

High-Performance and Time-Predictable
Embedded Computing

Book

*CISTER Research Centre

CISTER-TR-180705

2018/07/01

Luis Miguel Pinho*

Eduardo Quiñones

Marko Bertogna

Andrea Marongiu

Vincent Nélis*

Paolo Gai

Juan Sancho

Book CISTER-TR-180705 High-Performance and Time-Predictable Embedded Computing

© CISTER Research Center
www.cister.isep.ipp.pt

1

High-Performance and Time-Predictable Embedded Computing

Luis Miguel Pinho*, Eduardo Quiñones, Marko Bertogna, Andrea Marongiu, Vincent Nélis*, Paolo Gai,
Juan Sancho

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: lmp@isep.ipp.pt, nelis@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world
dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more
computational performance to process large amounts of data from multiple data sources with guaranteed
processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital
for systems like planes, cars, business monitoring, e-trading, etc.

High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture
and tools to support such complex systems, enabling the design of embedded computing devices which are able
to deliver high-performance whilst guaranteeing the application required timing bounds.

Technical topics discussed in the book include: Parallel embedded platformsProgramming modelsMapping and
scheduling of parallel computationsTiming and schedulability analysisRuntimes and operating systems

The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7
framework program of the European Commission. High-performance and time-predictable embedded computing is
ideal for personnel in computer/communication/embedded industries as well as academic staff and
master/research students in computer science, embedded systems, cyber-physical systems and internet-of-
things.

River Publishers Series in Information Science and Technology

High-Performance and
Time-Predictable

Embedded Computing

Luís Miguel Pinho, Eduardo Quiñones,

Marko Bertogna, Andrea Marongiu, Vincent Nélis,

Paolo Gai and Juan Sancho (Editors)

River Publishers

High-Performance and
Time-Predictable

Embedded Computing

RIVER PUBLISHERS SERIES IN INFORMATION

SCIENCE AND TECHNOLOGY

Series Editors

K. C. CHEN SANDEEP SHUKLA
National Taiwan University Virginia Tech
Taipei, Taiwan USA

and and

University of South Florida, USA Indian Institute of Technology Kanpur, India

Indexing: All books published in this series are submitted to the Web of Science Book Citation
Index (BkCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Information Science and Technology” covers research
which ushers the 21st Century into an Internet and multimedia era. Multimedia means the
theory and application of filtering, coding, estimating, analyzing, detecting and recognizing,
synthesizing, classifying, recording, and reproducing signals by digital and/or analog devices
or techniques, while the scope of “signal” includes audio, video, speech, image, musical,
multimedia, data/content, geophysical, sonar/radar, bio/medical, sensation, etc. Networking
suggests transportation of such multimedia contents among nodes in communication and/or
computer networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and imple-
mentation of wired/wireless networking are all within the scope of this series. Based on
network and communication science, we further extend the scope for 21st Century life through
the knowledge in robotics, machine learning, embedded systems, cognitive science, pattern
recognition, quantum/biological/molecular computation and information processing, biology,
ecology, social science and economics, user behaviors and interface, and applications to health
and society advance.

Books published in the series include research monographs, edited volumes, handbooks
and textbooks. The books provide professionals, researchers, educators, and advanced students
in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

• Communication/Computer Networking Technologies and Applications
• Queuing Theory
• Optimization
• Operation Research
• Stochastic Processes
• Information Theory
• Multimedia/Speech/Video Processing
• Computation and Information Processing
• Machine Intelligence
• Cognitive Science and Brian Science
• Embedded Systems
• Computer Architectures
• Reconfigurable Computing
• Cyber Security

For a list of other books in this series, visit www.riverpublishers.com

High-Performance and
Time-Predictable

Embedded Computing

Editors

Luı́s Miguel Pinho

CISTER Research Centre, Polytechnic Institute of Porto, Portugal

Eduardo Quiñones

Barcelona Supercomputing Center, Spain

Marko Bertogna

University of Modena and Reggio Emilia, Italy

Andrea Marongiu

Swiss Federal Institute of Technology Zurich, Switzerland

Vincent Nélis

CISTER Research Centre, Polytechnic Institute of Porto, Portugal

Paolo Gai

Evidence Srl, Italy

Juan Sancho

ATOS, Spain

River Publishers

Published, sold and distributed by:

River Publishers

Alsbjergvej 10

9260 Gistrup

Denmark

River Publishers

Lange Geer 44

2611 PW Delft

The Netherlands

Tel.: +45369953197

www.riverpublishers.com

ISBN: 978-87-93609-69-3 (Hardback)

978-87-93609-62-4 (Ebook)

c©The Editor(s) (if applicable) and The Author(s) 2018. This book is

published open access.

Open Access

This book is distributed under the terms of the Creative Commons Attribution-Non-

Commercial 4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/

licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduc-

tion in any medium or format, as long as you give appropriate credit to the original

author(s) and the source, a link is provided to the Creative Commons license and any

changes made are indicated. The images or other third party material in this book are

included in the work’s Creative Commons license, unless indicated otherwise in the

credit line; if such material is not included in the work’s Creative Commons license and

the respective action is not permitted by statutory regulation, users will need to obtain

permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks,

etc. in this publication does not imply, even in the absence of a specific statement, that

such names are exempt from the relevant protective laws and regulations and therefore

free for general use.

The publisher, the authors and the editors are safe to assume that the advice and

information in this book are believed to be true and accurate at the date of publication.

Neither the publisher nor the authors or the editors give a warranty, express or implied,

with respect to the material contained herein or for any errors or omissions that may have

been made.

Printed on acid-free paper.

Contents

Preface xiii

List of Contributors xv

List of Figures xvii

List of Tables xxi

List of Abbreviations xxiii

1 Introduction 1

Luı́s Miguel Pinho, Eduardo Quiñones, Marko Bertogna,

Andrea Marongiu, Vincent Nélis, Paolo Gai and Juan Sancho

1.1 Introduction . 1

1.1.1 The Convergence of High-performance

and Embedded Computing Domains 3

1.1.2 Parallelization Challenge 5

1.2 The P-SOCRATES Project 6

1.3 Challenges Addressed in This Book 8

1.3.1 Compiler Analysis of Parallel Programs 8

1.3.2 Predictable Scheduling of Parallel Tasks

on Many-core Systems 9

1.3.3 Methodology for Measurement-based Timing

Analysis . 9

1.3.4 Optimized OpenMP Tasking Runtime System 9

1.3.5 Real-time Operating Systems 10

1.4 The UpScale SDK . 10

1.5 Summary . 11

References . 12

v

vi Contents

2 Manycore Platforms 15

Andrea Marongiu, Vincent Nélis and Patrick Meumeu Yomsi

2.1 Introduction . 15

2.2 Manycore Architectures 17

2.2.1 Xeon Phi . 17

2.2.2 Pezy SC . 18

2.2.3 NVIDIA Tegra X1 19

2.2.4 Tilera Tile . 21

2.2.5 STMicroelectronics STHORM 22

2.2.6 Epiphany-V . 23

2.2.7 TI Keystone II . 24

2.2.8 Kalray MPPA-256 25

2.2.8.1 The I/O subsystem 26

2.2.8.2 The Network-on-Chip (NoC) 26

2.2.8.3 The Host-to-IOS communication

protocol 28

2.2.8.4 Internal architecture of the compute

clusters 28

2.2.8.5 The shared memory 29

2.3 Summary . 30

References . 31

3 Predictable Parallel Programming with OpenMP 33

Maria A. Serrano, Sara Royuela, Andrea Marongiu

and Eduardo Quiñones

3.1 Introduction . 33

3.1.1 Introduction to Parallel Programming Models 34

3.1.1.1 POSIX threads 35

3.1.1.2 OpenCLTM 35

3.1.1.3 NVIDIA R© CUDA 36

3.1.1.4 Intel R© CilkTM Plus 36

3.1.1.5 Intel R© TBB 36

3.1.1.6 OpenMP 37

3.2 The OpenMP Parallel Programming Model 37

3.2.1 Introduction and Evolution of OpenMP 37

3.2.2 Parallel Model of OpenMP 39

3.2.2.1 Execution model 39

3.2.2.2 Acceleration model 40

3.2.2.3 Memory model 41

Contents vii

3.2.3 An OpenMP Example 42

3.3 Timing Properties of OpenMP Tasking Model 43

3.3.1 Sporadic DAG Scheduling Model of Parallel

Applications . 43

3.3.2 Understanding the OpenMP Tasking Model 44

3.3.3 OpenMP and Timing Predictability 46

3.3.3.1 Extracting the DAG of an OpenMP

program 47

3.3.3.2 WCET analysis is applied to tasks

and tasks parts 48

3.3.3.3 DAG-based scheduling must not

violate the TSCs 49

3.4 Extracting the Timing Information of an OpenMP

Program . 51

3.4.1 Parallel Structure Stage 52

3.4.1.1 Parallel control flow analysis 53

3.4.1.2 Induction variables analysis 53

3.4.1.3 Reaching definitions and range analysis . . 53

3.4.1.4 Putting all together: The wave-front

example 53

3.4.2 Task Expansion Stage 54

3.4.2.1 Control flow expansion and

synchronization predicate resolution . . . 54

3.4.2.2 tid: A unique task instance identifier . . . 56

3.4.2.3 Missing information when deriving

the DAG 57

3.4.3 Compiler Complexity 58

3.5 Summary . 58

References . 59

4 Mapping, Scheduling, and Schedulability Analysis 63

Paolo Burgio, Marko Bertogna, Alessandra Melani,

Eduardo Quiñones and Maria A. Serrano

4.1 Introduction . 63

4.2 System Model . 64

4.3 Partitioned Scheduler . 66

4.3.1 The Optimality of EDF on Preemptive

Uniprocessors . 66

4.3.2 FP-scheduling Algorithms 67

4.3.3 Limited Preemption Scheduling 68

viii Contents

4.3.4 Limited Preemption Schedulability Analysis 69

4.4 Global Scheduler with Migration Support 70

4.4.1 Migration-based Scheduler 70

4.4.2 Putting All Together 72

4.4.3 Implementation of a Limited Preemption

Scheduler . 73

4.5 Overall Schedulability Analysis 75

4.5.1 Model Formalization 75

4.5.2 Critical Interference of cp-tasks 78

4.5.3 Response Time Analysis 80

4.5.3.1 Inter-task interference 80

4.5.3.2 Intra-task interference 82

4.5.3.3 Computation of cp-task parameters 84

4.5.4 Non-conditional DAG Tasks 86

4.5.5 Series–Parallel Conditional DAG Tasks 86

4.5.6 Schedulability Condition 86

4.6 Specializing Analysis for Limited Pre-emption Global/

Dynamic Approach . 87

4.6.1 Blocking Impact of the Largest NPRs (LP-max) . . . 88

4.6.2 Blocking Impact of the Largest Parallel NPRs

(LP-ILP) . 88

4.6.2.1 LP worst-case workload of a task

executing on c cores 89

4.6.2.2 Overall LP worst-case workload 90

4.6.2.3 Lower-priority interference 91

4.6.3 Computation of Response Time Factors

of LP-ILP . 92

4.6.3.1 Worst-case workload of τ i executing

on c cores: µi[c] 92

4.6.3.2 Overall LP worst-case workload of lp(k)

per execution scenario sl: ρk[sl] 94

4.6.4 Complexity . 95

4.7 Specializing Analysis for the Partitioned/Static Approach . . 96

4.7.1 ILP Formulation 96

4.7.1.1 Tied tasks 97

4.7.1.2 Untied tasks 99

4.7.1.3 Complexity 100

4.7.2 Heuristic Approaches 100

4.7.2.1 Tied tasks 101

Contents ix

4.7.2.2 Untied tasks 103

4.7.3 Integrating Interference from Additional

RT Tasks . 103

4.7.4 Critical Instant . 104

4.7.5 Response-time Upper Bound 105

4.8 Scheduling for I/O Cores 107

4.9 Summary . 107

References . 109

5 Timing Analysis Methodology 113

Vincent Nélis, Patrick Meumeu Yomsi and Luı́s Miguel Pinho

5.1 Introduction . 113

5.1.1 Static WCET Analysis Techniques 115

5.1.2 Measurement-based WCET Analysis Techniques . . 118

5.1.3 Hybrid WCET Techniques 119

5.1.4 Measurement-based Probabilistic Techniques 120

5.2 Our Choice of Methodology for WCET Estimation 121

5.2.1 Why Not Use Static Approaches? 122

5.2.2 Why Use Measurement-based Techniques? 124

5.3 Description of Our Timing Analysis Methodology 127

5.3.1 Intrinsic vs. Extrinsic Execution Times 127

5.3.2 The Concept of Safety Margins 128

5.3.3 Our Proposed Timing Methodology at a Glance . . . 130

5.3.4 Overview of the Application Structure 131

5.3.5 Automatic Insertion and Removal

of the Trace-points 133

5.3.5.1 How to insert the trace-points 133

5.3.5.2 How to remove the trace-points 135

5.3.6 Extract the Intrinsic Execution Time: The Isolation

Mode . 136

5.3.7 Extract the Extrinsic Execution Time:

The Contention Mode 137

5.3.8 Extract the Execution Time in Real Situation:

The Deployment Mode 141

5.3.9 Derive WCET Estimates 141

5.4 Summary . 143

References . 143

x Contents

6 OpenMP Runtime 145

Andrea Marongiu, Giuseppe Tagliavini and Eduardo Quiñones

6.1 Introduction . 145

6.2 Offloading Library Design 146

6.3 Tasking Runtime . 148

6.3.1 Task Dependency Management 155

6.4 Experimental Results . 158

6.4.1 Offloading Library 159

6.4.2 Tasking Runtime 160

6.4.2.1 Applications with a linear generation

pattern 160

6.4.2.2 Applications with a recursive generation

pattern 162

6.4.2.3 Applications with mixed patterns 163

6.4.2.4 Impact of cutoff on LINEAR and

RECURSIVE applications 165

6.4.2.5 Real applications 166

6.4.3 Evaluation of the Task Dependency Mechanism . . . 167

6.4.3.1 Performance speedup and memory

usage . 168

6.4.3.2 The task dependency mechanism

on the MPPA 170

6.5 Summary . 171

References . 171

7 Embedded Operating Systems 173

Claudio Scordino, Errico Guidieri, Bruno Morelli,

Andrea Marongiu, Giuseppe Tagliavini and Paolo Gai

7.1 Introduction . 173

7.2 State of The Art . 175

7.2.1 Real-time Support in Linux 175

7.2.1.1 Hard real-time support 176

7.2.1.2 Latency reduction 178

7.2.1.3 Real-time CPU scheduling 180

7.2.2 Survey of Existing Embedded RTOSs 180

7.2.3 Classification of Embedded RTOSs 186

7.3 Requirements for The Choice of The Run Time System . . . 187

7.3.1 Programming Model 187

7.3.2 Preemption Support 187

Contents xi

7.3.3 Migration Support 188

7.3.4 Scheduling Characteristics 188

7.3.5 Timing Analysis 188

7.4 RTOS Selection . 190

7.4.1 Host Processor . 190

7.4.2 Manycore Processor 190

7.5 Operating System Support 191

7.5.1 Linux . 191

7.5.2 ERIKA Enterprise Support 191

7.5.2.1 Exokernel support 191

7.5.2.2 Single-ELF multicore ERIKA

Enterprise 192

7.5.2.3 Support for limited preemption, job, and

global scheduling 192

7.5.2.4 New ERIKA Enterprise primitives 193

7.5.2.5 New data structures 194

7.5.2.6 Dynamic task creation 196

7.5.2.7 IRQ handlers as tasks 196

7.5.2.8 File hierarchy 197

7.5.2.9 Early performance estimation 197

7.6 Summary . 200

References . 200

Index 203

About the Editors 205

Preface

Nowadays, the prevalence of electronic and computing systems in our lives is

so ubiquitous that it would not be far-fetched to state that we live in a cyber-

physical world dominated by computer systems. Examples include pacemak-

ers implanted within the human body to regulate and monitor heartbeats, cars

and airplanes transporting us, smart grids, and traffic management.

All these systems demand more and more computational performance to

process large amounts of data from multiple data sources, and some of them

with guaranteed processing response times; in other words, systems required

to deliver their results within pre-defined (and sometimes extremely short)

time bounds. This timing aspect is vital for systems like planes, cars, business

monitoring, e-trading, etc. Examples can be found in intelligent transportation

systems for fuel consumption reduction in cities or railways, or autonomous

driving of vehicles. All these systems require processing and actuation based

on large amounts of data coming from real-time sensor information.

As a result, the computer electronic devices which these systems depend

on are constantly required to become more and more powerful and reli-

able, while remaining affordable. In order to cope with such performance

requirements, chip designers have recently started producing chips containing

multiple processing units, the so-called multi-core processors, effectively

integrating multiple computers within a single chip, and more recently the

many-core processors, with dozens or hundreds of cores, interconnected with

complex networks on chip. This radical shift in the chip design paved the

way for parallel computing: rather than processing the data sequentially, the

cooperation of multiple processing elements within the same chip allows

systems to be executed concurrently, in parallel.

Unfortunately, the parallelization of the computing activities brought up

many challenges, because it affects the timing behavior of the systems as well

as the entire way people think and design computers: from the design of the

hardware architecture, through the operating system up to the conceptualiza-

tion of the end-user application. Therefore, although many-core processors

are promising candidates to improve the responsiveness of these systems,

xiii

xiv Preface

the interactions that the different computing elements may have within the

chip can seriously affect the performance opportunities brought by parallel

execution. Moreover, providing timing guarantees becomes harder, because

the timing behavior of the system running within a many-core processor

depends on interactions that are most of the time not known by the system

designer. This makes system analysts struggle in trying to provide timing

guarantees for such platforms. Finally, most of the optimization mechanisms

buried deep inside the chip are geared only to increase performance and

execution speed rather than providing predictable time behavior.

These challenges need to be addressed by introducing predictability in

the vertical stack from high-level programming models to operating sys-

tems, together with new offline analysis techniques. This book covers the

main techniques to enable performance and predictability of embedded

applications. The book starts with an overview of some of the current many-

core embedded platforms, and then addresses how to support predictability

and performance in different aspects of computation: a predictable parallel

programming model, the mapping and scheduling of real-time parallel com-

putation, the timing analysis of parallel code, as well as the techniques to

support predictability in parallel runtimes and operating systems.

The work reflected in this book was done in the scope of the European

project P-SOCRATES, funded under the FP7 framework program of the

European Commission. The project website (www.p-socrates.eu), provides

further detailed information on the techniques presented here. Moreover, a

reference implementation of the methodologies and tools was released as the

UpScale Software Development Kit (http://www.upscale-sdk.com).

Luı́s Miguel Pinho

Eduardo Quiñones

Marko Bertogna

Andrea Marongiu

Vincent Nélis

Paolo Gai

Juan Sancho

February 2018

List of Contributors

Alessandra Melani, University of Modena and Reggio Emilia, Italy

Andrea Marongiu, Swiss Federal Institute of Technology in Zürich (ETHZ),

Switzerland; and University of Bologna, Italy

Bruno Morelli, Evidence SRL, Italy

Claudio Scordino, Evidence SRL, Italy

Eduardo Quiñones, Barcelona Supercomputing Center (BSC), Spain

Errico Guidieri, Evidence SRL, Italy

Giuseppe Tagliavini, University of Bologna, Italy

Juan Sancho, ATOS, Spain

Luı́s Miguel Pinho, CISTER Research Centre, Polytechnic Institute of Porto,

Portugal

Maria A. Serrano, Barcelona Supercomputing Center (BSC), Spain

Marko Bertogna, University of Modena and Reggio Emilia, Italy

Paolo Burgio, University of Modena and Reggio Emilia, Italy

Paolo Gai, Evidence SRL, Italy

xv

xvi List of Contributors

Patrick Meumeu Yomsi, CISTER Research Centre, Polytechnic Institute of

Porto, Portugal

Sara Royuela, Barcelona Supercomputing Center (BSC), Spain

Vincent Nélis, CISTER Research Centre, Polytechnic Institute of Porto,

Portugal

List of Figures

Figure 1.1 P-SOCRATES Global perspective. 7

Figure 1.2 P-SOCRATES combines high-performance

parallel programming models, high-end embedded

many-core platforms and real-time systems

technology. 7

Figure 1.3 Vertical stack of application decomposition. 8

Figure 1.4 The UpScale SDK. 11

Figure 2.1 Knights Landing (KNL) block diagram:

(a) the CPU, (b) an example tile, and (c) KNL

with Omni-Path Fabric integrated on the CPU

package. 17

Figure 2.2 PEZY-SC architecture block diagram. 19

Figure 2.3 NVIDIA Tegra X1 block diagram. 20

Figure 2.4 Tilera Tile architectural template. 21

Figure 2.5 STMicroelectronics STHORM heterogeneous

system. 22

Figure 2.6 Block diagram of the Epiphany-V chip from

Adapteva. 23

Figure 2.7 Texas Instrument Keystone II heterogeneous

system. 24

Figure 2.8 High-level view of the Kalray MPPA-256

processor. 25

Figure 2.9 MPPA-256 NoC architecture. 27

Figure 2.10 A master task runs on an RM of an I/O

subsystem. 28

Figure 2.11 Internal architecture of a compute cluster. 29

Figure 2.12 Memory accesses distributed across memory banks

(interleaved). 30

Figure 2.13 Memory accesses targeting a same memory bank

(contiguous). 31

Figure 3.1 OpenMP components stack. 38

xvii

xviii List of Figures

Figure 3.2 OpenMP releases time-line. 39

Figure 3.3 Structured parallelism. 40

Figure 3.4 Unstructured parallelism. 40

Figure 3.5 OpenMP-DAG composed of task parts based

on the code. 48

Figure 3.6 DAG composed on task region parts. 50

Figure 3.7 aDAG of the OpenMP program. 55

Figure 3.8 The DAG of the OpenMP program 56

Figure 4.1 An application is composed of multiple

real-time tasks. 65

Figure 4.2 RT tasks are mapped to OS threads, which are

scheduled on the processing elements. 65

Figure 4.3 Fully preemptive vs. non-preemptive scheduling:

preemption overhead and blocking delay may cause

deadline misses. 69

Figure 4.4 A sample cp-task. Each vertex is labeled

with the WCET of the corresponding sub-task. . . . 76

Figure 4.5 Work-case scenario to maximize the workload

of an task τi, in the sequential case. 81

Figure 4.6 Worst-case scenario to maximize the workload

of an interfering cp-task τi. 82

Figure 4.7 DAGs of lp(k) tasks; the Ci,j of each node vi,j
is presented in parenthesis. 89

Figure 4.8 Tasks example. 104

Figure 4.9 Different release patterns for the example of

Figure 4.8. (a) represents the most optimistic case,

while (c) the most pessimistic, i.e., yelding to the

highest WCET. (b) represents an intermediate

case. 105

Figure 5.1 Example distribution of execution time. 115

Figure 5.2 Extended task dependency graph (eTDG) of an

example application. 133

Figure 5.3 Impact of an unused variable on the execution time

of an example application. 135

Figure 6.1 Timing diagram of an offloading procedure. 147

Figure 6.2 Task suspension in the baseline implementation

(considering tied tasks and WFS). 151

Figure 6.3 Untied task suspension with task contexts

and per-task stacks. 152

List of Figures xix

Figure 6.4 On the left (a), the DAG of an OpenMP program.

On the right (b), the sparse matrix data structure

implementing DAG shown on the left. 157

Figure 6.5 Costs of offload initialization. 159

Figure 6.6 Speedup of the LINEAR benchmark (no cutoff). . . 161

Figure 6.7 Speedup of the RECURSIVE benchmark

(no cutoff). 163

Figure 6.8 Structure of the MIXED microbenchmark. 164

Figure 6.9 Speedup of the MIXED benchmark. 164

Figure 6.10 Speedup of the LINEAR benchmark

(with cutoff). 165

Figure 6.11 Speedup of the RECURSIVE benchmark

(with cutoff). 166

Figure 6.12 Speedups for the BOTS benchmarks. 167

Figure 6.13 Performance speedup of the Cholesky (a) and

r3DPP (b) running with lightweight omp4, omp4,

and omp 3.1, and varying the number of tasks. . . . 168

Figure 6.14 Memory usage (in KB) of the Cholesky (a) r3DPP

(b) running with lightweight omp4, omp4, and

omp 3.1, and varying the number of tasks. 169

Figure 6.15 Performance speedup of the Cholesky (a) and

r3DPP (b) running on the MPPA with lightweight

omp4, omp4, and omp 3.1, and varying the number

of tasks. 170

Figure 7.1 Number of Linux-based supercomputers

in the TOP500 list. 174

Figure 7.2 Structure of the multicore images in the original

ERIKA Enterprise structure. 195

Figure 7.3 Structure of the Single-ELF image produced

by ERIKA Enterprise. 196

List of Tables

Table 3.1 Parallel programming models comparison 35

Table 4.1 Worst-case workloads of tasks in Figure 4.7 90

Table 4.2 Five possible scenarios of taskset in Figure 4.7,

assuming a four core system 91

Table 4.3 Computed worst-case workload for each

of the scenarios in Table 4.2 91

Table 6.1 Memory usage of the sparse matrix (in KB),

varying the number of tasks instantiated 170

Table 7.1 Classification of RTOSs 186

Table 7.2 ERIKA Enterprise footprint (expressed in bytes) . . 198

Table 7.3 Timings (expressed in clock ticks) 199

Table 7.4 Footprint comparison between ERIKA and NodeOS

for a 16-core cluster (expressed in bytes) 199

Table 7.5 Thread creation/activation times (expressed in clock

ticks) . 199

xxi

List of Abbreviations

ADEOS Adaptive Domain Environment for Operating Systems, a

patch used by RTAI and Xenomai

ALU Arithmetic logic unit

API Application Programming Interface

APIC Programmable timer on x86 machines

AUTOSAR International consortium that defines automotive API

BCET Best-Case Execution Time

BFS Breadth First Scheduling

BOTS Barcelona OpenMP task suite

BSD Berkeley software license

CBS Constant Bandwidth Server, a scheduling algorithm

CFG Control Flow Graph

CMP chip multi-processor

COTS Commercial Off-The-Shelf

CPU central processing unit

CUDA Compute Unified Device Architecture

DAG Direct Acyclic Graph

DDR double data rate

DMA direct memory access (engine)

DRAM dynamic random-access memory

DSP digital signal processor

DSU debug system unit

EDF Earliest Deadline First Scheduler, a scheduling algorithm

ELF binary format that contain executables

eTDG Extended Task Dependency Graph

EVT Extreme Value Theory

FIFO First-In First-Out

FLOPS floating-point operations per second

FPGA Field-Programmable Gate Array

GPGPU General Purpose Graphics Processing Unit

GPL General Public License

xxiii

xxiv List of Abbreviations

GPOS General purpose Operating System

GPU Graphics Processing Unit

GRUB Greedy Reclamation of Unused Bandwidth, a scheduling

algorithm

HAL Hardware Abstraction Layer

HMI Human Machine Interface

HPC High Performance Computing

HRT High Resolution Timers

ID Identifier

IEC International Electrotechnical Commission

IG Interference Generator

IID Independent and Identically Distributed

ILP instruction-level parallelism

IRQ Hardware Interrupt

ISA Instruction Set Architecture

LHC Large Hadron Collider

LIFO Last-In First-Out

LL-RTE Low-level runtime environment

LRU Least recently used

MBPTA Measurement-Based Probabilistic Timing Analysis

MCU Microcontroller Unit

MEET Maximum Extrinsic Execution Time

MIET Maximum Intrinsic Execution Time

MPPA Multi Purpose Processor Array

NOC network-on-chip

NOP No Operation

NUCA non-uniform cache architecture

OpenCL Open Computing Language

OpenMP Open multi processing (programming model)

OpenMP DAG OpenMP Direct Acyclic Graph

OS Operating system

PCFG Parallel Control Flow Graph

PCIe peripheral component interconnect express

PE processing element

PLRU Pseudo-LRU

POSIX Portable Operating System Interface for UNIX

PPC PowerPC

P-SOCRATES Parallel Software Framework for Time-Critical

Many-core Systems

List of Abbreviations xxv

pWCET Probabilistic Worst-Case Execution Time

RCU Linux Read-Copy-Update technique

RM Resource manager

RT Real time

RT task Real-Time task

RTE Runtime environment

RTOS Real time operative system

SDK Software Development Kit

SMP Symmetric Multi Processor

SMT simultaneous multi-threading

SoC System-on-Chip

SOM system-on-module

SP Stack pointer

TBB Thread Building Blocks

TC Task context

TDG Task Dependency Graph

TDMA Time Division Multiple Access

TLB translation lookaside buffer

TLP Thread-Level Parallelism

TSC Task Scheduling Constraint

TSP Task Scheduling Point

VLIW Very Large Instruction Word

VPU vector processing unit

WCET Worst Case Execution Time

WFS Work First Scheduling

1

Introduction

Luı́s Miguel Pinho1, Eduardo Quiñones2, Marko Bertogna3,

Andrea Marongiu4, Vincent Nélis1, Paolo Gai5 and Juan Sancho6

1CISTER Research Centre, Polytechnic Institute of Porto, Portugal
2Barcelona Supercomputing Center (BSC), Spain
3University of Modena and Reggio Emilia, Italy
4Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland;

and University of Bologna, Italy
5Evidence SRL, Italy
6ATOS, Spain

This chapter provides an overview of the book theme, motivating the need for

high-performance and time-predictable embedded computing. It describes the

challenges introduced by the need for time-predictability on the one hand,

and high-performance on the other, discussing on a high level how these

contradictory requirements can be simultaneously supported.

1.1 Introduction

High-performance computing has been for a long time the realm of a specific

community within academia and specialized industries; in particular those

targeting demanding analytics and simulations applications that require pro-

cessing massive amounts of data. In a similar way, embedded computing has

also focused mainly on specific systems with specialized and fixed function-

alities and for which timing requirements were considered as much more

important than performance requirements. However, with the ever-increasing

availability of more powerful processing platforms, alongside affordable and

scalable software solutions, both high-performance and embedded computing

are extending to other sectors and application domains.

1

2 Introduction

The demand for increased computational performance is currently

widespread and is even more challenging when large amounts of data need

to be processed, from multiple data sources, with guaranteed processing

response times. Although many systems focus on performance and handling

large volumes of streaming data (with throughput and latency requirements),

many application domains require real-time behavior [1–6] and challenge the

computing capability of current technologies. Some examples are:

• In cyber-physical systems, ranging from automotive and aircrafts, to

smart grids and traffic management, computing systems are embedded

in a physical environment and their behavior obeys the technical rules

dictated by this environment. Typically, they have to cope with the

timing requirements imposed by the embedding domain. In the Large

Hadron Collider (LHC) in CERN, beam collisions occur every 25 ns,

which produce up to 40 million events per second. All these events are

pipelined with the objective of distinguishing between interesting and

non-interesting events to reduce the number of events to be processed to

a few hundreds [7]. Similarly, bridges are monitored in real-time [8] with

information collected from more than 10,000 sensors processed every

8 ms, managing responses to natural disasters, maintaining bridge struc-

ture, and estimating the extent of structural fatigue. Another interesting

application is in intelligent transportation systems, where systems are

developed to allow for fuel consumption reduction of railway systems,

managing throttle positions, elaborating big amounts of data and sensor

information, such as train horsepower, weight, prevailing wind, weather,

traffic, etc. [9].

• In the banking/financial markets, computing systems process large

amounts of real-time stock information in order to detect time-dependent

patterns, automatically triggering operations in a very specific and tight

timeframe when some pre-defined patterns occur. Automated algorith-

mic trading programs now buy and sell millions of dollars of shares

time-sliced into orders separated by 1 ms. Reducing the latency by 1 ms

can be worth up to $100 million a year to a leading trading house. The

aim is to cut microseconds off the latency in which these systems can

reach to momentary variations in share prices [10].

• In industry, computing systems monitor business processes based on

the capability to understand and process real-time sensor data from

the factory-floor and throughout the whole value chain, with Radio

Frequency Identification (RFID) components in order to optimize both

the production and logistics processes [11].

1.1 Introduction 3

The underlying commonality of the systems described above is that they are

time-critical (whether business-critical or mission-critical, it is necessary to

fulfill specific timing requirements) and with high-performance requirements.

In other words, for such systems, the correctness of the result is dependent

on both performance and timing requirements, and meeting those is critical

to the functioning of the system. In this context, it is essential to guarantee

the timing predictability of the performed computations, meaning that argu-

ments and analyses are needed to be able to make arguments of correctness,

e.g., performing the required computations within well-specified bounds.

1.1.1 The Convergence of High-performance and Embedded
Computing Domains

Until now, trends in high-performance and embedded computing domains

have been running in opposite directions. On one side, high-performance

computing (HPC) systems are traditionally designed to make the common

case as fast as possible, without concerning themselves with the timing

behavior (in terms of execution time) of the not-so-often cases. As a result,

the techniques developed for HPC are based on complex hardware and

software structures that make any reliable timing bound almost impossi-

ble to derive. On the other side, real-time embedded systems are typically

designed to provide energy-efficient and predictable solutions, without heavy

performance requirements. Instead of fast response times, they aim at having

deterministically bounded response times, in order to guarantee that deadlines

are met. For this reason, these systems are typically based on simple hardware

architectures, using fixed-function hardware accelerators that are strongly

coupled with the application domain.

In the last years, the above design choices are being questioned by the

irruption of multi-core processors in both computing markets. The huge

computational necessities to satisfy the performance requirements of HPC

systems and the related exponential increments of power requirements (typ-

ically referred to as the power wall) exceeded the technological limits

of classic single-core architectures. For these reasons, the main hardware

manufacturers are offering an increasing number of computing platforms

integrating multiple cores within a chip, contributing to an unprecedented

phenomenon sometimes referred to as “the multi-core revolution.” Multi-core

processors provide better energy efficiency and performance-per-cost ratio,

while improving application performance by exploiting thread-level paral-

lelism (TLP). Applications are split into multiple tasks that run in parallel

4 Introduction

on different cores, extending to the multi-core system level an important

challenge already faced by HPC designers at multi-processor system level:

parallelization.

In the embedded systems domain, the necessity to develop more flexible

and powerful systems (e.g., from fixed-function phones to smart phones

and tablets) have pushed the embedded market in the same direction. That

is, multi-cores are increasingly considered as the solution to cope with

performance and cost requirements [12], as they allow scheduling multiple

application services on the same processor, hence maximizing the hardware

utilization while reducing cost, size, weight, and power requirements. How-

ever, real-time embedded applications with time-criticality requirements are

still executed on simple architectures that are able to guarantee a predictable

execution pattern while avoiding the appearance of timing anomalies [13].

This makes real-time embedded platforms still relying on either single-core or

simple multi-core CPUs, integrated with fix-function hardware accelerators

into the same chip: the so-called System-on-Chip (SoC).

The needs for energy-efficiency (in the HPC domain) and for flexibility

(in the embedded computing domain), coming along with Moore’s law,

greedy demand for performance, and the advancements in the semiconductor

technology, have progressively paved the way for the introduction of “many-

core” systems, i.e., multi-core chips containing a high number of cores (tens

to hundreds) in both domains. Examples of many-core architectures are

described in the next chapter.

The introduction of many-core systems has set up an interesting trend

wherein both the HPC and the real-time embedded domains converge towards

similar objectives and requirements. Many-core computing fabrics are being

integrated with general-purpose multi-core processors to provide a heteroge-

neous architectural harness that eases the integration of previously hardwired

accelerators into more flexible software solutions. In recent years, the HPC

computing domain has seen the emergence of accelerated heterogeneous

architectures, most notably multi-core processors integrated with General

Purpose Graphic Processing Units (GPGPU), because GPGPUs are a flexi-

ble and programmable accelerator for data parallel computations. Similarly,

in the real-time embedded domain, the Kalray Multi-Purpose Processor

Array (MPPA), which includes clusters of quad-core CPUs coupled with

many-core computing clusters. In both cases, the many-core fabric acts as

a programmable accelerator. More recently, the Field-Programmable Gate

Array (FPGA) has been used as a flexible accelerator fabric, complementing

the above.

1.1 Introduction 5

In this current trend, challenges that were previously specific to each

computing domain, start to be common to both domains (including energy-

efficiency, parallelization, compilation, and software programming) and are

magnified by the ubiquity of many-cores and heterogeneity across the whole

computing spectrum. In that context, cross-fertilization of expertise from both

computing domains is mandatory.

1.1.2 Parallelization Challenge

Needless to say that many industries with both high-performance and real-

time requirements are eager to benefit from the immense computing capa-

bilities offered by these new many-core embedded designs. However, these

industries are also highly unprepared for shifting their earlier system designs

to cope with this new technology, mainly because such a shift requires adapt-

ing the applications, operating systems, and programming models in order

to exploit the capabilities of many-core embedded computing systems. On

one hand, neither have many-core embedded processors, such as the MPPA,

been designed to be used in the HPC domain, nor have HPC techniques

been designed to apply embedded technology. On the other hand, real-time

methods to determine the timing behavior of an embedded system are not

prepared to be directly applied to the HPC domain and these platforms,

leading to a number of significant challenges.

On one side, different parallel programming models and multiprocessor

operating systems have been proposed and are increasingly being adopted in

today’s HPC computing systems. In recent years, the emergence of acceler-

ated heterogeneous architectures such as GPGPUs have introduced parallel

programming models such as OpenCL [14], the currently dominant open

standard for parallel programming of heterogeneous systems, or CUDA [15],

the dominant proprietary framework of NVIDIA. Unfortunately, they are not

easily applicable to systems with real-time requirements, since, by nature,

many-core architectures are designed to integrate as much functionality

as possible into a single chip. Hence, they inherently share out as many

resources as possible amongst the cores, which heavily impacts the ability

to providing timing guarantees.

On the other side, the embedded computing domain world has always

seen plenty of application-specific accelerators with custom architectures,

manually tuning applications to achieve predictable performance. Such

types of solutions have limited flexibility, complicating the development of

embedded systems. Commercial off-the-shelf (COTS) components based on

6 Introduction

many-core architectures are likely to dominate the embedded computing mar-

ket in the near future, even if complemented with custom function-specific

accelerators. As a result, migrating real-time applications to many-core exe-

cution models with predictable performance requires a complete redesign of

current software architectures. Real-time embedded application developers

will therefore either need to adapt their programming practices and operating

systems to future many-core components, or they will need to content them-

selves with stagnating execution speeds and reduced functionalities, relegated

to niche markets using obsolete hardware components.

This new trend in the manufacturing technology and the industrial need

for enhanced computing capabilities and flexible heterogeneous program-

ming solutions of accelerators for predictable parallel computations bring to

the forefront important challenges for which solutions are urgently needed.

This book outlines how to bring together next-generation many-core accel-

erators from the embedded computing domain with the programmability

of many-core accelerators from the HPC computing domain, supporting

this with real-time methodologies to provide time predictability and high-

performance.

1.2 The P-SOCRATES Project

The work described in this book was performed in the scope of the

European project P-SOCRATES (Parallel Software Framework for Time-

Critical Many-core Systems)1, funded under the FP7 framework program

of the European Commission. The project, finished in December 2016,

aimed to allow applications with high-performance and real-time require-

ments to fully exploit the huge performance opportunities brought by the

most advanced COTS many-core embedded processors, whilst ensuring pre-

dictable performance of applications (Figure 1.1). The project consortium

included Instituto Superior de Engenharia do Porto (coordinator), Portugal,

the Barcelona Supercomputing Centre, Spain, the University of Modena

and Reggio Emilia, Italy, the Swiss Federal Institute of Technology Zurich,

Switzerland, Evidence SRL, Italy, Active Technologies SRL, Italy and ATOS,

Spain.

P-SOCRATES focused on combining techniques from different domains:

the newest high-performance software techniques for exploiting task paral-

lelism, the most advanced mapping and scheduling methodologies and timing

1htttp://www.p-socrates.eu

1.2 The P-SOCRATES Project 7

Figure 1.1 P-SOCRATES Global perspective.

and schedulability analysis techniques used in real-time embedded systems,

and the low-energy many-core platforms of the embedded domain. This

allowed taking important steps towards the convergence of HPC and real-

time and embedded domains (Figure 1.2), providing predictable performance

to HPC systems and increasing performance of real-time embedded systems.

Figure 1.2 P-SOCRATES combines high-performance parallel programming models, high-

end embedded many-core platforms and real-time systems technology.

8 Introduction

Figure 1.3 Vertical stack of application decomposition.

P-SOCRATES developed a complete and coherent software system

stack, able to bridge the gap between the application design with both

high-performance and real-time requirements, and the hardware platform,

a many-core embedded processor. The project provided a new framework

to combine real-time embedded mapping and scheduling techniques with

high-performance parallel programming models and associated tools, able

to express parallelization of applications. The programming model used was

based on the state-of-the-art OpenMP specification.

The software stack (shown in Figure 1.3) is able to extract a task-

dependency graph from the application, statically or dynamically mapping

these tasks to the threads of the operating system, which then dynamically

schedules them on the many-core platform.

1.3 Challenges Addressed in This Book

1.3.1 Compiler Analysis of Parallel Programs

In order to enable predictable parallel performance to be analyzed, it is

required that the application parallel graph is known, with control- and

1.3 Challenges Addressed in This Book 9

data-flow information needed for the analysis of the timing behavior of the

parallel program. The extraction of this information should be as automatic as

possible, to release the programmer from the burden of needing to understand

the exact hardware details.

Chapter 3 addresses this challenge by presenting how this information can

be obtained from the OpenMP tasking model, and how this information can

be used to derive the timing properties of an application parallelized using

this model.

1.3.2 Predictable Scheduling of Parallel Tasks on Many-core
Systems

To be able to derive guarantees on the correct timing execution of parallel

programs, it is required to provide appropriate mapping and scheduling

algorithms of parallel computation in many-core platforms, together with

deriving the associated offline analysis that enable determining if applications

will meet their deadlines.

The challenge of real-time scheduling and schedulability analysis of par-

allel code is discussed in Chapter 4, which provides the substantial advances

that the project has performed in the real-time scheduling and schedulability

analysis of parallel graphs, using different scheduling models.

1.3.3 Methodology for Measurement-based Timing Analysis

The use of multi- and many-core platforms considerably challenges

approaches for real-time timing analysis, required to determine worst-case

execution time of the application code. In fact, the analysis of code execution

time is considerably complex due to the interaction and conflicts between

the multiple cores utilizing the same hardware resources (e.g., bus, memory,

network).

Chapter 5 investigates the different available methods to perform this

timing analysis in a many-core setting. After weighing the advantages and

disadvantages of each technique, a new methodology is presented based on

runtime measurements to derive worst-case estimates.

1.3.4 Optimized OpenMP Tasking Runtime System

The methodology presented in Chapters 3 to 5 of this book relies on the par-

allel computing abstraction provided by the OpenMP tasking model, and its

conceptual similarities to the Direct Acyclic Graph (DAG) model, to achieve

10 Introduction

predictable task scheduling, requiring an efficient runtime support. However,

a space- and performance-efficient design of a tasking run-time environment

targeting a many-core system-on-chip is a challenging task, as embedded

parallel applications typically exhibit very fine-grained parallelisms.

For that purpose, Chapter 6 presents the design and implementation of

an OpenMP tasking run-time environment with very low time and space

overheads, which is able to support the approach of the book.

1.3.5 Real-time Operating Systems

The run-time environment of Chapter 6 requires the underlying support of

a Real-Time Operating System (RTOS) for many-core architectures. This

operating system needs to both be able to execute multi-threaded applications

in multiple cores, and also efficiently support a limited pre-emptive model,

where threads are only pre-empted at the boundaries of OpenMP tasks.

Chapter 7 presents the re-design and re-implementation of the ERIKA

Enterprise RTOS, aiming at an efficient execution on this kind of platforms.

The new version of the RTOS allows us to share a single binary kernel

image across several cores of the platform, reducing the overall memory

consumption, and includes the new limited pre-emptive model.

1.4 The UpScale SDK

An outcome of the P-SOCRATES project was a complete and coherent

software framework for applications with high-performance and real-time

requirements in COTS many-core embedded processors. This software

framework was publicly released under the brand of the UpScale SDK (Soft-

ware Development Kit)2. The UpScale SDK includes the tools to manage

the application compilation process, its timing analysis and its execution

(Figure 1.4):

• Compiler flow. This flow has a twofold objective: (i) to guide the process

to generate the binary that will execute on the many-core architecture

and (ii) to generate the application DAG used for the timing analysis

and run-time components.

• Analysis flow. This flow is in charge of deriving timing guarantees of the

parallel execution considering execution time traces of the application

running on the many-core platform and incorporated in the DAG. Timing

2http://www.upscale-sdk.com

1.5 Summary 11

Figure 1.4 The UpScale SDK.

guarantees are derived by means of execution time bounds and a static

scheduler or dynamic scheduler supported with response-time analysis.

• Execution stack. These two components are in charge of orchestrating

the parallel execution of the application in a time-predictable manner,

based on the DAG.

1.5 Summary

Providing high performance while meeting predictability requirements of

real-time applications is a challenging task, which requires new techniques

and tools at most if not all levels of the design flow and execution stack. This

book presents the work which was done within the P-SOCRATES project to

address these challenges, presenting solutions for deriving control- and data-

flow graph of OpenMP parallel programs using the tasking model, algorithms

for mapping and scheduling the OpenMP tasks into many-core platforms,

and methods to perform both timing and schedulability analysis. The book

also describes solutions for the runtime execution stack for real-time parallel

computation, both at the level of the OpenMP runtime, as well as within

real-time operating systems.

12 Introduction

References

[1] Magid, Y., Adi, A., Barnea, M., Botzer, D., Rabinovich, E., “Appli-

cation generation framework for real-time complex event processing,”

32nd Annual IEEE International Computer Software and Applications

(COMPSAC), 2008.

[2] Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N., “Stream reasoning

and complex event processing in ETALIS,” Semantic Web 1, 2009, IOS

Press, pp. 1–5.

[3] Luckham, D. C., “Event Processing for Business: Organizing the Real-

Time Enterprise,” John Wiley and Sons, 2011.

[4] Palmer, M., “Real-Time Big Data and the 11 Principles of Mod-

ern Surveillance Systems,” http://streambase.typepad.com/streambase

stream process/2011/07/in-his-tabbforum-article-dave-tolladay-

eloquently-argues-that-real-time-surveillance-is-crucial-in-todays-

high-frequency-t.html, last accessed February 2018.

[5] Twentyman, J., “Sensory Perception,” http://www.information-age.com/

technology/information-management/1248733/sensory-perception, last

accessed February 2018.

[6] Klein, R., Xie, J., and Usov, A., “Complex events and actions to control

cyber-physical systems.” In Proceedings of the 5th ACM International

Conference on Distributed Event-Based System (DEBS), 2011.

[7] Shapiro, M., “Supersymmetry, extra dimensions and the origin of mass:

exploring the nature of the universe using petaScale data analysis,”

Google TechTalk, June 18, 2007.

[8] “NTT DATA: Staying Ahead of the IT Services Curve With Real-Time

Analytics,” https://www.sap.com/sea/documents/2012/10/66e7c78d-357

c-0010-82c7-eda71af511fa.html, last accessed February 2018.

[9] “SAP Enters Complex-event Processing Market,” http://www.cio.com.

au/article/377688/sap enters complex-event processing market/, last

accessed February 2018.

[10] Tieman, R., “Algo trading: the dog that bit its master”, Financial Times,

March 2008.

[11] Karim, L., Boulmakoul, A., Lbath, A., “Near real-time big data ana-

lytics for NFC-enabled logistics trajectories,” 2016 3rd International

Conference on Logistics Operations Management (GOL), Fez, 2016,

pp. 1–7.

References 13

[12] Ungerer, T., et. al. “MERASA: Multi-core execution of hard real-time

applications supporting analysability,” In the IEEE Micro 2010, Spe-

cial Issue on European Multicore Processing Projects, Vol. 30, No. 5,

October 2010.

[13] Lundqvist, T., Stenstrom, P., “Timing anomalies in dynamically sched-

uled microprocessors.” In IEEE Real-Time Systems Symposium, 1999.

[14] “OpenCL (Open Computing Language)”, http://www.khronos.org/

opencl, last accessed February 2018.

[15] NVIDIA, https://developer.nvidia.com/cuda-zone, last accessed

February 2018.

2

Manycore Platforms

Andrea Marongiu1, Vincent Nélis2 and Patrick Meumeu Yomsi2

1Swiss Federal Institute of Technology in Zürich (ETHZ), Switzerland; and

University of Bologna, Italy
2CISTER Research Centre, Polytechnic Institute of Porto, Portugal

This chapter surveys state-of-the-art manycore platforms. It discusses the

historical evolution of computing platforms over the past decades and the

technical hurdles that led to the manycore revolution, then presents in details

several manycore platforms, outlining (i) the key architectural traits that

enable scalability to several tens or hundreds of processing cores and (ii) the

shared resources that are responsible for unpredictable timing.

2.1 Introduction

Starting from the early 2000s, general-purpose processor manufacturers

adopted the chip multiprocessor (CMP) design paradigm [1] to overcome

technological “walls.”

Single-core processor designs hit the power wall around 2004, when the

consolidated strategy of scaling down the gate size of integrated circuits –

reducing the supply voltage and increasing the clock frequency – became

unfeasible because of excessive power consumption and expensive packaging

and cooling solutions [2]. The CMP phisolophy replaces a single, very fast

core with multiple cores that cooperate to achieve equivalent performance,

but each operating at a lower clock frequency and thus consuming less power.

Over the past 20 years, processor performance has increased at a faster

rate than the memory performance [3], which created a gap that is commonly

referred to as the memory wall. Historically, sophisticated multi-level cache

hierarchies have been built to implement main memory access latency hiding

techniques. As CMPs use lower clock frequencies, the processor–memory

15

16 Manycore Platforms

gap grows at a slower rate, compared to traditional single-core systems.

Globally, the traditional latency hiding problem is turned into an increased

bandwidth demand, which is easier to address, as the DRAM bandwidth

scales much better than its access latency [4].

Single-core designs have traditionally been concerned with the develop-

ment of techniques to efficiently extract instruction-level parallelism (ILP).

However, increasing ILP performance beyond what is achieved today with

state-of-the-art techniques has become very difficult [5], which is referred to

as the ILP wall. CMPs solve the problem by shifting the focus to thread-

level parallelism (TLP), which is exposed at the parallel programming model

level, rather than designing sophisticated hardware to transparently extract

ILP from instruction streams.

Finally, the complexity wall refers to the difficulties encountered by

single-core chip manifacturers in designing and verifying increasingly

sophisticated out-of-order processors. In the CMP design paradigm, a much

simpler processor core is designed once and replicated to scale to the

multicore system core count. Design reuse and simplified core complexity

obviously significantly reduce the system design and verification.

