the database.” [172] As such, Figure 84, contains the migrations used in the context of 
this project. 
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Figure 84 – Project’s Migrations 

6.3.5 Flow 

Having presented all the server’s characteristics and intricacies, it is now important to establish 
and present how it behaves when a request is received, as a way to better understand how it 
works as a whole. The flow of information, when a GET request is received, is illustrated by 
Figure 85. 

 

Figure 85 – Server’s GET request flow 

After the respective Controller receives the request, the currently logged user’s ID is fetched, 
through ASP.NET Identity, which offers methods to easily retrieve these kinds of information. 
With the ID fetched, the user’s language is obtained, by invoking the getUserSettings method, 
from UserRepository. 

With all this information fetched, the server is now ready to process the specific information 
requested by the user, sending the user’s language as argument to any Repository method, 
which then returns the desired information in the correct language. 
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6.4 Personal Virtual Assistant 

One of the established ideas with value for the system was the implementation of a Personal 
Virtual Assistant (PVA), which was also designed as a functional requirement. This PVA besides 
offering an obvious innovative feature in the mobile fitness app market, it most importantly 
offers a way for users to communicate intelligently and have their issues and doubts answered 
from the comfort of their mobile devices. 

For such a system to work, four components had to be involved which were the mobile 
application, where the user communicates and interacts with the PVA, the ChatBot’s API, to 
where all the message requests are redirected to formulate a response, the server application 
which returns database data, and also another API, from a Microsoft service called LUIS [173]. 

LUIS stands for Language Understanding Intelligent Service and is according to Microsoft “a 
cloud-based API service that applies custom machine-learning intelligence to a user’s 
conversational, natural language text to predict overall meaning, and pull out relevant, detailed 
information.” [174] Basically, it’s a machine-learning service that translates natural language 
into apps, chat bots and IoT (Internet of Things) devices. This will help to build a ChatBot, the 
PVA, with intelligence to understand a respond to user requests. 

An example on how all these components interact with each other can be viewed in Figure 86. 
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Figure 86 – PVA components communication 

As the previous figure suggests, after receiving a message, the LUIS’s API first tries to recognize 
the intent of it. For example, a “hello” is intended to be a greeting, but for obvious reasons, a 
“give me a list of all exercises” has a different intent, and firstly it is important to recognize it. 
Deciphering a message’s intent is not a very straightforward process because there can be 
multiple ways to greet someone – “hello” and “hi” have the same intent, which is to greet – and 
the service needs to understand and recognize intent as well as learn for future instances.  

After understanding the intent of the message, the service can then decide which course of 
action to take. In the example of Figure 86, if the intent is “Greetings”, the assistant will return 
a random greeting message, but if the intent is “Movements-List”, the response should be the 
list of movements. 

A bigger question now emerges which is “how to possess a model able to recognize custom 
intent?”. The answer is that the model should be custom created with the desired intents to be 
recognized and then trained for it to be accurate and proficient in recognizing them. To do so, 
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LUIS offers a dedicated graphic interface (LUIS portal) to create the machine learning model. It 
is possible to start with a prebuilt model, build one from scratch or a combination of both by 
blending prebuilt pieces with custom information. [174] Regardless, after having the model, it 
is possible to easily created intents [175] and entities [176] which are a word or phrase to be 
extracted from the input message, or utterance [177] (view Figure 88), and then train the built 
model by manually reviewing utterances that LUIS had trouble deciphering the intent of and 
assigning them to the correct intents, which furtherly improves LUIS’s prediction capabilities. 

 

Figure 87 – Stages to build a LUIS model 

In the previous Figure 87, the abovementioned stages for building a capable model are 
presented. Firstly, the intents where created, and for the context of this project, only six were 
chosen: greeting, farewell, exercise list and exercise’s common errors, tips and instructions. 

Afterwards, the examples of utterances need to be provided, so that the model has a baseline 
for recognizing intent from messages, as illustrated by Figure 88. Each intent needs multiple 
utterance examples. [174] 

 

Figure 88 – Example of extracting intent and entities from utterances49 

As an example, the utterances used to train the model into recognizing the intent of 
“Movement-Tips” which is to return a specific movement’s tips can be found in Figure 89, where 
the first part of the utterance is used to interpret intent and the last part – movementName – 
is the extracted entity. As also illustrated, “quero as dicas” has no recognized entity, and this 
will return a response from the PVA asking for the user to enter the desired entity. 

 
49 Adapted from xhttps://docs.microsoft.com/bs-latn-ba/azure/cognitive-services/luis/what-is-luis 
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Figure 89 – Movement-tips utterances examples 

After having their intents and entities defined, and some utterances examples for the model to 
have a base, it is now ready to be trained. This process is an automatic process conducted by 
LUIS which will try to create a model to fit the entered information previously described. 

After the training phase ends, the model is then ready to be tested. For that, some utterances 
are fed to the model in order to test if it can accurately recognize the intents. If, at some point, 
for a given utterance, the model cannot decipher the intent correctly, the phase for inputting 
utterances as baseline for each intent can be repeated, adding as many new utterances as 
desirable. Then the model is trained again and tested. These phases can be cycled as many 
times as desired until the model is satisfactory. 

In the last stage, the trained and tested model is deployed, allowing now for the ChatBot’s API 
to communicate with LUIS’s API to interpret user messages. 

When a message is sent from the PVA to the ChatBot’s API, the first step is to invoke LUIS’s API 
to recognize the user’s intent with the greatest score. The response of this request is a list of all 
existent intents, ordered by their score which is the likeliness of that being the user’s intent. 

Depending on the intent, the system can take different courses of action, as it was described 
previously. To organize that, an IIntentHandler interface was created, containing a method 
HandleIntent which all the instances of the interface should implement. Each intent has their 
own class, and therefore, each one implements the HandleIntent method. The behavior for 
each intent can be summed as follows: 
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 Greeting and Farewell: Randomly selects a greeting or farewell message from existing 
ones. 

 Exercise List: Requests from the FitnessAPI the list of exercises. 

 Exercise’s Tips, Common Errors and Instructions: After extracting the correct entity 
from the utterance, it invokes the FitnessAPI to return the tips, common errors or 
instructions for the given exercise. 

After receiving the response, it is returned to the mobile application, where a chat built with 
the gifted-chat library was implemented, using the Direct Line [178] channel as a way to 
facilitate communication of the mobile application with the ChatBot’s API. This communication 
is what enables the user’s utterance to reach the created model from LUIS’s API and receive a 
response afterwards, from the ChatBot’s API. This flow of information is illustrated in Figure 86. 

 

Figure 90 – Mobile application Direct Line usage 

In the previous Figure 90, the communication with the Direct Line channel, from the mobile 
application, can be seen. Furthermore, an example interaction of the user with the PVA is 
illustrated by Figure 91.  
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Figure 91 – PVA interaction 

6.5 Use Cases 

In this section, the uses cases will be presented, in a way that allows for a better understanding 
on how the specified and designed requirements were implemented.  

This is achieved through first describing the actions that must be performed by the user in order 
to utilize the respective functionality, with prints of the mobile app illustrating the process. Then, 
on a more detailed level, the implementation of the use case is described, with snippets of code 
from both the mobile app and the server, as well as a comprehensive written explanation of 
how everything ties together. 
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As a small side note, it was defined that the use cases involving “managing” can be divided into 
three action categories: create, edit, delete. Due to time restrictions, not all actions can be 
implemented for all use cases, which means that some should be prioritized. For proper 
functioning, the only fundamental one is the create action, and as such, it will be the one 
prioritized. The others, even though they were designed, won’t be addressed in this section for 
the mentioned reasons. 

6.5.1 US02: View training Plan/Program templates 

From the Discover screen, depicted in Figure 92, the user can decide to view the template list 
of Plans and Programs. When selecting the “See all” option, all the Plans/Programs are shown, 
in their respective screen. At the same time, the user can also select a specific program directly 
from the Discover screen’s interface. 

 

Figure 92 – Discover screen 

When the “See all” option is selected, the user is redirected to the respective Plan or Program 
list screen. There, before rendering the screen, it is verified if the list is already loaded in the 
system, because if it is not, the information needs to be fetched from the server. 
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Figure 93 – Program list validation 

The said validation is depicted in Figure 93, where it is firstly verified if the Redux’s variable for 
the list of Programs is empty. If it is not, then, the screen’s state variable is updated with that 
information, which means that no connection with the server is required. On the other hand, if 
the list is empty, before requesting the server, it is verified if Redux also has information 
regarding the equipment and muscle groups. This information is required in the context of the 
Programs screen for filtering purposes – one has to have information regarding muscle groups 
to be able to filter Programs with it. Depending on the result of this verification, one of two 
methods is called – onGetProgramsAndFilters and onGetPrograms. The difference between 
them is that the latter only retrieves the list of Programs, and the first also returns the list of 
filters (equipment and muscle groups). 
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Figure 94 – getPrograms action 

Each of these methods dispatch a different action, and the one that fetches only the list of 
programs from the server can be found in Figure 94, where the API’s GET method for the 
Programs Controller is called, which returns the desired Program list. This method can be found 
in Figure 95, where the GetPrograms method in the Program Repository class is invoked, 
passing as arguments the ID of the current user, and their preferred language, in order to return 
the list in the correct language. 

 

Figure 95 – GetPrograms server method 

After receiving the result, the Redux action sets the state of the store by dispatching another 
action – setPrograms – which can then be accessed by the screen. While waiting, the user is 
presented with a loading screen. The resultant screen can be found in the first two images from 
Figure 78. 
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6.5.2 US03: Manage training Plan/Program 

Managing a training Plan or Program can imply one of three actions – create, delete, or edit. As 
described previously, the create action was the priority, and due to time restrictions, it was the 
only one implemented. 

To create a Plan or a Program, the process is relatively similar and by explaining the creation of 
a Program, the Plan’s will also be addressed indirectly, which is the reason for combining the 
two in a single use case.  

In the Domain Model section, it was described how a Program is characterized by a name, 
description, list of plans, and other variables such as its goals, level, etc. The Plan, on its turn, is 
characterized by a list of workouts, a name, a description, and other variables too. Each 
Workout has its name and the exercise list that composes it. And each exercise has the number 
of sets that define it, each one with the reps, weight, intensity and rest time, depending on the 
type of exercise. This can be seen in the next Figure 96. 

 

Figure 96 – Create Program screen flow 

When in the Create Program screen, the user is prompted to enter the required information 
and to configure the list of Plans that make up the desired Program. To configure each Plan, the 
user is redirected to the Create Plan screen, which is also the same one used for creating single 
Plans, without any Program associated. The same happens when configuring each Workout, the 
user is redirected to the Create Workout screen, which is also the same one used for creating 
Single Workouts. There, the user selects the desired exercises, and for each one, it can configure 
the number of sets, the reps, the intensity, rest time, etc. 

To enter the Program’s goals and training types, and the Plan’s training types the user is 
presented with an interface that allows them to enter the desired ones, as in Figure 97. 



 

146 
 

 

Figure 97 – Configure Program Details 

After all the information is entered, from the Program’s name to each of the Exercise’s sets, a 
JSON object, containing all this information, is built and sent as an argument to a function that 
dispatches the createProgram action. This action calls the Programs Controller through a POST 
request, sending the JSON object as argument. 

Figure 98 – PostProgram method 

The previously mentioned function is depicted in Figure 98. Firstly, the user settings are fetched 
from the User Repository, which will be helpful when returning the list of programs in the 
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correct language. The foreach block of code is very important because it deals with the 
existence of Supersets. These are very special and require a particular type of attention. Each 
Plan and each Workout is iterated, and for everyone, the GetExercisesSuperSets method is 
invoked, which it iterates their exercises in order to obtain a list of integers correspondent to 
the IDs of the Supersets created in the app.  Then, if the method in Figure 99 is executed, which 
replaces the attribute SuperSetId of every exercise that is grouped to a superset, with the one 
returned from the database. 

 

Figure 99 – SetSupersetsInExercises method 

Then, the model of the Program needs to be created to be sent to the CreateProgramAsync 
function from the Program Repository which will add it to the database. This model is created 
using a type adapter.  

 

Figure 100 – Program model creator method 

The PostProgram function, in the end, returns the complete list of Programs, to be received by 
the mobile app, which will update its Redux’s store variable relative to the program list, so that 
the information is consistent. This update is conducted though the dispatchment of an action 
called setPrograms, already described previously. 

As a final note, it is important to note that, by the way things are implemented and defined, a 
Plan, in terms of database modeling, is always part of a Program. That way, there’s only one 
method to save Plans and Programs. The distinction comes from the fact that a Program with 
only one Plan is what constitutes, in terms of domain logic, a Plan. 

6.5.3 US04: Manage Body Measurements 

In the user’s profile, the user can access the Body Measurements screen, which when it’s being 
opened by the first time, will present not the main screen but the Configure Measurements one. 
As it is the user’s first time accessing their body measurements, they have yet to be configured. 
This configuration refers to the selection of body measurements that the user desires to keep 
track of. If they don’t want to log information regarding, for instance, their body fat, then there’s 
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no point in showing it at all. As such, the user selects the desired body measurements, from the 
list presented, as shown in Figure 101, where the Height, Calves, Chest, and Shoulders are 
already selected. In this screen, the user can also define a goal to associate with the respective 
body measurement, illustrated by the “green flag” present in the Height and Chest 
measurements. 

