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Abstract

In this paper we consider various multi-component splittings based on the trapezoidal
rule and the implicit midpoint rule. It will be shown that an important requirement on
such methods is internal stability. The methods will be applied to initial-boundary-value
problems. Along with a theoretical analysis, some numerical test results will be presented.
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1. INTRODUCTION

In this paper we will discuss the accuracy and stability of some splitting methods which
are based on the trapezoidal rule and implicit midpoint rule. The methods are used for the
numerical solution of initial-boundary value problems for partial differential equations (PDEs)
in two or three space dimensions with reaction and source terms. Discretization in space leads
to large systems of ordinary differential equations (ODEs)

u'(t) = F(t,u(t)) (1.1)

with 0 < ¢ < T and given initial value u(0). The function F' contains the discretized spatial

derivatives. We consider numerical schemes with step size 7 yielding approximations u, to

the exact solution u(t¢,) at time levels t,, = n7 for n = 0,1,2,-- -, starting with uy = u(0).
Two standard methods are the trapezoidal rule

Up41 = Up + %TF(tna un) + %TF(tn—kla un—|—1)a (12)
and the implicit midpoint rule
Un+1 = Un =+ TF(tn+1/2, %Un + %Un—l—l)- (13)

The methods have order 2 and they are symmetric [4]. Both methods involve an implicit
system with the whole function F'. For discretized multi-dimensional PDEs the dimension of



the system will be very large and F' may also contain different types of operations, such as
convection-diffusion in various directions and nonlinear reaction terms, which makes it difficult
to solve the implicit relations efficiently.

It is often possible to decompose the function F' into a number of simpler component
functions,

F(t,w) = Fi(t,w) + Fa(t,w) + - - - + Fs(t,w). (1.4)

Application of ODE methods to each individual component F; can be much easier than to
the whole . We shall consider some splitting methods where in each stage only one of the
components is treated implicitly. The best known method of this type is the ADI-Peaceman-
Rachford method. This method, however, can only deal with 2-component splittings, see [14].
The related ADI method of Douglas is suited for arbitrary number of components, but it is
no longer unconditionally stable for convection-diffusion problems if s > 2, see [8]. In this
paper we restrict ourselves to second order methods that are unconditionally stable, in the
von Neumann sense, for convection-diffusion problems for any value of s.

We consider the following method of Yanenko [16], based on a sequence of trapezoidal
steps,

. (1.5)
v; = vi_1+ %T(Fi(tn + ci1T,vi—1) + Fi(tn + ¢, vz)) (i=1,2,---,3),
with internal vectors v;. If one stops here and accepts u,+1 = vs; as the next approximation,
the order of the method will only be 1, except for special situations with commuting operators.
Order 2 of the method is obtained if the sequence of Fy, Fy, - - -, F is interchanged in the next
step (Strang splitting). This gives, with i =1,2,--- s,

Vs+1 = Vs4i—1 T %T(Fs+17i(tn+2 — Cs4+1—4T, Us+i71) + Fs+17i(tn+2 — Cs—;T, vs+i)) (1 6)

Up4+2 = V2s-

We use the time levels ¢y = 0, ¢; = 1. The other ¢; are set to 1/2, which is somewhat arbitrary
(see Section 5). Irrespective of the choice, the method is symmetrical and of order 2. In the
same way one can construct a method using the implicit midpoint rule in each of the fractional
steps, which will lead to a method with very similar errors, see [7].

The two steps (1.5) and (1.6) should be considered together as one step, with step size
27, carrying u, to unqg for n = 0,2,4,---. We shall compare this method of Yanenko with
two more simple methods where the fractional steps are performed by backward and forward
Euler formulas with halved step size. Note that the trapezoidal method itself can be viewed as
a forward Euler step followed by a backward Euler step with 7/2 for the sub-steps. Likewise,
the implicit midpoint rule consists of a backward Euler step followed by a forward Euler step.

The first method we propose is related, in the above sense, to the trapezoidal rule, and will
therefore be called trapezoidal splitting, or, more formally, the trapezoidal splitting method.
The method is given by

Vo = Up,

v; =01+ %Tﬂ(tn,vi_l) (i=1,2,---,9), (1.7)
Usi = Ustio1 + 5T Fsi1-i(tn41, Veti) (i=1,2,---,s), '
Upil = Vos.



Again, the vectors v; (1 < j < s) are internal quantities without physical relevance, except for
vs which is a consistent approximation to u(t,;/3). Note that if s = 1 the method reduces
to the trapezoidal rule.

Similarly we can construct a splitting method based on the midpoint rule,

Vo = Un,

v, =vi_1+ %TFi(th/z,vi) (i=1,2,---,9), (1.8)
Uopi = Vsri 1+ 57Fer1 i(tny1ya,vspi1)  (i=1,2,--+,5), '
Upt] = Vs

We shall refer to (1.8) as the midpoint splitting method.
Both methods (1.7) and (1.8) have order two and they are symmetrical. If all F; are linear,
say F;(t,u) = Aju, with commuting matrices A;, then the methods are identical, namely

S

Uni1 = (f[(f - %TAi))_l(H(I + 3745 Ju. (1.9)

= 1=
Because of the close relation between the trapezoidal rule and midpoint rule, one would expect
both splitting methods to behave similarly. As we shall see this is not so for semi-discrete
PDE systems arising from initial-boundary value problems.

