SOJOURN TIMES IN THE M/G/1 QUEUE WITH DETERMINISTIC FEEDBACK

J.L. van den Berg, O.J. Boxma, W.P. Groenendijk
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT

In this paper we consider an M/G/1 queueing model, in which each customer is fed back a fixed number of times. For the case of negative exponentially distributed service times at each visit, we determine the Laplace-Stieltjes transform of the joint distribution of the sojourn times of the consecutive visits. As a by-result, we obtain the (transform of the) total sojourn time distribution; it can be related to the sojourn time distribution in the M/D/1 queue with processor sharing. For the case of generally distributed service times at each visit, a set of linear equations is derived, from which the mean sojourn times per visit can be calculated.

1. INTRODUCTION

In this paper we study an M/G/1 queueing system in which each customer is fed back a fixed number of times. Feedback systems occur in many practical situations; for instance, in computer systems tasks that are scheduled for resources may have to come back several times for additional service. In the literature much attention has been paid to feedback queues. However, most studies concerned so-called Bernoulli feedback: when a customer completes his service he departs from the system with probability 1-p and is fed back with probability p; see Takács [14],
Disney [4], Disney and König [5], Disney et al. [6] and Doshi and Kaufman [7].
Fontana and Diaz Berzosa [8,9] extend some results obtained for the M/G/1 model with Bernoulli feedback to a more general feedback model with priorities.

Simon [13] studies a somewhat more general model than the one presented in this paper. He allows different types of customers and priority levels, that may change after a service completion. The main result of his paper is the derivation of a set of linear equations for the mean sojourn time of each visit.

In the present model, to be described in Section 2, the priority mechanism is omitted. In Section 3 we derive, for the case of negative exponentially distributed service times, the Laplace-Stieltjes transform (LST) of the joint stationary distribution of the successive sojourn times of a customer. As a by-result we obtain an explicit expression for the LST of the distribution of the total sojourn time of a customer; the latter result has also been obtained by Lam and Shankar [11], for a more general feedback mechanism. This expression can be used to obtain the LST of the sojourn time distribution in the M/D/1 queueing system with processor sharing, a result previously found by Ott [12]. In Section 4 we show that, for the case of generally distributed service times at each visit, the set of linear equations for the mean sojourn times per visit can be explicitly solved. Finally an extension is made to a model with a more general feedback mechanism.

2. Model description

We consider a single server queueing system with infinite waiting room. Customers arrive at the system according to a Poisson process with intensity $\lambda > 0$. Each customer requires N services: a customer who enters the queue will return to the queue (feedback) after service $N-1$ times before leaving. Fed back customers return instantaneously, joining the end of the queue. The service discipline is First
Come First Served (FCFS). The N service times of a customer are mutually independent random variables having distribution functions $B_i(t)$, with mean β_i and second moment $\beta_i^{(2)}$, $i = 1, \ldots, N$. These service times are also independent of the service times of other customers, and of the arrival process.

Obviously the stability condition is that $\lambda \sum_{i=1}^{N} \beta_i < 1$. In the following this condition is assumed to hold, and we'll restrict ourselves to stationary distributions.

We define, for $i = 1, \ldots, N$,

- type-i customer: customer who is visiting the queue for the i-th time,

- X_i: number of type-i customers in the system at an arbitrary epoch in time,

- \tilde{X}_i: number of type-i customers in the system at an arbitrary arrival epoch,

- S_i: time between i-th arrival and i-th service completion of a customer;

- $S := \sum_{i=1}^{N} S_i$ (total sojourn time).

3. The negative exponential case

For the case that the service times are identically, negative exponentially, distributed,

$$B_i(t) = 1 - e^{-t/\beta}, \quad i = 1, \ldots, N,$$

we derive an expression for the Laplace-Stieltjes transform $E\{e^{-(\omega S_1 + \cdots + \omega S_N)}\}$ of the joint distribution of the successive sojourn times S_i, $i = 1, \ldots, N$, of a customer.

