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Abstract

Given the continued integration of intermittent renewable generators
in electrical power grids, connection overloads are of increasing concern
for grid operators. The risk of an overload due to injection variability can
be described mathematically as a barrier crossing probability of a function
of a multidimensional stochastic process. Crude Monte Carlo is a well-
known technique to estimate probabilities, but it may be computationally
too intensive in this case as typical modern power grids rarely exhibit con-
nection overloads. In this paper we derive an approximate rate function
for the overload probability using results from large deviations theory.
Based on this large deviations approximation, we apply a rare event sim-
ulation technique called splitting to estimate overload probabilities more
efficiently than Crude Monte Carlo simulation.

We show on example power grids with up to eleven stochastic power
injections that for a fixed accuracy Crude Monte Carlo would require
tens to millions as many samples than the proposed splitting technique
required. We investigate the balance between accuracy and workload of
three splitting schemes, each based on a different approximation of the
rate function. We justify the workload increase of large deviations based
splitting compared to naive splitting — that is, splitting based on merely
the Euclidean distance to the rare event set. For a fixed accuracy naive
splitting requires over 60 times as much CPU time as large deviation
based splitting, illustrating its computational advantage. In these exam-
ples naive splitting — unlike large deviations based splitting — requires
even more CPU time than CMC simulation, illustrating its pitfall.

1 Introduction

Many modern societies have grown accustomed to a very reliable electricity
supply by electrical power grids. However, substantial implementation of inter-
mittent renewable generation, such as photovoltaic power or wind power, en-
dangers grid reliability. Power imbalances caused by generation intermittency
may cause grid stability constraints to be violated. Grid operators may even
have to curtail power to avoid grid instability, whereby some demanded power
consumption (or generation) is not delivered (or produced) in the end. As grid
operators are obliged to keep reliability at a prescribed level, they must assess
the probability of constraint violations.

A connection overload is an example of such a constraint violation. If an
excessive amount of power flows through the connection – e.g., a transmission
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line or cable —, the connections temperature will eventually exceed its allowed
maximum. As a result the connection may get damaged or it may sag and loose
tensile strength [Wan et al., 1999].

Various indices exist to assess grid reliability [Billinton and Li, 1994]. Many
of these quantify the occurrence of constraint violations that lead to a power
curtailment. Examples are the probability, expected duration or expected fre-
quency of violations during a fixed time interval, or the expected induced energy
curtailed due to these violations. This paper focuses on the probability that
specific connections overload, given the distribution of the multidimensional
stochastic process of all uncertain power injections. Overload probabilities are
important indices for many long-term investment questions of grid operators.
For example, the power grid may not meet reliability standards after a signifi-
cant number of renewable generators are integrated in the power grid. Fast and
accurate estimation of overload risks will enable otherwise computationally too
intensive optimizations of power grid investments. Overload probability esti-
mates will also improve short-term operational strategies as a grid operator can
act on these statistics during the next day, hour or even minutes.

Monte Carlo simulation can be used to estimate connection overload prob-
abilities. However, constraint violations causing power curtailments are rare
events in modern power grids. In case of a time interval of one week, probabilities
of 10−5 or even much smaller are not uncommon [Carden and Wintermantel, 2013,
CEER, 2014]. Crude Monte Carlo (CMC) estimators for rare event probabilities
may require a prohibitively large number of samples to achieve a fixed accuracy.
Since one CMC sample already involves solving a large number of high dimen-
sional nonlinear systems, CMC estimation is computationally too intensive for
grid reliability analyses in general.

Rare event simulation techniques have been developed for accurate and ef-
ficient estimation of very small probabilities. Importance sampling and (mul-
tilevel) splitting are two well-known variants. In importance sampling, one
samples from an alternative distribution, and the estimator is multiplied by
a factor to correct for the induced bias [Rubino and Tuffin, 2009]. Crucial for
variance reduction is to find a distribution that increases rare event occurrences.
Splitting techniques do not change the distribution, but replicate sample paths
whenever the rare event is presumed substantially more likely given the current
chain state [Garvels, 2000, L’Ecuyer et al., 2006]. Crucial for variance reduction
is a suitable importance function. An importance function assigns a value to the
state of a sample path, and this value determines whether the path is replicated
at the time of this state. Ideally, this function maps the system states to the
probability of hitting the rare event set starting from that system state. This
is very similar to importance sampling in the sense that information on typical
paths to the rare event is desired.

In a simple case with a one-dimensional state space and an interval as the rare
event set, the distance to the rare event set will serve as a suitable importance
function [L’Ecuyer et al., 2006, Wadman et al., 2014]. In many other cases how-
ever, the choice for the importance function is more difficult. In particular, in a
high dimensional state space – in this paper: multiple power injections modeled
by stochastic processes — it is in general not immediately clear which typical
path towards the rare event should be stimulated. [Glasserman et al., 1998]
show the importance of choosing the levels in a way consistent with the most
likely path to a rare set.
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In this paper we derive the most likely path towards the rare event of a con-
nection overload using results from large deviations theory. We model power
injections as a vector of correlated Ornstein-Uhlenbeck processes in Section 2.
Section 3 introduces the framework of a splitting simulation. We derive an
expression for the most likely path towards a connection overload in Section
4. We show that the derivation of this path is exact up to a numerical opti-
mization problem with one equality constraint. We show that this optimiza-
tion problem becomes one-dimensional if we assume a linear mapping between
power injections and the connection power flow. We use the corresponding de-
cay rate to construct a suitable importance function for a splitting technique
in Section 5. This importance function can be embedded in the framework
of [Dean and Dupuis, 2009], of which the authors show asymptotically optimal
performance. The performance of this importance function is also described
in detail in [Miretskiy et al., 2012]. To reduce the workload we propose three
approximations of the decay rate based on different numerical solvers of the
optimization problem. We investigate the accuracy and workload of the three
corresponding splitting schemes on different stochastic extensions of the IEEE-
14 test case in Section 6. We compare the performance of the large deviations
based splitting simulation to a naive splitting simulation based on merely the
proximity of the rare event set in the injection space. We conclude in Section 7.

In the literature, rare event simulation techniques have been based on large
deviations theory for many applications including finance, engineering, molecu-
lar biology and power systems [Guasoni and Robertson, 2008, Vanden-Eijnden and Weare, 2012,
Dupuis et al., 2012, Nykvist, 2015]. [Nykvist, 2015, Chapter 5] designs an asymp-
totically optimal importance sampling scheme to estimate voltage collapse prob-
abilities in a power grid by constructing subsolutions of the Hamilton-Jacobi
equations associated with the large deviations of the system. Also splitting tech-
niques have been applied to power systems. [Wang et al., 2011] and [Shortle, 2013]
estimated small probabilities of instantaneous, cascading failures of grid com-
ponents. Instead, in our work the rare event is a connection overloading during
a certain time interval and the sources of uncertainty are the power injections.
[Schlapfer and Mancarella, 2011] used splitting to estimate the probability of
a transmission line temperature exceeding a critical value. Markov processes
with a discrete state space are used whereas we use a continuous state space.
Furthermore, our importance function is based on the asymptotic overload prob-
ability, and not on the proximity of the constraint state variable to its allowed
maximum. In [Wadman et al., 2013] a splitting technique is applied to estimate
various grid reliability indices. Although the current paper focuses on connec-
tion overload probabilities only, the large deviations approach enables accurate
estimates even for high-dimensional state spaces (see Section 6.2) and in cases
where the shortest path to the rare event is much less likely than the most likely
path (see Section 6.4).

2 The power flow model

Let the following vector-valued stochastic process {Xε(t), t ≥ 0} denote n un-
certain power injections of the power grid as function of time t, defined as a
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multidimensional Ornstein-Uhlenbeck (OU) process:

dXε(t) = D(µ−Xε(t))dt+
√
εLdW (t),Xε(0) = x0. (1)

Here D := diag(θ1, . . . , θn) ∈ Rn×n is a diagonal matrix with mean-reverting
terms θ1, . . . , θn > 0 on the diagonal. The vector of long-term means is denoted
by µ ∈ Rn, ε > 0 is a scalar, L ∈ Rn×n is a lower triangular matrix with Σ :=
LL> the covariance matrix of LW (1), and W (t) is a vector of i.i.d. standard
Brownian motions. Then Xε

i (t) is clearly a one-dimensional OU process with
mean-reverting term θi, long-term mean µi, volatility

√
εΣii and initial value

x0,i. The injection pattern at node i will therefore deviate according to
√
εΣii

but will revert back to mean µi with force θi.
We admit that the model of OU processes is partially chosen for its tractabil-

ity. However, multiple generators and consumers are often connected to one
node — particularly in transmission grids. In those cases assuming a Gaus-
sian process for the sum of their injection patterns is reasonable and has been
done before [Perninge et al., 2011, Leith et al., 2004]. Especially on shorter time
scales, assuming OU processes can be justified since power injections are ex-
pected to deviate from and attract to some historical average. Furthermore,
the model incorporates dependencies through L between different power injec-
tions, reflecting the correlation between the meteorological sources of renewable
energy or between consumption at different nodes.

