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Abstract. The main contributions of this paper are two-fold.
Firstly, we present a novel direction in the cryptanalysis of the cryptographic hash
function SHA-1. Our work builds on previous cryptanalytic efforts on SHA-1 based
on combinations of local collisions. Due to dependencies, previous approaches used
heuristic corrections when combining the success probabilities and message conditions
of the individual local collisions. Although this leads to success probabilities that
are seemingly sufficient for feasible collision attacks, this approach most often does
not lead to the maximum success probability possible as desired. We introduce novel
techniques that enable us to determine the theoretical maximum success probability
for a given set of (dependent) local collisions, as well as the smallest set of message
conditions that attains this probability. We apply our new techniques and present an
implemented open-source near-collision attack on SHA-1 with a complexity equivalent
to 257.5 SHA-1 compressions.
Secondly, we present an identical-prefix collision attack and a chosen-prefix collision
attack on SHA-1 with complexities equivalent to approximately 261 and 277.1 SHA-1
compressions, respectively.

1 Introduction

A series of breakthrough attacks on hash functions started in 2004 when the first
collisions for MD4, MD5, HAVAL-128 and RIPEMD were presented by Wang et
al.[WFLY04,WY05]. This was soon followed by the first SHA-0 collision presented
by Biham et al. [BCJ+05]. Soon thereafter, Wang et al. published a more efficient
collision attack on SHA-0 [WYY05c]. In the same year, the first collision attack on
full SHA-1 [WYY05b] was presented by Wang et al. with an estimated complexity
of 269 compressions. A later unpublished1 result by Wang et al. claimed a SHA-1
collision attack with an estimated complexity of 263 compressions [WYY05a]. This
was further improved by Mendel et al. with an unpublished attack with estimated
complexity of 260.x compressions [MRR07]. Although later withdrawn, McDonald et
al. published a collision attack with claimed complexity of 252 compressions [MHP09].

So far, it seems some kind of barrier has been reached at around 261 SHA-1
compressions. Unfortunately, as Polk et al. [PCTH11] point out, these cryptanalytic
advancements are not reflected in the literature so far, as the improved attacks since
the first SHA-1 collision attack are either unpublished or withdrawn.

1. Cochran analyzed and partially verified this attack [Coc07].
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2 Our contributions

This paper aims to renew the cryptanalytic efforts to construct a feasible collision
attack on SHA-1 and find an actual collision pair. The main contributions of this
paper are two-fold.

Firstly, we present a novel direction in the cryptanalysis of SHA-1 that we believe
will allow collision attacks with complexity well below the 261 barrier. Collision attacks
on SHA-1 are constructed in roughly two parts: a non-linear part (over approximately
the first 20 steps) and a linear part (over approximately the last 60 steps). The
linear part is constructed using a linear combination of local collisions as described
by a disturbance vector [CJ98]. So far, to obtain the success probability of these
combinations, the local collisions are first studied independently (e.g., see [MPRR06])
and then combined. As the success probabilities of local collisions can be dependent
(e.g., see [Man11]), current approaches make some heuristic corrections when joining
probabilities and message conditions. Although this is seemly sufficient to construct
feasible collision attack on SHA-1, it may not lead to the desired maximum success
probability possible and thereby leads to sub-optimal collision attacks. We introduce
novel techniques that enable the computation of the maximum success probability
for a given set of (dependent) local collisions, as well as the smallest set of message
conditions that attains this probability. That our new approach provides a distinct
advantage over the previous approach is showcased in our second contribution.

Our second contribution is an implemented near-collision attack for SHA-1 with
a complexity equivalent to 257.5 compressions.2 We show how this near-collision
attack can be used to construct an identical-prefix collision attack on SHA-1 with
complexity equivalent to 261 compressions. Furthermore, we present the first chosen-
prefix collision attack on SHA-1 with a complexity equivalent to 277.1 compressions.

Our attack distinguishes itself from previous (unpublished) attacks on SHA-1 on
several aspects. Firstly, in the construction of this attack we optimized the complexity
over the linear part and (so far) not over the non-linear part. Secondly, our novel
direction has resulted in a competitive3 attack complexity without exploiting nearly
all degrees of freedoms. In fact there are well over 50 from the 512 message bits left as
degrees of freedom that can be further exploited in future work. Lastly, it is the first
public implementation of a SHA-1 collision attack: the source code is available online
[Ano].4 This allows the public verification of the correctness and the complexity of our
implementation and we also hope it leads to better understanding and improvements
by the scientific community. We will leave the many technical details of our near-
collision attack to the full version of this paper due to space considerations. Despite
this, we briefly discuss how the correctness of our implementation as well as our
claimed complexity can be verified using our publicly available source code.

2. This complexity is not based on a purely theoretical cost analysis, but directly determined from
the measured performance over the non-linear part and success probabilities over the linear part,
see Section 5.1. 3. In comparison to unpublished attacks. 4. Made anonymous for the sake of
the review process.
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3 Preliminaries

32-bit words SHA-1 is defined using words X = (x31 . . . x0) consisting of 32
bits xi ∈ {0, 1} over which we use the following notation for bitwise operations:
X[i] = xi, X (complement), X ∧ Y (AND), X ∨ Y (OR), X ⊕ Y (XOR), RL(X,n)
and RR(X,n) for the cyclic left and right rotation of X by n bit positions, and w(X)
for the Hamming weight of X. Furthermore, these words are identified with elements
x =

∑31
i=0 xi2

i of Z/232Z to define addition and subtraction of two words.

Binary signed digit representation A binary signed digit representation (BSDR)
for X ∈ Z/232Z is a sequence Z = (zi)

31
i=0 ∈ {−1, 0, 1}32 such that X =

∑31
i=0 zi2

i.
We use the following notation for a BSDR Z:

– Z[i] = zi denotes the i-th signed bit of Z;

– RL(Z, n) and RR(Z, n) are the cyclic left and right rotation by n positions;

– w(Z) is the Hamming weight of Z;

– σ(Z) =
∑31

i=0 ki2
i ∈ Z/232Z denotes the 32-bit word for which Z is a BSDR.

Related variables and differences In collision attacks we consider two related
messages M and M ′. Any variable X related to the message M or its SHA-1
calculation we use X ′ to denote the corresponding variable related to the message
M ′ or its SHA-1 calculation. Furthermore, for such a ‘matched’ variable X ∈ Z/232Z
we define δX = X ′ −X and ∆X = (X ′[i]−X[i])31i=0, which is a BSDR of δX.

SHA-1 compression function The input for the compression function Compress
consists of an intermediate hash value IHVin = (a, b, c, d, e) of five 32-bit words
and a 512-bit message block B. The 512-bit message block B is partitioned into 16
consecutive 32-bit strings which are interpreted as 32-bit words m0, m1, . . . , m15

(using big-endian), and expanded to W0, . . . ,W79 as follows:

Wt =

{
mt for 0 ≤ t < 16,

RL(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1) for 16 ≤ t < 80.
(1)

We describe SHA-1’s compression function Compress in an ‘unrolled’ version. For
each step t = 0, . . . , 79 it uses a working state consisting of five 32-bit words Qt,
Qt−1, Qt−2, Qt−3 and Qt−4 and calculates a new state word Qt+1. The working state
is initialized before the first step as

(Q0, Q−1, Q−2, Q−3, Q−4) = (a, b, RR(c, 30), RR(d, 30), RR(e, 30)).

