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Chapter 1

Introduction and outline of this thesis

In this chapter we introduce tomography and discuss the principal concepts of
this thesis. We discuss several challenges in tomographic reconstruction and
we provide a motivation for the development of methods for dealing with these
challenges. Finally, we provide an overview of the main results of this thesis.

1.1 Tomography

Tomography is a technique to reconstruct the three dimensional structure of
an object from projection images of that object. A well known application is
X-ray imaging used for medical diagnosis. From a single X-ray image a lot of
information can be obtained: for example, it is possible to detect fractures in
bones (see Fig. 1.1), or to locate contrast agents injected in blood vessels. Because
the morphology of the human body is well-known we can often derive this
3D structural information from a 2D projection image. However, if no general
shape information of the object is known beforehand, we cannot retrieve this
information. Therefore, tomographic reconstruction is an essential step to retrieve
3D structural information.

Figure 1.1: X-ray image of a fractured collarbone. Photo: J. Bizzie.
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In tomographic imaging, a set of projection images is acquired from different
view angles by directing a beam of radiation (e.g., X-rays) to the object and
recording the intensity profile of the beam after it has passed through the object
on a detector. Since the geometry of this projection acquisition is known with great
precision, the view directions and positions of the detector create a correspondence
between the measured 2D projections and the 3D density distribution of the
object. The intensity recorded by a single point on the detector is directly related
to the amount of material and its density on the line between the detector and
the radiation source. Mathematically, the measurements are approximated by
line integrals. The problem of reconstruction is to find a (usually discretized)
representation of the unknown object that matches these line integrals as close
as possible. Since the number of projections is finite and measurements are
distorted by noise, the reconstruction problem in tomography is an ill-posed
inverse problem.

After the projections have been acquired, a reconstruction algorithm is applied
to compute an approximate solution to the inverse problem, which is called a
reconstruction. A reconstruction algorithm typically consists of a sequence of
forward and backprojection operations. The filtered backprojection (FBP) algorithm
consists of a filtering step and only one backprojection [KSO1]. There are other
methods that iteratively refine the reconstruction and are based on a linear
equation system. These methods are known as algebraic reconstruction methods. A
few methods that are commonly used are ART, SART, SIRT and LSQR [GBH70;
AK84; Gil72; PS82].

1.1.1 Application areas

Computerized tomography is a well established technique in the medical imaging
community. The medical scanners that are used today have a very high accuracy
and stability with respect to the imaging hardware. Most challenges that can be
encountered in the reconstruction problem are now well understood.

This situation is quite different for a broad variety of tomography applications
in the experimental scientific community. Due to the development of image acquisi-
tion techniques that encompass the nanoscale (electron microscopy [Sco+12]) up
to astronomic scales (astro tomography [ABS12]), there are still major challenges
that need to be addressed. Each of these applications demands sophisticated and
specialized imaging equipment. In these experiments there are currently major
challenges that have not been fully addressed with respect to stability of the hard-
ware, mathematical modeling and distortions in the optics system and stability
of the source, among many others. We now discuss some of these application
domains.

Electron tomography

Electron microscopy is an imaging technique that uses an electron beam that inter-
acts with a sample and is often used in biology and materials science. Due to the
small de Broglie wavelength sub-angstrém resolution can be achieved [Aer+11;
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Sco+12]. Initially only 2D projection images were obtained and studied, where
either the unscattered beam is recorded or (part of) the scattered electron beam.
However, these techniques only provide limited analysis of 3D structures. Tomog-
raphy became possible when tilt sample holders were introduced. Tomography
at these small scales demands extremely stable imaging hardware to prevent
movement of the sample or tilt axis that is greater than the pixel size of the
detector.

A major challenge in electron tomography is to estimate and correct for
this sample drift and instabilities of the microscope after the data has been
recorded (referred to as alignment). Moreover, most reconstruction algorithms
are based on the assumption that the measured intensity depends linearly on the
thickness of the sample, but in reality the image formation is partly nonlinear, e.g.,
due to multiple scattering of electrons within the sample [Bro+12]. Therefore,
the reconstruction can potentially be improved by incorporating such nonlinear
effects.

Desktop micro-CT

For the observation of small samples at the micron scale, desktop X-ray micro-CT
scanners provide a reliable way to routinely scan objects of a few centimeters
in size. These scanners are often made by commercial parties and are typically
employed for scanning of biological, geological and industrial samples [Bri+10;
GSWO0O0; Car+12]. For certain applications, the degrees of freedom in the geom-
etry of desktop scanners are not sufficient and therefore custom scanners have
been developed for use in laboratories [Mas+13].

Due to imperfections or miscalibration of the camera, circular image distor-
tions, known as ring artifacts, are often encountered in micro-CT. Since the
X-ray beam is not purely monochromatic (i.e., has multiple energy levels), each
part of the spectrum of the X-rays is attenuated differently. This leads to beam
hardening artifacts in the reconstruction if this effect is not correctly modeled in
the reconstruction algorithm [Cas+02].

Synchrotron tomography

Synchrotron facilities provide a high intensity monochromatic X-ray source for
high quality projection acquisition, achieving sub-micron resolution [Wil+11].
Synchrotron X-ray imaging has many advantages compared to scanning with
laboratory setups. Due to the high intensity of the beam, projection images
can be obtained very rapidly and with high signal-to-noise ratio. Moreover, the
generated X-ray beam is almost parallel, such that projections of slices of the
object are independent, which allows slice based reconstruction. By making
the beam monochromatic, beam hardening effects can be fully eliminated. This
makes synchrotron tomography ideally suited for in-situ experiments and 4D
tomography, where a time series of reconstructions of the sample is obtained
[Mar+11; Mom+11].
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In synchrotron tomography there are still challenges with respect to alignment,
ring artifacts and phase-contrast effects that cause nonlinearity. Phase-contrast
can be exploited to further improve the contrast of the reconstructions [Pag+02].

1.1.2 Challenges in tomographic reconstruction

These developments in scanning techniques and experiments have introduced
new challenges for the reconstruction problem:

* Stability: As the scale of the imaged sample decreases, the stability of the
scanner hardware becomes increasingly important;

¢ Low-dose: The radiation dose is often limited due to destructive nature of
the radiation, or to reduce acquisition time;

* Limited data: To limit radiation dose the number of projections can be
small;

* Unpredictable data perturbations: The projection data can be perturbed
in ways that can not be modeled effectively.

Reconstruction methods, such as analytical reconstruction using filtered backpro-
jection or algebraic reconstruction methods, are all affected by these problems.
If these methods are applied without pre- or post-processing the data, errors are
introduced in the reconstruction. Each algorithm has its own strong and weak
points with respect to these problems. For example, the filtered backprojection
is rather robust with respect to noise, while algebraic reconstruction methods in
general perform better if a small number of projections are available.

After an introduction to the mathematics we will discuss the challenges we
mentioned and their effect on the reconstruction in more detail.

1.2 Mathematics of tomography

In this section we will introduce the mathematics involved in tomographic recon-
struction.

1.2.1 The Radon transform

The mathematics behind the projection acquisition can be described by the Radon
transform [NWO1; Hel99]. In this section we focus on the Radon transform in two
dimensions, where we consider a single slice of the object.
In tomographic reconstruction we aim to recover the density or attenuation
function
f:R*—R

of the object we consider. The function f assigns to each point of the object
(x,¥) € R? an attenuation value, which depends on the material at that position.
Note that the domain of f is two-dimensional, because we focus here on a single
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p(0,1)

Figure 1.2: Schematic of the Radon transform of the attenuation function f in
two dimensions.

slice of the object. A projection is modeled as a set of line integrals of the function
f, along straight lines. An example for the parallel beam geometry is shown in
Fig. 1.2. The line L can be parametrized with respect to the arc length ¢:

(x(),y(£))=(£sinO + tcosB,tsind —L cosO).

which leads to
Z[f]1(0,t) :=p(6,t) =J fsin6 +tcosB,tsind —LcosO)dl,

which is the Radon transform of f. Exact reconstruction of f is possible by
inverting the Radon transform if we know p(0,t) for 8 € [0, ) and t € 7, where
Z C R is the support of p(8,t) with respect to t. However, in a practical CT
scanner, we only have a sampling of p(6, t), since the number of projections is
finite and the set & is discrete due to the discrete nature of the detector. Therefore,
a discrete model of the projection acquisition is needed.

1.2.2 Algebraic reconstruction methods

Throughout this thesis we focus on the class of algebraic reconstruction methods.
These methods are based on a discretization of the unknown attenuation function
f as an image, i.e., we represent the function on a grid of pixels (or voxels, in
3D), where the pixel value (referred to as gray value) represents the attenuation
coefficient of the material within the pixel. The projections are also discretized on
a pixel grid (which is an image in the three dimensional case).

Using this discrete representation we can model not only a parallel beam
geometry, but we can also represent fan beam and cone beam geometries. An
example of such a discrete model is illustrated in Fig. 1.3. The gray values x;
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along the depicted line form a piecewise constant function. Therefore, the line
integral along this line is just a linear combination of the gray values, where the
weights w;; are determined by the length of the line intersecting that pixel. For
each pixel on the detector we can write:

pbi = E WijXj,
J

where w;; is the length of the line segment in pixel j. This discretization is known
as the line model [Sid85]. The full set of equations leads to the linear equation
system:

Wx =p, (1.1

where the (vectorized) image x is related to the modeled projections p by the
projection matrix W.

Note that the gray values are unknown and we need to obtain them from the
projection data p by solving the linear system (1.1). In a practical experiment the
projections are perturbed by a noise term €

p:=p+e. (1.2)

Algebraic reconstruction methods compute an approximate solution of Eq. (1.1) by
minimizing a cost function p (Wx — p), which penalizes the difference between
the computed projections Wx of the image x and the vector p of measured
projections:

minixmize p(Wx—p). (1.3)

The common choice for p(-) is the £,-norm in which case Eq. (1.3) is reduced to a
least squares problem.

1.3 Artifacts

In this section we will discuss the effects of the problems described in Section 1.1.2
on the discretized model of Eq. (1.1). These problems lead to errors in the govern-
ing equations Eq. (1.1) which subsequently lead to errors in the reconstruction.
If these errors are not corrected by preprocessing or post-processing the data,
or by adapting the equation system to match the experimental setting, image
distortions, known as artifacts, are produced in the reconstruction. Common
image distortions are blurring, streaks, noise or smearing of image details.

1.3.1 Mechanical instabilities

At small scales it is very challenging to keep the scanner setup in perfect alignment.
Slight vibrations in the detector or source can cause shifts and rotations in the
projection images. These rigid motions have to be corrected for to obtain accurate
reconstructions.

In Fig. 1.4 a series of projection images is shown recorded in an electron
microscope. A clear shift can be observed in both horizontal and vertical directions.
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Figure 1.3: Discrete representation of the projection acquisition using a line length

model. The unknown gray value corresponding to pixel j is denoted x; and its

contribution to detector measurement p; is w;;x;, where w;; is the length of the

line segment indicated in bold. The projection angle is indicated by 6.

Figure 1.4: Three consecutive projection images recorded by an electron micro-
scope. Considerable shifts in the projections can be observed, due to mechanical
instability. Source: Electron Microscopy for Materials Science (EMAT), University
of Antwerp.

Ideally the rotation axis of the object is centered with respect to the center of the
detector for every projection image.

Essentially, the geometry of the projection acquisition is distorted such that
the projection matrix W does not capture the actual geometry of the scanner.
The projection matrix of Eq. (1.1) has to be corrected for these distortions. In
Chapters 2 and 3 we discuss the problem of alignment and present two methods
that are based on correction of the projection matrix by estimation of alignment
parameters.
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1.3.2 Low-dose and limited data

In many tomography applications it is desirable to reduce the scanning time as
much as possible, to limit radiation dose or to increase throughput. A reduction
of the scanning time will result in a reduction of the number of projections,
the signal-to-noise ratio of the projections, or both. Reducing the number of
projections reduces the number of equations in Eq. (1.1), which results in a
larger nullspace of the projection matrix W. Therefore, obtaining an accurate
solution (which is close to the ground truth image) becomes more difficult. If the
projection images are noisy, Eq. (1.1) is typically not consistent, due to the noise
term € in Eq. (1.2). The effect of noise and a low number of projections on the
reconstruction is illustrated in Fig. 1.5.

The linear system (1.1) is often underdetermined. Therefore, the least squares
solution is not uniquely determined. Most algebraic reconstruction methods
converge to the least squares solution that has smallest £,-norm (an example is
shown in Fig. 1.5b). However, there is no guarantee that such a reconstruction
will be similar to the scanned object, due to the inability to recover nullspace
components of the matrix W. If the number of projections is particularly small,
the nullspace has a large dimension, which further exacerbates this problem. A
powerful technique to improve the accuracy of a reconstruction from few projec-
tions is by incorporating prior knowledge about the scanned sample. Imposing
prior knowledge about certain properties of the sample on the reconstruction
reduces the solution space drastically.

A particular type of such prior knowledge is exploited in discrete tomography,
where the sample is assumed to consist of only a few different materials, each
corresponding to a constant gray value in the reconstruction. Usually this prior is
combined with a smoothness prior, where we assume that neighboring pixels in
the reconstruction have similar gray values.

The linear system (1.1) is typically inconsistent (has no exact solution), for
example due to noise on the projection data, € # 0. Therefore, we can obtain
an approximate solution of Eq. (1.1) by solving Eq. (1.3), for example by using
a least squares method. Not all reconstruction algorithms are equally suitable
for dealing with noisy data. The SIRT algorithm is well-known for generating
smooth reconstructions from noisy data, whereas the standard Ram-Lak filter in
FBP amplifies high frequency noise.

In case we deal with both noise and a small number of projections the recon-
struction problem is especially challenging. In Chapter 4 we discuss a reconstruc-
tion method that aims to improve the results for discrete tomography from noisy
data.

1.3.3 Other unmodeled errors

Besides the errors we discussed previously, there are other errors that cause
artifacts in the reconstruction. Mainly, these errors are caused by physical effects
that were not captured in the linear model of Eq. (1.1). For example, there
can be nonlinear effects in the camera optics that record projection images. Or
the direction of the rays might not be along straight lines, for example due
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(a) original (b) few projections (c) noise (d) few noisy projec-
tions

Figure 1.5: The effect of a low number of projections and noise on the reconstruc-
tion. (a) is the ground truth image, a rat femur bone; (b) — (d) are reconstructions.

to scattering. An example of structured scattering can be observed if there is
crystalline structure in the sample, which results in diffraction patterns on the
detector. Often it is very difficult to capture these phenomena in a system of
equations that can still be solved effectively.

If an algebraic reconstruction method is applied to these kinds of datasets,
the nonlinearities are not captured by Eq. (1.1) and artifacts are produced. In
Chapter 6 we describe a method that can be used if the nonlinear effects are
present in only parts of the projection data. In that case we can still use algebraic
reconstruction techniques and ignore the nonlinear effects by using a suitable
penalty function p(-) in Eq. (1.3).

1.4 Overview

In this section we will give a brief overview of the main results of this thesis.

In Chapter 2 we introduce a method for automatic optimization of alignment
parameters. We pose the problem of estimating geometrical perturbations as a
nonlinear least squares problem, with the objective to optimize consistency of
Eq. (1.1). We employ the Levenberg-Marquardt optimization method to compute
a 2D reconstruction and simultaneously find these alignment parameters.

In discrete tomography an image is reconstructed that consists of a few gray
values corresponding to the materials in the observed object. Constraining the
feasible set of gray values in the reconstruction is a very powerful regularization
that is effective even if the number of projections is small. In Chapter 3 we present
an alignment method which can be used for datasets with few projections of
3D binary volumes (two gray level images). The alignment method is a variant
of the method proposed in Chapter 2. In contrast, the reconstruction and the
alignment problem are not solved simultaneously. In an iterative process, a
reconstruction step using a discrete (binary) tomography algorithm is followed by
an alignment phase using Levenberg—Marquardt. This process iteratively refines
both the reconstruction and a subset of the alignment parameters in 3D (working
in the plane of the detector).
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One example of a discrete tomography algorithm is DART (Discrete Algebraic
Reconstruction Technique). This algorithm includes a segmentation step to force
pixels to the set of a priori known gray values and uses a boundary update step to
improve the reconstruction [BS11]. However, DART is not as accurate if the signal-
to-noise ratio of the projection data is very low, because the boundary update
step is hampered by the noise. In Chapter 4 we demonstrate a variant of DART,
called Soft DART which uses a set of soft constraints on the reconstruction which
improves the reconstruction quality if the signal-to-noise ratio of the projections
is very low.

In Chapter 5 we present an algorithm for removal of a particular class of
artifacts, caused by offsets or scaling of the projection data. We assume that
for each projection an offset is added to each pixel in that projection image, or
that the gray values are scaled. This can be caused by variations of the source
intensity, or by image post-processing after the projections have been acquired.
We present three different algorithms: one to remove a global offset, where the
offset is the same for each projection image, removal of a local offset where the
offset is different for each projection image and a scale retrieval algorithm, to
estimate relative scale factors between projection images.

Algebraic reconstruction methods optimize consistency of the reconstruction
with the observed projections in the {,-norm. The underlying assumption of
this approach is that the noise in the projection data has a Gaussian distribution.
However, in cases where large outliers are present in the projection data, the
equation system (1.1) is not consistent and the reconstruction will be fitted to
these outliers, resulting in artifacts in the reconstruction. In Chapter 6 we use a
penalty function for the residual that is based on the maximum likelihood estimate
from the Student’s t distribution, which assigns a smaller penalty to outliers. As a
result the effect of outliers is strongly reduced which improves the reconstruction
quality. No preprocessing is required to locate the outliers. We demonstrate the
effectiveness of this approach on a 3D cone-beam simulated dataset for a series of
perturbations in the projection data.

In Chapter 7 we introduce a Matlab interface for the ASTRA toolbox based
on the Spot toolbox. The ASTRA toolbox is a software toolbox for tomographic
reconstruction that provides reconstruction algorithms, as well as building blocks
for creating new algorithms. These building blocks consist mainly of the GPU
(and CPU) accelerated forward and backprojection operations. These operations
correspond to matrix products of W and WT respectively, as used in Eq. (1.1). The
proposed interface exposes these operations to Matlab as matrix-like operators,
which enables the use of standard Matlab code to employ the GPU back end of
the ASTRA toolbox. We have used this interface extensively to rapidly implement
and develop the algorithms presented in this thesis.



Chapter 2

Automatic optimization of alighment
parameters for tomography datasets

2.1 Introduction

Tomography deals with the problem of reconstructing an object from projections
[KSO1]. Projections are measured by a scanning device at varying orientations
with respect to the object. Each projection consists of a series of intensity measure-
ments (e.g., from X-rays) along straight lines, which approximate line integrals
of the object density. In the reconstruction problem, an object density function
is computed that matches the set of projections as close as possible. The recon-
struction problem is an ill-conditioned inverse problem that can be solved using
numerical methods.

As the resolution of tomography scanners has increased substantially in recent
years, it has become more and more difficult to achieve sufficient mechanical
stability, which is needed to keep all projections in perfect alignment during the
scan. Ideally, all geometrical parameters of the scanning geometry (i.e., source
positions, detector positions, beam angles) are known with high accuracy for each
scan. In practice, however, various types of distortions can occur (e.g., due to
instabilities), causing deviations between the assumed geometrical parameters
and the actual geometry.

Tomography has a wide range of applications, ranging from industrial quality
control of large objects using X-rays down to imaging of nanomaterials by electron
microscopy. In particular at the smallest scales, problems with the alignment of
the projection data form a key bottleneck for the quality of the reconstructed

This chapter is based on the publications:
F. Bleichrodt and K. Batenburg. “Automatic optimization of alignment parameters for tomography
datasets”. In: Image Analysis. Vol. 7944. LNCS. Springer, 2013, pp. 489-500
F. Bleichrodt, J. Sijbers, J. de Beenhouwer, and K. J. Batenburg. “An alignment method for fan beam
tomography”. In: Tomography of Materials and Structures. Ghent University press, 2013, pp. 103-106

11



12 2. Automatic optimization of alignment parameters

image. For example, in electron tomography the specimen has to be recentered
for each recorded image as the sample stage is not eucentric, causing lateral shifts
in the projection images [JS91]. In high-resolution X-ray tomography, the rotation
axis may not be perfectly centered at the detector, leading to structured shifts
in the projections. In addition, limited accuracy of the rotation stage leads to
uncertainties about the exact projection angles. As a result, inconsistencies are
present in the system of equations governing the reconstruction problem. These
inconsistencies must be resolved to obtain accurate reconstructions.

We remark that the alignment problem for tomography is fundamentally dif-
ferent from some other problems also named “alignment” in the image processing
literature [Sze06; VW97; ZF03]. Compared to, for example, the alignment of
photographs in a stitching problem [Sze06], the key difference is that for tomo-
graphic alignment, the 3D object itself is related to the (unaligned) projections by
a complex inverse problem. Therefore, projections from different angles can often
not be directly compared and can only be related to each other by solving this
inverse problem. This also makes it impossible to use image registration methods
[ZF03] for the type of alignment we consider.

A range of tomographic alignment algorithms have been proposed, which
can generally be divided in two classes: methods using fiducial markers and
methods based on automatic, markerless alignment. Marker based alignment is
often applied in electron tomography for biological samples [Fra92]. Small, dense
particles are distributed among the sample, which can be tracked accurately in
consecutive projections. A system of equations, relating the marker positions in
the projection domain and their position in the sample, can be solved to compute
the alignment parameters with a high degree of accuracy. The method requires
a long preparation time and the use of markers can result in artifacts in the
reconstructed image. Instead of fiducial markers, features in the projection data
can also act as markers, [BHEO1].

For algorithms that do not use markers, a well known approach is cross-
correlation [Die+92; Fit+99]. Here it is assumed that consecutive projections are
similar and differ in a smooth way, thereby making strong assumptions about the
unknown object. By finding the maximum cross-correlation between successive
projections, it is possible to make a rough estimation of the alignment parameters
that can be described as an affine transformation of the projections. The main
problem of this method is its low accuracy.

Other markerless methods are based on minimizing the inconsistencies be-
tween the forward projections of the reconstructed image and the measured
projections. These methods, called projection distance minimization methods
henceforth, are a more general approach to the alignment problem. See for exam-
ple [HB11; Kym+03; Par+12; YNPO5]. Other methods focus on an error measure
based on the reconstruction [KSZ11], or use passive auto-focus [Kin+11].

In this chapter, a new markerless alignment method based on projection dis-
tance minimization is presented. We propose the Levenberg—Marquardt Projection
Distance Minimization algorithm (LMPDM). Similar to the algorithm proposed in
[YNPO5], the alignment and reconstruction problem are solved simultaneously.
The objective of combined alignment and reconstruction is posed as a nonlinear
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least squares optimization problem and a numerical method is employed for
solving it.

Instead of the Quasi-Newton BFGS method used in [YNPO5], we choose
Levenberg-Marquardt (LM), which has been shown to yield better convergence
for certain least squares problems, as discussed in chapter 10 of [NW06]. When
implementing a numerical scheme for this nonlinear least squares problem, several
design choices must be made, with respect to computation of numerical derivatives
and image resolution. We demonstrate that these design choices are crucial to the
success of the LM algorithm in recovering the alignment parameters.

Our experimental results, based on simulated projection data, show that if a
multi-resolution scheme is combined with local smoothing of the Jacobian, our
LMPDM algorithm is capable of recovering the alignment parameters with high
accuracy. Also, the underlying tomography software library is implemented on
the GPU, which makes the algorithm scalable.

This chapter is structured as follows. Mathematical background and imple-
mentation details are discussed in Section 2.2. In Section 2.3 and Section 2.4,
a series of experiments is described and the results are presented. Section 2.5
contains a discussion of the results. Section 2.6 concludes this chapter.

2.2 Methods and implementation

This section will formulate the alignment problem in a mathematical context and
introduce the notation. Subsequently, the LMPDM method and its implementation
details will be discussed. Furthermore, design choices are explained that improve
the accuracy of the alignment algorithm.

2.2.1 Model and notation

The object from which the projections are acquired can be modeled by a gray
value image f : R?> — R. A projection at angle 0 is the collection of line integrals
over the lines [y , = {(x, y) : xcos 0 + y sin 6 = t} for detector positions t € 7 C R,
where 7 denotes the discrete set of detector positions, see Fig. 2.1. The geometry
we consider here is called the parallel beam geometry (because the beams are
parallel). Later on we also consider the fan beam geometry, where the beams
originate from a single point source, see Fig. 2.2.

The relation between the object and its projections P(60,t) is given by the
Radon transform

+00 +00

PO, )=R[f1(6,0) J f £(x,y)8(x cos 6 + ysin@ — t)dx dy, 2.1)

with & the Dirac delta function. By discretizing the image f, the set of angles, and
the set of detector positions, and numerically approximating the Radon transform
we arrive at the algebraic representation of the tomography problem. In this form
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Figure 2.1: Parallel beam geometry for the two dimensional case: (a) A tomo-
graphic scan: the dark gray region represents the object along with its projection
below. The detector-source pair rotates around the object; (b) Projection acquisi-
tion at angle 9; with angular offset ¢;. The object has a shift of §; in the detector
plane with respect to its assumed position.

the object and its projections are related by a linear operator
Wx =p, (22)

where x € RV represents the unknown object, W € RM™*¥ is the projection operator
and p € RM is the measured set of projections [KS01]. From this point on, we
focus on the reconstruction of a single slice of the object, i.e., a 2D image from
a set of 1D projections. The object is represented as a two dimensional pixel
grid with N pixels. Let K be the number of projections of the object that have
been acquired by a detector having D discrete elements. The total number of line
projections is then given by M = KD. The projection operator is a sparse matrix
with w;; modeling the contribution of pixel j to the projection value measured by
detector i. So the inner product of row i of W and the object x gives a discrete
approximation of the line integral over a line perpendicular to detector i.
Projections of the object are recorded at a discrete set of angles

0291"“?9K’

Up until now, we have assumed that the measurements correspond perfectly with
the Radon transform. In practice, each of the projections have a perturbation in
the angles as well as the object position. These are represented in the alignment
parameters

6=564,...,0k,

2.3
6= du.. bx. 23
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Figure 2.2: Geometrical parameters for the fan beam geometry for a flat detecor.
The position of the object is denoted by (s,,s,).

as illustrated in Fig. 2.1b. Accordingly, in the continuous case, a single line
projection at angle 6; and detector offset t is represented by the Radon transform
including the alignment parameters:

Z[f16;+¢;,t+6;)=

+00 oo

Jff(x,y)g(xcos(Gi+¢l~)+ysin(9i+¢>l~)—(t+5i))dxdy.

—00 —OQ

In the discrete model, the coefficients in our projection operator depend on the
geometry,
w(0,¢,56)x =p. (2.4)

This expression for W is not easily available in closed form, but it can be evaluated
numerically. Note that the projection angles 8 are known, while the perturbations
in the projection angles, denoted by ¢, and the detector shifts 6 are unknown.

In the experiments of Section 2.3 we also consider the fan beam geometry,
which is illustrated in Fig. 2.2. For this geometry a shift of the object in the
direction of the source causes a magnification of the projections, which is not
the case for the parallel beam geometry. Therefore, in this geometry we have
introduced the parameters s, and s, which indicate the position of the object with
respect to the origin. We assume that the distance between the source and the
detector is fixed. Note that the object position is different for every projection
angle, leading to the parameter vectors:

5, = sf{l), coeys®,

— (D (x)
=5,7,...,8

s T

y
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where K is the number of projection angles. This leads to the equation:
w(0,e,s,,s,)x =p, (2.5)

where 0 is known and the perturbations in the projection angles ¢ and object
positions s, and s, are unknown. In the rest of this section we focus on the
parallel beam geometry, but the same derivation and alignment method are used
for the fan beam geometry.

In an experimental setup, the projections contain noise and the perturbations
of the geometrical parameters are not known. Therefore, the system in Eq. (2.4)
is inconsistent. Alignment involves estimating the unknown alignment parameters
in Eq. (2.3). Minimizing the least squares residual of Eq. (2.4) seems to be a good
approach, because in the absence of noise and when the alignment parameters
are known exactly, then Eq. (2.4) is consistent.