Appendix A shows that Xε(t) follows a multivariate normal distribution.
We should note that the state space of power injections is therefore unbounded
in this model, whereas in fact this state space is bounded for existing generators
and consumers. On a larger scale however, many sources of generation and
consumption are aggregated per node, so using the central limit theorem their
net power injection at time t can be modeled realistically by an unbounded
(normal) distribution.

We define the function p : Rn → R that maps the power injections to the
power flowing through a specific grid connection. A common choice for p involves
the AC power flow equations, which are described in detail in [Grainger and Stevenson, 1994,
Chapter 9]. In short, a nonlinear algebraic system of steady state equations re-
lates the power injections at each grid node to the voltages at all nodes. To
compute a connection power flow at some time t given the power injections at
that time, this nonlinear algebraic system has to be solved numerically for the
nodal voltages. Then Ohm’s law and the definition of power will immediately
yield the power flow through a connection.

Another choice for p is a linear function of the power injections to the power
flow through the connection of interest:

p(x) = v>x, (2)

for some constant vector v ∈ Rn. The DC power flow equations form a well-
known example [Seifi and Sepasian, 2011, Appendix A], but also for radial AC
networks linear functions have been derived [Low, 2014]. Since the experiments
in Section 6 assume DC power flow equations, we will briefly describe this linear
model:

P connection(x) = B̄AB−1x.
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Here, P connection ∈ Rl is the vector of power flowing through all l grid con-
nections and x ∈ Rn is the vector of power injections at all n grid nodes. In
diagonal matrix B̄ ∈ Rl×l each diagonal entry B̄kk is the electrical susceptance
of connection k. The bus-branch incidence matrix A ∈ Rl×n contains the grid
topology since it is defined as:

Aij =

 −0 if branch i is not connected to node j,
−1 if branch i is connected to node j and power flow from node j is positive,
−1 if branch i is connected to node j and power flow to node j is positive.

Finally, the elements of susceptance matrix B ∈ Rn×n are defined as:

Bij =

{
−X−1

ij if i 6= j,∑n
i6=j X

−1
ij if i = j.

Here Xij is the electrical reactance of connection (i, j), which is assumed to
be infinite if this connection does not exist. We conclude that the power flow
through connection k is indeed of the form (2), with v> equal to the k-th row
of matrix B̄AB−1 and p(x) the k-th element of P connection(x).

Most results in this paper are derived and experimentally tested assuming
p to be linear. However, as some results also hold for nonlinear p, we assume
for now only that p is a deterministic and continuous function of x that solves
a system of steady state equations, and we will mention it in later sections
whenever we further assume linearity as in (2).

We are interested in the overload probability

γ := P

{
sup

τ∈(0,T ]

p(Xε(τ)) ≥ Pmax

}

before some time T > 0, where Pmax > 0 is the maximum allowed value of
power flowing through the connection.1 As Xε and p are continuous, we have

γ = P {∃ τ ∈ (0, T ] : p(Xε(τ)) = Pmax} . (3)

We assume throughout this paper that no overload occurs if the power injections
are equal to their expectation:

p(E[Xε(t)]) < Pmax for all times t. (4)

Formula (31) in Appendix A shows that

E[Xε(t)] = e−Dt(x0 − µ) + µ,

where the exponential is a matrix exponential. So basically, assumption (4)
implies that there is neither an overload at the starting time, p(x0) < Pmax, nor
under average circumstances, p(µ) < Pmax, nor under the most likely circum-
stances in between. This reflects the connection being well-dimensioned under
normal circumstances. Therefore for vanishing ε, P{p(Xε(t)) ≥ Pmax} goes to
zero for all t. We conclude that for fixed T , γ goes to zero for vanishing ε, which
is why γ is a rare event probability if ε is small.

1The probability P
{
infτ≤T p(X

ε(τ)) ≤ −Pmax
}
is equally important for the grid operator,

but is omitted here as this is a problem of completely similar complexity.
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3 The splitting technique

To estimate (3) using CMC simulation, we sample trajectories from the dis-
cretization Xε

t of Xε(t) in (1) and check if p(Xε
t ) > Pmax at some discrete time

t. Then the CMC estimator

γ̂CMC :=
1

N

N∑
i=1

1{∃ τ∈(0,T ]:p(Xε
τ )≥Pmax in sample i}

for γ is in principle biased since rare event occurrences between subsequent time
steps are ignored. However, when a connection overloads it takes some lag time
before the connection temperature reaches a value where damage or sagging
occurs [Wadman et al., 2012]. Therefore, grid operators are typically interested
in overloads of a certain minimum duration, and we assume throughout this
paper that the discrete time steps are chosen sufficiently small to ignore the
discretization bias.

CMC simulation is inefficient for simulating rare events. The squared relative
error

Var γ̂CMC

γ2
=
γ(1− γ)

γ2N
=

1− γ
γN

(5)

of the CMC estimator diverges to infinity as O(1/γ) when N is fixed and
γ → 0. Therefore, to estimate a very small probability using CMC simula-
tion, one may need a prohibitively large number of samples. Multilevel split-
ting, or (importance) splitting, is a rare event simulation technique developed
to decrease this computational burden. Details behind splitting can be found
in for example [Garvels, 2000, Rubino and Tuffin, 2009, L’Ecuyer et al., 2006,
Botev and Kroese, 2012]. To keep this paper self-contained we give a brief in-
troduction, similar to that in [Wadman et al., 2014].

Any splitting technique starts by defining an importance function h : [0, T ]×
Rn 7→ R that assigns a value to each chain state (t,x). It is constructed such
that h(t,x) ≥ 1 precisely when (t,x) corresponds to a rare event occurrence
and h(0,x0) = 0. Further, higher values of a suitable importance function
correspond to a chain state from which the rare event is more likely. The
interval [0, 1] is divided into m subintervals with intermediate thresholds 0 =
l0 < l1 < · · · < lm = 1. Let Tk = inf{t > 0 : h(t,Xε(t)) ≥ lk} be the first time
of hitting the k-th level and Ek = {Tk < T} the event that the k-th level is hit
during [0, T ]. Obviously, P(Em) is the value of interest as it is equal to γ. Also,
P(E0) = 1. Since Em ⊂ Em−1 ⊂ · · · ⊂ E0, we can write

γ =

m∏
k=1

P(Ek|Ek−1). (6)

That is, γ is a product of m conditional probabilities pk := P(Ek|Ek−1), which
we will estimate separately. Independent sample paths from the conditional
distribution of the entrance state (Tk−1,X

ε(Tk−1)) given Ek−1 would give us an
estimate for pk. However, we do not know this distribution for levels k > 1, and
we use its empirical distribution instead, obtained from samples of the previous
level. We proceed recursively in this way, and at each level k we estimate pk by
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Figure 1: A minimal example of a splitting simulation.

the proportion p̂k of sample paths for which Ek occurs (see Figure 1). Then the
product

γ̂ :=

m∏
k=1

p̂k (7)

is an unbiased estimator for γ for several variants of the splitting technique,
and Fixed Number of Successes (FNS) is one of them. FNS repeats gener-
ating sample paths at each level k until a prespecified number rk hits of the
next level are observed. The conditional probabilities pk are estimated by
p̂k := (rk − 1)/(nk − 1), with nk the number of samples generated at level
k. [Amrein and Künsch, 2011] shows for this definition of p̂k that (7) is indeed
an unbiased estimator for γ. The authors also show that under ideal circum-
stances the squared relative error of the FNS estimator diverges as O((log γ)2)
when γ → 0 . This squared logarithmic divergence rate is slower than the diver-
gence rate of the CMC squared relative error in (5), illustrating the potential
gain of splitting. We use the FNS splitting technique in the rest of this paper.

The choice for the importance function is crucial for variance reduction of the
splitting estimator [Garvels, 2000, L’Ecuyer et al., 2006]. Intuitively, the impor-
tance function should ‘reward good behavior’ by splitting sample paths that are
more likely to hit the rare event set. The levels should be chosen in a way con-
sistent with the most likely path to the rare event set [Glasserman et al., 1998].
[Garvels et al., 2002] propose to use the importance function equal to (an in-
creasing function of) the rare event probability given that one starts at the
considered system state. As knowing this probability would defeat the point of
using simulation, the lesson is to find an importance function that is close to
this probability. We will use a result from large deviations theory to find an
asymptotic probability of the rare event, in the limit of rarity parameter ε.

4 Results from large deviations theory

The following derivation is inspired by [Bosman et al., 2014]. Using the Freidlin–
Wentzell theorem [Dembo and Zeitouni, 2009], the authors derive the decay
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rate and most likely path of the limiting barrier crossing probability of a one-
dimensional OU process before a fixed end time. We generalize this work to a
function of multiple correlated OU processes (1), and use the result to construct
a suitable importance function in Section 5.

Definition 1 Probability measure Pε on (X ,B) is said to follow a large devi-
ations principle (LDP) with a (lower semicontinuous) rate function I : X →
[0,∞) if, for all Γ ∈ B,

− inf
x∈Γ o

I(x) ≤ lim inf
ε→0

ε logPε(Γ ) ≤ lim sup
ε→0

ε logPε(Γ ) ≤ − inf
x∈Γ̄

I(x),

with Γ o and Γ̄ the interior and closure, respectively, of Γ [Dembo and Zeitouni, 2009].