First note that the system described above can be considered as a queueing network consisting of one queue with N types of customers. Type-N customers leave the system with probability 1 after service. Type-i customers return to the queue
with probability 1 after service, and change into type-\((i + 1)\) customers, \(i = 1, \ldots, N - 1\).

Because the service times are assumed to be exponentially distributed, the results obtained by Baskett et al. [1] can be applied to find the joint distribution of the number of type-\(i\) customers in the system. It is found that, for \(x_1, \ldots, x_N = 0, 1, 2, \ldots\),

\[
P(x_1, \ldots, x_N) := Pr\{X_1 = x_1, \ldots, X_N = x_N\} = \]

\[
(1 - N\lambda\beta)(\lambda\beta)^{x_1 + \ldots + x_N}(x_1 + \ldots + x_N)! \prod_{i=1}^{N} \frac{1}{x_i!}.
\]

The PASTA property [15] implies that the joint distribution of \(\{\tilde{X}_1, \ldots, \tilde{X}_N\}\) is also given by this expression.

We follow a customer, say \(K\), from the moment he arrives as a type-1 customer until he leaves the system as a type-\(N\) customer. For the successive sojourn times \(S_1, \ldots, S_N\) of \(K\) it holds that

\[
E\{e^{-(\omega S_1 + \ldots + \omega S_N)}\} = \sum_{x_i=0}^{\infty} \cdots \sum_{x_N=0}^{\infty} P(x_1, \ldots, x_N)E\{e^{-(\omega S_1 + \ldots + \omega S_N)} \mid \tilde{X}_1 = x_1, \ldots, \tilde{X}_N = x_N\}.
\]

Let \(\omega := (\omega_1, \ldots, \omega_N)\), and

\[
A_1(\omega) := \frac{1}{1 + \beta \omega_N},
\]

\[
A_i(\omega) := \frac{1}{1 + \beta(\omega_{N-i+1} + \lambda - \lambda \prod_{j=1}^{i-1} A_j(\omega))}, \quad i = 2, \ldots, N.
\]

We now prove the following theorem.

Theorem

In the M/M/1 queue with deterministic feedback, for Re \(\omega_i \geq 0, i = 1, \ldots, N,\)
\[E \{ e^{-\omega(S_1 + \ldots + S_N)} \} = \frac{(1 - N\lambda\beta) \prod_{i=1}^{N} A_i(\omega)}{1 - \lambda\beta(\prod_{i=1}^{N} A_i(\omega) + \sum_{i=2}^{N} A_i(\omega) + \ldots + A_N(\omega))} \quad (3.3) \]

Proof: The proof is based on the observation that the joint process of successive departure epochs and queue length vector at these departure epochs is a Markov renewal process (cf. Cinlar [3], Ch. 10). Conditioning on the number of external arrivals, \(n_i \), during the \(i \)-th sojourn time, \(i = 1, \ldots, N - 1 \), it is easily seen that

\[
E \{ e^{-\omega(S_1 + \ldots + S_N)} \mid \tilde{X}_1 = x_1, \ldots, \tilde{X}_N = x_N \} =
\]

\[
\int_{t_1 = 0}^{\infty} \int_{t_2 = 0}^{\infty} \ldots \int_{t_{N-1} = 0}^{\infty} e^{-\omega_{N-1} t_{N-1}} e^{-\omega_{N} t_{N}} \prod_{i=1}^{N-1} \sum_{n_i=0}^{\infty} e^{-\lambda_i t_i} \frac{(\lambda t_i)^{n_i}}{n_i!} \]

\[dB(t_N) \{ (x_1 + n_1 + \ldots + n_{N-1} + 1)^* \} dB(t_{N-1}) \{ (x_1 + x_2 + n_1 + \ldots + n_{N-2} + 1)^* \} \ldots \]

\[dB(t_2) \{ (x_1 + \ldots + x_{N-1} + n_1 + 1)^* \} dB(t_1) \{ (x_1 + \ldots + x_N + 1)^* \} =
\]