For t = 0, 1, . . . , 79 in succession, Qt+1 is calculated as follows:

Ft = ft(Qt−1, RL(Qt−2, 30), RL(Qt−3, 30)),

Qt+1 = Ft +ACt +Wt +RL(Qt, 5) +RL(Qt−4, 30).
(2)
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These 80 steps are grouped in 4 rounds of 20 steps each. Here, ACt is the constant
5a82799916, 6ed9eba116, 8f1bbcdc16 or ca62c1d616 for the 1st, 2nd, 3rd and 4th
round, respectively. The non-linear function ft(X,Y, Z) is defined as (X∧Y )⊕(X∧Z),
X⊕Y ⊕Z, (X∧Y )∨(Z∧(X∨Y )) or X⊕Y ⊕Z for the 1st, 2nd, 3rd and 4th round,
respectively. Finally, the output intermediate hash value δIHVout is determined as:

δIHVout := (a+Q80, b+Q79, c+RL(Q78, 30), d+RL(Q77, 30), e+RL(Q76, 30)).

4 Joint local-collision analysis

4.1 Local collisions and the disturbance vector

In 1998, Chabaud and Joux [CJ98] constructed a collision attack on SHA-0 based
on local collisions. A local collision over 6 steps for SHA-0 and SHA-1 consists of
a disturbance δQt+1 = 2b created in some step t by a message word bit difference
δWt = 2b. This disturbance is corrected over the next five steps, so that after those
five steps no differences occur in the five working state words. They were able to
interleave many of these local collisions such that the message word differences
(∆Wt)

79
t=0 conform to the message expansion. For more convenient analysis, they

consider the disturbance vector which is a non-zero vector (DVt)
79
t=0 conform the

message expansion where every ‘1’-bit DVt[b] marks the start of a local collision
based on the disturbance δWt[b] = ±1. We denote by (DWt)

79
t=0 the message word

bit differences without sign (i.e., DWt = W ′t ⊕Wt) for a disturbance vector (DVt)
79
t=0:

DWt :=
⊕

(i,r)∈R

RL(DVt−i, r), R = {(0, 0), (1, 5), (2, 0), (3, 30), (4, 30), (5, 30)}

Note that in differential paths we work with differences δWt instead of DWt. We say
that a message word difference δWt is compatible with DWt if there are coefficients
c0, . . . , c31 ∈ {−1, 1} such that δWt =

∑31
j=0 cj ·DWt[j]. The setWt of all compatible

message word differences given DWt is defined as:

Wt :=
{
σ(X)

∣∣ BSDR X, X[i] ∈ {−DWt[i],+DWt[i]}, i ∈ {0, . . . , 31}
}

4.2 Dependencies of local collisions

Local collisions can interact in the following three ways.

– Message differences. Firstly, two local collisions can use message word differences
in the same message word in the same bit position. As an example, consider the
disturbance vector for which DV50[0] and DV55[30] are the only ‘1’-bits. Then as
DW55 = DV55 ⊕RL(DV50, 30) = 0, this means the message word differences in
step 55 of the two local collisions must be chosen to cancel each other.
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– Working state differences. Secondly, two local collisions starting in the same step
directly interact with each other due to carries. E.g., Wang et al. [WYY05b]
introduced a disturbance vector bit compression technique. They use opposite
signs for two local collisions that start in the same step at two subsequent bit
positions (say DV25[0] = DV25[1] = 1) to turn it into a single local collision.

– Boolean function differences. Thirdly, two ’close’ disturbances can interact in the
boolean function. E.g., consider the disturbance vector for which DV25[31] and
DV26[31] are the only ‘1’-bits. Then these local collisions interact as in the first
case as the message word differences in steps 29 and 30 cancel each other out.
Moreover, in step 29 it is also guaranteed that δF29 = 0 as the two disturbances
input to the XOR boolean function cancel each other. In contrast, when analyzing
these two local collisions independently, each has a probability of 0.5 that the
difference δF29 has the opposite sign from δW29. The product of the independent
success probabilities is thereby lower than the maximum joint probability of
these two local collisions by a factor 0.5 · 0.5 = 0.25 (see also [Man11, Table 9]).
This particular example does not involve any carries, which in other cases may
have a further impact on the maximum success probability.

Although these examples are quite easy to analyze, the disturbance vectors in which
we are interested have a higher density of disturbances at the beginning and the
end. For these higher density areas, it is significantly more difficult to analyze the
exact impact of the these interactions on the maximum success probability. In this
paper we take a new direction in the cryptanalysis of SHA-1 in which we do not
analyze these interactions directly, but use a rather general approach to determine
the desired maximum success probability that incorporates these interactions.

4.3 Optimal joint local-collision analysis

We start at the relatively easy and well understood analysis of a single local collision.
Given the single bit disturbance∆Qt+1[b] = ±1 created in the first step t, one analyzes
the necessary message conditions to cancel this disturbance in the subsequent steps.
Most importantly, one determines what the probability is of a successful cancellation
under these message conditions. Higher success probabilities are obtained by also
considering carries in ∆Qt+1 from bit position b to higher positions.

One approach that obtains exact success probabilities is to sum the exact success
probabilities of all possible differential paths over these 6 steps t, . . . , t + 5 with
δQt−4 = . . . = δQt = 0, δQt+1 6= 0 and δQt+2 = . . . = δQt+6 = 0 using a given
message difference vector (δWi)

t+5
i=t . Although there are already quite a few of such

differential paths for a single local collision, these can easily be enumerated.
We propose to study combinations of local collisions in a very similar way. That

is, we propose to analyze the set of all possible differential paths over a given
range of steps tb, . . . , te that contain disturbances as prescribed by the disturbance
vector using message word differences δWt compatible with DWt. Next, this set is
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partitioned based on the values for the starting and ending working state differences
and the message word differences. We distinguish thus only on the pre-conditions
(the starting working state differences and the message word differences) and the
post-condition (the ending working state differences) that matches how differential
paths are used in an actual collision attack. For each partition, we compute the sum
of the probabilities of its differential paths. One can thus interpret this total partition
probability as the total probability that the ending working state differences are
obtained after step te given that the starting working state differences at step tb and
the message word differences hold. Hence, the desired maximum success probability
for a disturbance vector is the maximum over all total partition probabilities.

4.4 Definitions

More formally, we define a differential path P over steps t = tb, . . . , te to be given as
P = ((∆Qt)

te+1
t=tb−4, (∆Ft)

te
t=tb

, (δWt)
te
t=tb

)5, under the following restrictions:

– correct differential steps for t = tb, . . . , te:

δQt+1 = σ(RL(∆Qt, 5)) + σ(RL(∆Qt−4, 30)) + δFt + δWt. (3)

– ∆Ft[31] ∈ {0, 1} and a non-zero value represents ∆Ft[31] = ±1. 6

The success probability Pr[P ] of a differential path P over steps tb, . . . , te is informally
defined as the probability that the given path P holds exactly for (Q̂tb−4, Q̂

′
tb−4), . . .,

(Q̂te+1, Q̂
′
te+1) for uniformly-randomly chosen Q̂tb−4, . . . , Q̂tb and Ŵtb , . . . , Ŵte . The

Q̂′tb−4, . . . , Q̂
′
tb

and Ŵ ′tb , . . . , Ŵ
′
te are determined through the first five working state

differences δQtb , . . . , δQte and the message differences δWi (for i = tb, . . . , te). The

remaining (Q̂tb+1, Q̂
′
tb+1), . . . , (Q̂te+1, Q̂

′
te+1) are computed using the step function

(Eq. 2). We refer to Section B for another equivalent definition and how to efficiently
determine the probability Pr[P] for any given P.

As we are interested in differential paths with prescribed disturbances, we define
the set Qt as the set of all allowed differences ∆Qt given a disturbance vector:

Qt :=

{
BSDR Y

∣∣∣∣∣ σ(Y ) = σ(Z),

Z[i] ∈ {−DVt−1[i], DVt−1[i]}, i = 0, . . . , 31

}
.