Now we can define the objective of combined alignment and reconstruction as
a minimization problem of the projection distance, defined by the following cost
function

.1 .1
g%i”r(e’d’:a:x)”%=$%§||W(0;¢’6)x_p”§’ (2.6)

with r the residual, and similarly for the fan beam geometry:

o1
min Ellr(e,tb,sx,sy)llﬁ- 2.7)

X,0,5,,8,

The ¢,-norm is chosen because it allows us to use least squares solvers and it
has some nice properties, due to its simplicity. Alternative distance or similarity
measures such as mutual information can be employed here and might give
satisfying results as well.

In Eq. (2.6), the minimization with respect to x is a linear inverse problem
that yields a reconstructed image. The minimization with respect to 6 and ¢ can
be seen as a nonlinear model fitting problem. The combination in the full cost
function is, hence, a nonlinear least squares problem.

Projection matching algorithms such as [Par+12], consider the same cost
function as in Eq. (2.6), however, an alternating approach is employed. Those
methods repeatedly alternate between minimizing Eq. (2.6) with respect to the
gray values x (and keeping the alignment parameters fixed) and minimization
of Eq. (2.6) with respect to the alignment parameters ¢ and 6 (keeping x fixed).
Such methods are heuristic in nature and it is not guaranteed that this approach
converges to a local minimum. This is why we chose to minimize over the full set
of variables at the same time.

The cost function seems suitable to solve by using one of the standard al-
gorithms from numerical optimization. A method specifically aimed at these
kinds of problems is the Newton-type algorithm Levenberg-Marquardt. However,
due to numerical problems, a straightforward implementation often does not
yield an accurate alignment. In the following sections, we will demonstrate that
problem-specific design choices in the implementation are essential for accurate
parameter estimation.
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2.2.2 Levenberg-Marquardt

Levenberg-Marquardt, see chapter 10 of [NWO06], is an iterative method that
generates a sequence of input vectors {y;} = {(x®, ¢, §®))} that have mono-
tonically decreasing cost function values. Each iteration has the basic form

Yir1 =Y + M (2.8)

where the descent direction 71, is found by minimizing a quadratic model of the
objective function using gradient information:

Ji T
[\/A,J} M+ [ 0]
with J;, the Jacobian of the residual r, and A, a regularization parameter. This
parameter limits the norm of the search direction and acts as a trust-region. It is
adjusted based on the accuracy of the quadratic model.

The linear least squares problem in Eq. (2.9) can be solved using one of the
many available least squares solvers.

2

2.9)

min
Nk

2

2.2.3 Computing the Jacobian

For computing the Jacobian of the residual we use a combination of an analytical
expression and a numerical approximation. With respect to the image x the
Jacobian is given by J, = W, but for the derivative with respect to the parameters
6 and ¢ we do not have such an expression. Therefore we approximate the
gradients in the Jacobian by a central finite differences scheme:

W(0,¢,5+hé)x —W(0,¢,5 —hé)x

V5,r(0,6,8,x)= =

(2.10)

where ¢é; is the ith basis vector. A similar expression is used for ¢.

As illustrated in Fig. 2.3, our GPU-implementation of the cost function in
Eq. (2.6) shows irregularities at small scales. These are introduced by the dis-
cretization of the problem domain, by floating-point errors involved in computing
the cost function, and by noise in the projection data. This behavior makes the
accuracy of the numerical Jacobian in Eq. (2.10) highly dependent on the step
size h. Therefore, a robust method for choosing a good step size h is needed.

Methods proposed in literature for computing numerical derivatives on dis-
crete, noisy data are not feasible in our implementation, due to their compu-
tational intensity [Chall; HL82]. As an alternative, we propose the following
method. We sample the cost function in the direction of ¢ (and similarly for 6):

1
syp(a) = 5||W(9,¢+a1,6)x—p||§, (2.11)

at the equidistant points

a=—8h,—7h,...,7h,8h.
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Figure 2.3: Comparison of the cost function at different scales. The plots show
the cost function in the range %HW(G, ¢,6 £h1)x — pll3, together with its approx-
imating spline. The irregular behavior starts to disappear for h = 1073.

Here 1 is a vector of which each element is 1. The sample points with odd indices
are used to generate a spline. If the cost function is smooth at the current scale h,
we can assume that the spline is a close approximation to the cost function. As
an error measure for this we compute the difference between the sample points
with even indices and the generated spline and normalize to yield a relative error.
By computing this error for several scales h, we can select the scale for which
the error is minimal. The cost function at this scale does not show irregularities
due to the discretization. This h is then used in Eq. (2.10) as step size. Fig. 2.3
illustrates this method.

Sampling these values to compute a step size h is costly, hence the step sizes
are computed once at the beginning of the algorithm. It is recomputed only after a
transition between resolutions, because our algorithms employs a multi-resolution
technique as discussed in the next section.

2.2.4 Multi-resolution

One of the main difficulties in applying the alignment algorithm in practice is
the computational scale. It is not uncommon to have datasets containing billions
of detector values. A conventional approach to reduce the computation time is
to apply multi-resolution techniques. We utilize this technique by running the
algorithm repeatedly, going from a coarse to a fine representation of the data. The
output of one run serves as the input of the next. Low frequency components of
the error are removed first at coarse grids. This approach refines the solution by
gradually removing higher frequency components of the alignment error.

In our case the domain of the multi-resolution technique is the reconstructed
image and a sinogram (set of projections). We have chosen to match the pixel size
of the image with the size of a detector element. This makes the implementation
easier, since the sinogram and reconstructed image can simply be resized when
going from coarse to fine representation.

Lowering the resolution makes the images smoother, hence multi-resolution
acts as a regularization of the optimization problem in Eq. (2.6). For example, the
detector shift is measured in the number of detector elements. So on a coarse
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grid, the detector shift is reduced by the same factor by which the grid has been
resized. Essentially, the initial values become closer to the optimal values. This
makes it more likely to find the global minimum and possibly skip local minima.
The effect of applying multi-resolution is shown in Section 2.4.

2.3 Experiments

A series of simulation experiments was carried out to evaluate the capabilities
of the LMPDM algorithm. In the simulations we used the following hardware:
a workstation with an Intel Core i7-2600K CPU@3.40 GHz combined with a
Geforce GTX 570 GPU. For the forward and backprojection operations, a GPU
implementation was used.

First, we have applied LMPDM to three parallel beam simulated datasets based
on phantom images shown in the left column of Fig. 2.4. The datasets consist
of projections at 100 angles, which were generated from the phantom images.
The equidistant angles are in the range [0, ) and random, uniformly distributed
offsets ¢; € [—0.9°,0.9°] were added. The error in the angles is at most £0.9°,
such that the ordering of the angles is preserved. Also, for each angle a uniform
random shift §; € [—10,10] was applied. The maximum shift of 10 detector pixels
is approximately 5 percent of the image size, which is 256 x 256. The detector has
256 detector elements per projection. Poisson noise was applied to the projections
using a photon count of 10°, to simulate moderate experimental noise. The
projection matrix W is computed by the method of Joseph [Jos82], using a GPU
implementation.

The final dataset is for a fan beam geometry, from the phantom image shown
in Fig. 2.7a. The phantom image is based on a reconstructed slice of size 512 x 512
from a 3D experimental dataset of a metal foam. A total of 120 equiangular
projections were simulated using fan beam geometry where the distance between
the detector and source was eight times the image width (which corresponds to
a total of 4096 pixels). This results in a fan angle of 14.25°. The detector width
was 1024 pixels, which is wider than the ground truth image to deal with the
magnification from the fan beam. For this experiment we randomly sample object
displacements (s,, s, ) uniformly from the interval [-10, 10] x [-10, 10] (in units
of detector pixels) and the angular offsets are randomly, uniformly sampled from
[—0.1°,0.1°]. This corresponds to object motion of approximately 2% of the object
size. We applied Poisson noise to the projection data. The noise level is based on
the simulated photon count (in this case 10°) used for acquiring the projections.
After the alignment a SIRT reconstruction with nonnegativity constraints was
applied using the geometrical parameters obtained by the optimization routine.

The method we employ for solving the quadratic model in Eq. (2.9) is LSMR
[FS11]. As a stop criterion for LMPDM, the change in parameters relative to their
norm is monitored. If this falls below a certain threshold, the algorithm stops. The
same holds for the norm of the gradient ||JTr|| of the cost function in Eq. (2.6). In
any case the algorithm transitions to a higher resolution, or is terminated, when a
total of 100 LM-iterations is reached.
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For comparison, we have also employed a cross-correlation algorithm for
the parallel beam datasets. This method estimates object shifts by correlating
consecutive projections. Cross-correlation on two discrete real signals f and g is
defined as:

L
(f *&)(D) = D f(De(i+ ) (2.12)
j=1

where L is the length of the reference signal f. Usually zero-padding of g is
needed. The cross-correlation attains its maximum value when the two signals
align, or match as closely as possible. The corresponding i gives us the shift
between the signals. To allow sub-pixel precision in the alignment, prior to the
cross-correlation, the projections were upsampled by a factor of ten.

A region of the first projection, that is in view for all projections, acts as
reference. To this, the second projection is correlated, estimating the relative
shift. Then the second projection acts as reference to which the third projection is
aligned and so on. Note that we assume here, that the first projection is perfectly
aligned. If this was not the case, the projections are shifted away from the center
of rotation, which still produces alignment artifacts.

2.4 Results

The qualitative results are given in Fig. 2.4. Column 2 shows the unaligned
reconstructions, where 300 iterations of the algebraic reconstruction method SIRT
were performed [KSO1]. These show the impact of small perturbations in the
geometry. Details are blurred and the background is filled with stripes.

The third column shows SIRT reconstructions using the alignment parameters
found by the cross-correlation method. Since this method cannot retrieve angular
offsets, the resulting artifacts are still visible. For the mandible bone dataset,
cross-correlation clearly fails. Due to the fact that the sample is flat, projections
from different angles have very different width. Therefore, without stretching of
the projections, their correlation is rather limited. Many streaks inside the objects
remain. This is because the shift parameters are not found accurately. If we look
at the difference between the found alignment parameters and their true values
for the Shepp-Logan phantom in Fig. 2.6, it is clear that cross-correlation does not
yield sub-pixel accuracy. The LMPDM method, however, achieves an accuracy of
approximately one tenth of the pixel size.

The alignment results of our method LMPDM are given in the last column
of Fig. 2.4. Here, the details are much clearer and the streaks are almost gone.
Overall, the reconstructions are lacking some sharpness. Note that in the LMPDM
aligned Shepp-Logan image, a shift has occurred with respect to the phantom
image. This is because the alignment parameters are invariant to a global shift or
rotation of the object. In our error measurements, this global shift and rotation
have been removed first.

In Fig. 2.5, the convergence history is shown. The curves show step-wise
convergence behavior. This is the result of the multi-resolution approach. At some
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(a) phantom images (b) unaligned (¢) cross-correlation (d) LMPDM

Figure 2.4: Overview of the results: (a) phantom images of size 256 x 256, the
Shepp-Logan head phantom, a mandible bone and particles phantom respectively;
(b) the unaligned SIRT reconstructions; (c) SIRT reconstructions aligned by
cross-correlation; (d) SIRT reconstructions using alignment parameters found by
LMPDM.

point, the algorithm cannot improve the parameters at the current resolution.
Therefore, a transition to a higher resolution occurs. At the higher resolution, finer
details can be resolved and the errors can be reduced further. Note that jumps
occur in the residual at these resolution transitions. The residual is not invariant
with respect to the image size. Therefore, this behavior is expected and does not
indicate a convergence problem. For the Shepp-Logan and particle dataset, we
see that the error in ¢ starts to drop at higher resolutions (64 x 64), while the
shifts are refined at all resolution. The reason for this is that the alignment of the
projection angles requires details to be present in the reconstruction. The shifts
however can align quite well to a low quality image.

The importance of the multi-resolution approach combined with an automat-
ically selected step size in Eq. (2.10) becomes apparent when the Levenberg—
Marquardt routine is used on a single resolution, with fixed step sizes of h = 107°
in Eq. (2.10). These step sizes have an order of magnitude that is generally
considered to give accurate finite differences. The step sizes produced by our
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Figure 2.6: These plots show the difference between the found alignment param-
eters and their true values for the Shepp-Logan dataset. Since cross-correlation
methods cannot find perturbations in angles, the stars in the scatter plot in (b)
are the initial values of ¢. In (c), convergence is shown for LMPDM without
using multi-resolution and with step sizes of 107 for computig the Jacobian with
respect to both é and ¢.

spline method are in the order of hs = 1 and hy, = 0.1. The results in Fig. 2.6¢
point out that the alignment parameters are not found and that the error even
increases. This shows that the proposed methods for multi-resolution and local
smoothing of the Jacobian are essential to achieve high accuracy.

Finally we look at the results of the fan beam geometry dataset, which is shown
in Fig. 2.7. The ground truth is given in Fig. 2.7a. In the initial unaligned SIRT
reconstruction Fig. 2.7b, all details are missing and the positions of the cavities
in the metal foam cannot be accurately determined. However, in the aligned
reconstruction Fig. 2.7c, all large cavities are visible, albeit that some smaller ones
are still missing. Overall the sharpness of the reconstruction is reduced.

The results demonstrate that without alignment, qualitative or quantitative
analysis of reconstructions can be very limited. A good alignment routine can
improve the quality substantially. In Fig. 2.8 the convergence is shown for the
alignment algorithm (squares) as well as LM applied to the reduced problem of
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Figure 2.7: Simulation results of the fan beam alignment algorithm, (a) The metal
foam phantom; (b) An unaligned SIRT reconstruction; (c) A SIRT reconstruction
after alignment.
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Figure 2.8: Convergence of the fan beam alignment compared to a reconstruction
with LM applied on an aligned dataset.

minimizing Eq. (2.7) over x alone with the alignment parameters fixed to their
true values. Both simulations converge to the same residual, suggesting that the
alignment parameters cannot be improved further in terms of the residual error.
This shows that, even with small amounts of noise in the projection data, a good
alignment is possible.

2.5 Discussion

From the results we can see that our proposed method, LMPDM, performs well
on the selected phantom data. However, a straightforward, naive implementation
of Levenberg-Marquardt is bound to fail. The reason for this is the irregular
behavior of the objective function Eq. (2.6) due to the single precision code. The
methods we have introduced, an automatically selected step size combined with a
multi-resolution technique, are sufficient to solve this problem. On the one hand,
the improved accuracy of the Jacobian yields more accurate descent directions
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for LM, which improves convergence. Moreover, multi-resolution helps to find a
minimum of Eq. (2.6) even if the perturbations in the parameters are large. Most
projection matching alignment algorithms like [Par+12] require an initial coarse
alignment if this is the case.

The results from the multi-resolution LMPDM in Fig. 2.5 show, that at low
resolutions (16 x 16, 32 x 32), the errors in the shifts decrease rapidly and only a
few iterations are needed for convergence. This suggests that there might exist
a more optimal selection of the resolutions and their order. Perhaps a multigrid
method with an efficient intergrid transfer operator could improve performance.

The numerical results from the fan beam dataset in Fig. 2.7 suggest that align-
ment of fan beam projection data can be performed accurately by the proposed
method, even in presence of noise.

The run times we have measured, in the order of a minute, show that LMPDM
is an efficient method, suitable for experimental datasets for the reconstruction of
2D slices.

2.6 Conclusions

A new markerless alignment algorithm based on projection matching has been
proposed. Using a robust technique to compute the Jacobian combined with
a multi-resolution scheme, the accuracy of the LM optimization algorithm can
be improved substantially. The resulting LMPDM algorithm performs well even
if the perturbations in the alignment parameters are large. The timing results
show that the method is efficient enough to be used on 2D experimental datasets.
For future research, it is interesting to generalize the algorithm to 3D, which
adds a challenge in computational scale, as well as the added complexity of the
geometrical parameters. Also, one can experiment with extra terms in the cost
function in Eq. (2.6), such as prior knowledge, or use other distance measures.



Chapter 3

Aligning projection images from binary
volumes

3.1 Introduction

Tomography deals with the reconstruction of an object based on projections; see
Fig. 3.1. Projection images are acquired by scanning devices, such as X-ray based
medical scanners or transmission electron microscopes [BF11; MD09]. For high
resolution microtomography or nanoscale imaging, the stability of the scanner
hardware is a limiting factor in the reconstruction quality [MWO03]. Motion of the
object or limited accuracy of the mechanics leads to unaligned projection images
that produce alignment artifacts in the reconstruction. Algorithms for aligning the
projection images are essential to fully exploit modern detectors with high pixel
density.

In electron tomography, the projection images are created using a beam of
electrons. The instability of the sample holder in the electron microscope and
technical limitations can lead to severe distortions in the geometry. Especially in
the position of the object [HB11].

Another area in which alignment is important is in a synchrotron setup. A
synchrotron produces monochromatic X-rays using a particle accelerator. This
results in high resolution projection images that do not suffer from beam hard-
ening. However, the instruments used in the projection acquisition are often
not completely aligned before starting the experiment, resulting in the need for
post-acquisition alignment. Also, during in-situ experiments it is challenging to
keep the scanner setup in perfect alignment [Wil+11].

Current alignment methods are based on tracking of fixated markers, or are
purely data-driven using a (markerless) projection dataset of the object [BHEOT;

This chapter has been published with minor modifications as:
F. Bleichrodt, J. De Beenhouwer, J. Sijbers, and K. J. Batenburg. “Aligning projection images from
binary volumes”. In: Fundamenta Informaticae 135(1) (2014), pp. 21-42
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Fit+99; Fra92]. The latter markerless methods are often used in applications
at nano scales, or other domains where using markers is not possible or not
feasible. In many cases, a variant of cross-correlation techniques is employed.
The cross-correlation between consecutive images with low angular separation
can be exploited to estimate in-plane transformations of the projection images.
In projection matching methods, an intermediate reconstruction is formed. By
generating forward projections of the reconstructions and comparing them with
the observed projections, it is possible to refine the alignment [Par+12]. However,
to obtain a reasonably accurate reconstruction, a relatively large number of
projection images is required.

In recent years, a substantial number of publications have appeared about
image reconstruction from highly limited data, in the fields of discrete tomography
(DT) and compressive sensing (CS) [Bat05; BS11; CRT06; Sch+05]. In discrete
tomography, the unknown object is known to consist of just a few materials.
Therefore, the number of gray values corresponding to these materials is small
and possibly known in advance. This information can be used as prior knowledge
in the reconstruction algorithm, to limit the solution space and yield more accurate
reconstructions. In compressive sensing, sparseness of the total variation of the
object (i.e., the £;-norm of the gradient image) can be exploited to reconstruct
the object from a few projection images.

In this chapter, we focus on DT, but the same concepts can be applied to
CS techniques as well. To apply discrete tomography effectively, an aligned
dataset is needed, as well as a good estimation of the gray levels. Methods
have been proposed in the literature for gray level estimation [BAS11], but for
alignment, using markers is the only option. All of the markerless methods require
a substantial number of projection images to perform well:

» for methods that exploit similarity between projections, the angular gap
cannot be too large;

* for projection matching, to generate a decent reconstruction, enough projec-
tions should be available.

In this chapter, we propose the Discrete Tomography Projection Matching
(DTPM) method. DTPM incorporates a discrete tomography reconstruction al-
gorithm in the projection matching alignment. We demonstrate with simulation
experiments, that using this prior knowledge in the alignment phase, a substan-
tially better alignment can be obtained. In comparison to standard projection
matching methods, the DTPM alignment results in more accurate reconstructions.

The structure of this chapter is as follows: in Section 3.2 the acquisition
geometry for parallel beam tomography is described in detail. Here we introduce
the geometrical parameters that are estimated by our alignment algorithm. We
also give a formal, mathematical introduction to tomographic reconstruction.
We show how the geometric parameters are included in the reconstruction and
we define alignment by projection matching. A short description of discrete
tomography is presented as well. In Section 3.3 we introduce our proposed DTPM
alignment method. We show how discrete tomography is incorporated in the
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Figure 3.1: Acquisition of projection images from several angles. This figure
shows the object with unknown interior and three of its projection images.

projection matching method. In Section 3.4 we describe a series of simulation
experiments that were performed, also on noisy data, and the results are discussed.
In Section 3.5 we discuss considerations that should be taken into account when
applying our algorithm on data from real experiments. Finally, we conclude this
chapter in Section 3.6.

3.2 Method and implementation

In this section we will explain the geometrical parameters that determine the
projection geometry. We focus on the parallel beam geometry, illustrated in
Fig. 3.2, but the method can be extended to other geometries as well. Furthermore,
the mathematical background and algorithm details are given for the alignment
method that estimates these parameters.

3.2.1 Geometrical parameters

A typical setup for projection acquisition in tomography is illustrated in Fig. 3.2.
We assume that the radiation source emits parallel beams that are perpendicular
to the detector plane. The object is positioned at the origin of the x-y-z coordinate
system and the z-axis indicates the rotation axis. The projection angle 6 gives
the rotation of the object around the z-axis. Note that rotation of the source and
detector around the object is equivalent to rotation of the object itself (except
for the sign). In our alignment algorithm, we do not align the projection angle
6, because we want to consider the same parameters that are typically used in
image registration techniques.
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detector

rotation axis

source

Figure 3.2: Overview of the geometrical parameters describing the geometry of
the projection acquisition. The object in the middle is projected onto the detector
on the right. The parallel rays are perpendicular to the detector.

To model shift and rotation in the projection domain (i.e., in the plane of
the detector, both of the object as well as the detector itself) we define a second
coordinate system x’,y’,z’ that initially is aligned with the x,y,z coordinate
system. The origin of the x’, y’,2’ coordinates indicates the center of the detector.
For the projection angle 6 = 0, the horizontal axis of the detector is aligned with
the x’-axis and its vertical axis with the z’-axis. An in-plane shift of the detector
(or of the object) can then be modeled by a detector shift of (y,0, ¢) in the x’, y’, 2’
system. Note that the projection images are spanned in the x’-z’-plane. Therefore,
the shift can be considered as a 2D vector in the x’-z’-plane. Since we consider
a parallel beam geometry, object motion in the y’-direction does not change
projections.

To model in-plane rotation of the detector or object, we introduce the parame-
ter ¢. The detector is rotated around the y’-axis over an angle ¢. The coordinate
system of the detector and that of the object are then related by the following
coordinate transformations:

x'=(x+y)cos¢p +(z+{)sing,
Y=y (3.1
gz’ =—(x+ y)sing + (z +{)cos ¢.

So the coordinates are coupled by a translation and rotation operator.

Four parameters are sufficient to define the geometry of the acquisition of one
projection image. In a tomography scanner, projection images are recorded at
multiple angles,

0,,6,,...,0k €V C[0,2m). (3.2)
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In general, most datasets contain projection images with corresponding projection
angles in the range V = [0, ). For each projection image we have an in-plane
shift,

(Xl! gl): (XZ? gZ):"':(XK: gK): (3-3)

and an in-plane rotation,
b1, Poyeees Pk 3.4

In markerless alignment methods based on image registration techniques, it is
very common to estimate the parameters y, { and ¢, since these parameters act
in the plane of the detector. For this reason, we also consider the parameters g, ¢
and ¢ in our alignment method and do not estimate the other parameters. We
note that the approach presented here can be extended to include other alignment
parameters as well.

In the case of a perfectly aligned scanner setup that matches our theoretic
model of the geometry, we would have y, = {; = ¢, = 0 and the projection angles
are known exactly. In reality, there is a shift in the order of 1 to 10 detector pixels
and an in-plane rotation of several degrees. To some extent, the projection angles
are known with limited accuracy.

These perturbations in the geometry are mainly caused by

* Calibration errors — If the rotation axis and the center of the detector are
not aligned, a structural shift or in-plane rotation is introduced. This can
be prevented by calibrating the hardware precisely. Calibrating, however, is
a time consuming task and difficult if the pixel size of the detector is very
small.

* Mechanical inaccuracies — The limited accuracy of the mechanics, such
as the goniometer (the motor that selects the projection angle), is another
source of misalignment.

* Random motion — Since the object is not completely fixed, some motion
may occur when the goniometer rotates the object to the next projection
angle. Also, the object might be moving while scanning, for example if a
microscopy sample drifts within the sample holder.

For common reconstruction algorithmes, it is assumed that no perturbations
in the geometry are present and the projection angles 6; are known exactly. The
geometry that they impose is given by the set of parameters:

Xxi=0

Gi=0 1 (3.5)
i=1,... K. .

¢l=0 b 5

ei:é

L

In reality, small perturbations are common even in the projection angles. There-
fore, the geometry of the reconstruction method needs to be adjusted, to match
the true geometry of the projection acquisition. For this purpose we need to intro-
duce a mathematical framework that allows us to incorporate the geometry in the
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reconstruction. In the next section, we introduce this mathematical framework
and discuss how we can incorporate the alignment in the reconstruction method.

3.2.2 Mathematical formulation

The object can be related to its projections in a continuous manner by means of
the Radon transform [NWO1]. To solve the tomographic reconstruction problem,
we define a discrete model of the Radon transform. The object is defined on a
grid of unit cubes called voxels. Each voxel is assumed to have a constant gray
value x;. These are stored as a vector x € R". The gray value is proportional to
the attenuation coefficient of the corresponding material. The projection domain,
consisting of a series of projection images, is discretized into a series of pixel grids.
A detector value p; is modeled as a weighted sum (a single line projection) of the

object gray values
N
Di :ZZWinj. (36)
=1

The weight w;; models the attenuation of the source ray i caused by the material
within voxel j. Different weight models exist that approximate the physical
interaction of the radiation source with the object. In Fig. 3.3, as an example the
strip model is illustrated.

Figure 3.3: Discretization of the forward projection in three dimensions. The
projection p; is a weighted sum of the gray values. The weight w;; of voxel j is
determined by the intersection volume of ray i and the voxel. This is the so-called
strip model. The ray is indicated in yellow.

We can now describe the relation between the measurements p and the
unknown object x by a system of linear equations
Wx =p. 3.7)

The projection matrix W has dimensions M x N, the line projections p € RM and
the object x € RY are stored as column vectors. The number of projection images
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is K and the number of detector pixels is D, so the number of rows in W is given
by M =KD.

The weights w;; are not only determined by the ray width or voxel size, but
they also depend on the geometry. This can be seen in Fig. 3.3. Hence, by writing
the geometrical parameters as vectors,

0=(6,...,00)7,
2= 2T
I (SN SILE
¢ =(¢1,---, )T,

the dependency of the projection operator on the geometry is posed as a nonlinear
equation system
W(0,7,5,¢)x =p. (3.8)

In practice, it is not straightforward to use a closed-form expression for the weights
w;; as function of the geometrical parameters. They are generated on-the-fly based
on the geometrical parameters by means of a ray tracing type algorithm. More
details of this operation are discussed in Section 3.3.

If the unknown object can be represented exactly on a voxel grid, the system
is consistent if the geometrical parameters are perfectly aligned and when the
projection images do not contain noise. This enables us to formulate an alignment
method as an algorithm for minimizing the inconsistency of Eq. (3.8):

1
inimize LW, 7.7, 6)% — L. 3.9
n}clglxnglge 2IIW( 2,85, ¢)x—pll (3.9)

The factor % is introduced to avoid a factor two in the gradient of this cost function
and simplify the notation. There are many approaches to solve this optimization
problem. Minimization with respect to x is a linear optimization problem, which
is highly underdetermined. The dependency on the projection angles 8 makes
Eq. (3.9) also a nonlinear problem. In addition to the large scale of the data, it is
a very difficult optimization problem. However, by using the right approach, it
is typically possible to solve this problem accurately. In the next section we will
discuss in detail the approach of projection matching.

3.2.3 Projection matching

In this section we will explain the projection matching method used for the
alignment.

Minimizing the projection distance defined in Eq. (3.9) can be done in several
ways. The most important goal is to find an accurate reconstruction x. Without
an accurate geometrical parameter set, this is not possible. Moreover, to estimate
the geometrical parameters, a reasonable reconstruction should be available. It
seems that this problem can only be solved effectively by considering the full
optimization problem Eq. (3.9) and estimate x and the geometrical parameters
simultaneously. This approach has been proposed in [BB13; YNPO5]. Since the
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inverse problem in Eq. (3.8) is heavily underdetermined (e.g., N =512 x 512 x 512
and M =10 x 512 x 512), ill-posed and nonlinear, this is a difficult task.