 

Figure 101 – Configure Body Measurements 

After selecting the desired measurements and saving, the method in Figure 102 is invoked. Here, 
the function onPutSelectBodyMeasurements is called, receiving as argument the object 
containing the selected body measurements objects. This function, on its turn, dispatches a 
Redux action named putSelectedBodyMeasurements which also receives the list of body 
measurements as argument. In this action, a PUT request is sent to the BodyMeasurements 
Controller in the server. 

 

Figure 102 – Save selected Body Measurements method 

The method which receives the request is partially shown in Figure 103. The full code is not 
present in the figure because it was too extensive. As such, it only represents the main flow 
behind the actual method. 

Regardless, firstly the current user is fetched from the respective repository, which then allows 
to retrieve their body measurements information. The received by argument list of body 
measurements is then iterated in a foreach loop and for each one it is verified if there is already 
a measurement in the user’s list with the same type. There can only be one type of 
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measurements per user – if the user’s list already contains a Chest type measurement, it cannot 
contain another. And so, if there is no object of the current measurement’s type then it is 
created using the CreateBodyMeasurement function from the Body Measurements Repository, 
which simply adds it to the database.  

If, on the other hand, the current body measurement already exists in the user’s list, then it is 
verified if they possess the same ID. This is to confirm that they represent the same object, 
because if they don’t have the same ID, it means that in the mobile app, the user removed the 
body measurement and then added it again, which resets its ID and loses all its logs as well. 

Consequently, if they don’t possess the same ID, the one sent from the mobile app is added to 
the database and the one that was in the user’s list is removed also from the database, 
maintaining the consistency of only existing a maximum of one measurement type per user. 
The used method to do so is named CreateAndDeleteBodyMeasurements and receives both 
measurements as argument. 

At the same time, if they do in fact possess the same ID, it means they are the same object, and 
there’s no need to add nor delete a measurement to or from the database, respectively. All 
there remains is to handle the measurement’s logs. If it’s the first “save” of body measurements 
configurations, there are no logs yet, and so, the method ends here. This happens because the 
method is used for configuring body measurements as well for adding logs to them, as it will be 
described next. 

 

Figure 103 – PutBodyMeasurements method 
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After the information is saved, the user is redirected to the main Body Measurements screen, 
which will contain the list of the selected body measurements, with the defined goals and with 
logs yet to be entered. The user can then select the option to add logs, which will redirect them 
to the first screen in Figure 104. This screen contains solely the list of the user’s selected body 
measurements, and for each one, the option to enter a value to be logged. Some measurements, 
as the Calves one, are special because they can have not one, but two entry logs. In real world 
context, they refer to bilateral body parts, for example the arms, which can have a measure for 
the right and left side. After the user enters the desired information and saves it, the body 
measurements list, with its respective logs, is sent as argument to the already described 
putSelectedBodyMeasurements action.  

As it was previously mentioned, the method of Figure 103 is used to configure and to add new 
body measurements entries. And so, after saving the logs, the same method is invoked, and 
when it reaches the part where it stopped before - after validating that the currently being 
iterated body measurement and the one fetched from the user’s list are the same - the logs are 
iterated, and for each one it is verified if they already exist. If they do, nothing happens, but if 
they don’t, a new BodyMeasurementLog object is created with the correct information and 
added to the respective log list, which will then be updated in the database through the 
UpdateBodyMeasurement method. 

 

Figure 104 – Manage Body Measurement Logs 

After adding logs, the user is redirected to the main screen again, where it would show 
something like the second screen in Figure 104, where a progress circle indicates how far from 
the goal the last entry log of that specific body measurement is. If any body measurement is 
selected, a dialog appears, showing the list of logs, with the respective values and associated 
date. The date is added when creating the BodyMeasurementLog object in the server with the 
current date and time (see Figure 103). 
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Finally, the user, if desired, can re-configure the list of body measurements by selecting the icon 
on the right of the screen’s header (“white flag” icon), which will redirect them to the 
configuration screen, with the existent configurations being shown. 

6.5.4 US08: View training Logs 

In the bottom tab, the user can quickly access their log history. This screen, present in Figure 
105, contains the Agenda of the user, with an interactive horizontal top calendar, centered in 
the current day and showing an entire week, and a bottom scrollable calendar, with the details 
for each day presented. The top calendar can be expanded to visualize entire months’ worth of 
days, as illustrated by the second image in Figure 105. The blue dots in each day represent a 
Workout conducted on that specific day. For example, in the 13th day, the Volume Day workout 
was conducted, which is part of the Hypertrophy Block Plan and the Off-Season Progressive 
Overload Program. It’s also noticeable the volume of that workout, 1854kg, and the duration, 
1h35m20s. 

 

Figure 105 – Log screen 

The information regarding workout logs is only imported to the app if the screen is requested 
to be opened. This is to avoid overcharging the app with too much unnecessary information 
when it is first starts. That way, the user doesn’t have to wait long before being able to use the 
app. 

Regardless, when the screen indeed is opened, a Redux action is dispatched, fetching from the 
server the list of workout logs, using the method of Figure 106, which is in the Logs Controller. 
There, the user’s logs are fetched from the Logs Repository, through the GetLogsByDay method, 
which returns them by their date. 
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Figure 106 – GetUserLogsByDate method 

The list is then received by the mobile app, which updates its Redux store variable by 
dispatching a setLogs action. In the screen, this information is accessed and the objects to be 
fed to the calendar library are built, as illustrated by Figure 107, and finally, the calendar is 
shown to the user. 

 

Figure 107 – Log objects’ builder 

6.5.5 US10: View Statistics 

It was desired to provide the user with statistics related to training progress, body 
measurements, and others, but due to time restrictions it was only implemented statistics 
referring to body measurements, more specifically bodyweight. These statistics would be all 
very similar in terms of structure, so by fully implementing one of them the system is then ready 
to support other types’ as well. 

When accessing their Profile, the user can promptly view a graph representing the 
evolution/progress of their bodyweight, as illustrated by Figure 108. If the “white arrow” on the 
right side of the graph is pressed, the user is redirected to their body measurements screen, as 
described in the US04: Manage Body Measurements section. 
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Figure 108 – Profile screen statistics 

To construct such graph, when the user Profile is loaded, their body measurements should be 
loaded too, if they weren’t already. In Figure 109, the method responsible for loading that 
information is observable. This method first verifies if the body measurements list on the 
Redux’s store is empty, and if it is, the onGetSelectedBodyMeasurements method is invoked, 
which dispatches the getSelectedBodyMeasurements action, retrieving the list of body 
measurements. If this list is empty, it means that the user has yet to configure their body 
measurements, which will be important for when they try to open the Body Measurements 
screen. 

 

Figure 109 – componentDidMount method from Profile screen 

The graph itself was built using the information regarding the logs of bodyweight (it can be of 
other types), which have a value, the Y-axis, and a date, X-axis.  

As a final note, it is important to notice that the used library to build the graph (react-native-
pure-chart) wasn’t ready to be used from the start and had to be deeply modified. A GitHub 
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issue post50 was created, explaining those changes. These include the addition of customizing 
the Y-axis values to start and end near the bottom and top limits of the logs’ values. All the code 
and written explanation can be found on the opened issue. 

6.5.6 US15: Change Language 

Multi-language is supported by the system, and as such, a user can decide to change their 
preferred language. To do so, the Language Screen can be accessed through the Settings. After 
that, the user is presented with the list of available languages to change to, and after selecting 
one, it is asked to confirm the decision before saving the information, as illustrated by Figure 
110. This is to prevent changing the entire app’s language by accident. 

 

Figure 110 – Change system’s language 

Additionally, it is worth noting that the user’s language not only affects the mobile app’s 
language, but it also of all the retrieved information from the database – for instance, when 
retrieving the list of programs, or the list of training types, if the user’s language is Portuguese, 
then the information will be retrieved in Portuguese, as it was described in the Server 
Application section. 

Furthermore, after confirming to change the system’s language, the onChangedLanguage 
function is invoked, which on its turn dispatches the updateLanguage Redux action, as depicted 
in Figure 111. 

 

Figure 111 – change language function to redux action 

 
50 https://github.com/oksktank/react-native-pure-chart/issues/82 



 

155 
 

 

The action, then, calls the server through SetupsController and invokes the method shown in 
Figure 112, where the new language is received as argument. The method, firstly, fetches the 
current user’s object, edits it with the new language and saves the changes through the EditUser 
method from the User Repository. 

 

Figure 112 – PutUserLanguage method 

After the action receiving the return answer from the server, it dispatches two new actions – 
setLanguage, which sets the Redux’s store language variable to the new one, in order for other 
screens to be able to correctly access it, and clearInformation, which clears the Redux’s 
variables for the available equipment, programs, training types, and others. For instance, if the 
available equipment is in English and the user just changed the language to Portuguese, the list 
is inconsistent, and as such, it is cleared so that when it is reloaded it can be fetched with the 
correct language. 

6.5.7 US16: Change Unit System 

Depending on the user’s preference and their localization, they might favor a certain unit 
system over others. For example, someone in the USA, Burma or Liberia, the imperial system is 
the adopted one, which according to the Central Intelligence Agency’s “The World FactBook” 
[165], are the only countries in the world that still aren’t using the metric system.  

Furthermore, if the user prefers the metric system, but the gym he trains only has pound plates, 
they might want to change their preferred weight unit of measure to lbs. instead of kgs. 
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Figure 113 – Change unit system 

In the previous Figure 113, it is observable the full action of changing between unit systems. By 
default, the metric system is adopted, but just bey pressing the desired unit – weight or height 
– the user can configure their preferences. Every time a user changes a unit, the method in 
Figure 114 is invoked, calling a onSetUnit function that dispatches the Redux’s action 
responsible for updating the user’s units in the server, calling it through the Setups Controller’s 
updateUnits method, which receives the unit type and its new value as arguments and updates 
the user’s object in the database with the new information. 

 

Figure 114 – Unit system change handler 

After receiving confirmation of the success of the operation, the Redux action dispatches a 
storeUnits action which will update the Redux’s store variables and also the AsyncStorage, as 
illustrated by Figure 115, where the setBothUnits action is dispatched, updating the height and 
weight Redux’s variables, and invoking the setAsyncProperty for both the height and weight 
units, updating also the AsyncStorage. 
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Figure 115 – storeUnits action 

6.5.8 US17: Manage Available Equipment 

Each user might have access to different equipment, and that should impact things like their 
exercise selection and also recommendations – if a user doesn’t have access to a specific 
specialized barbell, there shouldn’t be any exercises recommended to them that require that 
piece of equipment, and the user should be able to filter the exercise list for ones that they are 
able to perform. 

To configure the available equipment list, the user can access the dedicated screen under the 
Settings Screen. This is illustrated by Figure 116, where after loading the available equipment 
list, the user is presented with a screen with the list divided by equipment types, such as Barbells, 
Machines, Benches, and other types, to facilitate searching. It is also possible to view the 
equipment details, such as an expanded view of its image, by clicking on it. 

 

Figure 116 – Open Available Equipment screen 

When the screen is opened, the snippet in Figure 117 is executed, which firstly verifies if the 
Redux’s store variable for the available equipment list already contains information. If it does, 
then the screen’s state is updated, and if not, the onGetEquipmentByCategory method is 
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invoked, which dispatches getEquipmentsByCategory action. This action makes a server call 
through the EquipmentCategory Controller, which returns a list of EquipmentCategory. This 
object is characterized by an attribute identifying the category and the list of equipment of that 
category. That way, the information is returned organized by category, making it easier to 
separate in the aforementioned tabs. If the result is successful, the screen’s state is also 
updated. 

 

Figure 117 – Get available equipment list snippet 

After the information is loaded, the user can then decide to select some equipment to add to 
their personal list. As illustrated by Figure 118, the user can search for equipment in the search 
bar, which also shows the number of found results. After searching, they can select as many as 
desired and by saving, the list is automatically updated, both in the app and the server. 

 

Figure 118 – Filtering and Adding equipment  

To accomplish this, every time an equipment is selected, it is added to a temporary list that if 
the user decides to save it is sent as argument to the onSetUserAvailableEquipment method 
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(see Figure 119), which dispatches the setUserAvailableEquipments action. This action calls the 
server through the already mentioned EquipmentCategory Controller, which saves the received 
information in the database and returns if the action was successful or not. If it was, the Redux’s 
variable for the list of equipment is updated (still in the action), and finally, in the method of 
Figure 119, it clears the changed equipment list, given that all changes were already saved. 

 

Figure 119 – Save available equipment method 

Because the information is saved in the Redux store, if the user quits the screen and opens it 
again, the information won’t be fetched from the server again, eliminating the need for the user 
to wait again and have instant access to the information. 

6.6 Non-Functional Requirements 

The entire system was devised and implemented in order to answer the designed requirements, 
both the functional and non-functional. Given that the first were already described, through 
the use cases, the latter need to be addressed as well, which is what this section is dedicated 
to – summing the information that was already presented in previous sections in a way that is 
easier to understand how that would answer the designed non-functional requirements. 

Next, the most important non-functional requirements will be discussed in the perspective of 
how they were taken into account when implementing the system. 

 Authentication: To secure the system, an authentication system was implemented in 
the mobile application, so that only register users can access both the mobile app and 
the server. 

 Authenticity: Achieved by the server’s employment of authenticity techniques, 
confirming that the received requests is cleared to access the desired functionalities. 

 Confidentiality: To secure critical user data, an encryption system was implemented in 
the server, so that the said information is encrypted before being stored in the database. 

 Usability: The mobile application was designed having in mind the usability 
requirements, by implementing an appealing, clear and intuitive interface for the user. 