The above splitting methods (1.7), (1.8) seem not to have been studied in the literature. A
linearized version of (1.7) was introduced in [1] for s = 2. Formula (1.9) can be found in [14],
p-87, for s = 3, but a variety of very different methods can be based on this formula. Indeed,
the following experiment shows a remarkable difference in behaviour between the midpoint
and trapezoidal splitting methods.

Example 1.1. Consider the diffusion equation on domain Q = (0,1)2,
u; = Ugg + Uyy + f(ib,y,t) on Q,
u=20 onI' =09,
with given initial value at £ = 0 and source term f derived from the exact solution
u(z,y,t) = e z(1 —z)y(1 - y)(16 + y).

The spatial derivatives are discretized with standard second order finite differences, and we
make a dimensional splitting with s = 2 and equal distribution of the source term. So, F; (¢, u)
will be the finite difference approximation of ug;+ % f(t), and likewise for F; in the y-direction.
Note that since the exact solution is a polynomial in z and y of degree <3, there will be no
spatial error. The spatial grid has mesh width » = 1/(m + 1) in both direction with m the
number of grid points per direction. In Table 1.1 we have listed the errors, measured in the

discrete Lo-norm, at the end time 7" = 0.75 for A = 1/40 with different values of the time step
T.

1/7 10 20 40 80
TrapSplit || 3.3 1073 | 8.3 10% | 2.1 10~* | 5.2 107

MidpSplit 3.3 8.5107! | 21107 | 5.3 1072
Table 1.1. Ly-errors for h = 1/40 with trapezoidal splitting and midpoint splitting.




Clearly there is a huge difference between the two splitting methods. The difference becomes
even more striking if the spatial mesh is refined, see Table 1.2. Although both methods
have order two (in the classical ODE sense), the error constants for the midpoint splitting
apparently contain negative powers of h.

1/7 10 20 40 80
TrapSplit || 3.4 1073 | 8.5 107% | 2.1 10~* | 5.3 107
MidpSplit 9.2 2.3 5.8107% | 1.5 107!

Table 1.2. Ly-errors for h = 1/80 with trapezoidal splitting and midpoint splitting.

In this paper both methods will be analyzed to explain these numerical results. The
method of Yanenko has been analyzed in [7] for s = 2 and in the paper of Ciegis and Kiskis
[3] for arbitrary s. The analysis in the present paper follows the same approach. As we shall
see the disappointing behaviour of the midpoint splitting in the above test is due to lack of
so-called internal stability. Further it will be shown that the order of convergence for the
trapezoidal splitting can be less than 2 upon simultaneous refinement of mesh width and time
step if s > 3, but still the results are favourable compared to Yanenko’s method.

This analysis is given in the Section 2, 3 and 4. In Section 5 boundary corrections are
discussed. Section 6 contains numerical comparisons between the trapezoidal splitting method
(1.7) and Yanenko’s method (1.5),(1.6).

2. INTERNAL PERTURBATIONS
2.1. Preliminaries
The analysis will be performed for the linear case

Fj(t,w) = Ajw + g;(t), (2.1)

with M x M matrices 4; and g;(t) € RM. It is assumed that the problem represents a
semi-discrete PDE, so the dimension depends on the mesh width in space h and some of the
matrices A; will contain negative powers of h. For inhomogeneous boundary conditions, the
terms g; will contain the boundary values relevant to A;, which will also lead to negative
powers of h, see for example [7, 9] for a more detailed description.

Results on stability and convergence will be obtained for the discrete Ly-norm on IRM,
|lw|| = (M~ wTw)/?, under the assumption

wl Ajw <0 forall w e RM. (2.2)
This implies that for any 7 > 0 we have
I =447 <1, (- S A)~ (T + bray)] < 1. (2.3)

Note that (2.2) imposes no restriction on the norm [|4;||. So, the A; may contain negative
powers of h with arbitrary small A > 0. Further we will use the notations Z; = 74, and
P=(I+1ir4;),Q;= (I - ir4A)).



