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ABSTRACT 

In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done 

that seek the establishment of standards in the area. Included on these efforts there can be enumerated SEMMA and 

CRISP-DM. Both grow as industrial standards and define a set of sequential steps that pretends to guide the 

implementation of data mining applications. The question of the existence of substantial differences between them and 

the traditional KDD process arose. In this paper, is pretended to establish a parallel between these and the KDD process 

as well as an understanding of the similarities between them. 
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1. INTRODUCTION

Fayyad considers Data Mining (DM) as one of the phases of the KDD
1
 process (Fayyad et al., 1996). The

data mining phase concerns, mainly, to the means by which the patterns are extracted and enumerated from 

data. The literature is a source of some confusion because de two terms are indistinctively used, making it 

difficult to determine exactly each of the concepts (Benoît, 2002). In this paper, data mining is seen as one of 

the phases of the KDD process, as presented in (Fayyad et al., 1996) and in (Brachman & Anand, 1996). 

The growth of the attention paid to the area emerged from the rising of big databases in an increasing and 

differentiate number of organizations. There is the risk of wasting all the value and wealthy of information 

contained on these databases unless there are used the adequate techniques to extract useful knowledge (Chen 

et al, 1996) (Simoudis, 1996) (Fayyad, 1996). 

In the latest years, it has been occurring the growth and consolidation of the data mining area. Some 

efforts are being done that seek the establishment of standards in the area, both by academics and by people 

in the industry field. The academics efforts are centered in the attempt to formulate a general framework for 

DM (Dzeroski, 2006). The bulk of these efforts are centered in the definition of a language for DM that can 

be accepted as a standard, in the same way that SQL was accepted as a standard for relational databases (Han 

et al, 1996) (Meo et al, 1998) (Imielinski et al, 1999) (Sarawagi, 2000) (Botta et al, 2004). The efforts in the 

industrial field concern mainly the definition of processes/methodologies that can guide the implementation 

of DM applications. In this paper, SEMMA and CRISP-DM have been chosen, because they are considered 

to be the most popular. Although it is not scientific this perception exists, because SEMMA and CRISP-DM 

are presented in many of the publications of the area and are really used in practice.  

During the analysis of the documentation on SEMMA and on CRISP-DM, the question of the existence 

of substantial differences between them and the traditional KDD process arose. In this paper, it is pretended 
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to establish a parallel between these and the KDD process as well as an understanding of the similarities 

between them. 

The paper begins, on section 2, by presenting KDD, SEMMA and CRISP-DM. Next, on section 3, a 

comparative study is done, presenting the analogies and the differences between the three processes. Finally, 

on section 4, conclusions and future work are presented. 

2. KDD, SEMMA AND CRISP-DM DESCRIPTION 

The term knowledge discovery in databases or KDD, for short, was coined in 1989 to refer to the broad 

process of finding knowledge in data, and to emphasize the “high-level” application of particular data mining 

methods (Fayyad et al, 1996). Fayyad considers DM as one of the phases of the KDD process and considers 

that the data mining phase concerns, mainly, to the means by which the patterns are extracted and 

enumerated from data. In this paper there is a concern with the overall KDD process, which will be described 

in section 2.1. 

SEMMA was developed by the SAS Institute. CRISP-DM was developed by the means of the efforts of a 

consortium initially composed with DaimlerChryrler, SPSS and NCR. They will be described in sections 2.2 

and 2.3, respectively. Despite that SEMMA and CRISP-DM are usually referred as methodologies, in this 

paper they are referred as processes, in the sense that they consist of a particular course of action intended to 

achieve a result. 

2.1 The KDD process 

The KDD process, as presented in (Fayyad et al, 1996) is the process of using DM methods to extract 

what is deemed knowledge according to the specification of measures and thresholds, using a database along 

with any required preprocessing, sub sampling, and transformation of the database. There are considered five 

stages, presented in figure 1: 

1. Selection – This stage consists on creating a target data set, or focusing on a subset of variables 

or data samples, on which discovery is to be performed. 

2. Pre processing – This stage consists on the target data cleaning and pre processing in order to 

obtain consistent data. 

3. Transformation – This stage consists on the transformation of the data using dimensionality 

reduction or transformation methods. 

4. Data Mining – This stage consists on the searching for patterns of interest in a particular 

representational form, depending on the data mining objective (usually, prediction) 

5. Interpretation/Evaluation – This stage consists on the interpretation and evaluation of the mined 

patterns. 

 

Figure 1. The five stages of KDD 

 



The KDD process is interactive and iterative, involving numerous steps with many decisions being made 

by the user. (Brachman, Anand, 1996). 

Additionally, the KDD process must be preceded by the development of an understanding of the 

application domain, the relevant prior knowledge and the goals of the end-user. It also must be continued by 

the knowledge consolidation by incorporating this knowledge into the system (Fayyad et al, 1996). 

2.2 The SEMMA process 

The SEMMA process was developed by the SAS Institute. The acronym SEMMA stands for Sample, 

Explore, Modify, Model, Assess, and refers to the process of conducting a data mining project. The SAS 

Institute considers a cycle with 5 stages for the process: 

1. Sample – This stage consists on sampling the data by extracting a portion of a large data set big 

enough to contain the significant information, yet small enough to manipulate quickly. This 

stage is pointed out as being optional. 

2. Explore – This stage consists on the exploration of the data by searching for unanticipated trends 

and anomalies in order to gain understanding and ideas.  