 Reliability: To make a reliable, error-tolerant system, the Redux technology was used, 
so that the mobile app’s state information stays consistent and thus, error-free. 
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 Performance: By employing Redux and AsyncStorage in the mobile app, the system’s 
performance improves, due to having less need of making server calls as frequently and 
keep the user waiting.  

 Portability: By developing the mobile app using Expo React Native, the system was 
automatically available for Android and iOS. 

 Testability: In order to test the devised system, an entire chapter, Evaluation, will be 
dedicated to that. 

 Maintainability: The system overall presents a great degree of maintainability, 
expressed by the language support technique, which allows for an easy introduction of 
new languages and also migrations which ease the process of modifying the data 
schema. 

 Localizability: The system was designed, both in the mobile app and the server, to 
support multiple languages and making it easy to add other ones on demand. 

6.7 Tests 

This section is dedicated to the testing and validation of the developed software. It’s a very 
important phase in the software development life cycle since it makes sure that the software 
fulfills the established requirements. 

6.7.1 Unit Tests 

Unit testing is where small parts of an application, units, are tested, in order to reassure that 
the functions work as expected. The goal here is to find unspotted implementation flaws inside 
each individual unit. 

 

Figure 120 – Unit Test for the GetSlope method 
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Figure 120 depicts a unit test done to one of the methods of the class responsible for calculating 
the line of best fit. Specifically, the represented method calculates its slope. 

In the Appendix I the rest of the unit tests are presented. 

6.7.2 Integration Tests 

With the purpose of extending the unit tests, integration tests were built. In these tests, two 
already tested components are put together and tested as a whole. This helps to find bugs that 
couldn’t be covered within unit tests (e.g. an instance of a class receiving a null instance of 
another one).  

Figure 121 depicts the integration test relative to the method responsible for fetching 
information from the database relative to the list of Programs. 

 

Figure 121 – Integration Test for the GetPrograms method 

In the Appendix J the rest of the integration tests are presented. 
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6.7.3 System Tests 

System tests are a core part of the testing phase because they constitute the process of testing 
the whole integrated system to see if it meets the specified criteria. The system tests were done 
by combining multiple use cases and/or functionalities, executing them, and verify if they meet 
the criteria they were supposed to. Table 8 depicts the system test for a normal flow when 
creating a new Program and then searching for its details. 

Table 8 – System test nº1 

Description The user creates a Program, opens the Programs list and views its 
details. 

Result Success. 

 

In the Appendix K the rest of the system tests are presented. 

6.7.4 Acceptance Tests 

Acceptance tests are conducted to determine if the requirements of a specific functionality (use 
case) are being met or not. Acceptance tests are black box system tests. Each acceptance test 
represents some expected result from the system. The end user is the responsible for verifying 
if a use case is working properly.  

Like so, the acceptance tests were built with the goal to ensure every requirement, translated 
in use cases, is met. Table 9 depicts the acceptance test made to the use case relative to viewing 
the templates for Plans/Programs. 

Table 9 – Acceptance Test for Use Case 2 (US02) 

Tested Use Case US02: View training Plan/Program templates 

Expected Result The correct Plan/Program template list is shown. 

Result Success. 

 

In the Appendix L the rest of the acceptance tests are presented. 
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7 Evaluation 

The Evaluation chapter will be dedicated to the exposition of crucial information used to 
evaluate the designed solution. First, the metrics that will be used to evaluate are presented 
and described, then, the different hypotheses are formulated and bestowed, and finally, the 
evaluation methodology is presented. After, the results and experimental analysis are 
bestowed, which offer different analysis on the results. 

7.1 Metrics 

Metrics are very important because they “help capture a business goal into a quantitative target 
[…] .” [86] This means that first, the business goal needs to be defined in order to capture 
metrics to evaluate it. In order to do so, the system was divided into three different sections – 
front end, back end and personal virtual assistant. 

The back end is the part of the system responsible for handling the business logic and the most 
important part to evaluate is the one that includes the recommender systems. There are two 
different recommenders – intelligent and conditional. They are different in terms of 
implementation, algorithms used, and also in the way they are evaluated. Since the Conditional 
Recommender is based on traceable and understandable conditional decisions (if statements), 
the way to best evaluate it would be by its execution time and inquiry of satisfaction relative to 
the recommendations’ quality. As such, its metrics are: 

 Execution time of recommendations. 

 Satisfaction relative to the recommendation’s precision. 

However, because the Intelligent Recommender is based on numerous and hard to trace 
variables, its evaluation should be more objective, in terms of numbers, and not susceptible to 
subjective opinions. Also, given that, as it was already disclosed, the context of the information 
used in the said system does align with the project’s, it would be erroneous to try and get 
satisfaction inquiries on things that are not contextualized. As such, the used metrics are: 
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 Individual technique’s recommendation error. 

The aforementioned metric refers to the error that is associated with each one of the used 
recommendation techniques.  

On the other hand, the front end can be quantitively evaluated through the inquiry of 
satisfaction from the interface’s intuitiveness. The front end, composed by the mobile 
application, serves as a link between the back end and the user, presenting and receiving 
information in, hopefully, the most intuitive and pleasant manner, and as such, it should be 
evaluated on that. Thus, its metric is as follows: 

 Satisfaction relative to the overall use of the application. 

Lastly, the personal virtual assistance job is to aid and assist the users and so, it should be 
quantitively evaluated through the inquiry of its helpfulness. Thus, its metric is the following: 

 Satisfaction relative to the helpfulness of the information. 

7.2 Hypotheses 

Having all the different metrics formulated, it’s now required to produce the hypotheses that 
will be used to evaluate them. 

For simplification and organization purposes, all the satisfaction inquiries were coupled into a 
single hypothesis and so, two were built. The first one is relative to the user’s satisfaction 
(Conditional Recommender’s precision, overall use of the mobile app and helpfulness of the 
PVA’s information), presented next. 

H0: User satisfaction 

H1: Satisfaction inquiries possess a satisfaction rate above or equal to 4 

H2: Satisfaction inquiries do not possess a satisfaction rate above or equal to 4 

The second hypothesis is relative to the execution time of the conditional recommender’s 
algorithm, presented after. 

H0: Execution time 

H1: The system takes less than 2 seconds to compute recommendations 

H2: The system does not take less than 2 seconds to compute recommendations 

The defined threshold for the execution time metric is based on the assumption that that is the 
maximum acceptable amount of time to wait for the type of request. 
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The third hypothesis refers to the error associated with the recommendations of each one of 
the used techniques in the intelligent recommender system. 

H0: Error 

H1: Each technique has an error inferior than 1.5 

H2: Each technique has an error that is not inferior than 1.5 

The defined threshold for the error metric is based on the assumption that that is the maximum 
acceptable value of a deviation error for a given recommender model. 

7.3 Methodology 

With the metrics and hypotheses already defined, it is now crucial to present the different 
chosen evaluation methodologies.  

Table 10 – Evaluation Methodologies 

Metric Methodology 

User satisfaction Inquiry of satisfaction and group testing 

Execution time Unit testing 

Error Unit testing 

 

Table 10 contains the summarized information relative to the definition of methodologies for 
each established metric. For the satisfaction-related metrics, it’s important to evaluate the 
satisfaction of users on the different covered topics (recommendations’ precision, overall use 
of the applications and helpfulness of the PVA’s information), so a satisfaction inquiry is 
required. Plus, it is also important to evaluate the quality of the acquired knowledge and to do 
so, the group testing methodology is chosen. 

Moreover, the inquiry to evaluate user satisfaction will be conducted using, for each question, 
the classification depicted in the following Table 11. 
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Table 11 – Satisfaction Inquiry Scale’s Description  

Scale Description 

1 Completely disagree 

2 Disagree 

3 Neutral 

4 Agree 

5 Completely agree 

 

In addition, it is important to mention that, to acquire a useful and educated satisfaction inquiry 
response, an expert in the fitness field will be used. Instead of asking different people to use 
the Conditional Recommender system and then answer a satisfaction inquiry, an expert shall 
be used, so that a more educated evaluation of the system can be conducted, with their 
credentials as substantiation. 

To do so, the expert’s own data will be used as input to the Conditional Recommender – 
preferences and history. Then, a recommendation will be computed and offered to them. Both 
the recommendation and the whole recommender process will be provided to the expert, 
giving them enough data to answer the satisfaction inquiry. 

Regarding the execution time metric, since it refers to duration of algorithm completion, the 
used methodology will be unit tests. The tests will time the durations for several generated 
recommendations and then take the average of them all. The resulting value will be used to 
evaluate the execution time of the recommendation system, as desired. 

Finally, the error metric will be evaluated through unit testing, where the different techniques’ 
error is to be calculated, using the MAE and RMSE which are two of the most common metrics 
used to measure accuracy. Given that there’s no consensus on which one is the best, both were 
employed, and their results will be presented individually. 

The RMSE was already discussed in earlier sections, and the MAE [181] as the name says, Mean 
Absolute Error, it is the average of all the absolute errors. The absolute error is simply the 
difference between the actual value and the predicted one. As such, the formula for this metric 
is as follows [181]. 

𝑚𝑎𝑒 =  
∑ 𝑎𝑏𝑠(𝑦௜ − 𝜆(𝑥௜))௡

௜ୀଵ

𝑛
 

(14) 

Also, it is important to mention that, to test the techniques, only 90% of the input data will be 
used, and the remaining 10% will be dedicated only for testing purposes. This is because it is 
not recommended to use data which was used for training the model to also test it. 
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7.4 Results Analysis 

Following the establishment of the metrics, hypotheses, and methodologies, in this section, the 
acquired results will be analyzed. The section is divided by the analyzed entities: Mobile 
Application, Personal Virtual Assistant and Conditional and Intelligent Recommender. 

7.4.1 Mobile Application & Personal Virtual Assistant 

As predicted, a satisfaction inquiry for the Mobile Application and the Personal Virtual Assistant 
was needed, and, for simplicity terms, both were joined in a single one. That way, the people 
who used the Mobile Application also used the PVA and then evaluated both at the same time. 

The devised inquiry contained 12 questions for the Mobile Application and 4 for the Personal 
Virtual Assistant, all to be answered with the classification scale on Table 11. The inquiry was 
given to 50 different people, with only 20 received answers, 40% of initial population and it can 
be found in APPENDIX B. 

In the following Table 12 the acquired data for the Mobile Application satisfaction inquiry is 
summarized, in the form of response percentage for each question, helping to visualize the 
distribution of responses.  

Table 12 – Response percentage for each question from the Mobile Application’s inquiry 

 1 2 3 4 5 Average 

Q1 0% 0% 0% 25% 75% 4.75 

Q2 0% 0% 0% 40% 60% 4.6 

Q3 0% 0% 10% 55% 35% 4.25 

Q4 0% 0% 15% 65% 20% 4.05 

Q5 0% 0% 0% 15% 85% 4.85 

Q6 0% 0% 5% 55% 40% 4.35 

Q7 0% 0% 10% 75% 15% 4.05 

Q8 0% 0% 0% 40% 60% 4.6 

Q9 0% 0% 10% 50% 40% 4.3 

Q10 0% 0% 0% 45% 55% 4.55 

Q11 0% 0% 5% 65% 30% 4.25 

Q12 0% 0% 0% 45% 55% 4.55 
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Over 95% of the distribution of responses is between 4/5 and 5/5, which is very positive. Also, 
the worse classification for any response was a 3/5, with the worse occurrence being of 15%, in 
question 4. Plus, the average classification for all the questions is approximately 4.4/5, which 
passes the defined hypothesis of being higher or equal than 4/5. This is a clear indication that 
the application was very well received by the testing users. 

The question with the most percentage of perfect classification is the fifth one which is relative 
to the registry and login process speed, with 85% of people rating it as a 5/5, with the remaining 
15% rating with a 4/5, having an average rating of 4.85/5, followed by question number one, 
relative to the application’s overall design and interface, with 75% perfect ratings and the 
remainder 25% being a 4/5 and an average rating of 4.75/5. 

The question with the most amount of 3 out of 5 ratings was question number 4, with 15% of 
answers, followed by questions 3, 7 and 9, with 10% of answers. It’s not very relevant to analyze 
and scrutinize these answers for being the worse from the entire inquiry because they’re not 
badly rated whatsoever, given that they still average 4/5, for the questions 4 and 7, and 4.3/5, 
for questions 3 and 9, which is obviously still very good. 

The remainder questions sit in the middle of the pack in terms of average ratings, having an 
average rating between 4.3/5 and 4.6/5, which is still excellent. 

Relative to the Personal Virtual Assistant’s satisfaction inquiry, the next Table 13 contains the 
summarization of the acquired data, in the form of response percentage for each question. 

Table 13 - Response percentage for each question from the PVA’s inquiry 

 1 2 3 4 5 Average 

Q1 0% 0% 0% 20% 80% 4.8 

Q2 0% 0% 10% 55% 35% 4.25 

Q3 0% 0% 0% 80% 20% 4.2 

Q4 0% 0% 0% 5% 95% 4.95 

 

From the results of the PVA’s satisfaction inquiry, it can be said that 97.5% of the responses are 
between 4/5 and 5/5 with the average rating for all questions being approximately 4.4/5, which 
is the same as the Mobile Application’s, which passes its defined hypothesis of being above or 
equal to 4/5. The only response with a rating of 3/5 is the second one, still having a 4.25/5 
average rating. 