As an alternative approach, we can alternate between reconstruction and align-
ment. In this case, we treat both problems individually. During the reconstruction,
we assume that the geometry is known, and during alignment, the reconstruction
is fixed,

1
Reconstruction : minimize 5||W(0, 7,8, ¢)x —pl? (3.10a)
X
1
Alignment : m(i}nirgnize EHW(O’Z’ ¢, 9)x —pll*. (3.10b)

Some algebraic reconstruction methods specifically solve Eq. (3.10a) in a cer-
tain norm. An example is the Simultaneous Iterative Reconstruction Technique
(SIRT) [KSO1]. Therefore, Eq. (3.10a) can be solved by employing a suitable
reconstruction algorithm. In the second step, generated projections from the
reconstruction using the forward model in Eq. (3.8), are matched to the observed
projections. This sub-problem only has a solution when the difference between
the ground truth and reconstruction is in the null space of the projection operator
W, which is normally not the case. Nevertheless, given a reconstruction contain-
ing some details or crude outlines of the object, it may be possible to improve
the alignment parameters. The resulting family of alignment methods is termed
projection matching. Examples of these methods are discussed in [HB11; Par+12].
All of these algorithms use an intermediate reconstruction step and afterwards
apply a form of alignment that is often based on image registration of projection
images and forward projections of the reconstruction. The basic structure of these
methods is illustrated in a flowchart in Fig. 3.4. In the experiment and results
section, we compare our method with a standard projection matching algorithm
that incorporates SIRT as the reconstruction method. We will refer to this method

as PM-SIRT.
N Recon- Parameter
Initial struction optimization
guess
parameters
no
Stop
criterion
met?
yes

Aligned parameters

Figure 3.4: A flowchart of the projection matching algorithm that estimates the
geometrical parameters.
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3.2.4 Discrete tomography

Many objects that are scanned in tomography consist of just a few materials.
Each material has a corresponding, uniform gray value in the reconstruction.
For example, when scanning bones (ex vivo), the reconstruction has two gray
values, one for the bone and one for the background (assuming that the bone
is approximately homogeneous). In this case, we would like to reconstruct a
binary volume. The discrete nature of the gray values can be exploited in the
reconstruction. Instead of solving Eq. (3.9) over a continuous domain, we can
limit the domain of x to the set of gray values that are known in advance.
Let R = {p4,...,p;1} be the set of gray values in the ground truth image. The
reconstruction problem that is considered in discrete tomography is posed as

mlmmlze lW(,%,%, ¢)x —pl? (3.11)

XE{P1,mens

In the experiment section, we consider projection datasets from an object
with few gray values in the reconstruction (in this case two, these objects are
called binary volumes). This allows us to use reconstruction algorithms for
discrete tomography to approximately solve Eq. (3.11). Possible candidates for
the reconstruction algorithm are described in [BS11; BT09; Sch+05].

3.3 Projection matching with discrete tomography

To our knowledge, employing a discrete tomography prior in projection matching
has never been proposed before. As discussed previously, all common markerless
alignment methods are not as accurate when the number of projection images
is small. By applying a discrete tomography reconstruction algorithm we can
introduce prior knowledge in a projection matching method, to alleviate this
limitation.

Essentially, the reconstruction phase Eq. (3.10a) in the projection matching
algorithm is performed by a discrete tomography reconstruction algorithm that
solves Eq. (3.11). We employ the binary reconstruction algorithm proposed by
Schiile et al., from now on referred to as the DC-algorithm [Sch+05]. Here
DC stands for Difference of Convex functions, which is a superclass of convex
functions. This algorithm solves Eq. (3.10a) augmented with two priors using
D.C. programming:

1
minimize —||Wx pl?+axTLx + = ,u(x e—x), O<ueR. (3.12)
xe[0,11V

Here e :=(1,...,1). The middle term of Eq. (3.12) is a smoothness prior where
the matrix L represents a difference operator between pixels and their neighbor
pixels [Sch+05]. The final term steers the solution to a binary volume. The
parameters a and u express weights to these terms.

From just a few projection images it is possible to make a perfect reconstruction,
under some smoothness conditions on the ground truth [Sch+05]. It has not
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been investigated how well this algorithm performs in case of misaligned data.
However, our numerical results suggest that the reconstructions in the early stages
of the alignment algorithm are good enough for achieving convergence in the
parameter estimation Eq. (3.10Db).

The DT prior that is controlled by the parameter u gradually forces the recon-
struction towards a binary solution. That is, in the implementation u is gradually
increased while the change in the data fidelity term becomes smaller. The final
DT reconstruction is approximately binary, but simply rounding by thresholding
yields a true binary solution. This allows also the use of other DT reconstruction
methods, such as the DART algorithm which also produces a discrete solution
[BS11]. The reason we choose for the DC-algorithm by Schiile et al. is that DART
is not as robust in case the projections are very noisy.

The alignment of the projection images in the second sub-problem Eq. (3.10b)
is solved by employing Levenberg—-Marquardt. This method is a gradient-based
trust region method [NWO06]. The algorithm computes a sequence {y,} of align-
ment parameters,

yk:(xk:gk,¢k)T> k=1,2,

that yield a decreasing cost function value Eq. (3.10b). The alignment parameters
are updated by a descent direction 7,

Yir1 = Y T Mk (3.13)

where the descent direction is found by solving the following equation:
(‘I];I-Jk—'_)t'sz)/nk =—JkTrk. (314)

The residual ry. := W(0, g, {x, §1)x, — p has Jacobian J; := V,, 1. The descent
direction is found by minimizing a second order Taylor approximation of the cost
function represented by Eq. (3.14). The parameter A, controls the step size of the
weighted descent direction, i.e., it limits ||Dn,||. The scaling (diagonal) matrix
D is necessary to incorporate the different scales of the geometrical parameters.
For example, shifts are in the order of voxels, while the in-plane rotation is in
radians and is therefore about two orders of magnitude smaller. In our approach
we selected the scalings manually. The scales of shifts (y, ) are unchanged, i.e.
d;; =1 for corresponding scales. The rotations (¢) are scaled in units of radians,
i.e. d; ~ m/180. For further details of the Levenberg—-Marquardt method we refer
the reader to [MINTO04; Mor78].

As noted previously, the projection matrix W is generated on-the-fly. Therefore,
the matrix is never fully formed in memory, which enables reconstruction of large
datasets. Storing a full matrix is not feasible for many practical applications. The
details of the ray tracing method are as follows: for each projection angle, the
ray paths incident to each detector pixel are traced through the volume and the
weights are measured based on an interpolation method by Joseph [Jos82]. The
direction of the rays, and therefore the voxels that are intersected are determined
by the alignment parameters in Eq. (3.8). Since we take this approach for
computing a projection, and because representing this matrix in closed form is not
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practical, we do not use an analytic expression for the Jacobian matrix. Instead,
we employ a central finite difference approximation for gradients:

W(o’l +hél’§, ¢)x _W(G)x _héug, ¢)x
V,r~ oh s

i=1,...,K  (3.15)

where é; is the ith basis vector. The gradients of the other parameters are computed
likewise. The coefficients of W are only piecewise continuously differentiable
with respect to the alignment parameters. This is due to discretization of the
reconstruction volume. However, the experimental results in Section 3.4 suggest
that the finite difference approach is effective and is not hampered by the fact
that W is not differentiable in every point.

The step size of the finite difference method h is selected automatically, follow-
ing the same procedure as proposed in [BB13]. Here we found that the step size
is important for the accuracy of the gradient. If it is too large, the approximation
Eq. (3.15) is very poor. If the step size is too small, discretization effects and
limited precision distort the measurement of the gradient. These effects are visible
at fine scales in the cost function as erratic oscillations. The method we employed
in [BB13] compares the cost function in Eq. (3.10b) to a spline fitted to sample
points of the cost function. More sample points are compared to the spline and the
relative fit yields a measure for the smoothness of the cost function. A step size h
determines the distance between sample points. The smallest step size is selected
for which the cost function behaves relatively smooth, to make the gradient more
robust against these discretization effects. The selected step size behaves like a
constant and does not change much in our pilot experiments. Therefore, it is
computed once after the initial reconstruction and is fixed during the rest of the
computations. This improves the performance of the method, since computing
the step size is not cheap.

Since each parameter affects only detector values at a single projection angle,
the Jacobian has the following sparse structure

4 g5 gl
with g/ the numerical gradient of r with respect to y;. Due to the independence
of the parameters between different projection images, these finite differences
can be computed very efficiently. It costs only two forward projections for each
parameter:

g

= (W(8,x +he,§,9)x —W(0,x —he,§,¢)x)/(2h)

8¢

withe:=(1,...,1)7.
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The full algorithm is listed in pseudo code in Algorithm 1. The Jacobian is
needed to solve Eq. (3.14). We employ the linear least squares solver LSMR to
solve this equation [FS11]. Note that the Jacobian is generated by computing
Eq. (3.16). In the case we need to multiply the Jacobian with a vector, such as
in LSMR, it can be efficiently computed by inner products. Since the Jacobian
is constant in LSMR, the descent direction is found efficiently, even though we
need to solve a system of equation. When the descent direction 7, is found, the
value p is computed. The numerator represents the decrease in the cost function
Eq. (3.10b). The denominator is the decrease in the quadratic model of the cost
function based on a second order Taylor approximation:

1 1 1
5”"(}’ +0)|>~L(n):= Er(y)Tr(y) +TJTr + EnTJTJn. (3.17)

So, if p is strictly positive, we have found a descent direction. If, in addition, the
fraction p is close to 1 the quadratic model is in good correspondence with the
cost function. In that case, the damping parameter A is decreased, such that a
larger step is taken in the next iteration. Note that this parameter limits the £2
norm of the descent direction. Therefore, the step size is increased only if the
quadratic model is accurate. Otherwise the step size is decreased.

3.4 Experiments and results

In this section we discuss the results of a series of simulation experiments that
have been performed to evaluate the capabilities of the DTPM algorithm, and
compare it to projection matching without the use of prior knowledge. Based on a
binary volume, we generated projection data and introduced misalignment in the
geometry. From this data we can compare the accuracy of the standard projection
matching using SIRT (PM-SIRT) as a reconstruction algorithm, with DTPM. Both
algorithms are also tested for robustness against noise in the projection data.

The forward model in Eq. (3.7) can be used to generate projection data from
a given volume x € RY. For creating forward and back projections as well as the
SIRT and DC reconstruction algorithms the ASTRA toolbox was used [PBS11;
PBS13]. Matlab was used as a scripting language that accesses the underlying
GPU code through the C++ mex interface. The hardware used for the simulations
was a workstation with Intel Core i7-2600K CPU@3.40 GHz and a Geforce GTX
570 GPU.

The phantom we consider is depicted in Fig. 3.5. It consists of the union
and differences of several convex shapes. All objects are hollow, except for
the cube, and the ellipsoid encloses a solid sphere. These simple shapes allow
reconstructions from just a few projection images. In Matlab, we generated the
phantom on a 64 x 64 x 64 voxel grid. The middle slice of the object is shown in
Fig. 3.8a.
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Algorithm 1 DTPM

Input: Projection data p, initial geometry ¥, = (%0, §o, ¢0)7
Output: A binary reconstruction x; and aligned geometry y;

Let DC[y](p) denote the operator that produces a binary DC reconstruction
operating on p, for a given geometry y.
The parameter e controls the convergence criterion, that monitors the relative
change in the parameters.
fori=0,...,i,y do
reconstruction phase
x; =DC[y;1(p)
alignment phase, using Levenberg—Marquardt
A=5
y=2
Yo=Yi
for k=0,...,ky, do
re:=W(Qyx; —p
compute J;(x;)
Solve (J1J, + AD*) my = —J]ry
if ||l < e(llykll + €) then
convergence
k = kl’l’laX
else
.Vk+1 Yetm
= (llrel? = |Irk+1|| )/(L(0)—L(ny))
1f p > 0 then
A« Amax{},1—(2p—1)°}
y=2
else
Ae—Av
Ve 2v
Yier1 = Yk
end if
end if
end for
Yie1 = Yk,
end for
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(a) Front view (b) Top view

Figure 3.5: Binary phantom consisting of an ellipsoid, a cone and a cube. A
plane is shown for more perspective and improved visibility. The phantom can be
enclosed in a cube consisting of 2 x 2 x 2 grid cells (as seen from the top view).

3.4.1 Experiment I - the effect of discrete tomography

In the first experiment we focus on the effects of DT reconstruction. Therefore we
look at a perfectly aligned dataset and do not consider alignment.

The strength of the DC-algorithm is in its ability to accurately reconstruct a
dataset from just a few projections. It is not clear for this phantom, how many
projection angles are necessary to create an accurate reconstruction. Therefore,
we compare SIRT and DC reconstructions for a varying number of projection
angles. We generated projection data for 50 angles. A subset of these projection
images were used to create a reconstruction.

Fig. 3.6 shows a plot of the number of incorrect voxels, called the voxel error,
as a function of the number of projection angles. The number of projection
angles that were considered are: 3 to 10, 20, 25, 30, 40 and 50. The smoothness
parameter a = 0.08 for DC was chosen empirically.

As expected, DC outperforms SIRT substantially in the limited angle case.
However, this difference disappears if many projection images are used. Therefore
we focus our simulations on the limited angle case (less than 10 projection angles).

3.4.2 Experiment II - aligning projection data

In the second experiment, perturbations were applied to the projection geometry
used to simulate the projection images. From the parameters in Section 3.2.1,
we have included the in-plane shift (y,¢) and in-plane rotation ¢. Because these
parameters operate in the plane of the detector, the alignment phase Eq. (3.10b)
can be seen as an image registration problem, in which the observed projection
image acts as the reference image.

An in-plane detector shift of maximum +10 detector pixels, both in y- and
z-directions was simulated. The in-plane rotation is at most +15°. These per-
turbations were generated randomly with uniform distribution. The misaligned
projection data was used as input for the alignment software.
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Figure 3.6: Number of incorrect voxels, in comparison with the ground truth, for
a varying number of projection angles.

In Figs. 3.7a to 3.7c, the final alignment error for the three parameters is
shown for a varying number of projection angles. The errors are averaged over all
projection angles, so they represent the mean error per projection image. With a
maximum misalignment of 10 voxels (in the object position), the initial average
error should be close to 5, while the initial average error for the in-plane rotation
will be around 7.5°. The performance of PM-SIRT is unsatisfying and improves
only moderately when the number of angles is increased. In case of shifts, the
parameters are found with an accuracy of 1 to 2 detector pixels. Such errors still
produce smearing in the reconstruction. The DTPM algorithm using DC also fails
with 3 to 5 projection angles. However, for 8 projection images, the average error
in the shift is in the order of 10™%, so sub-pixel accuracy is achieved. The voxel
error in Fig. 3.7d indicates that this kind of accuracy in the alignment is sufficient,
since the corresponding voxel error is close to zero. Hence, the DC approach
seems suitable in the limited angle case and achieves a higher accuracy overall.

For a qualitative comparison, the middle slices of the phantom and recon-
structions are shown in Fig. 3.8. The reconstructions are computed from eight
projection images. From these results it is clear that the alignment error for
PM-SIRT is not small enough to eliminate all alignment artifacts. In contrast,
the DTPM alignment produces an almost perfect reconstruction. It is not clear,
however, if the difference in reconstruction quality is due to the alignment. It
might be the case that DC creates a more accurate final reconstruction, while the
alignment parameters are comparable. To exclude this possibility we have also
created a DC reconstruction using the alignment parameters found by PM-SIRT,
as shown in Fig. 3.8d. This DC reconstruction still contains artifacts in the surface
of the objects. This indicates that the intermediate DC reconstructions yield a
better alignment, and it is not just the final discrete tomography reconstruction
that accounts for the differences in quality.
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Figure 3.7: Alignment results for varying numbers of projection angles. The error
measure is the absolute error averaged over the number of projection angles:
llx — 2*|l/K where x* is the true shift. Similar measures are used for the other
parameters. (d) A plot of the voxel error reveals that the DTPM alignment
produces perfect reconstructions, if the number of angles is large enough.

3.4.3 Experiment III - aligning noisy projection data

In this experiment we test the robustness against noise of the DTPM algorithm, to
determine if the discrete tomography prior still works well if the projection data
contains noise.

We focus on reconstructing from eight projection images. From the previous
experiment we found that this number of angles should be enough for accurate
alignment. We applied Poisson noise to the projection data. The amount of noise
is indicated by the simulated photon count for the projection data. A lower photon
count corresponds to a higher noise level. In this particular case, we vary the
noise level to match a simulated photon count from 10° to 5 x 10°. These can be
considered moderate to limited noise levels.

In Fig. 3.9, the absolute, averaged alignment errors are shown for the full
range of noise levels. These plots show that alignment is very difficult when the
noise levels are high. Clearly, it is not possible to accurately align a dataset if
the noise level crosses a certain threshold. The DTPM alignment seems decent if
the photon count is at least 10° (small amount of noise). In this case, sub-pixel
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(a) phantom

(c) alignment with DTPM (d) DC with PM-SIRT parameters

Figure 3.8: Comparison of a reconstructed slice (the middle one) resulting from
PM-SIRT and DTPM. The reconstruction is based on 8 projection images. (d)
Shows a DC reconstruction using the geometrical parameters found by PM-SIRT.
This shows that the quality is not due to the final reconstruction using DC, but
due to the alignment.

accuracy is achieved, while in-plane rotation is found with an accuracy of a few
degrees. The voxel error in Fig. 3.9d reveals that the DTPM reconstructions are
reasonable for photon counts above 10°. A voxel error of 10* corresponds to
approximately 4% incorrect voxels. The PM-SIRT alignment results are much
worse. While the vertical alignment improves with increased photon counts, the
horizontal shift and in-plane rotation do not improve much. Presumably, due to
the noise, details are missing in the SIRT reconstruction, such that the alignment
step does not improve the parameters in a direction that will create a better
reconstruction in the next iteration.

To visually assess the quality of the reconstructions, we show the middle slices
in Fig. 3.10a and Fig. 3.10c for PM-SIRT and DTPM respectively, corresponding to
a dataset with simulated photon count of 10°. Although the DTPM reconstruction
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is not as good as in the noiseless case, the contours of the objects are clearly visible.
Moreover, the surfaces of the ellipsoid and cone in the DTPM reconstruction are
fully closed. The cube is showing very minor salt and pepper noise, but its
cross-section is clearly a square. The PM-SIRT reconstruction, in contrast, fails
to produce the cone and the surface of the ellipsoid is far from closed. Again
we reconstructed using DC with the alignment parameters from PM-SIRT. This
reconstruction, shown in Fig. 3.10b, is slightly better, because the cross-section
of the cone is visible. The result again indicates that the alignment parameters
found by DTPM are more accurate and that not the final DC reconstruction causes
the qualitative differences. This is confirmed by the final errors in the alignment
parameters shown in Fig. 3.11. The horizontal and vertical shifts are found with
sub-pixel accuracy by DTPM. The in-plane rotation is accurate up to 1 or 2 degrees.
In comparison, the alignment by PM-SIRT is very poor.
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Figure 3.9: Alignment results for eight projection images perturbed by Poisson
noise.

3.4.4 Performance considerations

In this subsection we compare and discuss the computation times of PM-SIRT and
DTPM. As computation times depend on the implementation and the particular
dataset that is considered, we provide a rather general discussion of the perfor-
mance. The alignment phase is the same for both methods and therefore has the
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(a) PM-SIRT (b) DC with PM-SIRT pa- (c) DTPM
rameters

Figure 3.10: Alignment result for eight projection images. The Poisson noise has
an intensity corresponding to a photon count of 10°. The figures show the middle
slice of the reconstruction resulting from the alignment algorithm. In (b) a DC
reconstruction is shown, using the aligned parameters found by PM-SIRT.
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Figure 3.11: The errors in the alignment parameters after alignment. The dataset
used 8 projection images perturbed by noise, corresponding to a photon count of
10°.

same complexity. Differences in computation times for the alignment are caused
by differences in the number of iterations that are required for convergence. How-
ever, the largest difference is due to the reconstruction algorithm that is employed.
The method SIRT requires a forward projection and a back projection in each
iteration. This is computed as two matrix vector products, using Eq. (3.7) (one
by W and one by WT). The method DC has an inner and outer loop. The outer
loop controls the parameter u, but does not perform actual computations. The
inner loop consists of a forward and back projection and is therefore comparable
to a SIRT iteration. In the experiments, the number of SIRT iterations was kept
constant at 300 iterations. Typically, the number of outer loop iterations of DC is
half that number. Each iteration of the outer loop, the inner loop is run on average
10 times, so in total the DC method performs about 5 times as many matrix vector
products, compared to SIRT.

For any given dataset it will be difficult to estimate the performance between
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Figure 3.12: Computation times.

DC and SIRT, because we do not know the number of inner or outer loop iterations
that will be performed by DC. The number of iterations of both loops is determined
by their convergence criteria. Therefore, we compare performance results of a
single run of the algorithm based on our phantom dataset.

In order to compare computation times, the residual error of both methods
are plotted against the computation time, shown in Fig. 3.12. The same noisy
dataset was used as in experiment III. This result shows that DTPM is about
two times slower compared to PM-SIRT. However, the final residual error of
PM-SIRT is achieved much faster using DTPM. In that sense, DTPM converges
faster and is a more efficient method. Notice that the initial residual error of
DTPM is higher than that of PM-SIRT. This shows that the DC reconstruction
method is not as accurate compared to SIRT when the alignment error is large.
Most likely, the discrete tomography prior does not improve the reconstruction if
the data consistency is small, due to misalignment.

3.5 Discussion

The results from the experiments on simulated projection data show that the DTPM
method achieves a lower error in the reconstruction as well as the alignment
parameters, when compared to PM-SIRT. In the experiments we applied both
methods to a dataset using simulated projection data from a phantom object. In
this section we will discuss our expectations and considerations for applying our
method to data from real experiments.

First of all, the results of experiment I show that 8 projections are enough
to accurately reconstruct the binary phantom object. If more than 20 projection
are available, the difference between SIRT and DC reconstructions is only minor.
So in order to benefit from using the DTPM alignment method on real data, the
number of projections should be within a certain interval.

When reconstructing from experimental data we cannot determine the voxel
error of a reconstruction, since we do not have a ground truth. Neither can
we determine the optimal number of projection angles using the voxel error.
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However, it is still possible to estimate a reasonable number of projections. If
a manually aligned dataset could be obtained, we can compare residual errors
between SIRT and DC. The residual error compares simulated projections from
the final reconstruction with the measured projection data. Using this norm, we
can create a similar plot as shown in Fig. 3.6. Although the residual error has no
one-to-one correspondence with the voxel error, it still can give an approximate
insight to the real error.

Secondly, the amount of noise should be limited in order to benefit from using
the DTPM alignment method. From Fig. 3.9 we see that the alignment fails if
the signal-to-noise ratio is too low. Acceptable noise levels can be determined
by qualitatively observing the aligned reconstruction. As an alternative, the total
variance of the projection images could be considered as a measure for the amount
of noise.

Moreover, it is important to note that alignment errors can be present in
the projection data that cannot be modeled by our set of alignment parameters.
Although the alignment parameters we consider have typically the largest per-
turbations in an experimental dataset, other errors can be present as well. For
example, we do not consider rotation of the object around the x-axis. A small
rotation would result in vertical “shrinking” of the projection image and certain
features would overlap. Such an alignment error can only be corrected for if the
rotation around the x-axis is included in the parameters of DTPM. However, this
parameter is highly correlated with the shift parameters used in DTPM. Likewise,
errors in the rotation angle are difficult to find, due to the high nonlinear nature of
the parameter. Nevertheless, we think that estimating in-plane shifts and rotations
will improve the alignment of an experimental dataset even if other alignment
errors exist.

Finally, the choice of the smoothness prior parameter a is important in the DC
reconstruction. This parameter reflects the spatial coherency of solutions. The
phantom in Fig. 3.5 is very smooth indeed. In reality, this prior might not be
as accurate, depending on the nature of the object. Selecting the parameter a
can be achieved in a similar fashion as choosing the number of projections. By
minimizing a measurable error norm, such as the residual error, we can select the
value for a that results in the lowest error.

3.6 Conclusions

A new method was proposed for alignment of binary tomography datasets from
limited data. Prior knowledge of the binary gray values was included as a regular-
ization method. It was found that the use of discrete tomography in a projection
matching method, results in more accurate intermediate reconstructions. As a
result, the subsequent alignment step by matching projection images is better
defined.

For aligning the projection images, a variant of the Levenberg—Marquardt
algorithm was used. By using finite differences for computing derivatives, the
method does not require analytic gradients.
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From our numerical results for simulated data, we see that the binary tomog-
raphy algorithm DC yields much more accurate reconstructions in the case of
few projection images (less than 15) [Sch+05]. The projection matching method
DTPM is able to effectively align datasets from 6 projection images or more. The
alignment combined with SIRT fails to find accurate alignment parameters with
few projection angles. Only for a large number of angles the results are improving.

Qualitatively, the difference between PM-SIRT and DTPM was clear. While
DTPM results in almost perfect reconstructions, for datasets with limited noise,
the PM-SIRT reconstructions have many artifacts. By creating a DC reconstruc-
tion combined with geometrical parameters found by PM-SIRT, we showed that
differences in quality in the reconstructions are mainly due to the alignment
accuracy.

The results show that employing binary tomography as regularization is an
essential step in projection matching alignment, when only a few projection
images are available.



Chapter 4

SDART: an algorithm for discrete
tomography from noisy projections

4.1 Introduction

In tomographic imaging, a three dimensional object is reconstructed from a series
of projection images that have been acquired over a range of angles. Tomography
has a wide variety of applications, ranging from medical imaging to materials
science [Grii+03; MD09; Neu97; Rop+03; Zen10]. In many of these applications,
the object under investigation consists of only a few different materials, each
corresponding to a particular gray level in the reconstructed image. Therefore,
the set of gray values in a reconstruction should be small and discrete. Most
common reconstruction algorithms, such as the Filtered Back Projection or SART,
produce a continuous range of gray values [KSO1]. However, it has been shown
that incorporating this set of admissible gray values as prior knowledge can lead
to superior image quality in the reconstruction, especially if the set of projection
images is small [BatO5; BS11; CRT06; Sch+05]. This type of tomography is
known as discrete tomography.

The Discrete Algebraic Reconstruction Technique (DART) is one such algorithm
that exploits the discrete nature of the object. It assumes that the gray values
corresponding to the different compositions of the object are known a priori
[BS11]. If only the number of different gray values is known, and not their actual
values, these gray values can be adaptively estimated during reconstruction by
using PDM-DART [ABS12]. DART is an iterative method, which aims to solve a
system of linear equations that models the tomographic projection process. In each
iteration, a reconstructed image is segmented, i.e., the gray values are thresholded
to the nearest a priori known gray value. It is assumed that the interior regions

This chapter has been published with minor modifications as:
F. Bleichrodt, F. Tabak, and K. J. Batenburg. “SDART: An algorithm for discrete tomography from
noisy projections”. In: Computer Vision and Image Understanding 129 (2014), pp. 63-74

47



48 4. SDART: an algorithm for discrete tomography from noisy projections

of this segmentation are segmented with high accuracy and that most errors are
located on the boundaries. The key idea behind DART is to reduce the system
of equations in each iteration by fixing or removing these interior pixels/voxels
(i.e., unknowns) from the equations. The governing equations in tomography
are ill-conditioned and rank deficient. Due to this dimension reduction, the
equation system becomes increasingly better determined. Nevertheless, removing
unknowns assumes that the gray values of the corresponding pixels are correct.
Only the remaining free pixels are iteratively refined. Therefore, the operation of
fixing a pixel imposes a hard constraint on the solution of the equation system
and can only be effective if the selection criterion for a pixel being fixed or free is
sufficiently accurate.

In practice, we see that the interior regions of the segmentation initially contain
many errors. However, since the boundaries evolve due to the update steps, these
pixels will be corrected eventually and the algorithm can converge to the correct
solution. A problem occurs when the projection data contain noise. Imposing
hard constraints on non-boundary pixels leads to noise being spread mainly over
boundary pixels. This leads to major errors in the update steps applied to the
boundary pixels. As a result, edges will be less resolved in the reconstruction and
convergence problems can arise.

