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The stochastic realization problem asks for the existence and the classification of all stochastic systems 

for which the output process equals a given process in distribution or almost surely. This 1s a fundamen­

tal problem of system and control tkory. The stochastic real1zat1on problem 1s of importance to model­

ling by stochasl1c systems 1n eng1ncer1ng, biology, economics ctc Several stochastic systems arc men­

tioned for which the solution of t11e stochastic real1zat1on problem may be useful. As an example recent 

resenrch on the stocho.st1c realizut1on problem for the Go.uss1an fnctor model nnd a Gaussian factor sys­

tem 1s discussed. 

This paper is dedico.ted to J.C. Willems on the occasion of his fiftieth birthday. 

I. INTRODUCTION 

The purpose of this paper is to introduce the reader to stochastic realization theory. '!11is will be 

done by presentation of a verbal introduction, a survey of Gaussian stochastic realization theory, 

formulation of open stochastic realization problems, and a discussion of the stochastic realization 

problem for Gaussian factor models. This tutorial and survey-like paper is written for researchers 

in sptcm and control theory, but may also be of interest to researchers dealing with mathematical 

models in engineering. biology, and economics. 

The Kalman filter and stochastic control algorithms have proven to be very useful for those 

control and signal processing problems in which there is a considerable amount of noise in the 

observation processes. Examples of such problems arc:· minimum variance control of a paper 

machine, access control of communication systems, and prediction of water levels. The solution of 

stochastic control and filtering problems depends crucially on the availability of a model in the 

form of a stochastic system in state space form. There is thus a need for modelling and realization 

of noisy processes by stochastic systems. Stochastic realization theory addresses this modelling 

problem. 

~)·stem and control them_r• is the subject within engineering and mathematics that deals with 

modelling and control problems for dynamic processes or phenomena. Such a phenomenon may 
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initially be described by specifying the observation process or trajectories, which description will 

be termed the external descrij1tio11. for reasons of modelling and control it is often better to work 

with an inter'.zal description. 111c form of such an internal description depends on the properties of 

the ob,s~rvat1on process. For deterministic linear systems it may be a description in state space 

form. I he state of such a system at any particular time contains all information from the past 

ncc:ssary to determine the future behavior of the state and output process. For stochastic systems 

the internal description is a stochastic system in state space form. Here the state is that amount of 

information that makes the past and the future of the observations and the state process condi­

tionally independent. For a vector valued random variable one may consider the internal descrip­

tion of a Gaussian factor model, sec section 5. For models of images and spatial phenomena in 

the form of random fields, other internal descriptions arc needed. 

The realization problem of system theory can then be formulated as how to determine an 

internal description of a model given an external description. Motivation for this problem comes 

from engineering, in particular from system identification and signal processing, from biology, 

and from econometrics. In these subject areas one may want to estimate parameters of the internal 

description from observations. 'f11c question should then be posed whether these parameters can 

be uniquely determined from the observations, that is whether they arc identifiable. This question 

may be resolved by solution of the realization problem. First one must impose the condition that 

the model is minimal in some sense. The concept of minimality will depend on the class of internal 

descriptions. Secondly, there is in general no unique internal description for a phenomenon given 

an external description. The realization problem therefore also asks for a classification of all 

minimal internal descriptions that correspond to a given external description. Such internal 

descriptions may he called equivalent. Once the equivalence class has been determined one may 

choose a canonical form for it. From that point on standard techniques from system identification 

and statistics may be used to determine the internal description of the model. The part of system 

theory that deals with modelling questions is referred to as reali::atio11 theo1y. It treats topics such 

as transformations between representations, parametrization of model classes, identifiability ques­

tions, and approximate modelling. 
A brief description of this paper's content follows. Section 2 contains a verbal introduction 

to the modelling procedure of system theory. In section 3 a tutorial is presented on Gaussian sto­

chastic realization theory. Several examples of stochastic systems for which the stochastic realiza­

tion problem is open and relevant for engineering and economics, are mentioned in section 4. As 

an example the stochastic realization problem for the Gaussian factor analysis model is discussed 

in section 5, and for Gaussian factor systems or error-in-variables systems in section 6. 

2. MODELLING AND SYSTEM THEORY 

2. i. l11troductio11 
As identified in the previous section there is a need for stochastic models of engineering and 

economic phenomena. The purpose of this section is to describe the .modelling pro.ccdurc of sys­

tem and control theory. Particular attention will be devoted to modelling of cconoffilc processes. 

2.2. 171c moddlingproccdure . 
1 t is assumed that data, possibly in the form of time series, arc available for the modeller. .lt .'s 

well-recognized that useful data are easy to obtain in the technical ~ciences but ~rnrd to obtam Ill 

economics. One reason is that economics is not a laboratory science; c~.r-cnmcnts arc often 
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impossible or if possible cannot be repeated. Also data gathering is much more expensive in 

economics than in the technical sciences. 
The objective of modelling is to obtain a model for a phenomenon that is realistic and of low 

complexity. A model is called realistic if its observed behaviour is in close agreement with the 
phenomenon. A mea:oure of fit for this agreement has to be formulated. The term low complexi~}' 
should be considered as in ordinary use. A mathematical dcfini tion of this term is very much 
model dependent. Models of high complexity arc mathematically not well analyzable and compu­
tationally not feasible. The two modelling objectives mentioned arc conflicting. Therefore a 
compromise or trade-off between these objectives is necessary. 

The preferred modelling procedure consists of the following two steps: 
selection of a model class; 
selection of an clement in the model class involving the above mentioned trade-off. 

This procedure must be applied in an iterative fashion. If the selected clement in the model class is 
not a realistic model then the model class may be adjusted. The two steps of this procedure will 
now be discussed separately. 

2.3. Selection of a model class 
In the selection of a model class one has to keep in mind the objectives of a realistic model and a 
model of low rnmplcxity. The selection procedure demands application of concepts and results 
both from the research area of the object to be modelled, and from system and control theory. 

The formulation of realistic economic models is difficult for several reasons. One reason is 
that economic transactions involve multiple dceisionmakcrs compared with a single dccision­
maker in most engineering problems. The appropriate mathematical models arc therefore game 
and team models and their dynamic counterparts. The status of dynamic game and team theory is 
not yet at a level at which a body of results is available for applications. A second reason, closely 
related to the first, is that a dccisionmakcr must also model the deeisionmaking process of the 
other dccisionmakcrs. This remark is well-known in the literature on stochastic dynamic games. 
The discussion about rational expectation also illustrates this point. A third reason is that the 
rules of the economic process change quickly compared with the periods over which economic 
data arc available. Assumptions of time-invariance or stationarity arc often unrealistic. 

In system theory a formalism has been developed for the formulation of mathematical 
models of dynamic phenomena and for a modelling procedure. For a dynamic phenomenon in the 
form of a time series a preferred deterministic model is called a dynamic system in state space 
form. One distinguishes inputs and outputs of such a system, and a state process. The state of a 
dynamic system at any particular time is that amount of information that together with the future 
inputs completely determines the future outputs. 111e trajectories of the input, output and state 
process arc the basic objects of a dynamical system. The reader is referred to [78 J for material on 
linear systems. 

Stochastic systems have proven to be useful models in several areas of engineering such as 
signal processing, communications and control. Within economics they arc used for example in 
connection with portfolio theory. In stochastic system theory, probability theory is used as a 
mathematical model for uncertainty. A stochastic system is specified by a measure on the space of 
trajectories. This is a fundamental difference between deterministic and stochastic systems. For a 
stochastic system without inputs the state at any particular time makes the past and the future of 
the output and state processes conditionally independent. Despite the fact that a stochastic system 
is specified by a measure, the representation in terms of trajectories, for example by a stochastic 
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differential equation, is crucial to the solution of control and filtering problems. 
Why arc stochastic models realistic in certain cases? Within economics reasons for this are 

that such modelling involves: 
aggregation over many dccisionrnakcrs; 
uncertainty over future actions of other decisionmakers; 
uncertainty in the measurement process, due to vague definitions and averaging. 

Remark that the costs involved often prevent the gathering of full information. Therefore aggrega­
tion must be used. The variability of the data then suggests a stochastic model. This author is not 
optimistic about the applicability of stochastic models to economic phenomena. Reasons for this 
are the relatively short time series and the frequent change in structural relations. 

Should one use a deterministic or a stochastic model class to model a certain phenomenon? 
What is needed is a criterion to decide whether for a specific phenomenon the class of determinis­
tic systems or that of stochastic systems is the appropriate model class. 

A crucial observation from system theory is that the choice of model class is all-important. Of 
course, a model must be realistic and of low complexity. IJut within these constraints there is left 
some freedom in the mathematical formulation of the model. Given this freedom it is advisable to 
choose a model class for which the motivating control problem is analytically tractable. An exam­
ple of such a choice is the Gaussian system that leads to the Kalman filter. Filtering theory was 
formulated by N. Wiener and A. N. Kolmogorov for stationary Gaussian processes. R. E. Kalman 
restricted attention to a particular class of stationary Gaussian processes, those generated by 
linear stochastic systems driven by white noise. For this class of systems the solution of the filter­
ing problem has proven to be straightforward. That this class may be extended to include non­
stationary processes is then a useful corollary. How is this observation to be used in economic 
modelling? As suggested by R. E. Kalman, a detailed study must be made of economic models 
that arc published in the literature to sec whether changes in the mathematical formulation of 
these models are advantageous for the solution of control problems. The selection of the model 
class seems a creative process that involves knowledge of both the research area of the 
phenomenon to be modelled and of system theory. 

For stochastic processes indexed by the real line the model class of stochastic systems seems 
an appropriate model. Sec section 3.1 for a definition of this concept. For a vector of random vari­
ables the model class of Gaussian factor models may be useful, sec section 5. For random fields it 
is not yet clear what the appropriate model class should be. 

Once the model class has been determined, the modelling procedure prescribes the solution 
of the stochastic realization problem. In section 3 this problem is formulated and the solution 
shown for the case of Gaussian processes. 

2.4. Selection <>/an element in the model class 
Given the data and the model class, the problem arises of how to select an clement in the model 
clas!>. As indicated earlier, the selection of a model is a trade-off between the objective of a realis­
tic model and the objective of a model with low complexity. For deterministic dynamical systems 
results on the selection of an clement in the model class arc reported in (35, 79]. 

For stochastic systems a formalism for the selection of an clement in the class of stochastic 
systems is described below. Consider first a measure of fit between the observations of the 
phenomenon and the external behaviour of a stochastic system. Recall that the observations con­
sist of numbers while the external behaviour consists of a measure on the sample space of observa­
tion trajectories. The way to proceed is to use the observations, the numbers, to estimate the 
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measure on the sample space of observation trajectories. In case this measure is Gaussian and the 

observation process is stationary it suffices to estimate the mean and covariance function of this 

measure. 
One can define a measure of fit between the measure for the output trajectories estimated 

from observations and the measure associated with the external description of the system. Exam­

ples of such a measure arc the Kullback-Lcibler measure and the Hellinger measure; sec section 

3.7. 

For stochastic systems one also needs a measure of complexity. A stochastic complexity 

measure introduced by J. Rissanen [60-64] seems the appropriate tool for this purpose. Stochastic 

complexity is based on A. N. Kolmogorov's complexity theory. Since this subject is well covered 

elsewhere the reader is referred to the indicated references. 

The actual selection procedure given data, a model class, and measures of fit and complexity, 

consists then of a combination of analysis and numerical minimization. The details of this will not 

be discussed here. 

3. GAUSSIAN STOCHASTIC REALIZATION 

The purpose of this section is to present the modelling procedure for Gaussian processes. In this 

tutorial part of the paper results for the Gaussian stochastic realization problem arc summarized. 

For a reference on the weak Gaussian stochastic realization problem sec the book [24] and for a 

shorter introduction in the English language [23]. For a survey of the strong Gaussian stochastic 

realization problem sec [47]. 