The questions with the most perfect classifications and also the highest average rating are 
questions 4 and 1, with 4.95/5 and 4.8/5 average rating, respectively. The fourth question, 
which has an almost perfect rating, is the one where users were questioned if the PVA was a 
great asset to the Mobile Application, which is an excellent feedback to receive from end-users. 
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Even the lowest average rating questions still have an approximate 4.2/5 rating, which is still 
very good. Regardless, since these refer to the PVA’s ability to understand and interpret what 
was said, it wouldn’t hurt to try and improve the prediction system so that the answers would 
be even more adequate. 

7.4.2 Conditional Recommender 

As it was established, the Conditional Recommender is to be evaluated based on two metrics – 
its execution time, and a satisfaction inquiry from an expert on the field. 

Firstly, for the measurement and evaluation of the Conditional Recommender’s execution time, 
the entire algorithm was executed whilst recording the time it took to finish. Using the 
StopWatch [182] class, from Microsoft, the timer was started before the execution of the 
algorithm, stopped at the end and then the result was written to a csv file. In order to eliminate 
anomalies and normalize the data, this was tested a total of 30 times. 

To test the algorithm and simulate it with an enormous amount of data, 250 thousand training 
Workouts samples were fed to the algorithm simulating the database’s Workouts, joined with 
200 training Workouts simulating the user’s history.  

As a small recap, the Conditional Recommender algorithm receives as input the list of Workouts 
that can be recommended to the user, which is the list of Workouts existent in the database, 
the user’s history, which is the list of the user’s past Workouts, and the user’s preferences such 
as their experience level, preferred training types, and other preferences whose scale is 
negligible comparing with the potential magnitude that the database workouts and the user’s 
history have in the execution time. 

Even though the volume of input data was very extensive, the algorithms simplicity allowed for 
it to be swift, with an average execution time of about 870 milliseconds, which is less than 90% 
of a second. Needlessly to say that it is incredibly fast to compute a response, even with extreme 
conditions in terms of data size, which is good news for the Performance aspect of the Non-
Functional Requirements. 

In terms of the defined hypothesis of having an execution time lower than 2 seconds, it can be 
said that the algorithm was a success, given that the real value was approximately 57% lower 
than the defined threshold. 

As a final note, regarding the evaluation of the execution time, the acquired data in the form of 
a csv file can be found in the APPENDIX E. 

Secondly, for the evaluation of the Conditional Recommender through a satisfaction inquiry of 
a field expert, a formal request was made to the said expert, seeking for their personal 
information to be fed into the system as an official test to its quality.  

As such, the information regarding the expert’s recent training history and personal preferences 
(i.e. experience level, training types, goals, etc.) was sent as input to the algorithm. Then, the 
whole recommender process, already described in its respective section, was documented and 
thoroughly described in a formal document, following the modus operandi of the algorithm up 
until the very last selection. In other words, the whole process of filtering the initial list of 



 

170 
 

Workouts to find a final adequate recommendation was detailed, specifically detailing what is 
being done, how is it being done and what is the produced answer of each phase. 

The produced document was then presented to the expert and can be found int APPENDIX C, 
who then reviewed it and based on not only the final recommendation but also on the whole 
process, answered a satisfaction inquiry, which can be found in APPENDIX D. 

This inquiry’s results are exhibited in the following Table 14, where it can be immediately 
observed that one question was poorly rated. This question refers to the efficiency of the 
evaluation of the volume and intensity and it is considered to be the number priority when 
discussing improvements in the respective system. Moreover, another question that had a 
rather low classification was the last one, referent to the application of the filtering variables. 
Because the adequacy of the said variables is confirmed by the classification with the maximum 
rating, in the fifth question, it can be assumed that the issue lies in the application of the already 
obtained variables and not so much on their definition.  

All other questions were classified with a 4/5 rating, which results in a 3.7/5 average rating. This 
final rating means that the defined hypothesis was not fulfilled, since it was required to possess 
a rating higher than 4/5. This is a clear indication that there’s an evident flaw in the devised 
system that should be addressed. 

Table 14 – Expert’s satisfaction inquiry results 

Question  Classification [1-5] 

Q1: The recommendations are great. 4 

Q2: The recommendations are adjusted to my profile. 4 

Q3: The volume and intensity evaluation is efficient. 2 

Q4: The volume and intensity prediction is efficient. 4 

Q5: The variables used for filtering are adequate. 5 

Q6: The filtering of the variables is efficient. 3 

 

Having presented all the results analysis referent to the Conditional Recommender, in a 
following section, named Experimental Analysis, the exploration of the algorithm’s flaws, its 
intricacies and improvement suggestions will take place. 
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7.4.3 Intelligent Recommender 

The final analysis has to do with the most complex and difficult to evaluate component – the 
Intelligent Recommender. Its analysis, as it was already defined, will focus on the error of the 
produced recommendations, for each one of the used techniques, using two different error 
metrics – MAE and RMSE. 

Firstly, the to be tested techniques were established, given that there are three major 
techniques implemented: Matrix Factorization (MF), User-Based Collaborative Filtering (UB) 
and Item-Based Collaborative Filtering (IB). 

Even though only three techniques were implemented, in order to add some customization, 
some variations of them were also devised. Firstly, a combination of all these techniques, using 
a Hybrid approach was taken. Then, in terms of the UB, 4 variations were also added, one for 
each of the Comparers. As such, the techniques used for testing were as depicted in Table 15. 

Table 15 – Error Analyzed Techniques 

ID Technique Composition 

1 MF 

2 UB with Pearson’s Correlation (PC) 

3 UB with Cosine Similarity (CS) 

4 UB with Co-rated Cosine Similarity (CR-CS) 

5 UB with Root Mean Squared Error (RMSE) 

6 IB 

7 MF + UB with CR-CS 

8 MF + IB 

9 MF + UB with CR-CS + IB 

10 UB with CR-CS + IB 

 

With all the to be used techniques defined, a recommender model was created for each one, 
using the Train method, which was already described. Afterwards, the model’s error was 
calculated using a specific class, RecommenderMeasures, containing two methods, for 
computing the MAE and RMSE errors of a given recommender model. These methods receive 
as argument the recommender model, and the data used for testing (10% of the original 
dataset), then they produce recommendations using the model’s getRating method, and 
compare the result with the actual rating value (from the original Ratings Matrix). Each of the 
methods, for MAE and RMSE will then produce an error associated with the built model.  
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These errors were calculated a total of 30 times for each technique and the average of the 
results for each one can be found in the next Table 16, where the average and the difference 
between the two error metrics can also be found. The full results can be found in APPENDIX F. 

Table 16 – Recommender technique’s error 

ID MAE RMSE Difference Average 

1 0.77 1.01 0.24 0.89 

2 3.10 3.39 0.29 3.24 

3 2.04 2.33 0.29 2.18 

4 1.80 2.15 0.35 1.98 

5 3.16 3.37 0.21 3.26 

6 0.91 1.11 0.20 1.01 

7 1.56 1.78 0.23 1.67 

8 0.78 0.98 0.20 0.88 

9 1.45 1.61 0.16 1.53 

10 1.79 1.95 0.16 1.87 

 

Before delving the technique’s intricacies, it is important to notice that the RMSE is always 
larger than the MAE, and the difference between the two is relatively speaking very consistent, 
with an average of 0.23. This difference can be explained by a paper by T. Chai and R. R. Draxler 
[183] which states that by definition, the RMSE can never be as small as the MAE, due to the 
RMSE allowing for a complete reconstruction of the error set, given enough data, and the MAE 
only accurately recreating 80% of it. This might be why most cost functions used in machine 
learning systems avoid using MAE and rather use RMSE or variations. [184] Also, RMSE tends to 
disproportionately penalize large errors since the error is then squared, which directly affects 
the produced error. On the other hand, MAE does not have any bias towards extreme values, 
which makes it more prone to being lower in value. [184] 

Regardless, by quick reading the previous table, it is evident that the lowest average error is 
from technique 1 and 8 which are the MF and MF + IB techniques. This suggests that using MF 
as a standalone technique is the most beneficial course of action, only being surpassed by 
combining it with IB, even though the errors are pretty much identical statically speaking. 

The two worse performing techniques are the technique 2 and 5 which unironically are two 
variations of the UB technique, using the Pearson’s Correlation and RMSE comparers, 
respectively. This might suggest that these are not good comparing techniques. There are other 
two variations, using the Cosine Similarity and the Co-rated Cosine Similarity, technique 3 and 
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4 respectively. The difference between these two and the two best ones is of over 55%, which 
indicates that using the Cosine or Co-rated Cosine is far superior. Regardless, comparing it with 
the best performing techniques there’s still a 236% difference, which is huge and also suggests 
that using UB, even with the best comparers is very inferior to using MF or even MF with IB. 

Moreover, given that the UB with the Co-rated Cosine Similarity is the variation of the UB with 
the lowest error, it was the one used in all other hybrid approaches. 

Another technique which appeared to possess a small error, only 14% bigger than of the 
smallest ones, is the technique 6, IB, which makes sense, given that when combined with MF it 
also produces an even smaller error. It is curious that even though the IB technique’s error is 
14% larger than the MF’s, when combining the two, the MF’s error is maintained, which might 
suggest that the two work well together, for the given dataset. 

The remainder techniques, 7,9 and 10, sit in the middle of the pack in terms of their error. These 
are all hybrid variations containing the worse performing technique, UB, which might be the 
reason why they sit in the middle of the list - because they’re coupled with the best performing 
techniques, they increase their otherwise low error.  

From the analyzed data, for the given dataset and context, the following conclusions can be 
made:  

 The MF technique is the best performing one, individually speaking. 

 The IB technique performs very well, taking into account that it is not an intelligent 
technique, when faced against an intelligent and superior one, MF. 

 Coupling MF with IB maintains the low MF error and might be productive. 

 UB is a low performing technique and unlike IB, coupling with other better performing 
techniques will just increase their error. 

As a final statement, it is important to mention that only three techniques passed the devised 
hypothesis of the error being lower than 1.5, which are the techniques number 1, 6 and 8, which 
are MF, IB and a combination of both, respectively. Two more techniques, 7 and 9, were very 
close to passing the hypothesis but fortunately they did not, given that they were just weaker 
variations of the ones that passed, as it was already explained. 
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7.5 Experimental Analysis 

Even though a result analysis was already conducted, there are still some investigation that can 
be conducted, in order to find different deviations of results by gradually changing certain 
variables and observe how the object being analyzed behaves under those circumstances, 
which constitutes an experimental analysis. This analysis can be viewed as investigation for 
future work. 

For example, it would be very interesting to find how the Intelligent Recommender’s error 
would change by raising variables such as the number of iterations or number of used features, 
so that the system can be better understood and improved.  

Moreover, regarding the Conditional Recommender, since the error is not a metric being 
evaluated and analyzed, one can investigate through a different route, such as trying to gather 
the comprehensive feedback of the expert as a way of understanding more concisely where the 
algorithm needs improvement and where it is needs not. 

Consequently, the next sub-sections will be dedicated to the exploring of these topics, that can 
be summed as such: 

 Intelligent Recommender: 

o Error variation with the increase of latent features for the Matrix Factorization 
technique. 

o Error variation with the increase of iterations (epochs) for the Matrix 
Factorization technique. 

o Error variation with the increase of closest neighbors for the Pearson’s 
Correlation in the User-Based Collaborative Filtering technique. 

 Conditional Recommender: 

o Expert’s feedback on the algorithms overall flow. 

o Expert’s feedback on the individual filtering phases. 

7.5.1 Intelligent Recommender 

As it was explained in previous sections, the Matrix Factorization technique uses latent features 
to find underlying attributes that are expressed through user tastes and item’s preferability. As 
such, the number of features is a debatable and honestly subjective topic of discussion. It 
depends not only on the data’s context, but also on its magnitude. If there’s too little data, 
having a certain number of features that are above the number of necessary ones to fit the 
model perfectly, might cause the it to overfit, which is not desirable at all.  

To find if a model is overfit, one must measure the training error – error associated with the 
training phase, as the one presented in the Result Analysis section – and compare it with the 
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measured testing error – error associated with the testing phase, where the model is already 
trained. Then, four different possibilities can occur: 

1. Training and testing error are high. 

2. Training error is low, testing error is high. 

3. Training error is low, testing error is slightly higher. 

4. Training error is high, testing error is low. 

From an intuitive perspective, these possibilities reflect on the model’s fit. If the training error 
is high, it means that the model wasn’t well trained, and therefore, if the testing error, for the 
same model, is also high – possibility 1 – it makes sense to infer that the model is underfit. If, 
on the other hand, the testing error is low – possibility 4 – the model is impossible to evaluate, 
because there’s no reason for an undertrained model to make good predictions (low error).  

Moreover, if the training error is low, the model can either be well fit or overfit. If, for this model 
(low training error), the testing error is high, it means that the model is overfit – possibility 2. 
This is why it is important to measure both the training and testing error, so that one is not 
misguided to think the model is well trained just because it had a low error during training, as 
that can be due to it being overfit to the data, which will then result in a high error with 
untrained, and therefore unfit, data, since it is not fit to generalize and make good predictions. 
What is considered to be a good fit model is when besides having a low training error, the 
testing error is also low, though usually a bit higher than the training one – possibility 3. That 
intuitively tells us that after producing a low training error, the model’s validity can be verified 
by having an also low testing error which means that the said training error was low enough to 
make the model well fit, but not too low to overfit it. 