\[
\left(\frac{1}{1 + \beta \omega_N} \right) x_1 + 1 \int_{t_1 = 0}^{\infty} \int_{t_2 = 0}^{\infty} \ldots \int_{t_{N-1} = 0}^{\infty} e^{-\omega_{N-1} t_{N-1}} e^{-\omega_{N} t_{N}} \prod_{i=1}^{N-2} \sum_{n_i=0}^{\infty} e^{-\lambda_i t_i} \frac{(\lambda t_i)^{n_i}}{n_i!} \]

\[dB(t_{N-1}) \{ (x_1 + x_2 + n_1 + \ldots + n_{N-2} + 1)^* \} \ldots dB(t_2) \{ (x_1 + \ldots + x_{N-1} + n_1 + 1)^* \} dB(t_1) \{ (x_1 + \ldots + x_N + 1)^* \} =
\]

\[
\left(\frac{1}{1 + \beta \omega_N} \right) x_1 + 1 \int_{t_1 = 0}^{\infty} \int_{t_2 = 0}^{\infty} \ldots \int_{t_{N-1} = 0}^{\infty} e^{-\omega_{N-1} t_{N-1}} e^{-\omega_{N} t_{N}} \prod_{i=1}^{N-2} \sum_{n_i=0}^{\infty} e^{-\lambda_i t_i} \frac{(\lambda t_i)^{n_i}}{n_i!} \]

\[dB(t_{N-1}) \{ (x_1 + x_2 + n_1 + \ldots + n_{N-2} + 1)^* \} \ldots dB(t_2) \{ (x_1 + \ldots + x_{N-1} + n_1 + 1)^* \} dB(t_1) \{ (x_1 + \ldots + x_N + 1)^* \} =
\]

\[
\left(\frac{1}{1 + \beta \omega_N} \right) x_1 + 1 \int_{t_1 = 0}^{\infty} \int_{t_2 = 0}^{\infty} \ldots \int_{t_{N-2} = 0}^{\infty} e^{-\omega_{N-2} t_{N-2}} e^{-\omega_{N} t_{N}} \prod_{i=1}^{N-2} \sum_{n_i=0}^{\infty} e^{-\lambda_i t_i} \frac{(\lambda t_i)^{n_i}}{n_i!} \]
Proceeding in this way we find

\[
\left(1 + \beta \omega_N \right)^{n_1 + \ldots + n_{N-2}} \left(1 + \beta (\omega_{N-1} + \lambda - \frac{\lambda}{1 + \beta \omega_N})\right)^{x_1 + x_2 + n_1 + \ldots + n_{N-2} + 1}
\]

\[
dB(t_{N-2})^{(x_1 + x_2 + x_3 + n_1 + \ldots + n_{N-2} + 1)^*} \ldots dB(t_2)^{(x_1 + \ldots + x_{N-1} + n_1 + 1)^*} dB(t_1)^{(x_1 + \ldots + x_N + 1)^*}.
\]

Substituting (3.1) and (3.4) in (3.2) yields the required result.

Remarks

i) Consider a type-i customer, present when the tagged customer K arrives. During his \((i + y)\)-th service, \(y = 0, 1, \ldots, N - i\), he influences K's sojourn times \(S_{y+1}, \ldots, S_N\) in two ways. His service time contributes to \(S_{y+1}\), and customers arriving during this service time influence \(S_{y+2}, \ldots, S_N\). These contributions are collected in the term \(A_{N-y}(\omega)\); the total contribution of all \(x_i\) type-i customers to the expression in the right-hand side of (3.4) is \(\left\{ \prod_{y=0}^{N-i} A_{N-y}(\omega) \right\}^{x_i} = \left(\prod_{j=i}^{N} A_j(\omega) \right)^{x_i}\).