Notation 

The following notation is used. N={0,1,2, ··· }. l, =(1,2, ··· }. "?!.={ ·· ·,-1,0,1. ··· }. 

lk = { 1,2, · · · ,k }. IR denotes the set of real numbers, and IR , =[O. oo). For a probability space 

(rl,l·; /')consisting of a set Q, a a-algebra F and a probability measure P, denote 

L ' (F) :-:::: {x :!1-"R , I x is a random variable measurable with respect to F}. 

x E G (0, Q) denotes that the random variable x has a Gaussian distribution with mean zero and 

variance Q. 
For a stochastic process .d2 X T -"IRk the following notation is used for the a-algebra's gen­

erated by the proccssF}"=f·::- =a({v(s),'v's..;;;t})and rr' =a({l'(s),V's;;;;ot)). 

DEFINITION 3.0. 1. The a-algebra's F 1, F 2 are called conditionally independent giFcn rhe a-algebra 

G if 

forall=;EL' (f;). The notation 

will be used to denote that Fi.F2 are conditiollal{)' i11dipe11d1'11t given G a11d Cl will he called the con­
ditional independence relation. 
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3. J. Stochastic systems and Gaussian systems 

The purpose of this section is to define stochastic dynamic systems. Attention is restricted to 
discrete-time stochastic dynamic systems. Stochastic systems with inputs will not be considered 
here. 

A motivation for the definition of a discrete time stochastic dynamic system follows. Con­
sider the object that is usually called a stochastic system, 

x,, 1 =Ax, + A-tv,, Xo, (3.1.1) 

(3.1.2) 

where x 0 :~~1R",x 0 EG(m 0 ,Q 0), v:~X T ~Rm is a Gaussian white noise process with 

v,EG(O,V), P-'0 ,F~"" arc independent a-algebras, AEIR"x", MER"x"', CERPx", NElllpxm, 

x :U X T ~IR" and y :n X T .... !RP defined by the above equations. It may be shown that this object 
is equivalent with the object specified by: 

Xo EG(m 0 .Q 0 ); (3.1.3) 

E[exp(ir/x,, 1 t-i11<v1>1n vF)' iJ=cxp(i[~.r(~~::j- 11z[~fs[~.]>. (3.1.4) 

for all t ET and some S EIR <11 'pl x(,. 1 Pl. Observe that the conditional characteristic function of 

(x, I l •)'1) given (F;' v n· J) depends only on the random variable x,. It then follows that 

(3.1.5) 

for all t ET. A stochastic dynamic system could now be defined as a state process x and an out­
put process y such that for all t ET there is a map 

x 1 >-->distribution of(x,, 1.)'1) 

This definition may be found in [42; p. 5]. Below a different definition will be adopted. It may be 
shown that (3.1.5) is equivalent with the condition that for all t ET 

(F;- I v F;' ' ,F)' Iv 1) I P-")EC/, 

where 1-7' =a({x,.V s;;:.,t}), F;' =a((x,,'v' so;;;r}), and similar definitions for F)' 1 ,F)' . The 
property that the past and future of the state and output process arc conditionally independent 
given the current state will be taken as the definition of a stochastic dynamic system. 

DEFINITION 3.1.1. A discrete-time stochastic dynamic system is a collection 

o = (52,f~P:J~ Y,By,X,Bx.y.x}, 

where 

(n,F.P} is a completeprohabili~vspace; 
T- l, to be called the time index set; 
( Y, B r) is a measurable space, to he called the output space; 
(X, IJ x) is a measurable space, to be called the state space; 
y :~2 X T~ Y is a stochastic process, to be called the output process; 
x:~2 X r-x is a stochastic process, to he called the state process; 

such that Jin· all t ET 
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(3.1.6) 

A stochastic dynamic .~)'stem on T cz is defined analogous[y. 171e class of stochastic systems is 

denoted J~v S-:i.. 

The above definition of a stochastic dynamic system is based on related concepts given in 
[48, 52, 72, 73]. 

From the definition of a stochastic dynamic system one obtains that the state process 
satisfies the condition 

for all t ET. This is equivalent with x being a Markov process. Markov processes arc thus also 
stochastic dynamic systems, and the latter class thus contains the classical model of state 
processes. 

The defining condition of a stochastic dynamic system is more or less symmetric with respect 
to time in the past and future of the state and output process. This is an advantage over the asym­
metric formulation given in the representation (3.1. l) and (3.1.2). 

The condition (3. 1.6) is asymmetric with respect to the output process. This is a convention. 
A priori there arc four possible conditions for a stochastic dynamic system which arc listed below: 

(Fi' ' v Fi' . .Fi' VF;' I F")EC/ ';;/ tET; 

(/·} / I v Fi' I , F)' 1VF1' IF")ECI ';;/ t ET; 

(Fi' ' v F;' 1 ,r;· 1 vF;'. I F")EC/ ';;/ t ET; 

(F;' ,' 1vF,' 1 ,F)'·· VF/' I V")ECI ';;/ t E 7: 

Condition (3.1.7.1) and a property of conditional expectation imply that 

F 10' C(F)'. VF)' )CF" 

(3.1.7.1) 

(3.1.7.2) 

(3.1.7.3) 

(3.l.7.4) 

which fact is not compatible with the intuitive concept of state in that the output is in general not 
part of the state. Condition (3.1.7.2) is not suitable because it would allow examples that arc 
counter-intuitive to the concept of state, sec example 3. 1.6. The conditions (3.1.7.3) and (3.1.7.4) 
thus remain, of which condition 3 has been chosen. This is a convention. Condition (3.1.7.4) 
results in the representation 

which form is inconsistent with the system theoretic convention of (3.1.1 & 3.1.2). The option of 
taking condition (3.1.7.3) or (3. l.7.4) in the definition of a stochastic dynamic system is related to 
the option of considering Moore or Mealey machines in automata theory, sec [50; I. A.2]. 

The definition of a stochastic system is formulated in terms of a-algebras rather than in 
terms of stochastic processes. This is a geometric formulation in which emphasis is put on spaces 
and subspaces rather than on the variables or processes that generate those spaces. 

DEFINITION 3.1.2. Given a stochastic d)'namic .~)'stem 

a= {SU~P, T, Y,By,X,/J;..,y,x} ES2:. 
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This system is called: 
a. stationary or time-invariant if (x,y) is ajoilll(}' statio11ary process; 
b. Gaussian if Y=JRP, X= Rn for certain p,n El+• By= BP and Bx =Bn are Borel a-algebras 

on Y respective(";' X. and if (x,y) is a joint(y Gaussian process; kv w~)' of abbreviation, a Gaus­
sian stochastic dynamic system will be called a Gaussian system and the clu.ss ef such systems is 
denoted/~)' GS"i.; 

c. finite if Y,X are finite sets and By, Bx are the a-algebras 011 Y,X generated l~y all subsets; by 
way of abbre1•iation a finite stochastic dynamic ~vstem will be called a finite stochastic system 
and the class of such ~}'stems is denoted /~y FS"i.. 

PROPOSITION 3.1.3. c Oil.Sider a collection 

{fl,F,P, T, Y,BhX,Bx.y,x} 

as defined in 3.1.1 but without co11ditio11 (3.1.6). 771e following statements are equivalem: 
a. for all t E T 

(F)' t v Fi' I ,F)' ·1vF; I Fx')ECJ; 

b. fora/It ET 

(F1'•vr"'',F)' iVFi' I F")ECJ; 

c. for all t ET 

(Fi'' vF;'' ,F·'·· 'vF" 'IF'')ECJ. 

The following result is a useful sufficient condition for a stochastic dynamic system. 

PROPOSITION 3.1.4. Co11sidcr the collectio11 

a= {fl,f:P,T, Y,By,X,Bx,y,x) 

as defi11ed in 3.1.J but without condition (3./.6). If for all t ET 

1.(F)' ',F'c,;, VF)' 1 IF"')EC/; 

2.(Fi' I ,Fi' VF)' I IF'')EC/; 

then aES2:. 

Below two examples of stochastic dynamic systems arc presented. 

EXAMPLE 3.1.5. Consider a Gaussian system representation 

x, , 1 = Ax1 + 1\1v1, 

y 1 = Cx, + Nv1, 

(3.1.8) 

(3.1.9) 

with the conventions given below (3. I.I & 3.1.2). As indicated there this representation is 
equivalent with 

E[cxp(iurx1 ; 1 +iw'/>·1) I Fj VF}' 1 J 
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[ T [Ax1] ] T [ = exp(i ~.] Cx, -~ [~. S ~]), 

for all t E Tand x 0 E G. This and a property of conditional independence imply that 

(F" 11 vF\Fl'-·1vF~ · 1r")EC/, 'VtET, 

and from 3.1.3 then follows that, with x,y specified by (3.1.8 & 3.1.9), 

<1 = {r!.,J·~P. T,JRP,JJP,IR",B\v,x} ES~. 

From properties of Gaussian random variables follows that (x,y) is a jointly Gaussian process, 
hence <J is a Gaussian system or a E GS'J.. In the following (3.1.8 & 3.1.9) will be called a forward 
representation of a Gaussian system. 

EXAMPLE 3.1.6. Let v:~X T-IR be a standard Gaussian white noise process. Definey :fJ.X T-R, 
x:fJ.XT-IR hy 

X1 = l'1 I• )'1 = X1 + 1'1 = 1'1 I + v,. 

Then the following hold. 
a. For all t ET (F)': J>Fl' 1 1 IN) ECJ, whrrc N CF is the trivial a-algebra. Tirns the proccssy is 

the output process of a stochastic dynamic system according to (3.1.7.2) with a trivial state 
space. 

b. For all tET 

E[exp(il9•1) I Fr r il 

is nondetcrministic, indicating that the proeessy has some kind of memory. 
c. 

(p·' vF'' F'' · vp•·· IF·'")EC/ I t • ·1 l I 

for all t ET, hence 

a = { U, 1'~ P, 7~ Y, JJ, X, B,y,x} E GS">~. 

3.2. Forward and backward rc1Jrese11tatio11s af Gaussian systems 
The purpose of this subsection is to show that a Gaussian system has both a forward and a back­
ward representation. and to derive relations between these representations. 

PROPOSITION 3.2. l. Let 

a== {12,/.J', '/~ W,JJP,JR",[J",y,x} EGS~ 

be 11 (i11ussia11 syst£•m. Assume that for all t ET E[x1]=0, E[y,]=O and that 
Q: T-~" x",Q (I)= L:'[x,x/"J>O. 
a. 71ie Gaussian .~)'stem has what will be called a forward representation given by 

x, , 1 = Af(r)x1 + Mv{, Xo, 

Yi =- cl(t)x1 -+ Nv{, 

(3.2.I) 

(3.2.2) 
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where vl:Q X T ->R" 'k is a Gaussian white noise process with i11te11si~y VI. Given a then 

Al(t) = E[x1 1 1xj"]Q(t) · 1 

Cl(t) = E[)l1xf"]Q(t)- 1, 

Vf(t) z [ ~i,:;:,] ;~;;,:,~' iJ] - [ ~;~g l Q (I) ' ((A f(t) )1(cf (t)) '], 

M = (/,,O}ERnX(n tp), N = {O/p)EJRPX(n rp}_ 

Converse{}', given a forward representation with A I, cl, VI, M, N functions and x,y defined kF 
the ahovefonmrd representation (3.2.1 & 3.2.2), then u is a Gaussian system. 

b. 'The ghoe11 Gaussian .~vstem has also a backward representation give11 by 

x, 1 = A"(t)x1 + Mv~, x 0 , 

)'1 1 = C\t)x1 + Nv~, 

where v" :~ x T _.JRn I k is a Gaussia11 white noise process with intensi~)I v". Given <1 

A "(r) = E[x1 1 x/']Q (t) 1 

C11(t) = Elr1 1xl'JQ {t) 1 

V"(r) = T r. [
Q(t - I) E[x,. 1vf"Jl 
E[y,x, 1] E[F1Y1] 

M = (1,, 0), N = (0 lp). 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

Co11verse{1'. given a backward representation with A 1',C", V 11 ,M,N and x,y tlS defi11ed kv the 

above backward representation, then u is a Gaussian .~}'Stem. 

c. The relatio11 between the forward a11d backward represe11tatio11 of a Gaussian system is given kY 

Af(l)Q(t) = Q(t + l)(A"(t t l))T, 

Ch(t)Q(t) = cl(t - l)Q(t - l)(Al(t - l))T + NVl(t -1)M 1", 

Cl(t)Q(t) = C"(t+l)Q(t+l)(A,,(t+l))" + NV 11 (t+1)MT. 