One may interpret this as P(Xε ∈ A) ∼ exp(− inf{I(x) : x ∈ A}/ε) for small
ε. Furthermore, rate function I is good if {x : I(x) ≤ α} is a compact subset
of X for all α ∈ [0,∞). Then the Freidlin–Wentzell theorem asserts that {Xε}
satisfies a large deviation principle with good rate function I0,x0(x) defined by

Is,xs(x) =

{
1
2

∫ T
s
L(x,x′)dt if x ∈ Hs,xs ,

∞ if x 6∈ Hs,xs ,
for s ∈ [0, T ),xs ∈ Rn (8)

with Lagrangian L(x,x′) = u>u, u = u(x,x′) := L−1(x′+ (x−µ)), x′ := dx
dt ,

and

Hs,xs =

{
x : [s, T ] 7→ Rn : xi ∈ C[s, T ], xi(t) = xs,i +

∫ t

s

φi(z)dz, φi ∈ L2[s, T ] ∀ i
}
.

We defined Is,xs , Hs,xs for the initial condition x(s) = xs for general s ∈ [0, T )
and xs ∈ Rn as this generalization of s = 0 and xs = x0 will become con-
venient in Section 5. In molecular dynamics — good rate function (8) is also
known as the action functional [Vanden-Eijnden and Weare, 2012]. We define
the minimum

I∗(s,xs) := inf
τ∈(s,T ],x∈Hs,xs :p(x(τ))=Pmax

Is,xs(x)

of the good rate functions over all paths x that start in xs at time s ∈ [0, T )
and that exhibit an overload p(x(τ)) = Pmax at some time τ in the remaining
time interval (s, T ]. Then the contraction principle [Dembo and Zeitouni, 2009]
implies

lim
ε↓0
−ε logP

{
∃ τ ∈ (s, T ] : p(Xε(τ)) = Pmax

∣∣∣Xε(s) = xs

}
= I∗(s,xs).

Loosely speaking, the above asserts that the most likely path to the rare event
set will become dominant as the rare event probability vanishes. More precisely,
the decay rate of the vanishing probability converges to the good rate function
of this most likely path. So in specific, the minimum good rate function of the
probability in (3) converges to I∗(0,x0), advocating the following approximation
for small ε:

γ ≈ e−I
∗(0,x0)/ε.
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Therefore, the minimum good rate function is also called the decay rate. We
should note that a subexponential factor times exp(−I∗(0,x0)/ε) would be a
more accurate approximation, but as the exponential function dominates this
factor as ε vanishes, we neglect it here [Touchette, 2009]. This approximation
may serve as a first rough guess to distinguish connections with a significant
overload probability. Furthermore, the most likely path will shed light on the
typical combination of power injection paths that leads to an overload. We will
use this approximation in Section 5 to construct a suitable importance function
for a splitting simulation.

4.1 Minimizing the good rate function

We will write the decay rate I∗(s,xs) as an minimization over τ ∈ (s, T ] of an
infimum gs,xs(τ) for general τ :

I∗(s,xs) = inf
τ∈(s,T ]

gs,xs(τ), with gs,xs(τ) := inf
x∈Hs,xs :p(x(τ))=Pmax

Is,xs(x).

(9)

We use this formulation since we will first derive g0,x0
(τ) for general τ . Then

we will show that the derivative dg0,µ/dτ(τ) < 0 for all τ ∈ (s, T ], implying
that g0,µ(τ) is smallest in τ = T . This means that the most likely path from
the mean to the rare event set enters the rare event set at the latest possible
time.

Since the event p(x(τ)) = Pmax only depends on the path x up until t = τ ,
we have

g0,x0
(τ) = inf

x∈H0,x0 :p(x(τ))=Pmax

1

2

(∫ τ

0

L(x,x′)dt+

∫ T

τ

L(x,x′)dt

)

=
1

2
inf

x∈H0,x0 :p(x(τ))=Pmax

∫ τ

0

L(x,x′)dt. (10)

Proposition 2 The path x that minimizes (10) is of the form

x(t) = (V eDt − e−DtV )c+ e−Dt(x0 − µ) + µ, (11)

with c ∈ Rn such that p(x(τ)) = Pmax, and matrix V ∈ Rn×n given by

Vij =
Σij

θi + θj
. (12)

Proof 3 See Appendix B.

Proposition 2 specifies the most likely path x up to a constant vector c ∈ Rn
that fulfils p(x(τ)) = Pmax. Since p(x(τ)) = Pmax is only one equation whereas
the degrees of freedom for c is n, the Euler-Lagrange equations are in general not
sufficient to find infimum (10). Therefore, we substitute (11) in (10) and further
minimize the resulting objective function under the constraint p(x(τ)) = Pmax.
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That is, since x′(t) = (V DeDt +De−DtV )c−De−Dt(x0 − µ), we have

u(x,x′) = L−1
((
V De−Dt +De−DtV +DV eDt −DeDtV

)
c+Dµ−Dµ

)
= L−1 (V D +DV ) eDtc

= L−1ΣeDtc

= L>eDtc.

In the third equality, V D+DV = Σ follows directly from the definitions of V
and D. The objective function in (10) becomes∫ τ

0

L(x,x′)dt =

∫ τ

0

u(x,x′)>u(x,x′)dt =

∫ τ

0

c>eDtLL>eDtc dt

= c>
∫ τ

0

eDtΣeDtdt c

= c>
(
eDτV eDτ − V

)
c

= c>eDτ
(
V − e−DτV e−Dτ

)
eDτc

= c>eDτ Cov(X1(τ))eDτc.

We used symmetry of the diagonal matrix exponential in the second equality
and the integral in the fourth equality is easily derived elementwise. The co-
variance identity in the last equality, where X1 denotes Xε for ε = 1, is shown
elementwise in (32) in Appendix A. After substitution in (10) we obtain the
minimization problem

g0,x0(τ) = inf
c∈Rn : p(xc(τ))=Pmax

1

2
c>eDτ Cov(X1(τ))eDτc (13)

over c, where we introduced xc(t) := x(t) as defined in (11) to emphasize the
dependence on c. Note that the objective function is quadratic in c: if the con-
straint is linear, this optimization problem becomes a quadratic programming
problem.

4.2 Starting from the mean the rare event is most likely
at the end time

Now assume x0 = µ — i.e., all processes start at their long-term mean — and
define

b :=
(
V eDτ − e−DτV

)
c = Cov(X1(τ))eDτc.

In this case minimization problem (13) becomes

g0,µ(τ) =
1

2
inf

b∈Rn:p(b+µ)=Pmax

b>Cov(X1(τ))−1b.

The optimal value bopt for b clearly solves p(bopt + µ) = Pmax so it does not
depend on τ . The corresponding decay rate becomes

I∗(0,µ) =
1

2
inf

τ∈(0,T ]
b>opt Cov(X1(τ))−1bopt. (14)

10



We differentiate the objective function with respect to τ :

d

dτ
b>opt Cov(X1(τ))−1bopt = −b>opt Cov(X1(τ))−1 dCov(X1(τ))

dτ
Cov(X1(τ))−1bopt

= −b>opt Cov(X1(τ))−1e−DτΣe−Dτ Cov(X1(τ))−1bopt.

(15)

The first equality uses the identity for the derivative of a matrix inverse. The
second equality holds since Cov(X1(τ)) = V − e−DτV e−Dτ (see (32)) so its
derivative is e−Dτ (DV + V D)e−Dτ = e−DτΣe−Dτ . We continue using the
property that for an invertible matrix A and positive definite matrix B, A>BA
is positive definite too. Since Σ is a covariance matrix it is positive semi-
definite, and without loss of generality we can assume it is positive definite. As
e−Dτ Cov(X1(τ))−1 is clearly invertible, the matrix

Cov(X1(τ))−1e−DτΣe−Dτ Cov(X1(τ))−1

is positive definite, so (15) is strictly negative for general bopt. Hence, the
objective function in (14) strictly decreases in τ , so τ∗ = T minimizes it:

I∗(0,µ) = g0,µ(T ).

We conclude that when the process start from the mean the most likely time to
hit the rare event set is the last possible time T .

4.3 Quadratic programming assuming linear power flow
equations

For the remainder of this paper we assume constraint function p to be linear,
implying linear power flow equations. Then the minimization problem (13) has
a closed-form solution: assuming p(x) = v>x as in (2), optimization program
(13) becomes

g0,x0
(τ) = inf

c∈Rn : v> Cov(X1(τ))eDτc=a

1

2
c>eDτ Cov(X1(τ))eDτc,

with a = a(τ) := Pmax − v>
(
µ+ e−Dτ (x0 − µ)

)
. The minimizer c∗ of this

convex quadratic programming problem with one linear constraint is the solution
of (

eDτ CovX1(τ)eDτ eDτ CovX1(τ)v

v>CovX1(τ)eDτ 0

)(
c∗

λ

)
=

(
0
a

)
,

with λ ∈ R a (redundant) Lagrange multiplier [Murty, 2009]. Using an identity
for the inverse of a block matrix, we obtain the minimizer

c∗ = a
e−Dτv

v>CovX1(τ)v
(16)

with corresponding minimum

g0,x0
(τ) =

1

2

a2

v> CovX1(τ)v
. (17)
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Figure 2: For values of x0 relatively close to rare event border Pmax/v = 5
compared to µ = 1, the hitting time τ that minimizes decay rate g(τ) given a
hit at τ is not the end time T . Black dots indicate minima τ∗ = arg inf g(τ)
over the interval [0, T ].