In this chapter, we propose an alternative to the hard constraints imposed in
DART. We introduce a set of relaxation parameters that imposes soft constraints on
the pixel values. The parameters penalize deviation from the current segmented
value of a pixel. Subsequently, the relaxed system with soft constraints is solved
and the parameters are updated based on the intermediate reconstruction and
segmentation. The proposed method is called Soft DART, to indicate the use of
soft constraints. By using a penalty matrix, flexibility is increased in comparison
to DART. It enables us to impose confidence levels on individual pixels instead of
indicating if a pixel is correct or not. The results of our simulation experiments
suggest that for a suitably chosen set of relaxation parameters and for datasets
with low signal-to-noise ratios (SNR), SDART produces a reconstruction closer to
the ground truth when compared to DART.

The outline of this chapter is as follows: first we will briefly discuss the DART
algorithm in Section 4.2 and show some of its limitations. In Section 4.3 we will
introduce SDART: a new variant of DART that includes a soft constraint. Possible
choices for selecting the soft constraints are discussed. In Section 4.4 we compare
the behavior of DART and SDART to see the effect of the soft constraints. We
also discuss how to select an important regularization parameter that is used in
SDART. In Section 4.5 an overview is given of the experiments and the results are
discussed. We conclude the chapter in Section 4.6.

4.2 The original DART algorithm

In this section we will briefly introduce the notation and concepts of DART and
summarize the main details of the algorithm.
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4.2.1 Notation and concepts

The governing equations in tomography can be posed as a linear system, which
models the tomographic projection process. The linear model is generic, but for
simplicity we will focus on the reconstruction of a 2D slice of the object from 1D
detector measurements. The generalization to three dimensions is straightforward.
Throughout this chapter we consider a parallel beam geometry, which is illustrated
in Fig. 4.1. In our implementation the geometry can be easily changed to fan or
cone beam geometry. In fact, one of the experiments from Section 4.5 is based on
a cone beam dataset.

sources

detectors

Figure 4.1: Schematic of the parallel beam geometry. The incident rays are
parallel. The sources and detectors rotate around the object, indicated by the
projection angle 6, such that a circular field of view (FOV) is formed.

Let x € RN denote a vector containing the gray value of each pixel in the
unknown object. The vector p € RM contains the detector measurements. The
1D detector has D elements and K projections are available. The total number of
line projections is therefore M = KD. We now introduce the projection operator
W € RM*N which relates the object to its projections:

Wx =p. 4.1)

Reconstruction methods aimed at solving Eq. (4.1) are referred to as algebraic
reconstruction methods. Examples of such methods based on Kaczmarz’ method
are ART, SIRT or SART [KSO1]. Since the system of equations is usually underde-
termined, and in practice no solution exists due to noise, it is typically solved in a
least squares sense:

minimize |[Wx —p||?, (4.2)
x€RN
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such that an object is found that matches with the observed data optimally. In
discrete tomography, the small, discrete set of admissible gray values

R:{pl""’pl}

is known a priori. We can include this prior knowledge as constraints in the
optimization problem:

minimize ||[Wx —pl|3. (4.3)
x€{p1,ep IV

4.2.2 Algorithm details

DART combines a continuous algebraic reconstruction method (ARM) with a
segmentation step and uses heuristics to improve on this segmentation. The
ARM that is typically used is SIRT or SART [KSO1]. In principle, any linear least
squares solver is suitable. Also the Krylov subspace methods such as CGLS or
LSQR [PS82].

The flowchart in Fig. 4.2a illustrates the algorithm and its computational steps.
We will briefly summarize these:

1. An initial continuous reconstruction x. is computed using an algebraic
reconstruction method.

2. The reconstruction is segmented by applying thresholding. All pixel values
are rounded to the nearest gray value in the set R.

3. Those pixels that have at least one (out of eight) neighbor with a different
gray value (called boundary pixels) are free. In addition, a random subset of
image pixels is also selected to be free. The columns of W corresponding
to the pixels that are not free (fixed pixels) are removed from Eq. (4.1) and
their projections are subtracted from the right-hand side.

4. The solution of the reduced system is refined by applying an ARM to the
free pixels.

5. If a stop criterion is not met, the free (boundary) pixels are smoothed.
The smoothing step is performed by means of a discrete convolution of a
3 x 3 kernel with the image. The middle pixel of the kernel is weighted
by a smoothing factor b, the other pixels in the kernel are weighted by
(1—b)/8. Although the smoothing is not used in every implementation of
DART [Alp+13], it is used in the original paper [BS11]. The process repeats
from step 2.

The thresholding step rounds the pixel values of the reconstruction to the nearest a
priori known gray value. We use the same notation for this operation as presented
in [BS11]:

T(x):RY —R. 4.4

Note that the discrete nature of the gray values is not exploited in the ARM itera-
tions. Instead, DART relies on the segmentation to produce solutions with discrete
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gray values. Nevertheless, the strength of DART is based on the observation
that pixels in the interior of a homogeneous region are likely to be thresholded
correctly [BS11]. This result can be found empirically. A possible explanation
is that least squares methods in general reconstruct low-frequent components
of the solution prior to the high frequencies. Since large homogeneous regions
(including the background) are part of the low-frequent components of the image,
the non-boundary pixels are better resolved compared to the boundary pixels.
This idea is used to classify the segmented image x, into the sets of fixed pixels F
and free pixels U.
Formally, the sets F and U are then defined as index sets:

F= {i | X; = Xi1rnsq, forallq,r €{-1,0, 1}} , (4.5)
U=F¢, (4.6)

where F¢ denotes the mathematical complement of F. In addition, the set of free
pixels U is combined with a random subset of pixels. Each pixel has a probability
(1—p) to be included in the set of free pixels. The probability 0 < p < 1 is referred
to as fix probability. This random set of free pixels improves the reconstruction of
“holes” in the object, which are typically not found easily.

Since pixels in the interior regions are likely to be correct, they are removed
from the equation system Eq. (4.1) and subtracted from the right-hand side. To
fix a pixel i € F, we apply the following operation on the linear system:

X1

Xi_
Wy oo Wi Wiy o Wy xl» Y=p—vw, 4.7)
| | | | o

XN

where v; is the segmented gray value of pixel i. Subsequently, other pixels in F
are treated in an analogous way. This leads to a reduced system that has fewer
unknowns. The pixels in the free set U are refined by iterating an ARM on the
reduced system.

This process is repeated in each DART iteration. The boundary pixels are
determined from the complete image, not only from the free pixels corresponding
to the reduced system. Therefore, the elimination of pixels in the fixed set always
starts from the full system in Eq. (4.1). As a consequence, pixels that were
previously fixed can be free in a consecutive DART iteration. Therefore, errors
in the interior regions can be corrected in a later stage due to evolution of the
boundaries.

Batenburg and Sijbers show that with increasing noise levels, the DART recon-
structions have a large pixel error (i.e. the number of pixels that have a wrong
gray value in the reconstruction compared to the ground truth) [BS11]. Since
only boundary pixels are free, the noise has a large effect on the boundary update.
To remedy this problem, the fix probability can be decreased such that noise is
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Figure 4.2: The flowcharts illustrate the DART and SDART algorithms. The SIRT
update can be replaced by another ARM. The smoothing step in DART is used to
suppress the effect of noise on the boundary update. Note that SDART includes
a penalty matrix D, that represents the soft constraints used in the subsequent
reconstruction step. SDART does not include a smoothing step.

also spread over a large random subset of pixels. While this improves the accuracy
of DART with noisy projection data to some extent, it does introduce heavy salt
and pepper noise, as was also observed in [Alp+13].

4.3 Soft DART

The main contribution of this chapter is to introduce a different approach to
classify and improve incorrectly segmented pixels. Instead of fixing pixels and
updating free pixels, we propose to solve a relaxed system (i.e., under soft con-
straints) as an alternative to the ARM update step. In this section we will discuss
the main details of the new approach.

A flowchart of the new method is shown in Fig. 4.2b. SDART follows the same
steps as DART, but it does not eliminate unknowns (pixel values) from Eq. (4.1).

We propose to introduce a soft constrained optimization problem. Let v be the
segmentation of the intermediate reconstruction and let D € RY*N be a diagonal
matrix with nonnegative real entries (d;; > 0, it is referred to as penalty matrix).
We then introduce the relaxed reconstruction problem:

()<~ (s0)

In this setting, the diagonal matrix element d;; gives a penalty to pixel i for
deviating from its segmented value v;. If d;; is large, only small deviations are
allowed, while the pixel can be considered “free” if d;; = 0.

The system in Eq. (4.8) is solved by a linear least squares solver, e.g., a
reconstruction method such as SIRT or a Krylov subspace method such as CGLS.
The algorithm is started with initial guess x, = x,, the reconstructed image (with

2

minimize =
xRN

2
minimize ||[Wx —p|2 + A%|ID(x —v)|2. (4.8)
x€RN
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continuous gray levels) that resulted from the previous SDART iteration. The
parameter A is introduced both for regularization, as well as to compensate the
difference in scale of the two terms in the cost function in Eq. (4.8). Note that
the term |[Wx —p ||§ depends on the number of angles, whereas ||D(x — V)||§ does
not. As a result, the scaling between the two terms is important and the value of
A needs to be adjusted accordingly.

The entries of D depend on the current reconstruction, so the matrix D needs
to be updated at each SDART iteration. The main advantage of this approach,
compared to using hard constraints, is that no pixel will be truly fixed. Therefore,
noise in the projection data will be distributed over the entire image (proportional
to D). Moreover, the relaxation parameters d;; can express a confidence level for
the accuracy of pixel’s i gray value. The confidence level can be based on any
error measure for the reconstruction we have. Due to the generality of Eq. (4.8)
we can even choose a different reference image v instead of the segmented
reconstruction.

Naturally, the increased flexibility comes with a price. The system has gained
N unknowns as well as N equations, making it more costly to solve Eq. (4.8).
In addition, we lose the efficiency resulting from the removal of columns from
Eq. (4.1). Instead, each SDART iteration will be as costly as the first. As will be
explained in Section 4.3.2, an efficient implementation can still lead to satisfactory
performance. The full algorithm is presented in pseudo code in Algorithm 2. Note
that a stopping criterion is not included in the algorithm description. In general,
the question when to stop an algorithm to obtain the best solution is a very
difficult one. Therefore, a reasonable choice is to terminate the algorithm when
the relative change in the solution is small. This can be achieved by using a fixed
number of iterations. In the experiments section we use 30 to 50 iterations, which
is enough for all the datasets we considered.

4.3.1 Selecting a penalty matrix

In our simulation experiments in Section 4.5, we consider two different penalty
matrices, defined as follows:

DART criterion

For validation purposes, we introduce a penalty matrix that should result in
SDART mimicking the original DART algorithm. SDART does not allow us to fix
pixels, but instead we can give non-boundary pixels a very large weight. By giving
a weight of zero to boundary pixels, we do not put any restrictions on those pixels.
The resulting penalty matrix is given by

0, iel. (4.9)

10°, i€F
dij := {
These weights are found to be effective from preliminary simulation experiments.
We refer to SDART using this penalty matrix as SDART-ORIG, the first variant of
SDART.
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Neighbor criterion

In DART, a pixel is fixed when all 8 neighbors have the same gray value. If at least
one neighbor has a different gray value, the pixel is considered free. This leads
to a relatively fat boundary. Therefore, a logical choice for D would be to give a
penalty that is proportional to the number of neighbors b; that have a different

gray value, i.e.,
1 1
bi = Z Z l{xi#xiﬂ-wq}’ (410)

r=—lq=-1

where 1;; is an indicator function that is 1 if the condition is true and 0 otherwise.
In this way, boundary pixels have different weights that reflect their position in
the boundary. As a result, the boundary can be considered to be narrower. The
penalty matrix is then defined as

100
d; ==

= Zh (4.11)

Note that d;; is an exponential, monotonically decreasing function in b;. The
factor 3 in the denominator was chosen based on early simulation experiments.
If the factor is too small or too large, the reconstruction will either not change
much in each iteration or noise is distributed more on the boundary, respectively.
This version of SDART is referred to as SDART-NB.

4.3.2 Solving the soft constrained system

In this section we will go into more detail how the soft constrained optimization
problem in Eq. (4.8) is solved.
This optimization problem involves solving the system

w
(w)x = (Agv) (4.12)
in a least squares sense.

The matrix W has M rows and N columns and is typically very large, especially
in the three dimensional case, where the number of voxels/pixels in the recon-
struction grid and in the projection data, is large. In Eq. (4.12) we added another
N rows to the system matrix and right-hand side. However, in our implementa-
tion using the ASTRA toolbox [PBS13; PBS11], the full matrix is never formed
explicitly. If a matrix—vector product is computed, we split this operation in two
parts: Wx and ADx. The first matrix—vector product is computed by generating
W on the fly to avoid high memory usage. This can be done efficiently due to our
GPU implementation. The second part ADx is simply an inner product, because
D is diagonal and is stored as a vector. Therefore, the computational overhead
compared to solving Eq. (4.2) is small.

For solving Eq. (4.12) we can apply any linear least squares solver. However,
we noticed during preliminary experiments that methods based on Kaczmarz’
method such as SIRT [KSO1], have slow convergence and do not yield very
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Algorithm 2 SDART

Input: Projection data p
Output: Segmented reconstruction x;

1. Let x. be the initial CGLS reconstruction from projection data p.
Compute the initial segmentation x, = T(x,).

repeat
/* Setting up the soft constraints */
2. Compute the matrix D based on x;.
3. Setv =x,.

4. Set xy = x,.

/* Soft constrained reconstruction */
5. Apply CGLS with initial solution x,, to solve:

minimize [|[Wx, —pll3 + A*||ID(x, —v)I[3
Xc

/* segmentation */
6. Compute x, = T(x.).

until convergence

accurate results. Krylov subspace methods perform better in this case. We found
that the method CGLS performs very well and methods such as LSQR and LSMR
are suitable too [FS11; PS82], but they all have slightly different results. This is
why we have chosen to combine CGLS with SDART in our numerical experiments
in Section 4.5.

4.4 A numerical study

In this section we highlight differences in behavior of DART and SDART using
numerical experiments. We also introduce an experimental way to compute the
regularization parameter A that has an important role in the convergence of
SDART. We want to point out that this section serves the reader to illustrate
the different behavior between DART and SDART. Therefore, the choice of our
phantom shown in Fig. 4.3 is somewhat arbitrary.

4.4.1 Behavior of DART compared to SDART

The effect of the hard versus soft constraints of DART and SDART can be visualized
by looking at the evolution of boundary pixels (i.e. free pixels in case of DART).
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Since SDART has no concept of free pixels, we show the penalty matrix D after
rescaling its values such that the elements are in the range [0, 1], i.e., we show
the image {x;} such that
d..
x=1— —i (4.13)
max(d;;)
j

In this example we consider the cylinder block phantom, shown in Fig. 4.3.
The projection data were computed by forward projecting the image, using a
parallel beam geometry. In total 25 projections were computed at equidistant
angles in the domain [0, 7). The projection data were perturbed by Poisson noise.
Noise due to a limited photon count, which is encountered in many types of
tomography, follows a Poisson distribution. The intensity of the noise is quantified
by the photon count of the incident X-ray beam, when no object is between the
source and detector. In other words, this represents the total dose that is emitted
during the full scan of the object. In this case, noise was simulated corresponding
to a photon count of 10°. In DART, the fix probability was set to 0.99. With very
low signal-to-noise ratios, a lower fix probability is preferred, but this would make
it difficult to show the boundary evolution.

Figure 4.3: The cylinder phantom of size 512 x 512.

In Fig. 4.4 the boundary evolution of both DART and SDART-NB (using the
neighbor criterion) for the first three full iterations is shown. Note that for
SDART-NB, we show the weights represented in Eq. (4.13). A pixel is black if the
corresponding penalty of the pixel is maximum, max; d;;. This is comparable to a
fixed pixel in DART. A white pixel corresponds to a minimum penalty. The pixel
attains any other gray value if it is in between these extrema. This representation
of the “amount of fixedness” of pixels is not directly comparable to DART’s free
and fixed pixels. However, we think that these images give insight in the different
ways that DART and SDART update the reconstruction.

The initial boundary of DART in Fig. 4.4a is only slightly refined in the next
iterations. Although the boundary becomes thinner, many of the background
pixels are indicated as free pixels. In SDART-NB, we see a similar thinning of the
boundaries. Moreover, the contours of the ground truth image are approximated
more accurately. Background pixels have a large weight (indicated by black
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Figure 4.4: Comparison of the boundary evolution of “free” pixels in DART, (a) —
(c¢) and SDART-NB (d) — (f), for the first three iterations.

pixels). This shows that the background is more homogeneous rather than that
noise is producing clusters, as is the case in DART.

Images of the boundary evolution, do not give a clear insight in the quality
of the reconstructions. Therefore, we also show the segmented intermediate
reconstructions in Fig. 4.5. DART is distributing a significant part of the noise
throughout the background, where many pixels are free. Another consequence of
noise is visible in the jagged boundaries of the cylinder block. The reconstructions
of SDART-NB have finer and more distinct boundaries. In addition, background
noise is reduced within consecutive iterations.

The behavior shown in this example depends largely on the set of soft con-
straints imposed by the matrix D. For example, a strategy of fixing pixels similar
to DART (e.g. SDART-ORIG) is very effective for projection data without noise
[BS11], while it fails in cases with heavy noise. Therefore, finding a single penalty
matrix D that is accurate in all possible datasets is unlikely. An adaptive approach
might be more successful. For example, the order of magnitude of the weights
can be changed according to noise levels. In case of low noise levels, high weights
steer the solution more to the segmentation, while smaller weights prevent over-
fitting to noise. We see an important role here for the parameter A in Eq. (4.8). It
can be used to assign a larger weight to the data fidelity term or to correspondence
to the segmented solution.
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(e)

Figure 4.5: Comparison of the intermediate segmentations of the first three
iterations of DART, (a) — (c¢) and SDART-NB, (d) — (f). These correspond to the
boundaries in Fig. 4.4.

4.4.2 Selecting the regularization parameter

In this section we will discuss how to select a value for the regularization param-
eter A that is close to optimal, where we use the term optimal reconstruction to
refer to the reconstruction with smallest pixel error over all possible choices for
A. Recall that the pixel error indicates the number of pixels that do not have
the right gray value compared to the ground truth. We have chosen this error
norm over, e.g., a chi-squared or Jaccard distance, since our images are inherently
discrete. A chi-squared measure is more suitable when comparing two images
that are continuous with respect to their pixel values. Moreover, we expect that
our findings will not be changed significantly when another error norm is used.

Consider the second formulation of the cost function in Eq. (4.8). It consists
of two terms: a data fidelity term ||[Wx — p||5 and a discrete tomography prior
|ID(x — v)||§. The order of magnitude of these terms is in general not directly
comparable. Therefore, a regularization parameter A is added to properly adjust
the bias to the discrete tomography prior.

Note that the magnitude of the data fidelity term depends strongly on the
current solution x (and thus on the ground truth) as well as the number of
projection angles. Adding more projection angles results in more rows in W as
well as more elements in p. By making the assumption that a projection image
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Figure 4.6: (a) Linear behavior of the data fidelity term ||[Wx —p ||§ with respect
to the number of projection angles; (b) For simulated projection data without
noise, the residual mean squared error of an SDART reconstruction follows the
same curve as the true pixel error, if the regularization parameter is varied.

does not change in a small angular range, we can assume that the sum of squared
residuals ||[Wx —p ||§ behaves linearly in the number of angles. (Provided that the
additional angles are close to the original angles.)

To verify this assumption, we perform a small numerical experiment. Consid-
ering the Shepp-Logan phantom, the bottom image in Fig. 4.10a, we simulate
projection data for a fixed number of angles (e.g. 50). For these projection data
we reconstruct the image by using 4 iterations of LSQR (as explained in the
previous section). This yields an approximate reconstruction. Consequently we
construct the projection operator W and corresponding right-hand side p (by
forward projecting the ground truth image) for a varying number of equidistant
projection angles. In Fig. 4.6a the squared residual norm is plotted for a varying
number of angles, indeed showing a linear curve.

The last term in Eq. (4.8) does not depend on the number of projection
angles. Instead it depends linearly on the number of pixels in the reconstruction.
Since this is also true, to some extent, for the data fidelity term, no adjustments
should be necessary if the number of reconstruction pixels is changed (e.g. a
value A at low resolution can be found that is also suitable for high resolution
reconstructions).

Due to the linearity of the data fidelity term, we can extrapolate A if a value is
known for a dataset with few projection angles.

We still lack a way of determining a good value for A for a given dataset. For
this goal we can use the residual ¢,-norm. If the projection data are consistent
with the ground truth (no noise), there is usually a good correspondence between
the true (pixel) error and the residual of Eq. (4.1). We can exploit this to find a
value for A for which the pixel error of the SDART reconstruction is minimal. In
Fig. 4.6b we have plotted the pixel errors of the SDART-NB reconstructions and
the value for A that was used. The result suggests that there exists an optimal A
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Figure 4.7: Choosing the optimal value for lambda. (a) The mesh plot of the pixel
error; (b) The pixel errors for A = 0.24 are very close to the pixel errors for the
optimal A*.

at which the pixel error takes its minimum value. Moreover, the residual £,-norm
agrees with this minimum. Therefore, if an initial guess for A is known, we can
compute several SDART reconstructions for different A in a small range. If a
minimum of the residual is found, we also found the optimal A.

Of course this method will fail if noise is present in the projection data. Then
the correspondence between the residual £,-norm and the true error is in general
very poor. Nevertheless, we will show that a value found for A for a phantom
dataset (or a dataset with very low noise levels) may also give near-optimal results
when high noise levels are considered.

In Fig. 4.7a, a mesh plot is shown of the pixel error for a range of A as well as
several photon counts. For these computations the cylinder phantom in Fig. 4.3
was used and projections at 20 angles were computed. We see that the minimum
pixel error is attained at A ~ 0.5 for data with high signal-to-noise ratio (SNR). If
the SNR is decreased, the optimal value for A does not seem to change much.

The optimal A for each SNR still varies slightly. The corresponding pixel errors
are minimum at that specific SNR. We also selected a constant A* ~ 1 that attains
pixel errors closest to these minimum pixel errors in a least squares sense. This
is the optimal choice if we fix A. The pixel errors are shown in Fig. 4.7b. We
also plotted these curves for A = 1.38 and A = 0.24 (which was optimal for the
noiseless case as shown in Fig. 4.6b). From this result we can see that while A*
is the better choice overall, choosing A = 0.24, the same as in the noiseless case,
produces near-optimal results. The key conclusion is that the value for A as in the
noiseless case also works well in low-dose datasets.

In Fig. 4.8, the pixel error and residual are plotted for a dataset with limited
noise (a photon count of 10°), for varying A. From these data we see that there
still is a good correspondence between the minimum pixel error and the minimum
of the residual MSE. This implies that we can effectively estimate A for a dataset
with high SNR. Consequently, datasets collected from the same object with low
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Figure 4.8: Correspondence between the residual mean squared error (MSE) and
the true pixel error for relatively high photon count (= 10°).

SNR can use the same A.

4.5 Experiments and results

In this section we describe the experiments that were performed and their results.
The main focus is to compare DART with SDART and a variety of well established
reconstruction methods. In the experiments we focus on different conditions for
which SDART is more accurate in comparison with DART. In addition, we explore
the two sets of soft constraints D used in SDART-ORIG and SDART-NB. To validate
our findings in the simulation experiments, we apply (S)DART to an experimental
dataset with a low signal-to-noise ratio.

The results are compared to other well-known reconstruction methods. We
include as a reference the filtered back projection (FBP) method, which is widely
used for its speed and robustness[KS01]. However, a requirement for FBP is a
large amount of angles, to avoid under-sampling, a requisite that is not met in
the limited angle case. The algebraic reconstruction techniques SIRT and SART
are included as well. Both methods are derived from ART, but their update steps
are different. SART will update the reconstruction using one projection image
at a time, while SIRT updates the reconstruction using all angles. Finally, we
include the binary algebraic reconstruction technique BART, which is a method
for reconstructing binary images [Her73]. This algorithm is implemented in the
tomography package SNARK09 [KDH13], which we use in combination with the
script as presented in [Alp+13]. This code follows the same computational steps
as presented in the flowchart of the original paper in [Her73].

In the simulation experiments we consider three phantom datasets, shown in
Fig. 4.10a, referred to as: blob, cylinders and Shepp-Logan (from top to bottom).
The phantom images are of size 512 x 512. Projections were computed over
an equidistant set of angles in the range of [0, 7). A parallel beam geometry
is simulated with a 1D detector of 512 pixels, the same width as the phantom
images. When noise is applied to projection data, it is sampled from a Poisson
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distribution. Intensity of the noise is expressed in simulated photon counts, a
lower photon count indicating more noise.

Each DART run is initialized by 40 iterations of the SIRT reconstruction algo-
rithm [KSO1]. DART uses 40 intermediate SIRT iterations to refine the boundary
pixels. SDART is initialized by 40 CGLS iterations and uses 70 iterations to solve
the soft constrained system in Eq. (4.8). SDART uses more intermediate iterations,
since SDART solves the full equation system in Eq. (4.8), while DART solves a
system of equations that has significantly fewer unknowns. Therefore, increasing
the intermediate ARM iterations in DART will not significantly decrease the pixel
error. In fact, for noisy projection data it is preferred to decrease the number of
ARM iterations, to prevent overfitting to noise.

4.5.1 Experiment I — basic validation

In the first experiment we compare simulations of DART, the two variants of
SDART, BART, SART, FBP and SIRT on noiseless data. The projection data are
simulated using the forward model. This allows us to compare the reconstructions
with the ground truth.

Note that the BART algorithm can only be applied on datasets from binary
images, which rules out the Shepp-Logan phantom. The FBP, SART and SIRT
methods do not provide a segmented image, so we cannot directly measure the
pixel error. Therefore, we include a final segmentation step after the reconstruc-
tion. Similarly to the segmentation step in DART and SDART, the images are
thresholded.

The number of projection angles was chosen as follows: 10 for the blob
phantom, 25 for the cylinder phantom and 30 for the Shepp-Logan phantom.
Using these number of projection angles, accurate reconstructions can be obtained
in all three cases.

From the results of these experiments, shown in Fig. 4.9, we can conclude
the following. In all cases, the filtered back projection is not accurate in terms
of the pixel error. Clearly, the method is not suitable for the limited angle
case. The methods SIRT and SART are comparable in accuracy, although SIRT
converges slower to the minimum pixel error. For the Shepp-Logan phantom, the
number of angles is clearly not enough to properly reconstruct, without using
prior information. The BART algorithm achieves almost similar pixel errors when
compared to DART and SDART. As we have discussed previously, BART could not
be applied to the Shepp-Logan phantom.

Next, we focus on the differences between DART and SDART. SDART-NB with
the neighbor constraints is in each case more accurate than SDART-ORIG. The
accuracy of SDART-NB is comparable to DART in all datasets except for the blob
image with hole. Since DART uses a fix probability of 0.99, it is able to detect the
hole in the phantom. SDART has no random subset of free pixels and therefore is
unable to detect the hole. This random subset could, however, easily be added to
SDART to find holes such as in this case.

Based on the results in this experiment, we have decided not to include FBP
and SART in the remaining experiments. For FBP, the number of angles is not
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Figure 4.9: The graphs show the convergence of DART and SDART compared to
other common reconstruction algorithms.

enough to achieve a small pixel error. The SART algorithm achieves a similar
pixel error compared to SIRT, but converges faster. However, we prefer SIRT over
SART, because in each iteration, a back projection from all angles is performed.
This way, noise in the data is averaged over all projection angles, instead of only
one. Therefore, SIRT is expected to perform better in the case of high noise
levels. Moreover, SIRT and SART are from the same family of algorithms and are
expected to have similar results.

4.5.2 Experiment II - the effect of noise

In the second experiment, we compare the performance of DART, SDART and
BART over a large range of noise levels. As has already been indicated, DART
results in poor reconstruction accuracy if the signal-to-noise ratio is low [BS11].
We expect that SDART will be more robust in this case.

We varied the noise levels from a photon count of 102 (very high noise level)
to 10° (very low amount of noise). For each noise level a new sinogram was
generated and Poisson noise was applied. The number of projection angles, 10,
25 and 30 for the blob, cylinder and Shepp-Logan phantom images respectively,
was chosen such that a good reconstruction quality is possible when no noise is
present in the projection data.

As the start solution for DART, a segmented SIRT reconstruction is used based
on 40 iterations. The final (S)DART reconstruction should be an improvement of
this initial reconstruction. Therefore, we also compare the results with this initial
segmentation.