(J.2.8) 

(3.2.9) 

(3.2.10) 

d. Assume that the gfren Gaussian system is statio11ary. Then Al, Cl, Vf,A 1', C 1', VI>, do 11ot depend 
cxplicil~F 011 tET a11d Q(t)=Q EIRnxn, Q=QT>O. The relation between the forward and 

backward representation is then given/~)' 

Al= Q(A1,)TQ I 

Ah== Q(Al)TQ I 

cb = cfQ(Al)TQ I + NVIMTQ 1 = clA/J + NVIMTQ 1, 

cl= C"Q(A 1')TQ I+ NV 11 MTQ- 1 = c"Af + NVbMTQ- 1• 

(3.2.ll) 

(3.2.12) 

(12.13) 

( J.2.14) 

In the following the superscripts f and h will be omitted when it is clear from the context which 
representation is referred to. 
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3.3. Stochastic obscrvabili~)' and stochastic rcconstructibili~}' 

The theorem on the characterization of minimality of a stochastic realization makes use of the 
concepts of stochastic observability and stochastic rcconstructibility. Below these concepts arc 
introduced. 

DEFINITION 3.3. l. Consider a stochaslic system 

o = {fJ.,F,P, 7~ 1Rfl,BP,1Rn,B 11 ,y,x) ES::S. 

a. 77zis .~rstem is called stochastically observable on the interval { t, t + 1, ... , t + t 1 ) if the map 

1, 

X1H>E[cxp(i2:1/fr, +s) IF''] 
s~o 

from x 1 to the co11ditio11al characteristic function of [F1,y1 1 1 ••.. ,y1 .; 11 } given x 1 is injective on 

the support of x 1• 

b. Assume that the system a is stationary. Then it is called stochastically observable if tht!re exists 

a t, t 1 ET, 0 <t 1 < oo, such that it is stochastical(v obst!l'vab/e 011 the interval 

{ t, t + I, ... , t + t 1 ) as defined above. By stationari~)' this then holds for all t ET. 

The interpretation of a stochastically observable stochastic system is that if one knows the condi­
tional distribution of U'i•Yr 1 1 ••.. ,y,, 11 } given x,, then one can uniquely determine the value of 

x 1• Note that the conditional distribution of (J',, ... ,y1 , 11 } given x1 can in principle be deter­

mined from measurements. 

PROPOSJTION 3.3.2. Consider the Gamsia11.~)·stem 

o = {Q,F,P,T,~P,BP,~ 11 ,B",y,x}EGS2:, 

with forward representatio11 

x 1 , 1 = A (t)x, + Mv1, 

y, = C(t)x1 + Nv1, 

with v1 EG(O, V(t)). 

a. 771e ~)'Stem a is stodwstical{v observable 011 { t, t + I, ... , t + t 1} i.ff 

iff 

C(t) 

C(t + l)•P(t + l.t) 
ra11k 

1, 

= ll, 

rank( 2: C(t +s)•P(t +s,t)•li(t +s,t)'1°C(t +s)'f) = n. 
s -o 

b. Assume that the .~vstem is statio11a1y with forward represe11tutio11 

(3.3.l) 
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with v1 E G (0, V). Then this ~vstem is stochastical(}' observable if! 

rank 

c 
CA 

= n. 

DEFINITION 3.3.3. Consider the stochastic ~ystem 

a= {Q,F,P,T,JRP,BP,R",B",y,x}ES~. 

(3.3.2) 

a. This .~)'Stem is called stochastically reconstructible 011 the interval { t -1, t - 2, ... , t - t 1 } if 
the map 

r, 
x1 ...... E[exp(i 2: u·;:i., -- .) IF"] 

s-J 

is injective 011 the support ofx1• 

b. Assume that the ~vstem is stationmy. Then it is called stochastically reconstructible if there 

exist t, t 1 ET, O<t 1 < oo, such that it it stochastical(v reconstructible 011 the interval 

{ t -1, ... , t - t 1 }. By statio11ari~v this then holds for al~}' t ET. 

PROPOSITION 3.3.4. Consider the Gaussian system 

a= {QJ·~P, T, JRP,Bl',IR",B",y,x} EGSL: 

with backward representation 

x 1 1 = A (t).,·1 + Mv1, 

y1 _ 1 = C(t)x1 + N111, 

with v1 EG(O, V(t)). 

a. The ~)'stem o is stoclwstical~v reconstructible on the interval { t -1, t -2, ... , t - t 1} i.ff 

C(t) 

C(t - l)<l>(t -1,t) 
rank = 11, 

iff 
1, 

rank ( }-: C(t -s)<l>(t -s,t)<P(t -s,tfl'C(t-s)1') = n. 
s --1 

b. Assume that the ~)'Siem <J is stationa1y with backward r<'presit11tatio11 

)'1 1 = Cx, + N1•1> 

(3.3.J) 
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with 1•1 E G (0, V). Then it is stochastical{v reconstructible if! 

rank 

c 
CA 

CA" I 

= II. (3.3.4) 

Note that the condition (3.3.2) is expressed in terms of the matrices (A,C) of the forward repre­
sentation of the Gaussian system and the condition (3.3.4) is expressed in terms of the matrices 
(A, C) of the backward representation. Sec section 3.2 for the way the matrices of the forward and 
backward representation arc related. 

3.4. The weak Gaussian stochastic realization problem 
Attention is again directed to the problem of modelling by a stochastic system. So, one is given a 
measure on the observed process that has been estimated from the data. One is asked to determine 
a stochastic system in the model class such that the measure restricted to the observation process 
equals the given measure. 

PROBLEM 3.4.1. The weak Gaussian stochastic realization problem for a stationary Gaussian pro­
cess is, given a stationaiy Gaussian process on T = 7!.. taking values in (!Rf, BP) having mean 1•alue 
f u!lction :.ero and covariance fullction W: T -41RP Xp, to solve the following subproblems. 

a. Does there exist a station(J/y Gaussian .~)'Stl!m 

a= (B,F,P,T,IRI',BI',IR",B",y,x} EGS2: 

such that tht! output process y of this system l!quals the given process in distribution. This means 
that these processes have the same fami{» of finite dimensional distributiom. Effective{·>' this 

means that the covariallce function of the output process must be equal to the give11 covariance 
function W because both processes are Gaussian. If such a system exists, then one calls a a weak 
Gaussian stochastic realization of the given process, or, if the context is k11own, a stochastic 
realization. 

b. Classify> all minimal stochastic reali:.atio11s of the given process. A weak Gaussian stochastic 

realization is called minimal if the dimension C!f the state space is minimal. '/71e following sub­
problems must l>e solved: 

J. characterize those stochastic realizations that are minimal; 
2. obtain the classification as such; 

3. indicate the relation between two minimal stochastic realizations; 

4. produce an algorithm that constructs all minimal weak Gaussian stochastic realizations of 
the given process. 

In problem 3.4.1 one is given a stationary Gaussian process with zero mean value function. Such a 
process is thus completely characterized by its covariance function. In part a. of this problem the 
question is whether the given process can be the output of a stationary Gaussian system. Because 
by definition such a Gaussian system has a finite-dimensional state space, not all stationary Gaus­
sian processes can be the output process of a Gaussian system. 'l11e question should therefore be 
interpreted as to determine a necessary and suflicicnt condition on the given process, or its 
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covariance function, such that it can be the output process of a Gaussian system. 
In part b. of problem 3.4.1 a classification is asked for. This question arises because a sto­

chastic realization, if it exists, is in general nonunique. This will be indicated below. The dimen­
sions of the state space of two stochastic realizations may also be different in general. For system 
theoretic reasons, such as identifiability, one should restrict attention to those stochastic realiza­
tions for which the dimension of the state space is minimal. Such a rcaliza tion is called minimal. In 
general minimal stochastic realizations arc also nonuniquc. A classification of all minimal stochas­
tic realizations is then useful for the solution of the identifiability question. The above defined 
problem is related to the problem of determining spectral factorizations of the spectral density of 
the given process. 

Below a notation is used for the parameters of a time-invariant finite-dimensional linear sys­
tem of the form 

x(t +I)= Ax(t) + Bu(t), 

y(t) = Cx(t) + Du(t), 

with U = IR"', X = IR", Y =!RP, u: T->U, x: T ..... x.)' :T-> Y. The notation is then 

pls = {p,11,m,A,B,C,D} EL'LP. 

In the formulation of theorem 3.4.2 use is made of the set o;;;~. The definition of this set is given 
in subsection 3.5. 

THEOREM 3.4.2. C 011sider the weak Gaussian stochastic realization problem for a stationmy Gaussian 
processasposedin 3.4.1. Assume that Jim W(t)=Oandthat W(O)>O. 

t-~00 

a. There exists a wrak Gaussian stochastic rralization of the given process 
i.ff there exists a pls = fu>, 11,p, F, G, li,J} E L'i.P with J = J 'f' such that 

ift>O, 

if t =O, 

if t<O. 

( 3.4.1) 

(a junctio11 having the jimn ( 3.4.1) will be called a discrete-time l3ohl function; the right hand 
side of(3.4.J) will be called a covariance realization of the co11arianceju11ction W.) 

i.ff 

W(A.) = 2: W(t)A 11 I ( 3.4.2) 
trc~l 

is a rational function. The dimensio11 11 i11 the covariance realization ( 3.4. l) is also called the 
McMillan degree of thi: covariallce function. 

b. A weak Gaussian stochastic reali::.ation is minimal i.fJ it is stochastical{)' observable and stochast­
ical{J' reco11structih!e. 

c. A mi11imal weak Gaussian stochastic realization is 11onu11ique i11 two w~vs. 
I. Ifpgs 1 cc• fu1,n,111,A, C,M,N, V) EGS'::'..P are the parameters of afonvard representation of 

a mi11in1ul stochastic realization, and if SE IR" x 11 is 11011si11gular, then 
pgs 2 ={p,n,m,SAS 1,CS 1,SM,N,V}EGS}:.P are also the parameters of a forward 
representation 1if 11111i11i111al stochastic realization. 

2. Fix the parn111ete1:~ of a minimal covariance realizatio11 as gfren in a.. above, 
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pls= {p,n,p,F,G,11,J} EL'i.P min· 

Denote the parameters of a fo1ward representation of a minimal Gaussian stochastic reali­
=ation J~v {p,n,A,C, V} and the set of such parameters by WGSRP min· Define the 

classification map 

cp1s: Oj;i; ~ WGSRP min• CptJ(Q) = {p,n,A,C, V), (3.4.3) 

~}'A =F. C=ll, 

_ [Q - FQFT G - FQH T } 
V = V(Q) = GT-JlQFT 21-HQHT. 

Then, for fixed pls E L'i.P min is Cpfs a bijection. Thus all minimal weak Gaussian stochastic 
realizations are classified/~)' the elements of o;i;. 

d. The stochastic realization algorithm as defined in 3.4.3 below is well defined and constructs all 
mi11imal weak Gaussian stochastic realizations. 

ALGORITHM 3.4.3. The stochastic reali=ation algorithm for weak Gaussian stochastic realizations of 
stationa1y Gaussian processes. 
Data: given a stational)' Gaussian process with zero mean value fu11ctio11 and covariance function 
W: T ~JRP xp. Assume that the condition of 3.4.2.a. holds. 
l. Determine a minimal covariance realization of W via a realization algorithm for time-i11varia1ll 

finite-dimensional linear systems, orpls = {p,n,p,f~ G,JJ,J) EL"i:.P miiv such that 

2. 

W(t) = 1
JIF1 1G, ift>O, 
2./, if t = 0, 
GT(FT) I I J(I'Jft<O. 