With all these assumptions in mind, the model was trained using an increasingly higher number 
of latent features and the training and testing error was measured, to find what the most 
optimal range of features would be for the given dataset. The used error metric was the RMSE. 
The results can be summed up in the following Table 17 and can be viewed in their entirety in 
APPENDIX G. 
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Table 17 – Training and Testing error variation with the number of latent features 

Features Training Error Testing Error Difference 

1 0.76 0.95 0.19 

5 0.70 0.98 0.28 

10 0.63 0.99 0.36 

15 0.58 1.00 0.42 

20 0.54 1.01 0.47 

30 0.48 1.03 0.55 

40 0.43 1.05 0.61 

 

As observable in the previous table, the predicted conclusion is easily verifiable: with the 
increase of latent features comes an increase of the difference between the training and testing 
errors, justified by the lowering of the training error and increasing of the testing error, which 
unequivocally confirms the overfitting of the model, which can also be observed in Figure 122. 
The lowest difference occurs with only one feature, where the testing error is slightly higher 
than the training error, which might suggest one of two things: either one feature is the most 
optimal number for the given dataset, or the dataset is so small, relatively speaking, that it’s 
not possible to create a good accurate model. This impossibility is due to the fact that the model 
cannot have more than one feature without running into overfitting issues, and one feature is 
not nearly enough to make a good fit model. 

 

Figure 122 – Graph of the training and testing variation with the number of latent features 
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To further investigate how the model behaves and how to manipulate the error in a different 
way rather than changing the number of features, as defined previously, the variation of the 
training error will be analyzed through measuring it whilst increasing the number of iterations, 
or epochs, that the model will go through before finish training. This investigation can be found 
in APPENDIX H. 

 

Figure 123 – Graph of the training error variation with the number of epochs 

By observing Figure 123 it becomes evident that the graph follows an exponential-like curvature, 
rapidly decreasing in the first iterations and then varying less and less the more epochs pass 
through. This is because it is in the first iterations where the model suffers the most extreme 
changes. These changes refer to the model’s learning process, as described previously, where 
the model tries to approximate the most optimal value for a given cost function. In this case, 
the model uses iterations as a “stop term”, and suchlike the latent features, if there are too 
many iterations, the model might suffer from overfitting. As such, it should stop after the most 
aggressive changes were made, so that it has a low error and is well-fit, but before the error 
reaches a plateau, to prevent overfit. 

In the Figure 123’s graph, it is evident that stopping the algorithm at 50 epochs would not be 
appropriate because the model will still significantly decrease its error. At 200 epochs the error 
reaches a value that is close to its lowest and at 300 it finally plateaus, so there’s no more reason 
to keep iterating and forcing the model to learn and risk overfitting it. Specifically, any value 
between 200-300 epochs would be debatably optimal for this particular case. 

Finally, another important variation to be tested refers to the number of neighbors used in the 
User-Based Collaborative Filtering technique, and more specifically, in the used neighbor-
comparing methodology which is the Person’s Correlation. The reason for using this comparer 
and not any other was completely random. The idea is not to evaluate the technique in itself, 
but the changes that varying the number of neighbors produces. If there’s the need to further 
investigate for each one, this exploration serves as guideline. 

Either way, this was tested by measuring the MAE and RMSE error associated with a UB-CF with 
Person’s Correlation model, with an increasing number of neighbors, and then analyzing the 
subjacent impact. 
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Table 18 - Error variation with the number of neighbors 

Neighbors MAE RMSE 

1 3.50 3.66 

5 3.35 3.59 

10 3.21 3.46 

15 3.15 3.42 

20 3.10 3.39 

30 2.84 3.24 

40 2.78 3.16 

 

In the previous Table 18, the MAE and RMSE error for each number of neighbors is depicted. 
Here, it is evident that with the increase of neighbors, the error diminishes, which makes sense, 
given that searching for a broader number of users will increase the odds of finding more 
adequate ones. 

The graph from Figure 124 helps to illustrate the decrease in the error with the increase of 
neighbors. It is also evident that the RMSE error is always considerably higher than the MAE’s. 
The reason why was already covered before, but a more curious finding has to do with the fact 
that, with the increase of neighbors, the difference between the two errors also increases 
slightly. This variance could be overlooked, but it does seem to be significant, and the reason 
for it may be explained because, as stated before, the RMSE is more susceptible to large errors, 
and with an increasingly number of neighbors, even though the likeliness of finding a more 
adequate near neighbor increases, the probability of finding bigger deviations from the 
acquired neighbors also increases.  
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Figure 124 – Graph of the error variation with the number of neighbors 

Even though the overall conclusion is that the error continuously decreases with the number 
of neighbors, the unpredicted finding relative to the increase in the difference between the 
two types of errors was captivating and rather insightful.  

7.5.2 Conditional Recommender 

Having presented the satisfaction inquiry results in the previous Results Analysis section, there’s 
still crucial and noteworthy information acquired from the interaction with the expert. A more 
in-depth feedback was received, and this section will be dedicated to its exposition with the 
purpose of attaining new knowledge so that improvements on the Conditional Recommender 
can be pursued in the most pivotal areas, as future work. 

As defined, the acquired feedback can be divided in two sections: overall flow of the algorithm 
and individual critique for each filtering phase. 

The overall flow of the algorithm, in the expert’s opinion, makes perfect sense and it is a good 
approach to find adequate workouts to recommend. The fact that the recommendations are 
based on existing workouts adds credibility to the recommendations, since there’s no need to 
invent and create workouts from scratch, which could lead to more debatable and complex 
decisions regarding the recommendations. 

The stage where the algorithm really shines is in the prediction of the intensity and volume 
values. Here, by analyzing previous instances, patterns are found and identified so that an 
accurate educated guess on the predicted value for the intensity/volume can be made. Even 
though some patterns cannot be captured using the line of best fit, it is most definitely 
applicable to most cases where there aren’t extreme variations in an almost random fashion.  

As such, the overall flow can be considered a success and part of the reason why the algorithm 
works rather accurately. 
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In terms of critiquing individual sections of the algorithm, the one that demanded the most 
attention and analysis was the volume and intensity evaluation phase. In this phase, the volume 
and intensity of each training workout is evaluated and given a number correspondent to the 
number of repetitions and its intensity value (represented by a number on a scale of 0 to 3), 
respectively.  

This phase, in the expert’s opinion was the one that had the most deficiencies, having an 
imprecise and vague concept of evaluating volume and even more so on the intensity aspect. 
Specifically, the volume can be evaluated through the number of repetitions for a given training 
session, but a workout with more repetitions than other might not necessarily imply it has 
higher volume, because there are other ways of measuring volume, suchlike the duration. This 
becomes especially imprecise when dealing with both repetition and duration-based exercises 
in the same session, which makes it harder to level the two a find a way to compare them.  

In terms of the intensity evaluation flaws, similar to the volume’s, there are many ways to 
evaluate intensity such as RPE and percentage, as it was used in the algorithm and covered 
before, but also through the lifted weight, heart rate, and other metrics. This imposes a 
difficulty when dealing with more than one metric, for the same reason covered in the volume 
– because it becomes hard to compare different measures, especially if they have a high 
appearance variance. This predicament is notably troublesome when dealing with intensity 
because there are more possible metrics and also because they’re particularly arduous to make 
comparisons between. 

Another issue in this volume and intensity evaluation phase is the fact that they, the volume 
and intensity, are being generalized for the entire workout which can lead to increased 
imprecision, because the intensity and volume of that session is basically being averaged by all 
the exercises and that may not be representative. As such, a suggested approach would be to 
evaluate each exercise individually and make assumptions on the weight it should have on the 
session’s overall value, based on aspects such as its difficulty, and also its duration, number of 
sets and reps, and intensity’s ratio in the entire workout – an exercise that takes up most of the 
workout to complete should have a bigger weight on its evaluation. 

Even though the previously described filtering phase was the one with the most flaws, there 
were also other small aspects in different ones that are noteworthy and should be documented 
for the sake of future work improvements.  

Firstly, it was described that when a given filter returns no elements, for example when trying 
to find the untrained muscle groups and all the muscle groups were already trained, the 
algorithm simply resets the specific filter. In the given example’s case, all the muscle groups 
from the user’s preferences would be considered for filtering. This is a decent approach, but 
not an exceptional one.  

From debating with the expert, it became clear that when encountering a case like the one 
described, the best course of action should not be to simply reset the preference, but to 
thoroughly evaluate past occurrences. As an example, if the user preferences indicate they want 
to train chest and arms and both of these muscle groups are included at least once in their past 
workouts, the proportion for each one should then be examined. Even though both were 
trained, if the chest appears in 90% of the workouts and arms in only 25%, then, a training 
workout containing arms might be of the user’s best interest to be recommended. 
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Obviously, this is a very unsophisticated description of a possible improved procedure, but it 
just goes to show that the algorithm can be greatly improved by implementing more refined 
and individual approaches to each one of its stages.  
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8 Conclusion 

The main goal procured from the elaboration of this dissertation was to develop a personalized 
monitoring and planning fitness system, in conjunction with a fully capable recommender, 
adapted to the individual users’ profile and needs. The key aspect with the envisioned system 
lies in the individuality that it must offer, allowing users to manage, monitor and acquire data. 

Due to its extent and level of complexity, the project’s load was divided by two authors, with 
clearly defined and separate responsibilities, having of course, various elements in common. 
This dissertation focuses specifically in the training programming aspect of the system and all 
its subtleties such as modeling, creating and managing training programs.  

After introducing the problem, goals, motivation and used methodology, the value analysis was 
produced, thoroughly contextualizing the project in its scope, presenting the model responsible 
for identifying opportunities and selecting new ideas, and exhibiting a value proposition. This 
helped to determine and analyze the value that the project might offer, which was concluded 
to be very high, due to the pursuing of a system that treats users individually and makes 
adequate, intelligent recommendations depending on numerous factors which are specific to 
each one. 

In order to find what was already being offered in the market, and what solutions there were 
to implement a system capable of making recommendations, the applications with the most 
resemblance to this project, and the most common recommendation methodologies were 
selected and thoroughly analyzed. It was then concluded that even the most popular 
applications in the market have lacking areas that can be fulfilled by the current project, and 
that there’s a market hole for what this dissertation is trying to achieve, in terms of 
individualization and intelligent recommendation. Moreover, the pros and cons of each 
recommendation technique were laid out, so that later an informed decision can be made 
regarding which ones to use for the given context. 

During the design process, the requirements were engineered, so that the system could hold 
the desired and envisioned functionalities, through the definition of specific use cases and the 
establishment of a set of non-functional requirements that should be respected in order to 
maintain a high level of inherent quality. Moreover, the architecture to be used was 
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investigated, by designing different ones that responded better in certain situations and worse 
in others. These were weighed and a final decision of an architecture fully capable of sustaining 
the engineered requirements was made. The chosen alternative is characterized by having a 
medium, or middleman, between any components and the database and recommender system, 
encapsulating the responsibilities to a single component, reducing the risk of inconsistency. For 
the context of the project, it was a far from robust alternative, but one that was fully adapted 
to everything set forth. 

After designing the desired requirements and defining the most adequate architecture, the 
specific functionalities were implemented. After implementing the use cases, the intelligent 
recommender was also developed. It was during this implementation that it was decided that 
a second recommender, a non-intelligent one, was necessary. This need emerged because it 
was discovered that it would be impossible, in the timeframe of this dissertation, to acquire and 
test the intelligent recommender with contextually true information.  

In other words, due to the impossibility of obtaining a large enough dataset to feed the 
intelligent recommender to make it viable, as it was required, with information regarding the 
scope of this project, a new dataset had to be selected, so that the recommender’s algorithm 
integrity could still be tested on the absence of the ability to test it with real applicable data. 
Regardless, the selected dataset was exquisite and widely used for testing terms across multiple 
fields of investigation.  

It was then decided that a second recommender system, that could apply the project’s data, 
had to be devised. This recommender was based on conditional statements, that found the 
most adequate recommendation by process of elimination, filtering unsuitable 
recommendations based on a plethora of variables, individual to each user. 

After implementing, the devised system was also tested using unit, integration, system and 
acceptance tests. 

The system was then subjected to a comprehensive evaluation, defining metrics and 
hypotheses and applying them using predefined methodologies. The results were then analyzed 
and discussed. In the end, an extra experimental analysis was conducted, discussing aspects 
that were not covered in the previous one. 

A fitness expert was used in the evaluation of the Conditional Recommender, so that its quality 
could be validated and made credible. 

8.1 Accomplished Goals 

From the defined goals, it can be said the main one, relative to the implementation of a working 
system, capable of personalized monitoring and planning allied with a smart recommender 
system was achieved. Regardless, there were still some lacking areas, all of which can be 
observed in the next Table 19. 
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Table 19 – Accomplished Goals 

Goal Degree of Accomplishment 

Investigation and analysis of different 
recommendation techniques. 

Fully Accomplished. 

Investigation and analysis of different fitness 
mobile applications. 

Fully Accomplished. 

Develop a mobile application. Fully Accomplished. 

Develop a web application. Not Accomplished. 

Implement Program-related monitoring and 
management. 

Fully Accomplished. 

Integrate a Personal Trainer or Coach in the 
system. 

Not Accomplished. 

Develop an Intelligent Recommender. Accomplished to some extent. 

Develop a Personal Virtual Assistant Fully Accomplished. 

Elaborate a study evidencing the utility of the 
developed system followed by the analysis of 
its results. 

Fully Accomplished. 

Fulfill the software development cycle. Fully Accomplished. 

 

In the previous table, the proposed objectives and their degree of accomplishment are 
presented. It is important to mention that the only not accomplished goals are the ones referent 
to the web application and the integration of the Personal Trainer/Coach in the system. These 
were not considered to be of high priority and due to time restrictions, were left behind. The 
fact that the web application was not implemented, is the reason why the back office planned 
during design was also not implemented. 