The trend towards integrating an increasing number of cores in a single

chip has continued all over the past decade, which has progressively paved the

way for the introduction of manycore systems, i.e., CMPs containing a high

number of cores (tens to hundreds). Interestingly, the same type of “revolu-

tion” has taken place virtually in every domain, from the high-performance

computing (HPC) to the embedded systems (ES). Driven by converging needs

for high performance requirements, energy efficiency, and flexibility, the most

representative commercial platforms from both domains nowadays feature

very similar architectural traits. In particular, core clusterization is the key

design paradigm adopted in all these products. A hierarchical processor orga-

nization is always employed, where simple processing units are grouped into

small-medium sized subsystems (the clusters) and share high-performance

local interconnection and memory. Scaling to larger system sizes is enabled

by replicating clusters and interconnecting them with a scalable medium like

a network-on-chip (NoC).

In the following, we briefly present several manycore platforms, both

from the HPC and the ES domains. We discuss the Kalray MPPA-256 at last,

and in greater detail, as this is the platform for which the development of the

software techniques and the experimental evaluation presented throughout the

rest of the book have been conducted.

2.2 Manycore Architectures 17

2.2 Manycore Architectures

2.2.1 Xeon Phi

Xeon Phi are a series of x86 manycore processors by Intel and meant to

accelerate the highly parallel workloads of the HPC world. As such, they

are employed in supercomputers, servers, and high-end workstations. The

Xeon Phi family of products has its roots in the Larrabee microarchitecture

project – an attempt to create a manycore accelerator meant as a GPU as well

as for general-purpose computing – and has recently seen the launch of the

Knights Landing (KNL) chip on the marketplace.

Figure 2.1a shows the high-level block diagram of the KNL CPU. It

comprises 38 physical tiles, of which at most 36 are active (the remaining two

tiles are for yield recovery). The structure of a tile is shown in Figure 2.1b.

Each tile comprises two cores, two vector processing units (VPUs) per core,

and a 1-Mbyte level-2 (L2) cache that is shared between the two cores.

The core is derived from the Intel Atom (based on the Silvermont

microarchitecture [6]), but leverages a new two-wide, out-of-order core which

includes heavy modifications to incorporate features necessary for HPC

workloads [e.g., four threads per core, deeper out-of-order buffers, higher

cache bandwidth, new instructions, better reliability, larger translation look-

aside buffers (TLBs), and larger caches]. In addition, the new Advanced

Figure 2.1 Knights Landing (KNL) block diagram: (a) the CPU, (b) an example tile, and (c)

KNL with Omni-Path Fabric integrated on the CPU package.

18 Manycore Platforms

Vector Extensions instruction set, AVX-512, provides 512-bit-wide vector

instructions and more vector registers.

At the top level, a 2D, cache-coherent mesh NoC connects the tiles,

memory controllers, I/O controllers, and other agents on the chip. The mesh

supports the MESIF (modified, exclusive, shared, invalid, forward) protocol,

which employs a distributed tag directory to keep the L2 caches in all tiles

coherent with each other. Each tile contains a caching/home agent that holds

a portion of the distributed tag directory and also serves as a connection point

between the tile and the mesh.

Knights Landing features two types of memory: (i) multichannel DRAM

(MCDRAM) and (ii) double data rate (DDR) memory. MCDRAM is orga-

nized as eight devices – each featuring 2-Gbyte high-bandwidth banks –

integrated on-package and connected to the KNL die via a proprietary on-

package I/O. The DDR4 is organized as six channels running at up to 2,400

MHz, with three channels on each of two memory controllers.

The two types of memory are presented to users in three memory modes:

cache mode, in which MCDRAM is a cache for DDR; flat mode, in which

MCDRAM is treated like standard memory in the same address space as

DDR; and hybrid mode, in which a portion of MCDRAM is cache and the

remainder is flat. KNL supports a total of 36 lanes of PCI express (PCIe)

Gen3 for I/O, split into two x16 lanes and one x4 lane. Moreover, it integrates

the Intel Omni-Path Fabric on-package (see Figure 2.1c), which provides two

100-Gbits-per-second ports out of the package.

The typical power (thermal design power) for KNL (including MCDRAM

memory) when running a computationally intensive workload is 215 W

without the fabric and 230 W with the fabric.

2.2.2 Pezy SC

PEZY-SC (PEZY Super Computer) [7] is the second generation manycore

microprocessor developed by PEZY in 2014, and is widely used as an

accelerator for HPC workloads. Compared to the original PEZY-1, the chip

contains exactly twice as many cores and incorporates a large amount of

cache including 8 MB of L3$. Operating at 733 MHz, the processor is

said to have peak performance of 3.0 TFLOPS (single-precision) and 1.5

TFLOPS (double-precision). PEZY-SC was designed using 580 million gates

and manufactured on TSMC’s 28HPC+ (28 nm process).

In June 2015, PEZY-SC-based supercomputers took all top three spots on

the Green500 listing as the three most efficient supercomputers:

2.2 Manycore Architectures 19

1. Shoubu: 1,181,952 cores, 50.3 kW, 605.624 TFlop/s Linpack Rmax;

2. Suiren Blue: 262,656 cores, 40.86 kW, 247.752 TFlop/s Linpack Rmax;

3. Suiren: 328,480 cores, 48.90 kW, 271.782 TFlop/s Linpack Rmax.

PEZY-SC contains two ARM926 cores (ARMv5TEJ) along with 1024

simpler RISC cores supporting 8-way SMT for a total of 8,192 threads, as

shown in Figure 2.2. The organization of the accelerator cores in PEZY-SC

heavily uses clusterization and hierarchy. At the top level, the microprocessor

is made of four blocks called “prefectures.” Within a prefecture, 16 smaller

blocks called “cities” share 2 MB of L3$. Each city is composed of 64 KB of

shared L2$, a number of special function units and four smaller blocks called

“villages.” Inside a village there are four execution units and every two such

execution units share 2 KB of L1D$.

The chip has a peak power dissipation of 100 W with a typical power

consumption of 70 W which consists of 10 W leakage + 60 W dynamic.

2.2.3 NVIDIA Tegra X1

The NVIDIA Tegra X1 [8] is a hybrid System on Module (SoM) featured in

the NVIDIA Jetson Development boards. As a mobile processor, the Tegra

X1 is meant for the high-end ES markets, and is the first system to feature a

Figure 2.2 PEZY-SC architecture block diagram.

20 Manycore Platforms

Figure 2.3 NVIDIA Tegra X1 block diagram.

chip powerful enough to sustain the visual computing load for autonomous

and assisted driving applications.

As shown in Figure 2.3, the X1 CPU complex consists of a big LIT-

TLE architecture, featuring quad-core 1.9 GHz ARM Cortex-A57 processor

(48 KB I-cache + 32 kB D-cache L1 per core, 2 MB L2 cache common to all

cores), plus quad-core ARM Cortex A53 processor. A single CPU core can

utilize the maximum bandwidth available for the whole CPU complex, which

amounts to almost 4.5 GB/s for sequential read operations.

The iGPU is a second-generation Maxwell “GM20b” architecture, with

256 CUDA cores grouped in two Streaming Multi-processors (SMs) (the

“clusters”) sharing a 256 KB L2 (last-level) cache. The compute pipeline of

an NVIDIA GPU includes engines responsible for computations (Execution

Engine, EE) and engines responsible for high bandwidth memory transfers

(Copy Engine, CE). The EE and CE can access central memory with a

maximum bandwidth close to 20 GB/s, which can saturate the whole DRAM

bandwidth. Indeed, the system DRAM consists of 4 GB of LPDDR4 64 bit

SDRAM working at (maximum) 1.6 GHz, reaching a peak ideal bandwidth

of 25.6 GB/s.

Despite the high performance capabilities of the SoC (peak performance

1 TFlops single precision), the Tegra X1 features a very contained power

envelope, drawing 6–15 W.

2.2 Manycore Architectures 21

2.2.4 Tilera Tile

The Tile architecture has its roots in the RAW research processor developed at

MIT [9] and later commercialized by Tilera, a start-up founded by the original

research group. Chips from the second generation are expected to scale up to

100 cores based on the MIPS ISA and running at 1.5 GHz.

The Tile architecture is among the first examples of a cluster-based

many-core, featuring ad-hoc on-chip interconnect and cache architecture.

The architectural template is shown in Figure 2.4. The chip is architected

as a 2D array of tiles (the clusters), interconnected via a mesh-based NoC.

Each tile contains a single processor core, with local L1 (64 KB) and a

portion (256 KB) of the distributed L2 cache. Overall, the L2 cache segments

behave as a non-uniformly addressed cache (NUCA), using a directory-based

coherence mechanism and the concept of home tile (the tile that holds the

master copy) for cached data. The NUCA design makes cache access latency

variable according to the distance between tiles, but enables an efficient

(space- and power-wise) logical view to the programmer: a large on-chip

cache to which all cores are connected. Each tile also features an interconnect

switch that connects it to the neighboring tiles, which allows for a simplified

interconnect design (essentially, a switched network with very short wires

connecting neighboring tiles linked through the tile-local switch).

Figure 2.4 Tilera Tile architectural template.

22 Manycore Platforms

The NoC – called iMesh by Tilera – actually consists of five different

networks, used for various purposes:

• Application process communication (UDN),

• I/O communication (IDN),

• Memory communication (MDN),

• Cache coherency (TDN),

• Static, channelized communication (STN).

The latency of the data transfers on the network is 1–2 cycles/tile, depend-

ing on whether there’s a direction change or not at the tile. The TileDirect

technology allows data received over the external interfaces to be placed

directly into the tile-local memory, thus bypassing the external DDR memory

and reducing memory traffic.

The power budget of the Tile processors is under 60 W.

2.2.5 STMicroelectronics STHORM

STHORM is a heterogeneous, manycore-based system from STMicroelec-

tronics [10], with an operating frequency ranging up to 600 MHz.

The STHORM architecture is organized as a fabric of multi-core clus-

ters, as shown in Figure 2.5. Each cluster contains 16 STxP70 Processing

Figure 2.5 STMicroelectronics STHORM heterogeneous system.

2.2 Manycore Architectures 23

Figure 2.6 Block diagram of the Epiphany-V chip from Adapteva.

Elements (PEs), each of which has a 32-bit dual-issue RISC processor. PEs

communicate through a shared multi-ported, multi-bank, tightly-coupled data

memory (TCDM, a scratchpad memory). Additionally, STHORM clusters

feature an additional core called the cluster controller (CC) and meant, as the

name suggests, for the execution of control code local to the cluster operation.

Globally, four clusters plus a fabric controller (FC) core – responsible for

global coordination of the clusters – are interconnected via two asynchronous

networks-on-chip (ANoC). The first ANoC is used for accessing a multi-

banked, multiported L2 memory, shared among the four clusters. The second

ANoC is used for inter-cluster communication via L1 TCDMs (i.e., remote

clusters’ TCDMs can be accessed by every core in the system) and to access

the offchip main memory (L3 DRAM).

STHORM delivers up to 80 GOps (single-precision floating point) with

only 2W power consumption.

2.2.6 Epiphany-V

The Epiphany-V chip from Adapteva [11] is based on a 1024-core processor

in 16 nm FinFet technology. The chip contains an array of 1024 64-bit RISC

processors, 64 MB of on-chip SRAM, three 136-bit wide mesh Networks-

On-Chip, and 1,024 programmable IO pins.

24 Manycore Platforms

Similar to the Tilera Tile architecture, the Epiphany architecture is a

distributed shared memory architecture composed of an array of RISC pro-

cessors communicating via a low-latency, mesh-based NoC, as shown in

Figure 2.6. Each cluster (or node) in the 2D array features a single, com-

plete RISC processor capable of independently running an operating system

[according to the multiple-instruction, multiple-data (MIMD) paradigm]. The

distributed shared memory model of the Epiphany-V chip relies on a cache-

less design, in which all scratchpad memory blocks are readable and writable

by all processors in the system (similar to the STHORM chip).

The Epiphany-V chip can deliver two teraflops of performance (single-

precision floating point) in a 2W power envelope.

2.2.7 TI Keystone II

The Texas Instrument Keystone II [12], is a heterogeneous SoC featuring

a quad-core ARM Cortex-A15 and an accelerator cluster comprising eight

C66x VLIW DSPs. The chip is designed for special-purpose industrial

tasks, such as networking, automotive, and low-power server applications.

The 66AK2H12 SoC, depicted in Figure 2.7, is the top-performance Texas

Instrument Keystone II device architecture.

Each DSP in the accelerator cluster is a VLIW core, capable of fetching

up to eight instructions per cycle and running at up to 1.2 GHz. Locally,

Figure 2.7 Texas Instrument Keystone II heterogeneous system.

2.2 Manycore Architectures 25

a DSP is equipped with 32 KB L1 D-cache and L1 I-cache, plus 1024 KB

L2 unified cache. Altogether, the DSPs in the accelerator cluster deliver 160

single-precision GOps.

On the ARM side, there are 32 KB of L1 D-cache and 32 KB of L1

I-cache per core, plus a coherent 4 MB L2 cache.

The computational power of such architecture, at a power budget of up to

14 W, makes it a low-power solution for microserver-class applications. The

Keystone II processor has been used in several cloud-computing/microserver

settings [13–15].

2.2.8 Kalray MPPA-256

The Kalray MPPA-256 processor of the MPPA (Multi-Purpose Processor

Array) MANYCORE family has been developed by the company KALRAY.

It is a single-chip programmable manycore processor manufactured in 28 nm

CMOS technology that targets low-to-medium volume professional applica-

tions, where low energy per operation and time predictability are the primary

requirements [16]. It concentrates a great potential and is very promising

for high-performance parallel computing. With an operating frequency of

400 MHz and a typical power consumption of 5 W, the processor can perform

up to 700 GOPS and 230 GFLOPS. The processor integrates a total of 288

identical Very Long Instruction Word (VLIW) cores including 256 user cores

referred to as processing engines (PEs) and dedicated to the execution of the

user applications and 32 system cores referred to as Resource Manager (RM)

and dedicated to the management of the software and processing resources.

The cores are organized in 16 compute clusters and four I/O subsystems to

control all the I/O devices. In Figure 2.8, the 16 inner nodes (labeled CC)

Figure 2.8 High-level view of the Kalray MPPA-256 processor.

26 Manycore Platforms

correspond to the 16 compute clusters holding 17 cores each: 16 PEs and

1 RM. Then, there are four I/O subsystems located at the periphery of

the chip, each holding four RMs. Each compute cluster and I/O subsystem

owns a private address space, while communication and synchronization

between them is ensured by the data and control NoC depicted in Figure 2.8.

The MPPA-256 processor is also fitted with a variety of I/O controllers, in

particular DDR, PCI, Ethernet, Interlaken, and GPIO.

2.2.8.1 The I/O subsystem
The four I/O subsystems (also denoted as IOS) are referenced as the North,

South, East, and West IOS. They are responsible for all communications with

elements outside the MPPA-256 processor, including the host workstation if

the MPPA is used as an accelerator.

Each IOS contains four RMs in a symmetric multiprocessing configura-

tion. These four RMs are connected to a shared, 16-bank parallel memory of

512 KB, they have their own private instruction cache of 32 KB (8-way, set-

associative) and share a data cache of 128 KB (also 8-way, set-associative),

which ensures data coherency between the cores.

The four IOS are dedicated to PCIe, Ethernet, Interlaken, and other I/O

devices. Each one runs either a rich OS such as Linux or an RTOS that

supports the MPPA I/O device drivers. They integrate controllers for an 8-

lane Gen3 PCIe for a total peak throughput of 16 GB/s full duplex, Ethernet

links ranging from 10 MB/s to 40 GB/s for a total aggregate throughput of

80 GB/s, the Interlaken link providing a way to extend the NoC across MPPA-

256 chips and other I/O devices in various configurations like UARTs, I2C,

SPI, pulse width modulator (PWM), or general purpose IOs (GPIOs). More

precisely, the East and West IOS are connected to a quad 10 GB/s Ethernet

controller, while the North and South IOS are connected to an 8-lane PCIe

controller and to a DDR interface for access to up to 64 GB of external

DDR3-1600.

2.2.8.2 The Network-on-Chip (NoC)
The NoC holds a key role in the average performance of manycore archi-

tectures, especially when different clusters need to exchange messages. In

the Kalray MPPA-256 processor, the 16 compute clusters and the four I/O

subsystems are connected by two explicitly addressed NoC with bi-

directional links providing a full duplex bandwidth up to 3.2 GB/s between

two adjacent nodes:

2.2 Manycore Architectures 27

Figure 2.9 MPPA-256 NoC architecture.

• The data NoC (D-NoC). This NoC is optimized for bulk data transfers;

• The control NoC (C-NoC). This NoC is optimized for small messages

at low latency.

The two NoCs are identical with respect to the nodes, the 2D-wrapped-

around torus topology, shown in Figure 2.9, and the wormhole route encod-

ing. They differ at their device interfaces, by the amount of packet buffering

in routers, and by the flow regulation at the source available on the D-NoC.

NoC traffic through a router does not interfere with the memory buses of

the underlying I/O subsystem or compute cluster, unless that router is the

destination node. Besides, the D-NoC implements a quality-of-service (QoS)

mechanism, thus guaranteeing predictable latencies for all data transfers.

28 Manycore Platforms

2.2.8.3 The Host-to-IOS communication protocol
The special hierarchy among the cores in the MPPA-256 processor helps to

better divide the workload to be executed on the PEs. When the MPPA-256

is used as an accelerator, tasks are sent to the MPPA-256 processor from

a Host workstation. The communication with the MPPA-256 can thus be

performed in a couple of steps which can be referred to as Host-to-IOS,

IOS-to-Clusters and finally Cluster-to-Cluster communication protocols. The

MPPA-256 processor communicates with the Host workstation through I/O

subsystems. The chip is connected to the host CPU by a PCle interface and

two connectors – Buffer and MQueue – are available for making this link.

The RM core that accommodates the task upon the I/O subsystem is referred

to as Master (see Figure 2.10). The processor then executes the received task

(referred to as Master task) as detailed in Section 4.3.1 and at the end of the

execution process, it writes the output data in a 4 GB DDR3 RAM memory,

which is connected to an I/O subsystem and can be accessed by the host CPU.

2.2.8.4 Internal architecture of the compute clusters
The compute cluster (Figure 2.11) is the basic processing unit of the MPPA

architecture. Each cluster contains 17 Kalray-1 VLIW cores, including 16 PE

cores dedicated to the execution of the user applications and one RM core.

Among other responsibilities, the RM is in charge of mapping and scheduling

the threads on the PEs and managing the communications between the clus-

ters and between the clusters and the main memory. The 16 PEs and the RM

Figure 2.10 A master task runs on an RM of an I/O subsystem.

2.2 Manycore Architectures 29

Figure 2.11 Internal architecture of a compute cluster.

are connected to a shared memory of 2 MB. A direct memory access (DMA)

engine is responsible for transferring data between the shared memory and

the NoC or within the shared memory. The DMA engine supports multi-

dimensional data transfers and sustains a total throughput of 3.2 GB/s in full

duplex. The Debug and System Unit (DSU) supports the compute cluster

debug and diagnostics capabilities. Each DSU is connected to the outside

world by a JTAG (IEEE 1149.1) chain. The DSU also contains a system

trace IP that is used by lightly instrumented code to push up to 1.6 GB/s

of trace data to an external acquisition device. This trace data gives almost

non-intrusive insight on the behaviour of the application.

2.2.8.5 The shared memory
The shared memory (SMEM) in each compute cluster (yellow box in Figure

2.11) comprises 16-banked independent memory of 16,384 x 64-bit words

= 128 kB per bank, with a total capacity of 16 x 128 kB = 2 MB, with error

code correction (ECC) on 64-bit words. This memory space is shared between

the 17 VLIW cores in the cluster and delivers an aggregate bandwidth of

38.4 GB/s.

The 16 memory banks are arranged in two sides of eight banks, the left

side and the right side. The connections between the memory bus masters are

replicated in order to provide independent access to the two sides. There are

two ways of mapping a physical address to a specific side and bank.

30 Manycore Platforms

Figure 2.12 Memory accesses distributed across memory banks (interleaved).

Option 1 (Interleaving address mapping) – In the address space, bits 6–

9 of the byte address select the memory bank, so sequential addresses move

from one bank to another every 64 bytes (every 8 x 64-bit words), as depicted

in Figure 2.12. This address-mapping scheme is effective at distributing the

requests of cores across memory banks, while ensuring that each cache refill

request involves only one memory bank and benefits from a burst access

mode. Furthermore, this address scheme also allows the “simultaneous”

access (respecting the activation time) of those memory banks in which the

cache line is stored. As the side selection depends on the sixth bit of the byte

address, the bank selection by sequential addresses alternates between the left

side and the right side every 64 bytes.

Option 2 (Contiguous address mapping) – It is possible to disable the

memory address shuffling, in which case each bank has a sequential address

space covering one bank of 128 KB as depicted in Figure 2.13. The high-

order bit of the address selects the side (i.e., the right side covers addresses

from 0 to 1 MB and the left side covers addresses above 1 MB). When zero

interference between cores is needed, cores within a given pair must use a

different side.

2.3 Summary

Back in the early days of the new millennium, multicore processors allowed

computer designers to overcome several technological walls that traditional

single-core design methodologies were no longer capable of addressing. This

References 31

Figure 2.13 Memory accesses targeting a same memory bank (contiguous).

design paradigm is to date the standard, with an ever-increasing number of

processing cores integrated on the same chip. While manycore processors

enabled over the past 15 years the seamless continuation of compute per-

formance scalability for general-purpose and scientific workloads, real-time

systems have not been able to embrace this technology so far, due to the lack

of predictability in execution time implied by hardware resource sharing. This

chapter has surveyed several state-of-the-art manycore processors, highlight-

ing the architectural features (i) that enable processor integration scalability

and (ii) those that are shared among several processor and that are mostly

responsible for the unpredictable execution.

References

[1] Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K.,

The case for a single-chip multiprocessor. SIGOPS Oper. Syst. Rev., 30,

2–11, 1996.

[2] Fuller, S. H., and Millett, L. I., Computing performance: Game over or

next level? Computer, 44, 31–38, 2011.

[3] Hennessy, J. L., and Patterson, D. A., Computer Architecture: A

Quantitative Approach. Elsevier, 2011.

[4] Patterson, D. A., Latency lags bandwith. Commun. ACM, 47, 71–75,

2004.

32 Manycore Platforms

[5] Agarwal, V., Hrishikesh, M. S., Keckler, S. W., and Burger, D., “Clock

rate versus ipc: the end of the road for conventional microarchitec-

tures.” In Proceedings of 27th International Symposium on Computer

Architecture (IEEE Cat. No.RS00201), pages 248–259, 2000.

[6] Naffziger, S., and Sohi, G., Hot chips 26. IEEE Micro. 35, 4–5, 2015.

[7] Tabuchi, A., Kimura, Y., Torii, S., Matsufuru, H., Ishikawa, T.,

Boku, T., and Sato, M., Design and Preliminary Evaluation of Omni

OpenACC Compiler for Massive MIMD Processor PEZY-SC, pp. 293–

305, Springer International Publishing, Cham, 2016.

[8] NVIDIA SRL. Whitepaper: NVIDIA Tegra X1 – NVIDIA’s New

Mobile Superchip. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html, accessed November 07, 2011.

[9] Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald,

B., et al. The raw microprocessor: a computational fabric for software

circuits and general-purpose programs. IEEE Micro, 22, 25–35, 2002.

[10] Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Hau-

gou, G., Clermidy, F., and Dutoit, D., “Platform 2012, a many-core

computing accelerator for embedded socs: Performance evaluation of

visual analytics applications.” In Proceedings of the 49th Annual Design

Automation Conference, DAC ’12, pp. 1137–1142, New York, NY,

USA, 2012.

[11] Olofsson, A., Epiphany-v: A 1024 processor 64-bit RISC system-on-

chip. CoRR, abs/1610.01832, 2016.

[12] Stotzer, E., Jayaraj, A., Ali, M., Friedmann, A., Mitra, G., Rendell,

A. P., and Lintault, I., OpenMP on the Low-Power TI Keystone II

ARM/DSP System-on-Chip, pp. 114–127, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2013.

[13] Verma, A., and Flanagan, T., A Better Way to Cloud. Texas Instruments

white paper, 2012.

[14] Hewlett-Packard Development Company L.P. HP ProLiant m800 Server

Cartridge.

[15] nCore HPC LLC. Brown Dwarf Y-Class Supercomputer.

[16] Amdahl, G. M., “Validity of the single processor approach to achieving

large scale computing capabilities.” In Proceedings of the April 18–20,

1967, Spring Joint Computer Conference, AFIPS ’67 (Spring),

pp. 483–485, New York, NY, USA, 1967.

3

Predictable Parallel Programming
with OpenMP

Maria A. Serrano1, Sara Royuela1, Andrea Marongiu2

and Eduardo Quiñones1

1Barcelona Supercomputing Center (BSC), Spain
2Swiss Federal Institute of Technology in Zürich (ETHZ), Switzerland; and

University of Bologna, Italy

This chapter motivates the use of the OpenMP (Open Multi-Processing)

parallel programming model to develop future critical real-time embedded

systems, and analyzes the time-predictable properties of the OpenMP tasking

model. Moreover, this chapter presents the set of compiler techniques needed

to extract the timing information of an OpenMP program in the form of an

OpenMP Direct Acyclic Graph or OpenMP-DAG.

3.1 Introduction

Parallel programming models are key to increase the productivity of parallel

software from three different angles:

1. From a programmability angle, parallel programming models provide

developers with the abstraction level required to program parallel

applications while hiding processor complexities.

2. From a portability angle, platform-independent parallel programming

models allow executing the same parallel source code in different

parallel platforms.

3. From a performance angle, different levels of abstraction allow for a

fine-tuned parallelism, i.e., users may either squeeze the capabilities of

a specific architecture using the language capabilities, or rely on runtime

mechanisms to dynamically exploit parallelism.

33

34 Predictable Parallel Programming with OpenMP

Hence, parallel programming models are of paramount importance to exploit

the massive computation capabilities of state-of-the-art and future parallel

and heterogeneous processor architectures. Several approaches coexist with

such a goal, and these can be grouped as follows [1]:

• Hardware-centric models aim to replace the native platform program-

ming with higher-level, user-friendly solutions, e.g., Intel R© TBB [2] and

NVIDIA R© CUDA [3]. These models focus on tuning an application to

match a chosen platform, which makes their use neither a scalable nor a

portable solution.

• Application-centric models deal with the application parallelization

from design to implementation, e.g., OpenCL [4]. Although portable,

these models may require a full rewriting process to accomplish produc-

tivity.

• Parallelism-centric models allow users to express typical parallelism

constructs in a simple and effective way, and at various levels of

abstraction, e.g., POSIX threads [6] and OpenMP [7]. This approach

allows flexibility and expressiveness, while decoupling design from

implementation.

Considering the vast amount of parallel programming models available,

there is a noticeable need to unify programming models to exploit the

performance benefits of parallel and heterogeneous architectures [9]. In that

sense, OpenMP has proved many advantages over its competitors to enhance

productivity. The next sections introduce the main characteristics of the most

relevant programming models, and conclude with an analysis of the main

benefits of OpenMP.

3.1.1 Introduction to Parallel Programming Models

The multitude of parallel programming models currently existing makes it

difficult to choose the language that better fits the needs of each particular

case. Table 3.1 introduces the main characteristics of the most relevant

programming models in critical embedded systems. The features considered

are the following: performance (based on throughput, bandwidth, and other

metrics), portability (based on how straight-forward it is to migrate to dif-

ferent environments), heterogeneity (based on the support for cross-platform

applications), parallelism (based on the support provided for data-based

and task-based parallelism), programmability (based on how easy it is for

programmers to get the best results), and flexibility (based on the features for

parallelizing offered in the language).

3.1 Introduction 35

Table 3.1 Parallel programming models comparison

Pthreads OpenCL CUDA Cilk Plus TBB OpenMP

Performance X X XX XX X X

Portability X X × × × XX

Heterogeneity × X X × X XX

Parallelism data/task data/task data data/task task data/task

Programmability × × × XX X X

Flexibility X X × × X XX

3.1.1.1 POSIX threads
POSIX threads (Portable Operating System Interface for UNIX threads), usu-

ally referred to as Pthreads, is a standard C language programming interface

for UNIX systems. The language provides efficient light-weight mechanisms

for thread management and synchronization, including mutual exclusion and

barriers.

In a context where hardware vendors used to implement their own pro-

prietary versions of threads, Pthreads arose with the aim of enhancing the

portability of threaded applications that reside on shared memory platforms.

However, Pthreads results in very poor programmability, due to the low-level

threading model provided by the standard, that leaves most of the imple-

mentation details to the programmer (e.g., work-load partitioning, worker

management, communication, synchronization, and task mapping). Overall,

the task of developing applications with Pthreads is very hard.

3.1.1.2 OpenCLTM

OpenCLTM (Open Computing Language) is an open low-level application

programming interface (API) for cross-platform parallel computing that runs

on heterogeneous systems including multicore and manycore CPUs, GPUs,

DSPs, and FPGAs. There are two different actors in an OpenCL system:

the host and the devices. The language specifies a programming language

based on C99 used to control the host, and a standard interface for parallel

computing, which exploits task-based and data-based parallelism, used to

control the devices.

OpenCL can run in a large variety of devices, which makes portability

its most valuable characteristic. However, the use of vendor-specific features

may prevent this portability, and codes are not guaranteed to be optimal

due to the important differences between devices. Furthermore, the language

has an important drawback: it is significantly difficult to learn, affecting the

programmability.

36 Predictable Parallel Programming with OpenMP

3.1.1.3 NVIDIA R© CUDA
NVIDIA R© CUDA is a parallel computing platform and API for exploiting

CUDA-enabled GPUs for general-purpose processing. The platform provides

a layer that gives direct access to the GPU’s instruction set, and is accessible

through CUDA-accelerated libraries, compiler directives (such as OpenACC

[10]), and extensions to industry-standard programming languages (such as

C and C++).

The language provides dramatic increases of performance when exploit-

ing parallelism in GPGPUs. However, its use is limited to CUDA-enabled

GPUs, which are produced only by NVIDIA R©. Furthermore, tuning applica-

tions with CUDA may be hard because it requires rewriting all the offloaded

kernels and knowing the specifics of each platform to get the best results.

3.1.1.4 Intel R© CilkTM Plus
Intel R© Cilk Plus [11] is an extension to C/C++ based on Cilk++ [12] that has

become popular because of its simplicity and high level of abstraction. The

language provides support for both data and task parallelism, and provides

a framework that optimizes load balance, implementing a work-stealing

mechanism to execute tasks [13].

The language provides a simple yet efficient platform for implementing

parallelism. Nonetheless, portability is very limited because only Intel R© and

GCC implement support for the language extensions defined by Cilk Plus.

Furthermore, the possibilities available with this language are limited to tasks

(cilk spawn, cilk sync), loops (cilk for), and reductions (reducers).

3.1.1.5 Intel R© TBB
Intel R© TBB is an object-oriented C++ template library for implementing

task-based parallelism. The language offers constructs for parallel loops,

reductions, scans, and pipeline parallelism. The framework provided has

two key components: (1) compilers, which optimize the language templates

enabling a low-overhead form of polymorphism, and (2) runtimes, which

keep temporal locality by implementing a queue of tasks for each worker,

and balance workload across available cores by implementing a work-stealing

policy.

TBB offers a high level of abstraction in front of complicated low-level

APIs. However, adapting the code to fit the library templates can be arduous.

Furthermore, portability is limited, although the last releases support Visual

C++, Intel R© C++ compiler, and the GNU compiler collection.

3.2 The OpenMP Parallel Programming Model 37

3.1.1.6 OpenMP
OpenMP, the de-facto standard parallel programming model for shared

memory architectures in the high-performance computing (HPC) domain, is

increasingly adopted also in embedded systems. The language was originally

focused on a thread-centric model to exploit massive data-parallelism and

loop intensive applications. However, the latest specifications of OpenMP

have evolved to a task-centric model that enables very sophisticated types

of fine-grained and irregular parallelism, and also include a host-centric

accelerator model that enables an efficient exploitation of heterogeneous

systems. As a matter of fact, OpenMP is supported in the SDK of many of the

state-of-the-art parallel and heterogeneous embedded processor architectures,

e.g., Kalray MPPA [14], and TI Keystone II [16].

Different evaluations demonstrate that OpenMP delivers tantamount per-

formance and efficiency compared to highly tunable models such as TBB

[17], CUDA [18] and OpenCL [19]. Moreover, OpenMP has different

advantages over low-level libraries such as Pthreads: on one hand, it offers

robustness without sacrificing performance [21] and, on the other hand,

OpenMP does not lock the software to a specific number of threads. Another

important advantage is that the code can be compiled as a single-threaded

application just disabling support for OpenMP, thus easing debugging and so

programmability.

Overall, the use of OpenMP presents three main advantages. First, an

expert community has constantly reviewed and augmented the language for

the past 20 years. Second, OpenMP is widely implemented by several chip

and compiler vendors from both high-performance and embedded computing

domains (e.g., GNU, Intel R©, ARM, Texas Instruments and IBM), increasing

portability among multiple platforms from different vendors. Third, OpenMP

provides greater expressiveness due to years of experience in its development;

the language offers several directives for parallelization and fine-grained

synchronization, along with a large number of clauses that allow it to

contextualize concurrency and heterogeneity, providing fine control of the

parallelism.

3.2 The OpenMP Parallel Programming Model

3.2.1 Introduction and Evolution of OpenMP

OpenMP represents the computing resources of a parallel processor archi-

tecture (i.e., cores) by means of high-level threads, named OpenMP threads,

38 Predictable Parallel Programming with OpenMP

upon which programmers can assign units of code to be executed. During the

execution of the program, the OpenMP runtime assigns these threads to low-

level computing resources, i.e., the operating system (OS) threads, which are

then assigned to physical cores by the OS scheduler, following the execution

model defined by the OpenMP directives. Figure 3.1 shows a schematic view

of the stack of components involved in the execution of an OpenMP program.

OpenMP exposes some aspects of managing OpenMP threads to the user

(e.g., defining the number of OpenMP threads assigned to a parallel execution

by means of the num threads clause). The rest of components are transparent

to the user and efficiently managed by the OpenMP runtime and the OS.

Originally, up to OpenMP version 2.5 [22], OpenMP was traditionally

focused on massively data-parallel, loop-intensive applications, following the

single-program-multiple-data programming paradigm. In this model, known

as thread model, OpenMP threads are visible to the programmer, which are

controlled with work-sharing constructs that assign iterations of a loop or

code segments to OpenMP threads.

The OpenMP 3.0 specification [23] introduced the concept of tasks by

means of the task directive, which exposes a higher level of abstraction to

programmers. A task is an independent parallel unit of work, which defines

an instance of code and its data environment. This new model, known as

tasking model, provides a very convenient abstraction of parallelism as it is

the runtime (and not the programmer) the responsible for scheduling tasks to

threads.

Figure 3.1 OpenMP components stack.

3.2 The OpenMP Parallel Programming Model 39

With version 4.0 of the specification [24], OpenMP evolved to consider

very sophisticated types of fine-grained, irregular and highly unstructured

parallelism, with mature support to express dependences among tasks. More-

over, it incorporated for the first time a new accelerator model including

features for offloading computation and performing data transfers between

the host and one or more accelerator devices. The latest version, OpenMP 4.5

[25], enhances the previous accelerator model by coupling it with the tasking

model.

Figure 3.2 shows a time-line of all existent releases of OpenMP, since

1997, when the OpenMP Architecture Review Board (ARB) was formed.

The next version, 5.0 [26–28], is planned for November 2018.

3.2.2 Parallel Model of OpenMP

This section provides a brief description of the OpenMP parallel program-

ming model as defined in the latest specification, version 4.5.

3.2.2.1 Execution model
An OpenMP program begins as a single thread of execution, called the initial

thread. Parallelism is achieved through the parallel construct, in which a

new team of OpenMP threads is spawned. OpenMP allows programmers to

define the amount of threads desired for a parallel region by means of the

num threads clause attached to the parallel construct. The spawned threads

are joined at the implicit barrier encountered at the end of the parallel region.

This is the so-called fork-join model. Within the parallel region, parallelism

can be distributed in two ways that provide tantamount performance [29]:

1. The thread-centric model exploits structured parallelism distributing

work by means of work-sharing constructs (e.g., for and sections
constructs). It provides a fine-grained control of the mapping between

Figure 3.2 OpenMP releases time-line.

40 Predictable Parallel Programming with OpenMP

work and threads, as well as a coarse grain synchronization mechanism

by means of the barrier construct.

2. The task-centric model, or simply tasking model, exploits both

structured and unstructured parallelism distributing work by means

of tasking constructs (e.g., task and taskloop constructs). It pro-

vides a higher level of abstraction in which threads are mainly

controlled by the runtime, as well as fine-grained synchronization

mechanisms by means of the taskwait construct and the depend
clause that, attached to a task construct, allow the description of

a list of input and/or output dependences. A task with an in, out
or inout dependence is ready to execute when all previous tasks

with an out or inout dependence on the same storage location

complete.

Figure 3.3 shows the execution model of a parallel loop implemented with the

for directive, where all spawned threads work in parallel from the beginning

of the parallel region as long as there is work to do. Figure 3.4 shows the

model of a parallel block with unstructured tasks. In this case, the single
construct restricts the execution of the parallel region to only one thread until

a task construct is found. Then, another thread (or the same, depending on the

scheduling policy), concurrently executes the code of the task. In Figure 3.3,

the colours represent the execution of differents iterations of the same parallel

loop; in Figure 3.4, colours represent the parallel execution of the code

included within a task construct.

3.2.2.2 Acceleration model
OpenMP also provides a host-centric accelerator model in which a host

offloads data and code to the accelerator devices available in the same

Figure 3.3 Structured parallelism. Figure 3.4 Unstructured parallelism.

3.2 The OpenMP Parallel Programming Model 41

processor architecture for execution by means of the target construct. When a

target directive is encountered, a new target task enclosing the target region

is generated. The target task is completed after the execution of the target

region finishes. One of the most interesting characteristics of the accelerator

model is its integration with the tasking model. Note that each accelerator

device has its own team of threads that are distinct from threads that execute

on another device, and these cannot migrate from one device to another.

In case the accelerator device is not available or even does not exist (this

may occur when the code is ported from one architecture to another) the

target region is executed in the host. The map clause associated with the

target construct specifies the data items that will be mapped to/from the target

device. Further parallelism can be exploited within the target device.

3.2.2.3 Memory model
OpenMP is based on a relaxed-consistency, shared-memory model. This

means there is a memory space shared for all threads, called memory. Addi-

tionally, each thread has a temporary view of the memory. The temporary

view is not always required to be consistent with the memory. Instead, each

private view synchronizes with the main memory by means of the flush

operation, which can be implicit (due to operations causing a memory fence)

or explicit (using the flush operation). Data cannot be directly synchronized

between two different threads temporary view.

The view of each thread has of a given variable is defined using data-

sharing clauses, which can determine the following sharing scopes:

• private: a new fresh variable is created within the scope.

• firstprivate: a new variable is created in the scope and initialized with

the value of the original variable.

• lastprivate: a new variable is created within the scope and the original

variable is updated at the end of the execution of the region (only for

tasks).

• shared: the original variable is used in the scope, thus opening the

possibility of data race conditions.

The use of data-sharing clauses is particularly powerful to avoid unnecessary

synchronizations as well as race conditions. All variables appearing within

a construct have a default data-sharing defined by the OpenMP specifica-

tion ([25] Section 2.15.1). These rules are not based on the use of the

variables, but on their storage. Thus, users are duty-bound to explicitly

scope many variables, changing the default data-sharing values, in order to

42 Predictable Parallel Programming with OpenMP

fulfill correctness (e.g., avoiding data races) and enhance performance (e.g.,

avoiding unnecessary privatizations).

3.2.3 An OpenMP Example

Listing 3.1 illustrates an OpenMP program that uses both the tasking and

the accelerator models. The code enclosed in the parallel construct (line

4) defines a team of four OpenMP threads on the host device. The single
construct (line 6) specifies that only one thread starts executing the associated

block of code, while the rest of threads in the team remain waiting. When the

task regions are created (lines 9 and 11), each one is assigned to one thread in

the team (may be the same thread), and the corresponding output dependences

on variables x and y are stored. When the target task (lines 13:14) is created,

its dependences on x and y are checked. If the tasks producing these variables

are finished, then the target task can be scheduled. Otherwise, it must be

deferred until the tasks from which it depends have finished. When the target

task is scheduled, the code contained in the target region and the variables

in the map(to:) clause (x and y) are copied to the accelerator device. After

its execution, the res variable is copied back to the host memory as defined

by the map(from:) clause. The presence of a nowait clause in the target task

allows the execution on the host to continue after the target task is created.

Listing 3.1 OpenMP example of the tasking and the accelerator models combined

1 i n t foo (i n t a , i n t b)

2 {
3 i n t r e s ;

4 #pragma omp p a r a l l e l num threads (4) shared (r e s) f i r s t p r i v a t e (a , b)

5 {

6 #pragma omp s i n g l e shared (r e s) f i r s t p r i v a t e (a , b)

7 {

8 i n t x , y ;

9 #pragma omp task shared (x) f i r s t p r i v a t e (a) depend (out : x)

10 x = a∗a ;

11 #pragma omp task shared (y) f i r s t p r i v a t e (b) depend (out : y)

12 y = b∗b ;

13 #pragma omp t a r g e t map (to : x , y) map (from : r e s) nowait \
14 shared (r e s) f i r s t p r i v a t e (x , y) depend (in : x , y)

15 r e s = x + y ;

16 }

17 re turn r e s ;

18 }

19 }

3.3 Timing Properties of the OpenMP Tasking Model 43

All OpenMP threads are guaranteed to be synchronized at the implicit barrier

included at the end of the parallel and single constructs (lines 16 and 19

respectively). A nowait clause could be added to the single construct to avoid

unnecessary synchronizations.

3.3 Timing Properties of the OpenMP Tasking Model

The tasking model of OpenMP not only provides a very convenient abstrac-

tion layer upon which programmers can efficiently develop parallel appli-

cations, but also has certain similarities with the sporadic direct acyclic

graph (DAG) scheduling model used to derive a (worst-case) response time

analysis of parallel applications. Chapter 4 presents in detail the response

time analyses that can be applied to the OpenMP tasking model. This section

derives the OpenMP-DAG upon which these analyses are applied.

3.3.1 Sporadic DAG Scheduling Model of Parallel Applications

Real-time embedded systems are often composed of a collection of periodic

processing stages applied on different input data streaming coming from

sensors. Such a structure makes the system amenable to timing analysis

methods [30].

The task model [31], either sporadic or periodic, is a well-known model

in scheduling theory to represent real-time systems. In this model, real-time

applications are typically represented as a set of n recurrent tasks τ =
{τ1, τ2, .., τn}, each characterized by three parameters: worst-case execution

time (WCET), period (T) and relative deadline (D). Tasks repeatedly emit

an infinite sequence of jobs. In case of periodic tasks, jobs arrive strictly

periodically separated by the fixed interval time T . In case of sporadic tasks,

jobs do not have a strict arrival time, but it is assumed that a new job released

at time t must finish before t +D. Moreover, a minimum interval of time T

must occur between two consecutive jobs from the same task.

With the introduction of multi-core processors, new scheduling models

have been proposed to better express the parallelism that these architectures

offer. This is the case of the sporadic DAG task model [32–36], which allows

the exploitation of parallelism within tasks. In the sporadic DAG task model

each task (called DAG-task) is represented with a directed acyclic graph

(DAG) G = (V,E), T and D. Each node υ ∈ V denotes a sequential

operation characterized by a WCET estimation. Edges represent dependences

between nodes: if e = (υ1, υ2) : e ∈ E, then the node υ1 must complete

its execution before node υ2 can start executing. In other words, the DAG

44 Predictable Parallel Programming with OpenMP

captures scheduling constraints imposed by dependences among nodes and it

is annotated with the WCET estimation of each individual node.

Overall, the DAG represents the main formalism to capture the properties

of a real-time application. In that context, although the current specification

of OpenMP lacks any notion of real-time scheduling semantics, such as dead-

line, period, or WCET, the structure and syntax of an OpenMP program have

certain similarities with the DAG model. The task and taskwait constructs,

together with the depend clause, are very convenient for describing a DAG.

Intuitively, a task describes a node in V in the DAG model, while taskwait
constructs and depend clauses describe the edges in E. Unfortunately, such

a DAG would not convey proper information to derive a real-time schedule

that complies with the semantics of the OpenMP specification.

In order to understand where the difficulties of mapping an OpenMP

program onto an expressive task graph stem from, and how to overcome

them, the next section further delves into the details of the OpenMP execution

model.

3.3.2 Understanding the OpenMP Tasking Model

When a task construct is encountered, the execution of the new task region

can be assigned to one of the threads in the current team for immediate

or deferred execution, with the corresponding impact on the overall timing

behaviour. Different clauses allow defining how a task, its parent task and its

child tasks will behave at runtime:

• The depend clause allows describing a list of input (in), output (out), or

input-output (inout) dependences on data items. Dependences can only

be defined among sibling tasks, i.e., first-level descendants of the same

parent task.

• An if clause whose associated expression evaluates to false forces the

encountering thread to suspend the current task region. Its execution

cannot be resumed until the newly generated task, defined to be an

undeferred task, is completed.

• A final clause whose associated expression evaluates to true forces all

its child tasks to be undeferred and included tasks, meaning that the

encountering thread itself sequentially executes all the new descendants.

• By default, OpenMP tasks are tied to the thread that first starts their

execution. If such tasks are suspended, they can only be resumed by

the same thread. An untied clause forces the task not to be tied to any

thread; hence, in case it is suspended, it can later be resumed by any

thread in the current team.

3.3 Timing Properties of the OpenMP Tasking Model 45

Listing 3.2 OpenMP example of task scheduling clauses

1 #pragma omp p a r a l l e l

2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 . . . / / t p 00

6 #pragma omp t ask depend (out : x) u n t i e d f i n a l (t r u e) / / T1

7 {
8 . . . / / t p 10

9 #pragma omp t ask / / T4

10 { . . . } / / t p 4

11 . . . / / t p 11

12 }
13 . . . / / t p 01

14 #pragma omp t ask depend (in : x) / / T2

15 { . . . } / / t p 2

16 . . . / / t p 02

17 #pragma omp t a s k w a i t

18 . . . / / t p 03

19 #pragma omp t ask / / T3

20 { . . . } / / t p 3

21 . . . / / t p 04

22 }
23 }

Listing 3.2 shows an example of an OpenMP program using dif-

ferent tasking features. The parallel construct creates a new team of

threads (since num threads clause is not provided, the number of threads

associated is implementation defined). The single construct (line 3) gen-

erates a new task region T0, and its execution is assigned to just

one thread in the team. When the thread executing T0 encounters its

child task constructs (lines 6, 14, and 19), new tasks T1, T2, and

T3 are generated. Similarly, the thread executing T1 creates task T4

(line 9).

Tasks T1 and T2 include a depend clause both defining a dependence on

the memory reference x, so T2 cannot start executing until T1 finishes. T4

is defined as an included task because its parent T1 contains a final clause

that evaluates to true, so T1 is suspended until the execution of T4 finishes.

All tasks are guaranteed to have completed at the implicit barrier at the end

of the parallel region (line 23). Moreover, task T0 will wait on the taskwait
(line 17) until tasks T1 and T2 have completed before proceeding.

OpenMP defines task scheduling points (TSPs) as points in the program

where the encountering task can be suspended, and the hosting thread can be

46 Predictable Parallel Programming with OpenMP

rescheduled to a different task. TSPs occur upon task creation and completion

and at task synchronization points such as taskwait directives or explicit and

implicit barriers1.

Task scheduling points divide task regions into task parts executed unin-

terruptedly from start to end. Different parts of the same task region are

executed in the order in which they are encountered. In the absence of task

synchronization constructs, the order in which a thread executes parts of

different tasks is unspecified. The example shown in Figure 3.2 identifies

the parts in which each task region is divided: T0 is composed of task parts

tp00, tp01, tp02, tp03, and tp04; T1 is composed of task parts tp10, and tp11;

and T2, T3, and T4 are composed of task part tp2, tp3, and tp4, respectively.

When a task encounters a TSP, the OpenMP runtime system may either

begin the execution of a task region bound to the current team, or resume any

previously suspended task region also bound to it. The order in which these

actions are applied is not specified by the standard, but it is subject to the

following task scheduling constraints (TSCs):

TSC 1: An included task must be executed immediately after the task is

created.

TSC 2: Scheduling of new tied tasks is constrained by the set of task regions

that are currently tied to the thread, and that are not suspended in

a barrier region. If this set is empty, any new tied task may be

scheduled. Otherwise, a new tied task may be scheduled only if all

tasks in the set belong to the same task region and the new tied task

is a child task of the task region.

TSC 3: A dependent task shall not be scheduled until its task data depen-

dences are fulfilled.

TSC 4: When a task is generated by a construct containing an if clause for

which the conditional expression evaluates to false, and the previous

constraints are already met, the task is executed immediately after

generation of the task.

3.3.3 OpenMP and Timing Predictability

The execution model of OpenMP tasks differs from the DAG model in a

fundamental aspect: a node in the DAG model is a sequential operation that

1Additional TSPs are implied at different OpenMP constructs (target, taskyield,

taskgroup). See Section 2.9.5 of the OpenMP specification [25] for a complete list of task

scheduling points.

3.3 Timing Properties of the OpenMP Tasking Model 47

cannot be interrupted2. Instead, an OpenMP task can legally contain multiple

TSPs at which the task can be suspended or resumed following the TSCs.

Moreover, in order to correctly capture scheduling constraints of each task

as defined by the OpenMP specification, a DAG-based real-time scheduling

model requires to know: (1) the dependences among tasks, (2) the point in

time of each TSP, and (3) the scheduling clauses associated to the task.

This section analyses the extraction of a DAG that represents the parallel

execution of an OpenMP application upon which timing analysis can be then

applied. It focuses on three key elements:

1. How to reconstruct an OpenMP task graph from the analysis of the code

that resembles the DAG-task structure based on TSPs.

2. To which elements of an OpenMP program WCET analysis must be

applied.

3. How to schedule OpenMP tasks based on DAG-task methodologies so

that TSCs are met.

3.3.3.1 Extracting the DAG of an OpenMP program
The execution of a task part resembles the execution of a node in V , i.e., it is

executed uninterrupted. To that end, OpenMP task parts, instead of tasks, can

be considered as nodes in V .

Figure 3.5 shows the DAG (named OpenMP-DAG) corresponding to the

example presented in Listing 3.2, in which task parts form the nodes in V . T0

is decomposed into task parts tp00, tp01, tp02, tp03, and tp04, with a TSP at the

end of each part caused by the task constructs T1, T2, and T3 for tp00, tp01,

and tp03, and the taskwait construct for tp02. Similarly, T1 is decomposed

into tp10 and tp11 with the TSP corresponding to the creation of task T4 at

the end of tp10.

Depending on the origin of the TSP encountered at the end of each

task part (i.e., task creation or completion, or task synchronization) three

different types of dependences are identified: (a) control-flow dependences

(dotted arrows), which force parts to be scheduled in the same order as

they are executed within the task; (b) TSP dependences (dashed arrows),

which force tasks to start/resume execution after the corresponding TSP, and

(c) full synchronizations (solid arrows), which force the sequential execution

of tasks as defined by the depend clause and task synchronization constructs.