By differentiating g0,x0
to τ ,

dg0,x0

dτ
=

1

2

2av>CovX1(τ)vv>De−Dτ (x0 − µ)− a2v>e−DτΣe−Dτv

(v>CovX1(τ)v)2
,

we confirm the result of Section 4.2 that if x0 = µ the end time is the most
likely time for the rare event to occur: again using properties of positive definite
matrices, it is readily checked that g0,µ(τ) indeed decreases in τ , so the decay
rate becomes

I∗(0,µ) = g0,µ(T ) =
1

2

(Pmax − v>µ)2

v> CovX1(T )v
. (18)

For general x0 ∈ Rn however, we do not have this guarantee. Even in the
one-dimensional case n = 1, one can easily derive that the minimum of (17) is
attained at

τ∗ = −D−1 log
x0 − µ

Pmax/v − µ
. (19)

This root is not defined if x0 = µ, but for any fixed T , sufficiently close values
of x0 to Pmax/v this minimizer τ∗ will be smaller than T . Figure 2 illustrates
such counterexamples of x0 for n = D = µ = Σ = v = T = 1 and Pmax = 5:
indeed τ∗ < T for x0 ∈ [2.4715, 5], where the critical value 2.4715 is derived by
solving (19) for x0 assuming τ∗ = T and all other parameters as given.

5 A large deviations based importance function

In this section we generalize the results of Section 4 by conditioning on Xε(s) =
xs for general s ∈ (0, T ] instead of on Xε(0) = x0. We are interested in
the decay rate I∗(s,xs) of the limiting probability that, given Xε(s) = xs at
time s, the rare event p(Xε(τ)) ≥ Pmax will occur at some time τ ∈ (s, T ] in

12



the remaining time domain. We will use I∗(s,xs) to compute an approximate
probability to hit the rare event given a realized chain state. In turn, we will
use this proxy as importance function in a splitting technique — i.e., to decide
whether or not to split the sample path at the corresponding time step.

One can easily derive — i.e., completely analogous to (9)-(11) —, that the
most likely path from Xε(s) = xs to the rare event is of the form

x(t) = (V eDt − e−D(t−s)V eDs)c+ e−D(t−s)(xs − µ) + µ (20)

for t ∈ [s, T ]. Likewise, for general s ∈ (0, T ] the decay rate

I∗(s,xs) = inf
τ∈(s,T ]

gs,xs(τ), (21)

with

gs,xs(τ) =
1

2
inf

c∈Rn:p(x(τ))=Pmax

c>eDτ Cov(X1(τ − s))eDτc (22)

can be derived analogously to (9)-(13). If we would assume linear power flow
equations p(x) = v>x as in Section 4.3, the latter minimization has closed-form
solution

gs,xs(τ) =
1

2

(
Pmax − v>µ− v>e−D(τ−s)(xs − µ)

)2
v>CovX1(τ − s)v

. (23)

To compute rare event probability γ using splitting, we should write it as
in (6), a product of conditional probabilities. We will show now how to define
these conditional probabilities in terms of the decay rate (21). First note that
we can write the rare event probability of interest

γ = P {∃s ∈ (0, T ] : I∗(s,Xε(s)) = 0}

as the probability that one arrives at a system state (s,Xε(s)) from where it
takes ‘zero Brownian effort’ to arrive in the rare event set. Second, we can write
the above in the form P(A|B)P (B), that is, as

γ = P
{
∃s ∈ (0, T ] : I∗(s,Xε(s)) = 0

∣∣ ∃s ∈ (0, T ] : I∗(s,Xε(s)) < αI∗(0,x0)
}

=× P {∃s ∈ (0, T ] : I∗(s,Xε(s)) < αI∗(0,x0)} ,

for any threshold α ∈ (0, 1). This equality obviously holds since the condition
{∃s ∈ (0, T ] : I∗(s,Xε(s)) < αI∗(0,x0)} is a subset of the rare event {∃s ∈
(0, T ] : I∗(s,Xε(s)) = 0}. One may interpret I∗(s,Xε(s)) as a measure for the
‘Brownian effort’ required to arrive at the rare event set; so for α = 1/2, the
condition corresponds to the process being ‘halfway towards the rare event set’.

We iterate this decomposition by first defining thresholds 0 =: l0 < l1 <
· · · < lm := 1 and events

Ek :=

{
∃s ∈ (0, T ] : 1− I∗(s,Xε(s))

I∗(0,x0)
≥ lk

}
,

for k = 0, . . . ,m. Then since P{E0} = 1, P{Em} = γ and E0 ⊃ . . . ⊃ Em,
the decomposition in (6) holds. This decomposition naturally suggests the large
deviations based importance function h : [0, T ]× Rn → R defined by

hLD(t,x) := 1− I∗(t,x)

I∗(0,x0)
. (24)
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In [Dean and Dupuis, 2009], sufficient conditions are derived for an asymptot-
ically optimal performance of a given importance function. They consider a
probability of hitting a rare event set B before entering another set A. We can
fit this setting with B := {p(y1,...,n) ≥ Pmax} ∪ {t ≤ T}, A := {t > T} and
stochastic process y := (Xε(t), t) . The authors show that under appropriate
conditions, the asymptotic decay rate of the second moment of the splitting
estimator γ̂ε is optimally

lim
ε↓0
−ε logE[(γ̂ε)2] = 2I∗(y0). (25)

One condition for this optimality is that the function W̄ (y) := E[r](1−h(y))/∆,
with r the number of splitting particles, ∆ the level size, satisfies

W̄ (y) ≤0 for all y ∈ B,

(26)

W̄ (y1)− W̄ (y2) ≤ inf
f ,t:f(0)=y1,f(t)=y2

∫ t

0

L(f ,f ′)du. for all y1,y2 6∈ A ∪B.

(27)

[Dean and Dupuis, 2009] call such a function a subsolution as it is the subsolu-
tion of the related Hamilton-Jacobi-Bellman equations. For W̄ to satisfy both
inequalities one requires an importance function h of the form 1−h(y) ∝ I∗(y).
In this case the first inequality holds as h(y) > 1 for all rare event set el-
ements y ∈ B. The second inequality can be written as a triangle inequal-
ity: the minimum good rate function of a path from point y to B is not
larger when going directly than when traversing via point y. Along these lines
[Miretskiy et al., 2012] choose an importance function equal to the exponen-
tial decay rate to estimate a probability of first entrance into a rare set, and
they prove asymptotic efficiency of their proposed Fixed Splitting scheme. The
importance function (24) is similar to that in [Miretskiy et al., 2012].

5.1 Approximation of the decay rate: 3 algorithms

Assuming linear power flow equations p(x) = v>x, computing I∗(t,Xε(t))
requires finding the optimal τ in (21)-(22). Although the search space of the
optimization is one-dimensional, the optimization is required at every time step
of every sample path in the splitting simulation. The associated workload will
therefore challenge the computational advantage of rare event simulation as
compared to CMC. To reduce the computational burden we define importance
function

hLD,i := 1− I∗i (t,x)

I∗i (0,x0)

using the following three approximations I∗1 (t,x), I∗2 (t,x), I∗3 (t,x) of decay rate
I∗(t,x):

Approximation 4 We assume that the most likely time τ∗ to enter the rare
event set given the current state (s,Xε(s)) is one of the discrete time steps
s + ∆, s + 2∆ . . . , T of the discretization of (1). I∗1 denotes the corresponding
decay rate approximation and γ̂1 the corresponding splitting estimator.
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The assumption in this approximation is reasonable for small step size ∆,
and practical for any discrete time implementation of the involved stochas-
tic processes. It reduces the optimization to computing gs,xs(τ) for all τ =
s+∆, s+ 2∆, . . . , T . As this assumption is weaker than those in the two subse-
quent approximations, the relative error of the accompanying splitting estimator
will serve as a benchmark and thus it will be compared to that of a CMC esti-
mator in Section 6.

Approximation 5 For any s < T , we assume that the most likely time τ∗ to
enter the rare event set given the current state (s,Xε(s)) is end time T . I∗2
denotes the corresponding decay rate approximation and γ̂2 the corresponding
splitting estimator.

The assumption τ∗ = T avoids the optimization problem (21)-(22) at each time
step s. In Section 4.2 we have proven that this assumption is true if xs = µ.
We expect that this assumption is reasonable for states xs ‘relatively close to
µ’ (see Figure 2). However, for sample paths that approach the rare event set
relatively soon in the simulation, the end time T may be a suboptimal hitting
time as then the mean-reverting force of the OU processes will require a very
unlikely Brownian motion for a relatively long time.

Approximation 6 We assume that the most likely state (τ∗,Xε(τ∗)) to enter
the rare event set given the current state (s,Xε(s)) is independent of (s,Xε(s)).
So for example if x0 = µ, for all (s,Xε(s)) the optimal rare event entrance state
is (T,xT ) for some constant xT ∈ Rn. I∗3 denotes the corresponding decay rate
approximation and γ̂3 the corresponding splitting estimator.