Another important note refers to the development of the Intelligent Recommender. As it was 
described through the document, due to time restrictions it was impossible to build an 
intelligent system with applicable data, so data with not contextually relevant had to be used, 
which is the reason for it to not be considered fully accomplished. Regardless, to compensate, 
another recommender was implemented, as described previously also. 

In sum, it can be concluded that the main goals were implemented with a high degree of success.  

In terms of specific functionalities, the next Table 20 illustrates the degree of accomplishment 
of the individual designed use cases, ordered by their priority. 
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Table 20 – Accomplished Use Cases 

Use Case Priority Degree of Accomplishment 

US02: View training Plan/Program templates High Fully Accomplished. 

US03: Manage training Plan/Program High Fully Accomplished. 

US04: Manage Body Measurements High Fully Accomplished. 

US06: Recommend training Plan High Not Accomplished. 

US07: Recommend Workout High Fully Accomplished. 

US08: View training Logs High Fully Accomplished. 

US10: View Statistics High Fully Accomplished. 

US13: Interact with PVA High Fully Accomplished. 

US15: Change Language High Fully Accomplished. 

US01: View current training Plan/Program Medium Not Accomplished. 

US11: Monitor progress Medium Not Accomplished. 

US16: Change Unit System Medium Fully Accomplished. 

US17: Manage Available Equipment Medium Fully Accomplished. 

PT01: Monitor trainees Medium Not Accomplished. 

US05: Add favorite training Plan/Program Low Not Accomplished. 

US09: Share training Plan/Program Low Not Accomplished. 

US12: Interact with PT/Coach Low Not Accomplished. 

US14: Check social feed Low Not Accomplished. 

NT01: Monitor clients Low Not Accomplished. 

AD01: Add predefined training Plan/Program Low Not Accomplished. 

AD02: Manage scientific articles Low Not Accomplished. 
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As it was presented from the start, not all use cases possessed the same priority, and due to 
time restrictions, some would have to be prioritized. In the previous table, the implemented 
and not implemented use cases are depicted, and there it can be seen that the only high priority 
use case not implemented refers to the recommendation of training Plans. This is because 
recommendations were only possible by using the Conditional Recommender, and that is only 
fit to deal with training Workouts. 

The use cases with medium priority which were not implemented refer to the viewing of the 
current training Plan/Program, monitor progress, and monitor trainees. From their priority 
group, these can be considered the lowest ranked of them, since they’re not required to have 
a working system, they’re complementary. 

Also, none of the low priority ones were implemented, which makes sense, because if there 
was no time to implement all of the high nor medium priority use cases, it shouldn’t also be 
enough for the low ones. Regardless, these do not constitute important and critical use cases 
whatsoever, just good-to-have ones. 

8.2 Limitations and Future Work 

The current project had, as any, its flaws. Whether due to time restrictions or limitation on the 
used technologies, it’s no lie that the project could be improved in some areas. 

Regardless of the fact that the main goal set was accomplished with a relatively high degree of 
success, there are some limitations that even though do not constitute major flaws in the 
system, could be amended. These limitations are expressed through future work in the 
following Table 21, separated by their respective component. 
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Table 21 – Project’s Future Work 

Component Future Work 

Mobile APP & API  Implementation of the remainder use cases. 

 Improve the Mobile App’s interface, speed and overall 
functioning based on the received feedback. 

Personal Virtual 
Assistant 

 Add new intents. 

 Improve the intent prediction system. 

Intelligent 
Recommender System 

 Find or build an adequate, applicable dataset. 

 Investigate and apply Cross-validation. 

 Investigate and apply Regularizations. 

 Investigate new recommendation techniques. 

 Investigate new comparing techniques. 

 Investigate the “latent features issue” 

Conditional 
Recommender System 

 Add additional inputs. 

 Improve the model based on the expert’s feedback: 

o Improve the volume/intensity prediction 
algorithm. 

o Improve filtering technique. 

 Explain recommendation’s reasoning. 

 

The project’s limitations are expressed in the form of future work, but in all truthfulness, the 
only real limitation of the project is the fact that the Intelligent Recommender didn’t use a 
dataset adapted to the its context. The other points illustrated in the previous table can be just 
viewed as future work and not so much as limiting factors suffered by the project. 

Regardless, some future work points that deserve to be addressed are the ones presented from 
the Intelligent Recommender System standpoint. There, apart from the dataset issue, it can be 
found future work regarding Cross-validation and Regularization. These were already properly 
described and justified in the respective sections, but briefly they refer to improvements that 
the intelligent algorithm can apply in order to improve its recommendations and error 
prevention. Also, new recommendation and comparing techniques can be also investigated as 
a way to add variability and improvement on the overall predicting system. 
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Moreover, an issue that struck the project when evaluating the intelligent system is relative to 
the fact that it was found that using just one latent feature was the most adequate solution for 
producing recommendations when using the Matrix Factorization technique. Since across 
literature it is pretty common to use multiple, even dozens latent features, it should be 
investigated the reason for this particularity.  

Another noteworthy future work point refers to the addition of further inputs to the Conditional 
Recommender System’s algorithm. These can be helpful when trying to find adequate 
recommendations suchlike providing predetermined filtering options which reduces the 
number of required filters and adapts better to the user’s taste. For instance, the user should 
be able to input what type of Workout they want, specifically, which will be a filtering stage in 
itself, limiting the results in their favor. If the user wants a Workout for Legs, it shouldn’t matter 
which muscle groups they still have untrained, so that filtering stage is bypassed and only Leg 
Workouts will be recommended, which is obviously more in line with what the user desires. 

Finally, still in the Conditional Recommender System component, explaining to the user the 
reasoning behind the choosing of the offered recommendations can be a relevant piece of 
information to provide, which will strengthen the user’s confidence in the algorithm. Saying 
that a given Workout was recommended because the user hasn’t been focusing on specific 
characteristics such as muscle groups or training types that they defined as desired and that the 
recommended Workout offers is a very meaningful information. 

8.3 Final Appreciation 

It was understood from the start that this dissertation would be a challenge. Given that it was 
extensive enough to support two authors to completely build it, it had to be perfect to work as 
intended. The fact that a Mobile Application, using never used technology had to be 
implemented from the ground was also very challenging, since the it took a toll on the planning 
to learn the new technology, and the same goes for the Intelligent Recommender System. 
Machine Learning and AI were topics only until then read on articles and big company’s 
headlines. Building and exploring a true intelligent system was a remarkable feat and one that 
personally opened my eyes to what was truly possible with “simple” algorithms. 

From a professional standpoint, dealing with schedules, milestones and collaboration with 
another author was very rewarding, since it allowed for the development of crucial skills to be 
used in the future such as time, people, and resource management. 

In a more personal level, the dissertation exceeded my expectations, both in the end product 
as well as in the benefits that will forever translate into my professional career such as 
teamwork and also general adaptiveness towards the achievement of common goals outside 
my comfort zone. 

To summarize, this project global appreciation is very positive and regardless of its limitations, 
I personally believe it was very successful and there’s a great sentiment of satisfaction in the 
produced result, both in the full documentation aspect of it and also in the more tangible parts 
such as the devised Mobile Application and built Recommender Systems.  
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Appendix E 
 

  

ID Execution Time
1 953
2 887
3 849
4 849
5 856
6 869
7 896
8 887
9 873

10 866
11 872
12 853
13 857
14 858
15 878
16 893
17 887
18 865
19 865
20 858
21 872
22 903
23 859
24 882
25 890
26 880
27 861
28 848
29 877
30 859
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Appendix F 

 

MF (MAE) MF (RMSE) MF + UB (CC) (MAE) MF + UB (CC) (RMSE) MF + IB (MAE) MF + IB (RMSE) MF + UB + IB (MAE) MF + UB + IB (RMSE)
0.780741337 1.020981976 1.544661649 1.778041811 0.776793576 0.978792897 1.3016349 1.543623
0.773678045 1.009705026 1.540897323 1.791600701 0.77670431 0.978295258 1.457158 1.466774
0.771248465 1.009431649 1.556980875 1.772536403 0.777882338 0.980018474 1.3854201 1.647687
0.773458628 1.010285927 1.540348599 1.788668079 0.778357426 0.981806943 1.5183734 1.513453
0.77253258 1.008379117 1.540547783 1.779759583 0.7775417 0.978533108 1.3679033 1.34467
0.777445994 1.013401576 1.544101545 1.784917521 0.774071039 0.973035406 1.3325993 1.679842
0.780634448 1.01848434 1.540551252 1.786001884 0.778093017 0.980253022 1.3015361 1.6453677
0.77409969 1.009143472 1.554931369 1.790697273 0.777994909 0.979216783 1.3864883 1.5675343
0.768428916 1.006784921 1.552707956 1.771527105 0.776057609 0.976731799 1.3280456 1.2356778
0.773762957 1.008885634 1.540518593 1.78018635 0.781457111 0.982319407 1.4517297 1.752372

0.774318279 1.013125248 1.544556291 1.787400763 0.777762771 0.979624833 1.469889 1.467832

0.775188441 1.012791834 1.551600196 1.792311101 0.780915133 0.983225495 1.4501857 1.584485
0.773376016 1.010853236 1.557600646 1.789161361 0.78100988 0.983115516 1.5723531 1.6988452
0.775024576 1.013839445 1.541110083 1.78662915 0.776534005 0.976245014 1.3434897 1.785162
0.776068194 1.015591295 1.551961751 1.778176009 0.778993117 0.980042137 1.3053905 1.782166
0.772797527 1.01091993 1.557188849 1.778479992 0.775079187 0.977167858 1.3559547 1.3614564
0.772310806 1.010548633 1.553033659 1.77333607 0.778720309 0.977399832 1.4307969 1.7548132
0.776740226 1.01661032 1.559333951 1.789102188 0.776492227 0.977337846 1.5593589 1.6515621
0.77662687 1.016914014 1.548349213 1.775831831 0.778684343 0.980221778 1.4450246 1.2325154
0.769370415 1.006815734 1.561049981 1.790941984 0.776288623 0.979081319 1.329739 1.5618456
0.775822298 1.012851253 1.548143423 1.779388579 0.77482572 0.975281767 1.5380591 1.4516515
0.772858831 1.012412051 1.562113436 1.77146569 0.780044065 0.98116758 1.5124173 1.7981512

0.775619304 1.015798338 1.546018884 1.77402286 0.777365829 0.980496679 1.3833593 1.6211454

0.770441523 1.010192947 1.54351397 1.78283881 0.777430801 0.980406109 1.4234124 1.611551
0.777423958 1.016942331 1.564757137 1.783454795 0.774533068 0.975698974 1.5219934 1.621854
0.767840614 1.004311801 1.5541732 1.781932085 0.776491581 0.977195824 1.4311004 1.65156
0.775743616 1.010901972 1.557993333 1.792319217 0.776858354 0.97713926 1.4225993 1.74164
0.771313941 1.008865803 1.558095772 1.776831276 0.777952702 0.980675164 1.4128309 1.75445
0.776263467 1.011504582 1.562568573 1.788955659 0.778291803 0.979612319 1.4481453 1.56145
0.777653532 1.014749656 1.549606908 1.775385618 0.780927807 0.982530945 1.4176105 1.62153
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Appendix G 

 

 

index mae rmse-train rmse-test
1 0.750165 0.762879114 0.954326243
2 0.749693 0.765482202 0.954673693
3 0.74695 0.765157726 0.952371983
4 0.744701 0.762217278 0.948882303
5 0.747244 0.768700446 0.952244622
6 0.747807 0.76395971 0.952046804
7 0.746408 0.765634166 0.950407901
8 0.749038 0.766317371 0.953193774
9 0.747735 0.764530994 0.952844736

10 0.747003 0.76208004 0.951372334
11 0.745344 0.767600543 0.950269103
12 0.746462 0.766813439 0.950907719
13 0.746792 0.76208116 0.951377378
14 0.748624 0.761029749 0.952295019
15 0.74542 0.7666325 0.951515329
16 0.749471 0.765442438 0.953897784
17 0.747897 0.763790818 0.953469492
18 0.748589 0.766884632 0.954862028
19 0.748234 0.764855902 0.953759671
20 0.751002 0.765618626 0.954999359
21 0.75051 0.76522037 0.955484947
22 0.753945 0.764960919 0.960586608
23 0.74437 0.7631352 0.950129836
24 0.745832 0.763116541 0.950271788
25 0.746747 0.764549733 0.951877201
26 0.748574 0.762850685 0.954024364
27 0.747876 0.766195142 0.953152859
28 0.745529 0.763068964 0.951157497
29 0.741617 0.763956186 0.946899284
30 0.747126 0.764867112 0.953984222

1 Feature
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index mae rmse-train rmse-test
1 0.760787 0.699145289 0.981585728
2 0.754733 0.700899211 0.975488764
3 0.751727 0.696325938 0.971280885
4 0.757874 0.691051773 0.977797572
5 0.753749 0.69805633 0.973677327
6 0.759216 0.696480676 0.980500187
7 0.760722 0.692258761 0.978128883
8 0.756195 0.695434093 0.977268316
9 0.755345 0.693847098 0.97658

10 0.761216 0.701404991 0.980739144
11 0.760363 0.692553285 0.979602888
12 0.761355 0.694729865 0.981048384
13 0.761783 0.694173062 0.982148163
14 0.756818 0.695296546 0.976946158
15 0.758724 0.69951807 0.976021535
16 0.760208 0.694889154 0.980032306
17 0.755763 0.688446509 0.975944952
18 0.76415 0.696926359 0.984389326
19 0.761369 0.694855834 0.979344345
20 0.759554 0.696201132 0.980422146

