

This is the author's final version of the contribution published as:

Fadda A, Gentilini D, Moi L, Barault L, Leoni VP, Sulas P, Zorcolo L, Restivo A, Cabras F, Fortunato F, Zavattari C, Varesco L, Gismondi V, De Miglio MR, Scanu AM, Colombi F, Lombardi P, Sarotto I, Loi E, Leone F, Giordano S, Di Nicolantonio F, Columbano A, Zavattari P.

Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor.

Int J Cancer. 2018 Mar 15. doi: 10.1002/ijc.31380.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as an 'Accepted Article', doi:10.1002/ijc.31380

The publisher's version is available at: http://onlinelibrary.wiley.com/doi/10.1002/ijc.31380/abstract

When citing, please refer to the published version.

Link to this full text:

https://iris.unito.it/handle/2318/1662608

This full text was downloaded from iris-Aperto: https://iris.unito.it/

iris-AperTO

Colorectal cancer early methylation alterations affect the crosstalk between cell and surrounding environment, tracing a biomarker signature specific for this tumor

Antonio Fadda¹*, Davide Gentilini^{2,3}*, Loredana Moi¹*, Ludovic Barault^{4,5}, Vera Piera Leoni⁶, Pia Sulas⁶, Luigi Zorcolo⁷, Angelo Restivo⁷, Francesco Cabras⁷, Federica Fortunato⁷, Cesare Zavattari⁸, Liliana Varesco⁹, Viviana Gismondi⁹, Maria Rosaria De Miglio¹⁰, Antonio Mario Scanu¹⁰, Federica Colombi⁴, Pasquale Lombardi⁴, Ivana Sarotto⁵, Eleonora Loi¹, Francesco Leone^{4,5}, Silvia Giordano^{4,5}, Federica Di Nicolantonio^{4,5}, Amedeo Columbano⁶, Patrizia Zavattari^{1#}

¹ Unit of Biology and Genetics, Department of Biomedical Sciences, University of Cagliari, Italy

² Department of Brain and Behavioral Sciences, University of Pavia, Italy

³ Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy

⁴ Department of Oncology, University of Torino, Italy

⁵ Candiolo Cancer Institute-FPO, IRCCS, Italy

⁶ Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Italy

⁷ Department of Surgery, Colorectal Surgery Center, University of Cagliari, Italy

⁸ Independent Researcher, Machine Learning, Lucca, Italy

⁹ Unit of Hereditary Cancer, IRCCS AOU San Martino-IST, Genoa, Italy

¹⁰ Department of Clinical and Experimental Medicine, University of Sassari, Italy

* These authors equally contributed to this work

[#]Corresponding author

Running title: CRC early methylation biomarkers impair signalling crosstalk

Correspondence:

Patrizia Zavattari, PhD Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari Cittadella Universitaria di Monserrato SP 8, Km 0.700 - 09042, Monserrato, Cagliari, Italy Phone: +39-070-675-4101 / Fax: +39-070-675-4100 email: pzavattari@unica.it

The authors declare no potential conflicts of interest.

PZ, FDN, AC have a patent 102017000072650 pending.

Arrays raw data are stored in our Dept. server and will be available on request

Novelty and Impact: We identified and validated a panel of 74 altered CpG islands, able to discriminate CRCs and adenomas from peritumoral and normal mucosa, with very high specificity (100%) and sensitivity (99.9%); three selected markers were tested and detected through non-invasive techniques, both in cfDNA and in stool DNA. Our results also demonstrated that the earliest methylation alterations affect genes coding for proteins involved in the crosstalk between cell and surrounding environment

Word count: 4088

Abstract

Colorectal cancer (CRC) develops through the accumulation of both genetic and epigenetic alterations. However, while the former are already used as prognostic and predictive biomarkers, the latter are less well characterized. Here, performing global methylation analysis on both CRCs and adenomas by Illumina Infinium HumanMethylation450 Bead Chips, we identified a panel of 74 altered *CpG islands*, demonstrating that the earliest methylation alterations affect genes coding for proteins involved in the crosstalk between cell and surrounding environment. The panel discriminates CRCs and adenomas from peritumoral and normal mucosa with very high specificity (100%) and sensitivity (99.9%). Interestingly, over 70% of the hypermethylated islands resulted in downregulation of gene expression. To establish the possible usefulness of these non-invasive markers for detection of colon cancer, we selected three biomarkers and identified the presence of altered methylation in stool DNA and plasma cell-free circulating DNA from CRC patients.

Introduction

Colorectal cancer (CRC), the third most prevalent cancer in the world [1], develops over years or decades, as a result of the accumulation of genetic and epigenetic alterations. At least three distinct types have been described: 1) chromosomal instability (CIN), the most frequent (80-85%), is characterized by aneuploidy, chromosomal gains/losses and accumulation of mutations in specific oncogenes (e.g. *KRAS*, *PIK3CA*, *BRAF*, etc) and tumor suppressors genes (e.g. *APC*, *SMAD4*, *TP53*); 2) microsatellite instability (MSI), caused by dysfunction of DNA mismatch repair genes, 3) CpG island methylation phenotype (CIMP), characterized by a widespread CpG island methylation, accounting for about 20-40% of CRCs. These types are not mutually exclusive, with tumors exhibiting features of more than one [2]. Although CIN tumors are characterized by mutations in oncogenes and tumor suppressor genes, epigenetic changes may also play a relevant role in neoplastic transformation even at the earliest stages [3-5]. Better knowledge of these epigenetic alterations could also help clarify which cellular processes are affected by such early changes and drive future functional studies.

Genes altered by methylation not only might represent potential biomarkers for early detection of CRC [6], but could also be important prognostic and predictive markers to improve therapeutic interventions [7,8]. Indeed, therapies based on epigenetic reprogramming have been recently tested in several types of tumors [9,10]. Moreover, since the screening of epigenetic alterations can also be carried out in circulating tumor DNA (ctDNA) and in DNA isolated from faeces of patients at risk of CRC, the detection of these biomarkers through less invasive procedures makes their identification of great value [8].

The aims of the present study were: i) to identify signature alterations in the CRC methylome through over 485k CpG loci of CRCs and peritumoral tissues; ii) to test whether these alterations represent early events in CRC development; iii) to explore the use of non-invasive techniques (stool and ctDNA) to reveal altered methylation. We identified the most altered pathways since early stages of CRC tumorigenesis and defined a panel of CpG islands differentially methylated as

biomarkers capable to detect CRC even at its earliest stages. This panel was successfully cross-validated *in silico* using methylation data from more than 500 CRC samples. Selected biomarkers were then confirmed in ctDNAs and in DNAs from stool samples of CRC patients.

Materials and methods

Samples collection and processing

Samples for whole genome methylation analysis

The methylome analysis was first performed in 18 pairs of primary CRCs among which four had matched peritumoral samples, taken at a distance of more than 10 cm from the neoplastic tissue (selected to represent the four anatomic region affected by cancer: left, right, sigmoid colon, rectum). Specimens came from patients diagnosed with CRC and operated at the Department of General Surgery, University of Cagliari (Italy) (**Figure 1** and **Supporting Information Table 1**). For this study, cases with familial adenomatous polyposis or human nonpolyposis colorectal cancer were excluded.

In a second step, methylome analysis was conducted in 21 adenomas and three matched intestinal mucosa controls, from 21 patients bearing an adenoma (**Figure 1** and **Supporting Information Table 2**). Lesions were removed during endoscopy [11]. DNA samples were collected at the National Institute for Cancer Research of Genoa (Italy).

Stool samples for methyl-BEAMing analyses

Stool samples were collected from 24 patients with colorectal cancer and taken intraoperatively from the bowel resection specimen. All stools samples were immediately frozen after collection and stored at -80° C until being processed. DNA extraction was performed using the QIAamp DNA Stool Mini Kit according to the manufacturer's instructions. All samples were collected at Department of Surgical Sciences, University of Cagliari and Department of Clinical and experimental medicine, University of Sassari. (**Figure 1**)

Plasma samples for methylBEAMing analyses

Blood draws were collected from 45 cases of CRC enrolled at the medical oncology department of the Candiolo Cancer Institute-FPO, IRCCS (Torino, Italy) between November 2015 and April 2016. Twelve cases were under adjuvant therapy after surgical resection of their lesion and were considered with no evidence of disease (NED). Remaining cases (N=33) were metastatic CRC with different levels of tumor burden (**Figure 1**). Whole blood was processed within samples three hours after collection. Samples were centrifuged at 1600g for 10 minutes for phase separation. Plasma was collected and submitted to a second centrifugation step at 3000g for 10 minutes to remove platelets and cell debris. Upper phase was collected, aliquoted and stored at -80°C until further processing. One milliliter of plasma was processed for DNA extraction using the Maxwell® RSC ccfDNA Plasma Kit (Promega) using 100µl for the elution volume.

Samples for Real-Time qRT-PCR validation

A total of 26 RNA samples (eight CRC with matched peritumoral tissues and ten individual CRCs), extracted as described in the previous paragraph, were tested by qRT-PCR (**Figure 1**).

DNA extraction and bisulfite conversion from tissue samples

Genomic DNA was extracted from tumoral and peritumoral tissue using the DNeasy Blood & Tissue Kit (Qiagen) and bisulfite converted using EZ DNA Methylation Gold Kit TM (Zymo Research) according to the manufacturer's instructions. Quality control and quantification of DNA were performed before and after bisulfite conversion. Further details are available on supplementary materials.

DNA methylation assay

Four microliters of bisulfite-converted DNA were used for hybridization on Infinium HumanMethylation 450 BeadChip (450K), following the Illumina Infinium HD Methylation protocol. Data were acquired on an Illumina HiScan SQ scanner. Image intensities were extracted using GenomeStudio (2010.3).

MethylBEAMing analysis

The primers used for pyrosequencing were coupled with Tag sequence as previously described [9]. Two microliters of bisulfite converted cfDNA was amplified in replicate and processed following the same protocol previously described [10]. (**Supporting Information Table 3**).

Purified beads were run on a BD Accuri C6 (Becton-Dickinson), methylation percentage was expressed as the number of events in the methylated gate divided by the sum of events in methylated and unmethylated gates multiply by 100.

Markers selection for validation of locus specific methylation alterations

We selected three CpG islands, based on both a large methylation Δ between tumor and non-tumor tissue and the feasibility of the assay. Thirteen regions belonging to the biomarker panel identified were selected for locus specific investigation. Since cell free circulating and stool DNA is known to be composed of short fragments [12], significant probes which were distant from a maximum of 150bp (defining 23 loci) were selected to assess their potential to discriminate tumors from normal tissue in The Cancer Genome Atlas (TCGA) COREAD cohort using ROC analyses. Ten loci demonstrated a positive predictive value of 1 and a negative predictive value of at least 0.5. Among those, three regions allowed methylation independent amplification assay with highly specific probe design (*GRIA4*, *SLC8A1*, *SYN3*) (**Supporting Information Table 4**) and were firstly validated in a second data set of 78 tumoral and matched peritumoral tissue samples by pyrosequencing analysis (see Supplementary Materials and methods).

Statistical Analysis

Power calculation

The power was estimated on the calculation of the parameters of interest using the GSE48684 dataset. Based on this preliminary data the number of samples was calculated assuming an effect size that consider a differential methylation level of at least 10%, using a type I error of 10e-8 (which takes into account the need to correct for multiple test) and a statistical power of 0.8. Using these criteria, the number of samples to be analyzed should be 30.

Methylome data management

Illumina Methylation 450K raw data were analysed using the RnBeads analysis software package, as previously described [13,14]. In addition to CpG sites, four sets of genomic regions were covered in the analysis (tiling, genes, promoters and CpG Islands). Corrected p values (Benjamini & Hochberg) were computed as previously described [13,14]. The selected differently methylated

CpG loci were annotated, by referring to the 450k manifest, in order to obtain a gene list based on HGNC database. The beta values obtained for each sample at each CpG locus analyzed, were used in an analysis of Unsupervised Hierarchical Clustering (UHC), that, comparing locus to locus, allows to trace a tree (called dendrogram) whose closest branches indicate the most similarity in the methylation pattern, and vice versa. Finally, beta values were also visualized by building a HeatMap.

Biomarker specificity and sensitivity evaluation

We evaluated in three datasets (discovery set, GSE48684, TCGA COREAD) the tumoral and nontumoral beta value distribution relative to the 74 biomarkers. The combined p-value of each biomarker was obtained using the Fisher's method, by combining the p-value of each CpG site belonging to a particular CpG island, calculated using the Wilcoxon test.

To evaluate the association of each biomarker with a binary outcome a logistic regression model was fitted to the individual biomarker data and the new probabilities used to calculate the area under the curve (AUC), specificity and sensitivity values using the "*OptimalCutpoints*" package [15].

To evaluate the ability of the entire biomarkers panel to correctly classify between two possible conditions (i.e tumoral *vs.* non-tumoral), we built a support vector machine learning model (SVM), using the GSE48684 dataset as a training set and the TCGA COREAD as test set and evaluate the prediction performance ability in the test set calculating the confusion matrix using the "*caret*" package.

Bioinformatic analysis

Functional annotations of the differently methylated loci, were conducted by the ToppGene package [16], from which are derived the information on the pathways potentially involved. The significance value was corrected for multiple comparisons (Bonferroni or Benjamini & Hochberg).

Three cross-validation datasets were retrieved from the database NCBI Gene Expression Omnibus (GEO) portal (http://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE48684, GSE52270, GSE53051. Processed data were used for all datasets above mentioned. TCGA COREAD cohort is available online at RnBeads website under Methylome Resources (<u>http://rnbeads.mpi-inf.mpg.de/methylomes.php</u>). For each of these datasets the mean methylation value for each CpG

island of interest has been calculated and visualized using Bioconductor package "ComplexHeatmap" [17].

Ethical approval

All the biological samples analysed were obtained with written informed consent signed from patients and ethical approval granted by the relative Ethics Committee: CRC tissue samples by the Independent Ethics Committee of the University Hospital of Cagliari; stool samples by the Independent Ethics Committee of the University Hospital of Cagliari and by Comitato Bioetico della Azienda Sanitaria Locale di Sassari; Plasma samples by the Ethical Committee of the IRCCS Cancer Center of Candiolo.

Results

CRC methylome alterations are early events in colon carcinogenesis: identification of an early epigenetic biomarkers panel

The differential methylation analysis conducted on 18 CRCs and 4 peritumoral samples (**Figure 1** and **Supporting Information Table 1**), powerfully discriminated tumor samples from peritumoral tissues. We identified 22307 CpG loci differentially methylated with an adjusted p-value threshold of 0.05 (Benjamini & Hochberg multiple test correction). To test whether these alterations represent an early event in carcinogenesis, we conducted a differential methylation analysis on 21 adenomas *vs.* 3 control mucosae (**Figure 1** and **Supporting Information Table 2**). As expected, the results of the analysis in adenomas were less robust than in CRCs. Using the nominal threshold (p-value <0.05), 43999 CpG loci resulted differently methylated. In both CRCs and adenomas, a wide hypomethylation of the tumoral samples was found by analyzing the entire genome, divided into portions (*tiling*), however, by restricting the analysis to the regulatory regions, a switch towards hypermethylation, especially in the CpG islands, was evident (**Figure 2A and 2B**).

The list of genes whose associated CpG islands, were significantly altered (875 in CRCs and 2393 in adenomas), was subjected to a gene enrichment and candidate gene prioritization analysis by Toppgene, allowing the identification of the pathways most affected by aberrant methylation: Wnt signaling, Neuronal System, Cadherin signaling, Transmission across Chemical Synapses, Neuroactive ligand-receptor interaction, Neurotransmitter Release Cycle, GABAergic synapse,

Core extracellular matrix, Calcium signaling, Cholinergic synapse (**Supporting Information Table 5**). For the list of the 171 genes found modified in CRCs and 432 in adenomas belonging to 10 significantly involved pathways, see **Supporting Information Table 6**. Notably, Toppgene results show that the most affected pathways were largely comparable between CRCs and adenomas (**Figure 2C**).

Remarkably, most of the genes whose associated CpG islands were altered in CRCs, were "already" aberrant in adenomas. In **Figure 3** and **Supporting Information Table 7** are listed 74 CpG islands resulting from the comparison, with the respective average beta values and Δ s calculated between the average value in the tested samples (CRCs or adenomas) and in the respective controls. Interestingly, only two islands, at *GNG7* and *GRIN3B* genes, underwent hypomethylation in both adenomas and CRCs. Of note, the Δ average beta value was always higher in CRCs than in adenomas (except for *EDNRB*), probably due to a greater methylation heterogeneity among adenomas. Surprisingly, none of the genes listed in **Figure 3** resulted dysregulated by the transcriptome analysis. However, all those genes displayed an extremely low level of expression, close to the background intensity level. Therefore, an investigation by qRT-PCR was undertaken (**Supporting Information Figure 1**). UHC was conducted on the CRCs and adenomas (**Figure 3**) discovery set, based on the 74 biomarkers panel. A multi-cluster gene functional enrichment analysis conducted only for the genes associated to the 74 CpG islands, showed a significant enrichment of proteins involved in the crosstalk between cell and surrounding environment (see **Figure 3** and **Figure 4**).

In silico validation of the CRC early biomarkers panel: specificity for primary tumors and metastases

To validate and increase the statistical power of our discovery dataset results, first, we crossvalidated *in silico* our set of markers, as predictors of cancer and adenoma, using methylation data from two databases: I) TCGA COREAD cohort [18] (**Figure 5A**); II) GSE48684 [3](**Figure 5B**). The 74 biomarker panel was able to separate most carcinomas and adenomas from normal mucosa. ROC analysis was performed for each marker using TCGA COREAD cohort. The specificity of many markers was equal to 1, i.e. 100% (ranging from 0.89 and 1), the sensitivity was \geq 0.9 in over 70% of the islands (ranging from 0.7 and 0.97) (**Supporting Information Table 7** and **Supporting Information Table 8**). The robustness of the identified biomarkers was supported by p-values lower than the threshold for claiming genome-wide significance (P < 10⁻⁸). We also evaluated the specificity, sensitivity, AUC and accuracy for the entire panel, obtaining respectively: SP = 1; SE = 0.9942; AUC = 1; ACC = 0.9971.

To verify if the panel is specific for CRC, we examined the GSE52270 data set [19]. The panel resulted specific for CRC, but not for the other analyzed cancer types (**Figure 5C**).

Interestingly, the UHC of our CpG islands panel in a fourth data set (GSE53051) [20], assigned colon cancer metastases on the same branches of CRC, with the exception of two cases (**Figure 5D**). These results suggest that these alterations are not counter-selected during carcinogenesis and are maintained in metastases.

Methylation analysis in stool DNA samples

Based on the consistency of the methylation alterations identified in the tumor tissues, we wondered whether these methylation patterns could be detected in DNA extracted from stools. The goal was to set up in CRC patient stools the experimental test as a possible non-invasive technique to detect early/asymptomatic CRCs. We selected three CpG islands, associated to *GRIA4*, *SLC8A1* and *SYN3* genes, based on both a large methylation Δ between tumor and non-tumor tissue and the feasibility of the assay experimental design (**Supporting Information Table 4**). To assess the reproducibility of the three selected markers, we performed a methylation analysis by pyrosequencing in a second data set of 78 tumoral and 78 matched peritumoral samples (**Figure 1**). All three selected islands, associated to *GRIA4*, *SLC8A1* and *SYN3* genes, were significantly hypermethylated in tumor *vs*. peritumoral samples (**Supporting Information Figure 2**). Methylation of the same CpG islands, was thus assessed, by digital PCR analyses, in DNA isolated from CRC patients' stool samples, taken at the time of surgical resection. As shown in **Figure 6A**, all except three tested samples (87.5%) showed more than 1% of methylation for at least one of the three markers. In particular, 79.2% of samples showed more than 1% of methylation at *GRIA4* (average 21%); 70.8% at *SLC8A1* (average 10%); 62.5% at *SYN3* (average 13%).

Methylation analysis in ctDNA

Tumor fragments of DNA in the blood stream can be used as a surrogate sample to tissue biopsy. Cell free circulating DNA is a mixture of nucleic acids from normal (mainly from leukocytes) and from tumor tissues (ctDNA) [21] Liquid biopsy test using genetic or epigenetic alterations in plasma DNA has been proposed for early diagnosis [6] and early detection of relapse [22-24]. Methylation of *GRIA4*, *SLC8A1* and *SYN3* was assessed in circulating DNA of CRC patients. Assays were successful in at least one replicate for 43, 45 and 41 cases for *GRIA4*, *SLC8A1* and *SYN3*, respectively. Some patients were receiving adjuvant therapy post-surgical resection of their

tumor with no radiologic evidence of disease (NED) and were expected to display very low or no ctDNA. The aim of these exploratory analyses was to compare methylation levels at the three loci between NED and patients still bearing a lesion. Median methylation at *GRIA4* and *SLC8A1* was significantly different (u-test, *GRIA4*: p-value =0.029; *SLC8A1*: p-value =0.024). *SYN3* did not show any difference, possibly due to low number of cases which displayed methylation. The positivity exclusively seen in patients with lesions demonstrates the specificity of the selected markers.

Among clinical features (**Supporting Information Table 9**), CEA levels, a surrogate of tumor burden, could discriminate two subgroups among the patients still bearing a lesion. According to the literature, we divided the samples into three groups: NED, CEA-low and CEA-high, using a threshold of 5 ng/ml; indeed, CEA elevation over 5 ng/ml was found to be a very accurate marker of recurrence [25]. As shown in **Figure 6B**, dividing the samples in the three groups, did not result in significant differences between NED and CEA-low, relatively to the observed methylation levels, while significantly higher methylation levels (p-value = 0.00223 and p-value = 0.01972, respectively) were evident for *GRIA4* and *SLC8A1* in the CEA-high group. Of note, patients with low CEA whose primary tumor was mutated for *RAS* or *BRAF*, did not display the genetic alteration in ctDNA (**Figure 6C**). Interestingly, the three NED subjects with high levels of CEA, did not show hypermethylation in ctDNA.

Discussion

The genetic and epigenetic landscape of CRC has been extensively studied so far. However, current technological advances in DNA methylation analysis have enabled the identification and validation of new biomarkers in a more unbiased way. Nevertheless, the concept of CIMP phenotype remains debated [26], mostly due to lack of consensus in its evaluation warranting unbiased genome-wide approaches to characterize epigenetic changes involved in CRC onset and development [4]. We observed limited correlation between CIMP phenotype and hypermethylation of the CpG islands included in our panel, perhaps because we selected loci as being the most informative on the early

alterations, or perhaps because CIMP was classically defined on methylation alterations discovered before the advent of genomic approaches to assess global methylome.

Although several studies have been conducted analysing methylome alterations in CRCs, there is still urgent need for biomarker discovery. In our work, we identified a panel of 74 CpG islands aberrantly methylated not only in advanced stages of disease, but already detectable in adenomas, when the tumor is often asymptomatic. The performance ability of the panel was cross-validated *in silico* by analysing it in hundreds of samples, including CRCs, adenomas, normal counterparts and other tumor types. The identified panel appears very robust and informative (sensitivity 99.99%), specific for CRC (specificity 100%) from early to metastatic stages. Multiple studies have investigated the use of single or combined DNA methylation-based biomarkers for diagnostic purposes [8]. The performance ability of *SEPT9* and *VIM*, the only two commercially available methylation biomarkers, to identify CRC/adenomas greatly varies depending on the experimental design. However, combining both the markers into a panel could improve the diagnostic accuracy and achieve higher clinical sensitivity. Not only our results are consistent with this observation but the performance ability of most of our biomarkers outperforms that of commercially available ones.

Importantly, this set of markers could be detected in CRC patients even through non-invasive techniques, as we identified hypermethylated tumoral DNA both in stool and plasma samples of CRC patients. Overall, the panel shows a good diagnostic and prognostic value even in the noninvasive assessment, strengthening its potential value in screening and follow-up of CRC patients. Previously, three selected markers (AGTR1, WNT2, SLIT2) were validated in stool DNA samples from CRC patients, showing a sensitivity of 21%, 40% and 52% respectively [27]. A panel of these genes reached a sensitivity of 78%, based on the criteria that at least one of the genes was methylated. In comparison, our three selected biomarkers performed better in terms of sensitivity, with a percentage of samples showing more than 1% of methylation, ranging from 62.5% to 79.2%. Based on a similar criterion, the panel of our selected markers guaranteed an overall sensitivity of 87.5%. We conclude that, even in these samples, the tested CpG islands resulted excellent tumor markers despite the technical difficulties related to a biological challenging matrix, such as stool. Nevertheless, we acknowledge the exploratory nature of our analyses in a limited stool dataset from patients who had already received a CRC diagnosis. Future studies are warranted to assess the sensitivity and specificity of the loci identified in this work in stool DNA from asymptomatic individuals and early stage disease.

Concerning cell free DNA samples, two markers (*GRIA4* and *SLC8A1*), were able to distinguish NED patients from metastatic and CEA-low from CEA-high. Indeed, methylation alterations displayed a negative predictive value higher than CEA (as demonstrated by the three NED patients with elevated CEA levels but not hypermethylated DNA). The absence of alterations observed in the low-CEA subgroup might be due to specific biologic features of these tumors, impairing the release of circulating markers (e.g.: well differentiated status of neoplastic cells, absence of vascular network, etc.). On the other hand, the limited sensitivity of the techniques employed to assess methylation could have yielded false negative results. Indeed, we acknowledge that the current digital PCR technique may have limited sensitivity for cases with low tumor burden, since the assays was designed for monitoring purposes (not early detection) privileging highly linear quantification, instead of high sensitivity [28]. Further assay improvements are therefore warranted for the early detection setting. Moreover, studies with larger number of patient plasma samples and controls from healthy individuals are required to establish and exploit the potential of our markers in liquid biopsies.

