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Abstract: The Inverse First Passage time problem seeks to determine the boundary corresponding to
a given stochastic process and a fixed first passage time distribution. Here, we determine the numer-
ical solution of this problem in the case of a two dimensional Gauss-Markov diffusion process. We
investigate the boundary shape corresponding to Inverse Gaussian or Gamma first passage time distri-
butions for different choices of the parameters, including heavy and light tails instances. Applications
in neuroscience framework are illustrated.
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1. Introduction

In many situations arising from applications (i.e. neuroscience, finance, reliability, ...), the quantity
of interest is the first time that a random quantity crosses a given fixed level. In a mathematical frame-
work, this corresponds to the first passage time (FPTs) of a stochastic process through an eventually
time dependent boundary. However, it can happen that the FPT distribution is known as well as the
random process, while one is interested in determining the corresponding time dependent boundary.
This is the so-called Inverse FPT problem. This problem has been investigated both from a theoretical
[1, 2] and an empirical point of view [3, 4, 5, 6] in the one-dimensional case. In [1] the existence and
uniqueness of the solution of the Inverse FPT is studied. In [2] the problem is interpreted in terms of
an optimal stopping problem. A numerical algorithm has been proposed in [6] for the Wiener process.
In [5] the Inverse FPT of an Ornstein Uhlenbeck (OU) process has been studied and it has been applied
to a classification method with applications to neuroscience. The same framework is in [4], where pos-
sible thresholds corresponding to Gamma distributed FPTs for an OU process has been investigated
with modelling purposes.
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Here, we resort again to the Inverse FPT method, we generalize the algorithms to a two-dimensional
OU process and we study the possibility to have Inverse Gaussian (IG) or Gamma distributed FPTs.
The choice of these two distributions grounds on their role in neurosciences [7, 8, 9, 10, 11, 12, 13]
and reliability theory [14, 15].

In Section 2 we introduce the two dimensional Gauss-Markov process of interest, underlying some
properties that we will use to deal with the Inverse FPT algorithm. In Section 3 we introduce the In-
verse FPT method for a two dimensional process but we postpone to a future work the mathematical
discussion about its convergence. In Section 4 we apply the algorithm to two choices of the FPT distri-
bution, determining the thresholds corresponding to IG or Gamma FPTs probability density function
(pdf). We underline the differences between the two models and we explain how heavy or light tails
influence the boundary behavior. The last section discusses the obtained results in neuroscience con-
test. The two compartment model of Leaky Integrate and Fire type presented in [9] and studied in [16]
describes the membrane potential evolution of a neuron as a two-dimensional OU process. Hence, in
Section 5 we reinterpret the Inverse FPT results in this framework.

2. The two dimensional Ornstein Uhlenbeck process

Let us consider a stochastic process X = {(X1(t), X2(t)), t ≥ 0} that is solution of the following
stochastic differential system

dX1(t) = {−αX1(t) + β [X2(t) − X1(t)]} dt

dX2(t) = {−αX2(t) + β [X1(t) − X2(t)] + µ} dt + σdBt

(2.1)

with X(0) = 0 and where B is a one-dimensional standard Brownian motion. Here, α > 0, β, µ and
σ > 0 are constants.
To solve the stochastic differential system (2.1), we rewrite it in matrix form

dX(t) = [AX(t) + M(t)]dt + GdB(t), (2.2)

where

A =

(
−α − β β

β −α − β

)
, M(t) = M =

(
0
µ

)
and G =

(
0 0
0 σ

)
.

It is an autonomous linear stochastic differential equation, in particular it is a two-dimensional Ornstein
Uhlenbeck process, special case of a Gauss-Markov diffusion process [17]. The solution of (2.2) is X1(t) =

µ

2

(
1−e−αt

α
− 1−e−(α+2β)t

α+2β

)
+ σ

2

∫ t

0

(
e−α(t−s) − e−(α+2β)(t−s)

)
dB(s)

X2(t) =
µ

2

(
1−e−αt

α
+ 1−e−(α+2β)t

α+2β

)
+ σ

2

∫ t

0

(
e−α(t−s) + e−(α+2β)(t−s)

)
dB(s).