ii) The (marginal) distribution of the \(i\)-th sojourn time, \(S_i\), \(i = 1, \ldots, N\), can be obtained from (3.3) by taking \(\omega_j = 0, j = 1, \ldots, N, j \neq i\). It is found that

\[
E\{e^{-\omega S_i}\} = \frac{1 - N\lambda\beta}{1 - N\lambda\beta + \beta\omega_i}.
\]

Hence, the sojourn times \(S_i, i = 1, \ldots, N\), are identically, negative exponentially, distributed with mean \(\beta / (1 - N\lambda\beta)\). This coincides with the sojourn time distribution in an ordinary \(M/M/1\) queue with mean service time \(\beta\) and arrival rate \(N\lambda\).

iii) In order to investigate the dependence between the \(i\)-th and \(j\)-th sojourn time
we have computed the Laplace-Stieltjes transform of the joint distribution of \(S_i \) and \(S_j \), \(1 \leq i < j \leq N \). It is found from (3.3) that

\[
E \left(e^{-(\omega_0 S_i + \omega_0 S_j)} \right) = \frac{1 - N\lambda \beta}{1 - N\lambda \beta + \beta \omega_i + \beta \omega_j + \beta^2 (1 + \lambda \beta)^{j-i-1} - \omega_i \omega_j}.
\]

(3.6)

From (3.6) the correlation coefficient, \(corr(S_i, S_j) \), can easily be obtained:

\[
corr(S_i, S_j) = 1 - (1 - N\lambda \beta)(1 + \lambda \beta)^{j-i-1}, \quad 1 \leq i < j \leq N.
\]

(3.7)

It follows that \(corr(S_i, S_j) \) as a function of \(i \) and \(j \) only depends on \(j-i \), and that it decreases if \(j-i \) grows. It is also seen that \(corr(S_i, S_j) \) is an increasing function of the total offered load \(N\lambda \beta \) for fixed \(i \) and \(j \). These intuitively appealing properties are illustrated in Fig. 1.

iv) From (3.3), substituting \(\omega_i = \omega_0, \ i = 1, \ldots, N, \) it is found that the Laplace-Stieltjes transform of the total sojourn time distribution is given by

\[
E \left(e^{-\omega_0 S} \right) = \frac{(1 - N\lambda \beta)(\lambda + \omega_0)^2}{\omega_0^2(1 + \lambda \beta + \beta \omega_0)^N + \lambda(\lambda + \omega_0)(1 - N\lambda \beta) + \lambda \omega_0}, \quad \text{Re } \omega_0 \geq 0.
\]

(3.8)

Formula (3.8) can easily be inverted using Jagerman’s inversion technique [10].

From (3.8) we obtain the variance of the total sojourn time:

\[
Var(S) = \beta^2 \left(\frac{1}{1 - N\lambda \beta} \right)^2 \left[\frac{2}{(\lambda \beta)^2} - N^2 - 2(1 - N\lambda \beta) \frac{(1 + \lambda \beta)^N}{(\lambda \beta)^2} \right].
\]

(3.9)

Formula (3.9) could also have been derived from the above results for \(Var(S_i) \) and \(corr(S_i, S_j) \).

v) If we let \(N \uparrow \infty \) and \(\beta \downarrow 0 \) in such a way that \(\tilde{\beta} := N\beta \) remains constant, then the distribution of the total service time received by each customer approaches the deterministic distribution fixed at \(\tilde{\beta} \):

\[
\lim_{N \uparrow \infty} \left(\frac{1}{1 + \beta \omega_0} \right)^N = \lim_{N \uparrow \infty} \left(\frac{\frac{1}{\tilde{\beta}}}{1 + \frac{\beta}{N} \omega_0} \right)^N = e^{-\tilde{\beta} \omega_0}, \quad \text{Re } \omega_0 \geq 0.
\]
This limiting procedure apparently reduces the deterministic feedback model to the M/D/1 queueing model with processor sharing. Indeed, in the limit the distribution of the total sojourn time equals the sojourn time distribution in the M/D/1 system with processor sharing:

\[
\lim_{N \to \infty} \beta_0 \left \{ e^{-\omega_0 S} \right \} = \frac{(\lambda + \omega_0)^2 (1 - \lambda \beta) e^{-\beta(\lambda + \omega_0)}}{\omega_0^2 + \lambda(\lambda + 2\omega_0 - \lambda \beta(\lambda + \omega_0)) e^{-\beta(\lambda + \omega_0)}}, \quad \text{Re} \omega_0 \geq 0, \quad (3.10)
\]

a result previously obtained by Ott [12].
4. THE GENERAL CASE

In this section we first consider the case where the service time distribution of a customer depends on the number of times he has been fed back. As in Simon [13], we derive a set of linear equations from which the mean sojourn time per visit can be calculated. Next, we show that for the special case that all service time distributions are equal (but not necessarily negative exponential), this set of linear equations can be easily solved explicitly. It appears that from the second visit on, all mean sojourn times are equal. Finally we introduce a generalized feedback model, which includes both the deterministic feedback model and the Bernoulli feedback model. Again, a set of linear equations for the mean sojourn times is derived. This set is solved for the case of Bernoulli feedback.

4.1 Derivation of a set of linear equations

We consider the case that the service time distribution of a customer who has been fed back $i - 1$ times is given by $B_i(\cdot)$, $i = 1, 2, \ldots, N$. Denote by $\rho_i := \lambda \beta_i$ the offered traffic due to type-i customers. We start by obtaining a relation for ES_1. Note that a newly arriving customer is a Poisson arrival and hence PASTA ([15]) applies. Consider the mean amount of work that has to be handled before this newly arriving customer receives his first service. This quantity consists of two components:

1. the mean amount of waiting work found upon his arrival that is handled before his first service, given by: $\sum_{i=1}^{N} \beta_i E X_i^w$;

2. the mean amount of work currently in service: $\sum_{i=1}^{N} \rho_i \frac{\beta_i^{(2)}}{2\beta_i}$;

where X_i^w denotes the number of waiting type-i customers. It may now be seen
that,

\[E S_1 = \sum_{i=1}^{N} \beta_i E X_i^o + \sum_{i=1}^{N} \rho_i \frac{\beta_i^{(2)}}{2 \beta_i} + \beta_1. \]

(4.1.1)

With \(E X_i^o = EX_i - \lambda \beta_i \) we obtain:

\[E S_1 = \sum_{i=1}^{N} \beta_i E X_i - \lambda \sum_{i=1}^{N} \beta_i^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \beta_i^{(2)} + \beta_1. \]

(4.1.2)

\(E S_{i+1} \) is composed of mean service times of "old" customers and of customers who have arrived during the first \(i \) sojourn times:

\[E S_{i+1} = \sum_{j=1}^{N-i} E X_j \beta_j + \sum_{j=1}^{i} \beta_{i+1-j} \lambda E S_j + \beta_{i+1}, \quad i = 1, \ldots, N - 1. \]

(4.1.3)

As observed by one of the referees, the sojourn time process is a delayed semi-regenerative process (with underlying Markov renewal process the joint process of successive departure epochs and queue length vector at those departure epochs; cf. Cinlar [3], Ch. 10). A somewhat similar observation for the \(M/G/1 \) queue with Bernoulli feedback was made in [4].

Now apply Little's formula to (4.1.2) and (4.1.3):

\[E S_1 = \sum_{i=1}^{N} \rho_i E S_i + \frac{\lambda}{2} \sum_{i=1}^{N} (\beta_i^{(2)} - 2 \beta_i^2) + \beta_1, \]

(4.1.4)

\[E S_{i+1} = \sum_{j=1}^{N-i} \rho_j E S_j + \sum_{j=1}^{i} \rho_{i+1-j} E S_j + \beta_{i+1}, \quad i = 1, \ldots, N - 1. \]

(4.1.5)

Formulas (4.1.4) and (4.1.5) represent a set of \(N \) linear equations in \(N \) unknowns.

In the next subsection this set of equations will be solved in a special case.