3. Modify – This stage consists on the modification of the data by creating, selecting, and 

transforming the variables to focus the model selection process.  

4. Model – This stage consists on modeling the data by allowing the software to search 

automatically for a combination of data that reliably predicts a desired outcome.  

5. Assess – This stage consists on assessing the data by evaluating the usefulness and reliability of 

the findings from the data mining process and estimate how well it performs.  

Although the SEMMA process is independent from de DM chosen tool, it is linked to the SAS Enterprise 

Miner software and pretends to guide the user on the implementations of DM applications. 

SEMMA offers an easy to understand process, allowing an organized and adequate development and 

maintenance of DM projects. It thus confers a structure for his conception, creation and evolution, helping to 

present solutions to business problems as well as to find de DM business goals. (Santos & Azevedo, 2005) 

2.3 The CRISP-DM process 

The CRISP-DM process was developed by the means of the effort of a consortium initially composed 

with DaimlerChryrler, SPSS and NCR. CRISP-DM stands for CRoss-Industry Standard Process for Data 

Mining. It consists on a cycle that comprises six stages (figure 2): 

1. Business understanding – This initial phase focuses on understanding the project objectives and 

requirements from a business perspective, then converting this knowledge into a data mining 

problem definition and a preliminary plan designed to achieve the objectives. 

2. Data understanding – The data understanding phase starts with an initial data collection and 

proceeds with activities in order to get familiar with the data, to identify data quality problems, 

to discover first insights into the data or to detect interesting subsets to form hypotheses for 

hidden information. 

3. Data preparation – The data preparation phase covers all activities to construct the final dataset 

from the initial raw data. 

4. Modeling – In this phase, various modeling techniques are selected and applied and their 

parameters are calibrated to optimal values. 

5. Evaluation – At this stage the model (or models) obtained are more thoroughly evaluated and the 

steps executed to construct the model are reviewed to be certain it properly achieves the business 

objectives. 

6. Deployment – Creation of the model is generally not the end of the project. Even if the purpose 

of the model is to increase knowledge of the data, the knowledge gained will need to be 

organized and presented in a way that the customer can use it. 

(Chapman et al, 2000) 

 

 



 

Figure 2 The CRISP-DM life cycle 

(Chapman et al, 2000) 

 

The sequence of the six stages is not rigid, as is schematize in figure 2. CRISP-DM is extremely complete 

and documented. All his stages are duly organized, structured and defined, allowing that a project could be 

easily understood or revised (Santos & Azevedo, 2005). Although the CRISP-DM process is independent 

from de DM chosen tool, it is linked to the SPSS Clementine software 

3. A COMPARATIVE STUDY  

By doing a comparison of the KDD and SEMMA stages we would, on a first approach, affirm that they 

are equivalent: 

• Sample can be identified with Selection,  

• Explore can be identified with Pre processing 

• Modify can be identified with Transformation 

• Model can be identified with Data Mining 

• Assess can be identified with Interpretation/Evaluation. 

Examining it thoroughly, we may affirm that the five stages of the SEMMA process can be seen as a 

practical implementation of the five stages of the KDD process, since it is directly linked to the SAS 

Enterprise Miner software. 

Comparing the KDD stages with the CRISP-DM stages is not as straightforward as in the SEMMA 

situation.  Nevertheless, we can first of all observe that the CRISP-DM methodology incorporates the steps 

that, as referred above, must precede and follow the KDD process that is to say: 

• The Business Understanding phase can be identified with the development of an understanding 

of the application domain, the relevant prior knowledge and the goals of the end-user  

• The Deployment phase can be indentified with the consolidation by incorporating this 

knowledge into the system.  

Concerning the remaining stages, we can say that: 

• The Data Understanding phase can be identified as the combination of Selection and Pre 

processing 

• The Data Preparation phase can be identified with Transformation 

• The Modeling phase can be identified with Data Mining 

• The Evaluation phase can be identified with Interpretation/Evaluation. 

In table 1, we present a summary of the presented correspondences. 



 

 

 

Table 1. Summary of the correspondences between KDD, SEMMA and CRISP-DM 

KDD SEMMA CRISP-DM 

Pre KDD  ------------- Business understanding 

Selection Sample 
Data Understanding 

Pre processing Explore 

Transformation Modify Data preparation 

Data mining Model Modeling 

Interpretation/Evaluation Assessment Evaluation 

Post KDD ------------- Deployment 

4. CONCLUSIONS AND FUTURE WORK 

Considering the presented analysis we conclude that SEMMA and CRISP-DM can be viewed as an 

implementation of the KDD process described by (Fayyad et al, 1996). At first sight, we can get to the 

conclusion that CRISP-DM is more complete than SEMMA. However, analyzing it deeper, we can integrate 

the development of an understanding of the application domain, the relevant prior knowledge and the goals 

of the end-user, on the Sample stage of SEMMA, because the data can not be sampled unless there exists a 

truly understanding of all the presented aspects. With respect to the consolidation by incorporating this 

knowledge into the system, we can assume that it is present, because it is truly the reason for doing it. This 

leads to the fact that standards have been achieved, concerning the overall process: SEMMA and CRISP-DM 

do guide people to know how DM can be applied in practice in real systems. 

In the future we pretend to analyze other aspects related to DM standards, namely SQL-based languages 

for DM, as well as XML-based languages for DM. As a complement, we pretend to investigate the existence 

of other standards for DM. 
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