(2.3)

It is a Gaussian vector with mean

m(t) = E(X(t)) =

 µ

2

(
1−e−αt

α
− 1−e−(α+2β)t

α+2β

)
µ

2

(
1−e−αt

α
+ 1−e−(α+2β)t

α+2β

)  (2.4)

and variance-covariance matrix Q(t − s) where,
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Figure 1. Three sample paths of the two components of the process X. The parameters of
the two compartment model are α = 0.33, β = 0.2, µ = 0 and σ = 1.

Q(t) =

[
Q(11) Q(12)

Q(12) Q(22)

]
(t) (2.5)

and

Q(11)(t) =
1
2

(
1
α
−

2
α + β

+
1

α + 2β
− e−2αt

(
1
α
−

2e−2βt

a + β
+

e−4βt

α + 2β

))
Q(12)(t) =

1
2

1 − e−2αt

α
−

1 − e−2(α+2β)t

α + 2β

Q(22)(t) =
1
2

(
1
α

+
2

α + β
+

1
α + 2β

− e−2αt

(
1
α

+
2e−2βt

α + β
+

e−4βt

α + 2β

))
.

Trajectories of the process are plotted in Figure 1. The different behavior of the two components
is evident: the noisy behavior is prevalent in X2, while the first component X1 is smoother. Indeed, as
shown in (2.3), the multiplying function of the random term on the first component reduces the noise
effect.

We consider the first passage time of the first component of the process (2.1)

T = inf{t > 0 : X1(t) > S (t)} (2.6)
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where S (t) is a continuous function with S (0) ≥ X1(0) = 0.
Note that it is possible to rewrite (2.3) in iterative form. This version is useful for simulation

purposes, in order to generate the trajectories in an exact way. Discretizing the time interval [0,T ] with
the partition π : 0 = t0 < t1 < · · · < tN = T in N subintervals of constant length h = T

N , we can express
the position of the process at time tk+1 in terms of the position of the process at time tk

X(tk+1) =
1
2

[
e−αh + e−(α+2β)h e−αh − e−(α+2β)h

e−αh − e−(α+2β)h e−αh + e−(α+2β)h

]
X(tk) +

µ

2

 1−e−αh

α
− 1−e−(α+2β)h

α+2β
1−e−αh

α
+ 1−e−(α+2β)h

α+2β

 +
σ

2
Ik (2.7)

where the term

Ik =


∫ tk+1

tk

(
e−α(tt+1−s) − e−(α+2β)(tk+1−s)

)
dB(s)∫ tk+1

tk

(
e−α(tt+1−s) − e−(α+2β)(tk+1−s)

)
dB(s)

 , (2.8)

known as innovation, is a Gaussian vector with zero mean and variance-covariance matrix Q(h).
In the following we will also need the conditioned mean of the first component

m(1)(t|(X1(θ), X2(θ)), θ) = E(X1(t)|X(θ) = (X1(θ), X2(θ))) (2.9)

=
µ

2

(
2β − αe−α(t−θ) − 2βe−α(t−θ) + αe−(α+2β)(t−θ)

α(α + 2β)

)
−

X1(θ)e−α(t−θ)

2
(1 + e−2β(t−θ)) −

X2(θ)e−α(t−θ)

2
(1 − e−2β(t−θ))

and the conditioned variance of the first component

Q(11)(t|(X1(θ), X2(θ)), θ) = Var(X1(t)|X(θ) = (X1(θ), X2(θ))) (2.10)

=
σ2e−2α(t−θ)[2αe−2β(t−θ)(α + 2β) − αe−4β(t−θ)(α + β) + 2β2e2α(t−θ) − α2 − 3αβ − 2β2]

8α(α + β)(α + 2β)