For algorithms for this step see books on linear ~}·stem the01y. 
Determine a Q EOj;i;. ora Q EIR''x" satisfying Q =Q,.;;;>0, 

[
Q-FQFT G - FQJIT] 
GT-JIQFT 21-JJQJ(f" ;;;.Q. 

(3.4.4) 

(3.4.5) 

3. Let 

A = 1-~ C = 11, M = {111 O)EIRnX(n +p>, N = (0 /p)EIRPX(n 1 Pl, 

_ _ (nip)X(n+p) - [Q-FQFT G-FQHT] 
V-V(Q)- GT-JJQFT2.J-JIQHT EIR , 

co11struct a probabili~}' .1pace /~}' 

n = (IR1" lp))T, F =TIT @n<11 Ip), v:nxr ~R(n 1P>, v(w,t) = w(t), P:F~[o, I] 

a prohahili~J' measure such that v is a Gaussia11 white noise process with i11tensi~y V, 
x:nxT~IR"y:!lXT-.JRP defined I~}' 

x1 1 1 = Ax, + Mv1, x 00 = 0, 

y, = Cx1 + Nv1• 

(3.4.6) 

(3.4.7) 
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Thell 

11 = (fl,F,P, T, IRP,Bl',R" ,B" ,y,x} EGS~ (3.4.8) 

is a minimal weak Gaussian stochastic realization of the given process, meaning that the output 
process y is a Gaussian process with covariance fu11ctio11 equal to the given covariance function 
w. 

A mistake that is sometimes made is the following. Consider the following forward representation 
of a Gaussian system 

x1 1 1 = Ax1 + /14v1, 

y, = Cx1 + Nv1, 

with v1 EG(O, V). A statement is that if the pair of matrices (A,MV"") is a reachable pair and if 

(A,C) is an observable pair, that then the stochastic realization described by the above system rep­
resentation is a minimal realization of the output process. This statement is false as the following 

example shows. 

EXAMPLE 3.4.4. Consider the Gaussian system 

a= {~V~P.1~1R,B,IR,B,y,x}EGS~ 

with forward representation 

with 1•1 E G (0, I), a E ( - I. + I), a'j"'oO, b = (a 2 - I) I a. 

a. 'Olen (a,b) is a reachable pair and (a, I) is an observable pair. 
b. The system <J is a nonminim~I realization of its output process. 

It is possible to interpret certain stochastic realizations as a Kalman filter but this will not be done 

here. For a reference sec !24j. 
The implication of the weak Gaussian stochastic realization problem for the identifiability 

question is illustrated by the following example. 

EXAMPLE 3.4.5. Consider the time-invariant Gaussian system 

<J = {~2,f~P.T,IR,B,IR,B,y,x}EGS~ 
with forward representation 

Xr 1 1 = axr + (I O)v1, 

y 1 = cx1 + (0 l)v1, 

with v1 E G (0, V), 

V= [V11 0 ]· 
0 V22 

(3.4.9) 

(3.4.10) 

(3.4.11) 
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Consider the asymptotic Kalman filter for the Gaussian system (3.4.9 & 3.4.JO) 

.\:1 , 1 = a.\:, + k()'1 - c.\:1 ), 

- . 
i't == y, - c.x,, 

(3.4.12) 

(3.4.13) 

in which v:~ X T --'>IR is a Gaussian white noise process with v1 E G (0,r). This asymptotic Kalman 
filter may be rewritten as 

_\:1 , 1 = a.\:1 + kv1 = a.\:1 + (I O)v 1 (t), 

y, = c\:, + \71 ==c.\:,+ (0 l)v1(t), 

in which v 1 :n X T --'>IR 2 is a Gaussian white noise process with v 1 (t) E G (0, V 1 ), 

[k 
2
r kr] [kl V1 = kr r = 1 r(k 1). 

(3.4.14) 

(3.4.15) 

(3.4. 16) 

From these forward representations one deduces that (3.4.9 & 3.4.10) and (3.4.14 & 3.4.15) arc 
both weak Gaussian stochastic realizations of the output process y. This may be verified by com­
puting the covariance function of the output process. This example shows that one may not be 
able to uniquely determine the parameters of the noise process of a Gaussian system, here (3.4.l I) 
and (3.4.16), from the covariance function of the output process. For results on the parametriza­
tion of Gaussian systems sec [34). 

Attention has also been devoted to the partial weak Gaussian stochastic realization problem 
in which one is not given a covariance function on all of T ="l. but only on a finite time set, say 
T = { -t 1, -t 1 +I, ... , - 1,0, 1, ... , t 1 }. The motivation for this problem is that in practice one 
can estimate from a finite time series only the covariance function on a finite time set. 

3. 5. The dissipation matrix inequalizy 
In subsection 3.4 it has been stated that the minimal weak Gaussian stochastic realizations arc 
classified by the set 0 1-;t;. In this section the set Opt; and its dual Qpl> will be considered. 
Throughout this section .I =J r_ The results of this subsection may be found in [23, 24]. 

0HINITION 3.5. l. Let pls = (p,n,p, 1-~ Ci,11,J} E L-:i..P with J ;;;>0 and 

o,,,. = {QEIR"x"IQ=QT~o. V(Q) = 20} [
Q- FTQF llT- FTQG] 
Ji-GTQF 21-GTQG ,,... ' (3.5.1) 

and for pls = {p,n.p, FT,11,., (i r,J} E LL.P 

0 1-,1j- == {Q c:R" x" IQ= Qr;_;;,,,o, V(Q) = 20} [
Q-FQFT C- FQJIT ] 

GT-JJQFT 21-JJQJJT""'"' -
(3.5.2) 

PROBLEM 3.5.2. GIVEN pls E L-:i.P AND Qpls· 

a. Classify all elements of Opls· 

b. Determine an algorithm that constructs all elements of Qpl« 

l'ROPOSITJON 3.5.3. Consider pls = {p,n,p, F, G,ll,J} E L::::::J> min 1111d Opts· Assume that Op1s=F 0, 
and that J >0. Then Qpls is a convex, closed and bounded set, and there exists a Q , Q + EOpls 
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DEFINITION 3.5 .4. 
a. The regular part of Opls is defined as 

- - T Opts.r - {Q EQpls J 21 G QG>O). 

The set Opts will be called regular !(Opts= Qpts.r· 

b. For Q EIR"x" with Q =: Q 1 mzd21 - GTQG >0 defi11e 

D(Q) = Q -FTQF -- (HT-FTQG][21-G 1 QGJ 1[!fr-FrQGf. (3.5.3) 

c. Correspo11ding(J' define 

Oj~.r = (QE0,;1;J2l-HQHT>O), 

D(Q) = Q -FQFT - [G-FQHTJ[21·-HQHT] 1[G-FQJ(rj1', 

and 0 1-;ts is regular if Oj~ = Oj;J;,,. 

PROPOSITION 3.5.5. Let pls = (p,11,pJ, G,ll,J} c l'i.P. Let Q E:IR"x", Q =QT_ 
a. Assume that 21 - G TQG >0, a11d let 

" - (11 •p)X(11 Ip) [ I OJ l -- - [21 - GTQGJ. 1[JJ-GTQFJ I EIR . 

Then 

[
D(Q) 0 J _ ·T 
O 2!-GrQG - 7 V(Q)T, 

and 

_ · r [D (Q) () ] · I 
V(Q) -- T 0 21 -GTQG T ' 

where V(Q) is as defined in 3.5.1. 

(3.5.4) 

(3.5.5) 

(3.5.6) 

(3.5. 7) 

b. Assumethat21-GrQG>O. 17wz V(Q);;,,QijfD(Q)~O. Also V(Q)>OifJD(Q)>O. !11 
fact,rank(V(Q)) = rank(D(Q)) + p. 

c. 

Opts.r = {Q EIR"x" JQ =Qr~o. 2f-G 1 QG>O, D(Q)~O). 

Notation for the boundary of Qpls will be needed. The following notation will be used in the 
sequel, 

(3.5.S) 

(3.5.9) 

DEJ'INITION 3.5.6. Let pls c: C:i.I' and consider Opts· Define the boundmy of Qpls as the set 
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i)Qpls = (QE0pi.JV£EIR, £>0, 3SEB(Q,£)suchthatS=ST, S=faQ, SG!=Op1s), 

and the interior of Opts as the set 

int (Opis) = Op1.s n (iHJ!p1st· 

PROPOSITION 3.5.7. Let pls = {p,n,p,F, G,Ji,J} EL'L.P. 

a. Q EilQpls if! V(Q) is singular. Q Eint (Op1s> if! V(Q)>O. 
b. Assume that Opls is regular. Then Q EilOp1s (/f D(Q) is singular; and Q Eint (O,,i.) iff 

D(Q)>O. 

DEFINITION 3.5.8. Let pls::: {p,n,p, F, G, li,J} EL'i.P and consider Qpls-

a. 77ie set of singular boundary points of Opls is defined as 

ao,,i.1,s = {QEao,,,.Jrank(V(Q)) = rank(2J-G,.QG)). 

b. The set of singular boundary points of the regular part of Qpls is defined as 

;)Qpls.r.s ::: { Q EOpls,r n aopls I rank(V(Q))::: p ). 

THEOREM 3.5.9. Let pls = {p,11,p,F, G,l l,J} ELL.I' min· Assume that Opt.# 0 and that it is regular. 
Let 

F = F - G[2J-GTQ G] 1[1lr-FQ Gf. 

Then Q + .:lQ E01,1, and ~Q >0 if! 
I. ~QE~i"xn,AQ>O; 

2. 

(AQ) 1 - F (AQ) 1(F )"' - G(2J-GTQ GJ 1GT - S = 0, 

for some S EIR" x", S = S T;:z,O; 
3. sp(F )CC . 

3.6. 77ie strong Gaussian stochastic reali::ation problem 

(3.5.10) 

PROBLEM 3.6.1. The strong Gaussian stochastic realization problem for a stationwy Gaussian pro­
cess is, gil'en a prohahili~l' space (£2,F, P), a time i11dex set T == Z and a station111y Gaussian process 
z :Q X T ->IRP having :.ero 111ea11 value function and covariance function W: T _,JRP xp. to solve the fol­
lowi11g subprohlems. 

a. Does there exist a stationmy Gaussian syst<!m 

a= {12,f~P, T,RP,!JP,IR",11",y,x} EGS.Z: 

ll'ith forward rcprese11tatio11 

such that 



I. y, = =1 a. s. for all t ET; 

2. F'' CF':x,for all t ET. 
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If such a .~)!Stem exists then one calls a a strong Gaussian stochastic realization of the given 
process, or, if the context is knov.'n, a stochastic realization. 

b. Classif>' all minimal stochastic realizations of the given process. A strong Gaussian stochastic 
realization is called minimal if the dime11Sio11 of the state space is minimal. 

The difference between the weak and the strong Gaussian stochastic realization problems is that 
the given process and the output process of the Gaussian stochastic system arc equal in the sense 
of the family of finite-dimensional distributions respectively equal in the sense of almost surely. 
For the strong Gaussian stochastic realization problem this requires that the stochastic system is 
constructed on the same probability space as the given process. Therefore the state process has to 
be constructed from the given process, and this explains condition 2 of problem 3.6.1.a. 

For a survey of the strong Gaussian stochastic realization problem the reader is referred to 
the paper [47]. 

3. 7. Pseudo-dista11ces on the set of probabili~y measures 
The purpose of this subsection is define distances on the set of probability measures as a prepara­
tion for the approximate stochastic realization problem to be discussed in the next subsection. 

DEFINITION 3.7.1. Let X be a set. A pseudo-distance is afu11ction d :XX X ~R such that 
1. d(x,y)>Ofor all x,y EX; 
2. d(x.y)=O iffx =y. 

If a pseudo-distance is not symmetric then one may construct its symmetrized version. A pseudo­
distance need not satisfy the triangle inequality. 

DEFINITION 3.7.2. ],et 

F2s = {f:IR, ~IR l/EC 2,f(l)=O, '11x E(O,o::i), f'(x)>O}. 

DEFINITION 3.7.3. Given a measurable space (~2.F), let 

!_ = {P:F--.IR 1 I Pisaprobabili~vmeasure }. 