In addition to identifying potentially new powerful biomarkers (only partially already correlated to cancer, see **Supporting Information Table 10**), in CRC early diagnosis and traceability of minimal residual disease, this study has highlighted the biological processes mainly affected by early methylation alterations in colon carcinogenesis. In fact, as shown in **Figure 4**, the crosstalk between tumor cells and surrounding environment resulted particularly involved, in terms of membrane receptors, solute transporters and cell adhesion molecules. Functional annotation analysis has highlighted the enrichment of protocadherins [29-33], integrins [34], members of the solute carrier family [35-40], and, extensively, G-protein coupled receptors involved in the transduction of neuroactive signals [41,42].

Silencing of genes coding for protocadherins (PCDHs) by means of promoter hypermethylation, such as PCDH10 in different carcinomas [29,30] and PCDH8 in breast cancer [31], has been shown in several cancer types. In particular, it has been demonstrated that a cluster of PCDHs located on chromosome 5q31 undergoes a mechanism of long range epigenetic silencing (LRES) by hypermethylation [32]. PCDH LRES was described in Wilms tumor [32], breast [43] prostate [44] and colorectal cancer [45], suggesting a tumor suppressor role of this protocadherin cluster in several types of cancer. As other LRES loci have been identified in breast [43], head and neck [46], lung [46], prostate [33] and colon cancer [47], silencing of tumor suppressor genes by this mechanism to appears a emerges as a common feature in human cancer [33].

The list of genes reported in **Supporting Information Table 7** also highlights the involvement of several carriers, including many members of the solute carrier family (SLC). These genes, unlike PCDHs, are located on different chromosomes, but their common alteration suggests a combinatorial control, a mechanism well known in the regulation of gene expression. Indeed, methylation-mediated silencing of solute carriers was already reported in CRC, lung, prostate (SLC5A8) [35-37], breast and gastric cancers (SLC19A3) [38,39] and gliomas (SLC22A18) [40].

Functional studies will clarify the role of the epigenetic alterations identified in the present study, especially considering that over 70% of hypermethylated islands resulted in downstream downregulation (**Supporting Information Figure 3**). Remarkably, almost all these molecules are located at membrane or extracellular matrix level (see **Figure 3**), therefore also potential optimal therapeutic targets.

Acknowledgements

We wish to thank Francesco and Manuela Zavattari for their skillful contribution to the drawing and graphic design of the graphical abstract.

Grants: This work was supported by grants from Fondazione Banco di Sardegna (2012) and Fondo per la Ricerca Locale (ex 60%), Università di Cagliari to PZ, Regione Autonoma della Sardegna (CRP-79303) to PZ and LZ. Partly supported also by grants AIRC IG n. 17707 (FDN); Fondo per la Ricerca Locale (ex 60%), Università di Torino, 2014 (FDN) and AIRC 2010 Special Program Molecular Clinical Oncology 5 per mille, project no. 9970 (FL).

Author contributions

AF: DNA extraction from tissue samples and bisulfite treatment, acquisition and analysis of qRT-PCR data, pyrosequencing, methylation data management and analyses, CIMP phenotype definition, transcriptome analysis, statistical analysis, bioinformatic analysis, analysis and interpretation of data, drafting of the manuscript.

DG: methylation data management and analyses, supervision on statistical analysis and bioinformatic analysis.

LM: DNA extraction from tissue and stool samples, bisulfite treatment, DNA whole genome methylation assay, pyrosequencing, RNA extraction, transcriptome assay, genetic mutations screening.

LB: DNA extraction from plasma samples, bisulfite treatment, markers selection, methylBEAMing assay and analysis on ctDNA from plasma samples and stool DNA, analysis and interpretation of ctDNA data, drafting of the manuscript.

VPL: DNA extraction from tissue samples and pyrosequencing analysis.

PS: support on transcriptome assay and analysis.

LZ, AR, FC, FF, DS: CRC/peritumoral tissues and stool samples collection, clinical data collection.

CZ: preliminary methylome data analysis.

LV, VG: adenomas/normal mucosa DNA samples and clinical data collection.

MRDM: DNA extraction from stool samples, interpretation of clinical data.

AMS: stool samples and clinical data collection.

FL, FC, PL: plasma samples and clinical data collection, interpretation of ctDNA data.

IS: immunohistochemistry

EL: Final revision of the manuscript and participation in the implementation of the requested changes.

SG, FDN, AC, PZ: study concept and design, analysis and interpretation of data, drafting of the manuscript.

FDN: supervision on methylBEAMing assay and analysis on ctDNA from plasma samples and stool DNA.

PZ: supervision on experiments conducted on tissues and faeces samples and related analyzes.

All Authors discussed the results and commented the manuscript.

References

- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. *CA Cancer J Clin* 2016;66:7–30.
- Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, Carethers JM, Dowell JM, Wasserman L, Compton C, Mayer RJ, Bertagnolli MM, Boland CR. Characterization of sporadic colon cancer by patterns of genomic instability. *Cancer Res* 2003;63:1608–14.
- Luo Y, Wong C-J, Kaz AM, Dzieciatkowski S, Carter KT, Morris SM, Wang J, Willis JE, Makar KW, Ulrich CM, Lutterbaugh JD, Shrubsole MJ, et al. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. *Gastroenterology* 2014;147:418–29.e8.
- Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, Houlihan PS, Krouse RS, Prasad AR, Einspahr JG, Buckmeier J, Alberts DS, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. *J Natl Cancer Inst* 2005;97:1330–8.
- 5. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. *Cancer Res* 1998;58:5489–94.
- Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castaños-Vélez E, Blumenstein BA, Rösch T, Osborn N, Snover D, Day RW, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. *Gut* 2014;63:317–25.
- Phipps AI, Limburg PJ, Baron JA, Burnett-Hartman AN, Weisenberger DJ, Laird PW, Sinicrope FA, Rosty C, Buchanan DD, Potter JD, Newcomb PA. Association between molecular subtypes of colorectal cancer and patient survival. *Gastroenterology* 2015;148:77–87.e2.

- 8. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: A systematic review. *Biochim Biophys Acta* 2016;1866:106–20.
- Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW, Vogelstein B. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. *Gastroenterology* 2008;135:489–98.
- Barault L, Amatu A, Bleeker FE, Moutinho C, Falcomatà C, Fiano V, Cassingena A, Siravegna G, Milione M, Cassoni P, de Braud F, Rudà R, et al. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. *Ann Oncol* 2015;26:1994–9.
- De Benedetti L, Sciallero S, Gismondi V, James R, Bafico A, Biticchi R, Masetti E, Bonelli L, Heouaine A, Picasso M. Association of APC gene mutations and histological characteristics of colorectal adenomas. *Cancer Res* 1994;54:3553–6.
- 12. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H. Screening for circulating nucleic acids and caspase activity in the peripheral blood as potential diagnostic tools in lung cancer. *Mol Oncol* 2011;5:281–91.
- 13. Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. *Nat Methods* 2014;11:1138–40.
- Gentilini D, Scala S, Gaudenzi G, Garagnani P, Capri M, Cescon M, Grazi GL, Bacalini MG, Pisoni S, Dicitore A, Circelli L, Santagata S, et al. Epigenome-wide association study in hepatocellular carcinoma: Identification of stochastic epigenetic mutations through an innovative statistical approach. *Oncotarget* 2017;8:41890–902.
- 15. López-Ratón M, Rodríguez-Álvarez MX, Suárez CC, Sampedro FG. OptimalCutpoints : An R Package for Selecting Optimal Cutpoints in Diagnostic Tests. *J Stat Softw* 2014;61:1–36.
- 16. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. *Nucleic Acids Res* 2009;37:W305-11.
- 17. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 2016;32:2847–9.
- Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. *Nature* 2012;487:330–7.
- Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, Moran S, Boque-Sastre R, Guil S, Martinez-Cardus A, Lin CY, Royo R, et al. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. *Genome Biol* 2016;17:11.
- 20. Timp W, Bravo HC, McDonald OG, Goggins M, Umbricht C, Zeiger M, Feinberg AP, Irizarry R a. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. *Genome Med* 2014;6:61.
- 21. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. *Nat Rev Clin Oncol* 2013;10:472–84.
- 22. Tie J, Wang Y, Tomasetti C, Li L, Springer S, Kinde I, Silliman N, Tacey M, Wong H-L, Christie M, Kosmider S, Skinner I, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. *Sci Transl Med* 2016;8:346ra92.

- Siravegna G, Mussolin B, Buscarino M, Corti G, Cassingena A, Crisafulli G, Ponzetti A, Cremolini C, Amatu A, Lauricella C, Lamba S, Hobor S, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. *Nat Med* 2015;21:795–801.
- 24. Garrigou S, Perkins G, Garlan F, Normand C, Didelot A, Le Corre D, Peyvandi S, Mulot C, Niarra R, Aucouturier P, Chatellier G, Nizard P, et al. A Study of Hypermethylated Circulating Tumor DNA as a Universal Colorectal Cancer Biomarker. *Clin Chem* 2016;62:1129–39.
- 25. Flamini E, Mercatali L, Nanni O, Calistri D, Nunziatini R, Zoli W, Rosetti P, Gardini N, Lattuneddu A, Verdecchia GM, Amadori D. Free DNA and carcinoembryonic antigen serum levels: an important combination for diagnosis of colorectal cancer. *Clin Cancer Res* 2006;12:6985–8.
- 26. Gallois C, Laurent-Puig P, Taieb J. Methylator phenotype in colorectal cancer: A prognostic factor or not? *Crit Rev Oncol Hematol* 2016;99:74–80.
- 27. Carmona FJ, Azuara D, Berenguer-Llergo A, Fernández AF, Biondo S, de Oca J, Rodriguez-Moranta F, Salazar R, Villanueva A, Fraga MF, Guardiola J, Capellá G, et al. DNA methylation biomarkers for noninvasive diagnosis of colorectal cancer. *Cancer Prev Res (Phila)* 2013;6:656–65.
- 28. Barault L, Amatu A, Siravegna G, Ponzetti A, Moran S, Cassingena A, Mussolin B, Falcomatà C, Binder AM, Cristiano C, Oddo D, Guarrera S, et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. *Gut* 2017 Oct 5.
- 29. Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan a TC, Tao Q. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. *Oncogene* 2006;25:1070–80.
- 30. Yu J, Cheng YY, Tao Q, Cheung KF, Lam CNY, Geng H, Tian L-W, Wong YP, Tong JHM, Ying J-M, Jin H, To KF, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. *Gastroenterology* 2009;136:640–51.e1.
- 31. Yu JS, Koujak S, Nagase S, Li C-M, Su T, Wang X, Keniry M, Memeo L, Rojtman A, Mansukhani M, Hibshoosh H, Tycko B, et al. PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. *Oncogene* 2008;27:4657–65.
- 32. Dallosso AR, Hancock AL, Szemes M, Moorwood K, Chilukamarri L, Tsai H-H, Sarkar A, Barasch J, Vuononvirta R, Jones C, Pritchard-Jones K, Royer-Pokora B, et al. Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms' tumor. *PLoS Genet* 2009;5:e1000745.
- 33. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS, Young AN, Varma V, Speed TP, Cowley M, Lacaze P, Kaplan W, et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. *Nat Cell Biol* 2010;12:235–46.
- Kok-Sin T, Mokhtar NM, Ali Hassan NZ, Sagap I, Mohamed Rose I, Harun R, Jamal R. Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data. *Oncol Rep* 2015;34:22–32.
- 35. Valo S, Kaur S, Ristimäki A, Renkonen-Sinisalo L, Järvinen H, Mecklin J-P, Nyström M, Peltomäki P. DNA methylation changes in Lynch syndrome associated colorectal adenomas and carcinomas. *Cancer Res* 2015;75.

- Ikeda K, Shiraishi K, Koga T, Motooka Y, Fujino K, Shibata H, Mori T, Suzuki M. Prognostic Significance of Aberrant Methylation of Solute Carrier Gene Family 5A8 in Lung Adenocarcinoma. *Ann Thorac Surg* 2015;99:1755–9.
- Park JY, Zheng W, Kim D, Cheng JQ, Kumar N, Ahmad N, Pow-Sang J. Candidate tumor suppressor gene SLC5A8 is frequently down-regulated by promoter hypermethylation in prostate tumor. *Cancer Detect Prev* 2007;31:359–65.
- Ng EKO, Leung CPH, Shin VY, Wong CLP, Ma ESK, Jin HC, Chu K-M, Kwong A. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. *PLoS One* 2011;6:e22233.
- Liu X, Lam EKY, Wang X, Zhang J, Cheng YY, Lam YW, Ng EKO, Yu J, Chan FKL, Jin H, Sung JJY. Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. *Tumour Biol* 2009;30:242–8.
- 40. Chu S-H, Ma Y-B, Feng D-F, Zhang H, Zhu Z-A, Li Z-Q, Jiang P-C. Correlation of low SLC22A18 expression with poor prognosis in patients with glioma. *J Clin Neurosci* 2012;19:95–8.
- Naumov VA, Generozov E V., Zaharjevskaya NB, Matushkina DS, Larin AK, Chernyshov S V., Alekseev M V., Shelygin YA, Govorun VM. Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. *Epigenetics* 2013;8:921–34.
- 42. Feigin ME. Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. *FEBS J* 2013;280:4729–38.
- 43. Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ, Futscher BW. Agglomerative epigenetic aberrations are a common event in human breast cancer. *Cancer Res* 2008;68:8616–25.
- Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, Brooks JD, Myers RM, Sherlock G. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. *Genome Res* 2011;21:1017–27.
- 45. Dallosso a R, Øster B, Greenhough A, Thorsen K, Curry TJ, Owen C, Hancock a L, Szemes M, Paraskeva C, Frank M, Andersen CL, Malik K. Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene 2012;31:4409–19.
- 46. Smith LT, Lin M, Brena RM, Lang JC, Schuller DE, Otterson G a, Morrison CD, Smiraglia DJ, Plass C. Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. *Proc Natl Acad Sci U S A* 2006;103:982–7.
- 47. Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. *Nat Genet* 2006;38:540–9.
- 48. De Benedetti L, Varesco L, Pellegata NS, Losi L, Gismondi V, Casarino L, Sciallero S, Bonelli L, Biticchi R, Bafico A. Genetic events in sporadic colorectal adenomas: K-ras and p53 heterozygous mutations are not sufficient for malignant progression. *Anticancer Res* 1993;13:667–70.
- Berg M, Hagland HR, Søreide K. Comparison of CpG island methylator phenotype (CIMP) frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels. *PLoS One* 2014;9:e86657.

50. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. *Nucleic Acids Res* 2016;44:e71.

Figure Legends

Figure 1: Project workflow and description of sample sets used for the different working stages

Discovery sets: CRC and adenoma DNA samples collected for the study of methylome (450K), transcriptome (HT-12) and gene expression by qRT-PCR. In silico validation sets: data used to validate the identified biomarkers panel and for the evaluation of RNA-Seq (TCGA data set). Screening / wet validation sets: samples used for locus-specific methylation alterations in a further collection of tissues (tumor and peritumoral), stool samples and in the plasma of patients suffering from CRC.

Figure 2: Differential methylation and functional annotation analyses results obtained from the discovery data set methylome study

A) RnBeads differential methylation analysis performed on the data obtained using Infinium HumanMethylation 450 BeadChip, for single CpGs and for sets of pre-defined genomic regions such as genome-wide 5kb tiling regions, genes, promoters and CpG islands, in CRC *vs.* peritumoral tissue samples. Each dot represents the average beta value (methylation value) for each CpG locus in the region, resulting from the average of the samples belonging to that group; in red are those significantly differentially methylated. The pathways significantly altered are shown (in descending order of significance), according to the functional annotation analysis performed by ToppGene package. This analysis was conducted on the genes corresponding to the CpG islands significantly altered, according to the 450K manifest. The outputs generated by ToppGene show: the number of genes belonging to the pathway, the number of altered genes belonging to the pathway, and significance levels, raw and corrected for multiple testing according to Bonferroni and to Benjamini & Hochberg.

B) RnBeads differential methylation analysis performed in adenomas vs. normal mucosa samples.

C) The most significantly altered pathways are also shown, according to the functional annotation analysis performed by ToppGene. Circos plot resulting by the comparison of pathways significantly altered in CRC (left) and adenomas (right). For each pathway, identified by a number (whose correspondence is given in the supplementary material), are given the number of genes involved and the relative frequency. The red arrow indicates the pathways which show significant enrichment

of altered loci (decreasing p value) in CRC; the blue arrow in adenomas. The name of the five pathways most significantly altered in CRC are given and highlighted in color. Colored beams link the shared genes. The pathways significantly altered, obtained by functionally annotating the entire list of genes altered in CRC and adenomas, are also shown.

Figure 3: Discovery set unsupervised hierarchical clustering analysis based on the average methylation beta value for each of the 74 CpG islands

Heat map obtained by UHC of CRCs, adenomas, peritumoral tissue and normal mucosa samples. To the right of the heat map the genes associated to the 74 CpG islands aberrantly methylated and in common between CRC and adenomas are listed. All CRCs grouped on a branch separated from peritumoral and normal mucosa samples, with the sole exception of samples 352T and 279T.While seven adenomas branched along with peritumoral and normal mucosa samples, the remaining ones closely resembled the methylation pattern of carcinomas. Peritumoral and normal mucosa samples show an extremely similar pattern. No correlation trend was observed between methylation patterns and staging, localization or mutational pattern in both CRCs and adenomas. Other information reported: MS, microsatellites stability or instability; APC and KRAS mutational status; CIMP like, CIMP status as defined in the Supplementary methods; histology, Dukes tumoral staging, adenomas grade; localization.

Figure 4: Network visualization of multi-cluster gene functional enrichment analysis performed by Toppcluster tool on the genes associated to the 74 biomarkes

In green squares: pathway annotation. In blue squares: GO: molecular function annotation. In red hexagons: gene set.

Figure 5: *In silico* validation, by unsupervised hierarchical clustering analysis, of the early biomarkers panel in different data sets

A) Heat map of TCGA COREAD cohort: 248 colon and 94 rectum adenocarcinomas, 37 colon and 7 rectum normal tissues.

B) Heat map of GSE48684 data set: 42 adenomas, 64 carcinomas and 41 normal mucosa from colon. It is evident that the biomarkers panel was able to separate the majority of carcinomas and adenomas from normal mucosa, while no correlation between the methylation degree and tumor staging or location could be observed.

C) Heat map of GSE52270 data set: 103 CRC samples, 18 colon peritumoral tissues, 66 breast

cancers and 19 no-tumoral breast tissues, 48 glioblastomas and 10 white matter samples. The biomarkers panel is specific for colorectal cancer, but not for the other analyzed cancer types, with rare exceptions only for few markers.

D) Heat map of GSE53051 data set: 9 CRC samples, 18 colon peritumoral tissues, 10 adenomas, 16 colon cancer metastases, 14 breast cancers and 10 no-tumoral breast tissues, 9 lung cancer and 11 no-tumoral lung tissues, 29 pancreas cancer and 12 no-tumoral pancreas tissues, 70 thyroid cancer and 13 no-tumoral thyroid. Colon cancer metastases localized in the lung and in the liver are on the same branches of CRC, with the exception of two cases.

Figure 6: Validation of *GRIA4*, *SLC8A1* and *SYN3* specific methylation alterations in tissues, stool DNA samples and cfDNA

A) MethylBEAMing analysis results obtained for *GRIA4*, *SLC8A1* and *SYN3* in DNA isolated from stool samples of CRC patients, taken at the time of surgical resection. Colored bars show the methylation percentage at the three islands, cumulated for each sample.

B) MethylBEAMing methylation values in cfDNA, isolated from plasma, for *GRIA4*, *SLC8A1* and *SYN3*. Samples were divided into three groups: NED, CEA-low and CEA-high, using a threshold of 5 ng/ml. **c**) Graph showing the percentages of genetic and methylation alterations detected in plasma (left Y axis) and CEA levels (right Y axis) for all samples, divided into NED, CEA-low and CEA-high.

All shown comparison were performed using Mann-withney U-test. Asterisks indicate the significance level: * = p value <0.05; ** = p value <0.01; *** = p value <0.001.

Figure 1

Samples collection Centers

CRCs tissue samples were collected at the Department of Surgical Sciences, University of Cagliari. Genomic DNA were extracted using the DNeasy Blood & Tissue Kit (Qiagen). RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen).

Adenoma DNA samples were collected at the National Institute for Cancer Research of Genoa (Italy). Stool samples were collected at Department of Surgical Sciences, University of Cagliari and Department of Clinical and experimental medicine, University of Sassari and extracted using the QIAamp DNA Stool Mini Kit. Plasma samples were collected at the Medical Oncology Department of the Candiolo Cancer Institute-FPO, IRCCS (Torino, Italy) and extracted using the Maxwell® RSC ccfDNA Plasma Kit (Promega).

Figure 2

Α

Methylation value

Figure 4

Figure 5

Figure 6

Α

Supporting Information Figure 1: Validation of changes in gene expression observed by WGGE analysis

A) Validation of changes in gene expression observed by WGGE analysis, evaluated by qRT-PCR on three selected genes: ADH1A (Alcohol Dehydrogenase 1A), CA1 (Carbonic Anhydrase I), and GCG (Glucagon). For each gene is shown the fold change of 8 peritumoral (P) and 18 tumor (T) samples, of 8 matched pairs (P / T), and the average of P versus T.

B) Colorectal adenoma (left) and carcinoma (right) tissues, immunostained for CA1.

*** p-value < 0.001

Supporting Information Figure 2: Pyrosequencing validation of *GRIA4*, *SLC8A1* and *SYN3* specific methylation alterations in a second data set of tumoral and peritumoral tissues

Pyrosequencing methylation analysis of three selected islands, related to the *GRIA4*, *SLC8A1* and *SYN3* genes, performed in a second data set of 78 tumoral and 78 peritumoral samples. On the Y axis is reported the methylation average value of the CpG loci analyzed for each island.

Supporting Information Figure 3: Differential gene expression and functional annotation analyses

A) Heat map showing the results of an unsupervised hierarchical clustering analysis performed on the average intensity values obtained from the WGGE analysis on the discovery CRC and peritumoral tissue samples sets. WGGE analysis was conducted using the HumanHT-12 v4 Expression BeadChip. As expected, all CRCs grouped on a branch separated from peritumoral samples. The results of the differential expression analysis, showed the presence of 963 significantly dysregulated transcripts (329 downregulated, 171 upregulated, using a cutoff value of |FC| > 2), some of which were also validated by qRT-PCR and at the protein level by immunostaining (**Supporting Information Figure 1**).

B) Pathways resulting dysregulated by functional annotation of genes differentially expressed in the WGGE analysis, performed by ToppGene package. The analysis showed that the most altered pathways were involved in biological oxidation processes. The highlighted pathways did not overlap with those of the methylome (compare **Supporting Information Table 5**), apart from those relating to the extracellular matrix. A number of down-regulated pathways (such as those involved in amines degradation) are likely downstream of those modified as a consequence of hypermethylation.

C) Functional validation of CpG islands hypermethylation as target genes downregulation, evaluated by qRT-PCR on three selected genes: GRIA4 (glutamate receptor, ionotropic, AMPA 4), SCTR (secretin receptor), and VIPR2 (vasoactive intestinal peptide receptor 2). For each gene is shown the fold change of 8 peritumoral (P) and 18 tumor (T) samples, of 8 matched pairs (P / T), and the average of P versus T. All the three tested genes were significantly down-regulated in cancer.

D) TCGA CRC RNAseq data corresponding to the gene neighbors the 74 selected altered CpG islands. The X axis shows the expression fold change value; along the Y axis the average value of differential methylation for each CpG island. In blue, CpG islands included in promoter regions (according to the definition given in Methods), in purple those not falling into promoters. More faded the symbols corresponding to the CpG islands showing a not significant fold change (between -2 and +2). Almost all the selected altered CpG islands were located in the promoter region of genes (defined as the sequence between 2kb upstream and 1kb downstream the TSS), and the majority of them (> 70%) were associated to down-regulation of the corresponding genes in the tumor tissues. The only islands associated to the three genes strongly upregulated, are actually not located into their promoter regions but in the gene body or downstream.