2.2. Internal stability of trapezoidal splitting

Consider the trapezoidal splitting formula with perturbations p;,---, pas on the stages,
60 = ,a’na
B =1+ sTF(te, %ic1) + pi (i=1,2,---,5), (2.4)
Vi =Dstri1+ 3sTFsp1-i(tng1, Uoti) + Poti (i=1,2,--,3),
an—l—l = 625-

Let e, = i, — u,. By subtracting (2.4) from (1.7) and eliminating the internal quantities
¥; — vy, it follows in a straightforward way that

ent1 = Re, +d, (2.5)
with stability matrix
R = Q1—1Q2—1...QS—1PS...p2p1 (2.6)

and with d,, containing the internal perturbations,

dn :QII"'Q‘:l(Ps"'PZpl+Ps"'P3p2+"'+Psps—1+ps)+

1 1 1 1 (2.7)
+Q7 "'Qs_lps+1+Qf Q1 ps2 + -+ Q pas-

So, the matrix R determines how an error already present at time ¢,, will be propagated to
tn+1, whereas d,, stands for the local error introduced during the step. The usual step-by-step
stability of the scheme is thus governed by R. Assuming that the matrices commute we have
|R|| <1, so the method will be stable. Under this assumption it also follows that

ldnll < {lp1]l + [lp2ll + - - + [[p2sl], (2.8)

since any explicit factor P; occurring in (2.7) is balanced by its implicit counterpart Qj_l.
This means that the internal perturbations will not disrupt the result of a single step of the
method. So, the method is internally stable, in the above sense.

2.8. Internal instability of midpoint splitting
For the midpoint splitting we can proceed similarly as in the preceding subsection. We consider
along with (1.8) a perturbed version

vg = ln,

b =01+ 57Fi(tpi1/2,0i) + pi (1=1,2,---,s), (2.9)
Dopi = Vspi1+ 57 Foq1 iltngr/o, Ospi 1) +psgi (i =1,2,---,), '
Upt1 = D2

By eliminating the internal vectors ¥; — v; it follows that the global errors e,, = i, — u, satisfy
ent1 = Rey, +dy (2.10)

with
R=P P P.Q7 - Q7'Q7! (2.11)



and with local errors d,, now given by

dn =P1---P3(Q;1---Q1_1p1+Q;1---Qz_lp2+---+Qs—1ps) +
+ P Po1pst1 +Pro-- Pe_apsyo+ -+ Pipas—1 + pas.

(2.12)

Note that the stability matrix R has a similar structure as with the trapezoidal splitting.
Again, if the matrices A; commute then the assumption (2.2) implies ||R|| < 1. However, the
propagation of the internal perturbations is now completely different. We only have a moderate
propagation of p; and py;. For the other perturbation there are more explicit factors than
implicit ones. With increasing stiffness, that is, if h — 0, these explicit factors may introduce
a blow-up of the local error d,. So, the midpoint splitting is not internally stable for small h.

This lack of internal stability will necessitate a very accurate solution of the implicit
relations in the internal stages to make the factors p; small. As we shall see in the next section,
the midpoint splitting seems unsuited for stiff ODEs anyway, since the local discretization
errors are also not bounded uniformly in the mesh width h.

3. LOCAL DISCRETIZATION ERRORS

3.1.  Local errors for trapezoidal splitting

The error bounds will be based on derivatives of the exact solution u(t) and ¢;(t) = F;(t,u(t)).
If the PDE solution is smooth, we may assume that these derivatives are bounded uniformly
in the mesh width h. Error bounds can also be derived directly in terms of the PDE solution
by including the spatial errors in the derivation, see [15], but for simplicity we shall consider
here the error with respect to the ODE solution.

In the following we shall use the notation O(7?) to denote a vector or matrix whose Lo-
norm is bounded by C7P with constant C' > 0 independent of h. So, in particular, we do not
have A; = O(1) if A; contains discretized spatial derivatives.

Suitable expressions for the local discretization errors can be easily derived by using the
internal perturbations. Consider (2.4) with @, = u(t,), so that e, = u(t,) — u, is the
global discretization error. Hence, d,, is then the local discretization error, that is, the error
introduced in one single step of the method. For the intermediate vectors o; we can take
¥ = u(ty)(1 <i < s) and 954 = u(tyy1)(1 < i < s). Note that the actual choice for these
vectors is not important since we are only interested in the overall local error d,,, but with the
above choice we get simple expressions for the residuals, namely

Pi = _%Tgol(tn) (’L: 17"')3)7
Ps1 = ultny1) —u(tn) — %T‘PS(tn-l—l)a
Psti = —3TPsti—i(tnt1) (i=2,-++,9).

We shall elaborate the error for s = 2 and s = 3. Inserting the above residuals in (2.7),
we obtain for s =3

dn = (I=320) 1= $25) (I = 325) H(~(T + 3 Z8)(I + $ Z2) ko () —
~(I+3Z5)3rea(ts) - ;rw3<tn>+u<tnﬂ>—u(tn>—%wg<tn+1>—
—(I = §Z8)3700(tns1) — (I = 328)(I = $25) 3701 (bns1)).



Using
w(tns1) = ultn) = 57 (F(tn u(t)) + Fltns1, ultns1))) = 570" (tng1p) + -+,
it follows by some calculations that

dn = (1= 5207 = 520) I = $23) 7 (=47 23 Zopr(tnyao) +

(3.1)

+ 172 Zs + Z) @ (tns1s2) + $72 28k (tngrj2) ) + O(73).