For f EF 2s define the pseudo-distanced/!:._ X _!:..--.R on the set ofprobabili~'r' measures!:._ on (Q,F) ~y 

where Q is a a-finite measure on (Q, F) such that 

dP 1 dP 2 
P 1<Q with dQ = ri, P 2 <Q with dQ = r2. 

The pseudo-distance df is also called the f-information measure, the f-entropy or the f-divcrgence. 

A a-finite measure Q as mentioned above always exists, for example Q = P 1 + P 2 will do. In case 
(Q,F)=(R,B) one may sometimes take Q to be Lebesgue measure. Because r 2 >0 a.s. P2 the 
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above expression is well defined. lhc above definition has been given in [I]. 

PROPOSITlON 3.7.4. f lj. 
a. The Junction d1 defi11ed in 3. 7.3. is a pseudo-distance. 
b. Tht! pseudo-distance d1 does not depend on the choice of the a:finite measure Q. 

DEFINITION 3.7.5. The Kullback-Lcibkr pseudo-dista11ce is deji11ed as df, :!._ X !._->IR with 

{
x ln(x), x>O, 

/1:IR' -7IR, f1(x) = O, x =O, 

DEFINITION 3.7.6. The Hellinger pseudo-distance is defined as df,: !._ X !._-7IR with 

fz:IR · ->IR, /z(x) = ('/; -1)2, 

df2 (P1,l,2) = £p 2[(~ -1)2] = EQ[(y;:-;--0~)2 ]. 

The Hellinger pseudo-distance is symmetric. 
Consider the set of functions on T = 7l. with values in IRk. Let P be the set of Gaussian meas­

ures on this space that make the underlying process a stationary Gaussian process with zero mean 
value function. An expression for the Kullback-Lciblcr pseudo-distance on this set was derived in 
[43]. 

PROPOSITION 3.7. 7. Let P 1, I' 2 be two probabili()' measures 011 the set ef Junctions defined 011 T = 'll. 
with values in IR k. Assume that these measures are such that the under(ving process is Gaussian, sta­
tionaty, has zero mean value function, and covariance function~ W 1, W 2 respective{)'. Moreove1; 

assume that these covariance functions admit spectral densities W 1, W 2 respective{}' and that they 
satisjj• condition C 1?{ [43}. Then the Kul/back-Leiblerpscudo-dista11ce is given~)' the e.\pressiun 

'IT 

dKL(l' 1,/'2) = 4~ j [ tr (IY1 1 (,\)[ ~r 2(,\)-- W 1 (,\)]) - In ( W 1 \t..) W 2(i\)) ]di\. 
'fr 

3.8. The approximate weak Gaussian stochastic realization problem 
How to fit to data a model in the form of a Gaussian system'! In engineering, in biology and in 
economics there arc many modelling problems for which an answer to this question is useful. As 
indicated in section 2, from data one may estimate a measure on the set of observation trajec­
tories. In case that one models the obscr.iations as a sample function of a Gaussian process, one 
may estimate its covariance function. Suppose further that one wants to model the observations as 
the output process of a stationary Gaussian system. Such a system has a finite-dimensional state 
space. In theorem 3.4.2 it has been shown that a covariance function has a stochastic realization as 
a Gaussian system only if it has a covariance realization as indicated or if it is rational. Now an 
arbitrary covariance function obtained from data may not correspond to such a covariance func­
tion. Therefore one has to resort to approximation. 
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The approximate stochastic realization problem is then to determine a stochastic svstem in a 
specified class such that the n:casurc on the output process of this system approximates, the meas­
ure on the same space determined from the data. Attention below will be restricted to the class of 
stationary Gaussian systems with dimension of the state space Jess or equal to 11 E z + • As a meas­
ure of fit the Kullback-Leibler pseudo-distance will be taken as mentioned in subsection 3.7. A 
measure ~f com~lcxity will not be considered here; it may be based on stochastic complexity as 
indicated m section 2. 

PROBLEM 3.8.1. Approximate weak Gaussian stochastic realization problem. Let yr denote the set 
of time series defined 011 T=l with values in !RP, and let P(YT) denote the set ofprobabili~)' meas-

T T ures on Y . Given is a Gaussian measure Po EP ( Y ) such that the undcr{ring process corresponds to 
a stationary Gaussian process with zero mMn function. Given is also an integer n El , and /et 
GS2.(11) be the set of Gaussian systems with state space dimension ,,;;;11. Solve the optimization prob­
lem 

in}~r=GS'I.(11) dKL(l'u,P(a)) 

where dKL is the Kullback-Leibler pseudo-distance 011 the set of probabili()' met.JSures 011 !' (yr~ and 
P(a) E P( yr) is the probabi/i~v measure 011 yT associated with the Gaussian .~)'stem aEGS:S(n). 

As indicated in 3.7.7, if the pseudo-distance on the set of Gaussian measures is the Kullback­
Leibler measure then the pseudo-distance may be expressed as a pseudo-distance on the set of 
covariance functions 

where W0 is the covariance function associated with the Gaussian measure P0 and W(a) the 
covariance function associated with the Gaussian measure P(a). Note that the covariance func­
tion W(a) is a rational function with McMillan degree less or equal ton because it corresponds to 
a Gaussian system of state space dimension less or equal than 11. The approximate weak Gaussian 
stochastic realization problem may therefore be considered as an approximation problem for a 
covariance function. In this problem the approximant W(a) has to be a rational function of 
McMillan degree at most n while the given covariance function W 0 may neither be rational nor of 
finite McMillan degree. 

The approximate stochastic realization problem 3.8.1 is unsolved. Approaches along three 
different lines have been investigated. 

Approach J. G ivcn any pseudo-distanced 1' problem 3.8.1 can be reformulated as an approxima­
tion problem for covariance functions with the criterion 

d1(W0 ,W(a)) 

where W is the covariance function associated with the Gaussian measure Po and W(a) the 
covarianc~ function associated with the Gaussian measure P(a) related to aEGS2.. 

PROBLEM 3.8.2. Given a covariance function W o: T -+!RP xp solve 
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The pseudo-distanced 1 on the set of covariance functions may be taken to be the Hankel norm or 

the II-infinity norm. Possibly the L 2-norm is suitable. 

111c above problem may be rephrased as, given a not necessarily rational covariance func­

tion, to determine a rational covariance function that approximates the given covariance with 

respect to an approximation criterion. Note that a function is a covariance function iff it is anti­

symmetric and a positive definite function. 
It seems that a I lankcl norm approximation of a covariance function is not itself a covari­

ance function. The positive definiteness of a covariance function is therefore an essential con­

straint. References on this approach arc (28, 29, 3 I, 38, 5 I, 65]. 

There is a related approach in which one first determines a spectral factor of the given 

covariance function and then a rational approximation of the spectral factor. This approach seems 

too restrictive to start with, although it may be the solution to some approximation criterion. 

Of course, given any rational approximation of the covariance function one will still have to 

determine a state space realization for it. 

Approach 2. By analogy with the approximate prediction problem for finite-dimensional Gaussian 

random variables, algorithms have been proposed for the approximate weak Gaussian stochastic 

realization problem. 

ALGOR! IHM 3.8.3. LET BE GIVEN A COVARIANCE FUNCTION W 0· 

I. Solve an approximate prediction problem. Fix t ET. Let 

)' . I Yr I 

)'1 '1 Yr "2 
I' '(t) = , )' (t) ::::: 

}' . I •r )'1 ""S 

111c variance of the pair (v 1 (t),y (t)) may be computed from the covariance function w 0. 

Let 11 El, . Determine a matrix S EIRn Xs such that with x (t) = S)• (t) the following pred­

iction criterion is minimized 

i11fsu~·" tr(E[(v '(t)-E[v 1 (t)jF-'(tl])(v 1 (t)-E[v 1 (t)jPl1>1/J). 

2. Determine a Gaussian system via regression by proceeding as follows, 

[x_\'.(;) l)) == [2·)x(t) + v(t), v(t)EG(O, V), 

where 

Finally, replace the Gaussian process v with a Gaussian white noise process w with variance 
v. 

The above algorithm in a somewhat different form appeared first in a paper of H. Akaike [3]. 

Other references arc [ 11, 12, 44-46, 75, 76 ]. These papers di!Tcr mainly in the way they perform step 

l of the above algorithm. For canonical correlation analysis and the prediction problem sec 
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[27, 57]. 

It is not clear in what sense the Gaussian system determined in step 2 of the above algorithm 
is a good approximation to the given Gaussian process. In other words, the approximation cri­
terion, although inspired by the static approximate prediction problem, is never mentioned. The 
replacement of the process v by a Gaussian white noise process is also unmotivated. 

Approach 3. Canonical correlation analysis for finite-dimensional Gaussian random variables has 
been generalized to infinite-dimensional Hilbert spaces in [36, 37, 49]. One has investigated 
approximate prediction problems for time series by canonical correlation analysis techniques. 
Approximation bounds have been derived [30]. It remains to be seen whether this approach is use­
ful in practice. 

Approach 4. Inspired by the above mentioned second approach to the approximate weak Gaus­
sian stochastic realization problem yet another approach has been formulated. This approach has 
been worked out by M. Stohr at the Centre for Mathematics and Computer Science. The following 
rcsul ts up to the end of section 3 arc due to M. Stohr and arc as of yet unpublished. 

NOTATION 3.8.4. Let k 1,k 2,11 El , , k = k 1 +k 2• Recall that G (O,Q) denotes a Gaussian measure, 
say 011 IRk, with ::.cro mean a11d variance Q. For Q E IRk xk the decomposition 

Q - T 
- [Q11 Q12] 

Qi2 Qz2 

k Xk k Xk k Xk wi/lbeuscdi11whic'1Q 11 EIR' ',Q 22 EIR' ',andQ 12EIR' ',Let 

PROBLEM 3.8.5. The static approximate weak Gaussian stochastic realization problem. Given are 
k 1,k 2 ,n EZ,, k =k 1 +kz, and a Gaussian measure G(O,Q 0 ) with Q 0 =Q~·>O. Let dKL be the 
K ullhack-Leiblerpseudo-dista11ce on the set of Gaussian measures on IRk. Solve 

infc(O.Q,l. Q,E0(11) dKL(G(O,Qo),G(O,Qi)). 

One may interpret the above problem in the light of approach 2 indicated above. Associate the 
space IRk' with the past of the observations, and the space IRk' with the future of the observations. 
The Gaussian measure G (0, Q 0 ) may then be associated with that derived from the data. In prob­
lem 3.8.5 one is asked to determine the measure G(O, Q 1) with Q 1 E0(11). The latter condition 
implies that the dimension of the state sp<it:'c associated with G(O, Q 1) is less or equal ton. There­
fore the essential constraint on the dimension of the state space is taken care of. 

PROPOSlTION 3.8.6. Comider problem 3.8.5. The Kullback-Leihler measure of two Gaussian meas­
ures G (0, Q 0) and G (0, Q 1) on IRk is given/~)' the expression 

dKL(G(O,Q 0),G(O,Q 1)) = 1/2[ tr(Q1 1Qo) - ln(dct(Q1 1Qo)) - k] 

k 
= V2[ 2: (A;(Q 0,Q1) - ln(A;(Qu,Q1))) - k ], 

;-J 
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where (> .. 1(Q 0 , Q 1 ), i E Zk} are the generalized eigenvalues of Q 0 with respect to Q 1, here defined as 
the zeroes of det(Q 1A-Q 0 )=0. 

It can be shown that the generalized eigenvalues arc real and satisfy A1(Q 0 , Q 1);;;.0, for i Elk. 

NOTATION 3.8.7. ForQ 0 EIRk><k, Qu=Qtf>O, n EZ f let 

A(Qo,ll) = {,\ EIRk1 I 3 Q e:Q(11) such that generalized eigenvalues}· 
of Q0 wllh respect to Qare {A1, ... ,Ak} 

and for A E IR k1 let 

Cl! .. (Qo,n,A) = { QEQ(n)jge11eralizedeige11values } 
of Q o with respect to Q are (I.. 1, ••• , l..k} · 

k 
f:Rk, -4IR 1, /(A)= 1/2[~(/..1 -ln(A;))-k). 