Supporting Information Table 1: CRC Discovery Set

Samples	KRAS	MSI	Dukes	Histology	CIMP_like	Anatomic site	Methylome analysis	Transcriptome analysis	qRT-PCR
254_P	Wt	Wt		Peritumoral	CIMP_neg	Left Colon	Yes	Yes	Yes
264_P	Wt	Wt		Peritumoral	CIMP_neg	Sigmoid colon	Yes	No	Yes
279_P	Wt	Wt		Peritumoral	CIMP_neg	Rectum	Yes	Yes	Yes
313_P	Wt	Wt		Peritumoral	NA	NA	No	Yes	Yes
325_P	Wt	Wt		Peritumoral	NA	NA	No	Yes	Yes
352_P	Wt	Wt		Peritumoral	NA	NA	No	No	Yes
359_P	Wt	Wt		Peritumoral	CIMP_neg	Right Colon	Yes	No	Yes
402_P	Wt	wt		Peritumoral	NA	NA	No	no	Yes
254_T	Wt	Wt	b	CRC	CIMP_neg	Left Colon	Yes	Yes	Yes
264_T	Wt	Wt	b	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	Yes
279_T	Mutated	Wt	d	CRC	CIMP_neg	Rectum	Yes	Yes	Yes
308_T	Wt	Wt	b	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	Yes
309_T	Wt	Wt	а	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	Yes
310_T	Wt	Wt	а	CRC	CIMP_pos(>20%)	Left Colon	Yes	Yes	Yes
311_T	Wt	Mutated	а	CRC	CIMP_neg	Rectum	Yes	Yes	Yes
313_T	Wt	Wt	b	CRC	CIMP_pos(>20%)	Sigmoid colon	Yes	Yes Yes	
325_T	Wt	Wt	d	CRC	CIMP_neg	Rectum	Yes	Yes	Yes
337_T	Wt	Wt	d	CRC	CIMP_pos(>20%)	Left Colon	Yes	Yes	Yes
352_T	Wt	Wt	d	CRC	CIMP_neg	Sigmoid colon	d colon Yes Yes		Yes
359_T	Mutated	Wt	b	CRC	CIMP_pos(>30%)	Right Colon	Right Colon Yes Yes		Yes
362_T	Wt	Wt	а	CRC	CIMP_neg	Rectum	Yes	Yes	Yes
368_T	Mutated	Wt	b	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	Yes
376_T	Wt	Mutated	b	CRC	CIMP_pos(>30%)	Right Colon	Yes	No	Yes
400_T	Mutated	Wt	d	CRC	CIMP_neg	Rectum	Yes	Yes	Yes
402_T	NA	NA	NA	CRC	NA	NA	No	No	Yes
407_T	Mutated	Wt	d	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	No
455_T	Wt	Wt	d	CRC	CIMP_neg	Sigmoid colon	Yes	Yes	Yes

Supporting Information Table 2: Adenomas Discovery Set

Sample	KRAS	APC	Grade	Histology	CIMP_like	Anatomic site
CTE1279	Wt	Wt		Normal	CIMP_neg	Right Colon
CTE1434	Wt	Wt		Normal	CIMP_neg	Left Colon
CTE1620	Wt	Wt		Normal	CIMP_neg	Left Colon
CTE1266	Wt	Mutated	Adenoma_mild_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1280	Mutated	Wt	Adenoma_mild_dysplasia	Adenoma	CIMP_pos(>30%)	Right Colon
CTE1435	Mutated	Wt	Adenoma_severe_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1470	Wt	Wt	Adenoma_low_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1473	Mutated	Wt	Adenoma_mild_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1474	Mutated	Wt	Adenoma_mild_dysplasia	Adenoma	CIMP_neg	NA
CTE1540	Wt	Wt	Early cancer in adenoma	Adenoma	CIMP_neg	Left Colon
CTE1619	Wt	Wt	Adenoma_mild_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1621	Wt	Mutated	Adenoma_severe_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE1727	Wt	Mutated	Early cancer in adenoma	Adenoma	CIMP_neg	Left Colon
CTE1730	Wt	Wt	Early cancer in adenoma	Adenoma	CIMP_neg	Left Colon
CTE1748	Mutated	Wt	Early cancer in adenoma	Adenoma	CIMP_neg	Left Colon
CTE1877	Wt	Wt	Early cancer in adenoma	Adenoma	CIMP_neg	Left Colon
CTE2032	Wt	Wt	Adenoma_mild_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE2034	Wt	Mutated	Adenoma_low_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE2035	Wt	Wt	Adenoma_low_dysplasia	Adenoma	CIMP_neg	Right Colon
CTE2036	Wt	Wt	Hyperplastic polyp	Adenoma	CIMP_neg	Left Colon
CTE2040	Wt	Wt	Adenoma_low_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE2046	Wt	Wt	Adenoma_severe_dysplasia	Adenoma	CIMP_neg	Right Colon
CTE2052	Wt	Wt	Adenoma_low_dysplasia	Adenoma	CIMP_neg	Left Colon
CTE2055	Wt	Wt	Hyperplastic polyp	Adenoma	CIMP_neg	Left Colon

Supporting Information Table 3: List of primers and probes used in the present study

Assay	Gene	Primer/Probe	Sequence (5'-3')
Genetic mutations screening	KRAS (exon 2)	Forward	ACTGGTGGAGTATTTGATAGTGTAT
		Reverse	AGAATGGTCCTGCACCAGTAA
	KRAS (exon 3)	Forward	TCCAGACTGTGTTTCTCCCT
		Reverse	AACCCACCTATAATGGTGAATATCT
Pyrosequencing analysis	SYN3	Forward	[btn]TTGGGTAGGTTTTTGGGATAGATAG
		Reverse	ATAAAAACAATCTTAAAATCCACAAT
		Sequence	ACAATCTTAAAATCCACAATC
	SLC8A1	Forward	TTTGGGGAAAGATTTTAGGGATTA
		Reverse	[btn]AAAATCCAAACCTCCCCACCCACT
		Sequence	GGGAAAGATTTTAGGGATTAT
	GRIA4	Forward	GGGTTGGTGTAGGTTTGTT
		Reverse	[btn]CTCCCCCTTACTTTCTCACATACACACAA
		Sequence	GTGTAGGTTTGTTGGG
MethylBEAMing analysis	SYN3	Forward	TCCCGCGAAATTAATACGACTTGGGTAGGTTTTTGGGATAGATA
		Reverse	GCTGGAGCTCTGCAGCTAATAAAAACAATCTTAAAATCCACAAT
		met-probe	/5Alex647N/GACAAACGACCCCCGCACG
		unm-probe	/5Alex488N/CAACAAACAACCCCCACACA
	SLC8A1	Forward	TCCCGCGAAATTAATACGACTTTGGGGGAAAGATTTTAGGGATTA
		Reverse	GCTGGAGCTCTGCAGCTAAAAATCCAAACCTCCCCACCCA
		met-probe	/5Alex647N/GCGAACATCCCTCCTTCCG
		unm-probe	/5Alex488N/ACAAACATCCCTCCTTCCA
	GRIA4	Forward	TCCCGCGAAATTAATACGACGGGTTGGTGTAGGTTTGTT
		Reverse	GCTGGAGCTCTGCAGCTACTCCCCCCTTACTTTCTCACATACACACAA
		met-probe	/5Alex647N/AACGCCGCGACCGCCACAC
		unm-probe	/5Alex488N/CACCACAACCACCACACA
qRT-PCR analysis	SCTR	Forward	GGATGGTGGAGGTGGAATG
		Reverse	AAGGTTTCTGACCAGCCATC
	VIPR2	Forward	GTCTCTTGCAACAGGAAGCA
		Reverse	TCTCAGGATGAAGGACAGGAA
	GRIA4	Forward	TCATGTGGACAACATTGAGACA
		Reverse	ATCATAGAGTCCAAAAATGGCAAA
	ADH1A	Forward	TGGAGGTGTGGATTTTTCATT
		Reverse	CCCTACGATGACACTTGTGC
	CAI	Forward	CAGTACAAATGAGCATGGTTCAG
		Reverse	GCAAGGCTGGAGTACTTTGC
	GCG	Forward	CCAAGATTTTGTGCAGTGGTT
		Reverse	GGTAAAGGTCCCTTCAGCAT
	TFRC (endogenus)	Forward	GGCACAGCTCTCCTATTGAAAC
		Reverse	CAAAGTCTCCAGCACTCCAACT

Supporting Information Table 4: Markers selection for validation of locus specific methylation alterations

	Chromosome	Start	End	Threshold	Specificity	Sensitivity	npv	ppv
ADAMTS2-A	chr5	178771329	178771394	0.313	0.956	0.923	0.573	0.995
ADAMTS2-B	chr5	178771776	178771782	0.229	1.000	0.908	0.542	1.000
ADAMTS2-C	chr5	178772372	178772391	0.147	1.000	0.851	0.421	1.000
CREB5-D	chr7	28449847	28450002	0.305	1.000	0.918	0.570	1.000
CRHR2-E	chr7	30722114	30722178	0.155	1.000	0.884	0.484	1.000
CRHR2-F	chr7	30722320	30722362	0.335	1.000	0.884	0.484	1.000
GRIN2D-G	chr19	48947560	48947632	0.333	0.933	0.969	0.764	0.993
HTR1E-H	chr6	87647370	87647528	0.393	1.000	0.865	0.446	1.000
KCNA1-I	chr12	5018715	5018806	0.269	1.000	0.904	0.529	1.000
KCNA1-J	chr12	5018984	5019092	0.233	1.000	0.906	0.536	1.000
OPRK1-K	chr8	54164081	54164162	0.355	1.000	0.894	0.506	1.000
OPRK1-L	chr8	54164296	54164392	0.358	0.933	0.930	0.592	0.992
PRKAR1B-M	chr7	751830	751963	0.479	1.000	0.964	0.750	1.000
SLC8A1-N	chr2	40678618	40678692	0.475	1.000	0.896	0.511	1.000
SYN3-O	chr22	33453893	33453995	0.372	1.000	0.923	0.584	1.000
SYN3-P	chr22	33454209	33454325	0.342	0.978	0.925	0.587	0.997
SYN3-Q	chr22	33454444	33454505	0.185	0.956	0.834	0.384	0.994
SCTR-R	chr2	120281719	120281813	0.202	0.978	0.923	0.579	0.997
GRIA4-S	chr11	105481283	105481406	0.347	1.000	0.957	0.714	1.000
VIPR2-T	chr7	158936508	158936632	0.320	1.000	0.959	0.726	1.000
VIPR2-U	chr7	158936632	158936739	0.148	0.978	0.978	0.830	0.998
VIPR2-V	chr7	158937494	158937610	0.343	1.000	0.947	0.672	1.000
VIPR2-W	chr7	158937969	158938060	0.440	1.000	0.961	0.738	1.000
Supporting Information Table 5:

A) CRC pathways most affected by aberrant methylations

Name	Source	p-value	q-value Bonferroni	q-value FDR B&H	q-value FDR B&Y	Hit Count in Ouery List	Hit Count in Genome
Wnt signaling pathway	PantherDB	1,67E-10	2,13E-07	1,46E-07	1,13E-06	35	305
Neuronal System	BioSystems: REACTOME	2,28E-10	2,92E-07	1,46E-07	1,13E-06	34	293
Cadherin signaling pathway	PantherDB	5,74E-10	7,33E-07	2,44E-07	1,89E-06	24	159
Transmission across Chemical Synapses	BioSystems: REACTOME	2,97E-09	3,79E-06	9,48E-07	7,33E-06	26	200
Neuroactive ligand-receptor interaction	BioSystems: KEGG	4,46E-08	5,69E-05	1,14E-05	8,80E-05	29	275
Neurotransmitter Release Cycle	BioSystems: REACTOME	2,53E-07	3,23E-04	5,38E-05	4,16E-04	10	37
GABAergic synapse	BioSystems: KEGG	1,63E-06	2,09E-03	2,98E-04	2,30E-03	14	90
Ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans	MSigDB C2 BIOCARTA (v5.1)	1,87E-06	2,39E-03	2,99E-04	2,31E-03	26	275
Calcium signaling pathway	BioSystems: KEGG	2,82E-06	3,61E-03	4,01E-04	3,10E-03	20	181
Cholinergic synapse	BioSystems: KEGG	5,37E-06	6,86E-03	6,86E-04	5,30E-03	15	113
Metabotropic glutamate receptor group III pathway	PantherDB	8,01E-06	1,02E-02	9,30E-04	7,19E-03	11	64
Ionotropic glutamate receptor pathway	PantherDB	1,82E-05	2,33E-02	1,94E-03	1,50E-02	9	46
Naعجalependent neurotransmitter transporters	BioSystems: REACTOME	2,59E-05	3,31E-02	2,24E-03	1,73E-02	6	19
GABA synthesis, release, reuptake and degradation	BioSystems: REACTOME	2,59E-05	3,31E-02	2,24E-03	1,73E-02	6	19
Ensemble of genes encoding extracellular matrix and extracellular matrix- associated proteins	MSigDB C2 BIOCARTA (v5.1)	2,75E-05	3,51E-02	2,24E-03	1,73E-02	59	1028
Extracellular matrix organization	BioSystems: REACTOME	2,80E-05	3,58E-02	2,24E-03	1,73E-02	23	264
Glutamatergic synapse	BioSystems: KEGG	3,31E-05	4,23E-02	2,40E-03	1,85E-02	14	116
Cell adhesion molecules (CAMs)	BioSystems: KEGG	3,38E-05	4,32E-02	2,40E-03	1,85E-02	16	147
Cardiac Progenitor Differentiation	BioSystems: WikiPathways	5,95E-05	7,60E-02	4,00E-03	3,09E-02	9	53
Heart Development	BioSystems: WikiPathways	1,51E-04	1,93E-01	9,19E-03	7,11E-02	8	47
Insulin secretion	BioSystems: KEGG	1,51E-04	1,93E-01	9,19E-03	7,11E-02	11	87
GABA-B receptor II signaling	PantherDB	1,65E-04	2,10E-01	9,56E-03	7,39E-02	7	36

NCAM1 interactions	BioSystems: REACTOME	1,97E-04	2,52E-01	1,10E-02	8,47E-02	7	37
Morphine addiction	BioSystems: KEGG	2,75E-04	3,51E-01	1,46E-02	1,13E-01	11	93
Nicotine addiction	BioSystems: KEGG	3,28E-04	4,19E-01	1,67E-02	1,29E-01	7	40
Acetylcholine Neurotransmitter Release Cycle	BioSystems: REACTOME	3,44E-04	4,39E-01	1,69E-02	1,31E-01	4	11
Circadian entrainment	BioSystems: KEGG	3,98E-04	5,08E-01	1,88E-02	1,46E-01	11	97
Dopaminergic synapse	BioSystems: KEGG	4,56E-04	5,83E-01	2,08E-02	1,61E-01	13	131
Monoamine Transport	BioSystems: WikiPathways	5,98E-04	7,64E-01	2,56E-02	1,98E-01	6	32
Genes encoding collagen proteins	MSigDB C2 BIOCARTA (v5.1)	6,00E-04	7,67E-01	2,56E-02	1,98E-01	7	44
Genes encoding structural ECM glycoproteins	MSigDB C2 BIOCARTA (v5.1)	9,41E-04	1,00E+00	3,88E-02	3,00E-01	16	196
GABA synthesis	BioSystems: REACTOME	1,17E-03	1,00E+00	4,48E-02	3,46E-01	2	2
Transmembrane transport of small molecules	BioSystems: REACTOME	1,18E-03	1,00E+00	4,48E-02	3,46E-01	32	537
taurine and hypotaurine metabolic	Pathway Ontology	1,19E-03	1,00E+00	4,48E-02	3,46E-01	3	7
Maturity onset diabetes of the young	BioSystems: KEGG	1,27E-03	1,00E+00	4,53E-02	3,50E-01	5	25
GPCRs, Class C Metabotropic glutamate, pheromone	BioSystems: WikiPathways	1,28E-03	1,00E+00	4,53E-02	3,50E-01	4	15
Axon guidance	BioSystems: REACTOME	1,36E-03	1,00E+00	4,70E-02	3,63E-01	19	262
Collagen biosynthesis and modifying enzymes	BioSystems: REACTOME	1,43E-03	1,00E+00	4,81E-02	3,72E-01	8	65

Name	Source	p-value	q-value Bonferroni	q-value FDR B&H	q-value FDR B&Y	Hit Count in Query List	Hit Count in Genome
Cadherin signaling pathway	PantherDB	3,96E-26	7,88E-23	7,88E-23	6,45E-22	60	159
Wnt signaling pathway	PantherDB	1,44E-20	2,86E-17	1,43E-17	1,17E-16	77	305
Neuroactive ligand-receptor interaction	BioSystems: KEGG	3,73E-17	7,43E-14	2,48E-14	2,03E-13	67	275
Neuronal System	BioSystems: REACTOME	1,94E-12	3,87E-09	9,68E-10	7,91E-09	61	293
Neural Crest Differentiation	BioSystems: WikiPathways	6,20E-10	1,23E-06	2,47E-07	2,02E-06	29	101
Extracellular matrix organization	BioSystems: REACTOME	2,14E-09	4,26E-06	7,09E-07	5,80E-06	51	264
Transmission across Chemical Synapses	BioSystems: REACTOME	4,48E-09	8,91E-06	1,27E-06	1,04E-05	42	200
Calcium signaling pathway	BioSystems: KEGG	2,47E-08	4,91E-05	6,14E-06	5,02E-05	38	181
GPCR ligand binding	BioSystems: REACTOME	5,41E-07	1,08E-03	1,20E-04	9,78E-04	66	445
Nicotine addiction	BioSystems: KEGG	1,26E-06	2,51E-03	2,51E-04	2,05E-03	14	40
Cardiac Progenitor Differentiation	BioSystems: WikiPathways	2,12E-06	4,22E-03	3,84E-04	3,14E-03	16	53
G protein signaling via Galphaq family	Pathway Ontology	3,12E-06	6,22E-03	4,82E-04	3,94E-03	8	14
G alpha (q) signalling events	BioSystems: REACTOME	3,36E-06	6,68E-03	4,82E-04	3,94E-03	35	193
Voltage gated Potassium channels	BioSystems: REACTOME	3,39E-06	6,75E-03	4,82E-04	3,94E-03	14	43
Glutamatergic synapse	BioSystems: KEGG	3,70E-06	7,36E-03	4,91E-04	4,01E-03	25	116
Class A/1 (Rhodopsin-like receptors)	BioSystems: REACTOME	4,65E-06	9,25E-03	5,78E-04	4,73E-03	49	316
Ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans	MSigDB C2 BIOCARTA (v5.1)	6,27E-06	1,25E-02	7,34E-04	6,00E-03	44	275
Metabotropic glutamate receptor group III pathway	PantherDB	7,16E-06	1,43E-02	7,92E-04	6,47E-03	17	64
Morphine addiction	BioSystems: KEGG	1,02E-05	2,03E-02	1,07E-03	8,75E-03	21	93
Maturity onset diabetes of the young	BioSystems: KEGG	1,08E-05	2,16E-02	1,08E-03	8,81E-03	10	25
Developmental Biology	BioSystems: REACTOME	1,15E-05	2,29E-02	1,09E-03	8,90E-03	59	419
Peptide ligand-binding receptors	BioSystems: REACTOME	1,46E-05	2,90E-02	1,32E-03	1,08E-02	33	189
Neurotransmitter Release Cycle	BioSystems: REACTOME	1,78E-05	3,54E-02	1,54E-03	1,26E-02	12	37
Circadian entrainment	BioSystems: KEGG	2,03E-05	4,04E-02	1,68E-03	1,38E-02	21	97
GABAergic synapse	BioSystems: KEGG	2,12E-05	4,23E-02	1,69E-03	1,38E-02	20	90
Ensemble of genes encoding extracellular matrix and extracellular	MSigDB C2 BIOCARTA (v5.1)	2,28E-05	4,55E-02	1,75E-03	1,43E-02	118	1028

matrix-associated proteins							
Cholinergic synapse	BioSystems: KEGG	2,41E-05	4,79E-02	1,77E-03	1,45E-02	23	113
Gastrin-CREB signalling pathway via PKC and MAPK	BioSystems: REACTOME	3,44E-05	6,84E-02	2,44E-03	2,00E-02	35	214
Ionotropic glutamate receptor pathway	PantherDB	4,18E-05	8,33E-02	2,87E-03	2,35E-02	13	46
Collagen formation	BioSystems: REACTOME	4,39E-05	8,73E-02	2,91E-03	2,38E-02	19	87
Heart Development	BioSystems: WikiPathways	5,36E-05	1,07E-01	3,44E-03	2,82E-02	13	47
Endogenous cannabinoid signaling	PantherDB	5,54E-05	1,10E-01	3,45E-03	2,82E-02	9	24
GABA-B receptor II signaling	PantherDB	7,41E-05	1,48E-01	4,47E-03	3,66E-02	11	36
NCAM1 interactions	BioSystems: REACTOME	9,79E-05	1,95E-01	5,74E-03	4,69E-02	11	37
Amoebiasis	BioSystems: KEGG	1,24E-04	2,46E-01	7,03E-03	5,75E-02	21	109
Peptide GPCRs	BioSystems: WikiPathways	1,39E-04	2,77E-01	7,68E-03	6,28E-02	16	72
Collagen biosynthesis and modifying enzymes	BioSystems: REACTOME	1,43E-04	2,84E-01	7,68E-03	6,28E-02	15	65
Neurotransmitter Receptor Binding And Downstream Transmission In The Postsynaptic Cell	BioSystems: REACTOME	1,70E-04	3,38E-01	8,74E-03	7,15E-02	25	144
Integrin cell surface interactions	BioSystems: REACTOME	1,71E-04	3,41E-01	8,74E-03	7,15E-02	15	66
G alpha (i) signalling events	BioSystems: REACTOME	3,02E-04	6,02E-01	1,50E-02	1,23E-01	35	238
Potassium Channels	BioSystems: REACTOME	3,52E-04	7,01E-01	1,71E-02	1,40E-01	19	101
GABA synthesis, release, reuptake and degradation	BioSystems: REACTOME	4,34E-04	8,64E-01	2,06E-02	1,68E-01	7	19
Insulin secretion	BioSystems: KEGG	4,48E-04	8,92E-01	2,06E-02	1,69E-01	17	87
Retrograde endocannabinoid signaling	BioSystems: KEGG	4,56E-04	9,08E-01	2,06E-02	1,69E-01	19	103
Genes encoding collagen proteins	MSigDB C2 BIOCARTA (v5.1)	5,24E-04	1,00E+00	2,31E-02	1,89E-01	11	44
Synaptic Vesicle Pathway	BioSystems: WikiPathways	5,38E-04	1,00E+00	2,31E-02	1,89E-01	12	51
Endothelin signaling pathway	PantherDB	5,48E-04	1,00E+00	2,31E-02	1,89E-01	15	73
FOXA transcription factor networks	BioSystems: Pathway Interaction Database	5,56E-04	1,00E+00	2,31E-02	1,89E-01	3	3
GPCRs, Class C Metabotropic glutamate, pheromone	BioSystems: WikiPathways	6,82E-04	1,00E+00	2,77E-02	2,26E-01	6	15
Regulation of beta-cell development	BioSystems: REACTOME	8,49E-04	1,00E+00	3,38E-02	2,76E-01	9	33
Regulation of gene expression in beta cells	BioSystems: REACTOME	8,70E-04	1,00E+00	3,39E-02	2,78E-01	7	21
Acetylcholine Neurotransmitter Release Cycle	BioSystems: REACTOME	9,88E-04	1,00E+00	3,78E-02	3,09E-01	5	11

Elastic fibre formation	BioSystems: REACTOME	1,15E-03	1,00E+00	4,19E-02	3,43E-01	10	41
Type II diabetes mellitus	BioSystems: KEGG	1,15E-03	1,00E+00	4,19E-02	3,43E-01	11	48
Transmembrane transport of small molecules	BioSystems: REACTOME	1,18E-03	1,00E+00	4,19E-02	3,43E-01	63	537
Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway	PantherDB	1,18E-03	1,00E+00	4,19E-02	3,43E-01	19	111
Cell adhesion molecules (CAMs)	BioSystems: KEGG	1,36E-03	1,00E+00	4,74E-02	3,88E-01	23	147
Unblocking of NMDA receptor, glutamate binding and activation	BioSystems: REACTOME	1,47E-03	1,00E+00	4,95E-02	4,05E-01	6	17
Focal Adhesion	BioSystems: WikiPathways	1,47E-03	1,00E+00	4,95E-02	4,05E-01	27	184

Supporting Information Table 6:

A) genes belonging to the pathways most affected by methylation alterations in CRC

SYMBOL	ENSEMBL	GENENAME
ADAMTS2	ENSG0000087116	ADAM metallopeptidase with thrombospondin type 1 motif 2
ADAMTS5	ENSG00000154736	ADAM metallopeptidase with thrombospondin type 1 motif 5
ADCY1	ENSG00000164742	adenylate cyclase 1 (brain)
ADCY8	ENSG00000155897	adenylate cyclase 8 (brain)
ADRA1B	ENSG00000170214	adrenoceptor alpha 1B
AGRN	ENSG00000188157	agrin
APC2	ENSG00000115266	adenomatosis polyposis coli 2
BMP2	ENSG00000125845	bone morphogenetic protein 2
BRINP2	ENSG00000198797	BMP/retinoic acid inducible neural specific 2
C1QL2	ENSG00000144119	complement component 1, q subcomponent-like 2
C1QL3	ENSG00000165985	complement component 1, q subcomponent-like 3
CACNA1A	ENSG00000141837	calcium voltage-gated channel subunit alpha1 A
CACNA1B	ENSG00000148408	calcium voltage-gated channel subunit alpha1 B
CACNA1E	ENSG00000198216	calcium voltage-gated channel subunit alpha1 E
CAMK2B	ENSG0000058404	calcium/calmodulin-dependent protein kinase II beta
CBLN1	ENSG00000102924	cerebellin 1 precursor
CBLN2	ENSG00000141668	cerebellin 2 precursor
CBLN4	ENSG0000054803	cerebellin 4 precursor
CD34	ENSG00000174059	CD34 molecule
CD8A	ENSG00000153563	CD8a molecule
CDH3	ENSG0000062038	cadherin 3
CDH4	ENSG00000179242	cadherin 4
CDH4	ENSG00000280641	cadherin 4
CHAT	ENSG0000070748	choline O-acetyltransferase
CLEC14A	ENSG00000176435	C-type lectin domain family 14 member A
CNTN1	ENSG0000018236	contactin 1
CNTNAP1	ENSG00000108797	contactin associated protein 1
COL14A1	ENSG00000187955	collagen type XIV alpha 1
COL15A1	ENSG00000204291	collagen type XV alpha 1
COL23A1	ENSG0000050767	collagen type XXIII alpha 1
COL24A1	ENSG00000171502	collagen type XXIV alpha 1
COL26A1	ENSG00000160963	collagen type XXVI alpha 1
COL4A1	ENSG00000187498	collagen type IV alpha 1
COL4A2	ENSG00000134871	collagen type IV alpha 2
CPLX1	ENSG00000168993	complexin 1
CREB3L1	ENSG00000157613	cAMP responsive element binding protein 3-like 1
CREB5	ENSG00000146592	cAMP responsive element binding protein 5
CRHBP	ENSG00000145708	corticotropin releasing hormone binding protein
CRHR2	ENSG00000106113	corticotropin releasing hormone receptor 2
CRISPLD1	ENSG00000121005	cysteine rich secretory protein LCCL domain containing 1
CTBP2	ENSG00000175029	C-terminal binding protein 2
DKK2	ENSG00000155011	dickkopf WNT signaling pathway inhibitor 2