The corresponding formula for s = 2 simply follows from this by setting Z3 = 0,3 = 0.
So, for s = 2 the local discretization error is

dn = (I = $20)7'(I = 322) ' 372 220 (tny1/2) + O(T2). (3.2)

Using (2.3) it follows directly from (3.2) that d, = O(7%). Note that for fixed h we get an
O(72) bound due to the hidden 7 in Z5. To obtain a similar bound uniformly in /, we need the
compatibility condition As¢i(t) = O(1). This condition will only be satisfied in special cases,
namely where ¢;(t) satisfies homogeneous boundary conditions relevant to Ay. It should be
noted that also fractional order results are possible: if ASy1(¢) = O(1) with « € (0,1), it can
be shown that d, = O(r219).

For the formula with s = 3 similar considerations hold. To guarantee that d, = O(73)
we now get several compatibility conditions. If we assume only that Ay and A3 commute, it
follows from (2.3) only that d,, = O(r), which is a poor result of course since this is the error
introduced in a single step.

We note that, assuming smoothness of the exact solution, compatibility conditions like
Asp1(t) = O(1) will certainly hold if there are no boundary conditions present, for example
with periodicity conditions. So, any deviation from the classical ODE results is here entirely
due to boundary conditions.

In the next section we shall present some convergence results for initial-boundary value
problems where the compatibility conditions need not hold.

3.2.  Local errors for midpoint splitting
In the same way we can derive an expression for the local discretization errors of the midpoint
splitting. We take @9 = u(tn),92s = u(tnt1) and 9 = u(t,41/2) for the other j. This gives
residuals

P = U(tn+1/2) —u(tn) — %Tsﬁl(tnﬂ/z),

pi = —37@iltny12)  (i=2,--,8),
psyi = —5T0st1—i(tns1ya)  (i=1,---,5—1),
pas = utny1) = wltng1y2) = 5701 (bnsya)-
We elaborate the local error for s = 2 only. Since the result will be negative it is not
necessary to consider larger values of s. For s = 2 we obtain ps = p3 = —%T(pg(tnﬂ /2) and

= %T(P2(t'n+l/2) - %TQU"(thm) + O(73),
Py = %T@g(tnﬂﬂ) + %T2u”(tn+1/2) +O(73).



After some calculations it follows that
dn = (R—1) (ﬁTZWz(th/z) = %72“"(tn+1/2)) +0(r?). (3.3)

In general, the factor with Z;¢9 contains negative powers of h, and these are not countered
by R — I, which is O(1) only, not smaller. So, we can expect a growth of the temporal local
discretization error if the mesh width h is decreased. The global discretization error then will
show a similar unpleasant behaviour. This is precisely what was observed in the numerical
results of Table 1.1 and 1.2.

Already we can conclude that the midpoint splitting, in its present form, is not suited for
PDE problems with boundary conditions. Also with boundary corrections, see Section 5, this
method seems not competitive with the trapezoidal splitting.

4. GLOBAL DISCRETIZATION ERRORS
4.1.  Error bounds for trapezoidal splitting
In this section convergence results will be derived for the trapezoidal splitting with s = 2 and
s = 3. At the end of the section a comparison will be made with known results for the method
of Yanenko (1.5),(1.6).

Throughout this section it will be assumed that the trapezoidal splitting is stable,

|IR"|| < C forall n>1 (4.1)

with a constant C = O(1). As mentioned already in Section 3, this certainly holds if the
matrices A; commute and satisfy (2.2). Under this assumption one can prove convergence by
bounding the local errors. However these local error bounds often give too pessimistic results,
see for example [2, 10] for Runge-Kutta methods and [3, 7, 9] for splitting methods. We shall
use the error decomposition as in [7],

d, = (R - I)gn +n, with &, = O(Tp)a Nn = O(Tp+1)7 Cnt1—&n = 0(7.17+1)' (4'2)

It is easy to show that this implies e, = O(7P) by writing out the global error in full before
bounding the various contributions. Note that (4.2) implies d, = O(7P) only, and the fact
that we have the same order for the global error e, is a super-convergence phenomenon. This
local error decomposition is only interesting for stiff equations; for fixed h we would have
R — I = O(r), in which case (4.2) gives d,, = O(rP+1).

In the following we use the notation A = A; + Ag + -+ - + A;.

Theorem 4.1. Consider the trapezoidal splitting with s = 2, and assume that
A7 4907 (1) = 0(1) (4.3)

for k = 1,2 and t € [0,T]. Then the global discretization errors satisfy e, = O(r?) for
tn €[0,7T).

Proof. We have
R—1=(-312)"(1-12)7" (%4 + 2).



Hence the local error (3.2) can be written as
dn = (R—1)A7' Ay %TQSOQ(th/z) +0(7%).