5 Features
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index mae rmse-train rmse-test
1 0.768285 0.637304538 0.993332111
2 0.765672 0.631057573 0.994742016
3 0.765506 0.629606884 0.994582775
4 0.764452 0.63201591 0.991155135
5 0.760206 0.631624451 0.985824697
6 0.762496 0.631384116 0.994444988
7 0.757605 0.6305009 0.985399841
8 0.768512 0.630216199 0.996909786
9 0.768105 0.633495588 0.998165715

10 0.764364 0.6310457 0.991753339
11 0.763924 0.630453977 0.990018536
12 0.763103 0.629434886 0.989694157
13 0.768598 0.63037778 0.994123674
14 0.762803 0.631273018 0.992151027
15 0.758983 0.629416398 0.988772424
16 0.765277 0.63069136 0.992945785
17 0.760337 0.634105868 0.989144976
18 0.761114 0.629584391 0.98959046
19 0.761894 0.63284486 0.986070182
20 0.76578 0.631239902 0.995625766

10 Features



 

224 
 

 

index mae rmse-train rmse-test
1 0.774883 0.582070176 1.007298999
2 0.773233 0.580093127 1.005963491
3 0.766795 0.580145135 0.999518528
4 0.765689 0.585325592 0.999885576
5 0.76821 0.582404268 1.000685243
6 0.768964 0.580333615 1.001157603
7 0.766298 0.587288711 1.000308138
8 0.76744 0.579577887 1.002727153
9 0.76821 0.590149239 0.999892386

10 0.768741 0.583477961 1.002308924
11 0.771296 0.578480056 1.004606356
12 0.766752 0.587245255 1.001672822
13 0.768328 0.582545163 1.003727172
14 0.769611 0.584138094 1.002958338
15 0.770415 0.579680993 1.003628157
16 0.766085 0.580493853 0.996413503
17 0.766667 0.583683091 1.000186771
18 0.761795 0.584067583 0.991062431
19 0.773115 0.579494893 1.00116571
20 0.773318 0.583502163 1.002967618

15 Features
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index mae rmse-train rmse-test
1 0.773186 0.542282532 1.00932217
2 0.77976 0.539893327 1.019631397
3 0.768136 0.543611632 1.007131837
4 0.773256 0.540887765 1.009535347
5 0.777131 0.541283856 1.014239767
6 0.775926 0.542832951 1.012373581
7 0.773792 0.542977436 1.008158556
8 0.772637 0.541530932 1.010516938
9 0.774803 0.543180406 1.011176251

10 0.772957 0.542569727 1.010096698
11 0.775719 0.543486289 1.014203739
12 0.766959 0.543691226 1.006985801
13 0.771727 0.54404263 1.008237321
14 0.777807 0.538044945 1.017973624
15 0.777692 0.544579528 1.014299397
16 0.7695 0.543669814 1.006431742
17 0.77725 0.539979091 1.016695442
18 0.773338 0.546628947 1.010057407
19 0.771416 0.540555349 1.006319172
20 0.772455 0.542091644 1.006673833

20 Features
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index mae rmse-train rmse-test
1 0.779641 0.479504279 1.024967357
2 0.783938 0.476512723 1.028693887
3 0.782461 0.480236516 1.021809102
4 0.782068 0.478547723 1.025949765
5 0.785714 0.479071656 1.025679165
6 0.786488 0.479085066 1.032418921
7 0.786198 0.479700663 1.02877403
8 0.782111 0.480737893 1.026801769
9 0.783676 0.480907393 1.027707268

10 0.784809 0.48039103 1.024515302
11 0.782041 0.479685843 1.027212708
12 0.788356 0.479020992 1.03011039
13 0.785927 0.480065317 1.029198017
14 0.78405 0.47838539 1.028321161
15 0.787317 0.476733314 1.028399962
16 0.792986 0.480252575 1.035103571
17 0.7849 0.480577543 1.02710611
18 0.790202 0.477236971 1.032636885
19 0.780893 0.478854355 1.02201556
20 0.78582 0.480871574 1.029956428

30 Features
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index mae rmse-train rmse-test
1 0.801925 0.433386568 1.048006626
2 0.797409 0.434929885 1.044466521
3 0.800989 0.432282718 1.047077179
4 0.796813 0.431930096 1.047167695
5 0.800235 0.432658675 1.049476713
6 0.794691 0.43488617 1.041953125
7 0.801822 0.431908107 1.051323253
8 0.796764 0.432247026 1.043416391
9 0.792445 0.434020879 1.041077727

10 0.797181 0.429494488 1.050698491
11 0.795311 0.431482381 1.042356689
12 0.807389 0.431199078 1.056242523
13 0.801676 0.43234743 1.052606403
14 0.80114 0.431221333 1.04983089
15 0.796123 0.432633272 1.042330705
16 0.798955 0.430992525 1.047791627
17 0.798166 0.433949036 1.043113813
18 0.801044 0.42978128 1.050207826
19 0.792775 0.431544242 1.041649561
20 0.797007 0.429671257 1.044077824

40 Features
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Appendix H 
 

 

Matrix Factorization (500 epochs) 

Epoch Error (RMSE) 

1 1.086042326 

2 0.93899721 

3 0.89294286 

4 0.867278025 

5 0.849487461 

6 0.835851189 

7 0.824751972 

8 0.815336417 

9 0.807095066 

10 0.799700409 

11 0.792931768 

12 0.786635276 

13 0.780700603 

14 0.77504676 

15 0.76961319 

16 0.764354071 

17 0.75923456 

18 0.754228242 

19 0.749315309 

20 0.744481212 
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21 0.739715609 

22 0.735011527 

23 0.730364669 

24 0.725772836 

25 0.721235434 

26 0.716753062 

27 0.712327158 

28 0.707959704 

29 0.703652989 

30 0.699409414 

31 0.695231338 

32 0.691120973 

33 0.687080296 

34 0.683111005 

35 0.679214485 

36 0.675391801 

37 0.671643697 

38 0.667970609 

39 0.664372691 

40 0.660849831 

41 0.65740168 

42 0.654027684 

43 0.650727103 

44 0.647499043 

45 0.644342476 



 

230 
 

46 0.641256265 

47 0.638239181 

48 0.635289927 

49 0.632407146 

50 0.62958944 

51 0.626835383 

52 0.624143529 

53 0.621512421 

54 0.618940601 

55 0.616426615 

56 0.613969019 

57 0.611566385 

58 0.609217301 

59 0.60692038 

60 0.604674256 

61 0.602477591 

62 0.600329075 

63 0.598227425 

64 0.596171392 

65 0.594159753 

66 0.59219132 

67 0.590264932 

68 0.588379462 

69 0.586533814 

70 0.584726921 
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71 0.582957747 

72 0.581225286 

73 0.579528562 

74 0.577866627 

75 0.57623856 

76 0.574643471 

77 0.573080493 

78 0.571548787 

79 0.570047541 

80 0.568575965 

81 0.567133295 

82 0.565718789 

83 0.564331729 

84 0.562971419 

85 0.561637183 

86 0.560328367 

87 0.559044337 

88 0.557784477 

89 0.556548192 

90 0.555334902 

91 0.554144048 

92 0.552975085 

93 0.551827486 

94 0.55070074 

95 0.54959435 
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96 0.548507835 

97 0.547440728 

98 0.546392576 

99 0.545362937 

100 0.544351386 

101 0.543357507 

102 0.542380898 

103 0.541421168 

104 0.540477936 

105 0.539550834 

106 0.538639503 

107 0.537743594 

108 0.536862769 

109 0.535996699 

110 0.535145064 

111 0.534307552 

112 0.53348386 

113 0.532673695 

114 0.531876769 

115 0.531092804 

116 0.530321529 

117 0.52956268 

118 0.528815999 

119 0.528081237 

120 0.527358149 
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121 0.526646498 

122 0.525946054 

123 0.52525659 

124 0.524577888 

125 0.523909732 

126 0.523251916 

127 0.522604235 

128 0.521966491 

129 0.521338491 

130 0.520720047 

131 0.520110974 

132 0.519511093 

133 0.518920229 

134 0.518338211 

135 0.517764873 

136 0.517200051 

137 0.516643586 

138 0.516095324 

139 0.515555113 

140 0.515022805 

141 0.514498254 

142 0.513981321 

143 0.513471866 

144 0.512969755 

145 0.512474856 
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146 0.511987041 

147 0.511506182 

148 0.511032157 

149 0.510564846 

150 0.510104129 

151 0.509649894 

152 0.509202025 

153 0.508760414 

154 0.508324952 

155 0.507895534 

156 0.507472056 

157 0.507054417 

158 0.506642518 

159 0.506236262 

160 0.505835554 

161 0.505440301 

162 0.505050413 

163 0.504665799 

164 0.504286372 

165 0.503912048 

166 0.503542742 

167 0.503178371 

168 0.502818856 

169 0.502464118 

170 0.502114078 
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171 0.501768662 

172 0.501427796 

173 0.501091405 

174 0.500759419 

175 0.500431769 

176 0.500108384 

177 0.499789198 

178 0.499474145 

179 0.49916316 

180 0.498856179 

181 0.49855314 

182 0.498253982 

183 0.497958645 

184 0.49766707 

185 0.497379199 

186 0.497094976 

187 0.496814344 

188 0.49653725 

189 0.496263639 

190 0.495993458 

191 0.495726657 

192 0.495463185 

193 0.495202991 

194 0.494946026 

195 0.494692244 
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196 0.494441595 

197 0.494194035 

198 0.493949518 

199 0.493707998 

200 0.493469433 

201 0.493233778 

202 0.493000992 

203 0.492771033 

204 0.492543859 

205 0.492319432 

206 0.492097711 

207 0.491878658 

208 0.491662234 

209 0.491448402 

210 0.491237126 

211 0.491028369 

212 0.490822095 

213 0.49061827 

214 0.490416859 

215 0.490217828 

216 0.490021145 

217 0.489826777 

218 0.489634691 

219 0.489444856 

220 0.489257241 
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221 0.489071816 

222 0.48888855 

223 0.488707415 

224 0.48852838 

225 0.488351419 

226 0.488176502 

227 0.488003602 

228 0.487832691 

229 0.487663744 

230 0.487496734 

231 0.487331636 

232 0.487168423 

233 0.487007071 

234 0.486847555 

235 0.486689851 

236 0.486533935 

237 0.486379785 

238 0.486227376 

239 0.486076686 

240 0.485927694 

241 0.485780376 

242 0.485634712 

243 0.485490679 

244 0.485348258 

245 0.485207427 
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246 0.485068167 

247 0.484930457 

248 0.484794278 

249 0.484659609 

250 0.484526434 

251 0.484394731 

252 0.484264484 

253 0.484135674 

254 0.484008282 

255 0.483882292 

256 0.483757686 

257 0.483634447 

258 0.483512558 

259 0.483392002 

260 0.483272763 

261 0.483154826 

262 0.483038173 

263 0.48292279 

264 0.48280866 

265 0.48269577 

266 0.482584104 

267 0.482473647 

268 0.482364384 

269 0.482256302 

270 0.482149386 
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271 0.482043623 

272 0.481938998 

273 0.481835499 

274 0.481733111 

275 0.481631822 

276 0.481531619 

277 0.481432489 

278 0.481334419 

279 0.481237397 

280 0.481141411 

281 0.481046449 

282 0.480952499 

283 0.480859549 

284 0.480767588 

285 0.480676603 

286 0.480586585 

287 0.480497521 

288 0.480409402 

289 0.480322215 

290 0.480235951 

291 0.480150598 

292 0.480066147 

293 0.479982588 

294 0.479899909 

295 0.479818102 
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296 0.479737156 

297 0.479657062 

298 0.479577809 

299 0.47949939 

300 0.479421793 

301 0.479345011 

302 0.479269034 

303 0.479193852 

304 0.479119458 

305 0.479045842 

306 0.478972996 

307 0.478900911 

308 0.478829579 

309 0.478758991 

310 0.47868914 

311 0.478620016 

312 0.478551613 

313 0.478483922 

314 0.478416936 

315 0.478350646 

316 0.478285045 

317 0.478220126 

318 0.478155881 

319 0.478092302 

320 0.478029383 
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321 0.477967117 

322 0.477905496 

323 0.477844513 

324 0.477784162 

325 0.477724435 

326 0.477665326 

327 0.477606828 

328 0.477548935 

329 0.477491639 

330 0.477434936 

331 0.477378818 

332 0.477323278 

333 0.477268312 

334 0.477213912 

335 0.477160073 

336 0.477106788 

337 0.477054052 

338 0.477001859 

339 0.476950204 

340 0.476899079 

341 0.47684848 

342 0.476798402 

343 0.476748837 

344 0.476699783 

345 0.476651231 
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346 0.476603179 

347 0.476555619 

348 0.476508547 

349 0.476461959 

350 0.476415847 

351 0.476370209 

352 0.476325038 

353 0.47628033 

354 0.47623608 

355 0.476192283 

356 0.476148934 

357 0.476106028 

358 0.476063562 

359 0.47602153 

360 0.475979928 

361 0.475938751 

362 0.475897995 

363 0.475857655 

364 0.475817728 

365 0.475778208 

366 0.475739091 

367 0.475700374 

368 0.475662052 

369 0.475624121 

370 0.475586577 
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371 0.475549416 