DRD5	ENSG00000169676	dopamine receptor D5
EDNRB	ENSG00000136160	endothelin receptor type B
EMILIN3	ENSG00000183798	elastin microfibril interfacer 3
EN2	ENSG00000164778	engrailed homeobox 2
FBN1	ENSG00000166147	fibrillin 1
FBN2	ENSG00000138829	fibrillin 2
FGF12	ENSG00000114279	fibroblast growth factor 12
FGF14	ENSG00000102466	fibroblast growth factor 14
FGF5	ENSG00000138675	fibroblast growth factor 5
FGF8	ENSG00000107831	fibroblast growth factor 8
FNDC1	ENSG00000164694	fibronectin type III domain containing 1
FREM3	ENSG00000183090	FRAS1 related extracellular matrix 3
GABBR2	ENSG00000136928	gamma-aminobutyric acid type B receptor subunit 2
GABRB1	ENSG00000163288	gamma-aminobutyric acid type A receptor beta1 subunit
GAD1	ENSG00000128683	glutamate decarboxylase 1
GAD2	ENSG00000136750	glutamate decarboxylase 2
GDF6	ENSG00000156466	growth differentiation factor 6
GDNF	ENSG00000168621	glial cell derived neurotrophic factor
GHSR	ENSG00000121853	growth hormone secretagogue receptor
GLRB	ENSG00000109738	glycine receptor beta
GNG7	ENSG00000176533	G protein subunit gamma 7
GPC6	ENSG00000183098	glypican 6
GPR83	ENSG00000123901	G protein-coupled receptor 83
GRIA4	ENSG00000152578	glutamate ionotropic receptor AMPA type subunit 4
GRIK3	ENSG00000163873	glutamate ionotropic receptor kainate type subunit 3
GRIK5	ENSG00000105737	glutamate ionotropic receptor kainate type subunit 5
GRIN2D	ENSG00000105464	glutamate ionotropic receptor NMDA type subunit 2D
GRIN3B	ENSG00000116032	glutamate ionotropic receptor NMDA type subunit 3B
GRM6	ENSG00000113262	glutamate receptor, metabotropic 6
GRM7	ENSG00000196277	glutamate receptor, metabotropic 7
HAPLN4	ENSG00000187664	hyaluronan and proteoglycan link protein 4
HCN1	ENSG00000164588	hyperpolarization activated cyclic nucleotide gated potassium channel 1
HPSE2	ENSG00000172987	heparanase 2 (inactive)
HRH2	ENSG00000113749	histamine receptor H2
HRNR	ENSG00000197915	hornerin
HTR1E	ENSG00000168830	5-hydroxytryptamine receptor 1E
ITGA4	ENSG00000115232	integrin subunit alpha 4
ITGA8	ENSG0000077943	integrin subunit alpha 8
JAM3	ENSG00000166086	junctional adhesion molecule 3
KCNA1	ENSG00000111262	potassium voltage-gated channel subfamily A member 1
KCNA3	ENSG00000177272	potassium voltage-gated channel subfamily A member 3
KCNH1	ENSG00000143473	potassium voltage-gated channel subfamily H member 1
KCNK7	ENSG00000173338	potassium two pore domain channel subfamily K member 7
KCNQ2	ENSG0000075043	potassium voltage-gated channel subfamily Q member 2
KCNQ2	ENSG00000281151	potassium voltage-gated channel subfamily Q member 2
KCNQ5	ENSG00000185760	potassium voltage-gated channel subfamily Q member 5
КҮ	ENSG00000174611	kyphoscoliosis peptidase

LAMA1 ENSG00000101680 laminin subunit alpha 1 LHCGR ENSG00000138039 luteinizing hormone/choriogonadotropin receptor LRRC4 ENSG00000128594 leucine rich repeat containing 4 LTBP4 ENSG0000090006 latent transforming growth factor beta binding protein 4 MMP9 ENSG0000100985 matrix metallopeptidase 9 NCAM1 ENSG00000149294 neural cell adhesion molecule 1 NCAM2 ENSG0000154654 neural cell adhesion molecule 2 NELL1 ENSG0000165973 neural EGFL like 1 NGF ENSG00000134259 nerve growth factor NOS1 ENSG0000089250 nitric oxide synthase 1 NPBWR1 ENSG0000183729 neuropeptides B/W receptor 1 NPBWR2 ENSG0000277339 neuropeptides B/W receptor 2 NPBWR2 ENSG00000125522 neuropeptides B/W receptor 2 NPY2R ENSG0000185149 neuropeptide Y receptor Y2 NPY4R ENSG00000204174 neuropeptide Y receptor Y4 NRG1 ENSG0000157168 neuregulin 1 ENSG0000185737 NRG3 neuregulin 3 NRXN2 ENSG00000110076 neurexin 2 NTSR1 ENSG00000101188 neurotensin receptor 1 (high affinity) OPRK1 ENSG0000082556 opioid receptor, kappa 1 PCDHGA1 ENSG0000204956 protocadherin gamma subfamily A, 1 PCDHGA10 ENSG0000253846 protocadherin gamma subfamily A, 10 PCDHGA11 ENSG0000253873 protocadherin gamma subfamily A, 11 PCDHGA12 ENSG0000253159 protocadherin gamma subfamily A, 12 PCDHGA2 ENSG0000081853 protocadherin gamma subfamily A, 2 ENSG00000254245 protocadherin gamma subfamily A, 3 PCDHGA3 PCDHGA4 ENSG0000262576 protocadherin gamma subfamily A, 4 PCDHGA5 ENSG0000253485 protocadherin gamma subfamily A, 5 PCDHGA6 ENSG0000253731 protocadherin gamma subfamily A, 6 PCDHGA7 ENSG0000253537 protocadherin gamma subfamily A, 7 PCDHGA8 ENSG00000253767 protocadherin gamma subfamily A, 8 PCDHGA9 ENSG0000261934 protocadherin gamma subfamily A, 9 PCDHGB1 ENSG0000254221 protocadherin gamma subfamily B, 1 PCDHGB2 ENSG00000253910 protocadherin gamma subfamily B, 2 PCDHGB3 ENSG0000262209 protocadherin gamma subfamily B, 3 PCDHGB4 ENSG0000253953 protocadherin gamma subfamily B, 4 ENSG0000276547 protocadherin gamma subfamily B, 5 PCDHGB5 PCDHGB6 ENSG0000253305 protocadherin gamma subfamily B, 6 PCDHGB7 ENSG0000254122 protocadherin gamma subfamily B, 7 PCDHGC3 ENSG0000240184 protocadherin gamma subfamily C, 3 PCDHGC4 ENSG0000242419 protocadherin gamma subfamily C, 4 PCDHGC5 ENSG00000240764 protocadherin gamma subfamily C, 5 PDCD1 ENSG00000188389 programmed cell death 1 PDCD1 ENSG0000276977 programmed cell death 1 PDE1C ENSG0000154678 phosphodiesterase 1C PDGFD ENSG00000170962 platelet derived growth factor D PLCB1 ENSG00000182621 phospholipase C beta 1

PPP2R5C	ENSG0000078304	protein phosphatase 2 regulatory subunit B', gamma
PRKAR1B	ENSG00000188191	protein kinase cAMP-dependent type I regulatory subunit beta
PRKCB	ENSG00000166501	protein kinase C beta
PTGFR	ENSG00000122420	prostaglandin F receptor
PTPRS	ENSG00000105426	protein tyrosine phosphatase, receptor type S
PXDN	ENSG00000130508	peroxidasin
RELN	ENSG00000189056	reelin
RSPO2	ENSG00000147655	R-spondin 2
RSPO3	ENSG00000146374	R-spondin 3
RYR2	ENSG00000198626	ryanodine receptor 2
S1PR5	ENSG00000180739	sphingosine-1-phosphate receptor 5
SCTR	ENSG0000080293	secretin receptor
SDC2	ENSG00000169439	syndecan 2
SEMA6B	ENSG00000167680	semaphorin 6B
SFRP1	ENSG00000104332	secreted frizzled-related protein 1
SFRP2	ENSG00000145423	secreted frizzled-related protein 2
SHANK1	ENSG00000161681	SH3 and multiple ankyrin repeat domains 1
SLC12A5	ENSG00000124140	solute carrier family 12 member 5
SLC18A3	ENSG00000187714	solute carrier family 18 member A3
SLC32A1	ENSG00000101438	solute carrier family 32 member 1
SLC5A7	ENSG00000115665	solute carrier family 5 member 7
SLC6A1	ENSG00000157103	solute carrier family 6 member 1
SLC6A11	ENSG00000132164	solute carrier family 6 member 11
SLC6A15	ENSG0000072041	solute carrier family 6 member 15
SLC6A2	ENSG00000103546	solute carrier family 6 member 2
SLC6A3	ENSG00000142319	solute carrier family 6 member 3
SLC6A3	ENSG00000276996	solute carrier family 6 member 3
SLC6A5	ENSG00000165970	solute carrier family 6 member 5
SLC8A1	ENSG00000183023	solute carrier family 8 member A1
SLIT2	ENSG00000145147	slit guidance ligand 2
SLIT3	ENSG00000184347	slit guidance ligand 3
SPOCK1	ENSG00000152377	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1
STX4	ENSG00000103496	syntaxin 4
SYN3	ENSG00000185666	synapsin III
Т	ENSG00000164458	T brachyury transcription factor
TSPEAR	ENSG00000175894	thrombospondin-type laminin G domain and EAR repeats
VCAN	ENSG0000038427	versican
VEGFC	ENSG00000150630	vascular endothelial growth factor C
VIPR2	ENSG00000106018	vasoactive intestinal peptide receptor 2
VWC2	ENSG00000188730	von Willebrand factor C domain containing 2

B) genes belonging to the pathways most affected by methylation alterations in adenoma

SYMBOL	ENSEMBL	GENENAME
ABLIM2	ENSG00000163995	actin binding LIM protein family member 2
ACAN	ENSG00000157766	aggrecan
ACTA1	ENSG00000143632	actin, alpha 1, skeletal muscle
ACTN2	ENSG0000077522	actinin alpha 2
ACVR1C	ENSG00000123612	activin A receptor type 1C
ADAM30	ENSG00000134249	ADAM metallopeptidase domain 30
ADAMTS10	ENSG00000142303	ADAM metallopeptidase with thrombospondin type 1 motif 10
ADAMTS12	ENSG00000151388	ADAM metallopeptidase with thrombospondin type 1 motif 12
ADAMTS12	ENSG00000281690	ADAM metallopeptidase with thrombospondin type 1 motif 12
ADAMTS16	ENSG00000145536	ADAM metallopeptidase with thrombospondin type 1 motif 16
ADAMTS2	ENSG0000087116	ADAM metallopeptidase with thrombospondin type 1 motif 2
ADAMTS20	ENSG00000173157	ADAM metallopeptidase with thrombospondin type 1 motif 20
ADAMTS5	ENSG00000154736	ADAM metallopeptidase with thrombospondin type 1 motif 5
ADAMTSL3	ENSG00000156218	ADAMTS like 3
ADCY8	ENSG00000155897	adenylate cyclase 8 (brain)
ADCY9	ENSG00000162104	adenylate cyclase 9
ADCYAP1	ENSG00000141433	adenylate cyclase activating polypeptide 1 (pituitary)
ADCYAP1R1	ENSG0000078549	adenylate cyclase activating polypeptide 1 (pituitary) receptor type I
ADRA1A	ENSG00000120907	adrenoceptor alpha 1A
ADRA1B	ENSG00000170214	adrenoceptor alpha 1B
AGTR1	ENSG00000144891	angiotensin II receptor type 1
ANK1	ENSG0000029534	ankyrin 1
APC2	ENSG00000115266	adenomatosis polyposis coli 2
ARHGEF25	ENSG00000240771	Rho guanine nucleotide exchange factor 25
ARTN	ENSG00000117407	artemin
ATP2A3	ENSG0000074370	ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3
AVPR1A	ENSG00000166148	arginine vasopressin receptor 1A
AXIN2	ENSG00000168646	axin 2
BCAN	ENSG00000132692	brevican
BMP2	ENSG00000125845	bone morphogenetic protein 2
BMP4	ENSG00000125378	bone morphogenetic protein 4
BMP7	ENSG00000101144	bone morphogenetic protein 7
BRINP2	ENSG00000198797	BMP/retinoic acid inducible neural specific 2
C1QL1	ENSG00000131094	complement component 1, q subcomponent-like 1
C1QL2	ENSG00000144119	complement component 1, q subcomponent-like 2
C1QL3	ENSG00000165985	complement component 1, q subcomponent-like 3
C1QTNF8	ENSG00000184471	C1q and tumor necrosis factor related protein 8
CACNA1A	ENSG00000141837	calcium voltage-gated channel subunit alpha1 A
CACNA1B	ENSG00000148408	calcium voltage-gated channel subunit alpha1 B
CACNA1E	ENSG00000198216	calcium voltage-gated channel subunit alpha1 E
CACNA1G	ENSG0000006283	calcium voltage-gated channel subunit alpha1 G
CACNA1H	ENSG00000196557	calcium voltage-gated channel subunit alpha1 H
CACNA1I	ENSG0000100346	calcium voltage-gated channel subunit alpha1 I
CACNB2	ENSG00000165995	calcium voltage-gated channel auxiliary subunit beta 2

CACNG8	ENSG00000142408	calcium voltage-gated channel auxiliary subunit gamma 8
CAPNS1	ENSG00000126247	calpain small subunit 1
CASR	ENSG0000036828	calcium sensing receptor
CBLN1	ENSG00000102924	cerebellin 1 precursor
CBLN2	ENSG00000141668	cerebellin 2 precursor
CBLN4	ENSG00000054803	cerebellin 4 precursor
CD38	ENSG0000004468	CD38 molecule
CDH1	ENSG0000039068	cadherin 1
CDH2	ENSG00000170558	cadherin 2
CDH4	ENSG00000179242	cadherin 4
CDH4	ENSG00000280641	cadherin 4
CDH8	ENSG00000150394	cadherin 8
CELSR1	ENSG0000075275	cadherin EGF LAG seven-pass G-type receptor 1
CELSR3	ENSG0000008300	cadherin EGF LAG seven-pass G-type receptor 3
CHAD	ENSG00000136457	chondroadherin
CHAT	ENSG0000070748	choline O-acetyltransferase
CHL1	ENSG00000134121	cell adhesion molecule L1 like
CHRDL2	ENSG00000054938	chordin-like 2
CHRM2	ENSG00000181072	cholinergic receptor muscarinic 2
CHRNA4	ENSG00000101204	cholinergic receptor nicotinic alpha 4 subunit
CLEC14A	ENSG00000176435	C-type lectin domain family 14 member A
CNTN1	ENSG0000018236	contactin 1
CNTNAP1	ENSG00000108797	contactin associated protein 1
COL20A1	ENSG00000101203	collagen type XX alpha 1
COL21A1	ENSG00000124749	collagen type XXI alpha 1
COL23A1	ENSG0000050767	collagen type XXIII alpha 1
COL25A1	ENSG00000188517	collagen type XXV alpha 1
COL26A1	ENSG00000160963	collagen type XXVI alpha 1
COL2A1	ENSG00000139219	collagen type II alpha 1
COL4A1	ENSG00000187498	collagen type IV alpha 1
COL4A2	ENSG00000134871	collagen type IV alpha 2
COL5A1	ENSG00000130635	collagen type V alpha 1
COL5A3	ENSG0000080573	collagen type V alpha 3
COL9A1	ENSG00000112280	collagen type IX alpha 1
CPLX1	ENSG00000168993	complexin 1
CREB3L1	ENSG00000157613	cAMP responsive element binding protein 3-like 1
CREB5	ENSG00000146592	cAMP responsive element binding protein 5
CRHBP	ENSG00000145708	corticotropin releasing hormone binding protein
CRHR2	ENSG00000106113	corticotropin releasing hormone receptor 2
CRISPLD1	ENSG00000121005	cysteine rich secretory protein LCCL domain containing 1
CRMP1	ENSG0000072832	collapsin response mediator protein 1
CSNK1G2	ENSG00000133275	casein kinase 1 gamma 2
CST3	ENSG00000101439	cystatin C
CTNNA2	ENSG0000066032	catenin alpha 2
CTSL	ENSG00000135047	cathepsin L
CXCL2	ENSG0000081041	C-X-C motif chemokine ligand 2
DGKG	ENSG0000058866	diacylglycerol kinase gamma

DGKI	ENSG00000157680	diacylglycerol kinase iota
DGKQ	ENSG00000145214	diacylglycerol kinase theta
DKK2	ENSG00000155011	dickkopf WNT signaling pathway inhibitor 2
DLX5	ENSG00000105880	distal-less homeobox 5
DNM1	ENSG00000106976	dynamin 1
DOCK1	ENSG00000150760	dedicator of cytokinesis 1
EBF1	ENSG00000164330	early B-cell factor 1
EDN3	ENSG00000124205	endothelin 3
EDNRB	ENSG00000136160	endothelin receptor type B
EFEMP1	ENSG00000115380	EGF containing fibulin-like extracellular matrix protein 1
EGFLAM	ENSG00000164318	EGF like, fibronectin type III and laminin G domains
EGLN2	ENSG00000269858	egl-9 family hypoxia-inducible factor 2
EGLN3	ENSG00000129521	egl-9 family hypoxia-inducible factor 3
ELFN1	ENSG00000225968	extracellular leucine-rich repeat and fibronectin type III domain containing 1
EMILIN1	ENSG00000138080	elastin microfibril interfacer 1
EMILIN3	ENSG00000183798	elastin microfibril interfacer 3
EN1	ENSG00000163064	engrailed homeobox 1
EN2	ENSG00000164778	engrailed homeobox 2
ERBB2	ENSG00000141736	erb-b2 receptor tyrosine kinase 2
F2RL1	ENSG00000164251	F2R like trypsin receptor 1
F7	ENSG0000057593	coagulation factor VII
FAT1	ENSG0000083857	FAT atypical cadherin 1
FBLN7	ENSG00000144152	fibulin 7
FBN1	ENSG00000166147	fibrillin 1
FBN2	ENSG00000138829	fibrillin 2
FFAR1	ENSG00000126266	free fatty acid receptor 1
FGF12	ENSG00000114279	fibroblast growth factor 12
FGF14	ENSG00000102466	fibroblast growth factor 14
FGF17	ENSG00000158815	fibroblast growth factor 17
FGF3	ENSG00000186895	fibroblast growth factor 3
FGF5	ENSG00000138675	fibroblast growth factor 5
FGF8	ENSG00000107831	fibroblast growth factor 8
FNDC1	ENSG00000164694	fibronectin type III domain containing 1
FOXA2	ENSG00000125798	forkhead box A2
FOXA3	ENSG00000170608	forkhead box A3
FREM3	ENSG00000183090	FRAS1 related extracellular matrix 3
FZD10	ENSG00000111432	frizzled class receptor 10
FZD2	ENSG0000180340	frizzled class receptor 2
GABBR1	ENSG00000204681	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000206466	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000232632	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000237051	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000232569	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000237112	gamma-aminobutyric acid type B receptor subunit 1
GABBR1	ENSG00000206511	gamma-aminobutyric acid type B receptor subunit 1
GABRA2	ENSG00000151834	gamma-aminobutyric acid type A receptor alpha2 subunit
GABRA5	ENSG00000186297	gamma-aminobutyric acid type A receptor alpha5 subunit

GABRB3	ENSG00000166206	gamma-aminobutyric acid type A receptor beta3 subunit
GABRG3	ENSG00000182256	gamma-aminobutyric acid type A receptor gamma3 subunit
GAD1	ENSG00000128683	glutamate decarboxylase 1
GAD2	ENSG00000136750	glutamate decarboxylase 2
GALR1	ENSG00000166573	galanin receptor 1
GATA4	ENSG00000136574	GATA binding protein 4
GDF1	ENSG00000130283	growth differentiation factor 1
GDF1	ENSG00000223802	growth differentiation factor 1
GDF6	ENSG00000156466	growth differentiation factor 6
GDNF	ENSG00000168621	glial cell derived neurotrophic factor
GFRA1	ENSG00000151892	GDNF family receptor alpha 1
GFRA4	ENSG00000125861	GDNF family receptor alpha 4
GHSR	ENSG00000121853	growth hormone secretagogue receptor
GJD2	ENSG00000159248	gap junction protein delta 2
GLRA3	ENSG00000145451	glycine receptor alpha 3
GLRB	ENSG00000109738	glycine receptor beta
GNA11	ENSG0000088256	G protein subunit alpha 11
GNAI1	ENSG00000127955	G protein subunit alpha i1
GNAL	ENSG00000141404	G protein subunit alpha L
GNAO1	ENSG0000087258	G protein subunit alpha o1
GNAS	ENSG0000087460	GNAS complex locus
GNB4	ENSG00000114450	G protein subunit beta 4
GNG7	ENSG00000176533	G protein subunit gamma 7
GPC6	ENSG00000183098	glypican 6
GPR39	ENSG00000183840	G protein-coupled receptor 39
GRIA2	ENSG00000120251	glutamate ionotropic receptor AMPA type subunit 2
GRIA4	ENSG00000152578	glutamate ionotropic receptor AMPA type subunit 4
GRID1	ENSG00000182771	glutamate ionotropic receptor delta type subunit 1
GRID2	ENSG00000152208	glutamate ionotropic receptor delta type subunit 2
GRIK1	ENSG00000171189	glutamate ionotropic receptor kainate type subunit 1
GRIK2	ENSG00000164418	glutamate ionotropic receptor kainate type subunit 2
GRIK3	ENSG00000163873	glutamate ionotropic receptor kainate type subunit 3
GRIN2A	ENSG00000183454	glutamate ionotropic receptor NMDA type subunit 2A
GRIN2D	ENSG00000105464	glutamate ionotropic receptor NMDA type subunit 2D
GRIN3B	ENSG00000116032	glutamate ionotropic receptor NMDA type subunit 3B
GRM1	ENSG00000152822	glutamate receptor, metabotropic 1
GRM6	ENSG00000113262	glutamate receptor, metabotropic 6
GRM7	ENSG00000196277	glutamate receptor, metabotropic 7
GRP	ENSG00000134443	gastrin releasing peptide
GUCY1B3	ENSG0000061918	guanylate cyclase 1, soluble, beta 3
HAND1	ENSG00000113196	heart and neural crest derivatives expressed 1
HAPLN4	ENSG00000187664	hyaluronan and proteoglycan link protein 4
HCN2	ENSG0000099822	hyperpolarization activated cyclic nucleotide gated potassium channel 2
HCRTR2	ENSG00000137252	hypocretin receptor 2
HEBP1	ENSG0000013583	heme binding protein 1
HPSE2	ENSG00000172987	heparanase 2 (inactive)
HRH2	ENSG00000113749	histamine receptor H2

HTR1A ENSG0000178394 5-hydroxytryptamine receptor 1A HTR1E ENSG00000168830 5-hydroxytryptamine receptor 1E HTR5A ENSG00000157219 5-hydroxytryptamine receptor 5A IRX4 ENSG00000113430 iroquois homeobox 4 ISL1 ENSG0000016082 ISL LIM homeobox 1 ITGA4 ENSG00000115232 integrin subunit alpha 4 ITGA8 ENSG0000077943 integrin subunit alpha 8 ITGAD ENSG00000156886 integrin subunit alpha D ITGAM ENSG00000169896 integrin subunit alpha M ITGAX ENSG00000140678 integrin subunit alpha X JAM2 ENSG0000154721 junctional adhesion molecule 2 JAM3 ENSG0000166086 junctional adhesion molecule 3 KAZALD1 ENSG00000107821 Kazal type serine peptidase inhibitor domain 1 KCNA1 ENSG00000111262 potassium voltage-gated channel subfamily A member 1 KCNA3 ENSG00000177272 potassium voltage-gated channel subfamily A member 3 KCNA4 ENSG00000182255 potassium voltage-gated channel subfamily A member 4 KCNA5 potassium voltage-gated channel subfamily A member 5 ENSG00000130037 KCNA6 ENSG0000130035 potassium voltage-gated channel subfamily A member 6 KCNA6 ENSG00000151079 potassium voltage-gated channel subfamily A member 6 potassium voltage-gated channel subfamily A member regulatory beta KCNAB1 ENSG0000169282 subunit 1 KCNAB2 ENSG0000069424 potassium voltage-gated channel subfamily A regulatory beta subunit 2 KCNAB3 ENSG00000170049 potassium voltage-gated channel subfamily A regulatory beta subunit 3 KCNC2 ENSG0000166006 potassium voltage-gated channel subfamily C member 2 KCNH5 ENSG00000140015 potassium voltage-gated channel subfamily H member 5 ENSG0000135750 potassium two pore domain channel subfamily K member 1 KCNK1 KCNN1 ENSG0000105642 potassium calcium-activated channel subfamily N member 1 KCNQ4 ENSG00000117013 potassium voltage-gated channel subfamily Q member 4 potassium voltage-gated channel subfamily Q member 5 KCNQ5 ENSG00000185760 KCNS1 ENSG00000124134 potassium voltage-gated channel modifier subfamily S member 1 KCNV1 ENSG00000164794 potassium voltage-gated channel modifier subfamily V member 1 KDR ENSG00000128052 kinase insert domain receptor KITLG ENSG0000049130 **KIT** ligand KΥ ENSG00000174611 kyphoscoliosis peptidase LAMA1 ENSG00000101680 laminin subunit alpha 1 LAMB1 ENSG0000091136 laminin subunit beta 1 LAMB3 ENSG00000196878 laminin subunit beta 3 LEFTY2 ENSG00000143768 left-right determination factor 2 LEP ENSG0000174697 leptin LEPR ENSG00000116678 leptin receptor LHCGR ENSG0000138039 luteinizing hormone/choriogonadotropin receptor LHX5 ENSG0000089116 LIM homeobox 5 LIN28B ENSG00000187772 lin-28 homolog B LPAR1 ENSG00000198121 lysophosphatidic acid receptor 1 LTBP3 ENSG0000168056 latent transforming growth factor beta binding protein 3 LTBP4 ENSG0000090006 latent transforming growth factor beta binding protein 4 MADCAM1 ENSG0000099866 mucosal vascular addressin cell adhesion molecule 1