We are now ready to define the set of all possible differential paths over steps tb, . . . , te
that we will base our analysis on:

D[tb,te] :=
{
P̂
∣∣ ∆Q̂i ∈ Qi, δŴj ∈ Wj , Pr[P̂] > 0

}
5. In practice, we use an strictly smaller representation wherein ∆Qtb−4 and δQte+1 are replaced
by δ(RL(Qt−4, 30)) and δQte+1, respectively. We use a simplification here to ease presentation.
6. Both −1 and +1 for ∆Ft[31] result in the same contribution 231 ∈ Z/232Z in σ(∆Ft).
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We define three functions ψ, φ and ω that return beginning working state differences,
ending working state differences and message word differences:

ψ(P) = (∆Qi)
tb
i=tb−4;

φ(P) = (di)
te+1
i=te−3, di =

{
σ(RL(∆Qi, 30)), i = te − 3, te − 2, te − 1;

δQi, i = te, te + 1.

ω(P) = (δWi)
te
i=tb

;

We have chosen this particular definition for the ending working state differences
φ(P) as this matches δIHVout exactly. We denote by ψ(D), φ(D) and ω(D) the sets
found by applying ψ, φ or ω to all differential paths in the set D.

The desired maximum success probability over steps tb, . . . , te for a given distur-
bance vector (DVt)

79
t=0 is then determined as FDC[tb,te]

(
(DVt)

79
t=0

)
:

FDC[tb,te]

(
(DVt)

79
t=0

)
= max

b,e,w

∑
P̂∈D[tb,te]

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂] · c(b),

where c(b) = c((∆Qi)
te
i=tb−4) is the correction factor c(b) =

∏tb−2
i=tb−4 2w(∆Q̂i). This

correction factor c(b) ensures that FDC is the maximum success probability assuming
all working state bit conditions are fulfilled for Qtb−4, Qtb−3 and Qtb−2.

7 This is
due to the fact that a collision attack fulfills working state bit conditions step by
step, using message freedoms to speed up the attack, until these freedoms cannot
be exploited anymore. At that point, it is more beneficial to compute all remaining
steps and verify whether the desired δIHVout is obtained, FDC returns the maximum
success probability obtainable for these remaining steps.

4.5 Efficient algorithmic solution

Unfortunately, analyzing a single local collision in the above manner is very feasible,
whereas analyzing several local collisions quickly results in a prohibitively large set
of possible differential paths. We exploit the large amount of redundancy among the
possible differential paths to be able to efficiently compute the desired maximum
success probability even when there are many local collisions.

Note that we are only interested in the total success probability for given pre-
and post-conditions and not in the differential paths themselves per se. We therefore
propose to break up a differential path P into two valid differential paths P̂ and P̃
with the following properties:

– P̂ and P̃ are ’disjoint’ and ’add’ to P. More specifically, we want that either
∆Q̂i[b] or ∆Q̃i[b] to be equal to ∆Qi[b] and the other to be zero (or all three to be

zero). The same holds for ∆Fi[b], and furthermore we require δWi = δŴi + δW̃i;

7. Note that if bit conditions up to Qtb−2 are fulfilled then ∆Ftb−1 has been ensured, but not ∆Ftb .
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– the success probabilities of P̂ and P̃ are independent, i.e., Pr[P ] = Pr[P̂ ] · Pr[P̃];

– ψ(P) = ψ(P̂) and φ(P) = φ(P̂);

– the success probability Pr[P̂] is maximal under the above restraints.

One can interpret P̂ as the differential path P with all differences removed that do
not interact with the differences that constitute the starting and ending working
state differences ψ(P) and φ(P). We denote P̂ as Reduce(P) and P̃ as P − P̂. In
our proposed methodology, instead of directly computing the differential paths in
D[tb,te] and their probabilities, we propose to work with the set of reduced differential
paths R[tb,te] := {Reduce(P) | P ∈ D[tb,te]} and cumulative probabilities p(P,w) for
each reduced differential path P and w defined as:

p(P,w) =
∑

P ′∈D[tb,te]

P=Reduce(P ′)
w=ω(P ′)

Pr[P ′ − P]. (4)

These cumulative probabilities have an easy interpretation using the equation:

Pr[P] · p(P,w) =
∑

P ′∈D[tb,te]

P=Reduce(P ′)
w=ω(P ′)

Pr[P] · Pr[P ′ − P] =
∑

P ′∈D[tb,te]

P=Reduce(P ′)
w=ω(P ′)

Pr[P ′]

As the working state differences φ(P) and ψ(P) are unaffected by Reduce(P), the
set of reduced differential paths and the cumulative probabilities are sufficient to
determine the total success probability of any partition (b, e, w) of D[20,79].

Moreover, the set R[tb,te] of reduced differential paths can be computed efficiently
in an iterative manner as shown in Algorithm C-1. The cumulative probabilities can
also be computed iteratively, but the number of possible message difference vectors
w ∈ (Wi)

te
i=tb

grows exponentially in the number of local collisions over these steps.
We propose to alleviate this problem by considering classes w of message difference
vectors w over steps i, . . . , j, where any two w 6= w′ are in the same class w if and
only if p(P,w) = p(P,w′) for all P ∈ R[i,j]. It then suffices to compute the cumulative
probabilities for only one representative w ∈ w for each class w over steps tb, . . . , te.

Let W [i,j] be the set of all message difference vector classes w over steps i, . . . , j.

An important insight is that for any class w[i,j] ∈ W [i,j] and any two w,w′ ∈ w[i,j]

it holds that the extensions w||δWj+1 and w′||δWj+1 of w and w′ with a difference
δWj+1 are both in the same class w[i,j+1] ∈W [i,j+1]. An analogous statement holds
for prepending a δWi−1 to w and w′. These insights imply that it is sufficient to
consider only one representative of each class in W [i,j] to determine the sets W [i−1,j]
and W [i,j+1]. Hence, one can efficiently determine the set W [tb,te] in an iterative way.

In conclusion, with our two key techniques of differential path reduction and
message difference vector classes, we are able to efficiently compute FDC[tb,te].
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4.6 Results

We have computed FDC[20,79] for several interesting disturbance vectors. These
results are shown in Section D and show the maximum success probability of these
disturbance vectors over roughly the last 60 steps. Although the total complexity
of a collision attack also depends on the complexity over the non-linear part, these
results provide important insights which of these disturbance vectors may lead to
the fastest collision attack.

4.7 Improvements for the last few steps of SHA-1

A common approach in constructing SHA-1 collision attacks is to remove the con-
ditions for the last few steps as this will decrease the attack’s overall complexity.
The heuristic behind this effect is that for the last few steps some other differen-
tial paths that do not follow the disturbance vector actually have a higher success
probability. Our approach can be adjusted by extending the sets Q76, . . . ,Q80 with
differences ∆Qi from these more likely alternative differential paths. We denote by
FDC′[tb,te], D

′
[tb,te]

and R′[tb,te] the respective function and sets wherein the extended

sets Q′76, . . . ,Q′80 are used instead of Q76, . . . ,Q80. In the full version of this paper
we also present algorithms that efficiently determine such extended sets Q′76, . . . ,Q′80
using ideas similar to the analysis in this Section 4.

5 New collision attacks on SHA-1

5.1 Open-source near-collision attack

In this section we present our near-collision attack on SHA-1’s compression function
with an average complexity of 257.5 compressions. Our near-collision attack is based
on disturbance vector II(52,0) (see Table A-1). Below we describe how we used our
new approach from Section 4 to determine which message bitrelations and δIHVout
to use and how we constructed the first round differential path. Collision search
algorithms and various improvements using message modification techniques have
already been covered extensively in the literature. We refer to our open-source
implementation and the full version for these details due to space considerations.