Clearly this fits into the form (4.2) with &, = %T2A_1A2g0’1 (tn+1/2), and thus we obtain the
second order convergence result. O

Note that the above result also holds for noncommuting A; and Ay. However, to verify
the underlying assumptions it is helpful to assume that the matrices do commute. It is easy
to show that if A; and A, are negative definite and commuting, then A=1 45 = O(1).

It is obvious from the proof that the assumption in the theorem could be formulated a
bit more general. What we need is only the existence of a function v, with v(¢),v'(t) = O(1),
satisfying Av(t) = Ay (¢) for all ¢. This would allow A to be singular. The following results
permit a similar generalization.

Theorem 4.2. Consider the trapezoidal splitting with s = 3 and let M = A + %72A3A2A1.
If it holds that

TM 1 A34,0 () = 0(1) (4.4)
for £k =0,1 and ¢ € [0,T], then e, = O(7) for ¢, € [0,T]. Under the stronger condition
M~ (A3 4560 (1) = (A5 + A)e{" V(1) — A30{TV (1)) = O(1) (4.5)

for k= 0,1 and ¢ € [0,T], we have e, = O(7?) for t,, € [0,T).
Proof. For s = 3 we have
R—I=(-32))""1-1312)""(I—-3Z3)"" ((Zl +7Zy+ Z3) + iZ3ZQZ1)-
By using (3.1), the results follow in the same way as in the previous theorem. |
Corollary 4.3. Suppose the matrices A; are negative definite and commuting. If either
Ay = O(1) or A3 = O(1), then e, = O(7?) for t, € [0,T).
Proof. If the A; are commuting and negative definite, then
(A+ 1r%A434,4,) 1A4; = 0(1),
and using A; = O(1) for ¢ = 2 or 3, it follows that (4.5) is satisfied. O

Corollary 4.4. Let o € (0,%), B > 0 with 2 — 4a < 3. Suppose the matrices A; are
commuting and negative definite. Suppose in addition that h?A; = O(1), A$ASp:(t) = O(1)

and 7h™% = O(1). Then e, = O(r) for t, € [0,T].

Proof. If the A; are commuting and negative definite the expression in (4.4) can be written

as

A4S ) (A + 172434, 40) 71 452 45 (A5 A5 01 (1)),

and (A+1r2434,4,) 147 A)* = O(1). Using 2 —4a < 8, h?A; = O(1) and 7h # = O(1),
it follows that 7A{/2™* A{/2™ = ©(1), and thus (4.4) will hold. O
We note that the last corollary is relevant to parabolic equations. For the heat equation

with Dirichlet boundary conditions we can apply this result with arbitrary o < 1/4, see [2] or
[9], for instance. An application will be given in Section 6.



4.2. Remarks on related results

A convergence result for the ADI-Peaceman-Rachford method has been presented in [9] for
s = 2, showing also second order convergence under the assumption (4.3). It is somewhat
surprising that the same result is valid for the trapezoidal splitting since the internal vectors
v; are not fully consistent.

For Yanenko’s method (1.5),(1.6) applied to the s-dimensional heat equation, a similar
analysis has been presented in [7] for s = 2 and in [3] for arbitrary s. The results are less
favourable than for the trapezoidal splitting. Even for the simple 2-dimensional heat equation
with homogeneous Dirichlet conditions, constant source term and 7/h = O(1) we will have
only e, = O(7'/?) [3, 7], and the order of convergence 1/2 is also valid for s > 3 [3]. In Section
6 we shall give some numerical comparisons between (1.5),(1.6) and the trapezoidal splitting
(1.7).

The order reduction due to boundary conditions can also be observed for Runge-Kutta
methods, see Brenner et al. [2] for instance. In a recent paper, Lubich and Ostermann [12]
have shown that for strongly A-stable Runge-Kutta methods, applied to parabolic equations,
the classical order of convergence holds in the interior of the spatial domain. In some numerical
tests on parabolic problems we observed that the same seems to hold for the trapezoidal
splitting and Yanenko’s method, in spite of the fact that these methods are not strongly
stable for very stiff eigenvalues.

5. BOUNDARY CORRECTIONS

The fact that the splitting methods, which are second order in the classical ODE sense, do
not always give second order convergence uniformly in h is due to the boundary conditions,
see Section 3. One may therefore hope that this order reduction will disappear if we treat
the boundaries as much as possible in the same way as the interior region. The formulas in
Mitchell and Griffiths [14], Sections 2.12, 2.16, and LeVeque [11] are all constructed along this
principle.

Boundary corrections can be derived for rectangular regions 2. Assume for the moment
that Dirichlet conditions are given on the whole boundary I'. Let I'; be that part of the
boundary on which the values are relevant to F;, and let I'; r = Uf:j Ly, for j < k. If F;
contains no discretized spatial derivatives, then I'; is empty. In case F; does contain spatial
derivatives we can apply F; on I'; for j # 4, but not on I'; itself.