MATN3	ENSG00000132031	matrilin 3
MBP	ENSG00000197971	myelin basic protein
MCHR2	ENSG00000152034	melanin concentrating hormone receptor 2
MED16	ENSG00000175221	mediator complex subunit 16
MED16	ENSG00000282092	mediator complex subunit 16
MED30	ENSG00000164758	mediator complex subunit 30
MLNR	ENSG00000102539	motilin receptor
MMP16	ENSG00000156103	matrix metallopeptidase 16
MMP9	ENSG00000100985	matrix metallopeptidase 9
MNX1	ENSG00000130675	motor neuron and pancreas homeobox 1
MSX1	ENSG00000163132	msh homeobox 1
MSX2	ENSG00000120149	msh homeobox 2
MTNR1B	ENSG00000134640	melatonin receptor 1B
MYF5	ENSG00000111049	myogenic factor 5
MYF6	ENSG00000111046	myogenic factor 6
MYH14	ENSG00000105357	myosin, heavy chain 14, non-muscle
MYH9	ENSG00000100345	myosin, heavy chain 9, non-muscle
MYOD1	ENSG00000129152	myogenic differentiation 1
NCOR2	ENSG00000196498	nuclear receptor corepressor 2
NEFL	ENSG00000277586	neurofilament, light polypeptide
NELL1	ENSG00000165973	neural EGFL like 1
NEUROD1	ENSG00000162992	neuronal differentiation 1
NKD1	ENSG00000140807	naked cuticle homolog 1 (Drosophila)
NKX2-2	ENSG00000125820	NK2 homeobox 2
NKX2-5	ENSG00000183072	NK2 homeobox 5
NMBR	ENSG00000135577	neuromedin B receptor
NOS1	ENSG0000089250	nitric oxide synthase 1
NOS3	ENSG00000164867	nitric oxide synthase 3
NOV	ENSG00000136999	nephroblastoma overexpressed
NPBWR1	ENSG00000183729	neuropeptides B/W receptor 1
NPFFR2	ENSG0000056291	neuropeptide FF receptor 2
NPY	ENSG00000122585	neuropeptide Y
NPY2R	ENSG00000185149	neuropeptide Y receptor Y2
NPY4R	ENSG00000204174	neuropeptide Y receptor Y4
NR2F2	ENSG00000185551	nuclear receptor subfamily 2 group F member 2
NR5A2	ENSG00000116833	nuclear receptor subfamily 5 group A member 2
NRG1	ENSG00000157168	neuregulin 1
NRG3	ENSG00000185737	neuregulin 3
NRXN1	ENSG00000179915	neurexin 1
NTF3	ENSG00000185652	neurotrophin 3
NTSR2	ENSG00000169006	neurotensin receptor 2
OLIG2	ENSG00000205927	oligodendrocyte lineage transcription factor 2
OLIG3	ENSG00000177468	oligodendrocyte transcription factor 3
ONECUT1	ENSG00000169856	one cut homeobox 1
OPRK1	ENSG0000082556	opioid receptor, kappa 1
OPRM1	ENSG00000112038	opioid receptor, mu 1
ORAI3	ENSG00000175938	ORAI calcium release-activated calcium modulator 3

P2RX2 ENSG0000187848 purinergic receptor P2X 2 P2RY6 ENSG0000171631 pyrimidinergic receptor P2Y6 ENSG00000149380 **P4HA3** prolyl 4-hydroxylase subunit alpha 3 P4HB ENSG0000185624 prolyl 4-hydroxylase subunit beta PAX3 ENSG0000135903 paired box 3 PAX6 ENSG0000007372 paired box 6 PAX7 ENSG0000009709 paired box 7 PCDH1 ENSG0000156453 protocadherin 1 PCDH10 ENSG00000138650 protocadherin 10 PCDH8 ENSG0000136099 protocadherin 8 PCDH9 ENSG0000184226 protocadherin 9 PCDHA1 ENSG0000204970 protocadherin alpha 1 PCDHA10 ENSG0000250120 protocadherin alpha 10 PCDHA11 ENSG00000249158 protocadherin alpha 11 PCDHA12 ENSG0000251664 protocadherin alpha 12 PCDHA13 ENSG0000239389 protocadherin alpha 13 PCDHA2 ENSG0000204969 protocadherin alpha 2 PCDHA3 ENSG0000255408 protocadherin alpha 3 PCDHA4 ENSG0000204967 protocadherin alpha 4 ENSG0000204965 PCDHA5 protocadherin alpha 5 PCDHA6 ENSG0000081842 protocadherin alpha 6 PCDHA7 ENSG0000204963 protocadherin alpha 7 PCDHA8 ENSG0000204962 protocadherin alpha 8 PCDHA9 ENSG0000204961 protocadherin alpha 9 PCDHB12 ENSG00000120328 protocadherin beta 12 PCDHB13 ENSG00000187372 protocadherin beta 13 PCDHB15 ENSG00000113248 protocadherin beta 15 PCDHB16 ENSG0000272674 protocadherin beta 16 PCDHB4 ENSG0000081818 protocadherin beta 4 PCDHB5 ENSG00000113209 protocadherin beta 5 PCDHB6 ENSG00000113211 protocadherin beta 6 PCDHGA1 ENSG0000204956 protocadherin gamma subfamily A, 1 PCDHGA10 ENSG0000253846 protocadherin gamma subfamily A, 10 PCDHGA11 ENSG00000253873 protocadherin gamma subfamily A, 11 PCDHGA12 ENSG0000253159 protocadherin gamma subfamily A, 12 PCDHGA2 ENSG0000081853 protocadherin gamma subfamily A, 2 PCDHGA3 ENSG0000254245 protocadherin gamma subfamily A, 3 PCDHGA4 ENSG0000262576 protocadherin gamma subfamily A, 4 PCDHGA5 ENSG00000253485 protocadherin gamma subfamily A, 5 PCDHGA6 ENSG0000253731 protocadherin gamma subfamily A, 6 PCDHGA7 ENSG0000253537 protocadherin gamma subfamily A, 7 PCDHGA8 ENSG00000253767 protocadherin gamma subfamily A, 8 PCDHGA9 ENSG0000261934 protocadherin gamma subfamily A, 9 PCDHGB1 ENSG0000254221 protocadherin gamma subfamily B, 1 PCDHGB2 ENSG0000253910 protocadherin gamma subfamily B, 2 PCDHGB3 ENSG0000262209 protocadherin gamma subfamily B, 3 PCDHGB4 ENSG0000253953 protocadherin gamma subfamily B, 4

PCDHGB5 ENSG0000276547 protocadherin gamma subfamily B, 5 PCDHGB6 ENSG0000253305 protocadherin gamma subfamily B, 6 PCDHGB7 ENSG00000254122 protocadherin gamma subfamily B, 7 PCDHGC3 ENSG00000240184 protocadherin gamma subfamily C, 3 PCDHGC4 ENSG00000242419 protocadherin gamma subfamily C, 4 ENSG00000240764 protocadherin gamma subfamily C, 5 PCDHGC5 PCSK5 ENSG0000099139 proprotein convertase subtilisin/kexin type 5 PDE11A ENSG00000128655 phosphodiesterase 11A ENSG00000105650 PDE4C phosphodiesterase 4C PDE4D ENSG00000113448 phosphodiesterase 4D PDE8B ENSG00000113231 phosphodiesterase 8B PDGFD ENSG00000170962 platelet derived growth factor D PDX1 ENSG00000139515 pancreatic and duodenal homeobox 1 PENK ENSG00000181195 proenkephalin PHOX2B ENSG00000109132 paired like homeobox 2b PIK3CD ENSG00000171608 phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta ENSG0000105647 PIK3R2 phosphoinositide-3-kinase regulatory subunit 2 PIK3R5 ENSG00000141506 phosphoinositide-3-kinase regulatory subunit 5 PIP5K1C ENSG00000186111 phosphatidylinositol-4-phosphate 5-kinase, type I, gamma ENSG00000182621 PLCB1 phospholipase C beta 1 PLD1 ENSG0000075651 phospholipase D1 PLEC ENSG00000178209 plectin PLOD2 ENSG00000152952 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 PLXDC2 ENSG00000120594 plexin domain containing 2 PMP22 ENSG00000109099 peripheral myelin protein 22 PPP2R5C ENSG0000078304 protein phosphatase 2 regulatory subunit B', gamma PRKAR1B ENSG00000188191 protein kinase cAMP-dependent type I regulatory subunit beta PRKCB ENSG00000166501 protein kinase C beta PRKCZ ENSG0000067606 protein kinase C zeta PRLHR ENSG00000119973 prolactin releasing hormone receptor PROKR2 ENSG00000101292 prokineticin receptor 2 PRSS3 ENSG0000010438 protease, serine 3 PTGFR ENSG00000122420 prostaglandin F receptor PTH2R ENSG00000144407 parathyroid hormone 2 receptor **PXDNL** ENSG00000147485 peroxidasin like PYGO1 ENSG00000171016 pygopus family PHD finger 1 QRFPR ENSG0000186867 pyroglutamylated RFamide peptide receptor RASGRF1 ENSG0000058335 Ras protein specific guanine nucleotide releasing factor 1 ROBO1 ENSG0000169855 roundabout guidance receptor 1 ROR2 ENSG00000169071 receptor tyrosine kinase-like orphan receptor 2 RSPO2 ENSG00000147655 R-spondin 2 RSPO3 ENSG00000146374 R-spondin 3 RXFP3 ENSG0000277069 relaxin/insulin-like family peptide receptor 3 RXFP3 ENSG00000182631 relaxin/insulin-like family peptide receptor 3 RYR3 ENSG00000198838 ryanodine receptor 3 S1PR1 ENSG00000170989 sphingosine-1-phosphate receptor 1 S1PR3 ENSG0000213694 sphingosine-1-phosphate receptor 3

SCN8A	ENSG00000196876	sodium voltage-gated channel alpha subunit 8
SCTR	ENSG0000080293	secretin receptor
SDC2	ENSG00000169439	syndecan 2
SEMA3C	ENSG0000075223	semaphorin 3C
SEMA6B	ENSG00000167680	semaphorin 6B
SERPINB9	ENSG00000170542	serpin peptidase inhibitor, clade B (ovalbumin), member 9
SFRP1	ENSG00000104332	secreted frizzled-related protein 1
SFRP2	ENSG00000145423	secreted frizzled-related protein 2
SHANK1	ENSG00000161681	SH3 and multiple ankyrin repeat domains 1
SHANK2	ENSG00000162105	SH3 and multiple ankyrin repeat domains 2
SLC12A5	ENSG00000124140	solute carrier family 12 member 5
SLC17A6	ENSG0000091664	solute carrier family 17 member 6
SLC18A3	ENSG00000187714	solute carrier family 18 member A3
SLC2A2	ENSG00000163581	solute carrier family 2 member 2
SLC32A1	ENSG00000101438	solute carrier family 32 member 1
SLC5A7	ENSG00000115665	solute carrier family 5 member 7
SLC6A1	ENSG00000157103	solute carrier family 6 member 1
SLC6A11	ENSG00000132164	solute carrier family 6 member 11
SLC6A3	ENSG00000142319	solute carrier family 6 member 3
SLC6A3	ENSG00000276996	solute carrier family 6 member 3
SLC8A1	ENSG00000183023	solute carrier family 8 member A1
SLC8A2	ENSG00000118160	solute carrier family 8 member A2
SLIT2	ENSG00000145147	slit guidance ligand 2
SLIT3	ENSG00000184347	slit guidance ligand 3
SNAI2	ENSG0000019549	snail family zinc finger 2
SNAP25	ENSG00000132639	synaptosome associated protein 25kDa
SOX10	ENSG00000100146	SRY-box 10
SOX17	ENSG00000164736	SRY-box 17
SOX5	ENSG00000134532	SRY-box 5
SPOCK1	ENSG00000152377	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1
SPOCK3	ENSG00000196104	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 3
SST	ENSG00000157005	somatostatin
SSTR1	ENSG00000139874	somatostatin receptor 1
SSTR2	ENSG0000180616	somatostatin receptor 2
SSTR4	ENSG00000132671	somatostatin receptor 4
STX2	ENSG00000111450	syntaxin 2
SYN2	ENSG00000157152	synapsin II
SYN3	ENSG00000185666	synapsin III
TACR3	ENSG00000169836	tachykinin receptor 3
TAS1R3	ENSG00000169962	taste 1 receptor member 3
TBX20	ENSG00000164532	T-box 20
TBX5	ENSG0000089225	T-box 5
TCF4	ENSG00000196628	transcription factor 4
TDGF1	ENSG00000241186	teratocarcinoma-derived growth factor 1
TFAP2A	ENSG00000137203	transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)
TFAP2B	ENSG0000008196	transcription factor AP-2 beta (activating enhancer binding protein 2 beta)
TGFB2	ENSG0000092969	transforming growth factor beta 2

TGFBI	ENSG00000120708	transforming growth factor beta induced
THBS4	ENSG00000113296	thrombospondin 4
THRA	ENSG00000126351	thyroid hormone receptor, alpha
THY1	ENSG00000154096	Thy-1 cell surface antigen
TIMP4	ENSG00000157150	TIMP metallopeptidase inhibitor 4
TLL1	ENSG0000038295	tolloid like 1
TLX2	ENSG00000115297	T-cell leukemia homeobox 2
TNFSF11	ENSG00000120659	tumor necrosis factor superfamily member 11
TNFSF9	ENSG00000125657	tumor necrosis factor superfamily member 9
TNNC2	ENSG00000101470	troponin C2, fast skeletal type
TNNI3	ENSG00000129991	troponin I3, cardiac type
TNR	ENSG00000116147	tenascin R
TRH	ENSG00000170893	thyrotropin releasing hormone
TRPC4	ENSG00000133107	transient receptor potential cation channel subfamily C member 4
TRPC6	ENSG00000137672	transient receptor potential cation channel subfamily C member 6
TSPEAR	ENSG00000175894	thrombospondin-type laminin G domain and EAR repeats
TWIST1	ENSG00000122691	twist family bHLH transcription factor 1
UNC5C	ENSG00000182168	unc-5 netrin receptor C
UNC5D	ENSG00000156687	unc-5 netrin receptor D
VCAN	ENSG0000038427	versican
VEGFC	ENSG00000150630	vascular endothelial growth factor C
VIPR2	ENSG00000106018	vasoactive intestinal peptide receptor 2
WIF1	ENSG00000156076	WNT inhibitory factor 1
WNT3	ENSG00000108379	wingless-type MMTV integration site family member 3
WNT3	ENSG00000277626	wingless-type MMTV integration site family member 3
WNT3	ENSG00000277641	wingless-type MMTV integration site family member 3
WNT5B	ENSG00000111186	wingless-type MMTV integration site family member 5B
ZIC1	ENSG00000152977	Zic family member 1

								In s	ilico valida	tion set				
			Γ	Discovei	ry set				TCGA					
Gene	Adenomas	Controls	Adenomas Δβ value	CRC	Peritumoral	CRC Δβ value	CRC Adenomas ΔΔβ value	AUC	Specificity	Sensitivity	comb.p.value Discovery.set	comb.p.value GSE48684	comb.p.value TCGA	Subcellular locations
ADAMTS2	0,35	0,12	0,22	0,52	0,1	0,42	0,2	0.96	0.98	0.91	<10E-8	<10E-8	<10E-8	E
ADAMTS5	0,49	0,25	0,24	0,55	0,21	0,33	0,09	0.97	0.95	0.92	<10E-8	<10E-8	<10E-8	E, ER
ADCY8	0,49	0,29	0,2	0,6	0,35	0,25	0,05	0.98	0.98	0.89	<10E-8	<10E-8	<10E-8	P, C
ADRA1B	0,33	0,14	0,18	0,48	0,15	0,33	0,15	0.97	0.95	0.94	4E-08	<10E-8	<10E-8	P, N
CACNA1A	0,48	0,24	0,24	0,58	0,21	0,38	0,13	1	0.95	0.97	<10E-8	<10E-8	<10E-8	P, N
CACNA1E	0,51	0,29	0,22	0,59	0,35	0,25	0,03	0.96	1	0.86	<10E-8	<10E-8	<10E-8	Р
CDH4	0,48	0,17	0,3	0,64	0,15	0,49	0,19	0.96	1	0.93	<10E-8	<10E-8	<10E-8	Р
COL23A1	0,34	0,13	0,2	0,51	0,12	0,39	0,19	0.96	1	0.89	<10E-8	<10E-8	<10E-8	P, ER, E
COL4A1	0,45	0,19	0,26	0,59	0,19	0,4	0,14	0.98	0.95	0.94	<10E-8	<10E-8	<10E-8	E, ER
CPLX1	0,47	0,28	0,19	0,59	0,28	0,32	0,13	0.98	1	0.96	<10E-8	<10E-8	<10E-8	С
CREB3L1	0,5	0,33	0,18	0,61	0,18	0,43	0,25	0.92	0.91	0.79	<10E-8	<10E-8	<10E-8	N, ER
CREB5	0,35	0,13	0,22	0,48	0,15	0,33	0,11	0.96	1	0.91	<10E-8	<10E-8	<10E-8	E, N
CRHR2	0,37	0,15	0,23	0,49	0,13	0,36	0,13	0.96	1	0.91	<10E-8	<10E-8	<10E-8	Р
CRISPLD1	0,38	0,2	0,17	0,51	0,24	0,27	0,1	0.96	0.95	0.91	<10E-8	<10E-8	<10E-8	E
DKK 2	0,45	0,15	0,3	0,54	0,19	0,35	0,05	0.97	1	0.91	<10E-8	<10E-8	<10E-8	E
EDNRB	0,53	0,27	0,26	0,59	0,36	0,23	-0,03	0.9	0.89	0.85	<10E-8	<10E-8	<10E-8	Р
EN2	0,49	0,26	0,23	0,59	0,26	0,33	0,1	0.98	1	0.96	<10E-8	<10E-8	<10E-8	N

Supporting Information Table 7: Early biomarkers panel of 74 CpG islands putative genes regulators significantly altered in CRC and adenomas

FBN1	0,35	0,11	0,24	0,49	0,08	0,41	0,16	0.95	1	0.91	<10E-8	<10E-8	<10E-8	E, P
FBN2	0,45	0,18	0,27	0,59	0,18	0,41	0,14	0.98	1	0.94	<10E-8	<10E-8	<10E-8	Е
FNDC1	0,43	0,16	0,27	0,52	0,13	0,39	0,12	0.96	1	0.9	<10E-8	<10E-8	<10E-8	N, E
GAD2	0,47	0,21	0,26	0,55	0,24	0,31	0,05	0.99	1	0.95	<10E-8	<10E-8	<10E-8	P, C, GA
GHSR	0,43	0,26	0,17	0,56	0,3	0,26	0,09	0.97	0.98	0.88	<10E-8	<10E-8	<10E-8	Р
GLRB	0,42	0,2	0,22	0,56	0,16	0,4	0,18	0.97	1	0.96	<10E-8	<10E-8	<10E-8	Р
GNG7	0,65	0,85	-0,2	0,6	0,89	-0,29	-0,09	0.94	0.95	0.86	<10E-8	<10E-8	<10E-8	E, P
GRIA4	0,53	0,17	0,36	0,63	0,18	0,45	0,08	0.97	0.98	0.92	<10E-8	<10E-8	<10E-8	P, E
GRIK3	0,49	0,27	0,21	0,58	0,29	0,29	0,08	0.97	0.98	0.94	<10E-8	<10E-8	<10E-8	Р
GRIN2D	0,42	0,17	0,25	0,58	0,17	0,42	0,16	0.98	0.98	0.94	3E-07	<10E-8	<10E-8	Р
GRIN2D_1	0,63	0,39	0,23	0,73	0,46	0,26	0,03	0.93	0.95	0.81	1E-06	<10E-8	<10E-8	Р
GRIN2D_2	0,53	0,34	0,19	0,63	0,33	0,31	0,11	0.97	1	0.9	<10E-8	<10E-8	<10E-8	Р
GRIN3B	0,64	0,83	-0,19	0,63	0,87	-0,24	-0,05	0.98	1	0.97	<10E-8	<10E-8	<10E-8	Р
GRM6	0,62	0,46	0,16	0,7	0,5	0,2	0,04	0.93	1	0.7	<10E-8	<10E-8	<10E-8	P, ER, GA
GRM7	0,62	0,38	0,24	0,7	0,47	0,24	0	0.96	1	0.79	<10E-8	<10E-8	<10E-8	Р
HAPLN4	0,52	0,32	0,2	0,63	0,32	0,31	0,11	0.99	1	0.96	<10E-8	<10E-8	<10E-8	Е
HTR1E	0,46	0,22	0,25	0,59	0,27	0,32	0,08	0.96	1	0.88	<10E-8	<10E-8	<10E-8	Р
ITGA4	0,48	0,16	0,32	0,61	0,19	0,42	0,1	0.93	0.98	0.75	<10E-8	<10E-8	<10E-8	P, E
ITGA8	0,4	0,16	0,24	0,53	0,17	0,36	0,12	0.98	1	0.93	<10E-8	<10E-8	<10E-8	P, ER
JAM3	0,41	0,18	0,23	0,56	0,19	0,37	0,14	0.97	1	0.9	<10E-8	<10E-8	<10E-8	P, E
KCNA1	0,46	0,25	0,21	0,55	0,23	0,32	0,11	0.96	0.98	0.9	<10E-8	<10E-8	<10E-8	P, ER, C
KCNA3	0,55	0,35	0,2	0,67	0,39	0,29	0,08	0.98	0.98	0.91	<10E-8	<10E-8	<10E-8	Р

KCNQ5	0,44	0,15	0,29	0,57	0,14	0,44	0,15	0.98	1	0.94	<10E-8	<10E-8	<10E-8	Р
LAMA1	0,49	0,23	0,26	0,58	0,24	0,34	0,08	0.97	0.98	0.93	<10E-8	<10E-8	<10E-8	Е
LHCGR	0,56	0,37	0,19	0,66	0,39	0,28	0,09	0.89	0.98	0.77	<10E-8	<10E-8	<10E-8	P, EN
ММР9	0,59	0,43	0,16	0,69	0,46	0,23	0,07	0.97	1	0.91	<10E-8	<10E-8	<10E-8	E, P, N
NELL1	0,49	0,24	0,25	0,6	0,24	0,36	0,11	0.99	0.98	0.97	<10E-8	<10E-8	<10E-8	E, N
NOS1	0,4	0,19	0,21	0,5	0,19	0,3	0,09	0.97	1	0.93	<10E-8	<10E-8	<10E-8	P, N, ER, C, CS, M
NPBWR1	0,45	0,22	0,23	0,57	0,25	0,33	0,09	0.99	1	0.97	<10E-8	<10E-8	<10E-8	Р
NPY2R	0,38	0,16	0,22	0,47	0,16	0,32	0,09	0.97	0.95	0.91	<10E-8	<10E-8	<10E-8	Р
OPRK1	0,52	0,25	0,27	0,59	0,27	0,32	0,05	0.96	0.95	0.92	<10E-8	<10E-8	<10E-8	Р
PCDHG@	0,64	0,38	0,26	0,74	0,44	0,31	0,05	0.98	0.98	0.96	<10E-8	<10E-8	<10E-8	Р
PCDHG@ 1	0,5	0,23	0,28	0,65	0,22	0,43	0,16	1	1	0.96	<10E-8	<10E-8	<10E-8	Р
PLCB1	0,44	0,18	0,26	0,57	0,16	0,41	0,14	0.99	0.98	0.96	<10E-8	<10E-8	<10E-8	E, N, C
PRKAR1B	0,51	0,17	0,34	0,67	0,27	0,4	0,06	0.99	1	0.96	<10E-8	<10E-8	<10E-8	С
PRKCB	0,25	0,06	0,19	0,38	0,05	0,32	0,13	0.96	1	0.89	<10E-8	<10E-8	<10E-8	P, E, N, C
PTGFR	0,5	0,34	0,16	0,58	0,39	0,2	0,04	0.98	1	0.96	<10E-8	<10E-8	<10E-8	P, E
RSPO2	0,44	0,18	0,26	0,56	0,18	0,38	0,12	0.99	0.98	0.95	<10E-8	<10E-8	<10E-8	E
RSPO3	0,48	0,25	0,23	0,59	0,28	0,31	0,08	0.95	0.98	0.89	4E-06	<10E-8	<10E-8	E
SCTR	0,5	0,26	0,24	0,64	0,24	0,4	0,17	0.91	0.95	0.78	<10E-8	<10E-8	<10E-8	P, CS
SDC2	0,33	0,08	0,25	0,43	0,08	0,35	0,1	0.96	0.98	0.94	<10E-8	<10E-8	<10E-8	P, E, L, GA
SFRP1	0,52	0,28	0,24	0,62	0,34	0,29	0,04	0.98	1	0.94	<10E-8	<10E-8	<10E-8	P, E, C
SFRP2	0,41	0,19	0,22	0,54	0,16	0,38	0,16	0.96	1	0.93	<10E-8	<10E-8	<10E-8	E
SHANK1	0,43	0,23	0,2	0,52	0,26	0,27	0,06	0.93	0.95	0.82	<10E-8	<10E-8	<10E-8	P, C, N