To apply our analysis of Section 4, we have chosen to use tb = 20 (and te = 79).
We use the improvements discussed in Section 4.7 as this leads to higher success
probabilities by a factor 21.2. Let D′ := D′[20,79] and define pb,e,w for b ∈ ψ(D′),
e ∈ φ(D′) and w ∈ ω(D′) as:

pb,e,w =
∑

P̂∈D′
[tb,te]

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂] · c(b).
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Furthermore, define pmax := maxb,e,w pb,e,w, which is equal to FDC′[20,79]((DVt)
79
t=0).

We use a differential path construction algorithm to find a differential path over
the first 20 steps that starts from δIHVin = 0 and ends with working state differences
b ∈ ψ(D′) for which there are e and w such that pb,e,w = pmax. The differential
path over the first round that we selected for our near-collision attack is shown in
Table E-2 and fixes a specific value b̂ and specific message differences δŴ0, . . . , δŴ19.

To maximize the success probability, we only accept δIHVout in the set {e ∈
φ(D′) | ∃w : p

b̂,e,w
= pmax}. We can further decrease overall complexity by only

allowing w that maximize the number of e = δIHVout with p
b̂,e,w

= pmax. The
near-collision attack gains a speed up due to the fact that it always has several
chances of finding a target δIHVout. Note that a possible second near-collision attack
(for an identical-prefix collision attack) does not have the benefit of the speedup as
it targets one specific δIHVout = 0. More formally, for each w ∈ ω(D′), we count
the number Nw of values e for which p

b̂,e,w
= pmax. Let Nmax := maxwNw (which

is 6 in our case) then we limit the allowed message difference vectors to the set
W[20,79] = {w | Nw = Nmax}. Hence, we only accept values for δIHVout in the set
{e ∈ φ(D′) | ∃w ∈W[20,79] : p

b̂,e,w
= pmax}.8 In this manner we have found 192 target

δIHVout-values which are shown in Table E-1.
With the differential path and the set of allowed δIHVout known, we only need the

message bit relations to construct a collision attack. We translate the set W[20,79] and

the vector (δŴi)
19
i=0 into a smallest sufficient set of linear bit relations on the message

words using linear algebra. We refer to Section F for a more detailed description.
Using the differential path, the message bitrelations and the set of allowed δIHVout,

we have implemented a near-collision attack. The most important characteristics of
our near-collision attack are given in Section E. For more details, we refer to the
(anonymous) source code (including build instructions) which is available online at
[Ano]. For more convenient analysis, the attack is split in four subsequent stages.

1. The first stage is to find a message block pair that satisfies the message bitrelations
and results in δQi = 0 for i = 29, 30, 31, 32, 33. This stage is the most complex
and contains all speed ups using message modification techniques.

2. The second stage is to find a message block pair that satisfies the message
bitrelations and results in δQi = 0 for i = 49, 50, 51, 52, 53.

3. The third stage is to find a message block pair that satisfies the message bitrela-
tions and results in δQi = 0 for i = 57, 58, 59, 60, 61.

4. The fourth and final stage is to find a message block pair that results in one of
the 192 target δIHVout in Table E-1.

The last three stages cannot use any freedoms anymore and thereby either are or
are not successful with some probability. The total complexity of our near-collision

8. To obtain more message freedoms and larger Nmax, one may also condition on pb,e,w ≥ α · pmax

for some α < 1, say 0.9, instead of requiring equality.
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attack is thus the average complexity of the first stage divided by the product of
the success probabilities for the last three stages. Our implementation outputs the
throughput of the first stage in #/s as ’timeavg 40’, and the success probabilities of
the last three stages as ’avg 53 stats’, ’avg 61 stats’ and ’avg 80 stats’, respectively.
Using these numbers one can easily determine the average complexity in SHA-1
compressions to find a near-collision. With profiling and tuned optimization flags for
the compiler and many hours-long runs, we determined an average complexity of the
first stage to be 220.91 SHA-1 compressions per message block pair. Using our novel
analysis for step ranges [33,52], [53,60] and [61,79] and Nmax = 6, we determined the
exact success probabilities for the last three stages, namely, 2−20.91, 28 and 216.65,
respectively. These probabilities were verified by our implemented attack. Hence,
the total complexity of our near-collision is 211.97 · 220.91 · 28.00 · 216.65 = 257.53 SHA-1
compressions. Finally, we like to note that with more than 50 bits of the 512 message
bits left as degrees of freedom, there is ample room to further optimize the first stage
with message modification techniques.

We provide an example message pair in Table G-1 that successfully passed the
first three stages of our near-collision attack (at a cost of about 240.9 compressions).

5.2 Identical-prefix collision attack on SHA-1

The near-collision attack of Section 5.1 can directly be used in a two-block identical-
prefix collision attack on SHA-1. It should be noted that such a two-block identical-
prefix collision attack actually consists of three blocks where the first block is part
of the identical-prefix part and is used to satisfy a few bitconditions on the IHV
(see Table E-2).9 The remaining two blocks are two sequential near-collision blocks
where the second block cancels the δIHVout resulting from the first block.

For the second near-collision block, we follow the steps as described in Section 5.1
with two modifications. Firstly, in Section 5.1 we allow only δIHVout = 0 (thus
δIHVin is canceled). This leads to Nmax = 1 and a different set of optimal message
difference vectors W[20,79]. Hence, the total complexity over the last three stages
increases by a factor 6. Secondly, instead of using a differential path starting with
δIHVin = 0 in Section 5.1, we use a differential path that starts with the (IHV, IHV ′)
resulting from the first near-collision block.

A lower-bound for the complexity of a complete two-block identical-prefix collision
attack based on our current near-collision implementation is about (1+6)·257.5 ≈ 260.3

compressions, as the first near-collision attack has the luxury of six allowed values for
δIHVout for each possible (δWt)

79
t=0, whereas the second near-collision attack must

target one specific δIHVout. Given the relatively large amount of freedoms left to
apply message modification techniques, it is reasonable to expect a similar complexity

9. It should be possible to remove this prefix block with only a negligible impact on the attack com-
plexity. We used this prefix block to simplify implementation and to allow very easy parallelization.
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in the first stage (first 32 steps). Nevertheless, leaving room for a small set back, we
estimate the average complexity of our identical-prefix collision attack for SHA-1 to
be equivalent to 261 SHA-1 compressions.

5.3 Chosen-prefix collision attack

We present a chosen-prefix collision attack on SHA-1 using the second near-collision
attack of Section 5.2 that does the following. Given chosen prefixes P and P ′, we first
append bit strings Sr and S′r such that the bit lengths of P ||Sr and P ′||S′r are both
equal to N · 512− 119. By processing the first N − 1 blocks of P ||Sr and P ′||S′r, we
obtain IHVN−1 and IHV ′N−1, resp. Furthermore, let B and B′ be the last 512− 119
bits of P ||Sr and P ′||S′r, resp. The next step is to perform a birthday search as
explained in [vOW99] using a search space V and a step function f : V → V . Based
on the 192 δIHVout-values in Table E-1, we define V = {0, 1}119 and f as:

f(v) =

{
φ
(
Compress(IHVN−1, B||v)

)
if w(v) = 0 mod 2;

φ
(
Compress(IHV ′N−1, B

′||v)− (0, 0, 0, 0, 231)
)

if w(v) = 1 mod 2,

φ(a, b, c, d, e) = (a[i])31i=19||(b[i])31i=14||(c[i])30i=0||(d[i])31i=7||e

The probability that a birthday collision results in one of the 192 target δIHVout
is found to be approximately 2−33.46 using Monte Carlo simulations. Therefore, a
birthday search collision pair v, w with f(v) = f(w) has a probability of q = 2−33.46−1

that τ(v) 6= τ(w) and δIHVN is one of the 192 target δIHVout-values. Using the
analysis from [vOW99], this implies that the expected birthday search complexity in
SHA-1 compressions is

√
π · |V |/(2 · q) ≈ 277.06.