Note that all dependence types have the same purpose, which is to express

2This assumes the execution of a single DAG program, where a node cannot be interrupted

to execute other nodes of the same graph. In a multi-DAG execution model, nodes can be

preempted by nodes from different DAG programs if allowed by the scheduling approach.

48 Predictable Parallel Programming with OpenMP

Figure 3.5 OpenMP-DAG composed of task parts based on the code in Listing 3.2.

a scheduling precedence constraint. As a result, the OpenMP-DAG does not

require to differentiate them.

Besides the depend clause, the if and final clauses also affect the order

in which task parts are executed. In both cases the encountering task is

suspended until the newly generated task completes execution. In order to

model the undeferred and included tasks behaviour, a new edge is introduced

in E. In Figure 3.5, a new dependence between tp40 and tp11 is inserted, so

the task region T1 does not resume its execution until the included task T4

finishes.

3.3.3.2 WCET analysis is applied to tasks and task parts

In order to comply with the DAG-model, nodes in the OpenMP-DAG must

be further annotated with the WCET estimation of the corresponding task

parts. By constructing the OpenMP-DAG based on the knowledge of TSPs

(i.e., by considering as nodes in V only those code portions that are executed

uninterruptedly from start to end) the timing analysis of each node has

3.3 Timing Properties of the OpenMP Tasking Model 49

a WCET which is independent of any dynamic instance of the OpenMP

program (i.e., how threads may be scheduled to tasks and parts therein). As a

result, the timing behaviour of task parts will only be affected by concurrent

accesses to shared resources [37]. It is important to remark that the WCET

estimation is applied to a task when it is composed of a single task part. This

is the case of T2, T3, and T4 from Figure 3.5.

3.3.3.3 DAG-based scheduling must not violate the TSCs
When real-time scheduling techniques are applied to guarantee the timing

behaviour of OpenMP applications, the semantics specified by the OpenMP

TSCs must not be violated.

The clauses associated to a task construct not only define precedence

constraints, as shown in Section 3.3.3.1, but they also define the way in which

tasks, and task parts therein, are scheduled according to the TSCs defined in

Section 3.3.2. This is the case of the if, final and untied clauses, as well as

the default behaviour of tied tasks. These clauses influence the order in which

tasks execute and also how task parts are scheduled to threads. Regarding the

latter, the restrictions imposed by TSCs are the following:

• TSC 1 imposes included tasks to be executed immediately by the

encountering thread. In this case, the scheduling of the OpenMP-DAG

has to consider both the task part that encounters it and the complete

included task region as a unique unit of scheduling. In Figure 3.5, the

former case would give tp4 the highest priority, and the latter case would

consider tp10 and tp4 as a unique unit of scheduling.

• TSC 2 does not allow scheduling new tied tasks if there are other sus-

pended tied tasks already assigned to the same thread, and the suspended

tasks are not descendants of the new task. Listing 3.3 shows a fragment

of code in which this situation can occur. Let’s assume that T1, which

is not a descendent of T3, is executed by thread 1. When T1 encounters

Listing 3.3 Example of an OpenMP fragment of code with tied tasks

1 . . .

2 #pragma omp t ask / / T1

3 {
4 #pragma omp t ask i f (f a l s e) / / T2

5 { . . . }
6 }
7 #pragma omp t ask / / T3

8 { . . . }

50 Predictable Parallel Programming with OpenMP

the TSP of the creation of T2, it is suspended because of TSC 4, and it

cannot resume until T2 finishes. Let’s consider that T2 is being executed

by a different thread, e.g., thread 2. If T2 has not finished when the TSP

of the creation of T3 is reached, then T3 cannot be scheduled on thread 1

because of TSC 2, even if thread 1 is idle. As a result, tied tasks constrain

the scheduling opportunities of the OpenMP-DAG.

• TSC 3 imposes tasks to be scheduled respecting their dependences. This

information is already contained in the OpenMP-DAG.

• TSC 4 states that undeferred tasks execute immediately if TSCs 1, 2, and

3 are met. Differently, untied tasks are not subject to any TSC, allowing

parts of the same task to execute on different threads, so when a task is

suspended, the next part to be executed can be resumed on a different

thread. Therefore, one possible scheduling strategy for untied tasks that

satisfies TSC 4 is not to schedule undeferred and untied task parts until

tied and included tasks are assigned to a given thread. This guarantees

that TSCs 1 and 2 are met. This is because task parts of tied and included

tasks are bound to the thread that first started their execution, which

reduces significantly their scheduling opportunities. Instead, untied and

undeferred task parts have a higher degree of freedom as they can be

scheduled to any thread of the team. Therefore, for the OpenMP-DAG

to convey enough information to devise a TSC-compliant scheduling,

each node in V must be augmented with the type of task as well (untied,

tied, undeferred and included) as shown in Figure 3.5.

Figure 3.6 shows a possible schedule of task parts in Listing 3.2, assuming

a work-conserving scheduling. T0 is a tied task, so all its task parts are

scheduled to the same thread (thread 1). T1 is an untied task so tp10 and tp10
can execute in different threads (thread 1 and 2 in the example). Note that

tp11 does not start executing until tp4 completes due to the TSP constraint.

Moreover, the execution of tp4 starts immediately after the creation of T4 on

thread 2 tp10 tp4 tp11 tp2 tp3

thread 1 tp00 tp01 tp02 tp03 tp04

T1 TSP

creation

T4 TSP

creation

T2 TSP

creation

T4 TSP

completion

T1 TSP

completion

T2 TSP

completion
taskwait

TSP

T3 TSP

creation

T0 and T3 TSP

completion

Figure 3.6 DAG composed of task parts.

3.4 Extracting the Timing Information of an OpenMP Program 51

the same thread that encounters it (thread 2). Finally, tp2 and tp3 are sched-

uled to idle threads (thread 4 and 5, respectively) once all their dependences

are fulfilled.

3.4 Extracting the Timing Information of an OpenMP
Program

The extraction of an OpenMP-DAG representing the parallel execution of

an OpenMP program in such a way that timing analysis can be performed,

requires analyzing the OpenMP constructs included in the source code, so the

nodes and edges that form the DAG can be identified. This information can be

obtained by means of compiler analysis techniques. Concretely, there exists

two different analysis stages needed to build the OpenMP-DAG G = (V,E):

1. A parallel structure stage, in which the nodes in V , i.e., tasks parts, and

edges in E, are identified based on TSPs, TSCs, and data- and control-

flow information.

Listing 3.4 OpenMP program using the tasking model

1 #pragma omp p a r a l l e l num threads (8)

2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 f o r (i =0 ; i <=2; i ++)

6 f o r (i n t j =0 ; j <=2; j ++) {
7 i f (i ==0 && j ==0) { / / I n i t i a l b l o c k

8 #pragma omp t ask depend (i n o u t :m[i] [j])

9 c o m p u t e b l o c k (i , j) ; / / T1

10 } e l s e i f (i == 0) { / / B l o c k s i n upper edge

11 #pragma omp t ask depend (in :m[i] [j −1] , i n o u t :m[i] [j])

12 c o m p u t e b l o c k (i , j) ; / / T2

13 } e l s e i f (j == 0) { / / B l o c k s i n l e f t edge

14 #pragma omp t ask depend (in :m[i −1][j] , i n o u t :m[i] [j])

15 c o m p u t e b l o c k (i , j) ; / / T3

16 } e l s e { / / I n t e r n a l b l o c k s

17 #pragma omp t ask depend (in :m[i −1][j] , in :m[i] [j −1] , \\
18 in :m[i −1][j −1] , i n o u t :m[i] [j])

19 c o m p u t e b l o c k (i , j) ; / / T4

20 }
21 }
22 }
23 }
24 }

52 Predictable Parallel Programming with OpenMP

2. A task expansion stage, in which the tasks (and task parts) that will be

actually instantiated at runtime are identified by expanding the control

flow information extracted in the previous stage.

The next subsections further describe these stages. With the objective of

facilitating the explanation of the compiler analysis techniques, Listing 3.4

introduces an OpenMP program that will be used for illustration purposes.

The code processes the elements of a blocked 2D matrix using a wave-front

parallelization strategy [38]. The parallel construct (line 1) defines a team

of 8 threads. The single construct (line 3) specifies that only one thread will

execute the associated code. The algorithm divides the matrix in 3×3 blocks,

assigning each one to a different task. Each block [i, j] consumes the previous

adjacent blocks and itself. Hence, all tasks (lines 8, 11, 14, and 17:18) have

an inout dependence on the computed block [i, j]. T2 and T3 (lines 11 and

14) compute the upper and left edges, so additionally they consume the left

[i, j − 1] and upper [i − 1, j] blocks, respectively. Finally, T4 (lines 17:18)

computes the internal blocks, hence additionally it consumes the left [i−1, j],
upper [i, j − 1], and left-upper diagonal [i − 1, j − 1] blocks. All tasks are

guaranteed to complete at the implicit barrier at the end of the parallel region

(line 24).

3.4.1 Parallel Structure Stage

This stage identifies the TSPs surrounding tasks parts, and the corresponding

TSCs associated with each task part in order to: (1) generate a parallel control-

flow graph (PCFG) that holds all this information as well as parallel semantics

[39], and (2) analyze this graph so that the necessary information to expand a

complete DAG is obtained. With such purpose in mind the analysis performs

the following calculations:

• Generate the PCFG of the source code taking into account: (a) the

dependences introduced by any kind of TSPs (i.e., task creation, task

completion and task synchronization), as introduced in Section 3.3.3.1,

(b) the data dependences introduced by the depend clause, and (c) the if
and final clauses, hence the behaviour of undeferred and included tasks.

• On top of that, analyze the control-flow statements, i.e., selection

statements (if-else and switch) and loops that identify whether a

task is instantiated or not at runtime. To do so, three analyses are

required: induction variables [40], reaching definitions [41], and range

analysis [42]. Additionally, determine the conditions that must be

fulfilled for two instantiated tasks to depend on one another [3].

3.4 Extracting the Timing Information of an OpenMP Program 53

3.4.1.1 Parallel control flow analysis
The abstract syntax tree (AST) used in the compiler to represent the source

code is used to generate the PCFG of an OpenMP program. This enriches the

classic control-flow graph (CFG) with information about parallel execution.

This process performs a conservative analysis of the synchronizations among

tasks, because the compiler may not be able to assert when two depend
clauses designate the same memory location, e.g., array accesses or pointers.

Hence, synchronization edges are augmented with predicates defining the

condition to be fulfilled for an edge to exist. In the example shown in

Listing 3.4, the dependences that matrix m originates among tasks depend

on the values of i and j.

3.4.1.2 Induction variables analysis
On top of the PCFG, the compiler evaluates the loop statements to discover

the induction variables (IVs) and their evolution over the iterations using the

common tuple representation 〈lb, ub, str〉, where lb is the lower bound, ub is

the upper bound, and str is the stride. This analysis is essential for the later

expansion of the graph, since the induction variables will determine the shape

of the iteration space for each loop statement.

3.4.1.3 Reaching definitions and range analysis
Finally, the compiler computes the values of all variables involved in the exe-

cution of any task. With such a purpose, it analyzes reaching definitions and

also extends range analysis with support for OpenMP. The former computes

the definitions reaching any point in the program. The later computes the

values of the variables at any point of the program in four steps: (1) generate

a set C of equations that constrain the values of each variable (equations are

built for each assignment and control flow statement); (2) build a constraint

graph that represents the relations among the constraints; (3) split the graph

into strongly connected components (SCCs) to avoid cycles; (4) propagate

the ranges over the SCCs in topological order. Both analyses are needed to

propagate the values of the relevant variables across the expanded code.

3.4.1.4 Putting all together: The wave-front example
The previously mentioned analyses provide the information needed to gener-

ate an initial version of the DAG, named augmented DAG (aDAG), with data

and control flow knowledge. The aDAG is defined by the tuple

aDAG = 〈N,E,C〉 (3.1)

54 Predictable Parallel Programming with OpenMP

where:

• N = {V × TN} is the set of nodes with their corresponding type TN =
{Task, Taskwait, Barrier}.

• E = {N ×N ×P} is the set of possible synchronization edges with the

predicate P that must fulfill for the edge to exist.

• C = N × {F} is the set of control flow statements involved in the

instantiation of any task n ∈ N , where F = S × {TF }, being S the

condition to instantiate the tasks and TF = {Loop, IfElse, Switch},

the type of the structure.

Figure 3.7 shows the aDAG of the OpenMP program in Listing 3.4. The

set of nodes N includes all task constructs N = T1, T2, T3, T4 (lines 8, 11, 14,

and 17:18), all with type TN = Task. The control flow statements for each

node N , fi ∈ F are the for (lines 5 and 6) and if (lines 7, 10, 13, and 16)

statements, and include information about: (a) the IVs of each loop i, j, both

with lb = 0, ub = 2 and str = 1 (dashed-line boxes); (b) the conditions of the

selection statements enclosing each task (solid-line boxes), and (c) the ranges

of the variables in those conditions. In the figure, T3 is instantiated if i = 1
or 2 and j = 0. In the predicates p ∈ P associated to the synchronization

edges in E, the left hand side of the equality corresponds to the value of the

variable at the point in time the source task is instantiated, while the right side

corresponds to the value when the target task is instantiated. For example,

the predicate of the edge between T1 and T3 with p1((iS == iT ||iS ==
iT − 1)&&jS == jT) evaluates to true, meaning that the edge exists when

the values of i and j in the source task T1 are iS = 0 and jS = 0, and the

values of i and j in the target task T3 are iT = 1 and jT = 0.

For simplicity, Figure 3.7 only includes the dependences that are actually

expanded in the next stage (Section 3.4.2). The actual aDAG has edges

between any possible pair of tasks because they all have inout dependences

on the element m[i][j]. Moreover, the task-parts that form the task T0 with

the corresponding task creation dependences are not included.

3.4.2 Task Expansion Stage

3.4.2.1 Control flow expansion and synchronization predicate
resolution

Based on the aDAG, this stage generates an expanded DAG (or simply DAG)

representing the complete execution of the program in two phases: (1) expand

control flow structures (i.e., decide which branches are taken for the selection

3.4 Extracting the Timing Information of an OpenMP Program 55

Figure 3.7 aDAG of the OpenMP program in Listing 3.4.

statements and how many iterations are executed for the loop statements) to

determine which tasks (and so task-parts) are actually instantiated; and (2)

resolve the synchronization predicates to conclude which tasks have actual

dependences.

Control flow structures are expanded from outer to inner levels. In the

aDAG in Figure 3.7, the outer loop f1 is expanded first, and then the inner

loop f2. Finally, the if-else structures f3, f4, f5, and f6 are resolved. Each

expansion requires the evaluation of the associated expressions to determine

the values of each variable. For example, when the outer loop f1 is expanded,

each iteration is associated with the corresponding value of i.

This expansion process creates two identifiers: (1) an identifier of the

loops involved in the creation of a task (li), labeling each loop expansion

step, and (2) a unique static task construct identifier (sidt), labeling each

task construct.

The process results in a temporary DAG in which all tasks instantiated

at runtime are defined, but synchronization predicates are not solved. To

do so, the value of the variables propagated in the control flow expan-

sion is used to evaluate predicates and decide which edges actually exist.

56 Predictable Parallel Programming with OpenMP

Likewise, loop identifiers li are used to eliminate backwards dependences,

i.e., tasks instantiated in previous iterations cannot depend on tasks instanti-

ated in later iterations.

Figure 3.8 shows the final DAG of the program in Listing 3.4. It contains

all task instances with a unique numerial identifier (explained in the next

section) and all dependences that can potentially exist at runtime. Transitive

dependences (dashed arrows) are included as well, although they can be

removed because they are redundant.

3.4.2.2 tid: A unique task instance identifier
A key property of the expanded task instances is that they must include a

unique task instance identifier tid required to match the instantiated tasks

expanded at compile-time (and included in the DAG) with those instantiated

at runtime. Equation 3.2 computes tid as follows:

tid = sidt + T ×

Lt∑

i=1

li ·M
i (3.2)

where sidt is a unique task construct identifier (computed during the control

flow expansion stage), T is equal to the number of task, taskwait, and

barrier constructs in the source code, Lt is the total number of nested loops

involved in the execution of the task t, i refers to the the nesting level, li
is the loop unique identifier at nesting level i (computed during the control

Figure 3.8 The DAG of the OpenMP program in Listing 3.4.

3.4 Extracting the Timing Information of an OpenMP Program 57

flow expansion stage), and M the maximum number of iterations of any

considered loop.

The use of loop properties in Equation 3.2 (i.e., Lt, li, i, and M),

guarantees that a unique task identifier for each task instance is generated,

even if they come from the same task construct. Hence, task instances from

different loop iterations result in different tid because every nesting level li is

multiplied by the maximum number of iterations M .

Consider task T4, with identifier 79, in Figure 3.8. This task instance

corresponds to the computation of the matrix block m[2, 1]. Its identifier is

computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in

sequential order while traversing the source code; (2) T = 5 because there are

four task constructs and one (implicit) barrier in the source code; (3) LT4
= 2,

the two nested loops enclosing T4; (4) M = 3, the maximum number of

iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are

the values of the loop identifiers at the corresponding iteration. Putting them

all together: T4id
= 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

It is important to remark that tid must be computed at both compile-time

and run-time, and so all information needed to compute Equation 3.2 must be

available in both places. Chapter 6 presents the combined compiler and run-

time mechanisms needed to reproduce all the required information (including

sidt and li identifiers) at run-time.

3.4.2.3 Missing information when deriving the DAG
In case the framework cannot derive some information (mostly when control-

flow statements and dependences contain pointers that may alias or arrays

with unresolved subscripts, or the values are not known at compile-time), it

still generates a DAG that correctly represents the execution of the program.

Next, each possible case is argued:

• When an if-else statement cannot be evaluated, all its related tasks in C

are considered for instantiation, hence included in the DAG. In this case,

the DAG will include a task instance that will never exist. Chapters 4

and 6 present the mechanisms required to take this into consideration

for response time analysis and parallel run-time execution.

• If a loop cannot be expanded because its boundaries are unknown,

parallelism across iterations is disabled by inserting a taskwait at the

end of the loop. By doing so, all tasks instantiated within an iteration

must complete before the next iteration starts.

58 Predictable Parallel Programming with OpenMP

• Lastly, dependences whose predicate cannot be evaluated are always

kept in the DAG, making the involved tasks serialized.

The situations described above will result in a bigger DAG (when if–else

conditions cannot be evaluated) or in a performance loss (when loop bounds

or synchronization predicates cannot be determined), although a correct DAG

is guaranteed. In the worst-case scenario, where no information can be

derived at compile-time, the resultant DAG corresponds to the sequential exe-

cution of the program, i.e., all tasks are assumed to be instantiated, and their

execution is to be sequentialized. It is important to remark that embedded

applications can often provide all the required information to complete the

DAG expansion, as it is required for timing analysis [43].

3.4.3 Compiler Complexity

The complexity of the compiler is determined by the complexity of the two

stages presented in Sections 3.4.1 and 3.4.2.

The complexity of the control/data flow analysis stage is dominated by

the PCFG analysis and range analysis phases. The complexity of the former

is related to the number of split constructs present in the source code, in which

the Cyclomatic Complexity [44] metric is usually used. The latter, has been

proved to have an asymptotic linear complexity [42].

The complexity of the task expansion stage is dominated by the compu-

tation of the dependences among tasks, which is performed using a Cartesian

product: the input dependence of a task can be generated by any of the

previously created task instances. As a result, the complexity is quadratic

on the number of instantiated tasks.

3.5 Summary

This chapter provided the rationale and the model for the use of fine-grained

parallelism in general, and the OpenMP parallel programming model in

particular, to support applications that require predictable performance, to

develop future critical real-time embedded systems, and analyze the time

predictable properties of the OpenMP tasking model. Based on this model,

the chapter then described the advances in compiler techniques to extract tim-

ing information of OpenMP parallel programs, and build the OpenMP DAG

required to enable predictable scheduling (described in the next chapter) and

the needed timing analysis (in Chapter 5). This OpenMP-DAG also provides

References 59

the building block for the execution of the OpenMP runtime (Chapter 6) and

Operating System (Chapter 7).

References

[1] Pllana, S., and Xhafa, F., Programming Multicore and Many-core

Computing Systems, volume 86. John Wiley and Sons, 2017.

[2] Reinders, J., Intel Threading Building Blocks. O’Reilly and Associates,

Inc., 2007.

[3] NVIDIA CUDA C Programming Guide. https://docs.nvidia.com/cuda

/cuda-c-programming-guide/index.html, 2016.

[4] Stone, J. E., Gohara, D., and Shi, G., OpenCL: A parallel programming

standard for heterogeneous computing systems. CSE, 12, 66–73, 2010.

[5] Snir, M., MPI–the Complete Reference: The MPI core, volume 1. MIT

press, 1998.

[6] Butenhof, D. R., Programming with POSIX Threads. Addison-Wesley,

1997.

[7] Chapman, B., Jost, G., and Van Der Pas., Using OpenMP: Portable

Shared Memory Parallel Programming, volume 10. MIT press, 2008.

[8] Duran, A., Ayguadé, E., Badia, R. M., Labarta, J., Martinell, L., Mar-

torell, X., and Planas, J., Ompss: a proposal for programming hetero-

geneous multi-core architectures. Parallel Process. Lett. 21, 173–193,

2011.

[9] Varbanescu, A. L., Hijma, P., Van Nieuwpoort, R., and Bal, H., “Towards

an effective unified programming model for many-cores.” In IPDPS,

pp. 681–692. IEEE, 2011.

[10] OpenACC. Directives for Accelerators. http://www.openacc-

standard.org, 2017.

[11] Robison, A. D., Cilk plus: Language support for thread and vector

parallelism. Talk at HP-CAST, 18:25, 2012.

[12] Leiserson, C. E., “The cilk++ concurrency platform.” In Design Automa-

tion Conference, 2009. DAC’09. 46th ACM/IEEE, pp. 522–527. IEEE,

2009.

[13] Saule, E., and Çatalyürek, Ü. V., “An early evaluation of the scalability

of graph algorithms on the intel mic architecture.” In Parallel and Dis-

tributed Processing Symposium Workshops and PhD Forum (IPDPSW),

2012 IEEE 26th International, pp. 1629–1639. IEEE, 2012.

60 Predictable Parallel Programming with OpenMP

[14] De Dinechin, B. D., Van Amstel, D., Poulhiés, M., and Lager, G., “Time-

critical computing on a single-chip massively parallel processor.” In

DATE, 2014.

[15] CEA STMicroelectronics. Platform 2012: A many-core programmable

accelerator for ultra-efficient embedded computing in nanometer tech-

nology. Whitepaper, 2010.

[16] Texas Instruments. SPRS866: 66AK2H12/06 Multicore DSP+ARM Key-

Stone II System-on-Chip (SoC).

[17] Kegel, P., Schellmann, M., and Gorlatch, S., “Using OpenMP vs.

Threading Building Blocks for Medical Imaging on Multi-Cores.” In

Europar. Springer, 2009.

[18] Lee, S., Min, S-J., and Eigenmann, R., OpenMP to GPGPU: A Compiler

Framework for Automatic Translation and Optimization. SIGPLAN Not.

44, 101–110, 2009.

[19] Shen, J., Fang, J., Sips, H., and Varbanescu, A. L., “Performance

gaps between OpenMP and OpenCL for multi-core CPUs.” In ICPPW,

pp. 116–125. IEEE, 2012.

[20] Krawezik, G., and Cappello, F., “Performance comparison of MPI and

three OpenMP programming styles on shared memory multiprocessors.”

In SPAA. ACM, 2003.

[21] Kuhn, B., Petersen, P., and O’Toole, E., OpenMP versus threading in

C/C++. Concurr. Pract. Exp. 12, 1165–1176, 2000.

[22] OpenMP 2.5 Application Programming Interface. http://www.openmp.

org/wp-content/uploads/spec25.pdf, 2005.

[23] OpenMP 3.0 Application Programming Interface. http://www.openmp.

org/wp-content/uploads/spec30.pdf, 2008.

[24] OpenMP 4.0 Application Programming Interface. http://www.openmp.

org/wp-content/uploads/OpenMP4.0.0.pdf, 2013.

[25] OpenMP 4.5 Application Programming Interface. http://www.openmp.

org/wp-content/uploads/openmp-4.5.pdf, 2015.

[26] OpenMP Technical Report 2 on the OMPT Interface. http://www.

openmp.org/wp-content/uploads/ompt-tr2.pdf, 2014.

[27] OpenMP Technical Report 4: Version 5.0 Preview 1. http://www.

openmp.org/wp-content/uploads/openmp-tr4.pdf, 2016.

[28] OpenMP Technical Report 5: Memory Management Support for

OpenMP 5.0. http://www.openmp.org/wp-content/uploads/openmp-

TR5-final.pdf, 2017.

[29] Podobas, A., and Karlsson, S., “Towards Unifying OpenMP Under the

Task-Parallel Paradigm.” In IWOMP, 2016.

References 61

[30] Buttazzo, G. C., Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, volume 24. Springer Science

and Business Media, 2011.

[31] Davis, R. I., and Burns, A., A survey of hard real-time scheduling for

multiprocessor systems. ACM computing surveys (CSUR), 43, 35, 2011.

[32] Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., and Wiese, A., “Fea-

sibility analysis in the sporadic dag task model.” In Real-Time Systems

(ECRTS), 2013 25th Euromicro Conference on, pp. 225–233. IEEE,

2013.

[33] Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., and

Wiese, A., “A generalized parallel task model for recurrent real-time

processes.” In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd,

pp. 63–72. IEEE, 2012.

[34] Saifullah, A., Li, J., Agrawal, K., Lu, C., and Gill, C., Multi-core real-

time scheduling for generalized parallel task models. Real-Time Sys. 49,

404–435, 2013.

[35] Baruah, S., “Improved multiprocessor global schedulability analysis of

sporadic dag task systems.” In Real-Time Systems (ECRTS), 2014 26th

Euromicro Conference on, pp. 97–105. IEEE, 2014.

[36] Li, J., Agrawal, K., Lu, C., and Gill, C., “Outstanding paper award:

Analysis of global edf for parallel tasks.” In Real-Time Systems

(ECRTS), 2013 25th Euromicro Conference on, pp. 3–13. IEEE, 2013.

[37] Radojković, P., Girbal, S., Grasset, A., Quiones, E., Yehia, S., and

Cazorla, F. J., On the evaluation of the impact of shared resources

in multithreaded cots processors in time-critical environments. ACM

Trans. Architec. Code Opt. (TACO), 8:34, 2012.

[38] Rochange, C., Bonenfant, A., Sainrat, P., Gerdes, M., Wolf, J., Ungerer,

T., et al. “Wcet analysis of a parallel 3d multigrid solver executed on

the merasa multi-core.” In OASIcs-OpenAccess Series in Informatics,

volume 15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[39] Royuela, S., Ferrer, R., Caballero, D., and Martorell, X., “Compiler

analysis for openmp tasks correctness.” In Proceedings of the 12th ACM

International Conference on Computing Frontiers, p. 7. ACM, 2015.

[40] Muchnick, S. S., Advanced Compiler Design Implementation. Morgan

Kaufmann, 1997.

[41] Aho, A. V., Sethi, R., and Ullman, J. D., Compilers: Principles,

Techniques, and Tools, volume 2. Addison-wesley Reading, 2007.

[42] Pereira, F. M. Q., Rodrigues, R. E., and Campos, V. H. S., “A fast and

low-overhead technique to secure programs against integer overflows.”

62 Predictable Parallel Programming with OpenMP

In Proceedings of the 2013 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), pp 1–11. IEEE Computer

Society, 2013.

[43] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whal-

ley, D., et al. The worst-case execution-time problem?”overview of

methods and survey of tools. ACM Trans. Embed. Comput. Sys. (TECS),

7:36, 2008.

[44] McCabe, T. J., “A complexity measure.” IEEE Transactions on software

Engineering, 4, pp. 308–320, 1976.

4

Mapping, Scheduling,
and Schedulability Analysis

Paolo Burgio1, Marko Bertogna1, Alessandra Melani1,

Eduardo Quiñones2 and Maria A. Serrano2

1University of Modena and Reggio Emilia, Italy
2Barcelona Supercomputing Center (BSC), Spain

This chapter presents how the P-SOCRATES framework addresses the issue

of scheduling multiple real-time tasks (RT tasks), made of multiple and

concurrent non-preemptable task parts. In its most generic form, the schedul-

ing problem in the architectural framework is a dual problem: scheduling

task-to-threads, and scheduling thread-to-core replication.

4.1 Introduction

In our framework, we assume threads in the same OpenMP application are

statically pinned to the available cores in the platforms1. This approach has

two advantages: (i) the lower layer of the software stack, namely the runtime

and the operating system (OS) support, are much simpler to design and

implement; and (ii) we remove one dimension from the scheduling problem,

that is, we only need to solve the problem of assigning tasks (in our case,

OpenMP task parts) to threads/cores. For this reason, and limited to this

chapter, we use the words “mapping” and “scheduling” interchangeably. As

explained in Chapter 3, when a task encounters a task scheduling point (TSP),

program execution branches into the OpenMP runtime, where task-to-thread

mapping can: (1) begin the execution of a task region bound to the current

team or (2) resume any previously suspended task region bound to the current

1Still, to enable multitasking at the OS level, the OS can preempt threads from one OpenMP

application in favour of another OpenMP application.

63

64 Mapping, Scheduling, and Schedulability Analysis

team, as defined by the parallel OpenMP construct. Note that, the order in

which these two actions are applied is not specified by the standard. An ideal

task scheduler will schedule tasks for execution in a way that maximizes

concurrency while accounting for load imbalance and locality to facilitate

better performance.

The following part of the chapter describes the design of a simple parti-

tioned scheduler, detailing how to enforce a limited-preemption scheduling

policy to limit the overhead related to context switches whenever higher-

priority instances arrive while the cores are busy executing lower-priority

workload. It is also called static approach.

Then, we introduce the so-called dynamic approach, where scheduling

happens with the adoption of a global queue where all tasks are inserted, and

from where they can potentially be fetched by any worker in the system. We

also show how it can be enhanced to support task migration across computing

threads and cores, in a work-conservative environment.

In the following part, we describe our overall framework for the schedu-

lability analysis, and then we specialize it for static/partitioned approach and

dynamic/global approach, respectively.

We then briefly discuss the scheduling problem in the multi-core system

that powers the four I/O clusters present in the fabric.

4.2 System Model

In the framework, an application may consist of multiple RT task instances,

each one characterized by a different period or minimum inter-arrival time,

deadline and execution requirement (see Figure 4.1). Each RT task starts

executing on the host processor and may include (OpenMP-compliant)

parallel workloads to be offloaded to the many-core accelerator. Such a

parallel workload needs then to be scheduled on the available processing

elements (PEs).

The parallel execution of each RT task is represented by a direct acyclic

graph (DAG) composed of a set of nodes representing task parts. Nodes

are connected through edges that represent precedence constraints among

different task parts of the same offload. A task part can be executed only if all

nodes that have a precedence constraint over it have already been executed.

To comply with the OpenMP semantics, an RT task is not directly

scheduled on the PEs. Instead, its parallel workload is first mapped to

several OS threads (up to the number of PEs available), and then these

OS threads are scheduled onto the available cores. Figure 4.2 summarizes

4.2 System Model 65

Figure 4.1 An application is composed of multiple real-time tasks.

Figure 4.2 RT tasks are mapped to OS threads, which are scheduled on the processing

elements.

the mapping/scheduling framework. Here, only partitioned/static approach

is shown, where there is one task queue for each worker thread. In a fully

dynamic/global approach, there is only one queue for every RT task, where

all threads push and fetch work.

The number of OS threads onto which an RT task is mapped depends

on mapping decisions. If the RT task does not present a large parallelism,

it makes no sense to map it onto more than a limited number of threads.

If instead the RT task has massively parallel regions, it may be useful to

map it to a higher number of threads, up to the number of PEs in the many-

core accelerator. A correct decision should consider the trade-off between

66 Mapping, Scheduling, and Schedulability Analysis

the OS overhead implied by many threads and the speed-up obtainable with

a larger run-time parallelism. Note that creating a larger number of threads

than necessary may impose a significant burden to the OS, which needs to

maintain the context of these threads, schedule, suspend, and resume them,

with an obvious increase in the system overhead.

The architectural template targeted in the project (described in Chapter 2)

is a many-core platform where cores are grouped onto clusters. The testbed

accelerator, Kalray MPPA of the “Bostan” generation, has 256 cores grouped

into 16 clusters of 16 cores each. We consider only the threads offloaded

to the same cluster. Note that the intra-cluster scheduling problem is the

main problem to solve in our scheduling framework. The reason is that

P-SOCRATES adopts an execution model, where the context of each RT task

that may need to be accelerated is statically offloaded to the target clusters

before runtime.

For the above reasons, the main problem is therefore how to efficiently

activate and schedule the threads associated with the different RT tasks that

have been offloaded to the same cluster. The threads of each RT task will

contend to execute on the available PEs with the threads of the other RT

tasks. A smart scheduler will therefore need to decide which thread, or set of

threads, to execute at any time in each PE of the considered cluster, such that

all scheduling constraints are met. Depending on the characteristics of the

running RT tasks (priority, period, deadline, etc.) the scheduler may choose

to preempt an executing thread or set of threads, to schedule a different set of

threads belonging to a higher priority (or more urgent) RT task.

4.3 Partitioned Scheduler

In a traditional partitioned scheduler, OS threads are statically assigned to

cores, so that no thread may migrate from one core to another. The scheduling

problem then reduces to the design of a single-core scheduler. We start from

this approach and design our task-to-thread scheduler.

4.3.1 The Optimality of EDF on Preemptive Uniprocessors

The earliest deadline first (EDF) scheduling algorithm assigns scheduling

priority to jobs according to their absolute deadlines: the earlier the deadline,

the greater the priority (with ties broken arbitrarily). EDF is known to be

optimal for scheduling a collection of jobs upon a preemptive uniprocessor

platform, in the sense that if a given collection of jobs can be scheduled

4.3 Partitioned Scheduler 67

to meet all deadlines, then the EDF-generated schedule for this collection

of jobs will also meet all deadlines [1]. To show that a system is EDF-

schedulable upon a preemptive uniprocessor, it suffices to show the existence

of a schedule meeting all deadlines — the optimality of EDF ensures that it

will find such a schedule. Unfortunately, most of the commercial RTOSes do

not implement the EDF scheduling policy. The main reasons are found in the

added complexity of the scheduler, requiring timers to keep track of the thread

deadlines, and in the agnostic behavior with respect to higher-priority work-

load. This last concern is particularly important for industrial applications that

have a set of higher-priority instances whose execution cannot be delayed.

With an EDF scheduler, a lower-priority instance overrunning its expected

budget may end up causing a deadline miss of a higher priority instance that

has a later deadline. Instead, with a Fixed Priority (FP) scheduler, higher-

priority jobs are protected against lower-priority overruns, because they will

always be able to preempt a misbehaving lower-priority instance. This makes

FP scheduling more robust for mixed-criticality scenarios where RT tasks of

different criticality may contend for the same PEs. For the importance of FP

scheduling, we decided to implement a partitioned scheduler based on this

policy.

4.3.2 FP-scheduling Algorithms

In an FP-scheduling algorithm, each thread is assigned a distinct priority (as

in P-SOCRATES scheduling model) and every instance (a.k.a. job/RT task

instance) released by the thread inherits the priority of the associated thread.

The rate-monotonic (RM) scheduling algorithm [1] is an FP-scheduling

algorithm in which the priorities of the tasks are defined based on their period:

tasks with a smaller period are assigned greater priority (with ties broken

arbitrarily). It is known [1] that RM is an optimal FP-scheduling algorithm

for scheduling threads with relative deadlines equal to their minimum inter-

arrival times upon preemptive uniprocessors: if there is any FP-scheduling

algorithm that can schedule a given set of implicit-deadline threads to always

meet all deadlines of all jobs, then RM will also always meet all deadlines of

all jobs.

The deadline monotonic (DM) scheduling algorithm [2] is another

FP-scheduling algorithm in which the priority of a task is defined based on

its relative deadline parameter rather than its period: threads with smaller

relative deadlines are assigned greater priority (with ties broken arbitrarily).

Note that RM and DM are equivalent for implicit deadline systems, since

68 Mapping, Scheduling, and Schedulability Analysis

all threads in such systems have their relative deadline parameters equal to

their periods. It has been shown in [2] that DM is an optimal FP-scheduling

algorithm for scheduling sets of constrained-deadline threads upon preemp-

tive uniprocessors: if there is any FP-scheduling algorithm that can schedule

a given constrained-deadline system to always meet all deadlines of all jobs,

then DM will also always meet all deadlines of all jobs. DM is, however,

known to not be optimal for systems where threads may have a deadline larger

than their period.

4.3.3 Limited Preemption Scheduling

Preemption is a key concept in real-time scheduling, since it allows the OS

to immediately allocate the processor to threads requiring urgent service. In

fully preemptive systems, the running thread can be interrupted at any time

by another thread with higher priority and be resumed to continue when all

higher priority threads have completed. In other systems, preemption may

be disabled for certain intervals of time during the execution of critical

operations (e.g., interrupt service routines, critical sections, etc.). In other

situations, preemption can be completely forbidden to avoid unpredictable

interference among threads and achieve a higher degree of predictability

(although higher blocking times).

The question of whether to enable or disable preemption during thread

execution has been investigated by many authors under several points of view

and it is not trivial to answer. A general disadvantage of the non-preemptive

discipline is that it introduces additional blocking time in higher-priority

threads, thereby reducing schedulability. On the other hand, preemptive

scheduling may add a significant overhead due to context switches, sig-

nificantly increasing the worst-case execution time. Both situations are

schematized in Figure 4.3. CRPD in the figure stands for Cache-Related

Preemption Delay, that is, the time overhead added to tasks’ execution time

due to cache cooling after a preemption.

There are several advantages to be considered when adopting a non-

preemptive scheduler. Arbitrary preemptions can introduce a significant

runtime overhead and may cause high fluctuations in thread-execution times,

which degrades system predictability. Specifically, at least four different types

of costs need to be considered at each preemption:

1. Scheduling cost: It is the time taken by the scheduling algorithm to

suspend the running thread, insert it into the ready queue, switch the

context, and dispatch the new incoming thread.

4.3 Partitioned Scheduler 69

Figure 4.3 Fully preemptive vs. non-preemptive scheduling: preemption overhead and

blocking delay may cause deadline misses.

2. Pipeline cost: It accounts for the time taken to flush the processor

pipeline when the thread is interrupted, and the time taken to refill the

pipeline when the thread is resumed.

3. Cache-related cost: It is the time taken to reload the cache lines evicted

by the preempting thread. The WCET increment due to cache inter-

ference can be very large with respect to the WCET measured in

non-preemptive mode.

4. Bus-related cost: It is the extra bus interference for accessing the next

memory level due to the additional cache misses caused by preemption.

In order to predictably bound these penalties without sacrificing schedula-

bility, we decided to adopt a limited preemption scheduler, which represents

a trade-off between fully preemptive and non-preemptive scheduling. Note

that this seamlessly integrates into the standard OpenMP tasking/execution

model, where tasks can be preempted only at well-defined TSPs. See also

Chapter 3.

4.3.4 Limited Preemption Schedulability Analysis

As in the fully preemptive case, the schedulability analysis of limited pre-

emptive scheduling can be done analyzing the critical instant that leads to

the worst-case response time of a given thread. However, differently from

the fully preemptive case, the critical instant is not given by the synchronous

arrival sequence, where all threads arrive at the same time, and all successive

instances are released as soon as possible. Instead, in the presence of non-

preemptive regions, the additional blocking from lower priority threads must

70 Mapping, Scheduling, and Schedulability Analysis

be taken into account. Hence, the critical instant for a thread τi occurs when
it is released synchronously and periodically with all higher priority threads,

while the lower priority thread that is responsible of the largest blocking time

of τi is released one unit of time before τi.
However, the largest response time of a thread is not necessarily due to

the first job after a critical instant but might be due to later jobs. Therefore,

as shown in [3], the schedulability analysis needs to check all τi’s jobs within
a given period of interest that goes from the above described critical instant

until the first idle instant of τi. LetKi be the number of such jobs.

When analyzing the schedulability of limited preemptive systems, a key

role is played by the last non-preemptive region. Let qlasti be the length of

the last non-preemptive region of thread τi. When such a value is large, the

response time of τi may decrease because the execution of many higher-

priority instances is postponed after the end of τi, thus not interfering

with τi. This allows improving the schedulability over the fully preemptive

approach.

The blocking tolerance βi of thread τi is defined as the maximum block-

ing that τi can tolerate without missing its deadline. Such a value may be

computed by the following pseudo-polynomial relation:

βi = min
k∈[1,Ki]

max
t∈Πi,k







t− kCi + qlasti −
i−1
∑

j=1

⌈

t

Tj

⌉

Cj







where Πi,k is the set of release times of jobs within the period of interest. The

maximum allowed non-preemptive region of a τk is then given by:

NPR
max
k ← min

i<k
{βi}

Such a value determines the maximum spacing between two consecutive

preemption points for each thread τk.

4.4 Global Scheduler with Migration Support

4.4.1 Migration-based Scheduler

The scheduling problem for single-core systems has already been solved with

optimal priority assignments and scheduling algorithms back in the 1970s.

In particular, RM assigning priorities with decreasing task periods, and DM

assigning priorities with decreasing relative deadlines, are optimal priority

4.4 Global Scheduler with Migration Support 71

assignments for sporadic systems with, respectively, implicit and constrained

deadlines. This means that if a sporadic or synchronous periodic task system

can be scheduled with fixed priorities on a single processor, then it can also

be scheduled using RM (for implicit deadlines) [4] or DM (for constrained

deadlines) [2]. Also, the EDF— that schedules at each time-instant the ready

job with the earliest absolute deadline — is an optimal scheduling algorithm

for scheduling arbitrary collections of jobs on a single processor [3, 4].

Therefore, if it is possible to schedule a set of jobs such that all deadlines are

met, then the same collection of jobs can be successfully scheduled by EDF

as well. These observations allowed us to optimally select the scheduling

policies for the partitioned scheduler that we will describe shortly.

When allowing tasks to migrate among different cores, such as in the

case of OpenMP untied task model (see Chapter 3 for further information),

things are much more complicated: EDF, RM, and DM are no more optimal

and can fail even at very low utilizations (arbitrarily close to one) due to

the so-called Dhall’s effect [5]. Still, these are unlucky corner cases which

do not often recur in practice. The alternative approaches that allow higher

schedulability ratios are dynamic algorithms that however lead to a higher

number of preemptions and migrations, allowing the priority of a job to

change multiple times. Examples are Pfair [6, 7], BF [8], LLREF [9], EKG

[10], E-TNPA [11], LRE-TL [12], DP-fair [13], BF2 [14, 15], and RUN

[16]. The optimality of the above algorithms holds under very restrictive

circumstances, i.e., neglecting preemption and migration overhead, and for

sequential sporadic tasks with implicit deadlines. In this case, they are able

to reach a full schedulable utilization, equal to the number of processors.

Instead, they are not optimal when tasks may have deadlines different from

periods (it has been shown in [17] that an optimal scheduler would require

clairvoyance), for more general task models including parallel regions, lim-

ited preemptions, and/or DAG-structures, as with the task models adopted in

the P-SOCRATES project.

The additional complexity inherent to the implementation, runtime over-

head, scheduling and schedulability analysis of dynamic scheduling algo-

rithms, as well as in the lack of optimality properties with relation to the

task model adopted in the project, made their applicability to the considered

setting questionable. For this reason, we decided to opt for the static priority

class of scheduling algorithms, which is far more used in a practical setting

due to some particularly desired features. Systems scheduled with static

priority algorithms are rather easy to implement and to analyze; they allow

72 Mapping, Scheduling, and Schedulability Analysis

reducing the response time of more critical tasks by increasing their priori-

ties; they have a limited number of preemptions (and therefore migrations),

bounded by the number of jobs activations in a given interval; they allow

selectively refining the scheduling of the system by simply modifying the

priority assignment, without needing to change the core of the scheduling

algorithm (a much more critical component); they are easier to debug, sim-

plifying the understanding of system monitoring traces and making it more

intuitive to figure out why/when each task executes on which core; they are

far more composable, i.e., changing any timing parameter of a lower-priority

task does not alter the schedule of a higher-priority one, avoiding the need to

recheck and re-validate the whole system.

4.4.2 Putting All Together

In our scheduling framework, the global scheduler will therefore consist of a

fixed-priority scheduling algorithm. Each RT task is assigned a fixed priority,

which is inherited by each one of its threads (there are at most m threads

for each RT task). Threads that are ready to execute are ordered according

to their priority in a global queue (“ready queue”) from which the scheduler

selects the m highest priority ones for execution, being m the number of

available cores. These executing threads are popped from the queue and

they change their state to running. New thread activations and incoming

offloads are queued in the ready queue, based on their priorities. A blocked

queue is also maintained with all suspended or waiting threads. Whenever a

waiting thread is awakened, e.g., because the condition it was waiting for was

satisfied, it is removed from the blocked queue and re-inserted into the ready

queue according to its priority.

If the newly activated thread has a priority higher than one of the m

running tasks, a preemption may take place, depending on the adopted pre-

emption policy. With a fully preemptive scheduler, the preemption takes place

immediately, as soon as the thread is (re-)activated. With a non-preemptive

policy, the preemption is postponed until one of the running tasks finishes

its execution. For this framework, we decided to adopt a limited preemption

policy. According to this policy, threads are non-preemptively executed until

they reach one of the statically defined preemption points, where they can

be preempted if a higher priority thread is waiting to execute. This policy

allows decreasing the preemption and migration overhead of fully preemptive

policies, without imposing the excessive blocking delays experienced with

non-preemptive approaches.

4.4 Global Scheduler with Migration Support 73

The problem with adopting a limited preemption scheduling policy is

that it is necessary to define at which points to allow a preemption for each

thread. Since requiring the programmer to manually insert suitable context-

switch locations overly increases the programming complexity, we decided

to automate the process by using meaningful information coming from the

OpenMP mapping layer. In particular, the concept of TSP will be exposed to

the scheduling layer in order to take informed decisions on when and where

to allow a preemption. We will now detail this strategy.

4.4.3 Implementation of a Limited Preemption Scheduler

Arbitrary preemptions can introduce a significant runtime overhead and high

fluctuations in thread-execution times, which degrades system predictability.

These variations are due to multiple factors, including the time taken by

the scheduling algorithm to suspend the running thread, insert it into the

ready queue, switch the context, and dispatch the new incoming thread;

the time taken to reload the cache lines evicted by the preempting thread;

and the extra bus interference for accessing the next memory level due to

the additional cache misses caused by preemption. Conversely, completely

forbidding preemptions may cause an intolerable blocking to higher priority

threads, potentially affecting their schedulability. For example, consider a

system where a low-priority activity offloaded a parallel workload executing

on all available cores. If a higher priority RT task now requests a subset of

the cores to execute more important activities, it will need to wait until the

low-priority ones are finished, eventually leading to a deadline miss. Such a

miss could have been easily avoided by allowing preemptions.

With the limited preemption scheduling model adopted in the project,

threads will execute non-preemptively until they reach a TSP. At these points,

the execution control is moved back to the OpenMP runtime to decide which

task (part) to map on that thread. Essentially, the mapper will fetch one of

the tasks (belonging to the offload associated to the considered thread) that

are ready to execute and map it to that thread. These are points that mark an

interruption in the task-execution flow, potentially leading to context switches

and/or some memory locality loss. In other words, TSPs are good candidate

to be selected for potential preemption points, since they may represent a

discontinuity in the continuous execution of a task, potentially requiring a

new task to load new data to local memory. Taking advantage of these points

seems reasonable to guarantee a reduced pollution of cache locality of an

executing task, allowing a thread context switch only when a preemption

causes less harm.

74 Mapping, Scheduling, and Schedulability Analysis

However, it remains to be shown how the information from the OpenMP

runtime is to be propagated to the RTOS scheduling layer. Note that every

RT task that is offloaded to the accelerator is managed by an instance of

custom OpenMP runtime. This instance, among the other tasks, keeps track

of the dependencies among the nodes of the RT task (the OpenMP task

parts), and schedules for execution only those nodes whose dependencies

have been satisfied. When a thread fetches a task from the pool for execution,

it will continue uninterruptedly until it reaches a TSP. At this point, the

runtime regains control, and it may decide to invoke the OS scheduler using

a simple function call. The scheduler can then check whether there are new

offload requests pending and/or there are blocked tasks that have been awak-

ened. Potential higher-priority threads arrivals will then trigger a preemption,

saving the context of the preempted thread and scheduling the higher

priority one.

In this way, the OpenMP semantics of TSPs are propagated at RTOS

scheduling level, allowing smarter decisions on the preemption locations. The

timing analysis will also be significantly easier, since it will be sufficient to

analyze the worst-case execution requirements of each task part, knowing

that such code blocks will be executed without interruptions. The timing

characterization of each task part will factor in the worst-case delay related to

interfering instances, assuming each task part needs to (re-)load all required

data from scratch. This makes the analysis robust and tractable, without

requiring the timing analyzer to consider all possible instructions as potential

preemption points but characterizing only the worst-case timing parameters

of each individual task part. In Chapter 5, it is described how to obtain

the maximum execution time of a task part, with and without including the

additional time-penalty due to interference with other applications running

concurrently. These two timing estimates are added to the characterization

of every task part in the TDG produced by the compiler. This new TDG

annotated with timing information is called the OpenMP-TDG and serves

as input to our schedulability analysis.

Still, one may further reduce the number of potential preemption points,

by not invoking the OS scheduler at each TSP. For example, with a Breadth-

First mapping model, a task creating additional tasks will continue executing

on its thread, without leading to a (task-level) context switch. In this case, it

may be better not to invoke the OS scheduler at TSPs coinciding with task-

creation directives, since the original task may continue executing without

any discontinuity in the local context. A smarter option can be to invoke the

OS scheduler only when the runtime decides to map a different task next

4.5 Overall Schedulability Analysis 75

(e.g., because the current one is finished, or due to a work-first strategy, or

because of a taskwait directive). These TSPs are more likely to lead to a

cache locality loss, reducing the additional impact due to preemptions.

That said, in order to simplify the schedulability analysis and avoid long

non-preemptive regions, we decided to invoke the scheduler at each TSP.

Although it may be beneficial to reduce the number of preemption points, we

opted for the simplest solution that allows us to provide a proof of concept

of the proposed approach. In the evaluation phase, we will then identify the

impact of the preemption points to the scheduling overhead.

4.5 Overall Schedulability Analysis

We now will describe the overall schedulability analysis of systems executing

within the P-SOCRATES framework. The analysis is based on the computa-

tion of the worst-case response time of RT tasks concurrently executing on a

given cluster of cores. Two different analyses are presented, depending on the

mapping/scheduling mechanisms supported by the framework: (i) a dynamic

solution based on a global scheduler allowing a work-conserving behavior,

and (ii) a fully static solution based on a partitioned scheduler and a fixed

task-to-thread mapping.