SLC12A5	0,58	0,41	0,17	0,69	0,44	0,25	0,08	0.94	0.95	0.86	<10E-8	<10E-8	<10E-8	Р
SLC18A3	0,5	0,28	0,22	0,61	0,3	0,31	0,09	0.94	0.91	0.87	<10E-8	<10E-8	<10E-8	P, GA
SLC32A1	0,48	0,28	0,19	0,57	0,3	0,27	0,08	0.99	0.98	0.95	<10E-8	<10E-8	<10E-8	Р
SLC5A7	0,44	0,25	0,18	0,56	0,25	0,31	0,12	0.98	1	0.92	<10E-8	<10E-8	<10E-8	Р
SLC6A1	0,49	0,31	0,18	0,57	0,31	0,25	0,07	0.97	1	0.92	<10E-8	<10E-8	<10E-8	Р
SLC6A11	0,55	0,39	0,16	0,65	0,42	0,22	0,06	0.97	0.98	0.88	<10E-8	<10E-8	<10E-8	Р
SLC6A3	0,43	0,23	0,2	0,58	0,25	0,33	0,13	0.98	1	0.92	<10E-8	<10E-8	<10E-8	Р
SLC8A1	0,56	0,25	0,3	0,69	0,31	0,38	0,08	0.99	0.98	0.96	3E-06	<10E-8	<10E-8	P, N
SLIT3	0,49	0,19	0,3	0,6	0,19	0,4	0,1	0.96	1	0.92	<10E-8	<10E-8	<10E-8	E, M
SPOCK1	0,39	0,17	0,23	0,53	0,17	0,37	0,14	0.98	1	0.95	<10E-8	<10E-8	<10E-8	Е
SYN3	0,4	0,19	0,22	0,51	0,17	0,34	0,13	0.92	1	0.8	<10E-8	<10E-8	<10E-8	С
VCAN	0,36	0,11	0,25	0,49	0,1	0,39	0,15	0.93	1	0.86	<10E-8	<10E-8	<10E-8	E, L, GA
VIPR2	0,48	0,23	0,26	0,64	0,23	0,41	0,15	0.99	1	0.97	<10E-8	<10E-8	<10E-8	Р

Extracellular = E

Endoplasmic reticulum = ER

Plasma membrane = P

Nucleus = N

Cytosol = C

Golgi apparatus = GA

Endosome = EN

Cytoskeleton = CS

Mitochondrion = M

Lysosome = L

Supporting Information Table 8: statistical performance measures relative to 74 identified CpG islands biomarkers

ADAMTS2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.961	0.909	0.977	0.819	0.997	0.581	40.012	0.093	1	31	0.887
178772794	95%_CI_lower_limit	0.943	0.874	0.882	-	0.982	0.467	5.762	0.066	-	-	-
	95%_CI_upper_limit	0.979	0.935	0.996	-	0.999	0.687	277.834	0.130	-	-	-
ADAMTS5		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr21:	Estimate	0.989	0.953	0.977	0.866	0.997	0.729	41.942	0.048	1	16	0.930
28337856- 28340237	95%_CI_lower_limit	0.98	0.925	0.882	-	0.983	0.604	6.041	0.030	-	-	-
	95%_CI_upper_limit	0.998	0.971	0.996	-	0.999	0.826	291.192	0.077	-	-	-
ADCY8		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr8:	Estimate	0.976	0.889	0.977	0.916	0.997	0.531	39.111	0.114	1	38	0.866
132054749	95%_CI_lower_limit	0.962	0.851	0.882	-	0.982	0.423	5.632	0.084	-	-	-
	95%_CI_upper_limit	0.99	0.918	0.996	-	0.999	0.636	271.601	0.154	-	-	-
ADRA1B		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.968	0.939	0.955	0.699	0.994	0.667	20.649	0.064	2	21	0.893
159399004- 159399928	95%_CI_lower_limit	0.951	0.908	0.849	-	0.978	0.544	5.330	0.042	-	-	-
	95%_CI_upper_limit	0.985	0.959	0.987	-	0.998	0.771	79.997	0.098	-	-	-
CACNA1A		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19:	Estimate	0.952	0.906	1.000	0.878	1.000	0.579	Inf	0.094	0	32	0.906
13616752- 13617267	95%_CI_lower_limit	0.93	0.871	0.920	-	0.988	0.467	NaN	0.067	-	-	-
	95%_CI_upper_limit	0.973	0.933	1.000	-	1.000	0.684	Inf	0.130	-	-	-
CACNA1E		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr1:	Estimate	0.934	0.810	0.955	0.909	0.993	0.393	17.819	0.199	2	65	0.764
181453073	95%_CI_lower_limit	0.908	0.765	0.849	-	0.974	0.305	4.596	0.159	-	-	-
	95%_CI_upper_limit	0.96	0.848	0.987	-	0.998	0.487	69.080	0.250	-	-	-
CDH4		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr20: 59826977-	Estimate	0.99	0.959	0.977	0.764	0.997	0.754	42.199	0.042	1	14	0.936
59828978	95%_CI_lower_limit	0.981	0.932	0.882	-	0.983	0.629	6.078	0.025	-	-	-
	95%_CI_upper_limit	0.998	0.975	0.996	-	0.999	0.848	292.973	0.070	-	-	-
COL23A1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.961	0.889	1.000	0.891	1.000	0.537	Inf	0.111	0	38	0.889
178017670	95%_CI_lower_limit	0.943	0.851	0.920	-	0.988	0.429	NaN	0.082	-	-	-
	95%_CI_upper_limit	0.98	0.918	1.000	-	1.000	0.640	Inf	0.150	-	-	-
COL4A1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr13:	Estimate	0.989	0.968	0.977	0.682	0.997	0.796	42.585	0.033	1	11	0.945
110960590	95%_CI_lower_limit	0.98	0.943	0.882	-	0.983	0.671	6.134	0.018	-	-	-

	95%_CI_upper_limit	0.997	0.982	0.996	-	0.999	0.882	295.644	0.059	-	-	-
CPLX1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr4:	Estimate	0.984	0.965	1.000	0.724	1.000	0.786	Inf	0.035	0	12	0.965
778661- 780592	95%_CI_lower_limit	0.972	0.940	0.920	-	0.988	0.662	NaN	0.020	-	-	-
	95%_CI_upper_limit	0.996	0.980	1.000	-	1.000	0.873	Inf	0.061	-	-	-
CREB3L1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr11:	Estimate	0.94	0.868	0.909	0.922	0.987	0.471	9.553	0.145	4	45	0.778
46316875- 46317485	95%_CI_lower_limit	0.915	0.828	0.788	-	0.966	0.368	3.749	0.109	-	-	-
	95%_CI_upper_limit	0.966	0.900	0.964	-	0.995	0.576	24.340	0.193	-	-	-
CREB5		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr7: 28448716-	Estimate	0.962	0.906	1.000	0.880	1.000	0.579	Inf	0.094	0	32	0.906
28450028	95%_CI_lower_limit	0.943	0.871	0.920	-	0.988	0.467	NaN	0.067	-	-	-
	95%_CI_upper_limit	0.98	0.933	1.000	-	1.000	0.684	Inf	0.130	-	-	-
CRHR2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr7:	Estimate	0.956	0.909	1.000	0.881	1.000	0.587	Inf	0.091	0	31	0.909
30721372-	95%_CI_lower_limit	0.937	0.874	0.920	-	0.988	0.474	NaN	0.065	-	-	-
50722445	95%_CI_upper_limit	0.976	0.935	1.000	-	1.000	0.691	Inf	0.127	-	-	-
CDISDI D1		AUC	Se	Sp	cutoff	DDV	NDV	DLR	DLR	FD	FN	Optimal
CRISFLDI	E-timete	AUC	0.012		0.840	0.004	0.592	Positive	Negative	2	20	criterion
chr8: 75896528-	Estimate	0.901	0.912	0.935	0.849	0.994	0.385	5 180	0.092	2	50	0.807
75897116	95%_CI_lower_limit	0.942	0.078	0.049	-	0.977	0.408	5.160	0.005	-	-	-
	95%_C1_upper_mm	0.98	0.938	0.987	-	0.998	0.090	/7.704	0.150	-	-	-
DKK2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr4:	Estimate	0.973	0.906	1.000	0.892	1.000	0.579	Inf	0.094	0	32	0.906
107956555-	95%_CI_lower_limit	0.958	0.871	0.920	-	0.988	0.467	NaN	0.067	-	-	-
107937433	95%_CI_upper_limit	0.988	0.933	1.000	-	1.000	0.684	Inf	0.130	-	-	-
EDNRB		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr13:	Estimate	0.916	0.787	0.909	0.900	0.985	0.354	8.652	0.235	4	73	0.696
78492425- 78493382	95%_CI_lower_limit	0.883	0.740	0.788	-	0.963	0.272	3.393	0.188	-	-	-
	95%_CI_upper_limit	0.949	0.827	0.964	-	0.994	0.446	22.061	0.294	-	-	-
EN2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr7:	Estimate	0.984	0.959	1.000	0.737	1.000	0.759	Inf	0.041	0	14	0.959
155255098- 155255311	95%_CI_lower_limit	0.973	0.932	0.920	-	0.988	0.635	NaN	0.025	-	-	-
	95%_CI_upper_limit	0.996	0.975	1.000	-	1.000	0.850	Inf	0.068	-	-	-
FBN1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr15:	Estimate	0.967	0.930	1.000	0.780	1.000	0.647	Inf	0.070	0	24	0.930
48936810- 48938577	95%_CI_lower_limit	0.95	0.898	0.920	-	0.988	0.528	NaN	0.048	-	-	-
	95%_CI_upper_limit	0.984	0.952	1.000	-	1.000	0.750	Inf	0.103	-	-	-

FBN2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr5:	Estimate	0.979	0.942	1.000	0.768	1.000	0.688	Inf	0.058	0	20	0.942
127872563-	95%_CI_lower_limit	0.965	0.911	0.920	-	0.988	0.566	NaN	0.038	-	-	-
127074945	95%_CI_upper_limit	0.992	0.962	1.000	-	1.000	0.788	Inf	0.089	-	-	-
FNDC1		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
chr6.	Estimate	0.957	0.898	1.000	0.886	1.000	0.557	Inf	0.102	0	35	0.898
159589636-	95%_CI_lower_limit	0.937	0.861	0.920	-	0.988	0.447	NaN	0.075	-	-	-
159591319	95%_CI_upper_limit	0.977	0.925	1.000	-	1.000	0.661	Inf	0.140	-	-	-
GAD2		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
chr10.	Estimate	0.961	0.863	1.000	0.929	1.000	0.484	Inf	0.137	0	47	0.863
26504383-	95%_CI_lower_limit	0.943	0.822	0.920	-	0.987	0.384	NaN	0.105	-	-	-
26507434	95%_CI_upper_limit	0.979	0.895	1.000	-	1.000	0.585	Inf	0.179	-	-	-
GHSR		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr3:	Estimate	0.965	0.880	0.977	0.901	0.997	0.512	38.725	0.123	1	41	0.857
172165372- 172166738	95%_CI_lower_limit	0.948	0.841	0.882	-	0.981	0.407	5.576	0.092	-	-	-
	95%_CI_upper_limit	0.982	0.910	0.996	-	0.999	0.616	268.929	0.164	-	-	-
GLRB		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr4:	Estimate	0.972	0.956	1.000	0.724	1.000	0.746	Inf	0.044	0	15	0.956
157997166- 157997686	95%_CI_lower_limit	0.955	0.929	0.920	-	0.988	0.622	NaN	0.027	-	-	-
	95%_CI_upper_limit	0.988	0.973	1.000	-	1.000	0.839	Inf	0.072	-	-	-
GNG7		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19:	Estimate	0.971	0.930	0.977	0.810	0.997	0.642	40.912	0.072	1	24	0.907
2513215- 2513696	95%_CI_lower_limit	0.956	0.898	0.882	-	0.982	0.522	5.892	0.049	-	-	-
	95%_CI_upper_limit	0.986	0.952	0.996	-	0.999	0.746	284.068	0.106	-	-	-
GRIA4		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr11:	Estimate	0.984	0.962	1.000	0.762	1.000	0.772	Inf	0.038	0	13	0.962
105481126-	95%_CI_lower_limit	0.973	0.936	0.920	-	0.988	0.648	NaN	0.022	-	-	-
103401422	95%_CI_upper_limit	0.995	0.978	1.000	-	1.000	0.862	Inf	0.065	-	-	-
GRIK3		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr1:	Estimate	0.968	0.901	1.000	0.903	1.000	0.564	Inf	0.099	0	34	0.901
37498377- 37500624	95%_CI_lower_limit	0.951	0.864	0.920	-	0.988	0.454	NaN	0.072	-	-	-
	95%_CI_upper_limit	0.984	0.928	1.000	-	1.000	0.669	Inf	0.137	-	-	-
GRIN2D		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19: 48918115-	Estimate	0.983	0.974	1.000	0.730	1.000	0.830	Inf	0.026	0	9	0.974
48918340	95%_CI_lower_limit	0.97	0.951	0.920	-	0.989	0.708	NaN	0.014	-	-	-
	95%_CI_upper_limit	0.996	0.986	1.000	-	1.000	0.908	Inf	0.050	-	-	-

GRIN2D_1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr19:	Estimate	0.995	0.974	0.955	0.785	0.994	0.824	21.421	0.028	2	9	0.928
48919173-	95%_CI_lower_limit	0.991	0.951	0.849	-	0.978	0.697	5.530	0.014	-	-	-
40919412	95%_CI_upper_limit	1	0.986	0.987	-	0.998	0.904	82.974	0.053	-	-	-
GRIN2D_2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr19:	Estimate	0.987	0.965	1.000	0.836	1.000	0.786	Inf	0.035	0	12	0.965
48945800-	95%_CI_lower_limit	0.976	0.940	0.920	-	0.988	0.662	NaN	0.020	-	-	-
48947030	95%_CI_upper_limit	0.997	0.980	1.000	-	1.000	0.873	Inf	0.061	-	-	-
GRIN3B		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19:	Estimate	0.899	0.848	0.886	0.841	0.983	0.429	7.462	0.172	5	52	0.734
1004324- 1005605	95%_CI_lower_limit	0.867	0.806	0.760	-	0.961	0.332	3.265	0.131	-	-	-
1000000	95%_CI_upper_limit	0.932	0.882	0.950	-	0.993	0.531	17.052	0.225	-	-	-
GRM6		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.928	0.699	1.000	0.956	1.000	0.299	Inf	0.301	0	103	0.699
178421225- 178422337	95%_CI_lower_limit	0.897	0.648	0.920	-	0.984	0.231	NaN	0.256	-	-	-
	95%_CI_upper_limit	0.958	0.745	1.000	-	1.000	0.378	Inf	0.354	-	-	-
GRM7		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr3:	Estimate	0.956	0.789	1.000	0.941	1.000	0.379	Inf	0.211	0	72	0.789
6902823- 6903516	95%_CI_lower_limit	0.934	0.743	0.920	-	0.986	0.296	NaN	0.171	-	-	-
	95%_CI_upper_limit	0.977	0.829	1.000	-	1.000	0.470	Inf	0.258	-	-	-
HAPLN4		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19:	Estimate	0.962	0.895	1.000	0.872	1.000	0.550	Inf	0.105	0	36	0.895
19371675- 19372393	95%_CI_lower_limit	0.944	0.858	0.920	-	0.988	0.441	NaN	0.077	-	-	-
	95%_CI_upper_limit	0.98	0.923	1.000	-	1.000	0.654	Inf	0.143	-	-	-
HTR1E		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr6:	Estimate	0.955	0.883	1.000	0.900	1.000	0.524	Inf	0.117	0	40	0.883
87647253- 87647707	95%_CI_lower_limit	0.936	0.845	0.920	-	0.987	0.418	NaN	0.087	-	-	-
	95%_CI_upper_limit	0.975	0.913	1.000	-	1.000	0.627	Inf	0.156	-	-	-
ITGA4		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr2:	Estimate	0.991	0.962	0.977	0.833	0.997	0.768	42.327	0.039	1	13	0.939
182321761- 182323029	95%_CI_lower_limit	0.982	0.936	0.882	-	0.983	0.642	6.097	0.023	-	-	-
102020029	95%_CI_upper_limit	0.999	0.978	0.996	-	0.999	0.859	293.863	0.066	-	-	-
ITGA8		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr10:	Estimate	0.975	0.912	0.977	0.869	0.997	0.589	40.140	0.090	1	30	0.890
15761423- 15762101	95%_CI_lower_limit	0.961	0.878	0.882	-	0.982	0.474	5.781	0.064	-	-	-
	95%_CI_upper_limit	0.989	0.938	0.996	-	0.999	0.695	278.725	0.127	-	-	-

JAM3		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr11:	Estimate	0.975	0.927	1.000	0.818	1.000	0.638	Inf	0.073	0	25	0.927
133938850-	95%_CI_lower_limit	0.961	0.894	0.920	-	0.988	0.520	NaN	0.050	-	-	-
155959081	95%_CI_upper_limit	0.989	0.950	1.000	-	1.000	0.741	Inf	0.107	-	-	-
KCNA1		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
chr12.	Estimate	0.974	0.904	1.000	0.922	1.000	0.571	Inf	0.096	0	33	0.904
5018585-	95% CI lower limit	0.96	0.868	0.920	_	0.988	0.460	NaN	0.070	_	_	_
5021171	95%_CI_upper_limit	0.988	0.930	1.000	-	1.000	0.676	Inf	0.133	-	-	-
KCNA3		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
aba1.	Estimate	0 979	0 939	0 977	0.875	0 997	0.672	41 298	0.063	1	21	0.916
111216244-	95% CL lower limit	0.966	0.908	0.882	-	0.983	0.550	5 948	0.005	-	-	0.910
111217937	95% CI upper limit	0.992	0.959	0.996	_	0.999	0.774	286.739	0.095	_	_	-
	,,,,_,_,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
KCNQ5		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr6:	Estimate	0.983	0.942	1.000	0.852	1.000	0.688	Inf	0.058	0	20	0.942
73330942- 73333109	95%_CI_lower_limit	0.972	0.911	0.920	-	0.988	0.566	NaN	0.038	-	-	-
	95%_CI_upper_limit	0.995	0.962	1.000	-	1.000	0.788	Inf	0.089	-	-	-
LAMA1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr18:	Estimate	0.977	0.939	0.955	0.852	0.994	0.667	20.649	0.064	2	21	0.893
7116852- 7118241	95%_CI_lower_limit	0.963	0.908	0.849	-	0.978	0.544	5.330	0.042	-	-	-
	95%_CI_upper_limit	0.991	0.959	0.987	-	0.998	0.771	79.997	0.098	-	-	-
LHCGR		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr2:	Estimate	0.923	0.798	1.000	0.911	1.000	0.389	Inf	0.202	0	69	0.798
48982621-	95%_CI_lower_limit	0.896	0.753	0.920	-	0.986	0.305	NaN	0.163	-	-	-
40702750	95%_CI_upper_limit	0.951	0.837	1.000	-	1.000	0.482	Inf	0.249	-	-	-
MMP9		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr20:	Estimate	0.909	0.781	0.955	0.898	0.993	0.359	17.175	0.230	2	75	0.735
44640288-	95%_CI_lower_limit	0.878	0.734	0.849	-	0.973	0.278	4.429	0.186	-	-	-
44041210	95%_CI_upper_limit	0.94	0.821	0.987	-	0.998	0.449	66.599	0.283	-	-	-
NELL1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr11:	Estimate	0.985	0.953	1.000	0.872	1.000	0.733	Inf	0.047	0	16	0.953
20690579-	95%_CI_lower_limit	0.974	0.925	0.920	-	0.988	0.610	NaN	0.029	-	-	-
20091845	95%_CI_upper_limit	0.995	0.971	1.000	-	1.000	0.829	Inf	0.075	-	-	-
NOS1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr12:	Estimate	0.967	0.924	0.977	0.837	0.997	0.623	40.655	0.078	1	26	0.901
117799076- 117799448	95%_CI_lower_limit	0.951	0.891	0.882	-	0.982	0.505	5.855	0.054	-	-	-
	95%_CI_upper_limit	0.984	0.948	0.996	-	0.999	0.728	282.287	0.113	-	-	-

NPBWR1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr8:	Estimate	0.988	0.971	1.000	0.787	1.000	0.815	Inf	0.029	0	10	0.971
53851701- 53854426	95%_CI_lower_limit	0.978	0.947	0.920	-	0.989	0.692	NaN	0.016	-	-	-
55054420	95%_CI_upper_limit	0.998	0.984	1.000	-	1.000	0.896	Inf	0.054	-	-	-
NPY2R		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
ahr/1	Estimate	0.97	0.909	0.955	0.851	0.994	0.575	20.006	0.095	2	31	0.864
156129168-	95% CI lower limit	0.953	0.874	0.849	-	0.977	0.461	5.163	0.067	-	-	-
156130209	95% CI upper limit	0.986	0.935	0.987	-	0.998	0.682	77.515	0.134	_	-	_
OPRK1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr8:	Estimate	0.963	0.918	0.955	0.848	0.994	0.600	20.199	0.086	2	28	0.873
54163303- 54164443	95%_CI_lower_limit	0.946	0.884	0.849	-	0.977	0.483	5.213	0.060	-	-	-
	95%_CI_upper_limit	0.981	0.943	0.987	-	0.998	0.707	78.260	0.123	-	-	-
PCDHG.		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.978	0.965	0.977	0.798	0.997	0.782	42.456	0.036	1	12	0.942
140857864- 140858065	95%_CI_lower_limit	0.964	0.940	0.882	-	0.983	0.656	6.115	0.021	-	-	-
110000000	95%_CI_upper_limit	0.992	0.980	0.996	-	0.999	0.871	294.754	0.063	-	-	-
PCDHG1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.996	0.962	1.000	0.922	1.000	0.772	Inf	0.038	0	13	0.962
140864527- 140864748	95%_CI_lower_limit	0.99	0.936	0.920	-	0.988	0.648	NaN	0.022	-	-	-
110001/10	95%_CI_upper_limit	1.001	0.978	1.000	-	1.000	0.862	Inf	0.065	-	-	-
PLCB1		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR Negative	FP	FN	Optimal
chr20.	Estimate	0.892	0.769	0.977	0.846	0.996	0.352	33.836	0.236	1	79	0.746
8112884-	95%_CI_lower_limit	0.86	0.721	0.882	-	0.979	0.273	4.870	0.194	-	-	-
8115592	95%_CI_upper_limit	0.924	0.811	0.996	-	0.999	0.441	235.090	0.288	-	-	-
PRKAR1R		AUC	Se	Sn	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
1.7	Estimate	0.986	0.956	-r 1.000	0.853	1.000	0.746	Positive	Negative	0	15	criterion 0.956
751712-	95% CL lower limit	0.974	0.929	0.920	-	0.988	0.622	NaN	0.027	-	-	-
752150	95%_CI_upper_limit	0.997	0.973	1.000	-	1.000	0.839	Inf	0.072	-	-	-
			~	~				DLR	DLR			Optimal
РККСВ		AUC	Se	Sp	cutoff	PPV	NPV	Positive	Negative	FP	FN	criterion
chr16: 23846941-	Estimate	0.961	0.904	0.977	0.810	0.997	0.566	39.754	0.099	1	33	0.881
23848102	95%_CI_lower_limit	0.943	0.868	0.882	-	0.982	0.454	5.725	0.071	-	-	-
	95%_CI_upper_limit	0.979	0.930	0.996	-	0.999	0.671	276.053	0.137	-	-	-
PTGFR		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr1:	Estimate	0.932	0.819	0.955	0.906	0.993	0.404	18.012	0.190	2	62	0.773
78957516	95%_CI_lower_limit	0.906	0.774	0.849	-	0.975	0.315	4.646	0.150	-	-	-
	95%_CI_upper_limit	0.959	0.856	0.987	-	0.998	0.500	69.824	0.240	-	-	-

RSPO2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positivo	DLR Nagativa	FP	FN	Optimal
chr8.	Estimate	0.987	0.947	0.977	0.882	0.997	0.705	41.684	0.054	1	18	0.925
109094485-	95%_CI_lower_limit	0.977	0.918	0.882	-	0.983	0.581	6.004	0.034	-	-	-
109095849	95%_CI_upper_limit	0.996	0.966	0.996	-	0.999	0.804	289.411	0.085	-	-	-
RSPO3		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
chr6	Estimate	0.947	0.895	0.977	0.871	0.997	0.544	39.368	0.108	1	36	0.872
127441553-	95% CI lower limit	0.925	0.858	0.882	-	0.982	0.435	5.669	0.079	-	-	-
127441760	95%_CI_upper_limit	0.969	0.923	0.996	-	0.999	0.650	273.382	0.147	-	-	-
SCTR		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal
chr2:	Estimate	0.964	0.930	1.000	0.771	1.000	0.647	Inf	0.070	0	24	0.930
120281661-	95%_CI_lower_limit	0.946	0.898	0.920	-	0.988	0.528	NaN	0.048	-	-	-
120282211	95%_CI_upper_limit	0.982	0.952	1.000	-	1.000	0.750	Inf	0.103	-	-	-
SDC2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr8:	Estimate	0.962	0.936	0.977	0.615	0.997	0.662	41.170	0.066	1	22	0.913
97505747- 97507607	95%_CI_lower_limit	0.944	0.905	0.882	-	0.983	0.540	5.929	0.044	-	-	-
	95%_CI_upper_limit	0.981	0.957	0.996	-	0.999	0.765	285.849	0.099	-	-	-
SFRP1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr8:	Estimate	0.983	0.944	1.000	0.862	1.000	0.698	Inf	0.056	0	19	0.944
41165852- 41167140	95%_CI_lower_limit	0.972	0.915	0.920	-	0.988	0.576	NaN	0.036	-	-	-
	95%_CI_upper_limit	0.994	0.964	1.000	-	1.000	0.798	Inf	0.086	-	-	-
SFRP2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr4:	Estimate	0.964	0.933	1.000	0.754	1.000	0.657	Inf	0.067	0	23	0.933
154709512- 154710827	95%_CI_lower_limit	0.945	0.901	0.920	-	0.988	0.537	NaN	0.045	-	-	-
	95%_CI_upper_limit	0.982	0.955	1.000	-	1.000	0.759	Inf	0.100	-	-	-
SHANK1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr19:	Estimate	0.939	0.860	0.955	0.873	0.993	0.467	18.912	0.147	2	48	0.814
51169659- 51172023	95%_CI_lower_limit	0.915	0.819	0.849	-	0.976	0.367	4.880	0.112	-	-	-
	95%_CI_upper_limit	0.962	0.892	0.987	-	0.998	0.569	73.298	0.193	-	-	-
SLC12A5		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr20:	Estimate	0.93	0.751	0.977	0.936	0.996	0.336	33.064	0.254	1	85	0.729
44685771- 44687610	95%_CI_lower_limit	0.901	0.703	0.882	-	0.978	0.260	4.759	0.210	-	-	-
	95%_CI_upper_limit	0.959	0.794	0.996	-	0.999	0.421	229.747	0.307	-	-	-
SLC18A3		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr10: 50817601-	Estimate	0.97	0.939	0.977	0.815	0.997	0.672	41.298	0.063	1	21	0.916
50820356	95%_CI_lower_limit	0.955	0.908	0.882	-	0.983	0.550	5.948	0.041	-	-	-
	95%_CI_upper_limit	0.986	0.959	0.996	-	0.999	0.774	286.739	0.095	-	-	-