It remains to find a near-collision block that cancels the found δIHVN to complete
the chosen-prefix collision attack. But as δIHVN is one of the 192 target δIHVout,
we can directly use the construction of the second near-collision block of Section 5.2
here, whose complexity is significantly lower than 277.06. Hence, the overall cost of a
chosen-prefix collision attack on SHA-1 is dominated by the expected 277.1 SHA-1
compressions required to generate the birthday search trails.

6 Concluding remarks

We have presented new collision attacks on SHA-1, most importantly an identical-
prefix collision attack with an average complexity of 261 compressions. With the
construction of these attacks, we focused mostly on obtaining the highest success
probability that is theoretically possible over the linear part. Our novel direction
in the cryptanalysis of SHA-1 is essentially based on an exhaustive and exact
analysis of all possible differential paths that follow the disturbance vector. This is in
contrast to previous approaches that combine success probabilities and conditions of
individual local collisions with heuristic corrections. In this paper we have introduced

12



the foundations of our novel direction. For a complete and rigorous mathematical
treatment we refer to the full version of this paper.

As our attacks have still over 50 out of the 512 message bits left as degrees of
freedom for further improvements using message modification techniques, we hope
that our novel methods provide the necessary advantage to construct attacks with
complexity well below 261 compressions and thereby contributes to the search for
the long-anticipated first SHA-1 collision.
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A SHA-1 disturbance vector classes

Table A-1: SHA-1 disturbance vectors of type I and type II
disturbance vector I(K, 0),K ∈ Z
i DVK+i DWK+i

. . . . . . . . .
−18 31 28, 31
−17 30, 31 4, 28, 29, 30, 31
−16 − 3, 4, 28, 31
−15 31 29, 30
−14 31 4, 28, 31
−13 − 4, 28, 31
−12 − 28, 31
−11 31 31
−10 − 4
−9 − 29, 31
−8 − 29
−7 31 29, 31
−6 − 4, 29
−5 31 −
−4 − 4, 29
−3 31 29
−2 − 4
−1 31 29

0 − 4
1 − 29, 31
2 − −
3 − 29
4 − 29

5− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 − 6, 30
20 − 1, 30
21 2 2, 31
22 − 7, 31
23 1 1, 2, 31
24 3 0, 3, 6
25 − 0, 1, 8
26 − 0, 3, 31
27 4 1, 4, 31
. . . . . . . . .

disturbance vector II(K, 0),K ∈ Z
i DVK+i DWK+i

. . . . . . . . .
−20 − 29
−19 31 31
−18 − 4
−17 31 −
−16 − 4, 29
−15 31 29
−14 − 4
−13 30, 31 29, 30
−12 − 3, 4
−11 − 29, 30, 31
−10 31 28, 31
−9 − 4, 28, 29
−8 − 28, 29, 31
−7 − 29
−6 − 29
−5 31 29, 31
−4 − 4
−3 − 31
−2 − 29
−1 − 29

0 − 29
1 31 31
2 − 4
3 31 −
4 − 4, 29
5 − 29, 31
6 − −
7 − 29
8 − 29

9− 14 − −
15 0 0

16 − 5
17 − 0
18 1 1, 30
19 0 0, 6, 30
20 − 1, 5, 30
21 2 0, 2, 31
. . . . . . . . .

Note: we describe the bit-positions of all ‘1’-bits of the 32-bit words DVK+i and DWK+i. The
SHA-1 (reverse) message expansion relation is used to extend the above tables forward (backward).
Disturbance vectors I(K, b) and II(K, b) for b ∈ {0, . . . , 31} are obtained by left rotating all 80 words
of disturbance vectors I(K, 0) and II(K, 0), respectively, by b bit positions [Man11].
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B Probability analysis

In this section we present a method to efficiently determine the probability of a
differential path P over steps 0 ≤ tb ≤ te < 80. This probability is equivalent to the
success probability of the following experiment:

Experiment B1 This experiment involves partial SHA-1 computations of two mes-
sages. For the first message, values for Q̂tb−4, . . . , Q̂tb and Ŵtb , . . . , Ŵte are selected

uniformly at random. The remaining values for Q̂tb+1, . . . , Q̂te+1 are computed using
the step function for t = tb, . . . , te:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Q̂t+1 = RL(Q̂t, 5) +RL(Q̂t−4, 30) + F̂t + Ŵt +ACt.

For the second message, we apply the given differences to the randomly selected
variables:

Q̂′i = Q̂i + δQi for i = tb − 4, . . . , tb,

Ŵ ′j = Ŵj + δWj for j = tb, . . . , te.

The remaining values Q̂′tb+1, . . . , Q̂
′
te+1 are computed using the step function for

t = tb, . . . , te:

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂′t−2, 30), RL(Q̂′t−3, 30)),

Q̂′t+1 = RL(Q̂′t, 5) +RL(Q̂′t−4, 30) + F̂ ′t + Ŵ ′t +ACt.

The experiment has succeeded when the above step function computations follow the
differential path P, thus when all the following equations hold:

∆Q̂i = ∆Qi for i = tb − 4, . . . , te + 1,

2b∆F̂j [b] = 2b∆Fj [b] mod 232 for j = tb, . . . , te, b = 0, . . . , 31.

Consider a slight change in Experiment B1:

Experiment B2 This experiment is a modification of Experiment B1. Instead of
randomly selecting values for Ŵtb , . . . , Ŵte and computing values for Q̂tb+1, . . . , Q̂te+1,

one randomly selects values for Q̂tb+1, . . . , Q̂te+1 and computes values for Ŵtb , . . . , Ŵte

using:

F̂t = ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)),

Ŵt = Q̂t+1 −RL(Q̂t, 5)−RL(Q̂t−4, 30)− F̂t −ACt.

The success requirement is left unchanged.
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Since there is a bijective relation between (Ŵt)
te
t=tb

and (Q̂t+1)
te
t=tb

, this implies

that (Ŵt)
te
t=tb

is also uniformly distributed in Experiment B2. Hence, the success
probabilities of both experiments are equal. Note that this second experiment is
completely determined by the values of (Q̂t)

te+1
t=tb−4. Next, consider another experiment:

Experiment B3 This experiment is a modification of Experiment B2. As above,
we set

Q̂′i = Q̂i + δQi for i = tb − 4, . . . , tb.

However, instead of setting Ŵ ′t = Ŵt + δWt for t = tb, . . . , te and computing values
for Q̂′tb+1, . . . , Q̂

′
te+1, one sets Q̂′t+1 = Q̂t+1 + δQt+1 for t = tb, . . . , te and computes

values for Ŵ ′tb , . . . , Ŵ
′
te:

F̂ ′t = ft(Q̂
′
t−1, RL(Q̂′t−2, 30), RL(Q̂′t−3, 30)),

Ŵ ′t = Q̂′t+1 −RL(Q̂′t, 5)−RL(Q̂′t−4, 30)− F̂ ′t −ACt.

The success requirement is left unchanged. In particular, one does not need an
additional check that δŴt = δWt as in case of success this is implied by Equation 3.

Proposition 1 For fixed values (Q̂t)
te+1
t=tb−4, Experiment B3 succeeds if and only if

Experiment B2 succeeds.