4.2 Special case: \(B_i(\cdot) \equiv B(\cdot), i = 1, \ldots, N \)

In this subsection we assume that all service time distributions are the same. In fact, for our purposes it suffices to assume that \(\beta_i \equiv \beta \) and \(\beta_i^{(2)} \equiv \beta^{(2)} \) for all \(i \). The equations (4.1.4) and (4.1.5) now become:
\[ES_1 = \lambda \beta ES + \frac{\lambda}{2} N(\beta^2 - 2\beta^2) + \beta, \]
\[ES_{i+1} = \lambda \beta \sum_{j=1}^{N-i} ES_j + \lambda \beta \sum_{j=1}^{i} ES_j + \beta, \quad i = 1, \ldots, N - 1. \]

Due to the symmetry in (4.2.2) we have that

\[ES_{i+1} = ES_{N-i+1}, \quad i = 1, \ldots, N - 1. \]

Subtracting \(ES_i \) from \(ES_{i+1} \) we obtain, for \(i = 2, \ldots, N - 1 \),

\[ES_{i+1} - ES_i = -\lambda \beta ES_{N-i+1} + \lambda \beta ES_i = -\lambda \beta (ES_{i+1} - ES_i). \]

Hence, \(ES_i = ES_{i+1} \) and we obtain

\[ES_2 = ES_3 = \cdots = ES_N. \]

Now from (4.2.1) and (4.2.3):

\[ES_1 = \lambda \beta ES_1 + (N - 1)\lambda \beta ES_2 + \frac{\lambda}{2} N(\beta^2 - 2\beta^2) + \beta. \]

And from (4.2.2) and (4.2.3):

\[ES_2 = 2\lambda \beta ES_1 + (N - 2)\lambda \beta ES_2 + \beta. \]

Solving equations (4.2.4) and (4.2.5) yields:

\[ES_1 = \frac{\beta}{1 - N\lambda \beta} + \frac{(1 - (N - 2)\lambda \beta) \frac{\lambda}{2} N(\beta^2 - 2\beta^2)}{(1 + \lambda \beta)(1 - N\lambda \beta)}, \]

\[ES_2 = ES_3 = \cdots = ES_N = \frac{\beta}{1 - N\lambda \beta} + \frac{\lambda^2 \beta N(\beta^2 - 2\beta^2)}{(1 + \lambda \beta)(1 - N\lambda \beta)}. \]

Hence

\[ES = \frac{N\beta}{1 - N\lambda \beta} + \frac{1 + N\lambda \beta}{1 - N\lambda \beta} \frac{\lambda}{2} \frac{N(\beta^2 - 2\beta^2)}{1 + \lambda \beta}. \]

For \(N = 1 \) this gives:

\[ES = \frac{\lambda \beta^2}{2(1 - \lambda \beta)} + \beta, \]

as could be expected.
Finally observe from (4.2.6) and (4.2.7) that $ES_1 = ES_2$ if the service times are negative exponentially distributed.

4.3 A generalized $M/G/1$ Bernoulli feedback model

An obvious generalization of our model and of the Bernoulli feedback model is the model in which a customer who just had his j-th service departs from the system with probability $1 - p(j)$ and is fed back with probability $p(j)$, $j = 1, 2, \ldots$. By definition, $p(0) = 1$. Let

$$q_i := \prod_{j=0}^{i-1} p(j), \quad i = 1, 2, \ldots$$

The definitions of type-i customers and their characteristic quantities, as given in Section 2, are extended in an obvious way. Note that the stability condition for this system is that $\lambda \sum_{i=1}^{\infty} q_i \beta_i < 1$. We assume in the following that $B_i(\cdot) \equiv B(\cdot)$. In exactly the same way as in Subsection 4.2 we derive:

$$ES_1 = \beta \sum_{i=1}^{\infty} EX_i + \frac{\lambda}{2} (\beta^2 - 2\beta^2) \sum_{i=0}^{\infty} q_{i+1} + \beta,$$ \hspace{1cm} (4.3.1)

$$ES_{k+1} = \lambda \beta \sum_{i=0}^{k-1} q_{i+1} ES_{k-i} + \beta \sum_{i=1}^{\infty} \frac{q_{k+i}}{q_i} EX_i + \beta, \quad k = 1, 2, \ldots.$$ \hspace{1cm} (4.3.2)