Due to its simple form it is easy to derive boundary corrections for the trapezoidal splitting.
We note that vy = u, and ve; = u,41 are consistent approximations to the exact solution wu.
Further, in (1.7) we need the value of v; 1 on I'; (i = 1,---,s), whereas vy ; must be known
on Ty ; (i =1,---,s). For the corrected boundary conditions of the trapezoidal splitting
we take vg = u(t,) on I', and subsequently

v; = Vi1 + 37Fi(ta,vic1) on Tipq s (5.1)
fori=1,2,---,s — 1, and likewise v9s = u(t,,+1) on T,
V2s—j = V2s41—j — %TFj(tn+la7]23+1—j) on Dy s (5.2)

forj=1,2,---,s—1.
With von Neumann boundary conditions the formulas (5.1) and (5.2) should be used to
prescribe the outward normal derivatives of v; and vsy;, similar as in [11].
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A natural way to derive boundary corrections for the midpoint splitting is to set v, =
u(ty41/2) on ', and then use (1.8) on the boundary to obtain

Vsi = Vgt (i=1) T Fsp1-i(tng1/2, Vsti—1)) on T i1 (5.3)

for i =1,2,---,5 — 1. In some numerical tests the results of the midpoint splitting method
showed considerable improvement with these boundary corrections, but still the midpoint
splitting was not competitive with the trapezoidal splitting, due to its lack of internal stabil-
ity. Therefore, we shall no longer consider this method. (It should be noted, however, that the
midpoint splitting method did perform well in the test report [5], where the underlying decom-
position of F' was based on a Hopscotch type splitting and the PDE problem was advection
dominated in two directions with a nonstiff reaction term.)

For Yanenko’s method the situation is more complicated, due to the fact that v; can not
be written explicitly in terms of of either v;_1 or v;;+1, and the values of v; are now needed
on both I'; and I'; 1 (1 =1,2,---,5 — 1) for the step (1.5). For (1.6) this is similar, of course.
Consider, for example, the first stage in (1.5), where v; is implicitly defined in terms of vy.
Starting with vg = u(t,,) on I', we can approximate the implicit relation by

V] R u(tn) + TFl(t'n; u(tn))

However, since F; cannot be applied on I'1, in general, we can use this formula only on I'y in
the second stage of the method. As we have F1(t,u(t)) = u'(t) — 3_7_5 Fj(t,u(t)), we can also
take the approximate formula

S
v1 R Utny1) — T Z Fj(tn+1,u(tnt1)),
i=2

which now can be used on I'y. For the other v; we can proceed similarly. This gives for the v;
(1=1,2,---,s—1) in (1.5) the formulas

i
vi =ulty) + 7Y Fj(tn,u(tn)) on Tiy,
=, (5.4)
vi =u(tps1)—7T Z Fi(tnt1,u(tny1)) on T
j=i+1
Likewise for the vsy; (1 =1,2,---,5 —1) in (1.6) we take

s
Vs+i =u(tn+1)—|—7 Z Fj(tn+1,u(tn+1)) on Fs—i;
Jj=s+1—2

s—1

Vsti = U(tnt2) — TZF]' (tn+2,u(tnt2)) on Tsp1-i.
Jj=1

(5.5)

Numerical results in [11] indicate that a better accuracy may be obtained if in (5.4),(5.5)
higher order terms of 7 are included to give a better approximation of the implicit relations.
However, if s > 2 or nonlinear terms are involved, this leads to rather complicated correction
terms.

We have not attempted to perform a detailed error analysis for the above boundary cor-
rections along the lines of the previous section. Instead, we shall present in the next section
several numerical results.
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6. NUMERICAL COMPARISONS

In this section some numerical results are presented for Yanenko’s method (1.5),(1.6) and the
trapezoidal splitting method (1.7). Note that the computational work is almost identical for
both methods. The measured error is the difference between the numerical results and the
exact PDE solution, that is, the restriction of u to the grid. This includes also spatial errors,
but it has been verified that the temporal errors are dominant in the following tables.

Example 6.1. We consider the 2-dimensional diffusion-reaction equation on spatial domain
Q =10,10]? and ¢ € [0, 10],

u; = um—l—uyy—l—u2(1 —u) on €,

with initial condition and Dirichlet boundary conditions chosen such that we have the exact
solution

-1

u(z,9,1) = (1 +exp(3(z+y - 1)) .
This solution consists of a wave traveling diagonally over the domain. The spatial derivatives
are discretized with standard second order finite differences. Let 62(t) stand for the finite dif-
ference operator approximating u,, with the associated time-dependent boundary conditions

for z = 0 and z = 10. Likewise 65(15) approximates u,, with boundary conditions at y = 0,
y = 10. We consider the following splitting with s = 3,

Fi(t,w) = [62()]|w, Fy(t,w) = [62(1‘)] w, F3(t,w) =w?(l—w). (6.1)

The multiplications in F3 are to be interpreted componentwise. The spatial grid has mesh
width A in both directions. In Table 6.1 the errors in Ls-norm are listed at time 7" = 10 with
7 =h =10/N. Table 6.2 contains the same errors for the schemes with boundary corrections
according to the formulas of Section 5.
N 10 20 40 80
Yanenko || 1.5 1072 | 6.9 1072 | 4.1 1073 | 2.7 1073

TrapSplit || 3.8 1073 [ 9.9 10~* | 2.5 107* | 6.3 1075

Table 6.1. Splitting (6.1). Lo-errors for Yanenko’s method and trapezoidal splitting,
no boundary corrections.