372 0.475512634 

373 0.475476227 

374 0.475440191 

375 0.475404522 

376 0.475369216 

377 0.47533427 

378 0.47529968 

379 0.475265442 

380 0.475231553 

381 0.475198009 

382 0.475164806 

383 0.47513194 

384 0.475099409 

385 0.475067209 

386 0.475035337 

387 0.475003788 

388 0.47497256 

389 0.47494165 

390 0.474911054 

391 0.474880768 

392 0.47485079 

393 0.474821117 

394 0.474791745 

395 0.474762671 
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396 0.474733892 

397 0.474705406 

398 0.474677208 

399 0.474649297 

400 0.474621669 

401 0.474594321 

402 0.474567251 

403 0.474540455 

404 0.474513931 

405 0.474487675 

406 0.474461686 

407 0.47443596 

408 0.474410495 

409 0.474385288 

410 0.474360337 

411 0.474335638 

412 0.474311189 

413 0.474286988 

414 0.474263032 

415 0.474239319 

416 0.474215845 

417 0.47419261 

418 0.474169609 

419 0.474146841 

420 0.474124304 
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421 0.474101995 

422 0.474079911 

423 0.474058051 

424 0.474036411 

425 0.474014991 

426 0.473993787 

427 0.473972798 

428 0.473952021 

429 0.473931454 

430 0.473911094 

431 0.473890941 

432 0.473870991 

433 0.473851243 

434 0.473831694 

435 0.473812343 

436 0.473793187 

437 0.473774225 

438 0.473755454 

439 0.473736873 

440 0.47371848 

441 0.473700272 

442 0.473682248 

443 0.473664406 

444 0.473646744 

445 0.47362926 
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446 0.473611953 

447 0.47359482 

448 0.47357786 

449 0.473561072 

450 0.473544452 

451 0.473528001 

452 0.473511715 

453 0.473495594 

454 0.473479635 

455 0.473463837 

456 0.473448198 

457 0.473432717 

458 0.473417392 

459 0.473402222 

460 0.473387205 

461 0.473372339 

462 0.473357622 

463 0.473343054 

464 0.473328633 

465 0.473314357 

466 0.473300225 

467 0.473286236 

468 0.473272387 

469 0.473258678 

470 0.473245107 
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471 0.473231673 

472 0.473218373 

473 0.473205208 

474 0.473192176 

475 0.473179274 

476 0.473166503 

477 0.47315386 

478 0.473141344 

479 0.473128955 

480 0.47311669 

481 0.473104548 

482 0.473092529 

483 0.473080631 

484 0.473068852 

485 0.473057192 

486 0.47304565 

487 0.473034223 

488 0.473022911 

489 0.473011714 

490 0.473000629 

491 0.472989655 

492 0.472978792 

493 0.472968038 

494 0.472957392 

495 0.472946853 
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496 0.47293642 

497 0.472926092 

498 0.472915868 

499 0.472905747 

500 0.472895728 
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Appendix I 
 

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo) 

Method Location Fitness Intelligent Recommender - CoRatedCosineUserComparer class 

Method 
Description 

Compares two user feature vectors and returns the degree of 
similarity. 

Tests  Send valid vectors 

 Send invalid null vectors 

Result Every test passed. 

 

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo) 

Method Location Fitness Intelligent Recommender - CorrelationUserComparer class 

Method 
Description 

Compares two user feature vectors and returns the degree of 
similarity. 

Tests  Send valid vectors 

 Send invalid null vectors 

Result Every test passed. 

 

Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo) 

Method Location Fitness Intelligent Recommender - CosineUserComparer class 

Method 
Description 

Compares two user feature vectors and returns the degree of 
similarity. 

Tests  Send valid vectors 

 Send invalid null vectors 

Result Every test passed. 
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Tested Method CompareVectors(userfeaturesOne, userFeaturesTwo) 

Method Location Fitness Intelligent Recommender - RootMeanSquareComparer class 

Method 
Description 

Compares two user feature vectors and returns the degree of 
similarity. 

Tests  Send valid vectors 

 Send invalid null vectors 

Result Every test passed. 

 

Tested Method GenerateLinearBestFit(points) 

Method Location Fitness Intelligent Recommender - LinearBestFit class 

Method Description Calcualtes the line of best fit based on a set of points. 

Tests  Send valid points 

 Send invalid null vectors 

Result Every test passed. 

 

Tested Method GetSlope(points) 

Method Location Fitness Intelligent Recommender - LinearBestFit class 

Method Description Calculates the slope of a line based on its points. 

Tests  Send valid points 

 Send invalid null vectors 

Result Every test passed. 

 

Tested Method GetPredictedValueForX(points, slope, x) 

Method Location Fitness Intelligent Recommender - LinearBestFit class 

Method 
Description 

Calculates the intersection in the Y-axis of the line of best fit, based on 
the X-value. 
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Tests  Send valid points and slope 

 Send valid points and invalid slope 

 Send invalid points and slope 

 Send valid x  

 Send invalid x 

Result Every test passed. 

 

Tested Method GetDotProduct(vectorone, vectortwo) 

Method Location Fitness Intelligent Recommender - Matrix class 

Method Description Calculates dot products between two vectors. 

Tests  Send valid vectors 

 Send invalid vectors 

Result Every test passed. 

 

Tested Method FactorizeMatrix(matrix) 

Method Location Fitness Intelligent Recommender - SingularValueDecomposition class 

Method Description Calculates the svd for a matrix. 

Tests  Send valid matrix 

 Send invalid matrix 

Result Every test passed. 

 

Tested Method LoadData() 

Method Location Fitness Intelligent Recommender - ImportData class 

Method Description Imports the dataset. 

Tests  Use valid dataset 
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 Use invalid dataset 

Result Every test passed. 

 

Tested Method Train(datasetmodel) 

Method Location Fitness Intelligent Recommender - 
ItemCollaborativeFilterRecommender class 

Method Description Trains the model. 

Tests  Send a valid model 

 Send an invalid model 

Result Every test passed. 

 

Tested Method GetRating(userID, itemID) 

Method Location itness Intelligent Recommender - 
ItemCollaborativeFilterRecommender class 

Method Description Gets the rating of a given user for a given item. 

Tests  Use valid user and item 

 Use valid user and invalid item 

 Use invalid user and valid item 

 Use invalid user and invalid item 

Result Every test passed. 

 

Tested Method GetSuggestions(userID, numberOfSuggestions) 

Method Location itness Intelligent Recommender - 
ItemCollaborativeFilterRecommender class 

Method Description Gets suggestions for a given user. 

Tests  Use valid user and number of suggestions 

 Use valid user and invalid number of suggestions 



 

253 
 

 

 Use invalid user and valid number of suggestions 

 Use invalid user and invalid number of suggestions 

Result Every test passed. 

 

Tested Method Train(datasetmodel) 

Method Location Fitness Intelligent Recommender - 
MatrixFactorizationRecommender class 

Method Description Trains the model. 

Tests  Send a valid model 

 Send an invalid model 

Result Every test passed. 

 

Tested Method GetRating(userID, itemID) 

Method Location itness Intelligent Recommender - 
MatrixFactorizationRecommender class 

Method Description Gets the rating of a given user for a given item. 

Tests  Use valid user and item 

 Use valid user and invalid item 

 Use invalid user and valid item 

 Use invalid user and invalid item 

Result Every test passed. 

 

Tested Method GetSuggestions(userID, numberOfSuggestions) 

Method Location itness Intelligent Recommender - 
MatrixFactorizationRecommender class 

Method Description Gets suggestions for a given user. 

Tests  Use valid user and number of suggestions 
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 Use valid user and invalid number of suggestions 

 Use invalid user and valid number of suggestions 

 Use invalid user and invalid number of suggestions 

Result Every test passed. 

 

Tested Method Train(datasetmodel) 

Method Location Fitness Intelligent Recommender - 
UserCollaborativeFilterRecommender class 

Method Description Trains the model. 

Tests  Send a valid model 

 Send an invalid model 

Result Every test passed. 

 

Tested Method GetRating(userID, itemID) 

Method Location itness Intelligent Recommender - 
UserCollaborativeFilterRecommender class 

Method Description Gets the rating of a given user for a given item. 

Tests  Use valid user and item 

 Use valid user and invalid item 

 Use invalid user and valid item 

 Use invalid user and invalid item 

Result Every test passed. 

 

Tested Method GetSuggestions(userID, numberOfSuggestions) 

Method Location itness Intelligent Recommender - 
UserCollaborativeFilterRecommender class 

Method Description Gets suggestions for a given user. 
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Tests  Use valid user and number of suggestions 

 Use valid user and invalid number of suggestions 

 Use invalid user and valid number of suggestions 

 Use invalid user and invalid number of suggestions 

Result Every test passed. 

 

Tested Method filterVolumeAndIntensity(recommendations, predictedvolume, 
predicted intensity) 

Method Location Fitness Conditional Recommender 

Method 
Description 

Filters the tecommendation list based on the predicted volume and 
intensity. 

Tests  Send valid predicted values 

 Send invalid predicted values 

Result Every test passed. 

 

Tested Method predictIntensity(intensityListy) 

Method Location Fitness Conditional Recommender 

Method Description Predicts the intensity based on the previous intensity list. 

Tests  Send valid intensity list 

 Send invalid intensity list 

Result Every test passed. 

 

Tested Method predictVolume (volumeList) 

Method Location Fitness Conditional Recommender 

Method Description Predicts the volume based on the previous volume list. 

Tests  Send valid volume list 
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 Send invalid volume list 

Result Every test passed. 
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Appendix J 
The tests here presented are being generalized to all the tests under that specific type. For 
example "Gets" includes all GET requests. These include the requests from the following entities: 
Body Measurements, Equipment, Equipment Categories, Programs, Plans. 

 

Tested Method Get() 

Involved Components FitnessMobileAPP, FitnessAPI, Database 

Description The mobile app asks the API to retrieve some entity/entity list. The 
API asks the Database for the desired information. 

Expected Result The Database returns the desired entity/entity list. 

Result Success. 

 

Tested Method Post() 

Involved Components FitnessMobileAPP, FitnessAPI, Database 

Description The mobile app asks the API to save new data. The API requests the 
Database to register the new data. 

Expected Result The Database saves the information and returns the operation's 
success. 

Result Success. 

 

Tested Method Put() 

Involved Components FitnessMobileAPP, FitnessAPI, Database 

Description The mobile app asks the API to edit data. The API requests the 
Database to change the data. 

Expected Result The Database saves the information and returns the operation's 
success. 

Result Success. 
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The following tests are relative to the chat bot aspect of the system. 

 

Tested Method GetIntentScore() 

Involved Components ChatBotAPI, LUISAPI 

Description The ChatBotAPI requests the LUISAPI to retrieve the score 
associated with a specific intent. 

Expected Result The LUISAPI returns the correct score. 

Result Success. 

 

Tested Method Get() 

Involved Components ChatBotAPI, FitnessAPI, Database 

Description The FitnessAPI obtains the exercise data from the Database and 
returns it to the ChatBotAPI 

Expected Result The Database returns the exercise list and the ChatBotAPI receives 
it correctly. 

Result Success. 

 

Tested Method GetResponse() 

Involved Components FitnessMobileAPP, FitnessAPI, ChatBotAPI, LUISAPI, Database 

Description The FitnessMobileAPP receives a message from the user, sends it to 
the FitnessAPI which redirects it to the ChatBotAPI which gets its 
intent from the LUISAPI. The Database is used by the FitnessAPI if 
necessary. The response is then retrieved to the mobile app. 

Expected Result The response is correctly formulated. 

Result Success. 
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Appendix K 

Description The user creates a Program, opens the Programs list and views its 
details. 

Result Success. 

 

Description The user creates a Plan, opens the Programs list and views its 
details. 

Result Success. 

 

Description The user configures their body measurements, adds specific goals, 
adds logs and views the progress monitoring. 

Result Success. 

 

Description The user edits their preferred body measurements. 

Result Success. 
 

Description The user changes the system’s language and views. 

Result Success. 
 

Description The user opens the calendar and selects the desired day to view its 
logs. 

Result Success. 
 

Description The user changes the available equipment and refreshes the screen 
to see the updates. 

Result Success. 
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Appendix L 

Tested Use Case US02: View training Plan/Program templates 

Expected Result The correct Plan/Program template list is shown. 

Result Success. 

 

Tested Use Case US03: Manage training Plan/Program 

Expected Result The new Plan/Program is created and correctly added to both the 
mobile app and the database. 

Result Success. 

 

Tested Use Case US04: Manage Body Measurements 

Expected Result The configured body measurements are correctly shown. 

Result Success. 

 

Tested Use Case US04: Manage Body Measurements 

Expected Result The added logs are correctly shown in their respective body 
measurements. 

Result Success. 

 

Tested Use Case US04: Manage Body Measurements 

Expected Result The corrected re-configured body measurements are correctly 
shown. 

Result Success. 

 

Tested Use Case US08: View training Logs 

Expected Result The correct logs are shown. 
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Result Success. 

 

Tested Use Case US010: View Statistics 

Expected Result The correct statistics are shown. 

Result Success. 

 

Tested Use Case US015: Change Language 

Expected Result The new language is saved, and the app is updated. 

Result Success. 

 

Tested Use Case US016: Change Unit System 

Expected Result The new unit system is saved, and the app updated. 

Result Success. 

 

Tested Use Case US017: Manage Available Equipment 

Expected Result The configured available equipment are correctly shown. 

Result Success. 

 

Tested Use Case US017: Manage Available Equipment 

Expected Result The re-configured available equipment are correctly shown. 

Result Success. 

 