4.5.1 Model Formalization

On our overall framework, an OpenMP program is composed of recurring

instances of a RT task (identified with a target OpenMP construct), which in

turn is composed of task parts. Without loss of generality, in this paragraph,

we consider [18] a set τ = {τ1, . . . , τn} of n sporadic conditional parallel

tasks (cp-tasks) that execute upon a platform consisting ofm identical proces-

sors. Each cp-task τk releases a potentially infinite sequence of jobs. Each job
of τk is separated from the next by at least Tk time-units and has a constrained

relative deadline Dk <= Tk. Moreover, each cp-task τk is represented as a

directed acyclic graph Gk = (Vk, Ek), where Vk = {vk,1, . . . , vk,nk} is a set
of nodes (or vertices) and Ek is a set of directed arcs (or edges), as shown

in Figure 4.4. Each node vk,j represents a sequential chunk of execution

(or “sub-task”) and is characterized by a worst-case execution time Ck,j.

Preemption and migration overhead is assumed to be integrated within the

WCET values, as given by the timing analysis. Arcs represent dependencies

between sub-tasks, that is, an edge (vk,1, vk,2) means that vk,1 must complete

before vk,2 can start executing. A node with no incoming arcs is referred to as

76 Mapping, Scheduling, and Schedulability Analysis

Figure 4.4 A sample cp-task. Each vertex is labeled with the WCET of the corresponding

sub-task.

a source, while a node with no outgoing arcs is referred to as a sink. Without

loss of generality, each cp-task is assumed to have exactly one source vsourcek
and one sink node vsinkk . If this is not the case, a dummy source/sink node with

zero WCET can be added to the DAG, with arcs to/from all the source/sink

nodes. The subscript k in the parameters associated with the task τk is omitted

whenever the reference to the task is clear in the discussion.

In the cp-task model, nodes can be of two types:

1. Regular nodes, represented as rectangles, allow all successor nodes to

be executed in parallel;

2. Conditional nodes, coming in pairs and denoted by diamonds and cir-

cles, represent the beginning and the end of a conditional construct,

respectively, and require the execution of exactly one node among the

successors of the start node.

Please note that this is a general solution for scheduling parallel recurring

RT-Dags. In the specific domain of this project, where OpenMP is used as a

frontend to specify DAGS, it may occur that the compiler cannot fully extract

the DAG because there are conditionals that cannot be statically solved.

See Section 3.4.3.2, “Missing information of the DAG”, in Chapter 3, for

a discussion about this issue.

To properly model the possible execution flows, a further restriction is

imposed to the connections within a conditional branch. That is, a node

belonging to a branch of a conditional statement cannot be connected to nodes

outside that branch (including other branches of the same statement). This is

formally stated in the following definition.

Definition 4.1. Let (v1, v2) be a pair of conditional nodes in a DAG

Gk = (Vk, Ek). The pair (v1, v2) is a conditional pair if the following holds:

4.5 Overall Schedulability Analysis 77

1. If there are exactly q outgoing arcs from v1 to nodes s1, s2, . . . , sq, for

some q > 1, then there are exactly q incoming arcs into v2 in Ek, from

some nodes t1, t2,. . . , tq.

2. For each l ǫ {1, 2, . . . , q}, let Vl’El’ denote all the nodes and arcs on

paths reachable from sl that do not include node v2. By definition, sl is

the sole source node of the DAG Gl’:= (Vl’El’). It must hold that tl is

the sole sink node of Gl’.

3. It must hold that Vl’ and Vj’ have a null intersection, for all l 6= j.

Additionally, with the exception of (v1, sl) there should be no arcs in

Ek into nodes in Vl’ from nodes not in Vl’, for each l in {1, 2, . . . , q}.

A chain or path of a cp-task τk is a sequence of nodes λ= (vk,a,. . . ,vk,b) such
that (vk,j,vk,j+1) ǫ Ek, for all j ǫ [a,b]. The length of a chain of τk, denoted
by len(λ), is the sum of the WCETs of all its nodes. The longest path of a

cp-task is any source-sink path of the task that achieves the longest length.

Definition 4.2. The length of a cp-task τk, denoted by Lk, is the length of any

longest path of τk.
Note that Lk also represents the minimum worst-case execution time

of cp-task τk, that is, the time required to execute it when the number of

processing units is sufficiently large (potentially infinite) to allow the task

to always execute with maximum parallelism. A necessary condition for the

feasibility of a cp-task τk is that Lk ≤ Dk.

In the absence of conditional branches, the classical sporadic DAG task

model defines the volume of the task as the worst-case execution time needed

to complete it on a dedicated single-core platform. This quantity can be

computed as the sum of theWCETs of all the sub-tasks, that is
∑

vk,j∈Vk
Ck,j .

In the presence of conditional branches, assuming that all sub-tasks are

always executed is overly pessimistic. Hence, the concept of volume of a

cp-task is generalized by introducing the notion of worst-case workload.

Definition 4.3. The worst-case workload Wk of a cp-task τk is the maximum

time needed to execute an instance of τk on a dedicated single-core platform,

where the maximum is taken among all possible choices of conditional

branches.

Section 4.5 will explain in detail how the worst-case workload of a task

can be computed efficiently.

The utilization Uk of a cp-task τk is the ratio between its worst-case

workload and its period, that is, Uk = Wk/Tk. For the task-set τ , its total

utilization U is defined as the sum of the utilizations of all tasks. A simple

necessary condition for feasibility is U ≤ m.

78 Mapping, Scheduling, and Schedulability Analysis

Figure 4.4 illustrates a sample cp-task consisting of nine sub-tasks (nodes)

V = {v1,. . . ,v9} and 12 precedence constraints (arcs). The number inside

each node represents its WCET. Two of the nodes, v2 and v6, form a condi-

tional pair, meaning that only one sub-task between v3 and v4 will be executed

(but never both), depending on a conditional clause. The length (longest path)

of this cp-task is L = 8, and is given by the chain (v1, v2, v4, v6, v7, v9). Its

volume is 14 units, while its worst-case workload must take into account that

either v3 or v4 are executed at every task instance. Since v4 corresponds to

the branch with the largest workload,W = 11.
To further clarify the restrictions imposed to the graph structure, note that

v4 cannot be connected to v5, because this would violate the correctness of

conditional constructs and the semantics of the precedence relation. In fact, if

they were connected and v3 were executed, then v5 would wait forever, since

v4 is not executed. For the same reason, no connection is possible between

v4 and v3, as they belong to different branches of the same conditional

statement.

In the following sections, we will consider the dynamic approach consist-

ing of a best-effort mapper, coupled with a fixed priority global scheduler. RT

tasks are indexed according to their priorities, being τ1 the highest priority

one. For details on the scheduling algorithm and mapping, please refer to

P-SOCRATES project’s Deliverable D3.3.2 [19]. To understand the following

analysis, it is sufficient to observe that the adopted scheduler allows a work-

conserving behavior, never idling a core whenever there is some pending

workload to execute.

4.5.2 Critical Interference of cp-tasks

We now present a schedulability analysis for cp-tasks globally scheduled

by any work-conserving scheduler. The analysis is based on the notion of

interference. In the existing literature for globally scheduled sequential task

systems, the interference on a task τk is defined as the sum of all intervals

in which τk is ready, but cannot execute because all cores are busy executing

other tasks. We modify this definition to adapt it to the parallel nature of

cp-tasks, by introducing the concept of critical interference.

Given a set of cp-tasks τ and a work-conserving scheduler, we define the

critical chain of a task as follows.

Definition 4.4. The critical chain λ∗k of a cp-task τk is the chain of nodes of

τk that leads to its worst-case response-time Rk.

4.5 Overall Schedulability Analysis 79

The critical chain of cp-task τk is in principle determined by taking the

sink vertex vsinkk of the worst-case instance of τk (i.e., the job of τk that has the
largest response-time in the worst-case scenario), and recursively pre-pending

the last to complete among the predecessor nodes (whether conditional or

not), until the source vertex vk,1 has been included in the chain.

A critical node of task τk is a node that belongs to τk’s critical chain.

Since the response-time of a cp-task is given by the response-time of the sink

vertex of the task, the sink node is always a critical node. For deriving the

worst-case response-time of a task, it is then sufficient to characterize the

maximum interference suffered by its critical chain.

Definition 4.5. The critical interference Ik on task τk is defined as the

cumulative time during which some critical nodes of the worst-case instance

of τk are ready, but do not execute because all cores are busy.

Lemma 4.1. Given a set of cp-tasks τ scheduled by any work-conserving

algorithm on m identical processors, the worst-case response-time of each

task τk is

Rk = len(λ∗k) + Ik. (4.1)

Proof. Let rk be the release time of the worst-case instance of τk. In the

scheduling window [rk, rk+Rk], the critical chain will require len(λ
∗
k) time-

units to complete. By Definition 4.5, at any time in this window in which

τk does not suffer critical interference, some node of the critical chain is

executing. Therefore Rk − Ik = len(λ∗k).
The difficulty in using Lemma 4.1 for schedulability analysis is that the

term Ik may not be easy to compute. An established solution is to express

the total interfering workload as a function of individual contributions of the

interfering tasks, and then upper-bound such contributions with the worst-

case workload of each interfering task τk.
In the following, we explain how such interfering contributions can be

computed, and how they relate to each other to determine the total interfering

workload.

Definition 4.6. The critical interference Ii,k imposed by task τi on task τk
is defined as the cumulative workload executed by sub-tasks of τk while a

critical node of the worst-case instance of τk is ready to execute but is not

executing.

Lemma 4.2. For any work-conserving algorithm, the following relation

holds:

Ik =
1

m

∑

τi∈T

Ii,k. (4.2)

80 Mapping, Scheduling, and Schedulability Analysis

Proof. By the work-conserving property of the scheduling algorithm, when-

ever a critical node of τk is interfered, all m cores are busy executing other

sub-tasks. The total amount of workload executed by sub-tasks interfering

with the critical chain of τk is thenmIk. Hence,

∑

τi∈T

Ii,k = mIk.

By reordering the terms, the lemma follows.

Note that when i = k, the critical interference Ik,k may include the

interfering contributions of non-critical subtasks of τk on itself, that is,

the self-interference of τk. By combining Equations (4.1) and (4.2), the

response-time of a task τk can be rewritten as:

Rk = len(λ∗k) +
1

m
Ik,k +

1

m

∑

τi∈T ,i 6=k

Ii,k. (4.3)

In the following, we will show how to provide upper bounds on the unknown

terms of Equation (4.3) for systems adopting a global fixed-priority scheduler

with preemption support.

4.5.3 Response Time Analysis

In this section, we derive an upper-bound on the worst-case response-time

of each cp-task using Equation (4.3). To this aim we need to compute the

interfering contributions Ii,k. In the sequel, we first consider the inter-task

interference (i 6= k) and then the intra-task interference (i = k).

4.5.3.1 Inter-task interference
We divide the contribution to the workload of an interfering task τI in a

window of interest between carry-in, body, and carry-out jobs. The carry-

in job is the first instance of τi that is part of the window of interest and has

release time before and deadline within the window of interest. The carry-

out job is the last instance of τi executing in the window of interest, having

a deadline after the window of interest. All other instances of τi are named

body jobs. For sequential task-sets, an upper-bound on the workload of an

interfering task τi within a window of length L occurs when the first job of

τi starts executing as late as possible (with a starting time aligned with the

beginning of the window of interest) and later jobs are executed as soon as

possible (see Figure 4.5).

4.5 Overall Schedulability Analysis 81

Figure 4.5 Worst-case scenario to maximize the workload of an interfering task τi in the

sequential case.

For cp-task systems, it is more difficult to determine a configuration that

maximizes the carry-in and carry-out contributions. In fact:

1. Due to the precedence constraints and different degree of parallelism

of the various execution paths of a cp-task, it may happen that a larger

workload is executed within the window if the interfering task is shifted

left, i.e., by decreasing the carry-in and increasing the carry-out contri-

butions. This happens for example when the first part of the carry-in job

has little parallelism, while the carry-out part at the end of the window

contains multiple parallel sub-tasks.

2. A sustainable schedulability analysis [10] must guarantee that all tasks

meet their deadlines even when some of them execute less than the

worst-case. For example, one of the sub-tasks of an execution path of a

cp-task may execute for less than its WCET Ci,j. This may lead to larger

interfering contributions within the window of interest (e.g., a parallel

section of a carry-out job is included in the window due to an earlier

completion of a preceding sequential section).

3. The carry-in and carry-out contribution of a cp-task may correspond

to different conditional paths of the same task, with different levels of

parallelism.

To circumvent the above issues, we consider a scenario in which each interfer-

ing job of task τi executes for its worst-case workload Wi, i.e., the maximum

amount of workload that can be generated by a single instance of a cp-task.

We defer the computation of Wi to Section 4.5.3. The next lemma provides a

safe upper-bound on the workload of a task τi within a window of interest of

length L.

Lemma 4.3. An upper-bound on the workloads of an interfering task τi in a

window of

Wi(L) =

⌊

L+Ri −Wi/m

Ti

⌋

Wi

+ min(Wi,m · ((L + Ri −Wi/m) mod Ti)).

length L is given by

82 Mapping, Scheduling, and Schedulability Analysis

Figure 4.6 Worst-case scenario to maximize the workload of an interfering cp-task τi.

Proof. Consider a situation in which all instances of i execute for their

worst-case workload Wi. The highest workload within a window of length

L for such a task configuration is produced when the carry-in and carry-out

contributions are evenly distributed among all cores, as shown in Figure 4.6.

Note that distributing the carry-in or carry-out contributions on a smaller

number of cores may not increase the workload within the window.Moreover,

other task configurations with a smaller workload for the carry-in or carry-out

instance cannot lead to a higher workload in the window of interest: although

a reduced carry-in workload may allow including a larger part of the carry-

out (as in shifting right the window of interest by Wi = m in the figure), the

carry-out part that enters the window from the right cannot be larger than the

carry-in reduction.

An upper-bound on the number of carry-in and body instances that may

execute within the window is
⌊

L+Ri −Wi/m

Ti

⌋

,

each one contributing for Wi. The portion of the carry-out job included in

the window of interest is (L + Ri − Wi/m) mod Ti. Since at most m cores

may be occupied by the carryout job within that interval, and the carry-out

job cannot execute for more than Wi units, the lemma follows.

4.5.3.2 Intra-task interference
We now consider the remaining terms of Equation (4.3), which take into

account the contribution of the considered task to its overall response-time,

and we compute an upper-bound on

Zk
def
= len(λ∗k) +

1

m
Ik,k.

4.5 Overall Schedulability Analysis 83

Lemma 4.4. For a constrained deadline cp-task system scheduled with any

work-conserving algorithm, the following relation holds for any task τk:

Zk = len(λ∗k) +
1

m
Ik,k ≤ Lk +

1

m
(Wk − Lk). (4.4)

Proof. Since we are in a constrained deadline setting, a job will never be

interfered with by other jobs of the same task. Wk being the maximum

possible workload produced by a job of cp-task τk, the portion that may

interfere with the critical chain λk is Wk−len(λ
∗
k). Then, Ik,k ≤Wk−len(λ

∗
k).

Hence,

len(λ∗k) +
1

m
Ik,k ≤ len(λ∗k) +

1

m
(Wk − len(λ∗k)). (4.5)

Since len(λ∗k) ≤ Lk and m ≥ 1, the lemma follows.

Since Zk includes only the contribution of task τk, one may think that

the sum [len(λ∗k) + 1/m Ik,k] is equal to the worst-case response-time

of τk when it is executed in isolation on the multi-core system (i.e., the

makespan of τk).
However, this is not true. For example, consider the case of a cp-task

τk with only one if-then-else statement; assume that when the “if” part is

executed, the task executes one sub-task of length 10; otherwise, the task

executes two parallel sub-tasks of length 6 each. When τk is executed in

isolation on a two-core platform, the makespan is clearly given by the “if”

branch, i.e., 10. When instead τk can be interfered with by one job of a task

τi which executes a single sub-task of length 6, the worst-case response time

of τk occurs when the “else” branch is executed, yielding a response time

of 12. The share of the response time due to the term len(λ∗k) + 1/m Ik,k
in Equation (4.3) is 6 + (1 = 2)6 = 9, which is strictly smaller than the

makespan. Note that len(λ∗k) + 1/m Ik,k does not even represent a valid lower

bound on the makespan. This can be seen by replacing the “if” branch in the

above example with a shorter subtask of length 8, giving a makespan of 8.

For this reason, one cannot replace the term len(λ∗k) + 1/m Ik,k in Equation

(4.4) with the makespan of τk.
The right-hand side of Equation (4.4) (Lk + 1/m(Wk – Lk)) has been

therefore introduced to upper-bound the term len(λ∗k)+1/m Ik,k. Interestingly,

this quantity does also represent a valid upper-bound on the makespan of τk,
so that it can be used to bound the response time of a cp-task executing in

isolation. We omit the proof that is identical to the proofs of the given bounds,

considering only the interference due to the task itself.

84 Mapping, Scheduling, and Schedulability Analysis

4.5.3.3 Computation of cp-task parameters
The upper-bounds on the interference given by Lemmas 4.3, 4.4, and 4.5

require the computation of two characteristic parameters for each cp-task τk:
the worst-case workload Wk and the length of the longest chain Lk. The

longest path of a cp-task can be computed in exactly the same way as the

longest path of a classical DAG task, since any conditional branch defines

a set of possible paths in the graph. For this purpose, conditional nodes can

be considered as if they were simply regular nodes. The computation can be

implemented time linearly in the size of the DAG by standard techniques, see

e.g., Bonifaci et al. [11] and references therein.

The computation of the worst-case workload of a cp-task is more

involved. We hereafter show an algorithm to compute Wk for each task

τk in time quadratic in the DAG size, whose pseudocode is shown in

Algorithm 4.1.

The algorithm first computes a topological order of the DAG2. Then,

exploiting the (reverse) topological order, a simple dynamic program can

compute for each node the accumulated workload corresponding to the

portion of the graph already examined. The algorithm must distinguish the

case when the node under analysis is the head of a conditional pair or not.

Algorithm 4.1 Worst-case Workload Computation

1: procedure WCW(G)
2: σ ← TOPOLOGICALORDER(G)

3: S(vsink)← {vsink}
4: for vi ∈ σ from sink to source do

5: if SUCC(vi) 6= ∅ then
6: if ISBEGINCOND(vi) then
7: v∗ ← argmaxv∈SUCC(vi)

C(S(v))

8: S(vi)← {vi} ∪ S(v
∗)

9: else

10: S(vi)← {vi} ∪
⋃

v∈SUCC(vi)
S(v)

11: end if

12: end if

13: end for

14: return C(S(vsource))
15: end procedure

2A topological order is such that if there is an arc from u to v in the DAG, then u appears

before v in the topological order. A topological order can be easily computed in time linear in

the size of the DAG (see any basic algorithm textbook, such as [17]).

4.5 Overall Schedulability Analysis 85

If this is the case, then the maximum accumulated workload among the

successors is selected; otherwise, the sum of the workload contributions of

all successors is computed.

Algorithm 4.1 takes as input the graph representation of a cp-task G and

outputs its worst-case workload W. In the algorithm, for any set of nodes S,

its total WCET is denoted by C(S). First, at line 2, a topological sorting of

the vertices is computed and stored in the permutation. Then, the permutation

is scanned in reverse order, that is, from the (unique) sink to the (unique)

source of the DAG. At each iteration of the for loop at line 4, a node vi is

analyzed; a set variable S(vi) is used to store the set of nodes achieving the

worst-case workload of the subgraph including vi and all its descendants in

the DAG. Since the sink node has no successors, S(vsink) is initialized to

{vsink}at line 3. Then, the function SUCC(vi) computes the set of successors

of vi. If that set is not empty, function ISBEGINCOND(vi) is invoked to

determine whether vi is the head node of a conditional pair. If so, the node

v* achieving the largest value of C(S(v)), among v in SUCC(vi), is computed

(line 7). The set S(v*) therefore achieves the maximum cumulative worst-

case workload among the successors of vi, and is then used to create S(vi)
together with vi. Instead, whenever vi is not the head of a conditional pair, all

its successors are executed at runtime. Therefore, the workload contributions

of all its successors must be merged into S(vi) (line 10) together with vi. The
procedure returns the worst-case workload accumulated by the source vertex,

that is C(S(vsource)).
The complexity of the algorithm is quadratic in the size of the input DAG.

Indeed, there are O(|E|) set operations performed throughout the algorithm,

and some operations on a set S (namely, the ones at line 7) also require

computing C(S), which has cost O(|V|). So, the time complexity is O(|V| |E|).
To implement the set operations, set membership arrays are sufficient.

One may be tempted to simplify the procedure by avoiding the use of

set operations, keeping track only of the cumulative worst-case workload

at each node, and allowing a linear complexity in the DAG size. However,

such an approach would lead to an overly pessimistic result. Consider a

simple graph with a source node forking into multiple parallel branches

which then converge on a common sink. The cumulative worst-case workload

of each parallel path includes the contribution of the sink. If we simply

sum such contributions to derive the cumulative worst-case workload of the

source, the contribution of the sink would be counted multiple times. Set

operations are therefore needed to avoid accounting multiple times each node

contribution.

86 Mapping, Scheduling, and Schedulability Analysis

We now present refinements of Algorithm 4.1 in special sub-cases of

interest.

4.5.4 Non-conditional DAG Tasks

The basic sporadic DAG task model does not explicitly account for con-

ditional branches. Therefore, all vertices of a cp-task contribute to the

worst-case workload, which is then equal to the volume of the DAG task:

Wk =
∑

vk,j∈Vk

Ck,j .

In this particular case, the time complexity to derive the worst-case workload

of a task (quadratic in the general case), becomes O(|V|), i.e., linear in the

number of vertices.

4.5.5 Series–Parallel Conditional DAG Tasks

Some programming languages yield series–parallel cp-tasks, that is, cp-tasks

that can be obtained from a single edge by series composition and/or parallel

composition. For example, the cp-task in Figure 4.5 is series–parallel, while

the cp-tasks in Figures 4.2 and 4.6 are not. Such a structure can be detected in

linear time [13]. In series–parallel graphs, for every head si of a conditional
or parallel branch there is a corresponding tail ti. For example, in Figure 4.5,

the tail corresponding to parallel branch head v2 is v9. Algorithm 4.1 can be

specialized to series–parallel graphs. For each vertex u, the algorithm will

simply keep track of the worst-case workload of the subgraph reachable from

u, as follows. For each head vertex si of a parallel branch, the contribution

from all successors should be added to si’s WCET, subtracting, however, the

worst-case workload of the corresponding tail ti a number of times equal to

the out-degree of si minus 1; for each head vertex si of a conditional branch,
only the maximum among the successors’ worst-case workloads is added to

si’s WCET. Finally, for all non-head vertices add the worst-case workload

of their unique successor to their WCET. The complexity of this algorithm

reduces then to O(|E|), i.e., it becomes linear in the size of the graph.

4.5.6 Schedulability Condition

Lemmas 4.3 and 4.4 and the bounds previously computed allow for proving

the following theorem.

4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach 87

Theorem 4.1. Given a cp-task-set globally scheduled with global FP on m

cores, an upper-boundRub
k on the response-time of a task τk can be derived by

the fixed-point iteration of the following expression, starting with Rub
k = Lk:

Rub
k ← Lk +

1

m
(Wk − Lk) +









1

m

∑

∀ i 6=k

XALG
i







 , XFP
i

where:

XFP
i =

{

Wi(R
ub
k), ∀i < k

0, otherwise
;

because the interference from lower priority tasks can be neglected assuming

a fully preemptive scheduler.

The schedulability of a cp-task system can then be simply checked using

Theorem 4.1 to compute an upper-bound on the response-time of each task.

In the FP case, the bounds are updated in decreasing priority order, starting

from the highest priority task. In this case, it is sufficient to apply Theorem 4.1

only once for each task.

4.6 Specializing Analysis for Limited Pre-emption
Global/Dynamic Approach

The response time analysis in Equation (4.3) can be easily extended [20] to

incorporate the impact of the limited pre-emption strategy on DAG-based

task-sets3. To do so, the factor that computes the inter-task interference

must be augmented to incorporate the impact of lower-priority interference.

Overall, the response time upper-bound can be computed as follows:

Rub
k ← Lk +

1

m
(vol(Gk)− Lk) +

⌊

1

m
(I

lp
k + I

hp

k)

⌋

With LP, tasks are not only interfered with by higher-priority tasks, but also

by already started lower-priority tasks whose execution has not reached a pre-

emption point yet, and so cannot be suspended. In the worst-case scenario,

when a high-priority task τk is released, all them processors have just started

executing the m largest NPRs of m different lower priority tasks. After τk
started executing, it could be blocked again by at most m − 1 lower priority

3This section only considers LP with eager approach. In [28], we develop the analysis

for Lazy approach as well. Interested readers are encouraged to refer to it for the complete

analysis.

88 Mapping, Scheduling, and Schedulability Analysis

tasks at each pre-emption point. Therefore, for sequential task-sets, the lower

priority interference is upper-bounded considering: (1) the set of the longest

NPR of each lower-priority task and then (2) the sum of the m and m − 1
longest NPRs of this set, as computed in [21]. This no longer holds for

DAG-based task-sets, because multiple NPRs from the same task can execute

in parallel. Next, we present two methods to compute the lower-priority

interference in DAG-based task-sets.

4.6.1 Blocking Impact of the Largest NPRs (LP-max)

The easiest way of deriving the lower-priority interference is to account for

them andm− 1 largest NPRs among all lower-priority tasks:

∆m
k =

∑ m
max

τi∈lp(k)

(

m
max

1≤j≤qi+1

Ci,j

)

∆m−1
k =

∑ m−1
max

τi∈lp(k)

(

m−1
max

1≤j≤qi+1

Ci,j

)

where
∑

maxm
τi∈lp(k)

and
∑

maxm−1
τi∈lp(k)

denote the sum of them andm− 1

largest values among the NPRs of all tasks τi ǫ lp(k) respectively, while

maxm1≤j≤qi+1
and maxm+1

1≤j≤qi+1
denote the m and m − 1 largest NPRs of a

task τi. Despite its simplicity, this strategy is pessimistic because it considers

that the largest m and m − 1 NPRs can execute in parallel, regardless of the

precedence constraints defined in the DAG.

4.6.2 Blocking Impact of the Largest Parallel NPRs (LP-ILP)

The edges in the DAG determine the maximum level of parallelism a task

may exploit on m cores, which in turn determines the amount of blocking

impacting over higher-priority tasks. This information must therefore be

incorporated in the analysis to better upper-bound the lower-priority inter-

ference. To do so, we propose a new analysis method that incorporates

the precedence constraints among NPRs, as defined by the edges in the

DAG, into the LP response-time analysis. Our analysis uses the following

definitions:

Definition 4.7: The LP worst-case workload of a task executing on c cores is

the sum of the WCET of the c largest NPRs that can execute in parallel.

4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach 89

Definition 4.8. The overall LP worst-case workload of a set of tasks executing

on m cores is the maximum time used for executing this set in a given

execution scenario, i.e. fixing the number of cores used for each task.

Given a task τk, our analysis derives the lower-priority interference of

lp(k) by computing new ∆m
k and ∆m+1

k factors in a three-step process:

1. Identify the LP worst-case workload of each task in lp(k) when execut-

ing on 1 tom cores;

2. Compute the overall LP worst-case workload of lp(k) for all possible

execution scenarios;

3. Select the scenario that maximizes the lower-priority interference.

In order to facilitate the explanation of the three steps, the next sections con-

sider an lp(k) composed of four DAG-tasks {τ1, τ2, τ3, τ4} (see Figure 4.7),
executed on anm = 4 core platform.

The nodes (NPRs) of τi are labeled as vi,j with their WCET (Ci,j) between
parenthesis.

4.6.2.1 LP worst-case workload of a task executing on c cores
Given a task τi, this step computes an array µi of sizem, which includes the

worst-case workload of τi when NPRs are distributed over c cores, being

Figure 4.7 DAGs of lp(k) tasks; the Ci,j of each node vi,j is presented in parenthesis.

90 Mapping, Scheduling, and Schedulability Analysis

c = {1,. . . ,m} the index inside µi. Each element µi[c] is computed as

follows:

µi[c] =
∑ parallel

max
c
{Ci,j}

where maxparallelc is the sum of the c largest NPRs of τi that can execute in

parallel, maximizing the interference when using c cores. To this aim, the sum

must consider the edges of τi’s DAG to determine which NPRs can actually

execute in parallel. Section 4.7.3 presents the algorithm that derives, for each

NPR of τi, the set of NPRs from the same task that can potentially execute in

parallel with it.

Table 4.1 shows the arrayµi for each of the tasks shown in Figure 4.7 with

m = 4. For example, the worst-case workload µ4 [2] occurs when NPRs v4,3
and v4,4 execute in parallel, with an overall impact of 9 time units. τ2 has a

maximum parallelism of 2, so µ2 [3] and µ2 [4] are equal to 0.

4.6.2.2 Overall LP worst-case workload
The lower-priority interference depends on how the execution of lp(k) is

distributed across the m cores. We define em = {s1,. . . ,sp(m)} as the set of

different execution scenarios (and so interference scenarios) of lp(k) running

on m cores. p(m) is equal to the number of partitions4 of m, and can be

computed with the pentagonal number theorem from Euler’s formulation:

∑

q

(−1)qp

(

m−
q(3q − 1)

2

)

where the sum is over all nonzero integers q (positive and negative) [22].

Table 4.1 Worst-case workloads of tasks in Figure 4.7

µ1[c] µ2[c] µ3[c] µ4[c]

C1,6 or C1,8 = 3 C2,2 = 4 C3,1 = 6 C4,1 or C4,4 = 5

C1,6 + C1,7 = 5 C2,2 + C2,3 = 7 C3,3 + C3,4 = 7 C4,4 + C4,3 = 9

C1,6 + C1,4 +
C1,5 = 6

0 C3,3 + C3,4 + C3,2

or C3,5 = 9
C4,4 + C4,3 +
C4,5 = 12

C1,2 + C1,3 +
C1,4 + C1,5 = 5

0 C3,2 + C3,3 +
C3,4 + C3,5 = 11

0

4In number theory and combinatory, a partition of a positive integerm is a way of writing

m as a sum of positive integers. Two sums that differ only in the order of their summands are

considered the same partition.

4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach 91

Table 4.2 the five possible execution scenarios assuming four cores [e4,

p(4) = 5]. The number of tasks being executed in each execution scenario sl
in em is given by its cardinality, i.e., |sl|.

Each execution scenario sl in e
m has an associated overall worst-case

workload, computed as:

ρk[sl] =
∑ sl

max
|sl|
{µi}

Where the right-hand side represents the sum of the |sl| largest combina-

tions of µi that fits in the scenario sl, and so maximizes the interference.

Section 4.7.3 formulates the above equation as an ILP.

Table 4.3 shows the ρk[sl] of each execution scenario and the µi[c]

considered in Table 4.1 and 4.2. For instance, the overall worst-case workload

of s3, ρk[s3] = 19 results when τ4 executes on two cores (µ4 [2] = 9), and τ2
and τ3 execute on one core each (µ2 [1] = 4 and µ3 [1] = 6).

4.6.2.3 Lower-priority interference
Finally, given the overall worst-case workload for each scenario µk[sl], the

lower-priority interference of lp(k) can be reformulated as the maximum

overall worst-case workload among all scenarios:

∆m
k = max

sl∈em
ρk[sl]

∆m−1
k = max

sl∈em−1
ρk[sl]

Table 4.2 Five possible scenarios of taskset in Figure 4.7, assuming a four core system

sp ∈ e
4 |sp| Execution scenario description

s1 = {1, 1, 1, 1} 4 Each task runs in 1 core

s2 = {2, 2} 2 Each task runs in 2 cores

s3 = {2, 1, 1} 3 1 task runs in 2 cores and 2 task in 1 cores each

s4 = {3, 1} 2 1 task runs in 3 cores and 1 task in 1 core

s5 = {4} 1 1 task runs in 4 cores

Table 4.3 Computed worst-case workload for each of the scenarios in Table 4.2

sl ρk[sl]

s1 µ1[1] + µ2[1] + µ3[1] + µ4[1] = 18
s2 µ2[2] or µ3[2] + µ4[2] = 16
s3 µ4[2] + µ2[1] + µ3[1] = 19
s4 µ4[3] + µ3[1] = 18
s5 µ3[4] = 11

92 Mapping, Scheduling, and Schedulability Analysis

where the right-hand sides provide the maximumworst-case workload among

em and em−1 scenarios.

The lower-priority interference of lp(k) is given by the maximum ρk[sl],
i.e., ∆4

k = 19. On the contrary, the pessimistic approach selects the

sum of the m largest NPRs among all lower-priority tasks, i.e., ∆4
k =

C3,1 + C4,1 + C4,4 + C2,2 = 20. The pessimism comes from the fact

that nodes v4,1 and v4,4 cannot be executed in parallel. Similarly, ∆3
k = 15,

while the pessimistic approach gives ∆3
k = 16.

Clearly, LP-ILP allows computing a tighter lower-priority interference, at

the cost of increasing the complexity of deriving it, compared to the LP-max

approach.

4.6.3 Computation of Response Time Factors of LP-ILP

We showed that the schedulability of a DAG-based task-set under LP-ILP can

be checked in pseudo-polynomial time if, beside deadline and period, we can

derive: (1) the worst-case workload generated by each lower-priority task τi
(i.e., µi), and (2) the overall worst-case workload of lower-priority tasks for

each execution scenario sl in em (i.e., ρm[sl]). The former can be computed

at compile-time for each task, and it is independent from the task-set; the

latter requires the complete task-set knowledge, and is computed at system

integration time. In this section, we present the algorithms to compute these

factors.

4.6.3.1 Worst-case workload of τ i executing on c cores: µi[c]
µi[c] is determined by the set of c NPRs of τi that can potentially execute in

parallel. As a first step, we identify for each NPR the set of potential parallel

NPRs; then, we compute the interference of parallel execution when different

numbers of cores are used.

(1) Computing the set of parallel NPRs: Given the DAG Gi = (Vi, Ei),
Algorithm 4.2 computes, for each NPR vi,j in Vi, the set of NPRs that

can execute in parallel with it.

The algorithm takes as input the DAG of task τi, the topological order of Gi,

and, for each node vi,j, the sets:

1. SIBLING(vi,j), which contains the nodes which have a common prede-

cessor with vi,j;

2. SUCC(vi,j), which contains the nodes reachable from vi,j; and

4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach 93

Algorithm 4.2 Parallel NPRs of τi

Input: (1) Gi = (Vi, Ei); (2) TOPOLOGICAL-ORDER(Gi);
(3) SIBLING (vi,j), SUCC (vi,j), PRED(vi,j) ∀vi,j ∈ V i

Output: Par(vi,j), ∀vi,j ∈ V i

1: procedure PARALLEL-NPR

2: for each vi,j ∈ Vi do

3: Par(vi,j)← ∅
4: for each vi,l /∈ SIBLING (vi,j) do
5: if (vi,j , vi,l) /∈ Ei and (vi,l, vi,j) /∈ Ei then

6: Succ← SUCC (vi,l)\SUCC(vi,j)
7: Par(vi,j)← Par(vi,j) ∪ {vi,l} ∪ Succ
8: end if

9: end for

10: end for

11: for each vi,j ∈ TOPOLOGICAL-ORDER(Gi) do

12: for each vi,l ∈ PRED(vi,j) do
13: Pred← Par(vi,l)\ PRED(vi,j)
14: Par(vi,j)← Par(vi,j) ∪ Pred
15: end for

16: end for

17: end procedure

3. PRED(vi,j), which contains the nodes from which vi,j can be reached.

It outputs, for each vi,j, the set Par(vi,j), containing the nodes that can

execute in parallel with it.

The algorithm iterates twice over all nodes in Vi. The first loop (lines 2–10)

adds to Par(vi,j) (line 7) the set of sibling nodes vi,l that are not connected

to vi,j by an edge (line 5), and the nodes reachable from vi,l [SUCC(vi,l)],
discarding those connected to vi,j by an edge (line 6). The second loop (lines

11–15), which traverses Vi in topological order, adds to Par(vi,j) (line 14) the
set of nodes Par(vi,l) computed at line 7, being vi,l a node from which vi,j
can be reached [vi,l in PRED(vi,j)]. From Par(vi,l) we discard the nodes from
which vi,j can be reached (line 13).

As an example, consider node v1,3 of τ1 in Figure 4.7. The first loop

iterates over the sibling nodes v1,2, v1,4, and v1,5. None of them is con-

nected to v1,3 by an edge (lines 4 and 5); also, SUCC(v1,2) = {v1,6,v1,8},

SUCC(v1,4) = {v1,7,v1,8}, and SUCC(v1,5) = {v1,7,v1,8}. The algorithm

discards from SUCC(v1,2) nodes {v1,6,v1,8}, since they are already included
in SUCC(v1,3) (line 6). This is not the case of v1,7 in SUCC(v1,4) and

SUCC(v1,5). Hence, we obtain Par(v1,3) = {v1,2,v1,4,v1,5,v1,7}. The second

94 Mapping, Scheduling, and Schedulability Analysis

loop does not add new nodes to Par(v1,3) because the unique node from

which v1,3 can be reached is v1,1, and Par(v1,1) is empty. When the second

loop examines node v1,7, the two sets Par(v1,4) and Par(v1,5) are considered,
since v1,4,v1,5 in PRED(v1,7). Then, nodes v1,2, v1,3, and v1,6 are included in
Par(v1,7), since none of them belongs to PRED(v1,7).

(2) Impact of parallel NPRs on c cores: For any task τi, we present an ILP

formulation to compute µi[c], i.e., the sum of the c largest NPRs in Vi

that, when executed in parallel, generate the worst-case workload.

Parameters: (1) c, i.e., the maximum number of cores used by τi; (2) vi,j in
Vi; (3) qi+1, i.e., the number of NPRs; (4) Ci,j; and (5) IsPari,j,k in {0,1},

i.e., a binary variable that takes 1 if vi,j and vi,k can execute in parallel,

0 otherwise.

Problem variables: (1) bj in {0,1}, i.e., a binary variable that takes the value

1 if vi,j is one of the selected parallel NPRs, 0 otherwise, and (2) bj,k = bj
OR bk with bj,k in {0,1}; j 6= k, i.e., an auxiliary binary variable.

Constraints:

1.
qi+1
∑

j=1
bj = c, i.e., only c NPRs can be selected;

2.
qi+1
∑

j=1

qk+1
∑

k=j+1

bj,k IsPari,j,k = c, i.e., the selected NPRs can be executed in

parallel; and

3. bj,k ≥ bj+ bk – 1; bj,k ≤ bj; bj,k ≤ bk, i.e., auxiliary constraints used to

model the logical AND.

Objective function:
m
∑

c=1

∑

∀τjǫlp(k)

wc
iµ

c
i .

4.6.3.2 Overall LP worst-case workload of lp(k) per execution
scenario sl: ρk[sl]

Given the set lp(k) and an execution scenario sl in e
m, we present an ILP for-

mulation to derive ρk[sl], that is, the overall worst-case workload generated

by lp(k) under sl.

Parameters: (1) lp(k); (2) m; (3) sl; and (4) µi[c], for all τi in lp(k), for all

c = 1,. . . ,m.

Problem variable: wc
i , i.e., a binary variable that takes the value 1 on the

selected µi[c] that contributes to the worst-case workload, 0 otherwise.

4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach 95

Constraints:

1.
m
∑

c=1

∑

∀τjǫlp(k)

wc
i = |sl|, i.e., the number of tasks contributing to the worst-

case workload must be equal to the size of the execution scenario;

2. For all τi in lp(k),
m
∑

c=1
wc
i ≤ 1, i.e., each task can be considered at most

in one scenario;

3.
∑

∀τjǫlp(k)

wc
i ≥ 1, c in sl, i.e., for each number of cores considered in sl,

there exist at least one µi[c] that is selected;

4.
m
∑

c=1

∑

∀τjǫlp(k)

wc
i c = m, the number of cores considered ism.

Objective function:max
m
∑

c=1

∑

∀τjǫlp(k)

wc
iµ

c
i .

4.6.4 Complexity

The complexity of the response time analysis is still pseudo-polynomial. We

hereafter discuss the complexity of the LP-ILP analysis.

Algorithm 4.2 requires specifying for each node in Vi the sets SIBLING,

SUCC and PRED, which can be computed in quadratic time in the number

of nodes. Similarly, the complexity of Algorithm 4.1 is quadratic in the size

of the DAG task, i.e., O(|Vk|
2). The ILP formulation to compute µi[c] is

performed for each task (except for the highest-priority one), and the number

of cores ranges from 2 to m, hence the complexity cost is O(nm) O(ilpA).

It is important to remark that Algorithm 4.2 (as well as its inputs) and the

ILP that computes µi[c] are executed at compile-time for each task and are

independent of the task-set and the system where they execute.

ρk[sl] is computed for the execution scenarios em and em−1, and for each

task τk (except for the lowest-priority task τn), hence the complexity cost is:

O(n p(m)) O(ilpB) + O(n p(m−1)) O(ilpB). The cost of solving both ILP

formulations is pseudo-polynomial, if the number of constraints is fixed [23].

Our ILP formulations have fixed constraints, with a function cost of O(ilpA)
and O(ilpB) depending on |Vk| and (m n) respectively.

Therefore, the cost of computing ρk[sl] for e
m dominates the cost of other

operations; hence, the complexity of computing the lower priority interfer-

ence is pseudo-polynomial in the number of tasks and execution scenarios,

i.e., cores.

96 Mapping, Scheduling, and Schedulability Analysis

4.7 Specializing Analysis for the Partitioned/Static
Approach

The use of dynamic schedulers in certain high-criticality real-time sys-

tems may be problematic. In the automotive domain, for example, the

static allocation of system components (named runnables in the AUTOSAR

nomenclature) define a valid application configuration, for which the appli-

cation is tested and validated. This configuration defines a specific data-flow,

i.e., an order in which components process data, and an end-to-end latency

between sensors and actuators, e.g., the gas pedal (sensor) and the injection

(actuator). A dynamic allocation instead generates different data-flows and

sensor-actuator latencies that may result in invalid configurations. The use

of static allocation is therefore of paramount importance for these types of

systems to guarantee the correct functionality.

In this section5, a static allocation of parallel applications is proposed

based on the OpenMP4 tasking model, in order to comply with the restrictive

predictability requirements of safety-critical domains. An optimal task-to-

thread mapping is derived based on an ILP formulation, providing the best

possible response time for a given parallel task graph.

Two different formulations are proposed to optimally deal with both the

tied and untied tasking models. Then, different heuristics are proposed for an

efficient (although sub-optimal) task-to-thread mapping, with a reduced com-

plexity. Experiments on randomly generated workloads and a real case-study

are provided to characterize the worst-case response time of the proposed

mapping strategies for each tasking model. The results show a significant

reduction in the worst-case makespan with respect to existing dynamic map-

ping methods, taking a further step towards the adoption of OpenMP in

real-time systems for an efficient exploitation of future embedded many-core

systems.

4.7.1 ILP Formulation

This section proposes an Integer Linear Programming (ILP) formulation to

solve the problem of optimally allocating OpenMP tasks to threads. The

problem is to determine the minimum time interval needed to execute a given

OpenMP application on m threads, both in the case of tied and untied tasks.

In other words, we seek to derive the optimal mapping of task (or task parts)

to threads so that the task-set makespan is minimized.

5This section was published as a conference paper at AspDAC [30].

4.7 Specializing Analysis for the Partitioned/Static Approach 97

The system model is the same as in the previous sections, with the

following modifications needed to account for the OpenMP task semantics.

An OpenMP application is modeled as an OpenMP-DAG G composed of N

tasks τ1,. . . , τN. Each task τi is composed of ni parts Pi,1,. . . , Pi,ni. TheWorst-

Case Execution Time (WCET) of part Pi,j of task τi is denoted as Ci,j. The

total number of threads where tasks can be executed on a multi-core platform

is denoted as m.

4.7.1.1 Tied tasks
The optimal allocation problem for tied tasks is modeled by starting from the

set of tasks τ1,. . . , τN and by adding a sink task τN+1 with a single task part

having null WCET (i.e., CN+1,1 = 0) and with incoming edges from the task

parts without any successors in the original OpenMP-DAG.

The starting time of τN+1 corresponds to the minimum completion time

of the considered application; hence it represents our minimization objective.

Input parameters: (1) m: number of threads available for execution;

(2) N: number of tasks in the system; (3) Ci,j: WCET of the j-th part of task τi;
(4) G = (V, E): DAG representing the structure of the OpenMP application;

(5) D: relative deadline of the OpenMP-DAG; (6) succi,j: set of immediate

successors of part Pi,j of τi; (7) reli: set of tasks having a relative relationship
with τi (either as antecedents or descendants).

Problem variables: (1) Xi,k in {0,1}: binary variable that is 1 if task τi is
executed by thread k, 0 otherwise; (2) Yi,j,k in {0,1}: binary variable that is 1

if the j-th part of task τi is executed by thread k, 0 otherwise; (3) ψi,j: integer

variable that represents the starting time of part Pi,j of task τi (i.e., its initial
offset in the optimal schedule); (4) ai,j,w,z,k, bi,w,k in {0,1}: auxiliary binary

variables.

Objective function: The objective function aims to minimize the starting

time of the dummy sink task τN+1: min ψN+1,1 and represents the minimum

makespan. A scheduling can be declared feasible if the minimum makespan

is ψN+1,1 ≤ D.

Initial Assumptions: (i) The first part of the first task must begin at time

t = 0: ψ1,1 = 0; (ii) The first task is executed by thread 1:

X1,1 = 1

X1,k = 0 ∀k ∈ {2, . . . ,m}

Y1,j,1 = 1 ∀j ∈ {1, . . . , n1}

Y1,j,m = 0 ∀j ∈ {1, . . . , n1} , ∀k ∈ {2, . . . ,m}

98 Mapping, Scheduling, and Schedulability Analysis

Constraints

1. Each task is executed by only one thread:

m
∑

k=1

Xi,k = 1 ∀i ∈ {1, . . . , N}

This constraint enforces the tied scheduling clause, i.e., for each task τi,
only one binary variableXi,k is set to 1 among them variables referring

to the available threads.

2. All parts of each task are allocated to the same thread:

ni ·Xi,k =

ni
∑

j=1

Yi,j,k ∀i ∈ {1, . . . , N} , ∀k ∈ {1, . . . ,m}

This constraint establishes the correspondence between the Xi,k and

Yi,j,k variables.
3. All precedence requirements between task parts must be fulfilled:

∀i, ω ∈ {1, . . . , N + 1} , ∀j ∈ {1, . . . , ni} ,

∀z ∈ {1, . . . , nw} |Pω,z ∈ succi,j ,

ψi,j + Ci,j ≤ ψw,z.

For each pair of task parts, if a precedence constraint connects them, then

the latter cannot start until the former has completed execution. Notice

that this constraint also applies to the sink task τN+1.

4. The execution of different task parts must be non-overlapping:

∀i, ω ∈ {1, . . . , N} , ∀j ∈ {1, . . . , ni} , ∀z ∈ {1, . . . , nw} ,

∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

(Yi,j,k = 1 ∧ Yw,z,k = 1)⇒

(ψi,j + Ci,j ≤ ψw,z ∨ ψw,z + Cw,z ≤ ψi,j)

In other terms, if two task parts are allocated to the same thread, then

either one finishes before the other begins, or vice versa. This constraint

can be written as:

4.7 Specializing Analysis for the Partitioned/Static Approach 99

∀i, ω ∈ {1, . . . , N} , ∀j ∈ {1, . . . , ni} , ∀z ∈ {1, . . . , nw} ,

∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

ψi,j + Ci,j ≤ ψw,z +M(2 + aa,j,w,z,k − Yi,j,k − Yw,z,k)

ψw,z + Cw,z ≤ ψi,j +M(3− aa,j,w,z,k − Yi,j,k − Yw,z,k)

where M is an arbitrarily large constant. Indeed, if ai,j,w,z,k = 1, then
the first inequality is always inactive, while the second one is active only

if Yi,j,k = 1 and Yw,z,k = 1. Similarly, if ai,j,w,z,k = 0, then the first

inequality is active only if Yi,j,k = 1 and Yw,z,k = 1, while the second
one is always inactive.

5. The Task Scheduling Constraint 2 (TSC 2) as described in Chapter 3

must be satisfied:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,

(Xi,k = 1 ∧Xw,z = 1)⇒

(ψi,ni
+ Ci,ni

≤ ψw,1) ∨ (ψw,nw + Cw,nw ≤ ψi,1).

This constraint imposes that one task cannot be allocated to a thread where

another task that is neither a descendant nor an antecedent of the considered

task is suspended. This is equivalent to saying that if two tasks not related

by any descendance relationship are allocated to the same thread, then one of

them must have finished before the other one begins. Therefore, the last task

part of either task plus its WCET must be smaller than or equal to the starting

time of the first task part of the other one. As for constraint (iv), it can be

rewritten as:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,

ψi,ni
+ Ci,ni

≤ ψw,1 +M(2 + bi,w,k −Xi,k −Xw,k)

ψw,nw + Cw,nw ≤ ψi,1 +M(3− bi,w,k −Xi,k −Xw,k).

Note that all constraints [except constraint (iii)] need not be applied to τN+1.

4.7.1.2 Untied tasks
The ILP formulation proposed for tied tasks can be applied for untied tasks

with the following modifications. The initial assumption (ii) is replaced as

follows: Y1,1,1 = 1.

100 Mapping, Scheduling, and Schedulability Analysis

Since different parts of the same task are allowed to be executed by

different threads, constraints (i) and (ii) are replaced by:

m
∑

k=1

Yi,j,k = 1∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , ni}

and the variables Xi,k are no longer needed. Finally, constraint (v) does not

apply for untied tasks and thus the auxiliary variables bi,w,k are not needed.

4.7.1.3 Complexity
The problem of determining the optimal allocation strategy of an OpenMP-

DAG composed of untied tasks has a direct correspondence with the

makespan minimization problem of a set of precedence-constrained jobs (task

parts in our case) on identical processors (threads in a team in our case). This

problem, also known as job-shop scheduling, has been proven to be strongly

NP-hard by a result of Lenstra and Rinnooy Kan [18]. The complexity of the

problem for the tied tasks cannot be smaller than in the untied case. Indeed,

when each task has a single task part, the problem for tied tasks reduces to

that for untied tasks.

In the presented ILP formulations for both the tied and untied tasks, the

number of variables and the number of constraints grow asO(N2p2m), where
p = maxi=1,...,N ni.

Given the problem complexity and poor scalability of the ILP formula-

tion, the next section proposes an efficient heuristic for providing sub-optimal

solutions within a reasonable amount of time.

4.7.2 Heuristic Approaches

In the context of production scheduling, several heuristic strategies have

been proposed to solve the makespan minimization problem of precedence

constrained jobs on parallel machines [20, 24]. More specifically, different

priority rules have been proposed in the literature to sort a collection of

jobs subject to arbitrary precedence constraints on parallel machines. Such

ordering rules allow selecting the next job to be executed in the set of ready

jobs.