This assumption will hold exactly if a sample path is equal to the most likely
path, since then the most likely rare event entrance state (T,xT ) given current
state (s,Xε(s)) will be constant in time s. Although a sample path will in
general not be exactly equal to the most likely path, the splitting technique will
stimulate those paths that are close, so we may expect the most likely rare event
entrance state to be close to (T,xT ), justifying the assumption.

We now derive the optimal hitting point xT assuming x0 = µ. As shown
in Section 4.2, τ∗ = T is the most likely hitting time at (0,Xε(0)), explaining
the notation xT instead of xτ∗ . Expressions (11) and (16) then yield the most
likely chain state

xT := x(T ) = (V eDT − e−DTV )c∗ + µ = Cov(X1(T ))eDT
e−DTv

v> Cov(X1(T ))v
a+ µ

=
Cov(X1(T ))v

v>Cov(X1(T ))v

(
Pmax − v>µ

)
+ µ.

According to Approximation 6, the most likely path from xs at any time s ∈
(0, T ] will hit the rare event set at xT . By imposing the boundary condition
x(T ) = xT to (20), we derive the corresponding approximation x̃(t) for the
most likely path

x̃(t) = F (t)F−1(T ) (xT −G(T )) +G(t),

with F (t) := V eDt − e−D(t−s)V eDs and G(t) := e−D(t−s)(xs − µ) + µ. This
approximation avoids the optimization problem (21)-(22) too as c is completely

15



1

2 3

45

6

7 8

91011

12 13 14

Figure 3: The topology of the IEEE-14 test network, consisting of 14 nodes.
Power is consumed at nodes 2, 3, 4, 5, 6, 9, 10, 11, 12, 13 and 14. Power is
generated at node 2. Node 1 is the so-called the slack node, absorbing any power
imbalance in the grid, whereby its power injection does not influence the power
flowing through any connection. So only nodes 2, 3, 4, 5, 6, 9, 10, 11, 12, 13
and 14 have nonzero power injections in the DC model.

determined by the entrance point xT . The corresponding approximate decay
rate is

I∗3 (s,xs) = w>Cov(X1(T − s))−1w, (28)

with w := xT − µ − e−D(T−s)(xs − µ). The covariance matrix inverses are
independent of the chain state xs so they can be computed for each s before
the simulation starts. γ̂3 denotes the corresponding splitting estimator.

6 Experiments

We perform experiments on the IEEE-14 test network, representing a portion of
the American Electric Power System (in the Midwestern US) [Christie, 2006].
The grid contains of 14 grid nodes, 20 connections, and the original network
has constant and deterministic power injections, which are nonzero at 11 nodes
(see Figure 3).

At the first n nodes that have nonzero power injections, we replace these
n deterministic power injections P det by OU model (1) with µ = x0 = P det.
In this way the processes tend to revert to the original deterministic power
injection values. The network data assumes the per-unit system, which is widely
used in the power system industry [Grainger and Stevenson, 1994] and expresses
voltages, currents, powers, and impedances in per-unit (p.u.) values by dividing
each by a corresponding base value. For example, since the MVA base value is
100 in the IEEE network, P det

2 = 0.183 p.u. means that 18.3 MVA is injected
at node 2. By setting the end time T = 1 hour and step size ∆ = 0.01 hour,
the experiment corresponds to an operational assessment to determine whether
the grid is sufficiently reliable during the coming hour.

We set rarity parameter ε = 0.1 and the mean-reverting terms θi = 1 + (i−
1)/(n−1) increase from 1 to 2 per hour. The lower Cholesky factor L is such that

covariance matrix Σ = LL> = diag(Σ1/2)(ρ11> + (1 − ρ)I)diag(Σ1/2). Here
ρ = 0.5 reflects the typically positive correlation of power injections, 1 ∈ Rn is
a vector of ones and the volatilities diag(Σ1/2)ii = 1 + (i − 1)/(n − 1) of the
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marginal OU processes increase from 1 to 2 p.u. per square root of an hour. By
choosing these parameter values, the standard deviation

√
VarXε

i (t) of each
OU process increases in time from zero towards a similar order of magnitude as
the mean µi — that is, each generation pattern will be rather volatile at end
time T .

We assume DC power flow equations implying p(x) = v>x where v depends
on the connection under consideration. We use the MATPOWER package in
MATLAB to extract the values for v [Zimmerman et al., 2011]. For each con-
nection, we set the maximum allowed power flow Pmax = C|v>µ| equal to a
factor C > 1 times the average absolute power flow through that connection.
All experiments are performed on an Intel Core 2 Quad CPU Q9550 2.83GHz
computer in MATLAB R2014b.

6.1 Two nodes with stochastic power injections

We choose power injections at nodes 2 and 3 to be stochastic, so n = 2, and
we choose C = 1.5. The approximate decay rate and results of a Crude Monte
Carlo (CMC) simulation and splitting simulations are displayed in Table 1. Each
row corresponds to a connection denoted by i → j, and each column contains
different probability estimates of connection overloads. To distinguish between
excessive power flow in opposite directions, this probability is defined as

γ =

{
P{supτ∈(0,T ] v

>Xε(τ) ≥ C|v>µ|} if i < j,

P{infτ∈(0,T ] v
>Xε(τ) ≤ −C|v>µ|} if i > j.

(29)

The second column in Table 1 contains the largest approximate overload prob-
abilities γ̃LD := e−g0,µ(T )/ε of all connections, with g0,µ(T ) as in (17). The
third column contains CMC estimates γ̂CMC (with the relative error between
parentheses) obtained from one simulation using 106 samples. Expression (5)
suggests that obtaining a reasonably sized 95% confidence interval halfwidth of
1.96
√

Var γ̂CMC ≤ γ/2 requires more than 1011 samples when γ < 10−10. Since
this would in turn require more than 546 hours of CPU time, we omitted com-
puting CMC estimates for which γ̃LD < 10−10. The CMC estimates show that
γ̂LD is reasonably accurate for those overload probabilities we can compare to
a CMC estimate. As the computation of γ̂LD required the evaluation of (18)
only, it serves as a suitable first guess to distinguish grid connections that are
exposed to significant overloading risks.

However, the accuracy of the single-point approximations γ̂LD are unknown.
Fortunately, relative errors of multiple splitting estimates give this insight.
The fourth column contains the means of 100 splitting estimates γ̂1 using the
FNS scheme explained in Section 3 with 100 hits at each level. We omitted
splitting estimates for which γ̃LD < 10−25 as knowing such small estimates
will have no practical purpose. We chose the number of equidistant thresh-
olds to be the closest integer to −0.6275 log γ̃LD, following the reasoning in
[Amrein and Künsch, 2011]. We estimated the relative errors of the splitting
estimators by repeating the simulation 100 times. All CMC estimates except
the last one agree with the corresponding splitting estimates in the sense that
the 95% confidence intervals implied by the splitting estimates contain the CMC
estimates. Although the last CMC estimate does not lie in the corresponding
splitting confidence interval, its relative error is quite large — in fact, the 95%
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confidence intervals of CMC and splitting overlap — so CMC does not serve as
a good benchmark for such a small probability.

To illustrate the computational gain of a splitting technique over CMC sim-
ulation, we use equation (5) to compute the expected number of CMC sam-
ples required to obtain an accuracy comparable to that of the splitting esti-
mates. For example, the squared relative error of γ̂1 for connection 3 → 4 is
0.0212 ≈ 0.00044. Equation (5) suggests that 9.1 × 106 CMC samples will be
required to achieve a squared relative error of similar size, whereas the splitting
estimator required only 2.8× 105 samples. This difference of a factor 33 is dis-
played in the last column of Table 1. This factor is as much as 9.8 × 106 for
connection 2 → 4, since CMC simulation would then require the prohibitively
large number of 6.8×1012 samples. Even though the CPU time of one trajectory
is smaller when using CMC simulation (2.5 × 10−5 seconds) than when using
splitting (7.9× 10−4, 9.6× 10−5 and 1.2× 10−4 seconds for the three respective
splitting algorithms from Section 5.1), Table 1 illustrates that the smaller the
probability, the larger the computational gain of splitting.

To our knowledge, of all models in the literature for which rare event sim-
ulation is used to estimate grid reliability due to uncertain power injections,
the one in [Nykvist, 2015, Section 5.4.3-4] is closest to ours. The authors also
assume OU processes and base the simulation technique on results from large
deviations, but they assume AC (instead of DC) power flow equations and em-
ploy importance sampling instead of splitting. The resulting estimates illustrate
that the importance sampling algorithm is asymptotically optimal. However,
the average CPU time per sample path is much higher that of the splitting
schemes in this paper: the nonlinearity of the AC power flow equations will
require a computationally intensive numerical optimization. Our splitting tech-
nique has a similar disadvantage: for nonlinear p, each time step of each sample
path optimization problem (13) requires a numerical solver, which will probably
nullify the workload gain achieved by extending CMC simulation with splitting.