;·-·] 

It may be shown that the function /is convex. There arc results on the structure of the matrices in 
the set Cl!,(Q 0 ,n, /..}. 

PROBLEM 3.8.8. Consider problem 3.8.5 and the 11otatio11 3.8. 7. Solve 

inf >.EA(Q,,. 11 ) f (A). 

Suppose that there exists a/..* EA(Q 0,11) such that 

/('A*)= inf>.EA(Q0.11) j(A). 

The solution set of problem 3.8.5 is then given by Q,(Q0,11,A*). Note that problem 3.8.8 is the 
infimization of a convex function over the set A(Q0,11). The latter set is a cone. It is conjectured 
that it is a polyhedral cone. It may be shown that the optimal solution of problem 3.8.8 is such 

k 
that ~ A.1 = k. This proprrty simplifies the function j If this constraint is taken into account then 

;~1 

the set A(Q 0,11) is reduced to a shifted simplex. It is not yet known whether problem 3.8.8 admits 
an explicit expression as solution or whether one has to resort to numerical minimization. 

The hope is that the solution of problem 3.8.5 provides information on the solution of the 
approximate weak Gaussian stochastic realization problem 3.8. I. 

4. SPECIFIC OPEN STOCHASTIC REALIZATION PROBLEMS 

The purpose of this section is to present several stochastic systems and processes for which the 
solution to the stochastic realization problem may be useful for engineering, economics etc. The 
presentation of these models is brief. The tutorial and survey-like character of this paper may 
make it useful to mention these models. 
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Gaussian systems 

The approximate weak Gaussian stochastic realization problem, as described in subsection 3.8, is 
unsolved. For Gaussian systems there arc unsolved problems for specific subclasses of systems 
that may be of interest to specific application areas. Some of these problems and models arc 
described below. 

The co-integration and the error correction model. As a model for economic processes that move 
about an equilibrium, C. W.J. Granger [32] has proposed a model that is known as the co­
integration model. 

The components of a vector valued proccssy:!"! xz~Rk arc said to be co-integrated of order 
I, I if 
1. after differencing once (V'y(t)=y (t)-y (t - I)) the resulting process has a stationary inverti­

ble AutoRegressive-Moving-Average (ARMA) representation without deterministic com­
ponent; 

2. there exists a vector a E IRk, r:r,;60, such that ;; (t) = a1:y (t) has again a stationary invertible 
ARMA representation without deterministic component. 

The interpretation of this model is that the economic process that is modelled consists of a trend 
and stationary ftuctations, but is such that a linear combination of the process is stationary. The 
linear combination should be associated with some difference of economic processes, say income 
minus consumption. According to the model this difference fluctuates around some equilibrium 
value and it may be considered as forced towards this equilibrium by economic forces. A generali­
zation of this model has been proposed, sec [22]. 'Tilat paper also reports on the suitability of the 
co-integration model for economic processes. 

A vector valued proccs y :n X T ~Rk is said to have an error correctio11 representation, sec 
(22], if it can be expressed as: 

A (B)(I - IJ~F (t) = --yz (t - I) + u (t) 

in which u is a stationary process representing a disturbance, A(.) is a matrix polynomial with 
A (O)==I, B is the delay operator defined by By(t)=y(t -1), there exists a aERk such that 
z(t)=a·1:v(1) and yEIRk, y~O. 

The interpretation of an error correction model is that the disequilibrium of one period, 
= (t - I), is used to determine the economic process in the next period. 

For recent work on the co-integration and error correction model sec a special issue of Jour­

nal of Economic Dynamics and Control that is opened by the special editor M. Aoki with the paper 
[8]. In that issue there is another paper by M.Aoki [9] in which he shows that the co-integration 
model may be obtained from a Gaussian system representation under a condition on the poles of 
the system. In that approach a co-integration vector is not assumed, nor arc assumptions needed 
on trends or periods. 

An approach to the stochastic reali7..ation problem for the co-integration model and the error 
correction model may be based on stochastic realization theory for a particular class of Gaussian 
systems. 

Gaussian systems with inputs. A time-invariant Gaussian system with inputs has a forward repre­
sentation of the form 

x(t + l) = Ax(t) + Bu(t) + Mv(t), 
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y (t) = Cx (t) + Du(t) + Nv (t), 

where u :QX T ~R"' is an input process, and v :Q X T~Rk is a Gaussian whi tc noise process. Such 
systems arc used in stochastic control. The stochastic realization problem for this class of systems 
has not yet been treated. It is motivated by stochastic control theory. An unsolved question is 
whether such a stochastic system is a minimal realization of the measure on the observation 
processes of outputy and input u. The conditions for minimality should be related to the solvabil­
ity conditions of the linear-quadratic-Gaussian stochastic control problem. 

For this class of systems one has also to investigate the stochastic realization problem associ­
ated with the solution to the linear-exponential-quadratic-Gaussian stochastic control problem 
[ 14, 77]. 111is solution is related to recent results in I-I-infinity theory. 

The Gaussian factor model 
This model and the associated stochastic realization problem arc discussed in section 5 of this 

paper. 

Factor systems 
These systems and the associated stochastic realization problem arc discussed in section 6. 

Positive stochastic linear ~)'Stems 
A stochastic system in which the state and observations pruecss take values in the vector space 
IR , will be called a positive stochastic .~ystem. The gamma distribution is an example of a probabil­
ity distribution on IR , . Such systems may be appropriate stochastic models in economics, biol­
ogy, and communication systems where the state variables arc economic quantities, concentra­
tions etc. Examples from biology may be found in [56]. Several examples of such systems follow. 

Portfolio models. A portfolio model is a dynamic model for the growth of assets such as shares, 
bonds and money in savings accounts. After the fall of share prices in October 1987 there is a 
renewed interest in portfolio models. 

A stochastic portfolio model may be specified by 

dp(t) = ap(t)dt + p(l)dv(t),p(O), 

where p J2 X T->IR represents the price of the asset, a E Ill represents a growth trend and 
v :~l X T -•IR represents random fluctuations. More refined models can be defined to account for 
control of buying and selling, and for switch-over costs. A realistic portfolio model would require 
a realistic macro economic model for short-term and long-term economic growth, preferably on 
an international scale. 

The portfolio model should be seen as a special case of a growth model. In addition, growth 
models that exhibit saturation should be investigated in connection with market saturation effects. 

The realization problem for the stochastic portfolio model would have to deal with questions 
as whcth.::r the trends and variances of these models can be determined fron1 observed prices. This 
problem becomes more interesting if, for example, the price of a share is related to development of 
the markets in which the company is active, to its management strncturc, and to long-term growth 
of the economy. 
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The Gale model and a Leo11tiejf .~)'stem. For production planning of firms a model proposed by 
D.Galc is used. For references on this model sec the book by V. I. Arkin and I. V. Evstignccv [JO]. 
The classical Lconticff model is a matrix relation between inputs and outputs of an economic unit. 
A dynamic version of this model has been proposed, it will be called a Leontieff S)'Stem. 

The Gale model is specified by 

.:(t) = [x(t -1)) x,.)':T _,R"1 (4.1) 
.dt) ' 

satisfying 

z(t)EQ(t), 

y (t) ;;;., x (t), 

(4.2) 

(4.3) 

where Q (t) ER 2," is a convex set. Ilcre x(t -1) is called the input, and y (t) the output in period 
(t -- I, t ], and z (t) the tech11ologica/ process at time t ET. Condition ( 4.2) is a technological feasi­
bility condition; condition (4.3) implies that the input at any time step cannot exceed the output 
of the previous step. A parametric form of this model is given in subsection 1.1.8 of [I OJ. 

There is also a stochastic version of the Gale model, sec the subsections 2.4.1 and 2.4.7 of 
[ 10]. 

Optimal control problems for the Gale model arc treated in [ 10). The results arc maximum 
principles and turnpike theorems. 

Finite stochastic systems 

In section 3 a finite stochastic system has been defined. It consists of an output process taking 
values in a finite set and a finite-state ~farkov process. The stochastic realization problem for this 
class of systems is then to classify all minimal stochastic systems such that the output process of 
such a system equals a given process either in distribution or almost surely. The motivation of this 
problem comes from the use of finite stochastic systems as models for communication or comput­
ers systems. For such technical problems, stochastic models with discrete variables arise naturally 
or arc useful approximate models. The stochastic realization problem was formulated in 1957 in a 

paper by Blackwell and Koopmans [ 15]. During the 1960's several publications appeared that pro­
vide a necessary and sutlieicnt condition for the existence of a finite stochastic realization. For 
references sec [52]. Unsolved questions arc the characterization of minimality of the state space 
and the classification of all minimal stochastic realizations. The main bottleneck is currently the 
characterization of the minimality of the state space. This question leads to a basic problem for 
positive linear algebra, that is, linear algebra over R , . 

Cou11ti11gprocess systems 
An example of a counting process system is a continuous-time stochastic system of which the out­
put process is a counting process with stationary increments and in which the intensity process of 
the counting process is a finite-state Markov process. The stochastic realization problem for this 
class of systems is unsolved. 

The motivation for this stochastic realization problem comes from the use of counting pro­
cess models in communication, queueing theory, computer science, and biology. The observation 
process may often be taken as a counting process with stationary increments. 

The above mentioned class of stochastic systems has been investigated in [68, 69]. The ques­
tion of characterizing the minimal size of the state space is closely related to the same question for 
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the finite stochastic realization problem. 

Gaussian random fields 
For this class of stochastic objects new mathematical models arc needed. 

5. FACTOR ANALYSIS 

In this section the stochastic realization problem for the Gaussian factor analysis model will be 
formulated and analyzcd. 

The factor analysis model was proposed early this century. For references on the factor 
analysis model sec [7, 74]. Factor analysis is used as a quantitative model in sociology and 
psychology. R. Frisch has suggested the factor analysis model as a way to determine relations 
among random variables (25]. R. E. Kalman has emphasized this model and formulated the associ­
ated stochastic realization problem [39-41]. Since then several researchers have considered the sto­
chastic realization problem for this model class. This problem is still unsolved. Below one finds a 
problem formulation, questions, partial results and conjectures for this stochastic realization 
problem. For recent publications on this problem sec the special issue of J. of Econometrics that is 
opened by the paper [2]. 

Problem formulation 
from economic data that exhibit variabilit;· one may estimate a covariance. Suppose that this 
data vector may be modelled by a Gaussian random variable. Effectively one is thus given a Gaus­
sian measure, say on JRA. The initial problem may then be stated as: how to represent this meas­
ure such that the dependencies between the components of the vector arc exhibited? The factor 
analysis model will be used to describe these dependencies. 

DEFINITION 5.1. A Gaussian factor analysis model or a Gaussian factor model is defined l~}' the 
specification 

y = llx + w, (5.1) 

or 

)'i = llix + wi, i =I, ... ,k, (5.2) 

where x:Sl-IR", x EG(O,Q.,) is called the factor, wJl-IRk, w EG(O,Q ... ) is called the noise, 
}' :~2-IRk, y E G (0, Q,.) is called the observation vector, /1 E IRk xn is called the matrix of factor 
loadings, Q,,. is a diagonal matrix, and (x, w) are independent ru11do111 l'ariubles. 

The interpretation of the Gaussian factor analysis model (5.2) is that each component of the 
observation vector consists of a systematic part fl;x and a noise part w,. Observe that the condi­
tion that Q.,. is diagonal is equivalent to the condition that (11• i. ... , 11·k) arc independent random 
variables. A generalization of the above definition may be given to the case in which Qw is block 
diagonal. The Gaussian factor model in rudimentary form goes back to (67]. The Gaussian factor 
analysis model is equivalent to the confluence a11a{)'Sis model introduced by R. Frisch (25]. In this 
model the representation of the observation vector is specified by 

)' = u + w, A LI = 0, 

in which A EJR(k n)Xk u, w arc independent random variables, and Q ... is a diagonal matrix. For 
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other references on this approach sec the publications of 0. Reicr~0I [58, 59]. 
'J11e Gaussian factor analysis model, or, equivalently, the confluence analysis model, has 

been suggested as an alternative to regression analysis. Strong pleas for this approach are the 
introduction of the book by R. Frisch (25), and the papers of R. E. Kalman [39-41]. Within 
economic and statistical literature the questions regarding regression and factor models have been 
recognized, sec for example [7, 66, 70, 80]. 