The results from experiment II are listed in Fig. 4.11. The errors, in percent-
ages, indicate the percentage of pixels that have been segmented to the wrong
gray value compared to the phantom image.

The pixel error of the (S)DART reconstructions are in general smaller than
those of the initial segmentation. However, in a small interval of noise levels,
DART shows a small regression in comparison with the initial segmentation.
Apparently DART has problems in convergence for this particular interval of noise.
This issue is especially visible in the case for the blob phantom for photon counts
in between 10° to 10%.
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(a) (b) (©

Figure 4.10: (a) Phantom images of dimension 512 x 512 pixels used in simula-
tion experiments, referred to as: blob, cylinders and Shepp-Logan (from top to
bottom); (b) The segmented SIRT reconstructions. The pixel errors correspond-
ing from top to bottom reconstructions are: 27.6%, 18.2% and 41.9%; (c) The
final BART reconstruction for blob and cylinders phantoms. The corresponding
pixel errors, from top to bottom: 18.4% and 15.9%; (d) The final DART recon-
structions. The pixel errors are: 17.3%, 13.7% and 48.1%; (e) The final SDART
reconstructions. The pixel errors are: 3.9%, 7.7% and 39.9%.

The BART algorithm was also applied to the blob phantom and the cylinder
phantom. It is performing very similar to the DART algorithm with a fix probability
of 0.99. This leads us to the conclusion that BART is suitable for reconstructing
binary objects, if the noise level is not too high.

For the blob phantom at high SNRs (photon counts in the range 10*-10°), it
seems that 10 projection angles is enough to have very accurate reconstructions,
just by thresholding of the initial SIRT reconstruction. This is different, however,
for high noise levels. At a photon count of 102 we see that SDART produces
an accurate reconstruction. However, the pixel error of DART and BART is
increasing very rapidly if the photon count becomes smaller than 10%. The same
trend, to some degree, can be observed in the other two phantom images. At
high SNR, DART and SDART-NB perform equally well. SDART-ORIG, using the
DART criterion, is performing badly. Instead of improving the initial segmented
reconstruction, the pixel error is increased. We can conclude that SDART-ORIG is
not suitable for noisy datasets.

The pixel errors do not give clear insight of the actual quality of the reconstruc-
tions. A pixel error of, say, 10% does not indicate where the incorrect pixels are
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Figure 4.11: The pixel error is expressed in terms of the noise level (in photon
count).

located and how the corresponding reconstruction looks. Therefore, we also show
the reconstructed images in Figs. 4.10b to 4.10e. The blob phantom projection
data has corresponding photon count of 100, the cylinder data 500 and for the
Shepp-Logan data the photon count was 1000. In the fourth column of Fig. 4.10d
we see DART reconstructions with fix probability 0.99. The SDART-NB recon-
structions are shown in the last column in Fig. 4.10e. The difference between
the reconstructions is clear, especially in the background. Moreover, the SDART
reconstructions suffer far less from salt and pepper noise that is clearly visible
in the DART reconstructions. The qualitative differences are supported by the
corresponding pixel errors as listed in the caption of Fig. 4.10. The quality of the
Shepp-Logan reconstruction is less impressive. Presumably, the number of gray
values (6 in total) in the reconstruction is too much. The strength of the prior is
reduced if the total number of distinct gray values is large.

From these data it becomes clear that employing SDART has an advantage
over DART and BART if the signal-to-noise ratio is very low. In some cases SDART
can generate good to reasonable reconstructions, while DART and BART perform
badly.

4.5.3 Experiment III - adding more projection angles

Datasets with very low signal-to-noise ratios and few projection angles, in general,
result in reconstructions with poor quality. Applying discrete tomography algo-
rithms such as DART might show slight improvements in accuracy, but it is known
that DART has problems with noisy datasets, which was also observed by Alpers
et al. [Alp+13]. We have seen from the previous experiment that SDART-NB is
favorable over DART in this case (from now on we do not include SDART-ORIG in
the experiments). It is not clear, however, if this benefit is maintained when the
number of projection angles is increased.

In the third experiment we compare the accuracy of DART, SDART and BART
on the phantom datasets for a fixed, low signal-to-noise ratio, but the number of
projection angles is varied. For the blob and cylinder phantom we chose a photon
count of 102. For the Shepp-Logan phantom a photon count of 10 was used.
Other details are the same as in experiment I. Since the performance of DART
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Figure 4.12: Simulation experiment at high noise levels and an increasing number
of projection angles.

on noisy datasets depends strongly on the fix probability, we run DART for two
values of the fix probability.

From the results in Fig. 4.12 we see that increasing the number of projection
angles decreases the pixel error for DART, BART and the segmented SIRT recon-
struction. Especially for the cylinder phantom, a large decrease in the pixel error
can be achieved. In each case, SDART is still more accurate in comparison to
DART and BART. However, there are two surprising results shown in this plot.
First of all, DART with a fix probability of 0.5 is less accurate than DART with
a fix probability of 0.99. From Fig. 4.11, we see that this is indeed the case for
most noise levels. Apparently this behavior changes if the noise level is very high.
Secondly, the pixel errors of SDART are not decreasing monotonically with an
increasing number of projection angles. In fact, the pixel error is increasing for the
blob phantom. The weights of SDART-NB were determined for a dataset at a fixed
number of projections. Therefore, the number of projections is not incorporated in
the weights. These results suggest that such an approach should be taken in order
to avoid this behavior. Since the focus of this chapter is on discrete tomography
for the limited angle case, we leave this open for further research. We want to
emphasize that the weights defined in Eq. (4.10) do work well in the limited angle
case, which is the domain of discrete tomography.

The BART algorithm performs more consistently as the pixel error drops when
the number of projection angles is increased. For the Shepp-Logan phantom, the
pixel error of SDART-NB is more or less constant. We expect that there is still
significant room for improvement of the performance of SDART for cases where a
relatively large number of projection angles are available, by further exploring
the possible choices for the matrix D.

4.5.4 Experiment IV - experimental data

To validate the simulation experiments, we applied SDART to an experimental
dataset. For this experiment we used a hardware phantom. The hardware
phantom consists of plexiglass and has a nearly convex shape with three holes
drilled through it in the vertical direction. A SIRT reconstruction of the central
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Figure 4.13: (a) A SIRT reconstruction from all 600 projection images; (b) Seg-
mentation of the SIRT reconstruction. The segmentation was manually improved
on the edges.

slice is shown in Fig. 4.13a. The large hole was filled with white spirit, the middle
hole with water and the last hole contains air. Note that air and water have very
similar attenuation coefficients, resulting in almost identical gray values in the
reconstruction.

The projection data were acquired by a Skyscan 1172 microtomography X-ray
scanner. A total of 600 projection images of 1000 x 600 pixels were acquired over
a full tilt-range of 360°. The tilt increment between images was 0.6°. With a pixel
size of 25 um, a slice (1000 x 1000 pixels) has physical dimensions of 25x25 mm.

The scanner has a cone beam geometry, however, since the object is uniform
in the vertical direction, we focus on reconstructing the central slice using fan
beam geometry. The sinogram was extracted from the projection images.

The SIRT reconstruction from all 600 projections leads to an accurate seg-
mentation of the object (by thresholding). In Fig. 4.13b this segmentation is
shown. Manual adjustments were applied to the segmentation at the boundaries,
where the segmentation was distorted by noise. The gray values for this dataset
were estimated using the algorithm proposed by Batenburg et al. [BAS11]. The
segmentation can be used as a ground truth. Although it will differ from the
actual ground truth, we can assume that it is reasonably accurate to allow also
quantitative analysis of the accuracy of SDART.

For the (S)DART reconstructions we use a subset of 20 projections, with
equiangularly distributed projection angles in the range [0, 7). The value of
A =2 in SDART is computed based on the residual norm using the full dataset,
as described in Section 4.4.2. The number of intermediate ARM iterations in
DART is 20, and the number of DART iterations is 300. For SDART-NB, we use
70 intermediate iterations and a total of 30 SDART iterations. The difference in
iterations between SDART and DART is large, because DART converges slowly in
terms of iterations, but iterations are fast. SDART converges quickly, but iterations
are far more costly.

In Fig. 4.14 we see the final SIRT, DART and SDART reconstructions. The



68 4. SDART: an algorithm for discrete tomography from noisy projections

(a) SIRT (b) DART (c) SDART

Figure 4.14: The dataset considered here consists of a subset of 20 projections
(from 600 total); (a) The final SIRT reconstruction; (b) The final DART recon-
struction; (c) The final SDART reconstruction.
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Figure 4.15: The pixel error of DART and SDART are plotted against the computa-
tion time. Note that DART requires far more iterations, but SDART takes three
times as long to converge.

SIRT reconstruction is very noisy. When compared to the DART and SDART
reconstructions the advantage of using prior knowledge is obvious. Although
the DART and SDART reconstructions look similar, we can also point out clear
differences. In the DART reconstruction, many gray areas are visible (white spirit)
in the whiter area (the plexiglass). These form large clusters of pixels. SDART
shows these clusters as well, but they are very small in comparison, just a few
pixels. The result is that SDART’s boundaries are sharper, but they look distorted
by salt and pepper noise. DART’s boundaries are smoother, but the presence of
gray areas might lead to the erroneous conclusion that there is actually liquid
there, instead of plexiglass.

In Fig. 4.15 we plotted the pixel error versus the computation time. Note that
we do not have the actual pixel error, but we compare the reconstructions with
the segmentation from Fig. 4.13b. The DART reconstruction has a pixel error
of 2.68% and the pixel error of SDART is 1.74%. This is a significant decrease
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in the pixel error of 35%. In terms of computation time we see that DART
finishes in one third of the time it takes SDART to converge although it requires
substantially more iterations. We should note that the DART implementation used
here was optimized. It should be possible to speed up SDART by moving more
computations, such as the detection of the boundaries, to the GPU. We want to
emphasize that we introduce SDART here as a method that is more robust than
DART on noisy data. Therefore we did not focus on computational efficiency,
but rather on accuracy. From the results in Fig. 4.14 we see that the SDART
reconstruction provides significantly different reconstructions. These may help in
better understanding the true morphological nature of the object.

4.6 Conclusions

We proposed a new variant of DART that introduces a set of soft constraints to
replace the hard constraints. We have seen that the hard constraints in DART
lead to problems if the projection data contain a high level of noise. Our new
method, named SDART, was introduced to enhance the robustness of DART for
noisy projection data. The soft constraints allow noise to be spread across the
whole image domain. As a result, boundaries of the object are less influenced by
the noise, leading to sharper edges.

Two sets of soft constraints, or penalty matrices, were introduced. The first
variant, SDART-ORIG, mimics the original DART algorithm. The other variant,
called SDART-NB, discriminates boundary pixels by the number of surrounding
pixels with a different gray value.

We performed several simulation experiments that compare the accuracy of
SDART with DART, BART and SIRT. The results from noiseless data show that
SDART has similar, but slightly less accuracy compared to DART. The accuracy
of SDART-NB compared to BART is slightly improved. On datasets with very
low signal-to-noise ratios, SDART-NB outperforms DART and BART by large.
The results of SDART-ORIG were not accurate in this case and SDART-NB is the
preferred method for noisy projection data. The qualitative results show that
SDART-NB is less prone to salt and pepper noise. Results from experimental
data, containing a large amount of noise, further support that SDART-NB is
more accurate compared to DART. For this particular dataset, the pixel error
of the SDART-NB reconstruction was approximately 35% smaller than that of
DART. In this case, the difference in quality between the DART and SDART-NB
reconstructions was less obvious visually. The SDART-NB reconstruction has
sharper edges, distorted by some salt and pepper noise. DART produces clusters
of a gray value on the edges that is different from the plexiglass interior. This
might lead to the false conclusion that liquid (white spirit) adhered to these edges.
From the SDART reconstruction it is clear that this is not the case. This shows that
the SDART reconstruction can give additional insight, when conclusions about
the DART reconstruction are not decisive.

So far, we have investigated only two possible choices for the penalty matrix D.
Compared to DART, SDART can encode a more specific representation of the prior
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by using continuous weights. We expect that SDART can be further improved by
using more sophisticated choices for this matrix, which will be investigated in
future research.



Chapter 5

Analysis and removal of offset
and scaling artifacts in tomography

5.1 Introduction

Tomography is an imaging technique for determining three dimensional structures
from two dimensional projection images. An object is illuminated, from various
angles, by an X-ray or electron source and the unabsorbed intensity is recorded by
a detector. After the projection acquisition, a reconstruction algorithm is applied to
generate a 3D volume from the projection data. This volume can be interpreted
as a stack of grayscale images, where the gray values are proportional to the
attenuation of the corresponding materials in the physical object.

In X-ray tomography contrast is obtained through absorption of X-ray photons.
Each material in the sample attenuates the X-ray beam, quantified by its thickness
and attenuation coefficient. The path traveled through the sample and the
materials on this path determine the photon count observed on the detector.

In electron tomography, a beam of electrons in vacuum is used to generate
contrast (in an electron microscope) instead of X-rays. Electrons have a different
interaction with matter. Part of the signal is scattered, either elastically or inelasti-
cally. Another part of the signal, referred to as direct beam, has no interaction
with the material and passes freely through the (often very thin) sample. In
Transmission Electron Microscopy (TEM), part of the transmitted electron signal is
recorded. The most common imaging technique records the bright field image,
which is the direct beam that is focussed on an imaging plane. Another approach
is Scanning TEM (STEM), where the incoming electron wave is focussed on a spot.
The sample is then scanned by moving this spot across the sample.

One of the major challenges within the field of tomography is the ability
of obtaining quantitative information from the reconstructed projection images,
concerning the size, shape and density of the 3D structures in the object. In
order to do so, an additional, and currently subjective, segmentation step is
required after the reconstruction to determine the correspondence between gray
values in the reconstruction and different compositions in the original structure.

71
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Quantitative interpretation of tomographic reconstructions is often hampered by
the presence of reconstruction artifacts: structured distortions of the reconstructed
volume. Most of these artifacts belong to one of the following categories:

* Artifacts caused by structural data errors introduced during acquisi-
tion. This category includes artifacts caused by nonlinear effects of the im-
age formation process, such as diffraction contrast, as well as misalignment
between the images in the projection data that cannot be fully corrected.
Another common source is from detector inefficiencies, which cause ring
artifacts.

* Artifacts caused by the limited amount of measured data. This category
includes truncation artifacts that are introduced when the sample extends
beyond the field-of-view of the detector, as well as missing wedge artifacts
common in electron tomography, caused by the limited angular range of the
microscope.

These artifacts cause subsequent segmentation problems.
This chapter deals with three types of similar reconstruction artifacts which
mainly fall in the first category and are caused by:

* aglobal offset present in the projection data: a constant that has been added
to each pixel in every projection image,

* a local offset on the projection data: a different constant added to each
projection image,

* ascaling of the projection data: the intensity scaling of the projection images
changes with each projection angle.

Note that we assume the projection images are linearized, meaning that a value
of 0 for a pixel in the projection data should correspond to a line that only
passes through free space and does not intersect with the object. Higher values
correspond to lines that do intersect with the object. We will go into more detail
about this in Section 5.2. In practice, the zero level of the projection data is
affected by various acquisition parameters of the scanner or fluctuations in the
radiation source intensity, which may result in an offset on the data. Manipulating
the dataset using various image processing tools, e.g., to align the projection
images before reconstruction, may also result in offsets on the projection data.

A common approach to deal with a global offset in electron tomography is
to subtract the minimum value of the projection data, which corresponds to the
background intensity, if the background is visible in any of the projection images
[Gon15]. However, this approach is not feasible the object is larger than the
field of view of the detector (no background visible), or in case of a local offset.
Therefore, in this chapter we introduce a method that can also be used in the
latter, more challenging situation.

In this chapter we analyze the effect of a global offset on the reconstruction
obtained by filtered backprojection and derive the reconstruction artifact analyti-
cally. Then we introduce an iterative algorithm for estimation of a global offset,
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based on algebraic reconstruction methods. Similar algorithms are derived for
estimation of a local offset and scaling factors. In a series of simulation experi-
ments we study the effects of certain reconstruction parameters on the estimation
algorithms, such as the shape of the reconstruction area. Finally we apply the
local and global offset estimation algorithms to an experimental dataset.

This chapter is structured as follows: in Section 5.2, offset and scaling artifacts
are introduced and their causes are explained. In Section 5.3 we determine
analytically the effect of a global offset on the reconstruction. In Section 5.4, we
present an algorithm for estimating offsets based on the available projection data.
The estimated offset can then be subtracted from the data before reconstruction,
resulting in the reduction, or even removal, of offset artifacts. In Section 5.5
we present an algorithm for estimation of scale factors of the projection data.
Section 5.6 presents a series of simulation experiments, aimed at validating the
proposed estimation algorithms. The simulation experiments are followed by one
example where the proposed local offset estimation algorithm has been applied
to experimental datasets. Section 5.7 provides a discussion and concludes this
chapter.

5.2 Origin of offsets and scalings in projection data

In this section we briefly introduce tomography, followed by a description of
phenomena that introduce offsets or scaling in the acquired projection images.
These offsets or scale factors can be introduced by physical instrument effects and
by image manipulation after data acquisition.

5.2.1 Tomography

First we describe the mathematical model used for the reconstruction problem.
Fig. 4.1 shows a schematic view of the parallel beam acquisition geometry for
tomography. A detector measures the intensity of the radiation (e.g. X-ray) emitted
from the source along a straight line

lo,={(x,y):xcosO +ysinf =t}

where 6 indicates the rotation angle (with respect to the object) and t denotes
the position of the detector pixel. Essentially each detector measurement approxi-
mates a line integral along the line £, ,

po(t) := f flx,y)ds.
¢

where the object is presented by an image function f(x, y). This line integral
can be rewritten by parameterization of the line ¢ using the Dirac delta 5(-)
function, which leads to the Radon transform [NWO01],

+00 +00

po(t) := J f f(x,y)6(xcosO +ysinf —t)dxdy.

—00 —0Q
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To reconstruct the image function f (x, y) from the projections p,(t) the Radon
transform should be inverted, which can be achieved by the filtered backprojection
method (FBP) [KS01], provided that infinitely many projections are acquired for
the entire interval 6 € [0, 7). In practice, due to a finite number of projections
and discretization of the data, an inexact inversion is obtained using FBP.

In this chapter we focus on algebraic or iterative reconstruction methods which
are based on a discretization of the image function f(x, y) in pixels and of the
projection images py(t). The image is represented as vector x € RN and so is the
projection data p € RM. A single detector pixel measurement can be seen as a
combination of the pixel values and the contribution of pixel x; to detector pixel
p; is determined by the weight w;;:

pi = Z WijXj,
J

which we call the ray sum. The full set of equations leads to the following linear
system:
Wx=p (5.1)

where W € RM*V is called the projection matrix. Algebraic reconstruction methods
such as SIRT, ART and LSQR typically compute a (weighted) least squares solution
of Eq. (5.1) [KSO1; GBH70; PS82].

5.2.2 Beer-Lambert’s law

In absorption contrast tomography, the intensity of the radiation I that is measured
on the detector is related to the intensity of the source I, by the Beer-Lambert
law [IC88]:

[ = e Jimat (5.2)

assuming a monochromatic beam, where fL,u dl is the line integral of the attenu-
ation coefficient in the direction of the ray. Therefore, the measured projection
data are normalized prior to the reconstruction:

JL,u(K)dZ =—log(é). (5.3)

The source intensity is measured before scanning by taking an image without
the object inside the beam. This so called flat field should be uniform, but often
imperfections can be observed. Such imperfections can be caused by dust particles
or nonlinearities of the detector pixels. By normalization (or flat field correction)
such imperfections are partly removed.

In case the source intensity is not stable, the intensity of the flat field can
vary with consecutive projections. However, the flat field correction will be
applied using the initial source strength, which introduces an error. The recorded
projections (in terms of photon counts) is

[=IgAe O k=1 K (5.4)
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where A, describes the variations in the source intensity. After normalization, we
obtain:

—log(é)=£u(f)df—log(lk). (5.5)

So the measured projections after normalization (line integrals) now include an
offset that depends on the k-th projection angle.

In modalities such as HAADF-STEM (High Angular Annular Dark Field Scan-
ning Transmission Electron Microscopy) approximations of the line integrals are
measured directly:

I= Iofu(f)df. (5.6)
L

In this case, any variations in the flat field lead to multiplicative errors in the
measurements:

I
= =AkJu(£)d£, k=1,...,K.
I, .

Another common source for offsets is in the post-processing of the projection
images, where several image manipulations may lead to a global scaling and offset
of the projection data.

5.3 Analysis of global offset artifacts

To analyze the effect of a global offset on the reconstruction, we follow the
analytical analysis that forms the basis of the filtered backprojection algorithm. An
exact inversion formula for the Radon transform can be obtained as a composition
of the following steps:

* Fourier transform of the projections:

Py(u) := F{po}(u) = f pe(t)e 2™t dt
* Application of a ramp filter in the Fourier domain:

Qo (u) := Po(u)|ul

¢ Inverse Fourier transform of the filtered Fourier domain data:

qe(t) :=FHQp}(t) = f Qo (W)™ du

—0oQ

* Backprojection of the filtered projections:

flx,y) =J qo(xcosf +ysin6)do
0
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We consider a finite detector of length 1, therefore, the projection data are
measured in the interval t € [—%, %]. The region outside this interval is set to zero.
We now investigate the result of an offset of 1 present in all projections. Ignoring
the projections from the actual object (we focus on the artifact), we have, for any

projection angle 0,

_ ] [t] < %
po(t) =rect(t) = {0 =10
along with its Fourier transform
. sin(7u)
Py(u) = Z{pe}(u) = sinc(u) = —

Applying a ramp filter to the projection data in the Fourier domain results in

__sin(nu)

Qo(u) = Py(u)lul = { sin(7u)

T

u<o
u>0’

which yields, after applying the inverse Fourier transform:

1
(2 —6)(3 +6)2m2

qo(t) :=F H{Qu}(t) =

Fig. 5.1 shows graphs of the functions py, Py, Qy and qg.
The backprojection of g4 (t) leads to

1 4r

5 = dé =
Fy) Jo (3 — 03 +6)2n2 2m2/T—4(x2 + y2)

with t =xcos6 + ysin6.

Two images of the function f are shown in Figs. 5.2b and 5.2c. They are the
same, except that they show a different interval of intensities. The bright ring
around the reconstruction corresponds to the poles of g4, at the edges of the
detector. Fig. 5.2a illustrates that although the intensity variations within this
circle are much smaller than at the boundary, the interior is not constant as well.
Therefore, an offset on the projection data will result in a continuously varying,
radially symmetric artifact in the reconstruction. Segmentation operations such
as thresholding, that rely on the fact that similar structures have a gray level that
is independent of their position in the sample, may therefore lead to erroneous
results. The intensities of the offset artifact in the reconstruction are directly
proportional to the value of the offset. For small offsets, its contribution is
negligible, whereas major artifacts can be observed for large offsets with respect
to the values of the actual projection data.

When using backprojection algorithms, such as filtered backprojection, the
impact of offset artifacts is typically limited, as most of the structure of interest
is contained in the slowly varying part of the offset intensity field. The effect of
an offset on the projection data is more complicated for iterative reconstruction
methods, such as ART or SIRT. Such algorithms reconstruct a certain area, where




5.3. Analysis of global offset artifacts

77

2.0
1.5
1.0
0.5
0.0

—0.5

1.0

0.5

0.0

-0.5

1 1 1 _1.0
1.0 —0.5 0.0 0.5 1.0
(@ pe
T T T T T 2.0
| 1 1.5
1.0
0.5
0.0
| | | | | O'—'
-6 -4 -2 0 2 4 6 =2

—-1.0

(©) Qq

(b) Py

—

—1.0

.5 OiO 0.5 1.0
(d g4

Figure 5.1: (a) Offset on the projection data; (b) Fourier transform of the offset;
(c) Result of applying a ramp-filter in the Fourier domain (d) Offset on the
projection data after filtering.
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Figure 5.2: Filtered backprojection of an offset; (a) along the horizontal axis (b)
full image: wide intensity window, which illustrates the bright circle formed at the
edges of the detector (c) full image: narrow intensity window, which illustrates
the gradual change in intensity in the interior of the circle.
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the object function f is assumed to be zero outside this area. Generally, it is
advantageous to restrict this area as much as possible such that it still entirely
contains the object. For flat objects, such as many electron microscopy samples, it
is advantageous to reconstruct a flat rectangular area, instead of a full square. By
using a rectangle, the entire area outside this rectangle is effectively constrained to
be zero, which drastically reduces the number of unknowns in the reconstruction
problem, thereby leading to a more accurate reconstruction. Fig. 5.3b shows a
reconstruction computed by SIRT on a square which has been cropped, whereas
Fig. 5.3c shows the same reconstruction computed by SIRT on a rectangle. The
difference in quality can be clearly observed. Note that in this case no offset or
scaling was applied to the projection data.

(a) flat phantom

(b) reconstruction on a square, cropped

(c) reconstruction on a rectangle

Figure 5.3: Comparison of two different reconstruction volumes for projection
data without offset or scaling applied; (a) the flat phantom image of size 64 x 512;
(b) a SIRT reconstruction on a square volume, 512 x 512, which has been cropped
to the size of the phantom; (c) a SIRT reconstruction on a flat volume, 64 x 512.

The degrading effect of a projection data offset on the reconstruction becomes
much stronger if the reconstruction area is made smaller than the outer circle
of the basic offset artifact. This effect is demonstrated in Fig. 5.4, which shows
two SIRT reconstructions of the offset on different reconstruction volumes. The
512 x 512 reconstruction corresponds to an offset of 1 on a detector 512 pixels
wide for projection angles £90°, with 1° increments. The 256 x 512 reconstruction
corresponds to an offset of 1 on a detector 450 pixels wide for projection angles
+60°, also with 1° increments. SIRT was run for 100 iterations. The absolute
values of the corresponding residual projections are shown in Figs. 5.4c and 5.4d,
i.e. a forward projection of the reconstruction minus the original projections.
Note that in Fig. 5.4a the size of the detector was 512 pixels, which means that
the reconstruction size is just large enough to contain the full circular offset
artifact. The corresponding residual is relatively small, see Fig. 5.4c, but some
inconsistencies remain especially on the left and right sides. The circular artifact
cannot be reproduced on a smaller reconstruction area of 256 x 512, as shown
in Fig. 5.4b. Therefore, the residuals are larger in this case. The residuals in top
and bottom of Fig. 5.4d are most prominent. So a numerical reconstruction of
the offset artifact is not consistent (has nonzero residual), which is even more



5.4. Offset estimation algorithm 79

0.01

' 0.005
0 - ~ 0.02
0.01
-0.005 0
-0.01
001 M - M0
(a) offset artifact, 512 x 512 (b) offset artifact, 256 x 512
0.1
0.5
0 0
(¢) residual (d) residual

Figure 5.4: SIRT reconstructions of the offset artifact on two reconstruction
volume sizes. The absolute value of the residual projections corresponding to the
reconstructions of 512 x 512 and 256 x 512 are shown in (c¢) and (d) respectively.
The residuals in (d) were truncated at 0.02.

pronounced if the reconstruction area is rectangular, where one of the dimensions
of the reconstruction grid is smaller than the detector.

5.4 Offset estimation algorithm

To reduce, or even remove offset artifacts when using iterative reconstruction
methods such as SIRT, the unknown offset must be estimated from the available
projection data. It can then be subtracted from the data before applying the
reconstruction algorithm. In some cases, one or more projection images contain
a region that is not occupied by the sample, where the beam (collection of rays)
only intersects with vacuum. An example of such a region is shown in Fig. 5.5. In
Section 5.6.3 we describe this dataset in detail. In such cases, the offset, which
we denote as A € R, can be determined directly from the projection image, e.g.,
by averaging the pixel values inside one or more of such regions or by simply
determining the minimum value of the projections, as is done in [Gon15]. Here,
we consider a more general case, where the offset cannot be estimated directly
from the set of projection data.

The offset estimation problem becomes much more complicated when the
entire field-of-view in all projection images is covered by the sample. If the struc-
ture of interest is contained within a supporting material of constant thickness,
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Figure 5.5: Background intensity of an experimental HAADF-STEM dataset, from
EMAT (Electron Microscopy for Materials Science, Antwerp).

the thickness of the support in the direction of the beam is proportional to ﬁ,

where 6 is the incidence angle of the beam. If regions can be identified in each
projection image that contain only the supporting material, the offset can be
estimated by fitting the function A + CO’; 5 to the average projection values in these
regions, where both the offset parameter A and the proportionality constant k are

estimated simultaneously.