N 10 20 40 80
Yanenko || 1.1 1072 | 291073 | 7.4 10~* | 1.8 10~
TrapSplit || 3.2 1073 | 8.2 107% | 2.0 10~* | 5.1 107

Table 6.2. Splitting (6.1). Ly-errors for Yanenko’s method and trapezoidal splitting,
with boundary corrections.

In this example the trapezoidal splitting gives second order accuracy without boundary
corrections. Although the assumptions of Corollary 4.3 are not fulfilled, the result seems to

12



apply here since A3 = O(1), where Aj is the Jacobi matrix associated with the reaction term
F3. Yanenko’s method gives a low order of convergence without boundary corrections, also in
agreement with the theoretical results for the linear case [7, 3]. With boundary corrections
the second order is restored, but still the results are less accurate than for the trapezoidal
splitting.

Example 6.2. We consider the same problem as in Example 6.1, but now with the splitting
Fi(t,w) =w*(1-w), F(tw)=[6;0)]w, Fit,w)=I[5)]w. (6.2)

Here we cannot expect second order convergence for the trapezoidal splitting since both A3 and
As are not O(1). The errors are listed in the Tables 6.3 and 6.4 (with boundary corrections).
Again the errors are measured in the Ly-norm at 7' = 10 with 7 = h = 10/N.
N 10 20 40 80
Yanenko || 1.4 1072 | 7.1 1072 | 4.2 1073 | 2.8 1073
TrapSplit || 6.3 1073 | 1.8 1073 | 5.9 104 | 2.3 10~

Table 6.3. Splitting (6.2). Lo-errors for Yanenko’s method and trapezoidal splitting,
no boundary corrections.

N 10 20 40 80
Yanenko || 5.7 1072 | 1.6 1073 | 4.1 10~* | 1.1 10~*
TrapSplit || 2.1 1073 | 4.9107* | 1.2107* | 2.8 1075

Table 6.4. Splitting (6.2). Ly-errors for Yanenko’s method and trapezoidal splitting,
with boundary corrections.

We see that here boundary corrections are also needed for the trapezoidal splitting to
obtain second order accuracy. Without these corrections a first order convergence could be
expected from Corollary 4.4. The actual order of convergence seems slightly better in Table
6.3, but tests with smaller 7 and h did show an order of convergence close to one.

As in the previous example the results for the trapezoidal splitting are more favourable
than for Yanenko’s method.

Example 6.3. In this final example we consider advection coupled with a (mildly) stiff
reaction term, on domain Q = [0,1]? and ¢ € [0, 1],

u; = auy + buy + f(u) on €,

with given velocities a(z,y,t) = 2n(y — 3), b(z,y,t)) = 27(3 — z), and with

u(z,y,t) = ( uy(z,y,t) ) ’ flu) = ( —kiug + kyujuy ) '

uy(z,y,t) kiuy — kauguy

The reaction constants are chosen as k1 = ko = 100. Dirichlet conditions are given at the
inflow boundaries. At the outflow boundaries we shall use an upwind discretization in space,
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in the interior second order central differences are used. The spatial operators are now no
longer negative definite, there will be eigenvalues close to the imaginary axis.

The velocity field will give a rotation around the center (3,3) of the domain. The exact
solution can be found by superposition of this rotation upon the solution of the ODE system
v'(t) = f(v(t)). To solve this ODE, note that we will have v1(t) + v2(t) = d, constant in time.
By eliminating vy it follows that

V] = cvp — kyv?,
with ¢ = d ks — k1, and the exact solution is given by

cv1(0) exp(ct)
¢+ kyvi(0)(exp(ct) — 1)’

For the PDE we take the initial value

U1 (t) = UQ(t) =d- Ul(t).

111(-'15,?/, 0) = % + % exp(—lO(a: - %)2 - 10(y - %)2)7 112(-'17,y, 0) =0.
In the rotating coordinate system

& = cos(2nt)(z — %) —sin(27t)(y — %), n = sin(2nt)(z — %) + cos(2nt) (y — %),

we define
d= d(.’E,y,t) = % + 14_() exp(—10£2 - 10(7’ - i)2)7 c= C(.’E,y,t) = d(xayat)kl - k2a
giving the solution

cd exp(ct)
c+ kod(exp(ct) — 1)’

ul(ma%t) = u2($7y7t) :d_ul(xayat)' (6'3)
An illustration of this solution is shown in Figure 1.