6.2 Eleven nodes with stochastic power injections

We increase the number of stochastic nodes to n = 11 and repeat the exper-
iment. We choose C = 20 in (29) to again achieve a wide range of overload
probabilities, see Table 2. Again γ̂LD is reasonably accurate for those proba-
bilities we can compare to a CMC estimate, confirming that it may serve as
a reasonable first guess even when a high number of stochastic power injec-
tions are involved. For all seven CMC estimates the 95% confidence intervals
obtained by the corresponding splitting estimates contain the CMC estimates.
Again achieving the relative error of displayed splitting estimates using a CMC
simulation will often require a prohibitively large number of samples.

6.3 Comparison of the three decay rate approximations

We investigate the performance of three splitting techniques, each using one
of the three decay rate approximations I∗1 , I

∗
2 and I∗3 . As performance mea-

sures we will use the relative error and CPU time of the respective splitting
estimators γ̂1, γ̂2 and γ̂3 of overload probability γ of connection 3 → 4 in the
two-dimensional model as in Section 6.1. The sample mean and relative error of
100 realizations of γ̂i are displayed in Table 3, using 100 hits at every level in all
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Table 1: Estimates of highest overload probabilities γ as in (29) for connections
i→ j in the DC IEEE-14 test case with n = 2 stochastic power injections, and
ε = 0.1. Columns contain large deviations approximations γ̃LD, CMC estimates
γ̂CMC and the means of 100 large deviations based splitting estimates γ̂1, with
relative errors of the mean between parentheses. The last column contains
the expected number of CMC samples required to obtain the accuracy of the
splitting estimates, divided by the number of splitting samples.

γ̃LD γ̂CMC γ̂1
#CMC samples
#FNS samples

4→ 3 0.72 0.69 (0.000 68) 0.69 (0.0056) 1.0
1→ 2 0.11 0.090 (0.0032) 0.091 (0.0097) 1.1
2→ 3 0.10 0.10 (0.0030) 0.10 (0.0093) 1.2
5→ 4 0.013 0.012 (0.0090) 0.013 (0.016) 2.9
1→ 5 0.0018 0.0014(0.027) 0.0015 (0.022) 7.2
3→ 4 2.8e−4 2.6e−4(0.062) 2.5e−4 (0.021) 33

11→ 10 7.6e−5 5.3e−5(0.14) 6.1e−5 (0.026) 73
2→ 4 8.5e−11 - 6.1e−11 (0.049) 9.8e6
9→ 10 6.7e−14 - 3.3e−14 (0.051) 1.2e10
6→ 11 1.2e−18 - 5.1e−19 (0.083) 2.1e14
2→ 5 4.0e−23 - 1.0e−23 (0.11) 5.4e18
2→ 1 1.6e−24 - 3.7e−25 (0.13) 9.2e19
3→ 2 1.8e−25 - 7.5e−28 (0.13) 4.5e20

13→ 14 8.8e−26 - -

Table 2: As in Table 1, but now with n = 11 stochastic power injections, and
C = 20.

γ̃LD γ̂CMC γ̂1
#CMC samples
#FNS samples

12→ 13 0.049 0.043 (0.0047) 0.043 (0.011) 1.8
13→ 12 0.025 0.021 (0.0068) 0.022 (0.012) 2.4
9→ 10 0.0060 0.0045 (0.015) 0.0046 (0.019) 3.2
10→ 9 0.0019 0.0014 (0.027) 0.0014 (0.021) 7.2
11→ 10 6.4e−4 4.9e−4 (0.045 5.0e−4 (0.019) 24
10→ 11 1.2e−4 9.3e−5 (0.10) 9.1e−5 (0.026) 56
9→ 14 3.1e−11 - 1.9e−11 (0.041) 4.2e7
6→ 12 1.3e−11 - 6.3e−12 (0.043) 9.6e7
6→ 11 5.2e−12 - 2.2e−12 (0.048) 2.3e8
14→ 9 1.5e−13 - 8.3e−14 (0.069) 2.8e9
12→ 6 4.9e−14 - 2.1e−14 (0.056) 1.5e10
11→ 6 1.6e−14 - 6.0e−15 (0.063) 4.1e10
8→ 7 1.1e−15 - 3.1e−16 (0.060) 7.8e11

13→ 14 5.6e−17 - 2.7e−17 (0.085) 4.2e12
7→ 8 5.4e−19 - 1.3e−19 (0.062) 1.5e15

14→ 13 1.4e−20 - 5.5e−21 (0.086) 1.7e16
5→ 6 8.7e−25 - 2.5e−25 (0.11) 2.0e20
6→ 13 3.2e−25 - 1.2e−25 (0.17) 1.6e20
7→ 9 3.9e−29 - -
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Table 3: Sample mean and its relative error of 100 splitting estimates γ̂i using
corresponding decay rate proxy I∗i , the total time to compute 100 estimates, and
the required CPU time to obtain the relative error of γ̂1 by computing more
than 100 estimates.

γ̂1 γ̂2 γ̂3

Sample mean 2.47e−4 2.37e−4 2.40e−4
Relative error (re) 0.019 0.033 0.037
CPU time (sec) 270 56 71
CPU time to obtain re(γ̂1) (sec) 270 184 283

splitting runs. All 95% confidence intervals implied by the splitting estimates
contain the corresponding CMC estimate — which is 2.6 × 10−4, see Table 1.
The relative error of γ̂1 is smaller than that of γ̂2, which is as expected as Ap-
proximation 4 is based on a weaker assumption than that of Approximation 5
(see Section 5.1). For a similar reason, the difference in relative error between
γ̂2 and γ̂3 is as expected. Fortunately, the increase of the relative error is at
most a factor of 2.

The higher workload of γ̂1 is obviously due to the necessary computation of
good rate function (23) for all discrete candidates for τ∗. The workload of γ̂2 is
smaller than that of γ̂3: the most demanding step to compute γ̂3 is the quadratic
product w>Cov(X1(T − s))−1w in (28), whereas to compute γ̂2, the quadratic
product v>Cov(X1(T ))v in (18) is most demanding. The matrix inverse of the
former vector matrix vector computation depends on the time step, explaining
the slightly higher workload of γ̂3. The last row in Table 3 gives an indication
of the relative workload gain of the three splitting techniques: by computing
100re(γ̂i)

2/re(γ̂1)2 (instead of 100) estimates γ̂i, one may expect the relative
error of the mean to be comparable to re(γ̂1). The last row in the table displays
the expected total CPU times these computations would require, favoring the
second splitting technique over the other two in this example.

We will illustrate the accuracy of Approximation 6 of a constant optimal
hitting time τ∗ = T and constant optimal endpoint xτ∗ = xT . We consider
connection 2 → 4 and again assume the model as in Section 6.1. For each en-
trance state at each level in the I∗1 -based splitting run, we numerically compute
the hitting time τ∗ and endpoint xτ∗ that are most likely given that entrance
state. We use fifteen levels and 1000 hits per level. Figure 4 displays the his-
tograms of τ∗ for four different levels. The optimal hitting time τ∗ is relatively
close to T for second level entrance states. This can be interpreted as many en-
trance states still being close to µ — we have proven in Section 4.2 that starting
from µ the most likely hitting time is exactly T . For higher levels, typical values
for τ∗ decrease. This is intuitive since at higher levels samples are more likely
to be so close to the rare event set that a rare event occurrence is more likely
before the end time than at the end time. The increased relative error of γ̂2

and γ̂3 in Table 3 compared to the relative error of γ̂1 can be attributed to this
intuition.

We perform a similar analysis on the optimal hitting point xτ∗ . Since the
two elements of xτ∗ fulfil the linear equation of the rare event, we will only
investigate the first element xτ∗,1. Figure 5 displays the histogram of xτ∗,1
again for four different levels. As expected, all four empirical distributions
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Figure 4: The optimal hitting time
τ∗ given an entrance state at a
certain level typically decreases in
this level.

Figure 5: The endpoint xτ∗ that is
most likely given an entrance state at
a certain level typically diverges from
the endpoint xT that was initially the
most likely.

are centered around the endpoint xT,1 that was initially the most likely. The
variance increases in the considered level; in fact, the sample variance increases
monotonically over all 15 levels. We can attribute this observation to the fact
that the variance of Xε

i (t) increases in time (see equation (32) in Appendix A).
Therefore, chain states from which the most likely endpoint is far away from
xT,1 become more likely over time.

6.4 Performance comparison with a naive importance func-
tion

Instead of employing large deviation theory, one could base an importance func-
tion on the Euclidean distance of the constraint state variable to its allowed
maximum. For example, the importance function

hEd(x) =
v>x− v>x0

Pmax − v>x0
(30)

is zero at x = x0 and larger than one if the rare event set is entered.
Although this choice for the importance function is intuitive, we will show in

an experiment that the choice is naive since it replicates relatively unpromising
sample paths: loosely speaking, a state variable Xε(t) being closer to the rare
event set does not necessarily mean that entering the rare event set is more
likely. For example, if from a certain state (t,Xε(t)) only a small increase of
one process Xi(t) at that time t will cause the rare event, importance function
(30) may duplicate sample paths from that state. However, if OU process Xi has
an extremely small volatility and Xi(t) � µi, then the rare event may in fact
be much less likely from (t,Xε(t)) than from other realized states. Especially
for problems with a high-dimensional state space (t,Xε(t)), it will be difficult
to exclude the existence of such states (that are close to the rare event set in a
Euclidean sense but far in a probabilistic sense). Therefore, the more grid nodes
have uncertain power injections patterns, the more pronounced this problem will
be.