In some instances can be useful to transfer the time dependency from the boundary shape S (t)
to an input M(t). Mathematically it is possible to relate these two situations with a simple space
transformation. Indeed, the space transformation

Y1(t) = X1(t) − S (t) + Σ. (2.11)

changes our process X given by (2.1), originated in X(0) = x0 in presence of a time dependent boundary
S (t) 

dX1(t) = {−αX1(t) + β [X2(t) − X1(t)]} dt
dX2(t) = {−αX2(t) + β [X1(t) − X2(t)] + µ} dt + σdBt

X(0) = x0

S (t)

(2.12)

into a two dimensional process characterized by time dependent input M(t) and constant threshold Σ

dY1(t) = {−αY1(t) + β [X2(t) − Y1(t)] + µ1(t)} dt
dX2(t) = {−αX2(t) + β [Y1(t) − X2(t)] + µ2(t)} dt + σdBt

X(0) = x0 − S (0) + Σ

Σ.

(2.13)
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Here, the term

M(t) =

[
µ1(t)
µ2(t)

]
=

[
−(α + β)(S (t) − Σ) − S ′(t)

µ + β(S (t) − Σ)

]
(2.14)

can be interpreted as an external input acting with different weights on the two compartments. Note
that in (2.14) S (t) should be interpreted as a function of time and not as a boundary of a FPT problem.
Indeed, in this case the boundary of the model is constant.

The stochastic process (2.1) can be used to describe a system whose behavior depends by two
components that are strictly correlated by the parameter β. The second component is driven by a
random Gaussian noise and its evolution is stopped when the first component reaches a given fixed
level. This model, known as two compartment model, has many interesting applications, for example
in neuroscience, reliability and finance.

3. Inverse first passage time method

The inverse FPT problem consists in searching the unknown boundary S (t) given that the FPT
density fT (t) is known. We work under the assumption that the boundary S (t) exists, it is unique and
sufficiently regular.

Let us consider a diffusion process X = {(X1(t), X2(t)), t ≥ 0}, solution of the stochastic differential
equation (2.2). The proposed method is based on the numerical approximation of the following Volterra
integral equation [16]

1 − Er f
(
S (t) − m(1)(t)√

2Q(11)(t)

)
=

∫ t

0
fT (θ)EZ(θ)

[
1 − Er f

(
S (t) − m(1)(t|(S (θ), X2(θ)), θ)√

2Q(11)(t|(S (θ), X2(θ)), θ)

)]
dθ (3.1)

where Z(t) is a random variable that represents the position of the second component X2 of the process
when the first component X1 hits the boundary at time t, i.e.

P(Z(t) < z) = P(X2(T ) < z|T = t, X(t0) = y). (3.2)

Let us fix a time interval [0,Θ] and a partition π : 0 = t0 < t1 < · · · < tN = Θ in N subintervals of
constant length h = Θ

N . Using Euler formula for integrals [18], equation (3.1) can be approximated as

1 − Er f
(
S ∗(ti) − m(1)(ti)√

2Q(11)(ti)

)
= h ·

i∑
j=1

fT (t j)EZ(t j)

[
1 − Er f

(
S ∗(ti) − m(1)(ti|(S ∗(t j), X2(t j)), t j)√

2Q(11)(ti|(S ∗(t j), X2(t j)), t j)

)]
(3.3)

∀i = 1 . . .N.
Equation (3.3) represents a non linear system of N equations in N unknown S ∗(t1), . . . , S ∗(tN) that

can be solved by means of root finding iterative algorithms [19]. Its solution gives an approximation
S ∗(t) of the boundary S (t) in the partition points π. Note that in step i the only unknown quantity
is S (ti) and it is estimated using the boundary approximations S ∗(t1), . . . , S ∗(ti−1), computed in the
previous steps.