We use these experiments to show that the probability Pr[P ] of such a differential
path can be determined as the fraction NP/2

32(te−tb+6) where NP is the number of
possible values (Q̂t)

te+1
t=tb−4 ∈ Z/232Zte−tb+6 for which this third experiment succeeds.

In other words, NP is the number of possible values (Q̂t)
te+1
t=tb−4 ∈ Z/232Zte−tb+6 for

which

– for t = tb − 4, . . . , te + 1: ∆Qt = ∆Q̂t;
– for t = tb, . . . , te and b = 0, . . . , 31:

(2b∆Ft[b] mod 232) = (ft(Q̂
′
t−1, RL(Q̂′t−2, 30), RL(Q̂′t−3, 30)) ∧ 2b)

− (ft(Q̂t−1, RL(Q̂t−2, 30), RL(Q̂t−3, 30)) ∧ 2b),

where Q̂′t = Q̂t + δQt for t ∈ {tb − 4, . . . , te + 1}.
An efficient way to determine the probability Pr[P] is to partition the bits Q̂t[b]

into parts G∆Q, G0, . . . , GK for some K ∈ N that each contribute a factor to Pr[P].
One important part G∆Q consists of all indices (j, i) such that ∆Qj [i] 6= 0 where

j ∈ {tb − 4, . . . , te + 1} and i ∈ {0, . . . , 31}. Since the values Q̂′j [i] and Q̂j [i] are
uniquely determined for all (j, i) ∈ G∆Q, this partition contributes the factor of
p∆Q = 1/2|G∆Q| to Pr[P].
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Consider the set SF of all indices (t, b) where t ∈ {tb, . . . , te} and b ∈ {0, . . . , 31}
such that ∆Ft[b] is not trivially fulfilled, i.e., for the given ∆Qt−1, ∆Qt−2, ∆Qt−3
there were multiple possible output differences to choose for ∆Ft[b]. Let SQ be the
set of all indices (j, i) where j ∈ {tb − 4, . . . , te + 1} and i ∈ {0, . . . , 31} such that
∆Qj [i] = 0 and Qj [i] is involved with some ∆Ft[b] with (t, b) ∈ SF : {(j + 1, i), (j +
2, i+ 2 mod 32), (j + 3, i+ 2 mod 32)} ∩ SF 6= ∅.

All indices (j, i) of bits Qj [i] where (j, i) /∈ SQ ∪G∆Q for j ∈ {tb − 4, . . . , te + 1},
i ∈ {0, . . . , 31} form part G0. Part G0 consists by construction of all indices of free
bits Qj [i] whose values do not affect ∆Qj or any of the non-trivially fulfilled ∆Ft
and thus contributes a factor of p0 = 2|G0|/2|G0| = 1 to Pr[P].

The set of remaining indices SQ is further partitioned by constructing a graph G
consisting of vertices Ft[b] for all (t, b) ∈ SF and vertices Qj [i] for all (j, i) ∈ SQ. There
is an edge between nodes Ft[b] and Qj [i] if and only if: (t, b) ∈ {(j + 1, i), (j + 2, i+
2 mod 32), (j+3, i+2 mod 32)}, i.e., Qj [i] is involved with Ft[b]. The graph G can be
uniquely partitioned into connected subgraphs G1, . . . ,GK . This partition G1, . . . ,GK
of G defines a partition G1, . . . , GK of SQ as follows: Gk = {(j, i) | Qj [i] ∈ Gk} , k ∈
{1, . . . ,K}.

By construction, all bits Qj [i] with associated nodes in the partition Gk influence
a non-trivially fulfilled ∆Ft[b] if and only if there is an associated node Ft[b] in Gk.
The probability pk can be determined as NP,k · 2−|Gk|, where NP,k is the number of
different values of (Qj [i])(j,i)∈Gk that result in the correct value of all ∆Ft[b], where
Ft[b] is a node in Gk, and assuming Q′j [i] = Qj [i] +∆Qj [i] for all (j, i) ∈ G∆Q.

Proposition 2 The probability Pr[P] is the product of p∆Q, p0, p1, . . . , pK :

Pr[P] = p∆Q · p0 ·
K∏
k=1

pk = 2−|G∆Q|
K∏
k=1

NP,k

2|Gk|
.
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C Algorithms for disturbance vector analysis

Algorithm C-1

1. Let t̂ be some step in the range [tb, te].
2. Construct the entire set D[t̂,t̂] of all possible differential paths over step t̂.
3. Compute R[t̂,t̂] = {Reduce(P) | P ∈ D[t̂,t̂]}.
4. For i = t̂, t̂+ 1, . . . , te − 1, using the set R[t̂,i] we compute: R[t̂,i+1]:

(a) Let A := ∅.
(b) For all P ∈ R[t̂,i] and for all choices ∆Qi+2 ∈ Qi+2, δWi+1 ∈ Wi+1, ∆Fi+1 ∈ {−1, 0, 1}31×
{0, 1} let P̂ be the differential path over steps t̂, . . . , i+ 1 given as P appended with ∆Qi+2,
∆Fi+1 and δWi+1.
If Pr[P̂] > 0 then let A := A ∪ {Reduce(P̂)}.

(c) R[t̂,i+1] := A.

5. For i = t̂, t̂− 1, . . . , tb + 1, using the set R[i,te] we compute R[i−1,te]:
(a) Let A := ∅.
(b) For all P ∈ R[i,te] and for all choices ∆Qi−5 ∈ Qi−5, δWi−1 ∈ Wi−1, ∆Fi−1 ∈ {−1, 0, 1}31×
{0, 1} let P̂ be the differential path over steps i − 1, . . . , te given as P prepended with
∆Qi−5, ∆Fi−1 and δWi−1.
If Pr[P̂] > 0 then let A := A ∪ {Reduce(P̂)}.

(c) R[i−1,te] := A.
6. Output R[tb,te].
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D SHA-1 disturbance vector analysis

The tables in the appendix are based on the disturbance vector cost function
FDC[tb,te],u that is defined as similar to FDC[tb,te], but under the additional constraint
that only up to u carries are allowed in the working state differences ∆Qi. More
formally, we define:

Qt,u :=

BSDR Y

∣∣∣∣∣∣∣∣
σ(Y ) = σ(Z),

Z[i] ∈ {−DVt−1[i], DVt−1[i]}, i = 0, . . . , 31,

w(Y ) ≤ u+ min
X∈Qt

w(X).

 ;

D[tb,te],u :=
{
P̂
∣∣ ∆Q̂i ∈ Qi,u, δŴj ∈ Wj , Pr[P̂] > 0

}
;

and
FDC[tb,te],u

(
(DVt)

79
t=0

)
= max

b,e,w

∑
P̂∈D[tb,te],u

ψ(P̂)=b, φ(P̂)=e, ω(P̂)=w

Pr[P̂] · c(b),

where c(b) = c((∆Qi)
te
i=tb−4) is the correction factor c(b) =

∏tb−2
i=tb−4 2w(∆Q̂i).