We will illustrate that already in case of a two-dimensional Xε(t) this prob-
lem can be significant. We call function (30) the naive importance function and
compare it with importance function (24) based on decay rate approximation
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Figure 6: The most likely path of a two-dimensional OU process from x0 = µ
(dashed line) towards the rare event set (boundary given by solid line). A
contour plot of the OU potential D(µ − x)2/2 is in the background. The OU
model parameters are such that the most likely path differs significantly from
the shortest path to the rare event.

I∗2 . We choose the model with 2 stochastic power injections as in Section 6.1,
but now it is nodes 3 and 5 that are stochastic and we set C = 1.3, ρ = 0.95,
D22 = θ2 = 5. Figure 6 shows the most likely path from x0 = µ to the rare
event. Because now correlation ρ is very high, path increments diagonally to the
upper right and left down are much more likely than diagonally to the upper left
or right down. Second, since θ2 > θ1, mean reversion of horizontal increments is
less powerful than that of vertical increments. For these two reasons the most
likely path differs significantly from the shortest path to the rare event set.

The sample paths hitting a next level are displayed in Figures 7 and 8 for the
two splitting simulations, respectively. We chose only 10 hits per level for clarity
reasons. Paths of the large deviations based splitting run stay around the path
that is initially the most likely, whereas paths of the naive splitting run deviate
to the upper right. This suggests that naive splitting is replicating many paths
that are not necessarily promising to hit the rare event set. A CMC simulation
with 107 samples yielded the estimate 3.83× 10−5 and 95% confidence interval
[3.45×10−5, 4.21×10−5]. The large deviation based splitting estimates in Table
4 are relatively close to the CMC estimate compared to the naive splitting
estimates. Second, the relative error of 100 large deviations based estimates is
lower than that of 100 naive splitting estimates, confirming that a significant
number of samples are replicated in vain in the naive splitting run. This can
be explained by the next statistic in Table 4: on average much more samples
are required to observe a next level hit, and this difference increases for smaller
r. The CPU times exhibit a similar difference. Both differences are intuitive
since for a small number of next level hits in the naive run chances are higher
that none of them is actually promising from a large deviation perspective.
In contrast, the large deviation based splitting simulation requires around 6
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Figure 7: Using importance function
(24), with decay rate proxy I∗2 , paths
of a splitting simulation stay around
the most likely path (see also Figure
6)
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Figure 8: Using importance function
(30), based on the proximity to the
rare event set, paths of a splitting
simulation deviate significantly from
the most likely path (see also Figure
6).

Table 4: Performance statistics of 100 splitting estimates using either large
deviations based importance function (24) or naive importance function (30),
for different numbers r of hits per level: sample mean, relative error, average
number of samples required to hit the next level and total CPU time for the
1000 estimates. The last column displays the factor of CPU time naive splitting
would require more than LD based splitting to obtain the accuracy of the LD
based splitting estimate.

hLD hEd CPU Ed
CPU LDr Est RE #paths CPU (sec) Est RE #paths CPU (sec)

250 3.94e−5 0.021 5.5 170 3.94e−5 0.13 13 270 60.8
100 3.85e−5 0.040 5.5 70 3.70e−5 0.26 20 160 96.5
25 3.75e−5 0.064 5.6 21 1.53e−5 0.36 85 110 166
10 3.81e−5 0.12 5.7 11 3.28e−6 0.40 707 175 177

samples on average to hit the next level, even for a small number of hits per
level. In this sense, the workload of γ̂2 per level hit is robust in the number of
hits per level.

To give a quantification of the workload gain, first note that for r = 250 the
relative error is a factor 0.13/0.021 = 6.19 smaller using hLD instead of hEd.
Again using expression (5), we expect the naive splitting simulation to require
a factor 6.192 ≈ 38 as many estimates to achieve a relative error similar to that
of the large deviation based splitting simulation. This would translate in a total
CPU time of 270 × 38 = 10260 seconds, which is 10260/170 = 60.8 times as
much as the CPU time of the large deviations based splitting simulation. The
last column in Table 4 shows that for r = 100, 25, 10 this factor of increased
CPU time becomes even more. We conclude that for a fixed accuracy the large
deviation based splitting technique is computationally more efficient than the
naive splitting technique, especially for a relatively small number of hits per
level.

Using expression (5) and an estimated CPU time of 2.5× 10−5 seconds per
CMC sample, a similar comparison of naive splitting with CMC can be per-
formed. In fact, for r = 250, 100, 25, 10, the naive splitting technique required
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11, 25, 33, 67, respectively, times as much CPU time to obtain the relative er-
rors 0.13, 0.26, 0.36, 0.40 in Table 4, respectively, than CMC simulation would
require. So in this case CMC simulation is computationally more efficient than
naive splitting. In contrast, large deviation based splitting outperforms CMC for
r = 250, 100, 25, 10 with factors 5.7, 3.8, 5.0, 2.7, respectively, in computational
efficiency. This efficiency gain will be even more for smaller probabilities.

7 Conclusion and outlook

Based on results from large deviations theory, we developed an importance
function for a splitting technique to efficiently estimate overload probabilities of
power grid connections. The large deviations approximation serves as a suitable
first guess to distinguish connections with significant overload probabilities. For
both 2 and 11 stochastic power injections and a fixed accuracy, Crude Monte
Carlo would require tens to millions as many samples than the proposed splitting
technique required. The assumption that the rare event is most likely at the
end time significantly accelerates the computation with only a modest loss of
accuracy.

We showed an example (see Table 4) where a naive importance function
based on the Euclidean distance to the rare event set replicates many unpromis-
ing sample paths. When using a naive importance function the required CPU
time to achieve a fixed relative error is over 60 times larger than when using
our proposed importance function, justifying the use of a large deviations based
splitting technique. In fact, naive splitting — unlike large deviations based split-
ting — required more (over 11 times as much) CPU time than CMC simulation,
illustrating its pitfall.

The splitting techniques in this paper consider overload probabilities of single
connections only. The event that any connection will overload in due time will
be of great importance for power system engineers. Generalizing the large devi-
ation based splitting technique to this problem will therefore be relevant further
research. Since the minimum good rate function of any connection overloading
is equal to the minimum over all minimum good rate functions of a specific
connection overloading, a similar large deviation based importance function can
be derived for this problem. We expect that computing the minimum good rate
function of each (instead of one) connection at each time step in the simulation
will constitute the main increase in workload. Especially for grids with a large
number of connections this workload increase may challenge the workload gain
due to splitting. Estimating conditional probabilities given the overload of one
line that one other line fails will also be relevant but a challenging extension of
the approach in this paper: when one line overloads the change of grid topology
will probably hinder analytically solving the quadratic programming problem
in (4.3).

A second area of further research is to develop large deviation based impor-
tance functions for nonlinear power flow equations. In that case optimization
problem (21)-(22) is multidimensional and has a nonlinear constraint, so solving
it each time step will be computationally too intensive for a high dimensional
state space. However, a remedy could be to use one of the three importance func-
tions from Section 5.1 (that assume linear power flow equations) in a splitting
simulation of a nonlinear power flow model. Importance function evaluations
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will in this way avoid the optimization problem and may be sufficiently accurate
to save a substantial amount of workload for a fixed relative error.

Finally, we aim to replace the OU process by a diffusion process that incor-
porates periodicities or an alternative stationary distribution that is typical for
generation patterns of renewable energy.

APPENDIX

A Moments of the multidimensional OU pro-
cess

In this appendix we will derive the first two moments of the multidimensional
OU process. Consider the i-th element of the multidimensional OU process in
(1):

dXε
i (t) = θi(µi −Xε

i (t))dt+
√
ε

i∑
k=1

LikdWk(t), Xε
i (0) = x0,i.

Then marginal Xε
i (t) is a one dimensional OU process with volatility parameter

σi given by σ2
i = ε

∑i
k=1 L

2
ik = εΣii, and its solution is well-known:

Xε
i (t) = x0,ie

−θit + µi(1− e−θit) + ε

i∑
k=1

Lik

∫ t

0

eθi(s−t)dWk(s).

The first two RHS terms are deterministic and the third is a weighted sum
of independent Itō integrals with a deterministic integrand. Therefore, all Itō
integrals are normally distributed with zero mean and a variance equal to the
time integral of the squared integrand, implying

E[Xε
i (t)] = x0,ie

−θit + µi(1− e−θit), (31)

Var(Xε
i (t)) = ε

i∑
k=1

L2
ik Var

∫ t

0

eθi(s−t)dWk(s) = ε

i∑
k=1

L2
ik

∫ t

0

e2θi(s−t)ds = ε
σ2
i

2θi
(1− e−2θit).