SLC32A1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr20:	Estimate	0.978	0.915	1.000	0.893	1.000	0.603	Inf	0.085	0	29	0.915
37352130-	95%_CI_lower_limit	0.965	0.881	0.920	-	0.988	0.488	NaN	0.060	-	-	-
51551512	95%_CI_upper_limit	0.991	0.940	1.000	-	1.000	0.707	Inf	0.120	-	-	-
SLC5A7		AUC	Se	Sn	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
	Estimate	0.044	0.863	0.055	0.870	0.003	0.472	Positive	Negative	2	17	criterion
chr2: 108602824-	95% CL lower limit	0.021	0.805	0.935	0.070	0.975	0.372	18.577	0.144	2	47	0.017
108603467	95% CL upper limit	0.921	0.822	0.049	-	0.970	0.575	72 546	0.110	-	-	-
	95%_CI_upper_mmt	0.900	0.895	0.987	-	0.998	0.575	73.340	0.189	-	-	-
SLC6A1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr3:	Estimate	0.973	0.918	1.000	0.808	1.000	0.611	Inf	0.082	0	28	0.918
11034446- 11035384	95%_CI_lower_limit	0.959	0.884	0.920	-	0.988	0.496	NaN	0.057	-	-	-
11000001	95%_CI_upper_limit	0.988	0.943	1.000	-	1.000	0.715	Inf	0.117	-	-	-
SLC6A11		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr3:	Estimate	0.973	0.883	0.977	0.907	0.997	0.518	38.854	0.120	1	40	0.860
10857687- 10858447	95%_CI_lower_limit	0.958	0.845	0.882	-	0.982	0.412	5.595	0.089	-	-	-
10050117	95%_CI_upper_limit	0.988	0.913	0.996	-	0.999	0.622	269.820	0.161	-	-	-
SLC6A3		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
-15-	Estimate	0 984	0.921	1.000	0 874	1.000	0.620	Positive	Negative	0	27	criterion
1444678-	95% CL lower limit	0.973	0.888	0.920	-	0.988	0.503	NaN	0.055	-	-	-
1446648	95% CL upper limit	0.994	0.945	1.000	_	1.000	0.724	Inf	0.113	_	_	-
	yo w_or_uppor_mine	0.000	010 10	11000		1000	01121		01110			
SLC8A1		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr2:	Estimate	0.965	0.918	0.955	0.828	0.994	0.600	20.199	0.086	2	28	0.873
40678477- 40678717	95%_CI_lower_limit	0.949	0.884	0.849	-	0.977	0.483	5.213	0.060	-	-	-
	95%_CI_upper_limit	0.982	0.943	0.987	-	0.998	0.707	78.260	0.123	-	-	-
SLIT3		AUC	Se	Sp	cutoff	PPV	NPV	DLR	DLR	FP	FN	Optimal
chr5.	Estimate	0.964	0.918	1.000	0.870	1.000	0.611	Inf	0.082	0	28	0.918
168727429-	95% CI lower limit	0.946	0.884	0.920	-	0.988	0.496	NaN	0.057	_	_	_
168728275	95%_CI_upper_limit	0.981	0.943	1.000	-	1.000	0.715	Inf	0.117	-	-	-
								DLR	DLR			Optimal
SPOCK1		AUC	Se	Sp	cutoff	PPV	NPV	Positive	Negative	FP	FN	criterion
chr5:	Estimate	0.98	0.953	1.000	0.760	1.000	0.733	Inf	0.047	0	16	0.953
136835146	95%_CI_lower_limit	0.967	0.925	0.920	-	0.988	0.610	NaN	0.029	-	-	-
	95%_CI_upper_limit	0.993	0.971	1.000	-	1.000	0.829	Inf	0.075	-	-	-
SYN3		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr22:	Estimate	0.969	0.906	1.000	0.896	1.000	0.579	Inf	0.094	0	32	0.906
33454505	95%_CI_lower_limit	0.952	0.871	0.920	-	0.988	0.467	NaN	0.067	-	-	-
	95%_CI_upper_limit	0.985	0.933	1.000	-	1.000	0.684	Inf	0.130	-	-	-

VCAN		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
chr5:	Estimate	0.927	0.860	1.000	0.854	1.000	0.478	Inf	0.140	0	48	0.860
82768387- 82769268	95%_CI_lower_limit	0.901	0.819	0.920	-	0.987	0.379	NaN	0.108	-	-	-
	95%_CI_upper_limit	0.952	0.892	1.000	-	1.000	0.579	Inf	0.182	-	-	-
VIPR2		AUC	Se	Sp	cutoff	PPV	NPV	DLR Positive	DLR Negative	FP	FN	Optimal criterion
VIPR2 chr7:	Estimate	AUC 0.99	Se 0.971	Sp 1.000	cutoff 0.867	PPV 1.000	NPV 0.815	DLR Positive Inf	DLR Negative 0.029	FP 0	FN 10	Optimal criterion 0.971
VIPR2 chr7: 158936507- 158938492	Estimate 95%_CI_lower_limit	AUC 0.99 0.981	Se 0.971 0.947	Sp 1.000 0.920	cutoff 0.867	PPV 1.000 0.989	NPV 0.815 0.692	DLR Positive Inf NaN	DLR Negative 0.029 0.016	FP 0 -	FN 10 -	Optimal criterion 0.971

AUC: Area Under the ROC curve

Se: sensitivity

Sp: specificity

cutoff: individuals with a test value lower than the cutoff are classified as healthy (negative test), whereas patients with a test value greater than (or equal to) the cutoff are classified as diseased (positive test). The estimation of the optimal cutoff has been evalueted using the Youden index method that gives equal weight to sensitivity and specificity.

PPV: positive predictive value

NPV: negative predictive value

DLR.Positive: positive diagnostic likelihood ratio

DLR.Negative: negative diagnostic likelihood ratio

FP: false positive

FN: false negative

Optimal_criterion: the numerical value of the criterion (Youden index) at the optimal cutpoint

Supporting Information Table 9: Clinical features of the forty five CRC cases enrolled for cell free DNA samples analysed by methyl-BEAMing¹

Patient ID ²	Gender	Age	Stage at diagnosis	Patient category	CEA	Genetic alterations	% of DNA KRAS mutated in plasma	Number of metastases	Resection of primary tumor
CP26	М	58	II	Metastatic patient	1.1	BRAF mutated	0	5+	
CP15	М	71	Ш	Metastatic patient	2.2	Wilde Type	Х	5+	no
CP28	М	68	IV	Metastatic patient	2.9	Wilde Type	Х	5+	yes
CP27	М	80	II	Metastatic patient	1.7	KRAS mutated	0	5+	no
CP47	F	72	IV	Metastatic patient	2.9	Wilde Type	Х	5+	yes
CP25	М	80	III	Metastatic patient	0.9	KRAS mutated	0		no
CP18	М	57	IV	Metastatic patient	1.9	Wilde Type	Х	5	no
CP16	F	59	IV	Metastatic patient	1.8	KRAS mutated	0	1	no
CP52	F	64	III	Metastatic patient	4.7	BRAF mutated	0	5+	no
CP19	М	74	IV	Metastatic patient	1.4	KRAS mutated	0	5+	yes
CP30	М	69	II	Metastatic patient	1.9	Wilde Type	Х	4	no
CP24	М	69	IV	Metastatic patient	4.1	KRAS mutated	0	5+	no
CP06	М	63	III	Metastatic patient	3.7	KRAS mutated	0	2	no
CP01	М	71	IV	Metastatic patient	4.4	Wilde Type	Х	5+	no
CP51	F	62	III	Metastatic patient	1.5	KRAS mutated	0		no
CP02	М	49	IV	Metastatic patient	64.7	KRAS mutated	17	5+	no
CP04	М	70	IV	Metastatic patient	50.1	KRAS mutated	12.4	5+	no
CP05	М	62	IV	Metastatic patient	47.5	Wilde Type	Х	4	no
CP11	М	74	IV	Metastatic patient	36.2	KRAS mutated	0.11	11+	yes
CP12	М	63	IV	Metastatic patient	73.7	KRAS mutated	13.2	5 +	yes
CP13	F	67	IV	Metastatic patient	8.3	KRAS mutated	0	5+	no
CP14	F	71	IV	Metastatic patient	896.3	KRAS mutated	0	5+	no
CP31	F	71	IV	Metastatic patient	46.6	Wilde Type	Х	5+	no
CP33	F	56	IV	Metastatic patient	9.7	Wilde Type	Х	5+	yes
CP35	F	69	IV	Metastatic patient	18.6	Wilde Type	Х	5+	yes
CP36	М	69	IV	Metastatic patient	262.5	KRAS mutated	33	5+	yes
CP38	F	83	IV	Metastatic patient	146.5	KRAS mutated	0	5+	no
CP39	F	70	III	Metastatic patient	15.4	Wilde Type	Х		no
CP40	М	43	IIIc	Metastatic patient	10.5	KRAS mutated	0	4 (+ lymph nodes)	yes
CP49	F	76	IV	Metastatic patient	2396	Wilde Type	Х		no
CP50	М	66	IV	Metastatic patient	46.7	KRAS mutated	2	5+	no
CP53	М	69	IV	Metastatic patient	417.9	KRAS mutated	3	5+	no
CP54	F	67	IV	Metastatic patient	25.1	KRAS mutated	1.9	5+	yes
CP03	F	64	III	NED patient	1.2	Wilde Type	Х		no

CP07	F	69	III	NED patient	1.8	Wilde Type	Х		no
CP09	М	59	II	NED patient	2.9	Wilde Type	Х		no
CP10	М	65	IV	NED patient	20.4	KRAS mutated	0	2	yes
CP17	F	59	III	NED patient	3.5	BRAF mutated	0		no
CP20	М	72	IV	NED patient	2.3	Wilde Type	Х		no
CP21	М	56	III	NED patient	3.8	KRAS mutated	0		no
CP23	F	56	II	NED patient	3.1	Wilde Type	Х		no
CP29	М	52	IV	NED patient	3.1	KRAS mutated	0	1	no
CP32	М	57	III	NED patient	24.3	Wilde Type	Х		yes
CP34	М	46	II	NED patient	NA	NA	Х		no
CP55	М	79	III	NED patient	28.2	NA	Х		

¹ The primer sequences are reported in **Appendix Table S8.** More protocol details can be found in references 16 and 17.

 2 All DNA samples were treated with sodium bisulfite using the EZ DNA Methylation Gold Kit $^{\rm TM}$ (Zymo Research).

Supporting Information Table 10: Association between methylation status and cancer of some genes associated to the CpG islands found altered in this study

Gene Name	Associated Disease	Reference
ADAMTS5 ADRA1B	CRC Bipolar disorder	Kim, Young-Ho, et al. Annals of surgical oncology 18.8 (2011): 2338-2347. doi: 10. 1245/s10434-011-1573-y Sugawara, Hiroko, et al. Progress in Neuro-Psychopharmacology and Biological Psychiatry 56 (2015): 117-121. doi: 10.1016/j.pnpbp.2014.08.010
	Cell line (SK-N-MC and DU145)	Michelotti, Gregory A., et al. The FASEB Journal 21.9 (2007): 1979-1993. doi: 10.1096/fj.06-7118com
	Gastric cancer	Noda, H., et al. British journal of cancer 96.2 (2007): 383-390. doi:10.1038/sj.bjc.6603555
CACNA1	Bladder cancer	García-Baquero, Rodrigo, et al. Tumor Biology 35.6 (2014): 5777-5786. doi:10. 1007/ s13277-014-1767-6
	Bladder cancer	García-Baquero, Rodrigo, et al. The Journal of urology 190.2 (2013): 723-730. doi:10.1016/j.juro.2013.01.105
	Ovarian clear cell adenocarcinoma (OCCA)	Ho, Chih-Ming, et al. Mol Cancer 11 (2012): 53. doi: 10.1186/1476-4598-11-53
	Triple-negative breast carcinomas	Branham, M. T., et al. Oncogenesis 1.7 (2012): e17. doi:10.1038/oncsis.2012.17
	Lung cancer	Castro, Mónica, et al. J Transl Med 8.86 (2010): 1479-5876.doi:10. 1186/ 1479-5876-8-86
	Prostate cancer	Kinney, Shannon R. Morey, et al. Molecular Cancer Research 6.8 (2008): 1365-1374. doi:10.1158/1541-7786.MCR-08-0040
CDH4	Gastric cancer	Zhou, Lin, et al. Cancer biology & therapy 16.8 (2015): 1241-1251. doi:10.1080/15384047.2015.1056411
	CRC	Nishioka, Y., et al. The International journal of biological markers 30.1 (2014): e81-7. doi:10.5301/jbm.5000099
	Gastric cancer	Zhou, Lin, et al. The FASEB Journal 27.12 (2013): 4929-4939. doi:10.1096/fj.13-233387
	Nasopharyngeal carcinoma Head and neck squamous cell carcinoma (HNSCC) and Salivary rinses	Du, Chunping, et al. Cancer letters 309.1 (2011): 54-61. doi:10.1016/j.canlet.2011.05.016 Demokan, Semra, et al. International Journal of Cancer 127.10 (2010): 2351-2359. doi: 10.1002/ijc.25248 doi: 10.1002/ijc.25248
	Gastric cancer	Tani, Nobuyuki, et al. Gan to kagaku ryoho. Cancer & chemotherapy 33.12 (2006): 1720-1722.
	Colorectal and Gastric cancer	Miotto, Elena, et al. Cancer research 64.22 (2004): doi: 10.1158/0008-5472.CAN-04-30008156-8159.
СНАТ	Astrocytomas	Wu, Xiwei, et al. Cancer research 70.7 (2010): 2718-2727. doi: 10.1158/0008-5472.CAN-09-3631
	Cell lines (NE1-115 cell; NG108-15)	Quirin-Stricker, C., et al. Molecular brain research 23.3 (1994): 253-265. doi:10.1016/0169-328X(94)90232-1
COL23A1	Gastric carcinomas	Yamanoi, Kazuhiro, et al. Cancer Research 74.19 Supplement (2014): 1370-1370. doi: 10.1093/carcin/bgv013
COL4A1	Uterine leiomyomas	Maekawa, Ryo, et al. PLoS ONE 8(6): e66632. (2013): e66632. doi:10.1371/journal.pone.0066632
COL4A2	CRC	Mitchell, Susan M., et al. BMC cancer 14.1 (2014): 54. doi:10.1186/1471-2407-14-54
	Uterine leiomyomas	Maekawa, Ryo, et al. PLoS ONE 8(6): e66632. (2013): e66632. doi:10.1371/journal.pone.0066632
CREB3L1	Bladder cancer	Rose, Michael, et al. Epigenetics 9.12 (2014): 1626-1640. doi: 10.1002/path.4210
	Human papillomavirus (hrHPV)	Steenbergen, Renske DM, et al. The Journal of pathology 231.1 (2013): 53-62. doi: 10.1002/path.4210
DKK 2	Nasopharyngeal carcinoma	Li, Lili, et al. Epigenomics 0 (2014): 155-173. doi:10.2217/epi.14.79
	CRC	Silva, Ana-Luisa, et al. BMC cancer 14.1 (2014): 891. doi: 10.1186/1471-2407-14-891

	Sinha, Shriprakash. Integrative Biology 6.11 (2014): 1034-1048. doi: 10.1039/C4IB00124A
CRC	Harada, Taku, et al. Cancer Prevention Research 7.10 (2014): 1002-1010. doi:10.1158/1940-6207.CAPR-14-0162
CRC	Farkas, Sanja A., et al. Epigenomics 6.2 (2014): 179-191. doi:10.2217/epi.14.7
CRC	Silva, Tiago Donizetti, et al. Oncology letters 6.6 (2013): 1687-1692. doi: 10.3892/ol.2013.1606
Cholangiocarcinomas	Goeppert, Benjamin, et al. Hepatology 59.2 (2014): 544-554. doi: 10.1002/hep.26721
Gastric cancer	Suzuki, Ryo, et al. Journal of gastroenterology 49.7 (2014): 1135-1144. doi: 10.1007/s00535-013-0861-7
Medulloblastoma	Valdora, Francesca, et al. International journal of molecular sciences 14.4 (2013): 7492-7505. doi: 10.3390/ijms14047492
Ovarian carcinoma	Zhu, Jing, et al. Carcinogenesis (2012): bgs278. doi: 10.1093/carcin/bgs278
Primary B cell chronic lymphocytic leukaemia	Moskalev, Evgeny A., et al. BMC cancer 12.1 (2012): 213. doi: 10.1186/1471-2407-12-213
Cylindromas/Spiradenomas	Rajan, Neil, et al. The Journal of pathology 224.3 (2011): 309-321. doi: 10.1002/path.2896
Lung adenocarcinoma	Jung, Il Lae, et al. International journal of molecular medicine 26.1 (2010): 33-38. doi: 10.1002/path.2896
Renal cancer	Hirata, Hiroshi, et al. Clinical Cancer Research 15.18 (2009): 5678-5687. doi: 10.1158/1078-0432
Gastrointestinal cancer	Maehata, Tadateru, et al. World journal of gastroenterology: WJG 14.17 (2008): 2702. doi: 10.3748/wjg.14.2702
Gastrointestinal cancer	Sato, Hironobu, et al. Carcinogenesis 28.12 (2007): 2459-2466. doi: 10.1093/carcin/bgm178
	Katoh, Masuko, and Masaru Katoh. Oncology reports 14.3 (2005): 783-787.
Hepatocellular Carcinoma	Chen, Haiyan, et al. Journal of Cancer 6.8 (2015): 740. doi: 10.7150/jca.11691
head and neck squamous cell carcinoma	Hayashi, Masamichi, et al. Cancer (2015). DOI: 10.1002/cncr.29303
head and neck squamous cell carcinoma	Mydlarz, Wojciech K., et al. Head & neck (2014). doi: 10.1002/hed.23842
head and neck squamous cell carcinoma	Hayashi, Masamichi, et al. Annals of surgical oncology 21.9 (2014): 3124-3131. DOI 10.1245/s10434-014-3661-2
cervical intraepithelial neoplasia	Vasiljević, Nataša, et al. Gynecologic oncology 132.3 (2014): 709-714. doi: 10.1016/j.ygyno.2014.02.001
CRC	Chen, Cheng, et al. Diagn Pathol 8.1 (2013): 199. doi: 10.1186/1746-1596-8-199
prostate/bladder/clear cell renal carcinomas	Watanabe, Junko, et al. Journal of cancer research and clinical oncology 140.1 (2014): 99-107. doi: 10.1007/s00432-013-1546-6 Qu, Yiping, Siwen Dang, and Peng Hou. "Gene methylation in gastric cancer." Clinica Chimica Acta 424 (2013): 53-65. doi: 10.1016/j.cog.2013.05.002
	Schussel Juliana et al. Clinical Cancer Pescarch 10 12 (2013): 3268 3275 doi: 10.1158/1078.0432.CCP.12.3406
head pack concer	Poh. Jong I. val. et al. Clinical Cancer Pasearch (2013). doi: 10.1158/1078-0432.CCP.12.3047
oral/oranhammagal squamous call carainama	do Eroitos Cordeiro Silva Malissa et al Malagular biology reports 20.12 (2012): 10111-10110. doi: 10.1007/s11022.012.1885.4
hand and nack squamous call carcinoma	Pob Long Lyal et al. Head & peak 24.11 (2012): 1520-1526 doi: 10.1002/bed 21082
arel/arenhammenel aguemene cell acreineme	Non, Jong-Lyer, et al. Head & net K 54.11 (2012). $1529-1550$. doi: 10.1002/net.21982
Non musels investive bladder sensor	Viet, Chi I., et al. PAIN® 152.10 (2011): 2525-2552. doi: $10.1010/J.pain.2011.00.025$
Prostate gapage	Zurvenoon, ramita, et al. Dio international 109.0 (2012). 941-946. doi: 10.1111/J.1404-410A.2011.10426.X
arel/oronharingcol squamous coll coroinome	x as nevro. Insta Ja, Ct al. Discase markets 50.4 (2011). 151-101. doi: 10.5255/DWA-2011-0190
orai/oropharyngear squamous cell carcinoma	Guenero-Freston, Karaer, et al. Cancer prevention research 4.7 (2011): 1001-1072. doi: 10.1158/1940-0207.CAPK-11-0006

EDNRB
oral/oropharyngeal squamous cell carcinoma	de Freitas Cordeiro-Silva, Melissa, et al. Molecular biology reports 38.8 (2011): 5435-5441. doi: 10.1007/s11033-011-0698-1.
Gastric cancer	Tao, Kaixiong, et al. Medical Oncology 29.1 (2012): 107-112. doi: 10.1007/s12032-010-9805-8
Glioma	De Tayrac, Marie, et al. Clinical Cancer Research 17.2 (2011): 317-327. doi: 10.1158/1078-0432.CCR-10-1126
Oral cancer	Pattani, Kavita Malhotra, et al. Cancer Prevention Research 3.9 (2010): 1093-1103. doi: 10.1158/1940-6207.CAPR-10-0115.
oral/oropharyngeal squamous cell carcinoma	Kaur, Jatinder, et al. International Journal of Cancer 127.10 (2010): 2367-2373. doi: 10.1002/ijc.25377.
head and neck carcinogenesis	Demokan, Semra, et al. International Journal of Cancer 127.10 (2010): 2351-2359. doi: 10.1002/ijc.25248. Phé, Veronique, Olivier Cussenot, and Morgan Rouprêt. BJU international 105.10 (2010): 1364-1370. doi: 10.1111/j.1464-
Urothelial cell carcinomas	Phé, Véronique, Olivier Cussenot, and Morgan Rouprêt. BJU international 104.7 (2009): 896-901. doi: 10.1111/j.1464- 410X.2009.08696.x.
Bladder cancer	Wolff, Erika M., et al. Cancer research 68.15 (2008): 6208-6214. doi: 10.1158/0008-5472.CAN-07-6616
esophageal squamous cell carcinoma	Zhao, B-J., et al. Diseases of the Esophagus 22.1 (2009): 55-61. doi: 10.1111/j.1442-2050.2008.00848.x
leukemia	Hsiao, P., et al. Chinese Journal of Physiology 51.1 (2008): 27.
Prostate cancer	Ellinger, Jörg, et al. Urology 71.1 (2008): 161-167. doi: 10.1016/j.urology.2007.09.056
Nasopharyngeal carcinoma	Zhou, Liang, et al. Oncology 72.5-6 (2007): 357-363. doi: 10.1159/000113146.
Prostate cancer	Bastian, Patrick J., et al. The Journal of urology 179.2 (2008): 529-535. doi:10.1016/j.juro.2007.09.038
Non-muscle-invasive bladder cancer	Friedrich, M. G., et al. Der Urologe. Ausg. A 46.7 (2007): 761-768. DOI: 10.1007/s00120-007-1360-3
Bladder cancer	Yates, David R., et al. Clinical Cancer Research 13.7 (2007): 2046-2053. doi: 10.1158/1078-0432.CCR-06-2476
Prostate cancer	Rogers, Craig G., et al. The Journal of urology 176.5 (2006): 2280-2284. doi:10.1016/j.juro.2006.07.047
endometrial carcinoma	Zhu, J. Z., et al. Zhonghua bing li xue za zhi Chinese journal of pathology 35.8 (2006): 489.
Prostate cancer	Bastian, Patrick J., et al. European urology 51.3 (2007): 665-674. doi:10.1016/j.eururo.2006.08.008
Renal cancer	Pflug, Beth R., et al. Cancer letters 246.1 (2007): 139-148. doi:10.1016/j.canlet.2006.02.007
Hepatocellular Carcinoma	Hsu, Li-Sung, et al. Oncology reports 15.2 (2006): 507-511.DOI: 10.3892/or.15.2.507
Lung cancer	Chen, Shu-Chen, et al. Oncology reports 15.1 (2006): 167-172. DOI: 10.3892/or.15.1.167
Non-muscle-invasive bladder cancer	Friedrich, Martin G., et al. European Journal of Cancer 41.17 (2005): 2769-2778. doi:10.1016/j.ejca.2005.07.019
Bladder cancer	Friedrich, Martin G., et al. Clinical Cancer Research 10.22 (2004): 7457-7465. doi: 10.1158/1078-0432.CCR-04-0930
Prostate cancer	Singal, Rakesh, et al. Oncology reports 12.3 (2004): 631-637. DOI: 10.3892/or.12.3.631
Prostate cancer	Woodson, Karen, et al. The Prostate 60.1 (2004): 25-31. DOI: 10.1002/pros.20013
Prostate cancer	Woodson, Karen, Jeffrey Hanson, and Joseph Tangrea. Cancer letters 205.2 (2004): 181-188. doi:10.1016/j.canlet.2003.11.027
Prostate cancer	Yegnasubramanian, Srinivasan, et al. Cancer research 64.6 (2004): 1975-1986. doi: 10.1158/0008-5472.CAN-03-3972
Medulloblastoma	Lindsey, Janet C., et al. Carcinogenesis 25.5 (2004): 661-668. doi: 10.1093/carcin/bgh055
Prostate adenocarcinoma	Jeronimo, C., et al. Journal of clinical pathology 56.1 (2003): 52-55. doi:10.1136/jcp.56.1.52
Nasopharyngeal carcinoma	Lo, Kwok-Wai, et al. International journal of cancer 98.5 (2002): 651-655. doi:10.1136/jcp.56.1.52