5.4.1 Global offset estimation

It was shown analytically in Section 5.3 that a global offset on the projection
data leads, after filtering with the ramp filter, to a filtered projection that tends to
infinity at the boundaries of the detector. After backprojection, this results in a
reconstruction that cannot be represented as a grid of finite pixel values. This is
not exactly the case for the SIRT reconstructions of the global offset as shown in
Fig. 5.4a, but still parts of the residual do not converge to zero and inconsistencies
remain. If one dimension of the reconstruction grid is smaller than the detector
width, these inconsistencies are more pronounced. Therefore, the presence of an
offset in the projection data can lead to an inconsistent reconstruction problem:
there exists no reconstruction that matches the data.

The result of applying a reconstruction algorithm to inconsistent projection
data depends quite heavily on the particular reconstruction algorithm. Here, we
restrict the discussion to the case of SIRT as it allows for a clear mathematical
analysis.

We denote the SIRT reconstruction of a vector p of projection data by S(p).
SIRT converges to a reconstruction ¥ = S(p) for which

IWx —pllr

is minimal, where ||x ||z = vxTRx denotes a norm based on a weighted sum of
squares [GBO8].
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So, SIRT converges to a reconstruction that corresponds as closely as possible
with the given projection data. If the data is inconsistent, due to noise or an offset
on the data, this property will still hold, but the projection distance,

d(x,p) = [[Wx —pll,,

will become larger. This property can be used to estimate the offset, by computing
the offset for which d(S(p.), p.) is minimal, where p, = p — te. Each element
of the vector e is 1 (where e has the same length as p). Note that p is the set of
recorded projection data including an unknown offset and p, is the projection
data with a correction term for the global offset. This leads to the following formal
model of the offset estimation problem:

minimize [|W(S(p-)) ~p-|l, (5.7)

Computing d(S(p.), p.) for a single offset requires the computation of a SIRT
reconstruction, which may take considerable time. Searching an entire interval
of potential offsets 7 is computationally unfeasible. Fortunately, Eq. (5.7) can be
solved by computing only two SIRT reconstructions, by exploiting the linearity of
the SIRT algorithm.

As demonstrated in [KS01], every iteration of the SIRT algorithm performs
a linear transformation on the output of the previous iteration. Therefore, the
result after a finite number of SIRT iterations is the composition of a finite number
of linear transformations, which is again a linear transformation:

S(Ap +yb) = AS(p) + yS(b).

The forward projection operation W is also a linear transformation. Therefore,
we can write the objective of the minimization problem as:

d(S(p.),p.) =W (S(p —e))—(p —te)ll,
=||[WS(p)—TWS(e)—p + 7ell,
= [|p — 7éll,, (5.8

where p = WS(p) —p and é = WS(e) —e. The vector p corresponds to the
difference between the measured data (including the offset) and the computed
projections based on its SIRT reconstruction. The vector é corresponds to the
difference between an offset of 1 and the computed projections based on its SIRT
reconstruction. Note that the expression in Eq. (5.8) is minimal if € and p —té are
perpendicular. That is, we can compute 7 by a vector projection of p —é onto é:

S
o

T= (5.9)

o
(1

where we assume that é # 0, meaning that the SIRT reconstruction of the offset is
inconsistent (has nonzero residual). If é = 0, then Eq. (5.8) is independent of ©
and we cannot retrieve it in this manner.
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To compute é and p we indeed need only two SIRT reconstructions. However,
there is an alternative approach for solving Eq. (5.7) that is more efficient. First
note that the following equation

Wx =p —re,
is consistent if T equals the true offset on the projections 7*, where
p=p*+r1e,

and p* = Wx* are the projections of the ground truth image x*. If we move the
offset correction term to the left-hand side, we obtain the following linear system:

Wx +7e=p,
[W,e][’;] =p, (5.10)

which can be solved by a least squares solver. In this way, the reconstruction and
the offset parameter can be estimated simultaneously, which reduces the amount
of computations substantially when compared to Eq. (5.9). In our experiments
of section Section 5.6 we use the least squares method LSQR [PS82] to solve
Eq. (5.10).

Note that the solutions found by Eq. (5.9) and Eq. (5.10) are inherently
different. The vector projection method using SIRT solves the problem in two
optimization steps:

x = argmin ||Wx —p.|I,
X

and subsequently
minimize ||[Wx — p.||.
T

Note that the SIRT reconstruction ¥ does not necessarily have a minimum residual
in the £,-norm, due to the weighted norm || - ||. Also, SIRT is known to converge
slowly and might be terminated early in practice. The method using LSQR applied
to the system in Eq. (5.10) solves the following optimization problem,

minimize ||Wx + p.|l,.
x,T
Furthermore, LSQR has the property that it computes the smallest norm solution,

i.e., it finds a solution for which ||(xT, 7)||, is smallest. In Section 5.6.1 we will
explore the difference between these two approaches.

5.4.2 Local offset estimation

The same idea can be applied if the offset is different for every projection. First
we order all equations corresponding to a each projection angle:

Ae
Are
wx=p—| - |, (5.11)

Age
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where e is a column vector of D ones, where D is the number of pixels per
projection image. If we move the offset correction to the left-hand side, the linear
system is written as:

w; Ae 1 51
w, Ase P2
. x + . = . =D,
Wi Age Pk
which leads to:
x
W, e 2 P
w, e Al P
2 =1 . 1. (5.12)
Wy e AK Pk

The least squares solution will yield both a vector of offsets and the corresponding
reconstructed image.

5.5 Scale estimation algorithm

As discussed in Section 5.2, for certain projection acquisition methods, source
intensity fluctuations can lead to a scaling of projection data. An approach
similar to the local offset estimation can be applied to the estimation of scalings.
However, some modifications are necessary to ensure the estimation algorithm
works reliably in this case. In this section we discuss these modifications.

Note that a scaling a applied to all projection images results in a scaling of the
gray values in the SIRT reconstruction:

S(ap) = aS(p).

due to the linearity of SIRT. The same holds for the solution of least squares
methods:

minimize ||Wx — ap||> = minimize o?|Wy —p||? (5.13)
x y

for x = ay. Therefore, if the projection vector p is scaled by a single factor, i.e.,
a global scaling, we cannot determine this scaling a based on the residuals of a
reconstruction (obtained by SIRT, LSQR, or another method). Both the original
and scaled variants of the projections have the same residual after reconstruction,
up to a scaling. Note that if each projection image is scaled by a different
factor, there is no reconstruction that matches this projection data, because a
reconstruction pixel would have different projections (in intensity) depending on
the projection angle. Therefore, we can fix this local scaling and change it to a
global scaling where artifacts in the reconstruction are removed.
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Let x7,...,k} be a set of scale factors applied to the original projections p*
(which is in the column space of W in Eq. (5.1)):

* ok
D1 Klpl
=0
K ok
Pk KKPK

The goal is to retrieve these scale factors from the scaled projection data p.
Let 04, 0, ..., Og be a set of scale factors which we use to correct the scaled
projections,
01P1

O2p
wx=| |, (5.14)

OkPx

ie, o; = 1/x} is optimal, where we assume that x; # 0 for any i = 1,...,K.
Note that the estimation problem in Eq. (5.14) has a trivial solution, x = 0 and
o;=0,fori=1,...,K. If each projection is scaled by zero, the projection data is
consistent to a reconstruction that is zero everywhere. The least squares solver
LSQR applied to Eq. (5.14) finds the smallest norm solution ||(xT,04,...,0k)lls.
Therefore, it will converge to this trivial solution. To avoid the trivial solution we
introduce the parameter:
Ti=1—0;.

The introduction of this parameter leads to the following linear system, after we
move the unknowns to the left-hand side:

W, p T D1
w, P2 ! |2}

. Ta =] . (5.15)
Wy Pk T‘K Pk

We use LSQR to solve Eq. (5.15). If the parameter 7; tends to zero, due to LSQR
finding a smallest norm solution, the corresponding scaling o; tends to 1, which
corresponds to projections that are not scaled. In this way, the trivial solution of
zeros is avoided and the least squares solution is close to unity, which is reasonable
if we assume that the scale factors are close to 1.

5.6 Experiments and results

In this section we perform a series of simulation experiments on 2D and 3D
simulation datasets. We quantify the accuracy of our method for retrieving global
and local offsets and scaling factors of projections. Finally we apply our proposed
method on an experimental dataset obtained by HAADF STEM microscopy which
exhibits offset and/or scaling artifacts.
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5.6.1 Slice-based simulation experiments

In this section we compare results of the global offset, local offset and scale
estimation algorithms. If we refer to a global offset, local offset or scale problem
then we have applied one of the following to the projection data (not combined
and unless specified otherwise):

* a global offset of 100,
* arandom local offset sampled uniformly from (5, 55),
* a linear scaling uniformly distributed from 0.1 to 2 (not random).

Note that for the phantom that we consider, shown in Fig. 5.7, the average
intensity of the projection data without offsets is approximately 60. The gray
values in the ground truth are 0.5 (background) and 1 for the object. Projection
data is generated for the angles +60°, with 1° increments, by using the projection
matrix from Eq. (5.1). We use the ASTRA toolbox to generate the projection
matrix on-the-fly using the CPU [PBS13], without storing the matrix elements for
memory considerations. The strip model is used to generate the projection matrix,
the matrix elements are based on the area of intersection between one ray (part
of the beam corresponding to a detector pixel) and a pixel [Zhu+08].

Note that we have two different ways to estimate a global offset: one involves
computing a vector projection from Eq. (5.9) using two SIRT reconstructions, the
other involves solving Eq. (5.10) using LSQR. In Fig. 5.4, we investigated the
effect of the height of the reconstructed volume on the SIRT reconstruction of
a global offset. The height is defined as the y-component of the reconstruction
volume, as shown in the schematic of the geometry in Fig. 5.6. It seems that
on a square reconstruction area, with sides as large as the detector, the residual
of the offset artifact is close to zero. Therefore, we expect that it is difficult to
recover offsets in this case by minimizing the residual compared to a case where
the reconstruction domain is rectangular.

Note that in practice a reconstruction volume might not be particularly flat.
First of all, the sample might not be very thin (size in the y-direction of Fig. 5.6).
Secondly, if the sample thickness is only known approximately, it is safer to have
a reconstruction height that is slightly larger than the thickness of the sample. If
the height of the reconstruction area is smaller than the actual thickness of the
sample, severe artifacts will be generated on the upper and lower boundaries of
the reconstruction. Therefore, in the first experiment we investigate the effect
of the height of the reconstruction area on the accuracy of the offset and scale
estimation algorithms.

We apply the proposed estimation algorithms to the corresponding datasets
described previously. We used a detector size of 310 pixels to generate the
projections and a reconstruction size of 64 x 512. LQSR applied to global offset
estimation (Eq. (5.10)), is iterated 250 times. SIRT for computing the vector
projection for determining a global offset (Eq. (5.9)), is iterated 250 times. LSQR
applied to local offset estimation (Eq. (5.12)), is run for 300 iterations. LSQR
applied to the scale estimation algorithm (Eq. (5.15)), is iterated 400 times.
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reconstruction volume

detector

Figure 5.6: Representation of the geometry for flat reconstruction areas. The
detector is placed at 6 = 0°, and the rotation axis is the z-axis (perpendicular to x-
and y-axes). Note that in 3D the reconstruction volume and detector also have
a component in the z-direction. Typical rotation angles are 6 € [—sy, +s4] and
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Figure 5.7: Ground truth image of size 64 x 512, representing a part of a slice of a
cylinder block.

The relative errors are shown in Fig. 5.8, meaning relative to the true offset/s-
caling:
M’ - ltruel/la'truel-

As can be seen from Fig. 5.8 the height of the reconstruction has a significant
impact on the accuracy of these methods. Up to 50% of the image width, the
accuracy is still acceptable, but for larger heights some accuracy is lost. This is
probably due to the effect we saw in Fig. 5.4, where the smaller reconstruction
area has larger residuals from the global offset artifact. Therefore, on a smaller
reconstruction area, an improvement in the global offset estimation has a larger
reduction of the residual. This might explain why the global offset estimation
is most accurate if the reconstruction domain matches the phantom size. A
similar reasoning can be applied to the accuracy of the local offset estimation.
These results suggest that the reconstruction height is not very crucial for the
offset retrieval, provided that the reconstruction hight is smaller than 60% of the
reconstruction width.

We should note that we cannot directly compare the recovered scaling and
the true scaling of the projection data, because we can only find it up to a global
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Figure 5.8: Influence of the height of the reconstruction volume on the offset and
scale estimation algorithms. The relative error is shown of the recovered offset
and scale factors with respect to the true offset and scale factors.

scaling. Therefore, we remove this common global scaling between the recovered
scaling and true scaling for computing the relative error. A correction should also
be applied to the error of the local offset. In Fig. 5.9a we plotted the recovered
local offset and the true local offset. Note that it seems the difference between
the two is a global offset. However, in Fig. 5.9b we see that this is not the case, a
very smooth curve remains. This curve corresponds approximately to projections
of a constant volume. Note that for a volume of height &, the length L of a ray
through the center of the volume is

L=5,/cos0,

which holds in a certain range of angles (at least 6 < 90°, depending on the size
of the volume). The same holds approximately for rays that do not go through the
center of the volume, except for rays that intersect with the left or right edges of
the volume. Therefore, it is likely that the local estimation algorithm using LSQR
applied to Eq. (5.12) finds the reconstruction up to a constant. This constant does
not increase the residual of Eq. (5.12) since its projections are then subtracted by
the local offset estimate. This explains why the local offset estimation is smaller
than the true local offset. Fortunately, a constant added to the reconstruction does
not change the structure of the reconstruction. In the computation of the local
offset estimation error we therefore correct for this offset on the reconstruction
(which we already applied in Fig. 5.8).

Most datasets obtained from flat samples in electron microscopy have a gap in
the angular range (leading to missing wedge artifacts) and the projection images
are truncated, meaning that only a part of the sample is visible on the detector
[ATMO6]. Therefore, we performed experiments to see the effect of these limited
data problems on the offset and scale retrieval algorithm. From this point forward,
we do not include the vector projection method using SIRT for retrieving a global
offset, since the method using LSQR is more accurate in the results in Fig. 5.8. In
Fig. 5.10a the effect of a missing wedge is shown for the same dataset we used in
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Figure 5.9: (a) Comparison of the recovered local offset and true offset; (b) The
absolute difference; (c) Average projection values of a constant volume (where
each image pixel is 1), not the similarity to the absolute error of the recovered
local offset; (d) Final absolute error after subtracting a multiple of the curve in

(o).

the previous experiment, except for a different angular range. Note that the angle
on the horizontal axis indicates the maximum rotation angle, e.g. 90° indicates
an angular range of [—90°,90°] with 1° increments. The missing wedge does not
seem to be influencing the results for realistic rotation angles.

In case of truncation, the local and global offset estimation fails if the detector
is smaller than the height of the reconstruction volume, see Fig. 5.10b. Note that
the size of the detector determines the size of the circular offset artifact and in
this case the offset artifact fully fits inside the reconstruction area. The local offset
and scale retrieval are slightly more susceptible to the amount of truncation, but
a detector size of 100 pixels seems sufficient.

In experimental data from electron microscopy a missing wedge and truncation
are both present. In Fig. 5.11 we show the effect of a combination of these. In this
case we see that the effect is more severe. The global offset and scale estimation
do not seem to be influenced much. For certain combinations of detector size and
angular range the error of the local offset estimation increases considerably, but
if the truncation is not severe for a relatively large angular range, this is not a
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Figure 5.11: Relative error of the retrieved offset/scalings in case a limited angular
range is combined with truncation. Truncation is indicated by detector size and
missing wedge by the maximum tilt angle.
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Figure 5.12: Slice in the z-direction of the particle phantom of size 460 x 256 x 64.

problem. The scale retrieval algorithm is not very sensitive to the missing wedge,
but the truncation can be an issue in extreme cases.

5.6.2 3D simulation experiments

We consider a particles in substrate phantom of size 460 x 256 x 32 of which a
central slice is shown in Fig. 5.12. A total of 121 projections were simulated for a
detector of 256 x 256 pixels using parallel beam geometry and an angular range of
+60°. The same offsets and scalings were applied as described in the beginning of
Section 5.6.1. The datasets are reconstructed on a volume of size 460 x 256 x 32
pixels. For the implementation of the algorithms we use the ASTRA toolbox for the
GPU accelerated forward and backprojection operations [PBS13]. The hardware
we used consists of a workstation with an Intel Core i7-2600K@3.4 GHz CPU,
16 GB of system RAM and an NVIDIA GTX 570 GPU.

First we compare the results of the global and local offset and scale estimation
on the reconstructions qualitatively using LSQR with 250, 400 and 600 iterations
respectively. After obtaining the offsets or scale factors we reconstruct the cor-
rected projection data using 100 iterations of LSQR. In Fig. 5.13 central slices of
the reconstructions before and after correction are shown. We show the part of
the reconstruction that is in the field of view of the detector for every projection
image. The proposed methods are able to significantly reduce the artifacts due to
offsets on, and scaling of, the projection images. Some vertical smearing effects
can be observed, but this is expected due to the limited angular range of £60°
(missing wedge artifacts).

In the next experiment we test the effect of the number of projection angles
on the offset or scale retrieval. It is not directly clear if increasing the number of
projection images results in a better estimation of the offset and scales, because
we add equations to the systems in Eq. (5.12) and Eq. (5.15) and at the same time
introduce another unknown (local offset or scale factor). For this experiment we
use a subset of the projection images used in the previous experiment, such that
the projection images are approximately equiangular distributed in the interval
+60°. The results shown in Fig. 5.14a indicate that the offsets and scale factors
can be found more accurately if the number of projections is increased, except for
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(e) local scaling artifact (f) after scaling correction

Figure 5.13: Qualitative comparison of corrected and uncorrected reconstructions.
Central slices in the z-direction are shown of size 256 x 256 (the part that is always
in the field of view of the detector).
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Figure 5.14: (a) Error with respect to the number of projection angles; (b) Error
with respect to noise level (expressed in simulated photon counts).

the global offset. However, the accuracy is not dependent to a great extent on the
number of projection angles, even for a limited number of projection images the
result of the offset and scale estimation is accurate up to 2 significant digits or
more.

We also considered the effect of Poisson noise. We simulated the noise and
varied the intensity of the noise, which is indicated by the simulated photon counts
(lower photon counts means lower signal-to-noise ratio). The results are shown in
Fig. 5.14b. The noise does have an effect on the global offset and scale retrieval
for datasets with low signal-to-noise ratio. For the global offset estimation, the
results are accurate for all noise levels. For the scale factors the noise level has a
larger influence. The local estimation algorithm is far less influenced by the noise
level and achieves a good accuracy overall.

5.6.3 Experimental electron tomography dataset

In the final experiment we test the offset estimation algorithm on an experimental
dataset obtained with an electron microscope, using the HAADF-STEM technique.
In Fig. 5.15 a projection image of size 512 x 512 is shown. The object consists of
PbSe/CdSe core/shell nanocrystal particles that are studied in materials science
[Bal+11; Cas+12]. The dataset consists of 151 projections from tilt angles
between £75° (1° tilt increments) and was obtained by a FEI TITAN® 50-80
electron microscope using a parallel beam geometry. Because we assume that
the offsets are constant for a single projection image, we can simply restrict the
reconstruction to a few slices (in the x-direction, see Fig. 5.6). This saves a lot of
memory and computation time. In this experiment we reconstruct 50 slices in the
x-direction. We choose a total of 150 slices in the z-direction, which results in a
reconstruction volume of 50 x 512 x 150.

The background intensity of the dataset is negative, which suggests that the
projection data is not scaled, but has a negative offset. Because we do not know if
the projections contain a global or local offset, we apply the local offset estimation
algorithm as described in Section 5.4.2. The result of a local offset estimation is
shown in Fig. 5.16. The retrieved offset indeed indicates a negative offset. The
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Figure 5.15: Projection image of size 512 x 512.
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Figure 5.16: The retrieved offset.

core-shell particles are supported by a carbon grid, which has very low contrast
in the projection images. Note that the thickness of this support (i.e. the path
length of the electrons through the support) is inversely proportional to the
cosine of the projection angle. This might explain why we the offset behaves like
1/ cos 0, because it is a superposition of the offset caused by the support material
and a negative global offset. As a result, simply subtracting (the mean of) the
background intensity would not be sufficient. Note that the local offset estimation
can therefore also be used to reduce the effect of the support material on the
reconstruction.

We subtract the retrieved offset from the projection data and compute an
LSQR reconstruction, see Fig. 5.17c. We compare this with a reconstruction
where the minimum value is subtracted from the projections (an estimate of the
background intensity), shown in Fig. 5.17b. The difference in quality can be seen
especially on the top and bottom part of the reconstruction, where artifacts are
still visible in Fig. 5.17b. The reconstruction after local offset removal is much
improved. Compared to an LSQR reconstruction that is not corrected for offset,
see Fig. 5.17a, the reconstruction has improved significantly. These results show
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(a) Original LSQR reconstruction

(b) LSQR reconstruction with background value sub-
tracted

(c) LSQR reconstruction after offset correction

Figure 5.17: Comparison of the slices in the x-direction of the original reconstruc-
tion and corrected reconstructions, by removing the minimum value from the
projection data (background), and after local offset estimation.

that the proposed offset estimation is an effective technique for removing offset
artifacts, without the need for manual estimation of the background intensity.

5.7 Discussion and conclusions

During the acquisition of the projection images for tomography, an offset on or
scaling of the gray values of the projection images can be introduced by fluctua-
tions in the radiation source’s intensity. The offset can be a constant added to each
gray value of each projection image, which is a global offset, or the offset can be
constant only for the pixels in a single projection image, which is referred to as a
local offset. In our analysis of the filtered backprojection reconstruction of a global
offset, we found that the offset causes an additive artifact in the reconstruction
that has the shape of a disk. By enforcing a rectangular reconstruction domain,
the global offset causes an inconsistency in the reconstruction and by minimizing
inconsistency of the reconstruction with respect to a negative correction term, the
offset can be found accurately.

We extended the algorithm such that it can be applied to retrieve a local
offset and scaling of projection data. We assume that each scale factor scales
the gray values of one projection image. These algorithms work in a similar way
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as the global offset estimation: a least squares solver (LSQR) is employed to
simultaneously compute a reconstruction and find the unknown offsets or scale
factors.

In a series of simulation experiments we investigated the effect of limited
data problems that are typically encountered in electron tomography, such as a
limited angular range or truncation of projections (if the sample is not contained
in the field of view of the detector). Moreover, we determined how strongly the
results of the offset and scale estimation algorithms depend on the shape of the
reconstruction, in particular the height. Our conclusions are that a missing wedge
or truncation should not pose a problem, if the severity of these effects is not too
large. The effect of a missing wedge was less strong, even for a very small tilt
range of £20° accurate results could be obtained. The effect of truncation was
much larger: for the test image that was 512 pixels wide, results were not so
accurate if the detector was smaller than 100, 200 and 300 pixels for the global
offset, scaling and local offset estimation respectively. We observed that the offset
and scale estimation algorithms yield more accurate estimations if the height of
the reconstruction domain is small. On this smaller reconstruction domain the
influence of the offset or scaling of the projections is much more pronounced in
the residuals of the corresponding reconstructions. Therefore, the offset and scale
estimation algorithms are able to retrieve the offsets or scalings more accurately
in this case, compared to the case where the reconstruction area is square.

The result of the experimental electron tomography dataset shows that offsets
can be found which significantly improve the reconstruction even in cases where
no background is visible. The effect of offset artifacts can be substantially reduced.






Chapter 6

Robust artifact reduction in tomography
using Student’s t data fitting

6.1 Introduction

Tomography is a technique for reconstructing a 3D volume from 2D projection
images, such as X-rays obtained in CT scanners. A 3D reconstruction can be
obtained from the projection images by solving an inverse problem. In algebraic
reconstruction methods a linear system of equations is solved that represents a
discretization of the Radon transform [NWO01; KS01]:

Wx =p. (6.1)

The projection matrix W € RM*N relates pixel values in the tomographic recon-
struction x € RY (gray values) to discrete detector measurements p € R®. In
experiments the projections are perturbed by an unknown noise vector e,

p=p+e.

Most algebraic methods such as SIRT, CGLS or LSQR [Bj096; GB08; PS82]
optimize the consistency of the reconstruction in the Euclidean norm, which leads
to a least squares solution:

. 1
x* =argmin§||Wx—f)||§. (6.2)
X

It is well known that this approach is equivalent to finding the maximum likelihood
estimate (MLE) of x under the assumption that the error term or noise € is
Gaussian distributed [Pre+07]. However, the £,-norm assigns a heavy penalty to
outliers in the projection data. Outliers may arise due to acquisition problems

This chapter has been accepted for publication in: Proceedings of Fully3D, 2015.
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ranging from hardware problems to physical effects such as scattering or photon
starvation due to high density particles [BF12]. Because these errors are heavily
penalized by the ¢,-norm, the solution of Eq. (6.2) will be fitted to these outliers,
producing artifacts in the reconstruction.

In this chapter we propose the use of algebraic methods combined with the
Student’s t penalty function to solve the reconstruction problem in Eq. (6.1). The
Student’s t distribution has heavy tails meaning that outliers in the noise are
penalized less compared to the £,-norm. Therefore the Student’s t MLE of the
reconstruction should be influenced less by such outliers.

Many methods for artifact reduction are aimed to remove or suppress outliers
from the projection data [Gu+06; PDX12; Vel+10; Wan+96], which rely heavily
on the accuracy of segmentation techniques to locate outliers. By minimizing the
Student’s t penalty of the data-fit there is no need for segmentation and therefore
the method is not biased by the result of a segmentation step.

We explain the method for finding the Student’s t MLE of the reconstruction
in Section 6.2. Subsequently, results are presented for a series of 3D cone-beam
simulation experiments for reduction of several kinds of artifacts in Section 6.3.
Finally, we discuss the results and conclude the chapter in Section 6.4.

6.2 Methods

In general, maximum likelihood estimation of x in Eq. (6.1) gives rise to a
maximization problem
maxp(Wx —p),
X

where p(+) is the probability density function (PDF) of the probability distribution
of the noise €. In practice, the problem is posed as a minimization problem by
taking the —log:

n}(in—logp(Wx —p).

The resulting estimate X can be interpreted as the most likely solution of Eq. (6.1)
under the assumption that the noise is indeed distributed according to p. When
p represents the Gaussian PDF, this leads to the conventional least squares formu-
lation, Eq. (6.2). When the data contain large outliers, the Gaussian assumption
is violated and a different PDF has to be employed. A possible choice is the
multivariate Student’s t distribution

p(ryoc [ Ja+r2/w 02
i

where v is the variance. Such an assumption on the noise allows for large outliers
to be present in the residual, whereas under a Gaussian assumption large outliers
are extremely unlikely and thus the reconstruction will aim to fit them.

The penalty derived from the Student’s t distribution is

p(r) = log(1+12/v), (6.3)
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Figure 6.1: Least squares and Student’s t penalty functions and corresponding
influence-functions with v = 0.5.

and a graph is shown in Fig. 6.1a. The maximum likelihood estimate is now
obtained by solving
minp(Wx —p)
X

using Newton’s method [NWO06]. This leads to an iterative method of the form

x®HD — B0 4 g g0

where a, is the stepsize, determined by a backtracking linesearch and s® is
obtained by solving
WwTH®ws® = —WTg(k). (6.4)

Here, the gradient g®) and diagonal matrix H* are given in terms of the residual
r® =wx® —p as

g(k) _ Zri
! v+ ri27
and
2
hY =
v+ T

Note that we can use any algebraic method to solve Eq. (6.4), but in our case we
chose the CG method. In effect, the algorithm repeatedly performs a reconstruc-
tion with a weighted residual, where the weight (v + rl.z)_1 down-weights large
residuals.

If we look at the so-called influence-function [Ham+05] of Eq. (6.3) in Fig. 6.1b
which is defined by the gradient, it is clear that the influence of large residuals
r?2 > v is small. However, for r? < v the influence behaves similar to a least
squares penalty. The role of v can be seen as tuning parameter to indicate the
magnitude of outliers. This parameter can be adjusted automatically [AL12],
however, in our experiments we estimate the parameter empirically.
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(a) 3D rendering (b) slice

Figure 6.2: (a) 3D rendering of the Shepp-Logan head phantom with a wedge
cut out of the sample; (b) central slice of size 256 x 256.