The quantity

θi,k = EZ(tk)

[
1 − Er f

(
S ∗(ti) − m(1)(ti|S ∗(tk|(S ∗(tk), X2(tk)), tk)√

2Q(11)(ti|(S ∗(tk), X2(tk)), tk)

)]
(3.4)
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is not easily handled because it depends on the unknown time dependent boundary. In general, the
computation of θk,k is not trivial but, performing a suitable limit on the considered process we can
show that θk,k = 2 for each value of k. To compute (3.4) when k , i, we use a Monte Carlo method: we
simulate the process X until the first component exceeds the threshold and we save the corresponding
value of Z. At step i, we need to compute θi,k for k = 1, . . . , i − 1. The presence of an expectation with
respect to Z(tk) determines a difficulty for the estimation of (3.4) through Monte Carlo because we need
the value of Z(tk) = X2(tk) at time T = tk. To circumvent this problem we introduce an approximate
approach as follows. At step i we approximate the threshold with a piecewise linear curve with knots
in the already computed boundary values. Hence, for τ ∈ [t j−1, t j], j = 1, . . . , i − 1 we substitute the
exact boundary with

Ŝ (τ) =
S ∗(t j) − S ∗(t j−1)

t j − t j−1
τ +

t jS ∗(t j−1) − S ∗(t j)t j−1

t j − t j−1
(3.5)

and we simulate the process up to ti−1 or until it reaches the threshold. To compute θi,k, k = 1, · · · , i −
1 we use only the trajectories that crossed the approximated boundary (3.5) in a neighbourhood of
tk. Then, in correspondence to each of these sample paths we identify with {Zk, k = 1 . . . M} the
sequence of values of the second component of the process X (when the first component has exceeded
the threshold). In this way, the Monte Carlo estimate for θi, j is

θ̃i, j = 1 −

∑M
k=1 Er f

(
S (ti)−m(1)(ti |(S (t j),Zk),t j)√

2Q(11)(ti |(S (t j),Zk),t j)

)
M

.

It is possible to prove that this further approximation does not seriously influence the reliability of the
algorithm.

4. Examples

In this Section we illustrate the use of the Inverse FPT method through two examples. The first
situation concerns FPTs with Inverse Gaussian distribution. The second one deals with the Gamma
distribution. Lastly, a comparison between boundaries and drift terms arising in the two examples is
developed.

4.1. Inverse Gaussian random variable

The IG random variable T has pdf

fT (t) =

[
λ

2πt3

]1/2

exp
[
−
λ(t − ρ)2

2ρ2t

]
, t ≥ 0, (4.1)

where ρ > 0 is the mean and λ > 0 is the shape parameter. Mean, variance and coefficient of variation
are given by

E(T ) = ρ (4.2)

Var(T ) =
ρ3

λ

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8162–8178.
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Figure 2. Probability densities (a) and evaluated boundaries (b) in the case of Inverse
Gaussian-distributed FPTs with E(T ) = 4. Different lines correspond to different shapes
of the Inverse Gaussian densities, CV = 0.5 (red), CV = 0.75 (magenta), CV = 1 (black),
CV = 1.5 (blue), CV = 2 (green). The parameters of the two compartment model are
α = 0.33, β = 0.2, µ = 0 and σ = 1.

CV = CV(T ) =

√
Var(T )
E(T )

=

√
ρ

λ
.

Throughout all this paper, when not differently specified, we fix the values of the two compartment
model as follows: α = 0.33, β = 0.2 and σ = 1. We choose the shape of the IG distribution by fixing
its mean E[T ] = 4 and different values of CV (see Figure 2, panel (a)). From (4.2) we see that changes
of CV imply changes of the shape parameter λ. Moreover, as CV increases, the density becomes more
peaked. The corresponding shapes of the time varying thresholds are illustrated in panels (b) where
the shapes of the boundary present a maximum that tends to disappear as CV grows to higher values.