Rewriting (4.3.1) and (4.3.2) and using Little's formula yields:

$$ES_1 = \lambda \beta \sum_{i=1}^{\infty} q_i ES_i + \frac{\lambda}{2} (\beta^2 - 2\beta^2) \sum_{i=1}^{\infty} q_i + \beta,$$ \hspace{1cm} (4.3.3)

$$ES_{k+1} = \lambda \beta \sum_{i=0}^{k-1} q_{i+1} ES_{k-i} + \lambda \beta \sum_{i=1}^{\infty} q_{k+i} ES_i + \beta, \quad k = 1, 2, \ldots.$$ \hspace{1cm} (4.3.4)

For some special cases (in particular, cases with $P(N)=0$ for some finite N) this set of equations can be easily solved. Below we present the solution for the case of Bernoulli feedback.
Introducing

\[M := \frac{\lambda}{2} (\beta^2 - 2\beta^2) \frac{1}{1-p}, \]

\[M_i := \frac{1}{M} \left[ES_i - \frac{\beta}{1-\lambda \beta / (1-p)} \right], \quad i = 1, 2, ..., \]

we can rewrite (4.3.3) and (4.3.4) into

\[M_1 = \lambda \beta \sum_{i=1}^{\infty} p^{i-1} M_i + 1, \tag{4.3.5} \]

\[M_k + 1 = \lambda \beta \sum_{i=0}^{k-1} p^i M_{k-i} + \lambda \beta \sum_{i=1}^{\infty} p^{k+i-1} M_i, \quad k = 1, 2, ..., \tag{4.3.6} \]

From (4.3.6),

\[M_{k+2} = (\lambda \beta + p) M_{k+1} = \cdots = (\lambda \beta + p)^k M_2, \quad k = 0, 1, \tag{4.3.7} \]

Substitution of (4.3.7) into (4.3.5) and (4.3.6) leads to a set of two linear equations with two unknowns \(M_1 \) and \(M_2 \); finally

\[M_1 = \frac{1-p - \lambda \beta p}{1-p - \lambda \beta}, \]

\[M_2 = \lambda \beta \frac{1-p (\lambda \beta + p)}{1-p - \lambda \beta}, \]

so

\[ES_1 = \frac{\beta}{1-\lambda \beta / (1-p)} + \frac{\lambda}{2} (\beta^2 - 2\beta^2) \frac{1}{1-p} \frac{1-p - \lambda \beta p}{1-p - \lambda \beta}, \tag{4.3.8} \]

\[ES_k = \frac{\beta}{1-\lambda \beta / (1-p)} + \frac{\lambda}{2} (\beta^2 - 2\beta^2) \frac{1}{1-p} \lambda \beta \frac{1-p (\lambda \beta + p)}{1-p - \lambda \beta} (\lambda \beta + p)^{k-2}, \tag{4.3.9} \]

\[k = 2, 3, \]

Note that \(ES_k \rightarrow \frac{\beta}{1-\lambda \beta / (1-p)} \) for \(k \rightarrow \infty \), which is the mean sojourn time per visit in the case of a negative exponential service time distribution. Also note that (cf. Takács [14])
\[ES = \sum_{i=1}^{\infty} p^{i-1} ES_i = \frac{\beta}{1 - p - \lambda \beta} + \frac{\lambda}{2} (\beta^2 - 2\beta^2) \frac{1}{1 - p - \lambda \beta}. \] (4.3.10)

In a future paper ([2]) it will be shown that the results obtained in Section 3 for the deterministic feedback model can be extended to the generalized Bernoulli feedback model with exponential service times.

REFERENCES

Received: 3/23/1987
Accepted: 7/6/88