From this point forward we will refer to the methods for MLE estimation using
least squares and Student’s t penalties as LSQR-MLE and ST-MLE respectively,
where we use the method LSQR for minimizing the ¢,-norm.

6.3 Experiments and Results

In these simulation experiments we consider a 3D Shepp-Logan head phantom
of size 256 x 256 x 256 of which a central slice is shown in Fig. 6.2b. We used
the ASTRA tomography toolbox [PBS13] to generate 180 projection images with
1° angular separation using the cone-beam geometry. The detector has a size
of 284 x 284 pixels and was positioned in the origin. The projection matrix is
generated on-the-fly by the GPU back end of the toolbox using a slice interpolation
kernel [Jos82].

In the following sections we will discuss several distortions or perturbations
in the projection images that cause severe artifacts in the reconstruction and we
compare a least squares approach to data fitting using the Student’s t penalty
function.

6.3.1 Metal artifact reduction

In this experiment we consider the 3D Shepp-Logan head phantom with six small
dense particles that represent metal implants (density is 10 times that of the outer
“skull” region). A single slice is shown in Fig. 6.3a, the six particles form the
vertices of an octahedron.

In the area of the detector where the metal implants are projected the data
becomes corrupted due to beam hardening, scatter and photon starvation. For
this experiment we focus on the effects of photon starvation. In the projection
data we simulated a saturation due to photon starvation by setting the region
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(a) slice of phantom (b) LSQR-MLE (¢) ST-MLE

Figure 6.3: Metal particles Shepp-Logan head phantom and corresponding least
squares fit and Student’s t fit.
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Figure 6.4: Convergence of the {,-norm compared to Student’s t penalty. These
are relative residuals.

corresponding to the metal objects to a constant, large value. The effect of this
missing or corrupted data if we apply LSQR-MLE is shown in Fig. 6.3b. Usually,
these regions in the projection data are either ignored or filled in by interpolation
or inpainting techniques [Gu+06; Vel+10; Wan+96]. These methods rely on
sophisticated segmentation techniques in order to locate the metal implants.

We show a convergence plot in Fig. 6.4 of both penalty functions. This figure
shows that the ST-MLE method converges rapidly compared to LSQR-MLE. Note,
however, that the ST-MLE method requires solving of Eq. (6.4) in each iteration
and is therefore significantly more costly. In all of the following experiments, the
ST-MLE method converges in approximately 10 iterations.

Our proposed method ST-MLE is able to suppress most of the artifacts, as
shown in Fig. 6.3c, while still reconstructing the metal implants without needing
to locate the outliers in the projection images. There is an underestimation of the
gray value of the skull area, however, visually the reconstruction is very useful for
detecting also smaller details, such as the three ellipses below the bottom metal
particle. Moreover, the ST-MLE solution can be used initially to obtain a better
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(a) LSQR-MLE (b) ST-MLE

Figure 6.5: Defective camera pixels lead to semicircular reconstruction artifacts.
The Student’s t solution is much less affected by these artifacts.

segmentation of the metal particles.

6.3.2 Defective camera pixels

In the second experiment we simulate the effect of defective camera pixels. We
assume that the detector has several “dead” detector pixels which measure no
photons at all. This produces bright pixels in the projection images that are
constant between projections. The uncorrected projection data will produce ring
artifacts which are typically removed by inpainting of dead pixels [PDX12].

We simulated a dataset with 100 randomly selected dead pixels which we
set to a constant value of two times the maximum value of the projection data.
The least squares solution is shown in Fig. 6.5a. The artifacts are severe, but the
Student’s t approach in Fig. 6.5b is able to remove the artifacts almost completely.

In Fig. 6.6 we show the effect of increasingly many dead pixels on the mean
squared error of the reconstruction compared to the ground truth. Surprisingly,
even if the number of dead pixels is close to 50% of the total number of detector
pixels the ST-MLE solution does not seem to be influenced by this missing data.

6.3.3 Randomized projection images

In the final experiment we created a dataset of which we replaced 50 from the
180 projections by completely random images (white noise) with average intensity
similar to the other projection images. Although this is not a very realistic dataset,
we want to see how far we can stress our STMLE method and see if it can ignore
such inconsistent data.

The LSQR-MLE solution is shown in Fig. 6.7a, which is very noisy due to the
randomized projections. The ST-MLE solution (Fig. 6.7b) suffers far less from the
random projections and only shows mild noise. There are some streak artifacts
because the projection images in these directions are missing, but this is expected.
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Figure 6.6: Mean squared error of the reconstruction compared to the ground
truth for an increasing number of dead detector pixels.

(a) LSQR-MLE (b) STMLE

Figure 6.7: LSQR and Student’s t fit for dataset with 50 randomized projection
images out of 180 total projection images.

We also compared LSQR-MLE and ST-MLE on datasets with an increasing
number of random projections. Of course we cannot expect that the ST-MLE
solution will be unaffected by this as was the case in the previous experiment,
because we are essentially removing projections. However, the result shown in
Fig. 6.8 indicates that the ST-MLE method is beneficial for each of these dataset
and is a large improvement over the least squares solution.

6.4 Discussion and conclusions

In this chapter we have discussed the Student’s t penalty function that can be
used in combination with Newton’s optimization approach to produce the max-
imum likelihood estimate of the tomographic reconstruction problem Eq. (6.1)
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Figure 6.8: Mean squared error of the reconstructions for an increasing number
of random projections replacing the original projections.

corresponding to the Student’s t distribution. In our experiments we have seen
that perturbations introduced in the projection data due to hardware problems
or photon starvation from metal implements are significantly reduced using our
proposed method ST-MLE when compared to algebraic reconstruction methods
that minimize the Euclidean norm of the residual (LSQR-MLE). In contrast to
other methods for artifact reduction, there is no need to locate outliers in the
projection data by segmentation methods. Therefore, the ST-MLE method can
be applied effectively without any preprocessing steps. Moreover, the Student’s
t penalty can be used in combination with other reconstruction algorithms and
image priors and has other potential use cases such as artifact reduction from
diffraction effects.



Chapter 7

Easy implementation of advanced
tomography algorithms using the ASTRA
toolbox with Spot operators

7.1 Introduction

Tomography is an imaging technique for reconstructing an object from projections.
In medical imaging, projections can be obtained as X-ray images by CT scanners. In
the scientific community, many devices and setups are used for tomographic data
acquisition, from electron microscopes to large synchrotron facilities [Don+06;
Kiib+05]. Hardware advances have pushed the ability to image on smaller scales
and at large pixel densities. Projection images in the order of 4000 by 4000 pixels
can now be obtained routinely [Hu+14]. At the same time, many innovative
tomography applications are inherently limited in the number of projections that
can be acquired, and their associated noise level.

In recent years, we have seen many advances in reconstruction algorithms for
tomography that incorporate prior knowledge about the scanned object. Examples
can be found in sparse reconstruction techniques and discrete tomography [BS11;
FNWO07; GO09; Sch+05; SJP12; SP08]. The benefit of these methods is their
ability to produce accurate reconstructions from limited projection data. To
develop such algorithms, high-level mathematical scripting languages such as
Matlab are commonly used due to the complex mathematics involved. As a
result, the initial implementations may not be suitable for dealing with large
experimental datasets due to the inherent performance and memory limits of the
scripting platform.

This chapter has been published with minor modifications as:
F. Bleichrodt, T. van Leeuwen, W. J. Palenstijn, W. van Aarle, J. Sijbers, and K. J. Batenburg. “Easy
implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators”.
In: Numerical Algorithms (2015), pp. 1-25
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Tomography algorithms are usually constructed by combining two linear oper-
ators — forward projection and backprojection — with additional algorithmic steps.
For large-scale datasets, the corresponding matrices are too large to store explicitly.
For this reason, Matlab implementations based on explicit matrix computations
cannot be used in a straightforward manner. Efficient, parallel (GPU) implementa-
tions are used instead [AF11; Jan+09]. Although software packages that exploit
parallelism are widespread [Chi+11; KMM96; Ped+10; Riv12; Thi+12], it is
not trivial to use these software implementations in combination with algorithms
written in scripting languages.

The work presented in this chapter is based on two popular toolboxes for
Matlab: the ASTRA toolbox [15; PBS11; PBS13] and the Spot toolbox [BF14].
The ASTRA toolbox is a Matlab toolbox for tomographic reconstruction, based on
high-performance GPU primitives. It supports multiple geometries (parallel beam,
fan beam, cone beam) with highly flexible source/detector positioning. The Spot
toolbox exposes external implementations of linear operations through a standard
Matlab matrix interface.

Our key contribution is the introduction of a Spot operator for ASTRA, which
we have named opTomo. We will show how it can be used to easily develop
complex tomography algorithms that are directly applicable to large datasets. Our
examples show that the opTomo operator enables the use of a range of built-in
and external Matlab packages for tomography. Additionally, the Spot operator
can be used to develop new algorithms without having to deal with complex
implementation details. The code resembles pseudocode and is therefore easy to
understand and maintain. Moreover, the code is highly generic, since it can still
be used with explicit matrices.

We focus on the Matlab interface of the ASTRA toolbox rather than the optional
Python interface. Matlab is commonly used by applied mathematicians who
work on new reconstruction methods, linear solvers, sparse reconstruction etc.
Therefore, many Matlab templates are available of such algorithms which can
benefit from using our opTomo Spot operator.

The chapter is structured in six sections. First we give a short introduction to
tomography in Section 7.2. In Section 7.3 we describe the software elements that
are used for implementing the opTomo operator. Several use cases of the opTomo
operator are described in Section 7.4. To give an idea of the efficiency that is
achieved by using the opTomo operator, performance benchmarks are discussed
in Section 7.5. Finally, conclusions are drawn in Section 7.6.

7.2 Tomography

As an example of the scanning geometry we first introduce the common parallel
beam geometry, illustrated in Fig. 7.1a. In this setup, the detector consists
of an array of pixels that measure the radiation intensity along parallel lines.
Projections are measured along a range of angles, rotating around the object.
The object is subsequently reconstructed from these projections by a tomographic
reconstruction algorithm.
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(a) geometry (b) model

Figure 7.1: Tomography with parallel beam geometry. The left image shows
the geometry of a typical parallel beam scanner. The image on the right shows
the corresponding discretization. The object is represented by an image and a
projection is modeled as a linear combination of the pixel values.

Until recently, analytical reconstruction methods such as filtered backprojection
(FBP) [KSO1] were used almost exclusively due to their computational efficiency
and accuracy, provided that sufficient data is available. Throughout this chapter
we will focus on algebraic reconstruction methods (see, e.g., Chapter 7 of [KS01]
and [AK84; DLR77; Gil72; GBH70]). These methods are based on a particular
discretization of the data in pixels and involve algebraic equations for the values
of the pixels. This approach offers more flexibility for enforcing constraints on the
reconstructed image, in contrast to analytical methods. In algebraic reconstruction
methods, the object is assumed to have a constant density in each pixel, which
is represented in the image by the gray value. The contribution of an object
pixel to a detector pixel measurement is proportional to its gray value. In many
cases, a weight for the pixel is determined from the length (line model) or area of
intersection of the beam and the pixel (strip model), but there are many other
options [DB04; Jos82; Lew92; Sid85]. The strip model is illustrated in Fig. 7.1b.

This linear relation between object pixels and a detector pixel measurement is
expressed by the ray sum or line projection

4

Dpi ZZWU’X]', (7.1)

j=1

where w;; is the weight assigned to image pixel j and detector pixel i. The full set
of equations leads to the following linear system:

Wx =p. (7.2)
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The object x € RN and the projection data p € RM are represented by vectors.
The sparse matrix W € RM*N | referred to as projection matrix or system matrix,
holds the weights of each pixel.

In many applications, the system in Eq. (7.2) is underdetermined and the
projection matrix does not have full row rank. This results in a challenging ill-
posed reconstruction problem. A basic approach for solving it is by minimizing
the residual norm, which is referred to as projection distance:

minimize [|[Wx —p|3. (7.3)
X

If the system is underdetermined, there is no unique solution. Moreover, if noise
is present in the projection data, the system of equations can be inconsistent.
Regularization techniques should be used to alleviate both of these problems.

7.3 Software implementation

In this section we discuss the implementation of the opTomo operator and intro-
duce the software tools that are used.

7.3.1 The ASTRA toolbox

The ASTRA toolbox is an open source software package for tomographic recon-
struction and algorithm design [PBS13]. The toolbox provides tools and building
blocks for the development and implementation of tomographic reconstruction
methods. Moreover, it provides many popular reconstruction algorithms, such as
filtered backprojection (FBP) and several iterative reconstruction methods such as
SIRT and CGLS [BE79; Gil72]. The toolbox has a Matlab and Python interface,
which give access to the forward and backprojection operations. These operations
are based on the model in Eq. (7.2). The forward projection generates projections
from an image vector, i.e., this corresponds to multiplying an image vector by
the projection matrix W. A backprojection corresponds to multiplication by WT,
the transpose of the projection operator. The ASTRA toolbox uses ray-tracing
techniques to compute these matrix-vector products, such that matrices are not
stored, but their elements are generated when needed. High memory usage is
avoided in this way; only the reconstruction and the projections should fit in
memory (and possibly a few copies, depending on the reconstruction algorithm).
The GPU can be used for fast computation of the forward and backprojection
steps, allowing large datasets to be processed in reasonable time.

We will not go into detail about the inner workings of ASTRA's Matlab interface,
but rather briefly introduce the main ideas to call the GPU backend. In Listing 7.1,
a utility function is shown for the forward projection algorithm on the GPU
through Matlab’s mex interface. A few details need to be clarified here. The
data Matlab array represents (a slice of) the object. It can be a phantom image
or a (partial) reconstruction, from which we want to compute projections. The
computation of the projections depends on the particular scanner geometry being
used. Therefore, the proj_geom structure contains details about the beam type
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(parallel, fan, cone), the angles at which projections need to be generated and
the detector dimensions. The output consists of a data identifier (used internally
in ASTRA) and a Matlab array containing the projection data. Similarly, the
volume geometry or vol_geomn structure contains details about the dimension of
the object, from which projections are computed. Because the ASTRA toolbox is
very flexible in setting up geometries, many acquisition schemes can be modeled,
including circular cone-beam, helical cone-beam, and laminography setups. More
details about the geometries are given in Section 7.A. For further details about the
use of and possibilities of the ASTRA toolbox, we refer the reader to [PBS13].

Listing 7.1: Utility function for forward projection

1 % forward projection
2 [id, sinogram] = astra_create_sino_cuda(data, proj_geom,
vol_geom) ;

7.3.2 The Spot toolbox

For implementing algorithms based on a linear operation, it is very convenient
to use matrix-vector notation, as used in Matlab, because it is similar to the
mathematics and results in clean and concise code. However, in many use
cases it is not practical to form the matrix corresponding to the linear operation
explicitly. As a solution, the Spot toolbox provides a Matlab framework that wraps
linear operations into Matlab objects that act like matrices [BF14]. The toolbox
introduces a new kind of data type (by using classes), called Spot operators.

A Spot operator for a linear operation A relies on (external) software imple-
mentations of the following operations:

y =Ax, (7.4)
y=ATx. (7.5)

The matrix operations listed in Table 7.1 are overloaded for Spot operators and are
based on these basic operations of Eq. (7.4) and Eq. (7.5). Most Matlab functions
which would not directly support a Spot operator are overloaded as well. One
example is the sum function. Applying any operation listed in Table 7.1 to a Spot
operator (except for division), does not produce a matrix, but generates another
Spot operator of a different type. If the Spot operator is applied to a vector, the
result will be computed based on the implementation of Eq. (7.4) and Eq. (7.5).
All other operations can be derived from these. For example, if we want to extract
rows or columns from a matrix, we use the parentheses syntax and subscript sets
s; and s, to indicate which rows and columns we want to extract.

Since the matrix elements of a Spot operator A are never stored explicitly, some
operations can be slower than expected. For example, if a vector is multiplied
by the first row of A (using Matlab notation), y = A (1, :) »x, Spot uses the
implementation of Eq. (7.4) and effectively computes:
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Table 7.1: Operations overloaded by Spot.

matrix operations

ctranspose A’ plus A+B

divide A\B subsasgn A(sl,s2,..,sn)= B
horzcat [A B] subsref A(sl,s2,..,sn)
minus A-B transpose A.'

mldivide A\B uminus -A

mpower Ani uplus +A

mrdivide A/B vertcat [A; B]

mtimes A+B

1 y = AxX;

2 y = y(l);

which takes more time if the first row of A could have been formed explicitly.
For the same reasons, operations that work element-wise are not implemented
for Spot operators, such as element-wise multiplication: B = A.«A, or using
functions such as norm (&) . However, in many typical use cases, such operations
can be avoided or if possible can be implemented at a lower level (e.g., in the
ASTRA toolbox).

By using the Spot toolbox, Matlab code that uses matrices can now also be
used with Spot operators that are linked to fast, external implementations of
operations Eq. (7.4) and Eq. (7.5). So, without modification, the same Matlab
code can be used with different implementations of the linear operations.

7.3.3 The ASTRA Spot operator

For the tomography Spot operator, which we refer to as opTomo, we use the for-
ward and backprojection operations from the ASTRA toolbox as implementations
of Eq. (7.4) and Eq. (7.5), based on the model in Eq. (7.2).

In code Listing 7.2 the construction of an opTomo object is shown, requiring
three arguments:

1. The linear model used to generate W
2. The projection geometry
3. The volume geometry

These arguments are used to set up the forward and backprojection algorithms of
ASTRA and to allocate data structures. With the creation of this new Spot operator,
we can directly use the matrix operations listed in Table 7.1. In line 5 of Listing 7.2
we compute a forward projection of a sample image. We will now explain the
internals of these operations in greater detail. The matrix multiplication operation
mt imes is overloaded for opSpot (the superclass from which all Spot operators
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Matlab
p = Wxx;

l

Spot

% overloaded in superclass
opSpot .mtimes (W, x)

0

opTomo operator

[

multiply function contains ASTRA code

o o\

input argument two: 1 - no transpose, 2 - transpose
opTomo.multiply (x,1)
l
ASTRA
% ASTRA code for forward projection

X

= reshape (x, vsize);

% store data in C++
astra_mex_data3d('store', vol_id, x)
% run forward projection
astra_mex_algorithm('iterate', cfg_f£fp);
% obtain Matlab array

P = astra_mex_data3d('get', sino_id);

Figure 7.2: Typical code flow of the opTomo operator.

are derived). Therefore, the image is passed through the mt imes function to the
multiply function of opTomo. We implemented the multiply function which:
reshapes the vector to an image, passes the data to the ASTRA toolbox and calls
the forward projection algorithm. Similarly, the backprojection is called if we
use the transpose of the opTomo operator (also through the multiply function).
This typical code flow is illustrated in Fig. 7.2 and shows how the components
(Matlab, Spot, opTomo, ASTRA) are connected.

Through the opTomo operator, we expose the forward and backprojection
operations of ASTRA to Matlab. By choosing the first argument in line 1 of
Listing 7.2 we can choose the model used for the forward and backprojection
(to generate W in Eq. (7.2)). For the CPU projectors, the models 'linear’
[Jos82], '1ine' [Sid85] and 'strip' [Zhu+08] are available. If we pass the
option 'cuda’', the fast GPU projector is used, which is based on the Joseph
interpolation kernel [Jos82] for the forward projection and uses a pixel-driven
method with linear interpolation for the backprojection [GZ10b]. Note that the
backprojector in ASTRA is not exactly equivalent to the transpose of the matrix
corresponding to the forward projector. This design was chosen to greatly improve
performance of the backprojector [PBS11]. As a result, the corresponding matrices
of these operators are not fully consistent with Eq. (7.4) and Eq. (7.5). However,



112 7. Using the ASTRA toolbox with Spot operators

Listing 7.2: opTomo operator

Create a tomography Spot operator 'opTomo'
= opTomo ('cuda', proj_geom, vol_geom);

= o

o©

can be used to create projection data as a vector
= Wxim(:);

o°

reconstruction using a Krylov subspace method
= lsqr(W,p);

©® N U AW N e
o]

b

it was shown that an unmatched forward and backprojector can even improve
convergence rates of reconstruction algorithms [GZ10a; ZG00].

Listing 7.2 illustrates that using the opTomo operator we can compute pro-
jection data by using intuitive syntax similar to Eq. (7.2). The code in line 8
reconstructs the ground truth image from its projections. By using opTomo, the
code in Listing 7.2 is short and stays close to the mathematics, is generic and easy
to follow for someone not familiar with the toolbox.

7.4 Case studies

In the previous sections we have discussed the motivation and implementation
details of the opTomo Spot operator. In this section we will demonstrate that
the opTomo operator in combination with ASTRA enables the application of
Matlab scripts, ranging from simple scripts to large external packages, to large
experimental datasets.

7.4.1 Custom SIRT implementation

Our first use case is an implementation of SIRT [Gil72] using opTomo. This
example demonstrates the simplicity of implementing existing or new algorithms
based on their pseudocode. Although SIRT is already implemented in ASTRA,
using the code of the current example can have benefits. For example, if we want
to use Tikhonov regularization with SIRT we can simply do this by concatenating
Spot operators. To see this, note that Tikhonov regularization is based on Eq. (7.3)
with an additional penalty term A||x ||§ on the Euclidean norm of the solution. We

can rewrite this problem as:
w . P
VvAI 0

The corresponding concatenated matrices and right-hand side can now be used as
input for SIRT to enable Tikhonov regularization.

2

minimize (7.6)

2
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The pseudocode of SIRT is listed in Algorithm 3. Note that SIRT converges to
a weighted least squares solution [GB08],

x* =argmin||Wx —p|? (7.7)
X

where the norm ||u||§ = u"Ru, is scaled by inverse row sums.

Algorithm 3 SIRT

Input: Projection data p, projection operator W and initial guess x°.
Output: Reconstruction x.

Compute inverse column sums:
M .
Cj = l/zizlwij for] = ].,...,N

Compute inverse row sums:
N .
r= 1/Zj=1wl-j fori=1,...,M

Let C = diag(c) and R = diag(r)

fork=0,1,... do

uk=p—wxk
xk*1 = xk 4 CWTRuUK
end for

We use the notation diag(x) to represent a diagonal matrix with x on its
diagonal. SIRT iteratively refines an image vector x by adding a weighted back-
projection of the residual projection data. Such an algorithm is presented very
compactly in matrix-vector products. As a result, the Matlab code for SIRT, shown
in Listing 7.3, is almost identical to the pseudocode.

7.4.2 Cone beam reconstruction

In practice, most tomographic scanners use a point X-ray source that emits a
cone-shaped beam, in contrast to a parallel beam. This cone beam geometry is
also supported by the ASTRA toolbox. A detailed description of the geometric
parameters is given in Section 7.A.

Listing 7.2 can directly be applied if the proj_geom structure has been set up
for a cone beam geometry, as the geometry is not hard-coded in the algorithm.
To demonstrate that the code is not restricted to small test problems, we have
applied it to a large dataset. The dataset consists of projections from a metal
foam and are of size 1000 x 524 taken at 511 angles. The reconstruction grid
was 1000 x 1000 x 524. We used LSQR for the reconstruction and stopped
the computation after 100 iterations. The central slice and isosurface of the
reconstruction are shown in Fig. 7.3.

For the computation we used a workstation with an NVIDIA Tesla C2070 GPU.
The details of the hardware are given in Section 7.5.1. The computation took
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Listing 7.3: The SIRT algorithm using opTomo

o\

To use Tikhonov regularization:

V = [W; lambda * opEye(size(W,2))];
p = [p; zeros(size(W,2),1)];

and use V below instead of W

o° oo

o\

o\

determine scaling matrices
= 1./sum(W,2);
1./sum(W,1);

O ® N U AW N e
QB
I

—
o

c(c==Inf) = 0;
r (r==Inf) = 0;

e
w N =

set up diagonal Spot 'matrices'
= opbiag(c);
= opDiag(r);

[
o v p
Q) oe

for i = l:maxit
compute residual
u =p - Wxx;

[CR OSSN
= S v ® 3
o\° o

update current solution
x = x + C+«W'xRxu;
end

NN
w N

Figure 7.3: Cone beam dataset acquired using a Skyscan 1172. The left image
shows one slice of the reconstruction of size 1000 x 1000 x 524. On the right an
isosurface is rendered in 3D, showing the structure of the pores.

1 hour and 51 minutes, which is about 67 seconds per LSQR iteration. For this
dataset, a forward projection takes about 44 seconds and the backprojection takes
about 21 seconds.
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7.4.3 Sparse image reconstruction

Ideas and methods used in compressive sensing are now commonly applied in
tomography. If the object is sparse in a suitable basis, it can often be reconstructed
accurately by using £, -regularization. Algorithms using ¢, -regularization are more
elaborate to implement compared to linear least squares solvers.

One approach to compute a sparse solution of the algebraic reconstruction
problem in Eq. (7.3) is basis pursuit denoising, formulating the sparse recon-
struction problem as minimizing the {;-norm of the image under consistency
conditions:

minimize ||x||; subject to |[Wx —p||, < 0. (7.8)
X

The {,-norm promotes solutions with few nonzeros. The parameter o is an
estimate of the noise level.

The basis pursuit denoising approach is implemented in the Matlab package
SPGL1, written by Friedlander and van den Berg [BF08]. This solver is based on
matrix-vector products and is therefore suitable for Spot operators without any
modifications to the code. In the following experiments we will use SPGL1 for
sparse image reconstruction.

In Fig. 7.4a a foam phantom is shown that has around 7% of nonzero pixels.
This dataset is therefore very suitable for sparse image reconstruction. The ground
truth image has dimensions 8192 x 8192. In total 25 projections were generated
using Eq. (7.2) with a total of 512 detector elements per projection angle. The
projection data was reconstructed at an image size of 512x512. In Fig. 7.4b a least
squares solution computed with LSQR is shown. The high angular separation of
the projections and the sparse character of the ground truth results in many streak
artifacts. Resolving the edges of this reconstruction, e.g., by segmentation, will be
difficult. In Fig. 7.4c a reconstruction using SPGL1 and the opTomo operator is
shown. This result shows that including sparsity priors during the reconstruction
drastically improves the quality of the reconstruction. Moreover, it is easier to
resolve the edges of the foam, by segmentation.

For computations we used a workstation with an NVIDIA GTX 570 GPU, the
details of the hardware are given in Section 7.5.1. LSQR was set to stop after 100
iterations or if a relative residual of 0.01 was achieved. In total 11 iterations were
needed and the total runtime was 162 ms. The SPGL1 routine was set to a fixed
number of 100 iterations, which took 3.5 s. Both the forward- and backprojection
took about 4 ms.

7.4.4 Sparse wavelet reconstruction

The approach of the previous section is not limited to objects that are sparse in a
pixel basis, but can also be used with other sparsity priors. For example, images
that have few edges and large homogeneous regions with a constant gray value
(such as the Shepp-Logan phantom in Fig. 7.5a), have a sparse representation in a
Haar wavelet basis. In this case, we need to minimize the ¢;-norm of the wavelet
coefficients. Note that an image x can be decomposed in its wavelet coefficients
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(a) phantom (b) LSQR solution (¢) SPGL1 solution

Figure 7.4: A foam phantom presented as a sparse image. An algebraic recon-
struction method LSQR is compared to the method SPGL1. The SPGL1 method
exploits the sparsity prior of the solution.

¥, by using a linear transformation:
y = Bx. (7.9)

The matrix B is formed from the basis vectors corresponding to the discrete
wavelet decomposition. Because B is unitary for the Haar wavelet, the image can
be formed from its wavelet decomposition by multiplying the coefficient vector y
with its transpose BT from the left. The system matrix is adjusted to incorporate
the wavelet coefficients:

minimize ||y||; subject to ||WBTy —pl||, < 0. (7.10)
y

Note that this approach is the same as the basis pursuit denoising problem in
Eq. (7.8), which is solved with SPGL1. The linear operator involved is now a
combination of the wavelet operator and tomography operator. The correspond-
ing Spot operators can be combined in a straightforward manner, as shown in
Listing 7.4. This results in very compact code that is easy to understand from a
mathematical perspective.