The ordering rules that have been shown to perform well in the context of

parallel machine scheduling are [20, 24]:

1. Longest Processing Time (LPT): The job with the longest WCET is

selected;

4.7 Specializing Analysis for the Partitioned/Static Approach 101

2. Shortest Processing Time (SPT): The job with the shortest WCET is

selected;

3. Largest Number of Successors in the Next Level (LNSNL): The job

with the largest number of immediate successors is selected;

4. Largest Number of Successors (LNS): The job with the largest number

of successors overall is selected;

5. Largest Remaining Workload (LRW): The job with the largest work-

load to be executed by its successors is selected.

We build upon such results to make them applicable to the considered

problem. At any time instant, the set of ready jobs of a given instance of an

OpenMP-DAG corresponds to the set of task parts that have not completed

execution and whose precedence constraints are fulfilled.

This section presents an algorithm for allocating tied and untied task

parts on the different threads following one of the above-mentioned ordering

criteria, such that the partial ordering between task parts is respected.

4.7.2.1 Tied tasks
Algorithm 4.3 instantiates the procedure for the case of tied tasks, for which

existing heuristic strategies cannot be directly applied. The algorithm takes

the structure G of an OpenMP-DAG and the number of available threads

m as inputs, and it outputs a heuristic allocation of tied OpenMP tasks

to threads.

The idea behind the algorithm is to allocate ready task parts to the first

available thread, following a pre-determined criterion to choose among ready

tasks, while enforcing the specific semantics of the OpenMP tasking model.

First, a list R of ready task parts is initialized with P1,1, and an array L of

sizem with null initial values is used to store the last idle time on each thread

(lines 2–3). The while loop at lines 4–25 iterates until all task parts have

been allocated, i.e., until the size of list A, which contains the allocated jobs,

reaches the total number of parts in the task-set. At each iteration, a new

task part is allocated to one of the threads. Specifically, at line 5, the index

k of the earliest available thread is determined by function FirstIdleThread.

Then, the procedure NextReadyJob returns the ready task part Pi,j selected

according to one of the ordering rules described above. The allocation of the

selected task part must always respect TSC 2. Hence, any time the first part of

a new task is selected, the function must check its descendance relationships

with the tasks currently suspended on thread k, stored in the list Sk. If Pi,j

is the first part of τi (line 7), then it is allocated on core k; otherwise, it is

102 Mapping, Scheduling, and Schedulability Analysis

Algorithm 4.3 Heuristic allocation of an OpenMP application comprising tied tasks

1: procedure HEURTIED(G,m)
2: A← ∅;R← P1,1

3: L← ARRAY (m, 0) : S ← ARRAY(m, ∅)
4: while SIZE(A)! =

∑

N
i=1ni do

5: k ← FIRSTIDLETHREAD(L)

6: Pi,j ← NEXTREADYJOB(k,R, Sk, G)
7: if j == 1 then

8: θi ← k
9: if j! = ni then

10: Sk ← APPEND(i, Sk)
11: end if

12: else if j == ni then

13: Sk ← REMOVE (i, Sk)
14: end if

15: ψi,j = max(Lθi , ψi,j);Lθi ,← Lθi + Ci,j

16: A← APPEND (Pi,j , A);R← REMOVE (Pi,j , R)
17: for P k,z|(Pi,j , Pk,z) ∈ E do

18: if ψk,z < ψi,j + Ci,j then

19: ψk,z ← ψi,j + Ci,j ;Fk,z = Fk,z + 1
20: if F k,z == SIZE(INEDGESk,z) then

21: R← APPEND (Pk,z, R)
22: end if

23: end if

24: end for

25: end while

26: return maxmi=1Li

27: end procedure

allocated on thread θi, according to the tied scheduling clause. Also, if that

task part is not the final one (line 9), τi is appended to the list of tasks currently
suspended on thread k. Otherwise, if Pi,j is the final part of τi (line 12), τi can
be removed from the list of tasks currently suspended on thread k. In both

cases, the starting time of Pi,j is updated, as well as the last idle time on

thread k (line 15). In addition, Pi,j is added to the list of allocated jobs and

removed from the list of ready jobs (line 16). Once Pi,j has been allocated,

other jobs may become ready. All the successors of Pi,j are scanned and an

internal counter (Fk,z) is incremented for each vertex (for loop at lines 17–

24). Once the counter reaches the number of its immediate predecessors, the

task part may be appended to the list of ready vertices (line 21). Finally, the

makespan corresponding to the generated allocation is returned. At the end of

4.7 Specializing Analysis for the Partitioned/Static Approach 103

the algorithm, ψi,j stores the starting time of any part Pi,j in the final schedule,

and θ stores the mapping of tasks to threads.

The algorithm runs in polynomial time in the size of the task-set;

specifically, the time complexity is O

(

(

∑N
i=1 ni

)2
)

.

4.7.2.2 Untied tasks
Algorithm 4.3 can be applied also in the case of untied tasks with some

simplifications. In particular, the function NextReadyJob does not need to

check the validity of TSC 2. Hence, the array S is not required, and all the

operations on S at lines 7–14 do not need to be performed. On the other

hand, the algorithm must keep track of the thread associated to each task part

(instead of each task).

4.7.3 Integrating Interference from Additional RT Tasks

We now generalize the static setting by considering a set of n OpenMP appli-

cations modeled as a collection of OpenMP DAGs Γ = {G1,. . . ,Gn}. Each

DAG is released sporadically (or periodically) and has a relative deadline Di,

which is constrained to be smaller than or equal to its corresponding period

(or inter-arrival time) Ti.
We assume that parts of each tasks are statically partitioned to the m

available threads. At any time instant, the scheduler selects among the ready

task parts the one that should be executed by a given thread according

to partitioned fixed-priority preemptive scheduling. In addition, we assume

that OpenMP applications are statically prioritized, i.e., each DAG Gi is

associated with a unique (fixed) priority that is used by the scheduler to select

which task parts should be executed at any time instant by any of the threads.

In order to compute an upper-bound on the response time Ri of a given

OpenMP-DAGGi, we proceed by computing an upper-bound on the response

time of each task part in the OpenMP-DAG, following a predefined order

dictated by any topological sorting of the DAG. At each step, the response

time of the considered vertex is computed considering all its immediate

predecessors, one at a time. A safe upper-bound on the response time of the

vertex under analysis will be selected as the maximum of such values. The

maximum response time among vertices without successors will be selected

as upper-bound to the response time of the DAG-task Gi.

104 Mapping, Scheduling, and Schedulability Analysis

Figure 4.8 Tasks example.

4.7.4 Critical Instant

We hereafter prove that the synchronous periodic arrival pattern does not

represent the worst-case release sequence for the OpenMP-DAG task model

assumed. Consider a task-set composed of two OpenMP-DAG tasks G1 and

G2, whose structure and parameters are illustrated in Figure 4.8. The figure

also reports the static allocation of task parts to threads: parts P1,1, P1,2, P1,4,
and P2,1 are allocated to thread m1, while part P1,3 is allocated to thread m2.

We can immediately see that R1 = 7, as G1 is the highest priority RT

task in the system. In order to compute the response time of G2, we focus on

thread m1 and first consider the synchronous periodic arrival pattern for G1,

which produces the schedule in Figure 4.9a and yields a response time of 21

time units for G2. However, if we consider the release pattern in Figure 4.9b,

where the release of G1 has an offset of two time units, we observe that the

response time of G2 becomes equal to 23.

This example shows that it is very difficult to exactly quantify the inter-

ference a task may suffer from higher-priority tasks in the worst-case. This is

mainly due to the precedence constraints between parts of the same tasks, and

to the fact that any vertex is allowed to execute on its corresponding thread

only when all its predecessors (possibly allocated to different threads) have

completed their execution. In order to overcome these problems, we derive

a safe upper-bound on the response time of a given task by considering the

densest possible packing of jobs generated by a legal schedule in any time

interval. Specifically, we consider a pessimistic scenario (see Figure 4.9c):

• the first instance of a higher-priority task is released as late as possible;

• subsequent instances are released as soon as possible;

• higher-priority jobs are considered as if precedence constraints were

removed (their WCET is “compacted”).

4.7 Specializing Analysis for the Partitioned/Static Approach 105

Figure 4.9 Different release patterns for the example of Figure 4.8. (a) represents the

most optimistic case, while (c) the most pessimistic, i.e., yelding to the highest WCET.

(b) represents an intermediate case.

4.7.5 Response-time Upper Bound

Algorithm 4.4 computes an upper-bound on the response time of an OpenMP-

DAG by considering the above-described pessimistic scenario leading to the

densest possible packing of higher-priority task parts:

The function SELFINTERFERENCE calculates the self-interference suf-

fered by task part Pk,i as the sum of the WCETs of all parts Pk,j belonging to

the same task and such that:

1. they are allocated to the same thread as Pk,i;

2. there is no path starting at Pk,i that can reach Pk,j ;

3. there is no path starting at Pk,j that can reach Pk,i.

With the above algorithm in place, different heuristics can be proposed to find

a feasible allocation of task parts to threads/cores. Among the ones we tried,

we found that the best schedulability performances are obtained with a Best

Fit approach that works as follows:

• It assigns RT tasks in non-increasing priority order, i.e., starting from

the highest priority task and moving towards lower priority ones.

• For each task it defines a topological order for all task parts.

106 Mapping, Scheduling, and Schedulability Analysis

Algorithm 4.4 Upper-bound on the response time of an OpenMP-DAG by considering

the densest possible packing of higher-priority task parts

1: procedure DENSESTPACKINGALG(Gk)

2: σ→ TOPOLOGICALORDER(Gk)

3: for Pk,i ∈ σ from source to sink do

4: Rmax = maxj∈PRED(k,i)Rk,j

5: S = SELFlNTERFERENCE(k, i)
6: R← Ck,i + S
7: Rprev ← 0
8: while R 6= Rprev do

9: Rprev ← R
10: R← Ck,i + S
11: for Ph,j such that h < k and θh,j == θk,i do

12: R← R+
⌈

Rprev+Rh,j−Ch,j

Th

⌉

Ch,j

13: end for

14: end while

15: If Rmax +R > Dk then

16: sched← 0
17: break

18: else

19: sched← 1
20: Rk,i ← Rmax +R
21: end if

22: end for

23: return {sched,Rk,sink}
24: end procedure

• Following the topological order, each task part is assigned to the core

that minimizes its partial response time, i.e., the response time of the RT

task until the considered task part.

• If any of the considered task parts has a partial response time that

exceeds its relative deadline, the algorithm fails, declaring the RT

task-set not schedulable.

The partial response time of each task part can be easily computed using

Algorithm 4.4, executing the operations within the for loop at line 3. Once

the selection is made for a task part, there is no need to recheck the

schedulability of the parts already assigned belonging to higher priority

tasks, since this last assignment does not interfere with them. However, it

is necessary to reconsider the task parts belonging to the same RT task that

may experience an increase in the interference. The only task parts that may

be affected by the last task part assigned are those that have no precedence

constraints with it. For these ones, we re-compute their partial response-time

4.9 Summary 107

after the new assignment. Since there is no backtracking in this case, the

complexity of the heuristic remains reasonable, at the penalty of some added

pessimism.

4.8 Scheduling for I/O Cores

This paragraph briefly describes the scheduler adopted at host level, i.e., in

the I/O cores.

According to system requirements, the OS running on the host proces-

sor must be Linux. Moreover, the Linux kernel must be patched with the

PREEMPT_RT patch6. This is an on-going project supported by the OSADL

association7 to add real-time performance to the Linux kernel by reducing the

maximum latency experienced by an application, mainly through preemptible

spinlocks and in-thread interrupt management (See also essential work in

[25–38]). The patch makes the system more predictable and deterministic;

however, it often increases the average latency. Currently, the patch only par-

tially works on the reference platform due to missing support for SMP in the

Linux kernel; full support will be added during the next months. Concerning

the scheduling policy, the OS must provide a fixed-priority preemptive FIFO-

scheduling algorithm. Therefore, the basic scheduling algorithm will be the

SCHED_FIFO policy specified by the POSIX standard. The optional require-

ment R5.21 suggests to have a Linux kernel higher than 3.14 for investigating

potential benefits given by the dynamic-priority SCHED_DEADLINE Linux

scheduler. This possibility will be explored at a later stage of the project.

Access to shared resources in the host cores is handled through the Priority

Inheritance (PI) policy provided by the Linux kernel.

4.9 Summary

In this chapter, we described the design choices related to the implementation

of a partitioned scheduler for allocating the computing resources to the

different threads in the system. In particular, we detailed the thread model

adopted in the project, and the local scheduler adopted at core level, based on

fixed thread priorities.

6PREEMPT_RT Linux patch, https://rt.wiki.kernel.org
7OSADL, Open Source Automation Development Lab, http://www.osadl.org/

108 Mapping, Scheduling, and Schedulability Analysis

Such a scheduler has then been enhanced with the enforcement of a

limited pre-emption scheduling policy that corresponds to the execution

model supported by the OpenMP tasking model, as well as allowing increas-

ing the predictability of the analysis, without sacrificing the schedulability.

According to the limited pre-emption scheduling model, each thread can be

pre-empted only at particular pre-emption points. The framework provides

a method to compute the length of the largest non-preemptive region that

can be tolerated by each thread (at each different priority). Then, threads

execute along non preemptive regions. In a generic model such as the one

introduced in this chapter, this means inserting the minimum possible number

of preemption points such that the schedulability of higher priority thread is

not affected. Of course, specifying this model so that it adheres to OpenMP

semantics means that the identification of these preemption points exploits

information inherited from the OpenMP task semantics, i.e., OpenMP TSPs

will be used as potential candidates.

We then described the implementation of an enhanced global scheduler

with migration support. Such a scheduler is integrated with the OpenMP

dynamic mapping policy to allow for a work-conserving resource allocation

of computing resources. The scheduler adopts a cluster-wide ready queue

where threads are ordered according to their priorities. Preemptions are

allowed only at task-part boundaries when a TSP is reached. TSPs are also

natural polling points to deal with new incoming offloads without requiring

interrupts.

The task model adopted, namely the cp-task model, generalizes the classic

sporadic DAG task model by integrating conditional branches. The topologi-

cal structure of a cp-task graph has been formally characterized by specifying

which connections are allowed between conditional and non-conditional

nodes. Then, a schedulability analysis has been derived to compute a safe

upper-bound on the response-time of each task in pseudo-polynomial time.

Besides its reduced complexity, the proposed analysis has the advantage

of requiring only two parameters to characterize the complex structure of

the conditional graph of each task: the worst-case workload and the length

of the longest path. Algorithms have also been proposed to derive these

parameters from the DAG structure in polynomial time. Simulation exper-

iments carried out with randomly generated cp-task workloads and real

test-cases clearly showed that the proposed approach is able to improve over

previously proposed solutions for tightening the schedulability analysis of

sporadic DAG task systems. The first formulation of the analysis considered

a full-preemption model (see [18]). Then, it has been extended to limited

References 109

preemptive scheduling [24], and, finally, it has been specialized also for

non-conditional DAGs [20, 29].

In this chapter, two methods have been proposed to compute the lower-

priority interference: (1) a pessimistic but easy-to-compute method, named

LP-max, which upper bounds the interference by selecting the NPRs with

the longest worst-case execution time; and (2) a tighter but computationally-

intensive method, named LP-ILP, which also takes into account precedence

constraints among DAGs nodes in the analysis. Our results demonstrate

that LP-ILP increases the accuracy of the schedulability test with respect

to LP-max when considering DAG-based task-sets with different levels of

parallelism.

The chapter then proposed an ILP formulation to derive an optimal static

allocation compliant with the OpenMP4 tied and untied tasking model. With

the objective of reducing the complexity of the ILP solver, five heuristics

have been proposed for an efficient (although sub-optimal) allocation. Results

obtained on both randomly generated task-sets and the 3DPP application

(from the avionics domain) show a significant reduction in the worst-case

makespan with respect to an existing schedulability upper-bound for untied

tasks. Moreover, the proposed heuristics perform very well, closely matching

the optimal solutions for small task-set, and outperforming the best feasible

solution found by our ILP (after running the solver for a certain amount of

time) for large task-sets and the 3DPP.

References

[1] Liu, C., Layland, J., Scheduling algorithms for multiprogramming in a

hard real-time environment. J. ACM 20, 46–61, 1973.

[2] Leung, J. Y. T., Whitehead, J., On the complexity of fixed-priority

scheduling of periodic, real-time tasks. Perform. Eval. 2, 237–250, 1982.

[3] Buttazzo, G., Bertogna, M., Yao, G., “Limited preemptive schedul-

ing for real-time systems: a survey.” IEEE Transactions on Industrial

Informatics, 9, 3–15, 2013.

[4] Lehoczky, J., Sha, L., Ding, Y., “The rate monotonic scheduling algo-

rithm: Exact characterization and average case behavior.” In Proceed-

ings of the Real-Time Systems Symposium—1989, pp. 166–171. IEEE

Computer Society Press, Santa Monica, California, USA, 1989.

[5] Dhall, S. K., and Liu, C. L. On a real-time scheduling problem. Operat.

Res.. 26, 127–140, 1978.

110 Mapping, Scheduling, and Schedulability Analysis

[6] Baruah, S., Cohen, N., Plaxton, G., and Varvel, D., Proportionate

progress: A notion of fairness in resource allocation. Algorithmica 15,

600–625, 1996.

[7] Anderson, A., and Srinivasan, A., “Pfair scheduling: Beyond periodic

task systems.” In Proceedings of the International Conference on Real-

Time Computing Systems and Applications (Cheju Island, South Korea),

IEEE Computer Society Press, 2000.

[8] Zhu, D., Mosse, D., and Melhem, R. G., “Multiple-resource periodic

scheduling problem: how much fairness is necessary?” 24th IEEE Real-

Time Systems Symposium (RTSS) (Cancun, Mexico), 2003.

[9] Cho, H., Ravindran, B., and Jensen, E. D., “An optimal real-time

scheduling algorithm for multiprocessors,” 27th IEEE Real-Time Sys-

tems Symposium (RTSS) (Rio de Janeiro, Brazil), 2006.

[10] Andersson, B., and Tovar, E., “Multiprocessor scheduling with few pre-

emptions.” In Proceedings of the International Conference on Real-Time

Computing Systems and Applications. (RTCSA), 2006.

[11] Funaoka, K., Kato, S., and Yamasaki, N., “Work-conserving opti-

mal real-time scheduling on multiprocessors.” In Proceedings of the

Euromicro Conference on Real-Time Systems, 13–22, 2008.

[12] Funk, S., and Nadadur, V., “LRE-TL: An optimal multiprocessor algo-

rithm for sporadic task sets.” In Proceedings of the Real-Time Networks

and Systems Conference, 159–168, 2009.

[13] Levin, G, Funk, S., Sadowski, C., Pye, I., Brandt, S, “DP-Fair: A Simple

Model for Understanding Multiprocessor Scheduling.” In Proceedings

of the 22nd Euromicro Conference on Real-Time Systems (ECRTS),

Brussels, Belgium, pp. 1–10, 2010.

[14] Funk, S., Nelis, V., Goossens, J., Milojevic, D., Nelissen, G., and

Nadadur, V., On the design of an optimal multiprocessor real-time

scheduling algorithm under practical considerations (extended version).

arXiv preprint arXiv:1001.4115, 2010.

[15] Nelissen, G., Su, H., Guo, Y., Zhu, D., Nelis, V., and Goossens, J., An

optimal boundary fair scheduling. Real-Time Sys. J. 2014.

[16] Regnier, P., Lima, G., Massa, E., Levin, G., and Brandt, S., “RUN: Opti-

mal multiprocessor real-time scheduling via reduction to uniprocessor,”

IEEE 32nd Real-Time Systems Symposium (RTSS), 2011.

[17] Fisher, N., Goossens, J., and Baruah, S., Optimal online multiprocessor

scheduling of sporadic real-time tasks is impossible. Real-Time Sys. J.

45.1-2, 26–71, 2010.

References 111

[18] Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., and

Buttazzo, G., “Response-Time Analysis of Conditional DAG Tasks in

Multiprocessor Systems,” in 27th Euromicro Conference on Real-Time

Systems, ECRTS 2015, Lund, Sweden, pp. 7–10, 2015.

[19] P-SOCRATES Deliverable 3.3.2. Enhanced scheduler with migration

support. Delivery date: 31 March 2016.

[20] Serrano, M. A., Melani, A., Bertogna, M., and Quiñones, E., “Response-

Time Analysis of DAG Tasks under Fixed Priority Scheduling with

Limited Preemptions,” in the Design, Automation, and Test in Europe

conference (DATE), Dresden, Germany, pp. 14–18, 2016.

[21] P-SOCRATES Deliverable 4.2.2. Interference Model. Delivery date: 31

March 2016.

[22] P-SOCRATES Deliverable 1.5.2. Integrated Tool-chain. Delivery date:

31 March 2016.

[23] Blumofe, R. D., and Leiserson, C. E., Scheduling multithreaded compu-

tations by work stealing. J. ACM 46, 720–748, 1999.

[24] Serrano, M. A., Melani, A., Kehr, S., Bertogna, M., and Quiñones, E.,

“An Analysis of Lazy and Eager Limited Preemption Approaches under

DAG-based Global Fixed Priority Scheduling,” in the 19th IEEE Inter-

national Symposium on Object/Component/Service-oriented Real-time

Distributed Computing (ISORC), Toronto, Canada, pp. 16–18, 2017.

[25] Anderson, T. E., “The performance of spin lock alternatives for shared-

memory multiprocessors.” In IEEE Transactions on Parallel and Dis-

tributed Systems, 1990.

[26] Craig, T. S., “Queuing spin lock algorithms to support timing pre-

dictability.” In Proc. Real-Time Sys. Symp. pp. 148–157, 1993.

[27] Shen, C., Molesky, L. D., and Zlokapa, G., “Predictable synchronization

mechanisms for real-time systems.” In Real-Time Systems, 1990.

[28] Graunke, G., and Thakkar, S., “Syncronization algorithms for shared-

memory multiprocessors.” In IEEE Computer, 1990.

[29] Melani, A., Serrano, M. A., Bertogna, M., Cerutti, I., Quiñones, E.,

and Buttazzo, G., “A static scheduling approach to enable safety-critical

OpenMP applications,” in the 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), Tokyo, Japan, pp. 16–19, 2017.
[30] P-SOCRATES Deliverable 3.1. Resource Allocation Requirements.

Delivery date: 30 April 2014.

[31] P-SOCRATES Deliverable 5.2. Operating Systems Support Prototypes.

Delivery date: 31 March 2015.

[32] P-SOCRATES Annex I – Description of Work, 2014.

112 Mapping, Scheduling, and Schedulability Analysis

[33] P-SOCRATES Deliverable 3.2. Mapping Strategies. Delivery date: 31

March 2015.

[34] Joseph, M., Pandya, P., Finding response times in a real-time system.

Comput. J. 29, 390–395, 1986.
[35] Maia, C., Nogueira, L., and Pinho, L. M., “Scheduling Parallel Real-

Time Tasks using a Fixed-Priority Work-Stealing Algorithm on Multi-

processors,” in 8th IEEE Symposium on Industrial Embedded Systems,

Porto, Portugal, pp. 19–21, 2013.

5

Timing Analysis Methodology

Vincent Nélis, Patrick Meumeu Yomsi and Luís Miguel Pinho

CISTER Research Centre, Polytechnic Institute of Porto, Portugal

This chapter focuses on the analysis of the timing behavior of software

applications that expose real-time (RT) requirements. The state-of-the-art

methodologies to timing analysis of software programs are generally split

into four categories, referred to as static, measurement-based, hybrid, and

probabilistic analysis techniques. First, we present an overview of each of

these methodologies and discuss their advantages and disadvantages. Next,

we explain the choices made by our proposed methodology in Section 5.2

and present the details of the solution in Section 5.3. Finally, we conclude the

chapter in Section 5.4 with a summary.

5.1 Introduction

Most of the timing analysis tools focus only on determining an upper-bound

on the Worst-Case Execution Time (WCET) of a program or function code

that runs in isolation and without interruption. In other words, these tools

do not consider all the interferences that the execution of the analyzed code

may suffer when it runs concurrently with other tasks or programs on the

same hardware platform. They typically ignore all execution interferences

due to the contention for shared software resources (e.g., data shared between

several tasks) and shared hardware resources (e.g., shared interconnection

network)1 [1]. Interferences from the operating system (OS) which frequently

re-schedules and interrupts the programs are also ignored by WCET ana-

lyzers. All these interactions between the analyzed task, the OS, and all the

1Note that the OTAWA timing analysis tool is able to analyze parallel code with

synchronization primitives [1].

113

114 Timing Analysis Methodology

other tasks running in the system are assessed separately and sometimes they

are incorporated into a higher-level schedulability analysis. For the timing

requirements to be fulfilled, it is neither acceptable nor realistic to ignore

these sources of contention and interference at the schedulability-analysis

level.

WCET analysis can be performed in a number of ways using different

tools, but the main methodologies employed can be classified into four

categories:

1. Static analysis techniques

2. Measurement-based analysis techniques

3. Hybrid analysis techniques

4. Measurement-based probabilistic analysis techniques

Note that the first three methodologies are usually acknowledged as equally

important and efficient as they target different types of applications. In

addition, they are not comparable in the sense that one technique has not

been proven to dominate the others. The fourth technique is more recent and

thus fewer results are available.

Measurement-based techniques are suitable for software that is less time-

critical and for which the average-case behavior (or a rough WCET estimate)

is more meaningful or relevant than an accurate estimate like, for example,

in systems where the worst-case scenario is extremely unlikely to occur. For

highly time-critical software, where every possible execution scenario must

be covered and analyzed, the WCET estimate must be as reliable as possible

and static or hybrid methods are therefore more appropriate. Measurement-

based probabilistic analysis techniques are also designed for safety-critical

systems to derive safe estimated execution time bounds, but they are not yet

sufficiently mature to report on their efficiency and applicability. Indeed, a

consensus is still to be reached in the research community on this matter.

For the execution time of a single sequential program run in isolation,

Figure 5.1 shows how different timing estimates relate to theWCET and best-

case execution time (BCET). The example program has a variable execution

time that depends on (1) its input parameters and (2) its interactions with the

system resources. The darker curve shows the actual probability distribution

of its execution time; its minimum and maximum are the BCET and WCET

respectively. The lower grey curve shows the set of execution times that

have been observed and measured during simulations, which is a subset

of all executions; its minimum and maximum are the minimal measured

time and maximal measured time, respectively. For both static analysis tools

5.1 Introduction 115

Figure 5.1 Example distribution of execution time (picture taken from [2]).

and measurements-based tools, in most cases the program state space and

the hardware complexity are too large to exhaustively explore all possible

execution scenarios of the program. This means that the measured times are

likely to be optimistic and the estimated times are likely to be pessimistic –

i.e., the measured times will in many cases overestimate the actual BCET

and underestimate the actual WCET, while the approximated estimated times

will in many cases underestimate the actual BCET and overestimate the actual

WCET.

The next four subsections introduce each of the four timing-analysis

methodologies and discuss their potential advantages and disadvantages.

5.1.1 Static WCET Analysis Techniques

Static WCET analysis is usually performed in three conceptual and possibly

overlapping phases.

1. A flow analysis phase in which information about the possible program

execution paths is derived. This step builds a control flow-graph from

the given program with the aim of identifying the worst path (in terms

of execution time).

2. A low-level analysis phase during which information about the execu-

tion time of atomic parts of the code (e.g., instructions, basic blocks, or

larger code sections) is obtained from a model of the target architecture.

3. A final calculation phase in which the derived flow and timing informa-

tion are combined into a resulting WCET estimate.

Flow analysis mostly focuses on loop bound analyses, hence upper-bounds

on the number of iterations in each looping structure must be known to

derive WCET estimates. Similarly, recursion depth must also be bounded.

116 Timing Analysis Methodology

Automatic methods to find these bounds have been proposed by the research

community but for many available tools, some annotations on the maximum

number of iterations in a loop must be provided manually in the code of

the tasks by the application developer. Another purpose of flow analysis is

to identify infeasible execution paths, which are paths that are executable

according to the control-flow graph but are not feasible when considering

the semantics of the program and the possible input data values. Discarding

unfeasible paths at an early stage of the analysis considerably reduces the

search space when trying to identify the longest path.

Low-level analysis methods typically use models of all the hardware

components and their arbitration policies, including CPU caches, cache

replacement policies, write policies, instruction pipeline, memory bus and

their arbitration policies, etc. These models are typically expressed in the

form of complex mathematical abstractions for which a worst-case operation

can be estimated.

Pros: There are a few advantages of using static analysis techniques that rely

on mathematical models.

• It eliminates the need for having the actual hardware available, which

removes the cost of acquiring and setting up the target platform.

• It enables safe WCET upper-bounds to be derived without running the

program on the target platform while still considering the influence of

the state changes in the underlying hardware [3]. State changes include,

e.g., a cache line being evicted, a pipeline being totally flushed out, etc.

Cons: On the downside, we shall note the following drawbacks.

• These approaches rely heavily on having an accurate model of the

timing behavior of all the target hardware components and manage-

ment policies, including modeling features like pipelines and caches

that substantially affect the execution time of the task being executed.

Although the embedded market used to be traditionally dominated by

simple and predictable processors (which used to be moderately “easy”

to model and allowed for deriving safe and tight bounds), with the

increased computational needs of modern embedded systems, designers

have moved to more complex processors which are nowmainly designed

for performance and not for predictability. For this new generation of

processors, designing an accurate hardware model is very challenging,

as all the intricacies contributing to the variation in the task execution

times (e.g., caches, pipelines, out-of-order execution, branch prediction,

5.1 Introduction 117

automatic hardware prefetching, etc.) should be captured by the model to

provide safe and sufficiently tight bounds. Because it is hardly feasible to

accurately model all these acceleration mechanisms and their operation,

static methods typically forbid their use and are struggling to adapt to

modern hardware architectures.

• Besides the difficulty of modeling all these performance-enhancement

hardware features, it must also be noted that generally, chip manufactur-

ers do not publish the details of their internal workings, which further

complicates/makes impossible the design of an accurate model.

• Although static approaches have the advantage of providing safe WCET

bounds, they can be very pessimistic at times. This is because generally,

each hardware resource is modeled separately, and all the worst-case

estimates are then composed together to form the final WCET bound.

However, at runtime, it is often impossible for all these individual worst-

case scenarios to happen at the same time.

• The hardware model must be thoroughly verified to ensure that it indeed

reflects the target hardware; failing to capture inherent performance

enhancing features may result in overestimations of the execution times,

whereas capturing all system states in a complex machine may lead

to unacceptably long analysis times. Building and verifying the timing

model for each processor variant is expensive, time consuming, and

error prone. Custom variants and different versions of processors often

have subtly different timing behaviors, rendering timing models either

incorrect or unavailable.

It is very important to stress at this point that static analysis techniques

have been designed primarily to analyze simple software codes meant to

run on simple and predictable hardware architectures. These targeted codes

are typically implemented by using high-level programming languages and

by obeying strict and specific coding rules to reduce the likelihood of

programmer error.

The modeling framework adopted by static analysis lends itself to formal

proofs which help in establishing whether the obtained results are safe. Today,

there are several staticWCET tools that are commercially available, including

aiT [4] and Bound-T [5]. Note that Bound-T is no longer actively developed

due to both commercial and technical reasons. We redirect the interested

reader to their website (http://www.bound-t.com/) for further details on this

matter. There also exist several research prototypes, including Chronos [6],

developed at National University of Singapore, Heptane [7], developed at

118 Timing Analysis Methodology

the French National Institute for Research in Computer Science and Control

(INRIA) IRISA in France, SWEET [8], developed at Mälardalen Real-Time

Research Center (MRTC) in Sweden, and OTAWA [9] from IRIT in France.

5.1.2 Measurement-based WCET Analysis Techniques

The traditional and most common method in the industry to determine pro-

gram timing is by measurements. The basic principle of this method follows

the mantra that “the processor is the best hardware model.” The program is

executed many times on the actual hardware, with different inputs and in

isolation, and the execution time is measured for each run by instrumenting

the source code at different points [10]. Each measurement run exercises only

one execution path throughout the program, and thus for the same set of input

values, several thousands of program runs must be carried out to capture

variations in execution time due to the fluctuation in system states. For those

measurement-based approaches, the main challenge is essentially to identify

the set of input arguments of the application that leads to its WCET.

Pros:

• Measurements are often immediately at the disposal of the programmer,

and are useful mainly when the average case-timing behavior or an

approximate WCET value is of interest.

• Most types of measurements have the advantage of being performed

on the actual hardware, which avoids the need to construct a hardware

model and hence reduces the overall cost of deriving the estimates.

Cons:

• Measurements require that hardware is available, which might not be the

case for systems for which the hardware is developed in parallel with the

software.

• It may be problematic to set up an environment which acts like the final

system.

• The integrity of the actual code to be deployed in the target hardware is

somehow depleted by the addition of the intrusive instrumentation code

to measure the time, i.e., the measurements themselves add to the execu-

tion time of the analyzed program. This problem can be reduced, e.g., by

using hardware measurement tools with no or very small intrusiveness,

or by simply letting the added measurement code (and thus the extra

execution time) remain in the final program. When doing measurements,

5.1 Introduction 119

possible disturbances, e.g., interrupts, also have to be identified and

compensated for.

• For most programs, the number of possible execution paths is too large

to do exhaustive testing and therefore, measurements are carried out

only for a subset of the possible input values, e.g., by giving potential

“nasty” inputs which are likely to provoke the WCET, based on some

manual inspection of the code. Unfortunately, the measured times will

in many cases underestimate the WCET, especially when complex soft-

ware and/or hardware are being analyzed. To compensate for this, it is

common to add a safety margin to the worst-case measured timing, in

the hope that the actual WCET lies below the resulting WCET estimate.

The main issue is whether the extra safety margin provably provides a

safe bound, since it is based on some informed estimates. A very high

margin will result in resource over-dimensioning, leading to very low

utilization while a small margin could lead to an unsafe system.

5.1.3 Hybrid WCET Techniques

Hybrid approaches, as the name implies, present the advantages of both static

and measurement-based analysis techniques. Firstly, they borrow the flow-

analysis phase from static methods to construct a control flow-graph of the

given program and identify a set of feasible and potentially worst execution

paths (in terms of execution time). Next, unlike static methods that use mathe-

matical models of the hardware components, hybrid tools borrow their second

phase from measurement-based techniques and determine the execution time

of those paths by executing the application on the target hardware platform

or by cycle-accurate simulators. To do so, the source code of the application

is instrumented with expressions (instrumentation points) that indicate that

a specific section of code has been executed. These instrumentation points

are typically placed along the paths identified in the first phase as leading to

a WCET. The application is then executed on the target hardware platform

or on the simulator to collect execution traces. These traces are a sequence

of time-stamped values that show which parts of the application has been

executed. Finally, hybrid tools produce performance metrics for each part of

the executed code and, by using the performance data and knowledge of the

code structure, they estimate the WCET of the program.

Pros:

• Hybrid approaches do not rely on complex abstract models of the

hardware architecture.

120 Timing Analysis Methodology

• They generally provide safeWCET estimates (i.e., higher than the actual

WCET) and those are very often tighter than the estimates returned by

static approaches (i.e., closer to the actual WCET).

Cons:

• The uncertainty of covering the worst-case behavior by the measurement

remains since it cannot be guaranteed that the maximum interference and

the worst-case execution scenario has been experienced when collecting

the traces during the second phase.

• It is required to instrument the application source code, which poses

the same issue of intrusiveness as in measurement-based approaches.

Example tools include Rapitime [11] and MTime [12].

5.1.4 Measurement-based Probabilistic Techniques

With the current hardware designs, the execution time of a given application

depends on the states of the hardware components, and those states depend

in turn on what has been executed previously. A classic example of such

a tight relationship between the application and the underlying hardware

architecture is the execution time discrepancy that can be observed when a

program executes on a processor equipped with a cache subsystem. During

the first execution of the program, every request to fetch instructions and data

results in a cache miss and must be loaded from the main memory. At the

second execution, this information is already in the cache and need not be

reloaded from the memory, which results in an execution time considerably

shorter than during the first run. Because of this dependence to past events, the

set of measured execution times of the same program cannot be seen as a set

of IID (independent and identically distributed) random variables and most

statistical tools cannot be applied to analyze the collected execution traces.

The objective of measurement-based probabilistic techniques is to break

this dependence on past events, so that one can sample the execution behavior

of an application and then derive from the sample probabilistic estimates (of

any parameter) that apply to its overall behavior, under all circumstances

and in all situations. To achieve this goal, researchers are nowadays working

on modifying the hardware components and their arbitration policies to

make them behave in a stochastic manner, without losing too much of their

performance. For example, by replacing the traditional Least Recently Used

(LRU) or Pseudo-LRU (PLRU) cache-replacement policy for a policy that

randomly chooses the cache line to be evicted (and assuming that every cache

5.2 Our Choice of Methodology for WCET Estimation 121

line has the same probability of getting evicted), the time overhead due to

cache penalties and cache line evictions can be analyzed as an IID random

variable with a known distribution. If every source of interference exhibits a

randomized behavior with a known distribution, then the execution time itself

can be analyzed statically.

The current trend in probabilistic approaches is to apply results from the

extreme value theory (EVT) framework to the WCET estimation problem

[12, 13]. In a nutshell, these EVT-based solutions first sample the execution

time of an application by running it over multiple sets of input arguments

on a randomized architecture that is designed to confer a stochastic behavior

on the application runtime. Then, these EVT-based solutions organize the

sample into multiple groups/intervals, analyze the distribution of the local

maxima within these intervals and then estimate how far the execution time

may deviate from the average of that “distribution of the extremes.”

Although considerably new, measurement-based probabilistic techniques

have been the object of tremendous research efforts in the last few years,

most of the breakthroughs in that discipline have been made in the scope of

the European projects PROARTIS [14] and PROXIMA [15].

Pros:

• Provide safe and potentially tighter WCET estimates than static and

hybrid techniques.

• Provide information not only on the WCET of a program but on the

complete spectrum of the distribution of its execution time.

Cons:

• Require modifying the hardware to ensure that the components exhibit

a stochastic behavior.

• As the IID requirement is hardly verified in currently available platforms

(especially COTS platforms), the applicability of measurement-based

probabilistic techniques is limited.

5.2 Our Choice of Methodology for WCET Estimation

As seen in the previous section, there exist several methodologies to estimate

theWCET of an application, each with its own advantages and disadvantages.

Those methodologies fall into the following main categories, namely static,

measurement-based, and hybrid. Here we would like to briefly re-iterate on

why among those four methodologies we decided to use a measurement-

based approach.

122 Timing Analysis Methodology

There is currently an evident clash of opinions in the research community

about which methodology prevails over the others. During the last two years

we had the opportunity to debate with partisans of each of these approaches.

It is important to stress that we do not mean to take a side in this book, simply

because we recognize that each approach comes with its own set of strengths

and weaknesses. Our methodology simply uses the one whose downsides

impede as little as possible our objectives. The following subsections summa-

rize our opinion on the matter and present the observations that have driven

our choice towards using a measurement-based technique.

5.2.1 Why Not Use Static Approaches?

In this section, we present some of the reasons why we did not choose static

approaches to timing analysis, but rather opted for a measurement-based

approach. Before going into the details, it is worth mentioning that recent

COTS manycore platforms present complex and sophisticated architectures

such that it is very challenging at design time, if not impossible, to come up

with an accurate model for all the behavioral implications associated with the

possible operational decisions that the system can take at runtime. This claim

holds true even for the most experienced systems designers.

By using hardware platforms such as the Kalray MPPA-256, or

any other platform designed to provide high performance, we argue

that it is practically infeasible to derive WCET estimates by using

static timing analysis techniques.

In theory, it is always possible to extract safe and reliable timing models

and define mathematical abstractions to study the behavior of a deterministic

system. However, we argue that it is practically challenging to define and use

static mathematical models of the considered platforms, mainly because of:

The inherent system complexity: Typical COTS hardware components

are extremely complex. Currently the market of embedded and electronic

components is unarguably driven by the ever-increasing need for higher

performance. The only way to constantly enhance the performance is to

optimize the produced chips and boards by adding all sorts of optimization

features. Optimization is achieved by allowing the system to take and revise

its operational decisions on-the-fly, at runtime, based on the current workload

of the system or any informational data collected about the running appli-

cation and its environment. Since those decisions are taken at runtime, it is

impossible to predict the exact behavior of the system at the analysis time.

5.2 Our Choice of Methodology for WCET Estimation 123

The only option for static tools is to assume that the system will most of the

time be in a worst-case situation, in which the optimization features will have

very little or no effect. This makes static models pessimistic and the produced

timing estimates may not reflect accurately the actual timing behavior of the

system.

The human resources required: An increased system complexity leads to a

longer time-to-model. Developing a draft model of a platform may take up to

several years to reach the desired level of accuracy and be validated. Besides

this fact, our software stack and methodology aim at being platform agnostic

and therefore be applicable to a large set of hardware platforms. To this end,

they should provide a generic abstraction between the application logic and

the system interfaces so that the development costs and efforts are always

reasonable and limited. This is an objective for which the inherent portability

of measurement-based solutions appears to be more appropriate.

Portability: The “rigidity” of static approaches: Using static timing anal-

ysis techniques goes against our goal of developing a flexible and generic

framework which can be “easily” ported to different platforms from various

vendors. This has been a key driver in the development of our timing anal-

ysis methods, in order to increase the exploitation opportunities in multiple

application domains.

The non-availability of the specification details: To devise accurate models,

all the information about the target platform must be available and accurate.

This is not the case in practice. Chip manufacturer generally keep most

information secret, unfortunately.

The complexity of the execution environment: Static timing analysis tools

are designed primarily to focus on applications executed sequentially in

safety-critical embedded systems. Those systems generally provide a very

time-predictable and “inflexible” runtime environment in which every map-

ping and scheduling decision is statically taken at design-time and is then

final. Unlike those systems, the software stack considered in this book offers a

much more complex and dynamic runtime environment composed of multiple

conceptual layers: the code of the RT tasks is executed in parallel by being

fractioned into OpenMP tasks, those tasks are mapped to clusters, then to

threads inside the clusters, and then these threads are scheduled statically or

dynamically on the cores. The dynamicity of the processor resource usage

ensures a decent application throughput (by maximizing the utilization of

124 Timing Analysis Methodology

the available computing resources) but it naturally impacts adversely on its

time-predictability.

Traditional hybrid approaches are also not applicable as the com-

plexity of the software stack makes the static control-flow analysis

step impossible.

Since the RT tasks execute in parallel, and even using static mapping

approaches, the total order of execution of task-parts is only determined at

runtime, it is thus infeasible to investigate all possible scenarios at design-

time to identify the worst-case execution flow/path. It is important to re-iterate

that traditional timing analysis techniques have been designed primarily to

analyze “simple” software codes executed on “simple” and predictable hard-

ware architectures, typically implemented by using low-level programming

languages and by obeying strict and specific coding rules to reduce program-

mer’s errors. The framework presented in this book clearly targets much more

complex software applications that exhibit a high degree of flexibility and

dynamicity in their execution.

5.2.2 Why Use Measurement-based Techniques?

In measurement-based approaches, WCET estimations are derived

from values that have been observed during the experimentation.

What about the values that have not been observed? How can we

account for them and be sure that the WCET estimates are reliable?

Critics of measurement-based approaches for estimating the WCET of an

application make a simple yet very valid point. The actual WCET is unknown

and is very likely not to be experienced during testing. Even worse, it is not

even possible to know whether the worst case has been observed or not.

In short, this means that there is no guarantee that such an approach can

forecast the exact value of the WCET. All measurement-based techniques

implicitly infer a WCET from values for which the “distance” from the

actual worst-case is unknown. A direct consequence is that, although those

techniques make predictions based on sophisticated and elaborate computa-

tions, formally speaking, they can never guarantee that their predictions are

100% “safe”. This may be problematic for applications requiring hard RT

guarantees, typically in safety-critical systems for instance.

However, one can note that in many application domains, certifiable

guarantees based on unquestionable and provable arguments are not required.

5.2 Our Choice of Methodology for WCET Estimation 125

For instance, many applications need only “reliable” estimations, in the

sense that one must be able to rely on those values and measure the risk

of them being wrong (through confidence levels provided by the analysis, for

example).

Estimations of the trustworthiness of the produced values (i.e., the con-

fidence in those values) can be expressed through probabilities derived by

statistical tools. Specifically, in our approach, the traces of execution times

collected at runtime are fed into a statistical framework, called DiagXtrm, in

which they are subjected to a set of tests to verify basic statistic hypothe-

ses, such as stationarity, independence, extremal independence, execution

patterns/modes, etc. Depending on the results of those tests, it is determined

whether the EVT can be applied to those traces. If the tests are successful,

the EVT is used to “extrapolate” the recorded execution times and accurately

identify the higher values that have not been observed during testing, but for

which the likelihood of occurrence is not statistically impossible. Besides

this, our framework also provides techniques to assess how “trustworthy”

those EVT estimations really are. This last step is of fundamental importance

to evaluate the quality of the estimations and find out whether confidence can

be placed into the analysis.

Despite all the interesting features provided by the application of EVT

to the WCET determination problem, it has been widely criticized in the

research community. The main argument against it is that the process of

creating the traces (i.e., the execution of an application’s code by a given

hardware platform) is known to be a process which is neither independent nor

identically distributed, which is a prerequisite to the application of the EVT

to a data sample. We believe that this argument, although correct because the

process is de facto not inherently IID, does not allow to conclude on the non-

applicability of the EVT. In our view, being an IID process is not necessary,

provided that the said process behaves as if it were. This is why the EVT has

been applied in so many application domains where it is today recognized to

provide helpful and satisfactory results. EVT is used for instance to predict

the probability distribution of the amount of large insurance losses, day-to-

day market risk, and large wildfires. Needless to say, none of these processes

are truly IID.

Whether this is right or not is disputable and we do not intend to close the

discussion in this chapter. However, we believe that the doubt this casts on

the applicability of the EVT makes this framework worth being investigated

further and hopefully will unveil its true potential. In case we are wrong, we

will hopefully discover why it is not applicable and close the debate that has

been going on already for several years.

126 Timing Analysis Methodology

In measurement-based approaches, the integrity of the actual code

to be deployed in the target hardware is somehow depleted by the

addition of the intrusive instrumentation code to measure the time;

in other words, the measurements themselves add an overhead to

the execution time of the analyzed program.

This problem can be reduced, e.g., by using hardware measurement tools with

no or very small intrusiveness, or by simply letting the added measurement

code (and thus the extra execution time) remain in the final program. When

doing this, possible disturbances like interrupts also have to be identified and

compensated for. The intrusiveness of the instrumentation code is discussed

in Section 5.3.5 and we provide efficient solutions to deal with it.

Nearly all the embedded platforms, like the MPPA-256 platform consid-

ered in our experimentations, provide a lightweight and non-intrusive trace

system that enables the collection of execution traces in predefined time

bounds. By using this trace system, we are able to collect meaningful traces

of execution without generating too many disturbances in the regular timing

behavior of the analyzed application. Based on all the experiments conducted

on the Kalray board, we concluded that the time necessary to record a time

stamp is 52 clock cycles. By placing “trace-points” (points in the program

where the current time is recorded) at well-defined places, we can thus easily

subtract the overhead associated with measuring the time itself.

Wrapping things up:

The best candidates for the worst-case timing analysis of the type of work-

loads considered in this book are the measurement-based approaches. Thus,

our proposed methodology relies on timing-related data collected by running

the application on the target hardware. This way, we avoid both the burden of

modeling the various hardware components (which takes considerable effort

and time), as in static timing analysis tools; and the pitfalls and pessimism

associated with the over-approximations resulting from the confidentiality,

and thus the non-availability, of specific information related to the internal

configuration of the components. In addition, the fact that our approach is

not tied to specific hardware infrastructures and application designs allows it

to benefit from a higher flexibility and portability than static timing analysis

methods, and it considerably reduces the time-to-model and time-to-result.

In the next sections, we will discuss the specifics of our method and how

we propose to overcome or at least mitigate the negative aspects inherent to

measurement-based techniques.

5.3 Description of Our Timing Analysis Methodology 127

5.3 Description of Our Timing Analysis Methodology

5.3.1 Intrinsic vs. Extrinsic Execution Times

The execution time of any piece of code, e.g., a basic block, a software

function, or an OpenMP task-part, can be seen as composed of two main

terms: the intrinsic execution time spent executing the instructions of the

code, and the stalling time, i.e., the time spent waiting for a shared software

or hardware resource to become available. To understand how timing analysis

is performed in this book, it is fundamental to understand the difference

between these two components. If the analyzed software function does not

have a functional random behavior (i.e., the outcome of evaluating a condition

is never the result of an operation involving randomly generated numbers),

then any input dataset always produces one output (and this output remains

the same no matter how many times the function is executed on the same

input). Further, for a given input dataset, the execution path taken throughout

the function’s code will always be the same. That is, under this assumption

of not involving randomness in the control flow of the analyzed function,

running it over a given set of input data over and over again always results in

executing the exact same sequence of instructions and eventually, it always

produces the same output.

For a given input dataset, we call the “intrinsic execution time” of a func-

tion the time that it takes to produce its output, assuming that all software and

hardware services provided by the execution environment and shared among

different cores are always available, and thus the core running that function

never stalls waiting for one of these resources to become available. That is,

the intrinsic execution time of a function is its execution time when it runs in

isolation, i.e., with no interference whatsoever with the rest of the system on

the shared resources. On a perfectly predictable hardware architecture where

every instruction takes a constant number of cycles to execute, running the

same function in isolation over the same set of input arguments should always

results in the exact same execution time. Although this may sound like a

very strong assumption, we will see that on a platform such as the Kalray

MPPA-256 this property is satisfied. By running a preliminary set of tests

with the same program an arbitrary number of times over the same inputs, we

experienced a variation of its execution time of typically less than 0.1% of

the maximum observed.

For a given input dataset, we call the “extrinsic execution time” of a

function the time that it takes to produce its output, assuming a maximum

interference on all the shared resources. That is, the extrinsic execution time

128 Timing Analysis Methodology

of a function is its execution time assuming that all the software and hardware

services provided by the execution environment and shared among the cores

are constantly saturated by concurrent requests from other system compo-

nents. Contrary to the intrinsic execution time, on mainstream multicore

architectures the extrinsic execution time is subject to huge variabilities due

to the high number of processor resources shared amongst software functions.

5.3.2 The Concept of Safety Margins

When testing an application and measuring its execution time, it is very likely,

if not certain, that the (usually very rare) situation where the application

takes its maximum execution time does not occur. This is due to either of

the following reasons:

1. The testing process failed to identify the set of input arguments that takes

the longest execution path throughout the program’s code, i.e., the path

that leads to the WCET.

2. The testing process found the execution path(s) leading to the WCET

but did not generate the maximal possible interference while exercising

those paths. This means that the actual WCET is not observed only

because the interference patterns generated during testing did not put

the application into the worst execution conditions.