	Bladder/Colon/Prostate cancer	Pao, Martha M., et al. Human molecular genetics 10.9 (2001): 903-910. doi:10.1136/jcp.56.1.52
	Prostate cancer	Nelson, Joel B., et al. Cancer research 57.1 (1997): 35-37.
EN2	Myelogenous leukemia	Abollo-Jiménez, Fernando, et al. Cell Cycle 13.11 (2014): 1717-1726. doi: 10.4161/cc.28629
	Pilocytic astrocytomas	Lambert, Sally R., et al. Acta neuropathologica 126.2 (2013): 291-301. doi: 10.1007/s00401-013-1124-7
	renal cancer	Slater, Amy A., et al. Epigenetics 8.3 (2013): 252-267. doi: 10.4161/epi.23817
	follicular limphoma	Bennett, Lynda B., et al. Genes, Chromosomes and Cancer 48.9 (2009): 828-841. doi: 10.1002/gcc.20687.
FBN1	CRC	Li, Wen-han, et al. Disease markers (2015). doi: 10.1155/2015/657570
	cholangiocarcinoma	Andresen, Kim, et al. Hepatology 61.5 (2015): 1651-1659. doi: 10.1002/hep.27707
	CRC	Bethge, Nicole, et al. Epigenetics 9.3 (2014): 428-436. doi: 10.4161/epi.27554
	CRC	Guo, Qi, et al. Medical Oncology 30.4 (2013): 1-5. doi: 10.1007/s12032-013-0695-4
	CRC/Adenomas	Lind, Guro E., et al. Mol Cancer 10 (2011): 85. doi: 10.1186/1476-4598-10-85.
	Prostate cancer	WANG, YIPENG, et al. Annals of the New York Academy of Sciences 1058.1 (2005): 162-185. DOI: 10.1196/annals.1359.024
	Prostate cancer cell lines	Wang, Yipeng, et al. Neoplasia 7.8 (2005): 748-IN7. doi:10.1593/neo.05289
FBN2	clear cell renal cell carcinoma	Ricketts, Christopher J., Victoria K. Hill, and W. Marston Linehan. (2014): e85621. doi: 10.1371/journal.pone.0085621
	CRC	Kim, Tae-Oh, et al. International journal of molecular medicine 31.5 (2013): 1255-1261. doi: 10.3892/ijmm.2013.1317.
	CRC	Hibi, Kenji, et al. Anticancer research 32.10 (2012): 4371-4374.
	Breast carcinoma	Kikuyama, Mizuho, et al. Cancer letters 322.2 (2012): 204-212. doi: 10.1016/j.canlet.2012.03.016
	CRC	Yi, Joo Mi, et al. Tumor Biology 33.2 (2012): 363-372. doi: 10.1007/s13277-011-0302-2
	Renal cell carcinoma	Morris, Mark R., et al. Oncogene 30.12 (2011): 1390-1401. doi: 10.1038/onc.2010.525
	CRC	Yagi, Koichi, et al. Clinical Cancer Research 16.1 (2010): 21-33. doi: 10.1158/1078-0432.CCR-09-2006
	esophageal squamous cell carcinoma	Tsunoda, Shigeru, et al. Oncology reports 21.4 (2009): 1067-1073.
	Lung concer	Cortese, Rene, et al. The international journal of biochemistry & cell biology 40.8 (2008): 1494-1508. doi: 10.1016/j.biocel.2007.11.018
	non-small cell lung cancer	Chen Hong et al Lung Cancer 50 1 (2005): $43-49$
	pancraotic cancer	Hagibara Atsuchi et al Oncogene 23 53 (2004): 8705 8710
CAD2		Li Hai at al Oncology reports 28.1 (2012): 90.104. doi: 10.3802/or 2012.1770
GAD2	follicular limphoma	Ei, Hai, et al. Oncology reports 26.1 (2012). $37-104$. doi: 10.3092/01.2012.1777
lung/breast/pi	lung/breast/prostate/pancreas/CRC/glioblastoma/B cell chronic	Bennett, Lynda B., et al. Genes, Chromosomes and Cancel 48.9 (2009). 828-841. doi: 10.1002/gcc.20087
GHSR	lymphocytic leukaemia	Moskalev, Evgeny A., et al. Oncotarget 6.6 (2015): 4418.
	Breast carcinoma	de Groot, Jolien S., et al. Cellular Oncology 37.4 (2014): 297-303.doi: 10.1007/s13402-014-0189-1
	Breast carcinoma	Botla, Sandeep Kumar, et al. Breast cancer research and treatment 135.3 (2012): 705-713. doi: 10.1007/s10549-012-2197-z
	Breast carcinoma	Ordway, Jared M., et al. PLoS One 2.12 (2007): e1314.
GNG7	head and neck cancer	Demokan, Semra, et al. International journal of oncology 42.4 (2013): 1427-1436. doi: 10.3892/ijo.2013.1808

	head and neck squamous cell carcinoma	Hartmann, Sylvia, et al. Journal of applied genetics 53.2 (2012): 167-174. doi: 10.1007/s13353-011-0079-4
	oesophageal cancer	Ohta, M., et al. British journal of cancer 98.2 (2008): 410-417. doi: 10.1038/sj.bjc.6604124
GRIA4	oropharyngeal squamous cell carcinomas	Kostareli, Efterpi, et al. The Journal of clinical investigation 123.6 (2013): 2488. doi: 10.1172/JCI67010
	follicular limphoma	Bennett, Lynda B., et al. Genes, Chromosomes and Cancer 48.9 (2009): 828-841. doi: 10.1002/gcc.20687 Pradhan, Meeta P., Akshay Desai, and Mathew J. Palakal. BMC systems biology 7.1 (2013): 141. doi: 10.1186/1752-0509-7-
GRIK3	lung adenocarcinoma	141
GRM6	clear cell renal cell carcinoma	Arai, Eri, et al. Carcinogenesis 33.8 (2012): 1487-1493. doi: 10.1093/carcin/bgs177
GRM7	Chronic lymphocytic leukemia	Rush, Laura J., et al. Cancer research 64.7 (2004): 2424-2433.
HRH2	Gastric cancer	Nomura, Tomoe, et al. BMC gastroenterology 13.1 (2013): 1. doi: 10.1186/1471-230X-13-1
	pancreatic cancer	Ginestà, Mireia M., et al. Journal of clinical pathology (2012): jclinpath-2012. doi: 10.1136/jclinpath-2012-201123
ITGA4	Colitis-associated cancer	Gerecke, Christian, et al. Journal of cancer research and clinical oncology (2015): 1-11.
	CRC/Adenomas	Zhang, Xie, et al. World journal of gastroenterology: WJG 21.9 (2015): 2629. doi: 10.3748/wjg.v21.i9.2629
	Prostate cancer	Mostafavi-Pour, Z., et al. Pathology & Oncology Research (2015): 1-7. doi: 10.1007/s12253-015-9917-8
	Breast carcinoma	Do, Sung-Im, et al. Tumor Biology 35.7 (2014): 7079-7084. doi: 10.1007/s13277-014-1952-7
	cervical cancer	Hansel, Alfred, et al. PloS one 9.3 (2014): e91905. doi: 10.1371/journal.pone.0091905
	lymphocytic leukemia cells	Zucchetto, Antonella, et al. Blood 122.19 (2013): 3317-3321. doi: 10.1182/blood-2013-06-507335
	Gastric cancer	Qu, Yiping, Siwen Dang, and Peng Hou. Clinica Chimica Acta 424 (2013): 53-65. doi: 10.1016/j.cca.2013.05.002
	CRC	Ahmed, Deeqa, et al. Clinical and translational gastroenterology 3.12 (2012): e27. doi: 10.1038/ctg.2012.21
	Breast carcinoma	Lian, Zhen-Qiang, et al. International journal of oncology 41.2 (2012): 629-638. doi: 10.3892/ijo.2012.1464
	CRC	Chang, Eugene, et al. Hepato-gastroenterology 57.101 (2009): 720-727. Uhm, Kyung-Ok, et al. Journal of cancer research and clinical oncology 136.2 (2010): 187-194. doi: 10.1007/s00432-009-0646- 9.
	acute myeloid leukemia (AML) and chronic myeloid leukemia	
	(CML)	Uhm, Kyung-Ok, et al. Journal of Korean medical science 24.3 (2009): 493-497. doi: 10.3346/jkms.2009.24.3.493.
	Colorectal polyp	Ausch, Christoph, et al. Clinical chemistry 55.8 (2009): 1559-1563. doi: 10.13/3/clinchem.2008.12293/
	Gastric cancer	Kim, Ji Hun, et al. Oncology reports 21.5 (2009): 1251-1259. Ko, Eunkyung, et al. Cancer Epidemiology Biomarkers & Prevention 17.9 (2008): 2260-2267. doi: 10.1158/1055-9965.EPI-08-
	hepatocellular carcinoma	0236
	esophageal squamous cell carcinoma	Lee, Eun Ju, et al. International journal of cancer 123.9 (2008): 2073-2079. doi: 10.1002/ijc.23598.
	bladder cancer	Yu, Jian, et al. Clinical Cancer Research 13.24 (2007): 7296-7304.
	Gastric cancer	Park, Jinah, et al. Oncogene 23.19 (2004): 3474-3480.
	fibrosarcoma cell lines	Sato, Shuichi, et al. Oncogene 17.1 (1998): 105-113.
	Mouse liver tumors	Akama, Tomoya O., et al. Cancer research 57.15 (1997): 3294-3299.
		AUDET, JEAN-FRANCOIS, et al. DNA and cell biology 13.11 (1994): 1071-1085.
ITGA8	CRC	Kok-Sin, Teow, et al. Oncology reports 34.1 (2015): 22-32. doi: 10.3892/or.2015.3993

	Ovarian cancer	Cai, Li-yi, et al. Life sciences 80.16 (2007): 1458-1465.
JAM3	cervical cancer	Boers, A., et al. British journal of cancer 111.6 (2014): 1095-1101. doi: 10.1038/bjc.2014.392
	cervical cancer	Vasiljević, Nataša, et al. Gynecologic oncology 132.3 (2014): 709-714. doi: 10.1016/j.ygyno.2014.02.001
	cervical cancer	Eijsink, J. J. H., et al. International Journal of Cancer 130.8 (2012): 1861-1869. doi: 10.1002/ijc.26326
	cervical cancer	Eijsink, J. J. H., et al. Gynecologic oncology 120.2 (2011): 280-283. doi: 10.1016/j.ygyno.2010.10.029
KCNQ5	CRC	Ashktorab, Hassan, et al. Epigenetics 8.8 (2013): 807-815. doi: 10.4161/epi.25497.
LAMA1	Breast carcinoma	Simonova, O. A., et al. Molecular Biology 49.4 (2015): 598-607. doi: 10.7868/S0026898415040163
	small intestinal neuroendocrine tumors	Fotouhi, Omid, et al. Epigenetics 9.7 (2014): 987-997. doi: 10.4161/epi.28936
	CRC	Ashktorab, Hassan, et al. Epigenetics 8.8 (2013): 807-815. doi: 10.4161/epi.25497.
	CRC	Kim, Young-Ho, et al. Annals of surgical oncology 18.8 (2011): 2338-2347. doi: 10.1245/s10434-011-1573-y
LHCGR	polycystic ovary syndrome	Wang, Peng, et al. Endocrinology 155.4 (2014): 1445-1452. doi: 10.1210/en.2013-1764
MMP9	Lung cancer	Cheng, X., et al. Oncogene (2015). doi: 10.1038/onc.2015.14
	Gastric cancer	Wu, Feng-lei, et al. Cancer letters 363.1 (2015): 7-16. doi: 10.1016/j.canlet.2015.01.006
	Skin cancer	Han, Yantao, et al. Mutagenesis 30.2 (2015): 287-296. doi: 10.1093/mutage/geu071
	Breast carcinoma	Salz, Tal, et al. Molecular Cancer Research 13.3 (2015): 461-469. doi: 10.1158/1541-7786.MCR-14-0389.
	Breast carcinoma	Rizwani, Wasia, et al. (2014): e100888. doi: 10.1371/journal.pone.0100888.
	Type 2 Diabetes Mellitus	Singh, Kanhaiya, et al. The international journal of lower extremity wounds (2014): 1534734614534980. doi: 10.1177/1534734614534980
		Chen, Xuanyu, et al. Journal of cancer research and clinical oncology 140.8 (2014): 1295-1304. doi: 10.1007/s00432-014-1690-
	Renai cell carcinoma	
	Stomach cancer	Nemtsova, M. V., et al. Klinicheskaia laboratornaia diagnostika 11 (2013): 12-15.
	CRC	Oh, Jong-Tae Kim, et al. (2014). DOI: 10.18632/oncotarget.1714
	Extravillous trophoblast (EVT) cell invasion	Takahashi, H., et al. Placenta 35.3 (2014): 163-170. doi: 10.1016/j.placenta.2013.12.009
	diabetic retinopathy	Kowluru, Renu A., Julia M. Santos, and Manish Mishra. BioMed research international 2013 (2013). doi: 10.1155/2013/635284.
	CRC	Kuhmann, Christine, et al. Human molecular genetics 23.8 (2014): 2043-2054. doi: 10.1093/hmg/ddt599
	Lung cancer	Xu, Shun, et al. Oncology reports 31.1 (2014): 79-86. doi: 10.3892/or.2013.2799
	Gastric cancer	Hong, Seung-Hyun, et al. Oncotarget 4.10 (2013): 1791.
	Human fibroblast cells	Poplineau, Mathilde, et al. Molecular carcinogenesis 54.1 (2015): 24-34. doi: 10.1002/mc.22071
	Ulcerative colitis	Koukos, Georgios, et al. Gastroenterology 145.4 (2013): 842-852. doi: 10.1053/j.gastro.2013.07.001.
	Medulloblastoma	Asuthkar, S., et al. Oncogene 33.15 (2014): 1922-1933. doi: 10.1038/onc.2013.151.
	fibrosarcoma cell lines	Poplineau, M., et al. Cell proliferation 46.2 (2013): 127-136.doi: 10.1111/cpr.12021
	CRC	Lin, Yan-Wei, et al. The Journal of pathology 230.3 (2013): 277-290. doi: 10.1002/path.4179.
	acute myeloid leukemia and myelodysplasia	Bernal, Teresa, et al. Experimental hematology 41.2 (2013): 172-179. doi: 10.1016/j.exphem.2012.10.005.

	Prostate cancer	Patra, Aditi, et al. Clinical epigenetics 2.2 (2011): 339-348. doi: 10.1007/s13148-010-0019-x.
	non-small cell lung cancer	Yoo, Jin Young, et al. Journal of neuro-oncology 109.2 (2012): 219-227. doi: 10.1007/s11060-012-0890-8.
	prostate cancer cell line	Purcell, Daniel J., et al. Journal of cellular biochemistry 113.7 (2012): 2406-2414. doi: 10.1002/jcb.24114
	acute myeloid leukemia and myelodysplasia	Eberle, Franziska C., et al. Haematologica 96.4 (2011): 558-566. doi: 10.3324/haematol.2010.033167
	Hepatocellular Carcinoma	Huang, Jian, et al. The Journal of clinical investigation 120.1 (2010): 223. doi: 10.1172/JCI38012
	MLL-associated leukemias	Li, Zejuan, et al. Cancer research 69.3 (2009): 1109-1116. doi: 10.1158/0008-5472.CAN-08-3381.
NOS1	neuroblastoma cell differentiation	Das, Sudipto, et al. Cancer research 70.20 (2010): 7874-7881. doi: 10.1158/0008-5472.CAN-10-1534
NPBWR1	non-small cell lung cancer	Sandoval, Juan, et al. Journal of Clinical Oncology 31.32 (2013): 4140-4147. doi: 10.1200/JCO.2012.48.5516
	Prostate cancer	Cottrell, Susan, et al. The Journal of urology 177.5 (2007): 1753-1758. doi:10.1016/j.juro.2007.01.010
NPY2R	Urothelial cell carcinomas	Yang, Tse-Yen, et al. Environmental research 128 (2014): 57-63. doi: 10.1016/j.envres.2013.10.006
PDE8B	cervical cancer	Huang, Rui-Lan, et al. PLoS One 7.7 (2012): e41060. doi: 10.1371/journal.pone.0041060.
PLCB1	head and neck cancer	Guerrero-Preston, Rafael, et al. Epigenetics 9.7 (2014): 1031-1046. doi: 10.4161/epi.29025.
PRKCB	Adult T cell leukemia/lymphom	Kataoka, Keisuke, et al. Nature genetics (2015). doi: 10.1038/ng.3415 Pradhan, Meeta P., Akshay Desai, and Mathew J. Palakal. BMC systems biology 7.1 (2013): 141. doi: 10.1186/1752-0509-7-
	lung adenocarcinoma	141
PTGFR	CRC	Cebola, Inês, et al. Clinical epigenetics 7.1 (2015): 1-11. doi: 10.1186/s13148-015-0110-4
SCTR	Breast carcinoma	Kang, Seongeun, et al. International journal of oncology 47.5 (2015): 1923-1931. doi: 10.3892/ijo.2015.3164.
	sporadic CRC	Karpinski, Pawel, et al. Tumor Biology 32.4 (2011): 653-659. doi: 10.1007/s13277-011-0165-6 Devaney, James, et al. Cancer Epidemiology Biomarkers & Prevention 20.1 (2011): 148-159. doi: 10.1158/1055-9965.EPI-10-
	Prostate cancer	
	CRU	Mayor, R., et al. British journal of cancer 100.10 (2009): 1534-1539. doi: 10.1038/sj.bjc.6605045
	CRC	Karpinski, Pawel, et al. Molecular Cancer Research 6.4 (2008): 585-591. doi: 10.1158/1541-7786.MCR-07-2158
SDC2	Gastric cancer	Chong, Yosep, et al. Oncology reports 31.6 (2014): 2535-2544. doi: 10.3892/or.2014.3133.
	CRC	Mitchell, Susan M., et al. BMC cancer 14.1 (2014): 54. doi: 10.1186/1471-2407-14-54
	osteonecrosis of the jaw	Gambino, A., et al. Annali di stomatologia 5.2 Suppl (2014): 11. doi: 10.1016/j.mrgentox.2013.07.003.
	CRC	Oh, TaeJeong, et al. The Journal of Molecular Diagnostics 15.4 (2013): 498-507. doi: 10.1016/j.jmoldx.2013.03.004
	head and neck squamous cell carcinoma	Worsham, Maria J., et al. OtolaryngologyHead and Neck Surgery 149.3 (2013): 409-416. doi: 10.1177/0194599813490895
SFRP1_2	CRC/Adenomas	Patai, Árpád V., et al. PloS one 10.8 (2015): e0133836. doi: 10.1371/journal.pone.0133836 Shimizu, Hideyuki, et al. Biochemical and biophysical research communications 411.1 (2011): 162-167. doi: 10.1016/j.bbrc 2011.06.121
VCAN		Torabi Kawan et al. Carcinogenesis 36.10 (2015): 1103-1110 doi: 10.1003/carcin/bgv115
(CAIV	Overien clear cell corrinome	Vamaguahi K at al. Onaogona 20.12 (2010): 1741-1752. doi: 10.1029/ana.2000.470
		Languerin, K., et al. Oncogene 23.12 (2010). 1741-1752. 401. 10.1036/010.2009.470
	Prostate cancer	kead, Jason 1., et al. Journal of Biological Chemistry 282.44 (2007): 31954-31963. doi: 10.10/4/jbc.M/02099200
	ulcerative colitis-associated colorectal cancers	Mata, Lara, et al. Cancer genetics and cytogenetics 162.1 (2005): 68-73. doi:10.1016/j.cancergencyto.2005.02.017

Ulcerative colitis	Issa, Jean-Pierre J., et al. Cancer research 61.9 (2001): 3573-3577.
CRC	Toyota, Minoru, et al. Cancer research 59.10 (1999): 2307-2312. Adany, Roza, and Renato V. Jozzo. Biochemical and biophysical research communications 171.3 (1990): 1402-1413.
CRC	doi:10.1016/0006-291X(90)90841-A

Supplementary Materials and methods

DNA extraction and bisulfite conversion from tissue samples

Genomic DNA was extracted from tumoral and peritumoral tissue using the DNeasy Blood & Tissue Kit (Qiagen) and bisulfite converted using EZ DNA Methylation Gold Kit [™] (Zymo Research) according to the manufacturer's instructions. Quality control and quantification of DNA were performed before and after bisulfite conversion. DNA was quantified with NanoDrop (NanoDrop Products Thermo Scientific Wilmington, DE) and by fluorometric reading (Quant-iT[™] PicoGreen® dsDNA Assay Kit); quality was assessed by visualisation of genomic DNA on 1% agarose gel electrophoresis. Only DNA samples not fragmented and with a concentration higher than 50 ng/µl were subsequently processed.

Samples for pyrosequencing methylation validation

A validation of *GRIA4*, *SLC8A1*, *SYN3* CpG islands hypermethylation was performed in 78 CRCs and the respective 78 peritumoral samples. Tissue samples were collected at the Department of Surgical Sciences, University of Cagliari (Italy) (**Figure 1**).

Samples for transcriptome analysis

RNA was extracted from remaining tissue available from the first methylome step using the RNeasy Lipid Tissue Mini Kit (Qiagen). Seventeen tumoral and 2 peritumoral samples achieved an optimal RIN (>7) and were processed for further analyses. In addition, 2 new peritumoral samples were recruited for the whole genome gene expression analysis (**Figure 1**).

Pyrosequencing analysis

Primers were designed for *SYN3*, *SLC8A1* and *GRIA4* using the PyroMark® Assay Design SW 2.0 (Qiagen) (**Supporting Information Table 3**). Amplification was carried out using the Platinum® Taq (Life technologies). PCR products were purified on the PyroMark Q24 Vacuum Workstation according to manufacturer protocol and annealed with the sequencing primer before being run on the PyroMark Q24 (Qiagen). Pyrograms were analyzed using PyroMark Q24 Software.

Whole genome gene expression analysis

The transcriptome analysis was performed using the HumanHT-12 v4 Expression BeadChip Kit (Illumina, San Diego, CA) according to manufacturer's protocol. The RNA, quantified by spectrophotometric (NanoDrop) and fluorometric (PicoGreen) reading, is qualitatively checked by

means of the tool Bioanalyzer2100 (Agilent Technologies), which provides an index of integrity of the RNA (RNA Integrity Number, RIN), ranging between 0 (complete degradation) and 10 (excellent quality); in our study, were further processed only the samples with RIN>7.

200 ng of RNA were amplified (Illumina TotalPrep RNA Amplification Kit), labeled and hybridized on Illumina microarray. Even with data from transcriptome analysis an Unsupervised Hierarchical Clustering is carried out and the expression values are often shown by HeatMap

qRT-PCR analysis

Retro-transcription was performed starting from 1µg RNA/sample using the High Capacity Kit (Applied Biosystems, Carlsbad, CA, USA). Gene expression was assessed by quantitative RT-PCR using Express Sybr Green (Invitrogen, Paisley, UK) for each gene tested and for the endogenous TFRC. The primer sequences are reported in **Supporting Information Table 3**.

Microsatellite instability analysis

The microsatellite instability analysis was conducted by using the "MSI Analysis System, Version 1.2" (Promega Italia). Amplification were carried out according to manufacturer's protocol. The PCR products were then run on an ABI PRISM® 3100 - Applied Biosystems® 3130 Genetic Analyzer, and the output data were analyzed with GeneMapper® software (Applied Biosystems).

Genetic mutations screening

The genetic mutation screening in adenomas was conducted as previously reported [11,48].

To search for *KRAS* mutations in CRCs, we amplified two fragments corresponding to the exons 2 and 3 (codon 1-97) (annealing 60 °C). Primer sequences are reported in **Supporting Information Table 3**.

PCR products were amplified with High-Fidelity Taq polymerase (Platinum® Taq DNA Polymerase High Fidelity, Invitrogen), purified (by exonuclease 1 and shrimp alkaline phosphatase) and sequenced by fluorescent based Sanger's direct sequencing in an ABI 3130 DNA capillary sequencer.

CIMP phenotype definition

To infer a CIMP phenotype definition from the output data obtained by using Infinium® HumanMethylation450 BeadChip in the 18 CRCs and 21 adenomas, we referred to the SALSA® MLPA® kit (MRC-Holland, Amsterdam, the Netherlands) as reference panel. This ME042-C1 CIMP MS-MLPA probemix contains 31 MS-MLPA probes which detect the methylation status of

promoter regions of the following 8 genes: *CACNA1G*, *CDKN2A*, *CRABP1*, *IGF2*, *MLH1*, *NEUROG1*, *RUNX3* and *SOCS1*. In the present study, several CpG loci were analyzed for each of these gene promoters, mapping inside the MS-MLPA probe sequence. All positions/probes were scored using two different thresholds of methylation ($\geq 20\%$ or $\geq 30\%$), as suggested by Berg et al. [49] for defining a specific position/probe as methylated. To define a gene as methylated, at least one probe/position has to be methylated. To assign the CIMP positivity to a sample, at least 60% of the genes in the panel must be labelled as CIMP positive.

Statisical analysis

Transcriptome

The quantile normalization algorithm was applied on the data set. Differential expression analyses were carried out between CRCs (T) and peritumoral samples (P). The differential expression is given in fold change (FC). False Discovery Rate of 0.05 was chosen as a threshold for significance.

RNAseq data and differential expression analysis

To facilitate cross-sample comparison and differential expression analysis, the Upper Quartile normalized FPKM (UQ-FPKM) values has been obtained from TCGA open-access data for 478 CRC solid tumor tissues and 41 solid normal tissues from the GDC (Genomic Data Commons) data portal. The data downloading and differential expression analysis has been conducted using the Bioconductor "*TCGAbiolinks*" package [50].

qRT-PCR

Data are expressed as mean \pm standard deviation (SD) or mean \pm standard error (SEM). Analysis of significance was done by t Student's test and by One-Way ANOVA using the GraphPad software (La Jolla, California). P-values were considered significant at p< 0.05.