PROBLEM 5.2. 111e weak stochastic realization problem for a Gaussian factor model is given a 
Gaussian measure G (0, Q) 011 Rk to solve the following subproblems. 
a. Determine a Gaussia11 factor model, s~r 

y =/Ix+ w, 

such that the measure ofy equals the give11 measure or 

y r.=G(O.q,)-= G(O,Q). 

If such a Gaussian ji1ctor model exists tlze11 it is called a weak stochastic realization of the given 
111easure. 

b. Detcr111i11e the minimal di111e11sio11 11• (Q) of the factor x in a weak stochastic realization of the 
given ml!asure G(O,Q). Call a weak stochastic realizatio11 minimal if the dimension of the fac­

tor ~1·ste111s equals n*(Q). 

c. Class!fl• all mi11imal weak stochastic realizations of the give11 measure. 

Part a. of problem 5.2 is equivalent to: determine (n,Q_,, Q,,,,ll)EN xRnXn XRk Xk xRkXn such 

that 

Q ::-:: /IQ.J(F + Q ... , 

where Q x = Q ~- ~o. Q11• = Q ;.: ~O, and Q.,. is diagonal. Part a of the above problem is trivial, the 
hard parts of the problem arc b and c. 

Corresponding to problem 5.2 there is a strong stochastic rl!lization problem for a Gaussia11 
factor modc!l. In this problem one is given a probability space (fl.,f~P) and a Gaussian distributed 
random variable z EG(O,Q). The problem is then to construct a Gaussian factor model 

y = llx + w 

on the given probability space such that 

z '.::': )' ll. s. 

and to classify all minimal models of this type. This problem has been defined in [54], where a 
generalization of the Gaussian factor model for Hilbert spaces is introduced. The strong stochas­
tic realization problem will not be discussed in detail here. 

What is the n;..iin characteristic of the Gaussian factor model? To answer this question one 
has to intrn<lucc the following concept. 

DEFINITION 5.3. 171e a-algebra's F 1, F 2 , ••• , f~,, are called conditionally independent given the a­

algebra G if 

E[z 1 • • • z111 I G] = E[z 1 I G] · · · El=m I G) 
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for all :1 EL ' (F1). The 11otatio11 

(F1.F2 •.. ,F,,, I G)ECJ 

will be used to denote that F 1, ••• , f~11 arc co11ditio11al(y independent given G and Cl will be called the 

multivariate conditional independence relation. 

The following elementary result then establishes the relation between the Gaussian factor model 

and the conditional independence relation. 

PROPOSITION 5.4. Let y, :~2_,.R, i = 1, 2,. .. ,k, x :n_,.Rn. The following statements are equivalent: 

a. The random 1•ariables (l' l.··•Ybx) are joint(y Gaussian with zero mean and satisfj• 

(F'.', .. ,FY' IF')ECI. 

b. 171e random 1•1.1ri1.1blesy,x sati~f)· the conditions of the Gaussian factor ana{)'sis model of 5.1 with 

the rcpreM!ntation 

y = llx + w. 

The conditional independence property of a Gaussian factor model is now seen to be its ma.in 
characteristic. It will be called the factor property of a Gaussian factor model. It allows extensions 
to non-Gaussian random variables. Such extensions have been considered in the literature, sec for 
references 174]. The factor property is a generalization of the concept of state for a stochastic sys­
tem. In such a system the future of the state and output process on one hand, and the past of the 
state and output process on the other hand arc conditionally independent given the present state. 
The analogy is such that the state corresponds to the factor and the output process to the observa­

tion vector of the factor model. The factor property or the conditional independence property 
occurs in many mathematical models in widely different application area~. 

Below the stochastic realization problem 5.2 will be discussed, first in terms of the external 
description and then in terms of the internal description. 

The stochustic rcilli=atio11 problem in terms of the extemal description. 
In this subsection one is assumed to be given a Gaussian measure G (0, Q)'). The weak stochastic 
realization problem for a Gaussian factor model specializes in this case to ·the following question. 

QUESTION 5.5. Given a Gaussian measure G(O,Q,.). 
a. What is the 111i11i111a/ di111cnsio11 n*(Q_,.) of the factor in a stochastic rcali=atio11 of G (0, Q)? 
b. What is the classification of all minimal stochastic reali::atio11s of G (0, Q), or all decompositions 

of the form 

Q,. = Q1 + Q)I' 

in which Q 1 =-Qf ~O. Q11• = Q;~.';a.o is diagonal a11d rank (Q 1) = 11*(Q_I'). 

NOTATION 5.6. 
a. IJQ EIRkxk then 

D(Q)EIRkXk 
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is a diagonal matrix with on the diagonal the elements of the diagonal of the matrix Q. 
b. lf Q EIRk Xk then the matrix OD (Q) Elllk xk, called the off-diagonal part of Q, is defined kY 

OD (Q),; =O, OD(Q);,J= Q,.1,for all i,j Elk> i=/=j. 

d. 

n*(Q,.) = rnin{nE~l3 (Q 1.Q.,.)EQ(Q.1.,k,11)} 

It turns out to be useful to work with a standard form for the variance matrix, a canonical form. 

DEFINITION 5.7. One Sl!J'S that the matrices Qi,Q 2 EIRkxk, that are assumed to be strict(;' positive 

definilc!, are equivalent if thert! exists a diagonal matrix D E (0, oo l xk such that 

A canonical form with respect to this equivalence relation is then such that D (Q) = I. An inves­
tigation should be made of another equivalence relation defined as in 5.7 in which negative ele­
ments arc also admitted on the diagonal. 

Question 5.5.a is still unsolved. Characterizations of 11*(Q,.) arc known in the two extreme 
cases of H*(Q,.)= I and n*(Q,.)=k--1. These results arc stated bclow.1l1c characterization for 
n* (Q,.) =I may go back to C. Spearman and co-workers. The formulation given here is from [13]. 

THEOREM 5.8. [ 13]. Givt!ll Q,. Eihlk X\ Q,. = Q,r>O. Assume tlwt k~4. Qr E(O, oo)kXk, and that Q,. 
is irreducible. Then 11*(Q_1.)== I ijf 

{ 
1it'l;m - IJim q/I = 0, '7cl'/;r - <JrrlJJI ~ 0, 

V i,j,l,m E1.k, l=l=m,Ji=l.j=/=m,i=/=-j,i=/=l,i=/=m. 

THEOREM 5.9. [ 13, 39, 58]. Given Q,. E!Rk Xk, Q1. = Q_{' >0. 171e11 n*(Qy)=k - I i.fJ Qy 1 has strict~}' 
positive> <'le111e11ts, possih{)' c!fter sig11 changes t?f rows and correspo11di11g columns. 

What arc the generic values of n*(Q,.)? Below are stated the main results from a study by 
J. I'. Dufour [20J on this question. 

DEFINITION 5.10. Let 

Note that the condition of positive definiteness is not imposed in the definition of the set§;. In 
the following the Euclidean topology is used on the vector space R". 
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TlH:OREM 5.1 l. [20]. 

a. 1/icre exists an open and dense subset § C§ k such that for all Q1• E § 

n*(Q,.);;,, ~J.(2k +I - V!+Sk). 
1/iis inequali~)' is knoH'll as the Ledermann bound. 

b. Let Q E §. For eve1y Q 1 in a s1!!ficient{J' small ncighberhood of Qin § the relation 

holds. 

c. For any integer p such that 

1h(2k +I -- VI f 8k) ~ p "'.,;; k -- 1 

there exists a Q E§ such that n*(Q)=p. 

By way of illustration there follow characterizations on the value of n*( Q,.) for variance matrices 

Q,. E~k .x.k with several low values of k. 

l'ROPOSITION5.12. LetQrEIR 3x 3, Q,.=Q;~>O, D(Qv)=l. 

a. n*(Q,.)=0 iflQ,. is diagonal. 
b. n*( Q,.) = 1 ijf one (f :i;efo/lowing cases applies. 

Case 1. l/'112 >0, q 13 >0, q23 >0 and 

~2IJ1i__. 1]12q21' 2_nq21 C[O, lj. 
q 23 q 13 q 12 

Case2. !fq12>0, q13=0, q23=0. 
Other cases arc derived.fi·om the above~)' permutations of signs and indices. 

c. 11* ( Q,.)""' 2 i.JI othe1wise. 

For the special case in which Q1. EC4 x 4 and 11*(Q1,)= I a characterization is given in [6]. 

l'ROl'OSITJON 5.13. J,ct Q1• E(0,oo)4x 4. 171en n*(Q1.)= 1 if!, up toapem111tatio11 of indices, 

_ 112fJL1 __ 1J121J14 _ '7Ul]l4 
1. c -- -- - -- -- -- E(O,IJ; 

Cj23 114 '734 

Classification. In this subsubscction the classification question 5.5.b will be discussed. Thus, given 
Q .. E: IR ~ x', the question is to classify all dccomposi tions of the form 

Q,. :-:: 01 + Q., 

in which rank (Q 1)=11*(Q1.). Geometry seems the appropriate tool for this classification, in par­
ticular polyhedral cones and convex analysis. For an approach along these lines sec [ 19]. Below 
another approach is indicated that combines analysis and geometry. 

Remark that in the decomposition 
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the off-diagonal elements of Q 1 arc equal to the off-diagonal elements of Q, .. Moreover. by con­
vention D (Q,.) = 1. I Icncc the set Q(~1.,k,n*(Q 1 .)) may be classified by the diagonal of Q 1. 

PROPOSITJON 5.14. },et 

Il)(Q1.,k,n) == {/JE!Rkxk ID diagonul, -OD(Q_,.).;;; D.;;; 1, rank(D+OD(Q1 ))=11} 

f :[]1(Q1 ,k,11)->Q<Oi.,k,n), f(D) == (D -l OD(Q,.),f -D). 

Thm f is a bijection. 

Remark that the set O(Qr,k,11) without the rank condition is a closed convex set. From 5.14 and 
some linear algebra one obtains the following result on the classification. 

Then: 
a. g is a·ell defined; 
b. g is surjective; 
c. The diagonal matrix 

D 1 EIR"x" I D1 diagonal, O<D1~l, l 3 p<emututiu" ma"ix P ""h that if l'Q ,.PT~ \~ T ~ l· 
ltlic11D 1 ·t· OD(A)>O, D2: = B r[D 1 + OD(A )] 1 B-OD(C) ' 

is diagonal a11d satisfies 0.;;; D 2 ~I 

is 1111iquc up to a permutation. 

The proof of the above theorem is clcmcnwry with the aid uf the following lemma. 

LEMMA 5.16. Let k.11 EZ , , k >n, A E IR" x". Ji CU~" ··· 1" 'I), C EIR 1k 11 P<Ck 11 l, A =Ar, C =er. 
rank c.--c 11, 

- kXk "-[A /J] [A y, -- A 
Q = /J T C EIR ' I - 0 l 

a. Then 

lo} 0 
C - JJ rA I BJ· 



514 

b. rank(T)=k. 
c. rank(Q)=uijfC-BrA 18=0. 
d. Q?:>Oiffc-BTA - 1n-;;:o. 

The study of the classification along the lines sketched above must proceed by an invcsti:?"1tion of 
the following relations for the diagonal matrix D 1 EIRn x": 

Di +OD(A)>O. 

D 2 : = JJT[D 1 + OD(A)] · l B -OD(C), O~D2~l, D 2 is diagonal. 

For the cases 11*(~1.)=k-l and 11*(~1.)=l theorem 5.15 directly yields explicit classifications. 
The classifications of three low-dimensional examples arc listed. 