Regarding the first case, for most programs, the number of possible execution

paths (in comparison to the high number of possible inputs) is too large to

make exhaustive testing possible and/or realistic. Therefore, measurements

are carried out only for a subset of input values. Typically, the testing process

starts with the identification of a set of potentially “nasty” inputs that are

likely to make the program take the longest execution path throughout its

code and provoke its WCET. This step is typically supervised and based on

some manual inspection of the code. Note that powerful tools exist such as

the Rapita Verification Suite (RVS) that incorporates a code-coverage tool

(RapiCover [16]) to test all parts of a given code and guarantee its full

coverage during testing. We believe that such tools may be employed to help

system designers identify the “worst” input datasets.

The problem of defining the worst input dataset(s) is thus not new, and

to some extent it is independent of the underlying hardware architecture. Of

course, the execution time of a given path depends on the execution time of

each instruction in that path, and therefore is dependent on the architecture,

but the method to search the space of all possible inputs and identify those that

5.3 Description of Our Timing Analysis Methodology 129

lead to the longest execution path is platform-agnostic. Since the problem was

already there on single-core architectures, with mature solutions for it, we do

not focus, in this book, on improving this part of the process.

Regarding the second point, it is always assumed that the worst-case

interference is not observed during testing and therefore the maximum exe-

cution time recorded is an under-approximation of the actual WCET. To

compensate for this, it is common to add a safety margin to the measured

WCET, in the hope that the actual WCET lies below the resulting augmented

estimation. The main question that remains open is whether the extra safety

margin provably provides a safe bound, since it is based on some informed

estimates. In principle, a very high margin yields an upper-bound on the

execution time that is likely to be safe (i.e., greater than the actualWCET), but

results in an over-dimensioned system with a low utilization of its resources,

whereas a small margin may lead to an under-estimation of the actual system

(worst-case) needs.

Traditionally, the magnitude of the safety margin applied to the maxi-

mum measured execution time is based on an estimation of the maximum

interference (from the system or from other applications) that has not been

observed during the testing phase but that the analyzed application could

potentially incur at runtime. For single-core systems, this estimation of the

worst-case interference is usually built on past experience. For example, in the

IEC 61508 standard [17] related to functional safety of electrical/electronic/

programmable electronic safety-related systems, to ensure that the working

capacity of the system is sufficient to meet the specified requirements, it is

mentioned that:

“For simple systems an analytic solution may be sufficient, while

for more complex systems some form of simulation may be more

appropriate to obtain accurate results. Before detailed modeling,

a simpler ‘resource budget’ check can be used which sums the

resources requirements of all the processes. If the requirements

exceed designed system capacity, the design is infeasible. Even

if the design passes this check, performance modeling may show

that excessive delays and response times occur due to resource

starvation. To avoid this situation, engineers often design systems

to use some fraction (for example 50%) of the total resources so

that the probability of resource starvation is reduced.”

As explained above, it is a common practice to simply add a margin of 50%

(or any other percentage depending on the user’s preferences and his level

130 Timing Analysis Methodology

of confidence in those margins) to the maximum execution time observed.

Unfortunately, on multicore and manycore architectures, experts are not yet

able to safely estimate reliable margins, as there is no prior experience to be

relied upon. Hence, we must build a new body of knowledge and investigate

novel approaches to produce reliable timing estimates and margins, and we

must motivate these estimations and justify why we believe they are reliable.

Our move towards this ambitious goal is described in short in the following

subsection.

5.3.3 Our Proposed Timing Methodology at a Glance

In this book, we devised methods to extract both the intrinsic and extrinsic

execution times. The overall timing analysis methodology consists of four

steps:

Step 1: Extraction of the maximum intrinsic execution time

To measure the maximum intrinsic execution time (MIET), we run the

analyzed task sequentially on one core and we configure the execution envi-

ronment in such a way that no other tasks can interfere with its execution.

That is, everything is done to nullify the interference with other applications

or with the system itself. This way we put the analyzed task in “ideal”

execution conditions in which, in the absence of interference, the time taken

to execute its code can be assumed to be due solely to the execution of its

instructions (without any stalling time). In these conditions, the task to be

analyzed is run multiple times, non-preemptively, over a finite set of input

data. These input data have been pre-selected and identified as particularly

“nasty”, i.e., very likely to make the task take its longest execution path

throughout its code and provoke its WCET. We do not elaborate on how to

select those inputs.

Step 2: Extraction of the maximum extrinsic execution time

The maximum extrinsic execution time (MEET), on the contrary, is obtained

by measuring the time taken to execute the analyzed task in conditions of

“extreme” interference. That is, everything is done to maximize the inter-

ference with other applications and with the system itself. Measuring the

execution time of the analyzed task in those “worst” conditions and over the

“worst” input datasets give an estimation of the maximum execution time that

the task may experience in the presence of other tasks running concurrently.

5.3 Description of Our Timing Analysis Methodology 131

Step 3: Extract the execution time after deployment

The MIET and MEET can be considered as lower and upper bounds on the

actual WCET of the analyzed task, since they estimate the WCET in con-

ditions of no and extreme interference, respectively. These two estimations

are useful to the system designers to understand the impact that tasks may

have on each other’s timing behavior. For instance, it may be desirable to

derive a static mapping of the task-parts to the cores in which the task-parts

(the portions of code for which the executions are timed or measured) that

are highly sensitive to interference (i.e., the difference between their MEET

and MIET is large) are mapped to specific cores in a way that they cannot

interfere with each other at runtime.

After taking mapping and scheduling decisions based on the values of the

MIET and MEET, these decisions are implemented and the whole system is

run in its final configuration. Measures are taken again, this time to estimate

the execution time of the tasks in its “final” execution environment, i.e.,

the environment corresponding to the “after-deployment”. Timed traces are

recorded like in the previous step and are passed to step 4.

Step 4: Estimate a worst-case execution time

The traces collected in Step 3 reflect the actual execution time of every task-

part, and from those their individual WCET can be derived or estimated. The

simplest way to proceed is to retain the maximum execution time observed

as the actual WCET. For safety purpose, an arbitrary extra “safety margin”

can be added to that WCET estimation to make it even safer. The magnitude

of the margin depends on how much “safer” the system designers want to be,

but we would recommend using a margin that does not exceed the MEETs of

the tasks (because the MEETs represent the WCET of the tasks in execution

conditions that are unlikely to happen at runtime).

However, instead of arbitrarily choosing a margin, we advocate the use of

statistical methods to analyze the traces and make a more “educated” choice

driven by mathematical assumptions and computations rather than just a “gut

feeling”. In this book, we use DiagXtrm, a complete framework to analyze

timed traces and derive pWCET estimates.

In the next subsections, we describe every step of our methodology.

5.3.4 Overview of the Application Structure

Before we go to the details, let us briefly recall the type of workloads that we

are handling in this book and recap what exactly needs to be measured.

132 Timing Analysis Methodology

In the considered system model, the application comprises all the soft-

ware parts of the systems that operate at the user-level and that have been

explicitly defined by the user. The application is the software implementa-

tion (i.e., the code) of the functionality that the system must deliver to the

end-user. It is organized as a collection of RT tasks.

An RT task is a recurrent activity that is a part of the overall system func-

tionality to be delivered to the end-user. Every RT task is implemented and

rendered parallelizable using OpenMP 4.5, which supports very sophisticated

types of dynamic, fine-grained, and irregular parallelisms.

An RT task is characterized by a software procedure that must carry out

a specific operation such as processing data, computing a specific value,

sampling a sensor, etc. It is also characterized by a few (user-defined or

computed) parameters related to its timing behavior such as its WCET, its

period, and its deadline. Every RT task comprises a collection of task regions

whose inter-dependencies are captured and modeled by a directed acyclic

graph, or DAG.

A task region is defined at runtime by the syntactic boundaries of an

OpenMP task construct. For example:

#pragma omp task

{

// The brackets identify the boundaries of the task region

}

Hence, hereafter we refer to task regions as OpenMP tasks. The OpenMP

tasking and acceleration models are described in detail in Chapter 3.

An OpenMP task-part (or simply, a task-part) is a non-preemptible por-

tion of an OpenMP task. Specifically, consecutive task scheduling points

(TSP) such as the beginning/end of a task construct, the synchronization

directives, etc., identify the boundaries of an OpenMP task-part. In the plain

OpenMP task scheduler, a running OpenMP task can be suspended at each

TSP (not between any two TSPs), and the thread previously running that

OpenMP task can be re-scheduled to a different OpenMP task (subject to

the task scheduling constraints).

The DAG of task regions can therefore be further expanded to form

a typically bigger DAG of task-parts. This new graph of task-parts is

called the extended task dependency graph (eTDG) of the RT task.

Figure 5.2 shows the eTDG of an example application. Our objective is to

annotate every node, i.e., task-part, of the eTDG with an estimation of its

WCET and then perform a schedulability analysis of the entire graph to verify

that all the end-to-end timing requirements were met.

5.3 Description of Our Timing Analysis Methodology 133

Figure 5.2 Extended task dependency graph (eTDG) of an example application.

5.3.5 Automatic Insertion and Removal of the Trace-points

In this subsection, we discuss how to respectively insert (Subsection 5.3.5.1)

and remove (Subsection 5.3.5.2) trace-points in a given program in an

automatic manner.

5.3.5.1 How to insert the trace-points
To measure the execution time of a task-part, we insert a trace-point at its

entry and exit points. A trace-point is a call to a system function that records

the current timestamp. Therefore, the system will record the time of entering

the task-part (i.e., when its execution starts) and the time at which it exits

134 Timing Analysis Methodology

it; the difference between the two straightforwardly gives the time spent

executing the task-part.

Inserting the trace-points into the tasks’ code can easily be done by the

compiler itself, when creating the executable file. Moreover, upon compiling

the code and creating the TDG, the compiler can assign a unique Identifier

(ID) to every task-part. Overall, this ID can be used to define a trace-point

for the task-part associated with an execution time. For example, using the

trace system from the Kalray SDK, we ask the compiler to add the following

trace-points at the beginning and end of every task-part as illustrated in the

code snippet below:

#pragma omp task

{

// The brackets identify the boundaries of the task region

mppa_tracepoint (psocrates , taskpartID__in) ;

/* code of the task-part */

mppa_tracepoint (psocrates , taskpartID__out) ;

}

These trace-points indicate to the Kalray MPPA runtime environment

that a time-stamp must be recorded each time the execution meets one

of these points (together with the ID of the corresponding task-part). The

first argument (here, “psocrates”) is the name of the “trace-point provider”.

The user defines it to help him organize all its trace-points into groups.

Informally, it can be thought of as a folder name. The second argument is

the name of the trace-point. For every task-part we insert a trace-point called

“taskpartID__in” at the beginning of the task-part and another trace-point

called “taskpartID__out” at the end. We do so because the objective of our

next tool is to find every matching pair “∗__in/∗__out” of trace-points and

compute the difference of timestamps (which naturally corresponds to the

execution time of the task-part).

Once all the trace-points are correctly placed into the source code, the

compiler must create a separate header file “tracepoints.h” in which all the

trace-points are declared and then include that file in all source files in which

trace-points are used (#include “tracepoints.h”).

#ifndef _TRACEPOINTS_H_

#define _TRACEPOINTS_H_

#include "mppa_trace.h"

MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__in,())

MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__out, ())

... // more trace-points

#endif

5.3 Description of Our Timing Analysis Methodology 135

5.3.5.2 How to remove the trace-points
After the analysis step, when the system is ready to be deployed, it is

preferable to remove all the trace-points in order not to leave some “dead

code.” A code is said to be dead either if it is never executed, or when its

execution does not serve any purpose, like for example taking time-stamps

and not recording them into a file (which would happen if those trace-points

were to be left in the source code when compiling the application to be

deployed). However, removing trace-points is not a benign operation.

To illustrate the problem that may arise from removing the trace-points,

let us consider the following code.

int run_index;

for (run_index = 0 ; run_index < NB_RUNS ; run_index++) {

mppa_tracepoint(psocrates, main__in);

user_main();

mppa_tracepoint(psocrates, main__out);

}

The user_main() function is a call to the main function of the bench-

mark program “statemate.c” provided by (15). If we disable all compiler

optimizations during the compilation phase (this is important and will play

a role later) and run this code 100 times on a single core of a compute

cluster of the KalrayMPPA-256, we observe that the execution time oscillates

consistently between 88492 and 88497 cycles (see Figure 5.3, left-hand side).

Now, let us add to that code a variable x to which we assign an arbitrarily

chosen integer (here, 1587) as shown below:

int x = 1587;

int run_index;

for (run_index = 0 ; run_index < NB_RUNS ; run_index++) {

mppa_tracepoint(psocrates, main__in);

user_main();

mppa_tracepoint(psocrates, main__out);

}

Figure 5.3 Impact of an unused variable on the execution time of an example application.

136 Timing Analysis Methodology

It is important to stress that the variable x is never used in the program.

Since all compiler optimizations are disabled, the variable is not removed

from the code by the compiler and is present in the assembly code that it

produces. As seen in the Figure 5.3 (right-hand side), the execution time now

oscillates consistently between 88, 639 and 88, 636 cycles. This means that

the addition of an unused variable to a part of the code which is not even

under analysis adds around 140 cycles to the execution time of the measured

portion of the code.

This increase in the execution time stems from the fact that after the addi-

tion of the line “int x = 1587” to the source code, all subsequent instructions

got offset in the system memory by two times the length of an instruction,

i.e., the line “int x = 1587” translates to two assembly instructions: one for

allocating memory to the variable x and another one for moving the constant

“1587” into it. Therefore, the portion of the code being timed has a different

“memory layout” as it is mapped to the system memory two “instruction-

lengths” further. This in turn impacts on the way the instructions of that part

of the code are mapped at runtime to the instruction cache lines and ultimately

it results in a perceptive difference in the execution time.

A consequence of this phenomenon is that removing the trace-points

after the analysis phase may have for effect to substantially, or at least

noticeably, alter the timing behavior of the application and all its task-parts.

We came up with two potential solutions to this problem. The simpler one is

to leave the trace-points in the code when compiling it for the final release

of the application. Although it is a suitable work-around to the memory-shift

problem described above, most designers are not in favor of having a dead

portion of code, as explained above.

Our second solution is to measure the length, in number of assem-

bly instructions, of the code being executed each time the function

mppa_tracepoint(...) is called and replace every such call with an equiv-

alent number of NOPs (No Operation assembly instruction). This way neither

the semantic of the code nor the memory layout are altered when removing

the trace-points. We believe this solution to be both feasible and suitable for

use in industrial applications.

5.3.6 Extract the Intrinsic Execution Time: The Isolation Mode

In order to extract the MIET of a task-part, we must start its execution and

make sure that it is isolated from the rest of the system. That is, we must nul-

lify all external interference by turning off every other component that could

5.3 Description of Our Timing Analysis Methodology 137

potentially interfere with (and hence delay) the execution of the analyzed

task-part. This is achieved by assigning every task-part of the analyzed real-

time task to the same thread, and thus to the same core of the same cluster,

and then making sure that all the other cores are kept idle. In other words,

under this configuration, the RT task is executed sequentially in a single core.

However, the intention of this phase is to analyze the execution time of each

task-part in isolation, i.e., without suffering interferences, and not the overall

RT task execution time. We call this configuration the isolation mode; the

real-time task is then said to run in isolation.

To setup and enforce this isolation mode, we have implemented a

platform-specific API. The current version has been written for the Kalray

MPPA-256. The API provides a set of easy-to-use functions to configure the

execution environment, as well as a set of global parameters and functions

that are used to make sure that:

1. all the openMP tasks are assigned to a single thread,

2. the IO cores and the cluster cores are in sync so that the environment is

“sanitized” before and after the execution of every openMP task (nothing

runs in the background that could interfere with the execution of the

analyzed task), and

3. additional functions allow the user to perform specific operations, either

before the runtime, such as deciding the memory-mapping and cache-

management policy, or during the runtime, such as invalidating the

instruction or data caches before executing each task-part.

The main objective of the API is to create a controlled environment in which

every task-part is run over a specific set of inputs and is isolated from the rest

of the system so that it incurs minimum interference during its execution.

5.3.7 Extract the Extrinsic Execution Time: The Contention
Mode

To extract the MEET of a task-part, we start the task and interfere as much

as possible with its execution at runtime. The objective of the contention

mode is to create the “worst” execution conditions for the task-parts so

that their execution is constantly suspended due to interference with other

tasks. In this step, for each task-part, we record the maximum execution time

observed under those conditions. This gives us an estimation of the maximum

execution time of each task-part when it suffers interference from other tasks

on the shared resources.

138 Timing Analysis Methodology

This contention mode is similar to the isolation mode in that all the task-

parts of the analyzed real-time task are assigned to the same thread, and thus

to the same core within a same cluster, effectively executing the RT task

sequentially. However, contrary to the isolation mode that shuts down all the

other cores of the cluster (thereby nullifying all possible interference within

that cluster), we deploy onto all these other cores small programs called IG,

which stands for Interference Generator. Those programs are essentially tiny

pieces of code that have the sole purpose of saturating all the resources (e.g.,

interconnection, memory banks) that are shared with the task-parts under

analysis. Recall that the objective of the contention mode is to create the

worst execution conditions for the execution of the task-parts, conditions in

which their execution is slowed down as much as possible due to contention

for shared resources.

Implementing the IG that generates the worst possible interference that

a task-part could ever suffer is a very challenging, if not impossible, task.

This is because the exact behavior of the task-part to be interfered with (i.e.,

its utilization pattern of every shared resources and the exact time-instants

of accessing it) should be known, as well as all the detailed specifications

of the platform. Besides, even if that information was known, the execution

scenario causing the maximum interference may be impossible to reproduce.

Rather than concentrating our efforts on creating such a “worst IG”, we have

opted for the implementation of an IG that is “bad enough” and used it as a

proof of concept to demonstrate how large the time-overhead incurred by the

task-parts due to the interference can be.

Our implementation of the IG consists of a single function IG_main that is

executed by a thread dispatched to every core on which the task-parts are not

assigned (recall that the application under analysis is executed sequentially

in a single core). That is, every core that is not running the task-parts runs a

thread that executes IG_main. Essentially, IG_main executes three functions,

namely:

1. IG_init_inteference_process ()

2. IG_generate_interference ()

3. IG_exit_inteference_process ()

The first one is called upon deploying the IG, at the beginning of IG_main,

before the task-parts start to execute and be timed. The second one is the

main function. It creates interference on the shared resources. The call to that

function is encapsulated in a loop that terminates only when the IG_main is

5.3 Description of Our Timing Analysis Methodology 139

int* my_array;

inline void IG_init_interference_process()

__attribute__((always_inline));

inline void IG_generate_interference()

__attribute__((always_inline));

inline void IG_exit_interference_process()

__attribute__((always_inline));

explicitly told to stop. Finally, the third function is called when all the task-

parts have been timed and the analysis process is about to end.

Let us now briefly describe our implementation of the IG on the Kalray

MPPA-256. This implementation is provided in a single file, which starts with

the declaration of an array of integer called my_array and declares the three

main functions as described above. The __attribute__((always_inline))

instruction is used to enforce and oblige the compiler to use inlining for

these three methods. The inlining technique is used to waste as little time

as possible jumping from one address to another in the code, as jumping does

not create interference.

Below is a code snippet of the first function “IG_init_interference_

process().”

inline void IG_init_interference_process() {

int array_size = 1024;

// Create an array of Integers. One integer is 4 bytes

my_array = malloc(array_size * sizeof(int));

// Fill the array with numbers.

int cpt = 0;

for (cpt = 0 ; cpt < array_size ; cpt++) {

my_array[cpt] = cpt;

}

}

This function simply allocates memory to my_array (1024 integers) and

fills that memory space with arbitrary values. Note that on the Kalray MPPA-

256, a thousand integers occupy roughly half of the private data cache of a

VLIW2 core in a compute cluster.

The third function, “IG_exit_inteference_process()”, is the simplest as it

only frees the memory space held by my_array as shown below.

inline void IG_exit_interference_process() {

Free(my_array);

}

The second function, “IG_generate_interference (),” is the main one and

a snippet of its code is presented below.

2Very Long Instruction Word.

140 Timing Analysis Methodology

inline void IG_generate_interference() {

__builtin_k1_dinval();

__builtin_k1_iinval();

register int *p = my_array;

volatile register int var_read;

var_read = __builtin_k1_lwu(p[0]);

var_read = __builtin_k1_lwu(p[8]);

var_read = __builtin_k1_lwu(p[16]);

var_read = __builtin_k1_lwu(p[24]);

var_read = __builtin_k1_lwu(p[32]);

var_read = __builtin_k1_lwu(p[40]);

var_read = __builtin_k1_lwu(p[48]);

var_read = __builtin_k1_lwu(p[56]);

var_read = __builtin_k1_lwu(p[64]);

var_read = __builtin_k1_lwu(p[72]);

var_read = __builtin_k1_lwu(p[80]);

(...)

var_read = __builtin_k1_lwu(p[1007]);

var_read = __builtin_k1_lwu(p[1015]);

var_read = __builtin_k1_lwu(p[1023]);

}

The function starts by invalidating the content of the data and instruc-

tion caches. Then, it reads every element of “my_array”, starting from the

element K = 0 and moving on iteratively from element K to element ((K+8)

mod 1024), until K reaches 1023. This way, every element of the array is read

exactly once and every two consecutive readings access data that are located

exactly 8 * 4 = 32 bytes apart in the memory (the size of an integer is standard

on the Kalray, i.e., 4 bytes). This is done on purpose knowing that the private

data cache line of every VLIW core in the compute clusters of the Kalray

MPPA-256 is 32 bytes long. Consequently, every reading causes a cache miss

and the value must then be fetched from the 2 MB in-cluster shared memory,

hence it creates traffic on the shared memory communication channels and

potentially interferes with the task-part being analyzed.

By running the task-parts concurrently with these IGs, every request sent

by a task-part to read or write a data in the shared memory is very likely

to interfere with a read request from one of the IGs. We have conducted

experiments on the Kalray MPPA-256 using several use-case applications

to evaluate the magnitude of the increase in the execution time due to this

interference. Depending on the configuration of the board and the memory

footprint of the task-parts and their communication pattern with the memory,

the difference between the maximum execution time observed in isolation

mode and in contention mode is substantial as the execution time of a

task-part may be increased by a factor of 9.

5.3 Description of Our Timing Analysis Methodology 141

5.3.8 Extract the Execution Time in Real Situation:
The Deployment Mode

After determining the intrinsic and extrinsic execution times (i.e., the MIET

and the MEET), we communicate them to the mapping and scheduling

analysis tools through the annotation of the TDG of the real-time task. Once

all necessary mapping and scheduling decisions are taken, the application

is run again, but this time in its final production environment. This means

that the platform configuration and mapping and scheduling decisions are

no longer imposed and defined so as to create specific execution conditions.

Then, we collect runtime-timed traces of the task-parts in their final environ-

ment, without any supervision or any attempt to explicitly favor or curb the

execution of the application.

5.3.9 Derive WCET Estimates

As already discussed, the traces collected in the previous step reflect the

actual execution time of every task-part when they run in their final envi-

ronment, under different execution conditions. The objective of this final step

is to derive WCET estimates from those traces. The simplest solution is to

retain the maximum execution time observed during the deployment mode as

the actual WCET and, for safety purposes, add an arbitrary “safety margin”

to that maximum to make it “safer”. The magnitude of the margin depends on

how much “safer” the system designers want to be, but we would recommend

using a margin that does not exceed theMEET. However, instead of arbitrarily

choosing a margin, we advocate the use of statistical methods to analyze the

traces and make a better thought out choice.

The objective of Measurement-Based Probabilistic Timing Analysis

(MBPTA) approaches is to characterize the variability in the execution time

of a program through probability distributions and in particular, they aim

at deriving probabilistic WCET estimates, a.k.a. pWCET. A pWCET is a

probability distribution of the WCET of a program. That is, through MBPTA,

the WCET is no longer expressed as a single value but as a range of values,

each assigned to a given probability of occurrence with the obvious relation:

the higher the value assumed to be the WCET, the lower its probability of

occurrence. Based on this framework system designers are in a position to

somewhat decide on the reliability of the final WCET estimation, simply by

ignoring all values for which the probability of observing an execution time

greater than those exceeds a pre-decided threshold. The EVT is a popular

theoretical tool used by most MBPTA approaches. The EVT aims at modeling

142 Timing Analysis Methodology

and estimating better the tail of a statistical distribution, which is de facto

what the MBPTA is trying to achieve when focusing on the pWCET.

Researchers at the French Aerospace Lab (ONERA), in France, recently

proposed a remarkable framework and tool to analyze timed traces and derive

pWCET estimates. The framework is called DiagXtrm [18] and defines a

methodology composed of three main steps:

1. Analyze the traces

2. Derive pWCET estimates using the EVT

3. Assess the quality of the estimations.

Together with the theory and the definition of the methodology, they devel-

oped a tool to diagnose execution time traces and derive safe pWCET

estimates using the EVT. However, the EVT can be applied to a given trace

only if some hypotheses are verified. Testing those hypotheses is the focus of

the first step (“Analysis of the traces”) above.

In a nutshell, for safely applying the EVT and getting reliable pWCET

estimates, one has to check a few hypotheses including for instance station-

arity, short-range dependence, and extreme independence. The stationarity

of a trace reveals whether measurements belong to the same probabilistic

law without knowing it. The independence (short-ranged or between the

extremes) analysis aims at determining whether there are obvious correlations

within the measurements. Systemic effects in a modern hardware platform are

so complex and numerous that it is quite impossible to infer the probability of

happening of an execution time knowing the value of the preceding ones, i.e.,

the execution time of an application cannot be inferred from the execution

times of its previous executions. System non-determinism, coming from

the considered system’s degree of abstraction, knowledge, and randomness

observed in a timed trace motivate the independence of the measurements that

has to be studied at “different scales” (i.e., short-range independences and

independences of the extremes). DiagXtrm implements the most advanced

tests to verify the stationarity hypothesis and measure the degree of correla-

tion between patterns of different lengths within a trace. Thus, it studies both

short-range and distant dependencies between the measurements.

If all the hypotheses are verified, then the EVT is applied to produce

pWCET estimates. These estimates are the result of sophisticated compu-

tations based on parameters that must be carefully set. The user is in charge

of setting those parameters as he wants, and thus has a great influence on the

pWCET estimation process. Note however that the DiagXtrm tool provides

helpful functions to guide the choice of many of those input parameters.

5.4 Summary 143

Finally, the tool features a set of tests to evaluate the quality of the produced

estimates, together with other tests to assess the confidence that all the

hypotheses were verified. We believe that this last phase is fundamental and

is a first step towards building confidence and assessing the reliability of the

pWCET estimates.

5.4 Summary

The analysis of the timing behavior of software applications that expose real-

time requirements and dedicated to execute on the recent COTS manycore

platforms such as the Kalray MPPA-256 raises a number of important issues.

Because a reliable and tight WCET estimation for each task running on

such a platform is a crucial input at the schedulability analysis level, we

showed that it is neither acceptable nor realistic to ignore all the interactions

between each analyzed task, the OS, and all the other tasks running in the

system. Then, depending of the type of workload that is considered, we also

showed that the choice of the methodology to be adopted must be conducted

with care. In this chapter, after presenting an overview of all the possible

methodologies, and after discussing their advantages and disadvantages, we

opted for a measurement-based approach. We explained and motivated this

choice and finally presented the details of our solution. Here, we showed that

both the intrinsic (MIET) and extrinsic (MEET) execution times of each task

are pivotal values to be extracted in order to guide the designer in deriving a

reliable and tight WCET.

References

[1] OTAWA. Available at: http://www.irit.fr/recherches/ARCHI/MARCH/

OTAWA/doku.php?id=doc:computing_a_wcet.

[2] Ermedahl, A., Engblom, J., “Execution Time Analysis for Embed-

ded Real-Time Systems,” eds. Joseph, Y-T., Leung, S. H., Son, I. L.,

Chapman and Hall/CRC – Taylor and Francis Group, 2007.

[3] Lokuciejewski, P., Marwedel, P., Worst-Case Execution Time Aware

Compilation Techniques for Real-Time Systems – Summary and Future

Work (Springer: Netherlands), pp. 229–234, 2011.

[4] AbsInt GmbH. Available at: http://www.absint.com/ait/analysis.htm.

[5] Tidorum Ltd. Available at: http://www.bound-t.com/.

[6] NUS. Available at: http://www.comp.nus.edu.sg/∼rpembed/chronos/.

144 Timing Analysis Methodology

[7] IRISA. Available at: http://www.irisa.fr/alf/index.php?option=com_

content&view=article&id=29&Itemid=&lang=fr.

[8] MRTC. Available at: http://www.mrtc.mdh.se/projects/wcet/sweet/Doc

Book/out/webhelp/index_frames.html.

[9] Kirner, R., Puschner, P., Wenzel, I., “Measurement-based worst-case

execution time analysis using automatic test-data generation.” 4th

Euromicro International Workshop on WCET Analysis, pp. 67–70, 2004.

[10] Rapita Systems Ltd. Available at: http://www.rapitasystems.com/

products/rapitime/how-does-rapitime-work.

[11] Carnevali, L., Melani, A., Santinelli, L., Lipari, G., “Probabilistic Dead-

line Miss Analysis of Real-Time Systems Using Regenerative Transient

Analysis.” In Proceedings of the 22nd International Conference on

Real-Time Networks and Systems, Versaille, pp. 299–308, 2014.

[12] Santinelli, L., Morio, J., Dufour, G., Jacquemart, D., “On the Sustain-

ability of the Extreme Value Theory for WCET Estimation.” 14th Inter-

national Workshop on Worst-Case Execution Time Analysis, Versailles,

pp. 21–30, 2014.

[13] Proartis: Probabilistically Analysable Real-Time Systems. Available at:

http://www.proartis-project.eu/.

[14] Probabilistic real-time control of mixed-criticality multicore and many-

core systems (PROXIMA). Available at: http://www.proxima-project.eu/.

[15] Rapita Systems Ltd. Available at: https://www.rapitasystems.com/

products/rapicover.

[16] The International Electrotechnical Commission. Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-Related Systems

– Part 7, 2nd Edition, Requirement C.5.20 (Performance Modeling),

Geneva, p. 99, 2010. IEC 61508.

[17] Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B., “The Mälardalen

WCET benchmarks – past, present and future.” In Proceedings of the

10th International Workshop on Worst-Case Execution Time Analysis

(WCET’2010) Brussels, Belgium, pp. 137–147, 2010.

[18] Onera. Onera – DiagXTrm, Available at: https://forge.onera.fr/projects/

diagxtrm2.

[19] MTime, Vienna real-time systems group, Available at: http://www.vmar

s.tuwientuwien.ac.at.

6

OpenMP Runtime

Andrea Marongiu1,2, Giuseppe Tagliavini2 and Eduardo Quiñones3

1Swiss Federal Institute of Technology in Zürich (ETHZ), Switzerland
2University of Bologna, Italy
3Barcelona Supercomputing Center, Spain

This chapter introduces the design of the OpenMP runtime and its key

components, the offloading library and the tasking runtime library. Start-

ing from the execution model introduced in the previous chapters, we first

abstractly describe the main interactions among the main actors involved in

program execution. Then we focus on the optimized design of the offload-

ing library and the tasking runtime library, followed by their performance

characterization.

6.1 Introduction

The model assumed in the previous chapters considers the existence of

multiple applications, starting execution on the host processor, and each

one is composed of multiple real-time (RT) tasks which can be sent to the

accelerator with the aim to speed up their execution. This paradigm, com-

monly referred to as offloading, has been widely adopted in many computing

domains from embedded systems to HPC [1, 2]. In the context of the Kalray

architecture (described in Chapter 2), IO cores take on the host role while the

clusters are used as accelerators. Accordingly, an OpenMP-based software

stack with offloading support must leverage both host and acceleration roles.

On the host side, an OpenMP directive (#pragma omp target) is used to

specify a region of code which can be offloaded. Inside a cluster, a pool

of threads is dedicated for the execution of the offloaded workload and the

RTOS (introduced in Chapter 7) is in charge of scheduling the execution of

the threads on the available cores.

145

146 OpenMP Runtime

The complete software stack to handle the described execution model

is composed of an offloading library and a tasking runtime library. The

offloading library executes on the host and is in charge of initiating offload

sequences to the accelerator. On the accelerator side, the request manager

(RM) is the component in charge to collect offload requests and create pools

of threads (hereafter called jobs as in the OS terminology) to execute them.

Depending on runtime design and hardware specific features, the RM can be

implemented as an RT task (a software component) or may be mapped to a

dedicated core (a hardware component). The tasking runtime library provides

an optimized support for task parallelism on the accelerator and runs on top

of the RTOS. It is further divided into a low-level library (or LL-RTE) [3],

where all the tightly coupled interactions with the RTOS are implemented,

plus a high-level library, where all the management of the tasking constructs

resides.

6.2 Offloading Library Design

Figure 6.1 summarizes the timing diagram (time flows from top to bottom

on the vertical axis) and the interactions between the software blocks pro-

viding the offload support. At the higher level of abstraction, the host sends

request to the RM, which orchestrates the execution of the workload on the

processing elements (PEs).

The host support is implemented as a user-level library that interfaces

OpenMP offloads (expressed at the application level with a target directive)

to the computing clusters. The key features of this library can be summarized

as follows:

• Low-cost offload: As initializing the communication channels between

the host and the offload manager and loading into the cluster shared

memory the binary file containing the OpenMP library (high-level

library + LL-RTE) are costly operations, the host offload library imple-

ments it as a one-time operation that happens at system startup (the

GOMP_init method). Every time the host program encounters a target

directive, this is translated into a call to the GOMP_target function,

which sends a control packet to the offload manager of the target cluster

and then triggers the copy of input data. This handshake procedure is

streamlined to guarantee minimum overhead.

• Asynchronous offload: The offload procedure is asynchronous. After

sending the offload request to the cluster, GOMP_target immediately

6.2 Offloading Library Design 147

Figure 6.1 Timing diagram of an offloading procedure.

returns to the caller (with the exception of the multi-offload

case described below). The result of the offload computation

can be retrieved by calling a blocking synchronization primitive

(GOMP_target_wait).

• Multi-cluster support: An application can perform offloads on differ-

ent clusters, from 1 up to 16. The initialization is required for each

cluster that is used by the current application. The cluster is specified

by the programmer using the OpenMP syntax (i.e., the device clause of

a target directive).

• Multi-offload support:An application can performmultiple offloads on

the same cluster. At the same time, multiple offloads can coexist on the

same cluster at different priority levels1. The priority level is specified

by the programmer using the OpenMP syntax (i.e., the priority clause),

and it is propagated to the runtime using a parameter ofGOMP_target.

The function calls to the offloading runtime are not invoked directly by

the developer, as the OpenMP syntax is used to identify the code and data to

be offloaded. The compiler transforms the offloading OpenMP directives as

1Focusing on the MPPA-256 platform, currently two levels are supported on RTEMS hosts

and four on Linux hosts

148 OpenMP Runtime

defined in its accelerator model (i.e., target and declare target directives) to

the corresponding offloading runtime calls, as described in Chapter 3.

In our design, the RM is implemented as a persistent RTOS task to be

executed on the accelerator side (i.e., by one of the cluster cores). The RTOS

leverages the notion of a task scheduling point (TSP) to check the availability

of a new offload request and perform the requested actions. At each such

scheduling point, the RTOS can (re)start the execution of the RM itself (if

a new offload has arrived in the meantime and needs to be enqueued to the

ready job list) or another job in the queue, depending on the synchronization

policy adopted. TSPs are naturally identified as synchronization points in

an OpenMP program (see Chapter 3 for more details). The OS provides

synchronization primitives (described in Chapter 7) which can be used to

block one (or more) thread(s) within a job on a certain wait condition, and

the OpenMP runtime invokes these primitives to enforce synchronization.

To reduce the runtime overheads, the metadata for all the supported RTOS

jobs on a cluster (one per priority level) are created and initialized upon the

first call to the RM. The activated jobs execute the GOMP_main function

of the runtime library to initialize the offload support on the cluster side.

6.3 Tasking Runtime

The OpenMP tasking model has been introduced in Chapter 3. Task-based

parallelism offers a powerful conceptual framework to exploit irregular par-

allelism in target applications, and several works have demonstrated the

effectiveness of tasking [4–7]. However, the sophisticated semantics of the

OpenMP tasking execution model are translated into a complex control

code that has to be executed in addition to the application code itself. This

ultimately results in significant time overheads, if the application tasks are not

large enough to hide such overheads. Thus, a performance-efficient design of

a tasking runtime environment (RTE) targeting low-end embedded manycore

accelerators is a challenging task, as embedded parallel applications typically

exhibit very fine-grained parallelism [6, 8], and are thus very sensitive to

time overheads. Moreover, memory overheads are also very relevant in this

context, as embedded architectures feature very limited amounts of fast, on-

chip memory. Allocating runtime support metadata in such memories reduces

time overheads, as the control code executes faster, but reduces the space

available for program data. As the metadata for a tasking runtime might

consume a significant amount of memory, it is necessary to find a good

tradeoff between the implied space and time overheads.

6.3 Tasking Runtime 149

The applicability of the tasking approach to embedded applications and

embedded manycore accelerators is often limited to coarse-grained parallel

tasks, capable of tolerating the high overheads typically implied in a task-

ing runtime. State-of-the-art tasking runtimes for embedded manycores [6]

succeed in achieving low overheads and enabling high speedups for very

fine-grained tasks, but only for simple flat parallel patterns (i.e., where all

the tasks are created from the same parent task). The main reason for this

limitation lies in a key design choice: only tied tasks are supported by most

RTEs, whereas untied tasks are not supported. If a tied task is suspended (due

to synchronization, creation of another task, etc.), only the thread that initially

owned it is allowed to resume its execution. This clearly significantly limits

the available parallelism when more sophisticated (and realistic) parallel exe-

cution patterns are considered, like nested tasking (for instance, in programs

that use recursion).

Scheduling policies: Another limitation that follows from supporting only

tied tasks is the restricted set of scheduling policies available. Breadth-

first scheduling (BFS) and work-first scheduling (WFS) are the two most

widely used policies for distributing tasks among available threads. Upon

encountering a task creation point: (i) BFS will push the new task in a queue

and continue execution of the parent task and (ii) WFS will suspend the parent

task and start execution of the new task. BFS tends to be more demanding

in terms of memory, as it creates all tasks before starting their execution

(and thus all tasks coexist simultaneously). This is an undesirable property in

general and in particular for resource-constrained embedded systems, which

would make WFS a better candidate. WFS also has the nice property of

following the execution path of the original sequential program, which tends

to result in better data locality [5]. However, when tied tasks are used, BFS is

the only choice in practice, as WFS leads to a complete serialization of task

executions when nested parallelism is adopted. Moreover, it has been shown

that the use of untied tasks significantly reduces the worst case response time

analysis [9].

Task queue: The most widespread design solution to support the OpenMP

tasking execution model is to rely on a centralized task queue. This minimizes

memory footprint for runtime support metadata, which is a must in the

context of embedded platforms. The basic building block of the proposed

design focuses on lightweight support for push and pop operations on such a

centralized queue (upon task creation and extraction, respectively), relying on

150 OpenMP Runtime

fine-grained locking mechanisms. TSPs are implemented using lightweight

events, which avoids the massive contention implied by active polling (idle

threads on the TSP are put into sleep mode). When a task is created (i.e.,

pushed in the queue), the creator thread sends a signal which wakes up a sin-

gle thread (selected using round-robin). After completing the task execution,

the thread returns into sleeping mode. The described queue is implemented

with a doubly linked list. This data structure allows to push and pop tasks

from the queue and also remove a task in any position of the queue. This is

key for low overhead, as tasks are not constrained to execute in-order (except

when dependencies are specified), so their completion and removal from the

queue is independent of their position. Note that a simple linked list does not

allow this operation.

Untied tasks: The described support is sufficient to show excellent perfor-

mance in the presence of simple flat parallel patterns, where all the tasks

are created from within a single level (i.e., a single parent task), but lacks

the capability of supporting more sophisticated forms of parallelism, like

nested parallel patterns found in programs that use recursion, and for which

the tasking model was originally proposed. Consequently, untied tasks are

not supported by using this basic implementation. Due to the limitations of

tied tasks described previously, the scheduling policy relies on BFS, and

WFS is not supported. In the following, we describe how we extend this

baseline implementation to fully support nested parallel patterns and untied

tasks, while keeping the implementation lightweight and not too memory-

hungry. These both are the key requirements for any implementation suitable

for embedded manycore accelerators. Our main goal is to achieve a compa-

rable efficiency in terms of task granularity (the finer the better) for which

near-ideal speedups are achieved.

Figure 6.2 shows how task suspension works in most implementations

supporting tied tasks (WFS is assumed). The thread on which the code shown

in the figure is executing has an associated stack (depicted on the left). When

a task directive is encountered, the thread jumps to a runtime function that

manages the creation of a new task from the enclosed code region. Because

WFS is considered, the thread encountering the new task executes the code

encapsulated within the task region, and the parent task is suspended (as it is

a tied task and so cannot migrate to a different thread). A new stack frame

is activated for this task, like in every regular function call. The same thing

happens at every nested task directive. When a task is completed, the stack

6.3 Tasking Runtime 151

int i;

…

#pragma omp task

{

float a;

int b;

#pragma omp task

{

int c;

int d;

do_work(c, d)

}

...

do_work(a, b)

}

…

c

d

thread

STACK

a

b

i

thread 0

a

b

c

d

a

b

SUSPEND

T0

RESUME

T0

i

T0

T1

a

b

i

T1

T0

T0

Figure 6.2 Task suspension in the baseline implementation (considering tied tasks and

WFS).

pointer is reset to the top of the previous active frame. Since the semantics of

tied task scheduling ensure that suspension/resumption can happen only on

the same thread, no explicit bookkeeping to save/restore the context of a task

is required.

The key extension required to support untied tasks is the capability of

allowing to resume a suspended task on a different thread than the one that

started and suspended it. To achieve this goal, we rely on lightweight co-

routines [10]. Co-routines rely on cooperative tasks that publicly expose their

code and memory state (register file, stack), so that different threads can take

control of the execution after restoring the memory state. Every time that a

thread suspends or resumes a suspended cooperative task, a context switch is

performed. We place the required metadata to support task contexts (TCs) in

the shared multi-bank memory and we use inline assembly to minimize the

cost of the routines to save and restore the architectural state.

Figure 6.3 shows how task suspension works in our approach for untied

tasks (WFS is assumed). Initially, the thread on which the code shown in the

figure is executing uses its own private stack (in gray). When the outermost

task region (T0) is encountered, the context of the current task is saved in the

152 OpenMP Runtime

int i;

…

#pragma omp task \\

{ untied

float a;

int b;

#pragma omp task \\

{ untied

int c;

int d;

do_work(c, d)

}

...

do_work(a, b)

}

…

c

d

thread

STACK

task 0

STACK

a

b

i

task 1

STACK

thread 0 thread 1

a

b

c

d

a

b

SUSPEND

T0
RESUME

T0

i i

T0

T1

T1

T0

T0

Figure 6.3 Untied task suspension with task contexts and per-task stacks.

TC (including the current SP, that is, the task pointer register), then the thread

is rescheduled to execute the new task T0. The SP of the thread is updated

to the stack of T0 (in blue) and the new task is started. When the creation

point of the innermost task T1 is reached, an identical procedure is followed.

The context of T0 is saved in its TC, which is pushed back in the queue, then

thread 0 is pointed to the stack of T1 (in red). Now the suspended T0 can

be pulled out of and restarted by thread 1. On top of this basic mechanism,

a number of other design choices were made to minimize the cost of our

runtime support, which we describe in the following.

Task hierarchy: Supporting nested tasks requires to keep in the runtime a

data structure (a tree) that represents the hierarchy of multiple task regions.

A parent task has a link to its children and vice versa, to facilitate exchange

of information about execution status. For example, a parent task needs

to be informed about the execution completion of its children to support

the semantics of the taskwait directive. When a parent task completes its

execution, its children become orphans and should not care to inform the

parent. The fastest solution to handle parent task termination in terms of

bookkeeping would be not to delete the descriptor, but just to maintain the

task in a zombie status until all children have completed. This operation

would require a simple update to the descriptor, which can be executed in

a very short time. However, this solution brings to a memory occupation that

6.3 Tasking Runtime 153

is not acceptable for our constrained platform. Thus, we opt for a costlier

removal of the descriptor from the tree. As a consequence, all child tasks must

receive an update from the parent to avoid dangling pointers to a deallocated

descriptor.

Taskwait construct: Task-level synchronization is widely used in recursive-

based parallel patters. Here typically a fixed number of tasks are created at

every recursion level, and their execution is synchronized with a taskwait

directive. When a parent task encounters a taskwait, it should wait until

all the children (first-level descendants) have completed, but typically for

performance the thread hosting the parent task is allowed to switch to execut-

ing one of the children tasks. In the baseline implementation, this feature is

supported by just traversing the list of children tasks in the tree data structure

and inspecting their status to verify that it is set to WAITING. We changed

this mechanism to rely on two queues per task, to directly reference children

in the WAITING and RUNNING states, respectively. Upon creation, a task

is inserted in the WAITING queue. Every time that a task starts to execute,

the runtime moves this task from the WAITING queue to the RUNNING

queue, and vice versa in case of suspension. Decoupling waiting and running

tasks require a costlier bookkeeping upon task insertion and extraction, but

allow faster support for taskwait as it is no longer required to search the tree

for WAITING tasks. While the benefit brought by this implementation is not

evident in the presence of flat parallel patterns, as the taskwait is virtually

useless in this case, in recursive parallel patterns, it is extensively used and

this design choice pays off.

Task dependencies: In the presence of recursive parallel patterns, it is impor-

tant to distinguish between suspended tasks that could be resumed at any time

and tasks that are suspended due to a scheduling constraint that needs to be

unblocked. A typical example is, again, tasks suspended upon a taskwait

or due to a data dependence. As already mentioned, recursive parallelism

extensively relies on such a form of synchronization, thus hosting this type

of suspended tasks in the same queue that also hosts ready-to-execute tasks

used to lead to a situation where we would repeatedly pop from there a task

just to realize that the scheduling constraint was still unsatisfied. We would

then have to push back the task in the queue and retry. Checking the status of

the task before extracting it does not entirely solve the problem, as it requires

time-consuming search operations. To deal with this problem, we changed

the implementation to avoid re-inserting in the queue suspended tasks with

154 OpenMP Runtime

unresolved dependencies. Such tasks are kept floating instead, and it is up

to the task that will eventually resolve the dependence to push them back

into the queue. This modification requires some additional checks to deal

with the above-mentioned case, but greatly improves the performance of

recursive parallel programs.

Allocation of runtime metadata: To minimize the overhead for dynamic

resource allocation (memory, locks, task descriptors, etc.), we have exten-

sively used pools of pre-allocated resources. This is significantly faster than

malloc-like primitives and does not require lock-protected operations, as we

adopt thread-private resources. The downside is memory occupation. Since

the targeted architecture relies on a shared cluster memory with a limited size,

we have to wisely use the available space. A reasonable design solution would

be to dedicate roughly 5–10% of this memory to hosting tasking support data

structures. The original task descriptor has a size of 174 bytes, while the

extensions that we introduced require another 98 bytes for the contexts, plus

the stacks. Private thread stacks are configured to be 1 KB (a common choice

for embedded systems), while task stacks are by default 1/4 of that size.

Clearly, all those values are parameters in our design, and can be changed

depending on specific application requirements.

Despite the increment of runtime memory requirements, the use of pre-

allocated resources enables to exploit finer grained parallelism, which is

paramount in current and future embedded systems. Next, we describe solu-

tions to reduce memory pressure and runtime overhead.

Cutoff mechanisms: With 10% of the cluster’s shared memory allocated

to task descriptors, the runtime can host simultaneously 750 pre-allocated

tied tasks or 400 untied tasks. If the queue of available task descriptors is

depleted during the program execution, a mechanism (known in the literature

as cutoff [11]) is triggered. When this condition is met, the creation of new

task descriptors must be suspended to avoid that runtime resources saturate

when the task production rate is greater than the execution rate. Our runtime

supports two different cutoff variants: yield and work-first. In the first case,

the producer task is stopped and pushed at the end of the READY queue, with

the aim to re-schedule the core to executing pending tasks instead of gener-

ating new ones. Using the second variant, the producer task starts working in

work-first mode by executing the new tasks in-place via a standard function

call: in this case, task descriptors are not required, as the synchronization is

enforced by serializing tasks on the same thread.

6.3 Tasking Runtime 155

Cutoff mechanisms are introduced to avoid an unbounded consumption of

runtime resources, but recursive applications can cause additional problems.

Using untied tasks, task stacks typically end up to be over-sized to fit the

worst case (i.e., the maximum recursion level reached in the cutoff state) to

the detriment of runtime memory footprint. To avoid this case, we introduced

a specific optimization for untied tasks using work-first cutoff, which forces

the producer task to swap its current stack with a special one that is the only

one dimensioned for worst case recursive execution.

Support for scheduling policies: The OpenMP runtime provides spe-

cific features to support the scheduling policies that have been defined in

Chapter 4. Two alternative implementations are selectable for task queues:

global and private queues. The global implementation defines a single task

queue for the application, and it is used to support global scheduling. The

local implementation instantiates an independent queue per thread, and it is

used to support partitioned scheduling, in which tasks are statically allocated

to threads at design time.

Adopting a limited preemption scheduler, each TSP in the runtime is

considered as a potential preemption point. This is implemented by calling

a function designed and implemented for tight integration with the RTOS.

The exact behavior depends on the current scheduling policy (global or

partitioned) selected for the application, which is totally transparent to the

runtime.

6.3.1 Task Dependency Management

The OpenMP tasking model includes a very mature support for highly

unstructured task parallelism with features to express data dependencies (on

specific data elements) between tasks. To do so, OpenMP introduces the

depend clause, which imposes an ordering relation between sibling tasks

(tasks that are child tasks of the same task region). OpenMP defines three

types of dependencies: in, out, and inout. A task with an in clause cannot

start until the set of tasks with an out or an inout clause on the same data

elements complete. This feature is in fact very relevant for embedded sys-

tems, often running real-time applications modeled as direct acyclic graphs

(DAGs)2 (see Chapter 4 for further information).

2The terms TDG and DAG are equivalent; the former is typically used when referring to

runtime methodologies; the latter is used when referring to real-time analysis.

156 OpenMP Runtime

Current implementations of the OpenMP tasking model targeting the

high-performance domain (e.g., libgomp, nanos++) track data dependencies

among tasks by building a task dependency graph (TDG) at runtime. When

a new task is created, its in and out dependencies are matched against those

of the existing tasks. To do so, each task region maintains a hash table that

stores the memory address of each data element contained within the out

and inout clauses, and the list of tasks associated to it. The hash table is

further augmented with links to those tasks depending on it, i.e., including

the same data element within the in and inout clauses. In this way, when the

task completes, the runtime can quickly identify its successors, which may be

ready to execute.

Building the TDG at runtime requires storing the hash tables in memory

until a taskwait directive is encountered. Since dependencies can be defined

only between sibling tasks, when such directives are encountered, all tasks

in their binding region are guaranteed to finish. Moreover, removing the

information of a single task at completion would result too costly, because

dependent tasks are tracked in multiple linked lists in the hash table. As a

result, the memory consumption may significantly increase as the number of

instantiated tasks increases.