The tables below contain notes ε = 0, 1/8, 1/4, 1/2 for each entry. This note
indicates whether in our algorithms to compute FDC[tb,te],u we removed certain
message difference vectors w that had a ’total success probability of w’ less than ε
times the highest ’total success probability over all w′’. Although, we won’t go into
the details of the notationally heavy definition of this ’total success probability’, it
is clear that choosing ε = 0 will cause no message difference vector to be removed.
Choosing ε > 0 will result in that the maximum taken in FDC[tb,te],u will actually
be taken over a subset of all values w. Hence, choosing ε > 0 can only affect the
outcome in a negative way, i.e., a smaller maximum success probability. Although for
ε close to 1, this removal of message difference vectors does affect the outcome (in a
negative way), we have not seen this happen for ε ≤ 0.5 for all selected studied cases.
Choosing ε > 0 allows us to compute lower-bounds for FDC[tb,te],u for disturbance
vectors and values for u that were otherwise prohibitive for our particular machine
due to memory requirements. We argue that for up to ε ≤ 0.5 these values are not
just lower-bounds, but in fact the correct outcome for FDC[tb,te],u, which is backed-up
by the fact that for increasing u these outcomes increase as expected and no sudden
decrease is seen (or, when taking the − log2, decrease as expected and no sudden
increase is seen).
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Table D-1: Most interesting disturbance vectors

u
DV 0 1 2 3 4 5 6 7

I(48, 0) 75.00 71.84 71.61 71.51 71.46 71.44 71.43 71.42
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(49, 0) 76.00 72.59 72.34 72.24 72.19 72.17 72.16 72.15
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(50, 0) 75.00 72.02 71.95 71.93 71.92 71.92 71.92 71.92
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(46, 0) 76.00 71.85 71.83
ε=0 ε=0 ε=1/2

II(50, 0) 78.00 73.52 73.23 73.12 73.06 73.04 73.03 73.02
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(51, 0) 77.00 72.55 72.18 72.02 71.95 71.91 71.89 71.88
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(52, 0) 75.00 71.88 71.87 71.76 71.76 71.75 71.75 71.75
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

The columns are the negative log2 results of the cost function FDC[20,79],u.
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Table D-2: Overview of disturbance vectors I(K, 0)

u
DV 0 1 2 3 4 5 6 7

I(42, 0) 82.68 78.67 78.36
ε=0 ε=0 ε=1/4

I(43, 0) 82.00 77.65 77.31
ε=0 ε=0 ε=1/8

I(44, 0) 81.00 77.41 77.1 76.98 76.93 76.90 76.89 76.89
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8

I(45, 0) 81.00 76.91 76.66 76.54 76.49 76.47 76.46 76.45
ε=0 ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8

I(46, 0) 79.00 75.02 74.92 74.84 74.83 74.83 74.83 74.83
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=1/8

I(47, 0) 79.00 75.15 74.83 74.71 74.65 74.63 74.62 74.61
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(48, 0) 75.00 71.84 71.61 71.51 71.46 71.44 71.43 71.42
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(49, 0) 76.00 72.59 72.34 72.24 72.19 72.17 72.16 72.15
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(50, 0) 75.00 72.02 71.95 71.93 71.92 71.92 71.92 71.92
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(51, 0) 77.00 73.76 73.53 73.43 73.38 73.36 73.35 73.34
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(52, 0) 79.00 76.26 76.24 76.24 76.24 76.24 76.24 76.24
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(53, 0) 82.83 78.86 78.79 78.77 78.77 78.77 78.77 78.77
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(54, 0) 82.83 79.60 79.38 79.28 79.23 79.21 79.19 79.19
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(55, 0) 81.54 78.67 78.42 78.32 78.27 78.25 78.24 78.23
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(56, 0) 81.54 79.10 79.03 79.01 79.01 79.01 79.01 79.01
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

The columns are the negative log2 results of the cost function FDC[20,79],u.
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Table D-3: Overview of disturbance vectors I(K, 2)

u
DV 0 1 2 3 4 5 6 7

I(42, 2) 85.09 82.17 81.84 81.72
ε=0 ε=1/4 ε=1/2 ε=1/2

I(43, 2) 84.42 81.15 80.78
ε=0 ε=1/4 ε=1/2

I(44, 2) 84.42 81.92 81.57 81.45 81.40 81.38 81.37 81.36
ε=0 ε=0 ε=1/4 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2

I(45, 2) 83.42 80.80 80.52 80.41 80.36 80.34 80.33 80.32
ε=0 ε=0 ε=0 ε=1/4 ε=1/2 ε=1/2 ε=1/2 ε=1/2

I(46, 2) 80.42 78.10 78.00 77.99 77.99 77.99 77.99 77.99
ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8 ε=1/4

I(47, 2) 79.68 77.01 76.68 76.56 76.51 76.48 76.47 76.47
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8

I(48, 2) 76.68 74.27 73.99 73.88 73.83 73.81 73.80 73.79
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(49, 2) 77.00 74.30 74.02 73.92 73.87 73.85 73.84 73.83
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(50, 2) 77.00 74.74 74.63 74.61 74.61 74.60 74.60 74.60
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(51, 2) 80.00 77.47 77.21 77.11 77.07 77.04 77.03 77.03
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(52, 2) 82.00 79.98 79.93 79.92 79.92 79.92 79.92 79.92
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(53, 2) 84.00 81.91 81.80 81.78 81.78 81.78 81.78 81.78
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(54, 2) 84.00 81.37 81.06 80.95 80.90 80.87 80.86 80.85
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(55, 2) 84.00 81.78 81.53 81.43 81.38 81.36 81.34 81.34
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

I(56, 2) 82.00 80.22 80.13 80.12 80.11 80.11 80.11 80.11
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

The columns are the negative log2 results of the cost function FDC[20,79],u.
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Table D-4: Overview of disturbance vectors II(K, 0)

u
DV 0 1 2 3 4 5 6 7

II(44, 0) 87.00 79.51
ε=0 ε=1/2

II(45, 0) 83.00 75.45 74.82
ε=0 ε=1/8 ε=1/2

II(46, 0) 76.00 71.85 71.83
ε=0 ε=0 ε=1/2

II(47, 0) 81.42 76.23 75.87
ε=0 ε=0 ε=1/2

II(48, 0) 80.00 76.11 75.89 75.79 75.74
ε=0 ε=0 ε=0 ε=1/8 ε=1/2

II(49, 0) 80.00 75.04 74.72 74.60 74.55 74.52 74.51 74.51
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/2 ε=1/2

II(50, 0) 78.00 73.52 73.23 73.12 73.06 73.04 73.03 73.02
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(51, 0) 77.00 72.55 72.18 72.02 71.95 71.91 71.89 71.88
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(52, 0) 75.00 71.88 71.87 71.76 71.76 71.75 71.75 71.75
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0

II(53, 0) 76.96 73.65 73.34 73.23 73.17 73.15 73.14 73.14
ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8 ε=1/8 ε=1/8

II(54, 0) 77.96 73.97 73.74 73.64 73.59 73.57 73.56 73.55
ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8 ε=1/8 ε=1/8

II(55, 0) 77.96 75.22 74.99 74.89 74.84 74.82 74.81 74.80
ε=0 ε=1/8 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2

II(56, 0) 76.96 74.48 74.18 74.07 74.01 73.99 73.98 73.97
ε=0 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2 ε=1/2

The columns are the negative log2 results of the cost function FDC[20,79],u.
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Table D-5: Overview of disturbance vectors II(K, 2)

u
DV 0 1 2 3 4 5 6 7

II(45, 2) 85.00 78.64
ε=0 ε=1/2

II(46, 2) 82.00 77.51
ε=0 ε=1/2

II(47, 2) 85.42 79.83
ε=0 ε=1/2

II(48, 2) 83.00 78.81 78.46
ε=0 ε=1/2 ε=1/2

II(49, 2) 83.00 78.09 77.74
ε=0 ε=0 ε=1/2

II(50, 2) 81.00 76.51 76.16 76.03
ε=0 ε=0 ε=1/8 ε=1/8

II(51, 2) 82.00 77.74 77.36 77.20 77.13
ε=0 ε=0 ε=1/8 ε=1/8 ε=1/2

II(52, 2) 82.00 79.07 78.96 78.94 78.94 78.93 78.93 78.93
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/2