PROPOSITION 5.17. For the case k =2, Q .. EIR 2x2, 11•(~,.)= I with 

~ .. = [~ i]. q*O, 

the classificatio11, ill the 11otatio11 of5.15, is gil'e11 l~y 

D(~l"2,l)={d1EIR, jq2 .s;;;d1.s;;;I} 

and 

PROPOSITION 5.18. For the case k = 3, q,. E(O, oo)3x 3, and n*(Q,.)= 2 the classijicatio11 according to 

5.15 is given l~J' 

[~ 1 :2] ER2x2 I d1>d2EIO,l], d1d2-qh#O, 

d 2 +d 2 -2 
1t]23 2t]1.1 tiq13q23 EID, 1] 

d1d2-q12 
and co11ditio11s obtained l~)'permutatio11 of i11dices 

i>RorosIT!ON 5.19. For the case k = 3, q,. E(O, oo)3x3, 11• (Q,r)-== I, the decompositio11 is unique with 

']12']13 

<J23 
q12 q13 

Qi -- ']12 
q 12q23 

qz3 
q13 

q13q2.1 
q13 q13 

t]12 
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PROPOSITION 5.20. For the case k =4, q,. E(O,oo)4x 4, 11*(qr)=2 the classificatio11 according to 

5. J 5 is given ~'' 

[~ 1 ~2} I di,d2E(O,I), d1d2-qh#=O, 

q34 =d2q13q14 +d1q23q24 -q12q14q23-q12q13q24, 
[JI 1(Q,.,2) = d2qt3 + d iqh -2q 12q13q23 E(O, I], 

diq~ +d2qt4 -2q12q14q24E[O,1), 
a11d co11ditio11s obtained ~J' permuting the indices 

The stochastic reali::ation problem i11 terms of the internal df'~criptio11 
The specification of the Gaussian factor model as given in 5.1 will be called the i11tcmal descrip­
tio11. It is called internal because the specification is in terms of the matrices (H,Qx,Q,..) rather 
than in terms of~, .. The questions for the internal desciption require one definition. 

DEfINITlON 5.21. The Gaussian factor model with represe11tatio11 

y = llx + w 

is called minimal if 11 =11*(qr) in which x:n~R", Qx >0 and 

- T Q,. - l/Q.JJ + Q,. .. 

Introduce the convention Q.~ =I. The weak stochastic reali1..ation problem for a Gaussian factor 
model specializes in this case to the following question. 

QUESTION 5.22. 
a. Which co11ditio11s 012 the matrices (JI, Qx, Q.,) aJ·e equivalent with mi11imali{J' of the Gaussia11 

factor model? 
b. llow are two mi11i111a/ Gaussian factor models related? 

The above questions arc still open. 'fbc minimality question 5.22.a seems most interesting because 
its answer will involve a new system theoretic concept like stochastic observability. To hint at 
what may be needed a special case is considered. 

Consider a special Gaussian factor model of the form 

(P1] = [//1]x + w 
~1'2 Ji 2 

in which the variance Q,.. is required to be block-diagonal, in particular it consists of two blocks 
only 

[
Q .... 0 I 

Q ... '"" 0 Q .. .,. 

One says that this Gaussian factor model is stochastical{~· obsenable if the map 
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x ..... £(exp(iu 1>• 1)jF-'] 

is injective on the support of x. Similarly one says tJrnt the Gaussian factor model is stochastical(y 
reconstructible if the map 

x ..... E[exp(iu·1:r2) I F"J 

is injective on the support of x. It may then be proven that the Gaussian factor model is minimal 

iff it is stochastically observable and stochastically reconstructible iff rank (JI 1)=11 =rank (I/ 2) 

[71]. 
Let's return to question 5.22.a, when is a Gaussian factor model minimal in case Q.,. is res­

tricted to be diagonal. The following conjecture comes to mind first: A Gaussian factor model is 

minimal itf the map 

x ..... E[cxp(it!l';)!PJ, foriElk, 

is injective on the support of x for all i EZk. This conjecture is false, because the effective dimen­
sion 11 of x may be larger than I. Even if /1 -=I il is false, sec 5.23 below. The special case of k == 3 

and n -= 2 mentioned in 5.24 shows that the equivalent condition for minimality of a Gaussian fac­

tor system needs more thinking. The minimality characterizations for the following special cases 
may be helpful in formulating conjectures for the general result. 

PROPOSITION 5.23. Co11sider a Gaussian factor model 

)' == Jix -j- II' 

with k ";p2, 11 ~ J, h EIRk. Then this model is 111i11i111a/ iff 

PROO!'. The Gaussian factor model with 11 :=-: J is minimal itf the dimension of the factor cannot be 

reduced. This is true iff 11• >0 or iff Q1• is non-diagonal. Note that OD (Qr)= OD(hh 1 ). D 

l'ROPOSITION 5.24. Considl!r the Gaussia11factor 111odcl of 5./ with k = 3. 11 =2, 

Assume that h {h 2 >0, h fh 3 >0, h fh 3 >0. 17ll!IJ this Gaussia11 factor model is minimal iff one of the 
folloll'i11g co11ditio11s is s<1tisfied: 

(h {h 2 )(h {h ] ) 
L r - ct[O, 1 j, 

(h 2 h J) 

(hfh2)('1fh.1) 
2. --J-:·---€1:[0,1], 

(lz I /J 3) 

(h fh .i)(hl/1 J) 
3. 'I G'. [O, 1 ]. 

(h I h 2) 
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PROOF. This follows from 5.12. D 

Classification of internal descrij>tion 

Th: motivating ~ucstion here is whether the internal description of a Gaussian factor model is 
umqucl~ ,d~tcr111111~d ~y the variance of the observation vector. In general such a model is 1101 
unique. I his question is related to question 5.5.b. For the classification of the internal description 
of factor analysis models with block-diagonal structure sec {53J 1·0 1 t l d. · . . . . - . s rue ure t \C 1scussion a 
defimtton 1s 111troduccd. 

DEFINITION 5.25. Two Gaussian ji1ctor models 

y = llx + w 

and 

T = 11-x + i~· 

are called equivalent if 

Ji Q_J fr + Q11 . = IIQ.J/ r + Q ... 

Note that the two Gaussian factor models of 5.25 that arc defined to be equivalent both have the 
same variance matrix Q-'., since 

Q1. = JI,Q_,,Jlf + Q"" = fl2Qx/lf + Q.,. 

Therefore they cannot be distinguished given Qr. It is well-known that if (n,li,Q.,, Q.,) arc the 
parameters of a Gaussian factor system and if SEIRnxn is an orthogonal matrix (SST=!), the 
two Gaussian factor models specified by (n,li, Q,, Q11) and (n,JIS,STQ_,S, Q11 ) arc equivalent. 
However, there may be other ways in which two Gaussian factor models arc equivalent. 

In applications of Gaussian factor analysis it has been recognized that there may be many 
equivalent models. To reduce the class of equivalent models practitioners fix certain elements of 
the matrix of factor loadings, based on prior knowledge about the observation vector or arbi­
trarily. 

The question now is, given a Gaussian factor model, to describe the equivalence class of all 
Gaussian factor models that arc equivalent with the given one. This question is still open. 

6. GAUSSIAN FACTOR SYSTEMS 

The purpose of this section is to formulate the concept of a Gaussian factor system and to survey 
the preliminary rcsul ts of the stochastic realization problem for this class of systems. 

A motivation for the study of this class of systems is the stochastic realization problem for 
Gaussian systems with inputs. One would like to know whether it is possible to determine from an 
observed vector-val ucd process which components arc inputs and which arc outputs of a Gaussian 
system. Another motivation for the study of this class of systems is the exploration of the exten­
sion of Gaussian factor models to dynamic systems. 

DEFINITION 6.1. A Gaussian factor system, in discrete time, is an object specified i!Y the equations 
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x(t + l) = Ax(t) + Bu(t), 

y(t) = [Cx(t) + Du(t)] + w(t) 

or 

y(t) = 2: ll(t -s)u(s) + w(t) 
s~T 

where u J2 X T~RP is a stationary· Gaussian process called the factor process, w :n X T~Rk is a sta­
tio11a1)' Gaussian process called the noise process, y :n X T ~Rk is called the observed process, 
u, w 1, ••. , wk are independent processes, the spectral densities of u, w 1, ••• , ii•k are rational Junctions, 
and the Fourier transform of the tra11Sferfu11ctio11 Ji is ratio11al and causal. 

A Gaussian factor system is said to have the factor property if the processes u, w i. ... , wk are 
independent processes. This condition can also be rephrased in terms of conditional independence 
but this will not be done here. Note that the processes w 1, ... , 11·k need not be white noise 
processes. 

Concepts similar to that of a Gaussian factor system have been introduced in the literature. 
An elementary version of a Gaussian factor system with Ji a constant matrix is introduced in [58]. 
In [26] a Gaussian factor system is defined without the rationality and causality conditions. In [21] 
one can find the definition 6.1 and a generalization. In [54] a generalization of 6.1 is picscntcd in 
which the spectral density of the process w is not diagonal but block-diagonal and in which the 
transfer function 1I not be causal. The term dynamic errors-in-variables systems is used instead of 
Gaussian factor system in the publications of B. D. 0. Anderson and M. Deis tier [ 4-6, 16, 17). An 
interpretation of this term follows. 

Consider a deterministic finite-dimensional linear system in impulse response representation 

.J.(r) = 2: l/(t -s)u(s). 
s E: T 

Suppose that the variables of input u and output .Y of this system arc observed with errors or noise, 
say by 

u(t) ::::: i1(1) + 11• 1(1), y(t) = _}o(t) + wz{I), 

in which w 1, w2 arc independent Gaussian white noise processes. Combining these expressions 
one obtains 

[u(t)] _ [ /0(1-s) ] [11•1(1)] 
J'(t) - ,"f/l(t -s) u(s) + w2(t) ' 

which is a Gaussian factor system except for the fact that the spectral density of the noise is not a 
diagonal function but block-diagonal with two blocks. The interpretation of the above defined 
system of which the variables arc observed with error, illustrates the term errors-in7variablcs 
model. 

PROBLEM 6.2. 'f71e weak stochastic realization problem for a Gaussian factor system is to solve the 
fol/owi11g suhproblems. Assume given a stationan• Gaussian process with ;::,.:ro mean J1111ctio11 and 

A • 

covaria11cefu11ctio11 Q or spectral de11si~1· Q. 
a. Find conditions under which there exists a Gaussian factor .~)'stem 
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y(t) = }; li(t-s)u(s) + w(t) 
s c:r 

such that the spectral de11si~}' ofy equals the given spectral density, or 
• • • • -.:-T • 
Q = Q,. = 1IQ11H + Q,. .. 

if such a Gaussian factor system exists then ii is ea/le~ a weak stochastic realization of the 
given process. 

b. Classify all minimal weak stochastic 1:~alizatio11s of the giiien process. A weak stochastic realiza-
• • -;:-1 

tio11 is called minimal ifrank(J!Q11 /1 ) is minimal. 

A difficulty with the above defined problem is the definition of minimality. In addition to the 

concept defined in 6.2, which is minimality of t~.c dimension of the factor process u, one could 
" ,... -;::-1 

also consider minimality of the degree of l/Q11 Jf . From a viewpoint of linear system theory the 

latter concept would be preferable. Possibly a mixture of both the dimension of the factor process 

and the degree has to be considered. Because of this difficulty the author of this paper is not yet 

convinced that a Gaussian factor system is a suitable model for economic and engineering prac­

tice. l lowcvcr, what may be of interest is the special case in which the spectral density of the noise 

is block-diagonal with two blocks. 

111c weak stochastic realization problem for Gaussian factor systems is unsolved. Only for 

low-dimensional cases have results been published. For the case of an observed process with two 

components sec [4, 18, 33] and for the case with three components sec [6, 18). A discussion of the 

problem may be found in ( 17]. Questions of identifiability and problems of parameter estimation 
for Gaussian factor systems have been discussed in (21, 26]. 

A strong version of the weak stochastic realization problem of 6.2 has been proposed in [54); 

sec also [55). The case in which the ~pcctral density Q ... of the noise consists of two diagonal 

blocks has been treated there. 
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