Such a memory consumption is clearly not a problem in high-

performance systems, in which large amounts of memory are available.

However, this is not in general the case for parallel embedded architectures.

The MPPA processor features only 2 MB of on-chip private memory per

cluster. Therefore, it is paramount to devise data structures that reduce to

the bare minimum the memory requirements needed to implement the TDG.

To this aim, we maintain the complete OpenMP-DAG generated by the

compiler as presented in Chapter 3. Although this idea may seem counter-

intuitive, the data structures needed to store a statically generated TDG

are much lighter than those necessary to dynamically build the TDG. This

strategy results in a huge reduction of the memory used at runtime.

TDG Data Structure: A Sparse Matrix – A sparse matrix is an optimal

solution to store the TDG with minimal footprint. Figure 6.4b shows the

sparse matrix implementation of the DAG presented in Figure 6.4a. There,

each entry contains a unique task instance identifier tid, and stores in separate

arrays the tid and the number of tasks it depends on (labeled Inputs and #in

respectively in the figure), and the tid and the number of tasks depending on

it (labeled outputs and #out respectively in the figure). Moreover, the sparse

matrix is sorted using the tid, so a dichotomic search can be applied.

6.3 Tasking Runtime 157

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘✚✙

✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✛

✛
✛

✛

✛

✛
✛

✛

✲

✲

✲
✲

✲

✲
✲
✲

�
�✠

.....................................✠
.....................................❘

❅
❅❅❘

�
��✠

❅
❅❘

.....................................❘

�
�✠

❅
❅❘

��✠

....................................✠

❄

❄

❄ ❄
..✇

tid

0

1

1 1

1

1 1

1

0

1

18

Inputs Outputs#in #out

2

2

2

22

2

2

2
T4T4

T4

T4

T2T3

T2T3

T1

18

33

47

64 92

109

124

79

1

18

33

47

64

79

92

109

12464

47

64

33

47

18

1

18

1

92

79

109

1

64

33

47

79

64

92

79

109

124

109

124

(a) (b)

Figure 6.4 On the left (a), the DAG of an OpenMP program. On the right (b), the sparse

matrix data structure implementing DAG shown on the left.

tid, computed with Equation 6.1 (also presented in Chapter 3), is a key

mechanism used to identify the tasks actually instantiated at runtime with

those included in the DAG. Therefore, the same value of tid must be generated

at compile time (so each node in the DAG has a unique identifier) and at

runtime (so tasks can identify its input and output data dependencies).

tid = sidt + T ×

Lt∑

i=1

li ·M
i (6.1)

where sidt is a unique task construct identifier, T is equal to the number

of task, taskwait, and barrier constructs in the source code, Lt is the total

number of nested loops involved in the execution of the task t, i refers to the

the nesting level, li is the loop unique identifier at nesting level i, and M is

maximum number of iterations of any considered loop.

All the information required to compute Equation 6.1 must therefore be

available at compile time. sidt is inserted by the compiler as a new parameter

in the function call of the tasking runtime in charge of creating a newOpenMP

task (named GOMP_task). In order to obtain the same li at compile-time

and at runtime, the compiler introduces a loop stack per loop statement, and

push and pop operations before the loop begins and after it ends, respectively.

At every loop iteration, the top of the stack is increased by 1. The overhead

158 OpenMP Runtime

associated to the stack is very little because it is inserted only in those loops

where tasks are created and the overhead due to the task creation dominates.

The rest of parameters, i.e., T, Lt, and M are encapsulated in the TDG data

structure.

Consider task T4, with identifier 79, in Figure 6.4a. This task instance

corresponds to the computation of the matrix block m[2, 1]. Its identifier is
computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in

sequential order while traversing the source code; (2) T = 5 because there are
four task constructs and one (implicit) barrier in the source code; (3)LT4

= 2,
the two nested loops enclosing T4; (4) M = 3, the maximum number of

iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are

the values of the loop identifiers at the corresponding iteration. Putting all

together: T4id
= 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

Finally, with the objective of monitoring the execution state of task

instances, each entry in the sparse matrix has an associated counter (not

shown in the figure) describing its state. The counter is:

• −1 if the task has not been instantiated (created) or it has finished;

• 0 if the task is ready to run; and

• > 0 if the task is waiting its input tasks to finish. The value indicates the
number of tasks created and not completed it still depends on.

The runtime task scheduler works as follows:

• When a new task is created, the runtime checks the state of its input

tasks. If all their counters are−1, the task is ready to execute; otherwise,
the state of the counter of the new task is initialized with the number of

input tasks with a state ≥ 0.
• When a task finishes, it decrements by 1 the counters of all its output

tasks whose counter is > 0.

It is important to remark that, when the TDG contains tasks whose related

if-else statement condition has not been determined at compile time and it

evaluates to false at runtime, the value of the counter is the same as the tasks

would have already finished, i.e.,−1 (see Chapter 3 for further information).

6.4 Experimental Results

In the following, we present results aimed at characterizing the overheads of

the proposed OpenMP runtime design and demonstrating the reduced impact

on the overall application performance, compared to different solutions.

6.4 Experimental Results 159

6.4.1 Offloading Library

Synchronization on the Kalray MPPA architecture has a significant impact on

the offloading cost. The preliminary implementation of the BLOCK_OS pol-

icy, which has the most complex semantics among all, required 75,500 cycles

to initialize the runtime metadata. It is possible to halve the initialization cost

by (i) replacing dynamic memory allocation of runtime data structures with

a static memory mapping and (ii) distributing between the available cores the

initialization of data structures.

As a further optimization, we implemented a lightweight runtime check

of the presence of a pending offload request to prevent the RTOS from

executing the RM when no new offload requests to process are present. This

further reduced the initialization cost to 33,250 cycles. Figure 6.5 reports

the offload cost on the cluster side for different synchronization policies. We

report minimum and maximum observed execution cycles (blue and orange

bars, respectively). The leftmost groups of bars represent the original Kalray

software infrastructure, while the three rightmost groups of bars represent

the three policies of our software infrastructure. The results for Kalray show

a very large variance between minimum and maximum observed offload

cost. Anyhow, since the analysis tools rely on worst case execution time,

Figure 6.5 Costs of offload initialization.

160 OpenMP Runtime

to all practical purposes, we must consider the maximum time, which is

around 82,000 cycles. All the three synchronization policies that we provide

exhibit a very small variance, and their cost is in all cases much smaller

than the worst case for the original Kalray SDK (roughly in line with the

best case).

This notwithstanding, the observed costs for our runtime software are still

relevant. Compared to state-of-the-art solution, we identified the main reason

of this inefficiency in the management of non-coherent caches. A flush-and-

invalidate operation on the data caches is performed at every synchronization

point (the unlock primitive). This makes each access to runtime data struc-

tures very expensive in terms of execution cycles. Replacing data caches

with L1 scratchpad memories and using these memories to store runtime data

structures allow reducing the offload cost by 20x.

6.4.2 Tasking Runtime

As already pointed out, supporting the tasking execution model is usually

subject to large overheads. While such overheads can be tolerated by large

applications exploiting coarse-grained tasks, this is usually not the case for

embedded applications, which rely on fine-grained workloads. To study this

effect, our plots show speedup (parallel execution on 16 cluster cores versus

sequential execution on a single cluster core) on the y-axis, comparing the

original Kalray runtime to our runtime support for tied and untied tasks.

For all the experiments except the one in Section 6.4.2.5, we use a set of

microbenchmarks in which tasks only consist of ALU operations (e.g., add

on local registers) and no load/store operations, which allows exploring the

maximum achievable speedups. The number of ALU operations within the

tasks can be controlled via a parameter, which allows studying the achievable

speedup for various task granularities, which we report on the x-axis of

each plot (task granularity is expressed as duration in clock cycles, roughly

equivalent to the number of ALU operations that each task contains).

We consider three variants for the synthetic benchmark: LINEAR,

RECURSIVE, and MIXED. These are representative of different task cre-

ation patterns found in real applications, and will be described in the

following subsections.

6.4.2.1 Applications with a linear generation pattern
The LINEAR benchmark consists of N = 512 identical tasks, each with a

workload of W ALU instructions. The main task creates all the remaining

6.4 Experimental Results 161

N. . . 1 tasks from a simple loop (one task created per loop iteration) and then

performs a taskwait to ensure that all tasks have completed their execution.

f o r (i =0 ; i <N; i ++)

{

#pragma omp t a s k / / A t a s k c o n s i s t i n g

s yn t h (W) ; / / o f W ALU i n s t r u c t i o n s

}

#pragma omp t a s kw a i t

Figure 6.6 shows the results for the LINEAR benchmark. Focusing on the

results for the original Kalray SDK (“noCO KALRAY” line), ideal speedups

can be achieved only for tasks larger than 100 KCycles. For smaller tasks, the

maximum achievable speedup is 3×. In this fine-grain task area, our tasks

can consistently achieve a four times higher speedup. Since in the LINEAR

microbenchmarks, there is no task nesting, there is no significant difference

between tied (PSOC T) and untied (PSOC U) tasks. We thus explore a new

configuration where tasks are recursively created to appreciate the difference.

Figure 6.6 Speedup of the LINEAR benchmark (no cutoff).

162 OpenMP Runtime

6.4.2.2 Applications with a recursive generation pattern
Figure 6.7 shows the efficiency of our runtime for the recursive parallel pat-

tern, considering tied and untied tasks. The RECURSIVE microbenchmark

builds a binary tree of depth N = 9 (512 tasks) recursively. This is similar

to a classical Fibonacci algorithm, where each of the two recursive calls is

enclosed in a task directive. A taskwait directive is placed after the creation

of the two tasks.

#pragma omp t a s k / / The f i r s t t a s k (r o o t)

r e c (0 , 5 1 1) ;

i n t r e c (i n t l e v e l , i n t max leve l)

{

i f (l e v != max leve l)

{

#pragma omp t a s k / / F i s t c h i l d t a s k

r e c (l e v e l +1 , max l eve l) ;

#pragma omp t a s k / / Second c h i l d t a s k

r e c (l e v e l +1 , max l eve l) ;

}

s yn t h (W) ; / / W ALU i n s t r u c t i o n s

#pragma omp t a s kw a i t

}

The first result that we observe is that only untied tasks can achieve the

maximum speedup. Tied tasks have a maximum speedup of 8. This effect

is due to the behavior of taskwait in the presence of tied tasks. If a tied

task is stuck on a taskwait and there are no children tasks in the WAITING

state (e.g., few tasks generated at each recursion level, like in the binary

tree), that task is bound to wait until the children have finished. Using a

binary tree, this leads to exactly half of the threads getting stuck, which

explains the maximum speedup observed in this configuration. This problem

is circumvented by untied tasks, which can reschedule the threads hosting the

stuck tasks to other ready tasks. Similar considerations to what we discussed

in the previous section hold for the comparison between Kalray tasks and

6.4 Experimental Results 163

Figure 6.7 Speedup of the RECURSIVE benchmark (no cutoff).

our tied tasks (Kalray supports only tied tasks, so a comparison to our untied

tasks is not directly feasible).

In general, it is possible to see that RECURSIVE implies a much higher

overhead than LINEAR. This is justified by a significantly increased con-

tention for shared data structures (queues, trees, etc.), as in this pattern

multiple threads are concurrently creating tasks. Even if we have struggled

to make the lock-protected operations to operate on shared data struc-

tures as short as possible, their serialization over multiple requestors is

evident. As a result, it takes an order of magnitude coarser tasks (around

100 K) than in the LINEAR case to achieve nearly ideal speedups. This

is a typical situation where cutoff policies can help in significantly reduc-

ing the runtime overheads. We explore the adoption of cutoff policies in

Section 6.4.2.4.

6.4.2.3 Applications with mixed patterns
The advantage of using untied tasks is particularly evident for applications

presenting a mixed structure which includes both LINEAR and RECURSIVE

task creation patterns. The MIXED microbenchmark depicted in Figure 6.8

164 OpenMP Runtime

Figure 6.8 Structure of the MIXED microbenchmark.

is aimed at studying the behavior of such applications. A root task generates

seven tasks in a LINEAR manner, each one spawning a single child with a

long execution time and then performing a taskwait, plus another two tasks

from within RECURSIVE binary trees of depth 5.

Figure 6.9 shows the results for this benchmark. Using tied tasks, 14

threads are allocated to execute the linear part of the application, seven

of which are blocked by the taskwait directive. The ideal speedup of the

application is 2, which our tied tasks reach for granularities of around 10

Kcycles.

Using untied tasks, only seven threads are allocated to the LINEAR part,

which brings the ideal speedup to 9×. The maximum speedup achieved

by our untied tasks is 8, due to a limitation of the tracing (performance

Figure 6.9 Speedup of the MIXED benchmark.

6.4 Experimental Results 165

monitoring) of the Kalray platform. The root task of the hierarchy is the

one performing time measurement and we were forced to declare this as a

tied task to gather coherent clock values (allowing this task to migrate to

other cores results in incoherent measurement). This limits the maximum

achievable speedup to 8×, which our untied tasks achieve for granularities

above 10 Kcycles.

Overall, untied tasks enable four times faster execution than tied tasks

for application featuring mixed task creation patterns. Note that this result

holds for any runtime implementation. Our solution makes this result visible

for smaller tasks compared to other OpenMP tasking implementations. The

Kalray implementation never enables any speedup in the considered range of

task granularities (up to one million cycles) for this experiment.

6.4.2.4 Impact of cutoff on LINEAR and RECURSIVE
applications

We repeated the experiments with LINEAR and RECURSIVE microbench-

marks considering a higher number of tasks (2,048). This configuration

saturates the runtime data structures and activates cutoff mode. Figures 6.10

and 6.11 show the results for this experiment.

Figure 6.10 Speedup of the LINEAR benchmark (with cutoff).

166 OpenMP Runtime

Figure 6.11 Speedup of the RECURSIVE benchmark (with cutoff).

Focusing on the LINEAR pattern, the adoption of cutoff greatly mitigates

overhead effects, and we can achieve nearly ideal speedups for an order of

magnitude smaller tasks compared to Kalray tasks. It also has to be noted that

cutoff mode is not properly supported for LINEAR patterns in the original

Kalray runtime. Enabling cutoff mode in this configuration simply seems to

disable parallelism completely. Focusing on the RECURSIVE pattern, the use

of cutoff policies proves extremely beneficial, with nearly ideal speedups for

very fine-grained tasks (in the order of thousand cycles).

6.4.2.5 Real applications
To assess the performance of our tasking runtime on real applications, we

execute the benchmarks from the Barcelona OpenMP Task Suite (BOTS)

[12], which includes a wide set of real-life applications parallelized with

OpenMP tasks.

Figure 6.12 shows the speedup of applications for different configura-

tions, comparing the Kalray SDK (KALRAY) with different configurations

of our runtime, using tied tasks (PSOC tied), untied tasks (PSOC untied), and

untied tasks with cutoff (PSOC untied CO2).

On average, programs executing on top of our runtime show a speedup of

12×, compared to only 8× for the original Kalray SDK. The benefits of cutoff

6.4 Experimental Results 167

Figure 6.12 Speedups for the BOTS benchmarks.

here are minimal, since the bottleneck is limited parallelism in the appli-

cation rather than runtime overhead. The marginal improvements enabled

by cutoff, where present, are usually due to better memory usage (tasks in

cutoff use less memory for the runtime, which is used for application data

instead).

6.4.3 Evaluation of the Task Dependency Mechanism

This section evaluates the use of a sparse matrix to implement the TDG upon

which the task dependency mechanism is built as presented in Section 6.3.1.

Concretely, we implement our task dependency mechanism on top of the

GNU libgomp library included in GCC version 4.7.2, which supports tasks

but not dependencies, and compare it with the libgomp library included in

GCC 4.9.2, which implements a dependency checker based on a hash table

structure.

The reason to implement our mechanism on a library not supporting

dependencies is that both implementations differ only in the dependency

checker, and so being easier to incorporate a new one, rather than replacing it.

Moreover, to ensure that results are not affected by the version of the library,

we executed the applications considered in this section without dependence

clauses. Despite the incorrect result, the numbers revealed that both libraries

168 OpenMP Runtime

have the exact same memory usage and performance, demonstrating that

the memory increment is exclusively caused by using different dependency

checkers.

Moreover, we consider two applications, one from the HPC domain,

i.e., a cholesky factorization [13] used for efficient linear equation solvers

and Monte Carlo simulations, and one from the embedded domain, i.e., an

application resembling the 3D path planning [14] (r3DPP) used for airborne

collision avoidance.

For comparison purposes, the applications have been parallelized with

task dependencies, i.e., using the depend clause, and without dependencies,

i.e., using only task and taskwait directives.

6.4.3.1 Performance speedup and memory usage
Figures 6.13 and 6.14 show the performance speedup and the runtime mem-

ory usage (in KB) of the Cholesky and r3DPP, when varying the number

of instantiated tasks, ranging from 1 to 5984 and 4096, respectively, and

considering the three libgomp runtimes implementing a dependency checker

based on a hash table, on a sparse matrix, and one with not dependency

checker (labeled omp4, omp 3.1, and lightweight omp4, respectively).

The performance has been computed with the average of 100 executions.

Similarly, Figures 6.14a,b show the heap memory usage (in KB) of the

three OpenMP runtimes when executing Cholesky and r3DPP respectively

and varying the number of instantiated tasks as well. The memory usage

has been extracted using Valgrind Massif [15] tool, which allows profiling

the heap memory consumed by the runtime in which the TDG structure is

maintained.

(a) Cholesky (b) r3DPP

Figure 6.13 Performance speedup of the Cholesky (a) and r3DPP (b) running with

lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.

6.4 Experimental Results 169

(a) Cholesky (b) r3DPP

Figure 6.14 Memory usage (in KB) of the Cholesky (a) r3DPP (b) running with lightweight

omp4, omp4, and omp 3.1, and varying the number of tasks.

For these experiments, we consider an Intel Xeon CPU E5-2670 proces-

sors, featuring eight cores each, with 20 MB L3. The reason is that it incor-

porates the libgomp library included in GCC 4.9.2 supporting dependency

checker based on a hash table.

We observe that both performance and memory usage depend on the

number of instantiated tasks: the higher the number of instances, the better

the performance, as the chances of parallelism increase. When the number of

tasks is too high, however, the overhead introduced by the runtime and the

small workload of each task slows down the performance.

As shown in Figure 6.13, our lightweight omp4 obtains the same per-

formance speedups as the omp4 implementation for the two applications,

and outperforms omp 3.1. However, when observing the memory usage in

Figure 6.14, it rapidly increases for omp4, requiring much more memory than

the runtime based on the sparse matrix, i.e., the lightweight omp4.

It is also interesting to observe the parallelization opportunities brought

by the depend clause, which makes the performance of Cholesky (Figure

6.13a) to increase significantly compared to not using them, with a speedup

increment from 4x to 12x when instantiating 5,984 tasks. At this point, omp4

consumes 2.5 MB while our lightweight omp4 requires less than 1.3 MB. The

memory consumed by omp3.1 is less than 100 KB (Figure 6.14a). In fact, the

omp3.1 memory consumption is similar for all the applications because no

structure for dependencies management is needed.

For the r3DPP, the depend clause achieves a performance speedup of 5.2x

and 5.8x with omp4 and lightweight omp4, respectively, when instantiating

1,024 tasks (Figure 6.13b). At this point, omp4 consumes 400 KB in front of

the 200 KB consumed by lightweight omp4 (Figure 6.14b). Not considering

dependencies, i.e., omp31, achieves a maximum performance of 4.5x when

256 tasks are instantiated (Figure 6.13b). When the number of task instances

170 OpenMP Runtime

Table 6.1 Memory usage of the sparse matrix (in KB), varying the number of tasks

instantiated

Cholesky
Tasks 4 20 120 816 5984

KB 0.11 0.59 3.80 27.09 204.19

r3DPP
Tasks 16 64 256 1024 4096

KB 00.47 1.94 7.88 31.75 127.5

increases to 4096, all runtimes suffer a significant performance degradation

because the number of instantiated tasks is too high compared to the workload

computed by each task.

Table 6.1 shows the size of the sparse matrix data structure implementing

the esTDG of each application when varying the number of instantiated tasks

(the memory consumption reported in Figures 6.14a,b already includes it).

6.4.3.2 The task dependency mechanism on the MPPA
To evaluate the benefit of the task dependency mechanism on a memory

constrained manycore architecture, we evaluated it on the MPPA processor.

Figure 6.15 shows the performance speedup of Cholesky (a) and r3DPP

(b) executed in one MPPA cluster, considering the lightweight omp4 and

omp31 runtimes and varying the number of tasks. Note that omp4 runtime

experiments are not provided because MPPA does not support it. Memory

consumption is the same as the one shown in Figure. 6.14 r3DPP increases

the performance speedup from 9x to 12x when using our lightweight omp4

rather than omp3.1 and only consuming 200 KB. Cholesky presents a

significant speedup increment when instantiating 816 tasks, i.e., from 2.5x

to 9x, consuming only 220 KB.

(a) Cholesky (b) r3DPP

Figure 6.15 Performance speedup of the Cholesky (a) and r3DPP (b) running on the MPPA

with lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.

References 171

6.5 Summary

This chapter has illustrated the design of the OpenMP runtime for a het-

erogeneous platform including a host processor and an embedded manycore

accelerator. The complete software stack is composed of an offloading library

and a tasking runtime library, which have been described in detail. The

OpenMP runtime provides specific features to support the scheduling policies

that have been defined in Chapter 4, and it also implements the TDG required

to support the task dependency mechanism as presented in Section 6.3.1. The

chapter has discussed how to enable maximum exploitation of the available

hardware parallelism via the untied task model, highlighting the key design

choices to achieve low overhead. Experimental results show that this enables

up to four times faster execution than tied tasks, which improves on average

by 60% over the native Kalray SDK.

References

[1] Marongiu, A., Capotondi, A., Tagliavini, G., and Benini, L., “Simplify-

ing Many-Core-Based Heterogeneous SoC Programming With Offload

Directives.” In IEEE Transactions on Industrial Informatics, vol. 11,

pp. 957–967, 2015.

[2] Mitra, G., Stotzer, E., Jayaraj, A., and Rendell, A. P., “Implementation

and optimization of the OpenMP accelerator model for the TI Key-

stone II architecture.” In International Workshop on OpenMP, Springer,

pp. 202–214, 2014.

[3] Rosenstiel, W., and Thiele, L. (editors), Design, Automation and Test

in Europe Conference and Exhibition, DATE 2012, Dresden, Germany.

IEEE, 2012.

[4] Podobas, A., Brorsson, M., and Faxén, K.-F., A comparative per-

formance study of common and popular task-centric programming

frameworks. Concurr. Comput. Pract. Exp. 27, 1–28, 2015.

[5] Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E.,

“Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the

Exploitation of Task Parallelism in OpenMP.” In 2009 International

Conference on Parallel Processing, pp. 124–131. IEEE, 2009.

[6] Burgio, P., Tagliavini, G., Marongiu, A., and Benini, L., “Enabling fine-

grained OpenMP tasking on tightly-coupled shared memory clusters.”

In Proceedings of the Conference on Design, Automation and Test in

Europe, DATE ’13, pp. 1504–1509. EDA Consortium, 2013.

172 OpenMP Runtime

[7] Rochange, C., Bonenfant, A., Sainrat, P., Gerdes, M., Lobo, J., et al.,

“WCET analysis of a parallel 3D multigrid solver executed on the

MERASA multi-core.” In WCET, 2010.

[8] Kumar, S., Hughes, C. J., and Nguyen, A, “Carbon: Architectural

Support for Fine-grained Parallelism on Chip Multiprocessors.” In Pro-

ceedings of the 34th Annual International Symposium on Computer

Architecture, ISCA ’07, pp. 162–173. ACM, 2007.

[9] Serrano, M. A., Melani, A., Vargas, R., Marongiu, A., Bertogna, M.,

and Quiñones, E., “Timing Characterization of OpenMP4 Tasking

Model.” In Proceedings of the 2015 International Conference on Com-

pilers, Architecture and Synthesis for Embedded Systems, CASES ’15,

pp. 157–166. IEEE Press, 2015.

[10] Marlin, C. D., Coroutines: a programming methodology, a language

design and an implementation. Number 95 in Lecture Notes in Com-

puter Science. Springer Science and Business Media, 1980.

[11] Duran, A., Corbalán, J., and Ayguadé, E., “Evaluation of OpenMP

task scheduling strategies.” In International Workshop on OpenMP,

pp. 100–110. Springer, 2008.

[12] Duran, A., Corbalan, J., and Ayguade, E., “An adaptive cut-off for task

parallelism.” In 2008 SC – International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE,

2008.

[13] Bascelija, N., Sequential and Parallel Algorithms for Cholesky Fac-

torization of Sparse Matrices. WSEAS: Mathematic. Appl. Sci. Mech.

2013.

[14] Cesarini, D., Marongiu, A., and Benini, L., “An optimized task-based

runtime system for resource-constrained parallel accelerators.” In 2016

Design, Automation and Test in Europe Conference and Exhibition,

DATE 2016, Dresden, Germany, pp. 1261–1266, 2016.

[15] Nethercote, N., et. al., “Building Workload Characterization Tools with

Valgrind.” In IISWC, 2006.

7

Embedded Operating Systems

Claudio Scordino1, Errico Guidieri1, Bruno Morelli1,

Andrea Marongiu2,3, Giuseppe Tagliavini3 and Paolo Gai1

1Evidence SRL, Italy
2Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland
3University of Bologna, Italy

In this chapter, we will provide a description of existing open-source

operating systems (OSs) which have been analyzed with the objective of

providing a porting for the reference architecture described in Chapter 2.

Among the various possibilities, the ERIKA Enterprise RTOS (Real-Time

Operating System) and Linux with preemption patches have been selected. A

description of the porting effort on the reference architecture has also been

provided.

7.1 Introduction

In the past, OSs for high-performance computing (HPC) were based on

custom-tailored solutions to fully exploit all performance opportunities of

supercomputers. Nowadays, instead, HPC systems are being moved away

from in-house OSs to more generic OS solutions like Linux. Such a trend

can be observed in the TOP500 list [1] that includes the 500 most powerful

supercomputers in the world, in which Linux dominates the competition.

In fact, in around 20 years, Linux has been capable of conquering all the

TOP500 list from scratch (for the first time in November 2017).

Each manufacturer, however, still implements specific changes to the

Linux OS to better exploit specific computer hardware features. This is

especially true in the case of computing nodes in which lightweight kernels

are used to speed up the computation.

173

174 Embedded Operating Systems

Figure 7.1 Number of Linux-based supercomputers in the TOP500 list.

Linux is a full-featured OS, originally designed to be used in server or

desktop environments. Since then, Linux has evolved and grown to be used

in almost all computer areas – among others, embedded systems and parallel

clusters. Linux currently supports almost every hardware processor, including

x86, x86-64, ARM, PowerPC, MIPS, SuperH, IBM S/390, Motorola 68000,

SPARC, etc. The programmability and the portability of code across different

systems are ensured by the well-known “Portable Operating System Inter-

face” (POSIX) API. This is an IEEE standard defining the basic environment

and set of functions offered by the OS to the application programs.

Hence, the main reason for this success and popularity in the HPC sector

is its excellent performance and its extreme scalability, due to very carefully

designed data structures like Linux Read-Copy Update (RCU) [2]. This

scalability, together with the high modularity, enables excellent performance

on both a powerful parallel cluster made by thousands of cores and a small

embedded microcontroller, as will be shown in the next sections.

Therefore, when designing the support for our predictable parallel pro-

gramming framework, we started selecting Linux as the basic block for

executing the target parallel applications. On the other hand, Linux alone is

not sufficient for implementing the needed runtime support on our reference

architecture: a solution needed to be found for the compute cores, where a

tiny RTOS is needed in order to provide an efficient scheduling platform to

support the parallel runtime described in Chapter 6.

This chapter in particular describes in detail how the scheduling tech-

niques designed in Chapter 4 have been implemented on the reference

architecture. The chapter includes notes about the selection of the tiny RTOS

for the compute cores, with a description of the RTOS, as well as the solutions

implemented to support Linux on the I/O cores with real-time performance.

7.2 State of The Art 175

This chapter is structured as follows. Section 7.2 describes the state of the

art of the real-time support for the Linux OS and as well for small RTOSes.

Section 7.3 describes the requirements that influenced the choice of the

RTOS, which is described in detail in Section 7.4. Section 7.5 provides some

insights about the OS support for the host processor and for the many-core

processor. Finally, Section 7.6 summarizes the chapter.

7.2 State of The Art

7.2.1 Real-time Support in Linux

As noted in the Section “Introduction,” in the last years, there has been

a considerable interest in using Linux for both HPC and real-time control

systems, from academic institutions, independent developers, and industries.

There are several reasons for this rising interest.

First of all, Linux is an Open Source project, meaning that the source code

of the OS is freely available to everybody, and can be customized according

to user needs, provided that the modified version is still licensed under the

GNU General Public License (GPL) [3]. This license allows anybody to

redistribute, and even sell, a product as long as the recipient is able to exercise

the same rights (access to the source-code included). This way, a user (for

example, a company) is not tied to the OS provider anymore, and is free

to modify the OS at will. The Open Source license helped the growth of a

large community of researchers and developers who added new features to

the kernel and ported Linux to new architectures. Nowadays, there is a huge

number of programs, libraries, and tools available as Open Source code that

can be used to build a customized version of the OS.

Moreover, Linux has the simple and elegant design of the UNIX OSs,

which guarantees meeting the typical reliability and security requirements of

real-time systems.

Finally, the huge community of engineers and developers working on

Linux makes finding expert programmers very easy.

Unfortunately, the standard mainline kernel (as provided by Linus

Torvalds) is not adequate to be used as RTOS. Linux has been designed to

be a general-purpose operating system (GPOS), and thus not much attention

has been given to the problem of reducing the latency of critical operations.

Instead, the main design goal of the Linux kernel has been (and still remains)

to optimize the average throughput (i.e., the amount of “useful work” done by

the system in the unit of time). For this reason, a Linux program may suffer a

high latency in response to critical events. To overcome these problems, many

176 Embedded Operating Systems

approaches have been proposed in the last years to modify Linux in order to

make it more “real-time.” These approaches can be grouped in the following

classes [4]:

1. Hard real-time scheduling through a Hardware Abstraction Layer

(HAL);

2. Latency reduction through better preemption mechanisms and interrupt

handling;

3. Proper real-time scheduling policies.

The following subsections describe each approach in detail.

7.2.1.1 Hard real-time support
This approach consists in creating a layer of virtual hardware between the

standard Linux kernel and the real hardware. This layer is called Real-Time

Hardware Abstraction Layer (RTHAL). It abstracts the hardware timers and

interrupts and adds a separate subsystem to run the real-time tasks. The Linux

kernel and all the normal Linux processes are then managed by the abstraction

layer as the lowest priority tasks — i.e., the Linux kernel only executes when

there are no real-time tasks to run.

The first project implementing this approach was RTLinux [5]. The

project started at Finite State Machine Labs (FSMLabs) in 1995. Then, it

was released in two different versions: an Open Source version (under GPL

license) and a more featured commercial version. An operation of patenting

issued in US in 1999, however, generated a massive transition of developers

towards the parallel project RTAI. Then, the commercial version was bought

by WindRiver. Nowadays, both versions are not maintained anymore [5].

RTAI [6] (which stands for “Real-Time Application Interface”) is a

project started as a variant of RTLinux in 1997 at Dipartimento di Ingegneria

Aerospaziale of Politecnico di Milano (DIAPM), Italy. The project is under

LGPL license, and it was supported by a large community of developers,

based on the Open Source model. Although the project initially started from

the original RTLinux code, it has been completely rewritten over time. In

particular, the RTAI community has developed the Adaptive Domain Envi-

ronment for Operating Systems (ADEOS) nanokernel as an alternative for

RTAI’s core, to get rid of the old kernel patch and exploit a more structured

and flexible way to add a real-time environment to Linux [4]. The project

mainly targets the x86 architecture and is currently maintained (even if less

popular than it used to be in the past).

Xenomai [7] was born in 2001 as an evolution of Fusion, a project

to run RTAI tasks in the user space. With Xenomai, a real-time task can

7.2 State of The Art 177

execute in user space or in kernel space. Normally, it starts in kernel space

(i.e., “primary domain”), where it has real time performance. When the real-

time task invokes a function belonging to the Linux standard API or libraries,

it is automatically migrated to the user-level (i.e., “secondary domain”), under

the control of the Linux scheduler. In this secondary domain, it keeps a

high priority, being scheduled with the SCHED FIFO or SCHED RR Linux

policies. However, it can experience some delay and latency, due to the fact

that it is scheduled by Linux. After the function call has been completed, the

task can go back to the primary mode by explicitly calling a function. In this

way, at the cost of some limited unpredictability, the real-time programmer

can use the full power of Linux also for real-time applications.

Among the various projects implementing the hardware abstraction

approach, Xenomai is the one which supports the highest number of embed-

ded architectures. It supports ARM, Blackfin, NiosII, PPC and, of course,

x86. Xenomai also offers a set of skins implementing the various APIs of

popular RTOS such as Windriver VxWorks [8], as well as the POSIX API [9].

In version 3 of Xenomai, the project aims at working on top of both a

native Linux kernel and a kernel with PREEMPT RT [10], by providing a

set of user-space libraries enabling seamless porting of applications among

the various OS versions.

It is important to highlight the advantages of the approach of hard-

ware abstraction. First of all, the latency reduction is really effective [4].

This allows the implementation of very fast control loops for applications

like vibrational control. Moreover, it is possible to use a full-featured OS

like Linux for both the real-time and the non-real-time activities (e.g.,

HMI, logging, monitoring, communications, etc.). Finally, the possibility

of developing and then executing the code on the same hardware platform,

considerably simplifies the complexity of the development environment.

Typical drawbacks of this approach – which depend on the particular

implementation – are:

• Real-time tasks must be implemented using specific APIs, and they

cannot access typical Linux services without losing their real-time

guarantees.

• The implementation is very hardware-dependent, and may not be

available for a specific architecture.

• The real-time tasks are typically executed as modules dynamically

loaded into the kernel. Thus, there is no memory protection and a buggy

real-time task may crash the whole system.

178 Embedded Operating Systems

For these reasons, this approach is usually followed only to build hard real-

time systems with very tight requirements.

7.2.1.2 Latency reduction
“Latency” can be defined as the time between the occurrence of an event

and the beginning of the action to respond to the event [4]. In the case of

an OS, it is often defined as the time between the interrupt signal arriving to

the processor (signaling the occurrence of an external event like data from a

sensor) and the time when the handling routine starts execution (e.g., the real-

time task that responds to the event). Since in the development of critical real-

time control systems, it is necessary to account for the worst-case scenario, a

particularly important measure is the maximum latency value.

The two main sources of latency in general-purpose OSs are task latency

and timer resolution:

1. Task latency is experienced by a process when it cannot preempt a lower

priority process because this is executing in kernel context (i.e., the

kernel is executing on behalf of the process). Typically, monolithic OSs

do not allow more than one stream of execution in kernel context, so

that the high-priority task cannot execute until the kernel code either

returns to user-space or explicitly blocks. As we will explain in the

following paragraphs, Linux has been capable of mixing the advantages

of a traditional monolithic design with the performance of concurrent

streams of execution within the kernel.

2. The timer resolution depends on the frequency at which the electronics

issues the timing interrupts (also called “tick”). This hardware timer is

programmed by the OS to issue interrupts at a pre-programmed period of

time. The periodic tick rate directly affects the granularity of all timing

activities. The Linux kernel has recently switched towards a dynamic

tick timer, where the timer does not issue interrupts at a periodic rate.

This feature allows the reduction of energy consumption whenever the

system is idle.

In the course of the years, several strategies have been designed and imple-

mented by kernel developers to reduce these values. Among the mechanisms

already integrated in the official Linux kernel, we can find:

• Robert Love’s Preemptible Kernel patch to make the Linux kernel

preemptible just like user-space. This means that several flows of ker-

nel execution can be run simultaneously. Urgent events can be served

regardless of the fact that the system is running in the kernel context.

7.2 State of The Art 179

Hence, it becomes possible to preempt a process at any point, as long

as the kernel is in a consistent state. With this patch the Linux kernel

has become a fully preemptive kernel, unlike most existing OSs (UNIX

variants included). This feature was introduced in the 2.6 kernel series

(December 2003).

• High Resolution Timers (HRT) is a mechanism to issue timer interrupts

aperiodically – i.e., the system timer is programmed to generate the

interrupt after an interval of time that is not constant, but depends on

the next event scheduled by the OS. Often, these implementations also

exploit processor-specific hardware (like the APIC on modern x86 pro-

cessors) to obtain a better timing resolution. This feature was introduced

in the 2.6.16 kernel release (March 2006).

• Priority inheritance for user-level mutex, available since release 2.6.18

(September 2006). Priority inheritance support is useful to guarantee

bounded blocking times in case more than one thread needs to concur-

rently access the same resource. The main idea is that blocking threads

inherit the priority of the blocked threads, thus giving them additional

importance in order to finish their job early.

• Threaded interrupts by converting interrupt handlers into preemptible

kernel threads, available since release 2.6.30 (June 2009). To better

understand the effect of this patch, we have to consider that the typical

way interrupts are managed in Linux is to manage the effect of the

interruption immediately inside the so-called interrupt handler. In this

way, peripherals are handled immediately, typically providing a better

throughput (because thread waiting for asynchronous events are put

earlier in the ready queue). On the other hand, a real-time system

may have a few “important” IRQs that need immediate service, while

the others, linked to lower priority activities (e.g., network, disk I/O),

can experiences higher delays. Therefore, having all interrupt services

immediately may provide unwanted jitter in the response times, as low-

priority IRQ handlers may interrupt high-priority tasks. The threaded

interrupt patch solves this problem by transforming all IRQ handlers

into kernel threads. As a result, the IRQ handlers (and their impact on the

response time) are minimized. Moreover, users can play with real-time

priorities to eventually raise the priorities of the important interrupts,

therefore providing stronger real-time guarantees.

PREEMPT RT [10] is an on-going project supported by the Linux

Foundation [11] to bring real-time performance to a further level of

sophistication, by introducing preemptible (“sleeping”) spinlocks and RT

mutexes implementing Priority Inheritance to avoid priority inversion.

180 Embedded Operating Systems

It is worth specifying that the purpose of the PREEMPT RT patch is

not to improve the throughput or the overall performance. The patch aims

at reducing the maximum latency experienced by an application to make the

system more predictable and deterministic. The average latency, however, is

often increased.

7.2.1.3 Real-time CPU scheduling
Linux systems traditionally offered only two kind of scheduling policies:

1. SCHED OTHER: Best-effort round-robin scheduler;

2. SCHED FIFO/SCHED RR: Fixed-priority POSIX scheduling.

During the last decade, due to the increasing need of a proper real-time

scheduler, a number of projects have been proposed to add more sophisticated

real-time scheduling (e.g., SCHED SOFTRR [12], SCHED ISO [13], etc.).

However, they remained as separate projects and have never been integrated

in the mainline kernel.

During the last years, the real-time scheduler SCHED DEADLINE

[14, 15] originally proposed and developed by Evidence Srl in the context

of the EU project ACTORS [16], has been integrated in the Linux kernel.

It is available since the stable release 3.14 (March 2014). It consists of a

platform-independent real-time CPU scheduler based on the Earliest Dead-

line Scheduler (EDF) algorithm [17], and it offers temporal isolation between

the running tasks. This means that the temporal behavior of each task (i.e., its

ability to meet its deadlines) is not affected by the behavior of the other tasks

running in the system. Even if a task misbehaves, it is not able to exploit

larger execution times than the amount it has been allocated. The scheduler

only enforces temporal isolation on the CPU, and it does not yet take into

account shared hardware resources that could affect the timing behavior.

A recent collaboration between Scuola Superiore Sant’Anna, ARM Ltd.

and Evidence Srl, has aimed at overcoming the non-work-conserving nature

of SCHED DEADLINE while keeping the real-time predictability. This joint

effort that replaced the previous CBS algorithm with GRUB has been merged

since kernel release 4.13.

7.2.2 Survey of Existing Embedded RTOSs

The market of embedded RTOSs has been exploited in the past decades

by several companies that have been able to build solid businesses. These

companies started several years ago, when the competition from free OSs

7.2 State of The Art 181

was non-existent or very low. Thus, they had enough time to create a

strong business built on top of popular and reliable products. Nowadays, the

market is full of commercial solutions, which differentiate in the applica-

tion domain (e.g., automotive, avionics, railway, etc.) and in the licensing

model. Most popular commercial RTOSs are: Windriver VxWorks [8], Green

Hills Integrity [18], QNX [19], SYSGO PikeOS [20], Mentor Graphics

Nucleus RTOS [21], LynuxWorks LynxOS [22], andMicriumµc/OS-III [23].

However, there are some other interesting commercial products like Segger

EmbOS [24], ENEA OSE [25], and Arccore Arctic core [26].

On the other hand, valid Open-Source alternatives exist. The development

of a completely free software tool chain being our target, the focus of this

subsection will be more on the free RTOSs available publicly. Some free

RTOSs, in fact, have now reached a level of maturity in terms of reliability

and popularity that can compete with commercial solutions. The Open-

Source licenses allow the modification of the source code and porting the

RTOS on the newest many-core architectures.

This section provides an overview of the free RTOSs available. For each

RTOS, the list of supported architectures, the level of maturity and the kind

of real-time support are briefly provided. Other information about existing

RTOSs can be found in [27].

FreeRTOS
FreeRTOS [28] is a small RTOS written in C. It provides threads, tasks,

mutexes, semaphores and software timers. A tick-less mode is provided for

low-power applications.

It supports several architectures, including ARM (ARM7/9, Cortex-A/M),

Altera Nios2, Atmel AVR and AVR32, Cortus, Cypress PSoC, Freescale

Coldfire and Kinetis, Infineon TriCore, Intel x86, Microchip dsPIC

and PIC18/24/32 and dsPIC, Renesas H8/S, SuperH, Fujitsu, Xilinx

Microblaze, etc.

It does not implement very advanced scheduling algorithms, but it offers

a classical preemptive or cooperative fixed-priority round-robin with priority

inheritance mutexes.

The RTOS is Open Source, and was initially distributed under a license

similar to GPL with linking exception [29]. Recently the FreeRTOS kernel

has been relicensed under the MIT license thanks to the collaboration with

Amazon AWS. A couple of commercial versions called SafeRTOS and

OpenRTOS are available as well. The typical footprint is between 5 KB

and 10 KB.

182 Embedded Operating Systems

Contiki
Contiki [30] is an Open-Source OS for networked, memory-constrained

systems with a particular focus on low-power Internet of things devices. It

supports about a dozen microcontrollers, even if the ARM architecture is not

included. The Open-Source license is BSD, which allows the usage of the OS

in commercial devices without releasing proprietary code.

Although several resources include Contiki in the list of free RTOSs,

Contiki is not a proper RTOS. The implementation is based on the concept

of protothreads, which are non-preemptible stack-less threads [31]. Context

switch can only take place on blocking operations, and does not preserve the

content of the stack (i.e., global variables must be used to maintain variables

across context switches).

Stack sharing is a useful feature, but the lack of preemptive support and

advanced scheduling mechanisms made this OS not suitable to meet the needs

of the parallel programming software framework we want to implement.

Marte OS
Marte OS [32] is a hard RTOS that follows the Minimal Real-Time POSIX.13

subset. It has been developed by the University of Cantabria. Although it

is claimed to be designed for the embedded domain, the only supported

platform is the x86 architecture. The development is discontinued, and the

latest contributions date back to June 2011.

Ecos and EcosPro
Ecos [33] is an Open-Source RTOS for applications which need only one

process with multiple threads. The source code is under GNU GPL with

linking exception.

The current version is 3.0 and it runs on a wide variety of hardware

architectures, including ARM, CalmRISC, Motorola 68000/Coldfire, fr30,

FR-V, Hitachi H8, IA32, MIPS, MN10300, OpenRISC, PowerPC, SPARC,

SuperH, and V8xx.

The footprint is in the order of tens of KB, which does not make it suitable

for processing units with extremely low memory. The kernel is currently

developed in a closed-source fork named eCosPro.

FreeOSEK
FreeOSEK [34] is a minimal RTOS implementing the OSEK/VDX automo-

tive standard, like Erika Enterprise. The Open-Source license (GNU GPLv3

with linking exception) is similar to the one of Erika Enterprise too. However,

7.2 State of The Art 183

it only supports the ARM7 architecture, the development community is small,

and the project does not appear to be actively maintained.

QP
Quantum platform (QP) [35] is a family of lightweight, open source soft-

ware frameworks developed by company Quantum Leaps. These frameworks

allow building modular real-time embedded applications as systems of coop-

erating, event-driven active objects (actors). In particular, QK (Quantum

Kernel) is a tiny preemptive non-blocking run-to-completion kernel designed

specifically for executing state machines in a run-to-completion (RTC)

fashion.

Quantum platform supports several microcontrollers, including ARM

Cortex-M, ARM 7/9/Cortex-M, Atmel AVR Mega and AVR32, Texas

InstrumentsMSP430/TMS320C28x/TMS320C55x, Renesas Rx600/R8C/H8,

Freescale Coldfire/68HC08, Altera Nios II, Microchip PIC24/dsPIC, and

Cypress PSoC1.

The software is released in dual licensing: an Open-Source and a com-

mercial license. The Open-Source license is GNU GPL v3, which requires

the release of the source code to any end user. Unfortunately, the Open-

Source license chosen is not suitable for consumer electronics, where

the companies want to keep the intellectual property of their application

software.

Trampoline
Trampoline [36] is an RTOS which aims at OSEK/VDX automotive certifi-

cation. However, unlike ERIKA Enterprise, it has not yet been certified.

Only the following architectures are supported: Cortex M, Cortex A7

(alone or with the Hypervisor XVisor), RISC-V, PowerPC 32 bits, AVR,

ARM 32 bit.

The Open-Source license at the time the evaluation was made was LGPL

v2.1. This license is not very suitable for consumer electronics because it

implies that any receiver of the binary (e.g., final user buying a product) must

be given access to the low-level and the possibility of relinking the application

towards a newer version of the RTOS. The license was changed afterwards to

GPL v2 in September 2015.

RTEMS
RTEMS [37] is a fully-featured Open-Source RTOS supporting several appli-

cation programming interfaces (APIs) such as POSIX and BSD sockets. It

184 Embedded Operating Systems

is used in several application domains (e.g., avionics, medical, networking)

and supports a wide range of architectures including ARM, PowerPC, Intel,

Blackfin, MIPS, and Microblaze. It implements a single process, multi-

threaded environment. The Open-Source license is similar (but not equal)

to the more popular GPL with Linking Exception [29].

The footprint is not extremely small, and for the smallest applications,

ranges from 64 to 128 K on nearly all CPU families [38]. For this reason,

another project called TinyRTEMS [39] has been created to reduce the

footprint of RTEMS. However, its Open-Source license is GPLv2, which is

not suitable for development in industrial contexts.

TinyOS
TinyOS [40] is an Open-Source OS specifically designed for low-power

wireless devices (e.g., sensor networks) and mainly used in research insti-

tutions. It has been designed for very resource-constrained devices, such as

microcontrollers with a few KB of RAM and a few tens of KB of code space.

It’s also been designed for devices that need to be very low power.

TinyOS programs are built out of software components, some of which

present hardware abstractions. Components are connected to each other

using interfaces. TinyOS provides interfaces and components for common

abstractions such as packet communication, routing, sensing, actuation, and

storage.

TinyOS cannot be considered a proper real-time OS, since it implements

a non-preemptive thread model.

The OS is licensed under BSD license which, like GPL with link-

ing exception, does not require redistribution of the source code of the

application.

TinyOS supports Texas Instruments MSP430, Atmel Atmega128, and

Intel px27ax families of microcontrollers. Currently, it does not support the

family of ARM Cortex processors. The development of TinyOS has been

discontinued since a few years.

ChibiOS/RT
ChibiOS/RT [41] is a compact and Open-Source RTOS. It is designed for

embedded real-time applications where execution efficiency and compact

code are important requirements. This RTOS is characterized by its high

portability, compact size and, mainly, by its architecture optimized for

extremely efficient context switching. It supports a preemptive thread model

but it does not support stack sharing among threads.

7.2 State of The Art 185

The official list of supported microcontrollers is mainly focused on the

ARMCortex-M family, even if a very few other processors (i.e., ARM7, AVR

Mega, MSP430, Power Architecture e200z, and STM8) are supported as well.

Some further microcontrollers are not officially supported, and the porting of

the RTOSs has been done by individual developers.

The footprint of this RTOS is very low, being between 1 KB and 5.5 KB.

ChibiOS/RT is provided under several licenses. Besides the commercial

license, unstable releases are available as GPL v3 and stable releases as

GPL v3 with linking exception. Since version 3 of GPL does not allow

“tivoization” [42], these Open-Source licenses are not suitable for indus-

trial contexts where the manufacturer wants to prevent users from running

modified versions of the software through hardware restrictions.

ERIKA Enterprise v2
Erika Enterprise v2 [43] is a minimal RTOS providing hard real-time guar-

antees. It is developed by partner Evidence Srl, but it is released for free.

The Open-Source license – GPL with linking exception (also known as

“Classpath”) [29] – is suitable for industrial usage because it allows linking

(even statically) the proprietary application code with the RTOS without the

need of releasing the source code.

The RTOS was born in 2002 to target the automotive market. During the

course of the years it has been certified OSEK/VDX and it is currently used

by either automotive companies (as Magneti Marelli and Cobra) or research

institutions. ERIKA Enterprise v2 implements the AUTOSAR API 4.0.3 as

well, up to Scalability Class 4.

Besides the very small footprint (about 2–4 KB), ERIKA Enterprise

has innovative features, like advanced scheduling algorithms (e.g., resource

reservation, immediate priority ceiling, etc.) and stack sharing to reduce

memory usage.

It supports several microcontrollers (from 8-bit to 32-bit) and it has been

one of the first RTOSs supporting multicore platforms (i.e., Altera NiosII).

The current list of supported architectures includes Atmel AVR and Atmega,

ARM 7 and Cortex-M, Altera NiosII, Freescale S12 andMPC, Infineon Aurix

and Tricore, Lattice Mico32, Microchip dsPIC and PIC32, Renesas RX200,

and TI MSP430. A preliminary support for ARM Cortex-A as well as the

integration with Linux on the same multicore chip has been shown during a

talk at the Automotive Linux Summit Fall [44] in October 2013.

186 Embedded Operating Systems

Version 3 of ERIKA Enterprise has also been released recently [45]. The

architecture of ERIKA Enterprise v3 has been directly derived as an evolution

of the work described in this chapter, and is aimed to support full AUTOSAR

OS compliance on various single and multi-/manycore platforms, including

support for hypervisors.

7.2.3 Classification of Embedded RTOSs

The existing open-source RTOSs can be grouped in the following classes:

1. POSIX RTOSs, which provide the typical POSIX API allowing dynamic

thread creation and resource allocation. These RTOSs have a large

footprint due to the implementation of the powerful but complex POSIX

API. Examples are: Marte OS and RTEMS.