Listing 7.4: Combined Spot operator

Projection operator

= opTomo ('cuda', proj_geom, vol_geom);

2D wavelet operator

= opWavelet2 (n, n, 'Haar', [], levels);
sigma = 200;

y_spgll = spgll (W«B', sinogram(:), [], sigma);

W oo = o

U1 AW N =

We applied the algorithm on a dataset based on the Shepp-Logan phantom of
size 4096 x 4096. A total of 100 projections were generated with 4096 detector
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o

(a) phantom (b) LSQR solution (c) wavelet based (d) TV-min solution
SPGL1 solution

Figure 7.5: Comparison of several reconstruction algorithms. LSQR is an algebraic
reconstruction method. The SPGL1 solution exploits sparsity of the ground truth
in a Haar wavelet basis. The TV-min solution exploits sparsity of the gradient
image.

elements per angle. The data was perturbed by applying a moderate amount of
Poisson noise to the projection data. The reconstruction size was also 4096 x 4096.

The results are shown in Fig. 7.5. Note that we abort LSQR (Fig. 7.5b)
after three iterations, to prevent overfitting (such that it has a similar £,-norm
as the SPGL1 solution). For brevity, we do not provide quantitative details on
the noise generation, but the noise level can be observed quite clearly in the
LSQR reconstruction. The resulting reconstruction contains substantial noise and
details have been blurred. The wavelet based SPGL1 solution in Fig. 7.5c is an
improvement. Due to the shape of the Haar wavelet, most of the noise is in the
detail coefficients that are likely to be suppressed. Although the Haar wavelet
is causing block-like artifacts, the edges are better pronounced compared to the
least squares solution. For comparison, we also show the results of applying the
Chambolle-Pock algorithm for Total Variation (TV) minimization, which will be
introduced in the next section. For the Shepp-Logan phantom, TV-minimization
appears to be a more suitable prior as shown in Fig. 7.5d. Both the wavelet
and total variation minimization method suppress high gradients and therefore
produce reconstructions with less noise, compared to LSQR.

For these computations we used a workstation with a GTX 570 GPU. LSQR
took 3.8 s, SPGL1 138s, Chambolle-Pock 679 s, with a total number of iterations
of 3, 30 and 350 respectively. For this dataset the forward- and backprojections
took 338 ms and 278 ms.

7.4.5 TV-minimization using the Chambolle-Pock algorithm

For images consisting of large homogeneous regions, Total Variation based priors
are commonly used. Formally, the (anisotropic) total variation of an image is
defined as:

m n m n
TV, (x) = Z Z X (i—1yn+j — X(i—1)ntj—1] + Z Z |X(i—1)n+j — X(i—2ynsjl  (7.11)

i=1 j=2 i=2 j=1
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We assume that the image vector corresponds to an m x n image, stored
row-wise, where N = mn.

In practice, TV-minimization is often applied in a generic minimization ap-
proach where the data consistency term is mixed with the TV-norm:

1
minimize =||Wx —p||3 + ATV, (x). (7.12)
xeRY 2 !

Note that RY denotes the set of nonnegative real numbers.

One method for solving this convex minimization problem was presented by
Chambolle and Pock [CP11]. Their approach is to use a primal-dual formulation
of the problem. The algorithm they propose is short and has few parameters.

Sidky et al. discussed and elaborated on the Chambolle-Pock TV-minimization
method applied to the tomography problem [SJP12]. They present the essen-
tial part of the algorithm in four lines of pseudocode. Compared to other TV-
minimization algorithms, for example based on FISTA [BT09], the implementation
in a Matlab environment is straightforward. Because it only uses matrix-vector
operations, Spot operators can be used.

In addition to the projection operator, a discrete TV operator based on
Eq. (7.11) is needed, which computes horizontal and vertical differences of
an image. The TV operator can either be constructed from a diagonal band matrix,
with 1 and —1 on the (sub)diagonals, or it can be formulated as an image process-
ing step using a convolution. In this case, the vertical differences are computed
using a convolution of the filter [—1,1] and the image. In the horizontal differ-
ence operator, this filter is simply transposed. To implement the Chambolle-Pock
TV-minimization algorithm, we chose to construct a TV Spot operator opTV based
on the image convolution, because it is fast.

We applied the algorithm to a dataset from the ESRF synchrotron facility. This
dataset was recorded at beamline ID19, which is dedicated for high-resolution
diffraction topography. The monochromatic source’s energy level was 60 keV. In
total 1500 projection images were measured from seven teeth, each image having
a resolution of 2048 x 290. For this dataset, which has been obtained using a
high beam intensity, a standard FBP reconstruction can provide very accurate
results. To make the reconstruction problem more challenging, Poisson noise
was applied to the experimental projection data to simulate a dataset with a low
signal-to-noise ratio. TV-minimization is not only an effective technique to apply
on limited angle datasets, but should enhance the quality of reconstructions for
noisy datasets as well.

For this example, we focus on the reconstruction of a single slice and run
the Chambolle-Pock algorithm for 200 iterations. Even for a single slice, the
Chambolle-Pock algorithm would require at least 23 GB memory if matrices
were formed explicitly (in single precision). Therefore, on most workstations
this Matlab code would not have been applicable to this dataset without using
the ASTRA toolbox. And without using the opTomo and opTV operators, the
implementation would have required substantially more effort. The reconstruction
was run on a workstation with GTX 570 GPU (see Section 7.5.1 for details of the
hardware) and took 248 seconds. The forward and backprojections took 213 ms
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Figure 7.6: Reconstructed slice for the ESRF teeth dataset.

and 245 ms respectively. The TV Spot operator opTV does not employ the GPU,
but is performed in Matlab. Multiplication by this operator takes approximately
80 ms.

The reconstructions are shown in Fig. 7.6. The sparse gradient prior results in
a much sharper reconstruction that has more homogeneous areas of constant gray
values. Moreover, the background is completely black, due to the nonnegativity
constraint specified in Eq. (7.12) and supported by the Chambolle-Pock algorithm.
Also the noise does not affect the reconstruction as much as it does in a least
squares solution.

To assess the convergence of the Chambolle-Pock algorithm we have plotted
the relative residual and the objective function from Eq. (7.12) in Fig. 7.7a. In
Fig. 7.7b, the (conditional) primal-dual gap is shown [SJP12]. Note that the
relative residual does not converge to zero, due to the noise in the projection
data. The primal-dual gap is initially negative, but becomes positive after about
80 iterations and converges to 5 x 1074,

This example illustrates that using the Spot operator, the pseudocode given in
the paper from Sidky et al. [SJP12], can directly benefit from the fast GPU ASTRA
back end, which enables application of Chambolle-Pock to a real experimental
dataset.

7.5 Performance benchmarks

In this section we show benchmarks of the GPU and CPU code of the ASTRA
toolbox in combination with the Spot operator. Since the memory use of explicit
matrices is the key limitation in standard Matlab code, we compare memory usage
of the major components of the forward projection operator, such as copies of
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Figure 7.7: Convergence results of the Chambolle-Pock algorithm applied to the
experimental teeth dataset from ESRF. The primal-dual gap starts out negative
and around 80 iterations becomes positive which explains the dip in the absolute
value of the primal-dual gap (on a logarithmic scale).

volume data and projection data, with that of explicit Matlab matrices. Finally,
we measure the computational overhead that is introduced by the Spot toolbox,
when using the opTomo operator

7.5.1 The forward and backprojection operations

The code that we run as a benchmark is line 5 of Listing 7.2. All the benchmarks
were timed using the timeit function of Matlab, which takes care of “warming
up” the CPU and GPU. The wall clock time is averaged over the total number
of runs, which is chosen automatically by timeit. The machine we used for
benchmarking was a Linux workstation with an Intel Core i7-2600K@3.4 GHz CPU
with 16 GB of system RAM and a NVIDIA GTX 570 GPU. We compared the results
with a TESLA C2070 GPU in a server machine with Intel Core i7-3930K@3.2 GHz
and 64 GB of system RAM. We report results only for the Linux version of the
software. For a similar workstation running the Windows operating system (also
supported by the ASTRA toolbox), similar results were observed. A pre-release of
the ASTRA toolbox version 1.6 was used.

First we explicitly form the system matrix as a sparse Matlab matrix. This
can be done using a utility function in ASTRA. Then we also time the code for
two opTomo operators: one of type 'cuda', and one of type 'linear'. Both
of these generate the matrix elements on the fly based on the slice-interpolation
kernel [Jos82]. The CUDA version uses the GPU, while the other uses the CPU
code of the ASTRA toolbox. The Shepp-Logan phantom was used in both 2D and
3D cases, with sizes n x n and n x n x n respectively. A slice of the phantom is
shown in Fig. 7.5a. For each experiment, a square (or line in 2D) detector was
used that matches the width and height of the phantom in combination with a
parallel beam geometry. The number of angles was fixed at 100.
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In Fig. 7.8, the timings of the 2D forward projection are shown for different
sizes of the phantom. We were able to use explicit matrices in Matlab up to
phantom sizes of 2048 x 2048, above which the explicit system matrix no longer
fits in memory. For these data, 9 GB of memory was required. The ASTRA CPU
code is somewhat slower than the use of explicit matrices, which is expected due
to the need to generate matrix elements and overhead from the Spot operator.
Also note that the GPU code outperforms the CPU code for image sizes larger than
32 x 32.

In the 3D case it is not practical to form matrices and we omit the use of
explicit Matlab matrices. Instead we compare two different GPUs, the GTX 570
and TESLA C2070. The results show that both cards are performing similarly, but
the TESLA card can reconstruct a larger volume of 512 x 512 x 512, since it has
more memory (5.4 GB compared to 1.3 GB).

The estimated memory use of the forward projection is listed in Table 7.2
(in terms of data elements). It has been determined as follows: for the forward
projection, the volume and its projections need to be stored. For the 2D case,
this is n? for the volume and kn for the projections, where k is the number of
angles. Similarly, the 3D volume consists of n® voxels and projections are kn?.
For the Matlab code, additionally the matrix should be stored, which has the
same number of rows as detector measurements and the same number of columns
as volume pixels/voxels. If we assume that at most 3n voxels have a nonzero
contribution to a detector measurement, this adds 3n times the number of detector
elements to the storage requirements. In Fig. 7.9 we have plotted the memory
use corresponding to Table 7.2 for single precision floats. Note that the GPU code
uses twice the storage for the input of the forward projection algorithm (which is
the volume itself). This is because GPU textures are used to speed up data access.

We also benchmarked the backprojection operation of the ASTRA toolbox using
the Spot operator. The results are shown in Fig. 7.10 and they are comparable
to the timings of the forward projection. The memory use of the backprojection
operation is the same as the forward projection, except that the GPU code needs
to store the input twice and output once. For the backprojection, the input
corresponds to the projection data, which is usually somewhat smaller than the
volume.

Nowadays, CPU memory is limited to several 10s of gigabytes in a regular
workstation, or up to hundreds of gigabytes in a high-end server. For example,
32 GB RAM limits the image size to approximately 300 x 300 x 300 for explicit
matrices. Whereas GPU RAM is limited to 12 GB of RAM. However, since the
memory requirements of the GPU code are lower, the maximum image size is now
900 x 900 x 900, for this amount of RAM. We see a clear improvement in the
maximum size of datasets that can be handled by a single GPU.

7.5.2 Overhead of the Spot toolbox

The use of the Spot operator opTomo results in computational overhead due to the
Spot toolbox, compared to using the ASTRA toolbox directly. In order to quantify
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Table 7.2: Memory use of the forward projection operation

dimensions Matlab ASTRA CPU ASTRA GPU
2D Bk+1Dn?+kn n®+kn 2n?% +kn
3D Bk+1Dn®+kn? n®+kn? 2n® + kn?

GTX 570
101 { —*—Matlab 101 F —v—TESLA C2070 |
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Figure 7.8: Performance of the forward projection operator. The image size
represents the total number of pixels/voxels in the volume.
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Figure 7.9: Memory use of the forward projector. The image size represents the
total number of pixels/voxels in the volume.
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Figure 7.10: Performance of the backprojection operator. The image size repre-
sents the total number of pixels/voxels in the volume.

this overhead, we benchmark the LSQR algorithm as provided by Matlab using
three different ways to call it:

1. using opTomo

2. aversion using ASTRA's Matlab interface optimized for code length, referred
to as ASTRA util,

3. a version using ASTRA's Matlab interface optimized for speed, referred to as
ASTRA optim.

LSQR allows the use of a function handle instead of a matrix. The function
handle, afun, is specified, such that afun (x, 'notransp') returns Axx and
afun(x, 'transp') returns A'xx. The second variant of LSQR (ASTRA util)
uses a function handle of the ASTRA utility functions for the forward and backpro-
jection, as show in Listing 7.5. This can be done with a few lines of code and is a
straightforward implementation which is most likely used in practice. However,
these functions allocate memory and set up the algorithm whenever they are
called, which is every LSQR iteration.

In the third variant (ASTRA optim) we use an implementation at a lower level
that preallocates memory and sets up the algorithm, the same as is done in the
operator opTomo internally. However, this optimized code requires substantially
more lines of code. Because the ASTRA code in this version is the same as used in
opTomo, it allows us to see the exact overhead caused by the Spot toolbox.

In Table 7.3 and Table 7.4 the computation times of the three variants of
LSQR using 20 iterations are shown for various sizes of the volume/detector. The
same settings are used as in the previous paragraph. The code was run on the
workstation with the GTX 570 GPU.

In the 2D case, shown in Table 7.3, ASTRA util and opTomo have comparable
run times. If we look at the overhead caused by Spot by comparing ASTRA optim
and opTomo we see that for small n the overhead is large. For n = 32, LSQR using
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Table 7.3: 2D: LSQR runtimes in seconds

n ASTRA optim ASTRA util opTomo
32 0.020 0.039 0.040
64 0.022 0.042 0.044
128  0.036 0.057 0.060
256  0.085 0.112 0.111
512 0.278 0.308 0.306
1024 1.137 1.140 1.178
2048 4.885 5.030 5.040

Table 7.4: 3D: LSQR runtimes in seconds

n ASTRA optim ASTRA util opTomo

32 0.138 0.176 0.158
64  0.408 0.444 0.437
128 2.379 2.519 2.434
256 15.615 16.506 15.643

opTomo is twice as slow compared to LSQR using function handle ASTRA optim.
However, the total overhead is only 20 ms. If the amount of work is increased the
relative overhead becomes drastically smaller. For a data size of n = 2048, the
overhead of the opTomo operator compared to ASTRA optim is 155 ms. Relative
to the total runtime, this overhead is 3%.

In 3D, see Table 7.4, the amount of work compared to the overhead becomes
large. In this case, the ASTRA utility functions are slower than opTomo due to
overhead from memory allocation and initializing the forward and backprojection
algorithms. The overhead of opTomo compared to ASTRA optim is still in the
order of 20 ms. Therefore, the relative overhead with respect to total runtime is
almost negligible in 3D. For n = 256, the relative overhead is 0.2%.

In Listing 7.5 and Listing 7.6 we compare the amount of code that is needed
for ASTRA util and opTomo. We omit the code used for ASTRA optim, since it
requires about 50 lines of code. From these code snippets it is clear that the
opTomo operator can hide a lot of code and interface details that were necessary
for implementing ASTRA util. Moreover, the optimizations used in ASTRA optim
are also part of the opTomo Spot operator.

7.6 Discussion and conclusions

Advances in hardware for tomographic projection acquisition have led to an
increase in data sizes. At the same time, advances in computational methods
for limited data reconstruction have resulted in a broad range of algorithms that
are powerful, yet highly computationally demanding. As a result, reconstruction
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Listing 7.5: LSQR ASTRA util
1 % set up data size (100 projection angles)
2 vsize = [n,n,n];
3 psize = [n,100,n];
4 % set up function handle
5 f = @(x, type) Afun2(x, type, vsize, psize, proj_geom,
vol_geom) ;
6 % create forward projections
7 p = f(im, 'notransp');
8 % solve with lsqgr
9 x = lsqgr(f, p);
10
11
12
13 % used for function handle f
14 function y = Afun2(x, type, vsize, psize, proj_geom,
vol_geom)
15 if strcmp (type, 'notransp')
16 % vector to volume
17 x = reshape (x, vsize);
18 % fp
19 [y_id,y] = astra_create_sino3d_cuda(x, proj_geom,
vol_geom) ;
20 astra_mex_data3d('delete', y_id);
21 else
22 % vector to projections
23 x = reshape (x, psize);
24 % bp
25 [y_id, y] = astra_create_backprojection3d_cuda (x,
proj_geom, vol_geom);
26 astra_mex_data3d('delete', y_id);
27 end
28 y = y(:);
29 end
Listing 7.6: LSQR opTomo
1 % create Spot operator
2 W = opTomo ('cuda', proj_geom, vol_geom);
3 % create forward projections
4 p = Wxim(:);
5 % solve with lsgr
6 x = lsqr(W,p);




126 7. Using the ASTRA toolbox with Spot operators

software has to be implemented for parallel computation architectures such as
computer clusters and graphics processing units (GPUs) to handle large-scale
datasets efficiently.

Many novel reconstruction algorithms are prototyped in a high-level scripting
language such as Matlab. The syntax for these languages can be similar to
mathematical notation, which makes prototyping easier. Due to the nature of
high-level languages, these implementations are often not suitable to apply on
large-scale datasets. For tomographic datasets, the system matrix corresponding to
the linear model of the forward projection Wx = p, is too large to store explicitly
for even moderately sized datasets. The opTomo operator is able to bridge the gap
between the flexibility of Matlab scripts on one hand, and the fast and scalable
GPU back end of the ASTRA toolbox. The opTomo operator allows using matrix
syntax to call the fast GPU projection and backprojection implementations of
the ASTRA toolbox. By overloading many common matrix operations, the Spot
toolbox delivers an effective framework for linear operators.

We remark that the opTomo operator exposes ASTRA’s highly efficient imple-
mentations of the forward and backprojection operations, but when more detailed
access to the matrix is required, the user may find that certain operations are
either computationally inefficient or simply not implemented. This includes oper-
ations that work element-wise on the matrix, such as element-wise multiplication.
Therefore, Matlab scripts that rely on such operations, for example to compute
column or row norms, are currently not supported. Usually, it is possible to
work around these limitations and as the ASTRA toolbox is continuously evolving,
efforts are currently ongoing to extend the range of operations for which the
opTomo operator provides a high level of efficiency.

In our benchmarks we have seen that a very small overhead is paid by using
the Spot operator for ASTRA. As the data sizes increase the relative overhead
becomes negligible and should not pose any problems.

Our software is freely available under an open source license (GPL), enabling
easy implementation of novel advanced reconstruction algorithms in materials
science, biomedical imaging, and other fields.

7.6 Availability of source code and data

The ASTRA toolbox and opTomo operator can be downloaded as open source
software [15]. The Spot toolbox is available separately [BF14].

7.A Geometries in the ASTRA toolbox

In this section we describe the use of volume and projection geometries for the
ASTRA toolbox. Since the 2D geometries can be embedded into a 3D geometry,
we will not discuss these separately.
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7.A.1 Volume geometry

The volume geometry describes the dimensions of the reconstruction area in terms
of voxels. The reconstruction volume is always centered around the origin, and
its voxels are cubes of unit size. This defines the Cartesian coordinate system in
which the rest of the geometry is specified. To set up a reconstruction volume we
can use the following Matlab code:

1 vol_geom = astra_create_vol_geom(vx, vy, Vvz);

which results in a structure that contains the size of the reconstruction volume.

7.A.2 3D parallel beam

The parallel beam geometry for the 3D case is similar to the 2D case, except that
the detector is two dimensional.
In the ASTRA toolbox this geometry can be specified in one of two ways:

1 proj_geom = astra_create_proj_geom('parallel3d’,
det_spacing_x, det_spacing_y, det_row_count,
det_col_count, angles);

2 proj_geom_vec = astra_create_proj_geom('parallel3d vec',
det_row_count, det_col_count, vectors);

In the first case, a circular path (rotating around the z-axis) of the source and
detector is used. The parameters det_spacing_x and det_spacing_y specify
the distance between two adjacent detector pixels. The det_row_count and
det_col_count determine the number of rows and columns of the detector. The
angle array contains all angles in radians at which projections are measured.

In the second case, besides the number of rows and columns of the detector,
an array vectors is passed. This array has K rows, one for each angle. A row
contains the following parameters in order:

* rayX, rayY, rayZ. This vector gives the direction of the rays.

* dx, dy, dz. These are the x, y and z coordinates of the center of the
detector.

* ux, uy, uz. The vector from detector pixel (0, 0) to (0, 1).
* vx, vy, vz. The vector from detector pixel (0, 0) to (1,0).

In Fig. 7.11, we show an example of the geometric parameters. In this example,
a projection is taken at an angle of 0°. Note that this specifies the acquisition of
one projection image and therefore, the parameters for all other angles should be
passed as well. Using the vectors d and ray, many projection acquisition schemes
can be parametrized.

Note that it is not necessary for the detector and volume pixel to have the
same size, although this setting is commonly used for reconstructions.
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Figure 7.11: Illustration of the parameters for the volume and 3D parallel beam
projection geometries.

7.A.3 Cone beam

Setting up a cone beam geometry is very similar to setting up a 3D parallel beam
geometry. In this case, the rays are not parallel, but they originate from a single
point: the ray source. Therefore, instead of indicating the ray direction, the center
of the ray source is passed.

1 proj_geom = astra_create_proj_geom('cone', det_spacing_x, ...
det_spacing_y, det_row_count, det_col_count, angles, ...
source_origin, origin_det);

2 proj_geom = astra_create_proj_geom('cone_vec', ...
det_row_count, det_col_count, vectors);
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Samenvatting

Tomografie is een techniek voor het reconstrueren van doorsnedes van objecten
zonder deze fysiek open te snijden. Hiervoor wordt gebruik gemaakt van een
scanner die bestaat uit een stralingsbron en een detector. Het object bevindt
zich tussen de stralingsbron en detector. Op de detector wordt een intensiteits-
profiel gemeten van de straling nadat deze het object heeft gepasseerd. Na een
normalisatiestap verkrijgen we een projectiebeeld dat de cumulatieve dichtheid
weergeeft van het object in de richting van de straling. Door projectiebeelden
vanuit verschillende hoeken vast te leggen kan een 3D beeld gevormd worden
van de inwendige structuren. Hiervoor is een wiskundige berekening nodig die
wordt uitgevoerd volgens een reconstructie algoritme.

Computer tomografie (CT) voor medische diagnostiek is een van de meest
bekende toepassingen van tomografie. Hiervoor wordt een CT scanner gebruikt die
werkt met Rontgen straling, zoals geillustreerd in Fig. 7.12. Met Rontgen straling
kunnen structuren van kleiner dan een micrometer worden gereconstrueerd, maar
voor medische toepassingen wordt meestal gewerkt met een nauwkeurigheid in
de orde van een millimeter. Er bestaan ook meer geavanceerde toepassingen van
tomografie waarbij het afbeelden van structuren op micrometer of nanometer
schaal wel noodzakelijk is, zoals bijvoorbeeld in microbiologie en materiaalkunde
(Fig. 7.13). Op zulke kleine schalen is het zeer uitdagend om een reconstructie
te verkrijgen van hoge kwaliteit. Dit komt omdat instabiliteiten en verstoringen
tijdens het scannen leiden tot onnauwkeurigheden in de berekeningen die nodig

X-ray source

rotation m

&
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Ut
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Figuur 7.12: Medische CT-scanner.
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Figuur 7.13: Geavanceerde toepassingen van tomografie.

zijn voor een reconstructie.

Het onderzoek in dit proefschrift is erop gericht om reconstructie algoritmes
robuuster te maken ten opzichte van deze instabiliteiten en verstoringen.

Eén van de uitdagingen van tomografie op kleine schaal is het voorkomen van
ongewenste bewegingen en rotaties van onderdelen van de scanner of van het
gescande voorwerp. Deze kunnen leiden tot onzekerheden in de geometrie van
de opname van de projectiebeelden, wat leidt tot artefacten in de reconstructie.
Dit zijn beeldelementen die niet overeenkomen met fysieke kenmerken van het
gescande object. De geometrie die gebruikt wordt in het reconstructie algoritme
komt in dit geval niet overeen met de werkelijke geometrie. In hoofdstuk 2 en
3 beschrijven we twee verschillende methodes om de werkelijke geometrie te
benaderen met behulp van de projectiebeelden.

Een ander probleem is ruis. Ruis treedt onder andere op wanneer fotonen, die
je ook kunt beschouwen als “stralingsdeeltjes”, niet langs rechte lijnen door het
gescande voorwerp bewegen, maar worden verstrooid. Vooral bij lage intensiteit
van de stralingsbron of bij korte belichtingstijd bij de opname van de projectie-
beelden is het effect van ruis significant. In hoofdstuk 4 introduceren we een
reconstructie algoritme dat minder last heeft van ruis en ook gebruikt kan worden
in het uitdagende geval wanneer er slechts weinig projectiebeelden beschikbaar
zijn.

De intensiteit van de stralingsbron is in het algemeen niet constant, of kan
niet nauwkeurig worden gemeten. Het gevolg kan zijn dat het nulniveau van de
projectiebeelden verloren gaat. Dit leidt eveneens tot artefacten in de reconstruc-
tie. In hoofdstuk 5 bespreken we een algoritme dat het nulniveau kan benaderen
zodat artefacten kunnen worden gecorrigeerd.

Al deze methodes richten zich op zeer specifieke verstoringen. Soms zijn er
verstoringen die minder specifiek zijn of het wiskundige model in het reconstructie
algoritme is niet volledig. Dit soort fouten zijn vaak moeilijk te lokaliseren en het is
niet direct duidelijk hoe je hiervoor moet corrigeren. In hoofdstuk 6 introduceren
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we een reconstructie methode die in het algemeen iets langzamer is, maar veel
robuuster in het geval van dit soort niet-specifieke verstoringen.

Met de bevindingen van dit proefschrift is er een stap gezet om reconstructie
algoritmes voor tomografie breder toepasbaar te maken, ook voor experimentele
datasets waarbij de projectiebeelden onnauwkeurigheden bevatten.
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Propositions accompanying the thesis

“Improving Robustness of Tomographic
Reconstruction Methods”

by Folkert Bleichrodt

1. The limited precision of the floating-point representation rarely leads to
visible artifacts in the reconstructed tomography image. However, this
limited precision can impose a major obstacle for consistency optimization
of alignment parameters.

(Chapters 2 and 3)

2. Consider the update step of DART, where the following problem is solved:
minimize ||Wz —pll5 subjectto x;=v; fori €F.
xR

See Chapter 4 for the notation.
Let D € RV*N be a diagonal matrix with nonnegative real entries

0 ifieU
Di _{c ifieF,
where C is a constant and U = {1,...,N} \ F. For sufficiently large C,
replacing the update step by

minimize |Wz —p||§ +||D(x—2v)]?,
xRN

leads to an SDART algorithm that yields reconstructions similar to DART.
(Chapter 4)

3. Let W € RM*N be a discretized Radon transform operator for the parallel
beam geometry (see Eq. (5.1) of this thesis). Let e =(1,...,1) € R¥ and let
S be a linear reconstruction algorithm. The problem

minimize [|[W (S(p—7e))—(p—7e)ll,

can be solved using two evaluations of the algorithm S.
(Chapter 5)

4. Even if 50% of the pixels in each projection image is replaced by a large
value, and the location of these “corrupted” data are unknown, meaningful
reconstruction results with limited artifacts can still be obtained.

(Chapter 6)



. Radio tomographic imaging can potentially be used for anonymous tracking
of customers, even those without a smartphone.

. The tomographic reconstruction community would benefit greatly from a
centralized, unified database of tomographic datasets and corresponding
high quality reconstructions. For experimentalists this is a tool to validate
precision and accuracy of new tomographic scanner setups. Algorithm
developers can test and compare the accuracy of their methods.

. In a PhD project that is aimed to develop and implement numerical algo-
rithms, the development time is equally important as the final computation
time of the algorithm. Having a working algorithm is the first milestone,
while efficiency can be considered as a next step.

. Reconstruction is only part of an entire pipeline consisting of: acquisition,
preprocessing, reconstruction, post-processing and quantitative analysis.
Therefore, when optimizing this pipeline, each step should not optimize its
output, but should optimize the input of the next step in the pipeline.

. When interfacing between Matlab and C-type languages, the mixing of
column-major order and row-major order of arrays forms the recipe for a
major headache.
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