When ρ is finite, the IG distribution has light tails but if ρ→ ∞ the IG becomes

fT (t) =

[
λ

2πt3

]1/2

exp
[
−
λ

2t

]
, t ≥ 0, (4.3)

and it catches the heavy tails feature of interest for the analysis of some data [7, 8, 12]. The density (4.3)
is known to be the density of the FPT of a Brownian motion with zero drift and diffusion coefficient ν
through a constant boundary b with the relation

λ =
b2

ν2 . (4.4)

Since E(T ) = ∞, it makes no sense to compute the CV but, in order to compare light and heavy tails
distributions, we use the same values of λ in Figure 2 and 3. In Figure 3, different shapes of the pdfs
(panel (a)) and of the corresponding boundaries (panel (b)) are shown. The heavy tails of this distribu-
tion determine a new shape for the threshold that has a decreasing maximum as λ increases, followed

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8162–8178.
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Figure 3. Probability densities (a) and evaluated boundaries (b) in the case of Inverse
Gaussian-distributed FPTs with heavy tails. Different lines correspond to different values
of the parameter: λ = 16 (red), λ = 7.11 (magenta), λ = 4 (black). The parameters of the
two compartment model are α = 0.33, β = 0.2, µ = 0 and σ = 1. Probability mass=[0.37
0.55 0.65] for λ = [16 7.11 4].

by a minimum and by an increasing shape of the boundary. The maximum tends to disappear for large
values of λ and the values of the boundary are essentially positive. The growth of the boundary, for
larger values of t, stop to allow the crossing of the samples determining the tail of the distribution. Fig-
ure 3 refers to the time interval [0, 20], corresponding to a low probabilistic mass. A check for longer
intervals does not change the results from a qualitative viewpoint, while higher probability masses are
reached (figure not shown).

4.2. Gamma random variable

A random variable T is Gamma distributed if its pdf is

fT (t) =
γκ

Γ(κ)
tκ−1e−γt, t ≥ 0. (4.5)

Here, γ > 0 is the rate parameter and κ > 0 is the shape parameter. Such a random variable is
characterized by the following mean, variance and coefficient of variation

E(T ) =
κ

γ
(4.6)

Var(T ) =
κ

γ2

CV = CV(T ) =
1
√
κ
.

The shapes of Gamma pdf for different values of the parameters γ and κ can be seen in Figure 4,
panel (a). The shapes of the Gamma pdf strongly change with the value of CV . We recall that CV = 1

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8162–8178.
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corresponds to the exponential distribution. Tails of the Gamma distribution are light, decaying to zero
as an exponential. The corresponding shapes of the time varying thresholds are shown in panel (b)
where the values of the two compartment model are: α = 0.33, β = 0.2 and σ = 1. Here, as CV
increases, the maximum of the boundary disappears and the threshold time varying threshold becomes
flat or, eventually when CV = 2, increasing. This is the main difference of the boundary behavior with
respect to the IG case.
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Figure 4. Probability densities (a) and evaluated boundaries (b) in the case of Gamma-
distributed FPTs with E(T ) = 4. Different lines correspond to different shapes of the Gamma
densities, CV = 0.5 (red), CV = 0.75 (magenta), CV = 1 (black), CV = 1.5 (blue), CV = 2
(green). The parameters of the two compartment model are α = 0.33, β = 0.2, µ = 0 and
σ = 1.

4.3. Comparison

Often, IG and Gamma distributions appear as output of models of the same phenomenon but, for
different choices of diffusion parameters. Hence, it seems useful to compare these distributions in terms
of corresponding boundaries, using the Inverse FPT method. Hence, in this subsection we compare the
boundaries corresponding to IG and to Gamma distributions when mean and CV are the same.

Figure 5 shows the time varying boundaries corresponding to the IG (dashed) and the Gamma-
distributed (solid) interspike intervals (ISIs) with the same mean value and the same CV . In this
example E[T ] = 10 while CV = [0.5, 1, 1.5]. Densities and corresponding boundaries become more
and more different as we increase the CV value (cf. inbox of Figure 5). The different spreading of
probability mass of the two classes of distributions is reflected in different shapes of the corresponding
boundaries. Since the IG density has heavier tails, the probability mass should not be consumed for
short times. For this reason the boundary increases allowing crossings for large times.