Since the reaction term in this problem introduces a strong transient phase, we use an
increasing step size sequence with small step sizes at the beginning. If the initial step size
is too large the Newton process for the reaction term diverges. We have have chosen a ratio
k = 20 between the first and last step size. If N is the number of steps, then 0 = ¥/,
70 = (1 —1/6)/(k — 1) and 7; = 7987 for j = 1,2,..., N. For Yanenko’s method we used a
modification such that the step sizes in (1.5) and (1.6) are equal, namely, the above procedure
was applied with N replaced by N/2 and the resulting step sizes were used to go from ¢, to
tn+2. Also with these increasing step sizes we found divergence for both methods in the very
first step with N = 10, so the following results are with N > 20.

We consider splitting with F} =~ z-advection, Fy = y-advection and F3 for the reaction
term. The Lg-errors at time 7" = 1 are listed in Table 6.5.

N 20 40 80 160
Yanenko || 3.0 1072 | 1.4 1072 | 5.1 1073 | 1.8 103
TrapSplit || 3.0 1072 | 1.3 1072 | 4.8 1073 | 1.7 1073

Table 6.5. Advection-reaction equation. Ls-errors for Yanenko’s method and trapezoidal
splitting, no boundary corrections.
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Both methods give very similar results with an order of convergence approximately 3/2.
We also tested the trapezoidal splitting with boundary corrections at the inflow boundaries,
but, to our surprise, this gave nearly identical results. Finally, we tested the trapezoidal
splitting with F; being the reaction term and with Fy, F3 approximating the advection in z
and y direction, respectively. Also this gave nearly identical results.

At the moment we do not have a theoretical explanation for these results, not even a
heuristic one as in the two preceding examples. A more detailed analysis of the local error
(3.1) seems to be needed for this specific example. The fact that boundary corrections did
not give an improvement of the results indicates that the stiffness of the reaction term is an
important factor here.

1.2

CEOTSSLSS
S5 RIS
1 ISR

SIS

0.5 0.5 0.5

e N
JTrr s
MO
i RN
////////,,,z":ég; ::“::‘“‘: \\\“: AN

/

00

Figure 1. Solutions (6.3) at t =0 (top) and ¢t = 1 (bottom) after one rotation.
Component uy to the left and ug to the right.

15



REFERENCES

[1]

2]

3]

[4]

[5]

[6]

[7]

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.M. Beam, R.F. Warming, An implicit finite-difference algorithm for hyperbolic systems
in conservation-law form. J. Comp. Phys. 22, pp. 87-110 (1976).

P. Brenner, M. Crouzeix, V. Thomée, Single step methods for inhomogeneous linear dif-
ferential equations. RATRO Numer. Anal. 16, pp. 5-26 (1982).

R. Ciegis, K. Kigkis, On the stability of LOD difference methods with respect to boundary
conditions. Lithuanian Academy of Sciences, Informatica 5, pp. 297-323 (1994).

E. Hairer, S.P. Ngrsett, G. Wanner, Solving Ordinary Differential Equations I — Nonstiff
Problems. Springer Verlag, Berlin, 1987.

P.J. van der Houwen, B.P. Sommeijer, Splitting methods for three-dimensional transport
models with interaction terms. CWI Report NM-R9516, 1995.

P.J. van der Houwen, J.G. Verwer, One-step splitting methods for semi-discrete parabolic
equations. Computing 22, pp. 291-309 (1979).

W. Hundsdorfer, Unconditional convergence of some Crank-Nicolson methods for initial-
boundary value problems. Math. Comp. 58, pp. 35-53 (1992).

W. Hundsdorfer, A note on stability of the Douglas splitting method. CWI Report, 1996.

W. Hundsdorfer, J.G. Verwer, Stability and convergence of the Peaceman-Rachford ADI
method for initial-boundary value problems. Math. Comp. 53, pp. 81-101 (1989).

J.F.B.M Kraaijevanger, B-convergence of the implicit midpoint rule and the trapezoidal
rule. BIT 25, pp. 652-666 (1985).

R.J. LeVeque, Intermediate boundary conditions for LOD, ADI and approzimate factor-
ization methods. ICASE Report 85-21, Langley Research Center, 1985.

Ch. Lubich, A. Ostermann, Interior estimates for time discretization of parabolic equa-
tions. Appl. Num. Math. 18, pp. 241-251 (1995).

G.I. Marchuk, Splitting and alternating direction methods. Handbook of Numerical Anal-
ysis 1 (P.G. Ciarlet. J.L. Lions, eds.), North-Holland, Amsterdam, pp. 197-462, 1990.

A R. Mitchell, D.F. Griffiths, The Finite Difference Method in Partial Differential Equa-
tions. John Wiley & Sons, Chichester, 1980.

J.G. Verwer, J.M. Sanz-Serna, Convergence of method of lines approrimations to partial
differential equations. Computing 33, pp. 297-313 (1984).

N.N. Yanenko, The Method of Fractional Steps. Springer Verlag, Berlin, 1971.

16