II(53, 2) 83.00 79.60 79.30 79.18 79.13 79.11 79.09 79.09
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8

II(54, 2) 84.00 80.49 80.21 80.10 80.04 80.02 80.01 80.00
ε=0 ε=0 ε=0 ε=0 ε=1/8 ε=1/8 ε=1/8 ε=1/8

II(55, 2) 84.00 81.20 80.88 80.76 80.71 80.68 80.67 80.67
ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=0 ε=1/8

II(56, 2) 85.00 82.69 82.39 82.27 82.22 82.20 82.19 82.18
ε=0 ε=1/4 ε=1/4 ε=1/4 ε=1/4 ε=1/4 ε=1/4 ε=1/4

The columns are the negative log2 results of the cost function FDC[20,79],u.
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E Near-collision attack details

Table E-1: SHA-1 near-collision attack target δIHVdiff values

I0 =
{

(211 + 24 − 22, 26, 231, 21, 231),

(212 + 23 + 21, 27, 0, 21, 231),

(212 + 24 − 21, 27, 0, 21, 231),

(211 + 29 + 24 − 22, 26 + 24, 231, 21, 231),

(212 + 29 + 23 + 21, 27 + 24, 0, 21, 231),

(212 + 29 + 24 − 21, 27 + 24, 0, 21, 231)
}

;

I1 = I0 ∪
{

(212 + 211 + 24 − 22, 27 + 26, 231, 21, 231),

(212 + 211 + 29 + 24 − 22, 27 + 26 + 24, 231, 21, 231)
}

;

I2 =
{

(v1 − c · 25, v2, v3, v4, v5)
∣∣ (vi)

5
i=1 ∈ I1, c ∈ {0, 1}

}
;

I3 =
{

(v1 + c · 23, v2, v3, v4, v5)
∣∣ (vi)

5
i=1 ∈ I2, c ∈ {0, 1}

}
;

I4 =
{

(v1 − c · 213, v2 − c · 28, v3, v4, v5)
∣∣ (vi)

5
i=1 ∈ I3, c ∈ {0, 1}

}
;

I5 =
{

(v1 − c · 29, v2 − c · 24, v3, v4, v5)
∣∣ (vi)

5
i=1 ∈ I4, c ∈ {0, 1}

}
;

Ĩ =
{

(v1, v2, v3, v4 − c · 22, v5)
∣∣ (vi)

5
i=1 ∈ I5, c ∈ {0, 1}

}
;

The resulting set Ĩ is the set of 192 target δIHVdiff values. Note that some of the target δIHVdiff

values can be constructed in several manners in the above sets, otherwise the cardinality of Ĩ would
be (6 + 2) · 25 = 256. Furthermore, for any δIHVdiff ∈ Ĩ also −δIHVdiff ∈ Ĩ.
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Table E-2: SHA-1 near-collision differential path - round 1

t Bitconditions: qt[31] . . . qt[0] ∆Wt

−4,−3,−2 ........ ........ ........ ........

−1 ...1.... ........ ........ ....0...

0 .^.0.1.. .....0.1 ...00.10 .1..1..1 {1, 26, 27}
1 .0.+^-^^ ^^^^^1^0 ^^^11^10 .0..1.+0 {4, 30, 31}
2 1-...+-- -------- -------- --.-1.+0 {2, 3, 4, 26, 28, 29, 31}
3 .-.-.0.1 11111111 11110++1 +-1-00-0 {2, 26, 27, 28, 29}
4 .-...1.0 11111111 1111-+++ ++0.1.+1 {1, 3, 4, 26, 27, 28, 29, 31}
5 .-...0.. ........ ......0. .+.+10+0 {4, 29}
6 .-.+.... ........ ......01 100-.0+. {2, 3, 4, 26, 29}
7 -1...1.. ........ ........ ...0.0.. {2, 4, 26, 27, 29, 30, 31}
8 1.1-.1.. ........ ........ .....1.. {1, 26, 27}
9 ..-..0.. ........ ........ ........ {4, 30, 31}
10 ^...00.. ........ ........ .......1 {2, 3, 4, 26, 28, 29, 31}
11 ..-.1... ........ ........ .......0 {2, 26, 27, 29}
12 0-..1... ........ ........ ......!. {3, 4, 26, 27, 28, 29, 31}
13 +..01... ........ ........ ........ {4, 28, 29, 31}
14 ..-1.... ........ ........ ......!. {2, 3}
15 +.0.1... ........ ........ ......!^ {4, 27, 28, 29, 31}
16 +-0.0... ........ ........ ......!. {3, 4, 27}
17 +..1.... ........ ........ ......^. {4, 27, 28, 29, 30}
18 -.+0.... ........ ........ ........ {2, 4, 27}
19 -....... ........ ........ ........ {4, 28, 29, 30}
20 ..+..... ........ ........ ........
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F Deriving message bitrelations

For each ŵ = (δŴi)
79
i=20 ∈ W[20,79] we define the set Vŵ as the set of all (Wi)

79
i=0

that ’result’ in ŵ, i.e., (Wi ⊕DWi)−Wi = δŴi for all i ∈ {20, . . . , 79}. Let the set
V =

⋃
w∈W[20,79]

Vw consist of all (Wt)
79
t=0 that are compatible with some w ∈W[20,79].

Furthermore, let V ′ be the set consisting of all elements of V mapped to F32·80
2 . We

search for an affine subspace y + U ⊆ V ′ which is as large as possible. Choose any

basis of U⊥ of size k and let the k rows of the matrix A[20,79] ∈ Fk×(32·80)2 consist

of the k basis vectors of U⊥. It follows that x ∈ U ⇔ A[20,79] · x = 0 and thus
x ∈ y + U ⇔ A[20,79] · x = A[20,79] · y. The matrix equation A[20,79] · x = c[20,79] with
c[20,79] = A[20,79] · y describes sufficient linear bit relations for steps 20 up to 79.10

The set W[0,19] = {(δŴi)
19
i=0} similarly leads to a matrix equation A[0,19] · x =

c[0,19]. The two matrix equations can be combined into a single matrix equation
A[0,79] ·x = c[0,79] that defines our message search space. Finally, this matrix equation
over the 32 · 80 message words bits is reduced using the message expansion relation
to a matrix equation over the 512 message block bits, which is the one actually used
in our near-collision attack.

10. Although this seems to be impractical, we can compute this efficiently by splitting it into
independent parts and using well chosen representations.
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G Example partial near-collision

Table G-1: Example message pair each consisting of an identical-prefix block and a near-collision
block satisfying our differential path up to step 66.

First message

bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a

cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18

71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09

a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b

73 e6 e2 c8 43 7f b1 3e 4e 4d 5d b6 e3 83 e0 1d

7b ea 24 2c 2b b6 30 54 68 45 b1 43 0c 21 94 ab

fb 52 36 be 2b c9 1e 19 1d 11 bf 8f 66 5e f9 ab

9f 8f e3 6a 40 2c bf 39 d7 7c 1f b4 3c b0 08 72

Second message

bc 7e 39 3a 04 70 f6 84 e0 a4 84 de a5 56 87 5a

cd df f9 c8 2d 02 01 6b 86 0e e7 f9 11 e1 84 18

71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09

a3 b2 eb 2e 16 c0 cf c2 06 c5 20 28 10 38 3c 2b

7f e6 e2 ca 83 7f b1 2e fa 4d 5d aa df 83 e0 19

c7 ea 24 36 0b b6 30 44 4c 45 b1 5f e0 21 94 bf

f7 52 36 bc eb c9 1e 09 a9 11 bf 93 4a 5e f9 af

23 8f e3 72 f0 2c bf 29 d7 7c 1f b8 84 b0 08 62
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