Mathematical Biosciences and Engineering Volume 16, Issue 6, 8162–8178.
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Figure 5. Comparison between the time varying boundaries corresponding to the Inverse
Gaussian (dashed) and the Gamma-distributed (solid) FPTs with E(T ) = 10 and with varying
CV , the probability densities are on the sub-plots. The parameters of the two compartment
model are α = 0.02, β = 0.02, µ = 0 and σ = 0.4.

To help a physical interpretation of the results in terms of input of a two compartment model,
in Figure 6 we compare the behavior of the two components (2.14) of M(t), when the boundary is
transformed into a constant through (2.11). We ask what would be the input to both compartments if
the output distribution is fixed and threshold is constant. We illustrate the cases of FPT distributed as
IG (a-b), IG with heavy tails (c-d) and Gamma (e-f), respectively. Reinterpreting the time dependent
boundary in terms of a modification of the drift allows to interpret our results in terms of increasing or
decreasing drift. We note that a positive drift on the first component is always necessary to obtain the
prescribed FPT distribution. When CV ≤ 1, FPTs distributed as Gamma or IG imply similar input. On
the contrary, when tails of IG are heavy (panel (c)) or CV is large enough (panels (a) or (e)), the drift
term of the first component strongly changes becoming decreasing. Interestingly the behavior of the
second component µ2(t) (panels (b),(d) and (f)) is the opposite of that of µ1(t).

Lastly, we change the comparison criterion and we apply the Inverse FPT method varying the values
of the parameter µ in (2.1). We fix the values of the model as follows: α = 0.02, β = 0.02 and σ = 0.4.
We consider examples of boundaries corresponding IG or Gamma spiking densities for CV = 0.5
(Figure 7) or CV = 1 (Figure 8).

In the figures, we also compare the boundaries (thicker line) with the mean of the first component
E[X1(t)]. We note that boundary always intersects the function E[X1(t)]. Interestingly, if we fix the
firing FPT and its CV , the intersection value is the same for different values of the parameter µ. This
fact can be easily understood by noting that a change in µ determines the same shift both on the mean
value of X1(t) and on the boundary. However, this value changes considering different CVs.
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Figure 6. Comparison between the values of the two components of M(t) (2.14) when the
boundary is constant Σ = 4 in the case of FPT distributed as IG (a-b), IG with heavy tails
(c-d) and Gamma (e-f), respectively. The parameters and the colors of the functions are the
same of the examples of Figures 2, 3 and 4. The parameters of the two compartment model
are α = 0.33, β = 0.2, µ = 0 and σ = 1.
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Figure 7. Inverse-Gaussian (a) and Gamma (c) distributed FPTs with mean FPT equal to
10 and CV = 0.5. Corresponding boundaries and mean value of the first component (b,d).
Different lines correspond to different values of the mean input: µ = 0 (black), µ = 0.3 (blue),
µ = 0.6 (cyan). Thicker lines correspond to the time varying boundaries. The vertical dotted
lines give the FPT distribution quantiles. The parameters of the two compartment model are
α = 0.02, β = 0.02, σ = 0.4, while µ varies as specified above.
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Figure 8. Inverse-Gaussian (a) and Gamma (c) distributed FPTs with mean FPT equal to
10 and CV = 1. Corresponding boundaries and mean value of the first component (b,d).
Different lines correspond to different values of the mean input: µ = 0 (black), µ = 0.3
(blue), µ = 0.6 (cyan). Thicker lines correspond to the time varying boundaries. The vertical
dotted lines give the FPT distribution quantiles. The parameters of the two compartment
model are α = 0.02, β = 0.02, σ = 0.4, while µ varies as specified above.