2. Simil-POSIX RTOSs, which try to offer an API with the same capabili-

ties of POSIX (i.e., dynamic thread creation and resource allocation) but

at a lower footprint meeting the typical constraints of small embedded

systems. Examples are: FreeRTOS, Ecos and ChibiOS/RT.

3. OSEK RTOSs, implementing the OSEK/VDX API with static thread

creation but still allowing thread preemption. These RTOSs are

characterized by a low footprint. Moreover, they usually also offer

stack-sharing among the threads, allowing the reduction of memory

consumption at run-time. Examples are: ERIKA Enterprise, Trampoline,

and FreeOSEK.

4. Other minimal RTOSs, which have a low footprint and a non-preemptive

thread model by construction. Usually, these RTOSs offer the stack-

sharing capability. Examples are: TinyOS and Contiki.

This classification is shown in the following Table 7.1:

Table 7.1 Classification of RTOSs

POSIX Simil-POSIX OSEK Other Minimal

API POSIX Custom OSEK/VDX Custom

Footprint size Big Medium Small Small

Thread preemption V V V X

Thread creation V V – –

Stack sharing – – V V

Examples MarteOS

RTEMS

FreeRTOS

Ecos

ChibiOS/RT

ERIKA Enterprise

Trampoline

FreeOSEK

TinyOS

Contiki

QP

7.3 Requirements for The Choice of The Run Time System 187

7.3 Requirements for The Choice of The Run Time System

This section includes a short description of the main requirements that influ-

enced the choice of the OS platform for the implementation of our parallel

programming model.

7.3.1 Programming Model

The run-time system is a fundamental software component of the parallel

programming model to transform the parallel expressions defined by the user

into threads that execute in the different processing units, i.e., cores.

Therefore, the OS system must provide support to execute the run-time

system that will implement the API services defined by the parallel program-

ming model. In our case, the requirement is related to the fact that an UNIX

environment such as Linux should be present, with support for the C and C++

programming languages.

7.3.2 Preemption Support

In single-core real-time systems, allowing a thread to be preempted has a

positive impact on the schedulability of the system because the blocking on

higher-priority jobs is significantly limited. However, in many-core systems,

the impact of preemptions on schedulability is not as clear, since higher

priority jobs might have a chance to execute on one of the many other cores

available in the system. Nevertheless, for highly parallel workloads, it may

happen that all cores are occupied by lower-priority parallel jobs, so that

higher-priority instances may be blocked for the whole duration of the lower-

priority jobs. In this case, a smart preemption support might be beneficial,

allowing a subset of the lower-priority instances to be preempted in favor of

the higher-priority jobs. The remaining lower-priority instance may continue

executing on the remaining cores, while the state of the preempted instances

needs to be saved by the OS, in order to restore it as soon as there are

computing units available again.

In order to develop the proper OS mechanisms, it is necessary to support

the kind of preemption needed by the scheduling algorithms described in

Chapter 4, with particular reference to the hybrid approach known as “limited

preemption,” and to the store location of the preempted threads context. In

order to implement such techniques, the OS design needs to take into account

which restrictions will be imposed on the preemptability of the threads,

188 Embedded Operating Systems

whether by means of statically defined preemption points, or by postponing

the invocation of the scheduling routine by a given amount of time.

7.3.3 Migration Support

In migration-based multicore systems, a preempted thread may resume its

execution on a different core. Migration support requires additional OSmech-

anisms to allow threads to be resumed on different cores. Different migration

approaches are possible:

• Partitioned approach: Each thread is scheduled on one core and cannot

execute on other cores;

• Clustered approach: Each thread can execute on a subset (cluster) of the

available cores;

• Global approach: Threads can execute on any of the available cores.

7.3.4 Scheduling Characteristics

Real-time scheduling algorithms are often divided into static vs. dynamic

scheduling algorithms, depending on the priority assigned to each job to

execute. Static algorithms assign a fixed priority to each thread. Although

they are easier to implement, their performance could be lower than with

more flexible approaches that may dynamically change priorities of each

thread. Depending on the scheduling strategy, fixed or dynamic, different OS

kernel mechanisms will be needed.

Another design point concerns the policies for arbitrating the access to

mutually exclusive shared resources. Depending on the adopted policy, par-

ticular synchronization mechanisms, thread queues, and blocking primitives

may be needed.

7.3.5 Timing Analysis

In order for the timing analysis tools to be able to compute safe and accurate

worst-case timing estimates, it is essential that the RTOS manages all the

software/hardware resources in a predictable manner. Also, it is crucial for

the timing estimates to be as tight as possible because subsequently these

values (like the worst-case execution time of a task or the maximum time to

read/write data from/to the main memory) will propagate all the way up and

will be used as basic blocks in higher-level analyses like the schedulability

analysis. Deriving tight estimates requires that all the OS mechanisms that

7.3 Requirements for The Choice of The Run Time System 189

allocate and arbitrate the access to the system resources are thoroughly

documented and do not make use of any procedure that involves randomness

or based on non-deterministic parameters.

Task-to-thread and thread-to-core mapping: The allocation of the tasks to

the threads and the mapping of the threads to the cores must be documented;

ideally, it should also be static and known at design time. If the alloca-

tion is dynamic, i.e., computed at run-time, then the allocation/scheduling

algorithm should follow a set of deterministic (and fully documented) rules.

The knowledge of where and when the tasks execute considerably facilitates

the timing analysis process, as it allows for deriving an accurate utilization

profile of each resource and then uses those profiles to compute safe bounds

on the time it takes to access these resources.

Contract-based resource allocation scheme: Before executing, each appli-

cation or task has a “contract” with every system resource that it may need to

access. Each contract stipulates the minimum share of the system resource

(hardware and software) that the task must be allowed to use over time.

Considering a communication bus shared between several tasks, a TDMA

(Time Division Multiple Access) bus arbitration policy is a good example

of a contract-based allocation scheme: the number of time-slots dedicated to

each task in a time-frame of fixed length gives the minimum share of the bus

that is guaranteed to be granted to the task at run-time. When the resource

is a core, contract-based mechanisms are often referred to as reservation-

based scheduling. Before executing, an execution budget is assigned to every

task and a task can execute on a core only if its allocated budget is not

exhausted. Technically speaking, within such reservation-based mechanisms,

the scheduling algorithm of the OS does not schedule the execution of the

tasks as such, but rather it manages the associated budgets (i.e., empties

and replenishes them) and defines the order in which those budgets are

granted to the tasks. There are many advantages of using contract-based

mechanisms. For example, they provide a simple way of protecting the system

against a violation of the timing parameters. If a task fails and starts looping

infinitely, for instance, the task will eventually be interrupted once it runs out

of budget, without affecting the planned execution of the next tasks. These

budgets/contracts can be seen as fault containers. They guarantee a minimum

service to every task while enabling the system to identify potential task

failure and avoid propagating the potentially harmful consequences of a faulty

task through the execution of the other tasks.

190 Embedded Operating Systems

Runtime budget/contract reinforcement:Mechanisms must be provided to

force the system resources and the tasks to abide with their contract, e.g., a

task is not allowed to execute if its CPU budget is exhausted or if its budget

is not currently given to that task by the scheduler. This mechanism is known

in the real-time literature as “hard reservation.”

Memory isolation: The OS should also provide mechanisms to dedicate

regions of the memory to a specific task, or at least to tasks running on a

specific core.

Execution independence: The programs on each core shall run independent

of the hardware state of other cores.

7.4 RTOS Selection

Considering the architecture of the reference platform (i.e., host processor

connected to a set of accelerators, similarly to other commercially available

many-core platforms), we decided to use two different OSs for the host and

the many-core processors.

7.4.1 Host Processor

Linux has been chosen for the host processor, due to its excellent support for

peripherals and communication protocols, the several programming models

supported, and the popularity in the HPC domain.

Given the nature of the project and the requirements of the use-cases, soft

real-time support has been added through the adoption of the PREEMPT RT

patch [10].

7.4.2 Manycore Processor

For the manycore processor, a proper RTOS was needed. The selected RTOS

should have been Open-Source and lightweight (i.e., with a small footprint)

but providing a preemptive thread model. For these reasons, only the RTOSs

belonging to columns 2 (i.e., Simil-POSIX) and 3 (i.e., OSEK) of Table 7.1

could be selected. Moreover, the selected RTOS must be actively maintained

through the support of a development community.

Ecos has been discarded due to the big footprint (comparable to the one

of POSIX systems). FreeOSEK has been discarded because the project is

not actively maintained and because it does not offer any additional feature

7.5 Operating System Support 191

with respect to ERIKA Enterprise. ChibiOS/RT, Trampoline, and QP, instead,

have been discarded for the too restrictive open-source license, not suitable

for industrial products.

The only RTOSs that fulfilled our requirements, therefore, were ERIKA

Enterprise [43] and FreeRTOS [28]. The project eventually chose to use

ERIKA Enterprise due to its smaller footprint, the availability of advanced

real-time features, and the strong know-how in the development team.

7.5 Operating System Support

7.5.1 Linux

As for the Linux support, we started with the Linux version provided together

with the reference platform. In particular, the Kalray Bostan AccessCore

SDK included an Embedded Linux version 3.10, and on top of it we assem-

bled and configured a filesystem based on the Busybox project [46] produced

using Buildroot [47].

The Linux version provided included Symmetric Multi-Processing (SMP)

support (which is a strong requirement for running PREEMPT RT [10]), and

included the PREEMPT RT patch.

7.5.2 ERIKA Enterprise Support

We have successfully ported the ERIKA Enterprise [43] on the MPPA

architecture, supporting its VLIW (Very Large Instruction Word) Instruction

Set Architecture (ISA) and implementing the API used by the off-loading

mechanism. The following paragraphs list the main challenges we had during

the porting, and the main choices we addressed, together with some early

performance results.

7.5.2.1 Exokernel support
The development on the platform directly supports the Kalray “exokernel,”

which is a set of software, mostly running on the 17th core of each cluster

(the resource manager core), used to provide a set of services needed to let

a cluster appear “more like” a SMP machine. Among the various services,

the exokernel includes communication services and inter-core interrupts. The

exokernel API is guaranteed to be maintained across chip releases, while the

raw support for the resource manager core will likely change with newer chip

releases.

192 Embedded Operating Systems

7.5.2.2 Single-ELF multicore ERIKA Enterprise
One of the main objectives during the porting of the ERIKA RTOS has been

the reduction of the memory footprint of the kernel, obtained by using a

Single-ELF build system.

The reason is that the multicore support in ERIKA was historically

designed for hardware architectures which did not have a uniform memory

region, such as Janus [48]. In those architectures, each core had its own

local memory and, most importantly, the view of the memory as seen by the

various cores was different (that is, the same memory bank was available at

a different address on each core). This imposed the need for a custom copy

of the RTOS for each core. Other architectures had a uniform memory space,

but the visibility of some memory regions was prevented by the Network on

Chip. On Altera Nios II, for example, addresses differentiating by only the

31st bit referred to the same physical address with or without caching. This,

again, implied the need for separate images (in particular, you can refer to the

work done during the FP6 project FRESCOR, D-EP7 [49]). More modern

architectures like Freescale PPC and Tricore AURIX allowed the possibility

of single-ELF, but the current multi-ELF scaled relatively well on a small

number of cores, reducing the need for single-ELF versions of the system.

In manycore architectures such as Kalray, the multi-ELF approach

showed its drawback: the high number of cores, in fact, required avoiding

code duplication to not waste memory. Moreover, each core has the visibility

of a memory region, and the addressing is uniform across the cores. For

this reason, after an initial simple single-core port of ERIKA on the Kalray

MPPA, the project decided to eventually design a single-ELF implemen-

tation; this activity required a complete rewrite of the codebase (named

ERIKA Enterprise v3). The new codebase is now in production and sponsored

through a dedicated website [45] in order to gather additional comments and

feedbacks. The next paragraphs include a short description of the main design

guidelines, which are also described in a specific public document [50].

7.5.2.3 Support for limited preemption, job, and global
scheduling

The ERIKA Enterprise RTOS traditionally supported partitioned schedul-

ing, where each core has a set of statically assigned tasks which can be

individually activated.

In order to support the features requested by the parallel programming

framework, the ERIKA Enterprise scheduler has been modified to allow the

following additional features:

7.5 Operating System Support 193

• Limited preemption scheduler – ERIKA Enterprise has been improved

to allow preemptions only at given instants of time (i.e., at task schedul-

ing points, see Chapters 3 and 6). The main advantage is related to

performance, because the preemption is implemented in a moment that

has a limited performance hit on the system.

• Job activation – In ERIKA Enterprise, each task can be individually

activated as the effect of an ActivateTask primitive. In the new environ-

ment, the OS tasks are mapped onto the OpenMP worker threads (see

Chapter 6). Those threads are activated in “groups” (named here “jobs”),

because their activation is equivalent to the start of an OpenMP offload

composed by N OS tasks on a cluster. For this reason, ERIKA Enterprise

now supports “Job activation,” which allows activating a number of tasks

on a cluster. Typically, those tasks will have all the same priority (as they

map the execution of an OpenMP offload).

• Global scheduling – In order to obtain the maximum throughput,

ERIKA implemented a work conserving global scheduler, which is able

to implement migration of tasks among cores of the same cluster. The

migration support also handles contention on the global queue in case

there are two or more cores idle.

7.5.2.4 New ERIKA Enterprise primitives
The implementation of ERIKA Enterprise required the creation of a set of

ad hoc primitives, which have been included in a new kernel explicitly

developed for Kalray. The new primitives are described below:

CreateJob: This primitive is used to create a pool of OS tasks which are

coordinated for the parallel execution in a cluster. A “Job” is composed by a

maximum number of tasks which is equal to the cluster size (16 on Kalray

MPPA). It is possible to specify how many tasks should be created, and on

which cores they should be mapped in case of partitioned scheduling. All

tasks which are part of a Job have the same priority, the same entry point, the

same stack size. Finally, they all have an additional parameter which is used

by the OpenMP workers to perform their job.

ReadyJob andActivateJob: These two primitives are used to put in the ready

queue (either global or partitioned depending on the kernel configuration)

the tasks corresponding to a specific mask passed as parameter (the mask

is a subset of the one passed previously to CreateJob). In addition to this,

ActivateJob adds a preemption point on the calling site and issues inter-core

interrupts in full preemptive configuration.

194 Embedded Operating Systems

JoinJob: This is a synchronization point at the termination of all tasks of a

Job. It must be called on a task which has lower priority than the Job task

priority.

Synchronization primitives are also provided to allow the implementation

of use-level locks and higher-level programming model synchronization

constructs for the OpenMP runtime library (discussed in Chapter 6).

SpinLockObj and SpinUnlockObj: These primitives provide a standard

lock API, and are directly based on spinlock primitives provided by the

Kalray HAL. At the lowest abstraction level, the lock data structure is

implemented as a 32-bit integer, which could be allocated at any memory-

mapped address. Using this approach, the lock variables can be statically

allocated whenever it is possible, and when more dynamism is required, lock

data structures can be initialized via standardmalloc operations on a suitable

memory range.

WaitCondition and SignalValue: These primitives provide a synchroniza-

tion mechanism based on WAIT/SIGNAL semantics. ERIKA supports four

condition operators (equal, not equal, lower than, greater than) and three

different wait policies:

1. BLOCK NO – The condition is checked in a busy waiting loop;

2. BLOCK IMMEDIATELY – The condition is checked once. If the

check fails (and no other tasks are available for execution) the processor

enters sleep mode until the condition is reached. A specific signal is then

used to wake-up the processor.

3. BLOCK OS – Informs the OS that the ERIKA task (i.e., the OpenMP

thread mapped to that task) is voluntarily yielding the processor. The OS

can then use this information to implement different scheduling policies.

For example, the task can be suspended and a different task (belonging

to a different job) can be scheduled for execution.

7.5.2.5 New data structures
Addressing the single-ELF image implementation in the end required a

restructuring of the kernel data structures.

The initial version of ERIKA Enterprise used a set of global data struc-

tures (basically, C arrays of scalars) allocated in RAM or ROM. Each core had

its own copy of the data structures, with the same name. Data which is shared

among the cores is defined and initialized in one core referred to as themaster

core. The other cores are called slave cores. Afterwards, when compiling

the slave cores’ code, the locations of the shared data are appended to each

7.5 Operating System Support 195

core’s linker scripts (see also [48]). Figure 7.2 shows the structure of the two

ELF files, highlighting the first core (master), which has everything defined,

and the subsequent slave cores, which have the shared symbols addresses

appended in the linker script.

The single-ELF approach required a complete restructuring of the binary

image. The complete system is compiled in a single binary image, and the

data structures are designed to let the cores access the relevant per-CPU

data. The main guidelines used when designing the data structures are the

following:

• All data is shared among all cores.

• The code must be able to know on which core it is running. This is done

typically using a special register of the architecture that holds the CPU

number.

• Given the CPU number, it is possible to access “private” data structures

to each core (see Figure 7.3). Note that those “private” data structures

can be allocated in special memory regions “near” each core (for exam-

ple, they could be allocated in sections which can be pinned to per-core

caches).

• Clear distinction between Flash Descriptor Blocks (named *DB) and

RAM Control Blocks (named *CB). In this way the reader has a clear

idea of the kind of content from the name of the data structure.

• Limited usage of pointers (used to point only from Flash to RAM), to

make the certification process easier.

Figure 7.2 Structure of the multicore images in the original ERIKA Enterprise structure.

196 Embedded Operating Systems

Figure 7.3 Structure of the Single-ELF image produced by ERIKA Enterprise.

7.5.2.6 Dynamic task creation
In the original version of ERIKA, RTOS tasks were statically allocated by

defining them inside an OIL file. In the new version of ERIKA, we allowed

a pre-allocation of a given number of RTOS tasks, which can be afterwards

“allocated” using a task creation primitive. In this way, the integration with

the upper layers of OpenMP becomes simpler, as OpenMP makes the hypoth-

esis of being able to create as many threads as needed using the underlying

Linux primitive pthread create.

In addition to the changes illustrated above, we also took the opportunity

for making the following additional changes to ease future developments.

7.5.2.7 IRQ handlers as tasks
The original version of ERIKA handled interrupts in the most efficient way

in the case of no memory protection among tasks. When memory protec-

tion comes into play, treating IRQs as special tasks has the advantage of

simplifying the codebase.

In view of the future availability of multi-many cores with memory

protection we implemented the possibility for an IRQ to be treated as a task.

A special fast handler is called upon IRQ arrival, which has the main job of

activating the “interrupt task.”

This approach also simplified the codebase by allowing a simpler context

change primitive, which in turn simplifies the implementation in VLIW chips

such as Kalray.

7.5 Operating System Support 197

7.5.2.8 File hierarchy
For the new version of ERIKA, we adopted a new file hierarchy which aims

to a simplification of the codebase. In particular, the main changes of the new

codebase are the following:

• In the old version, CPU (the specific instruction set, such as PPC,

Cortex-MX, etc.), MCU (the peripherals available on a specific part

number), Boards (code related to the connections on the PCB) were

stored in directories under the “pkg” directory. With the growing number

of architectures supported, this became a limitation which also made the

compilation process longer. The new version of the codebase includes

MCUs and Boards under the CPU layer, making the dependencies in the

codebase clearer.

• We adopted a local self-contained flat (single directory) project structure

instead of a complex hierarchy. All needed files are copied once in the

project directory at compilation time, leading to simpler makefiles.

• We maintained the RTOS code separated from the Application config-

uration. This is very useful to allow the deployment of pre-compiled

libraries; moreover it allows partial compilation of the code.

7.5.2.9 Early performance estimation
Before implementing the Single-ELF version of ERIKA on Kalray, we

performed an initial implementation of the traditional single-core porting

of ERIKA in order to get a reference for the evaluation of the subsequent

development. Please note that the evaluation of the new version of ERIKA

has been done on a prototype implementation (not the final one). However,

the numbers are good enough to allow a fair comparison of the two solutions.

Table 7.2 summarizes an early comparison between the old and the new

implementation of ERIKA, for a simple application with two tasks on a single

core. The purpose of the various columns is the following:

• The comparison between the second and the third column gives a rough

idea of the difference in the ISA on a “reasonably similar” code on

another (different) architecture, Nios II.

• The comparison between the third and the fourth column gives a rough

idea of the impact of the changes of the new version of ERIKA over

the old version. The values show an increase of the code footprint. This

increase, however, is less than indicated by the table: the old version of

ERIKA, in fact, does contain the support for multiple task activations

(which has not been compiled) and dynamic task creation (which was

198 Embedded Operating Systems

Table 7.2 ERIKA Enterprise footprint (expressed in bytes)

Description Old Version (*) Old Version

New Version

Single-core

New Version,

Multicore with

Services for

Supporting Libgomp

Platform Nios II Kalray MPPA Kalray MPPA Kalray MPPA

Code footprint (**) About 800 1984 2940 41561

Code footprint

related to multicore

(***)

– – 4156 + 502 for RM

Flash/Read-only 164 – – –

RAM 192 216 216 + 128 for each

core2

(*) Numbers taken from D-EP7v2 of the FRESCOR project [49]. These numbers can be

taken as a reference for the order of magnitude for the size of the kernel and may not

represent the same data structures. We considered these numbers as the current

implementation on ERIKA has roughly a similar size and they can be used as a reference

for comparing “similar” implementations.

(**) The code footprint includes the equivalent of the following functions: StartOs,

ActivateTask, TerminateTask

(***) Code related to the handling of the multicore features (remote notifications,

inter-processor interrupts, spin locks, and code residing) on the Resource Manager Core

(see Chapter 2).

not available). Moreover, we have to consider that the old version of

ERIKA needed 1,984 bytes for each core. The new version of ERIKA,

instead, needs 2,940 bytes, regardless of the number of cores. This

means that with just two cores, the amount of memory needed by the

new version of ERIKA Enterprise is less than using the old version of

the RTOS.

• The comparison between the fourth and the fifth column gives a rough

idea of the impact of the multicore support. The increase of the code

footprint is mainly due to additional synchronization primitives (i.e.,

spinlocks) needed for distributed scheduling – i.e., to allow the “group

activation” done by the Resource Manager on behalf of OpenMP. There-

fore, this increase is specific to the Kalray architecture, and it is missing

on other (e.g., shared-memory) architectures. Note that the footprint

takes into account only the kernel part with the services for supporting

the OpenMP runtime library; it does not include the library itself.

1The footprint takes into account only kernel and support for the OpenMP runtime library;

it does not include the library itself.
2128 = 44 (core data structures) + 84 (idle task).

7.5 Operating System Support 199

Table 7.3 Timings (expressed in clock ticks)

Feature Time on ERIKA

ActivateTask, no preemption 384

ActivateTask, preemption 622

An IRQ happens, no preemption 585

An IRQ happens, with preemption 866

Table 7.3 provides basic measurements of activation and pre-emption of

tasks on a single-core:

Tables 7.4 and 7.5 provide some timing references to compare ERIKA

Enterprise (which is a RTOS) with NodeOS on MPPA-256, taken using

the Kalray MPPA tracer. Since NodeOS does not support preemption (and

therefore a core can execute only one thread) we have configured ERIKA

Enterprise to run only one task on each core as well. Then, we have measured

footprint and execution times. In particular, Table 7.4 provides a rough

comparison of the footprint for ERIKA and NodeOS on Kalray MPPA. For

ERIKA, the footprint also takes into account the per-core and per-task data

structures in a cluster composed of 17 cores. This footprint can be reduced

by using a static configuration of the RTOS. Table 7.5 provides a comparison

between the thread creation time on NodeOS and the equivalent inter-core

task activation on ERIKA.

Table 7.4 Footprint comparison between ERIKA and NodeOS for a 16-core cluster

(expressed in bytes)

ERIKA New Version, Multicore

Description with Services for Supporting OpenMP NodeOS

Code footprint 44843 10060

RAM 2184 2196

Table 7.5 Thread creation/activation times (expressed in clock ticks)

Inter-core Task Activation on ERIKA Thread Creation on NodeOS

1200 3300

3The footprint takes into account only kernel and support for libgomp; it does not include

the whole libgomp library.

200 Embedded Operating Systems

7.6 Summary

This chapter illustrated the state of the art of the OSs suitable for the reference

parallel programming model. After reviewing the main requirements that

influenced the implementation, the selection of the RTOS for the reference

platform has been described for both the host processor and the manycore

accelerators. Furthermore, a description of the main implementation choices

for the ERIKA Enterprise v3 and Linux OS have been detailed. As can be

seen, the result of the implementation provides a complete system which is

capable of addressing high-performance workloads thanks to the synergies

between the general-purpose OS Linux and the ERIKA Enterprise RTOS.

References

[1] Top500, Linux OS. Available at: http://www.top500.org/statistics/details/

osfam/1

[2] RCU, available at: http://en.wikipedia.org/wiki/Read-copy-update

[3] GNU General Public License (GPL), available at: https://www.gnu.org/

copyleft/gpl.html

[4] Lipari, G., Scordino, C., Linux and Real-Time: Current Approaches

and Future Opportunities, International Congress ANIPLA, Rome, Italy,

2006.

[5] RTLinux, available at: http://en.wikipedia.org/wiki/RTLinux

[6] RTAI – the RealTime Application Interface for Linux, available at:

https://www.rtai.org/

[7] Xenomai, Real-Time Framework for Linux. Available at: http://www.

xenomai.org/

[8] Windriver, VxWorks RTOS. Available at: http://www.windriver.com/

products/vxworks/

[9] POSIX IEEE standard, available at: http://en.wikipedia. org/wiki/POSIX

[10] The Real Time Linux project, available at: https://wiki.linuxfoundation.

org/realtime/start

[11] The Linux Foundation, available at: https://www.linuxfoundation.org/

[12] Libenzi, D., SCHED SOFTRR Linux Scheduler Policy, available at:

http://xmailserver.org/linux-patches/softrr.html

[13] Kolivas, C., Isochronous class for unprivileged soft RT scheduling.

Available at: http://ck.kolivas.org/patches/

[14] SCHED DEADLINE Linux Patch, available at: http://en.wikipedia.org/

wiki/SCHED DEADLINE

http://www.top500.org/statistics/details/osfam/1
http://www.top500.org/statistics/details/osfam/1
http://en.wikipedia.org/wiki/Read-copy-update
https://www.gnu.org/ copyleft/gpl.html
https://www.gnu.org/ copyleft/gpl.html
http://en.wikipedia.org/wiki/RTLinux
https://www.rtai.org/
http://www.xenomai.org/
http://www.xenomai.org/
http://www.windriver.com/products/vxworks/
http://en.wikipedia.org/wiki/POSIX
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://www.linuxfoundation.org/
http://xmailserver.org/linux-patches/softrr.html
http://ck.kolivas.org/patches/
http://en.wikipedia.org/wiki/SCHED_DEADLINE
http://en.wikipedia.org/wiki/SCHED_DEADLINE

References 201

[15] Lelli, J., Scordino, C., Abeni, L., Faggioli, D., Deadline scheduling in

the Linux kernel, Software: Practice and Experience, 46, pp. 821–839,

2016.

[16] ACTORS European Project, available at: http://www.actors-project.eu/

[17] Earliest Deadline First (EDF), available at: http://en.wikipedia.org/wiki/

Earliest deadline first scheduling

[18] Green Hills, Integrity RTOS. Available at: http://www.ghs.com/products/

rtos/integrity.html

[19] QNX RTOS, available at: http://www.qnx.com/

[20] SYSGO PikeOS, available at: http://www.sysgo.com/products/pikeos-

rtos-and-virtualization-concept/

[21] Mentor Graphics, Nucleus RTOS. Available at: http://www.mentor.com/

embedded-software/nucleus/

[22] LynuxWorks LynxOS, available at: http://www.lynuxworks.com/rtos/

[23] Micrium µc/OS-III, available at: http://micrium.com/

[24] Segger EmbOS, available at: http://www.segger.com/embos.html

[25] ENEA OSE, available at: http://www.enea.com/ose

[26] Arccore Arctic Core, available at: http://www.arccore.com/products/

[27] Wikipedia, List of Real-Time Operating Systems, available at: http://

en.wikipedia.org/wiki/List of real-time operating systems

[28] FreeRTOS, available at: http://www.freertos.org/

[29] GPL Linking Exception, available at: http://en.wikipedia.org/wiki/

GPL linking exception

[30] Contiki, available at: http://www.contiki-os.org/

[31] Wikipedia, Protothreads. Available at: http://en.wikipedia.org/wiki/

Protothreads

[32] Marte OS, available at: http://marte.unican.es/

[33] Ecos RTOS, available at: http://ecos.sourceware.org/

[34] FreeOSEK RTOS, available at: http://opensek.sourceforge.net/

[35] Quantum Leaps, QPTM Active Object Frameworks for Embedded

Systems, available at: http://www.state-machine.com/

[36] Trampoline RTOS, available at: http://trampoline.rts-software.org/

[37] RTEMS, available at: http://www.rtems.org/

[38] Footprint of RTEMS, available at: http://www.rtems.org/ml/rtems-

users/2004/september/msg00188.html

[39] Tiny RTEMS, available at: https://code.google.com/p/tiny-rtems/

[40] TinyOS, available at: http://www.tinyos.net/

[41] ChibiOS/RT, available at: http://www.chibios.org/

[42] Tivoization, available at: http://en.wikipedia.org/wiki/Tivoization

http://www.actors-project.eu/
http://en.wikipedia.org/wiki/ Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/ Earliest_deadline_first_scheduling
http://www.ghs.com/products/ rtos/integrity.html
http://www.ghs.com/products/ rtos/integrity.html
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.mentor.com/ embedded-software/nucleus/
http://www.mentor.com/ embedded-software/nucleus/
http://www.lynuxworks.com/rtos/
http://micrium.com/
http://www.segger.com/embos.html
http://www.enea.com/ose
http://www.arccore.com/products/
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://www.freertos.org/
http://en.wikipedia.org/wiki/ GPL_linking_exception
http://en.wikipedia.org/wiki/ GPL_linking_exception
http://www.contiki-os.org/
http://en.wikipedia.org/wiki/Protothreads
http://en.wikipedia.org/wiki/Protothreads
http://marte.unican.es/
http://ecos.sourceware.org/
http://opensek.sourceforge.net/
http://www.state-machine.com/
http://trampoline.rts-software.org/
http://www.rtems.org/ml/rtems-users/2004/september/msg00188.html
http://www.rtems.org/ml/rtems-users/2004/september/msg00188.html
https://code.google.com/p/tiny-rtems/
http://www.tinyos.net/
http://www.chibios.org/
http://en.wikipedia.org/wiki/Tivoization

202 Embedded Operating Systems

[43] Erika Enterprise RTOS, available at: http://erika.tuxfamily.org

[44] Automotive Linux Summit Fall, available at: http://events.linuxfounda

tion.org/events/automotive-linux-summit-fall

[45] ERIKA Enterprise v3, available at: http://www.erika-enterprise.com

[46] Busybox, available at http://www.busybox.net/, last accessed March

2016.

[47] Buildroot, available at http://buildroot.uclibc.org/, last accessed March

2016.

[48] Ferrari, A., Garue, S., Peri, M., Pezzini, S., Valsecchi, L., Andretta, F.,

and Nesci, W., “The design and implementation of a dual-core platform

for power-train systems.” InConvergence 2000, Detroit, MI, USA, 2000.

[49] FRESCOR FP6 D-EP7v2, available at http://www.frescor.org/ and also

http://www.frescor.org/ and also http://erika.tuxfamily.org/wiki/index.

php?title=Altera Nios II, last accessed March 2016.

[50] Evidence, ERIKA Enterprise Version 3 Requirement Document, avail-

able at ERIKA Enterprise website: http://erika.tuxfamily.org/drupal/

content/erika-enterprise-3

http://erika.tuxfamily.org
http://en.wikipedia.org/wiki/Protothreads
http://en.wikipedia.org/wiki/Protothreads
http://www.erika-enterprise.com
http://www.frescor.org/
http://erika.tuxfamily.org/wiki/index.php?title=Altera_Nios_II
http://erika.tuxfamily.org/wiki/index.php?title=Altera_Nios_II
http://erika.tuxfamily.org/drupal/ content/erika-enterprise-3
http://erika.tuxfamily.org/drupal/ content/erika-enterprise-3

Index

A

Altera Nios II 183, 192

Augmented DAG (aDAG) 53

B

Blocking factor 68, 70, 88

C

Constrained DAG 43, 46, 103

Core clusterization 16

Cp-tasks 75, 78, 86

D

DAG 9, 10, 43, 47

Direct Acyclic Graph

(DAG) 9, 43, 64

Dynamic scheduling 71, 188

E

ERIKA Enterprise 10, 173,

182, 185

F

FreeRTOS 181, 186, 191

G

Global scheduling 155, 192, 193

H

Heuristic 96, 100, 102, 109

High-performance computing

1, 3, 16, 37

I

Induction variables analysis 53

Integer linear programming 69

Interference analysis 63, 73,

78, 80

K

Kalray MPPA 25, 37, 139, 192

L

Limited preemption 68, 69,

73, 192

M

Manycore architecture 17,

26, 130

Many-core platforms 7, 9, 190

Manycore 4, 15, 22, 130

Multicore and manycore

architectures 130

Multicore 16, 128, 185, 192

O

Offloading library 146, 159

OpenMP 8, 11, 33, 37

OpenMP accelerator model 37,

41, 171

OpenMP Direct Acyclic

Graph (OpenMP-DAG) 33,

43, 48, 50

OpenMP memory Model 41

203

204 Index

OpenMP tasking Model 9, 33,

44, 101

OpenMP tasking 9, 44, 101, 148

OpenMP threading-

centric Model 34, 35

OSEK/VDX 182, 186

P

Parallel construct 39, 44, 52

Parallel Control Flow

Graph (PCFG) 52, 58

Parallel Programming

Application-centric

models 34

Parallel Programming

Hardware-centric

models 34

Parallel Programming

Parallelism-centric

models 34

Parallel programming 174,

182, 192

Partitioned scheduling 155,

192, 193

Pre-emptive model 10

R

Range analysis 52, 53, 58

Real-time scheduling 9, 47, 188

Real-time systems 7, 96, 187

Real-time 2, 33, 191

Response time 11, 104, 179

RTOS 10, 148, 200

S

Schedulability analysis 7, 64, 114

Scheduling 4, 38, 198

Single construct 40, 44, 52

Software code analysis 117, 124

Sporadic DAG tasks model 43

Static scheduling 111

Static task construct identifier 55

T

Task construct 40, 55, 157

Task instance identifier 56, 156

Task model 43, 71, 171

Task scheduling clauses 45

Task Scheduling Constraint

(TSC) 46, 99, 132

Task Scheduling Point (TSP) 148

Task-part 47, 108, 141

Taskwait construct 40, 47, 153

Timing analysis techniques 122,

123, 124

W

WCET Worst-Case Execution

Time estimation 43, 69, 143

About the Editors

Luı́s Miguel Pinho is Professor at the Department of Computer Engineering

of the School of Engineering, Polytechnic Institute of Porto, Portugal, with

a PhD in Electrical and Computer Engineering at the University of Porto,

Portugal. He has more than 20 years of experience in research in the area

of real-time and embedded systems, particularly in concurrent and parallel

programming models, languages, and runtime systems. He is Research Asso-

ciate in the CISTER research unit, where he was Vice-Director from 2010

to 2017, being responsible for creating several research areas and topics,

among which the activities on parallel real-time systems, that he leads. He

has participated in more than 20 R&D projects, was Project Coordinator and

Technical Manager of the FP7 R&D European Project P-SOCRATES and

national-funded CooperatES and Reflect Projects. He was also coordinator

of the participation of CISTER and work package leader in several other

international and national projects. He has published more than 100 papers

in international conferences and journals in the area of real-time embedded

systems. He was Senior Researcher of the ArtistDesign NoE and is currently a

member of the HiPEACNoE. He was Keynote Speaker at the 16th IEEE Con-

ference on Embedded and Real-Time Computing Systems and Applications

(RTCSA 2010) and is the Editor-in-Chief of the Ada User Journal. Among

others, he was General Co-Chair of the 28th GI/ITG International Conference

on Architecture of Computing Systems (ARCS 2015), and Program Co-Chair

of the 24th International Conference on Real-Time Networks and Systems

(RTNS 2016) and of the 21st International Conference on Reliable Software

Technologies (Ada-Europe 2016).

Eduardo Quiñones is a senior researcher in the group on Interaction between

the Computer Architecture and the Operating System (CAOS) at BSC and

member of HIPEAC. He worked at the Intel Barcelona Research Center

from 2002 till 2004 in compiler techniques for EPIC architectures (including

Itanium I and II). At BSC, he has previous experiences involved in the

architectural definition and the avionics case study definition in theMERASA

205

206 About the Editors

FP7 project and he leads the architectural definition work packages of the

PROARTIS and the parMERASA FP7 projects, and lead the applicability

of HPC parallel programming models to real-time embedded systems to

increase performance in the P-SOCRATES FP7 project. Moreover, he is

involved in two research projects with the European Space Agency (ESA),

one as a technical manager. His research area focuses on compiler techniques

and many-core architectures for safety-critical systems on which he is co-

advising six PhD students. He is currently the project coordinator for the

CLASS H2020 project.

Marko Bertogna is Associate Professor at the University of Modena

(Italy), where he leads the High-Perfomance Real-Time Systems Labora-

tory (HiPeRT Lab). His main research interests are in High-Performance

Real-Time systems, especially based on multi- and many-core devices,

Autonomous Driving and Industrial Automation systems, with particular

relation to related timing and safety requirements. Previously, he was Assis-

tant Professor at the Scuola Superiore Sant’Anna of Pisa, working at the

Real-Time Systems Lab since 2003. He graduated magna cum laude in

Telecommunication Engineering at the University of Bologna in 2002. From

2001 to 2002, he worked on integrated optical devices at the Technical Uni-

versity of Delft, The Netherlands. In 2006, he visited the University of North

Carolina at Chapel Hill, working with prof. Sanjoy Baruah on scheduling

algorithms for single and multicore real-time systems. In 2008, he received

a PhD in Computer Sciences from the Scuola Superiore Sant’Anna of Pisa,

with a dissertation on Real-Time Systems for Multicore Platforms, awarded

as the best scientific PhD thesis discussed at Scuola Superiore Sant’Anna in

2008 and 2009.

Andrea Marongiu received the PhD degree in electronic engineering from

the University of Bologna, Italy, in 2010. He has been a postdoctoral reserch

fellow at ETH Zurich, Switzerland. He currently holds an assistant professor

position at the University of Bologna (Department of Computer Science

and Engineering). His research interests focus on programming models and

architectures in the domain of heterogeneous multi- and many-core systems

on a chip. This includes language, compiler, runtime and architecture support

to efficiently address performance, predictability, energy and reliability issues

in paralle, embedded systems, as well as HW-SW co-design of accelerator-

based MPSoCs. In this field, he has published more than 100 papers in

international peer-reviewed conferences and journals, with more than 700

About the Editors 207

citations and an h-index of 16 [Google Scholar]. He has collaborated with

several international research institutes and companies.

Vincent Nélis earned his PhD degree in Computer Science at the University

of Brussels (ULB) in 2010. Since then, he has been working at CISTER as

a Research Associate. He is an expert in real-time scheduling theory with

a focus on multiprocessor/multicore systems and in interference analysis,

including pre-emption cost analysis and bus/network contention analysis

in multicores and many-cores systems. Vincent is regularly a member of

technical program committees for international conferences, workshops, and

journals. He has graduated 2 PhDs and he is currently the supervisor of a third

PhD student. He has contributed to 5 R&D projects and published 25+ papers

with about 30 different co-authors in international conferences and scientific

journals. His work was awarded at several occasions: “Solvay Award” (2006),

“Outstanding Paper Award” (2012), two “Best Paper Awards” (2010 and

2013) and a “Best Presentation Award” (2013).

Paolo Gai graduated (cum laude) in Computer Engineering at University of

Pisa in 2000. He obtained the PhD from Scuola Superiore Sant’Anna in 2004.

Since 2002 he is founder of Evidence Srl, a company providing innovations

in the field of operating systems and platforms for embedded devices in the

automotive and industrial fields.

His research activity is focused on the development of hard real-time

architectures for embedded automotive control systems. His research inter-

ests include multi and many-core processor systems, object-oriented pro-

gramming, real-time operating systems, scheduling algorithms, multimedia

applications, and hypervisors.

Juan Sancho holds a degree in Telecommunications Engineering from the

Universidad Politécnica de Valencia, Spain. He developed his Final Project

Degree in the field of Health Monitoring using Wireless Sensor Networks at

the Wireless Centre of the Copenhagen University of Engineering, Denmark.

In the past he worked as network & systems engineer, participating in several

European FP7, ENIAC and National projects (BUTLER, TOISE, SICRA,

TSMART). Since 2014 he works as a Research & Innovation Engineer in

ATOS Research & Innovation division, collaborating in FP7 and H2020

projects related to IoT topics (COSMOS, P-SOCRATES) and the Energy

domain (inteGRIDy, ELVITEN, eDREAM). His research interests cover Big

Data & Edge platforms, DevOps, Renewable Energy Sources, WSN and

low-power embedded systems.

High-Performance and
Time-Predictable

Embedded Computing

Luís Miguel Pinho, Eduardo Quiñones,

Marko Bertogna, Andrea Marongiu, Vincent Nélis,

Paolo Gai and Juan Sancho (Editors)

Nowadays, the prevalence of computing systems in our lives is so ubiquitous
that we live in a cyber-physical world dominated by computer systems, from
pacemakers to cars and airplanes. These systems demand for more computational
performance to process large amounts of data from multiple data sources with
guaranteed processing times. Actuating outside of the required timing bounds
may cause the failure of the system, being vital for systems like planes, cars,
business monitoring, e-trading, etc.

High-Performance and Time-Predictable Embedded Computing presents
recent advances in software architecture and tools to support such complex
systems, enabling the design of embedded computing devices which are able
to deliver high-performance whilst guaranteeing the application required timing
bounds.

Technical topics discussed in the book include:

• Parallel embedded platforms
• Programming models
• Mapping and scheduling of parallel computations
• Timing and schedulability analysis
• Runtimes and operating systems

The work reflected in this book was done in the scope of the European project
P-SOCRATES, funded under the FP7 framework program of the European
Commission. High-performance and time-predictable embedded computing is
ideal for personnel in computer/communication/embedded industries as well
as academic staff and master/research students in computer science, embedded
systems, cyber-physical systems and internet-of-things.

River Publishers

	Front Cover
	Half Title page
	RIVER PUBLISHERS SERIES IN INFORMATIONSCIENCE AND TECHNOLOGY
	Title page
	Copyright page
	Contents
	Preface
	List of Contributors
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 - Introduction
	1.1 Introduction
	1.1.1 The Convergence of High-performance and Embedded Computing Domains
	1.1.2 Parallelization Challenge

	1.2 The P-SOCRATES Project
	1.3 Challenges Addressed in This Book
	1.3.1 Compiler Analysis of Parallel Programs
	1.3.2 Predictable Scheduling of Parallel Tasks on Many-core Systems
	1.3.3 Methodology for Measurement-based Timing Analysis
	1.3.4 Optimized OpenMP Tasking Runtime System
	1.3.5 Real-time Operating Systems

	1.4 The UpScale SDK
	1.5 Summary
	References

	Chapter 2 - Manycore Platforms
	2.1 Introduction
	2.2 Manycore Architectures
	2.2.1 Xeon Phi
	2.2.2 Pezy SC
	2.2.3 NVIDIA Tegra X1
	2.2.4 Tilera Tile
	2.2.5 STMicroelectronics STHORM
	2.2.6 Epiphany-V
	2.2.7 TI Keystone II
	2.2.8 Kalray MPPA-256
	2.2.8.1 The I/O subsystem
	2.2.8.2 The Network-on-Chip (NoC)
	2.2.8.3 The Host-to-IOS communication protocol
	2.2.8.4 Internal architecture of the compute clusters
	2.2.8.5 The shared memory

	2.3 Summary
	References

	Chapter 3 - Predictable Parallel Programming with OpenMP
	3.1 Introduction
	3.1.1 Introduction to Parallel Programming Models
	3.1.1.1 POSIX threads
	3.1.1.2 OpenCLTM
	3.1.1.3 NVIDIA R CUDA
	3.1.1.4 Intel R CilkTM Plus
	3.1.1.5 Intel R TBB
	3.1.1.6 OpenMP

	3.2 The OpenMP Parallel Programming Model
	3.2.1 Introduction and Evolution of OpenMP
	3.2.2 Parallel Model of OpenMP
	3.2.2.1 Execution model
	3.2.2.2 Acceleration model
	3.2.2.3 Memory model

	3.2.3 An OpenMP Example

	3.3 Timing Properties of the OpenMP Tasking Model
	3.3.1 Sporadic DAG Scheduling Model of Parallel Applications
	3.3.2 Understanding the OpenMP Tasking Model
	3.3.3 OpenMP and Timing Predictability
	3.3.3.1 Extracting the DAG of an OpenMP program
	3.3.3.2 WCET analysis is applied to tasks and task parts
	3.3.3.3 DAG-based scheduling must not violate the TSCs

	3.4 Extracting the Timing Information of an OpenMP Program
	3.4.1 Parallel Structure Stage
	3.4.1.1 Parallel control flow analysis
	3.4.1.2 Induction variables analysis
	3.4.1.3 Reaching definitions and range analysis
	3.4.1.4 Putting all together: The wave-front example

	3.4.2 Task Expansion Stage
	3.4.2.1 Control flow expansion and synchronization predicate resolution
	3.4.2.2 tid: A unique task instance identifier
	3.4.2.3 Missing information when deriving the DAG

	3.4.3 Compiler Complexity

	3.5 Summary
	References

	Chapter 4 - Mapping, Scheduling, and Schedulability Analysis
	4.1 Introduction
	4.2 System Model
	4.3 Partitioned Scheduler
	4.3.1 The Optimality of EDF on Preemptive Uniprocessors
	4.3.2 FP-scheduling Algorithms
	4.3.3 Limited Preemption Scheduling
	4.3.4 Limited Preemption Schedulability Analysis

	4.4 Global Scheduler with Migration Support
	4.4.1 Migration-based Scheduler
	4.4.2 Putting All Together
	4.4.3 Implementation of a Limited Preemption Scheduler

	4.5 Overall Schedulability Analysis
	4.5.1 Model Formalization
	4.5.2 Critical Interference of cp-tasks
	4.5.3 Response Time Analysis
	4.5.3.1 Inter-task interference
	4.5.3.2 Intra-task interference
	4.5.3.3 Computation of cp-task parameters

	4.5.4 Non-conditional DAG Tasks
	4.5.5 Series–Parallel Conditional DAG Tasks
	4.5.6 Schedulability Condition

	4.6 Specializing Analysis for Limited Pre-emption Global/Dynamic Approach
	4.6.1 Blocking Impact of the Largest NPRs (LP-max)
	4.6.2 Blocking Impact of the Largest Parallel NPRs (LP-ILP)
	4.6.2.1 LP worst-case workload of a task executing on c cores
	4.6.2.2 Overall LP worst-case workload
	4.6.2.3 Lower-priority interference

	4.6.3 Computation of Response Time Factors of LP-ILP
	4.6.3.1 Worst-case workload of ˝ i executing on c cores: �i[c]
	4.6.3.2 Overall LP worst-case workload of lp(k) per executionscenario sl: ˆk[sl]

	4.6.4 Complexity

	4.7 Specializing Analysis for the Partitioned/Static Approach
	4.7.1 ILP Formulation
	4.7.1.1 Tied tasks
	4.7.1.2 Untied tasks
	4.7.1.3 Complexity

	4.7.2 Heuristic Approaches
	4.7.2.1 Tied tasks
	4.7.2.2 Untied tasks

	4.7.3 Integrating Interference from Additional RT Tasks
	4.7.4 Critical Instant
	4.7.5 Response-time Upper Bound

	4.8 Scheduling for I/O Cores
	4.9 Summary
	References

	Chapter 5 - Timing Analysis Methodology
	5.1 Introduction
	5.1.1 Static WCET Analysis Techniques
	5.1.2 Measurement-based WCET Analysis Techniques
	5.1.3 Hybrid WCET Techniques
	5.1.4 Measurement-based Probabilistic Techniques

	5.2 Our Choice of Methodology for WCET Estimation
	5.2.1 Why Not Use Static Approaches?
	5.2.2 Why Use Measurement-based Techniques?

	5.3 Description of Our Timing Analysis Methodology
	5.3.1 Intrinsic vs. Extrinsic Execution Times
	5.3.2 The Concept of Safety Margins
	5.3.3 Our Proposed Timing Methodology at a Glance
	5.3.4 Overview of the Application Structure
	5.3.5 Automatic Insertion and Removal of the Trace-points
	5.3.5.1 How to insert the trace-points
	5.3.5.2 How to remove the trace-points

	5.3.6 Extract the Intrinsic Execution Time: The Isolation Mode
	5.3.7 Extract the Extrinsic Execution Time: The Contention Mode
	5.3.8 Extract the Execution Time in Real Situation: The Deployment Mode
	5.3.9 Derive WCET Estimates

	5.4 Summary
	References

	Chapter 6 - OpenMP Runtime
	6.1 Introduction
	6.2 Offloading Library Design
	6.3 Tasking Runtime
	6.3.1 Task Dependency Management

	6.4 Experimental Results
	6.4.1 Offloading Library
	6.4.2 Tasking Runtime
	6.4.2.1 Applications with a linear generation pattern
	6.4.2.2 Applications with a recursive generation pattern
	6.4.2.3 Applications with mixed patterns
	6.4.2.4 Impact of cutoff on LINEAR and RECURSIVE applications
	6.4.2.5 Real applications

	6.4.3 Evaluation of the Task Dependency Mechanism
	6.4.3.1 Performance speedup and memory usage
	6.4.3.2 The task dependency mechanism on the MPPA

	6.5 Summary
	References

	Chapter 7 - Embedded Operating Systems
	7.1 Introduction
	7.2 State of The Art
	7.2.1 Real-time Support in Linux
	7.2.1.1 Hard real-time support
	7.2.1.2 Latency reduction
	7.2.1.3 Real-time CPU scheduling

	7.2.2 Survey of Existing Embedded RTOSs
	7.2.3 Classification of Embedded RTOSs

	7.3 Requirements for The Choice of The Run Time System
	7.3.1 Programming Model
	7.3.2 Preemption Support
	7.3.3 Migration Support
	7.3.4 Scheduling Characteristics
	7.3.5 Timing Analysis

	7.4 RTOS Selection
	7.4.1 Host Processor
	7.4.2 Manycore Processor

	7.5 Operating System Support
	7.5.1 Linux
	7.5.2 ERIKA Enterprise Support
	7.5.2.1 Exokernel support
	7.5.2.2 Single-ELF multicore ERIKA Enterprise
	7.5.2.3 Support for limited preemption, job, and global scheduling
	7.5.2.4 New ERIKA Enterprise primitives
	7.5.2.5 New data structures
	7.5.2.6 Dynamic task creation
	7.5.2.7 IRQ handlers as tasks
	7.5.2.8 File hierarchy
	7.5.2.9 Early performance estimation

	7.6 Summary
	References

	Index
	About the Editors
	Back Cover