As every linear combination of components of Xε(t) is univariate normally
distributed, Xε(t) is multivariate normal. Its expectation is the vector of above
marginal expectations, so it remains to find the covariance matrix of Xε(t).
Assuming i ≤ j without loss of generality, the elements of this covariance matrix
are

Cov(Xε
i (t), Xε

j (t)) = E[(Xε
i (t)− E[Xε

i (t)])(Xε
j (t)− E[Xε

j (t)])]

= ε

i∑
k=1

j∑
l=1

LikLjle
−(θi+θj)tE

[∫ t

0

eθisdWk(s)

∫ t

0

eθjsdWl(s)

]

= ε

i∑
k=1

LikLjke
−(θi+θj)tE

[∫ t

0

eθisdWk(s)

∫ t

0

eθjsdWk(s)

]
,

where the last equality holds as for k 6= l the two Itō integrals are independent
and have a deterministic integrand, so the expectation of their product is zero.
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The argument of the remaining expectations are quadratic covariations, of which
each can be written in terms of three quadratic variations using the polarization
identity:

E
[∫ t

0

eθisdWk(s)

∫ t

0

eθjsdWk(s)

]
=

1

2
E

[(∫ t

0

(eθis + eθjs)dWk(s)

)2

−
(∫ t

0

eθisdWk(s)

)2

−
(∫ t

0

eθjsdWk(s)

)2
]

=
1

2

(∫ t

0

(eθis + eθjs)2ds−
∫ t

0

e2θisds−
∫ t

0

e2θjsds

)
=

∫ t

0

e(θi+θj)sds =
e(θi+θj)t − 1

θi + θj
.

After substitution we conclude that element (i, j) of the covariance matrix of
Xε(t) is given by

Cov(Xε
i (t), Xε

j (t)) = ε

i∑
k=1

LikLjke
−(θi+θj)t

e(θi+θj)t − 1

θi + θj
= εΣij

1− e−(θi+θj)t

θi + θj
.

With V as defined in (12), we conclude in vector notation:

Cov(Xε(t)) = ε(V − e−DtV e−Dt). (32)

B Proof of proposition 2

Necessary conditions for x are the Euler-Lagrange equations, which are in vector
form as follows:

∇xL −
d

dt
(∇x′L) = 0, (33)

where ∇xL and ∇x′L are the gradients of L(x,x′) w.r.t. x and x′, respectively.
Elementary calculus yields

∇xL = 2(∇xu)>u = 2(L−1D)>L−1(x′ +Dx−Dµ) = 2DΣ−1(x′ +Dx−Dµ),

∇x′L = 2(∇x′u)>u = 2L−>L−1(x′ +Dx−Dµ) = 2Σ−1(x′ +Dx−Dµ),

d

dt
(∇x′L) = 2Σ−1(x′′ +Dx′).

Therefore, (33) becomes after some rearrangements

x′′ = (ΣDΣ−1 −D)x′ +ΣDΣ−1Dx−ΣDΣ−1Dµ. (34)

Equation (34) is a system of second order nonhomogeneous linear differential
equations, and its homogeneous counterpart can be written as a first order
system:

y′ = My, with M :=

(
O I

ΣDΣ−1D ΣDΣ−1 −D

)
∈ R2n×2n, y :=

(
xh
x′h

)
,

(35)
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with zero matrix O ∈ Rn×n and identity matrix I ∈ Rn×n. To find the eigen-
values and eigenvectors of M , we have to solve(

O I

ΣDΣ−1D ΣDΣ−1 −D

)(
w
w̄

)
= λ

(
w
w̄

)
for λ ∈ R,w, w̄ ∈ Rn. The upper block equation reads w̄ = λw, so each
eigenvector will be of the form (w, λiw)>. Substituting w̄ = λw in the lower
block equation yields the characteristic polynomial

(ΣDΣ−1 − λI)(D + λI)w = 0. (36)

Any eigenvalue of −D for λ together with a corresponding eigenvector for w
would obviously solve this equation. As −D is diagonal, these eigenvalues are
−D11, . . . ,−Dnn with the standard unit vectors e1, . . . , en as corresponding
eigenvectors. Therefore, for i = 1, . . . , n, λi := −Dii is an eigenvalue of M
and (wi, w̄i)

> := (ei −Diiei)> is the corresponding eigenvector. Note that here
wi ∈ Rn denotes the i-th eigenvector, and not the i-th element of a vector.
Likewise, any eigenvalue of ΣDΣ−1 for λ with the corresponding eigenvector
for (D + λI)w would also solve characteristic polynomial (36). As ΣDΣ−1

and D are similar matrices, ΣDΣ−1 has eigenvalue Dii with eigenvector Σei
for i = 1, . . . , n. Therefore, for i = 1, . . . , n, λn+i := Dii is an eigenvalue of M
and (wn+i, w̄n+i)

> := ((D+DiiI)−1Σei, (D+DiiI)−1DiiΣei)
> is the corresponding

eigenvector. So now we have specified the general solution

y(t) =

2n∑
i=1

cie
λit

(
wi

w̄i

)
of (35) up to constants c1, . . . , c2n, since for all i = 1, . . . , n

λi = −Dii,

(
wi+n

w̄i+n

)
=

(
−Diiei
−Diiei

)
,

λn+i = −Dii,

(
wn+i

w̄n+i

)
=

(
Dii(D +DiiI)−1Σei
Dii(D +DiiI)−1Σei

)
.

The homogeneous solution xh of (34) is by definition (see (35)) the subvector
with the first n elements of y, or in matrix-vector form

xh(t) =
(
w1 . . . w2n

)
diag

(
eλ1t, . . . , eλ2nt

)( c̄
c

)
=
(
I V

)( e−Dt O
O eDt

)(
c̄
c

)
with c̄ = (c1, ..., cn)>, c = (cn+1, ..., c2n)> and matrix V as defined in (12).
Using particular solution xp = µ of (34) and initial condition x(0) = x0 to
determine c̄, we arrive at the general solution of (34):

x(t) = (V eDt − e−DtV )c+ e−Dt(x0 − µ) + µ.

We conclude that the optimal path is of the above form, with c ∈ Rn such that
p(x(τ)) = Pmax.
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(2011). Modeling the electric power consumption in a multi-area system.
European transactions on electrical power, 21(1):413–423.

[Rubino and Tuffin, 2009] Rubino, G. and Tuffin, B. (2009). Rare event simu-
lation using Monte Carlo methods. John Wiley & Sons.

[Schlapfer and Mancarella, 2011] Schlapfer, M. and Mancarella, P. (2011).
Probabilistic modeling and simulation of transmission line temperatures
under fluctuating power flows. Power Delivery, IEEE Transactions on,
26(4):2235–2243.

[Seifi and Sepasian, 2011] Seifi, H. and Sepasian, M. S. (2011). Electric power
system planning: issues, algorithms and solutions. Springer Science & Busi-
ness Media.

[Shortle, 2013] Shortle, J. F. (2013). Efficient simulation of blackout proba-
bilities using splitting. International Journal of Electrical Power & Energy
Systems, 44(1):743–751.

[Touchette, 2009] Touchette, H. (2009). The large deviation approach to statis-
tical mechanics. Physics Reports, 478(1):1–69.

[Vanden-Eijnden and Weare, 2012] Vanden-Eijnden, E. and Weare, J. (2012).
Rare event simulation of small noise diffusions. Communications on Pure
and Applied Mathematics, 65(12):1770–1803.

29



[Wadman et al., 2012] Wadman, W. S., Bloemhof, G., Crommelin, D. T., and
Frank, J. E. (2012). Probabilistic power flow simulation allowing temporary
current overloading (volume to appear). In Conference proceedings on Prob-
abilistic Methods Applied to Power Systems, pages 494–499.

[Wadman et al., 2013] Wadman, W. S., Crommelin, D. T., and Frank, J. E.
(2013). Applying a splitting technique to estimate electrical grid reliability.
In Winter Simulation Conference proceedings, pages 577–588.

[Wadman et al., 2014] Wadman, W. S., Crommelin, D. T., and Frank, J. E.
(2014). A separated splitting technique for disconnected rare event sets. In
Winter Simulation Conference proceedings, pages 522–532.

[Wan et al., 1999] Wan, H., McCalley, J. D., and Vittal, V. (1999). Increas-
ing thermal rating by risk analysis. Power Systems, IEEE Transactions on,
14(3):815–828.

[Wang et al., 2011] Wang, S.-P., Chen, A., Liu, C.-W., Chen, C.-H., and
Shortle, J. (2011). Rare-event splitting simulation for analysis of power sys-
tem blackouts. In Power and Energy Society General Meeting, 2011 IEEE,
pages 1–7. IEEE.

[Zimmerman et al., 2011] Zimmerman, R. D., Murillo-Sánchez, C. E., and
Thomas, R. J. (2011). MATPOWER: Steady-state operations, planning and
analysis tools for power systems research and education. Power Systems,
IEEE Transactions on, 26(1):12–19.

30


	Introduction
	The power flow model
	The splitting technique
	Results from large deviations theory
	Minimizing the good rate function
	Starting from the mean the rare event is most likely at the end time
	Quadratic programming assuming linear power flow equations

	A large deviations based importance function
	Approximation of the decay rate: 3 algorithms

	Experiments
	Two nodes with stochastic power injections
	Eleven nodes with stochastic power injections
	Comparison of the three decay rate approximations
	Performance comparison with a naive importance function

	Conclusion and outlook
	Moments of the multidimensional OU process
	Proof of proposition 2