5. Application to neuroscience

We give here an example of application of the Inverse FPT method to neuroscience.
Simplest neuronal models resort to one-dimensional processes to describe the membrane poten-

tial evolution. This choice implies a strong simplification of the neuronal structure that is identified
by a single point. More complex models introduce bivariate stochastic processes to discriminate the
membrane potential dynamics in the dendritic or in the trigger zone [9]. Neurophysiological reasons
suggest the existence of an interaction between the membrane potential dynamics in the two zones
and, when the first component (the trigger one) attains a boundary value, the neuron releases a spike.
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A reasonable simplification allows to add a noisy term only to the dendritic component. The reset after
the spike can include both the components or only the trigger zone. Here, we will consider only the
case of total resetting of both components to a resting value that we fix, for simplicity, equal to zero.

In this framework, the stochastic process (2.1) describes the depolarization of the trigger zone and
the dendritic one, respectively [9]. The model assumes that external inputs, with intensity µ and vari-
ability σ, influence the second compartment and a weight β takes into account the interconnection
between the parts of the neuron. Moreover, the constant α > 0 accounts for the spontaneous membrane
potential decay (cf. Figure 9). Then, the FPT T mimics the ISI of the neuron and the boundary S (t)
corresponds to the spiking threshold for the neuron.

Figure 9. Schematic representation of the two-compartment model

Often, IG and Gamma distribution fit neuronal data and FPT may help to interpret the presence of
these distributions. Here, we reinterpret Figures 2-8 in the neuronal model framework. Hence, con-
stants α and β will be measured in ms−1, while µ will be measured in mV ms−1 and σ in mV ms−1/2.

Figures 2, 3, 4 and 5 reinterpret the heaviness of the tail of the ISI distributions in terms of the thresh-
old shapes. As we increase the CV value, IG and Gamma densities and the corresponding boundaries
become more and more different. This means that CV plays an important role in the formulation of
the model. Moreover, in the case of the Gamma ISI distribution, the slope of the threshold becomes
increasing when CV is large enough. A similar increasing behavior of the boundary could be obtained
with IG distributed ISIs with heavy tails (cf. Figure 3).

In Figures 7 and 8 we investigate not only the behavior of the time varying firing threshold but also
the dynamics of the underlying two compartment neuronal model. The mean membrane potentials
and the corresponding boundaries are plotted for different values of the mean input µ and for different
values of CV . For low input µ, the curves exhibit a maximum after which the firing threshold starts
to decrease. As the input µ increases, the firing threshold from concave and decreasing become con-
vex and increasing. Indeed, a big input µ facilitates the spiking. Therefore, to obtain the assigned
distribution, the threshold must move away, becoming increasing.
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Figure 10. Boundaries corresponding to Inverse Gaussian (a) and Gamma (b) distributed
FPTs with E(T ) = 10 and CV = 1. Different lines correspond to different values of β:
β = 0.01 (green), β = 0.02 (red), β = 0.1 (magenta), β = 0.5 (blue).The parameters of the
two compartment model are α = 0.02, µ = 0, σ = 0.4, while β varies as specified above.

Lastly in Figure 10 we study the role of the parameter β in the model, applying the Inverse FPT
method to IG (panel (a)) and Gamma (panel (b)) FPT distribution and varying the values of the param-
eter β. As β decreases, the boundary becomes almost constant and equal to zero. This is consistent with
the fact that, for β = 0, the two components of the process gets independent and X1 is deterministic and
equal to zero, since X(0) = 0. Then, in order to have a crossing and to get a prescribed distribution, the
threshold should approach zero.

6. Conclusions

The extension of the Inverse FPT method to two-dimensional OU diffusion processes allows to
study the shape of the boundaries for a given FPT pdf. We applied the algorithm to FPT distributed as
an Inverse Gaussian and as a Gamma random variable. Differences in the boundary shape correspond-
ing to FPTs with heavy or light tails enlighten different features of the corresponding two compartment
model.

Lastly, we reinterpret the obtained results in a neuroscience framework. The shape of the bound-
aries corresponding to different firing distributions may enlighten features of the model eventually
recognizing instances of scarce physiological significance such as diverging thresholds.
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